|
|
using JSON3 |
|
|
using HDF5 |
|
|
using GaussianBasis |
|
|
using StaticArrays |
|
|
using Base |
|
|
|
|
|
include("Shells.jl") |
|
|
|
|
|
abstract type ArrayFields end |
|
|
|
|
|
Base.iterate(data::F, state=1) where F <:ArrayFields = begin |
|
|
nF = fieldcount(F) |
|
|
state > nF ? |
|
|
nothing : |
|
|
((fieldname(F, state), getfield(data, state)), state + 1) |
|
|
end |
|
|
|
|
|
Base.length(data::F) where F <:ArrayFields = fieldcount(F) |
|
|
|
|
|
""" |
|
|
Mono-electronic Integrals. |
|
|
|
|
|
Input wave functions (ψ1, ψ2) are primitive, spherical GTO-shells |
|
|
with unit coefficients, i.e. |
|
|
|
|
|
ψ(C + r) = rˡ ⋅ Yₗₘ(r/|r|) ⋅ exp(-α |r|²) |
|
|
|
|
|
where C is `ψ.center`, α is `ψ.exp`, and the magnetic quantum number m |
|
|
takes all possible values in {-l, ..., l} within each subshell. |
|
|
|
|
|
# Inputs |
|
|
- `xyz` : center of ψ2 (ψ1 is centered at 0) |
|
|
- `l` : pair of angular momenta (l₁, l₂) |
|
|
- `exp` : exponents (α₁, α₂) |
|
|
- `Z` : atomic charges used to compute the nuclear integral. |
|
|
|
|
|
# Targets |
|
|
- `overlap` integrals `S₁₂ = ∫ ψ1 ⋅ ψ2` |
|
|
- `kinetic` integrals `T₁₂ = 1/2 * ∫ ∇ψ1 ⋅ ∇ψ2` |
|
|
- `nuclear` attraction integrals |
|
|
|
|
|
`N₁₂ = ∫ ψ1 ⋅ [(Z₁ / |r|) + (Z₂ / |r - xyz|)] ⋅ ψ2` |
|
|
|
|
|
# Note |
|
|
|
|
|
Mono-electronic integrals are square matrices of shape `D × D` with |
|
|
|
|
|
D = (2 * l1 + 1) + (2 * l2 + 1) |
|
|
|
|
|
Indices correspond to increasing values of `m1 ∈ {-l1, …, l1}` first, |
|
|
then increasing values of `m2 ∈ {-l2, …, l2}`. |
|
|
""" |
|
|
struct MonoIntegral{T} <: ArrayFields |
|
|
l :: Vector{Int64} |
|
|
exp :: Union{SArray, Array{T}} |
|
|
xyz :: Union{SArray, Array{T}} |
|
|
overlap :: Array{T} |
|
|
kinetic :: Array{T} |
|
|
nuclear :: Array{T} |
|
|
Z :: Array{Int64} |
|
|
end |
|
|
|
|
|
""" |
|
|
Object storing 2-electron 2-center integrals. |
|
|
|
|
|
Electronic interactions (ij|ij) and (ij|ji) are quadratic |
|
|
w.r.t. two input wave functions (ψi, ψj), characterized |
|
|
by the same entries as `MonoIntegral`. |
|
|
|
|
|
Targets: |
|
|
- `coulomb` integral J |
|
|
""" |
|
|
struct BiIntegral2c{T} <: ArrayFields |
|
|
l :: Tuple{Integer} |
|
|
exp :: Array{T} |
|
|
xyz :: Array{T} |
|
|
coulomb :: Array{T} |
|
|
end |
|
|
|
|
|
"""Object for storing bi-electronic integrals""" |
|
|
struct BiIntegral4c{T} <: ArrayFields |
|
|
l :: Vector{Int64} |
|
|
exp :: Array{T} |
|
|
xyz :: Array{T} |
|
|
ijkl :: Array{Int16} |
|
|
Bijkl :: Array{Float32} |
|
|
target_size :: Vector{Int32} |
|
|
end |
|
|
function BiIntegral4c( |
|
|
l :: Vector{Int64}, |
|
|
exp :: Array{T}, |
|
|
xyz :: Array{T}, |
|
|
ijkl :: Array{Int16}, |
|
|
Bijkl :: Array{Float32} |
|
|
) where T<:Real |
|
|
target_size :: Array{Int32} = [length(Bijkl)] |
|
|
BiIntegral4c{T}(l, exp, xyz, ijkl, Bijkl, target_size) |
|
|
end |
|
|
|
|
|
"Stack array fields, excluding constant fields" |
|
|
function stack(rows::Vector{F}, exclude::Vector{Symbol}) where F<:ArrayFields |
|
|
out = [] |
|
|
for f in fieldnames(F) |
|
|
out_f = f ∈ exclude ? |
|
|
getfield(rows[1], f) : |
|
|
Base.stack([getfield(row, f) for row in rows]) |
|
|
push!(out, out_f) |
|
|
end |
|
|
F(out...) |
|
|
end |
|
|
function stack(rows::Vector{F}) where F<:ArrayFields |
|
|
stack(rows, Symbol[]) |
|
|
end |
|
|
function stack(rows::Vector{MonoIntegral}) :: MonoIntegral |
|
|
stack(rows, [:l]) |
|
|
end |
|
|
function stack(rows::Vector{BiIntegral4c}) :: BiIntegral4c |
|
|
out = map(rows[1]) do field |
|
|
k, fk = field |
|
|
if k ∈ (:ijkl, :Bijkl, :target_size) |
|
|
reduce(vcat, map(r -> getfield(r, k), rows)) |
|
|
elseif k == :l |
|
|
rows[1].l |
|
|
else |
|
|
Base.stack(map(r -> getfield(r, k), rows)) |
|
|
end |
|
|
end |
|
|
BiIntegral4c(out...) |
|
|
end |
|
|
|
|
|
"Dump JSON output" |
|
|
function JSONdump(out::String, dset::Any) |
|
|
open(out, "w") do io |
|
|
JSON3.pretty(io, dset) |
|
|
end |
|
|
end |
|
|
|
|
|
"Dump HDF5 output" |
|
|
function h5dump(out::String, dset::F) where F<:ArrayFields |
|
|
h5open(out, "w") do io |
|
|
foreach(dset) do (k, xk) |
|
|
T = eltype(xk) |
|
|
S = isa(xk, AbstractArray) ? size(xk) : (length(xk),) |
|
|
dset = create_dataset(io, String(k), datatype(T), S) |
|
|
write(dset, xk) |
|
|
end |
|
|
end |
|
|
end |
|
|
|
|
|
""" |
|
|
mono_integral(basis::Basis) |
|
|
|
|
|
Compute a dense mono-electronic integral matrix. |
|
|
""" |
|
|
function mono_integral(basis::Basis) |
|
|
mol, shells = basis |
|
|
bset = BasisSet("A-B*", mol, shells) |
|
|
l = [shell.l for shell in shells] |
|
|
a1, a2 = bset[1].exp, bset[2].exp |
|
|
xyz = bset[2].atom.xyz |
|
|
S = overlap(bset) |
|
|
T = kinetic(bset) |
|
|
N = nuclear(bset) |
|
|
Z = [bset[1].atom.Z, bset[2].atom.Z] |
|
|
MonoIntegral(l, [a1; a2], xyz, S, T, N, Z) |
|
|
end |
|
|
|
|
|
""" |
|
|
bi_integral(basis::Basis[, cutoff=.000_01]) |
|
|
|
|
|
Compute a sparse bi-electronic integral matrix. |
|
|
""" |
|
|
function bi_integral(basis::Basis, cutoff::Float64 = .000_01) |
|
|
|
|
|
mol, shells = basis |
|
|
bset = BasisSet("mol", mol, shells) |
|
|
l = [shell.l for shell in shells] |
|
|
|
|
|
B = sparseERI_2e4c(bset, .000_1) |
|
|
if length(B[1]) >= 1 |
|
|
ijkl, Bijkl = Base.stack(B[1], dims=1), Vector{Float32}(B[2]) |
|
|
else |
|
|
println("no ERI") |
|
|
ijkl, Bijkl = Array{Int16}([1, 1, 1, 1]'), Vector{Float32}([0.]) |
|
|
end |
|
|
exp = Base.stack(map(shell -> shell.exp, bset.basis)) |
|
|
xyz = Base.stack(map(shell -> shell.atom.xyz, bset.basis)) |
|
|
BiIntegral4c(l, exp, xyz, ijkl, Bijkl) |
|
|
end |
|
|
|