Datasets:

Modalities:
Image
Size:
< 1K
Libraries:
Datasets
License:
integrals / generation /Integrals.jl
opeltre's picture
add bi2c_1k with updated cutoff value
27ad58c
using JSON3
using HDF5
using GaussianBasis
using StaticArrays
using Base
include("Shells.jl")
abstract type ArrayFields end
Base.iterate(data::F, state=1) where F <:ArrayFields = begin
nF = fieldcount(F)
state > nF ?
nothing :
((fieldname(F, state), getfield(data, state)), state + 1)
end
Base.length(data::F) where F <:ArrayFields = fieldcount(F)
"""
Mono-electronic Integrals.
Input wave functions (ψ1, ψ2) are primitive, spherical GTO-shells
with unit coefficients, i.e.
ψ(C + r) = rˡ ⋅ Yₗₘ(r/|r|) ⋅ exp(-α |r|²)
where C is `ψ.center`, α is `ψ.exp`, and the magnetic quantum number m
takes all possible values in {-l, ..., l} within each subshell.
# Inputs
- `xyz` : center of ψ2 (ψ1 is centered at 0)
- `l` : pair of angular momenta (l₁, l₂)
- `exp` : exponents (α₁, α₂)
- `Z` : atomic charges used to compute the nuclear integral.
# Targets
- `overlap` integrals `S₁₂ = ∫ ψ1 ⋅ ψ2`
- `kinetic` integrals `T₁₂ = 1/2 * ∫ ∇ψ1 ⋅ ∇ψ2`
- `nuclear` attraction integrals
`N₁₂ = ∫ ψ1 ⋅ [(Z₁ / |r|) + (Z₂ / |r - xyz|)] ⋅ ψ2`
# Note
Mono-electronic integrals are square matrices of shape `D × D` with
D = (2 * l1 + 1) + (2 * l2 + 1)
Indices correspond to increasing values of `m1 ∈ {-l1, …, l1}` first,
then increasing values of `m2 ∈ {-l2, …, l2}`.
"""
struct MonoIntegral{T} <: ArrayFields
l :: Vector{Int64}
exp :: Union{SArray, Array{T}}
xyz :: Union{SArray, Array{T}}
overlap :: Array{T}
kinetic :: Array{T}
nuclear :: Array{T}
Z :: Array{Int64}
end
"""
Object storing 2-electron 2-center integrals.
Electronic interactions (ij|ij) and (ij|ji) are quadratic
w.r.t. two input wave functions (ψi, ψj), characterized
by the same entries as `MonoIntegral`.
Targets:
- `coulomb` integral J
"""
struct BiIntegral2c{T} <: ArrayFields
l :: Tuple{Integer}
exp :: Array{T}
xyz :: Array{T}
coulomb :: Array{T}
end
"""Object for storing bi-electronic integrals"""
struct BiIntegral4c{T} <: ArrayFields
l :: Vector{Int64}
exp :: Array{T}
xyz :: Array{T}
ijkl :: Array{Int16}
Bijkl :: Array{Float32}
target_size :: Vector{Int32}
end
function BiIntegral4c(
l :: Vector{Int64},
exp :: Array{T},
xyz :: Array{T},
ijkl :: Array{Int16},
Bijkl :: Array{Float32}
) where T<:Real
target_size :: Array{Int32} = [length(Bijkl)]
BiIntegral4c{T}(l, exp, xyz, ijkl, Bijkl, target_size)
end
"Stack array fields, excluding constant fields"
function stack(rows::Vector{F}, exclude::Vector{Symbol}) where F<:ArrayFields
out = []
for f in fieldnames(F)
out_f = f ∈ exclude ?
getfield(rows[1], f) :
Base.stack([getfield(row, f) for row in rows])
push!(out, out_f)
end
F(out...)
end
function stack(rows::Vector{F}) where F<:ArrayFields
stack(rows, Symbol[])
end
function stack(rows::Vector{MonoIntegral}) :: MonoIntegral
stack(rows, [:l])
end
function stack(rows::Vector{BiIntegral4c}) :: BiIntegral4c
out = map(rows[1]) do field
k, fk = field
if k ∈ (:ijkl, :Bijkl, :target_size)
reduce(vcat, map(r -> getfield(r, k), rows))
elseif k == :l
rows[1].l
else
Base.stack(map(r -> getfield(r, k), rows))
end
end
BiIntegral4c(out...)
end
"Dump JSON output"
function JSONdump(out::String, dset::Any)
open(out, "w") do io
JSON3.pretty(io, dset)
end
end
"Dump HDF5 output"
function h5dump(out::String, dset::F) where F<:ArrayFields
h5open(out, "w") do io
foreach(dset) do (k, xk)
T = eltype(xk)
S = isa(xk, AbstractArray) ? size(xk) : (length(xk),)
dset = create_dataset(io, String(k), datatype(T), S)
write(dset, xk)
end
end
end
"""
mono_integral(basis::Basis)
Compute a dense mono-electronic integral matrix.
"""
function mono_integral(basis::Basis)
mol, shells = basis
bset = BasisSet("A-B*", mol, shells)
l = [shell.l for shell in shells]
a1, a2 = bset[1].exp, bset[2].exp
xyz = bset[2].atom.xyz
S = overlap(bset)
T = kinetic(bset)
N = nuclear(bset)
Z = [bset[1].atom.Z, bset[2].atom.Z]
MonoIntegral(l, [a1; a2], xyz, S, T, N, Z)
end
"""
bi_integral(basis::Basis[, cutoff=.000_01])
Compute a sparse bi-electronic integral matrix.
"""
function bi_integral(basis::Basis, cutoff::Float64 = .000_01)
# initialize basis set
mol, shells = basis
bset = BasisSet("mol", mol, shells)
l = [shell.l for shell in shells]
# compute integrals
B = sparseERI_2e4c(bset, .000_1)
if length(B[1]) >= 1
ijkl, Bijkl = Base.stack(B[1], dims=1), Vector{Float32}(B[2])
else
println("no ERI")
ijkl, Bijkl = Array{Int16}([1, 1, 1, 1]'), Vector{Float32}([0.])
end
exp = Base.stack(map(shell -> shell.exp, bset.basis))
xyz = Base.stack(map(shell -> shell.atom.xyz, bset.basis))
BiIntegral4c(l, exp, xyz, ijkl, Bijkl)
end