url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
let F := def_ X xs
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
h1 : β(def_ X xs).primeSet β Ξ_U
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
h1 : β(def_ X xs).primeSet β Ξ_U
F : Formula := def_ X xs
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
h1 : β(def_ X xs).primeSet β Ξ_U
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
simp only [Formula.primeSet] at h1
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
h1 : β(def_ X xs).primeSet β Ξ_U
F : Formula := def_ X xs
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
h1 : β{def_ X xs} β Ξ_U
F : Formula := def_ X xs
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
h1 : β(def_ X xs).primeSet β Ξ_U
F : Formula := def_ X xs
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
simp at h1
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
h1 : β{def_ X xs} β Ξ_U
F : Formula := def_ X xs
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
h1 : β{def_ X xs} β Ξ_U
F : Formula := def_ X xs
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
simp only [evalPrimeFfToNot]
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ_U)
(if evalPrime V (def_ X xs) then def_ X xs else (def_ X xs).not_)
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (def_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
simp only [Formula.evalPrime]
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ_U)
(if evalPrime V (def_ X xs) then def_ X xs else (def_ X xs).not_)
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ_U)
(if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_)
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ_U)
(if evalPrime V (def_ X xs) then def_ X xs else (def_ X xs).not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
apply IsDeduct.assume_
|
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ_U)
(if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_)
|
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ (if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_) β (fun a => if evalPrime V a then a else a.not_) '' Ξ_U
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ IsDeduct ((fun a => if evalPrime V a then a else a.not_) '' Ξ_U)
(if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
simp
|
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ (if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_) β (fun a => if evalPrime V a then a else a.not_) '' Ξ_U
|
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ β x β Ξ_U, (if evalPrime V x then x else x.not_) = if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ (if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_) β (fun a => if evalPrime V a then a else a.not_) '' Ξ_U
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
apply Exists.intro F
|
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ β x β Ξ_U, (if evalPrime V x then x else x.not_) = if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_
|
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ F β Ξ_U β§ (if evalPrime V F then F else F.not_) = if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ β x β Ξ_U, (if evalPrime V x then x else x.not_) = if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
tauto
|
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ F β Ξ_U β§ (if evalPrime V F then F else F.not_) = if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
Ξ_U : Set Formula
V : VarBoolAssignment
X : DefName
xs : List VarName
F : Formula := def_ X xs
h1 : def_ X xs β Ξ_U
β’ F β Ξ_U β§ (if evalPrime V F then F else F.not_) = if V (def_ X xs) = true then def_ X xs else (def_ X xs).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.L_15_7
|
[773, 1]
|
[916, 10]
|
sorry
|
Ξ_U : Set Formula
V : VarBoolAssignment
aβΒΉ : VarName
aβ : Formula
a_ihβ : βaβ.primeSet β Ξ_U β IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V aβ)
h1 : β(exists_ aβΒΉ aβ).primeSet β Ξ_U
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (exists_ aβΒΉ aβ))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ_U : Set Formula
V : VarBoolAssignment
aβΒΉ : VarName
aβ : Formula
a_ihβ : βaβ.primeSet β Ξ_U β IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V aβ)
h1 : β(exists_ aβΒΉ aβ).primeSet β Ξ_U
β’ IsDeduct (evalPrimeFfToNot V '' Ξ_U) (evalPrimeFfToNot V (exists_ aβΒΉ aβ))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.T_14_9_Deduct
|
[919, 1]
|
[933, 13]
|
apply IsDeduct.mp_ (U.not_.imp_ P)
|
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ P
|
case a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ ((U.not_.imp_ P).imp_ P)
case a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ (U.not_.imp_ P)
|
Please generate a tactic in lean4 to solve the state.
STATE:
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.T_14_9_Deduct
|
[919, 1]
|
[933, 13]
|
apply IsDeduct.mp_ (U.imp_ P)
|
case a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ ((U.not_.imp_ P).imp_ P)
|
case a.a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ ((U.imp_ P).imp_ ((U.not_.imp_ P).imp_ P))
case a.a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ (U.imp_ P)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ ((U.not_.imp_ P).imp_ P)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.T_14_9_Deduct
|
[919, 1]
|
[933, 13]
|
apply proof_imp_deduct
|
case a.a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ ((U.imp_ P).imp_ ((U.not_.imp_ P).imp_ P))
|
case a.a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsProof ((U.imp_ P).imp_ ((U.not_.imp_ P).imp_ P))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ ((U.imp_ P).imp_ ((U.not_.imp_ P).imp_ P))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.T_14_9_Deduct
|
[919, 1]
|
[933, 13]
|
apply T_14_9
|
case a.a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsProof ((U.imp_ P).imp_ ((U.not_.imp_ P).imp_ P))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsProof ((U.imp_ P).imp_ ((U.not_.imp_ P).imp_ P))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.T_14_9_Deduct
|
[919, 1]
|
[933, 13]
|
apply deduction_theorem
|
case a.a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ (U.imp_ P)
|
case a.a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct (Ξ βͺ {U}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ (U.imp_ P)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.T_14_9_Deduct
|
[919, 1]
|
[933, 13]
|
exact h1
|
case a.a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct (Ξ βͺ {U}) P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct (Ξ βͺ {U}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.T_14_9_Deduct
|
[919, 1]
|
[933, 13]
|
apply deduction_theorem
|
case a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ (U.not_.imp_ P)
|
case a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct (Ξ βͺ {U.not_}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct Ξ (U.not_.imp_ P)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.T_14_9_Deduct
|
[919, 1]
|
[933, 13]
|
exact h2
|
case a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct (Ξ βͺ {U.not_}) P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h1
P U : Formula
Ξ : Set Formula
h1 : IsDeduct (Ξ βͺ {U}) P
h2 : IsDeduct (Ξ βͺ {U.not_}) P
β’ IsDeduct (Ξ βͺ {U.not_}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_true
|
[936, 1]
|
[950, 38]
|
induction F
|
F F' : Formula
V : VarBoolAssignment
h1 : F.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) F = Function.updateITE (evalPrimeFfToNot V) F' F F
|
case pred_const_
F' : Formula
V : VarBoolAssignment
aβΒΉ : PredName
aβ : List VarName
h1 : (pred_const_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (pred_const_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (pred_const_ aβΒΉ aβ) (pred_const_ aβΒΉ aβ)
case pred_var_
F' : Formula
V : VarBoolAssignment
aβΒΉ : PredName
aβ : List VarName
h1 : (pred_var_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (pred_var_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (pred_var_ aβΒΉ aβ) (pred_var_ aβΒΉ aβ)
case eq_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : VarName
h1 : (eq_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (eq_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (eq_ aβΒΉ aβ) (eq_ aβΒΉ aβ)
case true_
F' : Formula
V : VarBoolAssignment
h1 : true_.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) true_ = Function.updateITE (evalPrimeFfToNot V) F' true_ true_
case false_
F' : Formula
V : VarBoolAssignment
h1 : false_.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) false_ = Function.updateITE (evalPrimeFfToNot V) F' false_ false_
case not_
F' : Formula
V : VarBoolAssignment
aβ : Formula
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : aβ.not_.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) aβ.not_ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ.not_
case imp_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ aβΒΉ
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (aβΒΉ.imp_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (aβΒΉ.imp_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.imp_ aβ) (aβΒΉ.imp_ aβ)
case and_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ aβΒΉ
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (aβΒΉ.and_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (aβΒΉ.and_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.and_ aβ) (aβΒΉ.and_ aβ)
case or_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ aβΒΉ
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (aβΒΉ.or_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (aβΒΉ.or_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.or_ aβ) (aβΒΉ.or_ aβ)
case iff_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ aβΒΉ
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ) (aβΒΉ.iff_ aβ)
case forall_
F' : Formula
V : VarBoolAssignment
aβΒΉ : VarName
aβ : Formula
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (forall_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (forall_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (forall_ aβΒΉ aβ) (forall_ aβΒΉ aβ)
case exists_
F' : Formula
V : VarBoolAssignment
aβΒΉ : VarName
aβ : Formula
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (exists_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (exists_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (exists_ aβΒΉ aβ) (exists_ aβΒΉ aβ)
case def_
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ) (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F F' : Formula
V : VarBoolAssignment
h1 : F.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) F = Function.updateITE (evalPrimeFfToNot V) F' F F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_true
|
[936, 1]
|
[950, 38]
|
case pred_const_ | pred_var_ | eq_ | forall_ | exists_ | def_ =>
unfold Function.updateITE
simp only [evalPrimeFfToNot]
simp only [Formula.evalPrime]
split_ifs <;> tauto
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ) (def_ aβΒΉ aβ)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ) (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_true
|
[936, 1]
|
[950, 38]
|
case true_ | false_ | not_ | imp_ | and_ | or_ | iff_ =>
simp only [Formula.IsPrime] at h1
|
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ aβΒΉ
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ) (aβΒΉ.iff_ aβ)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ aβΒΉ
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ) (aβΒΉ.iff_ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_true
|
[936, 1]
|
[950, 38]
|
unfold Function.updateITE
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ) (def_ aβΒΉ aβ)
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (fun c => if c = F' then true else V c) (def_ aβΒΉ aβ) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else evalPrimeFfToNot V (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ) (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_true
|
[936, 1]
|
[950, 38]
|
simp only [evalPrimeFfToNot]
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (fun c => if c = F' then true else V c) (def_ aβΒΉ aβ) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else evalPrimeFfToNot V (def_ aβΒΉ aβ)
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if evalPrime (fun c => if c = F' then true else V c) (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else if evalPrime V (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (fun c => if c = F' then true else V c) (def_ aβΒΉ aβ) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else evalPrimeFfToNot V (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_true
|
[936, 1]
|
[950, 38]
|
simp only [Formula.evalPrime]
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if evalPrime (fun c => if c = F' then true else V c) (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else if evalPrime V (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if (if def_ aβΒΉ aβ = F' then true else V (def_ aβΒΉ aβ)) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else if V (def_ aβΒΉ aβ) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if evalPrime (fun c => if c = F' then true else V c) (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else if evalPrime V (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_true
|
[936, 1]
|
[950, 38]
|
split_ifs <;> tauto
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if (if def_ aβΒΉ aβ = F' then true else V (def_ aβΒΉ aβ)) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else if V (def_ aβΒΉ aβ) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if (if def_ aβΒΉ aβ = F' then true else V (def_ aβΒΉ aβ)) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then def_ aβΒΉ aβ else if V (def_ aβΒΉ aβ) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_true
|
[936, 1]
|
[950, 38]
|
simp only [Formula.IsPrime] at h1
|
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ aβΒΉ
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ) (aβΒΉ.iff_ aβ)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ aβΒΉ
a_ihβ :
aβ.IsPrime β evalPrimeFfToNot (Function.updateITE V F' true) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' true) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ) (aβΒΉ.iff_ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_false
|
[953, 1]
|
[967, 38]
|
induction F
|
F F' : Formula
V : VarBoolAssignment
h1 : F.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) F = Function.updateITE (evalPrimeFfToNot V) F' F.not_ F
|
case pred_const_
F' : Formula
V : VarBoolAssignment
aβΒΉ : PredName
aβ : List VarName
h1 : (pred_const_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (pred_const_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (pred_const_ aβΒΉ aβ).not_ (pred_const_ aβΒΉ aβ)
case pred_var_
F' : Formula
V : VarBoolAssignment
aβΒΉ : PredName
aβ : List VarName
h1 : (pred_var_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (pred_var_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (pred_var_ aβΒΉ aβ).not_ (pred_var_ aβΒΉ aβ)
case eq_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : VarName
h1 : (eq_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (eq_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (eq_ aβΒΉ aβ).not_ (eq_ aβΒΉ aβ)
case true_
F' : Formula
V : VarBoolAssignment
h1 : true_.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) true_ = Function.updateITE (evalPrimeFfToNot V) F' true_.not_ true_
case false_
F' : Formula
V : VarBoolAssignment
h1 : false_.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) false_ =
Function.updateITE (evalPrimeFfToNot V) F' false_.not_ false_
case not_
F' : Formula
V : VarBoolAssignment
aβ : Formula
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : aβ.not_.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) aβ.not_ =
Function.updateITE (evalPrimeFfToNot V) F' aβ.not_.not_ aβ.not_
case imp_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ.not_ aβΒΉ
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (aβΒΉ.imp_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (aβΒΉ.imp_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.imp_ aβ).not_ (aβΒΉ.imp_ aβ)
case and_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ.not_ aβΒΉ
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (aβΒΉ.and_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (aβΒΉ.and_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.and_ aβ).not_ (aβΒΉ.and_ aβ)
case or_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ.not_ aβΒΉ
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (aβΒΉ.or_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (aβΒΉ.or_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.or_ aβ).not_ (aβΒΉ.or_ aβ)
case iff_
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ.not_ aβΒΉ
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ).not_ (aβΒΉ.iff_ aβ)
case forall_
F' : Formula
V : VarBoolAssignment
aβΒΉ : VarName
aβ : Formula
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (forall_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (forall_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (forall_ aβΒΉ aβ).not_ (forall_ aβΒΉ aβ)
case exists_
F' : Formula
V : VarBoolAssignment
aβΒΉ : VarName
aβ : Formula
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (exists_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (exists_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (exists_ aβΒΉ aβ).not_ (exists_ aβΒΉ aβ)
case def_
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ).not_ (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F F' : Formula
V : VarBoolAssignment
h1 : F.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) F = Function.updateITE (evalPrimeFfToNot V) F' F.not_ F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_false
|
[953, 1]
|
[967, 38]
|
case pred_const_ | pred_var_ | eq_ | forall_ | exists_ | def_ =>
unfold Function.updateITE
simp only [evalPrimeFfToNot]
simp only [Formula.evalPrime]
split_ifs <;> tauto
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ).not_ (def_ aβΒΉ aβ)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ).not_ (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_false
|
[953, 1]
|
[967, 38]
|
case true_ | false_ | not_ | imp_ | and_ | or_ | iff_ =>
simp only [Formula.IsPrime] at h1
|
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ.not_ aβΒΉ
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ).not_ (aβΒΉ.iff_ aβ)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ.not_ aβΒΉ
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ).not_ (aβΒΉ.iff_ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_false
|
[953, 1]
|
[967, 38]
|
unfold Function.updateITE
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ).not_ (def_ aβΒΉ aβ)
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (fun c => if c = F' then false else V c) (def_ aβΒΉ aβ) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_ else evalPrimeFfToNot V (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (def_ aβΒΉ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (def_ aβΒΉ aβ).not_ (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_false
|
[953, 1]
|
[967, 38]
|
simp only [evalPrimeFfToNot]
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (fun c => if c = F' then false else V c) (def_ aβΒΉ aβ) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_ else evalPrimeFfToNot V (def_ aβΒΉ aβ)
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if evalPrime (fun c => if c = F' then false else V c) (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_
else if evalPrime V (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ evalPrimeFfToNot (fun c => if c = F' then false else V c) (def_ aβΒΉ aβ) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_ else evalPrimeFfToNot V (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_false
|
[953, 1]
|
[967, 38]
|
simp only [Formula.evalPrime]
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if evalPrime (fun c => if c = F' then false else V c) (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_
else if evalPrime V (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if (if def_ aβΒΉ aβ = F' then false else V (def_ aβΒΉ aβ)) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_ else if V (def_ aβΒΉ aβ) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if evalPrime (fun c => if c = F' then false else V c) (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_
else if evalPrime V (def_ aβΒΉ aβ) then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_false
|
[953, 1]
|
[967, 38]
|
split_ifs <;> tauto
|
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if (if def_ aβΒΉ aβ = F' then false else V (def_ aβΒΉ aβ)) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_ else if V (def_ aβΒΉ aβ) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ : DefName
aβ : List VarName
h1 : (def_ aβΒΉ aβ).IsPrime
β’ (if (if def_ aβΒΉ aβ = F' then false else V (def_ aβΒΉ aβ)) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_) =
if def_ aβΒΉ aβ = F' then (def_ aβΒΉ aβ).not_ else if V (def_ aβΒΉ aβ) = true then def_ aβΒΉ aβ else (def_ aβΒΉ aβ).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.evalPrimeFfToNot_of_function_updateIte_false
|
[953, 1]
|
[967, 38]
|
simp only [Formula.IsPrime] at h1
|
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ.not_ aβΒΉ
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ).not_ (aβΒΉ.iff_ aβ)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F' : Formula
V : VarBoolAssignment
aβΒΉ aβ : Formula
a_ihβΒΉ :
aβΒΉ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβΒΉ = Function.updateITE (evalPrimeFfToNot V) F' aβΒΉ.not_ aβΒΉ
a_ihβ :
aβ.IsPrime β
evalPrimeFfToNot (Function.updateITE V F' false) aβ = Function.updateITE (evalPrimeFfToNot V) F' aβ.not_ aβ
h1 : (aβΒΉ.iff_ aβ).IsPrime
β’ evalPrimeFfToNot (Function.updateITE V F' false) (aβΒΉ.iff_ aβ) =
Function.updateITE (evalPrimeFfToNot V) F' (aβΒΉ.iff_ aβ).not_ (aβΒΉ.iff_ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
apply Set.image_congr
|
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
β’ evalPrimeFfToNot (Function.updateITE V U b) '' Ξ = evalPrimeFfToNot V '' Ξ
|
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
β’ β a β Ξ, evalPrimeFfToNot (Function.updateITE V U b) a = evalPrimeFfToNot V a
|
Please generate a tactic in lean4 to solve the state.
STATE:
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
β’ evalPrimeFfToNot (Function.updateITE V U b) '' Ξ = evalPrimeFfToNot V '' Ξ
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
intro U' a1
|
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
β’ β a β Ξ, evalPrimeFfToNot (Function.updateITE V U b) a = evalPrimeFfToNot V a
|
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
β’ evalPrimeFfToNot (Function.updateITE V U b) U' = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
β’ β a β Ξ, evalPrimeFfToNot (Function.updateITE V U b) a = evalPrimeFfToNot V a
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
specialize h1_Ξ U' a1
|
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
β’ evalPrimeFfToNot (Function.updateITE V U b) U' = evalPrimeFfToNot V U'
|
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U b) U' = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
β’ evalPrimeFfToNot (Function.updateITE V U b) U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
cases b
|
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U b) U' = evalPrimeFfToNot V U'
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U false) U' = evalPrimeFfToNot V U'
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U true) U' = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
b : Bool
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U b) U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
simp only [evalPrimeFfToNot_of_function_updateIte_false U' U V h1_Ξ]
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U false) U' = evalPrimeFfToNot V U'
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ Function.updateITE (evalPrimeFfToNot V) U U'.not_ U' = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U false) U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
simp only [Function.updateITE]
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ Function.updateITE (evalPrimeFfToNot V) U U'.not_ U' = evalPrimeFfToNot V U'
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ (if U' = U then U'.not_ else evalPrimeFfToNot V U') = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ Function.updateITE (evalPrimeFfToNot V) U U'.not_ U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
simp
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ (if U' = U then U'.not_ else evalPrimeFfToNot V U') = evalPrimeFfToNot V U'
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ U' = U β U'.not_ = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ (if U' = U then U'.not_ else evalPrimeFfToNot V U') = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
intro a2
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ U' = U β U'.not_ = evalPrimeFfToNot V U'
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
a2 : U' = U
β’ U'.not_ = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ U' = U β U'.not_ = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
subst a2
|
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
a2 : U' = U
β’ U'.not_ = evalPrimeFfToNot V U'
|
case h.false
Ξ : Set Formula
V : VarBoolAssignment
U' : Formula
a1 : U' β Ξ
h1_Ξ h1_U : U'.IsPrime
h2 : U' β Ξ
β’ U'.not_ = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.false
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
a2 : U' = U
β’ U'.not_ = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
contradiction
|
case h.false
Ξ : Set Formula
V : VarBoolAssignment
U' : Formula
a1 : U' β Ξ
h1_Ξ h1_U : U'.IsPrime
h2 : U' β Ξ
β’ U'.not_ = evalPrimeFfToNot V U'
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.false
Ξ : Set Formula
V : VarBoolAssignment
U' : Formula
a1 : U' β Ξ
h1_Ξ h1_U : U'.IsPrime
h2 : U' β Ξ
β’ U'.not_ = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
simp only [evalPrimeFfToNot_of_function_updateIte_true U' U V h1_Ξ]
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U true) U' = evalPrimeFfToNot V U'
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ Function.updateITE (evalPrimeFfToNot V) U U' U' = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ evalPrimeFfToNot (Function.updateITE V U true) U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
simp only [Function.updateITE]
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ Function.updateITE (evalPrimeFfToNot V) U U' U' = evalPrimeFfToNot V U'
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ (if U' = U then U' else evalPrimeFfToNot V U') = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ Function.updateITE (evalPrimeFfToNot V) U U' U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
simp
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ (if U' = U then U' else evalPrimeFfToNot V U') = evalPrimeFfToNot V U'
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ U' = U β U' = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ (if U' = U then U' else evalPrimeFfToNot V U') = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
intro a2
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ U' = U β U' = evalPrimeFfToNot V U'
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
a2 : U' = U
β’ U' = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
β’ U' = U β U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
subst a2
|
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
a2 : U' = U
β’ U' = evalPrimeFfToNot V U'
|
case h.true
Ξ : Set Formula
V : VarBoolAssignment
U' : Formula
a1 : U' β Ξ
h1_Ξ h1_U : U'.IsPrime
h2 : U' β Ξ
β’ U' = evalPrimeFfToNot V U'
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.true
U : Formula
Ξ : Set Formula
V : VarBoolAssignment
h1_U : U.IsPrime
h2 : U β Ξ
U' : Formula
a1 : U' β Ξ
h1_Ξ : U'.IsPrime
a2 : U' = U
β’ U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.image_of_evalPrimeFfToNot_of_function_updateIte
|
[970, 1]
|
[996, 18]
|
contradiction
|
case h.true
Ξ : Set Formula
V : VarBoolAssignment
U' : Formula
a1 : U' β Ξ
h1_Ξ h1_U : U'.IsPrime
h2 : U' β Ξ
β’ U' = evalPrimeFfToNot V U'
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h.true
Ξ : Set Formula
V : VarBoolAssignment
U' : Formula
a1 : U' β Ξ
h1_Ξ h1_U : U'.IsPrime
h2 : U' β Ξ
β’ U' = evalPrimeFfToNot V U'
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
intro V
|
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
β’ β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ) P
|
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
β’ β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
apply T_14_9_Deduct P U (Ξ.image (evalPrimeFfToNot V))
|
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ) P
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
specialize h3 (Function.updateITE V U true)
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 :
IsDeduct (evalPrimeFfToNot (Function.updateITE V U true) '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U true) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
simp only [image_of_evalPrimeFfToNot_of_function_updateIte U Ξ V true h1_Ξ h1_U h2] at h3
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 :
IsDeduct (evalPrimeFfToNot (Function.updateITE V U true) '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U true) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U true) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 :
IsDeduct (evalPrimeFfToNot (Function.updateITE V U true) '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U true) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
simp only [evalPrimeFfToNot_of_function_updateIte_true U U V h1_U] at h3
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U true) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {Function.updateITE (evalPrimeFfToNot V) U U U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U true) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
simp only [Function.updateITE] at h3
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {Function.updateITE (evalPrimeFfToNot V) U U U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {if True then U else evalPrimeFfToNot V U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {Function.updateITE (evalPrimeFfToNot V) U U U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
simp only [eq_self_iff_true, if_true] at h3
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {if True then U else evalPrimeFfToNot V U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {if True then U else evalPrimeFfToNot V U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
exact h3
|
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
specialize h3 (Function.updateITE V U Bool.false)
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 :
IsDeduct (evalPrimeFfToNot (Function.updateITE V U false) '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U false) U})
P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
h3 : β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot V U}) P
V : VarBoolAssignment
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
simp only [image_of_evalPrimeFfToNot_of_function_updateIte U Ξ V false h1_Ξ h1_U h2] at h3
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 :
IsDeduct (evalPrimeFfToNot (Function.updateITE V U false) '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U false) U})
P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U false) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 :
IsDeduct (evalPrimeFfToNot (Function.updateITE V U false) '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U false) U})
P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
simp only [evalPrimeFfToNot_of_function_updateIte_false U U V h1_U] at h3
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U false) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {Function.updateITE (evalPrimeFfToNot V) U U.not_ U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {evalPrimeFfToNot (Function.updateITE V U false) U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
simp only [Function.updateITE] at h3
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {Function.updateITE (evalPrimeFfToNot V) U U.not_ U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {if True then U.not_ else evalPrimeFfToNot V U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {Function.updateITE (evalPrimeFfToNot V) U U.not_ U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
simp only [eq_self_iff_true, if_true] at h3
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {if True then U.not_ else evalPrimeFfToNot V U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {if True then U.not_ else evalPrimeFfToNot V U}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAuxAux
|
[999, 1]
|
[1021, 13]
|
exact h3
|
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ : Set Formula
h1_Ξ : β U' β Ξ, U'.IsPrime
h1_U : U.IsPrime
h2 : U β Ξ
V : VarBoolAssignment
h3 : IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
β’ IsDeduct (evalPrimeFfToNot V '' Ξ βͺ {U.not_}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
induction Ξ_U using Finset.induction_on
|
P : Formula
Ξ_U : Finset Formula
h1 : Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
β’ IsDeduct β
P
|
case empty
P : Formula
h1 : β
β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) β
)) P
β’ IsDeduct β
P
case insert
P aβΒ² : Formula
sβ : Finset Formula
aβΒΉ : aβΒ² β sβ
aβ : sβ β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) sβ)) P) β IsDeduct β
P
h1 : insert aβΒ² sβ β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert aβΒ² sβ))) P
β’ IsDeduct β
P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
Ξ_U : Finset Formula
h1 : Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
β’ IsDeduct β
P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
case empty =>
simp at h2
exact h2
|
P : Formula
h1 : β
β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) β
)) P
β’ IsDeduct β
P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
h1 : β
β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) β
)) P
β’ IsDeduct β
P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
simp at h2
|
P : Formula
h1 : β
β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) β
)) P
β’ IsDeduct β
P
|
P : Formula
h1 : β
β P.primeSet
h2 : IsDeduct β
P
β’ IsDeduct β
P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
h1 : β
β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) β
)) P
β’ IsDeduct β
P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
exact h2
|
P : Formula
h1 : β
β P.primeSet
h2 : IsDeduct β
P
β’ IsDeduct β
P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
h1 : β
β P.primeSet
h2 : IsDeduct β
P
β’ IsDeduct β
P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
apply Ξ_U_2
|
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : insert U Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
β’ IsDeduct β
P
|
case h1
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : insert U Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
β’ Ξ_U β P.primeSet
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : insert U Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : insert U Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
β’ IsDeduct β
P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
simp only [Finset.insert_subset_iff] at h1
|
case h1
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : insert U Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
β’ Ξ_U β P.primeSet
|
case h1
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
β’ Ξ_U β P.primeSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : insert U Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
β’ Ξ_U β P.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
cases h1
|
case h1
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
β’ Ξ_U β P.primeSet
|
case h1.intro
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
leftβ : U β P.primeSet
rightβ : Ξ_U β P.primeSet
β’ Ξ_U β P.primeSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
β’ Ξ_U β P.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
case intro h1_left h1_right =>
exact h1_right
|
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ Ξ_U β P.primeSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ Ξ_U β P.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
exact h1_right
|
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ Ξ_U β P.primeSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ Ξ_U β P.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
simp only [Finset.insert_subset_iff] at h1
|
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : insert U Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
|
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : insert U Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
simp at h2
|
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
|
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) (insert U Ξ_U))) P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
cases h1
|
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
|
case h2.intro
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
leftβ : U β P.primeSet
rightβ : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h1 : U β P.primeSet β§ Ξ_U β P.primeSet
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
simp
|
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
|
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' βΞ_U) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
apply propCompleteAuxAux P U Ξ_U
|
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' βΞ_U) P
|
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β U' β βΞ_U, U'.IsPrime
case h1_U
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U.IsPrime
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U β βΞ_U
case h3
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' βΞ_U βͺ {evalPrimeFfToNot V U}) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' βΞ_U) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
intro U' a1
|
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β U' β βΞ_U, U'.IsPrime
|
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U'.IsPrime
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β U' β βΞ_U, U'.IsPrime
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
apply mem_primeSet_isPrime P U'
|
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U'.IsPrime
|
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U' β P.primeSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U'.IsPrime
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
apply h1_right
|
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U' β P.primeSet
|
case h1_Ξ.a
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U' β Ξ_U
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1_Ξ
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U' β P.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
exact a1
|
case h1_Ξ.a
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U' β Ξ_U
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1_Ξ.a
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
U' : Formula
a1 : U' β βΞ_U
β’ U' β Ξ_U
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
apply mem_primeSet_isPrime P U
|
case h1_U
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U.IsPrime
|
case h1_U
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U β P.primeSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1_U
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U.IsPrime
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
exact h1_left
|
case h1_U
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U β P.primeSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1_U
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U β P.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
exact Ξ_U_1
|
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U β βΞ_U
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ U β βΞ_U
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
simp
|
case h3
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' βΞ_U βͺ {evalPrimeFfToNot V U}) P
|
case h3
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h3
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (evalPrimeFfToNot V '' βΞ_U βͺ {evalPrimeFfToNot V U}) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.propCompleteAux
|
[1024, 1]
|
[1057, 19]
|
exact h2
|
case h3
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h3
P U : Formula
Ξ_U : Finset Formula
Ξ_U_1 : U β Ξ_U
Ξ_U_2 :
Ξ_U β P.primeSet β (β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) Ξ_U)) P) β IsDeduct β
P
h2 : β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
h1_left : U β P.primeSet
h1_right : Ξ_U β P.primeSet
β’ β (V : VarBoolAssignment), IsDeduct (insert (evalPrimeFfToNot V U) (evalPrimeFfToNot V '' βΞ_U)) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
simp only [IsProof]
|
P : Formula
h1 : P.IsTautoPrime
β’ IsProof P
|
P : Formula
h1 : P.IsTautoPrime
β’ IsDeduct β
P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
h1 : P.IsTautoPrime
β’ IsProof P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
apply propCompleteAux P P.primeSet
|
P : Formula
h1 : P.IsTautoPrime
β’ IsDeduct β
P
|
case h1
P : Formula
h1 : P.IsTautoPrime
β’ P.primeSet β P.primeSet
case h2
P : Formula
h1 : P.IsTautoPrime
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) P.primeSet)) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
P : Formula
h1 : P.IsTautoPrime
β’ IsDeduct β
P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
rfl
|
case h1
P : Formula
h1 : P.IsTautoPrime
β’ P.primeSet β P.primeSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
P : Formula
h1 : P.IsTautoPrime
β’ P.primeSet β P.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
intro V
|
case h2
P : Formula
h1 : P.IsTautoPrime
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) P.primeSet)) P
|
case h2
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ IsDeduct (β(Finset.image (evalPrimeFfToNot V) P.primeSet)) P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P : Formula
h1 : P.IsTautoPrime
β’ β (V : VarBoolAssignment), IsDeduct (β(Finset.image (evalPrimeFfToNot V) P.primeSet)) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
apply L_15_7 P P P.primeSet V (P.primeSet.image (evalPrimeFfToNot V))
|
case h2
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ IsDeduct (β(Finset.image (evalPrimeFfToNot V) P.primeSet)) P
|
case h2.h1
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ βP.primeSet β βP.primeSet
case h2.h2
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ β(Finset.image (evalPrimeFfToNot V) P.primeSet) = evalPrimeFfToNot V '' βP.primeSet
case h2.h3
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ P = evalPrimeFfToNot V P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ IsDeduct (β(Finset.image (evalPrimeFfToNot V) P.primeSet)) P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
rfl
|
case h2.h1
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ βP.primeSet β βP.primeSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2.h1
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ βP.primeSet β βP.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
simp only [Finset.coe_image]
|
case h2.h2
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ β(Finset.image (evalPrimeFfToNot V) P.primeSet) = evalPrimeFfToNot V '' βP.primeSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2.h2
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ β(Finset.image (evalPrimeFfToNot V) P.primeSet) = evalPrimeFfToNot V '' βP.primeSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
simp only [Formula.IsTautoPrime] at h1
|
case h2.h3
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ P = evalPrimeFfToNot V P
|
case h2.h3
P : Formula
h1 : β (V : VarBoolAssignment), evalPrime V P
V : VarBoolAssignment
β’ P = evalPrimeFfToNot V P
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2.h3
P : Formula
h1 : P.IsTautoPrime
V : VarBoolAssignment
β’ P = evalPrimeFfToNot V P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
simp only [evalPrimeFfToNot]
|
case h2.h3
P : Formula
h1 : β (V : VarBoolAssignment), evalPrime V P
V : VarBoolAssignment
β’ P = evalPrimeFfToNot V P
|
case h2.h3
P : Formula
h1 : β (V : VarBoolAssignment), evalPrime V P
V : VarBoolAssignment
β’ P = if evalPrime V P then P else P.not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2.h3
P : Formula
h1 : β (V : VarBoolAssignment), evalPrime V P
V : VarBoolAssignment
β’ P = evalPrimeFfToNot V P
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
specialize h1 V
|
case h2.h3
P : Formula
h1 : β (V : VarBoolAssignment), evalPrime V P
V : VarBoolAssignment
β’ P = if evalPrime V P then P else P.not_
|
case h2.h3
P : Formula
V : VarBoolAssignment
h1 : evalPrime V P
β’ P = if evalPrime V P then P else P.not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2.h3
P : Formula
h1 : β (V : VarBoolAssignment), evalPrime V P
V : VarBoolAssignment
β’ P = if evalPrime V P then P else P.not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Margaris/Prop.lean
|
FOL.NV.prop_complete
|
[1063, 1]
|
[1078, 28]
|
simp only [if_pos h1]
|
case h2.h3
P : Formula
V : VarBoolAssignment
h1 : evalPrime V P
β’ P = if evalPrime V P then P else P.not_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2.h3
P : Formula
V : VarBoolAssignment
h1 : evalPrime V P
β’ P = if evalPrime V P then P else P.not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Finset.lean
|
Finset.union_subset_left_right
|
[8, 1]
|
[23, 44]
|
apply Finset.union_subset_iff.mpr
|
Ξ± : Type
instβ : DecidableEq Ξ±
A B C D : Finset Ξ±
h1 : A β C
h2 : B β D
β’ A βͺ B β C βͺ D
|
Ξ± : Type
instβ : DecidableEq Ξ±
A B C D : Finset Ξ±
h1 : A β C
h2 : B β D
β’ A β C βͺ D β§ B β C βͺ D
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type
instβ : DecidableEq Ξ±
A B C D : Finset Ξ±
h1 : A β C
h2 : B β D
β’ A βͺ B β C βͺ D
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/Finset.lean
|
Finset.union_subset_left_right
|
[8, 1]
|
[23, 44]
|
constructor
|
Ξ± : Type
instβ : DecidableEq Ξ±
A B C D : Finset Ξ±
h1 : A β C
h2 : B β D
β’ A β C βͺ D β§ B β C βͺ D
|
case left
Ξ± : Type
instβ : DecidableEq Ξ±
A B C D : Finset Ξ±
h1 : A β C
h2 : B β D
β’ A β C βͺ D
case right
Ξ± : Type
instβ : DecidableEq Ξ±
A B C D : Finset Ξ±
h1 : A β C
h2 : B β D
β’ B β C βͺ D
|
Please generate a tactic in lean4 to solve the state.
STATE:
Ξ± : Type
instβ : DecidableEq Ξ±
A B C D : Finset Ξ±
h1 : A β C
h2 : B β D
β’ A β C βͺ D β§ B β C βͺ D
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.