url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
{ erw [toLin'_apply] simp only [xs', OrthonormalBasis.coe_toBasis_repr_apply, of_apply, OrthonormalBasis.repr_reindex] erw [Equiv.symm_apply_apply, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, mulVec_single] simp_rw [mul_one] rfl }
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
{ simp only [diagonal_mul, Function.comp] erw [Basis.toMatrix_apply, OrthonormalBasis.coe_toBasis_repr_apply, OrthonormalBasis.repr_reindex, Pi.basisFun_apply, LinearMap.coe_stdBasis, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, Equiv.symm_apply_apply, Equiv.apply_symm_apply] congr; simp }
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [xs', OrthonormalBasis.coe_reindex, Equiv.symm_symm]
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
intros j
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) j : Fin (Fintype.card n) ⊒ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
exact (hxs ((Fintype.equivOfCardEq (Fintype.card_fin _)) j))
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) j : Fin (Fintype.card n) ⊒ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j)
no goals
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) j : Fin (Fintype.card n) ⊒ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [toLin'_apply]
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [xs', OrthonormalBasis.coe_toBasis_repr_apply, of_apply, OrthonormalBasis.repr_reindex]
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm.symm ((Fintype.equivOfCardEq β‹―).symm i))
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [Equiv.symm_apply_apply, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, mulVec_single]
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm.symm ((Fintype.equivOfCardEq β‹―).symm i))
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm.symm ((Fintype.equivOfCardEq β‹―).symm i)) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp_rw [mul_one]
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
rfl
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [diagonal_mul, Function.comp]
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [Basis.toMatrix_apply, OrthonormalBasis.coe_toBasis_repr_apply, OrthonormalBasis.repr_reindex, Pi.basisFun_apply, LinearMap.coe_stdBasis, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, Equiv.symm_apply_apply, Equiv.apply_symm_apply]
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => β‹― β–Έ 1) h) (inst✝ a j)) i
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
congr
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => β‹― β–Έ 1) h) (inst✝ a j)) i
case h.e'_3.e_a.e_a.e_a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ i = (Fintype.equivOfCardEq β‹―) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => β‹― β–Έ 1) h) (inst✝ a j)) i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp
case h.e'_3.e_a.e_a.e_a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ i = (Fintype.equivOfCardEq β‹―) ((Fintype.equivOfCardEq β‹―).symm i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.e_a.e_a.e_a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ i = (Fintype.equivOfCardEq β‹―) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
apply mul_left_cancelβ‚€ (det_ne_zero_of_left_inverse (Basis.toMatrix_mul_toMatrix_flip (Pi.basisFun π•œ n) xs.toBasis))
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ A.det = ↑(∏ i : n, as i)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ A.det = ↑(∏ i : n, as i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
rw [← det_mul, spectral_theorem xs as hxs, det_mul, mul_comm, det_diagonal]
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
simp
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.IsHermitian.hasEigenvector_eigenvectorBasis
[30, 1]
[33, 62]
simp only [IsHermitian.eigenvectorBasis, OrthonormalBasis.coe_reindex]
π•œ : Type u_2 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ hA : A.IsHermitian i : n ⊒ Module.End.HasEigenvector (toLin' A) (↑(hA.eigenvalues i)) (hA.eigenvectorBasis i)
π•œ : Type u_2 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ hA : A.IsHermitian i : n ⊒ Module.End.HasEigenvector (toLin' A) (↑(hA.eigenvalues i)) ((⇑(β‹―.eigenvectorBasis β‹―) ∘ ⇑(Fintype.equivOfCardEq β‹―).symm) i)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_2 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ hA : A.IsHermitian i : n ⊒ Module.End.HasEigenvector (toLin' A) (↑(hA.eigenvalues i)) (hA.eigenvectorBasis i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.IsHermitian.hasEigenvector_eigenvectorBasis
[30, 1]
[33, 62]
apply LinearMap.IsSymmetric.hasEigenvector_eigenvectorBasis
π•œ : Type u_2 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ hA : A.IsHermitian i : n ⊒ Module.End.HasEigenvector (toLin' A) (↑(hA.eigenvalues i)) ((⇑(β‹―.eigenvectorBasis β‹―) ∘ ⇑(Fintype.equivOfCardEq β‹―).symm) i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_2 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_1 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ hA : A.IsHermitian i : n ⊒ Module.End.HasEigenvector (toLin' A) (↑(hA.eigenvalues i)) ((⇑(β‹―.eigenvectorBasis β‹―) ∘ ⇑(Fintype.equivOfCardEq β‹―).symm) i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
rw [basis_toMatrix_basisFun_mul]
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n) * A = diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (of fun i j => (xs.toBasis.repr (A.transpose j)) i) = diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n) * A = diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
ext i j
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (of fun i j => (xs.toBasis.repr (A.transpose j)) i) = diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)
case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (of fun i j => (xs.toBasis.repr (A.transpose j)) i) = diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
let xs' := xs.reindex (Fintype.equivOfCardEq (Fintype.card_fin _)).symm
case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j
case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j
Please generate a tactic in lean4 to solve the state. STATE: case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
let as' : Fin (Fintype.card n) β†’ ℝ := fun i => as <| (Fintype.equivOfCardEq (Fintype.card_fin _)) i
case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j
case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j
Please generate a tactic in lean4 to solve the state. STATE: case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
have hxs' : βˆ€ j, Module.End.HasEigenvector (Matrix.toLin' A) (as' j) (xs' j) := by simp only [xs', OrthonormalBasis.coe_reindex, Equiv.symm_symm] intros j exact (hxs ((Fintype.equivOfCardEq (Fintype.card_fin _)) j))
case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j
case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j
Please generate a tactic in lean4 to solve the state. STATE: case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
convert @LinearMap.spectral_theorem' π•œ _ (PiLp 2 (fun (_ : n) => π•œ)) _ _ (Fintype.card n) (Matrix.toLin' A) (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq (Fintype.card_fin _)).symm i) xs' as' hxs'
case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
{ erw [toLin'_apply] simp only [xs', OrthonormalBasis.coe_toBasis_repr_apply, of_apply, OrthonormalBasis.repr_reindex] erw [Equiv.symm_apply_apply, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, mulVec_single] simp_rw [mul_one] rfl }
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
{ simp only [diagonal_mul, Function.comp] erw [Basis.toMatrix_apply, OrthonormalBasis.coe_toBasis_repr_apply, OrthonormalBasis.repr_reindex, Pi.basisFun_apply, LinearMap.coe_stdBasis, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, Equiv.symm_apply_apply, Equiv.apply_symm_apply] congr; simp }
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [xs', OrthonormalBasis.coe_reindex, Equiv.symm_symm]
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
intros j
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) j : Fin (Fintype.card n) ⊒ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) ⊒ βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
exact (hxs ((Fintype.equivOfCardEq (Fintype.card_fin _)) j))
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) j : Fin (Fintype.card n) ⊒ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j)
no goals
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j✝ : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) j : Fin (Fintype.card n) ⊒ Module.End.HasEigenvector (toLin' A) (↑(as' j)) ((⇑xs ∘ ⇑(Fintype.equivOfCardEq β‹―)) j) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [toLin'_apply]
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr ((toLin' A) (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [xs', OrthonormalBasis.coe_toBasis_repr_apply, of_apply, OrthonormalBasis.repr_reindex]
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm.symm ((Fintype.equivOfCardEq β‹―).symm i))
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ of (fun i j => (xs.toBasis.repr (A.transpose j)) i) i j = xs'.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [Equiv.symm_apply_apply, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, mulVec_single]
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm.symm ((Fintype.equivOfCardEq β‹―).symm i))
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ xs.repr (A.transpose j) i = xs.repr (A.mulVec (EuclideanSpace.single j 1)) ((Fintype.equivOfCardEq β‹―).symm.symm ((Fintype.equivOfCardEq β‹―).symm i)) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp_rw [mul_one]
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j * 1) i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
rfl
case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ EquivLike.coe xs.repr (A.transpose j) i = xs.repr (fun i => A i j) i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp only [diagonal_mul, Function.comp]
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ (diagonal (RCLike.ofReal ∘ as) * xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
erw [Basis.toMatrix_apply, OrthonormalBasis.coe_toBasis_repr_apply, OrthonormalBasis.repr_reindex, Pi.basisFun_apply, LinearMap.coe_stdBasis, EuclideanSpace.single, WithLp.equiv_symm_pi_apply 2, Equiv.symm_apply_apply, Equiv.apply_symm_apply]
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i)
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => β‹― β–Έ 1) h) (inst✝ a j)) i
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * xs.toBasis.toMatrix (⇑(Pi.basisFun π•œ n)) i j = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs'.repr (EuclideanSpace.single j 1) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
congr
case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => β‹― β–Έ 1) h) (inst✝ a j)) i
case h.e'_3.e_a.e_a.e_a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ i = (Fintype.equivOfCardEq β‹―) ((Fintype.equivOfCardEq β‹―).symm i)
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ ↑(as i) * EquivLike.coe xs.repr (Pi.single j 1) i = ↑(as' ((Fintype.equivOfCardEq β‹―).symm i)) * xs.repr (fun a => Decidable.rec (fun h => (fun h => 0 a) h) (fun h => (fun h => β‹― β–Έ 1) h) (inst✝ a j)) i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.spectral_theorem
[37, 1]
[66, 18]
simp
case h.e'_3.e_a.e_a.e_a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ i = (Fintype.equivOfCardEq β‹―) ((Fintype.equivOfCardEq β‹―).symm i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.e_a.e_a.e_a π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) i j : n xs' : OrthonormalBasis (Fin (Fintype.card n)) π•œ (EuclideanSpace π•œ n) := xs.reindex (Fintype.equivOfCardEq β‹―).symm as' : Fin (Fintype.card n) β†’ ℝ := fun i => as ((Fintype.equivOfCardEq β‹―) i) hxs' : βˆ€ (j : Fin (Fintype.card n)), Module.End.HasEigenvector (toLin' A) (↑(as' j)) (xs' j) ⊒ i = (Fintype.equivOfCardEq β‹―) ((Fintype.equivOfCardEq β‹―).symm i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
apply mul_left_cancelβ‚€ (det_ne_zero_of_left_inverse (Basis.toMatrix_mul_toMatrix_flip (Pi.basisFun π•œ n) xs.toBasis))
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ A.det = ↑(∏ i : n, as i)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ A.det = ↑(∏ i : n, as i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
rw [← det_mul, spectral_theorem xs as hxs, det_mul, mul_comm, det_diagonal]
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i)
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i)
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * A.det = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Spectrum.lean
Matrix.det_eq_prod_eigenvalues
[68, 1]
[73, 7]
simp
π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: π•œ : Type u_1 inst✝³ : RCLike π•œ inst✝² : DecidableEq π•œ n : Type u_2 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix n n π•œ xs : OrthonormalBasis n π•œ (EuclideanSpace π•œ n) as : n β†’ ℝ hxs : βˆ€ (j : n), Module.End.HasEigenvector (toLin' A) (↑(as j)) (xs j) ⊒ (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ∏ i : n, (RCLike.ofReal ∘ as) i = (xs.toBasis.toMatrix ⇑(Pi.basisFun π•œ n)).det * ↑(∏ i : n, as i) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
unfold expCone
t x : ℝ ⊒ x.exp ≀ t ↔ x.expCone 1 t
t x : ℝ ⊒ x.exp ≀ t ↔ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0
Please generate a tactic in lean4 to solve the state. STATE: t x : ℝ ⊒ x.exp ≀ t ↔ x.expCone 1 t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rw [iff_def]
t x : ℝ ⊒ x.exp ≀ t ↔ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0
t x : ℝ ⊒ (x.exp ≀ t β†’ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0) ∧ (0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t)
Please generate a tactic in lean4 to solve the state. STATE: t x : ℝ ⊒ x.exp ≀ t ↔ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
split_ands
t x : ℝ ⊒ (x.exp ≀ t β†’ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0) ∧ (0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t)
case refine_1 t x : ℝ ⊒ x.exp ≀ t β†’ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 case refine_2 t x : ℝ ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t
Please generate a tactic in lean4 to solve the state. STATE: t x : ℝ ⊒ (x.exp ≀ t β†’ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0) ∧ (0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ intro hexp apply Or.intro_left split_ands { apply Real.zero_lt_one } { rwa [div_one, one_mul] } }
case refine_1 t x : ℝ ⊒ x.exp ≀ t β†’ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 case refine_2 t x : ℝ ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t
case refine_2 t x : ℝ ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 t x : ℝ ⊒ x.exp ≀ t β†’ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 case refine_2 t x : ℝ ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ intro h cases h with | inl h => have h : 1 * exp (x / 1) ≀ t := h.2 rwa [div_one, one_mul] at h | inr h => exfalso exact zero_ne_one h.1.symm }
case refine_2 t x : ℝ ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 t x : ℝ ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
intro hexp
case refine_1 t x : ℝ ⊒ x.exp ≀ t β†’ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0
case refine_1 t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 t x : ℝ ⊒ x.exp ≀ t β†’ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
apply Or.intro_left
case refine_1 t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0
case refine_1.h t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
split_ands
case refine_1.h t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≀ t ⊒ 1 * (x / 1).exp ≀ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.h t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ apply Real.zero_lt_one }
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≀ t ⊒ 1 * (x / 1).exp ≀ t
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≀ t ⊒ 1 * (x / 1).exp ≀ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≀ t ⊒ 1 * (x / 1).exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
{ rwa [div_one, one_mul] }
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≀ t ⊒ 1 * (x / 1).exp ≀ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≀ t ⊒ 1 * (x / 1).exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
apply Real.zero_lt_one
case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.h.refine_1 t x : ℝ hexp : x.exp ≀ t ⊒ 0 < 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rwa [div_one, one_mul]
case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≀ t ⊒ 1 * (x / 1).exp ≀ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.h.refine_2 t x : ℝ hexp : x.exp ≀ t ⊒ 1 * (x / 1).exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
intro h
case refine_2 t x : ℝ ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t
case refine_2 t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 ⊒ x.exp ≀ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 t x : ℝ ⊒ 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 β†’ x.exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
cases h with | inl h => have h : 1 * exp (x / 1) ≀ t := h.2 rwa [div_one, one_mul] at h | inr h => exfalso exact zero_ne_one h.1.symm
case refine_2 t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 ⊒ x.exp ≀ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≀ t ∨ 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 ⊒ x.exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
have h : 1 * exp (x / 1) ≀ t := h.2
case refine_2.inl t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≀ t ⊒ x.exp ≀ t
case refine_2.inl t x : ℝ h✝ : 0 < 1 ∧ 1 * (x / 1).exp ≀ t h : 1 * (x / 1).exp ≀ t ⊒ x.exp ≀ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.inl t x : ℝ h : 0 < 1 ∧ 1 * (x / 1).exp ≀ t ⊒ x.exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
rwa [div_one, one_mul] at h
case refine_2.inl t x : ℝ h✝ : 0 < 1 ∧ 1 * (x / 1).exp ≀ t h : 1 * (x / 1).exp ≀ t ⊒ x.exp ≀ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.inl t x : ℝ h✝ : 0 < 1 ∧ 1 * (x / 1).exp ≀ t h : 1 * (x / 1).exp ≀ t ⊒ x.exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
exfalso
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 ⊒ x.exp ≀ t
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 ⊒ False
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 ⊒ x.exp ≀ t TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/ExpCone.lean
Real.exp_iff_expCone
[23, 1]
[39, 37]
exact zero_ne_one h.1.symm
case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 ⊒ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.inr t x : ℝ h : 1 = 0 ∧ 0 ≀ t ∧ x ≀ 0 ⊒ False TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
letI : Unique {a // id a = k} := ⟨⟨⟨k, rfl⟩⟩, fun j => Subtype.ext j.property⟩
α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: α : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
have h := congr_fun (congr_fun (toSquareBlock_inv_mul_toSquareBlock_eq_one hM k) ⟨k, rfl⟩) ⟨k, rfl⟩
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : (M⁻¹.toSquareBlock id k * M.toSquareBlock id k) ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© = 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
dsimp only [HMul.hMul, dotProduct] at h
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : (M⁻¹.toSquareBlock id k * M.toSquareBlock id k) ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© = 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : βˆ‘ i : { a // id a = k }, Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© i) (M.toSquareBlock id k i ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : (M⁻¹.toSquareBlock id k * M.toSquareBlock id k) ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© = 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
rw [@Fintype.sum_unique _ _ _ _] at h
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : βˆ‘ i : { a // id a = k }, Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© i) (M.toSquareBlock id k i ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© default) (M.toSquareBlock id k default ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : βˆ‘ i : { a // id a = k }, Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© i) (M.toSquareBlock id k i ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
simp at h
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© default) (M.toSquareBlock id k default ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© default) (M.toSquareBlock id k default ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
rw [← h]
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©)
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
simp [toSquareBlock, toSquareBlockProp]
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©)
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k)
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_upperTriangular
[57, 1]
[65, 68]
rfl
Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k)
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.10355 m : Type u_1 n : Type ?u.10361 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.upperTriangular k : m this : Unique { a // id a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock id k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
letI : Unique {a // OrderDual.toDual a = k} := ⟨⟨⟨k, rfl⟩⟩, fun j => Subtype.ext j.property⟩
α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: α : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
have h := congr_fun (congr_fun (toSquareBlock_inv_mul_toSquareBlock_eq_one hM k) ⟨k, rfl⟩) ⟨k, rfl⟩
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k * M.toSquareBlock (⇑OrderDual.toDual) k) ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© = 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
dsimp [HMul.hMul, dotProduct] at h
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k * M.toSquareBlock (⇑OrderDual.toDual) k) ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© = 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : βˆ‘ i : { a // OrderDual.toDual a = k }, Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© i) (M.toSquareBlock (⇑OrderDual.toDual) k i ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k * M.toSquareBlock (⇑OrderDual.toDual) k) ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© = 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
rw [@Fintype.sum_unique _ _ _ this] at h
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : βˆ‘ i : { a // OrderDual.toDual a = k }, Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© i) (M.toSquareBlock (⇑OrderDual.toDual) k i ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© default) (M.toSquareBlock (⇑OrderDual.toDual) k default ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : βˆ‘ i : { a // OrderDual.toDual a = k }, Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© i) (M.toSquareBlock (⇑OrderDual.toDual) k i ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
simp at h
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© default) (M.toSquareBlock (⇑OrderDual.toDual) k default ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = 1
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© default) (M.toSquareBlock (⇑OrderDual.toDual) k default ⟨k, β‹―βŸ©) = OfNat.ofNat 1 ⟨k, β‹―βŸ© ⟨k, β‹―βŸ© ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
rw [← h]
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = 1
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©)
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
simp [toSquareBlock, toSquareBlockProp]
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©)
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k)
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/Triangular.lean
Matrix.diag_inv_mul_diag_eq_one_of_lowerTriangular
[67, 1]
[75, 68]
rfl
Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k)
no goals
Please generate a tactic in lean4 to solve the state. STATE: Ξ± : Type ?u.15206 m : Type u_1 n : Type ?u.15212 R : Type u_2 inst✝³ : CommRing R M N : Matrix m m R inst✝² : Fintype m inst✝¹ : LinearOrder m inst✝ : Invertible M hM : M.lowerTriangular k : m this : Unique { a // OrderDual.toDual a = k } := { default := ⟨k, β‹―βŸ©, uniq := β‹― } h : Mul.mul (M⁻¹.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) (M.toSquareBlock (⇑OrderDual.toDual) k ⟨k, β‹―βŸ© ⟨k, β‹―βŸ©) = 1 ⊒ M⁻¹ k k * M k k = Mul.mul (M⁻¹ k k) (M k k) TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
have h_di_pos := h_d_pos i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n ⊒ d i / (d i / s i) = s i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 i < d i ⊒ d i / (d i / s i) = s i
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n ⊒ d i / (d i / s i) = s i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
simp at h_di_pos
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 i < d i ⊒ d i / (d i / s i) = s i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 < d i ⊒ d i / (d i / s i) = s i
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 i < d i ⊒ d i / (d i / s i) = s i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
have h_di_nonzero : d i β‰  0 := by linarith
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 < d i ⊒ d i / (d i / s i) = s i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 < d i h_di_nonzero : d i β‰  0 ⊒ d i / (d i / s i) = s i
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 < d i ⊒ d i / (d i / s i) = s i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
rw [← div_mul, div_self h_di_nonzero, one_mul]
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 < d i h_di_nonzero : d i β‰  0 ⊒ d i / (d i / s i) = s i
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 < d i h_di_nonzero : d i β‰  0 ⊒ d i / (d i / s i) = s i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.simp_vec_fraction
[43, 1]
[47, 49]
linarith
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 < d i ⊒ d i β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ h_d_pos : StrongLT 0 d s : Fin n β†’ ℝ i : Fin n h_di_pos : 0 < d i ⊒ d i β‰  0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
simp [Vec.cumsum]
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n ⊒ βˆ‘ j ∈ [[0, i]], t j = Vec.cumsum t i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n ⊒ βˆ‘ j ∈ [[0, i]], t j = if h : 0 < n then βˆ‘ j ∈ [[⟨0, h⟩, i]], t j else 0
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n ⊒ βˆ‘ j ∈ [[0, i]], t j = Vec.cumsum t i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
split_ifs
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n ⊒ βˆ‘ j ∈ [[0, i]], t j = if h : 0 < n then βˆ‘ j ∈ [[⟨0, h⟩, i]], t j else 0
case pos n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n h✝ : 0 < n ⊒ βˆ‘ j ∈ [[0, i]], t j = βˆ‘ j ∈ [[⟨0, h✝⟩, i]], t j case neg n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n h✝ : Β¬0 < n ⊒ βˆ‘ j ∈ [[0, i]], t j = 0
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n ⊒ βˆ‘ j ∈ [[0, i]], t j = if h : 0 < n then βˆ‘ j ∈ [[⟨0, h⟩, i]], t j else 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
rfl
case pos n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n h✝ : 0 < n ⊒ βˆ‘ j ∈ [[0, i]], t j = βˆ‘ j ∈ [[⟨0, h✝⟩, i]], t j
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n h✝ : 0 < n ⊒ βˆ‘ j ∈ [[0, i]], t j = βˆ‘ j ∈ [[⟨0, h✝⟩, i]], t j TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.fold_partial_sum
[49, 1]
[53, 22]
linarith [hn.out]
case neg n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n h✝ : Β¬0 < n ⊒ βˆ‘ j ∈ [[0, i]], t j = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ hn : Fact (0 < n) t : Fin n β†’ ℝ i : Fin n h✝ : Β¬0 < n ⊒ βˆ‘ j ∈ [[0, i]], t j = 0 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.nβ‚š_pos
[148, 1]
[148, 48]
unfold nβ‚š
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 < nβ‚š
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 < 10
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 < nβ‚š TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.nβ‚š_pos
[148, 1]
[148, 48]
norm_num
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 < 10
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 < 10 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dβ‚š_pos
[154, 1]
[155, 50]
intro i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ StrongLT 0 dβ‚š
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ 0 i < dβ‚š i
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ StrongLT 0 dβ‚š TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dβ‚š_pos
[154, 1]
[155, 50]
fin_cases i <;> (dsimp [dβ‚š]; norm_num)
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ 0 i < dβ‚š i
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ 0 i < dβ‚š i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dβ‚š_pos
[154, 1]
[155, 50]
dsimp [dβ‚š]
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ⟨9, β‹―βŸ© < dβ‚š ⟨9, β‹―βŸ©
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, β‹―βŸ©
Please generate a tactic in lean4 to solve the state. STATE: case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ⟨9, β‹―βŸ© < dβ‚š ⟨9, β‹―βŸ© TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.dβ‚š_pos
[154, 1]
[155, 50]
norm_num
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, β‹―βŸ©
no goals
Please generate a tactic in lean4 to solve the state. STATE: case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] ⟨9, β‹―βŸ© TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminβ‚š_pos
[173, 1]
[174, 36]
intro i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ StrongLT 0 sminβ‚š
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ 0 i < sminβ‚š i
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ StrongLT 0 sminβ‚š TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminβ‚š_pos
[173, 1]
[174, 36]
fin_cases i <;> norm_num
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ 0 i < sminβ‚š i
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ 0 i < sminβ‚š i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminβ‚š_le_smaxβ‚š
[179, 1]
[180, 60]
intro i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ sminβ‚š ≀ smaxβ‚š
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ sminβ‚š i ≀ smaxβ‚š i
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ sminβ‚š ≀ smaxβ‚š TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminβ‚š_le_smaxβ‚š
[179, 1]
[180, 60]
fin_cases i <;> (dsimp [sminβ‚š, smaxβ‚š]; norm_num)
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ sminβ‚š i ≀ smaxβ‚š i
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ sminβ‚š i ≀ smaxβ‚š i TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminβ‚š_le_smaxβ‚š
[179, 1]
[180, 60]
dsimp [sminβ‚š, smaxβ‚š]
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ sminβ‚š ⟨9, β‹―βŸ© ≀ smaxβ‚š ⟨9, β‹―βŸ©
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, β‹―βŸ© ≀ ![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, β‹―βŸ©
Please generate a tactic in lean4 to solve the state. STATE: case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ sminβ‚š ⟨9, β‹―βŸ© ≀ smaxβ‚š ⟨9, β‹―βŸ© TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.sminβ‚š_le_smaxβ‚š
[179, 1]
[180, 60]
norm_num
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, β‹―βŸ© ≀ ![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, β‹―βŸ©
no goals
Please generate a tactic in lean4 to solve the state. STATE: case tail.tail.tail.tail.tail.tail.tail.tail.tail.head n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] ⟨9, β‹―βŸ© ≀ ![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] ⟨9, β‹―βŸ© TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aβ‚š_nonneg
[188, 1]
[189, 51]
unfold aβ‚š
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ≀ aβ‚š
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ≀ 1
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ≀ aβ‚š TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aβ‚š_nonneg
[188, 1]
[189, 51]
norm_num
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ≀ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ≀ 1 TACTIC:
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/VehicleSpeedScheduling.lean
VehicleSpeedSched.aβ‚šdβ‚š2_nonneg
[191, 1]
[193, 55]
intros i
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ≀ aβ‚š β€’ dβ‚š ^ 2
n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ i : Fin nβ‚š ⊒ 0 i ≀ (aβ‚š β€’ dβ‚š ^ 2) i
Please generate a tactic in lean4 to solve the state. STATE: n : β„• d Ο„min Ο„max smin smax : Fin n β†’ ℝ F : ℝ β†’ ℝ ⊒ 0 ≀ aβ‚š β€’ dβ‚š ^ 2 TACTIC: