url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Fresh.lean
FOL.NV.fresh_not_mem
[69, 1]
[91, 59]
simp only [if_pos h]
x : VarName c : Char xs : Finset VarName h : x ∈ xs this : finset_var_name_max_len xs - x.length < finset_var_name_max_len xs + 1 - x.length ⊒ (if x ∈ xs then fresh { toString := x.toString ++ c.toString } c xs else x) βˆ‰ xs
x : VarName c : Char xs : Finset VarName h : x ∈ xs this : finset_var_name_max_len xs - x.length < finset_var_name_max_len xs + 1 - x.length ⊒ fresh { toString := x.toString ++ c.toString } c xs βˆ‰ xs
Please generate a tactic in lean4 to solve the state. STATE: x : VarName c : Char xs : Finset VarName h : x ∈ xs this : finset_var_name_max_len xs - x.length < finset_var_name_max_len xs + 1 - x.length ⊒ (if x ∈ xs then fresh { toString := x.toString ++ c.toString } c xs else x) βˆ‰ xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Fresh.lean
FOL.NV.fresh_not_mem
[69, 1]
[91, 59]
apply fresh_not_mem
x : VarName c : Char xs : Finset VarName h : x ∈ xs this : finset_var_name_max_len xs - x.length < finset_var_name_max_len xs + 1 - x.length ⊒ fresh { toString := x.toString ++ c.toString } c xs βˆ‰ xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : VarName c : Char xs : Finset VarName h : x ∈ xs this : finset_var_name_max_len xs - x.length < finset_var_name_max_len xs + 1 - x.length ⊒ fresh { toString := x.toString ++ c.toString } c xs βˆ‰ xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Fresh.lean
FOL.NV.fresh_not_mem
[69, 1]
[91, 59]
unfold fresh
x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ fresh x c xs βˆ‰ xs
x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ (if h : x ∈ xs then let_fun this := β‹―; fresh { toString := x.toString ++ c.toString } c xs else x) βˆ‰ xs
Please generate a tactic in lean4 to solve the state. STATE: x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ fresh x c xs βˆ‰ xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Fresh.lean
FOL.NV.fresh_not_mem
[69, 1]
[91, 59]
simp
x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ (if h : x ∈ xs then let_fun this := β‹―; fresh { toString := x.toString ++ c.toString } c xs else x) βˆ‰ xs
x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ (if x ∈ xs then fresh { toString := x.toString ++ c.toString } c xs else x) βˆ‰ xs
Please generate a tactic in lean4 to solve the state. STATE: x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ (if h : x ∈ xs then let_fun this := β‹―; fresh { toString := x.toString ++ c.toString } c xs else x) βˆ‰ xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Fresh.lean
FOL.NV.fresh_not_mem
[69, 1]
[91, 59]
simp [if_neg h]
x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ (if x ∈ xs then fresh { toString := x.toString ++ c.toString } c xs else x) βˆ‰ xs
x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ x βˆ‰ xs
Please generate a tactic in lean4 to solve the state. STATE: x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ (if x ∈ xs then fresh { toString := x.toString ++ c.toString } c xs else x) βˆ‰ xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Fresh.lean
FOL.NV.fresh_not_mem
[69, 1]
[91, 59]
exact h
x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ x βˆ‰ xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : VarName c : Char xs : Finset VarName h : x βˆ‰ xs ⊒ x βˆ‰ xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/NFA.lean
NFA.mem_accepts
[106, 1]
[115, 43]
rfl
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : NFA Ξ± Οƒ input : List Ξ± ⊒ e.accepts input ↔ βˆƒ s ∈ e.eval_from e.starting_state_list input, s ∈ e.accepting_state_list
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : NFA Ξ± Οƒ input : List Ξ± ⊒ e.accepts input ↔ βˆƒ s ∈ e.eval_from e.starting_state_list input, s ∈ e.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_def
[111, 1]
[124, 9]
simp only [eval_one_no_eps]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ e.eval_one_no_eps starting_state_list symbol ↔ βˆƒ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ e.eval_one_no_eps starting_state_list symbol ↔ βˆƒ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_def
[111, 1]
[124, 9]
simp
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, stop_state ∈ symbol_arrow_list_to_fun e.symbol_arrow_list state symbol TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
simp only [EpsilonNFA.eval_one_no_eps]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ e.eval_one_no_eps starting_state_list symbol ↔ βˆƒ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ e.eval_one_no_eps starting_state_list symbol ↔ βˆƒ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
simp only [EpsilonNFA.toAbstract]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, e.toAbstract.symbol state symbol stop_state TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
simp only [symbol_arrow_list_to_fun]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => (List.filterMap (fun arrow => if arrow.start_state = state ∧ arrow.symbol = symbol then some arrow.stop_state_list else none) e.symbol_arrow_list).join.dedup) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => symbol_arrow_list_to_fun e.symbol_arrow_list state symbol) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
simp
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => (List.filterMap (fun arrow => if arrow.start_state = state ∧ arrow.symbol = symbol then some arrow.stop_state_list else none) e.symbol_arrow_list).join.dedup) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ stop_state ∈ (List.map (fun state => (List.filterMap (fun arrow => if arrow.start_state = state ∧ arrow.symbol = symbol then some arrow.stop_state_list else none) e.symbol_arrow_list).join.dedup) starting_state_list).join.dedup ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
constructor
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
case mp Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) β†’ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list case mpr Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list) β†’ βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) ↔ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
rintro ⟨_, h1, _, ⟨⟨⟩, h2, ⟨rfl, rfl⟩, rfl⟩, h3⟩
case mp Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) β†’ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
case mp.intro.intro.intro.intro.intro.mk.intro.intro.intro Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ stop_state start_state✝ : Οƒ symbol✝ : Ξ± stop_state_list✝ : List Οƒ h2 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ } ∈ e.symbol_arrow_list h1 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.start_state ∈ starting_state_list h3 : stop_state ∈ { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.stop_state_list ⊒ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
Please generate a tactic in lean4 to solve the state. STATE: case mp Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l) β†’ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
exact ⟨_, h1, _, h2, h3⟩
case mp.intro.intro.intro.intro.intro.mk.intro.intro.intro Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ stop_state start_state✝ : Οƒ symbol✝ : Ξ± stop_state_list✝ : List Οƒ h2 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ } ∈ e.symbol_arrow_list h1 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.start_state ∈ starting_state_list h3 : stop_state ∈ { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.stop_state_list ⊒ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.intro.intro.intro.intro.intro.mk.intro.intro.intro Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ stop_state start_state✝ : Οƒ symbol✝ : Ξ± stop_state_list✝ : List Οƒ h2 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ } ∈ e.symbol_arrow_list h1 : { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.start_state ∈ starting_state_list h3 : stop_state ∈ { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.stop_state_list ⊒ βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := { start_state := start_state✝, symbol := symbol✝, stop_state_list := stop_state_list✝ }.symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
rintro ⟨_, h1, _, h2, h3⟩
case mpr Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list) β†’ βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l
case mpr.intro.intro.intro.intro Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state w✝¹ : Οƒ h1 : w✝¹ ∈ starting_state_list w✝ : List Οƒ h2 : { start_state := w✝¹, symbol := symbol, stop_state_list := w✝ } ∈ e.symbol_arrow_list h3 : stop_state ∈ w✝ ⊒ βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l
Please generate a tactic in lean4 to solve the state. STATE: case mpr Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state : Οƒ ⊒ (βˆƒ state ∈ starting_state_list, βˆƒ stop_state_list, { start_state := state, symbol := symbol, stop_state_list := stop_state_list } ∈ e.symbol_arrow_list ∧ stop_state ∈ stop_state_list) β†’ βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_one_no_eps_iff
[354, 1]
[374, 53]
exact ⟨_, h1, _, ⟨_, h2, ⟨rfl, rfl⟩, rfl⟩, h3⟩
case mpr.intro.intro.intro.intro Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state w✝¹ : Οƒ h1 : w✝¹ ∈ starting_state_list w✝ : List Οƒ h2 : { start_state := w✝¹, symbol := symbol, stop_state_list := w✝ } ∈ e.symbol_arrow_list h3 : stop_state ∈ w✝ ⊒ βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ symbol : Ξ± stop_state w✝¹ : Οƒ h1 : w✝¹ ∈ starting_state_list w✝ : List Οƒ h2 : { start_state := w✝¹, symbol := symbol, stop_state_list := w✝ } ∈ e.symbol_arrow_list h3 : stop_state ∈ w✝ ⊒ βˆƒ a ∈ starting_state_list, βˆƒ l, (βˆƒ a_1 ∈ e.symbol_arrow_list, (a_1.start_state = a ∧ a_1.symbol = symbol) ∧ a_1.stop_state_list = l) ∧ stop_state ∈ l TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
simp only [epsilon_closure]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state : Οƒ ⊒ state ∈ e.epsilon_closure starting_state_list ↔ βˆƒ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state : Οƒ ⊒ state ∈ dft (epsilon_arrow_list_to_graph e.epsilon_arrow_list) starting_state_list ↔ βˆƒ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state : Οƒ ⊒ state ∈ e.epsilon_closure starting_state_list ↔ βˆƒ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
simp only [dft_iff]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state : Οƒ ⊒ state ∈ dft (epsilon_arrow_list_to_graph e.epsilon_arrow_list) starting_state_list ↔ βˆƒ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state : Οƒ ⊒ (βˆƒ s ∈ starting_state_list, Relation.ReflTransGen (fun a b => βˆƒ l, (a, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ b ∈ l) s state) ↔ βˆƒ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state : Οƒ ⊒ state ∈ dft (epsilon_arrow_list_to_graph e.epsilon_arrow_list) starting_state_list ↔ βˆƒ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
congr! with a b c
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state : Οƒ ⊒ (βˆƒ s ∈ starting_state_list, Relation.ReflTransGen (fun a b => βˆƒ l, (a, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ b ∈ l) s state) ↔ βˆƒ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ ⊒ (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ e.toAbstract.epsilon b c
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state : Οƒ ⊒ (βˆƒ s ∈ starting_state_list, Relation.ReflTransGen (fun a b => βˆƒ l, (a, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ b ∈ l) s state) ↔ βˆƒ start_state ∈ starting_state_list, e.toAbstract.EpsilonClosure start_state state TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
simp [toAbstract]
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ ⊒ (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ e.toAbstract.epsilon b c
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ ⊒ (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ e.epsilon_arrow_list ∧ c ∈ stop_state_list
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ ⊒ (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ e.toAbstract.epsilon b c TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
induction e.epsilon_arrow_list <;> simp [*, epsilon_arrow_list_to_graph, or_and_right, exists_or]
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ ⊒ (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ e.epsilon_arrow_list ∧ c ∈ stop_state_list
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a.cons Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ head✝ : EpsilonArrow Οƒ tail✝ : List (EpsilonArrow Οƒ) tail_ih✝ : (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph tail✝ ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list ⊒ ((βˆƒ x, (b = head✝.start_state ∧ x = head✝.stop_state_list) ∧ c ∈ x) ∨ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list) ↔ (βˆƒ x, { start_state := b, stop_state_list := x } = head✝ ∧ c ∈ x) ∨ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ ⊒ (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph e.epsilon_arrow_list ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ e.epsilon_arrow_list ∧ c ∈ stop_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
apply or_congr_left <| exists_congr fun a => and_congr_left fun _ => ?_
case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a.cons Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ head✝ : EpsilonArrow Οƒ tail✝ : List (EpsilonArrow Οƒ) tail_ih✝ : (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph tail✝ ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list ⊒ ((βˆƒ x, (b = head✝.start_state ∧ x = head✝.stop_state_list) ∧ c ∈ x) ∨ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list) ↔ (βˆƒ x, { start_state := b, stop_state_list := x } = head✝ ∧ c ∈ x) ∨ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a✝ b c : Οƒ head✝ : EpsilonArrow Οƒ tail✝ : List (EpsilonArrow Οƒ) tail_ih✝ : (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph tail✝ ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list a : List Οƒ x✝ : c ∈ a ⊒ b = head✝.start_state ∧ a = head✝.stop_state_list ↔ { start_state := b, stop_state_list := a } = head✝
Please generate a tactic in lean4 to solve the state. STATE: case a.h.e'_2.h.h.e'_2.h.e.h.e'_2.h.h.a.cons Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a b c : Οƒ head✝ : EpsilonArrow Οƒ tail✝ : List (EpsilonArrow Οƒ) tail_ih✝ : (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph tail✝ ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list ⊒ ((βˆƒ x, (b = head✝.start_state ∧ x = head✝.stop_state_list) ∧ c ∈ x) ∨ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list) ↔ (βˆƒ x, { start_state := b, stop_state_list := x } = head✝ ∧ c ∈ x) ∨ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.epsilon_closure_iff
[385, 1]
[402, 83]
constructor <;> [rintro ⟨rfl, rfl⟩; rintro rfl] <;> [rfl; constructor <;> rfl]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a✝ b c : Οƒ head✝ : EpsilonArrow Οƒ tail✝ : List (EpsilonArrow Οƒ) tail_ih✝ : (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph tail✝ ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list a : List Οƒ x✝ : c ∈ a ⊒ b = head✝.start_state ∧ a = head✝.stop_state_list ↔ { start_state := b, stop_state_list := a } = head✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ starting_state_list : List Οƒ state a✝ b c : Οƒ head✝ : EpsilonArrow Οƒ tail✝ : List (EpsilonArrow Οƒ) tail_ih✝ : (βˆƒ l, (b, l) ∈ epsilon_arrow_list_to_graph tail✝ ∧ c ∈ l) ↔ βˆƒ stop_state_list, { start_state := b, stop_state_list := stop_state_list } ∈ tail✝ ∧ c ∈ stop_state_list a : List Οƒ x✝ : c ∈ a ⊒ b = head✝.start_state ∧ a = head✝.stop_state_list ↔ { start_state := b, stop_state_list := a } = head✝ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
simp [epsilon_closure_iff]
case nil Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s ∈ M.epsilon_closure S, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s []
case nil Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s []
Please generate a tactic in lean4 to solve the state. STATE: case nil Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s ∈ M.epsilon_closure S, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
constructor
case nil Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s []
case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list) β†’ βˆƒ s ∈ S, M.toAbstract.eval s [] case nil.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s ∈ S, M.toAbstract.eval s []) β†’ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list
Please generate a tactic in lean4 to solve the state. STATE: case nil Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
intro ⟨s, ⟨s', h1, h2⟩, h3⟩
case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list) β†’ βˆƒ s ∈ S, M.toAbstract.eval s []
case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h1 : s' ∈ S h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ βˆƒ s ∈ S, M.toAbstract.eval s []
Please generate a tactic in lean4 to solve the state. STATE: case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list) β†’ βˆƒ s ∈ S, M.toAbstract.eval s [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
refine ⟨_, h1, ?_⟩
case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h1 : s' ∈ S h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ βˆƒ s ∈ S, M.toAbstract.eval s []
case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h1 : s' ∈ S h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ M.toAbstract.eval s' []
Please generate a tactic in lean4 to solve the state. STATE: case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h1 : s' ∈ S h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ βˆƒ s ∈ S, M.toAbstract.eval s [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
clear h1
case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h1 : s' ∈ S h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ M.toAbstract.eval s' []
case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ M.toAbstract.eval s' []
Please generate a tactic in lean4 to solve the state. STATE: case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h1 : s' ∈ S h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ M.toAbstract.eval s' [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
induction h2 using Relation.ReflTransGen.head_induction_on with | refl => exact .accept _ h3 | head h _ ih => exact .eps _ _ _ ih h
case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ M.toAbstract.eval s' []
no goals
Please generate a tactic in lean4 to solve the state. STATE: case nil.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h2 : M.toAbstract.EpsilonClosure s' s h3 : s ∈ M.accepting_state_list ⊒ M.toAbstract.eval s' [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact .accept _ h3
case nil.mp.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h3 : s ∈ M.accepting_state_list ⊒ M.toAbstract.eval s []
no goals
Please generate a tactic in lean4 to solve the state. STATE: case nil.mp.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h3 : s ∈ M.accepting_state_list ⊒ M.toAbstract.eval s [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact .eps _ _ _ ih h
case nil.mp.head Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h3 : s ∈ M.accepting_state_list a✝ c✝ : Οƒ h : M.toAbstract.epsilon a✝ c✝ h✝ : Relation.ReflTransGen M.toAbstract.epsilon c✝ s ih : M.toAbstract.eval c✝ [] ⊒ M.toAbstract.eval a✝ []
no goals
Please generate a tactic in lean4 to solve the state. STATE: case nil.mp.head Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s s' : Οƒ h3 : s ∈ M.accepting_state_list a✝ c✝ : Οƒ h : M.toAbstract.epsilon a✝ c✝ h✝ : Relation.ReflTransGen M.toAbstract.epsilon c✝ s ih : M.toAbstract.eval c✝ [] ⊒ M.toAbstract.eval a✝ [] TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
intro ⟨s, h1, h2⟩
case nil.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s ∈ S, M.toAbstract.eval s []) β†’ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list
case nil.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s [] ⊒ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list
Please generate a tactic in lean4 to solve the state. STATE: case nil.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ ⊒ (βˆƒ s ∈ S, M.toAbstract.eval s []) β†’ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
obtain ⟨s', h3, h4⟩ : βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list := by clear h1; generalize e : [] = l at h2 induction h2 with cases e | accept _ h' => exact ⟨_, .refl, h'⟩ | eps _ _ _ _ h2 ih => have ⟨s', h3, h4⟩ := ih rfl exact ⟨_, .head h2 h3, h4⟩
case nil.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s [] ⊒ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list
case nil.mpr.intro.intro Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s [] s' : Οƒ h3 : M.toAbstract.EpsilonClosure s s' h4 : s' ∈ M.accepting_state_list ⊒ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list
Please generate a tactic in lean4 to solve the state. STATE: case nil.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s [] ⊒ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact ⟨_, ⟨_, h1, h3⟩, h4⟩
case nil.mpr.intro.intro Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s [] s' : Οƒ h3 : M.toAbstract.EpsilonClosure s s' h4 : s' ∈ M.accepting_state_list ⊒ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list
no goals
Please generate a tactic in lean4 to solve the state. STATE: case nil.mpr.intro.intro Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s [] s' : Οƒ h3 : M.toAbstract.EpsilonClosure s s' h4 : s' ∈ M.accepting_state_list ⊒ βˆƒ s, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state s) ∧ s ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
clear h1
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s [] ⊒ βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h2 : M.toAbstract.eval s [] ⊒ βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list
Please generate a tactic in lean4 to solve the state. STATE: Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s [] ⊒ βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
generalize e : [] = l at h2
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h2 : M.toAbstract.eval s [] ⊒ βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± e : [] = l h2 : M.toAbstract.eval s l ⊒ βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list
Please generate a tactic in lean4 to solve the state. STATE: Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ h2 : M.toAbstract.eval s [] ⊒ βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
induction h2 with cases e | accept _ h' => exact ⟨_, .refl, h'⟩ | eps _ _ _ _ h2 ih => have ⟨s', h3, h4⟩ := ih rfl exact ⟨_, .head h2 h3, h4⟩
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± e : [] = l h2 : M.toAbstract.eval s l ⊒ βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± e : [] = l h2 : M.toAbstract.eval s l ⊒ βˆƒ s', M.toAbstract.EpsilonClosure s s' ∧ s' ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact ⟨_, .refl, h'⟩
case accept.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± start_state✝ : Οƒ h' : M.toAbstract.accepting start_state✝ ⊒ βˆƒ s', M.toAbstract.EpsilonClosure start_state✝ s' ∧ s' ∈ M.accepting_state_list
no goals
Please generate a tactic in lean4 to solve the state. STATE: case accept.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± start_state✝ : Οƒ h' : M.toAbstract.accepting start_state✝ ⊒ βˆƒ s', M.toAbstract.EpsilonClosure start_state✝ s' ∧ s' ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
have ⟨s', h3, h4⟩ := ih rfl
case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ a✝ : M.toAbstract.eval stop_state✝ [] ih : [] = [] β†’ βˆƒ s', M.toAbstract.EpsilonClosure stop_state✝ s' ∧ s' ∈ M.accepting_state_list ⊒ βˆƒ s', M.toAbstract.EpsilonClosure start_state✝ s' ∧ s' ∈ M.accepting_state_list
case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ a✝ : M.toAbstract.eval stop_state✝ [] ih : [] = [] β†’ βˆƒ s', M.toAbstract.EpsilonClosure stop_state✝ s' ∧ s' ∈ M.accepting_state_list s' : Οƒ h3 : M.toAbstract.EpsilonClosure stop_state✝ s' h4 : s' ∈ M.accepting_state_list ⊒ βˆƒ s', M.toAbstract.EpsilonClosure start_state✝ s' ∧ s' ∈ M.accepting_state_list
Please generate a tactic in lean4 to solve the state. STATE: case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ a✝ : M.toAbstract.eval stop_state✝ [] ih : [] = [] β†’ βˆƒ s', M.toAbstract.EpsilonClosure stop_state✝ s' ∧ s' ∈ M.accepting_state_list ⊒ βˆƒ s', M.toAbstract.EpsilonClosure start_state✝ s' ∧ s' ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact ⟨_, .head h2 h3, h4⟩
case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ a✝ : M.toAbstract.eval stop_state✝ [] ih : [] = [] β†’ βˆƒ s', M.toAbstract.EpsilonClosure stop_state✝ s' ∧ s' ∈ M.accepting_state_list s' : Οƒ h3 : M.toAbstract.EpsilonClosure stop_state✝ s' h4 : s' ∈ M.accepting_state_list ⊒ βˆƒ s', M.toAbstract.EpsilonClosure start_state✝ s' ∧ s' ∈ M.accepting_state_list
no goals
Please generate a tactic in lean4 to solve the state. STATE: case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ a✝ : M.toAbstract.eval stop_state✝ [] ih : [] = [] β†’ βˆƒ s', M.toAbstract.EpsilonClosure stop_state✝ s' ∧ s' ∈ M.accepting_state_list s' : Οƒ h3 : M.toAbstract.EpsilonClosure stop_state✝ s' h4 : s' ∈ M.accepting_state_list ⊒ βˆƒ s', M.toAbstract.EpsilonClosure start_state✝ s' ∧ s' ∈ M.accepting_state_list TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
simp [IH, epsilon_closure_iff, eval_one_no_eps_iff]
case cons Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s ∈ M.eval_from (M.eval_one_no_eps (M.epsilon_closure S) a) as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)
case cons Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as) ↔ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)
Please generate a tactic in lean4 to solve the state. STATE: case cons Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s ∈ M.eval_from (M.eval_one_no_eps (M.epsilon_closure S) a) as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
constructor
case cons Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as) ↔ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)
case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as) β†’ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as) case cons.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)) β†’ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as
Please generate a tactic in lean4 to solve the state. STATE: case cons Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as) ↔ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
intro ⟨s₁, ⟨sβ‚‚, ⟨s₃, h1, h2⟩, h3⟩, h4⟩
case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as) β†’ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)
case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h1 : s₃ ∈ S h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)
Please generate a tactic in lean4 to solve the state. STATE: case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as) β†’ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
refine ⟨_, h1, ?_⟩
case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h1 : s₃ ∈ S h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)
case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h1 : s₃ ∈ S h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ M.toAbstract.eval s₃ (a :: as)
Please generate a tactic in lean4 to solve the state. STATE: case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h1 : s₃ ∈ S h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ βˆƒ s ∈ S, M.toAbstract.eval s (a :: as) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
clear h1
case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h1 : s₃ ∈ S h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ M.toAbstract.eval s₃ (a :: as)
case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ M.toAbstract.eval s₃ (a :: as)
Please generate a tactic in lean4 to solve the state. STATE: case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h1 : s₃ ∈ S h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ M.toAbstract.eval s₃ (a :: as) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
induction h2 using Relation.ReflTransGen.head_induction_on with | refl => {apply AbstractEpsilonNFA.eval.sym _ _ _ _ h4 h3; } | head h _ ih => exact .eps _ _ _ ih h
case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ M.toAbstract.eval s₃ (a :: as)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case cons.mp Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h2 : M.toAbstract.EpsilonClosure s₃ sβ‚‚ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ M.toAbstract.eval s₃ (a :: as) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
apply AbstractEpsilonNFA.eval.sym _ _ _ _ h4 h3
case cons.mp.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ M.toAbstract.eval sβ‚‚ (a :: as)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case cons.mp.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as ⊒ M.toAbstract.eval sβ‚‚ (a :: as) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact .eps _ _ _ ih h
case cons.mp.head Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as a✝ c✝ : Οƒ h : M.toAbstract.epsilon a✝ c✝ h✝ : Relation.ReflTransGen M.toAbstract.epsilon c✝ sβ‚‚ ih : M.toAbstract.eval c✝ (a :: as) ⊒ M.toAbstract.eval a✝ (a :: as)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case cons.mp.head Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s₁ sβ‚‚ s₃ : Οƒ h3 : M.toAbstract.symbol sβ‚‚ a s₁ h4 : M.toAbstract.eval s₁ as a✝ c✝ : Οƒ h : M.toAbstract.epsilon a✝ c✝ h✝ : Relation.ReflTransGen M.toAbstract.epsilon c✝ sβ‚‚ ih : M.toAbstract.eval c✝ (a :: as) ⊒ M.toAbstract.eval a✝ (a :: as) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
intro ⟨s, h1, h2⟩
case cons.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)) β†’ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as
case cons.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s (a :: as) ⊒ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as
Please generate a tactic in lean4 to solve the state. STATE: case cons.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ ⊒ (βˆƒ s ∈ S, M.toAbstract.eval s (a :: as)) β†’ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
obtain ⟨s₁, sβ‚‚, h3, h4, h5⟩ : βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as := by clear h1; generalize e : a::as = l at h2 induction h2 with cases e | sym _ _ _ _ h1 h2 => exact ⟨_, _, .refl, h2, h1⟩ | eps _ _ _ h1 h2 ih => have ⟨s₁, sβ‚‚, h3, h4, h5⟩ := ih rfl exact ⟨_, _, .head h2 h3, h4, h5⟩
case cons.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s (a :: as) ⊒ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as
case cons.mpr.intro.intro.intro.intro Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s (a :: as) s₁ sβ‚‚ : Οƒ h3 : M.toAbstract.EpsilonClosure s sβ‚‚ h4 : M.toAbstract.symbol sβ‚‚ a s₁ h5 : M.toAbstract.eval s₁ as ⊒ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as
Please generate a tactic in lean4 to solve the state. STATE: case cons.mpr Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s (a :: as) ⊒ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact ⟨_, ⟨_, ⟨_, h1, h3⟩, h4⟩, h5⟩
case cons.mpr.intro.intro.intro.intro Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s (a :: as) s₁ sβ‚‚ : Οƒ h3 : M.toAbstract.EpsilonClosure s sβ‚‚ h4 : M.toAbstract.symbol sβ‚‚ a s₁ h5 : M.toAbstract.eval s₁ as ⊒ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as
no goals
Please generate a tactic in lean4 to solve the state. STATE: case cons.mpr.intro.intro.intro.intro Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s (a :: as) s₁ sβ‚‚ : Οƒ h3 : M.toAbstract.EpsilonClosure s sβ‚‚ h4 : M.toAbstract.symbol sβ‚‚ a s₁ h5 : M.toAbstract.eval s₁ as ⊒ βˆƒ s, (βˆƒ state, (βˆƒ start_state ∈ S, M.toAbstract.EpsilonClosure start_state state) ∧ M.toAbstract.symbol state a s) ∧ M.toAbstract.eval s as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
clear h1
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s (a :: as) ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h2 : M.toAbstract.eval s (a :: as) ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
Please generate a tactic in lean4 to solve the state. STATE: Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h1 : s ∈ S h2 : M.toAbstract.eval s (a :: as) ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
generalize e : a::as = l at h2
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h2 : M.toAbstract.eval s (a :: as) ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± e : a :: as = l h2 : M.toAbstract.eval s l ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
Please generate a tactic in lean4 to solve the state. STATE: Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ h2 : M.toAbstract.eval s (a :: as) ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
induction h2 with cases e | sym _ _ _ _ h1 h2 => exact ⟨_, _, .refl, h2, h1⟩ | eps _ _ _ h1 h2 ih => have ⟨s₁, sβ‚‚, h3, h4, h5⟩ := ih rfl exact ⟨_, _, .head h2 h3, h4, h5⟩
Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± e : a :: as = l h2 : M.toAbstract.eval s l ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± e : a :: as = l h2 : M.toAbstract.eval s l ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure s sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact ⟨_, _, .refl, h2, h1⟩
case sym.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.symbol start_state✝ a stop_state✝ h1 : M.toAbstract.eval stop_state✝ as a_ih✝ : a :: as = as β†’ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure start_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
no goals
Please generate a tactic in lean4 to solve the state. STATE: case sym.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.symbol start_state✝ a stop_state✝ h1 : M.toAbstract.eval stop_state✝ as a_ih✝ : a :: as = as β†’ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure start_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
have ⟨s₁, sβ‚‚, h3, h4, h5⟩ := ih rfl
case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ h1 : M.toAbstract.eval stop_state✝ (a :: as) ih : a :: as = a :: as β†’ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure start_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ h1 : M.toAbstract.eval stop_state✝ (a :: as) ih : a :: as = a :: as β†’ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as s₁ sβ‚‚ : Οƒ h3 : M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ h4 : M.toAbstract.symbol sβ‚‚ a s₁ h5 : M.toAbstract.eval s₁ as ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure start_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
Please generate a tactic in lean4 to solve the state. STATE: case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ h1 : M.toAbstract.eval stop_state✝ (a :: as) ih : a :: as = a :: as β†’ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure start_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.eval_from_iff
[405, 1]
[454, 44]
exact ⟨_, _, .head h2 h3, h4, h5⟩
case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ h1 : M.toAbstract.eval stop_state✝ (a :: as) ih : a :: as = a :: as β†’ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as s₁ sβ‚‚ : Οƒ h3 : M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ h4 : M.toAbstract.symbol sβ‚‚ a s₁ h5 : M.toAbstract.eval s₁ as ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure start_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as
no goals
Please generate a tactic in lean4 to solve the state. STATE: case eps.refl Ξ± Οƒ : Type inst✝¹ : DecidableEq Ξ± inst✝ : DecidableEq Οƒ M : EpsilonNFA Ξ± Οƒ a : Ξ± as : List Ξ± IH : βˆ€ (S : List Οƒ), (βˆƒ s ∈ M.eval_from S as, s ∈ M.accepting_state_list) ↔ βˆƒ s ∈ S, M.toAbstract.eval s as S : List Οƒ s : Οƒ l : List Ξ± start_state✝ stop_state✝ : Οƒ h2 : M.toAbstract.epsilon start_state✝ stop_state✝ h1 : M.toAbstract.eval stop_state✝ (a :: as) ih : a :: as = a :: as β†’ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as s₁ sβ‚‚ : Οƒ h3 : M.toAbstract.EpsilonClosure stop_state✝ sβ‚‚ h4 : M.toAbstract.symbol sβ‚‚ a s₁ h5 : M.toAbstract.eval s₁ as ⊒ βˆƒ s₁ sβ‚‚, M.toAbstract.EpsilonClosure start_state✝ sβ‚‚ ∧ M.toAbstract.symbol sβ‚‚ a s₁ ∧ M.toAbstract.eval s₁ as TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.accepts_iff
[457, 1]
[468, 8]
simp [accepts, eval]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ input : List Ξ± ⊒ e.accepts input ↔ e.toAbstract.accepts input
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ input : List Ξ± ⊒ (βˆƒ s ∈ e.eval_from e.starting_state_list input, s ∈ e.accepting_state_list) ↔ e.toAbstract.accepts input
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ input : List Ξ± ⊒ e.accepts input ↔ e.toAbstract.accepts input TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.accepts_iff
[457, 1]
[468, 8]
rw [EpsilonNFA.eval_from_iff]
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ input : List Ξ± ⊒ (βˆƒ s ∈ e.eval_from e.starting_state_list input, s ∈ e.accepting_state_list) ↔ e.toAbstract.accepts input
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ input : List Ξ± ⊒ (βˆƒ s ∈ e.starting_state_list, e.toAbstract.eval s input) ↔ e.toAbstract.accepts input
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ input : List Ξ± ⊒ (βˆƒ s ∈ e.eval_from e.starting_state_list input, s ∈ e.accepting_state_list) ↔ e.toAbstract.accepts input TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/EpsilonNFA.lean
EpsilonNFA.accepts_iff
[457, 1]
[468, 8]
rfl
Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ input : List Ξ± ⊒ (βˆƒ s ∈ e.starting_state_list, e.toAbstract.eval s input) ↔ e.toAbstract.accepts input
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type inst✝¹ : DecidableEq Ξ± Οƒ : Type inst✝ : DecidableEq Οƒ e : EpsilonNFA Ξ± Οƒ input : List Ξ± ⊒ (βˆƒ s ∈ e.starting_state_list, e.toAbstract.eval s input) ↔ e.toAbstract.accepts input TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
induction F
F : Formula ⊒ fastReplaceFree id F = F
case pred_const_ a✝¹ : PredName a✝ : List VarName ⊒ fastReplaceFree id (pred_const_ a✝¹ a✝) = pred_const_ a✝¹ a✝ case pred_var_ a✝¹ : PredName a✝ : List VarName ⊒ fastReplaceFree id (pred_var_ a✝¹ a✝) = pred_var_ a✝¹ a✝ case eq_ a✝¹ a✝ : VarName ⊒ fastReplaceFree id (eq_ a✝¹ a✝) = eq_ a✝¹ a✝ case true_ ⊒ fastReplaceFree id true_ = true_ case false_ ⊒ fastReplaceFree id false_ = false_ case not_ a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id a✝.not_ = a✝.not_ case imp_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.imp_ a✝) = a✝¹.imp_ a✝ case and_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.and_ a✝) = a✝¹.and_ a✝ case or_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.or_ a✝) = a✝¹.or_ a✝ case iff_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.iff_ a✝) = a✝¹.iff_ a✝ case forall_ a✝¹ : VarName a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (forall_ a✝¹ a✝) = forall_ a✝¹ a✝ case exists_ a✝¹ : VarName a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (exists_ a✝¹ a✝) = exists_ a✝¹ a✝ case def_ a✝¹ : DefName a✝ : List VarName ⊒ fastReplaceFree id (def_ a✝¹ a✝) = def_ a✝¹ a✝
Please generate a tactic in lean4 to solve the state. STATE: F : Formula ⊒ fastReplaceFree id F = F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
all_goals simp only [fastReplaceFree]
case pred_const_ a✝¹ : PredName a✝ : List VarName ⊒ fastReplaceFree id (pred_const_ a✝¹ a✝) = pred_const_ a✝¹ a✝ case pred_var_ a✝¹ : PredName a✝ : List VarName ⊒ fastReplaceFree id (pred_var_ a✝¹ a✝) = pred_var_ a✝¹ a✝ case eq_ a✝¹ a✝ : VarName ⊒ fastReplaceFree id (eq_ a✝¹ a✝) = eq_ a✝¹ a✝ case true_ ⊒ fastReplaceFree id true_ = true_ case false_ ⊒ fastReplaceFree id false_ = false_ case not_ a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id a✝.not_ = a✝.not_ case imp_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.imp_ a✝) = a✝¹.imp_ a✝ case and_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.and_ a✝) = a✝¹.and_ a✝ case or_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.or_ a✝) = a✝¹.or_ a✝ case iff_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.iff_ a✝) = a✝¹.iff_ a✝ case forall_ a✝¹ : VarName a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (forall_ a✝¹ a✝) = forall_ a✝¹ a✝ case exists_ a✝¹ : VarName a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (exists_ a✝¹ a✝) = exists_ a✝¹ a✝ case def_ a✝¹ : DefName a✝ : List VarName ⊒ fastReplaceFree id (def_ a✝¹ a✝) = def_ a✝¹ a✝
case pred_const_ a✝¹ : PredName a✝ : List VarName ⊒ pred_const_ a✝¹ (List.map id a✝) = pred_const_ a✝¹ a✝ case pred_var_ a✝¹ : PredName a✝ : List VarName ⊒ pred_var_ a✝¹ (List.map id a✝) = pred_var_ a✝¹ a✝ case eq_ a✝¹ a✝ : VarName ⊒ eq_ (id a✝¹) (id a✝) = eq_ a✝¹ a✝ case not_ a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ (fastReplaceFree id a✝).not_ = a✝.not_ case imp_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ (fastReplaceFree id a✝¹).imp_ (fastReplaceFree id a✝) = a✝¹.imp_ a✝ case and_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ (fastReplaceFree id a✝¹).and_ (fastReplaceFree id a✝) = a✝¹.and_ a✝ case or_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ (fastReplaceFree id a✝¹).or_ (fastReplaceFree id a✝) = a✝¹.or_ a✝ case iff_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ (fastReplaceFree id a✝¹).iff_ (fastReplaceFree id a✝) = a✝¹.iff_ a✝ case forall_ a✝¹ : VarName a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ forall_ a✝¹ (fastReplaceFree (Function.updateITE id a✝¹ a✝¹) a✝) = forall_ a✝¹ a✝ case exists_ a✝¹ : VarName a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ exists_ a✝¹ (fastReplaceFree (Function.updateITE id a✝¹ a✝¹) a✝) = exists_ a✝¹ a✝ case def_ a✝¹ : DefName a✝ : List VarName ⊒ def_ a✝¹ (List.map id a✝) = def_ a✝¹ a✝
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ a✝¹ : PredName a✝ : List VarName ⊒ fastReplaceFree id (pred_const_ a✝¹ a✝) = pred_const_ a✝¹ a✝ case pred_var_ a✝¹ : PredName a✝ : List VarName ⊒ fastReplaceFree id (pred_var_ a✝¹ a✝) = pred_var_ a✝¹ a✝ case eq_ a✝¹ a✝ : VarName ⊒ fastReplaceFree id (eq_ a✝¹ a✝) = eq_ a✝¹ a✝ case true_ ⊒ fastReplaceFree id true_ = true_ case false_ ⊒ fastReplaceFree id false_ = false_ case not_ a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id a✝.not_ = a✝.not_ case imp_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.imp_ a✝) = a✝¹.imp_ a✝ case and_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.and_ a✝) = a✝¹.and_ a✝ case or_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.or_ a✝) = a✝¹.or_ a✝ case iff_ a✝¹ a✝ : Formula a_ih✝¹ : fastReplaceFree id a✝¹ = a✝¹ a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (a✝¹.iff_ a✝) = a✝¹.iff_ a✝ case forall_ a✝¹ : VarName a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (forall_ a✝¹ a✝) = forall_ a✝¹ a✝ case exists_ a✝¹ : VarName a✝ : Formula a_ih✝ : fastReplaceFree id a✝ = a✝ ⊒ fastReplaceFree id (exists_ a✝¹ a✝) = exists_ a✝¹ a✝ case def_ a✝¹ : DefName a✝ : List VarName ⊒ fastReplaceFree id (def_ a✝¹ a✝) = def_ a✝¹ a✝ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
case pred_const_ X xs | pred_var_ X xs | def_ X xs => congr! simp
X : DefName xs : List VarName ⊒ def_ X (List.map id xs) = def_ X xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : DefName xs : List VarName ⊒ def_ X (List.map id xs) = def_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
case eq_ x y => congr!
x y : VarName ⊒ eq_ (id x) (id y) = eq_ x y
no goals
Please generate a tactic in lean4 to solve the state. STATE: x y : VarName ⊒ eq_ (id x) (id y) = eq_ x y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
case not_ phi phi_ih => congr!
phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ (fastReplaceFree id phi).not_ = phi.not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ (fastReplaceFree id phi).not_ = phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => congr!
phi psi : Formula phi_ih : fastReplaceFree id phi = phi psi_ih : fastReplaceFree id psi = psi ⊒ (fastReplaceFree id phi).iff_ (fastReplaceFree id psi) = phi.iff_ psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: phi psi : Formula phi_ih : fastReplaceFree id phi = phi psi_ih : fastReplaceFree id psi = psi ⊒ (fastReplaceFree id phi).iff_ (fastReplaceFree id psi) = phi.iff_ psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
case forall_ x phi phi_ih | exists_ x phi phi_ih => congr! simp only [Function.updateITE_id] exact phi_ih
x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ exists_ x (fastReplaceFree (Function.updateITE id x x) phi) = exists_ x phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ exists_ x (fastReplaceFree (Function.updateITE id x x) phi) = exists_ x phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
simp only [fastReplaceFree]
case def_ a✝¹ : DefName a✝ : List VarName ⊒ fastReplaceFree id (def_ a✝¹ a✝) = def_ a✝¹ a✝
case def_ a✝¹ : DefName a✝ : List VarName ⊒ def_ a✝¹ (List.map id a✝) = def_ a✝¹ a✝
Please generate a tactic in lean4 to solve the state. STATE: case def_ a✝¹ : DefName a✝ : List VarName ⊒ fastReplaceFree id (def_ a✝¹ a✝) = def_ a✝¹ a✝ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
congr!
X : DefName xs : List VarName ⊒ def_ X (List.map id xs) = def_ X xs
case h.e'_2 X : DefName xs : List VarName ⊒ List.map id xs = xs
Please generate a tactic in lean4 to solve the state. STATE: X : DefName xs : List VarName ⊒ def_ X (List.map id xs) = def_ X xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
simp
case h.e'_2 X : DefName xs : List VarName ⊒ List.map id xs = xs
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 X : DefName xs : List VarName ⊒ List.map id xs = xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
congr!
x y : VarName ⊒ eq_ (id x) (id y) = eq_ x y
no goals
Please generate a tactic in lean4 to solve the state. STATE: x y : VarName ⊒ eq_ (id x) (id y) = eq_ x y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
congr!
phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ (fastReplaceFree id phi).not_ = phi.not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ (fastReplaceFree id phi).not_ = phi.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
congr!
phi psi : Formula phi_ih : fastReplaceFree id phi = phi psi_ih : fastReplaceFree id psi = psi ⊒ (fastReplaceFree id phi).iff_ (fastReplaceFree id psi) = phi.iff_ psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: phi psi : Formula phi_ih : fastReplaceFree id phi = phi psi_ih : fastReplaceFree id psi = psi ⊒ (fastReplaceFree id phi).iff_ (fastReplaceFree id psi) = phi.iff_ psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
congr!
x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ exists_ x (fastReplaceFree (Function.updateITE id x x) phi) = exists_ x phi
case h.e'_2 x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ fastReplaceFree (Function.updateITE id x x) phi = phi
Please generate a tactic in lean4 to solve the state. STATE: x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ exists_ x (fastReplaceFree (Function.updateITE id x x) phi) = exists_ x phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
simp only [Function.updateITE_id]
case h.e'_2 x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ fastReplaceFree (Function.updateITE id x x) phi = phi
case h.e'_2 x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ fastReplaceFree id phi = phi
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ fastReplaceFree (Function.updateITE id x x) phi = phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_id
[98, 1]
[121, 17]
exact phi_ih
case h.e'_2 x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ fastReplaceFree id phi = phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 x : VarName phi : Formula phi_ih : fastReplaceFree id phi = phi ⊒ fastReplaceFree id phi = phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
induction F generalizing Οƒ Οƒ'
F : Formula Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v F β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ F = fastReplaceFree Οƒ' F
case pred_const_ a✝¹ : PredName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (pred_const_ a✝¹ a✝) = fastReplaceFree Οƒ' (pred_const_ a✝¹ a✝) case pred_var_ a✝¹ : PredName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (pred_var_ a✝¹ a✝) = fastReplaceFree Οƒ' (pred_var_ a✝¹ a✝) case eq_ a✝¹ a✝ : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (eq_ a✝¹ a✝) = fastReplaceFree Οƒ' (eq_ a✝¹ a✝) case true_ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v true_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ true_ = fastReplaceFree Οƒ' true_ case false_ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v false_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ false_ = fastReplaceFree Οƒ' false_ case not_ a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v a✝.not_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ a✝.not_ = fastReplaceFree Οƒ' a✝.not_ case imp_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.imp_ a✝) = fastReplaceFree Οƒ' (a✝¹.imp_ a✝) case and_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.and_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.and_ a✝) = fastReplaceFree Οƒ' (a✝¹.and_ a✝) case or_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.or_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.or_ a✝) = fastReplaceFree Οƒ' (a✝¹.or_ a✝) case iff_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.iff_ a✝) = fastReplaceFree Οƒ' (a✝¹.iff_ a✝) case forall_ a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (forall_ a✝¹ a✝) = fastReplaceFree Οƒ' (forall_ a✝¹ a✝) case exists_ a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (exists_ a✝¹ a✝) = fastReplaceFree Οƒ' (exists_ a✝¹ a✝) case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (def_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (def_ a✝¹ a✝) = fastReplaceFree Οƒ' (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v F β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ F = fastReplaceFree Οƒ' F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
all_goals simp only [isFreeIn] at h1 simp only [fastReplaceFree]
case pred_const_ a✝¹ : PredName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (pred_const_ a✝¹ a✝) = fastReplaceFree Οƒ' (pred_const_ a✝¹ a✝) case pred_var_ a✝¹ : PredName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (pred_var_ a✝¹ a✝) = fastReplaceFree Οƒ' (pred_var_ a✝¹ a✝) case eq_ a✝¹ a✝ : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (eq_ a✝¹ a✝) = fastReplaceFree Οƒ' (eq_ a✝¹ a✝) case true_ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v true_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ true_ = fastReplaceFree Οƒ' true_ case false_ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v false_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ false_ = fastReplaceFree Οƒ' false_ case not_ a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v a✝.not_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ a✝.not_ = fastReplaceFree Οƒ' a✝.not_ case imp_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.imp_ a✝) = fastReplaceFree Οƒ' (a✝¹.imp_ a✝) case and_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.and_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.and_ a✝) = fastReplaceFree Οƒ' (a✝¹.and_ a✝) case or_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.or_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.or_ a✝) = fastReplaceFree Οƒ' (a✝¹.or_ a✝) case iff_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.iff_ a✝) = fastReplaceFree Οƒ' (a✝¹.iff_ a✝) case forall_ a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (forall_ a✝¹ a✝) = fastReplaceFree Οƒ' (forall_ a✝¹ a✝) case exists_ a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (exists_ a✝¹ a✝) = fastReplaceFree Οƒ' (exists_ a✝¹ a✝) case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (def_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (def_ a✝¹ a✝) = fastReplaceFree Οƒ' (def_ a✝¹ a✝)
case pred_const_ a✝¹ : PredName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ a✝, Οƒ v = Οƒ' v ⊒ pred_const_ a✝¹ (List.map Οƒ a✝) = pred_const_ a✝¹ (List.map Οƒ' a✝) case pred_var_ a✝¹ : PredName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ a✝, Οƒ v = Οƒ' v ⊒ pred_var_ a✝¹ (List.map Οƒ a✝) = pred_var_ a✝¹ (List.map Οƒ' a✝) case eq_ a✝¹ a✝ : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = a✝¹ ∨ v = a✝ β†’ Οƒ v = Οƒ' v ⊒ eq_ (Οƒ a✝¹) (Οƒ a✝) = eq_ (Οƒ' a✝¹) (Οƒ' a✝) case not_ a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ a✝).not_ = (fastReplaceFree Οƒ' a✝).not_ case imp_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ a✝¹).imp_ (fastReplaceFree Οƒ a✝) = (fastReplaceFree Οƒ' a✝¹).imp_ (fastReplaceFree Οƒ' a✝) case and_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ a✝¹).and_ (fastReplaceFree Οƒ a✝) = (fastReplaceFree Οƒ' a✝¹).and_ (fastReplaceFree Οƒ' a✝) case or_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ a✝¹).or_ (fastReplaceFree Οƒ a✝) = (fastReplaceFree Οƒ' a✝¹).or_ (fastReplaceFree Οƒ' a✝) case iff_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ a✝¹).iff_ (fastReplaceFree Οƒ a✝) = (fastReplaceFree Οƒ' a✝¹).iff_ (fastReplaceFree Οƒ' a✝) case forall_ a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), Β¬v = a✝¹ ∧ isFreeIn v a✝ β†’ Οƒ v = Οƒ' v ⊒ forall_ a✝¹ (fastReplaceFree (Function.updateITE Οƒ a✝¹ a✝¹) a✝) = forall_ a✝¹ (fastReplaceFree (Function.updateITE Οƒ' a✝¹ a✝¹) a✝) case exists_ a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), Β¬v = a✝¹ ∧ isFreeIn v a✝ β†’ Οƒ v = Οƒ' v ⊒ exists_ a✝¹ (fastReplaceFree (Function.updateITE Οƒ a✝¹ a✝¹) a✝) = exists_ a✝¹ (fastReplaceFree (Function.updateITE Οƒ' a✝¹ a✝¹) a✝) case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ a✝, Οƒ v = Οƒ' v ⊒ def_ a✝¹ (List.map Οƒ a✝) = def_ a✝¹ (List.map Οƒ' a✝)
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ a✝¹ : PredName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (pred_const_ a✝¹ a✝) = fastReplaceFree Οƒ' (pred_const_ a✝¹ a✝) case pred_var_ a✝¹ : PredName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (pred_var_ a✝¹ a✝) = fastReplaceFree Οƒ' (pred_var_ a✝¹ a✝) case eq_ a✝¹ a✝ : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (eq_ a✝¹ a✝) = fastReplaceFree Οƒ' (eq_ a✝¹ a✝) case true_ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v true_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ true_ = fastReplaceFree Οƒ' true_ case false_ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v false_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ false_ = fastReplaceFree Οƒ' false_ case not_ a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v a✝.not_ β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ a✝.not_ = fastReplaceFree Οƒ' a✝.not_ case imp_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.imp_ a✝) = fastReplaceFree Οƒ' (a✝¹.imp_ a✝) case and_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.and_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.and_ a✝) = fastReplaceFree Οƒ' (a✝¹.and_ a✝) case or_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.or_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.or_ a✝) = fastReplaceFree Οƒ' (a✝¹.or_ a✝) case iff_ a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝¹ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝¹ = fastReplaceFree Οƒ' a✝¹ a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (a✝¹.iff_ a✝) = fastReplaceFree Οƒ' (a✝¹.iff_ a✝) case forall_ a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (forall_ a✝¹ a✝) = fastReplaceFree Οƒ' (forall_ a✝¹ a✝) case exists_ a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v a✝ β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ a✝ = fastReplaceFree Οƒ' a✝ Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (exists_ a✝¹ a✝) = fastReplaceFree Οƒ' (exists_ a✝¹ a✝) case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (def_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (def_ a✝¹ a✝) = fastReplaceFree Οƒ' (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
case pred_const_ X xs | pred_var_ X xs | def_ X xs => congr! 1 simp only [List.map_eq_map_iff] exact h1
X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ def_ X (List.map Οƒ xs) = def_ X (List.map Οƒ' xs)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ def_ X (List.map Οƒ xs) = def_ X (List.map Οƒ' xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
case not_ phi phi_ih => congr! 1 exact phi_ih Οƒ Οƒ' h1
phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ phi).not_ = (fastReplaceFree Οƒ' phi).not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ phi).not_ = (fastReplaceFree Οƒ' phi).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
case forall_ x phi phi_ih | exists_ x phi phi_ih => congr! 1 apply phi_ih intro v a1 simp only [Function.updateITE] split_ifs case _ c1 => rfl case _ c1 => apply h1 tauto
x : VarName phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), Β¬v = x ∧ isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ exists_ x (fastReplaceFree (Function.updateITE Οƒ x x) phi) = exists_ x (fastReplaceFree (Function.updateITE Οƒ' x x) phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : VarName phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), Β¬v = x ∧ isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ exists_ x (fastReplaceFree (Function.updateITE Οƒ x x) phi) = exists_ x (fastReplaceFree (Function.updateITE Οƒ' x x) phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
simp only [isFreeIn] at h1
case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (def_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (def_ a✝¹ a✝) = fastReplaceFree Οƒ' (def_ a✝¹ a✝)
case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ a✝, Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (def_ a✝¹ a✝) = fastReplaceFree Οƒ' (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v (def_ a✝¹ a✝) β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (def_ a✝¹ a✝) = fastReplaceFree Οƒ' (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
simp only [fastReplaceFree]
case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ a✝, Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (def_ a✝¹ a✝) = fastReplaceFree Οƒ' (def_ a✝¹ a✝)
case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ a✝, Οƒ v = Οƒ' v ⊒ def_ a✝¹ (List.map Οƒ a✝) = def_ a✝¹ (List.map Οƒ' a✝)
Please generate a tactic in lean4 to solve the state. STATE: case def_ a✝¹ : DefName a✝ : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ a✝, Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ (def_ a✝¹ a✝) = fastReplaceFree Οƒ' (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
congr! 1
X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ def_ X (List.map Οƒ xs) = def_ X (List.map Οƒ' xs)
case h.e'_2 X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ List.map Οƒ xs = List.map Οƒ' xs
Please generate a tactic in lean4 to solve the state. STATE: X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ def_ X (List.map Οƒ xs) = def_ X (List.map Οƒ' xs) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
simp only [List.map_eq_map_iff]
case h.e'_2 X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ List.map Οƒ xs = List.map Οƒ' xs
case h.e'_2 X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ βˆ€ x ∈ xs, Οƒ x = Οƒ' x
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ List.map Οƒ xs = List.map Οƒ' xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
exact h1
case h.e'_2 X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ βˆ€ x ∈ xs, Οƒ x = Οƒ' x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 X : DefName xs : List VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ v ∈ xs, Οƒ v = Οƒ' v ⊒ βˆ€ x ∈ xs, Οƒ x = Οƒ' x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
congr! 1
x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ eq_ (Οƒ x) (Οƒ y) = eq_ (Οƒ' x) (Οƒ' y)
case h.e'_1 x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ Οƒ x = Οƒ' x case h.e'_2 x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ Οƒ y = Οƒ' y
Please generate a tactic in lean4 to solve the state. STATE: x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ eq_ (Οƒ x) (Οƒ y) = eq_ (Οƒ' x) (Οƒ' y) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
apply h1
case h.e'_1 x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ Οƒ x = Οƒ' x
case h.e'_1.a x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ x = x ∨ x = y
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_1 x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ Οƒ x = Οƒ' x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
left
case h.e'_1.a x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ x = x ∨ x = y
case h.e'_1.a.h x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ x = x
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_1.a x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ x = x ∨ x = y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
rfl
case h.e'_1.a.h x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ x = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_1.a.h x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ x = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
apply h1
case h.e'_2 x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ Οƒ y = Οƒ' y
case h.e'_2.a x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ y = x ∨ y = y
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ Οƒ y = Οƒ' y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
right
case h.e'_2.a x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ y = x ∨ y = y
case h.e'_2.a.h x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ y = y
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.a x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ y = x ∨ y = y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
rfl
case h.e'_2.a.h x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ y = y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.a.h x y : VarName Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ Οƒ v = Οƒ' v ⊒ y = y TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
congr! 1
phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ phi).not_ = (fastReplaceFree Οƒ' phi).not_
case h.e'_1 phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi
Please generate a tactic in lean4 to solve the state. STATE: phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ phi).not_ = (fastReplaceFree Οƒ' phi).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
exact phi_ih Οƒ Οƒ' h1
case h.e'_1 phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_1 phi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
congr! 1
phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ phi).iff_ (fastReplaceFree Οƒ psi) = (fastReplaceFree Οƒ' phi).iff_ (fastReplaceFree Οƒ' psi)
case h.e'_1 phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi case h.e'_2 phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi
Please generate a tactic in lean4 to solve the state. STATE: phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ (fastReplaceFree Οƒ phi).iff_ (fastReplaceFree Οƒ psi) = (fastReplaceFree Οƒ' phi).iff_ (fastReplaceFree Οƒ' psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
apply phi_ih
case h.e'_1 phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi
case h.e'_1.h1 phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_1 phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Rec/ReplaceFree.lean
FOL.NV.Sub.Var.All.Rec.fastReplaceFree_same_on_free
[171, 1]
[223, 12]
intro v a1
case h.e'_1.h1 phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v
case h.e'_1.h1 phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v v : VarName a1 : isFreeIn v phi ⊒ Οƒ v = Οƒ' v
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_1.h1 phi psi : Formula phi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ phi = fastReplaceFree Οƒ' phi psi_ih : βˆ€ (Οƒ Οƒ' : VarName β†’ VarName), (βˆ€ (v : VarName), isFreeIn v psi β†’ Οƒ v = Οƒ' v) β†’ fastReplaceFree Οƒ psi = fastReplaceFree Οƒ' psi Οƒ Οƒ' : VarName β†’ VarName h1 : βˆ€ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi β†’ Οƒ v = Οƒ' v ⊒ βˆ€ (v : VarName), isFreeIn v phi β†’ Οƒ v = Οƒ' v TACTIC: