url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
use zp, zi
|
case right.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
up : ∀ x ∈ u, p < x
ub : BddBelow u
iu : sInf u ∈ u
q : ℝ
pq : p < q
qi : q < sInf u
z : ℂ
zq : Complex.abs z ≤ q
zp : Complex.abs z ≤ p + 1
zi : ¬z ∈ t
⊢ Complex.abs z ≤ p + 1 ∧ z ∉ t
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
up : ∀ x ∈ u, p < x
ub : BddBelow u
iu : sInf u ∈ u
q : ℝ
pq : p < q
qi : q < sInf u
z : ℂ
zq : Complex.abs z ≤ q
zp : Complex.abs z ≤ p + 1
zi : ¬z ∈ t
⊢ Complex.abs z ≤ p + 1 ∧ z ∉ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
refine ⟨p + 1, by bound, ?_⟩
|
case pos
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u = ∅
⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
|
case pos
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u = ∅
⊢ closedBall 0 (p + 1) ⊆ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u = ∅
⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
rw [image_eq_empty, diff_eq_empty] at ne
|
case pos
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u = ∅
⊢ closedBall 0 (p + 1) ⊆ t
|
case pos
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : closedBall 0 (p + 1) ⊆ t
⊢ closedBall 0 (p + 1) ⊆ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u = ∅
⊢ closedBall 0 (p + 1) ⊆ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
exact ne
|
case pos
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : closedBall 0 (p + 1) ⊆ t
⊢ closedBall 0 (p + 1) ⊆ t
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : closedBall 0 (p + 1) ⊆ t
⊢ closedBall 0 (p + 1) ⊆ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
bound
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u = ∅
⊢ p < p + 1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u = ∅
⊢ p < p + 1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
intro x m
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
⊢ ∀ x ∈ u, p < x
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
m : x ∈ u
⊢ p < x
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
⊢ ∀ x ∈ u, p < x
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
rcases m with ⟨z, ⟨_, mt⟩, e⟩
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
m : x ∈ u
⊢ p < x
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : z ∉ t
⊢ p < x
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
m : x ∈ u
⊢ p < x
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
rw [← e]
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : z ∉ t
⊢ p < x
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : z ∉ t
⊢ p < Complex.abs z
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : z ∉ t
⊢ p < x
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
contrapose mt
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : z ∉ t
⊢ p < Complex.abs z
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : ¬p < Complex.abs z
⊢ ¬z ∉ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : z ∉ t
⊢ p < Complex.abs z
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
simp only [not_not, not_lt] at mt ⊢
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : ¬p < Complex.abs z
⊢ ¬z ∉ t
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : Complex.abs z ≤ p
⊢ z ∈ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : ¬p < Complex.abs z
⊢ ¬z ∉ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
apply sub
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : Complex.abs z ≤ p
⊢ z ∈ t
|
case intro.intro.intro.a
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : Complex.abs z ≤ p
⊢ z ∈ closedBall 0 p
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : Complex.abs z ≤ p
⊢ z ∈ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
simp only [mem_closedBall, Complex.dist_eq, sub_zero, mt]
|
case intro.intro.intro.a
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : Complex.abs z ≤ p
⊢ z ∈ closedBall 0 p
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.a
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
x : ℝ
z : ℂ
e : Complex.abs z = x
left✝ : z ∈ closedBall 0 (p + 1)
mt : Complex.abs z ≤ p
⊢ z ∈ closedBall 0 p
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open'
|
[128, 1]
|
[147, 78]
|
linarith
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
up : ∀ x ∈ u, p < x
ub : BddBelow u
iu : sInf u ∈ u
q : ℝ
pq : p < q
qi : q < sInf u
⊢ p < p + 1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set ℂ
sub : closedBall 0 p ⊆ t
ot : IsOpen t
u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t)
ne : u.Nonempty
uc : IsClosed u
up : ∀ x ∈ u, p < x
ub : BddBelow u
iu : sInf u ∈ u
q : ℝ
pq : p < q
qi : q < sInf u
⊢ p < p + 1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
have sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} := by
intro z m; simp only [mem_setOf]; apply sub; exact ⟨mem_singleton _, m⟩
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub : closedBall 0 p ⊆ {b | (c, b) ∈ t}
⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
rcases domain_open' sub (o.snd_preimage c) with ⟨q, pq, sub⟩
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub : closedBall 0 p ⊆ {b | (c, b) ∈ t}
⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
|
case intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub : closedBall 0 p ⊆ {b | (c, b) ∈ t}
⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
use q, pq
|
case intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
⊢ {c} ×ˢ closedBall 0 q ⊆ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
intro ⟨e, z⟩ ⟨ec, m⟩
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
⊢ {c} ×ˢ closedBall 0 q ⊆ t
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : (e, z).1 ∈ {c}
m : (e, z).2 ∈ closedBall 0 q
⊢ (e, z) ∈ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
⊢ {c} ×ˢ closedBall 0 q ⊆ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
simp only [mem_singleton_iff] at ec
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : (e, z).1 ∈ {c}
m : (e, z).2 ∈ closedBall 0 q
⊢ (e, z) ∈ t
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
m : (e, z).2 ∈ closedBall 0 q
ec : e = c
⊢ (e, z) ∈ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : (e, z).1 ∈ {c}
m : (e, z).2 ∈ closedBall 0 q
⊢ (e, z) ∈ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
replace m := sub m
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
m : (e, z).2 ∈ closedBall 0 q
ec : e = c
⊢ (e, z) ∈ t
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : e = c
m : (e, z).2 ∈ {b | (c, b) ∈ t}
⊢ (e, z) ∈ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
m : (e, z).2 ∈ closedBall 0 q
ec : e = c
⊢ (e, z) ∈ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
simp only [← ec, mem_setOf] at m
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : e = c
m : (e, z).2 ∈ {b | (c, b) ∈ t}
⊢ (e, z) ∈ t
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : e = c
m : (e, z) ∈ t
⊢ (e, z) ∈ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : e = c
m : (e, z).2 ∈ {b | (c, b) ∈ t}
⊢ (e, z) ∈ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
exact m
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : e = c
m : (e, z) ∈ t
⊢ (e, z) ∈ t
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t}
q : ℝ
pq : p < q
sub : closedBall 0 q ⊆ {b | (c, b) ∈ t}
e z : ℂ
ec : e = c
m : (e, z) ∈ t
⊢ (e, z) ∈ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
intro z m
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
⊢ closedBall 0 p ⊆ {b | (c, b) ∈ t}
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ z ∈ {b | (c, b) ∈ t}
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
⊢ closedBall 0 p ⊆ {b | (c, b) ∈ t}
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
simp only [mem_setOf]
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ z ∈ {b | (c, b) ∈ t}
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ (c, z) ∈ t
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ z ∈ {b | (c, b) ∈ t}
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
apply sub
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ (c, z) ∈ t
|
case a
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ (c, z) ∈ t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
domain_open
|
[150, 1]
|
[156, 64]
|
exact ⟨mem_singleton _, m⟩
|
case a
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z✝ : S
d n : ℕ
p✝ : ℝ
s : Super f d a
r : ℂ → ℂ → S
p : ℝ
t : Set (ℂ × ℂ)
sub : {c} ×ˢ closedBall 0 p ⊆ t
o : IsOpen t
z : ℂ
m : z ∈ closedBall 0 p
⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
have e := e.self_of_nhdsSet (mem_domain c g.nonneg)
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ r1 c 0 = a
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : uncurry r0 (c, 0) = uncurry r1 (c, 0)
⊢ r1 c 0 = a
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ r1 c 0 = a
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
simp only [uncurry] at e
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : uncurry r0 (c, 0) = uncurry r1 (c, 0)
⊢ r1 c 0 = a
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : r0 c 0 = r1 c 0
⊢ r1 c 0 = a
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : uncurry r0 (c, 0) = uncurry r1 (c, 0)
⊢ r1 c 0 = a
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
rw [← e]
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : r0 c 0 = r1 c 0
⊢ r1 c 0 = a
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : r0 c 0 = r1 c 0
⊢ r0 c 0 = a
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : r0 c 0 = r1 c 0
⊢ r1 c 0 = a
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
exact g.zero
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : r0 c 0 = r1 c 0
⊢ r0 c 0 = a
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
e : r0 c 0 = r1 c 0
⊢ r0 c 0 = a
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
refine g.start.mp ((e.filter_mono (nhds_le_nhdsSet (mem_domain c g.nonneg))).mp ?_)
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r1 x.1 x.2) = x.2
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0),
uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r1 x.1 x.2) = x.2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
refine eventually_of_forall fun x e s ↦ ?_
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0),
uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : uncurry r0 x = uncurry r1 x
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0),
uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
simp only [uncurry] at e
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : uncurry r0 x = uncurry r1 x
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : r0 x.1 x.2 = r1 x.1 x.2
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : uncurry r0 x = uncurry r1 x
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
rw [← e]
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : r0 x.1 x.2 = r1 x.1 x.2
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : r0 x.1 x.2 = r1 x.1 x.2
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : r0 x.1 x.2 = r1 x.1 x.2
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
exact s
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : r0 x.1 x.2 = r1 x.1 x.2
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s✝ c p n r0
e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
x : ℂ × ℂ
e : r0 x.1 x.2 = r1 x.1 x.2
s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
have eqn := g.eqn
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
simp only [Filter.EventuallyEq, eventually_nhdsSet_iff_forall] at eqn e ⊢
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1)
eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
intro x m
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
x : ℂ × ℂ
m : x ∈ {c} ×ˢ closedBall 0 p
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
refine (eqn x m).mp ((e x m).eventually_nhds.mp (eventually_of_forall fun y e eqn ↦ ?_))
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
x : ℂ × ℂ
m : x ∈ {c} ×ˢ closedBall 0 p
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
x : ℂ × ℂ
m : x ∈ {c} ×ˢ closedBall 0 p
y : ℂ × ℂ
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x
eqn : Eqn s n r0 y
⊢ Eqn s n r1 y
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
x : ℂ × ℂ
m : x ∈ {c} ×ˢ closedBall 0 p
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.congr
|
[159, 1]
|
[173, 26]
|
exact eqn.congr e
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
x : ℂ × ℂ
m : x ∈ {c} ×ˢ closedBall 0 p
y : ℂ × ℂ
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x
eqn : Eqn s n r0 y
⊢ Eqn s n r1 y
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r r0 r1 : ℂ → ℂ → S
g : Grow s c p n r0
eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x
e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x
x : ℂ × ℂ
m : x ∈ {c} ×ˢ closedBall 0 p
y : ℂ × ℂ
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x
eqn : Eqn s n r0 y
⊢ Eqn s n r1 y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Eqn.potential
|
[176, 1]
|
[178, 75]
|
simp only [s.potential_eq e.near, Super.potential', e.eqn, Complex.abs.map_pow, ← Nat.cast_pow,
Real.pow_rpow_inv_natCast (Complex.abs.nonneg _) (pow_ne_zero _ s.d0)]
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
x : ℂ × ℂ
e : Eqn s n r x
⊢ s.potential x.1 (r x.1 x.2) = Complex.abs x.2
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
x : ℂ × ℂ
e : Eqn s n r x
⊢ s.potential x.1 (r x.1 x.2) = Complex.abs x.2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
rcases x with ⟨c, x⟩
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
x : ℂ × ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 x, Eqn s n r y
x0 : x.2 ≠ 0
⊢ mfderiv I I (s.bottcherNearIter n x.1) (r x.1 x.2) ≠ 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : (c, x).2 ≠ 0
⊢ mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
x : ℂ × ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 x, Eqn s n r y
x0 : x.2 ≠ 0
⊢ mfderiv I I (s.bottcherNearIter n x.1) (r x.1 x.2) ≠ 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
contrapose x0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : (c, x).2 ≠ 0
⊢ mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : ¬mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0
⊢ ¬(c, x).2 ≠ 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : (c, x).2 ≠ 0
⊢ mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
simp only [not_not] at x0 ⊢
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : ¬mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0
⊢ ¬(c, x).2 ≠ 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : ¬mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0
⊢ ¬(c, x).2 ≠ 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
replace x0 : mfderiv I I (fun y ↦ s.bottcherNearIter n c (r c y)) x = 0 := by
rw [←Function.comp_def,
mfderiv_comp x (s.bottcherNearIter_holomorphic e.self_of_nhds.near).along_snd.mdifferentiableAt
e.self_of_nhds.holo.along_snd.mdifferentiableAt,
x0, ContinuousLinearMap.zero_comp]
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
have loc : (fun y ↦ s.bottcherNearIter n c (r c y)) =ᶠ[𝓝 x] fun y ↦ y ^ d ^ n :=
((continuousAt_const.prod continuousAt_id).eventually e).mp
(eventually_of_forall fun _ e ↦ e.eqn)
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
rw [mfderiv_eq_fderiv, loc.fderiv_eq] at x0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : fderiv ℂ (fun y => y ^ d ^ n) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
have d := (differentiableAt_pow (𝕜 := ℂ) (x := x) (d ^ n)).hasFDerivAt.hasDerivAt.deriv
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : fderiv ℂ (fun y => y ^ d ^ n) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : fderiv ℂ (fun y => y ^ d✝ ^ n) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : fderiv ℂ (fun y => y ^ d ^ n) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
apply_fun (fun x ↦ x 1) at x0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : fderiv ℂ (fun y => y ^ d✝ ^ n) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : fderiv ℂ (fun y => y ^ d✝ ^ n) x = 0
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
rw [x0] at d
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = 0 1
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
replace d := Eq.trans d (ContinuousLinearMap.zero_apply _)
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = 0 1
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : deriv (fun x => x ^ d✝ ^ n) x = 0
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
d : deriv (fun x => x ^ d✝ ^ n) x = 0 1
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
rw [deriv_pow, mul_eq_zero, Nat.cast_eq_zero, pow_eq_zero_iff', pow_eq_zero_iff'] at d
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : deriv (fun x => x ^ d✝ ^ n) x = 0
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : d✝ = 0 ∧ n ≠ 0 ∨ x = 0 ∧ d✝ ^ n - 1 ≠ 0
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : deriv (fun x => x ^ d✝ ^ n) x = 0
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
simp only [s.d0, false_and_iff, false_or_iff] at d
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : d✝ = 0 ∧ n ≠ 0 ∨ x = 0 ∧ d✝ ^ n - 1 ≠ 0
⊢ x = 0
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : x = 0 ∧ d✝ ^ n - 1 ≠ 0
⊢ x = 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : d✝ = 0 ∧ n ≠ 0 ∨ x = 0 ∧ d✝ ^ n - 1 ≠ 0
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
exact d.1
|
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : x = 0 ∧ d✝ ^ n - 1 ≠ 0
⊢ x = 0
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case mk
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d✝ n : ℕ
p : ℝ
s : Super f d✝ a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n
x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1
d : x = 0 ∧ d✝ ^ n - 1 ≠ 0
⊢ x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
eqn_noncritical
|
[181, 1]
|
[198, 64]
|
rw [←Function.comp_def,
mfderiv_comp x (s.bottcherNearIter_holomorphic e.self_of_nhds.near).along_snd.mdifferentiableAt
e.self_of_nhds.holo.along_snd.mdifferentiableAt,
x0, ContinuousLinearMap.zero_comp]
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0
⊢ mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
c x : ℂ
e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0
⊢ mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.p1
|
[201, 1]
|
[208, 93]
|
by_contra p1
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
⊢ p < 1
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : ¬p < 1
⊢ False
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
⊢ p < 1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.p1
|
[201, 1]
|
[208, 93]
|
simp only [not_lt] at p1
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : ¬p < 1
⊢ False
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
⊢ False
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : ¬p < 1
⊢ False
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.p1
|
[201, 1]
|
[208, 93]
|
have e := (g.eqn.filter_mono (nhds_le_nhdsSet (x := (c, 1)) ?_)).self_of_nhds
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
⊢ False
|
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
⊢ False
case refine_1
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
⊢ (c, 1) ∈ {c} ×ˢ closedBall 0 p
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
⊢ False
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.p1
|
[201, 1]
|
[208, 93]
|
have lt := s.potential_lt_one ⟨_, e.near⟩
|
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
⊢ False
|
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
lt : s.potential (c, 1).1 (r (c, 1).1 (c, 1).2) < 1
⊢ False
|
Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
⊢ False
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.p1
|
[201, 1]
|
[208, 93]
|
rw [e.potential, Complex.abs.map_one, lt_self_iff_false] at lt
|
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
lt : s.potential (c, 1).1 (r (c, 1).1 (c, 1).2) < 1
⊢ False
|
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
lt : False
⊢ False
|
Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
lt : s.potential (c, 1).1 (r (c, 1).1 (c, 1).2) < 1
⊢ False
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.p1
|
[201, 1]
|
[208, 93]
|
exact lt
|
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
lt : False
⊢ False
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
e : Eqn s n r (c, 1)
lt : False
⊢ False
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.p1
|
[201, 1]
|
[208, 93]
|
simp only [p1, singleton_prod, mem_image, mem_closedBall_zero_iff, Complex.norm_eq_abs,
Prod.mk.inj_iff, eq_self_iff_true, true_and_iff, exists_eq_right, Complex.abs.map_one]
|
case refine_1
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
⊢ (c, 1) ∈ {c} ×ˢ closedBall 0 p
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
p1 : 1 ≤ p
⊢ (c, 1) ∈ {c} ×ˢ closedBall 0 p
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
have ba := s.bottcherNear_holomorphic _ (s.mem_near c)
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r : ℂ → ℂ → S
s : Super f d a
c : ℂ
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r : ℂ → ℂ → S
s : Super f d a
c : ℂ
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
have nc := s.bottcherNear_mfderiv_ne_zero c
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
rcases complex_inverse_fun ba nc with ⟨r, ra, rb, br⟩
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, s.bottcherNear c a)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
rw [s.bottcherNear_a] at ra br
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, s.bottcherNear c a)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, s.bottcherNear c a)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
have rm : ∀ᶠ x : ℂ × ℂ in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near := by
refine (continuousAt_fst.prod ra.continuousAt).eventually_mem (s.isOpen_near.mem_nhds ?_)
have r0 := rb.self_of_nhds; simp only [s.bottcherNear_a] at r0
simp only [uncurry, r0]; exact s.mem_near c
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
rcases eventually_nhds_iff.mp (ra.eventually.and (br.and rm)) with ⟨t, h, o, m⟩
|
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
case intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
o : IsOpen t
m : (c, 0) ∈ t
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
rcases Metric.isOpen_iff.mp o _ m with ⟨p, pp, sub⟩
|
case intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
o : IsOpen t
m : (c, 0) ∈ t
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
o : IsOpen t
m : (c, 0) ∈ t
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
replace h := fun (x : ℂ × ℂ) m ↦ h x (sub m)
|
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
have nb : ball (c, (0 : ℂ)) p ∈ 𝓝ˢ ({c} ×ˢ closedBall (0 : ℂ) (p / 2)) := by
rw [isOpen_ball.mem_nhdsSet, ← ball_prod_same]; apply prod_mono
rw [singleton_subset_iff]; exact mem_ball_self pp
apply Metric.closedBall_subset_ball; exact half_lt_self pp
|
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
use p / 2, r, half_pos pp
|
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ Grow s c (p / 2) 0 r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
exact
{ nonneg := (half_pos pp).le
zero := by convert rb.self_of_nhds; simp only [s.bottcherNear_a]
start := Filter.eventually_iff_exists_mem.mpr ⟨_, ball_mem_nhds _ pp, fun _ m ↦ (h _ m).2.1⟩
eqn :=
Filter.eventually_iff_exists_mem.mpr
⟨_, nb, fun _ m ↦
{ holo := (h _ m).1
near := (h _ m).2.2
eqn := by simp only [Function.iterate_zero_apply, pow_zero, pow_one, (h _ m).2.1] }⟩ }
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ Grow s c (p / 2) 0 r
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ Grow s c (p / 2) 0 r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
refine (continuousAt_fst.prod ra.continuousAt).eventually_mem (s.isOpen_near.mem_nhds ?_)
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
have r0 := rb.self_of_nhds
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r (c, a).1 (s.bottcherNear (c, a).1 (c, a).2) = (c, a).2
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
simp only [s.bottcherNear_a] at r0
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r (c, a).1 (s.bottcherNear (c, a).1 (c, a).2) = (c, a).2
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r c 0 = a
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r (c, a).1 (s.bottcherNear (c, a).1 (c, a).2) = (c, a).2
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
simp only [uncurry, r0]
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r c 0 = a
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r c 0 = a
⊢ (c, a) ∈ s.near
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r c 0 = a
⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
exact s.mem_near c
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r c 0 = a
⊢ (c, a) ∈ s.near
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
r0 : r c 0 = a
⊢ (c, a) ∈ s.near
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
rw [isOpen_ball.mem_nhdsSet, ← ball_prod_same]
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ {c} ×ˢ closedBall 0 (p / 2) ⊆ ball c p ×ˢ ball 0 p
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
apply prod_mono
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ {c} ×ˢ closedBall 0 (p / 2) ⊆ ball c p ×ˢ ball 0 p
|
case hs
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ {c} ⊆ ball c p
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ {c} ×ˢ closedBall 0 (p / 2) ⊆ ball c p ×ˢ ball 0 p
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
rw [singleton_subset_iff]
|
case hs
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ {c} ⊆ ball c p
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
|
case hs
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ c ∈ ball c p
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hs
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ {c} ⊆ ball c p
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
exact mem_ball_self pp
|
case hs
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ c ∈ ball c p
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
|
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hs
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ c ∈ ball c p
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
apply Metric.closedBall_subset_ball
|
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
|
case ht.h
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ p / 2 < p
|
Please generate a tactic in lean4 to solve the state.
STATE:
case ht
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ closedBall 0 (p / 2) ⊆ ball 0 p
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
exact half_lt_self pp
|
case ht.h
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ p / 2 < p
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case ht.h
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
⊢ p / 2 < p
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
convert rb.self_of_nhds
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ r c 0 = a
|
case h.e'_2.h.e'_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ 0 = s.bottcherNear (c, a).1 (c, a).2
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ r c 0 = a
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
simp only [s.bottcherNear_a]
|
case h.e'_2.h.e'_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ 0 = s.bottcherNear (c, a).1 (c, a).2
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_2.h.e'_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
⊢ 0 = s.bottcherNear (c, a).1 (c, a).2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Super.grow_start
|
[215, 1]
|
[241, 101]
|
simp only [Function.iterate_zero_apply, pow_zero, pow_one, (h _ m).2.1]
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m✝ : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
x✝ : ℂ × ℂ
m : x✝ ∈ ball (c, 0) p
⊢ s.bottcherNear x✝.1 ((f x✝.1)^[0] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ 0
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c✝ : ℂ
a z : S
d n : ℕ
p✝ : ℝ
s✝ : Super f d a
r✝ : ℂ → ℂ → S
s : Super f d a
c : ℂ
ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a)
nc : mfderiv I I (s.bottcherNear c) a ≠ 0
r : ℂ → ℂ → S
ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0)
rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2
br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
t : Set (ℂ × ℂ)
o : IsOpen t
m✝ : (c, 0) ∈ t
p : ℝ
pp : p > 0
sub : ball (c, 0) p ⊆ t
h :
∀ x ∈ ball (c, 0) p,
HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near
nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
x✝ : ℂ × ℂ
m : x✝ ∈ ball (c, 0) p
⊢ s.bottcherNear x✝.1 ((f x✝.1)^[0] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
have e := g.eqn
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
simp only [isCompact_singleton.nhdsSet_prod_eq (isCompact_closedBall _ _)] at e
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
rcases Filter.mem_prod_iff.mp e with ⟨a', an, b', bn, sub⟩
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
case intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : a' ×ˢ b' ⊆ {x | (fun x => Eqn s n r x) x}
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
simp only [subset_setOf] at sub
|
case intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : a' ×ˢ b' ⊆ {x | (fun x => Eqn s n r x) x}
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
case intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : a' ×ˢ b' ⊆ {x | (fun x => Eqn s n r x) x}
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
rcases eventually_nhds_iff.mp (nhdsSet_singleton.subst an) with ⟨a, aa, ao, am⟩
|
case intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
case intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a z : S
d n : ℕ
p : ℝ
s : Super f d a
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
rcases eventually_nhdsSet_iff_exists.mp bn with ⟨b, bo, bp, bb⟩
|
case intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
rcases domain_open' bp bo with ⟨q, pq, qb⟩
|
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
use q, pq
|
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' q n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
apply m.mp
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' q n r
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (x, r x 0) ∈ s.near → Grow s x q n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' q n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
apply ((continuousAt_id.prod continuousAt_const).eventually g.start.eventually_nhds).mp
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (x, r x 0) ∈ s.near → Grow s x q n r
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ᶠ (x : ℂ) in 𝓝 c,
(∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (x, r x 0) ∈ s.near → Grow s x q n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
refine eventually_nhds_iff.mpr ⟨a, ?_, ao, am⟩
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ᶠ (x : ℂ) in 𝓝 c,
(∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ x ∈ a, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ᶠ (x : ℂ) in 𝓝 c,
(∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
intro c' am' start m
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ x ∈ a, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
|
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m✝ : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
c' : ℂ
am' : c' ∈ a
start : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (id c', 0), s.bottcherNear x.1 (r x.1 x.2) = x.2
m : (c', r c' 0) ∈ s.near
⊢ Grow s c' q n r
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
⊢ ∀ x ∈ a, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
refine (continuousAt_id.prod ?_).eventually_mem (s.isOpen_near.mem_nhds ?_)
|
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
|
case refine_1
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ContinuousAt (fun c' => r c' 0) c
case refine_2
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ (id c, r c 0) ∈ s.near
|
Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Dynamics/Grow.lean
|
Grow.open
|
[244, 1]
|
[268, 61]
|
exact (g.eqn.filter_mono (nhds_le_nhdsSet (mem_domain c
g.nonneg))).self_of_nhds.holo.along_fst.continuousAt
|
case refine_1
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ContinuousAt (fun c' => r c' 0) c
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
S : Type
inst✝⁴ : TopologicalSpace S
inst✝³ : CompactSpace S
inst✝² : T3Space S
inst✝¹ : ChartedSpace ℂ S
inst✝ : AnalyticManifold I S
f : ℂ → S → S
c : ℂ
a✝ z : S
d n : ℕ
p : ℝ
s : Super f d a✝
r : ℂ → ℂ → S
g : Grow s c p n r
e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x
a' : Set ℂ
an : a' ∈ 𝓝ˢ {c}
b' : Set ℂ
bn : b' ∈ 𝓝ˢ (closedBall 0 p)
sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x
a : Set ℂ
aa : ∀ x ∈ a, a' x
ao : IsOpen a
am : c ∈ a
b : Set ℂ
bo : IsOpen b
bp : closedBall 0 p ⊆ b
bb : ∀ x ∈ b, b' x
q : ℝ
pq : p < q
qb : closedBall 0 q ⊆ b
⊢ ContinuousAt (fun c' => r c' 0) c
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.