url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_is_valid
|
[269, 1]
|
[282, 11]
|
simp only [β s1]
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D I V E (replace Ο F)
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E F
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D I V E (replace Ο F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.substitution_is_valid
|
[269, 1]
|
[282, 11]
|
apply h2
|
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E F
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
Ο : PredName β β β List VarName Γ Formula
h1 : admits Ο F
h2 : β (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F
D : Type
I : Interpretation D
V : VarAssignment D
E : Env
s1 :
Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
let zs := (Ο X ds.length).1;
let H := (Ο X ds.length).2;
if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ X ds }
V E F β
Holds D I V E (replace Ο F)
β’ Holds D
{ nonempty := β―, pred_const_ := I.pred_const_,
pred_var_ := fun X ds =>
if ds.length = (Ο X ds.length).1.length then
Holds D I (Function.updateListITE V (Ο X ds.length).1 ds) E (Ο X ds.length).2
else I.pred_var_ X ds }
V E F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
induction F generalizing V V' Ο
|
D : Type
I : Interpretation D
V V' V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
Ο : VarName β VarName
F : Formula
h1 : β (x : VarName), isFreeIn x F β V' x = V (Ο x)
h2 : β x β F.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E F β Holds D I V E (subAux c Ο Ο F)
|
case pred_const_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ : PredName
aβ : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (pred_const_ aβΒΉ aβ) β V' x = V (Ο x)
h2 : β x β (pred_const_ aβΒΉ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ aβΒΉ aβ) β Holds D I V E (subAux c Ο Ο (pred_const_ aβΒΉ aβ))
case pred_var_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ : PredName
aβ : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (pred_var_ aβΒΉ aβ) β V' x = V (Ο x)
h2 : β x β (pred_var_ aβΒΉ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ aβΒΉ aβ) β Holds D I V E (subAux c Ο Ο (pred_var_ aβΒΉ aβ))
case eq_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ aβ : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (eq_ aβΒΉ aβ) β V' x = V (Ο x)
h2 : β x β (eq_ aβΒΉ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (eq_ aβΒΉ aβ) β Holds D I V E (subAux c Ο Ο (eq_ aβΒΉ aβ))
case true_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x true_ β V' x = V (Ο x)
h2 : β x β true_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E true_ β Holds D I V E (subAux c Ο Ο true_)
case false_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x false_ β V' x = V (Ο x)
h2 : β x β false_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E false_ β Holds D I V E (subAux c Ο Ο false_)
case not_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβ β V' x = V (Ο x)) β
(β x β aβ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβ β Holds D I V E (subAux c Ο Ο aβ))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x aβ.not_ β V' x = V (Ο x)
h2 : β x β aβ.not_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E aβ.not_ β Holds D I V E (subAux c Ο Ο aβ.not_)
case imp_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβΒΉ β V' x = V (Ο x)) β
(β x β aβΒΉ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβΒΉ β Holds D I V E (subAux c Ο Ο aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβ β V' x = V (Ο x)) β
(β x β aβ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβ β Holds D I V E (subAux c Ο Ο aβ))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (aβΒΉ.imp_ aβ) β V' x = V (Ο x)
h2 : β x β (aβΒΉ.imp_ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (aβΒΉ.imp_ aβ) β Holds D I V E (subAux c Ο Ο (aβΒΉ.imp_ aβ))
case and_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβΒΉ β V' x = V (Ο x)) β
(β x β aβΒΉ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβΒΉ β Holds D I V E (subAux c Ο Ο aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβ β V' x = V (Ο x)) β
(β x β aβ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβ β Holds D I V E (subAux c Ο Ο aβ))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (aβΒΉ.and_ aβ) β V' x = V (Ο x)
h2 : β x β (aβΒΉ.and_ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (aβΒΉ.and_ aβ) β Holds D I V E (subAux c Ο Ο (aβΒΉ.and_ aβ))
case or_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβΒΉ β V' x = V (Ο x)) β
(β x β aβΒΉ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβΒΉ β Holds D I V E (subAux c Ο Ο aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβ β V' x = V (Ο x)) β
(β x β aβ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβ β Holds D I V E (subAux c Ο Ο aβ))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (aβΒΉ.or_ aβ) β V' x = V (Ο x)
h2 : β x β (aβΒΉ.or_ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (aβΒΉ.or_ aβ) β Holds D I V E (subAux c Ο Ο (aβΒΉ.or_ aβ))
case iff_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβΒΉ β V' x = V (Ο x)) β
(β x β aβΒΉ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβΒΉ β Holds D I V E (subAux c Ο Ο aβΒΉ))
a_ihβ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβ β V' x = V (Ο x)) β
(β x β aβ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβ β Holds D I V E (subAux c Ο Ο aβ))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (aβΒΉ.iff_ aβ) β V' x = V (Ο x)
h2 : β x β (aβΒΉ.iff_ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (aβΒΉ.iff_ aβ) β Holds D I V E (subAux c Ο Ο (aβΒΉ.iff_ aβ))
case forall_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβ β V' x = V (Ο x)) β
(β x β aβ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβ β Holds D I V E (subAux c Ο Ο aβ))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (forall_ aβΒΉ aβ) β V' x = V (Ο x)
h2 : β x β (forall_ aβΒΉ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (forall_ aβΒΉ aβ) β Holds D I V E (subAux c Ο Ο (forall_ aβΒΉ aβ))
case exists_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x aβ β V' x = V (Ο x)) β
(β x β aβ.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E aβ β Holds D I V E (subAux c Ο Ο aβ))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (exists_ aβΒΉ aβ) β V' x = V (Ο x)
h2 : β x β (exists_ aβΒΉ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (exists_ aβΒΉ aβ) β Holds D I V E (subAux c Ο Ο (exists_ aβΒΉ aβ))
case def_
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
aβΒΉ : DefName
aβ : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (def_ aβΒΉ aβ) β V' x = V (Ο x)
h2 : β x β (def_ aβΒΉ aβ).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (def_ aβΒΉ aβ) β Holds D I V E (subAux c Ο Ο (def_ aβΒΉ aβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V V' V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
Ο : VarName β VarName
F : Formula
h1 : β (x : VarName), isFreeIn x F β V' x = V (Ο x)
h2 : β x β F.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E F β Holds D I V E (subAux c Ο Ο F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
case pred_const_ X xs =>
simp only [isFreeIn] at h1
simp only [subAux]
simp only [Holds]
simp only [I']
simp only [Interpretation.usingPred]
simp
congr! 1
simp only [List.map_eq_map_iff]
intro x a1
simp
exact h1 x a1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (pred_const_ X xs) β V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (subAux c Ο Ο (pred_const_ X xs))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (pred_const_ X xs) β V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (subAux c Ο Ο (pred_const_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
case eq_ x y =>
simp only [isFreeIn] at h1
simp only [subAux]
simp only [Holds]
have s1 : V' x = V (Ο x)
apply h1
simp
simp only [s1]
have s2 : V' y = V (Ο y)
apply h1
simp
simp only [s2]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), isFreeIn x_1 (eq_ x y) β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (subAux c Ο Ο (eq_ x y))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), isFreeIn x_1 (eq_ x y) β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (subAux c Ο Ο (eq_ x y))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
case true_ | false_ =>
simp only [subAux]
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x false_ β V' x = V (Ο x)
h2 : β x β false_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E false_ β Holds D I V E (subAux c Ο Ο false_)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x false_ β V' x = V (Ο x)
h2 : β x β false_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E false_ β Holds D I V E (subAux c Ο Ο false_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
case not_ phi phi_ih =>
simp only [isFreeIn] at h1
simp only [predVarSet] at h2
simp only [subAux]
simp only [Holds]
congr! 1
exact phi_ih V V' Ο h1 h2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi.not_ β V' x = V (Ο x)
h2 : β x β phi.not_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi.not_ β V' x = V (Ο x)
h2 : β x β phi.not_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [isFreeIn] at h1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (pred_const_ X xs) β V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (subAux c Ο Ο (pred_const_ X xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (subAux c Ο Ο (pred_const_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (pred_const_ X xs) β V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (subAux c Ο Ο (pred_const_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [subAux]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (subAux c Ο Ο (pred_const_ X xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (pred_const_ X (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (subAux c Ο Ο (pred_const_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (pred_const_ X (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (I' D I V'' E Ο).pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map V (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_const_ X xs) β Holds D I V E (pred_const_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [I']
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (I' D I V'' E Ο).pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map V (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (Interpretation.usingPred D I fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X ds.length).get β―).1 ds) E ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds).pred_const_
X (List.map V' xs) β
I.pred_const_ X (List.map V (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (I' D I V'' E Ο).pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map V (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Interpretation.usingPred]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (Interpretation.usingPred D I fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X ds.length).get β―).1 ds) E ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds).pred_const_
X (List.map V' xs) β
I.pred_const_ X (List.map V (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ I.pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map V (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (Interpretation.usingPred D I fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X ds.length).get β―).1 ds) E ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds).pred_const_
X (List.map V' xs) β
I.pred_const_ X (List.map V (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ I.pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map V (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ I.pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map (V β Ο) xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ I.pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map V (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
congr! 1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ I.pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map (V β Ο) xs)
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ List.map V' xs = List.map (V β Ο) xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ I.pred_const_ X (List.map V' xs) β I.pred_const_ X (List.map (V β Ο) xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [List.map_eq_map_iff]
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ List.map V' xs = List.map (V β Ο) xs
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β x β xs, V' x = (V β Ο) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ List.map V' xs = List.map (V β Ο) xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
intro x a1
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β x β xs, V' x = (V β Ο) x
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β x β xs, V' x = (V β Ο) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact h1 x a1
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_const_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [isFreeIn] at h1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (pred_var_ X xs) β V' x = V (Ο x)
h2 : β x β (pred_var_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_var_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (pred_var_ X xs) β V' x = V (Ο x)
h2 : β x β (pred_var_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [predVarSet] at h2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_var_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β {(X, xs.length)}.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β (pred_var_ X xs).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp at h2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β {(X, xs.length)}.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β predVarFreeVarSet Ο (X, xs.length), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β {(X, xs.length)}.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [predVarFreeVarSet] at h2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β predVarFreeVarSet Ο (X, xs.length), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 : β x β predVarFreeVarSet Ο (X, xs.length), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [subAux]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β Holds D I V E (subAux c Ο Ο (pred_var_ X xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (I' D I V'' E Ο).pred_var_ X (List.map V' xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (pred_var_ X xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [I']
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (I' D I V'' E Ο).pred_var_ X (List.map V' xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (Interpretation.usingPred D I fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X ds.length).get β―).1 ds) E ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds).pred_var_
X (List.map V' xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (I' D I V'' E Ο).pred_var_ X (List.map V' xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Interpretation.usingPred]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (Interpretation.usingPred D I fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X ds.length).get β―).1 ds) E ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds).pred_var_
X (List.map V' xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (if h : (Ο X (List.map V' xs).length).isSome = true then
if (List.map V' xs).length = ((Ο X (List.map V' xs).length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X (List.map V' xs).length).get β―).1 (List.map V' xs)) E
((Ο X (List.map V' xs).length).get β―).2
else I.pred_var_ X (List.map V' xs)
else I.pred_var_ X (List.map V' xs)) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (Interpretation.usingPred D I fun X ds =>
if h : (Ο X ds.length).isSome = true then
if ds.length = ((Ο X ds.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X ds.length).get β―).1 ds) E ((Ο X ds.length).get β―).2
else I.pred_var_ X ds
else I.pred_var_ X ds).pred_var_
X (List.map V' xs) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (if h : (Ο X (List.map V' xs).length).isSome = true then
if (List.map V' xs).length = ((Ο X (List.map V' xs).length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X (List.map V' xs).length).get β―).1 (List.map V' xs)) E
((Ο X (List.map V' xs).length).get β―).2
else I.pred_var_ X (List.map V' xs)
else I.pred_var_ X (List.map V' xs)) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2
else I.pred_var_ X (List.map V' xs)
else I.pred_var_ X (List.map V' xs)) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (if h : (Ο X (List.map V' xs).length).isSome = true then
if (List.map V' xs).length = ((Ο X (List.map V' xs).length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X (List.map V' xs).length).get β―).1 (List.map V' xs)) E
((Ο X (List.map V' xs).length).get β―).2
else I.pred_var_ X (List.map V' xs)
else I.pred_var_ X (List.map V' xs)) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
split_ifs
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2
else I.pred_var_ X (List.map V' xs)
else I.pred_var_ X (List.map V' xs)) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
|
case pos
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
hβΒΉ : (Ο X xs.length).isSome = true
hβ : xs.length = ((Ο X xs.length).get β―).1.length
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
hβΒΉ : (Ο X xs.length).isSome = true
hβ : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
hβ : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
β’ (if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2
else I.pred_var_ X (List.map V' xs)
else I.pred_var_ X (List.map V' xs)) β
Holds D I V E
(if h : (Ο X xs.length).isSome = true then
if xs.length = ((Ο X xs.length).get β―).1.length then
Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2
else pred_var_ X (List.map Ο xs)
else pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
case _ c1 c2 =>
simp only [Holds]
simp
congr! 1
simp only [List.map_eq_map_iff]
intro x a1
simp
exact h1 x a1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
case _ c1 =>
simp only [Holds]
simp
congr! 1
simp only [List.map_eq_map_iff]
intro x a1
simp
exact h1 x a1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [c1] at h2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : xs.length = ((Ο X xs.length).get β―).1.length
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
c2 : xs.length = ((Ο X xs.length).get β―).1.length
h2 :
β x β if h : True then ((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset else β
, V'' x = V x
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : xs.length = ((Ο X xs.length).get β―).1.length
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp at h2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
c2 : xs.length = ((Ο X xs.length).get β―).1.length
h2 :
β x β if h : True then ((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset else β
, V'' x = V x
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
c2 : xs.length = ((Ο X xs.length).get β―).1.length
h2 : β x β ((Ο X xs.length).get β―).2.freeVarSet, x β ((Ο X xs.length).get β―).1 β V'' x = V x
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
c2 : xs.length = ((Ο X xs.length).get β―).1.length
h2 :
β x β if h : True then ((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset else β
, V'' x = V x
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
set zs := (Option.get (Ο X (List.length xs)) (_ : Option.isSome (Ο X (List.length xs)) = true)).1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
c2 : xs.length = ((Ο X xs.length).get β―).1.length
h2 : β x β ((Ο X xs.length).get β―).2.freeVarSet, x β ((Ο X xs.length).get β―).1 β V'' x = V x
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
h2 : β x β ((Ο X xs.length).get β―).2.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c ((Ο X xs.length).get β―).2)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
c2 : xs.length = ((Ο X xs.length).get β―).1.length
h2 : β x β ((Ο X xs.length).get β―).2.freeVarSet, x β ((Ο X xs.length).get β―).1 β V'' x = V x
β’ Holds D I (Function.updateListITE V'' ((Ο X xs.length).get β―).1 (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E
(Var.All.Rec.Fresh.sub (Function.updateListITE id ((Ο X xs.length).get β―).1 (List.map Ο xs)) c
((Ο X xs.length).get β―).2)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
set H := (Option.get (Ο X (List.length xs)) (_ : Option.isSome (Ο X (List.length xs)) = true)).2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
h2 : β x β ((Ο X xs.length).get β―).2.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c ((Ο X xs.length).get β―).2)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
h2 : β x β ((Ο X xs.length).get β―).2.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E ((Ο X xs.length).get β―).2 β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c ((Ο X xs.length).get β―).2)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
obtain s1 := Sub.Var.All.Rec.Fresh.substitution_theorem D I V E (Function.updateListITE id zs (xs.map Ο)) c H
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (V β Function.updateListITE id zs (List.map Ο xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Function.updateListITE_comp] at s1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (V β Function.updateListITE id zs (List.map Ο xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE (V β id) zs (List.map V (List.map Ο xs))) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (V β Function.updateListITE id zs (List.map Ο xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp at s1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE (V β id) zs (List.map V (List.map Ο xs))) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE (V β id) zs (List.map V (List.map Ο xs))) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [s1]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
clear s1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
s1 :
Holds D I V E (Var.All.Rec.Fresh.sub (Function.updateListITE id zs (List.map Ο xs)) c H) β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply Holds_coincide_Var
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
|
case h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ β (v : VarName),
isFreeIn v H β
Function.updateListITE V'' zs (List.map V' xs) v = Function.updateListITE V zs (List.map (V β Ο) xs) v
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ Holds D I (Function.updateListITE V'' zs (List.map V' xs)) E H β
Holds D I (Function.updateListITE V zs (List.map (V β Ο) xs)) E H
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
intro x a1
|
case h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ β (v : VarName),
isFreeIn v H β
Function.updateListITE V'' zs (List.map V' xs) v = Function.updateListITE V zs (List.map (V β Ο) xs) v
|
case h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
β’ β (v : VarName),
isFreeIn v H β
Function.updateListITE V'' zs (List.map V' xs) v = Function.updateListITE V zs (List.map (V β Ο) xs) v
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
by_cases c3 : x β zs
|
case h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
|
case pos
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply Function.updateListITE_map_mem_ext
|
case pos
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
|
case pos.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ β y β xs, V' y = (V β Ο) y
case pos.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ zs.length = xs.length
case pos.h3
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β zs
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
case pos.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ β y β xs, V' y = (V β Ο) y
|
case pos.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ β y β xs, V' y = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ β y β xs, V' y = (V β Ο) y
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact h1
|
case pos.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ β y β xs, V' y = V (Ο y)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ β y β xs, V' y = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [β c2]
|
case pos.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ zs.length = xs.length
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ zs.length = xs.length
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact c3
|
case pos.h3
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β zs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos.h3
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β zs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Function.updateListITE_not_mem V'' x zs (List.map V' xs) c3]
|
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
|
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ V'' x = Function.updateListITE V zs (List.map (V β Ο) xs) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ Function.updateListITE V'' zs (List.map V' xs) x = Function.updateListITE V zs (List.map (V β Ο) xs) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Function.updateListITE_not_mem V x zs (List.map (V β Ο ) xs) c3]
|
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ V'' x = Function.updateListITE V zs (List.map (V β Ο) xs) x
|
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ V'' x = V x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ V'' x = Function.updateListITE V zs (List.map (V β Ο) xs) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply h2
|
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ V'' x = V x
|
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β H.freeVarSet
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β zs
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ V'' x = V x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [isFreeIn_iff_mem_freeVarSet] at a1
|
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β H.freeVarSet
|
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
c3 : x β zs
a1 : x β H.freeVarSet
β’ x β H.freeVarSet
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β H.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact a1
|
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
c3 : x β zs
a1 : x β H.freeVarSet
β’ x β H.freeVarSet
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
c3 : x β zs
a1 : x β H.freeVarSet
β’ x β H.freeVarSet
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact c3
|
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β zs
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
c1 : (Ο X xs.length).isSome = true
zs : List VarName := ((Ο X xs.length).get β―).1
c2 : xs.length = zs.length
H : Formula := ((Ο X xs.length).get β―).2
h2 : β x β H.freeVarSet, x β zs β V'' x = V x
x : VarName
a1 : isFreeIn x H
c3 : x β zs
β’ x β zs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map V (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map V (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map (V β Ο) xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map V (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
congr! 1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map (V β Ο) xs)
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ List.map V' xs = List.map (V β Ο) xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map (V β Ο) xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [List.map_eq_map_iff]
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ List.map V' xs = List.map (V β Ο) xs
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ β x β xs, V' x = (V β Ο) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ List.map V' xs = List.map (V β Ο) xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
intro x a1
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ β x β xs, V' x = (V β Ο) x
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
β’ β x β xs, V' x = (V β Ο) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact h1 x a1
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : (Ο X xs.length).isSome = true
c2 : Β¬xs.length = ((Ο X xs.length).get β―).1.length
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map V (List.map Ο xs))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β Holds D I V E (pred_var_ X (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map V (List.map Ο xs))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map (V β Ο) xs)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map V (List.map Ο xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
congr! 1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map (V β Ο) xs)
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ List.map V' xs = List.map (V β Ο) xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ I.pred_var_ X (List.map V' xs) β I.pred_var_ X (List.map (V β Ο) xs)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [List.map_eq_map_iff]
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ List.map V' xs = List.map (V β Ο) xs
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ β x β xs, V' x = (V β Ο) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ List.map V' xs = List.map (V β Ο) xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
intro x a1
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ β x β xs, V' x = (V β Ο) x
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
β’ β x β xs, V' x = (V β Ο) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
x : VarName
a1 : x β xs
β’ V' x = (V β Ο) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact h1 x a1
|
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_4
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
X : PredName
xs : List VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β x β xs, V' x = V (Ο x)
h2 :
β
x β
if h : (Ο X xs.length).isSome = true then
((Ο X xs.length).get β―).2.freeVarSet \ ((Ο X xs.length).get β―).1.toFinset
else β
,
V'' x = V x
c1 : Β¬(Ο X xs.length).isSome = true
x : VarName
a1 : x β xs
β’ V' x = V (Ο x)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [isFreeIn] at h1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), isFreeIn x_1 (eq_ x y) β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (subAux c Ο Ο (eq_ x y))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (subAux c Ο Ο (eq_ x y))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), isFreeIn x_1 (eq_ x y) β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (subAux c Ο Ο (eq_ x y))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [subAux]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (subAux c Ο Ο (eq_ x y))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (eq_ (Ο x) (Ο y))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (subAux c Ο Ο (eq_ x y))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (eq_ (Ο x) (Ο y))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ V' x = V' y β V (Ο x) = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ Holds D (I' D I V'' E Ο) V' E (eq_ x y) β Holds D I V E (eq_ (Ο x) (Ο y))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
have s1 : V' x = V (Ο x)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ V' x = V' y β V (Ο x) = V (Ο y)
|
case s1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ V' x = V (Ο x)
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ V' x = V' y β V (Ο x) = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply h1
|
case s1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ V' x = V (Ο x)
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
|
case s1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ x = x β¨ x = y
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case s1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ V' x = V (Ο x)
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
case s1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ x = x β¨ x = y
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case s1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
β’ x = x β¨ x = y
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [s1]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' x = V' y β V (Ο x) = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
have s2 : V' y = V (Ο y)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
|
case s2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' y = V (Ο y)
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply h1
|
case s2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' y = V (Ο y)
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
|
case s2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ y = x β¨ y = y
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case s2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ V' y = V (Ο y)
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp
|
case s2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ y = x β¨ y = y
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case s2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
β’ y = x β¨ y = y
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [s2]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
x y : VarName
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x_1 : VarName), x_1 = x β¨ x_1 = y β V' x_1 = V (Ο x_1)
h2 : β x_1 β (eq_ x y).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x_1 = V x_1
s1 : V' x = V (Ο x)
s2 : V' y = V (Ο y)
β’ V (Ο x) = V' y β V (Ο x) = V (Ο y)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [subAux]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x false_ β V' x = V (Ο x)
h2 : β x β false_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E false_ β Holds D I V E (subAux c Ο Ο false_)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x false_ β V' x = V (Ο x)
h2 : β x β false_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E false_ β Holds D I V E false_
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x false_ β V' x = V (Ο x)
h2 : β x β false_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E false_ β Holds D I V E (subAux c Ο Ο false_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x false_ β V' x = V (Ο x)
h2 : β x β false_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E false_ β Holds D I V E false_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x false_ β V' x = V (Ο x)
h2 : β x β false_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E false_ β Holds D I V E false_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [isFreeIn] at h1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi.not_ β V' x = V (Ο x)
h2 : β x β phi.not_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.not_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi.not_ β V' x = V (Ο x)
h2 : β x β phi.not_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [predVarSet] at h2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.not_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.not_.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [subAux]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi).not_
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi.not_)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi).not_
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Β¬Holds D (I' D I V'' E Ο) V' E phi β Β¬Holds D I V E (subAux c Ο Ο phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi.not_ β Holds D I V E (subAux c Ο Ο phi).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
congr! 1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Β¬Holds D (I' D I V'' E Ο) V' E phi β Β¬Holds D I V E (subAux c Ο Ο phi)
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Β¬Holds D (I' D I V'' E Ο) V' E phi β Β¬Holds D I V E (subAux c Ο Ο phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact phi_ih V V' Ο h1 h2
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
h2 : β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [isFreeIn] at h1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (phi.iff_ psi) β V' x = V (Ο x)
h2 : β x β (phi.iff_ psi).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E (subAux c Ο Ο (phi.iff_ psi))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.iff_ psi).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E (subAux c Ο Ο (phi.iff_ psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x (phi.iff_ psi) β V' x = V (Ο x)
h2 : β x β (phi.iff_ psi).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E (subAux c Ο Ο (phi.iff_ psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [predVarSet] at h2
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.iff_ psi).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E (subAux c Ο Ο (phi.iff_ psi))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E (subAux c Ο Ο (phi.iff_ psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.iff_ psi).predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E (subAux c Ο Ο (phi.iff_ psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [subAux]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E (subAux c Ο Ο (phi.iff_ psi))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E ((subAux c Ο Ο phi).iff_ (subAux c Ο Ο psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E (subAux c Ο Ο (phi.iff_ psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Holds]
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E ((subAux c Ο Ο phi).iff_ (subAux c Ο Ο psi))
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (Holds D (I' D I V'' E Ο) V' E phi β Holds D (I' D I V'' E Ο) V' E psi) β
(Holds D I V E (subAux c Ο Ο phi) β Holds D I V E (subAux c Ο Ο psi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E (phi.iff_ psi) β Holds D I V E ((subAux c Ο Ο phi).iff_ (subAux c Ο Ο psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
congr! 1
|
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (Holds D (I' D I V'' E Ο) V' E phi β Holds D (I' D I V'' E Ο) V' E psi) β
(Holds D I V E (subAux c Ο Ο phi) β Holds D I V E (subAux c Ο Ο psi))
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi)
case a.h.e'_2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ (Holds D (I' D I V'' E Ο) V' E phi β Holds D (I' D I V'' E Ο) V' E psi) β
(Holds D I V E (subAux c Ο Ο phi) β Holds D I V E (subAux c Ο Ο psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply phi_ih V V' Ο
|
case a.h.e'_1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi)
|
case a.h.e'_1.a.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
case a.h.e'_1.a.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
intro x a1
|
case a.h.e'_1.a.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
|
case a.h.e'_1.a.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ V' x = V (Ο x)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β (x : VarName), isFreeIn x phi β V' x = V (Ο x)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply h1
|
case a.h.e'_1.a.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ V' x = V (Ο x)
|
case a.h.e'_1.a.h1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ isFreeIn x phi β¨ isFreeIn x psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h1
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ V' x = V (Ο x)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
left
|
case a.h.e'_1.a.h1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ isFreeIn x phi β¨ isFreeIn x psi
|
case a.h.e'_1.a.h1.a.h
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ isFreeIn x phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h1.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ isFreeIn x phi β¨ isFreeIn x psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
exact a1
|
case a.h.e'_1.a.h1.a.h
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ isFreeIn x phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h1.a.h
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : isFreeIn x phi
β’ isFreeIn x phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
intro x a1
|
case a.h.e'_1.a.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
|
case a.h.e'_1.a.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β phi.predVarSet.biUnion (predVarFreeVarSet Ο)
β’ V'' x = V x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
β’ β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply h2
|
case a.h.e'_1.a.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β phi.predVarSet.biUnion (predVarFreeVarSet Ο)
β’ V'' x = V x
|
case a.h.e'_1.a.h2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β phi.predVarSet.biUnion (predVarFreeVarSet Ο)
β’ x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β phi.predVarSet.biUnion (predVarFreeVarSet Ο)
β’ V'' x = V x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
simp only [Finset.mem_biUnion, Finset.mem_union] at a1
|
case a.h.e'_1.a.h2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β phi.predVarSet.biUnion (predVarFreeVarSet Ο)
β’ x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο)
|
case a.h.e'_1.a.h2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : β a β phi.predVarSet, x β predVarFreeVarSet Ο a
β’ x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : x β phi.predVarSet.biUnion (predVarFreeVarSet Ο)
β’ x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Pred/All/Rec/Option/Fresh/Sub.lean
|
FOL.NV.Sub.Pred.All.Rec.Option.Fresh.substitution_theorem_aux
|
[123, 1]
|
[434, 44]
|
apply Exists.elim a1
|
case a.h.e'_1.a.h2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : β a β phi.predVarSet, x β predVarFreeVarSet Ο a
β’ x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο)
|
case a.h.e'_1.a.h2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : β a β phi.predVarSet, x β predVarFreeVarSet Ο a
β’ β (a : PredName Γ β),
a β phi.predVarSet β§ x β predVarFreeVarSet Ο a β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case a.h.e'_1.a.h2.a
D : Type
I : Interpretation D
V'' : VarAssignment D
E : Env
c : Char
Ο : PredName β β β Option (List VarName Γ Formula)
phi psi : Formula
phi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x phi β V' x = V (Ο x)) β
(β x β phi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E phi β Holds D I V E (subAux c Ο Ο phi))
psi_ih :
β (V V' : VarAssignment D) (Ο : VarName β VarName),
(β (x : VarName), isFreeIn x psi β V' x = V (Ο x)) β
(β x β psi.predVarSet.biUnion (predVarFreeVarSet Ο), V'' x = V x) β
(Holds D (I' D I V'' E Ο) V' E psi β Holds D I V E (subAux c Ο Ο psi))
V V' : VarAssignment D
Ο : VarName β VarName
h1 : β (x : VarName), isFreeIn x phi β¨ isFreeIn x psi β V' x = V (Ο x)
h2 : β x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο), V'' x = V x
x : VarName
a1 : β a β phi.predVarSet, x β predVarFreeVarSet Ο a
β’ x β (phi.predVarSet βͺ psi.predVarSet).biUnion (predVarFreeVarSet Ο)
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.