url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
have h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1 := by rw [← hn]; exact Int.ceil_lt_add_one _
|
case left
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ 2 * π * ↑n < π + t
|
case left
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ 2 * π * ↑n < π + t
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ 2 * π * ↑n < π + t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
calc 2 * π * ↑n
_ < 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1) := by bound
_ = π + 2 * π * (2 * π)⁻¹ * t := by ring
_ = π + t := by field_simp [Real.two_pi_pos.ne']
|
case left
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ 2 * π * ↑n < π + t
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case left
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ 2 * π * ↑n < π + t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
rw [← hn]
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑⌈t / (2 * π) - 1 / 2⌉ < t * (2 * π)⁻¹ - 1 / 2 + 1
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
exact Int.ceil_lt_add_one _
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑⌈t / (2 * π) - 1 / 2⌉ < t * (2 * π)⁻¹ - 1 / 2 + 1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑⌈t / (2 * π) - 1 / 2⌉ < t * (2 * π)⁻¹ - 1 / 2 + 1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
bound
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ 2 * π * ↑n < 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ 2 * π * ↑n < 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
ring
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1) = π + 2 * π * (2 * π)⁻¹ * t
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ 2 * π * (t * (2 * π)⁻¹ - 1 / 2 + 1) = π + 2 * π * (2 * π)⁻¹ * t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
field_simp [Real.two_pi_pos.ne']
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ π + 2 * π * (2 * π)⁻¹ * t = π + t
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n < t * (2 * π)⁻¹ - 1 / 2 + 1
⊢ π + 2 * π * (2 * π)⁻¹ * t = π + t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
have h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2 := by rw [← hn]; exact Int.le_ceil _
|
case right
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ t ≤ π + 2 * π * ↑n
|
case right
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ t ≤ π + 2 * π * ↑n
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ t ≤ π + 2 * π * ↑n
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
calc π + 2 * π * ↑n
_ ≥ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2) := by bound
_ = 2 * π * (2 * π)⁻¹ * t := by ring
_ = t := by field_simp [Real.two_pi_pos.ne']
|
case right
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ t ≤ π + 2 * π * ↑n
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case right
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ t ≤ π + 2 * π * ↑n
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
rw [← hn]
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑⌈t / (2 * π) - 1 / 2⌉ ≥ t * (2 * π)⁻¹ - 1 / 2
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
exact Int.le_ceil _
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑⌈t / (2 * π) - 1 / 2⌉ ≥ t * (2 * π)⁻¹ - 1 / 2
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
⊢ ↑⌈t / (2 * π) - 1 / 2⌉ ≥ t * (2 * π)⁻¹ - 1 / 2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
bound
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ π + 2 * π * ↑n ≥ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ π + 2 * π * ↑n ≥ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
ring
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2) = 2 * π * (2 * π)⁻¹ * t
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ π + 2 * π * (t * (2 * π)⁻¹ - 1 / 2) = 2 * π * (2 * π)⁻¹ * t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
arg_exp_of_im
|
[186, 1]
|
[206, 98]
|
field_simp [Real.two_pi_pos.ne']
|
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ 2 * π * (2 * π)⁻¹ * t = t
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
t : ℝ
n : ℤ
hn : ⌈t / (2 * π) - 1 / 2⌉ = n
en : (2 * ↑π * ↑n * I).exp = 1
e : (↑t * I).exp = (↑(t - 2 * π * ↑n) * I).exp
h : ↑n ≥ t * (2 * π)⁻¹ - 1 / 2
⊢ 2 * π * (2 * π)⁻¹ * t = t
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
intro x xs y ys e
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
⊢ InjOn (realCircleMap c) (square r0 r1)
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ square r0 r1
y : ℝ × ℝ
ys : y ∈ square r0 r1
e : realCircleMap c x = realCircleMap c y
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
⊢ InjOn (realCircleMap c) (square r0 r1)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
simp [square] at xs ys
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ square r0 r1
y : ℝ × ℝ
ys : y ∈ square r0 r1
e : realCircleMap c x = realCircleMap c y
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
e : realCircleMap c x = realCircleMap c y
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ square r0 r1
y : ℝ × ℝ
ys : y ∈ square r0 r1
e : realCircleMap c x = realCircleMap c y
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
simp_rw [realCircleMap_eq_circleMap, Equiv.apply_eq_iff_eq] at e
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
e : realCircleMap c x = realCircleMap c y
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : circleMap c x.1 x.2 = circleMap c y.1 y.2
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
e : realCircleMap c x = realCircleMap c y
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
simp_rw [circleMap] at e
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : circleMap c x.1 x.2 = circleMap c y.1 y.2
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : circleMap c x.1 x.2 = circleMap c y.1 y.2
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
simp at e
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : c + ↑x.1 * (↑x.2 * I).exp = c + ↑y.1 * (↑y.2 * I).exp
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have re : abs (↑x.1 * exp (x.2 * I)) = abs (↑y.1 * exp (y.2 * I)) := by rw [e]
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have x0 : 0 < x.1 := by linarith
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
x0 : 0 < x.1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have y0 : 0 < y.1 := by linarith
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
x0 : 0 < x.1
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
x0 : 0 < x.1
y0 : 0 < y.1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
x0 : 0 < x.1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
simp only [map_mul, Complex.abs_ofReal, abs_of_pos x0, Complex.abs_exp_ofReal_mul_I, mul_one,
abs_of_pos y0] at re
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
x0 : 0 < x.1
y0 : 0 < y.1
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
x0 : 0 < x.1
y0 : 0 < y.1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have ae : arg (↑x.1 * exp (x.2 * I)) = arg (↑y.1 * exp (y.2 * I)) := by rw [e]
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
simp [Complex.arg_real_mul _ x0, Complex.arg_real_mul _ y0] at ae
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg
⊢ x = y
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rcases arg_exp_of_im x.2 with ⟨nx, hx⟩
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
⊢ x = y
|
case intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rcases arg_exp_of_im y.2 with ⟨ny, h⟩
|
case intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
ny : ℤ
h : (↑y.2 * I).exp.arg = y.2 - 2 * π * ↑ny
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [← ae, hx] at h
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
ny : ℤ
h : (↑y.2 * I).exp.arg = y.2 - 2 * π * ↑ny
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
ny : ℤ
h : (↑y.2 * I).exp.arg = y.2 - 2 * π * ↑ny
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
clear e ae hx
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
ae : (↑x.2 * I).exp.arg = (↑y.2 * I).exp.arg
nx : ℤ
hx : (↑x.2 * I).exp.arg = x.2 - 2 * π * ↑nx
ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have n0 : 2 * π * (nx - ny) < 2 * π * 1 := by linarith
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have n1 : 2 * π * -1 < 2 * π * (nx - ny) := by linarith
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have hn : (nx : ℝ) - ny = ↑(nx - ny) := by simp only [Int.cast_sub]
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have hn1 : (-1 : ℝ) = ↑(-1 : ℤ) := by norm_num
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have h1 : (1 : ℝ) = ↑(1 : ℤ) := by norm_num
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [mul_lt_mul_left Real.two_pi_pos, hn] at n0 n1
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < 1
n1 : -1 < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [hn1] at n1
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < 1
n1 : -1 < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < 1
n1 : ↑(-1) < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < 1
n1 : -1 < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [h1] at n0
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < 1
n1 : ↑(-1) < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < ↑1
n1 : ↑(-1) < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < 1
n1 : ↑(-1) < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [Int.cast_lt] at n0 n1
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < ↑1
n1 : ↑(-1) < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : ↑(nx - ny) < ↑1
n1 : ↑(-1) < ↑(nx - ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have n : nx = ny := by linarith
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [n] at h
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have i : x.2 = y.2 := by linarith
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
have g : (x.1, x.2) = (y.1, y.2) := by rw [re, i]
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
g : (x.1, x.2) = (y.1, y.2)
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
simp only [Prod.mk.eta] at g
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
g : (x.1, x.2) = (y.1, y.2)
⊢ x = y
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
g : x = y
⊢ x = y
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
g : (x.1, x.2) = (y.1, y.2)
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
exact g
|
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
g : x = y
⊢ x = y
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
g : x = y
⊢ x = y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [e]
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
⊢ Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
⊢ Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
linarith
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
⊢ 0 < x.1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
⊢ 0 < x.1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
linarith
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
x0 : 0 < x.1
⊢ 0 < y.1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
re : Complex.abs (↑x.1 * (↑x.2 * I).exp) = Complex.abs (↑y.1 * (↑y.2 * I).exp)
x0 : 0 < x.1
⊢ 0 < y.1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [e]
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
⊢ (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
e : ↑x.1 * (↑x.2 * I).exp = ↑y.1 * (↑y.2 * I).exp
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
⊢ (↑x.1 * (↑x.2 * I).exp).arg = (↑y.1 * (↑y.2 * I).exp).arg
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
linarith
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
⊢ 2 * π * (↑nx - ↑ny) < 2 * π * 1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
⊢ 2 * π * (↑nx - ↑ny) < 2 * π * 1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
linarith
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
⊢ 2 * π * -1 < 2 * π * (↑nx - ↑ny)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
⊢ 2 * π * -1 < 2 * π * (↑nx - ↑ny)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
simp only [Int.cast_sub]
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
⊢ ↑nx - ↑ny = ↑(nx - ny)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
⊢ ↑nx - ↑ny = ↑(nx - ny)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
norm_num
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
⊢ -1 = ↑(-1)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
⊢ -1 = ↑(-1)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
norm_num
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
⊢ 1 = ↑1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : 2 * π * (↑nx - ↑ny) < 2 * π * 1
n1 : 2 * π * -1 < 2 * π * (↑nx - ↑ny)
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
⊢ 1 = ↑1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
linarith
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ nx = ny
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑nx = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
⊢ nx = ny
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
linarith
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
⊢ x.2 = y.2
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
⊢ x.2 = y.2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
rcm_inj
|
[209, 1]
|
[234, 40]
|
rw [re, i]
|
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
⊢ (x.1, x.2) = (y.1, y.2)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
r0 r1 : ℝ
r0p : 0 ≤ r0
x y : ℝ × ℝ
xs : (r0 < x.1 ∧ x.1 ≤ r1) ∧ 0 < x.2 ∧ x.2 ≤ 2 * π
ys : (r0 < y.1 ∧ y.1 ≤ r1) ∧ 0 < y.2 ∧ y.2 ≤ 2 * π
x0 : 0 < x.1
y0 : 0 < y.1
re : x.1 = y.1
nx ny : ℤ
h : x.2 - 2 * π * ↑ny = y.2 - 2 * π * ↑ny
n0 : nx - ny < 1
n1 : -1 < nx - ny
hn : ↑nx - ↑ny = ↑(nx - ny)
hn1 : -1 = ↑(-1)
h1 : 1 = ↑1
n : nx = ny
i : x.2 = y.2
⊢ (x.1, x.2) = (y.1, y.2)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
measurable_symm_equiv_inverse
|
[239, 1]
|
[245, 55]
|
simp only [Complex.equivRealProd_apply]
|
z : ℂ
⊢ Complex.measurableEquivRealProd.symm (Complex.equivRealProd z) = z
|
z : ℂ
⊢ Complex.measurableEquivRealProd.symm (z.re, z.im) = z
|
Please generate a tactic in lean4 to solve the state.
STATE:
z : ℂ
⊢ Complex.measurableEquivRealProd.symm (Complex.equivRealProd z) = z
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
measurable_symm_equiv_inverse
|
[239, 1]
|
[245, 55]
|
rw [Complex.measurableEquivRealProd, Homeomorph.toMeasurableEquiv_symm_coe]
|
z : ℂ
⊢ Complex.measurableEquivRealProd.symm (z.re, z.im) = z
|
z : ℂ
⊢ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z
|
Please generate a tactic in lean4 to solve the state.
STATE:
z : ℂ
⊢ Complex.measurableEquivRealProd.symm (z.re, z.im) = z
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
measurable_symm_equiv_inverse
|
[239, 1]
|
[245, 55]
|
simp only [ContinuousLinearEquiv.symm_toHomeomorph, ContinuousLinearEquiv.coe_toHomeomorph]
|
z : ℂ
⊢ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z
|
z : ℂ
⊢ Complex.equivRealProdCLM.symm (z.re, z.im) = z
|
Please generate a tactic in lean4 to solve the state.
STATE:
z : ℂ
⊢ Complex.equivRealProdCLM.toHomeomorph.symm (z.re, z.im) = z
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
measurable_symm_equiv_inverse
|
[239, 1]
|
[245, 55]
|
apply Complex.ext
|
z : ℂ
⊢ Complex.equivRealProdCLM.symm (z.re, z.im) = z
|
case a
z : ℂ
⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).re = z.re
case a
z : ℂ
⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).im = z.im
|
Please generate a tactic in lean4 to solve the state.
STATE:
z : ℂ
⊢ Complex.equivRealProdCLM.symm (z.re, z.im) = z
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
measurable_symm_equiv_inverse
|
[239, 1]
|
[245, 55]
|
simp only [Complex.equivRealProdCLM_symm_apply_re]
|
case a
z : ℂ
⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).re = z.re
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
z : ℂ
⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).re = z.re
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
measurable_symm_equiv_inverse
|
[239, 1]
|
[245, 55]
|
simp only [Complex.equivRealProdCLM_symm_apply_im]
|
case a
z : ℂ
⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).im = z.im
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
z : ℂ
⊢ (Complex.equivRealProdCLM.symm (z.re, z.im)).im = z.im
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
continuous_circleMap_full
|
[248, 1]
|
[249, 13]
|
continuity
|
c : ℂ
⊢ Continuous fun x => circleMap c x.1 x.2
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
c : ℂ
⊢ Continuous fun x => circleMap c x.1 x.2
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
invert_toReal
|
[252, 1]
|
[255, 56]
|
intro h
|
x : ENNReal
y : ℝ
yp : y > 0
⊢ x.toReal = y → x = ENNReal.ofReal y
|
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x = ENNReal.ofReal y
|
Please generate a tactic in lean4 to solve the state.
STATE:
x : ENNReal
y : ℝ
yp : y > 0
⊢ x.toReal = y → x = ENNReal.ofReal y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
invert_toReal
|
[252, 1]
|
[255, 56]
|
rw [← h]
|
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x = ENNReal.ofReal y
|
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x = ENNReal.ofReal x.toReal
|
Please generate a tactic in lean4 to solve the state.
STATE:
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x = ENNReal.ofReal y
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
invert_toReal
|
[252, 1]
|
[255, 56]
|
refine (ENNReal.ofReal_toReal ?_).symm
|
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x = ENNReal.ofReal x.toReal
|
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x ≠ ⊤
|
Please generate a tactic in lean4 to solve the state.
STATE:
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x = ENNReal.ofReal x.toReal
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
invert_toReal
|
[252, 1]
|
[255, 56]
|
contrapose yp
|
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x ≠ ⊤
|
x : ENNReal
y : ℝ
h : x.toReal = y
yp : ¬x ≠ ⊤
⊢ ¬y > 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
x : ENNReal
y : ℝ
yp : y > 0
h : x.toReal = y
⊢ x ≠ ⊤
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
invert_toReal
|
[252, 1]
|
[255, 56]
|
simp only [ne_eq, not_not] at yp
|
x : ENNReal
y : ℝ
h : x.toReal = y
yp : ¬x ≠ ⊤
⊢ ¬y > 0
|
x : ENNReal
y : ℝ
h : x.toReal = y
yp : x = ⊤
⊢ ¬y > 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
x : ENNReal
y : ℝ
h : x.toReal = y
yp : ¬x ≠ ⊤
⊢ ¬y > 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
invert_toReal
|
[252, 1]
|
[255, 56]
|
simp only [yp, ENNReal.top_toReal] at h
|
x : ENNReal
y : ℝ
h : x.toReal = y
yp : x = ⊤
⊢ ¬y > 0
|
x : ENNReal
y : ℝ
yp : x = ⊤
h : 0 = y
⊢ ¬y > 0
|
Please generate a tactic in lean4 to solve the state.
STATE:
x : ENNReal
y : ℝ
h : x.toReal = y
yp : x = ⊤
⊢ ¬y > 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
invert_toReal
|
[252, 1]
|
[255, 56]
|
simp only [← h, lt_self_iff_false, not_false_eq_true]
|
x : ENNReal
y : ℝ
yp : x = ⊤
h : 0 = y
⊢ ¬y > 0
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
x : ENNReal
y : ℝ
yp : x = ⊤
h : 0 = y
⊢ ¬y > 0
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
have im := MeasurePreserving.symm _ Complex.volume_preserving_equiv_real_prod
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume
⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
rw [←MeasurePreserving.setIntegral_preimage_emb im
Complex.measurableEquivRealProd.symm.measurableEmbedding f _]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume
⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume
⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1,
f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume
⊢ ∫ (z : ℂ) in annulus_oc c r0 r1, f z = ∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
clear im
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume
⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1,
f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1,
f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
im : MeasurePreserving (⇑Complex.measurableEquivRealProd.symm) volume volume
⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1,
f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
rw [square_eq r0p]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1,
f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in ⇑Complex.measurableEquivRealProd.symm ⁻¹' annulus_oc c r0 r1,
f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
have dc : ∀ x, x ∈ square r0 r1 →
HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x :=
fun _ _ ↦ realCircleMap.fderiv.hasFDerivWithinAt
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x
⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
rw [integral_image_eq_integral_abs_det_fderiv_smul volume Measurable.square dc (rcm_inj r0p)]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x
⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x
⊢ ∫ (x : ℝ × ℝ) in realCircleMap c '' square r0 r1, f (Complex.measurableEquivRealProd.symm x) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
clear dc
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
dc : ∀ x ∈ square r0 r1, HasFDerivWithinAt (realCircleMap c) (rcmDeriv x) (square r0 r1) x
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
simp_rw [rcmDeriv.det]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |(rcmDeriv x).det| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
simp_rw [realCircleMap_eq_circleMap]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1,
|x.1| • f (Complex.measurableEquivRealProd.symm (Complex.equivRealProd (circleMap c x.1 x.2))) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (Complex.measurableEquivRealProd.symm (realCircleMap c x)) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
simp_rw [measurable_symm_equiv_inverse]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1,
|x.1| • f (Complex.measurableEquivRealProd.symm (Complex.equivRealProd (circleMap c x.1 x.2))) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1,
|x.1| • f (Complex.measurableEquivRealProd.symm (Complex.equivRealProd (circleMap c x.1 x.2))) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
have e : ∀ x : ℝ × ℝ, x ∈ square r0 r1 → |x.1| • f (circleMap c x.1 x.2) =
x.1 • f (circleMap c x.1 x.2) := by
intro x xs; rw [abs_of_pos (square.rp r0p xs)]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
rw [MeasureTheory.setIntegral_congr Measurable.square e]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, |x.1| • f (circleMap c x.1 x.2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
clear e
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
e : ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
rw [square, Measure.volume_eq_prod, MeasureTheory.setIntegral_prod]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ) in Ioc r0 r1, ∫ (y : ℝ) in Ioc 0 (2 * π), (x, y).1 • f (circleMap c (x, y).1 (x, y).2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ × ℝ) in square r0 r1, x.1 • f (circleMap c x.1 x.2) ∂volume =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
simp [integral_smul]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ) in Ioc r0 r1, ∫ (y : ℝ) in Ioc 0 (2 * π), (x, y).1 • f (circleMap c (x, y).1 (x, y).2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∫ (x : ℝ) in Ioc r0 r1, ∫ (y : ℝ) in Ioc 0 (2 * π), (x, y).1 • f (circleMap c (x, y).1 (x, y).2) =
∫ (s : ℝ) in Ioc r0 r1, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
exact fi.mono_set (prod_mono Ioc_subset_Icc_self Ioc_subset_Icc_self)
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
fi : IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) volume
⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
fi : IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) volume
⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Ioc r0 r1 ×ˢ Ioc 0 (2 * π)) (volume.prod volume)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
intro x xs
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ square r0 r1
⊢ |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ∀ x ∈ square r0 r1, |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
rw [abs_of_pos (square.rp r0p xs)]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ square r0 r1
⊢ |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ square r0 r1
⊢ |x.1| • f (circleMap c x.1 x.2) = x.1 • f (circleMap c x.1 x.2)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
apply ContinuousOn.integrableOn_compact
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) volume
|
case hK
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IsCompact (Icc r0 r1 ×ˢ Icc 0 (2 * π))
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ContinuousOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IntegrableOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) volume
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
exact IsCompact.prod isCompact_Icc isCompact_Icc
|
case hK
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IsCompact (Icc r0 r1 ×ˢ Icc 0 (2 * π))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hK
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ IsCompact (Icc r0 r1 ×ˢ Icc 0 (2 * π))
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
apply ContinuousOn.smul continuous_fst.continuousOn
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ContinuousOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ContinuousOn (fun x => f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ContinuousOn (fun x => x.1 • f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
apply fc.comp continuous_circleMap_full.continuousOn
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ContinuousOn (fun x => f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ MapsTo (fun x => circleMap c x.1 x.2) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) (annulus_cc c r0 r1)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ ContinuousOn (fun x => f (circleMap c x.1 x.2)) (Icc r0 r1 ×ˢ Icc 0 (2 * π))
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
intro x xs
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ MapsTo (fun x => circleMap c x.1 x.2) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) (annulus_cc c r0 r1)
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ Icc r0 r1 ×ˢ Icc 0 (2 * π)
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
⊢ MapsTo (fun x => circleMap c x.1 x.2) (Icc r0 r1 ×ˢ Icc 0 (2 * π)) (annulus_cc c r0 r1)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
simp only [Icc_prod_Icc, mem_Icc, Prod.le_def] at xs
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ Icc r0 r1 ×ˢ Icc 0 (2 * π)
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : x ∈ Icc r0 r1 ×ˢ Icc 0 (2 * π)
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
have x0 : 0 ≤ x.1 := by linarith
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π
x0 : 0 ≤ x.1
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
simp only [circleMap, annulus_cc, mem_diff, Metric.mem_closedBall, dist_self_add_left,
norm_mul, Complex.norm_eq_abs, Complex.abs_ofReal, abs_of_nonneg x0,
Complex.abs_exp_ofReal_mul_I, mul_one, xs.2.1, Metric.mem_ball, not_lt, xs.1.1, and_self]
|
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π
x0 : 0 ≤ x.1
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case hf
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π
x0 : 0 ≤ x.1
⊢ (fun x => circleMap c x.1 x.2) x ∈ annulus_cc c r0 r1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_annulus
|
[258, 1]
|
[293, 72]
|
linarith
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π
⊢ 0 ≤ x.1
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r0 r1 : ℝ
fc : ContinuousOn f (annulus_cc c r0 r1)
r0p : 0 ≤ r0
x : ℝ × ℝ
xs : (r0 ≤ x.1 ∧ 0 ≤ x.2) ∧ x.1 ≤ r1 ∧ x.2 ≤ 2 * π
⊢ 0 ≤ x.1
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_ball
|
[296, 1]
|
[305, 8]
|
have center : closedBall c r =ᵐ[volume] (closedBall c r \ {c} : Set ℂ) := ae_minus_point
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c})
⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_ball
|
[296, 1]
|
[305, 8]
|
rw [MeasureTheory.setIntegral_congr_set_ae center]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c})
⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c})
⊢ ∫ (x : ℂ) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c})
⊢ ∫ (z : ℂ) in closedBall c r, f z = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
https://github.com/girving/ray.git
|
0be790285dd0fce78913b0cb9bddaffa94bd25f9
|
Ray/Hartogs/FubiniBall.lean
|
fubini_ball
|
[296, 1]
|
[305, 8]
|
clear center
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c})
⊢ ∫ (x : ℂ) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
⊢ ∫ (x : ℂ) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
|
Please generate a tactic in lean4 to solve the state.
STATE:
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℂ → E
c : ℂ
r : ℝ
fc : ContinuousOn f (closedBall c r)
center : volume.ae.EventuallyEq (closedBall c r) (closedBall c r \ {c})
⊢ ∫ (x : ℂ) in closedBall c r \ {c}, f x = ∫ (s : ℝ) in Ioc 0 r, s • ∫ (t : ℝ) in Ioc 0 (2 * π), f (circleMap c s t)
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.