File size: 17,601 Bytes
4e5beba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import numpy as np
import numpy.matlib

LEFT, ROPE, RIGHT = range(3)

def correlated_ttest_MC(x, rope, runs=1,  nsamples=50000):
    """
    See correlated_ttest module for explanations
    """
    if x.ndim == 2:
        x = x[:, 1] - x[:, 0]
    diff=x
    n = len(diff)
    nfolds = n / runs
    x = np.mean(diff)
    # Nadeau's and Bengio's corrected variance
    var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1))
    if var == 0:
        return int(x < rope), int(-rope <= x <= rope), int(rope < x)
    
    return x+np.sqrt(var)*np.random.standard_t( n - 1, nsamples)
                                  
    

## Correlated t-test
def correlated_ttest(x, rope, runs=1, verbose=False, names=('C1', 'C2')):
    import scipy.stats as stats
    """
    Compute correlated t-test
 
    The function uses the Bayesian interpretation of the p-value and returns
    the probabilities the difference are below `-rope`, within `[-rope, rope]`
    and above the `rope`. For details, see `A Bayesian approach for comparing
    cross-validated algorithms on multiple data sets
    <http://link.springer.com/article/10.1007%2Fs10994-015-5486-z>`_,
    G. Corani and A. Benavoli, Mach Learning 2015.
 
    |
    The test assumes that the classifiers were evaluated using cross
    validation. The number of folds is determined from the length of the vector
    of differences, as `len(diff) / runs`. The variance includes a correction
    for underestimation of variance due to overlapping training sets, as
    described in `Inference for the Generalization Error
    <http://link.springer.com/article/10.1023%2FA%3A1024068626366>`_,
    C. Nadeau and Y. Bengio, Mach Learning 2003.)
 
    |
    Args:
    x (array): a vector of differences or a 2d array with pairs of scores.
    rope (float): the width of the rope  
    runs (int): number of repetitions of cross validation (default: 1)
    return: probablities (tuple) that differences are below -rope, within rope or
        above rope
    """
    if x.ndim == 2:
        x = x[:, 1] - x[:, 0]
    diff=x
    n = len(diff)
    nfolds = n / runs
    x = np.mean(diff)
    # Nadeau's and Bengio's corrected variance
    var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1))
    if var == 0:
        return int(x < rope), int(-rope <= x <= rope), int(rope < x)
    pr = 1-stats.t.cdf(rope, n - 1, x, np.sqrt(var))
    pl = stats.t.cdf(-rope, n - 1, x, np.sqrt(var))
    pe=1-pl-pr
    if verbose:
        print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
              format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
    return pl, pe, pr
    
## SIGN TEST
def signtest_MC(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000):
    """
    Args:
        x (array): a vector of differences or a 2d array with pairs of scores.
        rope (float): the width of the rope  
        prior_strength (float): prior strength (default: 1)
        prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
            assigned (default: ROPE)
        nsamples (int): the number of Monte Carlo samples
    
    Returns:
        2-d array with rows corresponding to samples and columns to
        probabilities `[p_left, p_rope, p_right]`
    """
    if prior_strength < 0:
        raise ValueError('Prior strength must be nonegative')
    if nsamples < 0:
        raise ValueError('Number of samples must be a positive integer')
    if rope < 0:
        raise ValueError('Rope must be a positive number')
 
    if x.ndim == 2:
        x = x[:, 1] - x[:, 0]
    nleft = sum(x < -rope)
    nright = sum(x > rope)
    nrope = len(x) - nleft - nright
    alpha = np.array([nleft, nrope, nright], dtype=float)
    alpha += 0.0001  # for numerical stability
    alpha[prior_place] += prior_strength
    return np.random.dirichlet(alpha, nsamples)

def signtest(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000,
             verbose=False, names=('C1', 'C2')):
    """
    Args:
        x (array): a vector of differences or a 2d array with pairs of scores.
        rope (float): the width of the rope  
        prior_strength (float): prior strength (default: 1)
        prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
            assigned (default: ROPE)
        nsamples (int): the number of Monte Carlo samples
        verbose (bool): report the computed probabilities
        names (pair of str): the names of the two classifiers

    Returns:
        p_left, p_rope, p_right 
    """
    samples = signtest_MC(x, rope, prior_strength, prior_place, nsamples)
    
    winners = np.argmax(samples, axis=1)
    pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
    if verbose:
        print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
              format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
    return pl, pe, pr

## SIGNEDRANK
def heaviside(X):
    Y = np.zeros(X.shape);
    Y[np.where(X  > 0)] = 1;
    Y[np.where(X == 0)] = 0.5;
    return Y #1 * (x > 0)

def signrank_MC(x, rope, prior_strength=0.6, prior_place=ROPE, nsamples=50000):
    """
    Args:
        x (array): a vector of differences or a 2d array with pairs of scores.
        rope (float): the width of the rope  
        prior_strength (float): prior strength (default: 0.6)
        prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
            assigned (default: ROPE)
        nsamples (int): the number of Monte Carlo samples
    
    Returns:
        2-d array with rows corresponding to samples and columns to
        probabilities `[p_left, p_rope, p_right]`
    """
    if x.ndim == 2:
        zm = x[:, 1] - x[:, 0]
    else:
        zm = x
    nm=len(zm)
    if prior_place==ROPE:
        z0=[0]
    if prior_place==LEFT:
        z0=[-float('inf')]
    if prior_place==RIGHT:
        z0=[float('inf')]
    z=np.concatenate((zm,z0))
    n=len(z)
    z=np.transpose(np.asmatrix(z))
    X=np.matlib.repmat(z,1,n)
    Y=np.matlib.repmat(-np.transpose(z)+2*rope,n,1)
    Aright = heaviside(X-Y)
    X=np.matlib.repmat(-z,1,n)
    Y=np.matlib.repmat(np.transpose(z)+2*rope,n,1)
    Aleft = heaviside(X-Y)
    alpha=np.concatenate((np.ones(nm),[prior_strength]),axis=0)
    samples=np.zeros((nsamples,3), dtype=float)
    for i in range(0,nsamples):
        data = np.random.dirichlet(alpha, 1)
        samples[i,2]=numpy.inner(np.dot(data,Aright),data)
        samples[i,0]=numpy.inner(np.dot(data,Aleft),data)
        samples[i,1]=1-samples[i,0]-samples[i,2]
     
    return samples

def signrank(x, rope, prior_strength=0.6, prior_place=ROPE, nsamples=50000,
             verbose=False, names=('C1', 'C2')):
    """
    Args:
        x (array): a vector of differences or a 2d array with pairs of scores.
        rope (float): the width of the rope 
        prior_strength (float): prior strength (default: 0.6)
        prior_place (LEFT, ROPE or RIGHT): the region to which the prior is
            assigned (default: ROPE)
        nsamples (int): the number of Monte Carlo samples
        verbose (bool): report the computed probabilities
        names (pair of str): the names of the two classifiers

    Returns:
        p_left, p_rope, p_right
    """
    samples = signrank_MC(x, rope, prior_strength, prior_place, nsamples)
    
    winners = np.argmax(samples, axis=1)
    pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
    if verbose:
        print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
              format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
    return pl, pe, pr


def hierarchical(diff, rope, rho,  upperAlpha=2, lowerAlpha =1, lowerBeta = 0.01, upperBeta = 0.1,std_upper_bound=1000, verbose=False, names=('C1', 'C2') ):
     # upperAlpha, lowerAlpha, upperBeta, lowerBeta, are the upper and lower bound for alpha and beta, which are the parameters of 
    #the  Gamma distribution used as a prior for the degress of freedom.
    #std_upper_bound is a constant which multiplies the sample standard deviation, to set the upper limit of the prior on the
    #standard deviation.  Posterior inferences are insensitive to this value as this is large enough, such as 100 or 1000.
    
    samples=hierarchical_MC(diff, rope, rho, upperAlpha, lowerAlpha, lowerBeta, upperBeta, std_upper_bound,names )
    winners = np.argmax(samples, axis=1)
    pl, pe, pr = np.bincount(winners, minlength=3) / len(winners)
    if verbose:
        print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'.
              format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr))
    return pl, pe, pr

def hierarchical_MC(diff, rope, rho,   upperAlpha=2, lowerAlpha =1, lowerBeta = 0.01, upperBeta = 0.1, std_upper_bound=1000, names=('C1', 'C2') ):
    # upperAlpha, lowerAlpha, upperBeta, lowerBeta, are the upper and lower bound for alpha and beta, which are the parameters of 
    #the  Gamma distribution used as a prior for the degress of freedom.
    #std_upper_bound is a constant which multiplies the sample standard deviation, to set the upper limit of the prior on the
    #standard deviation.  Posterior inferences are insensitive to this value as this is large enough, such as 100 or 1000.

    import scipy.stats as stats
    import pystan
    #data rescaling, to have homogenous scale among all dsets
    stdX = np.mean(np.std(diff,1)) #we scale all the data by the mean of the standard deviation of data sets
    x = diff/stdX
    rope=rope/stdX
    
    #to avoid numerical problems with zero variance
    for i in range(0,len(x)):
        if np.std(x[i,:])==0:
            x[i,:]=x[i,:]+np.random.normal(0,np.min(1/1000000000,np.abs(np.mean(x[i,:])/100000000)))
  
    
    #This is the Hierarchical model written in Stan
    hierarchical_code = """
    /*Hierarchical Bayesian model for the analysis of competing cross-validated classifiers on multiple data sets.
    */

      data {

        real deltaLow;
        real deltaHi;

        //bounds of the sigma of the higher-level distribution
        real std0Low; 
        real std0Hi; 

        //bounds on the domain of the sigma of each data set
        real stdLow; 
        real stdHi; 


        //number of results for each data set. Typically 100 (10 runs of 10-folds cv)
        int<lower=2> Nsamples; 

        //number of data sets. 
        int<lower=1> q; 

        //difference of accuracy between the two classifier, on each fold of each data set.
        matrix[q,Nsamples] x;

        //correlation (1/(number of folds))
        real rho; 

        real upperAlpha;
        real lowerAlpha;
        real upperBeta;
        real lowerBeta;

         }


      transformed data {

        //vector of 1s appearing in the likelihood 
        vector[Nsamples] H;

        //vector of 0s: the mean of the mvn noise 
        vector[Nsamples] zeroMeanVec;

        /* M is the correlation matrix of the mvn noise.
        invM is its inverse, detM its determinant */
        matrix[Nsamples,Nsamples] invM;
        real detM;

        //The determinant of M is analytically known
        detM <- (1+(Nsamples-1)*rho)*(1-rho)^(Nsamples-1);

        //build H and invM. They do not depend on the data.
        for (j in 1:Nsamples){
          zeroMeanVec[j]<-0;
          H[j]<-1;
          for (i in 1:Nsamples){
            if (j==i)
              invM[j,i]<- (1 + (Nsamples-2)*rho)*pow((1-rho),Nsamples-2);
            else
              invM[j,i]<- -rho * pow((1-rho),Nsamples-2);
           }
        }
        /*at this point invM contains the adjugate of M.
        we  divide it by det(M) to obtain the inverse of M.*/
        invM <-invM/detM;
      }

      parameters {
        //mean of the  hyperprior from which we sample the delta_i
        real<lower=deltaLow,upper=deltaHi> delta0; 

        //std of the hyperprior from which we sample the delta_i
        real<lower=std0Low,upper=std0Hi> std0;

        //delta_i of each data set: vector of lenght q.
        vector[q] delta;               

        //sigma of each data set: : vector of lenght q.
        vector<lower=stdLow,upper=stdHi>[q] sigma; 

        /* the domain of (nu - 1) starts from 0
        and can be given a gamma prior*/
        real<lower=0> nuMinusOne; 

        //parameters of the Gamma prior on nuMinusOne
        real<lower=lowerAlpha,upper=upperAlpha> gammaAlpha;
        real<lower=lowerBeta, upper=upperBeta> gammaBeta;

      }

     transformed parameters {
        //degrees of freedom
        real<lower=1> nu ;

        /*difference between the data (x matrix) and 
        the vector of the q means.*/
        matrix[q,Nsamples] diff; 

        vector[q] diagQuad;

        /*vector of length q: 
        1 over the variance of each data set*/
        vector[q] oneOverSigma2; 

        vector[q] logDetSigma;

        vector[q] logLik;

        //degrees of freedom
        nu <- nuMinusOne + 1 ;

        //1 over the variance of each data set
        oneOverSigma2 <- rep_vector(1, q) ./ sigma;
        oneOverSigma2 <- oneOverSigma2 ./ sigma;

        /*the data (x) minus a matrix done as follows:
        the delta vector (of lenght q) pasted side by side Nsamples times*/
        diff <- x - rep_matrix(delta,Nsamples); 

        //efficient matrix computation of the likelihood.
        diagQuad <- diagonal (quad_form (invM,diff'));
        logDetSigma <- 2*Nsamples*log(sigma) + log(detM) ;
        logLik <- -0.5 * logDetSigma - 0.5*Nsamples*log(6.283);  
        logLik <- logLik - 0.5 * oneOverSigma2 .* diagQuad;

      }

      model {
        /*mu0 and std0 are not explicitly sampled here.
        Stan automatically samples them: mu0 as uniform and std0 as
        uniform over its domain (std0Low,std0Hi).*/

        //sampling the degrees of freedom
        nuMinusOne ~ gamma ( gammaAlpha, gammaBeta);

        //vectorial sampling of the delta_i of each data set
        delta ~ student_t(nu, delta0, std0);

        //logLik is computed in the previous block 
        increment_log_prob(sum(logLik));   
     }
    """
    datatable=x
    std_within=np.mean(np.std(datatable,1))

    Nsamples = len(datatable[0])
    q= len(datatable)
    if q>1:
        std_among=np.std(np.mean(datatable,1))
    else:
        std_among=np.mean(np.std(datatable,1))

    #Hierarchical data in Stan
    hierachical_dat = {'x': datatable,
                   'deltaLow' : -np.max(np.abs(datatable)),
                   'deltaHi' : np.max(np.abs(datatable)),
                   'stdLow' : 0,
                   'stdHi' : std_within*std_upper_bound,
                   'std0Low' : 0,
                   'std0Hi' : std_among*std_upper_bound,
                   'Nsamples' : Nsamples,
                   'q' : q,
                   'rho' : rho,
                   'upperAlpha' : upperAlpha,
                   'lowerAlpha' : lowerAlpha,
                   'upperBeta' : upperBeta,
                   'lowerBeta' : lowerBeta}

    #Call to Stan code
    fit = pystan.stan(model_code=hierarchical_code, data=hierachical_dat,
                      iter=1000, chains=4)
    
    la = fit.extract(permuted=True)  # return a dictionary of arrays
    mu = la['delta0']
    stdh = la['std0']
    nu = la['nu']
    
    samples=np.zeros((len(mu),3), dtype=float)
    for i in range(0,len(mu)):
        samples[i,2]=1-stats.t.cdf(rope, nu[i], mu[i], stdh[i])
        samples[i,0]=stats.t.cdf(-rope, nu[i], mu[i],  stdh[i])
        samples[i,1]=1-samples[i,0]-samples[i,2]
     
    return samples

def plot_posterior(samples, names=('C1', 'C2')):
    """
    Args:
        x (array): a vector of differences or a 2d array with pairs of scores.
        names (pair of str): the names of the two classifiers

    Returns:
        matplotlib.pyplot.figure
    """
    return plot_simplex(samples, names)


def plot_simplex(points, names=('C1', 'C2')):
    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    from matplotlib.pylab import rcParams

    def _project(points):
        from math import sqrt, sin, cos, pi
        p1, p2, p3 = points.T / sqrt(3)
        x = (p2 - p1) * cos(pi / 6) + 0.5
        y = p3 - (p1 + p2) * sin(pi / 6) + 1 / (2 * sqrt(3))
        return np.vstack((x, y)).T 

    vert0 = _project(np.array(
        [[0.3333, 0.3333, 0.3333], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]]))

    fig = plt.figure()
    fig.set_size_inches(8, 7)  
    
    nl, ne, nr = np.max(points, axis=0)
    for i, n in enumerate((nl, ne, nr)):
        if n < 0.001:
            print("p{} is too small, switching to 2d plot".format(names[::-1] + ["rope"]))
            coords = sorted(set(range(3)) - i)
            return plot2d(points[:, coords], labels[coords])

    # triangle
    fig.gca().add_line(
        Line2D([0, 0.5, 1.0, 0],
               [0, np.sqrt(3) / 2, 0, 0], color='orange'))
    # decision lines
    for i in (1, 2, 3):
        fig.gca().add_line(
            Line2D([vert0[0, 0], vert0[i, 0]],
                   [vert0[0, 1], vert0[i, 1]], color='orange'))
    # vertex labels
    rcParams.update({'font.size': 16})
    fig.gca().text(-0.08, -0.08, 'p({})'.format(names[0]), color='orange')
    fig.gca().text(0.44, np.sqrt(3) / 2 + 0.05, 'p(rope)', color='orange')
    fig.gca().text(1.00, -0.08, 'p({})'.format(names[1]), color='orange')

    # project and draw points
    tripts = _project(points[:, [0, 2, 1]])
    plt.hexbin(tripts[:, 0], tripts[:, 1], mincnt=1, cmap=plt.cm.Blues_r)            
    # Leave some padding around the triangle for vertex labels
    fig.gca().set_xlim(-0.2, 1.2)
    fig.gca().set_ylim(-0.2, 1.2)
    fig.gca().axis('off')
    return fig