metadata
dict | text
stringlengths 0
40.6M
| id
stringlengths 14
255
|
|---|---|---|
{
"filename": "full_simulation.py",
"repo_name": "lsstdesc/sn_pipe",
"repo_path": "sn_pipe_extracted/sn_pipe-master/run_scripts/fakes/full_simulation.py",
"type": "Python"
}
|
import os
from optparse import OptionParser
import numpy as np
parser = OptionParser()
parser.add_option("--fake_config", type="str", default='Fake_cadence.yaml',
help="config file name for fake obs[%default]")
parser.add_option("--fake_output", type="str", default='Fake_DESC',
help="output file namefor fake_obs[%default]")
parser.add_option("--RAmin", type=float, default=-0.05,
help="RA min for obs area [%default]")
parser.add_option("--RAmax", type=float, default=0.05,
help="RA max for obs area [%default]")
parser.add_option("--Decmin", type=float, default=-0.05,
help="Dec min for obs area [%default]")
parser.add_option("--Decmax", type=float, default=0.05,
help="Dec max for obs area [%default]")
parser.add_option("--outDir_simu", type=str, default='Output_Simu',
help="output dir for simulation results[%default]")
parser.add_option("--simulator", type=str, default='sn_cosmo',
help="simulator for LC [%default]")
parser.add_option("--x1", type=float, default=-2.0,
help="SN x1 [%default]")
parser.add_option("--color", type=float, default=0.2,
help="SN color[%default]")
parser.add_option("--zmin", type=float, default=0.01,
help="min redshift[%default]")
parser.add_option("--zmax", type=float, default=1.0,
help="min redshift[%default]")
parser.add_option("--zstep", type=float, default=0.01,
help="step redshift[%default]")
parser.add_option("--ebvofMW", type=float, default=-1.,
help="ebvofMW value[%default]")
opts, args = parser.parse_args()
fake_config = opts.fake_config
fake_output = opts.fake_output
RAmin = opts.RAmin
RAmax = opts.RAmax
Decmin = opts.Decmin
Decmax = opts.Decmax
outDir_simu = opts.outDir_simu
simulator = opts.simulator
x1 = np.round(opts.x1, 1)
color = np.round(opts.color, 1)
ebvofMW = opts.ebvofMW
zmin = opts.zmin
zmax = opts.zmax
zstep = opts.zstep
prodid = '{}_Fake_{}_seas_-1_{}_{}_ebvofMW_{}'.format(
simulator, fake_output, x1, color, ebvofMW)
# first step: create fake data from yaml configuration file
cmd = 'python run_scripts/fakes/make_fake.py --config {} --output {}'.format(
fake_config, fake_output)
os.system(cmd)
# now run the full simulation on these data
cmd = 'python run_scripts/simulation/run_simulation.py --dbDir .'
cmd += ' --dbName {}'.format(opts.fake_output)
cmd += ' --dbExtens npy'
cmd += ' --x1min {} --x1Type unique'.format(x1)
cmd += ' --colormin {} --colorType unique'.format(color)
cmd += ' --fieldType Fake'
cmd += ' --coadd 0 --radius 0.01'
cmd += ' --outDir {}'.format(outDir_simu)
cmd += ' --simulator {}'.format(simulator)
cmd += ' --nproc 1'
cmd += ' --RAmin 0.0'
cmd += ' --RAmax 0.1'
cmd += ' --prodid {}'.format(prodid)
cmd += ' --zmin {}'.format(zmin)
cmd += ' --zmax {}'.format(zmax)
cmd += ' --zstep {}'.format(zstep)
cmd += ' --ebvofMW {}'.format(ebvofMW)
print(cmd)
os.system(cmd)
|
lsstdescREPO_NAMEsn_pipePATH_START.@sn_pipe_extracted@sn_pipe-master@run_scripts@fakes@full_simulation.py@.PATH_END.py
|
{
"filename": "annotation_polar.py",
"repo_name": "matplotlib/matplotlib",
"repo_path": "matplotlib_extracted/matplotlib-main/galleries/examples/text_labels_and_annotations/annotation_polar.py",
"type": "Python"
}
|
"""
====================
Annotate polar plots
====================
This example shows how to create an annotation on a polar graph.
For a complete overview of the annotation capabilities, also see the
:ref:`annotations`.
.. redirect-from:: /gallery/pyplots/annotation_polar
"""
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(projection='polar')
r = np.arange(0, 1, 0.001)
theta = 2 * 2*np.pi * r
line, = ax.plot(theta, r, color='#ee8d18', lw=3)
ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], 'o')
ax.annotate('a polar annotation',
xy=(thistheta, thisr), # theta, radius
xytext=(0.05, 0.05), # fraction, fraction
textcoords='figure fraction',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='left',
verticalalignment='bottom',
)
plt.show()
# %%
#
# .. admonition:: References
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
#
# - `matplotlib.projections.polar`
# - `matplotlib.axes.Axes.annotate` / `matplotlib.pyplot.annotate`
|
matplotlibREPO_NAMEmatplotlibPATH_START.@matplotlib_extracted@matplotlib-main@galleries@examples@text_labels_and_annotations@annotation_polar.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "esheldon/ngmix",
"repo_path": "ngmix_extracted/ngmix-master/ngmix/__init__.py",
"type": "Python"
}
|
# flake8: noqa
from numba.core.errors import NumbaExperimentalFeatureWarning
import warnings
warnings.simplefilter('ignore', category=NumbaExperimentalFeatureWarning)
from ._version import __version__
from . import util
from .util import print_pars
from . import flags
from . import defaults
from . import gmix
from .gmix import (
GMix,
GMixModel,
GMixCoellip,
)
from . import gmix_ndim
from .gmix_ndim import GMixND
from . import jacobian
from .jacobian import (
Jacobian,
UnitJacobian,
DiagonalJacobian,
)
from . import fastexp_nb
from . import priors
from .priors import srandu
from . import joint_prior
from . import shape
from .shape import Shape
from . import moments
from . import gexceptions
from .gexceptions import *
from . import fitting
from . import runners
from . import bootstrap
from . import guessers
from . import em
from . import admom
from . import gaussmom
from . import ksigmamom
from . import prepsfmom
from . import observation
from .observation import Observation, ObsList, MultiBandObsList
from . import metacal
from . import simobs
from . import gaussap
|
esheldonREPO_NAMEngmixPATH_START.@ngmix_extracted@ngmix-master@ngmix@__init__.py@.PATH_END.py
|
{
"filename": "potentials.py",
"repo_name": "hmuellergoe/mrbeam",
"repo_path": "mrbeam_extracted/mrbeam-main/mr_beam/itreg/regpy/util/potentials.py",
"type": "Python"
}
|
import numpy as np
def bell(domain):
v = domain.zeros()
r = np.linalg.norm(domain.coords, axis=0)
v[r < 1] = np.exp(-1 / (1 - r[r < 1]**2))
return v
def peaks(domain):
r = np.linalg.norm(domain.coords, axis=0)
M = mollifier(r)
X = domain.coords
f = 3 * (1 - X[0])**2 * np.exp(-X[0]**2 - (X[1] - 1)**2) \
- 10 * (X[0] / 5 - X[0]**3 - X[1]**5) * np.exp(-r**2) \
- 1 / 3 * np.exp(-(X[0] + 1)**2 - X[1]**2)
return f * M
def mollifier(r):
M = np.zeros(r.shape)
r_ctf = r < 1
M[~r_ctf] = 0
M[r_ctf] = np.exp(1 - 1 / (1 - r[r_ctf]**2))
return M
|
hmuellergoeREPO_NAMEmrbeamPATH_START.@mrbeam_extracted@mrbeam-main@mr_beam@itreg@regpy@util@potentials.py@.PATH_END.py
|
{
"filename": "within_saa.py",
"repo_name": "jotaylor/acdc-hst",
"repo_path": "acdc-hst_extracted/acdc-hst-main/src/acdc/database/within_saa.py",
"type": "Python"
}
|
import numpy as np
import math
# Model 31 from https://github.com/spacetelescope/costools/blob/master/costools/saamodel.py
COS_FUV_MODEL = [
(-28.3, 14.0),
(-27.5, 15.0),
(-26.1, 13.0),
(-19.8, 1.5),
( -9.6, 341.0),
( -7.6, 330.4),
( -6.0, 318.8),
( -7.9, 297.2),
(-12.0, 286.1),
(-17.1, 279.9),
(-20.3, 277.5),
(-23.5, 276.5),
(-26.0, 276.4),
(-28.6, 276.7)]
DEGtoRAD = math.pi / 180.
TWOPI = 2. * math.pi
# This cutoff is based on current models in saamodel.py; this is used when
# finding the middle of the SAA region (middle_SAA).
SAA_LONGITUDE_CUTOFF = 200.
def testWithinSAA(hst, vertices, middle_SAA):
"""Test whether HST is within the polygon for an SAA contour.
Args:
hst (array_like): Unit vector pointing from the center of the Earth toward the
location of HST at a particular time.
vertices (array_like, shape (nvertices,3)): vertices[i] is a unit vector
from the center of the Earth toward
vertex number i of a polygon that defines one of the SAA contour.
middle_SAA (array_like): Unit vector from the center of the Earth toward a point near the
middle of the SAA region. This is for making a quick check that
hst is close enough to the SAA contour to be worth making a
detailed check.
Returns:
bool: True if hst is within the SAA contour defined by vertices.
"""
# This test is primarily to exclude points that are diametrically
# opposite to the SAA contour (because this would not be caught by
# the code below!), but it should also save unnecessary arithmetic
# most of the time.
if np.dot(hst, middle_SAA) < 0.:
return False
nvertices = len(vertices)
sin_lat_hst = hst[2]
cos_lat_hst = math.sqrt(1. - sin_lat_hst**2)
cos_long_hst = hst[0] / cos_lat_hst
sin_long_hst = hst[1] / cos_lat_hst
# vertices rotated to put hst in the x-z plane
v_rot = vertices.copy()
v_rot[:,0] = vertices[:,0] * cos_long_hst + vertices[:,1] * sin_long_hst
v_rot[:,1] = -vertices[:,0] * sin_long_hst + vertices[:,1] * cos_long_hst
# v_rot rotated to put hst on the x axis
v_rotrot = v_rot.copy()
v_rotrot[:,0] = v_rot[:,0] * cos_lat_hst + v_rot[:,2] * sin_lat_hst
v_rotrot[:,2] = -v_rot[:,0] * sin_lat_hst + v_rot[:,2] * cos_lat_hst
azimuth = np.arctan2(v_rotrot[:,2], v_rotrot[:,1])
azimuth = np.where(azimuth < 0., azimuth + TWOPI, azimuth)
delta_az = azimuth[1:] - azimuth[0:-1]
delta_az = np.where(delta_az < -np.pi, delta_az + TWOPI, delta_az)
delta_az = np.where(delta_az > np.pi, delta_az - TWOPI, delta_az)
sum_delta_az = delta_az.sum()
return not (sum_delta_az < 0.1 and sum_delta_az > -0.1)
def saaFilter(longitude_col, latitude_col, model=COS_FUV_MODEL):
"""Flag within the specified SAA contour as bad.
Args:
model (int): The SAA model number. Currently these range from 2 to 32
inclusive. (Models 0 and 1 are radio frequence interference
contours.)
Returns:
flag (array_like): This is a boolean array, one element for each row of the
TIMELINE table. True means that HST was within the SAA
contour (specified by model) at the time corresponding to
the TIMELINE row.
"""
nelem = len(longitude_col)
flag = np.zeros(nelem, dtype=np.bool8)
model_vertices = model
model_vertices.append(model_vertices[0]) # make a closed loop
nvertices = len(model_vertices)
# will be unit vectors from center of Earth pointing toward vertices
vertices = np.zeros((nvertices, 3), dtype=np.float64)
minmax_long = [720., -360.] # will be minimum, maximum longitudes
minmax_lat = [90., -90.] # will be minimum, maximum latitudes
for i in range(nvertices):
(latitude, longitude) = model_vertices[i]
vertices[i] = toRect(longitude, latitude) # change the order
if longitude < SAA_LONGITUDE_CUTOFF:
longitude += 360.
minmax_long[0] = min(longitude, minmax_long[0])
minmax_long[1] = max(longitude, minmax_long[1])
minmax_lat[0] = min(latitude, minmax_lat[0])
minmax_lat[1] = max(latitude, minmax_lat[1])
middle_long = (minmax_long[0] + minmax_long[1]) / 2.
middle_lat = (minmax_lat[0] + minmax_lat[1]) / 2.
middle_SAA = toRect(middle_long, middle_lat)
# for each row in TIMELINE table
for k in range(nelem):
hst = toRect(longitude_col[k], latitude_col[k])
flag[k] = testWithinSAA(hst, vertices, middle_SAA)
return flag
def toRect(longitude, latitude):
"""Convert longitude and latitude to rectangular coordinates.
Args:
longitude (float): longitude in degrees.
latitude (float): latitude in degrees.
Returns:
rect (array-like): Unit vector in rectangular coordinates.
"""
rect = np.array([1.0, 0.0, 0.0], dtype=np.float64)
longitude *= DEGtoRAD
latitude *= DEGtoRAD
rect[0] = math.cos(latitude) * math.cos(longitude)
rect[1] = math.cos(latitude) * math.sin(longitude)
rect[2] = math.sin(latitude)
return rect
|
jotaylorREPO_NAMEacdc-hstPATH_START.@acdc-hst_extracted@acdc-hst-main@src@acdc@database@within_saa.py@.PATH_END.py
|
{
"filename": "halo_model.py",
"repo_name": "LSSTDESC/CCL",
"repo_path": "CCL_extracted/CCL-master/pyccl/halos/halo_model.py",
"type": "Python"
}
|
__all__ = ("HMCalculator",)
import numpy as np
from scipy.integrate import simpson
from .. import CCLAutoRepr, unlock_instance
from .. import physical_constants as const
from . import MassDef
from ..pyutils import _spline_integrate
class HMCalculator(CCLAutoRepr):
"""This class implements a set of methods that can be used to
compute various halo model quantities. A lot of these quantities
will involve integrals of the sort:
.. math::
\\int dM\\,n(M,a)\\,f(M,k,a),
where :math:`n(M,a)` is the halo mass function, and :math:`f` is
an arbitrary function of mass, scale factor and Fourier scales.
Args:
mass_function (str or :class:`~pyccl.halos.halo_model_base.MassFunc`):
the mass function to use
halo_bias (str or :class:`~pyccl.halos.halo_model_base.HaloBias`):
the halo bias function to use
mass_def (str or :class:`~pyccl.halos.massdef.MassDef`):
the halo mass definition to use
log10M_min (:obj:`float`): lower bound of the mass integration range
(base-10 logarithmic).
log10M_max (:obj:`float`): lower bound of the mass integration range
(base-10 logarithmic).
nM (:obj:`int`): number of uniformly-spaced samples in :math:`\\log_{10}(M)`
to be used in the mass integrals.
integration_method_M (:obj:`str`): integration method to use
in the mass integrals. Options: "simpson" and "spline".
""" # noqa
__repr_attrs__ = __eq_attrs__ = (
"mass_function", "halo_bias", "mass_def", "precision",)
def __init__(self, *, mass_function, halo_bias, mass_def=None,
log10M_min=8., log10M_max=16., nM=128,
integration_method_M='simpson'):
# Initialize halo model ingredients.
out = MassDef.from_specs(mass_def, mass_function=mass_function,
halo_bias=halo_bias)
if len(out) != 3:
raise ValueError("A valid mass function and halo bias is "
"needed")
self.mass_def, self.mass_function, self.halo_bias = out
self.precision = {
'log10M_min': log10M_min, 'log10M_max': log10M_max, 'nM': nM,
'integration_method_M': integration_method_M}
self._lmass = np.linspace(log10M_min, log10M_max, nM)
self._mass = 10.**self._lmass
self._m0 = self._mass[0]
if integration_method_M == "simpson":
self._integrator = self._integ_simpson
elif integration_method_M == "spline":
self._integrator = self._integ_spline
else:
raise ValueError("Invalid integration method.")
# Cache last results for mass function and halo bias.
self._cosmo_mf = self._cosmo_bf = None
self._a_mf = self._a_bf = -1
def _integ_simpson(self, fM, log10M):
return simpson(fM, x=log10M)
def _integ_spline(self, fM, log10M):
# Spline integrator
return _spline_integrate(log10M, fM, log10M[0], log10M[-1])
def _check_mass_def(self, *others):
# Verify that internal & external mass definitions are consistent.
if set([x.mass_def for x in others]) != set([self.mass_def]):
raise ValueError("Inconsistent mass definitions.")
@unlock_instance(mutate=False)
def _get_mass_function(self, cosmo, a, rho0):
# Compute the mass function at this cosmo and a.
if a != self._a_mf or cosmo != self._cosmo_mf:
self._mf = self.mass_function(cosmo, self._mass, a)
integ = self._integrator(self._mf*self._mass, self._lmass)
self._mf0 = (rho0 - integ) / self._m0
self._cosmo_mf, self._a_mf = cosmo, a # cache
@unlock_instance(mutate=False)
def _get_halo_bias(self, cosmo, a, rho0):
# Compute the halo bias at this cosmo and a.
if a != self._a_bf or cosmo != self._cosmo_bf:
self._bf = self.halo_bias(cosmo, self._mass, a)
integ = self._integrator(self._mf*self._bf*self._mass, self._lmass)
self._mbf0 = (rho0 - integ) / self._m0
self._cosmo_bf, self._a_bf = cosmo, a # cache
def _get_ingredients(self, cosmo, a, *, get_bf):
"""Compute mass function and halo bias at some scale factor."""
rho0 = const.RHO_CRITICAL * cosmo["Omega_m"] * cosmo["h"]**2
self._get_mass_function(cosmo, a, rho0)
if get_bf:
self._get_halo_bias(cosmo, a, rho0)
def _integrate_over_mf(self, array_2):
# ∫ dM n(M) f(M)
i1 = self._integrator(self._mf * array_2, self._lmass)
return i1 + self._mf0 * array_2[..., 0]
def _integrate_over_mbf(self, array_2):
# ∫ dM n(M) b(M) f(M)
i1 = self._integrator(self._mf * self._bf * array_2, self._lmass)
return i1 + self._mbf0 * array_2[..., 0]
def integrate_over_massfunc(self, func, cosmo, a):
""" Returns the integral over mass of a given funcion times
the mass function:
.. math::
\\int dM\\,n(M,a)\\,f(M)
Args:
func (:obj:`callable`): a function accepting an array of halo masses
as a single argument, and returning an array of the
same size.
cosmo (:class:`~pyccl.cosmology.Cosmology`): a Cosmology object.
a (:obj:`float`): scale factor.
Returns:
:obj:`float`: integral value.
""" # noqa
fM = func(self._mass)
self._get_ingredients(cosmo, a, get_bf=False)
return self._integrate_over_mf(fM)
def number_counts(self, cosmo, *, selection,
a_min=None, a_max=1.0, na=128):
""" Solves the integral:
.. math::
nc(sel) = \\int dM\\int da\\,\\frac{dV}{dad\\Omega}\\,
n(M,a)\\,sel(M,a)
where :math:`n(M,a)` is the halo mass function, and
:math:`sel(M,a)` is the selection function as a function of halo mass
and scale factor.
Note that the selection function is normalized to integrate to unity
and assumed to represent the selection probaility per unit scale factor
and per unit mass.
Args:
cosmo (:class:`~pyccl.cosmology.Cosmology`): a Cosmology object.
selection (:obj:`callable`): function of mass and scale factor
that returns the selection function. This function
should take in floats or arrays with a signature ``sel(m, a)``
and return an array with shape ``(len(m), len(a))`` according
to the numpy broadcasting rules.
a_min (:obj:`float`): the minimum scale factor at which to start integrals
over the selection function.
Default: value of ``cosmo.cosmo.spline_params.A_SPLINE_MIN``
a_max (:obj:`float`): the maximum scale factor at which to end integrals
over the selection function.
na (:obj:`int`): number of samples in scale factor to be used in
the integrals.
Returns:
:obj:`float`: the total number of clusters/halos.
""" # noqa
# get a values for integral
if a_min is None:
a_min = cosmo.cosmo.spline_params.A_SPLINE_MIN
a = np.linspace(a_min, a_max, na)
# compute the volume element
dVda = cosmo.comoving_volume_element(a)
# now do m intergrals in a loop
mint = np.zeros_like(a)
for i, _a in enumerate(a):
self._get_ingredients(cosmo, _a, get_bf=False)
_selm = np.atleast_2d(selection(self._mass, _a)).T
mint[i] = self._integrator(
dVda[i] * self._mf[..., :] * _selm[..., :],
self._lmass
).squeeze()
# now do scale factor integral
return self._integrator(mint, a)
def I_0_1(self, cosmo, k, a, prof):
""" Solves the integral:
.. math::
I^0_1(k,a|u) = \\int dM\\,n(M,a)\\,\\langle u(k,a|M)\\rangle,
where :math:`n(M,a)` is the halo mass function, and
:math:`\\langle u(k,a|M)\\rangle` is the halo profile as a
function of scale, scale factor and halo mass.
Args:
cosmo (:class:`~pyccl.cosmology.Cosmology`): a Cosmology object.
k (:obj:`float` or `array`): comoving wavenumber.
a (:obj:`float`): scale factor.
prof (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`):
halo profile.
Returns:
(:obj:`float` or `array`): integral values evaluated at each
value of ``k``.
"""
self._check_mass_def(prof)
self._get_ingredients(cosmo, a, get_bf=False)
uk = prof.fourier(cosmo, k, self._mass, a).T
return self._integrate_over_mf(uk)
def I_1_1(self, cosmo, k, a, prof):
""" Solves the integral:
.. math::
I^1_1(k,a|u) = \\int dM\\,n(M,a)\\,b(M,a)\\,
\\langle u(k,a|M)\\rangle,
where :math:`n(M,a)` is the halo mass function,
:math:`b(M,a)` is the halo bias, and
:math:`\\langle u(k,a|M)\\rangle` is the halo profile as a
function of scale, scale factor and halo mass.
Args:
cosmo (:class:`~pyccl.cosmology.Cosmology`): a Cosmology object.
k (:obj:`float` or `array`): comoving wavenumber.
a (:obj:`float`): scale factor.
prof (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`):
halo profile.
Returns:
(:obj:`float` or `array`): integral values evaluated at each
value of ``k``.
"""
self._check_mass_def(prof)
self._get_ingredients(cosmo, a, get_bf=True)
uk = prof.fourier(cosmo, k, self._mass, a).T
return self._integrate_over_mbf(uk)
def I_1_3(self, cosmo, k, a, prof, *, prof2=None, prof_2pt, prof3=None):
""" Solves the integral:
.. math::
I^1_3(k,a|u_2, v_1, v_2) = \\int dM\\,n(M,a)\\,b(M,a)\\,
\\langle u_2(k,a|M) v_1(k',a|M) v_2(k',a|M)\\rangle,
where we approximate
.. math::
\\langle u_2(k,a|M) v_1(k',a|M) v_2(k', a|M)\\rangle \\sim
\\langle u_2(k,a|M)\\rangle
\\langle v_1(k',a|M) v_2(k', a|M)\\rangle,
where :math:`n(M,a)` is the halo mass function,
:math:`b(M,a)` is the halo bias, and
:math:`\\langle u_2(k,a|M) v_1(k',a|M) v_2(k',a|M)\\rangle` is the
3pt halo profile as a function of scales `k` and `k'`, scale factor
and halo mass.
Args:
cosmo (:class:`~pyccl.cosmology.Cosmology`): a Cosmology object.
k (:obj:`float` or `array`): comoving wavenumber.
a (:obj:`float`): scale factor.
prof (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`):
halo profile.
Returns:
(:obj:`float` or `array`): integral values evaluated at each
value of ``k``. Its shape will be ``(N_k, N_k)``, with ``N_k`` the
size of the ``k`` array.
"""
# Compute mass function and halo bias
# and transpose to move the M-axis last
if prof2 is None:
prof2 = prof
if prof3 is None:
prof3 = prof2
self._check_mass_def(prof, prof2, prof3)
self._get_ingredients(cosmo, a, get_bf=True)
uk1 = prof.fourier(cosmo, k, self._mass, a).T
uk23 = prof_2pt.fourier_2pt(cosmo, k, self._mass, a, prof2,
prof2=prof3).T
uk = uk1[None, :, :] * uk23[:, None, :]
i13 = self._integrate_over_mbf(uk)
return i13
def I_0_2(self, cosmo, k, a, prof, *, prof2=None, prof_2pt):
""" Solves the integral:
.. math::
I^0_2(k,a|u,v) = \\int dM\\,n(M,a)\\,
\\langle u(k,a|M) v(k,a|M)\\rangle,
where :math:`n(M,a)` is the halo mass function, and
:math:`\\langle u(k,a|M) v(k,a|M)\\rangle` is the two-point
moment of the two halo profiles.
Args:
cosmo (:class:`~pyccl.cosmology.Cosmology`): a Cosmology object.
k (:obj:`float` or `array`): comoving wavenumber.
a (:obj:`float`): scale factor.
prof (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`):
halo profile.
prof2 (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`): a
second halo profile. If ``None``, ``prof`` will be used as
``prof2``.
prof_2pt (:class:`~pyccl.halos.profiles_2pt.Profile2pt`):
a profile covariance object
returning the the two-point moment of the two profiles
being correlated.
Returns:
(:obj:`float` or `array`): integral values evaluated at each
value of ``k``.
"""
if prof2 is None:
prof2 = prof
self._check_mass_def(prof, prof2)
self._get_ingredients(cosmo, a, get_bf=False)
uk = prof_2pt.fourier_2pt(cosmo, k, self._mass, a, prof, prof2=prof2).T
return self._integrate_over_mf(uk)
def I_1_2(self, cosmo, k, a, prof, *, prof2=None, prof_2pt, diag=True):
""" Solves the integral:
.. math::
I^1_2(k,a|u,v) = \\int dM\\,n(M,a)\\,b(M,a)\\,
\\langle u(k,a|M) v(k,a|M)\\rangle,
where :math:`n(M,a)` is the halo mass function,
:math:`b(M,a)` is the halo bias, and
:math:`\\langle u(k,a|M) v(k,a|M)\\rangle` is the two-point
moment of the two halo profiles.
Args:
cosmo (:class:`~pyccl.cosmology.Cosmology`): a Cosmology object.
k (:obj:`float` or `array`): comoving wavenumber.
a (:obj:`float`): scale factor.
prof (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`):
halo profile.
prof2 (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`): a
second halo profile. If ``None``, ``prof`` will be used as
``prof2``.
prof_2pt (:class:`~pyccl.halos.profiles_2pt.Profile2pt`):
a profile covariance object
returning the the two-point moment of the two profiles
being correlated.
diag (bool): If True, both halo profiles depend on the same k. If
False, they will depend on k and k', respectively. Default
True.
Returns:
(:obj:`float` or `array`): integral values evaluated at each
value of ``k``. If `diag` is True, the output will be a 1D-array;
2D-array, otherwise.
"""
if prof2 is None:
prof2 = prof
self._check_mass_def(prof, prof2)
self._get_ingredients(cosmo, a, get_bf=True)
uk = prof_2pt.fourier_2pt(cosmo, k, self._mass, a, prof,
prof2=prof2, diag=diag)
if diag is True:
uk = uk.T
else:
uk = np.transpose(uk, axes=[1, 2, 0])
i12 = self._integrate_over_mbf(uk)
return i12
def I_0_22(self, cosmo, k, a, prof, *,
prof2=None, prof3=None, prof4=None,
prof12_2pt, prof34_2pt=None):
""" Solves the integral:
.. math::
I^0_{2,2}(k_u,k_v,a|u_{1,2},v_{1,2}) =
\\int dM\\,n(M,a)\\,
\\langle u_1(k_u,a|M) u_2(k_u,a|M)\\rangle
\\langle v_1(k_v,a|M) v_2(k_v,a|M)\\rangle,
where :math:`n(M,a)` is the halo mass function, and
:math:`\\langle u(k,a|M) v(k,a|M)\\rangle` is the
two-point moment of the two halo profiles.
Args:
cosmo (:class:`~pyccl.cosmology.Cosmology`): a Cosmology object.
k (:obj:`float` or `array`): comoving wavenumber.
a (:obj:`float`): scale factor.
prof (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`):
halo profile.
prof2 (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`): a
second halo profile. If ``None``, ``prof`` will be used as
``prof2``.
prof3 (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`): a
third halo profile. If ``None``, ``prof`` will be used as
``prof3``.
prof4 (:class:`~pyccl.halos.profiles.profile_base.HaloProfile`): a
fourth halo profile. If ``None``, ``prof2`` will be used as
``prof4``.
prof12_2pt (:class:`~pyccl.halos.profiles_2pt.Profile2pt`):
a profile covariance object returning the the
two-point moment of ``prof`` and ``prof2``.
prof34_2pt (:class:`~pyccl.halos.profiles_2pt.Profile2pt`):
a profile covariance object returning the the
two-point moment of ``prof3`` and ``prof4``. If ``None``,
``prof12_2pt`` will be used.
Returns:
(:obj:`float` or `array`): integral values evaluated at each
value of ``k``.
"""
if prof3 is None:
prof3 = prof
if prof4 is None:
prof4 = prof2
if prof34_2pt is None:
prof34_2pt = prof12_2pt
self._check_mass_def(prof, prof2, prof3, prof4)
self._get_ingredients(cosmo, a, get_bf=False)
uk12 = prof12_2pt.fourier_2pt(
cosmo, k, self._mass, a, prof, prof2=prof2).T
if (prof, prof2, prof12_2pt) == (prof3, prof4, prof34_2pt):
# 4pt approximation of the same profile
uk34 = uk12
else:
uk34 = prof34_2pt.fourier_2pt(
cosmo, k, self._mass, a, prof3, prof2=prof4).T
return self._integrate_over_mf(uk12[None, :, :] * uk34[:, None, :])
|
LSSTDESCREPO_NAMECCLPATH_START.@CCL_extracted@CCL-master@pyccl@halos@halo_model.py@.PATH_END.py
|
{
"filename": "_style.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/barpolar/legendgrouptitle/font/_style.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class StyleValidator(_plotly_utils.basevalidators.EnumeratedValidator):
def __init__(
self,
plotly_name="style",
parent_name="barpolar.legendgrouptitle.font",
**kwargs,
):
super(StyleValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "style"),
values=kwargs.pop("values", ["normal", "italic"]),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@barpolar@legendgrouptitle@font@_style.py@.PATH_END.py
|
{
"filename": "README.md",
"repo_name": "hpparvi/PyTransit",
"repo_path": "PyTransit_extracted/PyTransit-master/README.md",
"type": "Markdown"
}
|
PyTransit
=========
[](http://www.gnu.org/licenses/gpl-2.0.html)
[](http://mnras.oxfordjournals.org/content/450/3/3233)
[](http://arxiv.org/abs/1504.07433)
[](http://ascl.net/1505.024)
[](https://zenodo.org/badge/latestdoi/5871/hpparvi/PyTransit)
*PyTransit: fast and versatile exoplanet transit light curve modelling in Python.* PyTransit provides a set of optimised
transit models with a unified API that makes modelling complex sets of heterogeneous light curve (nearly) as easy as
modelling individual transit light curves. The models are optimised with Numba which allows for model evaluation speeds
paralleling Fortran and C-implementations but with hassle-free platform-independent multithreading.
The package has been under continuous development since 2009, and is described in [Parviainen (2015)](http://arxiv.org/abs/1504.07433),
[Parviainen (2020a)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1633P/abstract), and [Parviainen & Korth (2020b)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.3356P/abstract).
```Python
from pytransit import RoadRunnerModel
tm = RoadRunnerModel('quadratic')
tm.set_data(times)
tm.evaluate(k=0.1, ldc=[0.2, 0.1], t0=0.0, p=1.0, a=3.0, i=0.5*pi)
tm.evaluate(k=[0.10, 0.12], ldc=[[0.2, 0.1], [0.5, 0.1]], t0=0.0, p=1.0, a=3.0, i=0.5*pi)
tm.evaluate(k=[[0.10, 0.12], [0.11, 0.13]], ldc=[[0.2, 0.1], [0.5, 0.1],[0.4, 0.2, 0.75, 0.1]],
t0=[0.0, 0.01], p=[1, 1], a=[3.0, 2.9], i=[.5*pi, .5*pi])
```



## Examples and tutorials
### EMAC Workshop introduction video
[](https://youtu.be/bLnxkFNrMDQ?si=OTjr4kUGK1kkhkLC)
### RoadRunner transit model
RoadRunner [(Parviainen, 2020a)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1633P/abstract) is a fast exoplanet transit model that can use any radially symmetric function to model stellar limb darkening
while still being faster to evaluate than the analytical transit model for quadratic limb darkening.
- [RRModel example 1](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_1.ipynb)
shows how to use RoadRunner with the included limb darkening models.
- [RRModel example 2](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_2.ipynb)
shows how to use RoadRunner with your own limb darkening model.
- [RRModel example 3](https://github.com/hpparvi/PyTransit/blob/dev/doc/source/notebooks/models/roadrunner/roadrunner_model_example_3.ipynb)
shows how to use an LDTk-based limb darkening model LDTkM with RoadRunner.
### Transmission spectroscopy transit model
Transmission spectroscopy transit model (TSModel) is a special version of the RoadRunner model dedicated to modelling
transmission spectrum light curves.
- [TSModel Example 1](https://github.com/hpparvi/PyTransit/blob/dev/notebooks/roadrunner/tsmodel_example_1.ipynb)
## Documentation
Read the docs at [pytransit.readthedocs.io](https://pytransit.readthedocs.io).
Installation
------------
### PyPI
The easiest way to install PyTransit is by using `pip`
pip install pytransit
### GitHub
Clone the repository from github and do the normal python package installation
git clone https://github.com/hpparvi/PyTransit.git
cd PyTransit
pip install .
Citing
------
If you use PyTransit in your reserach, please cite
Parviainen, H. MNRAS 450, 3233–3238 (2015) (DOI:10.1093/mnras/stv894).
or use this ready-made BibTeX entry
@article{Parviainen2015,
author = {Parviainen, Hannu},
doi = {10.1093/mnras/stv894},
journal = {MNRAS},
number = {April},
pages = {3233--3238},
title = {{PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON}},
url = {http://mnras.oxfordjournals.org/cgi/doi/10.1093/mnras/stv894},
volume = {450},
year = {2015}
}
Author
------
- [Hannu Parviainen](mailto:hpparvi@gmail.com), Instituto de Astrofísica de Canarias
|
hpparviREPO_NAMEPyTransitPATH_START.@PyTransit_extracted@PyTransit-master@README.md@.PATH_END.py
|
{
"filename": "paper.md",
"repo_name": "galsci/pysm",
"repo_path": "pysm_extracted/pysm-main/paper/paper.md",
"type": "Markdown"
}
|
---
title: 'The Python Sky Model 3 software'
tags:
- cosmology
- astronomy
- python
authors:
- name: Andrea Zonca
orcid: 0000-0001-6841-1058
affiliation: "1"
- name: Ben Thorne
orcid: 0000-0002-0457-0153
affiliation: "2"
- name: Nicoletta Krachmalnicoff
affiliation: "3,4,5"
- name: Julian Borrill
affiliation: "6,7"
affiliations:
- name: San Diego Supercomputer Center, University of California San Diego, San Diego, USA
index: 1
- name: Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
index: 2
- name: SISSA, Via Bonomea 265, 34136 Trieste, Italy
index: 3
- name: INFN, Via Valerio 2, 34127 Trieste, Italy
index: 4
- name: IFPU, Via Beirut 2, 34014 Trieste, Italy
index: 5
- name: Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
index: 6
- name: Space Sciences Laboratory at University of California, 7 Gauss Way, Berkeley, CA 94720
index: 7
date: 22 July 2021
bibliography: paper.bib
---
# Statement of Need
The Cosmic Microwave Background (CMB) radiation, emitted just 370 thousand years after the Big Bang, is a pristine probe of the Early Universe. After being emitted at high temperatures, the CMB was redshifted by the subsequent 13.8 billion years of cosmic expansion, such that it is brightest at microwave frequencies today.
However, our own Milky Way galaxy also emits in the microwave portion of the spectrum, obscuring our view of the CMB. Examples of this emission are thermal radiation by interstellar dust grains and synchrotron emission by relativistic electrons spiraling in magnetic fields.
Cosmologists need to create synthetic maps of the CMB and of the galactic emission based on available data and on physical models that extrapolate observations to different frequencies. The resulting maps are useful to test data reduction algorithms, to understand residual systematics, to forecast maps produced by future instruments, to run Monte Carlo analysis for noise estimation, and more.
# Summary
The Python Sky Model (PySM) is a Python package used by Cosmic Microwave Background (CMB) experiments to simulate maps, in HEALPix [@gorski05; @healpy09] pixelization, of the various diffuse astrophysical components of Galactic emission relevant at CMB frequencies (i.e., dust, synchrotron, free-free and Anomalous Microwave Emission), as well as the CMB itself. These maps may be integrated over a given instrument bandpass and smoothed with a given instrument beam.
The template emission maps used by PySM are based on Planck [@planck18] and WMAP [@wmap13] data and are noise-dominated at small scales. Therefore, PySM simulation templates are smoothed to retain the large-scale information, and then supplemented with modulated Gaussian realizations at smaller scales. This strategy allows one to simulate data at higher resolution than the input maps.
PySM 2 [@pysm17], released in 2016, has become the de-facto standard for simulating Galactic emission; it is used, for example, by CMB-S4, Simons Observatory, LiteBird, PICO, CLASS, POLARBEAR, and other CMB experiments, as shown by the [80+ citations of the PySM 2 publication](https://scholar.google.com/scholar?start=0&hl=en&as_sdt=2005&sciodt=0,5&cites=16628417670342266167&scipsc=).
As the resolution of upcoming experiments increases, the PySM 2 software has started to show some limitations:
* Emission templates are provided at 7.9 arcminutes resolution (HEALPix $N_{side}=512$), while the next generation of CMB experiments will require sub-arcminute resolution.
* The software is implemented in pure `numpy`, meaning that it has significant memory overhead and is not multi-threaded, precluding simply replacing the current templates with higher-resolution versions.
* Emission templates are included in the PySM 2 Python package, which is still practical when each of the roughly 40 input maps is ~10 Megabytes, but will not be if they are over 1 Gigabyte.
The solution to these issues was to reimplement PySM from scratch focusing of these features:
* Reimplement all the models with the `numba` [@numba] Just-In-Time compiler for Python to reduce memory overhead and optimize performance: the whole integration loop of a template map over the frequency response of an instrument is performed in a single pass in automatically compiled and multi-threaded Python code.
* Use MPI through `mpi4py` to coordinate execution of PySM 3 across multiple nodes, this allows supporting template maps at a resolution up to 0.4 arcminutes (HEALPix $N_{side}=8192$).
* Rely on `libsharp` [@libsharp], a distributed implementation of spherical harmonic transforms, to smooth the maps with the instrument beam when maps are distributed over multiple nodes with MPI.
* Employ the data utilities infrastructure provided by `astropy` [@astropy2013; @astropy2018] to download the input templates and cache them when requested.
At this stage we strive to maintain full compatibility with PySM 2, therefore we implement the exact same astrophysical emission models with the same naming scheme. In the extensive test suite we compare the output of each PySM 3 model with the results obtained by PySM 2.
# Performance
As an example of the performance improvements achieved with PySM 3 over PySM 2, we run the following configuration:
* An instrument with 3 channels, with different beams, and a top-hat bandpass defined numerically at 10 frequency samples.
* A sky model with the simplest models of dust, synchrotron, free-free and AME [`a1,d1,s1,f1` in PySM terms].
* Execute on a 12-core Intel processor with 12 GB of RAM.
The following tables shows the walltime and peak memory usage of this simulation executed at the native PySM 2 resolution of $N_{side}=512$ and at two higher resolutions:
| Output $N_{side}$ | PySM 3 | PySM 2 |
|-------------------|---------------|---------------|
| 512 | 1m 0.7 GB | 1m40s 1.45 GB |
| 1024 | 3m30s 2.3 GB | 7m20s 5.5 GB |
| 2048 | 16m10s 8.5 GB | Out of memory |
The models at $N_{side}=512$ have been tested to be equal given a relative tolerance of `1e-5`.
At the moment it is not very useful to run at resolutions higher than $N_{side}=512$ because there is no actual template signal at smaller scales. However, this demonstrates the performance improvements that will make working with higher resolution templates possible.
# Future work
PySM 3 opens the way to implement a new category of models at much higher resolution. However, instead of just upgrading the current models to smaller scales, we want to also update them with the latest knowledge of Galactic emission and gather feedback from each of the numerous CMB experiments. For this reason we are collaborating with the Panexperiment Galactic Science group to lead the development of the new class of models to be included in PySM 3.
# How to cite
If you are using PySM 3 for your work, please cite this paper for the software itself; for the actual emission modeling please also cite the original PySM 2 paper [@pysm17]. There will be a future paper on the generation of new PySM 3 astrophysical models.
# Acknowledgments
* This work was supported in part by NASA grant `80NSSC18K1487`.
* The software was tested, in part, on facilities run by the Scientific Computing Core of the Flatiron Institute.
* This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. `DE-AC02-05CH11231`.
# References
|
galsciREPO_NAMEpysmPATH_START.@pysm_extracted@pysm-main@paper@paper.md@.PATH_END.py
|
{
"filename": "pyNTHCOMP.py",
"repo_name": "scotthgn/relagn",
"repo_path": "relagn_extracted/relagn-main/src/python_version/pyNTHCOMP.py",
"type": "Python"
}
|
"""
This was taken from https://github.com/arnauqb/qsosed/tree/master/qsosed,
which in turn was taken from https://github.com/ADThomas-astro/oxaf/blob/master/oxaf.py .
Credit to A.D. Thomas.
Code was adapted from Xspec for https://arxiv.org/pdf/1611.05165.pdf .
"""
import numpy as np
def donthcomp(ear, param):
"""
This function was adapted by ADT from the subroutine donthcomp in
donthcomp.f, distributed with XSpec.
Nthcomp documentation:
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelNthcomp.html
Refs:
Zdziarski, Johnson & Magdziarz 1996, MNRAS, 283, 193,
as extended by Zycki, Done & Smith 1999, MNRAS 309, 561
Note that the subroutine has been modified so that parameter 4
is ignored, and the seed spectrum is always a blackbody.
ear: Energy vector, listing "Energy At Right" of bins (keV)
param: list of parameters; see the 5 parameters listed below.
The original fortran documentation for this subroutine is included below:
Driver for the Comptonization code solving Kompaneets equation
seed photons - (disk) blackbody
reflection + Fe line with smearing
Model parameters:
1: photon spectral index
2: plasma temperature in keV
3: (disk)blackbody temperature in keV
4: type of seed spectrum (0 - blackbody, 1 - diskbb)
5: redshift
"""
param = np.array(param)
param = np.insert(param,0,0)
ne = ear.size # Length of energy bin vector
# Note that this model does not calculate errors.
#c xth is the energy array (units m_e c^2)
#c spnth is the nonthermal spectrum alone (E F_E)
#c sptot is the total spectrum array (E F_E), = spref if no reflection
zfactor = 1.0 + param[5]
#c calculate internal source spectrum
# blackbody temp, plasma temp, Gamma
xth, nth, spt = _thcompton(param[3] / 511.0, param[2] / 511.0, param[1])
# The temperatures are normalized by 511 keV, the electron rest energy
# Calculate normfac:
xninv = 511.0 / zfactor
ih = 1
xx = 1.0 / xninv
while (ih < nth and xx > xth[ih]):
ih = ih + 1
il = ih - 1
spp = spt[il] + (spt[ih] - spt[il]) * (xx - xth[il]) / (xth[ih] - xth[il])
normfac = 1.0 / spp
#c zero arrays
photar = np.zeros(ne)
prim = np.zeros(ne)
#c put primary into final array only if scale >= 0.
j = 0
for i in range(0, ne):
while (j <= nth and 511.0 * xth[j] < ear[i] * zfactor):
j = j + 1
if (j <= nth):
if (j > 0):
jl = j - 1
prim[i] = spt[jl] + ((ear[i] / 511.0 * zfactor - xth[jl]) *
(spt[jl + 1] - spt[jl]) /
(xth[jl + 1] - xth[jl]) )
else:
prim[i] = spt[0]
for i in range(1, ne):
photar[i] = (0.5 * (prim[i] / ear[i]**2 + prim[i - 1] / ear[i - 1]**2)
* (ear[i] - ear[i - 1]) * normfac )
return photar
def _thcompton(tempbb, theta, gamma):
"""
This function was adapted by ADT from the subroutine thcompton in
donthcomp.f, distributed with XSpec.
Nthcomp documentation:
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelNthcomp.html
Refs:
Zdziarski, Johnson & Magdziarz 1996, MNRAS, 283, 193,
as extended by Zycki, Done & Smith 1999, MNRAS 309, 561
The original fortran documentation for this subroutine is included below:
Thermal Comptonization; solves Kompaneets eq. with some
relativistic corrections. See Lightman \ Zdziarski (1987), ApJ
The seed spectrum is a blackbody.
version: January 96
#c input parameters:
#real * 8 tempbb,theta,gamma
"""
#c use internally Thomson optical depth
tautom = np.sqrt(2.250 + 3.0 / (theta * ((gamma + .50)**2 - 2.250))) - 1.50
# Initialise arrays
dphdot = np.zeros(900); rel = np.zeros(900); c2 = np.zeros(900)
sptot = np.zeros(900); bet = np.zeros(900); x = np.zeros(900)
#c JMAX - # OF PHOTON ENERGIES
#c delta is the 10 - log interval of the photon array.
delta = 0.02
deltal = delta * np.log(10.0)
xmin = 1e-4 * tempbb
xmax = 40.0 * theta
jmax = min(899, int(np.log10(xmax / xmin) / delta) + 1)
#c X - ARRAY FOR PHOTON ENERGIES
# Energy array is normalized by 511 keV, the rest energy of an electron
x[:(jmax + 1)] = xmin * 10.0**(np.arange(jmax + 1) * delta)
#c compute c2(x), and rel(x) arrays
#c c2(x) is the relativistic correction to Kompaneets equation
#c rel(x) is the Klein - Nishina cross section divided by the
#c Thomson crossection
for j in range(0, jmax):
w = x[j]
#c c2 is the Cooper's coefficient calculated at w1
#c w1 is x(j + 1 / 2) (x(i) defined up to jmax + 1)
w1 = np.sqrt(x[j] * x[j + 1])
c2[j] = (w1**4 / (1.0 + 4.60 * w1 + 1.1 * w1 * w1))
if (w <= 0.05):
#c use asymptotic limit for rel(x) for x less than 0.05
rel[j] = (1.0 - 2.0 * w + 26.0 * w * w * 0.2)
else:
z1 = (1.0 + w) / w**3
z2 = 1.0 + 2.0 * w
z3 = np.log(z2)
z4 = 2.0 * w * (1.0 + w) / z2
z5 = z3 / 2.0 / w
z6 = (1.0 + 3.0 * w) / z2 / z2
rel[j] = (0.75 * (z1 * (z4 - z3) + z5 - z6))
#c the thermal emission spectrum
jmaxth = min(900, int(np.log10(50 * tempbb / xmin) / delta))
if (jmaxth > jmax):
jmaxth = jmax
planck = 15.0 / (np.pi * tempbb)**4
dphdot[:jmaxth] = planck * x[:jmaxth]**2 / (np.exp(x[:jmaxth] / tempbb)-1)
#c compute beta array, the probability of escape per Thomson time.
#c bet evaluated for spherical geometry and nearly uniform sources.
#c Between x = 0.1 and 1.0, a function flz modifies beta to allow
#c the increasingly large energy change per scattering to gradually
#c eliminate spatial diffusion
jnr = int(np.log10(0.10 / xmin) / delta + 1)
jnr = min(jnr, jmax - 1)
jrel = int(np.log10(1 / xmin) / delta + 1)
jrel = min(jrel, jmax)
xnr = x[jnr - 1]
xr = x[jrel - 1]
for j in range(0, jnr - 1):
taukn = tautom * rel[j]
bet[j] = 1.0 / tautom / (1.0 + taukn / 3.0)
for j in range(jnr - 1, jrel):
taukn = tautom * rel[j]
arg = (x[j] - xnr) / (xr - xnr)
flz = 1 - arg
bet[j] = 1.0 / tautom / (1.0 + taukn / 3.0 * flz)
for j in range(jrel, jmax):
bet[j] = 1.0 / tautom
dphesc = _thermlc(tautom, theta, deltal, x, jmax, dphdot, bet, c2)
#c the spectrum in E F_E
for j in range(0, jmax - 1):
sptot[j] = dphesc[j] * x[j]**2
return x, jmax, sptot
def _thermlc(tautom, theta, deltal, x, jmax, dphdot, bet, c2):
"""
This function was adapted by ADT from the subroutine thermlc in
donthcomp.f, distributed with XSpec.
Nthcomp documentation:
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSmodelNthcomp.html
Refs:
Zdziarski, Johnson & Magdziarz 1996, MNRAS, 283, 193,
as extended by Zycki, Done & Smith 1999, MNRAS 309, 561
The original fortran documentation for this subroutine is included below:
This program computes the effects of Comptonization by
nonrelativistic thermal electrons in a sphere including escape, and
relativistic corrections up to photon energies of 1 MeV.
the dimensionless photon energy is x = hv / (m * c * c)
The input parameters and functions are:
dphdot(x), the photon production rate
tautom, the Thomson scattering depth
theta, the temperature in units of m*c*c
c2(x), and bet(x), the coefficients in the K - equation and the
probability of photon escape per Thomson time, respectively,
including Klein - Nishina corrections
The output parameters and functions are:
dphesc(x), the escaping photon density
"""
dphesc = np.zeros(900) # Initialise the output
a = np.zeros(900); b = np.zeros(900); c = np.zeros(900)
d = np.zeros(900); alp = np.zeros(900); u = np.zeros(900)
g = np.zeros(900); gam = np.zeros(900)
#c u(x) is the dimensionless photon occupation number
c20 = tautom / deltal
#c determine u
#c define coefficients going into equation
#c a(j) * u(j + 1) + b(j) * u(j) + c(j) * u(j - 1) = d(j)
for j in range(1, jmax - 1):
w1 = np.sqrt( x[j] * x[j + 1] )
w2 = np.sqrt( x[j - 1] * x[j] )
#c w1 is x(j + 1 / 2)
#c w2 is x(j - 1 / 2)
a[j] = -c20 * c2[j] * (theta / deltal / w1 + 0.5)
t1 = -c20 * c2[j] * (0.5 - theta / deltal / w1)
t2 = c20 * c2[j - 1] * (theta / deltal / w2 + 0.5)
t3 = x[j]**3 * (tautom * bet[j])
b[j] = t1 + t2 + t3
c[j] = c20 * c2[j - 1] * (0.5 - theta / deltal / w2)
d[j] = x[j] * dphdot[j]
#c define constants going into boundary terms
#c u(1) = aa * u(2) (zero flux at lowest energy)
#c u(jx2) given from region 2 above
x32 = np.sqrt(x[0] * x[1])
aa = (theta / deltal / x32 + 0.5) / (theta / deltal / x32 - 0.5)
#c zero flux at the highest energy
u[jmax - 1] = 0.0
#c invert tridiagonal matrix
alp[1] = b[1] + c[1] * aa
gam[1] = a[1] / alp[1]
for j in range(2, jmax - 1):
alp[j] = b[j] - c[j] * gam[j - 1]
gam[j] = a[j] / alp[j]
g[1] = d[1] / alp[1]
for j in range(2, jmax - 2):
g[j] = (d[j] - c[j] * g[j - 1]) / alp[j]
g[jmax - 2] = (d[jmax - 2] - a[jmax - 2] * u[jmax - 1]
- c[jmax - 2] * g[jmax - 3]) / alp[jmax - 2]
u[jmax - 2] = g[jmax - 2]
for j in range(2, jmax + 1):
jj = jmax - j
u[jj] = g[jj] - gam[jj] * u[jj + 1]
u[0] = aa * u[1]
#c compute new value of dph(x) and new value of dphesc(x)
dphesc[:jmax] = x[:jmax] * x[:jmax] * u[:jmax] * bet[:jmax] * tautom
return dphesc
|
scotthgnREPO_NAMErelagnPATH_START.@relagn_extracted@relagn-main@src@python_version@pyNTHCOMP.py@.PATH_END.py
|
{
"filename": "plots.py",
"repo_name": "jcforbes/gidget",
"repo_path": "gidget_extracted/gidget-master/py/plots.py",
"type": "Python"
}
|
from readoutput import *
from balanceplot import balance, balancesig
import argparse
import cleanup
import pdb
def makeThePlots(args):
if args.time is False and args.radial is False and args.scaled is False and args.mass==0 and args.balance is False:
print ("Warning: you did not ask me to produce any plots! Use python plots.py -h to look at the options available.")
print ("plots.py in makeThePlots: args.models: ",args.models)
balanceArgs=[]
AMargs=[]
MONDargs=[]
if(args.balance):
balanceArgs=['colTr','colAccr','colsfr','dcoldt','MassLoadingFactor','Mdot','colREC', 'dsigdtLoss', 'dsigdtGI', 'dsigdtAccr', 'dsigdtSN', 'dsigdtAdv']
if(args.angularMomentum):
AMargs = ['colTr','r','vPhi','dA']
if(args.quick):
MONDargs = ['gbar', 'gtot', 'hGas', 'sSFRRadial', 'rxl', 'colstNormalizedKravtsov', 'colNormalizedKravtsov', 'colHI', 'colH2', 'colst', 'fH2', 'vPhi', 'sigstR', 'sigstZ', 'ageRadial', 'colsfr', 'Z', 'sig']
for modelName in args.models:
print ("Beginning to analyze experiment ",modelName)
theExp = Experiment(modelName)
print ("Reading in the experiment keeping: ", args.vsr + balanceArgs + AMargs +MONDargs)
theExp.read(args.vsr+balanceArgs+AMargs+MONDargs, keepStars=(args.stellarPops or args.quick), computeFit=args.fit, fh=args.fh)
nts = int(theExp.models[0].p['Noutputs']+1)
tis = [nts/5,nts/2,nts]
if args.scalings or args.genzel:
theExp.storeScalingRelation('MS', 'mstar','sfr')
theExp.storeScalingRelation('MZR', 'mstar','integratedZ')
theExp.storeScalingRelation('MFG', 'mstar','gasToStellarRatio')
theExp.storeScalingRelation('TF', 'mstar','vPhiOuter')
theExp.storeScalingRelation('MsTd', 'mstar','tdep')
theExp.storeScalingRelation('MsTdH2', 'mstar','tDepH2')
theExp.storeScalingRelation('Rg', 'mstar','halfMassGas')
theExp.storeScalingRelation('mRho', 'mstar','rho1')
theExp.assignIndices()
for i,rankby in enumerate(args.rankby):
tti=None
if(args.rbz[i]>=0):
tti,_ = Nearest(theExp.models[0].var['z'].sensible(),args.rbz[i])
theExp.rankBy(var=rankby,timeIndex=tti)
stepsize = args.step
for cb in args.colorby:
if(args.time):
if(args.percentiles):
per = [2.5, 16, 50, 84, 97.5]
theExp.timePlot(colorby=cb, perc=per,vsz=False)
theExp.timePlot(colorby=cb, perc=per,vsz=True)
else:
theExp.timePlot(colorby=cb,vsz=False)
theExp.timePlot(colorby=cb,vsz=True)
if(args.radial):
theExp.radialPlot(timeIndex=list(range(1,nts+1,stepsize))+[nts],variables=args.vsr,colorby=cb,logR=args.logR)
if(args.scaled):
theExp.radialPlot(timeIndex=list(range(1,nts+1,stepsize))+[nts],variables=args.vsr,scaleR=True,colorby=cb,logR=args.logR)
#if(args.mass):
# theExp.ptMovie(timeIndex=range(1,202,stepsize)+[201],prev=args.prev,colorby=cb)
# theExp.ptMovie(timeIndex=range(1,202,stepsize)+[201],xvar='Mh',prev=args.prev,colorby=cb)
if len(args.mass)!=0:
for xv in args.mass:
theExp.ptMovie(timeIndex=list(range(1,nts+1,stepsize))+[nts],xvar=xv,prev=args.prev,colorby=cb,movie=True)
theExp.ptMovie(timeIndex=list(range(1,nts+1,stepsize))+[nts],xvar=xv,prev=0,colorby=cb,movie=False)
if len(args.mass)!=0 and args.snapshot:
for xv in args.mass:
theExp.ptMovie(timeIndex=tis,xvar=xv,prev=0,colorby='t',movie=False)
theExp.ptMovie(timeIndex=tis,xvar=xv,yvar=args.vsr,prev=0,colorby='t',movie=False)
if(args.radial and args.snapshot):
theExp.radialPlot(timeIndex=tis,variables=args.vsr,colorby='t',logR=args.logR,movie=False)
if(args.scaled and args.snapshot):
theExp.radialPlot(timeIndex=tis,variables=args.vsr,scaleR=True,colorby='t',logR=args.logR,movie=False)
if args.snapshot:
pass
#theExp.hist1d(timeIndex=tis, vars=None, movie=False)
# END loop over for cb in colorby
# OK, this is just a test..
#theExp.ptMovie(timeIndex=tis,xvar='colsfr',yvar=['MassLoadingFactor'],prev=0,colorby='t',movie=False)
#theExp.ptMovie(timeIndex=tis,xvar='hGas',yvar=['MassLoadingFactor'],prev=0,colorby='t',movie=False)
#theExp.ptMovie(timeIndex=tis,xvar='Mh',yvar=['MassLoadingFactor','mstar','fg','integratedMLF','integratedZ'],prev=0,colorby='t',movie=False)
#theExp.ptMovie(timeIndex=tis,xvar='x3',yvar=['MassLoadingFactor'],prev=0,colorby='t',movie=False)
#theExp.ptMovie(timeIndex=tis,xvar='colsfr',yvar=['colTr','colAccr','colOut'],prev=0,colorby='t',movie=False)
#theExp.ptMovie(timeIndex=tis,xvar='r',yvar=['col','colst','Z','vPhi','Q','MassLoadingFactor','hGas','colsfr','fH2','fgRadial','colTr','colAccr','colOut','equilibrium'],prev=0,colorby='t',movie=False)
theExp.krumholzAnalysis()
if args.genzel:
theExp.globalGenzelAnalysis()
if args.quick:
theExp.quickCheck()
if args.fraction:
theExp.globalFractionAnalysis()
theExp.globalFractionAnalysis(funcs=[np.std])
if args.stellarPops:
theExp.plotAgeFuncs()
if(args.percentiles):
per = [2.5, 16, 50, 84, 97.5]
if(args.radial):
theExp.radialPlot(timeIndex=range(1,nts+1,stepsize)+[nts],variables=args.vsr,colorby=args.colorby[0],logR=args.logR,percentiles=per)
if args.snapshot:
theExp.radialPlot(timeIndex=tis,variables=args.vsr,colorby=args.colorby[0],logR=args.logR,percentiles=per,movie=False)
if(args.scaled):
theExp.radialPlot(timeIndex=range(1,nts+1,stepsize)+[nts],variables=args.vsr,colorby=args.colorby[0],logR=args.logR,percentiles=per,scaleR=True)
if(args.balance):
#balance(theExp.models,timeIndex=range(1,nts+1,stepsize)+[nts],name=modelName,sortby=args.colorby[0],logR=args.logR, ncols=5, nrows=3)
balance(theExp.models,timeIndex=list(range(1,nts+1,stepsize))+[nts],name=modelName,sortby=args.colorby[0],logR=args.logR, ncols=1, nrows=1)
balancesig(theExp.models,timeIndex=list(range(1,nts+1,stepsize))+[nts],name=modelName,sortby=args.colorby[0],logR=args.logR, ncols=1, nrows=1)
#theExp.customPlotPPD( expensive=True)
# theExp.customPlotPPD( expensive=False)
if args.angularMomentum:
theExp.angularMomentumAnalysis()
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Analyze data from GIDGET experiments.')
parser.add_argument('models', metavar='experiment',type=str,nargs='+',
help='Each experiment specified will be constructed and analyzed. For instance, rh01 rh02 rh03 will analyze as a single Experiment any experiment matching *rh01*, then any experiment matching *rh02*, etc. All of them could be analyzed together (e.g. all the models would appear simultaneously on the same plots) by giving rh0 as an argument (this would also include rh04, rh05,...).')
parser.add_argument('--step',type=int,default=3,help='Stepsize among snapshots to make movies (default: every 3rd)')
parser.add_argument('--time',dest='time',action='store_true',help="Make plots vs t.")
parser.set_defaults(time=False)
parser.add_argument('--radial',dest='radial',action='store_true',help="Make plots vs r.")
parser.set_defaults(radial=False)
parser.add_argument('--scaled',dest='scaled',action='store_true',help="Make plots vs r/racc.")
parser.set_defaults(scaled=False)
parser.add_argument('--balance',dest='balance',action='store_true',help="Make balance plots.")
parser.set_defaults(balance=False)
parser.add_argument('--angularMomentum',dest='angularMomentum',action='store_true',help="Make some simple plots to try to understand angular momentum.")
parser.set_defaults(angularMomentum=False)
#parser.add_argument('--mass',dest='mass',action='store_true',help="Make plots vs mstar")
#parser.set_defaults(mass=False)
parser.add_argument('--mass',type=str,nargs='+',default=[],help='List of x- variables to use in point movies. Eg. mstar, Mh, sSFR,...')
parser.add_argument('--colorby',type=str,nargs='+',default=['Mh0'],help='List of variables to color points by in vs mstar plots. Default is halo mass at z=0')
oldVsrDefaults = ['colsfr','colst','NHI','sig','col','Z','fH2','MJeans','tDepRadial','tDepH2Radial','Q','Qg','Qst','fgRadial','equilibrium','colHI','colH2','vPhi','colTrPerAccr','hGas','hStars','sigstR','sigstZ', 'JColGas', 'JColStars','MassLoadingFactor']
parser.add_argument('--vsr',type=str,nargs='+',default=oldVsrDefaults,help='List of variables to plot vs mstar. Default is '+repr(oldVsrDefaults))
parser.add_argument('--prev',type=int,default=5,help='Number of previous points to plot in vsmstar movies.')
parser.add_argument('--rankby',type=str,nargs='+',default=[],help='Sort the models according to these arguments.')
parser.add_argument('--rbz',type=float,nargs='+',default=[],help='Sort at a particular redshift (use -1 to keep the full time information)')
parser.add_argument('--logR',dest='logR',action='store_true',help="Use logarithmic radial coordinate in plots vs. r")
parser.set_defaults(logR=False)
parser.add_argument('--percentiles',dest='percentiles',action='store_true',help="In radial plots overplot percentiles.")
parser.add_argument('--snapshot',dest='snapshot',action='store_true',help="Produce 1d histograms of all parameters and time variables.")
parser.add_argument('--stellarPops',dest='stellarPops',action='store_true',help="Produce plots relating to the passive stellar pops")
parser.add_argument('--genzel', dest='genzel', action='store_true',help="Produce plots relating to Genzel et al 2015")
parser.add_argument('--fraction', dest='fraction', action='store_true',help="Produce heatmaps of quantites as fn of Mh and z")
parser.add_argument('--fit', dest='fit', action='store_true',help="Fit the stellar column density profiles. May be time-consuming")
parser.add_argument('--scalings', dest='scalings', action='store_true',help="Fit galaxy scaling relations - only really makes sense in runs where you have a decent range of masses and some source of variability between galaxies at a given mass.")
parser.add_argument('--quick', dest='quick', action='store_true',help="Quickly check fit to scaling relations.")
parser.add_argument('--fh', type=float, dest='fh', default=0.3, help='Fraction of accreted stars to be included in the stellar mass')
args = parser.parse_args()
weNeed = len(args.rankby) - len(args.rbz)
if(weNeed>0):
for i in range(weNeed):
args.rbz.append(-1)
makeThePlots(args)
cleanup.moveFiles()
|
jcforbesREPO_NAMEgidgetPATH_START.@gidget_extracted@gidget-master@py@plots.py@.PATH_END.py
|
{
"filename": "_upperfence.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/box/_upperfence.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class UpperfenceValidator(_plotly_utils.basevalidators.DataArrayValidator):
def __init__(self, plotly_name="upperfence", parent_name="box", **kwargs):
super(UpperfenceValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "calc"),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@box@_upperfence.py@.PATH_END.py
|
{
"filename": "body.py",
"repo_name": "mikecokina/elisa",
"repo_path": "elisa_extracted/elisa-master/src/elisa/base/body.py",
"type": "Python"
}
|
import numpy as np
from typing import Dict
from copy import copy
from abc import (
ABCMeta,
abstractmethod
)
from .. utils import is_empty
from .. base.spot import Spot
from .. logger import getLogger
from .. import (
units as u,
umpy as up
)
logger = getLogger('base.body')
class Body(metaclass=ABCMeta):
"""
Abstract class that defines bodies modelled by this package.
"""
ID = 1
MANDATORY_KWARGS = []
OPTIONAL_KWARGS = []
ALL_KWARGS = MANDATORY_KWARGS + OPTIONAL_KWARGS
def __init__(self, name: str, **kwargs):
"""
Properties of abstract class Body.
"""
# initial kwargs
self.kwargs: Dict = copy(kwargs)
if is_empty(name):
self.name = str(Body.ID)
logger.debug(f"name of class instance {self.__class__.__name__} set to {self.name}")
Body.ID += 1
else:
self.name = str(name)
# initializing paramas to default values
self.synchronicity: float = np.nan
self.mass: float = np.nan
self.albedo: float = np.nan
self.discretization_factor: float = np.float64(up.radians(5))
self.t_eff: float = np.nan
self.polar_radius: float = np.nan
self._spots: Dict = dict()
self.equatorial_radius: float = np.nan
self.atmosphere: str = ""
@abstractmethod
def init(self):
pass
@abstractmethod
def transform_input(self, *args, **kwargs):
pass
@property
def spots(self):
"""
:return: Dict[int, elisa.base.spot.Spot]
"""
return self._spots
@spots.setter
def spots(self, spots):
"""
Order in which the spots are defined will determine the layering of the spots (spot defined as first will lay
bellow any subsequently defined overlapping spot). Example of defined spots
::
[
{"longitude": 90,
"latitude": 58,
"angular_radius": 15,
"temperature_factor": 0.9},
{"longitude": 85,
"latitude": 80,
"angular_radius": 30,
"temperature_factor": 1.05},
{"longitude": 45,
"latitude": 90,
"angular_radius": 30,
"temperature_factor": 0.95},
]
:param spots: Iterable[Dict]; definition of spots for given object
"""
self._spots = {idx: Spot(**spot_meta) for idx, spot_meta in enumerate(spots)} if not is_empty(spots) else dict()
for spot_idx, spot_instance in self.spots.items():
self.setup_spot_instance_discretization_factor(spot_instance, spot_idx)
def has_spots(self):
"""
Find whether object has defined spots.
:return: bool;
"""
return len(self._spots) > 0
def remove_spot(self, spot_index: int):
"""
Remove n-th spot index of object.
:param spot_index: int;
"""
del self._spots[spot_index]
def setup_spot_instance_discretization_factor(self, spot_instance, spot_index):
"""
Setup discretization factor for given spot instance based on defined rules.
- use value of the parent star if the spot discretization factor is not defined
- if spot_instance.discretization_factor > 0.5 * spot_instance.angular_diameter then factor is set to
0.5 * spot_instance.angular_diameter
:param spot_instance: elisa.base.spot.Spot;
:param spot_index: int; spot index (has no affect on process, used for logging)
:return: elisa.base.spot.Spot;
"""
if is_empty(spot_instance.discretization_factor):
logger.debug(f'angular density of the spot {spot_index} on {self.name} component was not supplied '
f'and discretization factor of star {self.discretization_factor} was used.')
spot_instance.discretization_factor = (0.9 * self.discretization_factor * u.ARC_UNIT).value
if spot_instance.discretization_factor > spot_instance.angular_radius:
logger.debug(f'angular density {self.discretization_factor} of the spot {spot_index} on {self.name} '
f'component was larger than its angular radius. Therefore value of angular density was '
f'set to be equal to 0.5 * angular diameter')
spot_instance.discretization_factor = spot_instance.angular_radius
return spot_instance
|
mikecokinaREPO_NAMEelisaPATH_START.@elisa_extracted@elisa-master@src@elisa@base@body.py@.PATH_END.py
|
{
"filename": "obsrate_metric.md",
"repo_name": "lsstdesc/sn_pipe",
"repo_path": "sn_pipe_extracted/sn_pipe-master/docs/Metrics/obsrate_metric.md",
"type": "Markdown"
}
|
# ObsRate metric
## Definition
This metric is an estimate of the observation rate of faint [(x1,color) = (-2.0,0.2)] using gri (default) bands. It is defined as the fraction of supernovae with minimal SNR per band.
Let us suppose that we have a set of measurements of (fluxes,error fluxes): (f<sub>i</sub>,σ<sub>i</sub>). Then the Signal-to-Noise Ratio (SNR) may be written, per band b:
<img src="SNR.png" height="100">
In the background-dominating regime, one has:
<img src="sigma_bd.png" height="100">
where f<sub>i</sub><sup>5,b</sup> is the 5-σ flux related to the 5σ depth (m<sub>5</sub>) by:
<img src="m5_f5.png" height="130">
Since m<sub>5</sub> is given by observing conditions, it is possible to estimate SNR<sup>b>/sup> provided a flux template for supernovae is available.
## Installation of the metric package
```
python pip_sn_pack.py --action install --package=sn_metrics
```
## Input parameters
- x1
- color
- band
- SNRs
- Li_files : list of npy files with light curves
- mag_to_flux : list of npy files with mag to flux conversion
This metric may be run yearly, per season or using the complete survey.
## How to run this metric
- use the script [run_metrics.py](usage_run_metrics.md)
## Output analysis
The analysis/display of the metric results can be done using the sn_plotters package that can be installed as follow:
```
python pip_sn_pack.py --action install --package=sn_plotters
```
The script [plot_snr_metric.py](../Plots/usage_plot_snr_metric.md) may be used to display the results.
|
lsstdescREPO_NAMEsn_pipePATH_START.@sn_pipe_extracted@sn_pipe-master@docs@Metrics@obsrate_metric.md@.PATH_END.py
|
{
"filename": "check_templates.py",
"repo_name": "langchain-ai/langchain",
"repo_path": "langchain_extracted/langchain-master/docs/scripts/check_templates.py",
"type": "Python"
}
|
import json
import re
import sys
from functools import cache
from pathlib import Path
from typing import Dict, Iterable, List, Union
CURR_DIR = Path(__file__).parent.absolute()
CLI_TEMPLATE_DIR = (
CURR_DIR.parent.parent / "libs/cli/langchain_cli/integration_template/docs"
)
INFO_BY_DIR: Dict[str, Dict[str, Union[int, str]]] = {
"chat": {
"issue_number": 22296,
},
"document_loaders": {
"issue_number": 22866,
},
"stores": {"issue_number": 24888},
"llms": {
"issue_number": 24803,
},
"text_embedding": {"issue_number": 14856},
"toolkits": {"issue_number": 24820},
"tools": {"issue_number": "TODO"},
"vectorstores": {"issue_number": 24800},
"retrievers": {"issue_number": 24908},
}
@cache
def _get_headers(doc_dir: str) -> Iterable[str]:
"""Gets all markdown headers ## and below from the integration template.
Ignores headers that contain "TODO"."""
ipynb_name = f"{doc_dir}.ipynb"
if not (CLI_TEMPLATE_DIR / ipynb_name).exists():
raise FileNotFoundError(f"Could not find {ipynb_name} in {CLI_TEMPLATE_DIR}")
with open(CLI_TEMPLATE_DIR / ipynb_name, "r") as f:
nb = json.load(f)
headers: List[str] = []
for cell in nb["cells"]:
if cell["cell_type"] == "markdown":
for line in cell["source"]:
if not line.startswith("## ") or "TODO" in line:
continue
header = line.strip()
headers.append(header)
return headers
def check_header_order(path: Path) -> None:
if path.name.startswith("index."):
# skip index pages
return
doc_dir = path.parent.name
if doc_dir not in INFO_BY_DIR:
# Skip if not a directory we care about
return
headers = _get_headers(doc_dir)
issue_number = INFO_BY_DIR[doc_dir].get("issue_number", "nonexistent")
print(f"Checking {doc_dir} page {path}")
with open(path, "r") as f:
doc = f.read()
notfound = []
for header in headers:
index = doc.find(header)
if index == -1:
notfound.append(header)
doc = doc[index + len(header) :]
if notfound:
notfound_headers = "\n- ".join(notfound)
raise ValueError(
f"Document {path} is missing headers:"
"\n- "
f"{notfound_headers}"
"\n\n"
"Please see https://github.com/langchain-ai/langchain/issues/"
f"{issue_number} for instructions on how to correctly format a "
f"{doc_dir} integration page."
)
def main(*new_doc_paths: Union[str, Path]) -> None:
for path in new_doc_paths:
path = Path(path).resolve().absolute()
if CURR_DIR.parent / "docs" / "integrations" in path.parents:
check_header_order(path)
else:
continue
if __name__ == "__main__":
main(*sys.argv[1:])
|
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@docs@scripts@check_templates.py@.PATH_END.py
|
{
"filename": "ktransit.py",
"repo_name": "mrtommyb/ktransit",
"repo_path": "ktransit_extracted/ktransit-master/ktransit/ktransit.py",
"type": "Python"
}
|
from __future__ import absolute_import
import numpy as np
from ._tmodtom import transitmodel
class LCModel(object):
def __init__(self):
self.nplanets = 0
self.T0 = []
self.period = []
self.impact = []
self.rprs = []
self.ecosw = []
self.esinw = []
self.rvamp = []
self.occ = []
self.ell = []
self.alb = []
self.rvtime = []
def add_star(self, rho=1.5, ld1=0.2,
ld2=0.4, ld3=0.0, ld4=0.0, dil=0.0,
veloffset=0.0, zpt=0.0):
"""
add details of the star about which the planet(s) orbit
ldX are the limb darkening parameters
if only ld1 and and ld2 are non-zero a quadrativ limb darkening
model is used
if ld3 and ld4 are also non-zoro then a 4-parameter limb
darkening law is used
rho = mean stellar density in g/cc**3
dil is the proportion of the total light not coming from the
target star 0.5 means thatyou ahve two stars of equal
brightness
"""
self.rho = rho
self.ldp = [ld1,ld2,ld3,ld4]
self.dil = dil
self.veloffset = veloffset
self.zpt = zpt
def update_star(self,**kwargs):
[setattr(self,k,v) for k,v in kwargs.items()]
def update_planet(self,pnum,**kwargs):
for k,v in kwargs.items():
valarr = getattr(self,k)
valarr[pnum] = v
setattr(self,k,valarr)
def add_planet(self,replace=None,
T0=1.0, period=1.0, impact=0.1,
rprs=0.1, ecosw=0.0, esinw=0.0,
rvamp=0.0, occ=0.0, ell=0.0,
alb=0.0):
if replace == None:
self.nplanets = self.nplanets + 1
pnum = self.nplanets - 1
self.add_dimention_to_planet_params()
else:
pnum = replace
self.T0[pnum] = T0
self.period[pnum] = period
self.impact[pnum] = impact
self.rprs[pnum] = rprs
self.ecosw[pnum] = ecosw
self.esinw[pnum] = esinw
self.rvamp[pnum] = rvamp
self.occ[pnum] = occ
self.ell[pnum] = ell
self.alb[pnum] = alb
def add_dimention_to_planet_params(self):
self.T0 = np.r_[self.T0, 0.0]
self.period = np.r_[self.period, 0.0]
self.impact = np.r_[self.impact, 0.0]
self.rprs = np.r_[self.rprs, 0.0]
self.ecosw = np.r_[self.ecosw, 0.0]
self.esinw = np.r_[self.esinw, 0.0]
self.rvamp = np.r_[self.rvamp, 0.0]
self.occ = np.r_[self.occ, 0.0]
self.ell = np.r_[self.ell, 0.0]
self.alb = np.r_[self.alb, 0.0]
def add_data(self, time=np.arange(0, 10, 0.0188),
itime=None,
ntt=None,
tobs=None,
omc=None,
datatype=None):
"""
Add data after all the planets are added!!
"""
self.time = time
npt = len(self.time)
nmax = 1500000
if itime is None:
default_cadence = 1625.3 / 86400.
self.itime = np.zeros(npt) + default_cadence
else:
self.itime = itime
if ntt is None:
self.ntt = np.zeros(self.nplanets)
else:
self.ntt = ntt
if tobs is None:
self.tobs = np.empty([self.nplanets, nmax])
else:
self.tobs = tobs
if omc is None:
self.omc = np.empty([self.nplanets, nmax])
else:
self.omc = omc
if datatype is None:
self.datatype = np.zeros(npt)
else:
self.datatype = datatype
def add_rv(self, rvtime=None, rvitime=None):
if rvtime is None:
self.rvtime = np.arange(
self.T0[0], 4. * self.period[0], 1.0)
else:
self.rvtime = rvtime
if rvitime is None:
default_cadence = 30. / 1440. # 30 mins
self.rvitime = np.zeros_like(self.rvtime) + default_cadence
else:
self.rvitime = rvitime
@property
def transitmodel(self):
"""
return a transit model
calling of model is
transitmodel(nplanets,sol,time,itime,
ntt,tobs,omc,datatype)
sol is [rho,ld1,ld2,ld3,ld4,
dil,veloffset,zpt,T0,per,b,rprs,ecosw,esinw,
rvamp,occ,ell,alb]
"""
ld1,ld2,ld3,ld4 = self.ldp
sol = np.zeros(8 + self.nplanets*10)
sol[0:8] = [self.rho,ld1,ld2,ld3,ld4,self.dil,
self.veloffset,self.zpt]
sol[8:] = np.array([self.T0,self.period,
self.impact,self.rprs,
self.ecosw,self.esinw,
self.rvamp,self.occ,
self.ell,self.alb]).T.flatten()
if np.shape(self.rvtime)[0] != 0:
time = np.r_[self.time,self.rvtime]
itime = np.r_[self.itime,self.rvitime]
datatype = np.r_[
self.datatype,np.ones_like(self.rvtime)]
fmod = transitmodel(self.nplanets,
sol,time,itime,self.ntt,
self.tobs,self.omc,datatype)
nrv = np.shape(self.rvtime)[0]
self._transitmodel = fmod[:-nrv]
self._rvmodel = fmod[-nrv:]
else:
time = self.time
itime = self.itime
datatype = self.datatype
self._transitmodel = transitmodel(self.nplanets,
sol,time,itime,self.ntt,
self.tobs,self.omc,datatype)
self._rvmodel = None
return self._transitmodel - 1.0
@property
def rvmodel(self):
try:
return self._rvmodel
except AttributeError:
tmod = self.transitmodel
return self._rvmodel
def get_ancil_vals(self):
npt = len(self.time)
itime = np.zeros(self._npt) + (self.cadence)
ntt = np.zeros(self._nplanets)
tobs = np.empty([self._nplanets,npt])
omc = np.empty([self._nplanets,npt])
datatype = np.zeros(npt)
return [itime,ntt,tobs,omc,datatype]
def give_me_earth():
M = LCModel()
M.add_star()
M.add_planet(rprs=0.009155,period=365.25)
M.add_data(time=np.arange(0,1000,0.0188))
return (M.time, M.transitmodel)
|
mrtommybREPO_NAMEktransitPATH_START.@ktransit_extracted@ktransit-master@ktransit@ktransit.py@.PATH_END.py
|
{
"filename": "test_toa_shuffle.py",
"repo_name": "nanograv/PINT",
"repo_path": "PINT_extracted/PINT-master/tests/test_toa_shuffle.py",
"type": "Python"
}
|
import io
import os
from copy import deepcopy
import numpy as np
import pytest
from hypothesis import given
from hypothesis.strategies import (
composite,
permutations,
)
from astropy import units as u
from pinttestdata import datadir
from pint import simulation, toa
import pint.residuals
from pint.models import get_model
shuffletoas = """FORMAT 1
test 1234.0 54321 0 pks
test2 888 59055 0 meerkat
test3 350 59000 0 gbt
"""
class TOAOrderSetup:
parfile = os.path.join(datadir, "NGC6440E.par")
model = get_model(parfile)
# fake a multi-telescope, multi-frequency data-set and make sure the results don't depend on TOA order
fakes = [
simulation.make_fake_toas_uniform(
55000, 55500, 30, model=model, freq=1400 * u.MHz, obs="ao"
),
simulation.make_fake_toas_uniform(
55010, 55500, 40, model=model, freq=800 * u.MHz, obs="gbt"
),
simulation.make_fake_toas_uniform(
55020, 55500, 50, model=model, freq=2000 * u.MHz, obs="@"
),
]
f = io.StringIO()
for t in fakes:
t.write_TOA_file(f)
f.seek(0)
t = toa.get_TOAs(f)
r = pint.residuals.Residuals(t, model, subtract_mean=False)
@classmethod
@composite
def toas_and_order(draw, cls):
# note that draw must come before cls
n = len(cls.t)
ix = draw(permutations(np.arange(n)))
return cls.t, ix
@given(TOAOrderSetup.toas_and_order())
def test_shuffle_toas_residuals_match(t_and_permute):
toas, ix = t_and_permute
tcopy = deepcopy(toas)
tcopy.table = tcopy.table[ix]
rsort = pint.residuals.Residuals(tcopy, TOAOrderSetup.model, subtract_mean=False)
assert np.all(TOAOrderSetup.r.time_resids[ix] == rsort.time_resids)
@given(TOAOrderSetup.toas_and_order())
def test_shuffle_toas_chi2_match(t_and_permute):
toas, ix = t_and_permute
tcopy = deepcopy(toas)
tcopy.table = tcopy.table[ix]
rsort = pint.residuals.Residuals(tcopy, TOAOrderSetup.model, subtract_mean=False)
# the differences seem to be related to floating point math
assert np.isclose(TOAOrderSetup.r.calc_chi2(), rsort.calc_chi2(), atol=1e-14)
@pytest.mark.parametrize("sortkey", ["freq", "mjd_float"])
def test_resorting_toas_residuals_match(sortkey):
tcopy = deepcopy(TOAOrderSetup.t)
i = np.argsort(TOAOrderSetup.t.table[sortkey])
tcopy.table = tcopy.table[i]
rsort = pint.residuals.Residuals(tcopy, TOAOrderSetup.model, subtract_mean=False)
assert np.all(TOAOrderSetup.r.time_resids[i] == rsort.time_resids)
@pytest.mark.parametrize("sortkey", ["freq", "mjd_float"])
def test_resorting_toas_chi2_match(sortkey):
tcopy = deepcopy(TOAOrderSetup.t)
i = np.argsort(TOAOrderSetup.t.table[sortkey])
tcopy.table = tcopy.table[i]
rsort = pint.residuals.Residuals(tcopy, TOAOrderSetup.model, subtract_mean=False)
# the differences seem to be related to floating point math
assert np.isclose(TOAOrderSetup.r.calc_chi2(), rsort.calc_chi2(), atol=1e-14)
class TOALineOrderSetup:
timfile = io.StringIO(shuffletoas)
t = toa.get_TOAs(timfile)
timfile.seek(0)
lines = timfile.readlines()
preamble = lines[0]
# string any comments or blank lines to make sure the datalines correspond to the TOAs
datalines = np.array(
[
x
for x in lines[1:]
if not (x.startswith("C") or x.startswith("#") or len(x.strip()) == 0)
]
)
clkcorr = t.get_flag_value("clkcorr", 0, np.float64)[0] * u.s
@classmethod
@composite
def toas_and_order(draw, cls):
# note that draw must come before cls
n = len(cls.t)
return draw(permutations(np.arange(n)))
@given(TOALineOrderSetup.toas_and_order())
def test_shuffle_toas_clock_corr(permute):
f = io.StringIO(
TOALineOrderSetup.preamble
+ "".join([str(x) for x in TOALineOrderSetup.datalines[permute]])
)
t = toa.get_TOAs(f)
clkcorr = t.get_flag_value("clkcorr", 0, np.float64)[0] * u.s
assert (clkcorr == TOALineOrderSetup.clkcorr[permute]).all()
|
nanogravREPO_NAMEPINTPATH_START.@PINT_extracted@PINT-master@tests@test_toa_shuffle.py@.PATH_END.py
|
{
"filename": "_minexponent.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/histogram2dcontour/colorbar/_minexponent.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class MinexponentValidator(_plotly_utils.basevalidators.NumberValidator):
def __init__(
self,
plotly_name="minexponent",
parent_name="histogram2dcontour.colorbar",
**kwargs
):
super(MinexponentValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "colorbars"),
min=kwargs.pop("min", 0),
role=kwargs.pop("role", "style"),
**kwargs
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@histogram2dcontour@colorbar@_minexponent.py@.PATH_END.py
|
{
"filename": "errors.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/parso/py3/parso/python/errors.py",
"type": "Python"
}
|
# -*- coding: utf-8 -*-
import codecs
import sys
import warnings
import re
from contextlib import contextmanager
from parso.normalizer import Normalizer, NormalizerConfig, Issue, Rule
from parso.python.tokenize import _get_token_collection
_BLOCK_STMTS = ('if_stmt', 'while_stmt', 'for_stmt', 'try_stmt', 'with_stmt')
_STAR_EXPR_PARENTS = ('testlist_star_expr', 'testlist_comp', 'exprlist')
# This is the maximal block size given by python.
_MAX_BLOCK_SIZE = 20
_MAX_INDENT_COUNT = 100
ALLOWED_FUTURES = (
'nested_scopes', 'generators', 'division', 'absolute_import',
'with_statement', 'print_function', 'unicode_literals', 'generator_stop',
)
_COMP_FOR_TYPES = ('comp_for', 'sync_comp_for')
def _get_rhs_name(node, version):
type_ = node.type
if type_ == "lambdef":
return "lambda"
elif type_ == "atom":
comprehension = _get_comprehension_type(node)
first, second = node.children[:2]
if comprehension is not None:
return comprehension
elif second.type == "dictorsetmaker":
if version < (3, 8):
return "literal"
else:
if second.children[1] == ":" or second.children[0] == "**":
if version < (3, 10):
return "dict display"
else:
return "dict literal"
else:
return "set display"
elif (
first == "("
and (second == ")"
or (len(node.children) == 3 and node.children[1].type == "testlist_comp"))
):
return "tuple"
elif first == "(":
return _get_rhs_name(_remove_parens(node), version=version)
elif first == "[":
return "list"
elif first == "{" and second == "}":
if version < (3, 10):
return "dict display"
else:
return "dict literal"
elif first == "{" and len(node.children) > 2:
return "set display"
elif type_ == "keyword":
if "yield" in node.value:
return "yield expression"
if version < (3, 8):
return "keyword"
else:
return str(node.value)
elif type_ == "operator" and node.value == "...":
if version < (3, 10):
return "Ellipsis"
else:
return "ellipsis"
elif type_ == "comparison":
return "comparison"
elif type_ in ("string", "number", "strings"):
return "literal"
elif type_ == "yield_expr":
return "yield expression"
elif type_ == "test":
return "conditional expression"
elif type_ in ("atom_expr", "power"):
if node.children[0] == "await":
return "await expression"
elif node.children[-1].type == "trailer":
trailer = node.children[-1]
if trailer.children[0] == "(":
return "function call"
elif trailer.children[0] == "[":
return "subscript"
elif trailer.children[0] == ".":
return "attribute"
elif (
("expr" in type_ and "star_expr" not in type_) # is a substring
or "_test" in type_
or type_ in ("term", "factor")
):
if version < (3, 10):
return "operator"
else:
return "expression"
elif type_ == "star_expr":
return "starred"
elif type_ == "testlist_star_expr":
return "tuple"
elif type_ == "fstring":
return "f-string expression"
return type_ # shouldn't reach here
def _iter_stmts(scope):
"""
Iterates over all statements and splits up simple_stmt.
"""
for child in scope.children:
if child.type == 'simple_stmt':
for child2 in child.children:
if child2.type == 'newline' or child2 == ';':
continue
yield child2
else:
yield child
def _get_comprehension_type(atom):
first, second = atom.children[:2]
if second.type == 'testlist_comp' and second.children[1].type in _COMP_FOR_TYPES:
if first == '[':
return 'list comprehension'
else:
return 'generator expression'
elif second.type == 'dictorsetmaker' and second.children[-1].type in _COMP_FOR_TYPES:
if second.children[1] == ':':
return 'dict comprehension'
else:
return 'set comprehension'
return None
def _is_future_import(import_from):
# It looks like a __future__ import that is relative is still a future
# import. That feels kind of odd, but whatever.
# if import_from.level != 0:
# return False
from_names = import_from.get_from_names()
return [n.value for n in from_names] == ['__future__']
def _remove_parens(atom):
"""
Returns the inner part of an expression like `(foo)`. Also removes nested
parens.
"""
try:
children = atom.children
except AttributeError:
pass
else:
if len(children) == 3 and children[0] == '(':
return _remove_parens(atom.children[1])
return atom
def _skip_parens_bottom_up(node):
"""
Returns an ancestor node of an expression, skipping all levels of parens
bottom-up.
"""
while node.parent is not None:
node = node.parent
if node.type != 'atom' or node.children[0] != '(':
return node
return None
def _iter_params(parent_node):
return (n for n in parent_node.children if n.type == 'param' or n.type == 'operator')
def _is_future_import_first(import_from):
"""
Checks if the import is the first statement of a file.
"""
found_docstring = False
for stmt in _iter_stmts(import_from.get_root_node()):
if stmt.type == 'string' and not found_docstring:
continue
found_docstring = True
if stmt == import_from:
return True
if stmt.type == 'import_from' and _is_future_import(stmt):
continue
return False
def _iter_definition_exprs_from_lists(exprlist):
def check_expr(child):
if child.type == 'atom':
if child.children[0] == '(':
testlist_comp = child.children[1]
if testlist_comp.type == 'testlist_comp':
yield from _iter_definition_exprs_from_lists(testlist_comp)
return
else:
# It's a paren that doesn't do anything, like 1 + (1)
yield from check_expr(testlist_comp)
return
elif child.children[0] == '[':
yield testlist_comp
return
yield child
if exprlist.type in _STAR_EXPR_PARENTS:
for child in exprlist.children[::2]:
yield from check_expr(child)
else:
yield from check_expr(exprlist)
def _get_expr_stmt_definition_exprs(expr_stmt):
exprs = []
for list_ in expr_stmt.children[:-2:2]:
if list_.type in ('testlist_star_expr', 'testlist'):
exprs += _iter_definition_exprs_from_lists(list_)
else:
exprs.append(list_)
return exprs
def _get_for_stmt_definition_exprs(for_stmt):
exprlist = for_stmt.children[1]
return list(_iter_definition_exprs_from_lists(exprlist))
def _is_argument_comprehension(argument):
return argument.children[1].type in _COMP_FOR_TYPES
def _any_fstring_error(version, node):
if version < (3, 9) or node is None:
return False
if node.type == "error_node":
return any(child.type == "fstring_start" for child in node.children)
elif node.type == "fstring":
return True
else:
return node.search_ancestor("fstring")
class _Context:
def __init__(self, node, add_syntax_error, parent_context=None):
self.node = node
self.blocks = []
self.parent_context = parent_context
self._used_name_dict = {}
self._global_names = []
self._local_params_names = []
self._nonlocal_names = []
self._nonlocal_names_in_subscopes = []
self._add_syntax_error = add_syntax_error
def is_async_funcdef(self):
# Stupidly enough async funcdefs can have two different forms,
# depending if a decorator is used or not.
return self.is_function() \
and self.node.parent.type in ('async_funcdef', 'async_stmt')
def is_function(self):
return self.node.type == 'funcdef'
def add_name(self, name):
parent_type = name.parent.type
if parent_type == 'trailer':
# We are only interested in first level names.
return
if parent_type == 'global_stmt':
self._global_names.append(name)
elif parent_type == 'nonlocal_stmt':
self._nonlocal_names.append(name)
elif parent_type == 'funcdef':
self._local_params_names.extend(
[param.name.value for param in name.parent.get_params()]
)
else:
self._used_name_dict.setdefault(name.value, []).append(name)
def finalize(self):
"""
Returns a list of nonlocal names that need to be part of that scope.
"""
self._analyze_names(self._global_names, 'global')
self._analyze_names(self._nonlocal_names, 'nonlocal')
global_name_strs = {n.value: n for n in self._global_names}
for nonlocal_name in self._nonlocal_names:
try:
global_name = global_name_strs[nonlocal_name.value]
except KeyError:
continue
message = "name '%s' is nonlocal and global" % global_name.value
if global_name.start_pos < nonlocal_name.start_pos:
error_name = global_name
else:
error_name = nonlocal_name
self._add_syntax_error(error_name, message)
nonlocals_not_handled = []
for nonlocal_name in self._nonlocal_names_in_subscopes:
search = nonlocal_name.value
if search in self._local_params_names:
continue
if search in global_name_strs or self.parent_context is None:
message = "no binding for nonlocal '%s' found" % nonlocal_name.value
self._add_syntax_error(nonlocal_name, message)
elif not self.is_function() or \
nonlocal_name.value not in self._used_name_dict:
nonlocals_not_handled.append(nonlocal_name)
return self._nonlocal_names + nonlocals_not_handled
def _analyze_names(self, globals_or_nonlocals, type_):
def raise_(message):
self._add_syntax_error(base_name, message % (base_name.value, type_))
params = []
if self.node.type == 'funcdef':
params = self.node.get_params()
for base_name in globals_or_nonlocals:
found_global_or_nonlocal = False
# Somehow Python does it the reversed way.
for name in reversed(self._used_name_dict.get(base_name.value, [])):
if name.start_pos > base_name.start_pos:
# All following names don't have to be checked.
found_global_or_nonlocal = True
parent = name.parent
if parent.type == 'param' and parent.name == name:
# Skip those here, these definitions belong to the next
# scope.
continue
if name.is_definition():
if parent.type == 'expr_stmt' \
and parent.children[1].type == 'annassign':
if found_global_or_nonlocal:
# If it's after the global the error seems to be
# placed there.
base_name = name
raise_("annotated name '%s' can't be %s")
break
else:
message = "name '%s' is assigned to before %s declaration"
else:
message = "name '%s' is used prior to %s declaration"
if not found_global_or_nonlocal:
raise_(message)
# Only add an error for the first occurence.
break
for param in params:
if param.name.value == base_name.value:
raise_("name '%s' is parameter and %s"),
@contextmanager
def add_block(self, node):
self.blocks.append(node)
yield
self.blocks.pop()
def add_context(self, node):
return _Context(node, self._add_syntax_error, parent_context=self)
def close_child_context(self, child_context):
self._nonlocal_names_in_subscopes += child_context.finalize()
class ErrorFinder(Normalizer):
"""
Searches for errors in the syntax tree.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._error_dict = {}
self.version = self.grammar.version_info
def initialize(self, node):
def create_context(node):
if node is None:
return None
parent_context = create_context(node.parent)
if node.type in ('classdef', 'funcdef', 'file_input'):
return _Context(node, self._add_syntax_error, parent_context)
return parent_context
self.context = create_context(node) or _Context(node, self._add_syntax_error)
self._indentation_count = 0
def visit(self, node):
if node.type == 'error_node':
with self.visit_node(node):
# Don't need to investigate the inners of an error node. We
# might find errors in there that should be ignored, because
# the error node itself already shows that there's an issue.
return ''
return super().visit(node)
@contextmanager
def visit_node(self, node):
self._check_type_rules(node)
if node.type in _BLOCK_STMTS:
with self.context.add_block(node):
if len(self.context.blocks) == _MAX_BLOCK_SIZE:
self._add_syntax_error(node, "too many statically nested blocks")
yield
return
elif node.type == 'suite':
self._indentation_count += 1
if self._indentation_count == _MAX_INDENT_COUNT:
self._add_indentation_error(node.children[1], "too many levels of indentation")
yield
if node.type == 'suite':
self._indentation_count -= 1
elif node.type in ('classdef', 'funcdef'):
context = self.context
self.context = context.parent_context
self.context.close_child_context(context)
def visit_leaf(self, leaf):
if leaf.type == 'error_leaf':
if leaf.token_type in ('INDENT', 'ERROR_DEDENT'):
# Indents/Dedents itself never have a prefix. They are just
# "pseudo" tokens that get removed by the syntax tree later.
# Therefore in case of an error we also have to check for this.
spacing = list(leaf.get_next_leaf()._split_prefix())[-1]
if leaf.token_type == 'INDENT':
message = 'unexpected indent'
else:
message = 'unindent does not match any outer indentation level'
self._add_indentation_error(spacing, message)
else:
if leaf.value.startswith('\\'):
message = 'unexpected character after line continuation character'
else:
match = re.match('\\w{,2}("{1,3}|\'{1,3})', leaf.value)
if match is None:
message = 'invalid syntax'
if (
self.version >= (3, 9)
and leaf.value in _get_token_collection(
self.version
).always_break_tokens
):
message = "f-string: " + message
else:
if len(match.group(1)) == 1:
message = 'EOL while scanning string literal'
else:
message = 'EOF while scanning triple-quoted string literal'
self._add_syntax_error(leaf, message)
return ''
elif leaf.value == ':':
parent = leaf.parent
if parent.type in ('classdef', 'funcdef'):
self.context = self.context.add_context(parent)
# The rest is rule based.
return super().visit_leaf(leaf)
def _add_indentation_error(self, spacing, message):
self.add_issue(spacing, 903, "IndentationError: " + message)
def _add_syntax_error(self, node, message):
self.add_issue(node, 901, "SyntaxError: " + message)
def add_issue(self, node, code, message):
# Overwrite the default behavior.
# Check if the issues are on the same line.
line = node.start_pos[0]
args = (code, message, node)
self._error_dict.setdefault(line, args)
def finalize(self):
self.context.finalize()
for code, message, node in self._error_dict.values():
self.issues.append(Issue(node, code, message))
class IndentationRule(Rule):
code = 903
def _get_message(self, message, node):
message = super()._get_message(message, node)
return "IndentationError: " + message
@ErrorFinder.register_rule(type='error_node')
class _ExpectIndentedBlock(IndentationRule):
message = 'expected an indented block'
def get_node(self, node):
leaf = node.get_next_leaf()
return list(leaf._split_prefix())[-1]
def is_issue(self, node):
# This is the beginning of a suite that is not indented.
return node.children[-1].type == 'newline'
class ErrorFinderConfig(NormalizerConfig):
normalizer_class = ErrorFinder
class SyntaxRule(Rule):
code = 901
def _get_message(self, message, node):
message = super()._get_message(message, node)
if (
"f-string" not in message
and _any_fstring_error(self._normalizer.version, node)
):
message = "f-string: " + message
return "SyntaxError: " + message
@ErrorFinder.register_rule(type='error_node')
class _InvalidSyntaxRule(SyntaxRule):
message = "invalid syntax"
fstring_message = "f-string: invalid syntax"
def get_node(self, node):
return node.get_next_leaf()
def is_issue(self, node):
error = node.get_next_leaf().type != 'error_leaf'
if (
error
and _any_fstring_error(self._normalizer.version, node)
):
self.add_issue(node, message=self.fstring_message)
else:
# Error leafs will be added later as an error.
return error
@ErrorFinder.register_rule(value='await')
class _AwaitOutsideAsync(SyntaxRule):
message = "'await' outside async function"
def is_issue(self, leaf):
return not self._normalizer.context.is_async_funcdef()
def get_error_node(self, node):
# Return the whole await statement.
return node.parent
@ErrorFinder.register_rule(value='break')
class _BreakOutsideLoop(SyntaxRule):
message = "'break' outside loop"
def is_issue(self, leaf):
in_loop = False
for block in self._normalizer.context.blocks:
if block.type in ('for_stmt', 'while_stmt'):
in_loop = True
return not in_loop
@ErrorFinder.register_rule(value='continue')
class _ContinueChecks(SyntaxRule):
message = "'continue' not properly in loop"
message_in_finally = "'continue' not supported inside 'finally' clause"
def is_issue(self, leaf):
in_loop = False
for block in self._normalizer.context.blocks:
if block.type in ('for_stmt', 'while_stmt'):
in_loop = True
if block.type == 'try_stmt':
last_block = block.children[-3]
if (
last_block == "finally"
and leaf.start_pos > last_block.start_pos
and self._normalizer.version < (3, 8)
):
self.add_issue(leaf, message=self.message_in_finally)
return False # Error already added
if not in_loop:
return True
@ErrorFinder.register_rule(value='from')
class _YieldFromCheck(SyntaxRule):
message = "'yield from' inside async function"
def get_node(self, leaf):
return leaf.parent.parent # This is the actual yield statement.
def is_issue(self, leaf):
return leaf.parent.type == 'yield_arg' \
and self._normalizer.context.is_async_funcdef()
@ErrorFinder.register_rule(type='name')
class _NameChecks(SyntaxRule):
message = 'cannot assign to __debug__'
message_none = 'cannot assign to None'
def is_issue(self, leaf):
self._normalizer.context.add_name(leaf)
if leaf.value == '__debug__' and leaf.is_definition():
return True
@ErrorFinder.register_rule(type='string')
class _StringChecks(SyntaxRule):
if sys.version_info < (3, 10):
message = "bytes can only contain ASCII literal characters."
else:
message = "bytes can only contain ASCII literal characters"
def is_issue(self, leaf):
string_prefix = leaf.string_prefix.lower()
if 'b' in string_prefix \
and any(c for c in leaf.value if ord(c) > 127):
# b'ä'
return True
if 'r' not in string_prefix:
# Raw strings don't need to be checked if they have proper
# escaping.
payload = leaf._get_payload()
if 'b' in string_prefix:
payload = payload.encode('utf-8')
func = codecs.escape_decode
else:
func = codecs.unicode_escape_decode
try:
with warnings.catch_warnings():
# The warnings from parsing strings are not relevant.
warnings.filterwarnings('ignore')
func(payload)
except UnicodeDecodeError as e:
self.add_issue(leaf, message='(unicode error) ' + str(e))
except ValueError as e:
self.add_issue(leaf, message='(value error) ' + str(e))
@ErrorFinder.register_rule(value='*')
class _StarCheck(SyntaxRule):
message = "named arguments must follow bare *"
def is_issue(self, leaf):
params = leaf.parent
if params.type == 'parameters' and params:
after = params.children[params.children.index(leaf) + 1:]
after = [child for child in after
if child not in (',', ')') and not child.star_count]
return len(after) == 0
@ErrorFinder.register_rule(value='**')
class _StarStarCheck(SyntaxRule):
# e.g. {**{} for a in [1]}
# TODO this should probably get a better end_pos including
# the next sibling of leaf.
message = "dict unpacking cannot be used in dict comprehension"
def is_issue(self, leaf):
if leaf.parent.type == 'dictorsetmaker':
comp_for = leaf.get_next_sibling().get_next_sibling()
return comp_for is not None and comp_for.type in _COMP_FOR_TYPES
@ErrorFinder.register_rule(value='yield')
@ErrorFinder.register_rule(value='return')
class _ReturnAndYieldChecks(SyntaxRule):
message = "'return' with value in async generator"
message_async_yield = "'yield' inside async function"
def get_node(self, leaf):
return leaf.parent
def is_issue(self, leaf):
if self._normalizer.context.node.type != 'funcdef':
self.add_issue(self.get_node(leaf), message="'%s' outside function" % leaf.value)
elif self._normalizer.context.is_async_funcdef() \
and any(self._normalizer.context.node.iter_yield_exprs()):
if leaf.value == 'return' and leaf.parent.type == 'return_stmt':
return True
@ErrorFinder.register_rule(type='strings')
class _BytesAndStringMix(SyntaxRule):
# e.g. 's' b''
message = "cannot mix bytes and nonbytes literals"
def _is_bytes_literal(self, string):
if string.type == 'fstring':
return False
return 'b' in string.string_prefix.lower()
def is_issue(self, node):
first = node.children[0]
first_is_bytes = self._is_bytes_literal(first)
for string in node.children[1:]:
if first_is_bytes != self._is_bytes_literal(string):
return True
@ErrorFinder.register_rule(type='import_as_names')
class _TrailingImportComma(SyntaxRule):
# e.g. from foo import a,
message = "trailing comma not allowed without surrounding parentheses"
def is_issue(self, node):
if node.children[-1] == ',' and node.parent.children[-1] != ')':
return True
@ErrorFinder.register_rule(type='import_from')
class _ImportStarInFunction(SyntaxRule):
message = "import * only allowed at module level"
def is_issue(self, node):
return node.is_star_import() and self._normalizer.context.parent_context is not None
@ErrorFinder.register_rule(type='import_from')
class _FutureImportRule(SyntaxRule):
message = "from __future__ imports must occur at the beginning of the file"
def is_issue(self, node):
if _is_future_import(node):
if not _is_future_import_first(node):
return True
for from_name, future_name in node.get_paths():
name = future_name.value
allowed_futures = list(ALLOWED_FUTURES)
if self._normalizer.version >= (3, 7):
allowed_futures.append('annotations')
if name == 'braces':
self.add_issue(node, message="not a chance")
elif name == 'barry_as_FLUFL':
m = "Seriously I'm not implementing this :) ~ Dave"
self.add_issue(node, message=m)
elif name not in allowed_futures:
message = "future feature %s is not defined" % name
self.add_issue(node, message=message)
@ErrorFinder.register_rule(type='star_expr')
class _StarExprRule(SyntaxRule):
message_iterable_unpacking = "iterable unpacking cannot be used in comprehension"
def is_issue(self, node):
def check_delete_starred(node):
while node.parent is not None:
node = node.parent
if node.type == 'del_stmt':
return True
if node.type not in (*_STAR_EXPR_PARENTS, 'atom'):
return False
return False
if self._normalizer.version >= (3, 9):
ancestor = node.parent
else:
ancestor = _skip_parens_bottom_up(node)
# starred expression not in tuple/list/set
if ancestor.type not in (*_STAR_EXPR_PARENTS, 'dictorsetmaker') \
and not (ancestor.type == 'atom' and ancestor.children[0] != '('):
self.add_issue(node, message="can't use starred expression here")
return
if check_delete_starred(node):
if self._normalizer.version >= (3, 9):
self.add_issue(node, message="cannot delete starred")
else:
self.add_issue(node, message="can't use starred expression here")
return
if node.parent.type == 'testlist_comp':
# [*[] for a in [1]]
if node.parent.children[1].type in _COMP_FOR_TYPES:
self.add_issue(node, message=self.message_iterable_unpacking)
@ErrorFinder.register_rule(types=_STAR_EXPR_PARENTS)
class _StarExprParentRule(SyntaxRule):
def is_issue(self, node):
def is_definition(node, ancestor):
if ancestor is None:
return False
type_ = ancestor.type
if type_ == 'trailer':
return False
if type_ == 'expr_stmt':
return node.start_pos < ancestor.children[-1].start_pos
return is_definition(node, ancestor.parent)
if is_definition(node, node.parent):
args = [c for c in node.children if c != ',']
starred = [c for c in args if c.type == 'star_expr']
if len(starred) > 1:
if self._normalizer.version < (3, 9):
message = "two starred expressions in assignment"
else:
message = "multiple starred expressions in assignment"
self.add_issue(starred[1], message=message)
elif starred:
count = args.index(starred[0])
if count >= 256:
message = "too many expressions in star-unpacking assignment"
self.add_issue(starred[0], message=message)
@ErrorFinder.register_rule(type='annassign')
class _AnnotatorRule(SyntaxRule):
# True: int
# {}: float
message = "illegal target for annotation"
def get_node(self, node):
return node.parent
def is_issue(self, node):
type_ = None
lhs = node.parent.children[0]
lhs = _remove_parens(lhs)
try:
children = lhs.children
except AttributeError:
pass
else:
if ',' in children or lhs.type == 'atom' and children[0] == '(':
type_ = 'tuple'
elif lhs.type == 'atom' and children[0] == '[':
type_ = 'list'
trailer = children[-1]
if type_ is None:
if not (lhs.type == 'name'
# subscript/attributes are allowed
or lhs.type in ('atom_expr', 'power')
and trailer.type == 'trailer'
and trailer.children[0] != '('):
return True
else:
# x, y: str
message = "only single target (not %s) can be annotated"
self.add_issue(lhs.parent, message=message % type_)
@ErrorFinder.register_rule(type='argument')
class _ArgumentRule(SyntaxRule):
def is_issue(self, node):
first = node.children[0]
if self._normalizer.version < (3, 8):
# a((b)=c) is valid in <3.8
first = _remove_parens(first)
if node.children[1] == '=' and first.type != 'name':
if first.type == 'lambdef':
# f(lambda: 1=1)
if self._normalizer.version < (3, 8):
message = "lambda cannot contain assignment"
else:
message = 'expression cannot contain assignment, perhaps you meant "=="?'
else:
# f(+x=1)
if self._normalizer.version < (3, 8):
message = "keyword can't be an expression"
else:
message = 'expression cannot contain assignment, perhaps you meant "=="?'
self.add_issue(first, message=message)
if _is_argument_comprehension(node) and node.parent.type == 'classdef':
self.add_issue(node, message='invalid syntax')
@ErrorFinder.register_rule(type='nonlocal_stmt')
class _NonlocalModuleLevelRule(SyntaxRule):
message = "nonlocal declaration not allowed at module level"
def is_issue(self, node):
return self._normalizer.context.parent_context is None
@ErrorFinder.register_rule(type='arglist')
class _ArglistRule(SyntaxRule):
@property
def message(self):
if self._normalizer.version < (3, 7):
return "Generator expression must be parenthesized if not sole argument"
else:
return "Generator expression must be parenthesized"
def is_issue(self, node):
arg_set = set()
kw_only = False
kw_unpacking_only = False
for argument in node.children:
if argument == ',':
continue
if argument.type == 'argument':
first = argument.children[0]
if _is_argument_comprehension(argument) and len(node.children) >= 2:
# a(a, b for b in c)
return True
if first in ('*', '**'):
if first == '*':
if kw_unpacking_only:
# foo(**kwargs, *args)
message = "iterable argument unpacking " \
"follows keyword argument unpacking"
self.add_issue(argument, message=message)
else:
kw_unpacking_only = True
else: # Is a keyword argument.
kw_only = True
if first.type == 'name':
if first.value in arg_set:
# f(x=1, x=2)
message = "keyword argument repeated"
if self._normalizer.version >= (3, 9):
message += ": {}".format(first.value)
self.add_issue(first, message=message)
else:
arg_set.add(first.value)
else:
if kw_unpacking_only:
# f(**x, y)
message = "positional argument follows keyword argument unpacking"
self.add_issue(argument, message=message)
elif kw_only:
# f(x=2, y)
message = "positional argument follows keyword argument"
self.add_issue(argument, message=message)
@ErrorFinder.register_rule(type='parameters')
@ErrorFinder.register_rule(type='lambdef')
class _ParameterRule(SyntaxRule):
# def f(x=3, y): pass
message = "non-default argument follows default argument"
def is_issue(self, node):
param_names = set()
default_only = False
star_seen = False
for p in _iter_params(node):
if p.type == 'operator':
if p.value == '*':
star_seen = True
default_only = False
continue
if p.name.value in param_names:
message = "duplicate argument '%s' in function definition"
self.add_issue(p.name, message=message % p.name.value)
param_names.add(p.name.value)
if not star_seen:
if p.default is None and not p.star_count:
if default_only:
return True
elif p.star_count:
star_seen = True
default_only = False
else:
default_only = True
@ErrorFinder.register_rule(type='try_stmt')
class _TryStmtRule(SyntaxRule):
message = "default 'except:' must be last"
def is_issue(self, try_stmt):
default_except = None
for except_clause in try_stmt.children[3::3]:
if except_clause in ('else', 'finally'):
break
if except_clause == 'except':
default_except = except_clause
elif default_except is not None:
self.add_issue(default_except, message=self.message)
@ErrorFinder.register_rule(type='fstring')
class _FStringRule(SyntaxRule):
_fstring_grammar = None
message_expr = "f-string expression part cannot include a backslash"
message_nested = "f-string: expressions nested too deeply"
message_conversion = "f-string: invalid conversion character: expected 's', 'r', or 'a'"
def _check_format_spec(self, format_spec, depth):
self._check_fstring_contents(format_spec.children[1:], depth)
def _check_fstring_expr(self, fstring_expr, depth):
if depth >= 2:
self.add_issue(fstring_expr, message=self.message_nested)
expr = fstring_expr.children[1]
if '\\' in expr.get_code():
self.add_issue(expr, message=self.message_expr)
children_2 = fstring_expr.children[2]
if children_2.type == 'operator' and children_2.value == '=':
conversion = fstring_expr.children[3]
else:
conversion = children_2
if conversion.type == 'fstring_conversion':
name = conversion.children[1]
if name.value not in ('s', 'r', 'a'):
self.add_issue(name, message=self.message_conversion)
format_spec = fstring_expr.children[-2]
if format_spec.type == 'fstring_format_spec':
self._check_format_spec(format_spec, depth + 1)
def is_issue(self, fstring):
self._check_fstring_contents(fstring.children[1:-1])
def _check_fstring_contents(self, children, depth=0):
for fstring_content in children:
if fstring_content.type == 'fstring_expr':
self._check_fstring_expr(fstring_content, depth)
class _CheckAssignmentRule(SyntaxRule):
def _check_assignment(self, node, is_deletion=False, is_namedexpr=False, is_aug_assign=False):
error = None
type_ = node.type
if type_ == 'lambdef':
error = 'lambda'
elif type_ == 'atom':
first, second = node.children[:2]
error = _get_comprehension_type(node)
if error is None:
if second.type == 'dictorsetmaker':
if self._normalizer.version < (3, 8):
error = 'literal'
else:
if second.children[1] == ':':
if self._normalizer.version < (3, 10):
error = 'dict display'
else:
error = 'dict literal'
else:
error = 'set display'
elif first == "{" and second == "}":
if self._normalizer.version < (3, 8):
error = 'literal'
else:
if self._normalizer.version < (3, 10):
error = "dict display"
else:
error = "dict literal"
elif first == "{" and len(node.children) > 2:
if self._normalizer.version < (3, 8):
error = 'literal'
else:
error = "set display"
elif first in ('(', '['):
if second.type == 'yield_expr':
error = 'yield expression'
elif second.type == 'testlist_comp':
# ([a, b] := [1, 2])
# ((a, b) := [1, 2])
if is_namedexpr:
if first == '(':
error = 'tuple'
elif first == '[':
error = 'list'
# This is not a comprehension, they were handled
# further above.
for child in second.children[::2]:
self._check_assignment(child, is_deletion, is_namedexpr, is_aug_assign)
else: # Everything handled, must be useless brackets.
self._check_assignment(second, is_deletion, is_namedexpr, is_aug_assign)
elif type_ == 'keyword':
if node.value == "yield":
error = "yield expression"
elif self._normalizer.version < (3, 8):
error = 'keyword'
else:
error = str(node.value)
elif type_ == 'operator':
if node.value == '...':
if self._normalizer.version < (3, 10):
error = 'Ellipsis'
else:
error = 'ellipsis'
elif type_ == 'comparison':
error = 'comparison'
elif type_ in ('string', 'number', 'strings'):
error = 'literal'
elif type_ == 'yield_expr':
# This one seems to be a slightly different warning in Python.
message = 'assignment to yield expression not possible'
self.add_issue(node, message=message)
elif type_ == 'test':
error = 'conditional expression'
elif type_ in ('atom_expr', 'power'):
if node.children[0] == 'await':
error = 'await expression'
elif node.children[-2] == '**':
if self._normalizer.version < (3, 10):
error = 'operator'
else:
error = 'expression'
else:
# Has a trailer
trailer = node.children[-1]
assert trailer.type == 'trailer'
if trailer.children[0] == '(':
error = 'function call'
elif is_namedexpr and trailer.children[0] == '[':
error = 'subscript'
elif is_namedexpr and trailer.children[0] == '.':
error = 'attribute'
elif type_ == "fstring":
if self._normalizer.version < (3, 8):
error = 'literal'
else:
error = "f-string expression"
elif type_ in ('testlist_star_expr', 'exprlist', 'testlist'):
for child in node.children[::2]:
self._check_assignment(child, is_deletion, is_namedexpr, is_aug_assign)
elif ('expr' in type_ and type_ != 'star_expr' # is a substring
or '_test' in type_
or type_ in ('term', 'factor')):
if self._normalizer.version < (3, 10):
error = 'operator'
else:
error = 'expression'
elif type_ == "star_expr":
if is_deletion:
if self._normalizer.version >= (3, 9):
error = "starred"
else:
self.add_issue(node, message="can't use starred expression here")
else:
if self._normalizer.version >= (3, 9):
ancestor = node.parent
else:
ancestor = _skip_parens_bottom_up(node)
if ancestor.type not in _STAR_EXPR_PARENTS and not is_aug_assign \
and not (ancestor.type == 'atom' and ancestor.children[0] == '['):
message = "starred assignment target must be in a list or tuple"
self.add_issue(node, message=message)
self._check_assignment(node.children[1])
if error is not None:
if is_namedexpr:
message = 'cannot use assignment expressions with %s' % error
else:
cannot = "can't" if self._normalizer.version < (3, 8) else "cannot"
message = ' '.join([cannot, "delete" if is_deletion else "assign to", error])
self.add_issue(node, message=message)
@ErrorFinder.register_rule(type='sync_comp_for')
class _CompForRule(_CheckAssignmentRule):
message = "asynchronous comprehension outside of an asynchronous function"
def is_issue(self, node):
expr_list = node.children[1]
if expr_list.type != 'expr_list': # Already handled.
self._check_assignment(expr_list)
return node.parent.children[0] == 'async' \
and not self._normalizer.context.is_async_funcdef()
@ErrorFinder.register_rule(type='expr_stmt')
class _ExprStmtRule(_CheckAssignmentRule):
message = "illegal expression for augmented assignment"
extended_message = "'{target}' is an " + message
def is_issue(self, node):
augassign = node.children[1]
is_aug_assign = augassign != '=' and augassign.type != 'annassign'
if self._normalizer.version <= (3, 8) or not is_aug_assign:
for before_equal in node.children[:-2:2]:
self._check_assignment(before_equal, is_aug_assign=is_aug_assign)
if is_aug_assign:
target = _remove_parens(node.children[0])
# a, a[b], a.b
if target.type == "name" or (
target.type in ("atom_expr", "power")
and target.children[1].type == "trailer"
and target.children[-1].children[0] != "("
):
return False
if self._normalizer.version <= (3, 8):
return True
else:
self.add_issue(
node,
message=self.extended_message.format(
target=_get_rhs_name(node.children[0], self._normalizer.version)
),
)
@ErrorFinder.register_rule(type='with_item')
class _WithItemRule(_CheckAssignmentRule):
def is_issue(self, with_item):
self._check_assignment(with_item.children[2])
@ErrorFinder.register_rule(type='del_stmt')
class _DelStmtRule(_CheckAssignmentRule):
def is_issue(self, del_stmt):
child = del_stmt.children[1]
if child.type != 'expr_list': # Already handled.
self._check_assignment(child, is_deletion=True)
@ErrorFinder.register_rule(type='expr_list')
class _ExprListRule(_CheckAssignmentRule):
def is_issue(self, expr_list):
for expr in expr_list.children[::2]:
self._check_assignment(expr)
@ErrorFinder.register_rule(type='for_stmt')
class _ForStmtRule(_CheckAssignmentRule):
def is_issue(self, for_stmt):
# Some of the nodes here are already used, so no else if
expr_list = for_stmt.children[1]
if expr_list.type != 'expr_list': # Already handled.
self._check_assignment(expr_list)
@ErrorFinder.register_rule(type='namedexpr_test')
class _NamedExprRule(_CheckAssignmentRule):
# namedexpr_test: test [':=' test]
def is_issue(self, namedexpr_test):
# assigned name
first = namedexpr_test.children[0]
def search_namedexpr_in_comp_for(node):
while True:
parent = node.parent
if parent is None:
return parent
if parent.type == 'sync_comp_for' and parent.children[3] == node:
return parent
node = parent
if search_namedexpr_in_comp_for(namedexpr_test):
# [i+1 for i in (i := range(5))]
# [i+1 for i in (j := range(5))]
# [i+1 for i in (lambda: (j := range(5)))()]
message = 'assignment expression cannot be used in a comprehension iterable expression'
self.add_issue(namedexpr_test, message=message)
# defined names
exprlist = list()
def process_comp_for(comp_for):
if comp_for.type == 'sync_comp_for':
comp = comp_for
elif comp_for.type == 'comp_for':
comp = comp_for.children[1]
exprlist.extend(_get_for_stmt_definition_exprs(comp))
def search_all_comp_ancestors(node):
has_ancestors = False
while True:
node = node.search_ancestor('testlist_comp', 'dictorsetmaker')
if node is None:
break
for child in node.children:
if child.type in _COMP_FOR_TYPES:
process_comp_for(child)
has_ancestors = True
break
return has_ancestors
# check assignment expressions in comprehensions
search_all = search_all_comp_ancestors(namedexpr_test)
if search_all:
if self._normalizer.context.node.type == 'classdef':
message = 'assignment expression within a comprehension ' \
'cannot be used in a class body'
self.add_issue(namedexpr_test, message=message)
namelist = [expr.value for expr in exprlist if expr.type == 'name']
if first.type == 'name' and first.value in namelist:
# [i := 0 for i, j in range(5)]
# [[(i := i) for j in range(5)] for i in range(5)]
# [i for i, j in range(5) if True or (i := 1)]
# [False and (i := 0) for i, j in range(5)]
message = 'assignment expression cannot rebind ' \
'comprehension iteration variable %r' % first.value
self.add_issue(namedexpr_test, message=message)
self._check_assignment(first, is_namedexpr=True)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@parso@py3@parso@python@errors.py@.PATH_END.py
|
{
"filename": "TauRunner_examples.ipynb",
"repo_name": "icecube/TauRunner",
"repo_path": "TauRunner_extracted/TauRunner-master/examples/TauRunner_examples.ipynb",
"type": "Jupyter Notebook"
}
|
## TauRunner
Welcome to the TauRunner tutorial! This software is capable of simulating neutrinos (and anti-neutrinos) of all flavors, accounting for tau regeneration and losses in the nutau channel. The output is a set of particle energies, number of interactions, angle, and particle type.
The user has the option to propagate:
1. monochromatic fluxes
2. power-law fluxes
3. Any provided arbitrary flux by means of sampling from a cdf.
All of these can be propagated through either:
1. a fixed angle
2. a range of angles
3. uniformly sampled angles in the sky.
In terms of astrophysical bodies, we provide implementations for the Earth and Sun with capabilities of adding additional layers and changing the detector depth. In addition, we will demonstrate how to define any astrophysical object, or a slab of constant density to propagate through. All of these capabilities will be shown in the following examples. Happy running!
## Example 1: Monochromatic flux through single angle in Earth ##
The main function that runs the monte carlo is called `run_MC` and required a few arguments, which we show you how to create below
* `energies`: An array of initial particle energies in eV
* `thetas`: A corresponding array of initial nadir angles in radians
* `body`: The body which we are propagating through (Earth, Sun, custom, etc.)
* `xs`: a CrossSections object which is based on a certain cross section model
* `propagator`: PROPOSAL propagator object for charged lepton propagation
```python
import numpy as np
from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_initial_e, make_initial_thetas
nevents = 5000 # number of events to simulate
eini = 1e19 # initial energy in eV
theta = 89.0 # incidence angle (nadir)
pid = 16 # PDG MC Encoding particle ID (nutau)
xs_model = "CSMS" # neutrino cross section model
random_seed = 925
earth = construct_earth(layers=[(4., 1.0)]) # Make Earth object with 4km water layer
xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini) # Return array of initial energies in eV
thetas = make_initial_thetas(nevents, theta)
output = run_MC(
energies,
thetas,
earth,
xs,
seed=random_seed
)
```
```python
import matplotlib.pyplot as plt
pid_names = {
11: r'$e$',
12: r'$\nu_{e}$',
13: r'$\mu$',
14: r'$\nu_{\mu}$',
15: r'$\tau$',
16: r'$\nu_{\tau}$'
}
bins = np.logspace(12, 19, 75)
zeros = output['Eout']==0.
for pid in np.unique(output['PDG_Encoding']):
particle_msk = np.logical_and(np.abs(output['PDG_Encoding'])==pid, ~zeros)
name = pid_names[abs(pid)]ty
plt.hist(output['Eout'][particle_msk], bins=bins, label=name,
lw=2., histtype='step')
plt.legend(frameon=False, loc=2)
plt.loglog()
plt.xlabel(r'$E~\left(\rm{eV}\right)$')
plt.ylabel('Number')
plt.show()
```
## Example 2: Power law flux
`taurunner` also provides helper functions to propagate other spectral shapes, such as power laws or pre-loaded models of cosmogenic neutrinos.
Here, we are choosing to propagate an $E^{-2}$ spectrum over an entire hemisphere.
There are some additional keyword arguments that allow the user to turn off tau energy losses (which are less important for more steeply inclined angles) or ignore secondary particles
```python
import numpy as np
from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_initial_e, make_initial_thetas
nevents = 5000 # number of events to simulate
pid = 16
xs_model = "CSMS"
no_secondaries = True
random_seed = 925
np.random.seed(random_seed)
Earth = construct_earth(layers=[(4., 1.0)])
xs = CrossSections(xs_model)
# Sample power-law with index -2 between 1e6 GeV and 1e12 GeV
pl_exp = -2 # power law exponent
e_min = 1e15 # Minimum energy to sample in eV
e_max = 1e21 # Maximum energy to sample in eV
energies = make_initial_e(
nevents,
pl_exp,
e_min=e_max,
e_max=e_min
)
# Sample uniform in solid angle over hemisphere
th_min = 0 # Minimum nadir angle to sample from
th_max = 90 # Maximum nadir angle to sample from
thetas = make_initial_thetas(
nevents,
(th_min, th_max),
)
output = run_MC(
energies,
thetas,
Earth,
xs,
seed=random_seed,
no_secondaries=no_secondaries
)
```
```python
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
zeros = output['Eout']==0.
nutau_msk = np.logical_and(np.abs(output['PDG_Encoding'])==16, ~zeros)
plt.hist2d(
output['Eini'][nutau_msk],
np.cos(np.radians(output['Theta'][nutau_msk])),
bins=[
np.logspace(15., 21., 21),
np.linspace(0., 1., 21)
],
norm=LogNorm()
)
plt.xscale('log')
plt.xlabel(r'$E_{\rm{initial}}~(\rm{eV})$')
plt.ylabel(r'$\cos(\theta)$')
plt.title("Initial Energy Distribution")
plt.show()
```
```python
from matplotlib.colors import LogNorm
bins = np.logspace(12, 19, 75)
zeros = output['Eout']==0.
nutau_msk = np.logical_and(np.abs(output['PDG_Encoding'])==16, ~zeros)
plt.hist2d(
output['Eout'][nutau_msk],
np.cos(np.radians(output['Theta'][nutau_msk])),
bins=[np.logspace(11, 18., 21),
np.linspace(0., 1., 21)],
norm=LogNorm()
)
plt.xscale('log')
plt.xlabel(r'$E_{\rm{final}}~(\rm{eV})$')
plt.ylabel(r'$\cos(\theta)$')
plt.title("Final Energy Distribution")
plt.show()
```
Here, it is evident that the neutrinos that were propagated through more Earth (larger $\cos(\theta)$) exit the Earth at much lower energies than the neutrinos that were able to pass through skimming trajectories undergoing few, if any, interactions
We can also look at the one-dimensional energy spectra
```python
zeros = output['Eout']==0.
for pid in np.unique(output['PDG_Encoding']):
particle_msk = np.logical_and(np.abs(output['PDG_Encoding'])==pid, ~zeros)
name = pid_names[abs(pid)]
plt.hist(output['Eout'][particle_msk], bins=bins, label=name,
lw=2., histtype='step')
plt.legend(frameon=False, loc=1)
plt.loglog()
plt.xlabel(r'$E$ (eV)')
plt.ylabel('Number')
plt.show()
```
Notice how there are only tau neutrinos because we chose to not propagate any secondary particles.
## Example 3: Propagating a custom flux through Earth
`taurunner` allows the user to supply CDFs in energy to be samlped from. Here we show an example of sampling from a GZK model. An example of how to create these CDFs is given in `make_flux_CDF.ipynb`
NOTE: If you downloaded the code using the versioins released on PyPI (i.e. you did not clone the github repository), then you will not have access to the default CDF, and you should instead make your own CDF using the example notebook linked above
```python
import numpy as np
import taurunner as tr
from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_initial_e, make_initial_thetas
nevents = 5000
pid = 16
xs_model = "CSMS"
random_seed = 925
Earth = construct_earth(layers=[(4., 1.0)])
xs = CrossSections(xs_model)
# Sample from pickled CDF
pkl_f = f'{tr.__path__[0]}/resources/ahlers2010_test.pkl' # Path to pickle file with CDF to sample from
np.random.seed(random_seed)
energies = make_initial_e(
nevents,
pkl_f,
)
# Sample uniform in solid angle over hemisphere
th_min = 0 # Minimum nadir angle to sample from
th_max = 90 # Maximum nadir angle to sample from
thetas = make_initial_thetas(
nevents,
(th_min, th_max),
)
output = run_MC(
energies,
thetas,
Earth,
xs,
)
```
```python
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
bins = np.logspace(12, 19, 75)
zeros = output['Eout']==0.
nutau_msk = np.logical_and(np.abs(output['PDG_Encoding'])==16, ~zeros)
plt.hist2d(
output['Eini'][nutau_msk],
np.cos(np.radians(output['Theta'][nutau_msk])),
bins=[np.logspace(12., 19., 27),
np.linspace(0., 1., 21)],
norm=LogNorm()
)
plt.xscale('log')
plt.xlabel(r'$E_{\rm{initial}}$ (eV)')
plt.ylabel(r'$\cos(\theta)$')
plt.title("Initial Energy Distribution")
plt.show()
```
```python
from matplotlib.colors import LogNorm
bins = np.logspace(12, 19, 75)
zeros = output['Eout']==0.
nutau_msk = np.logical_and(np.abs(output['PDG_Encoding'])==16, ~zeros)
plt.hist2d(
output['Eout'][nutau_msk],
np.cos(np.radians(output['Theta'][nutau_msk])),
bins=[np.logspace(12., 19., 27),
np.linspace(0., 1., 21)],
norm=LogNorm()
)
plt.xscale('log')
plt.xlabel(r'$E_{\rm{final}}$ (eV)')
plt.ylabel(r'$\cos(\theta)$')
plt.title("Final Energy Distribution")
plt.show()
```
## Example 4: Radial trajectories
TauRunner supports custom trajectories besides chords. TauRunner includes a radial trajectory which moves radially outward from the center of the body
```python
import numpy as np
from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_initial_e
nevents = 5000
eini = 1e19
pid = 16
xs_model = "CSMS"
Earth = construct_earth(layers=[(4., 1.0)]) # Make Earth object with 4km water layer
xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = np.zeros(nevents)
output = run_MC(
energies,
thetas,
Earth,
xs,
)
```
```python
import matplotlib.pyplot as plt
pid_names = {
11: r'$e$',
12: r'$\nu_{e}$',
13: r'$\mu$',
14: r'$\nu_{\mu}$',
15: r'$\tau$',
16: r'$\nu_{\tau}$'
}
bins = np.logspace(12, 19, 75)
zeros = output['Eout']==0.
for pid, name in pid_names.items():
particle_msk = np.logical_and(np.abs(output['PDG_Encoding'])==pid, ~zeros)
# name = pid_names[pid]
plt.hist(
output['Eout'][particle_msk],
bins=bins,
label=name,
lw=2.,
histtype='step'
)
plt.legend(frameon=False, loc=1)
plt.loglog()
plt.xlabel(r'$E~\left(\rm{eV}\right)$')
plt.ylabel('Number')
plt.show()
```
## Example 5: Propagating through other bodies
In addition to propagating neutrinos through the Earth, you can also propagate neutrinos through the Sun or through any object given a density profile
```python
from taurunner.body import construct_sun
from taurunner.body import Body
```
### First, through the Sun
```python
import numpy as np
from taurunner.main import run_MC
from taurunner.body import construct_sun
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_initial_e, make_initial_thetas, units
nevents = 5000
eini = 1e13 # the sun is opaque at high energies
theta = 10.0
pid = 16
xs_model = "dipole"
solar_model = "HZ_Sun" # Can also be "LZ_Sun"
random_seed = 925
xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)
sun = construct_sun(solar_model)
output = run_MC(
energies,
thetas,
sun,
xs,
seed=random_seed
)
```
```python
import matplotlib.pyplot as plt
bins = np.logspace(1, 3.5, 26)
zeros = output['Eout']==0.
pid_names = {
11: 'r$e$',
12: r'$\nu_{e}$',
13: r'$\mu$',
14: r'$\nu_{\mu}$',
15: r'$\tau$',
16: r'$\nu_{\tau}$'
}
for pid in reversed(range(12,17)):
particle_msk = np.logical_and(np.abs(output['PDG_Encoding'])==pid, ~zeros)
name = pid_names[pid]
plt.hist(output['Eout'][particle_msk]/units.GeV, bins=bins, label=name,
lw=2., histtype='step')
plt.legend(frameon=False, loc=1)
plt.loglog()
plt.xlabel(r'$E~\left(\rm{GeV}\right)$')
plt.ylabel('Number')
plt.show()
```
### And next, through a slab of constant density which we construct using the `Body` object and a radial trajectory
```python
import numpy as np
from taurunner.body import Body
from taurunner.main import run_MC
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_initial_e, make_initial_thetas
nevents = 5000
eini = 1e17
theta = 0
pid = 14
xs_model = "CSMS"
# Make body with density 3.14 g/cm^3 and radius 1000 km
body = Body(3.14, 1e3)
xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)
output = run_MC(
energies,
thetas,
body,
xs,
flavor=pid
)
```
```python
import matplotlib.pyplot as plt
bins = np.logspace(5, 19, 26)
zeros = output['Eout']==0.
pid_names = {
11: 'r$e$',
12: r'$\nu_{e}$',
13: r'$\mu$',
14: r'$\nu_{\mu}$',
15: r'$\tau$',
16: r'$\nu_{\tau}$'
}
for pid in np.unique(output['PDG_Encoding']):
particle_msk = np.logical_and(output['PDG_Encoding']==pid, ~zeros)
name = pid_names[abs(pid)]
plt.hist(output['Eout'][particle_msk], bins=bins, label=name,
lw=2., histtype='step')
plt.plot()
plt.xlim(1e11,1e15)
plt.legend(frameon=False, loc=1)
plt.loglog()
plt.xlabel(r'$E$ (eV)')
plt.ylabel('Number')
plt.show()
```
### And next, through a layered slab
The constant density slab may be generalized to a slab of multiple layers. The densities in each layer may be positive scalars, unary functions which return positive scalars, or a potentially mixed list of such objects. In this example, we show how to accomplish this latter option.
```python
import numpy as np
from taurunner.body import Body
from taurunner.main import run_MC
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_initial_e, make_initial_thetas
nevents = 1000
eini = 1e15
theta = 0
pid = 16
xs_model = "CSMS"
# Make layered body with radius 1,000 km
def density_f(x):
return x**-2/4
densities = [4, density_f, 1, 0.4]
boundaries = [0.25, 0.3, 0.5, 1] # Right hand boundaries of the layers last boundary should always be 1
body = Body([(d, b) for d, b in zip(densities, boundaries)], 1e3)
xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)
output = run_MC(
energies,
thetas,
body,
xs,
)
```
```python
import matplotlib.pyplot as plt
bins = np.logspace(12.5, 19, 26)
zeros = output['Eout']==0.
pid_names = {
11: 'r$e$',
12: r'$\nu_{e}$',
13: r'$\mu$',
14: r'$\nu_{\mu}$',
15: r'$\tau$',
16: r'$\nu_{\tau}$'
}
for pid in reversed(range(12,17)):
particle_msk = np.logical_and(np.abs(output['PDG_Encoding'])==pid, ~zeros)
name = pid_names[pid]
plt.hist(output['Eout'][particle_msk], bins=bins, label=name,
lw=2., histtype='step')
plt.legend(frameon=False, loc=1)
plt.loglog()
plt.xlabel(r'$E$ (eV)')
plt.ylabel('Number')
plt.show()
```
## Example 4: Running from the command line
As is described more thoroughly in the `README`, `taurunner` can also be called from the command line, an example of which is shown inline below
```python
!python ../taurunner/main.py -n 20 -t 0.0 -e 1e18
```
```python
```
|
icecubeREPO_NAMETauRunnerPATH_START.@TauRunner_extracted@TauRunner-master@examples@TauRunner_examples.ipynb@.PATH_END.py
|
{
"filename": "nimrod.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/Pygments/py2/pygments/lexers/nimrod.py",
"type": "Python"
}
|
# -*- coding: utf-8 -*-
"""
pygments.lexers.nimrod
~~~~~~~~~~~~~~~~~~~~~~
Lexer for the Nim language (formerly known as Nimrod).
:copyright: Copyright 2006-2019 by the Pygments team, see AUTHORS.
:license: BSD, see LICENSE for details.
"""
import re
from pygments.lexer import RegexLexer, include, default
from pygments.token import Text, Comment, Operator, Keyword, Name, String, \
Number, Punctuation, Error
__all__ = ['NimrodLexer']
class NimrodLexer(RegexLexer):
"""
For `Nim <http://nim-lang.org/>`_ source code.
.. versionadded:: 1.5
"""
name = 'Nimrod'
aliases = ['nim', 'nimrod']
filenames = ['*.nim', '*.nimrod']
mimetypes = ['text/x-nim']
flags = re.MULTILINE | re.IGNORECASE | re.UNICODE
def underscorize(words):
newWords = []
new = ""
for word in words:
for ch in word:
new += (ch + "_?")
newWords.append(new)
new = ""
return "|".join(newWords)
keywords = [
'addr', 'and', 'as', 'asm', 'atomic', 'bind', 'block', 'break', 'case',
'cast', 'concept', 'const', 'continue', 'converter', 'defer', 'discard',
'distinct', 'div', 'do', 'elif', 'else', 'end', 'enum', 'except',
'export', 'finally', 'for', 'func', 'if', 'in', 'yield', 'interface',
'is', 'isnot', 'iterator', 'let', 'macro', 'method', 'mixin', 'mod',
'not', 'notin', 'object', 'of', 'or', 'out', 'proc', 'ptr', 'raise',
'ref', 'return', 'shared', 'shl', 'shr', 'static', 'template', 'try',
'tuple', 'type', 'when', 'while', 'with', 'without', 'xor'
]
keywordsPseudo = [
'nil', 'true', 'false'
]
opWords = [
'and', 'or', 'not', 'xor', 'shl', 'shr', 'div', 'mod', 'in',
'notin', 'is', 'isnot'
]
types = [
'int', 'int8', 'int16', 'int32', 'int64', 'float', 'float32', 'float64',
'bool', 'char', 'range', 'array', 'seq', 'set', 'string'
]
tokens = {
'root': [
(r'##.*$', String.Doc),
(r'#.*$', Comment),
(r'[*=><+\-/@$~&%!?|\\\[\]]', Operator),
(r'\.\.|\.|,|\[\.|\.\]|\{\.|\.\}|\(\.|\.\)|\{|\}|\(|\)|:|\^|`|;',
Punctuation),
# Strings
(r'(?:[\w]+)"', String, 'rdqs'),
(r'"""', String, 'tdqs'),
('"', String, 'dqs'),
# Char
("'", String.Char, 'chars'),
# Keywords
(r'(%s)\b' % underscorize(opWords), Operator.Word),
(r'(p_?r_?o_?c_?\s)(?![(\[\]])', Keyword, 'funcname'),
(r'(%s)\b' % underscorize(keywords), Keyword),
(r'(%s)\b' % underscorize(['from', 'import', 'include']),
Keyword.Namespace),
(r'(v_?a_?r)\b', Keyword.Declaration),
(r'(%s)\b' % underscorize(types), Keyword.Type),
(r'(%s)\b' % underscorize(keywordsPseudo), Keyword.Pseudo),
# Identifiers
(r'\b((?![_\d])\w)(((?!_)\w)|(_(?!_)\w))*', Name),
# Numbers
(r'[0-9][0-9_]*(?=([e.]|\'f(32|64)))',
Number.Float, ('float-suffix', 'float-number')),
(r'0x[a-f0-9][a-f0-9_]*', Number.Hex, 'int-suffix'),
(r'0b[01][01_]*', Number.Bin, 'int-suffix'),
(r'0o[0-7][0-7_]*', Number.Oct, 'int-suffix'),
(r'[0-9][0-9_]*', Number.Integer, 'int-suffix'),
# Whitespace
(r'\s+', Text),
(r'.+$', Error),
],
'chars': [
(r'\\([\\abcefnrtvl"\']|x[a-f0-9]{2}|[0-9]{1,3})', String.Escape),
(r"'", String.Char, '#pop'),
(r".", String.Char)
],
'strings': [
(r'(?<!\$)\$(\d+|#|\w+)+', String.Interpol),
(r'[^\\\'"$\n]+', String),
# quotes, dollars and backslashes must be parsed one at a time
(r'[\'"\\]', String),
# unhandled string formatting sign
(r'\$', String)
# newlines are an error (use "nl" state)
],
'dqs': [
(r'\\([\\abcefnrtvl"\']|\n|x[a-f0-9]{2}|[0-9]{1,3})',
String.Escape),
(r'"', String, '#pop'),
include('strings')
],
'rdqs': [
(r'"(?!")', String, '#pop'),
(r'""', String.Escape),
include('strings')
],
'tdqs': [
(r'"""(?!")', String, '#pop'),
include('strings'),
include('nl')
],
'funcname': [
(r'((?![\d_])\w)(((?!_)\w)|(_(?!_)\w))*', Name.Function, '#pop'),
(r'`.+`', Name.Function, '#pop')
],
'nl': [
(r'\n', String)
],
'float-number': [
(r'\.(?!\.)[0-9_]*', Number.Float),
(r'e[+-]?[0-9][0-9_]*', Number.Float),
default('#pop')
],
'float-suffix': [
(r'\'f(32|64)', Number.Float),
default('#pop')
],
'int-suffix': [
(r'\'i(32|64)', Number.Integer.Long),
(r'\'i(8|16)', Number.Integer),
default('#pop')
],
}
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@Pygments@py2@pygments@lexers@nimrod.py@.PATH_END.py
|
{
"filename": "feature_set.py",
"repo_name": "dwkim78/upsilon",
"repo_path": "upsilon_extracted/upsilon-master/upsilon/extract_features/feature_set.py",
"type": "Python"
}
|
def get_feature_set():
"""
Return a list of features' names.
Features' name that are used to train a model and predict a class.
Sorted by the names.
Returns
-------
feature_names : list
A list of features' names.
"""
features = ['amplitude', 'hl_amp_ratio', 'kurtosis', 'period',
'phase_cusum', 'phase_eta', 'phi21', 'phi31', 'quartile31',
'r21', 'r31', 'shapiro_w', 'skewness', 'slope_per10',
'slope_per90', 'stetson_k']
features.sort()
return features
def get_feature_set_all():
"""
Return a list of entire features.
A set of entire features regardless of being used to train a model or
predict a class.
Returns
-------
feature_names : list
A list of features' names.
"""
features = get_feature_set()
features.append('cusum')
features.append('eta')
features.append('n_points')
features.append('period_SNR')
features.append('period_log10FAP')
features.append('period_uncertainty')
features.append('weighted_mean')
features.append('weighted_std')
features.sort()
return features
if __name__ == '__main__':
print(get_feature_set())
|
dwkim78REPO_NAMEupsilonPATH_START.@upsilon_extracted@upsilon-master@upsilon@extract_features@feature_set.py@.PATH_END.py
|
{
"filename": "_family.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/heatmap/colorbar/title/font/_family.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class FamilyValidator(_plotly_utils.basevalidators.StringValidator):
def __init__(
self, plotly_name="family", parent_name="heatmap.colorbar.title.font", **kwargs
):
super(FamilyValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "colorbars"),
no_blank=kwargs.pop("no_blank", True),
strict=kwargs.pop("strict", True),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@heatmap@colorbar@title@font@_family.py@.PATH_END.py
|
{
"filename": "finecenter.py",
"repo_name": "t-brandt/acorns-adi",
"repo_path": "acorns-adi_extracted/acorns-adi-master/centroid/finecenter.py",
"type": "Python"
}
|
#!/usr/bin/env python
#
# Original filename: finecenter.py
#
# Author: Tim Brandt
# Email: tbrandt@astro.princeton.edu
# Date: May 2012
#
# Summary: Interactively refine the centroid of an image sequence
#
#from speckle_centroid import speckle_centroid
from easygui import *
from pylab import *
import pyfits as pyf
def finecenter(flux, objname, output_dir):
"""
function finecenter interactively refines the centroid of an image
sequence. The routine averages a sequence of frames, plots the
central 80x80 pixels (0.8x0.8 arcseconds for HiCIAO) and labels
the center. The user then inputs the offset, and, when satisfied,
clicks 'OK'. The final image is saved in the output directory.
The function takes three inputs:
1. A 3D flux array; the first index should run over frame number
2. The object name, for naming the output file. This should be
a string.
3. The output directory. This should be a string, and the directory
should exist and have write permissions.
The function returns the user-determined offset in the centroid as
[y_offset, x_offset].
"""
################################################################
# Extract, plot the central portion of the flux array. Try to
# centroid between pairs of speckles (local maxima in intensity)
# to form a guess as to the absolute centroid. This doesn't
# always improve things; the user will soon check interactively.
################################################################
dimy, dimx = flux.shape
#y, x = speckle_centroid('', flux, center=[dimy // 2, dimx // 2])
y, x = [dimy // 2, dimx // 2]
dimy, dimx = flux.shape
di = min(40, dimy // 2 - 1, dimx // 2 - 1)
subarr = flux[dimy // 2 - di:dimy // 2 + di + 1,
dimx // 2 - di:dimx // 2 + di + 1]
grid = np.arange(di * 2 + 1)
grid_y, grid_x = np.meshgrid(grid, grid)
yc, xc = [0., 0.]
while 1:
################################################################
# Plot the central part of the image with bullseye-type
# annotations until the user indicates he/she is satisfied.
################################################################
r = np.sqrt((grid_y - di - y + 100 - yc)**2 +
(grid_x - di - x + 100 - xc)**2)
figure(figsize=(8,8))
imshow(np.sqrt(subarr), interpolation='bilinear', origin='lower')
contour(grid_x, grid_y, r, [4, 4, 15, 25, 35],
linewidths=(4, 1, 3, 3, 3,),
colors=('k', 'm', 'k', 'k', 'k'),
linestyles=('solid', 'solid', 'dashed', 'dashed', 'dashed'))
plot([di + xc + x - 100], [di + y + yc - 100],
color='y', marker='+', markersize=8, mew=2)
axis('off')
savefig(output_dir + '/' + objname + '_center_verify.png')
show(block=False)
clf()
shift = enterbox(msg='Check/refine the pipeline absolute center.\n' +
'Enter an offset to apply in the format dx, dy.\n' +
'Graphic has dimensions ' + str(subarr.shape[0]) +
' x ' + str(subarr.shape[1]) + '.\n' +
'Click OK to keep the current center.',
title='Fine Centroiding',
default=str(xc) + ',' + str(yc))
try:
yc_tmp = float(shift.split(',')[1])
xc_tmp = float(shift.split(',')[0])
if yc_tmp == yc and xc_tmp == xc:
if ynbox(msg='Keep the center shown?',
title='Fine Centroiding'):
break
else:
yc, xc = [yc_tmp, xc_tmp]
except:
msgbox(msg='Invalid format, please try again.',
title='Fine Centroiding')
################################################################
# Return the user-determined offset.
################################################################
return [yc + y - 100, xc + x - 100]
|
t-brandtREPO_NAMEacorns-adiPATH_START.@acorns-adi_extracted@acorns-adi-master@centroid@finecenter.py@.PATH_END.py
|
{
"filename": "README.md",
"repo_name": "nespinoza/mc-spam",
"repo_path": "mc-spam_extracted/mc-spam-master/README.md",
"type": "Markdown"
}
|
# mc-spam
MC-SPAM (Monte-Carlo Synthetic-Photometry/Atmosphere-Model) is an algorithm to generate limb-darkening coefficients
from models that are comparable to transit photometry according to the formalism described in Espinoza & Jordan (2015),
which improves the original SPAM algorithm proposed by Howarth (2011) by taking in consideration the uncertainty on
the stellar and transit parameters of the system under analysis.
If you use this code for your research, please consider citing Espinoza & Jordan (2015; http://arxiv.org/abs/1503.07020).
DEPENDENCIES
------------
This code makes use of three important libraries:
+ Numpy.
+ Scipy.
+ Pyfits.
All of them are open source and can be easily installed in any machine.
INSTALLATION
------------
Because this code uses transit modelling to obtain the MC-SPAM limb-darkening coefficients, it needs an implementation
of the Mandel & Agol (2002) transit modelling in order to run. For this, a Fortran implementation of the code is under
the "main_codes" folder, which in turn is called by our Python routines. In order for this link to be made, you
need to "install" the package by simply running:
python install.py
Which will automatically generate the needed files for the transit code to run.
USAGE
-----
In order to run, the code needs to know the following parameters of a given system:
p: The planet-to-star radius ratio, Rp/R_*.
i: The inclination of the orbit (in degrees).
aR: The semi-major axis to stellar radius ratio (a/R_*)
e: The eccentricity of the orbit.
omega: The argument of periastron (in degrees).
Teff: Effective temperature of the host star (in Kelvins)
logg: Log-gravity of the host star.
MH: Metallicity of the host star (~[Fe/H]).
vturb: Microturbulent velocity of the host star (in km/s).
These parameters can be either estimated, in which case you need the associated uncertainties,
fixed or obtained through an MCMC chain. If you have any data for your system that was estimated
by previous works (or from you and for which you do not have an MCMC chain), you must input it
under the "estimated_parameters" folder; the "planet_data.dat" stores the parameters of the transit,
while "star_data.dat" stores the parameters of the host star (note that the names of both systems
must match; see the files for example inputs). If a parameter is fixed by some reason, fix their
upper and lower errors to zero.
If you want to use an MCMC chain for a given parameter, input any value for that parameter
in the above mentioned files and modify the "get_mcspam_vals.py" file in order to input
your MCMC chains (see the example under lines 76 to 83 of the "get_mcspam_vals.py" code).
After all of the above is set, you can edit the options in the top part of the
"get_mcspam_vals.py" file and run it by simply doing:
python get_mcspam_vals.py
This will then generate the MC-SPAM estimates of the model limb-darkening coefficients.
OUTPUTS
-------
The program will generate an output folder with a user-defined name (the default is "results"),
in which a folder for each system will be created along with a mc_spam_results.dat file that
will contain the 0.16, 0.5 and 0.84 quantiles (i.e., the median and the "1-sigma" errors) of
the distribution of both the model and the MC-SPAM estimates of the limb-darkening coefficients.
Inside each folder, the Monte-Carlo samples of both the original model and the estimated MC-SPAM
limb-darkening coefficients will be saved as FITS files.
|
nespinozaREPO_NAMEmc-spamPATH_START.@mc-spam_extracted@mc-spam-master@README.md@.PATH_END.py
|
{
"filename": "_variant.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/ohlc/legendgrouptitle/font/_variant.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class VariantValidator(_plotly_utils.basevalidators.EnumeratedValidator):
def __init__(
self, plotly_name="variant", parent_name="ohlc.legendgrouptitle.font", **kwargs
):
super(VariantValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "style"),
values=kwargs.pop(
"values",
[
"normal",
"small-caps",
"all-small-caps",
"all-petite-caps",
"petite-caps",
"unicase",
],
),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@ohlc@legendgrouptitle@font@_variant.py@.PATH_END.py
|
{
"filename": "html.py",
"repo_name": "pandas-dev/pandas",
"repo_path": "pandas_extracted/pandas-main/pandas/io/html.py",
"type": "Python"
}
|
"""
:mod:`pandas.io.html` is a module containing functionality for dealing with
HTML IO.
"""
from __future__ import annotations
from collections import abc
import errno
import numbers
import os
import re
from re import Pattern
from typing import (
TYPE_CHECKING,
Literal,
cast,
)
from pandas._libs import lib
from pandas.compat._optional import import_optional_dependency
from pandas.errors import (
AbstractMethodError,
EmptyDataError,
)
from pandas.util._decorators import doc
from pandas.util._validators import check_dtype_backend
from pandas.core.dtypes.common import is_list_like
from pandas import isna
from pandas.core.indexes.base import Index
from pandas.core.indexes.multi import MultiIndex
from pandas.core.series import Series
from pandas.core.shared_docs import _shared_docs
from pandas.io.common import (
get_handle,
is_url,
stringify_path,
validate_header_arg,
)
from pandas.io.formats.printing import pprint_thing
from pandas.io.parsers import TextParser
if TYPE_CHECKING:
from collections.abc import (
Iterable,
Sequence,
)
from pandas._typing import (
BaseBuffer,
DtypeBackend,
FilePath,
HTMLFlavors,
ReadBuffer,
StorageOptions,
)
from pandas import DataFrame
#############
# READ HTML #
#############
_RE_WHITESPACE = re.compile(r"[\r\n]+|\s{2,}")
def _remove_whitespace(s: str, regex: Pattern = _RE_WHITESPACE) -> str:
"""
Replace extra whitespace inside of a string with a single space.
Parameters
----------
s : str or unicode
The string from which to remove extra whitespace.
regex : re.Pattern
The regular expression to use to remove extra whitespace.
Returns
-------
subd : str or unicode
`s` with all extra whitespace replaced with a single space.
"""
return regex.sub(" ", s.strip())
def _get_skiprows(skiprows: int | Sequence[int] | slice | None) -> int | Sequence[int]:
"""
Get an iterator given an integer, slice or container.
Parameters
----------
skiprows : int, slice, container
The iterator to use to skip rows; can also be a slice.
Raises
------
TypeError
* If `skiprows` is not a slice, integer, or Container
Returns
-------
it : iterable
A proper iterator to use to skip rows of a DataFrame.
"""
if isinstance(skiprows, slice):
start, step = skiprows.start or 0, skiprows.step or 1
return list(range(start, skiprows.stop, step))
elif isinstance(skiprows, numbers.Integral) or is_list_like(skiprows):
return cast("int | Sequence[int]", skiprows)
elif skiprows is None:
return 0
raise TypeError(f"{type(skiprows).__name__} is not a valid type for skipping rows")
def _read(
obj: FilePath | BaseBuffer,
encoding: str | None,
storage_options: StorageOptions | None,
) -> str | bytes:
"""
Try to read from a url, file or string.
Parameters
----------
obj : str, unicode, path object, or file-like object
Returns
-------
raw_text : str
"""
try:
with get_handle(
obj, "r", encoding=encoding, storage_options=storage_options
) as handles:
return handles.handle.read()
except OSError as err:
if not is_url(obj):
raise FileNotFoundError(
f"[Errno {errno.ENOENT}] {os.strerror(errno.ENOENT)}: {obj}"
) from err
raise
class _HtmlFrameParser:
"""
Base class for parsers that parse HTML into DataFrames.
Parameters
----------
io : str or file-like
This can be either a string path, a valid URL using the HTTP,
FTP, or FILE protocols or a file-like object.
match : str or regex
The text to match in the document.
attrs : dict
List of HTML <table> element attributes to match.
encoding : str
Encoding to be used by parser
displayed_only : bool
Whether or not items with "display:none" should be ignored
extract_links : {None, "all", "header", "body", "footer"}
Table elements in the specified section(s) with <a> tags will have their
href extracted.
.. versionadded:: 1.5.0
Attributes
----------
io : str or file-like
raw HTML, URL, or file-like object
match : regex
The text to match in the raw HTML
attrs : dict-like
A dictionary of valid table attributes to use to search for table
elements.
encoding : str
Encoding to be used by parser
displayed_only : bool
Whether or not items with "display:none" should be ignored
extract_links : {None, "all", "header", "body", "footer"}
Table elements in the specified section(s) with <a> tags will have their
href extracted.
.. versionadded:: 1.5.0
Notes
-----
To subclass this class effectively you must override the following methods:
* :func:`_build_doc`
* :func:`_attr_getter`
* :func:`_href_getter`
* :func:`_text_getter`
* :func:`_parse_td`
* :func:`_parse_thead_tr`
* :func:`_parse_tbody_tr`
* :func:`_parse_tfoot_tr`
* :func:`_parse_tables`
* :func:`_equals_tag`
See each method's respective documentation for details on their
functionality.
"""
def __init__(
self,
io: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
match: str | Pattern,
attrs: dict[str, str] | None,
encoding: str,
displayed_only: bool,
extract_links: Literal[None, "header", "footer", "body", "all"],
storage_options: StorageOptions = None,
) -> None:
self.io = io
self.match = match
self.attrs = attrs
self.encoding = encoding
self.displayed_only = displayed_only
self.extract_links = extract_links
self.storage_options = storage_options
def parse_tables(self):
"""
Parse and return all tables from the DOM.
Returns
-------
list of parsed (header, body, footer) tuples from tables.
"""
tables = self._parse_tables(self._build_doc(), self.match, self.attrs)
return (self._parse_thead_tbody_tfoot(table) for table in tables)
def _attr_getter(self, obj, attr):
"""
Return the attribute value of an individual DOM node.
Parameters
----------
obj : node-like
A DOM node.
attr : str or unicode
The attribute, such as "colspan"
Returns
-------
str or unicode
The attribute value.
"""
# Both lxml and BeautifulSoup have the same implementation:
return obj.get(attr)
def _href_getter(self, obj) -> str | None:
"""
Return a href if the DOM node contains a child <a> or None.
Parameters
----------
obj : node-like
A DOM node.
Returns
-------
href : str or unicode
The href from the <a> child of the DOM node.
"""
raise AbstractMethodError(self)
def _text_getter(self, obj):
"""
Return the text of an individual DOM node.
Parameters
----------
obj : node-like
A DOM node.
Returns
-------
text : str or unicode
The text from an individual DOM node.
"""
raise AbstractMethodError(self)
def _parse_td(self, obj):
"""
Return the td elements from a row element.
Parameters
----------
obj : node-like
A DOM <tr> node.
Returns
-------
list of node-like
These are the elements of each row, i.e., the columns.
"""
raise AbstractMethodError(self)
def _parse_thead_tr(self, table):
"""
Return the list of thead row elements from the parsed table element.
Parameters
----------
table : a table element that contains zero or more thead elements.
Returns
-------
list of node-like
These are the <tr> row elements of a table.
"""
raise AbstractMethodError(self)
def _parse_tbody_tr(self, table):
"""
Return the list of tbody row elements from the parsed table element.
HTML5 table bodies consist of either 0 or more <tbody> elements (which
only contain <tr> elements) or 0 or more <tr> elements. This method
checks for both structures.
Parameters
----------
table : a table element that contains row elements.
Returns
-------
list of node-like
These are the <tr> row elements of a table.
"""
raise AbstractMethodError(self)
def _parse_tfoot_tr(self, table):
"""
Return the list of tfoot row elements from the parsed table element.
Parameters
----------
table : a table element that contains row elements.
Returns
-------
list of node-like
These are the <tr> row elements of a table.
"""
raise AbstractMethodError(self)
def _parse_tables(self, document, match, attrs):
"""
Return all tables from the parsed DOM.
Parameters
----------
document : the DOM from which to parse the table element.
match : str or regular expression
The text to search for in the DOM tree.
attrs : dict
A dictionary of table attributes that can be used to disambiguate
multiple tables on a page.
Raises
------
ValueError : `match` does not match any text in the document.
Returns
-------
list of node-like
HTML <table> elements to be parsed into raw data.
"""
raise AbstractMethodError(self)
def _equals_tag(self, obj, tag) -> bool:
"""
Return whether an individual DOM node matches a tag
Parameters
----------
obj : node-like
A DOM node.
tag : str
Tag name to be checked for equality.
Returns
-------
boolean
Whether `obj`'s tag name is `tag`
"""
raise AbstractMethodError(self)
def _build_doc(self):
"""
Return a tree-like object that can be used to iterate over the DOM.
Returns
-------
node-like
The DOM from which to parse the table element.
"""
raise AbstractMethodError(self)
def _parse_thead_tbody_tfoot(self, table_html):
"""
Given a table, return parsed header, body, and foot.
Parameters
----------
table_html : node-like
Returns
-------
tuple of (header, body, footer), each a list of list-of-text rows.
Notes
-----
Header and body are lists-of-lists. Top level list is a list of
rows. Each row is a list of str text.
Logic: Use <thead>, <tbody>, <tfoot> elements to identify
header, body, and footer, otherwise:
- Put all rows into body
- Move rows from top of body to header only if
all elements inside row are <th>
- Move rows from bottom of body to footer only if
all elements inside row are <th>
"""
header_rows = self._parse_thead_tr(table_html)
body_rows = self._parse_tbody_tr(table_html)
footer_rows = self._parse_tfoot_tr(table_html)
def row_is_all_th(row):
return all(self._equals_tag(t, "th") for t in self._parse_td(row))
if not header_rows:
# The table has no <thead>. Move the top all-<th> rows from
# body_rows to header_rows. (This is a common case because many
# tables in the wild have no <thead> or <tfoot>
while body_rows and row_is_all_th(body_rows[0]):
header_rows.append(body_rows.pop(0))
header, rem = self._expand_colspan_rowspan(header_rows, section="header")
body, rem = self._expand_colspan_rowspan(
body_rows,
section="body",
remainder=rem,
overflow=len(footer_rows) > 0,
)
footer, _ = self._expand_colspan_rowspan(
footer_rows, section="footer", remainder=rem, overflow=False
)
return header, body, footer
def _expand_colspan_rowspan(
self,
rows,
section: Literal["header", "footer", "body"],
remainder: list[tuple[int, str | tuple, int]] | None = None,
overflow: bool = True,
) -> tuple[list[list], list[tuple[int, str | tuple, int]]]:
"""
Given a list of <tr>s, return a list of text rows.
Parameters
----------
rows : list of node-like
List of <tr>s
section : the section that the rows belong to (header, body or footer).
remainder: list[tuple[int, str | tuple, int]] | None
Any remainder from the expansion of previous section
overflow: bool
If true, return any partial rows as 'remainder'. If not, use up any
partial rows. True by default.
Returns
-------
list of list
Each returned row is a list of str text, or tuple (text, link)
if extract_links is not None.
remainder
Remaining partial rows if any. If overflow is False, an empty list
is returned.
Notes
-----
Any cell with ``rowspan`` or ``colspan`` will have its contents copied
to subsequent cells.
"""
all_texts = [] # list of rows, each a list of str
text: str | tuple
remainder = remainder if remainder is not None else []
for tr in rows:
texts = [] # the output for this row
next_remainder = []
index = 0
tds = self._parse_td(tr)
for td in tds:
# Append texts from previous rows with rowspan>1 that come
# before this <td>
while remainder and remainder[0][0] <= index:
prev_i, prev_text, prev_rowspan = remainder.pop(0)
texts.append(prev_text)
if prev_rowspan > 1:
next_remainder.append((prev_i, prev_text, prev_rowspan - 1))
index += 1
# Append the text from this <td>, colspan times
text = _remove_whitespace(self._text_getter(td))
if self.extract_links in ("all", section):
href = self._href_getter(td)
text = (text, href)
rowspan = int(self._attr_getter(td, "rowspan") or 1)
colspan = int(self._attr_getter(td, "colspan") or 1)
for _ in range(colspan):
texts.append(text)
if rowspan > 1:
next_remainder.append((index, text, rowspan - 1))
index += 1
# Append texts from previous rows at the final position
for prev_i, prev_text, prev_rowspan in remainder:
texts.append(prev_text)
if prev_rowspan > 1:
next_remainder.append((prev_i, prev_text, prev_rowspan - 1))
all_texts.append(texts)
remainder = next_remainder
if not overflow:
# Append rows that only appear because the previous row had non-1
# rowspan
while remainder:
next_remainder = []
texts = []
for prev_i, prev_text, prev_rowspan in remainder:
texts.append(prev_text)
if prev_rowspan > 1:
next_remainder.append((prev_i, prev_text, prev_rowspan - 1))
all_texts.append(texts)
remainder = next_remainder
return all_texts, remainder
def _handle_hidden_tables(self, tbl_list, attr_name: str):
"""
Return list of tables, potentially removing hidden elements
Parameters
----------
tbl_list : list of node-like
Type of list elements will vary depending upon parser used
attr_name : str
Name of the accessor for retrieving HTML attributes
Returns
-------
list of node-like
Return type matches `tbl_list`
"""
if not self.displayed_only:
return tbl_list
return [
x
for x in tbl_list
if "display:none"
not in getattr(x, attr_name).get("style", "").replace(" ", "")
]
class _BeautifulSoupHtml5LibFrameParser(_HtmlFrameParser):
"""
HTML to DataFrame parser that uses BeautifulSoup under the hood.
See Also
--------
pandas.io.html._HtmlFrameParser
pandas.io.html._LxmlFrameParser
Notes
-----
Documentation strings for this class are in the base class
:class:`pandas.io.html._HtmlFrameParser`.
"""
def _parse_tables(self, document, match, attrs):
element_name = "table"
tables = document.find_all(element_name, attrs=attrs)
if not tables:
raise ValueError("No tables found")
result = []
unique_tables = set()
tables = self._handle_hidden_tables(tables, "attrs")
for table in tables:
if self.displayed_only:
for elem in table.find_all("style"):
elem.decompose()
for elem in table.find_all(style=re.compile(r"display:\s*none")):
elem.decompose()
if table not in unique_tables and table.find(string=match) is not None:
result.append(table)
unique_tables.add(table)
if not result:
raise ValueError(f"No tables found matching pattern {match.pattern!r}")
return result
def _href_getter(self, obj) -> str | None:
a = obj.find("a", href=True)
return None if not a else a["href"]
def _text_getter(self, obj):
return obj.text
def _equals_tag(self, obj, tag) -> bool:
return obj.name == tag
def _parse_td(self, row):
return row.find_all(("td", "th"), recursive=False)
def _parse_thead_tr(self, table):
return table.select("thead tr")
def _parse_tbody_tr(self, table):
from_tbody = table.select("tbody tr")
from_root = table.find_all("tr", recursive=False)
# HTML spec: at most one of these lists has content
return from_tbody + from_root
def _parse_tfoot_tr(self, table):
return table.select("tfoot tr")
def _setup_build_doc(self):
raw_text = _read(self.io, self.encoding, self.storage_options)
if not raw_text:
raise ValueError(f"No text parsed from document: {self.io}")
return raw_text
def _build_doc(self):
from bs4 import BeautifulSoup
bdoc = self._setup_build_doc()
if isinstance(bdoc, bytes) and self.encoding is not None:
udoc = bdoc.decode(self.encoding)
from_encoding = None
else:
udoc = bdoc
from_encoding = self.encoding
soup = BeautifulSoup(udoc, features="html5lib", from_encoding=from_encoding)
for br in soup.find_all("br"):
br.replace_with("\n" + br.text)
return soup
def _build_xpath_expr(attrs) -> str:
"""
Build an xpath expression to simulate bs4's ability to pass in kwargs to
search for attributes when using the lxml parser.
Parameters
----------
attrs : dict
A dict of HTML attributes. These are NOT checked for validity.
Returns
-------
expr : unicode
An XPath expression that checks for the given HTML attributes.
"""
# give class attribute as class_ because class is a python keyword
if "class_" in attrs:
attrs["class"] = attrs.pop("class_")
s = " and ".join([f"@{k}={v!r}" for k, v in attrs.items()])
return f"[{s}]"
_re_namespace = {"re": "http://exslt.org/regular-expressions"}
class _LxmlFrameParser(_HtmlFrameParser):
"""
HTML to DataFrame parser that uses lxml under the hood.
Warning
-------
This parser can only handle HTTP, FTP, and FILE urls.
See Also
--------
_HtmlFrameParser
_BeautifulSoupLxmlFrameParser
Notes
-----
Documentation strings for this class are in the base class
:class:`_HtmlFrameParser`.
"""
def _href_getter(self, obj) -> str | None:
href = obj.xpath(".//a/@href")
return None if not href else href[0]
def _text_getter(self, obj):
return obj.text_content()
def _parse_td(self, row):
# Look for direct children only: the "row" element here may be a
# <thead> or <tfoot> (see _parse_thead_tr).
return row.xpath("./td|./th")
def _parse_tables(self, document, match, kwargs):
pattern = match.pattern
# 1. check all descendants for the given pattern and only search tables
# GH 49929
xpath_expr = f"//table[.//text()[re:test(., {pattern!r})]]"
# if any table attributes were given build an xpath expression to
# search for them
if kwargs:
xpath_expr += _build_xpath_expr(kwargs)
tables = document.xpath(xpath_expr, namespaces=_re_namespace)
tables = self._handle_hidden_tables(tables, "attrib")
if self.displayed_only:
for table in tables:
# lxml utilizes XPATH 1.0 which does not have regex
# support. As a result, we find all elements with a style
# attribute and iterate them to check for display:none
for elem in table.xpath(".//style"):
elem.drop_tree()
for elem in table.xpath(".//*[@style]"):
if "display:none" in elem.attrib.get("style", "").replace(" ", ""):
elem.drop_tree()
if not tables:
raise ValueError(f"No tables found matching regex {pattern!r}")
return tables
def _equals_tag(self, obj, tag) -> bool:
return obj.tag == tag
def _build_doc(self):
"""
Raises
------
ValueError
* If a URL that lxml cannot parse is passed.
Exception
* Any other ``Exception`` thrown. For example, trying to parse a
URL that is syntactically correct on a machine with no internet
connection will fail.
See Also
--------
pandas.io.html._HtmlFrameParser._build_doc
"""
from lxml.etree import XMLSyntaxError
from lxml.html import (
HTMLParser,
parse,
)
parser = HTMLParser(recover=True, encoding=self.encoding)
if is_url(self.io):
with get_handle(self.io, "r", storage_options=self.storage_options) as f:
r = parse(f.handle, parser=parser)
else:
# try to parse the input in the simplest way
try:
r = parse(self.io, parser=parser)
except OSError as err:
raise FileNotFoundError(
f"[Errno {errno.ENOENT}] {os.strerror(errno.ENOENT)}: {self.io}"
) from err
try:
r = r.getroot()
except AttributeError:
pass
else:
if not hasattr(r, "text_content"):
raise XMLSyntaxError("no text parsed from document", 0, 0, 0)
for br in r.xpath("*//br"):
br.tail = "\n" + (br.tail or "")
return r
def _parse_thead_tr(self, table):
rows = []
for thead in table.xpath(".//thead"):
rows.extend(thead.xpath("./tr"))
# HACK: lxml does not clean up the clearly-erroneous
# <thead><th>foo</th><th>bar</th></thead>. (Missing <tr>). Add
# the <thead> and _pretend_ it's a <tr>; _parse_td() will find its
# children as though it's a <tr>.
#
# Better solution would be to use html5lib.
elements_at_root = thead.xpath("./td|./th")
if elements_at_root:
rows.append(thead)
return rows
def _parse_tbody_tr(self, table):
from_tbody = table.xpath(".//tbody//tr")
from_root = table.xpath("./tr")
# HTML spec: at most one of these lists has content
return from_tbody + from_root
def _parse_tfoot_tr(self, table):
return table.xpath(".//tfoot//tr")
def _expand_elements(body) -> None:
data = [len(elem) for elem in body]
lens = Series(data)
lens_max = lens.max()
not_max = lens[lens != lens_max]
empty = [""]
for ind, length in not_max.items():
body[ind] += empty * (lens_max - length)
def _data_to_frame(**kwargs):
head, body, foot = kwargs.pop("data")
header = kwargs.pop("header")
kwargs["skiprows"] = _get_skiprows(kwargs["skiprows"])
if head:
body = head + body
# Infer header when there is a <thead> or top <th>-only rows
if header is None:
if len(head) == 1:
header = 0
else:
# ignore all-empty-text rows
header = [i for i, row in enumerate(head) if any(text for text in row)]
if foot:
body += foot
# fill out elements of body that are "ragged"
_expand_elements(body)
with TextParser(body, header=header, **kwargs) as tp:
return tp.read()
_valid_parsers = {
"lxml": _LxmlFrameParser,
None: _LxmlFrameParser,
"html5lib": _BeautifulSoupHtml5LibFrameParser,
"bs4": _BeautifulSoupHtml5LibFrameParser,
}
def _parser_dispatch(flavor: HTMLFlavors | None) -> type[_HtmlFrameParser]:
"""
Choose the parser based on the input flavor.
Parameters
----------
flavor : {{"lxml", "html5lib", "bs4"}} or None
The type of parser to use. This must be a valid backend.
Returns
-------
cls : _HtmlFrameParser subclass
The parser class based on the requested input flavor.
Raises
------
ValueError
* If `flavor` is not a valid backend.
ImportError
* If you do not have the requested `flavor`
"""
valid_parsers = list(_valid_parsers.keys())
if flavor not in valid_parsers:
raise ValueError(
f"{flavor!r} is not a valid flavor, valid flavors are {valid_parsers}"
)
if flavor in ("bs4", "html5lib"):
import_optional_dependency("html5lib")
import_optional_dependency("bs4")
else:
import_optional_dependency("lxml.etree")
return _valid_parsers[flavor]
def _print_as_set(s) -> str:
arg = ", ".join([pprint_thing(el) for el in s])
return f"{{{arg}}}"
def _validate_flavor(flavor):
if flavor is None:
flavor = "lxml", "bs4"
elif isinstance(flavor, str):
flavor = (flavor,)
elif isinstance(flavor, abc.Iterable):
if not all(isinstance(flav, str) for flav in flavor):
raise TypeError(
f"Object of type {type(flavor).__name__!r} "
f"is not an iterable of strings"
)
else:
msg = repr(flavor) if isinstance(flavor, str) else str(flavor)
msg += " is not a valid flavor"
raise ValueError(msg)
flavor = tuple(flavor)
valid_flavors = set(_valid_parsers)
flavor_set = set(flavor)
if not flavor_set & valid_flavors:
raise ValueError(
f"{_print_as_set(flavor_set)} is not a valid set of flavors, valid "
f"flavors are {_print_as_set(valid_flavors)}"
)
return flavor
def _parse(
flavor,
io,
match,
attrs,
encoding,
displayed_only,
extract_links,
storage_options,
**kwargs,
):
flavor = _validate_flavor(flavor)
compiled_match = re.compile(match) # you can pass a compiled regex here
retained = None
for flav in flavor:
parser = _parser_dispatch(flav)
p = parser(
io,
compiled_match,
attrs,
encoding,
displayed_only,
extract_links,
storage_options,
)
try:
tables = p.parse_tables()
except ValueError as caught:
# if `io` is an io-like object, check if it's seekable
# and try to rewind it before trying the next parser
if hasattr(io, "seekable") and io.seekable():
io.seek(0)
elif hasattr(io, "seekable") and not io.seekable():
# if we couldn't rewind it, let the user know
raise ValueError(
f"The flavor {flav} failed to parse your input. "
"Since you passed a non-rewindable file "
"object, we can't rewind it to try "
"another parser. Try read_html() with a different flavor."
) from caught
retained = caught
else:
break
else:
assert retained is not None # for mypy
raise retained
ret = []
for table in tables:
try:
df = _data_to_frame(data=table, **kwargs)
# Cast MultiIndex header to an Index of tuples when extracting header
# links and replace nan with None (therefore can't use mi.to_flat_index()).
# This maintains consistency of selection (e.g. df.columns.str[1])
if extract_links in ("all", "header") and isinstance(
df.columns, MultiIndex
):
df.columns = Index(
((col[0], None if isna(col[1]) else col[1]) for col in df.columns),
tupleize_cols=False,
)
ret.append(df)
except EmptyDataError: # empty table
continue
return ret
@doc(storage_options=_shared_docs["storage_options"])
def read_html(
io: FilePath | ReadBuffer[str],
*,
match: str | Pattern = ".+",
flavor: HTMLFlavors | Sequence[HTMLFlavors] | None = None,
header: int | Sequence[int] | None = None,
index_col: int | Sequence[int] | None = None,
skiprows: int | Sequence[int] | slice | None = None,
attrs: dict[str, str] | None = None,
parse_dates: bool = False,
thousands: str | None = ",",
encoding: str | None = None,
decimal: str = ".",
converters: dict | None = None,
na_values: Iterable[object] | None = None,
keep_default_na: bool = True,
displayed_only: bool = True,
extract_links: Literal[None, "header", "footer", "body", "all"] = None,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
storage_options: StorageOptions = None,
) -> list[DataFrame]:
r"""
Read HTML tables into a ``list`` of ``DataFrame`` objects.
Parameters
----------
io : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a string ``read()`` function.
The string can represent a URL. Note that
lxml only accepts the http, ftp and file url protocols. If you have a
URL that starts with ``'https'`` you might try removing the ``'s'``.
.. deprecated:: 2.1.0
Passing html literal strings is deprecated.
Wrap literal string/bytes input in ``io.StringIO``/``io.BytesIO`` instead.
match : str or compiled regular expression, optional
The set of tables containing text matching this regex or string will be
returned. Unless the HTML is extremely simple you will probably need to
pass a non-empty string here. Defaults to '.+' (match any non-empty
string). The default value will return all tables contained on a page.
This value is converted to a regular expression so that there is
consistent behavior between Beautiful Soup and lxml.
flavor : {{"lxml", "html5lib", "bs4"}} or list-like, optional
The parsing engine (or list of parsing engines) to use. 'bs4' and
'html5lib' are synonymous with each other, they are both there for
backwards compatibility. The default of ``None`` tries to use ``lxml``
to parse and if that fails it falls back on ``bs4`` + ``html5lib``.
header : int or list-like, optional
The row (or list of rows for a :class:`~pandas.MultiIndex`) to use to
make the columns headers.
index_col : int or list-like, optional
The column (or list of columns) to use to create the index.
skiprows : int, list-like or slice, optional
Number of rows to skip after parsing the column integer. 0-based. If a
sequence of integers or a slice is given, will skip the rows indexed by
that sequence. Note that a single element sequence means 'skip the nth
row' whereas an integer means 'skip n rows'.
attrs : dict, optional
This is a dictionary of attributes that you can pass to use to identify
the table in the HTML. These are not checked for validity before being
passed to lxml or Beautiful Soup. However, these attributes must be
valid HTML table attributes to work correctly. For example, ::
attrs = {{"id": "table"}}
is a valid attribute dictionary because the 'id' HTML tag attribute is
a valid HTML attribute for *any* HTML tag as per `this document
<https://html.spec.whatwg.org/multipage/dom.html#global-attributes>`__. ::
attrs = {{"asdf": "table"}}
is *not* a valid attribute dictionary because 'asdf' is not a valid
HTML attribute even if it is a valid XML attribute. Valid HTML 4.01
table attributes can be found `here
<http://www.w3.org/TR/REC-html40/struct/tables.html#h-11.2>`__. A
working draft of the HTML 5 spec can be found `here
<https://html.spec.whatwg.org/multipage/tables.html>`__. It contains the
latest information on table attributes for the modern web.
parse_dates : bool, optional
See :func:`~read_csv` for more details.
thousands : str, optional
Separator to use to parse thousands. Defaults to ``','``.
encoding : str, optional
The encoding used to decode the web page. Defaults to ``None``.``None``
preserves the previous encoding behavior, which depends on the
underlying parser library (e.g., the parser library will try to use
the encoding provided by the document).
decimal : str, default '.'
Character to recognize as decimal point (e.g. use ',' for European
data).
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the cell (not column) content, and return the
transformed content.
na_values : iterable, default None
Custom NA values.
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN
values are overridden, otherwise they're appended to.
displayed_only : bool, default True
Whether elements with "display: none" should be parsed.
extract_links : {{None, "all", "header", "body", "footer"}}
Table elements in the specified section(s) with <a> tags will have their
href extracted.
.. versionadded:: 1.5.0
dtype_backend : {{'numpy_nullable', 'pyarrow'}}
Back-end data type applied to the resultant :class:`DataFrame`
(still experimental). If not specified, the default behavior
is to not use nullable data types. If specified, the behavior
is as follows:
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
* ``"pyarrow"``: returns pyarrow-backed nullable
:class:`ArrowDtype` :class:`DataFrame`
.. versionadded:: 2.0
{storage_options}
.. versionadded:: 2.1.0
Returns
-------
dfs
A list of DataFrames.
See Also
--------
read_csv : Read a comma-separated values (csv) file into DataFrame.
Notes
-----
Before using this function you should read the :ref:`gotchas about the
HTML parsing libraries <io.html.gotchas>`.
Expect to do some cleanup after you call this function. For example, you
might need to manually assign column names if the column names are
converted to NaN when you pass the `header=0` argument. We try to assume as
little as possible about the structure of the table and push the
idiosyncrasies of the HTML contained in the table to the user.
This function searches for ``<table>`` elements and only for ``<tr>``
and ``<th>`` rows and ``<td>`` elements within each ``<tr>`` or ``<th>``
element in the table. ``<td>`` stands for "table data". This function
attempts to properly handle ``colspan`` and ``rowspan`` attributes.
If the function has a ``<thead>`` argument, it is used to construct
the header, otherwise the function attempts to find the header within
the body (by putting rows with only ``<th>`` elements into the header).
Similar to :func:`~read_csv` the `header` argument is applied
**after** `skiprows` is applied.
This function will *always* return a list of :class:`DataFrame` *or*
it will fail, i.e., it will *not* return an empty list, save for some
rare cases.
It might return an empty list in case of inputs with single row and
``<td>`` containing only whitespaces.
Examples
--------
See the :ref:`read_html documentation in the IO section of the docs
<io.read_html>` for some examples of reading in HTML tables.
"""
# Type check here. We don't want to parse only to fail because of an
# invalid value of an integer skiprows.
if isinstance(skiprows, numbers.Integral) and skiprows < 0:
raise ValueError(
"cannot skip rows starting from the end of the "
"data (you passed a negative value)"
)
if extract_links not in [None, "header", "footer", "body", "all"]:
raise ValueError(
"`extract_links` must be one of "
'{None, "header", "footer", "body", "all"}, got '
f'"{extract_links}"'
)
validate_header_arg(header)
check_dtype_backend(dtype_backend)
io = stringify_path(io)
return _parse(
flavor=flavor,
io=io,
match=match,
header=header,
index_col=index_col,
skiprows=skiprows,
parse_dates=parse_dates,
thousands=thousands,
attrs=attrs,
encoding=encoding,
decimal=decimal,
converters=converters,
na_values=na_values,
keep_default_na=keep_default_na,
displayed_only=displayed_only,
extract_links=extract_links,
dtype_backend=dtype_backend,
storage_options=storage_options,
)
|
pandas-devREPO_NAMEpandasPATH_START.@pandas_extracted@pandas-main@pandas@io@html.py@.PATH_END.py
|
{
"filename": "from_vizier_table.ipynb",
"repo_name": "cds-astro/mocpy",
"repo_path": "mocpy_extracted/mocpy-master/notebooks/from_vizier_table.ipynb",
"type": "Jupyter Notebook"
}
|
# Get the MOC corresponding to a table
```python
from mocpy import MOC
```
```python
gum_qso_moc = MOC.from_vizier_table("VI/137/gum_qso", nside=512)
```
WARNING: Keyword 'TTYPE1' found more than once in a same HDU! We use the first occurrence.
```python
gum_qso_moc.display_preview()
```

```python
denis_moc = MOC.from_ivorn("ivo://CDS/B/denis/denis", nside=64)
denis_moc.display_preview()
```
WARNING: Keyword 'TTYPE1' found more than once in a same HDU! We use the first occurrence.

|
cds-astroREPO_NAMEmocpyPATH_START.@mocpy_extracted@mocpy-master@notebooks@from_vizier_table.ipynb@.PATH_END.py
|
{
"filename": "EarthSystem.ipynb",
"repo_name": "james-trayford/strauss",
"repo_path": "strauss_extracted/strauss-main/examples/colab/EarthSystem.ipynb",
"type": "Jupyter Notebook"
}
|
#### Preamble for `CoLab`
To use this notebook (if you haven't already) you can first save a copy to your local drive by clicking `File > Save a Copy in Drive` and run on that copy.
_Note_: `Colab` is a really handy way to test and try `strauss`, though it will generally run and display audio more slowly than running on your local machine. For a more responsive experience, why not install `strauss` locally, following the instructions [on the Github](https://github.com/james-trayford/strauss)
Run these cells, so that the notebook functions on the _Google_ `Colab` platform:
```python
%pip --quiet install strauss
```
```python
!git clone https://github.com/james-trayford/strauss.git
```
```python
%cd strauss/examples/
```
### <u> Generate the Earth rotation sound for the Planetarium Show</u>
**First, import relevant modules:**
```python
%reload_ext autoreload
%autoreload 2
import matplotlib.pyplot as plt
import ffmpeg as ff
import wavio as wav
from strauss.sonification import Sonification
from strauss.sources import Objects
from strauss import channels
from strauss.score import Score
import numpy as np
from strauss.generator import Synthesizer
import IPython.display as ipd
import os
from scipy.interpolate import interp1d
%matplotlib inline
```
**Then, import the land fraction data**
The land fraction as a function of longitude is converted to a water fraction (i.e. $1-f_{\rm water}$), and mapped of three rotation cycles to control the LP filter cutoff. This is normalised to a range within the [0,1] range, chosen to sound good.
```python
datafile = "../data/datasets/landfrac.txt"
data = np.genfromtxt(datafile)
longitude = data[:,0]
waterfrac = 1-data[:,1]
startlong = 180-(96 + 15./60 + 2.2/3600)
# we travel backwards in longitude per the earth's rotation
longgrid = (np.linspace(startlong,720+startlong,2599)%360 - 180.)[::-1]
wfrac = interp1d(longitude, waterfrac)
wfracgrid = wfrac(longgrid)*0.75 + 0.15
timegrid = np.linspace(0,1,wfracgrid.size)
plt.plot(timegrid, wfracgrid)
plt.ylabel("Normalised Water Fraction")
plt.xlabel(r"${\rm Rotation}\; [6\pi]$")
plt.show()
```
and set up the synthesiser
```python
# chord representing the earth (a Gbsus7 chord)
notes = [['Gb3', 'Db4', 'E4', 'B4']]
# specify audio system (e.g. mono, stereo, 5.1, ...)
system = "stereo"
length = 60.
# set up synth and turn on LP filter
generator = Synthesizer()
generator.modify_preset({'filter':'on'})
```
Map the data and render sonification for the Earth's rotation...
```python
score = Score(notes, length)
# volume swell is directly ahead
data = {'cutoff':[wfracgrid]*4,
'time_evo':[timegrid]*4,
'pitch':list(range(4))}
# set up source
sources = Objects(data.keys())
sources.fromdict(data)
sources.apply_mapping_functions()
soni = Sonification(score, sources, generator, system)
soni.render()
```
**Listen to and plot the waveforms from the sonification:**
```python
soni.notebook_display()
```
**Combine and save sonification to a multi-channel wav**
NOTE: Change `"../../FILENAME.wav"` to your filepath of choice
```python
soni.save("../../earth.wav")
```
```python
```
|
james-trayfordREPO_NAMEstraussPATH_START.@strauss_extracted@strauss-main@examples@colab@EarthSystem.ipynb@.PATH_END.py
|
{
"filename": "ImagePath.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/Pillow/py3/PIL/ImagePath.py",
"type": "Python"
}
|
#
# The Python Imaging Library
# $Id$
#
# path interface
#
# History:
# 1996-11-04 fl Created
# 2002-04-14 fl Added documentation stub class
#
# Copyright (c) Secret Labs AB 1997.
# Copyright (c) Fredrik Lundh 1996.
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
from . import Image
Path = Image.core.path
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@Pillow@py3@PIL@ImagePath.py@.PATH_END.py
|
{
"filename": "_namelengthsrc.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/treemap/hoverlabel/_namelengthsrc.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class NamelengthsrcValidator(_plotly_utils.basevalidators.SrcValidator):
def __init__(
self, plotly_name="namelengthsrc", parent_name="treemap.hoverlabel", **kwargs
):
super(NamelengthsrcValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "none"),
role=kwargs.pop("role", "info"),
**kwargs
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@treemap@hoverlabel@_namelengthsrc.py@.PATH_END.py
|
{
"filename": "openapi.py",
"repo_name": "langchain-ai/langchain",
"repo_path": "langchain_extracted/langchain-master/libs/community/langchain_community/utilities/openapi.py",
"type": "Python"
}
|
"""Utility functions for parsing an OpenAPI spec."""
from __future__ import annotations
import copy
import json
import logging
import re
from enum import Enum
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional, Union
import requests
import yaml
from pydantic import ValidationError
logger = logging.getLogger(__name__)
class HTTPVerb(str, Enum):
"""Enumerator of the HTTP verbs."""
GET = "get"
PUT = "put"
POST = "post"
DELETE = "delete"
OPTIONS = "options"
HEAD = "head"
PATCH = "patch"
TRACE = "trace"
@classmethod
def from_str(cls, verb: str) -> HTTPVerb:
"""Parse an HTTP verb."""
try:
return cls(verb)
except ValueError:
raise ValueError(f"Invalid HTTP verb. Valid values are {cls.__members__}")
if TYPE_CHECKING:
from openapi_pydantic import (
Components,
Operation,
Parameter,
PathItem,
Paths,
Reference,
RequestBody,
Schema,
)
try:
from openapi_pydantic import OpenAPI
except ImportError:
OpenAPI = object # type: ignore
class OpenAPISpec(OpenAPI):
"""OpenAPI Model that removes mis-formatted parts of the spec."""
openapi: str = "3.1.0" # overriding overly restrictive type from parent class
@property
def _paths_strict(self) -> Paths:
if not self.paths:
raise ValueError("No paths found in spec")
return self.paths
def _get_path_strict(self, path: str) -> PathItem:
path_item = self._paths_strict.get(path)
if not path_item:
raise ValueError(f"No path found for {path}")
return path_item
@property
def _components_strict(self) -> Components:
"""Get components or err."""
if self.components is None:
raise ValueError("No components found in spec. ")
return self.components
@property
def _parameters_strict(self) -> Dict[str, Union[Parameter, Reference]]:
"""Get parameters or err."""
parameters = self._components_strict.parameters
if parameters is None:
raise ValueError("No parameters found in spec. ")
return parameters
@property
def _schemas_strict(self) -> Dict[str, Schema]:
"""Get the dictionary of schemas or err."""
schemas = self._components_strict.schemas
if schemas is None:
raise ValueError("No schemas found in spec. ")
return schemas
@property
def _request_bodies_strict(self) -> Dict[str, Union[RequestBody, Reference]]:
"""Get the request body or err."""
request_bodies = self._components_strict.requestBodies
if request_bodies is None:
raise ValueError("No request body found in spec. ")
return request_bodies
def _get_referenced_parameter(self, ref: Reference) -> Union[Parameter, Reference]:
"""Get a parameter (or nested reference) or err."""
ref_name = ref.ref.split("/")[-1]
parameters = self._parameters_strict
if ref_name not in parameters:
raise ValueError(f"No parameter found for {ref_name}")
return parameters[ref_name]
def _get_root_referenced_parameter(self, ref: Reference) -> Parameter:
"""Get the root reference or err."""
from openapi_pydantic import Reference
parameter = self._get_referenced_parameter(ref)
while isinstance(parameter, Reference):
parameter = self._get_referenced_parameter(parameter)
return parameter
def get_referenced_schema(self, ref: Reference) -> Schema:
"""Get a schema (or nested reference) or err."""
ref_name = ref.ref.split("/")[-1]
schemas = self._schemas_strict
if ref_name not in schemas:
raise ValueError(f"No schema found for {ref_name}")
return schemas[ref_name]
def get_schema(
self,
schema: Union[Reference, Schema],
depth: int = 0,
max_depth: Optional[int] = None,
) -> Schema:
if max_depth is not None and depth >= max_depth:
raise RecursionError(
f"Max depth of {max_depth} has been exceeded when resolving references."
)
from openapi_pydantic import Reference
if isinstance(schema, Reference):
schema = self.get_referenced_schema(schema)
# TODO: Resolve references on all fields of Schema ?
# (e.g. patternProperties, etc...)
if schema.properties is not None:
for p_name, p in schema.properties.items():
schema.properties[p_name] = self.get_schema(p, depth + 1, max_depth)
if schema.items is not None:
schema.items = self.get_schema(schema.items, depth + 1, max_depth)
return schema
def _get_root_referenced_schema(self, ref: Reference) -> Schema:
"""Get the root reference or err."""
from openapi_pydantic import Reference
schema = self.get_referenced_schema(ref)
while isinstance(schema, Reference):
schema = self.get_referenced_schema(schema)
return schema
def _get_referenced_request_body(
self, ref: Reference
) -> Optional[Union[Reference, RequestBody]]:
"""Get a request body (or nested reference) or err."""
ref_name = ref.ref.split("/")[-1]
request_bodies = self._request_bodies_strict
if ref_name not in request_bodies:
raise ValueError(f"No request body found for {ref_name}")
return request_bodies[ref_name]
def _get_root_referenced_request_body(
self, ref: Reference
) -> Optional[RequestBody]:
"""Get the root request Body or err."""
from openapi_pydantic import Reference
request_body = self._get_referenced_request_body(ref)
while isinstance(request_body, Reference):
request_body = self._get_referenced_request_body(request_body)
return request_body
@staticmethod
def _alert_unsupported_spec(obj: dict) -> None:
"""Alert if the spec is not supported."""
warning_message = (
" This may result in degraded performance."
+ " Convert your OpenAPI spec to 3.1.* spec"
+ " for better support."
)
swagger_version = obj.get("swagger")
openapi_version = obj.get("openapi")
if isinstance(openapi_version, str):
if openapi_version != "3.1.0":
logger.warning(
f"Attempting to load an OpenAPI {openapi_version}"
f" spec. {warning_message}"
)
else:
pass
elif isinstance(swagger_version, str):
logger.warning(
f"Attempting to load a Swagger {swagger_version}"
f" spec. {warning_message}"
)
else:
raise ValueError(
"Attempting to load an unsupported spec:"
f"\n\n{obj}\n{warning_message}"
)
@classmethod
def parse_obj(cls, obj: dict) -> OpenAPISpec:
try:
cls._alert_unsupported_spec(obj)
return super().parse_obj(obj)
except ValidationError as e:
# We are handling possibly misconfigured specs and
# want to do a best-effort job to get a reasonable interface out of it.
new_obj = copy.deepcopy(obj)
for error in e.errors():
keys = error["loc"]
item = new_obj
for key in keys[:-1]:
item = item[key]
item.pop(keys[-1], None)
return cls.parse_obj(new_obj)
@classmethod
def from_spec_dict(cls, spec_dict: dict) -> OpenAPISpec:
"""Get an OpenAPI spec from a dict."""
return cls.parse_obj(spec_dict)
@classmethod
def from_text(cls, text: str) -> OpenAPISpec:
"""Get an OpenAPI spec from a text."""
try:
spec_dict = json.loads(text)
except json.JSONDecodeError:
spec_dict = yaml.safe_load(text)
return cls.from_spec_dict(spec_dict)
@classmethod
def from_file(cls, path: Union[str, Path]) -> OpenAPISpec:
"""Get an OpenAPI spec from a file path."""
path_ = path if isinstance(path, Path) else Path(path)
if not path_.exists():
raise FileNotFoundError(f"{path} does not exist")
with path_.open("r") as f:
return cls.from_text(f.read())
@classmethod
def from_url(cls, url: str) -> OpenAPISpec:
"""Get an OpenAPI spec from a URL."""
response = requests.get(url)
return cls.from_text(response.text)
@property
def base_url(self) -> str:
"""Get the base url."""
return self.servers[0].url
def get_methods_for_path(self, path: str) -> List[str]:
"""Return a list of valid methods for the specified path."""
from openapi_pydantic import Operation
path_item = self._get_path_strict(path)
results = []
for method in HTTPVerb:
operation = getattr(path_item, method.value, None)
if isinstance(operation, Operation):
results.append(method.value)
return results
def get_parameters_for_path(self, path: str) -> List[Parameter]:
from openapi_pydantic import Reference
path_item = self._get_path_strict(path)
parameters = []
if not path_item.parameters:
return []
for parameter in path_item.parameters:
if isinstance(parameter, Reference):
parameter = self._get_root_referenced_parameter(parameter)
parameters.append(parameter)
return parameters
def get_operation(self, path: str, method: str) -> Operation:
"""Get the operation object for a given path and HTTP method."""
from openapi_pydantic import Operation
path_item = self._get_path_strict(path)
operation_obj = getattr(path_item, method, None)
if not isinstance(operation_obj, Operation):
raise ValueError(f"No {method} method found for {path}")
return operation_obj
def get_parameters_for_operation(self, operation: Operation) -> List[Parameter]:
"""Get the components for a given operation."""
from openapi_pydantic import Reference
parameters = []
if operation.parameters:
for parameter in operation.parameters:
if isinstance(parameter, Reference):
parameter = self._get_root_referenced_parameter(parameter)
parameters.append(parameter)
return parameters
def get_request_body_for_operation(
self, operation: Operation
) -> Optional[RequestBody]:
"""Get the request body for a given operation."""
from openapi_pydantic import Reference
request_body = operation.requestBody
if isinstance(request_body, Reference):
request_body = self._get_root_referenced_request_body(request_body)
return request_body
@staticmethod
def get_cleaned_operation_id(operation: Operation, path: str, method: str) -> str:
"""Get a cleaned operation id from an operation id."""
operation_id = operation.operationId
if operation_id is None:
# Replace all punctuation of any kind with underscore
path = re.sub(r"[^a-zA-Z0-9]", "_", path.lstrip("/"))
operation_id = f"{path}_{method}"
return operation_id.replace("-", "_").replace(".", "_").replace("/", "_")
|
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@langchain_community@utilities@openapi.py@.PATH_END.py
|
{
"filename": "spl.py",
"repo_name": "COSMOGRAIL/PyCS",
"repo_path": "PyCS_extracted/PyCS-master/pycs/gen/spl.py",
"type": "Python"
}
|
"""
Module defining the Spline class, something easy to wrap around SciPy splines.
Includes BOK algorithms (Mollinari et al)
Some rules of splrep (k = 3)
- do not put more then 2 knots between data points.
- splrep wants inner knots only, do not give extremal knots, even only "once".
"""
import numpy as np
import sys
import pycs.gen.util
import copy as pythoncopy
import matplotlib.pyplot as plt
import scipy.optimize as spopt
import scipy.interpolate as si
class DataPoints():
"""
An ultralight version of a lightcurve, made for fast computations.
Can be "merged" from a list of lightcurves, see factory function below.
A Spline object has such a DataPoints object as attribute.
ATTENTION
Datapoints are expected to be ALWAYS SORTED BY JDS, and no two datapoints have the same jd !
See the splitup option of the constructor.
Note that this is not the case for lightcurves ! Hence the existence of datapoints.
Should be enforced in every function that builds datapoints.
ABOUT STAB POINTS
With scipy splines, we always get the last knots at the extrema of data points.
So to get knots "outside" of the real datapoints, we have to insert fake points.
And while we are at it, these fake points can also be used to stabilize the spline in
gaps.
The mask is used to differentiate between actual data points and "stabilization points"
that are inserted to make the spline behave well at the extrema and in season gaps.
It is modified by the two addgappts and addextpts.
The info about stabpoints is written into the object,
so that they can be reconstrucuted from any new jds and mags.
"""
def __init__(self, jds, mags, magerrs, splitup=True, deltat=0.000001, sort=True, stab=False,
stabext=300.0, stabgap = 30.0, stabstep = 5.0, stabmagerr = -2.0, stabrampsize = 0, stabrampfact = 1.0):
"""
Constructor
Always leave splitup and sort on True ! Only if you know that you are already
sorted you can skip them.
You cannot specify a mask, I do this myself. (could be done in principle).
stab : do you want stabilization points ?
Don't forget to run splitup, sort, and addstab again if you change the data !
"""
self.jds = jds
self.mags = mags
self.magerrs = magerrs
self.stab = stab
self.stabext = stabext
self.stabgap = stabgap
self.stabstep = stabstep
self.stabmagerr = stabmagerr
self.stabrampsize = stabrampsize
self.stabrampfact = stabrampfact
self.mask = np.ones(len(self.jds), dtype=np.bool) # an array of True
self.deltat = deltat
if splitup:
self.splitup()
elif sort: # If we do the splitup, we sort anyway.
self.sort()
self.putstab()
# def update(self, jds, mags, magerrs):
# """
# NOT NEEDED ANYMORE, JUST CALL MERGE AND GIVE AN OLDDP. SAFER.
#
# Give me some new datapoints (no stabs) (already splitup and sorted, by definition), I'll update myself.
# In fact everything might move !
# """
# if newdatapoints.stab = True:
# raise RuntimeError("Give me points without stab !")
# self.jds = newdatapoints.jds
# self.mags = newdatapoints.mags
# self.magerrs = newdatapoints.magerrs
# self.mask = np.ones(len(self.jds), dtype=np.bool)
# self.addstab() # runs only if stab = True
def splitup(self):
"""
TO WRITE !!!
We avoid that two points get the same jds...
Note that this might change the order of the jds,
but only of very close ones, so one day it would be ok to leave the mags as they are.
"""
self.jds += self.deltat * np.random.randn(len(self.jds))
self.sort()
def sort(self):
"""
Absolutely mandatory, called in the constructor.
"""
sortedindices = np.argsort(self.jds)
self.jds = self.jds[sortedindices]
self.mags = self.mags[sortedindices]
self.magerrs = self.magerrs[sortedindices]
self.mask = self.mask[sortedindices]
self.validate()
def validate(self):
"""
We check that the datapoint jds are increasing strictly :
"""
first = self.jds[:-1]
second = self.jds[1:]
if not np.alltrue(np.less(first,second)): # Not less_equal ! Strictly increasing !
raise RuntimeError, "These datapoints don't have strcitly increasing jds !"
def rmstab(self):
"""
Deletes all stabilization points
"""
self.jds = self.jds[self.mask]
self.mags = self.mags[self.mask]
self.magerrs = self.magerrs[self.mask]
self.mask = np.ones(len(self.jds), dtype=np.bool)
def putstab(self):
"""
Runs only if stab is True.
I will :
add datapoints (new jds, new mags, new magerrs)
modify the mask = False for all those new datapoints.
"""
if self.stab == True:
# We start by deleting any previous stab stuff :
self.rmstab()
self.addgappts()
self.addextpts()
else:
pass
def calcstabmagerr(self):
"""
Computes the mag err of the stabilisation points.
"""
if self.stabmagerr >= 0.0:
return self.stabmagerr
else:
return - self.stabmagerr * np.median(self.magerrs)
def addgappts(self):
"""
We add stabilization points with low weights into the season gaps
to avoid those big excursions of the splines.
This is done by a linear interpolation across the gaps.
"""
absstabmagerr = self.calcstabmagerr()
gaps = self.jds[1:] - self.jds[:-1] # has a length of len(self.jds) - 1
gapindices = np.arange(len(self.jds) - 1)[gaps > self.stabgap] # indices of those gaps that are larger than stabgap
for n in range(len(gapindices)):
i = gapindices[n]
a = self.jds[i]
b = self.jds[i+1]
newgapjds = np.linspace(a, b, float(b-a)/float(self.stabstep))[1:-1]
newgapindices = i + 1 + np.zeros(len(newgapjds))
newgapmags = np.interp(newgapjds, [a, b], [self.mags[i], self.mags[i+1]])
newgapmagerrs = absstabmagerr * np.ones(newgapmags.shape)
newgapmask = np.zeros(len(newgapjds), dtype=np.bool)
self.jds = np.insert(self.jds, newgapindices, newgapjds)
self.mags = np.insert(self.mags, newgapindices, newgapmags)
self.magerrs = np.insert(self.magerrs, newgapindices, newgapmagerrs)
self.mask = np.insert(self.mask, newgapindices, newgapmask)
gapindices += newgapjds.size # yes, as we inserted some points the indices change.
# If you change this structure, be sure to check SplineML.settargetmags as well !
self.validate()
def addextpts(self):
"""
We add stabilization points at both extrema of the lightcurves
This is done by "repeating" the extremal points, and a ramp in the magerrs
"""
absstabmagerr = self.calcstabmagerr()
extjds = np.arange(self.jds[0], self.jds[0] - self.stabext, -1*self.stabstep)[::-1][:-1]
extmags = self.mags[0] * np.ones(extjds.shape)
extmagerrs = absstabmagerr * np.ones(extjds.shape)
for i in range(1, self.stabrampsize+1):
extmagerrs[-i] += (self.stabrampsize +1 -i) * absstabmagerr * self.stabrampfact
extindices = np.zeros(extjds.shape)
mask = np.zeros(len(extjds), dtype=np.bool)
self.jds = np.insert(self.jds, extindices, extjds)
self.mags = np.insert(self.mags, extindices, extmags)
self.magerrs = np.insert(self.magerrs, extindices, extmagerrs)
self.mask = np.insert(self.mask, extindices, mask)
# And the same at the other end :
extjds = np.arange(self.jds[-1], self.jds[-1] + self.stabext, self.stabstep)[1:]
extmags = self.mags[-1] * np.ones(extjds.shape)
extmagerrs = absstabmagerr * np.ones(extjds.shape)
for i in range(0, self.stabrampsize):
extmagerrs[i] += (self.stabrampsize -i) * absstabmagerr * self.stabrampfact
extindices = len(self.jds) + np.zeros(extjds.shape)
mask = np.zeros(len(extjds), dtype=np.bool)
self.jds = np.insert(self.jds, extindices, extjds)
self.mags = np.insert(self.mags, extindices, extmags)
self.magerrs = np.insert(self.magerrs, extindices, extmagerrs)
self.mask = np.insert(self.mask, extindices, mask)
self.validate()
def getmaskbounds(self):
"""
Returns the upper and lower bounds of the regions containing stabilization points.
This is used when placing knots, so to put fewer knots in these regions.
Crazy stuff...
"""
maskindices = np.where(self.mask == False)[0]
#print maskindices
if len(maskindices) < 3:
print "Hmm, not much masked here ..."
return (np.array([]), np.array([]))
else:
lcuts = maskindices[np.where(maskindices[1:] - maskindices[:-1] > 1)[0] + 1]
lcuts = np.insert(lcuts, 0, maskindices[0])
ucuts = maskindices[np.where(maskindices[1:] - maskindices[:-1] > 1)[0]]
ucuts = np.insert(ucuts, len(ucuts), maskindices[-1])
return (lcuts, ucuts)
def ntrue(self):
"""
Returns the number of real datapoints (skipping stabilization points)
"""
return np.sum(self.mask)
def merge(lcs, olddp=None, splitup=True, deltat=0.000001, sort=True, stab=False,
stabext=300.0, stabgap = 30.0, stabstep = 5.0, stabmagerr = 2.0, stabrampsize = 0, stabrampfact = 1.0):
"""
Factory function for DataPoints objects, starting from lightcurves.
Takes a list of lightcurves and quickly concatenate the jds, mags, and magerrs.
Instead of specifying all the stab point parameters, you can give me an old datapoints object,
and I will reuse its settings... This is useful if you want to "update" the data points.
If overlap is True, I will keep only points that are "covered" by all four lightcurves !
This is useful when you want to build a first source spline, and your microlensing is messy at the borders.
NOT YET IMPLEMENTED ...
"""
jds = np.concatenate([l.getjds() for l in lcs])
mags = np.concatenate([l.getmags() for l in lcs])
magerrs = np.concatenate([l.getmagerrs() for l in lcs])
if olddp == None:
return DataPoints(jds, mags, magerrs, splitup=splitup, deltat=deltat, sort=sort,
stab=stab, stabext=stabext, stabgap=stabgap, stabstep=stabstep, stabmagerr=stabmagerr,
stabrampsize=stabrampsize, stabrampfact=stabrampfact)
else:
return DataPoints(jds, mags, magerrs, splitup=splitup, sort=sort,
deltat=olddp.deltat,
stab=olddp.stab, stabext=olddp.stabext, stabgap=olddp.stabgap, stabstep=olddp.stabstep, stabmagerr=olddp.stabmagerr,
stabrampsize=olddp.stabrampsize, stabrampfact=olddp.stabrampfact)
class Spline():
"""
A class to represent a spline, that is essentially a set of knots and coefficients.
As finding knots and coefficients requires access to some data points, these are included
in the form of a DataPoints object.
Abount knots :
Spline.t are all the knots, including extremas with multiplicity.
But splrep wants internal knots only ! By internal we mean : not even the data extremas !
Spline.getintt() returns only these internal knots.
"""
def __init__(self, datapoints, t = None, c = None, k = 3, bokeps = 2.0, boktests = 5, bokwindow = None, plotcolour="black"):
"""
t : all the knots (not only internal ones !)
c : corresponding coeffs
k : degree : default = cubic splines k=3 -> "order = 4" ???
whatever ... 3 means that you can differentiate twice at the knots.
"""
#self.origdatapoints = datapoints
self.datapoints = datapoints
# At this point we know that your datapoint jds are monotonously increasing. This is tested
# by validate() of datapoints.
self.t = t # the array of knots
self.c = c # the coeffs
self.k = k
self.bokeps = bokeps
self.boktests = boktests
self.bokwindow = bokwindow
self.knottype = "none"
self.plotcolour = plotcolour
self.showknots = True
# Bounds, for BOK
self.lims = None
self.l = None
self.u = None
# We want to keep trace of the r2 of a spline.
self.lastr2nostab = 0.0 # without stab points (the real thing)
self.lastr2stab = 0.0 # with stab points (usually not so interesting)
# If you did not give me a t&c, I'll make some default ones for you :
try:
if (self.t is None):
self.uniknots(2) # This also puts self.c to 0s
except:
if (len(self.t) == 0):
self.uniknots(2) # This also puts self.c to 0s
def __str__(self):
"""
Returns a string with:
* degree
* knot placement
* number of intervals
"""
#return "Spline of degree %i, %i knots (%i inner knots), and %i intervals." % (self.k, len(self.t), len(self.getintt()), self.getnint())
if len(self.knottype) > 6: # That's a string
knottext = "%il%ib" % (self.knottype.count("l"), self.knottype.count("b"))
else:
knottext = self.knottype
return "~%i/%s/%i~" % (self.k, knottext, self.getnint())
def copy(self):
"""
Returns a "deep copy" of the spline.
"""
return pythoncopy.deepcopy(self)
def shifttime(self, timeshift):
"""
Hard-shifts your spline along the time axis.
By "hard-shift", I mean that unlike for a lightcurve, the spline will not know that it was shifted !
It's up to you to be sure that you want to move it.
We shift both the datapoints and the knots.
"""
self.t += timeshift
self.datapoints.jds += timeshift
def shiftmag(self, magshift):
"""
Hard-shifts your spline along the mag axis.
By "hard-shift", I mean that unlike for a lightcurve, the spline will not know that it was shifted !
It's up to you to be sure that you want to move it.
We shift both the datapoints and the knots.
"""
self.c += magshift
self.datapoints.mags += magshift
def updatedp(self, newdatapoints, dpmethod="stretch"):
"""
Replaces the datapoints of the spline, and makes sure that the knots
stay compatible.
If you tweaked your datapoints, I will have to tweak my knots to make sure
that my external knots fit. Hence this method !
Due to the splitup, this is needed even if you just tweaked the mags !
And anyway in this case I have to rebuild the stab points.
.. warning :: IT'S UP TO YOU TO CHECK THAT YOU DON'T REPLACE DATATOINTS WITH DIFFERENT STAB SETTINGS
Anyway it would work, just look ugly !
Replaces the datapoints (jds, mags, and magerrs) touching the knots and coeffs as less as possible.
Note that we also have to deal with stab points here !
This is made for instance for time shifts that only very slightly change the datapoints, and you don't want to
optimize the knots all the time from scratch again.
The current knots are "streched" (keeping their relative spacings) accross the new datapoints.
Options for "dpmethod" :
- "stretch" : changes all the knots
- "extadj" : does not touch the internal knots, but adjusts the external ones only, to
fit the new datapoints. Probably the method to use when optimizing time shifts.
- "leave" : does not touch the knots -> ok to evaluate the spline,
but you will not be able to fit it anymore, as the external knots don't correspond to datapoints.
.. todo:: In principle, why don't we just update the real datapoints here, and leave the stab as
they are ?
"""
if dpmethod == "stretch":
oldmin = self.datapoints.jds[0] # This includes potential stab points
oldmax = self.datapoints.jds[-1]
newmin = newdatapoints.jds[0] # Idem
newmax = newdatapoints.jds[-1]
oldknots = self.getinttex()
#print oldknots
# we will stretch the oldknots by a factor a :
a = (newmax - newmin)/(oldmax - oldmin)
newknots = newmin + a*(oldknots-oldmin)
# We set the new datapoints:
self.datapoints = newdatapoints
self.setinttex(newknots)
elif dpmethod == "extadj" :
intknots = self.getintt()
self.datapoints = newdatapoints
# Ok, now the newdatapoints might be narrower or wider than the knots, we have to deal with this.
# If they are wider, it's easy : setint will put move the external knot on the external datapoint.
# If they are narrower, it's trickier : we have to remove some extra knots, so to really just keep the "internal" ones.
# to feed into setintt.
#if True: # works as well, but maybe faster to test first :
if (self.datapoints.jds[0] >= intknots[0]) or (self.datapoints.jds[-1] <= intknots[-1]):
keepmask = np.ones(intknots.shape, dtype=np.bool)
for i in range(len(intknots)): # Starting from the left ...
if intknots[i] <= self.datapoints.jds[0]:
keepmask[i] = False
else:
break
for i in range(len(intknots))[::-1]: # And now the right ...
if intknots[i] >= self.datapoints.jds[-1]:
keepmask[i] = False
else:
break
#nkick = np.sum(keepmask == False)
#if nkick != 0:
# print "I'll kick %i knots !" % (nkick)
# And finally, we apply the mask .
intknots = intknots[keepmask]
self.setintt(intknots) # This automatically adjusts the extremal knots.
elif dpmethod == "leave" :
knots = self.getinttex()
self.datapoints = newdatapoints
# We quickly check the boundaries
if ( knots[0] >= self.datapoints.jds[0] ) or ( knots[-1] <= self.datapoints.jds[-1] ):
raise RuntimeError("Your newdatapoints are to wide for the current knots !")
else:
raise RuntimeError("Don't know this updatedp method !")
# We reset any bounds just to be sure.
self.lims = None
self.l = None
self.u = None
def uniknots(self, nint, n=True):
"""
Uniform distribution of internal knots across the datapoints (including any stab points).
We don't make a difference between stab and real points.
:param nint: The number of intervals, or the step
:param n:
If True, nint is the number of intervals (== piecewise polynoms) you want.
If False : nint is a step in days you want between the knots (approximately).
:type n: boolean
.. note:: I also put all coeffs back to 0.0 !
"""
#intt = np.linspace(self.datapoints.jds[0], self.datapoints.jds[-1], step+1)[1:-1] # we remove the extremas
a = self.datapoints.jds[0]
b = self.datapoints.jds[-1]
if n:
intt = np.linspace(a, b, nint + 1)[1:-1]
else:
intt = np.linspace(a, b, float(b-a)/float(nint))[1:-1]
if len(intt) == 0:
raise RuntimeError("I am uniknots, and I have only 0 (zero) internal knots ! Increase this number !")
self.setintt(intt)
self.knottype = "u"
# Important : we put some 0 coeffs to go with the new knots
self.resetc()
def resetc(self):
"""
Sets all coeffs to 0.0 -- if you want to start again your fit, keeping the knot positions.
"""
self.c = np.zeros(len(self.t))
def reset(self):
"""
Calls uniknots, i.e. resets both coeffs and knot positions, keeping the same number of knots.
"""
self.uniknots(self.getnint() ,n=True)
def buildbounds(self, verbose = True):
"""
Build bounds for bok.
By default I will make those bounds as wide as possible, still respecting epsilon.
The parameter epsilon is the minimum distance two knots can have.
If you give me a window size, I will not make the bounds as wide as possible, but only put them
0.5*window days around the current knots (still respecting all this epsilon stuff of course).
I look where your current knots are, and for each knots I build the bounds so that
epsilon distance is respected between adjacent upper and lower bounds.
But, there might already be knots only epsilon apart.
So I'm a bit tricky, not so straightforward as my predecessors.
Knots at the extrema are not allowed to move.
Requires existing knots, puts lims in between them, and builds the bounds.
@todo: Optimize me using numpy ! This is experiemental code for now.
"""
if verbose:
print "Building BOK bounds (bokeps = %.3f, bokwindow = %s) ..." % (self.bokeps, self.bokwindow)
knots = self.getinttex() # Including extremal knots (once).
n = len(knots)
# We start by checking the knot spacing
knotspacings = knots[1:] - knots[:-1]
if not np.alltrue(knotspacings > 0.0):
raise RuntimeError("Ouch, your knots are not sorted !")
minspace = np.min(knotspacings)
if verbose :
print "Minimal knot spacing : %.3f" % (minspace)
if minspace < self.bokeps - 0.00001: # Rounding errors, we decrease epsilon a bit...
# If this does still happens, then it was not just a rounding error ...
# Yes it still happens, due to updatedp stretch ...
raise RuntimeError("Knot spacing min = %f, epsilon = %f" % (minspace, self.bokeps))
# Loop through the knots.
lowers = [knots[0]] # First knot is not allowed to move
uppers = [knots[0]]
for i in range(1, n-1): # Internal knots
tk = knots[i] # this knot
pk = knots[i-1] # previous knot
nk = knots[i+1] # next knot
# First we build the wide bounds :
guessl = 0.5*(pk + tk) + 0.5*self.bokeps
if guessl >= tk:
guessl = tk
guessu = 0.5*(nk + tk) - 0.5*self.bokeps
if guessu <= tk:
guessu = tk
# Now we see if the use wants a narrower window within those bounds :
if self.bokwindow != None:
if tk - 0.5*self.bokwindow >= guessl:
guessl = tk - 0.5*self.bokwindow
if tk + 0.5*self.bokwindow <= guessu:
guessu = tk + 0.5*self.bokwindow
lowers.append(guessl)
uppers.append(guessu)
# And now this last knot, doesn't move, like the first one:
lowers.append(knots[-1])
uppers.append(knots[-1])
self.l = np.array(lowers)
self.u = np.array(uppers)
self.knottype += "l"
if verbose:
print "Buildbounds done."
def bok(self, bokmethod="BF", verbose=True, trace=False):
"""
We optimize the positions of knots by some various techniques.
We use fixed bounds for the exploration, run buildbounds (with low epsilon) first.
This means that I will not move my bounds.
For each knot, i will try ntestpos linearly spaced positions within its bounds.
In this version, the bounds are included : I might put a knot on a bound !
The way the bounds are placed by buildbounds ensures that in any case the minimal
distance of epsilon is respected.
Using this sheme, it is now possible to iteratively call mybok and buildbounds in a loop
and still respect epsilon at any time.
bokmethods :
- MCBF : Monte Carlo brute force with ntestpos trial positions for each knot
- BF : brute force, deterministic. Call me twice
- fminind : fminbound on one knot after the other.
- fmin :global fminbound
Exit is automatic, if result does not improve anymore...
"""
intknots = self.getintt() # only internal, the ones we will move
nintknots = len(intknots)
weights = 1.0/self.datapoints.magerrs
def score(intknots, index, value):
modifknots = intknots.copy()
modifknots[index] = value
return si.splrep(self.datapoints.jds, self.datapoints.mags, w=weights, xb=None, xe=None, k=self.k, task=-1, s=None, t=modifknots, full_output=1, per=0, quiet=1)[1]
iniscore = score(intknots, 0, intknots[0])
lastchange = 1
lastscore = iniscore
iterations = 0
if verbose:
print "Starting BOK-%s on %i intknots (boktests = %i)" % (bokmethod, nintknots, self.boktests)
if bokmethod == "MCBF":
while True:
if lastchange >= 2*nintknots: # somewhat arbitrary, but why not.
break
i = np.random.randint(0, nintknots) # (inclusive, exclusive)
testknots = np.linspace(self.l[i+1], self.u[i+1], self.boktests)
# +1, as u and l include extremal knots...
# So we include the extremas in our range to test.
testscores = np.array([score(intknots, i, testknot) for testknot in testknots])
bestone = np.argmin(testscores)
bestscore = testscores[bestone]
if bestscore < lastscore:
lastchange = 0
intknots[i] = testknots[bestone] # WE UPDATE the intknots array !
lastscore = bestscore
lastchange += 1
iterations += 1
if trace:
self.optc()
pycs.gen.util.trace([], [self])
if bokmethod == "BF":
intknotindices = range(nintknots) # We could potentially change the order, just to see if that makes sense.
# No, it doesn't really help
#mid = int(len(intknotindices)/2.0)
#intknotindices = np.concatenate([intknotindices[mid:], intknotindices[:mid][::-1]])
for i in intknotindices:
testknots = np.linspace(self.l[i+1], self.u[i+1], self.boktests)
# +1, as u and l include extremal knots...
# So we include the extremas in our range to test.
testscores = np.array([score(intknots, i, testknot) for testknot in testknots])
bestone = np.argmin(testscores)
bestscore = testscores[bestone]
intknots[i] = testknots[bestone] # WE UPDATE the intknots array !
iterations += 1
if trace:
self.optc()
pycs.gen.util.trace([], [self])
if bokmethod == "fminind":
intknotindices = range(nintknots)
for i in intknotindices:
def target(value):
return score(intknots, i, value)
#inival = intknots[i]
#bounds = (self.l[i+1], self.u[i+1])
out = spopt.fminbound(target, self.l[i+1], self.u[i+1], xtol=0.01, maxfun=100, full_output=1, disp=1)
#print out
optval = out[0]
bestscore = out[1]
intknots[i] = optval # WE UPDATE the intknots array !
iterations += 1
if trace:
self.optc()
pycs.gen.util.trace([], [self])
if bokmethod == "fmin":
def target(modifknots):
#iterations += 1
#if trace:
# self.optc()
# pycs.gen.util.trace([], [self])
return si.splrep(self.datapoints.jds, self.datapoints.mags, w=weights, xb=None, xe=None, k=self.k, task=-1, s=None, t=modifknots, full_output=1, per=0, quiet=1)[1]
bounds = [(a, b) for (a, b) in zip(self.l[1:-1], self.u[1:-1])]
out = spopt.fmin_l_bfgs_b(target, intknots, approx_grad=True, bounds=bounds, m=10, factr=1e7, pgtol=1.e-05, epsilon=1e-04, iprint=-1, maxfun=15000)
#out = spopt.fminbound(target, self.l[1:-1], self.u[1:-1], xtol=0.01, maxfun=1000, full_output=1, disp=3)
#print out
intknots = out[0]
bestscore = out[1]
# relative improvement :
relimp = (iniscore - bestscore)/iniscore
self.knottype += "b"
self.setintt(intknots)
#pycs.gen.lc.display([],[self])
#self.display()
self.optc() # Yes, not yet done !
finalr2 = self.r2(nostab=True)
if verbose:
print "r2 = %f (without stab poins)" % finalr2
print "Done in %i iterations, relative improvement = %f" % (iterations, relimp)
# We count all datapoints here, as score returns the full chi2 including stab pts.
return finalr2
# Some stuff about knots :
def getintt(self):
"""
Returns the internal knots (i.e., not even the datapoints extrema)
This is what you need to feed into splrep !
There are nint - 1 such knots
"""
return self.t[(self.k+1):-(self.k+1)].copy() # We cut the outer knots.
def getinttex(self):
"""
Same as above, but we include the extremal points "once".
"""
return self.t[(self.k):-(self.k)].copy()
def knotstats(self):
"""
Returns a string describing the knot spacing
"""
knots = self.getinttex()
spacings = knots[1:] - knots[:-1]
return " ".join(["%.1f" % (spacing) for spacing in sorted(spacings)])
def setintt(self, intt):
"""
Give me some internal knots (not even containing the datapoints extrema),
and I build the correct total knot vector t for you.
I add the extremas, with appropriate multiplicity.
@TODO: check consistency of intt with datapoints !
"""
# Ok a quick test for consisency :
if len(intt) == 0:
raise RuntimeError("Your list of internal knots is empty !")
if not self.datapoints.jds[0] < intt[0]:
raise RuntimeError("Ouch.")
if not self.datapoints.jds[-1] > intt[-1]:
raise RuntimeError("Ouch.")
#assert self.datapoints.jds[0] < intt[0] # should we put <= here ?
#assert self.datapoints.jds[-1] > intt[-1]
pro = self.datapoints.jds[0] * np.ones(self.k+1)
post = self.datapoints.jds[-1] * np.ones(self.k+1)
self.t = np.concatenate((pro, intt, post))
def setinttex(self, inttex):
"""
Including extremal knots
"""
#pro = self.datapoints.jds[0] * np.ones(self.k)
#post = self.datapoints.jds[-1] * np.ones(self.k)
pro = inttex[0] * np.ones(self.k)
post = inttex[-1] * np.ones(self.k)
self.t = np.concatenate((pro, inttex, post))
def getnint(self):
"""
Returns the number of intervals
"""
return(len(self.t) - 2* (self.k + 1) + 1)
# Similar stuff about coeffs :
def getc(self, m=0):
"""
Returns all active coefficients of the spline, the ones it makes sense to play with.
The length of this guy is number of intervals - 2 !
"""
return self.c[m:-(self.k + 1 + m)].copy()
def setc(self, c, m=0):
"""
Puts the coeffs from getc back into place.
"""
self.c[m:-(self.k + 1 + m)] = c
def getco(self, m=0):
"""
Same as getc, but reorders the coeffs in a way more suited for nonlinear optimization
"""
c = self.getc(m=m)
mid = int(len(c)/2.0)
return np.concatenate([c[mid:], c[:mid][::-1]])
def setco(self, c, m=0):
"""
The inverse of getco.
"""
mid = int(len(c)/2.0)
self.setc(np.concatenate([c[mid+1:][::-1], c[:mid+1]]), m=m)
def setcflat(self, c):
"""
Give me coeffs like those from getc(m=1), I will set the coeffs so that the spline extremas
are flat (i.e. slope = 0).
"""
self.setc(c, m=1)
self.c[0] = self.c[1]
self.c[-(self.k + 2)] = self.c[-(self.k + 3)]
def setcoflat(self, c):
"""
idem, but for reordered coeffs.
"""
mid = int(len(c)/2.0)
self.setcflat(np.concatenate([c[mid:][::-1], c[:mid]]))
def r2(self, nostab=True, nosquare=False):
"""
Evaluates the spline, compares it with the data points and returns a weighted sum of residuals r2.
If nostab = False, stab points are included
This is precisely the same r2 as is used by splrep for the fit, and thus the same value as
returned by optc !
This method can set lastr2nostab, so be sure to end any optimization with it.
If nostab = True, we don't count the stab points
"""
if nostab == True :
splinemags = self.eval(nostab = True, jds = None)
errs = self.datapoints.mags[self.datapoints.mask] - splinemags
werrs = errs/self.datapoints.magerrs[self.datapoints.mask]
if nosquare:
r2 = np.sum(np.fabs(werrs))
else:
r2 = np.sum(werrs * werrs)
self.lastr2nostab = r2
else :
splinemags = self.eval(nostab = False, jds = None)
errs = self.datapoints.mags - splinemags
werrs = errs/self.datapoints.magerrs
if nosquare:
r2 = np.sum(np.fabs(werrs))
else:
r2 = np.sum(werrs * werrs)
self.lastr2stab = r2
return r2
#if red:
# return chi2/len(self.datapoints.jds)
def tv(self):
"""
Returns the total variation of the spline. Simple !
http://en.wikipedia.org/wiki/Total_variation
"""
# Method 1 : linear approximation
ptd = 5 # point density in days ... this is enough !
a = self.t[0]
b = self.t[-1]
x = np.linspace(a, b, int((b-a) * ptd))
y = self.eval(jds = x)
tv1 = np.sum(np.fabs(y[1:] - y[:-1]))
#print "TV1 : %f" % (tv1)
return tv1
# Method 2 : integrating the absolute value of the derivative ... hmm, splint does not integrate derivatives ..
#si.splev(jds, (self.t, self.c, self.k))
def optc(self):
"""
Optimize the coeffs, don't touch the knots
This is the fast guy, one reason to use splines :-)
Returns the chi2 in case you want it (including stabilization points) !
Sets lastr2stab, but not lastr2nostab !
"""
out = si.splrep(self.datapoints.jds, self.datapoints.mags, w=1.0/self.datapoints.magerrs, xb=None, xe=None, k=self.k, task=-1, s=None, t=self.getintt(), full_output=1, per=0, quiet=1)
# We check if it worked :
if not out[2] <= 0:
raise RuntimeError("Problem with spline representation, message = %s" % (out[3]))
self.c = out[0][1] # save the coeffs
#import matplotlib.pyplot as plt
#plt.plot(self.datapoints.jds, self.datapoints.magerrs)
#plt.show()
self.lastr2stab = out[1]
return out[1]
def optcflat(self, verbose = False):
"""
Optimizes only the "border coeffs" so to get zero slope at the extrema
Run optc() first ...
This has to be done with an iterative optimizer
"""
full = self.getc(m=1)
inip = self.getc(m=1)[[0, 1, -2, -1]] # 4 coeffs
def setp(p):
full[[0, 1, -2, -1]] = p
self.setcflat(full)
if verbose:
print "Starting flat coeff optimization ..."
print "Initial pars : ", inip
def errorfct(p):
setp(p)
return self.r2(nostab=False) # To get the same as optc would return !
minout = spopt.fmin_powell(errorfct, inip, full_output=1, disp=verbose)
popt = minout[0]
if popt.shape == ():
popt = np.array([popt])
if verbose:
print "Optimal pars : ", popt
setp(popt)
return self.r2(nostab=False) # We include the stab points, like optc does.
# This last line also updates self.lastr2 ...
def eval(self, jds = None, nostab = True):
"""
Evaluates the spline at jds, and returns the corresponding mags-like vector.
By default, we exclude the stabilization points !
If jds is not None, we use them instead of our own jds (in this case excludestab makes no sense)
"""
if jds is None:
if nostab:
jds = self.datapoints.jds[self.datapoints.mask]
else:
jds = self.datapoints.jds
else:
# A minimal check for non-extrapolation condition should go here !
pass
fitmags = si.splev(jds, (self.t, self.c, self.k))
# By default ext=0 : we do return extrapolated values
return fitmags
def display(self, showbounds = True, showdatapoints = True, showerrorbars=True, figsize=(16,8)):
"""
A display of the spline object, with knots, jds, stab points, etc.
For debugging and checks.
"""
fig = plt.figure(figsize=figsize)
if showdatapoints:
if showerrorbars:
mask = self.datapoints.mask
plt.errorbar(self.datapoints.jds[mask], self.datapoints.mags[mask], yerr=self.datapoints.magerrs[mask], linestyle="None", color="blue")
if not np.alltrue(mask):
mask = mask == False
plt.errorbar(self.datapoints.jds[mask], self.datapoints.mags[mask], yerr=self.datapoints.magerrs[mask], linestyle="None", color="gray")
else:
plt.plot(self.datapoints.jds, self.datapoints.mags, "b,")
if (np.any(self.t) != None) :
if getattr(self, "showknots", True) == True:
for knot in self.t:
plt.axvline(knot, color="gray")
# We draw the spline :
xs = np.linspace(self.datapoints.jds[0], self.datapoints.jds[-1], 1000)
ys = self.eval(jds = xs)
plt.plot(xs, ys, "b-")
if showbounds :
if (np.any(self.l) != None) and (np.any(self.u) != None) :
for l in self.l:
plt.axvline(l, color="blue", dashes=(4, 4))
for u in self.u:
plt.axvline(u, color="red", dashes=(5, 5))
axes = plt.gca()
axes.set_ylim(axes.get_ylim()[::-1])
plt.show()
# Some functions to interact directly with lightcurves :
def fit(lcs, knotstep=20.0, n=None, knots=None, stab=True,
stabext=300.0, stabgap=20.0, stabstep=5.0, stabmagerr=-2.0, stabrampsize=0, stabrampfact=1.0,
bokit=1, bokeps=2.0, boktests=5, bokwindow=None, k=3, verbose=True):
"""
The highlevel function to make a spline fit.
lcs : a list of lightcurves (I will fit the spline through the merged curves)
Specify either
knotstep : spacing of knots
or
n : how many knots to place
or
knots : give me actual initial knot locations, for instance prepared by seasonknots.
stab : do you want to insert stabilization points ?
stabext : number of days to the left and right to fill with stabilization points
stabgap : interval of days considered as a gap to fill with stab points.
stabstep : step of stab points
stabmagerr : if negative, absolte mag err of stab points. If positive, the error bar will be stabmagerr times the median error bar of the data points.
bokit : number of BOK iterations (put to 0 to not move knots)
bokeps : epsilon of BOK
boktests : number of test positions for each knot
"""
dp = merge(lcs, stab=stab, stabext=stabext, stabgap=stabgap, stabstep=stabstep, stabmagerr=stabmagerr, stabrampsize=stabrampsize, stabrampfact=stabrampfact)
s = Spline(dp, k=k, bokeps=bokeps, boktests=boktests, bokwindow=bokwindow)
if knots==None:
if n == None:
s.uniknots(nint = knotstep, n = False)
else :
s.uniknots(nint = n, n = True)
else:
s.setintt(knots)
#if stab:
# s.unistabknots(stabknotn,n=True)
for n in range(bokit):
s.buildbounds(verbose=verbose)
s.bok(bokmethod="BF", verbose=verbose)
s.optc()
s.r2(nostab=True) # This is to set s.lastr2nostab
return s
def seasonknots(lcs, knotstep, ingap, seasongap=60.0):
"""
A little helper to get some knot locations inside of seasons only
knotstep is for inside seasons
ingap is the number of knots inside gaps.
"""
knots = []
#knotstep = 10
dp = merge(lcs, splitup=True, deltat=0.000001, sort=True, stab=False)
gaps = dp.jds[1:] - dp.jds[:-1]
gapindices = list(np.arange(len(dp.jds)-1)[gaps > seasongap])
# knots inside of seasons :
a = dp.jds[0]
for gapi in gapindices:
b = dp.jds[gapi]
#print (a, b)
knots.append(np.linspace(a, b, float(b - a)/float(knotstep)))
a = dp.jds[gapi+1]
b = dp.jds[-1]
knots.append(np.linspace(a, b, float(b - a)/float(knotstep)))
# knots inside of gaps
for gapi in gapindices:
a = dp.jds[gapi]
b = dp.jds[gapi+1]
knots.append(np.linspace(a, b, ingap+2)[1:-1])
knots = np.concatenate(knots)
knots.sort()
return knots
#print gapindices
"""
for n in range(len(gapindices)):
i = gapindices[n]
a = self.jds[i]
b = self.jds[i+1]
newgapjds = np.linspace(a, b, float(b-a)/float(self.stabstep))[1:-1]
newgapindices = i + 1 + np.zeros(len(newgapjds))
newgapmags = np.interp(newgapjds, [a, b], [self.mags[i], self.mags[i+1]])
newgapmagerrs = absstabmagerr * np.ones(newgapmags.shape)
newgapmask = np.zeros(len(newgapjds), dtype=np.bool)
self.jds = np.insert(self.jds, newgapindices, newgapjds)
knotstep
"""
def r2(lcs, spline, nosquare=False):
"""
I do not modify the spline (not even its datapoints) !
Just evaluate the quality of the match, returning an r2 (without any stab points, of course).
This is used if you want to optimize something on the lightcurves without touching the spline.
Of course, I do not touch lastr2nostab or lastr2stab of the spline ! So this has really nothing
to do with source spline optimization !
"""
myspline = spline.copy()
newdp = pycs.gen.spl.merge(lcs, stab=False) # Indeed we do not care about stabilization points here.
myspline.updatedp(newdp, dpmethod="leave")
return myspline.r2(nostab=True, nosquare=nosquare)
def mltv(lcs, spline, weight=True):
"""
Calculates the TV norm of the difference between a lightcurve (disregarding any microlensing !) and the spline.
I return the sum over the curves in lcs.
Also returns a abs(chi) like distance between the lcs without ML and the spline
If weight is True, we weight the terms in sums according to their error bars.
Idea : weight the total variation somehow by the error bars ! Not sure if needed, the spline is already weighted.
"""
#import matplotlib.pyplot as plt
tv = 0.0
dist = 0.0
for l in lcs:
# We have a spline, and a lightcurve
lmags = l.getmags(noml = True) # We get the mags without ML (but with mag and fluxshift !)
ljds = l.getjds() # Inluding any time shifts.
# Evaluating the spline at those jds :
splinemags = spline.eval(ljds)
# The residues :
res = lmags - splinemags
#plt.plot(ljds, res, "r.")
#plt.show()
if weight == False:
tv += np.sum(np.fabs(res[1:] - res[:-1]))
dist += np.sum(np.fabs(res))
else:
magerrs = l.getmagerrs()
a = res[1:]
aerrs = magerrs[1:]
b = res[:-1]
berrs = magerrs[:-1]
vari = np.fabs(a - b)
varierrs = np.sqrt(aerrs * aerrs + berrs * berrs)
tv += np.sum(vari/varierrs)
dist += np.sum(np.fabs(res) / np.fabs(magerrs))
return (tv, dist)
def optcmltv(lcs, spline, verbose=True):
"""
I will optimize the coefficients of the spline so to minimize the mltv.
I do not use the microlensing of the lcs at all !
Simple powell optimization, slow. A pity.
Add BOK and time shifts in there and it might be bingo !
Would be more efficient if we add knots on the fly
"""
inic = spline.getc(m=2)
def setc(c):
spline.setc(c, m=2)
def errorfct(c):
setc(c)
(tv, dist) = mltv(lcs, spline, weight=False)
print "put weight"
return tv + 0.1*spline.tv()
minout = spopt.fmin_powell(errorfct, inic, full_output=1, disp=verbose)
copt = minout[0]
# We find a common shift to all coeffs so that the level matches
meanc = np.mean(spline.getc(m=2))
meanmag = np.mean(np.concatenate([l.getmags(noml = True) for l in lcs]))
setc(copt)
spline.c += meanmag - meanc
|
COSMOGRAILREPO_NAMEPyCSPATH_START.@PyCS_extracted@PyCS-master@pycs@gen@spl.py@.PATH_END.py
|
{
"filename": "3GC_split_model_images.py",
"repo_name": "IanHeywood/oxkat",
"repo_path": "oxkat_extracted/oxkat-master/oxkat/3GC_split_model_images.py",
"type": "Python"
}
|
#!/usr/bin/env python
# ian.heywood@physics.ox.ac.uk
import glob
import numpy
import shutil
from astropy import wcs
from astropy.io import fits
from optparse import OptionParser
# ---------------------------------------------------------------------------------------
def hms2deg(hms,delimiter=':'):
"""
Right ascention string in hms to float in decimal degrees
"""
h,m,s = hms.split(delimiter)
h = float(h)
m = float(m)
s = float(s)
deg = 15.0*(h+(m/60.0)+(s/3600.0))
return deg
def dms2deg(dms,delimiter=':'):
"""
Declination string in dms to float in decimal degrees
"""
d,m,s = dms.split(delimiter)
if d[0] == '-':
decsign = -1.0
d = float(d[1:])
elif d[0] == '+':
decsign = 1.0
d = float(d[1:])
else:
decsign = 1.0
d = float(d)
m = float(m)
s = float(s)
deg = decsign*(d+(m/60.0)+(s/3600.0))
return deg
def radius2deg(radius):
"""
String with arcsec or arcmin unit to decimal degrees
"""
if radius[-1] == '"':
radius = float(radius[:-1])/3600.0
elif radius[-1] == "'":
radius = float(radius[:-1])/60.0
else:
radius = float(radius)
return radius
def process_region_file(region_file):
"""
Extract RA,dec,radius as floats in degrees
from a DS9 region file containing circles
"""
circles = []
f = open(region_file,'r')
line = f.readline()
while line:
if line[0:6] == 'circle':
line = line.replace(' ','')
line = line.rstrip('\n').replace('(',' ').replace(')',' ')
ra,dec,radius = line.split()[1].split(',')
if ':' in ra:
ra = hms2deg(ra)
else:
ra = float(ra)
if ':' in dec:
dec = dms2deg(dec)
else:
dec = float(dec)
radius = radius2deg(radius)
circles.append((ra,dec,radius))
line = f.readline()
f.close()
return circles
def get_image(fits_file):
"""
Get the image data from a FITS file
"""
input_hdu = fits.open(fits_file)[0]
if len(input_hdu.data.shape) == 2:
image = numpy.array(input_hdu.data[:,:])
elif len(input_hdu.data.shape) == 3:
image = numpy.array(input_hdu.data[0,:,:])
else:
image = numpy.array(input_hdu.data[0,0,:,:])
return image
def flush_fits(image,fits_file):
"""
Write 2D numpy array image to fits_file
"""
f = fits.open(fits_file,mode='update')
input_hdu = f[0]
if len(input_hdu.data.shape) == 2:
input_hdu.data[:,:] =image
elif len(input_hdu.data.shape) == 3:
input_hdu.data[0,:,:] = image
else:
input_hdu.data[0,0,:,:] = image
f.flush()
def apply_circle(image,xpix,ypix,rpix):
"""
Apply a circle with values of 1, of radius rpix to xpix,ypix in image array
"""
xg,yg = numpy.mgrid[int(xpix-rpix):int(xpix+rpix)+1,int(ypix-rpix):int(ypix+rpix)+1]
xg = xg.ravel()
yg = yg.ravel()
for i,j in zip(xg,yg):
sep = ((i-xpix)**2.0 + (j-ypix)**2.0)**0.5
if sep < rpix:
image[j,i] = 1.0
return image
def fmt(xx):
return str(round(xx,5))
def spacer():
print('--------------|---------------------------------------------')
# ---------------------------------------------------------------------------------------
def main():
parser = OptionParser(usage = '%prog [options]')
parser.add_option('--region', dest = 'region_file', help = 'DS9 region file')
parser.add_option('--prefix', dest = 'model_pattern', help = 'wsclean image prefix')
parser.add_option('--subtract', dest = 'subtract', help = 'Produce model image with components within region subtracted (default = False)', action = 'store_true', default = False)
(options,args) = parser.parse_args()
region_file = options.region_file
model_pattern = options.model_pattern
subtract = options.subtract
circles = process_region_file(region_file)
suffix = region_file.split('/')[-1].split('.')[0]
spacer()
print('DS9 region : '+region_file)
print('Contains : '+str(len(circles))+' circles')
print('Model suffix : '+suffix)
spacer()
model_list = sorted(glob.glob(model_pattern+'-0*model*fits'))
for fits_file in model_list:
print('Reading : '+fits_file)
dir1_fits = fits_file.replace(model_pattern,model_pattern+'-'+suffix)
if subtract:
subtract_fits = fits_file.replace(model_pattern,model_pattern+'-'+suffix+'-subtracted')
img = get_image(fits_file)
mask = img*0.0
hdulist = fits.open(fits_file)
w = wcs.WCS(hdulist[0].header)
ref_pix1 = hdulist[0].header['CRPIX1']
ref_pix2 = hdulist[0].header['CRPIX2']
pixscale = hdulist[0].header['CDELT2']
for circle in circles:
ra = circle[0]
dec = circle[1]
coord = (ra,dec,0,0)
pixels = w.wcs_world2pix([coord],0)
radius = circle[2]
xpix = pixels[0][0]
ypix = pixels[0][1]
rpix = radius/pixscale
print('Masking : sky '+fmt(ra)+' '+fmt(dec)+' '+fmt(radius))
print(' : pixel '+fmt(xpix)+' '+fmt(ypix)+' '+fmt(rpix))
mask = apply_circle(mask,xpix,ypix,rpix)
dir1 = img*mask
print('Writing : '+dir1_fits)
shutil.copyfile(fits_file,dir1_fits)
flush_fits(dir1,dir1_fits)
if subtract:
subt = img*(1.0-mask)
print('Writing : '+subtract_fits)
shutil.copyfile(fits_file,subtract_fits)
flush_fits(subt,subtract_fits)
spacer()
if __name__ == '__main__':
main()
|
IanHeywoodREPO_NAMEoxkatPATH_START.@oxkat_extracted@oxkat-master@oxkat@3GC_split_model_images.py@.PATH_END.py
|
{
"filename": "_spectral.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/scipy/py3/scipy/optimize/_spectral.py",
"type": "Python"
}
|
"""
Spectral Algorithm for Nonlinear Equations
"""
import collections
import numpy as np
from scipy.optimize import OptimizeResult
from scipy.optimize._optimize import _check_unknown_options
from ._linesearch import _nonmonotone_line_search_cruz, _nonmonotone_line_search_cheng
class _NoConvergence(Exception):
pass
def _root_df_sane(func, x0, args=(), ftol=1e-8, fatol=1e-300, maxfev=1000,
fnorm=None, callback=None, disp=False, M=10, eta_strategy=None,
sigma_eps=1e-10, sigma_0=1.0, line_search='cruz', **unknown_options):
r"""
Solve nonlinear equation with the DF-SANE method
Options
-------
ftol : float, optional
Relative norm tolerance.
fatol : float, optional
Absolute norm tolerance.
Algorithm terminates when ``||func(x)|| < fatol + ftol ||func(x_0)||``.
fnorm : callable, optional
Norm to use in the convergence check. If None, 2-norm is used.
maxfev : int, optional
Maximum number of function evaluations.
disp : bool, optional
Whether to print convergence process to stdout.
eta_strategy : callable, optional
Choice of the ``eta_k`` parameter, which gives slack for growth
of ``||F||**2``. Called as ``eta_k = eta_strategy(k, x, F)`` with
`k` the iteration number, `x` the current iterate and `F` the current
residual. Should satisfy ``eta_k > 0`` and ``sum(eta, k=0..inf) < inf``.
Default: ``||F||**2 / (1 + k)**2``.
sigma_eps : float, optional
The spectral coefficient is constrained to ``sigma_eps < sigma < 1/sigma_eps``.
Default: 1e-10
sigma_0 : float, optional
Initial spectral coefficient.
Default: 1.0
M : int, optional
Number of iterates to include in the nonmonotonic line search.
Default: 10
line_search : {'cruz', 'cheng'}
Type of line search to employ. 'cruz' is the original one defined in
[Martinez & Raydan. Math. Comp. 75, 1429 (2006)], 'cheng' is
a modified search defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)].
Default: 'cruz'
References
----------
.. [1] "Spectral residual method without gradient information for solving
large-scale nonlinear systems of equations." W. La Cruz,
J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).
.. [2] W. La Cruz, Opt. Meth. Software, 29, 24 (2014).
.. [3] W. Cheng, D.-H. Li. IMA J. Numer. Anal. **29**, 814 (2009).
"""
_check_unknown_options(unknown_options)
if line_search not in ('cheng', 'cruz'):
raise ValueError(f"Invalid value {line_search!r} for 'line_search'")
nexp = 2
if eta_strategy is None:
# Different choice from [1], as their eta is not invariant
# vs. scaling of F.
def eta_strategy(k, x, F):
# Obtain squared 2-norm of the initial residual from the outer scope
return f_0 / (1 + k)**2
if fnorm is None:
def fnorm(F):
# Obtain squared 2-norm of the current residual from the outer scope
return f_k**(1.0/nexp)
def fmerit(F):
return np.linalg.norm(F)**nexp
nfev = [0]
f, x_k, x_shape, f_k, F_k, is_complex = _wrap_func(func, x0, fmerit, nfev, maxfev, args)
k = 0
f_0 = f_k
sigma_k = sigma_0
F_0_norm = fnorm(F_k)
# For the 'cruz' line search
prev_fs = collections.deque([f_k], M)
# For the 'cheng' line search
Q = 1.0
C = f_0
converged = False
message = "too many function evaluations required"
while True:
F_k_norm = fnorm(F_k)
if disp:
print("iter %d: ||F|| = %g, sigma = %g" % (k, F_k_norm, sigma_k))
if callback is not None:
callback(x_k, F_k)
if F_k_norm < ftol * F_0_norm + fatol:
# Converged!
message = "successful convergence"
converged = True
break
# Control spectral parameter, from [2]
if abs(sigma_k) > 1/sigma_eps:
sigma_k = 1/sigma_eps * np.sign(sigma_k)
elif abs(sigma_k) < sigma_eps:
sigma_k = sigma_eps
# Line search direction
d = -sigma_k * F_k
# Nonmonotone line search
eta = eta_strategy(k, x_k, F_k)
try:
if line_search == 'cruz':
alpha, xp, fp, Fp = _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta=eta)
elif line_search == 'cheng':
alpha, xp, fp, Fp, C, Q = _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta=eta)
except _NoConvergence:
break
# Update spectral parameter
s_k = xp - x_k
y_k = Fp - F_k
sigma_k = np.vdot(s_k, s_k) / np.vdot(s_k, y_k)
# Take step
x_k = xp
F_k = Fp
f_k = fp
# Store function value
if line_search == 'cruz':
prev_fs.append(fp)
k += 1
x = _wrap_result(x_k, is_complex, shape=x_shape)
F = _wrap_result(F_k, is_complex)
result = OptimizeResult(x=x, success=converged,
message=message,
fun=F, nfev=nfev[0], nit=k)
return result
def _wrap_func(func, x0, fmerit, nfev_list, maxfev, args=()):
"""
Wrap a function and an initial value so that (i) complex values
are wrapped to reals, and (ii) value for a merit function
fmerit(x, f) is computed at the same time, (iii) iteration count
is maintained and an exception is raised if it is exceeded.
Parameters
----------
func : callable
Function to wrap
x0 : ndarray
Initial value
fmerit : callable
Merit function fmerit(f) for computing merit value from residual.
nfev_list : list
List to store number of evaluations in. Should be [0] in the beginning.
maxfev : int
Maximum number of evaluations before _NoConvergence is raised.
args : tuple
Extra arguments to func
Returns
-------
wrap_func : callable
Wrapped function, to be called as
``F, fp = wrap_func(x0)``
x0_wrap : ndarray of float
Wrapped initial value; raveled to 1-D and complex
values mapped to reals.
x0_shape : tuple
Shape of the initial value array
f : float
Merit function at F
F : ndarray of float
Residual at x0_wrap
is_complex : bool
Whether complex values were mapped to reals
"""
x0 = np.asarray(x0)
x0_shape = x0.shape
F = np.asarray(func(x0, *args)).ravel()
is_complex = np.iscomplexobj(x0) or np.iscomplexobj(F)
x0 = x0.ravel()
nfev_list[0] = 1
if is_complex:
def wrap_func(x):
if nfev_list[0] >= maxfev:
raise _NoConvergence()
nfev_list[0] += 1
z = _real2complex(x).reshape(x0_shape)
v = np.asarray(func(z, *args)).ravel()
F = _complex2real(v)
f = fmerit(F)
return f, F
x0 = _complex2real(x0)
F = _complex2real(F)
else:
def wrap_func(x):
if nfev_list[0] >= maxfev:
raise _NoConvergence()
nfev_list[0] += 1
x = x.reshape(x0_shape)
F = np.asarray(func(x, *args)).ravel()
f = fmerit(F)
return f, F
return wrap_func, x0, x0_shape, fmerit(F), F, is_complex
def _wrap_result(result, is_complex, shape=None):
"""
Convert from real to complex and reshape result arrays.
"""
if is_complex:
z = _real2complex(result)
else:
z = result
if shape is not None:
z = z.reshape(shape)
return z
def _real2complex(x):
return np.ascontiguousarray(x, dtype=float).view(np.complex128)
def _complex2real(z):
return np.ascontiguousarray(z, dtype=complex).view(np.float64)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@scipy@py3@scipy@optimize@_spectral.py@.PATH_END.py
|
{
"filename": "spawn.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/setuptools/py3/setuptools/_distutils/spawn.py",
"type": "Python"
}
|
"""distutils.spawn
Provides the 'spawn()' function, a front-end to various platform-
specific functions for launching another program in a sub-process.
"""
from __future__ import annotations
import os
import platform
import shutil
import subprocess
import sys
import warnings
from typing import Mapping
from ._log import log
from .debug import DEBUG
from .errors import DistutilsExecError
def _debug(cmd):
"""
Render a subprocess command differently depending on DEBUG.
"""
return cmd if DEBUG else cmd[0]
def _inject_macos_ver(env: Mapping[str:str] | None) -> Mapping[str:str] | None:
if platform.system() != 'Darwin':
return env
from .util import MACOSX_VERSION_VAR, get_macosx_target_ver
target_ver = get_macosx_target_ver()
update = {MACOSX_VERSION_VAR: target_ver} if target_ver else {}
return {**_resolve(env), **update}
def _resolve(env: Mapping[str:str] | None) -> Mapping[str:str]:
return os.environ if env is None else env
def spawn(cmd, search_path=True, verbose=False, dry_run=False, env=None):
"""Run another program, specified as a command list 'cmd', in a new process.
'cmd' is just the argument list for the new process, ie.
cmd[0] is the program to run and cmd[1:] are the rest of its arguments.
There is no way to run a program with a name different from that of its
executable.
If 'search_path' is true (the default), the system's executable
search path will be used to find the program; otherwise, cmd[0]
must be the exact path to the executable. If 'dry_run' is true,
the command will not actually be run.
Raise DistutilsExecError if running the program fails in any way; just
return on success.
"""
log.info(subprocess.list2cmdline(cmd))
if dry_run:
return
if search_path:
executable = shutil.which(cmd[0])
if executable is not None:
cmd[0] = executable
try:
subprocess.check_call(cmd, env=_inject_macos_ver(env))
except OSError as exc:
raise DistutilsExecError(
f"command {_debug(cmd)!r} failed: {exc.args[-1]}"
) from exc
except subprocess.CalledProcessError as err:
raise DistutilsExecError(
f"command {_debug(cmd)!r} failed with exit code {err.returncode}"
) from err
def find_executable(executable, path=None):
"""Tries to find 'executable' in the directories listed in 'path'.
A string listing directories separated by 'os.pathsep'; defaults to
os.environ['PATH']. Returns the complete filename or None if not found.
"""
warnings.warn(
'Use shutil.which instead of find_executable', DeprecationWarning, stacklevel=2
)
_, ext = os.path.splitext(executable)
if (sys.platform == 'win32') and (ext != '.exe'):
executable = executable + '.exe'
if os.path.isfile(executable):
return executable
if path is None:
path = os.environ.get('PATH', None)
# bpo-35755: Don't fall through if PATH is the empty string
if path is None:
try:
path = os.confstr("CS_PATH")
except (AttributeError, ValueError):
# os.confstr() or CS_PATH is not available
path = os.defpath
# PATH='' doesn't match, whereas PATH=':' looks in the current directory
if not path:
return None
paths = path.split(os.pathsep)
for p in paths:
f = os.path.join(p, executable)
if os.path.isfile(f):
# the file exists, we have a shot at spawn working
return f
return None
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@setuptools@py3@setuptools@_distutils@spawn.py@.PATH_END.py
|
{
"filename": "suspect.py",
"repo_name": "astrocatalogs/supernovae",
"repo_path": "supernovae_extracted/supernovae-master/tasks/suspect.py",
"type": "Python"
}
|
"""Import tasks for SUSPECT.
"""
import csv
import json
import os
import re
import urllib
from glob import glob
from html import unescape
from math import floor
from astropy.time import Time as astrotime
from bs4 import BeautifulSoup
from astrocats.catalog.utils import (get_sig_digits, is_number, jd_to_mjd,
pbar, pbar_strings, pretty_num, uniq_cdl)
from decimal import Decimal
from ..supernova import SUPERNOVA
def do_suspect_photo(catalog):
task_str = catalog.get_current_task_str()
with open(
os.path.join(catalog.get_current_task_repo(),
'suspectreferences.csv'), 'r') as f:
tsvin = csv.reader(f, delimiter=',', skipinitialspace=True)
suspectrefdict = {}
for row in tsvin:
suspectrefdict[row[0]] = row[1]
file_names = list(
sorted(
glob(
os.path.join(catalog.get_current_task_repo(),
'SUSPECT/*.html'))))
for datafile in pbar_strings(file_names, task_str):
basename = os.path.basename(datafile)
basesplit = basename.split('-')
oldname = basesplit[1]
name = catalog.add_entry(oldname)
if name.startswith('SN') and is_number(name[2:]):
name = name + 'A'
band = basesplit[3].split('.')[0]
ei = int(basesplit[2])
bandlink = 'file://' + os.path.abspath(datafile)
bandresp = urllib.request.urlopen(bandlink)
bandsoup = BeautifulSoup(bandresp, 'html5lib')
bandtable = bandsoup.find('table')
names = bandsoup.body.findAll(text=re.compile('Name'))
reference = ''
for link in bandsoup.body.findAll('a'):
if 'adsabs' in link['href']:
reference = str(link).replace('"', "'")
bibcode = unescape(suspectrefdict[reference])
source = catalog.entries[name].add_source(bibcode=bibcode)
sec_ref = 'SUSPECT'
sec_refurl = 'https://www.nhn.ou.edu/~suspect/'
sec_source = catalog.entries[name].add_source(
name=sec_ref, url=sec_refurl, secondary=True)
catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, oldname,
sec_source)
if ei == 1:
year = re.findall(r'\d+', name)[0]
catalog.entries[name].add_quantity(SUPERNOVA.DISCOVER_DATE, year,
sec_source)
catalog.entries[name].add_quantity(
SUPERNOVA.HOST, names[1].split(':')[1].strip(), sec_source)
redshifts = bandsoup.body.findAll(text=re.compile('Redshift'))
if redshifts:
catalog.entries[name].add_quantity(
SUPERNOVA.REDSHIFT,
redshifts[0].split(':')[1].strip(), sec_source,
kind='heliocentric')
# hvels = bandsoup.body.findAll(text=re.compile('Heliocentric
# Velocity'))
# if hvels:
# vel = hvels[0].split(':')[1].strip().split(' ')[0]
# catalog.entries[name].add_quantity(SUPERNOVA.VELOCITY, vel,
# sec_source,
# kind='heliocentric')
types = bandsoup.body.findAll(text=re.compile('Type'))
catalog.entries[name].add_quantity(
SUPERNOVA.CLAIMED_TYPE,
types[0].split(':')[1].strip().split(' ')[0], sec_source)
for r, row in enumerate(bandtable.findAll('tr')):
if r == 0:
continue
col = row.findAll('td')
mjd = str(jd_to_mjd(Decimal(col[0].contents[0])))
mag = col[3].contents[0]
if mag.isspace():
mag = ''
else:
mag = str(mag)
e_magnitude = col[4].contents[0]
if e_magnitude.isspace():
e_magnitude = ''
else:
e_magnitude = str(e_magnitude)
catalog.entries[name].add_photometry(
time=mjd,
u_time='MJD',
band=band,
magnitude=mag,
e_magnitude=e_magnitude,
source=sec_source + ',' + source)
catalog.journal_entries()
return
def do_suspect_spectra(catalog):
task_str = catalog.get_current_task_str()
with open(
os.path.join(catalog.get_current_task_repo(),
'Suspect/sources.json'), 'r') as f:
sourcedict = json.loads(f.read())
with open(
os.path.join(catalog.get_current_task_repo(),
'Suspect/filename-changes.txt'), 'r') as f:
rows = f.readlines()
changedict = {}
for row in rows:
if not row.strip() or row[0] == "#":
continue
items = row.strip().split(' ')
changedict[items[1]] = items[0]
suspectcnt = 0
folders = next(
os.walk(os.path.join(catalog.get_current_task_repo(), 'Suspect')))[1]
for folder in pbar(folders, task_str):
eventfolders = next(
os.walk(
os.path.join(catalog.get_current_task_repo(), 'Suspect/') +
folder))[1]
oldname = ''
for eventfolder in pbar(eventfolders, task_str):
name = eventfolder
if is_number(name[:4]):
name = 'SN' + name
name = catalog.get_preferred_name(name)
if oldname and name != oldname:
catalog.journal_entries()
oldname = name
name = catalog.add_entry(name)
sec_ref = 'SUSPECT'
sec_refurl = 'https://www.nhn.ou.edu/~suspect/'
sec_bibc = '2001AAS...199.8408R'
sec_source = catalog.entries[name].add_source(
name=sec_ref, url=sec_refurl, bibcode=sec_bibc, secondary=True)
catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name,
sec_source)
fpath = os.path.join(catalog.get_current_task_repo(), 'Suspect',
folder, eventfolder)
eventspectra = next(os.walk(fpath))[2]
for spectrum in eventspectra:
sources = [sec_source]
bibcode = ''
if spectrum in changedict:
specalias = changedict[spectrum]
else:
specalias = spectrum
if specalias in sourcedict:
bibcode = sourcedict[specalias]
elif name in sourcedict:
bibcode = sourcedict[name]
if bibcode:
source = catalog.entries[name].add_source(
bibcode=unescape(bibcode))
sources += [source]
sources = uniq_cdl(sources)
date = spectrum.split('_')[1]
year = date[:4]
month = date[4:6]
day = date[6:]
sig = get_sig_digits(day) + 5
day_fmt = str(floor(float(day))).zfill(2)
time = astrotime(year + '-' + month + '-' + day_fmt).mjd
time = time + float(day) - floor(float(day))
time = pretty_num(time, sig=sig)
fpath = os.path.join(catalog.get_current_task_repo(),
'Suspect', folder, eventfolder, spectrum)
with open(fpath, 'r') as f:
specdata = list(
csv.reader(
f, delimiter=' ', skipinitialspace=True))
specdata = list(filter(None, specdata))
newspec = []
oldval = ''
for row in specdata:
if row[1] == oldval:
continue
newspec.append(row)
oldval = row[1]
specdata = newspec
haserrors = len(specdata[0]) == 3 and specdata[0][
2] and specdata[0][2] != 'NaN'
specdata = [list(i) for i in zip(*specdata)]
wavelengths = specdata[0]
fluxes = specdata[1]
errors = ''
if haserrors:
errors = specdata[2]
catalog.entries[name].add_spectrum(
u_wavelengths='Angstrom',
u_fluxes='Uncalibrated',
u_time='MJD',
time=time,
wavelengths=wavelengths,
fluxes=fluxes,
errors=errors,
u_errors='Uncalibrated',
source=sources,
filename=spectrum)
suspectcnt = suspectcnt + 1
if (catalog.args.travis and
suspectcnt % catalog.TRAVIS_QUERY_LIMIT == 0):
break
catalog.journal_entries()
return
|
astrocatalogsREPO_NAMEsupernovaePATH_START.@supernovae_extracted@supernovae-master@tasks@suspect.py@.PATH_END.py
|
{
"filename": "dev_ops.md",
"repo_name": "andreatramacere/jetset",
"repo_path": "jetset_extracted/jetset-master/dev_ops.md",
"type": "Markdown"
}
|
## local operations
- update version: update the tag in `jetset/pkg_info.json`
- clean `__pycache__`: ```find . -type d -name __pycache__ | xargs rm -r```
- If you want to make a tag you can use the script, the `-do_remote_tag` option will create the tag remotely,
deleting remotely the one with the same name, e.g.:
- `./make_tag.py -tag 1.1.2 -do_remote_tag`
To use as tag the current version
- `./make_tag.py -do_remote_tag`
To just print the tag without creating it:
- `./make_tag.py -dry`
## operations on the action workflow
- If you want to create a release from the same branch of the workflow
1) set the release tag in the 'tag to create a release' field
- If you want to create a release from a specific tag or branch (different from the branch of the workflow)
1) set the git tag in the `checkout this tag` field of the action wf
2) set the release tag in the `tag to create a release` field of action wf
- when publishing a new version create both the tag for the version and the stable
- Anaconda `meta.yaml` is built from `requirements.txt` using: `python .github/workflows/requirements_to_conda_yml.py` directly in the action wf
- if you do not pass a `tag to create a release` value, the Release will not be created
- to run test on action leave the `skip test` form empty, otherwise type `yes` to skip the tests
## testing locally
<!-- - python -c"import iminuit; print('iminuit',iminuit.__version__); import jetset; print('jetset',jetset.#__version__)" -->
- user test:
- `pytest --pyargs -vvv jetset.tests.test_users::TestUser`
- specific module test (eg: test_jet_model):
- `pytest --pyargs -vvv -s jetset.tests.test_jet_model`
- integration test :
- `pytest --pyargs -vvv jetset.tests.test_integration::TestIntegration`
- test a specificmethod:
- `pytest --pyargs -vvv jetset.tests.test_integration::TestIntegration::tets_method`
## Installation
- installing from source without setup.py install
- `rm -rf ./build`
- `pip install --verbose .`
|
andreatramacereREPO_NAMEjetsetPATH_START.@jetset_extracted@jetset-master@dev_ops.md@.PATH_END.py
|
{
"filename": "nasm.py",
"repo_name": "duvall3/rat-pac",
"repo_path": "rat-pac_extracted/rat-pac-master/python/SCons/Tool/nasm.py",
"type": "Python"
}
|
"""SCons.Tool.nasm
Tool-specific initialization for nasm, the famous Netwide Assembler.
There normally shouldn't be any need to import this module directly.
It will usually be imported through the generic SCons.Tool.Tool()
selection method.
"""
#
# Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 The SCons Foundation
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
# KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
__revision__ = "src/engine/SCons/Tool/nasm.py 4043 2009/02/23 09:06:45 scons"
import SCons.Defaults
import SCons.Tool
import SCons.Util
ASSuffixes = ['.s', '.asm', '.ASM']
ASPPSuffixes = ['.spp', '.SPP', '.sx']
if SCons.Util.case_sensitive_suffixes('.s', '.S'):
ASPPSuffixes.extend(['.S'])
else:
ASSuffixes.extend(['.S'])
def generate(env):
"""Add Builders and construction variables for nasm to an Environment."""
static_obj, shared_obj = SCons.Tool.createObjBuilders(env)
for suffix in ASSuffixes:
static_obj.add_action(suffix, SCons.Defaults.ASAction)
static_obj.add_emitter(suffix, SCons.Defaults.StaticObjectEmitter)
for suffix in ASPPSuffixes:
static_obj.add_action(suffix, SCons.Defaults.ASPPAction)
static_obj.add_emitter(suffix, SCons.Defaults.StaticObjectEmitter)
env['AS'] = 'nasm'
env['ASFLAGS'] = SCons.Util.CLVar('')
env['ASPPFLAGS'] = '$ASFLAGS'
env['ASCOM'] = '$AS $ASFLAGS -o $TARGET $SOURCES'
env['ASPPCOM'] = '$CC $ASPPFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -c -o $TARGET $SOURCES'
def exists(env):
return env.Detect('nasm')
# Local Variables:
# tab-width:4
# indent-tabs-mode:nil
# End:
# vim: set expandtab tabstop=4 shiftwidth=4:
|
duvall3REPO_NAMErat-pacPATH_START.@rat-pac_extracted@rat-pac-master@python@SCons@Tool@nasm.py@.PATH_END.py
|
{
"filename": "test_endpoint.py",
"repo_name": "jdswinbank/Comet",
"repo_path": "Comet_extracted/Comet-master/comet/utility/test/test_endpoint.py",
"type": "Python"
}
|
from twisted.internet import reactor
from twisted.trial import unittest
from comet.utility import coerce_to_client_endpoint, coerce_to_server_endpoint
class coerce_to_client_endpoint_TestCase(unittest.TestCase):
HOST, PORT, DEFAULT_PORT = "test", 1234, 4321
def test_good_tcp_parse(self):
ep = coerce_to_client_endpoint(
reactor, f"tcp:{self.HOST}:{self.PORT}", self.DEFAULT_PORT
)
self.assertEqual(ep._host, self.HOST)
self.assertEqual(ep._port, self.PORT)
def test_good_unix_parse(self):
filename = "/dev/null"
ep = coerce_to_client_endpoint(reactor, f"unix:{filename}", self.DEFAULT_PORT)
self.assertEqual(ep._path, filename)
def test_missing_protocol(self):
ep = coerce_to_client_endpoint(
reactor, f"{self.HOST}:{self.PORT}", self.DEFAULT_PORT
)
self.assertEqual(ep._host, self.HOST)
self.assertEqual(ep._port, self.PORT)
def test_missing_port(self):
ep = coerce_to_client_endpoint(reactor, f"tcp:{self.HOST}", self.DEFAULT_PORT)
self.assertEqual(ep._host, self.HOST)
self.assertEqual(ep._port, self.DEFAULT_PORT)
def test_missing_both(self):
ep = coerce_to_client_endpoint(reactor, self.HOST, self.DEFAULT_PORT)
self.assertEqual(ep._host, self.HOST)
self.assertEqual(ep._port, self.DEFAULT_PORT)
def test_bad_parse(self):
self.assertRaises(
ValueError,
coerce_to_client_endpoint,
reactor,
"tcp:tcp:tcp",
self.DEFAULT_PORT,
)
class coerce_to_server_endpoint_TestCase(unittest.TestCase):
PORT = 1234
def test_good_tcp_parse(self):
ep = coerce_to_server_endpoint(reactor, f"tcp:{self.PORT}")
self.assertEqual(ep._port, self.PORT)
def test_good_unix_parse(self):
filename = "/dev/null"
ep = coerce_to_server_endpoint(reactor, f"unix:{filename}")
self.assertEqual(ep._address, filename)
def test_missing_protocol(self):
ep = coerce_to_server_endpoint(reactor, self.PORT)
self.assertEqual(ep._port, self.PORT)
def test_bad_parse(self):
self.assertRaises(ValueError, coerce_to_server_endpoint, reactor, "tcp:")
|
jdswinbankREPO_NAMECometPATH_START.@Comet_extracted@Comet-master@comet@utility@test@test_endpoint.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "OpenAccess-AI-Collective/axolotl",
"repo_path": "axolotl_extracted/axolotl-main/src/axolotl/core/trainers/__init__.py",
"type": "Python"
}
|
OpenAccess-AI-CollectiveREPO_NAMEaxolotlPATH_START.@axolotl_extracted@axolotl-main@src@axolotl@core@trainers@__init__.py@.PATH_END.py
|
|
{
"filename": "3)_Simple_Visualization.ipynb",
"repo_name": "rennehan/yt-swift",
"repo_path": "yt-swift_extracted/yt-swift-main/doc/source/quickstart/3)_Simple_Visualization.ipynb",
"type": "Jupyter Notebook"
}
|
# Simple Visualizations of Data
Just like in our first notebook, we have to load yt and then some data.
```python
import yt
```
For this notebook, we'll load up a cosmology dataset.
```python
ds = yt.load_sample("enzo_tiny_cosmology")
print("Redshift =", ds.current_redshift)
```
In the terms that yt uses, a projection is a line integral through the domain. This can either be unweighted (in which case a column density is returned) or weighted, in which case an average value is returned. Projections are, like all other data objects in yt, full-fledged data objects that churn through data and present that to you. However, we also provide a simple method of creating Projections and plotting them in a single step. This is called a Plot Window, here specifically known as a `ProjectionPlot`. One thing to note is that in yt, we project all the way through the entire domain at a single time. This means that the first call to projecting can be somewhat time consuming, but panning, zooming and plotting are all quite fast.
yt is designed to make it easy to make nice plots and straightforward to modify those plots directly. The cookbook in the documentation includes detailed examples of this.
```python
p = yt.ProjectionPlot(ds, "y", ("gas", "density"))
p.show()
```
The `show` command simply sends the plot to the IPython notebook. You can also call `p.save()` which will save the plot to the file system. This function accepts an argument, which will be prepended to the filename and can be used to name it based on the width or to supply a location.
Now we'll zoom and pan a bit.
```python
p.zoom(2.0)
```
```python
p.pan_rel((0.1, 0.0))
```
```python
p.zoom(10.0)
```
```python
p.pan_rel((-0.25, -0.5))
```
```python
p.zoom(0.1)
```
If we specify multiple fields, each time we call `show` we get multiple plots back. Same for `save`!
```python
p = yt.ProjectionPlot(
ds,
"z",
[("gas", "density"), ("gas", "temperature")],
weight_field=("gas", "density"),
)
p.show()
```
We can adjust the colormap on a field-by-field basis.
```python
p.set_cmap(("gas", "temperature"), "hot")
```
And, we can re-center the plot on different locations. One possible use of this would be to make a single `ProjectionPlot` which you move around to look at different regions in your simulation, saving at each one.
```python
v, c = ds.find_max(("gas", "density"))
p.set_center((c[0], c[1]))
p.zoom(10)
```
Okay, let's load up a bigger simulation (from `Enzo_64` this time) and make a slice plot.
```python
ds = yt.load_sample("Enzo_64/DD0043/data0043")
s = yt.SlicePlot(
ds, "z", [("gas", "density"), ("gas", "velocity_magnitude")], center="max"
)
s.set_cmap(("gas", "velocity_magnitude"), "cmyt.pastel")
s.zoom(10.0)
```
We can adjust the logging of various fields:
```python
s.set_log(("gas", "velocity_magnitude"), True)
```
yt provides many different annotations for your plots. You can see all of these in the documentation, or if you type `s.annotate_` and press tab, a list will show up here. We'll annotate with velocity arrows.
```python
s.annotate_velocity()
```
Contours can also be overlaid:
```python
s = yt.SlicePlot(ds, "x", ("gas", "density"), center="max")
s.annotate_contour(("gas", "temperature"))
s.zoom(2.5)
```
Finally, we can save out to the file system.
```python
s.save()
```
|
rennehanREPO_NAMEyt-swiftPATH_START.@yt-swift_extracted@yt-swift-main@doc@source@quickstart@3)_Simple_Visualization.ipynb@.PATH_END.py
|
{
"filename": "README.md",
"repo_name": "desihub/desitarget",
"repo_path": "desitarget_extracted/desitarget-main/py/desitarget/streams/gaia_dr3_parallax_zero_point/README.md",
"type": "Markdown"
}
|
## Attribution
The code and coefficient files in this directory are a snapshot of the
[gaiadr3_zeropoint](https://gitlab.com/icc-ub/public/gaiadr3_zeropoint/-/blob/master/)
package (downloaded on 2024-03-05). Please refer to
[the original code](https://gitlab.com/icc-ub/public/gaiadr3_zeropoint/)
for details and attribution.
## License
The contents of this (and only this) directory retain the original
[GNU LESSER GENERAL PUBLIC LICENSE included herein](./LICENSE).
## Justification
The gaiadr3_zeropoint package includes some dependencies that are
not supported by [desihub](https://github.com/desihub) and the DESI
project. We have therefore taken a snapshot of the package to
simplify maintenance of the DESI software stack.
|
desihubREPO_NAMEdesitargetPATH_START.@desitarget_extracted@desitarget-main@py@desitarget@streams@gaia_dr3_parallax_zero_point@README.md@.PATH_END.py
|
{
"filename": "_exponentformat.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/parcoords/line/colorbar/_exponentformat.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class ExponentformatValidator(_plotly_utils.basevalidators.EnumeratedValidator):
def __init__(
self,
plotly_name="exponentformat",
parent_name="parcoords.line.colorbar",
**kwargs,
):
super(ExponentformatValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "colorbars"),
values=kwargs.pop("values", ["none", "e", "E", "power", "SI", "B"]),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@parcoords@line@colorbar@_exponentformat.py@.PATH_END.py
|
{
"filename": "likelihood.py",
"repo_name": "aconley/mbb_emcee",
"repo_path": "mbb_emcee_extracted/mbb_emcee-master/mbb_emcee/likelihood.py",
"type": "Python"
}
|
import numpy as np
import math
import copy
from .modified_blackbody import modified_blackbody
from .response import response, response_set, special_types
__all__ = ["likelihood"]
#hack for basestring
try:
basestring
except:
#Python 3
basestring = str
class likelihood(object):
"""Class holding data, defining likelihood"""
_param_order = {'t': 0, 't/(1+z)': 0, 'beta': 1, 'lambda0': 2,
'lambda0*(1+z)': 2, 'lambda_0': 2, 'lambda_0*(1+z)': 2,
'alpha': 3, 'fnorm': 4, 'f500': 4}
def __init__(self, photfile=None, covfile=None, covextn=0,
wavenorm=500.0, noalpha=False, opthin=False,
response=False, responsefile=None, responsedir=None):
""" Object for computing likelihood of a given set of parameters.
Parameters
----------
photfile : string
Text file containing photometry
covfile : string
FITS file containing covariance matrix. None for no file
covextn : integer
Extension of covaraince file
wavenorm : float
Wavelength of normalization in microns
noalpha : bool
Ignore alpha in fit
opthin : bool
Assume optically thin
response : bool
Use response integration
responsefile : string
Name of file containing response specifications if not using
standard set. Ignored unless response is set.
responsedir : string
Directory to look for response files in. Ignored unless
response is set
"""
self._wavenorm = float(wavenorm)
self._noalpha = bool(noalpha)
self._opthin = bool(opthin)
# Set up information about fixed params, param limits, and
# priors.
# All parameters have lower limits
# Make these small but slightly larger than 0, except
# for T, which shouldn't get too small or odd things happen
# Keep in mind the minimum Temperature should be Tcmb*(1+z)
# so as long as we stay above that
self._lowlim = np.array([1, 0.1, 1, 0.1, 1e-3])
# That includes setting up a dictionary that includes the
# lambda peak prior for gaussian priors and upper limits
self._limprior_order = copy.copy(self._param_order)
self._limprior_order.update({'lambda_peak': 5, 'peaklam': 5,
'lambdapeak': 5, 'peak_lambda': 5})
# Setup upper limits; note that alpha and beta have
# upper limits by default. The last element is on the peak lambda
self._has_uplim = [False, True, False, True, False, False]
inf = float("inf")
self._uplim = np.array([inf, 20.0, inf, 20.0, inf, inf])
# Setup Gaussian prior on params plus peak lambda
self._any_gprior = False
self._has_gprior = [False, False, False, False, False, False]
self._gprior_mean = np.zeros(6)
self._gprior_sigma = np.zeros(6)
self._gprior_ivar = np.ones(6)
# Responses
self._response_integrate = False
if response:
self.read_responses(responsefile, responsedir=responsedir)
# Data
self._data_read = False
self._has_covmatrix = False
if not photfile is None:
self.read_phot(photfile)
if not covfile is None:
if not isinstance(covfile, basestring):
raise TypeError("covfile must be string-like")
self.read_cov(covfile, extn=covextn)
# Reset normalization flux lower limit based on data
self._lowlim[4] = 1e-3 * self._flux.min()
else:
if not covfile is None:
raise Exception("Can't pass in covfile if no photfile")
self._badval = float("-inf")
@property
def wavenorm(self):
""" Normalization wavelength in microns"""
return self._wavenorm
@property
def noalpha(self):
""" Not including a blue side power law?"""
return self._noalpha
@property
def opthin(self):
""" Assuming an optically thin model?"""
return self._opthin
@property
def response_integrate(self):
"""Is filter integration being used?"""
return self._response_integrate
def read_responses(self, responsefile=None, responsedir=None):
""" Read in responses
Parameters
----------
responsefile : string
File containing filter specification information. If None,
reads default information.
responsedir : string
Directory to look for actual responses in.
Notes
-----
Calling this turns on filter integration
"""
self._responsewheel = response_set(responsefile, dir=responsedir)
self._response_integrate = True
def set_phot(self, firstarg, flux, flux_unc):
""" Sets photometry
Parameters
----------
firstarg : array like
If using response integration, a string array of response names.
Otherwise, an array of wavelengths, in microns
flux : array like
Array of flux densities, in mJy
flux_unc : array like
Array of flux density uncertainties, in mJy
Notes
-----
This wipes out any covariance matrix already present,
and turns off response integration
"""
if self._response_integrate:
# Get filter responses in same order as photometry
if not isinstance(firstarg[0], basestring):
raise ValueError("Expecting response string name")
self._responses = []
for name in firstarg:
# Make sure we have, or can construct, the right passband
if not name in self._responsewheel:
# Figure out if it's a 'special' one (delta, boxcar, alma)
# these are -assumed- to be frequency, since the usual
# use is to add interferometer tunable passbands
if name.find('_'):
# May be -- split off first part
bs = name.split('_')[1].lower()
if bs in special_types:
# Add it!
self._responsewheel.add_special(name)
else:
errstr = "Unknown filter response {:s}"
raise ValueError(errstr.format(name))
else:
errstr = "Unknown filter response {:s}"
raise ValueError(errstr.format(name))
self._responses.append(self._responsewheel[name])
self._response_names = [r.name for r in self._responses]
self._wave = np.array([resp.effective_wavelength for
resp in self._responses])
else:
self._wave = np.asarray(firstarg, dtype=np.float64)
self._ndata = len(self._wave)
if self._ndata == 0:
raise ValueError("No elements in wavelength vector")
self._flux = np.asarray(flux)
self._flux_unc = np.asarray(flux_unc)
if self._ndata != len(self._flux):
raise ValueError("wave not same length as flux")
if self._ndata != len(self._flux_unc):
raise ValueError("wave not same length as flux_unc")
self._ivar = 1.0 / self._flux_unc**2
# Set upper limit on lambda0 -- if its 3x above
# our longest wavelength point, we can't say anything
# about it.
if not self._has_uplim[2]:
self._has_uplim[2] = True
self._uplim[2] = 3.0 * self._wave.max()
self._data_read = True
self._has_covmatrix = False
def read_phot(self, filename):
"""Reads in the photometry file
Parameters
----------
filename : string
Name of file to read input from. This file should have
three columns: the wavelength [microns], the flux density
[mJy], and the uncertainty in the flux density [mJy].
Notes
-----
This wipes out any covariance matrix present
"""
import astropy.io.ascii
if not isinstance(filename, basestring):
raise TypeError("filename must be string-like")
data = astropy.io.ascii.read(filename, comment='^#')
if len(data) == 0:
errstr = "No data read from %s" % filename
raise IOError(errstr)
self.set_phot([dat[0] for dat in data],
[dat[1] for dat in data],
[dat[2] for dat in data])
@property
def data_read(self):
""" Has the data been set?"""
return self._data_read
@property
def ndata(self):
""" The number of data points"""
if self._data_read:
return self._ndata
else:
return 0
@property
def data_wave(self):
""" The data wavelengths, in microns"""
if self._data_read:
return self._wave
else:
return None
@property
def response_names(self):
""" Returns names of responses corresponding to data"""
if not hasattr(self, '_response_names'):
return None
return self._response_names
def has_response(self, name):
""" Is the specified response function available?"""
if not hasattr(self, '_responsewheel'):
return False
return name in self._responsewheel
def get_response(self, name):
""" Return the matching response object"""
if not hasattr(self, '_responsewheel'):
return None
return self._responsewheel[name]
@property
def data_flux(self):
""" The flux densities, in mJy"""
if self._data_read:
return self._flux
else:
return None
@property
def data_flux_unc(self):
""" The uncertainties in the flux densities, in mJy.
Notes
-----
If a covariance matrix is available, these values are
not used by the fits.
"""
if self._data_read:
if self._has_covmatrix:
return np.sqrt(np.diag(self._covmatrix))
else:
return self._flux_unc
else:
return None
def set_cov(self, covmatrix):
""" Sets covariance matrix
Parameters
----------
covmatrix : array like
Covariance matrix
"""
if not self._data_read:
raise Exception("Can't set covariance matrix without photometry")
if len(covmatrix.shape) != 2:
raise ValueError("Covariance matrix is not 2 dimensional")
if covmatrix.shape[0] != covmatrix.shape[1]:
errstr = "Covariance matrix from is not square: %d by %d"
raise ValueError(errstr % covmatrix.shape)
if covmatrix.shape[0] != self._ndata:
errstr = "Covariance matrix doesn't have same number of "\
"datapoints as photometry; {0:d} vs. {1:d}"
raise ValueError(errstt.format(covmatrix.shape[0], self._ndata))
self._covmatrix = covmatrix
self._invcovmatrix = np.linalg.inv(self._covmatrix)
self._has_covmatrix = True
def read_cov(self, filename, extn=0):
"""Reads in the covariance matrix from a FITS file.
Parameters
----------
filename : string
File to read covariance matrix from
extn : int
Extension to look for covariance matrix in
"""
import astropy.io.fits
if not self._data_read:
raise Exception("Can't read in covaraince matrix without phot")
hdu = astropy.io.fits.open(filename)
self.set_cov(hdu[extn].data)
@property
def has_data_covmatrix(self):
""" Does this object have a flux density covariance matrix?"""
return self._has_covmatrix
@property
def data_covmatrix(self):
""" The covariance matrix of the flux densities, in mJy^2"""
if self._has_covmatrix:
return self._covmatrix
else:
return None
@property
def data_invcovmatrix(self):
""" Get inverse covariance matrix"""
if self._has_covmatrix:
return self._invcovmatrix
else:
return None
def get_paramindex(self, paramname):
""" Convert the name of a parameter into its index.
Parameters
----------
paramname : string
Name of parameter (e.g., 'beta')
Returns
-------
index : int
Parameter index
"""
return self._param_order[paramname]
def set_lowlim(self, param, val):
"""Sets the specified parameter lower limit to value.
Parameters
----------
param : int or string
Parameter specification. Either an index into
the parameter list, or a string name for the
parameter.
"""
if isinstance(param, str):
self._lowlim[self._param_order[param.lower()]] = val
else:
self._lowlim[param] = val
def lowlim(self, param):
"""Gets the specified parameter lower limit
Parameters
----------
param : int or string
Parameter specification. Either an index into
the parameter list, or a string name for the
parameter.
"""
if isinstance(param, str):
paramidx = self._param_order[param.lower()]
else:
paramidx = int(param)
return self._lowlim[paramidx]
@property
def lowlims(self):
""" Get the list of lower parameter limits.
Returns
-------
lowlims : ndarray
The order is T/(1+z), beta, lambda0 (1+z), alpha, fnorm.
"""
return self._lowlim
def set_uplim(self, param, val):
"""Sets the specified parameter upper limit to value.
Parameters
----------
param : int or string
Parameter specification. Either an index into
the parameter list, or a string name for the
parameter.
val : float
The upper limit to set.
"""
if isinstance(param, str):
paramidx = self._limprior_order[param.lower()]
else:
paramidx = int(param)
self._has_uplim[paramidx] = True
self._uplim[paramidx] = val
def has_uplim(self, param):
""" Does the likelihood have an upper limit for a given parameter?
Parameters
----------
param : int or string
Parameter specification. Either an index into
the parameter list, or a string name for the
parameter.
Returns
-------
val : bool
True if there is an upper limit, false otherwise
"""
if isinstance(param, str):
paramidx = self._limprior_order[param.lower()]
else:
paramidx = int(param)
return self._has_uplim[paramidx]
def uplim(self, param):
""" What is the upper limit for a given parameter?
Parameters
----------
param : int or string
Parameter specification. Either an index into
the parameter list, or a string name for the
parameter.
Returns
-------
val : float
Upper limit, or None if there isn't one
"""
if isinstance(param, str):
paramidx = self._limprior_order[param.lower()]
else:
paramidx = int(param)
if not self._has_uplim[paramidx]:
return None
return self._uplim[paramidx]
@property
def has_uplims(self):
return self._has_uplim
@property
def uplims(self):
return self._uplim
def set_gaussian_prior(self, param, mean, sigma):
"""Sets up a Gaussian prior on the specified parameter.
Parameters
----------
param : int or string
Parameter specification. Either an index into
the parameter list, or a string name for the
parameter. The parameters are the usual (T,
beta, lambda0, alpha, fnorm) plus the peak
wavelength in microns
mean : float
Mean of Gaussian prior
sigma : float
Sigma of Gaussian prior
"""
if isinstance(param, str):
paramidx = self._limprior_order[param.lower()]
else:
paramidx = int(param)
self._any_gprior = True
self._has_gprior[paramidx] = True
self._gprior_mean[paramidx] = float(mean)
self._gprior_sigma[paramidx] = float(sigma)
self._gprior_ivar[paramidx] = 1.0 / (float(sigma)**2)
@property
def has_gpriors(self):
return self._has_gprior
@property
def gprior_means(self):
return self._gprior_mean
@property
def gprior_sigmas(self):
return self._gprior_sigma
@property
def gprior_ivars(self):
return self._gprior_ivar
def has_gaussian_prior(self, param):
""" Does the given parameter have a Gaussian prior set?
Parameters
----------
param : int or string
Parameter specification. Either an index into
the parameter list, or a string name for the
parameter. The parameters are the usual (T, beta,
lambda0, alpha, fnorm) plus the peak wavelength in microns
Returns
-------
has_prior : bool
True if a Gaussian prior is set, False otherwise
"""
if isinstance(param, str):
paramidx = self._limprior_order[param.lower()]
else:
paramidx = int(param)
return self._has_gprior[paramidx]
def get_gaussian_prior(self, param):
""" Return Gaussian prior values
Parameters
----------
param : int or string
Parameter specification. Either an index into
the parameter list, or a string name for the
parameter. The parameters are the usual (T, beta,
lambda0, alpha, fnorm) plus the peak wavelength in microns
Returns
-------
tup : tuple or None
Mean, variance if set, None otherwise
"""
if not self._any_gprior:
return None
if isinstance(param, str):
paramidx = self._limprior_order[param.lower()]
else:
paramidx = int(param)
if not self._has_gprior[paramidx]:
return None
return (self._gprior_mean[paramidx], self._gprior_sigma[paramidx])
def _check_lowlim(self, pars):
"""Checks to see if a given parameter set passes the lower limits.
Parameters
----------
pars : array like
5 element list of parameters (T, beta, lambda0, alpha, fnorm).
Returns
-------
pass_check : bool
True if it passes, False if it doesn't.
Notes
-----
Unlike the upper limits, in the most common case the
SED simply can't be compuated below the lower limits,
so we can't just apply a likelihood penalty.
"""
if len(pars) != 5:
raise ValueError("pars is not of expected length 5")
for idx, val in enumerate(pars):
if val < self._lowlim[idx]:
return False
return True
def _uplim_prior(self, pars):
""" Gets log likelihood of upper limit priors
Parameters
----------
pars : array like
5 element list of parameters (T, beta, lambda0, alpha, fnorm).
Returns
-------
like_penalty : float
Penalty to apply to log likelihood based on these parameters.
This should be added to the log likelihood (that is, it is
negative).
Notes
-----
For values above the upper limit, applies a Gaussian
penalty centered at the limit with sigma = limit range/50.0.
A soft upper limit seems to work better than a hard one.
In addition to the actual fit parameters, it is possible to have
a prior on the peak lambda.
"""
# This should only be called if _set_sed has already been called
if len(pars) != 5:
raise ValueError("pars is not of expected length 5")
logpenalty = 0.0
for idx, val in enumerate(pars):
if self._has_uplim[idx]:
lim = self._uplim[idx]
if val > lim:
limvar = (0.02 * (lim - self._lowlim[idx]))**2
logpenalty -= 0.5*(val - lim)**2 / limvar
# Peak lambda
if self._has_uplim[5]:
val = self._sed.max_wave() # _set_sed had better have been called
lim = self._uplim[5]
if val > lim:
limvar = (0.02 * (lim))**2
logpenalty -= 0.5*(val - lim)**2 / limvar
return logpenalty
def _gprior(self, pars):
""" Gets log likelihood of Gaussian priors
Parameters
----------
pars : array like
5 element list of parameters (T, beta, lambda0, alpha, fnorm).
Returns
-------
like_penalty : float
Penalty to apply to log likelihood based on these parameters.
This should be added to the log likelihood (that is, it is
negative).
"""
# This should only be called if _set_sed has already been called
if not self._any_gprior:
return 0.0
penalty = 0.0
# Parameter priors
for idx, val in enumerate(pars):
if self._has_gprior[idx]:
delta = val - self._gprior_mean[idx]
penalty -= 0.5 * self._gprior_ivar[idx] * delta**2
# Peak lambda prior
if self._has_gprior[5]:
delta = self._sed.max_wave() - self._gprior_mean[5]
penalty -= 0.5 * self._gprior_ivar[5] * delta**2
return penalty
def _set_sed(self, pars):
""" Set up the SED for the provided parameters
Parameters
----------
pars : array like
5 element list of parameters (T, beta, lambda0, alpha, fnorm).
"""
if len(pars) != 5:
raise ValueError("pars is not of expected length 5")
self._sed = modified_blackbody(pars[0], pars[1], pars[2], pars[3],
pars[4], wavenorm=self._wavenorm,
noalpha=self._noalpha,
opthin=self._opthin)
def get_sed(self, pars, wave):
""" Get the model SED at the specified wavelengths for a set of params.
Parameters
----------
pars : array like
5 element list of parameters (T, beta, lambda0, alpha, fnorm).
wave : array like
Wavelengths, in microns
Returns
-------
sed : ndarray
SED of the parameters in mJy at the specified wavelengths.
"""
self._set_sed(pars)
return self._sed(wave)
def __call__(self, pars):
""" Gets log likelihood of the parameters.
Parameters
----------
pars : array like
5 element list of parameters (T, beta, lambda0, alpha, fnorm).
Returns
-------
log_likelihood : float
log P(pars | data), including priors and limits.
"""
# First check limits
# Return large negative number if bad
if not self._check_lowlim(pars):
return self._badval
# Set up SED model
self._set_sed(pars)
# Get model fluxes for comparison with data
if self._response_integrate:
model_flux = np.array([resp(self._sed) for
resp in self._responses])
else:
model_flux = self._sed(self._wave)
# Compute likelihood
# Assume Gaussian uncertanties, ignore constant prefactor
diff = self._flux - model_flux
if self._has_covmatrix:
lnlike = -0.5 * np.dot(diff, np.dot(self._invcovmatrix, diff))
else:
lnlike = -0.5 * np.sum(diff**2 * self._ivar)
# Add in upper limit priors to likelihood
lnlike += self._uplim_prior(pars)
# Add Gaussian priors to likelihood
if self._any_gprior:
lnlike += self._gprior(pars)
return lnlike
|
aconleyREPO_NAMEmbb_emceePATH_START.@mbb_emcee_extracted@mbb_emcee-master@mbb_emcee@likelihood.py@.PATH_END.py
|
{
"filename": "5_residual_profiles.py",
"repo_name": "ldolan05/ACID",
"repo_path": "ACID_extracted/ACID-main/.other_scripts/5_residual_profiles.py",
"type": "Python"
}
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 22 14:14:17 2021
@author: lucydolan
"""
import numpy as np
import math
import glob
import Mandel_Agol as ma
from scipy.interpolate import interp1d
from mpl_toolkits.axes_grid1 import make_axes_locatable
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
from astropy.io import fits
from matplotlib.pyplot import cm
#def combineccfs(spectra):
# spectrum[:] = np.sum(spectra[:])/len(spectra[:])
#return spectrum
def gauss(x, rv, sd, height, cont):
y = cont*(1-height*np.exp(-(x-rv)**2/(2*sd**2)))
return y
def residualccfs(in_ccfs, in_ccfs_errors, master_out, master_out_errors, velocities):
residuals=[]
residual_errors = []
#plt.figure('residuals')
for i in range(len(in_ccfs)):
ccf = in_ccfs[i]
ccf_err = in_ccfs_errors[i]
residual = (master_out+1)-(ccf+1)
error = (np.sqrt(master_out_errors**2 + ccf_err**2))/np.sqrt(len(ccf_err))
#residual = (ccf+1)/(master_out+1)-1
#plt.scatter(velocities,residual)
residuals.append(residual)
residual_errors.append(error)
'''
plt.figure()
plt.plot(ccf)
plt.plot(master_out)
#plt.plot(residual)
plt.show()
'''
#plt.show()
return residuals, residual_errors
####################################################################################################################################################################
##path = '/Users/lucydolan/Documents/CCF_method/HD189733_HARPS_CCFS/'
path = '/home/lsd/Documents/Starbase/novaprime/Documents/LSD_Figures/'
#path = '/Users/lucydolan/Starbase/LSD_Figures/'
month = 'August2007' #August, July, Sep
#path = '%s%s_master_out_LSD_profile.fits'%(save_path, month)
months = [#'August2007',
'July2007'#,
#'July2006',
#'Sep2006'
]
all_resi=[]
all_phase=[]
all_prof=[]
results_all = []
masters = []
for month in months:
directory = '%s'%(path)
#file ='%s%s_master_out.fits'%(directory, month)
file ='%s%s_master_out_LSD_profile.fits'%(directory, month)
#ccf_file='%s%s_master_out_ccfs.fits'%(directory, month)
#file ='%s%s_master_out_LSD_v3.fits'%(directory, month)
#file ='%s%s_master_out_cegla.fits'%(directory, month)
# all_ccfs = fits.open(ccf_file)
all_profiles = fits.open(file)
profile_spec = all_profiles[0].data[0]
velocities = np.linspace(-10,10,len(profile_spec))
count = 0
rv_phases = []
rv_results = []
ccf_rv_results = []
rvs = []
fwhm = []
plt.figure()
st = 15
end = -15
st = 0
end = len(velocities)
# cmap = plt.colormaps('Blues')'
# colour = cm.Blues(np.linspace(0, 1, len(all_profiles)))
# plt.figure()
# for i in range(len(all_profiles)-1):
# y = all_profiles[i].data[0]
# popt, pcov = curve_fit(gauss, velocities[st:end], y[st:end])
# perr= np.sqrt(np.diag(pcov))
# plt.plot(velocities[st:end], y[st:end], 'k')
# plt.plot(velocities[st:end], gauss(velocities[st:end], popt[0], popt[1], popt[2], popt[3]), 'r')
# rvs.append(popt[0])
# fwhm.append(2.355*popt[1])
# rv_phases.append(all_profiles[count].header['PHASE'])
# rv_results.append(all_profiles[count].header['RESULT'])
# count += 1
# #plt.legend()
# plt.figure('ACID and CCF RV (-median)', figsize = [9, 7])
# plt.ylabel('RV - median(RV)')
# plt.xlabel('Phase')
# plt.scatter(rv_phases, rvs-np.median(rvs), label = 'ACID NEW', color = 'm')
# # plt.scatter(rv_phases, rvs2-np.median(rvs2), label = 'ACID NEW_moremask', color = 'k')
# plt.legend()
# plt.show()
# ccf_spec = all_ccfs[0].data[0]
# ccf_velocities=all_ccfs[0].header['CRVAL1']+(np.arange(ccf_spec.shape[0]))*all_ccfs[0].header['CDELT1']
# ccf_velocities = np.linspace(-19,19,len(ccf_spec))
# master_position_ccf = len(all_ccfs)-1
# master_out_ccf, master_out_errors_ccf= all_ccfs[master_position_ccf].data
master_position = len(all_profiles)-1
master_out, master_out_errors= all_profiles[master_position].data
masters.append(master_out)
plt.figure('master out')
plt.plot(velocities, master_out, label = 'LSD')
# plt.plot(ccf_velocities, master_out_ccf/master_out_ccf[0]-1, label = 'ccf')
plt.legend()
plt.show()
# master_out_ccf = master_out_ccf/master_out_ccf[0]-1
in_profiles = []
in_profiles_errors = []
phases = []
results = []
in_ccfs = []
in_ccfs_errors = []
phases_ccfs = []
ccf_results = []
out_profiles = []
out_profile_error = []
plt.figure('all_ccfs')
# for line in range(0,master_position_ccf):
# ccf = all_ccfs[line].data[0]
# ccf_errors = all_ccfs[line].data[1]
# ccf_phase = all_ccfs[line].header['PHASE']
# in_ccfs.append(ccf/ccf[0]-1)
# in_ccfs_errors.append(ccf_errors/ccf[0])
# #plt.plot(ccf, label = '%s_%s'%(result, line))
# phases_ccfs.append(ccf_phase)
# #all_phase.append(phase)
# #ccf_results.append(ccf_result)
for line in range(0, master_position):
profile = all_profiles[line].data[0]
profile_errors = all_profiles[line].data[1]
phase = all_profiles[line].header['PHASE']
result = all_profiles[line].header['RESULT']
##adding in M and A curve
P=2.21857567 #Cegla et al, 2016 - days
T=2454279.436714 #cegla et al,2016
a_Rs = 8.786 #Cristo et al - 8.786
b=0.687 #Cristo et al, 2022
RpRs = 0.15667
u1=0.816
u2=0 #Sing et al, 2011
i = 85.5*np.pi/180 #Cristo et al, 2022
z = ma.MandelandAgol(phase, a_Rs, i)
transit_curve = ma.occultquad(z, RpRs, [u1, u2])
print(line)
print(phase)
print(transit_curve)
print(result)
# profile = (profile[5:-5]+1)*transit_curve
# profile_errors = profile_errors[5:-5]*transit_curve
# if line ==0:
# velocities = velocities[5:-5]
# print(velocities.shape, profile.shape)
profile = (profile+1)*transit_curve
profile_errors = profile_errors*transit_curve
in_profiles.append(profile)
in_profiles_errors.append(profile_errors)
plt.plot(velocities, profile, label = '%s_%s'%(result, line))
phases.append(phase)
all_phase.append(phase)
if result == 'out':
out_profiles.append(profile)
out_profile_error.append(profile)
results.append(result)
results_all.append(result)
plt.legend()
plt.show()
# plt.figure('ccfs - LSDs')
# f2 = interp1d(ccf_velocities, in_ccfs, kind='linear', bounds_error=False, fill_value=np.nan)
# plt.imshow(f2(velocities)-in_profiles)
# plt.colorbar()
# plt.show()
#print(phases)
# profile_spec = all_profiles[0].data[0]
# #velocities=all_profiles[0].header['CRVAL1']+(np.arange(profile_spec.shape[0]))*all_profiles[0].header['CDELT1']
# velocities = np.linspace(-15,15,len(profile_spec))
# ccf_spec = all_ccfs[0].data[0]
# ccf_velocities=all_ccfs[0].header['CRVAL1']+(np.arange(ccf_spec.shape[0]))*all_ccfs[0].header['CDELT1']
# K = -2.277 #km/s - Boisse et al, 2009
#velocities = velocities - K ### Adjusting doppler reflex ###
residual_profiles, residual_profile_errors = residualccfs(in_profiles, in_profiles_errors, master_out, master_out_errors, velocities)
# plt.figure()
# for out_prof in out_profiles:
# residual_profiles, residual_profile_errors = residualccfs(out_profiles, out_profile_error, out_prof, master_out_errors, velocities)
# # for resi_prof in residual_profiles:
# plt.plot(np.mean(residual_profiles, axis = 1))
# plt.show()
# residual_ccfs, residual_errors = residualccfs(in_ccfs, in_ccfs_errors, master_out_ccf, master_out_errors_ccf, ccf_velocities)
'''
plt.figure(month)
outs=[]
ins = []
for ccf in residual_ccfs:
if max(ccf)<0.4:
plt.plot(ccf)
ins.append(ccf)
else:outs.append(ccf)
print(len(outs))
print(len(ins))
'''
# phases = np.array(phases)
# results = np.array(results)
# print(month)
# plt.figure()
# i=0
# for ccf1 in residual_ccfs:
# for phase in phases:
# if phases_ccfs[i] == phase:
# print(results[tuple([phases==phase])])
# if results[tuple([phases==phase])]=='out':colour = '--'
# else:colour = '-'
# plt.plot(ccf_velocities, ccf1, label = '%s'%(i), linestyle = colour)
#
# #plt.fill_between(ccf_velocities, ccf1-residual_errors[i], ccf1+residual_errors[i], alpha = 0.3)
# #all_resi.append(ccf1)
# i+=1
# #plt.legend()
# plt.show()
print(month)
plt.figure(month)
i=0
for ccf1 in residual_profiles:
if results[i]=='out':colour = '--'
else:colour = '-'
plt.plot(velocities, ccf1, label = '%s_%s'%(results[i], i), linestyle = colour)
plt.fill_between(velocities, ccf1-residual_profile_errors[i], ccf1+residual_profile_errors[i], alpha = 0.3)
all_resi.append(ccf1+1)
all_prof.append(in_profiles[i])
i+=1
plt.legend()
plt.show()
#write in data
hdu=fits.HDUList()
for data in residual_profiles:
hdu.append(fits.PrimaryHDU(data=data))
#hdu.append(fits.PrimaryHDU(data=master_out))
plt.figure()
#write in header
for p in range(len(phases)):
phase = phases[p]
hdr=fits.Header()
hdr['CRVAL1']=all_profiles[0].header['CRVAL1']
hdr['CDELT1']=all_profiles[0].header['CDELT1']
hdr['OBJECT']='HD189733b'
hdr['NIGHT']='%s'%month
hdr['K']=-2.277
hdr['PHASE']=phase
# hdu[p].header=hdr
print(phase)
print(results[p])
if results[p] == 'out':
plt.plot(residual_profiles[p], label = '%s, %s'%(phases[p], max(residual_profiles[p])-min(residual_profiles[p])))
plt.legend()
plt.show()
#hdu.writeto('%s%s_residual_ccfs.fits'%(directory, month), output_verify='fix', overwrite = 'True')
#hdu.writeto('%s%s_residual_ccfs_LSD_v3.fits'%(directory, month), output_verify='fix', overwrite = 'True')
n1 = len(all_resi)
col0=((np.round(np.linspace(0,170,num=n1))).astype(int))
#col1=((np.round(np.linspace(0,170,num=n2))).astype(int))
#col2=((np.round(np.linspace(50,220,num=n3))).astype(int))
#plt.cm.Reds(col1[i-n1])
#plt.cm.Greens(col2[i])
#plt.cm.Reds(col1[i])
#plt.cm.Blues(col0[i])
'''
fig, ax1 = plt.subplots(1,1)
for i in range(len(all_resi)):
ax1.plot(velocities, all_resi[i],color=plt.cm.gist_rainbow(col0[i]),linewidth=0.7)
plt.show()
'''
fig, ax = plt.subplots(2)
#ax[0], ax[1] = fig.add_subplot()
ax[0].set_title('Residual LSD Profiles')
for ccf in all_resi:
ax[0].plot(velocities, ccf)
ax[0].set_ylabel('Residual Flux')
#plt.savefig('/Users/lucydolan/Documents/CCF_method/Figures/residual_ccfs_mine')
cmap = plt.get_cmap('jet')
divider = make_axes_locatable(ax[1])
cax = divider.append_axes('right', size="7%", pad=0.2,)
im = ax[1].pcolormesh(velocities, all_phase, all_resi, cmap = cmap)
ax[1].set_ylim(-0.02, 0.02)
fig.colorbar(im,label='Residual Flux', cax = cax)
ax[1].set_xlabel('Velocity (km/s)')
ax[1].set_ylabel('Phase')
plt.show()
## Cegla style fitting of rvs
x = velocities#[1:]
all_resi = np.array(all_resi)
# all_resi = all_resi[:, 1:]
rvs = []
count = 0
P=2.21857567 #Cegla et al, 2006 - days
t=0.076125 #Torres et al, 2008 - days
rv_phases = []
for y in all_prof:
#if (-t/(2*P)+0.001)<all_phase[count]<0.0155:
popt, pcov = curve_fit(gauss, x, y)
perr= np.sqrt(np.diag(pcov))
rvs.append([popt[0], perr[0]])
rv_phases.append(all_phase[count])
count += 1
rvs = np.array(rvs)
plt.figure('RV measured from full profile')
plt.xlabel('Phase')
plt.ylabel('Local RV (km/s)')
plt.errorbar(rv_phases, rvs[:,0], yerr = rvs[:,1], fmt='o', label = 'LSD')
x = velocities#[1:]
all_resi = np.array(all_resi)
#all_resi = all_resi[:, 1:]
rvs = []
count = 0
P=2.21857567 #Cegla et al, 2006 - days
t=0.076125 #Torres et al, 2008 - days
rv_phases = []
plt.figure()
for y in all_resi:
#if (-t/(2*P)+0.001)<all_phase[count]<0.0155:
if np.max(y) - np.min(y)>0.006:
# plt.figure()
# plt.plot(x, y)
# plt.show()
try:
popt, pcov = curve_fit(gauss, x, y)
perr= np.sqrt(np.diag(pcov))
rvs.append([popt[0], perr[0]])
rv_phases.append(all_phase[count])
except:
print('could not fit phase: %s'%all_phase[count])
else:
plt.plot(x, y)
print(results_all[count])
count += 1
rvs = np.array(rvs)
# plt.figure('RV measured from residual profile')
# plt.xlabel('Phase')
# plt.ylabel('Local RV (km/s)')
# plt.errorbar(rv_phases, rvs[:,0], yerr = rvs[:,1], fmt='o', label = 'LSD')
# plt.show()
plt.figure('master profiles')
for i in range(len(months)):
plt.plot(velocities, masters[i], label = '%s'%months[i])
plt.legend()
plt.show()
|
ldolan05REPO_NAMEACIDPATH_START.@ACID_extracted@ACID-main@.other_scripts@5_residual_profiles.py@.PATH_END.py
|
{
"filename": "_contours.py",
"repo_name": "plotly/plotly.py",
"repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/graph_objs/contour/_contours.py",
"type": "Python"
}
|
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType
import copy as _copy
class Contours(_BaseTraceHierarchyType):
# class properties
# --------------------
_parent_path_str = "contour"
_path_str = "contour.contours"
_valid_props = {
"coloring",
"end",
"labelfont",
"labelformat",
"operation",
"showlabels",
"showlines",
"size",
"start",
"type",
"value",
}
# coloring
# --------
@property
def coloring(self):
"""
Determines the coloring method showing the contour values. If
"fill", coloring is done evenly between each contour level If
"heatmap", a heatmap gradient coloring is applied between each
contour level. If "lines", coloring is done on the contour
lines. If "none", no coloring is applied on this trace.
The 'coloring' property is an enumeration that may be specified as:
- One of the following enumeration values:
['fill', 'heatmap', 'lines', 'none']
Returns
-------
Any
"""
return self["coloring"]
@coloring.setter
def coloring(self, val):
self["coloring"] = val
# end
# ---
@property
def end(self):
"""
Sets the end contour level value. Must be more than
`contours.start`
The 'end' property is a number and may be specified as:
- An int or float
Returns
-------
int|float
"""
return self["end"]
@end.setter
def end(self, val):
self["end"] = val
# labelfont
# ---------
@property
def labelfont(self):
"""
Sets the font used for labeling the contour levels. The default
color comes from the lines, if shown. The default family and
size come from `layout.font`.
The 'labelfont' property is an instance of Labelfont
that may be specified as:
- An instance of :class:`plotly.graph_objs.contour.contours.Labelfont`
- A dict of string/value properties that will be passed
to the Labelfont constructor
Supported dict properties:
color
family
HTML font family - the typeface that will be
applied by the web browser. The web browser
will only be able to apply a font if it is
available on the system which it operates.
Provide multiple font families, separated by
commas, to indicate the preference in which to
apply fonts if they aren't available on the
system. The Chart Studio Cloud (at
https://chart-studio.plotly.com or on-premise)
generates images on a server, where only a
select number of fonts are installed and
supported. These include "Arial", "Balto",
"Courier New", "Droid Sans", "Droid Serif",
"Droid Sans Mono", "Gravitas One", "Old
Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
lineposition
Sets the kind of decoration line(s) with text,
such as an "under", "over" or "through" as well
as combinations e.g. "under+over", etc.
shadow
Sets the shape and color of the shadow behind
text. "auto" places minimal shadow and applies
contrast text font color. See
https://developer.mozilla.org/en-
US/docs/Web/CSS/text-shadow for additional
options.
size
style
Sets whether a font should be styled with a
normal or italic face from its family.
textcase
Sets capitalization of text. It can be used to
make text appear in all-uppercase or all-
lowercase, or with each word capitalized.
variant
Sets the variant of the font.
weight
Sets the weight (or boldness) of the font.
Returns
-------
plotly.graph_objs.contour.contours.Labelfont
"""
return self["labelfont"]
@labelfont.setter
def labelfont(self, val):
self["labelfont"] = val
# labelformat
# -----------
@property
def labelformat(self):
"""
Sets the contour label formatting rule using d3 formatting
mini-languages which are very similar to those in Python. For
numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
The 'labelformat' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["labelformat"]
@labelformat.setter
def labelformat(self, val):
self["labelformat"] = val
# operation
# ---------
@property
def operation(self):
"""
Sets the constraint operation. "=" keeps regions equal to
`value` "<" and "<=" keep regions less than `value` ">" and
">=" keep regions greater than `value` "[]", "()", "[)", and
"(]" keep regions inside `value[0]` to `value[1]` "][", ")(",
"](", ")[" keep regions outside `value[0]` to value[1]` Open
vs. closed intervals make no difference to constraint display,
but all versions are allowed for consistency with filter
transforms.
The 'operation' property is an enumeration that may be specified as:
- One of the following enumeration values:
['=', '<', '>=', '>', '<=', '[]', '()', '[)', '(]', '][',
')(', '](', ')[']
Returns
-------
Any
"""
return self["operation"]
@operation.setter
def operation(self, val):
self["operation"] = val
# showlabels
# ----------
@property
def showlabels(self):
"""
Determines whether to label the contour lines with their
values.
The 'showlabels' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["showlabels"]
@showlabels.setter
def showlabels(self, val):
self["showlabels"] = val
# showlines
# ---------
@property
def showlines(self):
"""
Determines whether or not the contour lines are drawn. Has an
effect only if `contours.coloring` is set to "fill".
The 'showlines' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["showlines"]
@showlines.setter
def showlines(self, val):
self["showlines"] = val
# size
# ----
@property
def size(self):
"""
Sets the step between each contour level. Must be positive.
The 'size' property is a number and may be specified as:
- An int or float in the interval [0, inf]
Returns
-------
int|float
"""
return self["size"]
@size.setter
def size(self, val):
self["size"] = val
# start
# -----
@property
def start(self):
"""
Sets the starting contour level value. Must be less than
`contours.end`
The 'start' property is a number and may be specified as:
- An int or float
Returns
-------
int|float
"""
return self["start"]
@start.setter
def start(self, val):
self["start"] = val
# type
# ----
@property
def type(self):
"""
If `levels`, the data is represented as a contour plot with
multiple levels displayed. If `constraint`, the data is
represented as constraints with the invalid region shaded as
specified by the `operation` and `value` parameters.
The 'type' property is an enumeration that may be specified as:
- One of the following enumeration values:
['levels', 'constraint']
Returns
-------
Any
"""
return self["type"]
@type.setter
def type(self, val):
self["type"] = val
# value
# -----
@property
def value(self):
"""
Sets the value or values of the constraint boundary. When
`operation` is set to one of the comparison values
(=,<,>=,>,<=) "value" is expected to be a number. When
`operation` is set to one of the interval values
([],(),[),(],][,)(,](,)[) "value" is expected to be an array of
two numbers where the first is the lower bound and the second
is the upper bound.
The 'value' property accepts values of any type
Returns
-------
Any
"""
return self["value"]
@value.setter
def value(self, val):
self["value"] = val
# Self properties description
# ---------------------------
@property
def _prop_descriptions(self):
return """\
coloring
Determines the coloring method showing the contour
values. If "fill", coloring is done evenly between each
contour level If "heatmap", a heatmap gradient coloring
is applied between each contour level. If "lines",
coloring is done on the contour lines. If "none", no
coloring is applied on this trace.
end
Sets the end contour level value. Must be more than
`contours.start`
labelfont
Sets the font used for labeling the contour levels. The
default color comes from the lines, if shown. The
default family and size come from `layout.font`.
labelformat
Sets the contour label formatting rule using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
operation
Sets the constraint operation. "=" keeps regions equal
to `value` "<" and "<=" keep regions less than `value`
">" and ">=" keep regions greater than `value` "[]",
"()", "[)", and "(]" keep regions inside `value[0]` to
`value[1]` "][", ")(", "](", ")[" keep regions outside
`value[0]` to value[1]` Open vs. closed intervals make
no difference to constraint display, but all versions
are allowed for consistency with filter transforms.
showlabels
Determines whether to label the contour lines with
their values.
showlines
Determines whether or not the contour lines are drawn.
Has an effect only if `contours.coloring` is set to
"fill".
size
Sets the step between each contour level. Must be
positive.
start
Sets the starting contour level value. Must be less
than `contours.end`
type
If `levels`, the data is represented as a contour plot
with multiple levels displayed. If `constraint`, the
data is represented as constraints with the invalid
region shaded as specified by the `operation` and
`value` parameters.
value
Sets the value or values of the constraint boundary.
When `operation` is set to one of the comparison values
(=,<,>=,>,<=) "value" is expected to be a number. When
`operation` is set to one of the interval values
([],(),[),(],][,)(,](,)[) "value" is expected to be an
array of two numbers where the first is the lower bound
and the second is the upper bound.
"""
def __init__(
self,
arg=None,
coloring=None,
end=None,
labelfont=None,
labelformat=None,
operation=None,
showlabels=None,
showlines=None,
size=None,
start=None,
type=None,
value=None,
**kwargs,
):
"""
Construct a new Contours object
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.contour.Contours`
coloring
Determines the coloring method showing the contour
values. If "fill", coloring is done evenly between each
contour level If "heatmap", a heatmap gradient coloring
is applied between each contour level. If "lines",
coloring is done on the contour lines. If "none", no
coloring is applied on this trace.
end
Sets the end contour level value. Must be more than
`contours.start`
labelfont
Sets the font used for labeling the contour levels. The
default color comes from the lines, if shown. The
default family and size come from `layout.font`.
labelformat
Sets the contour label formatting rule using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
operation
Sets the constraint operation. "=" keeps regions equal
to `value` "<" and "<=" keep regions less than `value`
">" and ">=" keep regions greater than `value` "[]",
"()", "[)", and "(]" keep regions inside `value[0]` to
`value[1]` "][", ")(", "](", ")[" keep regions outside
`value[0]` to value[1]` Open vs. closed intervals make
no difference to constraint display, but all versions
are allowed for consistency with filter transforms.
showlabels
Determines whether to label the contour lines with
their values.
showlines
Determines whether or not the contour lines are drawn.
Has an effect only if `contours.coloring` is set to
"fill".
size
Sets the step between each contour level. Must be
positive.
start
Sets the starting contour level value. Must be less
than `contours.end`
type
If `levels`, the data is represented as a contour plot
with multiple levels displayed. If `constraint`, the
data is represented as constraints with the invalid
region shaded as specified by the `operation` and
`value` parameters.
value
Sets the value or values of the constraint boundary.
When `operation` is set to one of the comparison values
(=,<,>=,>,<=) "value" is expected to be a number. When
`operation` is set to one of the interval values
([],(),[),(],][,)(,](,)[) "value" is expected to be an
array of two numbers where the first is the lower bound
and the second is the upper bound.
Returns
-------
Contours
"""
super(Contours, self).__init__("contours")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.contour.Contours
constructor must be a dict or
an instance of :class:`plotly.graph_objs.contour.Contours`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("coloring", None)
_v = coloring if coloring is not None else _v
if _v is not None:
self["coloring"] = _v
_v = arg.pop("end", None)
_v = end if end is not None else _v
if _v is not None:
self["end"] = _v
_v = arg.pop("labelfont", None)
_v = labelfont if labelfont is not None else _v
if _v is not None:
self["labelfont"] = _v
_v = arg.pop("labelformat", None)
_v = labelformat if labelformat is not None else _v
if _v is not None:
self["labelformat"] = _v
_v = arg.pop("operation", None)
_v = operation if operation is not None else _v
if _v is not None:
self["operation"] = _v
_v = arg.pop("showlabels", None)
_v = showlabels if showlabels is not None else _v
if _v is not None:
self["showlabels"] = _v
_v = arg.pop("showlines", None)
_v = showlines if showlines is not None else _v
if _v is not None:
self["showlines"] = _v
_v = arg.pop("size", None)
_v = size if size is not None else _v
if _v is not None:
self["size"] = _v
_v = arg.pop("start", None)
_v = start if start is not None else _v
if _v is not None:
self["start"] = _v
_v = arg.pop("type", None)
_v = type if type is not None else _v
if _v is not None:
self["type"] = _v
_v = arg.pop("value", None)
_v = value if value is not None else _v
if _v is not None:
self["value"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
|
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@graph_objs@contour@_contours.py@.PATH_END.py
|
{
"filename": "_stream.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/scatter/_stream.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class StreamValidator(_plotly_utils.basevalidators.CompoundValidator):
def __init__(self, plotly_name="stream", parent_name="scatter", **kwargs):
super(StreamValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
data_class_str=kwargs.pop("data_class_str", "Stream"),
data_docs=kwargs.pop(
"data_docs",
"""
maxpoints
Sets the maximum number of points to keep on
the plots from an incoming stream. If
`maxpoints` is set to 50, only the newest 50
points will be displayed on the plot.
token
The stream id number links a data trace on a
plot with a stream. See https://chart-
studio.plotly.com/settings for more details.
""",
),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@scatter@_stream.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "plotly/plotly.py",
"repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/graph_objs/histogram2d/legendgrouptitle/__init__.py",
"type": "Python"
}
|
import sys
from typing import TYPE_CHECKING
if sys.version_info < (3, 7) or TYPE_CHECKING:
from ._font import Font
else:
from _plotly_utils.importers import relative_import
__all__, __getattr__, __dir__ = relative_import(__name__, [], ["._font.Font"])
|
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@graph_objs@histogram2d@legendgrouptitle@__init__.py@.PATH_END.py
|
{
"filename": "_enabled.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/scattermap/marker/colorbar/tickformatstop/_enabled.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class EnabledValidator(_plotly_utils.basevalidators.BooleanValidator):
def __init__(
self,
plotly_name="enabled",
parent_name="scattermap.marker.colorbar.tickformatstop",
**kwargs,
):
super(EnabledValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "calc"),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@scattermap@marker@colorbar@tickformatstop@_enabled.py@.PATH_END.py
|
{
"filename": "_family.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/choroplethmap/hoverlabel/font/_family.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class FamilyValidator(_plotly_utils.basevalidators.StringValidator):
def __init__(
self,
plotly_name="family",
parent_name="choroplethmap.hoverlabel.font",
**kwargs,
):
super(FamilyValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
array_ok=kwargs.pop("array_ok", True),
edit_type=kwargs.pop("edit_type", "none"),
no_blank=kwargs.pop("no_blank", True),
strict=kwargs.pop("strict", True),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@choroplethmap@hoverlabel@font@_family.py@.PATH_END.py
|
{
"filename": "psd_math.py",
"repo_name": "hpc4cmb/toast",
"repo_path": "toast_extracted/toast-main/src/toast/fod/psd_math.py",
"type": "Python"
}
|
# Copyright (c) 2015-2020 by the parties listed in the AUTHORS file.
# All rights reserved. Use of this source code is governed by
# a BSD-style license that can be found in the LICENSE file.
import numpy as np
from scipy.signal import fftconvolve
from ..mpi import MPI
from ..timing import function_timer
from .._libtoast import fod_autosums, fod_crosssums
from ..tod import flagged_running_average
def highpass_flagged_signal(sig, good, naverage):
"""Highpass-filter the signal to remove sub harmonic modes.
Args:
sig (array): The signal.
good (array): Sample flags (zero == *BAD*)
naverage (int): The number of samples to average.
Returns:
(array): The processed array.
"""
# First fit and remove a linear trend. Loss of power from this
# filter is assumed negligible in the frequency bins of interest
ngood = np.sum(good)
if ngood == 0:
raise RuntimeError("No valid samples")
templates = np.vstack([np.ones(ngood), np.arange(good.size)[good]])
invcov = np.dot(templates, templates.T)
cov = np.linalg.inv(invcov)
proj = np.dot(templates, sig[good])
coeff = np.dot(cov, proj)
sig[good] -= coeff[0] + coeff[1] * templates[1]
# Then prewhiten the data. This filter will be corrected in the
# PSD estimates.
trend = flagged_running_average(sig, good == 0, naverage)
sig[good] -= trend[good]
return sig
@function_timer
def autocov_psd(
times,
signal,
flags,
lagmax,
stationary_period,
fsample,
comm=None,
return_cov=False,
):
"""Compute the sample autocovariance.
Compute the sample autocovariance function and Fourier transform it
for a power spectral density. The resulting power spectral densities
are distributed across the communicator as tuples of
(start_time, stop_time, bin_frequency, bin_value)
Args:
times (float): Signal time stamps.
signal (float): Regularly sampled signal vector.
flags (float): Signal quality flags.
lagmax (int): Largest sample separation to evaluate.
stationary_period (float): Length of a stationary interval in
units of the times vector.
fsample (float): The sampling frequency in Hz
comm (MPI.Comm): The MPI communicator or None.
return_cov (bool): Return also the covariance function
Returns:
(list): List of local tuples of (start_time, stop_time, bin_frequency,
bin_value)
"""
return crosscov_psd(
times, signal, None, flags, lagmax, stationary_period, fsample, comm, return_cov
)
@function_timer
def crosscov_psd(
times,
signal1,
signal2,
flags,
lagmax,
stationary_period,
fsample,
comm=None,
return_cov=False,
):
"""Compute the sample (cross)covariance.
Compute the sample (cross)covariance function and Fourier transform it
for a power spectral density. The resulting power spectral densities
are distributed across the communicator as tuples of
(start_time, stop_time, bin_frequency, bin_value)
Args:
times (float): Signal time stamps.
signal1 (float): Regularly sampled signal vector.
signal2 (float): Regularly sampled signal vector or None.
flags (float): Signal quality flags.
lagmax (int): Largest sample separation to evaluate.
stationary_period (float): Length of a stationary interval in
units of the times vector.
fsample (float): The sampling frequency in Hz
comm (MPI.Comm): The MPI communicator or None.
return_cov (bool): Return also the covariance function
Returns:
(list): List of local tuples of (start_time, stop_time, bin_frequency,
bin_value)
"""
rank = 0
ntask = 1
time_start = times[0]
time_stop = times[-1]
if comm is not None:
rank = comm.rank
ntask = comm.size
time_start = comm.bcast(times[0], root=0)
time_stop = comm.bcast(times[-1], root=ntask - 1)
# We apply a prewhitening filter to the signal. To accommodate the
# quality flags, the filter is a moving average that only accounts
# for the unflagged samples
naverage = lagmax
nreal = np.int64(np.ceil((time_stop - time_start) / stationary_period))
# Communicate lagmax samples from the beginning of the array
# backwards in the MPI communicator
nsamp = signal1.size
if lagmax > nsamp:
raise RuntimeError(
"crosscov_psd: Communicating TOD beyond nearest neighbors is not "
"implemented. Reduce lagmax or the size of the MPI communicator."
)
if rank != ntask - 1:
nextend = lagmax
else:
nextend = 0
extended_signal1 = np.zeros(nsamp + nextend, dtype=np.float64)
if signal2 is not None:
extended_signal2 = np.zeros(nsamp + nextend, dtype=np.float64)
extended_flags = np.zeros(nsamp + nextend, dtype=bool)
extended_times = np.zeros(nsamp + nextend, dtype=times.dtype)
extended_signal1[:nsamp] = signal1
if signal2 is not None:
extended_signal2[:nsamp] = signal2
extended_flags[:nsamp] = flags
extended_times[:nsamp] = times
if comm is not None:
for evenodd in range(2):
if rank % 2 == evenodd % 2:
# Send
if rank == 0:
continue
comm.send(signal1[:lagmax], dest=rank - 1, tag=0)
if signal2 is not None:
comm.send(signal1[:lagmax], dest=rank - 1, tag=3)
comm.send(flags[:lagmax], dest=rank - 1, tag=1)
comm.send(times[:lagmax], dest=rank - 1, tag=2)
else:
# Receive
if rank == ntask - 1:
continue
extended_signal1[-lagmax:] = comm.recv(source=rank + 1, tag=0)
if signal2 is not None:
extended_signal1[-lagmax:] = comm.recv(source=rank + 1, tag=3)
extended_flags[-lagmax:] = comm.recv(source=rank + 1, tag=1)
extended_times[-lagmax:] = comm.recv(source=rank + 1, tag=2)
realization = ((extended_times - time_start) / stationary_period).astype(np.int64)
# Set flagged elements to zero
extended_signal1[extended_flags != 0] = 0
if signal2 is not None:
extended_signal2[extended_flags != 0] = 0
covs = {}
for ireal in range(realization[0], realization[-1] + 1):
# Evaluate the covariance
realflg = realization == ireal
good = extended_flags[realflg] == 0
ngood = np.sum(good)
if ngood == 0:
continue
sig1 = extended_signal1[realflg].copy()
sig1 = highpass_flagged_signal(sig1, good, naverage)
# High pass filter does not work at the ends
ind = slice(naverage // 2, -naverage // 2)
cov_hits = np.zeros(lagmax, dtype=np.int64)
cov = np.zeros(lagmax, dtype=np.float64)
if signal2 is None:
fod_autosums(sig1[ind], good[ind].astype(np.uint8), lagmax, cov, cov_hits)
else:
sig2 = extended_signal2[realflg].copy()
sig2 = highpass_flagged_signal(sig2, good, lagmax)
fod_crosssums(
sig1[ind], sig2[ind], good[ind].astype(np.uint8), lagmax, cov, cov_hits
)
covs[ireal] = (cov_hits, cov)
# Collect the estimated covariance functions
my_covs = {}
nreal_task = np.int64(np.ceil(nreal / ntask))
if comm is None:
for ireal in range(nreal):
if ireal in covs:
cov_hits, cov = covs[ireal]
else:
cov_hits = np.zeros(lagmax, dtype=np.int64)
cov = np.zeros(lagmax, dtype=np.float64)
my_covs[ireal] = (cov_hits, cov)
else:
for ireal in range(nreal):
owner = ireal // nreal_task
if ireal in covs:
cov_hits, cov = covs[ireal]
else:
cov_hits = np.zeros(lagmax, dtype=np.int64)
cov = np.zeros(lagmax, dtype=np.float64)
cov_hits_total = np.zeros(lagmax, dtype=np.int64)
cov_total = np.zeros(lagmax, dtype=np.float64)
comm.Reduce(cov_hits, cov_hits_total, op=MPI.SUM, root=owner)
comm.Reduce(cov, cov_total, op=MPI.SUM, root=owner)
if rank == owner:
my_covs[ireal] = (cov_hits_total, cov_total)
# Now process the ones this task owns
my_psds = []
my_cov = []
for ireal in my_covs.keys():
cov_hits, cov = my_covs[ireal]
good = cov_hits != 0
cov[good] /= cov_hits[good]
# Interpolate any empty bins
if not np.all(good) and np.any(good):
bad = cov_hits == 0
# The last bins should be left empty
i = cov.size - 1
while cov_hits[i] == 0:
cov[i] = 0
bad[i] = False
i -= 1
nbad = np.sum(bad)
if nbad > 0:
good = np.logical_not(bad)
lag = np.arange(lagmax)
cov[bad] = np.interp(lag[bad], lag[good], cov[good])
# Fourier transform for the PSD. We symmetrize the sample
# autocovariance so that the FFT is real-valued. Notice that
# we are not forcing the PSD to be positive: each bin is a
# noisy estimate of the true PSD.
cov = np.hstack([cov, cov[:0:-1]])
# w = np.roll(hamming(cov.size), -lagmax)
# cov *= w
psd = np.fft.rfft(cov).real
psdfreq = np.fft.rfftfreq(len(cov), d=1 / fsample)
# Post process the PSD estimate:
# 1) Deconvolve the prewhitening (highpass) filter
arg = 2 * np.pi * np.abs(psdfreq) * naverage / fsample
tf = np.ones(lagmax)
ind = arg != 0
tf[ind] -= np.sin(arg[ind]) / arg[ind]
psd[ind] /= tf[ind] ** 2
# 2) Apply the Hann window to reduce unnecessary noise
psd = np.convolve(psd, [0.25, 0.5, 0.25], mode="same")
# Transfrom the corrected PSD back to get an unbiased
# covariance function
smooth_cov = np.fft.irfft(psd)
my_cov.append((cov_hits, smooth_cov[:lagmax]))
# Set the white noise PSD normalization to sigma**2 / fsample
psd /= fsample
tstart = time_start + ireal * stationary_period
tstop = min(tstart + stationary_period, time_stop)
my_psds.append((tstart, tstop, psdfreq, psd))
if return_cov:
return my_psds, my_cov
else:
return my_psds
def smooth_with_hits(hits, cov, wbin):
"""Smooth the covariance function.
Smooth the covariance function, taking into account the number of hits in each bin.
Args:
hits (array_like): The number of hits for each sample lag.
cov (array_like): The time domain covariance.
wbin (int): The number of samples per smoothing bin.
Returns:
(tuple): The (smoothed hits, smoothed covariance).
"""
kernel = np.ones(wbin)
smooth_hits = fftconvolve(hits, kernel, mode="same")
smooth_cov = fftconvolve(cov * hits, kernel, mode="same")
good = smooth_hits > 0
smooth_cov[good] /= smooth_hits[good]
return smooth_hits, smooth_cov
|
hpc4cmbREPO_NAMEtoastPATH_START.@toast_extracted@toast-main@src@toast@fod@psd_math.py@.PATH_END.py
|
{
"filename": "XID+_example_pyvo_prior.ipynb",
"repo_name": "H-E-L-P/XID_plus",
"repo_path": "XID_plus_extracted/XID_plus-master/docs/notebooks/examples/XID+_example_pyvo_prior.ipynb",
"type": "Jupyter Notebook"
}
|
```python
from astropy.io import ascii, fits
import astropy
import pylab as plt
%matplotlib inline
from astropy import wcs
from astropy.table import Table,Column,join,hstack
from astropy.coordinates import SkyCoord
from astropy import units as u
import pymoc
import glob
from time import sleep
import os
import numpy as np
import xidplus
from xidplus import moc_routines
import pickle
import xidplus.catalogue as cat
import sys
from herschelhelp_internal.utils import inMoc,flux_to_mag
from xidplus.stan_fit import SPIRE
import aplpy
import seaborn as sns
#sns.set(color_codes=True)
import pandas as pd
#sns.set_style("white")
import xidplus.posterior_maps as postmaps
import pyvo as vo
```
WARNING: AstropyDeprecationWarning: block_reduce was moved to the astropy.nddata.blocks module. Please update your import statement. [astropy.nddata.utils]
First we select the field that the sources we are considering are in. If the sources span multiple fields that each field will need to be run individually as the FIR maps from seperate fields cannot be easily combined.
```python
fields = ['AKARI-NEP',
'AKARI-SEP',
'Bootes',
'CDFS-SWIRE',
'COSMOS',
'EGS',
'ELAIS-N1',
'ELAIS-N2',
'ELAIS-S1',
'GAMA-09',
'GAMA-12',
'GAMA-15',
'HDF-N',
'Herschel-Stripe-82',
'Lockman-SWIRE',
'NGP',
'SA13',
'SGP',
'SPIRE-NEP',
'SSDF',
'XMM-13hr',
'XMM-LSS',
'xFLS']
field_use = fields[6]
print(field_use)
```
ELAIS-N1
Here you provide the coordinate of the objects you are planning to run XID+ on and their ID's if any
If no ids are provided then they will be numbered 1-N)
```python
ras = [242,243]#enter your ra here as a list of numpy array
decs = [55,55] #enter your dec here as a list or numpy array
object_coords = SkyCoord(ra=ras*u.degree,dec=decs*u.degree)
ids = [] #add your ids here as a list or numpy array
if len(ids)==0:
ids = np.arange(0,len(ras),1)
```
Run the pyvo query to create a table of all help sources within the desired radius of your objects
```python
#setup a connection to the HELP VO server at Sussex
search_radius = 60/3600 #distance away from object that the VO query will look for galaxies in degrees
#for SPIRE AND PACS we recommend 60" and for MIPS we reccomend 30"
service = vo.dal.TAPService("https://herschel-vos.phys.sussex.ac.uk/__system__/tap/run/tap")
for n,coords in enumerate(object_coords):
ra = coords.ra
dec = coords.dec
query_spire_pacs = """
SELECT ra, dec, help_id, flag_optnir_det, f_mips_24
FROM herschelhelp.main
WHERE (
herschelhelp.main.field = '{}' AND
herschelhelp.main.falg_optnir_det>=5 AND
herschelhelp.main.f_mips_24>20
) AND
WHERE CONTAINS(POINT('ICRS',ra, dec), CIRCLE('ICRS',{},{},{}))=1
""".format(field_use,ra,dec,search_radius)
query_mips = """
SELECT ra, dec, help_id, flag_optnir_det, f_irac_i1, f_irac_i2, f_irac_i3, f_irac_i4
FROM herschelhelp.main
WHERE (
herschelhelp.main.field = '{}' AND
herschelhelp.main.falg_optnir_det>=5 AND
) AND
WHERE CONTAINS(POINT('ICRS',ra, dec), CIRCLE('ICRS',{},{},{}))=1
""".format(field_use,ra,dec,search_radius)
try:
job = service.submit_job(query)
job.run()
while job.phase == "EXECUTING":
print("Job running")
sleep(5)
print('Job finsihed')
if n==0:
prior_help = job.fetch_result().to_table()
print('table created with {} rows'.format(len(table)))
else:
result = job.fetch_result().to_table()
prior_help = astropy.table.vstack([result,table],join_type='outer')
print('table editied, added {} rows'.format(len(result)))
done_fields.append(field)
except:
print('VO call failed')
job.delete()
```
Job running
WARNING: UnknownElementWarning: None:7:166: UnknownElementWarning: Unknown element errorSummary [pyvo.utils.xml.elements]
WARNING:astropy:UnknownElementWarning: None:7:166: UnknownElementWarning: Unknown element errorSummary
WARNING: UnknownElementWarning: None:7:215: UnknownElementWarning: Unknown element message [pyvo.utils.xml.elements]
WARNING:astropy:UnknownElementWarning: None:7:215: UnknownElementWarning: Unknown element message
job finsihed
VO call failed
```python
print(len(prior_help))
prior_help[:5]
```
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-18-ec3ae170ea85> in <module>()
----> 1 print(len(prior_cat))
2 prior_cat[:5]
NameError: name 'prior_cat' is not defined
Run the below cell if you are running XID+ on SPIRE or PACS maps
```python
cra = Column(ras,name='ra')
cdec = Column(decs,name='dec')
cids = Column(ids,name='help_id')
cdet = Column(np.zeros(len(ras))-99,name='flag_optnir_det')
cmips = Column(np.zeros(len(ras))*np.nan,name='f_mips_24')
prior_new = Table()
prior_new.add_columns([cra,cdec,cids,cdet,cmips])
prior_cat = vstack([prior_help,prior_new])
len(prior_cat)
prior_cat[:5]
```
Run the below cells if you are running XID+ on MIPS maps
```python
#provides limits on teh flat prior used in XID based on the galaxies IRAC fluxes
MIPS_lower=np.full(len(prior_help),0.0)
MIPS_upper=np.full(len(prior_help),1E5)
for i in range(len(prior_cat)):
if np.isnan(prior_cat['f_irac_i4'][i])==False:
MIPS_lower[i]=prior_cat['f_irac_i4'][i]/500.0
MIPS_upper[i]=prior_cat['f_irac_i4'][i]*500.0
elif np.isnan(prior_cat['f_irac_i3'][i])==False:
MIPS_lower[i]=prior_cat['f_irac_i3'][i]/500.0
MIPS_upper[i]=prior_cat['f_irac_i3'][i]*500.0
elif np.isnan(prior_cat['f_irac_i2'][i])==False:
MIPS_lower[i]=prior_cat['f_irac_i2'][i]/500.0
MIPS_upper[i]=prior_cat['f_irac_i2'][i]*500.0
elif np.isnan(prior_cat['f_irac_i1'][i])==False:
MIPS_lower[i]=prior_cat['f_irac_i1'][i]/500.0
MIPS_upper[i]=prior_cat['f_irac_i1'][i]*500.0
mips_lower_col = Column(MIPS_lower,name='MIPS_lower')
mips_upper_col = Column(MIPS_upper,name='MIPS_upper')
prior_help.add_columns([mips_lower_col,mips_upper_col])
```
```python
#add your IRAC fluxes here, if your objects don't have IRAC fluxes then they will be set to nan
i1_f = np.zeros(len(ras))*np.nan
i2_f = np.zeros(len(ras))*np.nan
i3_f = np.zeros(len(ras))*np.nan
i4_f = np.zeros(len(ras))*np.nan
cra = Column(ras,name='ra')
cdec = Column(decs,name='dec')
cids = Column(ids,name='help_id')
cdet = Column(np.zeros(len(ras))-99,name='flag_optnir_det')
ci1 = Column(i1_f,name='f_irac_i1')
ci2 = Column(i2_f,name='f_irac_i2')
ci3 = Column(i3_f,name='f_irac_i3')
ci4 = Column(i4_f,name='f_irac_i4')
MIPS_lower=np.full(len(lofar_prior),0.0)
MIPS_upper=np.full(len(lofar_prior),1E5)
for i in range(len(lofar_prior)):
if np.isnan(lofar_prior['f_irac_i4'][i])==False:
MIPS_lower[i]=lofar_prior['f_irac_i4'][i]/500.0
MIPS_upper[i]=lofar_prior['f_irac_i4'][i]*500.0
elif np.isnan(lofar_prior['f_irac_i3'][i])==False:
MIPS_lower[i]=lofar_prior['f_irac_i3'][i]/500.0
MIPS_upper[i]=lofar_prior['f_irac_i3'][i]*500.0
elif np.isnan(lofar_prior['f_irac_i2'][i])==False:
MIPS_lower[i]=lofar_prior['f_irac_i2'][i]/500.0
MIPS_upper[i]=lofar_prior['f_irac_i2'][i]*500.0
elif np.isnan(lofar_prior['f_irac_i1'][i])==False:
MIPS_lower[i]=lofar_prior['f_irac_i1'][i]/500.0
MIPS_upper[i]=lofar_prior['f_irac_i1'][i]*500.0
mips_lower_col = Column(MIPS_lower,name='MIPS_lower')
mips_upper_col = Column(MIPS_upper,name='MIPS_upper')
prior_new = Table()
prior_new.add_columns([cra,cdec,cids,cdet,ci1,ci2,ci3,ci4,mips_lower_col,mips_upper_col])
prior_cat = vstack([prior_help,prior_new])
len(prior_cat)
```
Now that we have created the prior we can run XID+
## Load in the FIR maps
here we load in the SPIRE maps but you can substitue this with PACS and MIPS yourself
```python
#Read in the herschel images
imfolder='../../../../../HELP/dmu_products/dmu19/dmu19_HELP-SPIRE-maps/data/'
pswfits=imfolder+'ELAIS-N1_SPIRE250_v1.0.fits'#SPIRE 250 map
pmwfits=imfolder+'ELAIS-N1_SPIRE350_v1.0.fits'#SPIRE 350 map
plwfits=imfolder+'ELAIS-N1_SPIRE500_v1.0.fits'#SPIRE 500 map
#-----250-------------
hdulist = fits.open(pswfits)
im250phdu=hdulist[0].header
im250hdu=hdulist['image'].header
im250=hdulist['image'].data*1.0E3 #convert to mJy
nim250=hdulist['error'].data*1.0E3 #convert to mJy
w_250 = wcs.WCS(hdulist['image'].header)
pixsize250=3600.0*w_250.wcs.cd[1,1] #pixel size (in arcseconds)
hdulist.close()
#-----350-------------
hdulist = fits.open(pmwfits)
im350phdu=hdulist[0].header
im350hdu=hdulist['image'].header
im350=hdulist['image'].data*1.0E3 #convert to mJy
nim350=hdulist['error'].data*1.0E3 #convert to mJy
w_350 = wcs.WCS(hdulist['image'].header)
pixsize350=3600.0*w_350.wcs.cd[1,1] #pixel size (in arcseconds)
hdulist.close()
#-----500-------------
hdulist = fits.open(plwfits)
im500phdu=hdulist[0].header
im500hdu=hdulist['image'].header
im500=hdulist['image'].data*1.0E3 #convert to mJy
nim500=hdulist['error'].data*1.0E3 #convert to mJy
w_500 = wcs.WCS(hdulist['image'].header)
pixsize500=3600.0*w_500.wcs.cd[1,1] #pixel size (in arcseconds)
hdulist.close()
```
Create a moc around each of your objects that will be used to cut doen the SPIRE image
```python
moc=pymoc.util.catalog.catalog_to_moc(object_coords,search_radius,15)
```
finish initalising the prior
```python
#---prior250--------
prior250=xidplus.prior(im250,nim250,im250phdu,im250hdu, moc=moc)#Initialise with map, uncertianty map, wcs info and primary header
prior250.prior_cat(prior_cat['ra'],prior_cat['dec'],'prior_cat',ID=prior_cat['help_id'])#Set input catalogue
prior250.prior_bkg(-5.0,5)#Set prior on background (assumes Gaussian pdf with mu and sigma)
#---prior350--------
prior350=xidplus.prior(im350,nim350,im350phdu,im350hdu, moc=moc)
prior350.prior_cat(prior_cat['ra'],prior_cat['dec'],'prior_cat',ID=prior_cat['help_id'])
prior350.prior_bkg(-5.0,5)
#---prior500--------
prior500=xidplus.prior(im500,nim500,im500phdu,im500hdu, moc=moc)
prior500.prior_cat(prior_cat['ra'],prior_cat['dec'],'prior_cat',ID=prior_cat['help_id'])
prior500.prior_bkg(-5.0,5)
```
```python
#pixsize array (size of pixels in arcseconds)
pixsize=np.array([pixsize250,pixsize350,pixsize500])
#point response function for the three bands
prfsize=np.array([18.15,25.15,36.3])
#use Gaussian2DKernel to create prf (requires stddev rather than fwhm hence pfwhm/2.355)
from astropy.convolution import Gaussian2DKernel
##---------fit using Gaussian beam-----------------------
prf250=Gaussian2DKernel(prfsize[0]/2.355,x_size=101,y_size=101)
prf250.normalize(mode='peak')
prf350=Gaussian2DKernel(prfsize[1]/2.355,x_size=101,y_size=101)
prf350.normalize(mode='peak')
prf500=Gaussian2DKernel(prfsize[2]/2.355,x_size=101,y_size=101)
prf500.normalize(mode='peak')
pind250=np.arange(0,101,1)*1.0/pixsize[0] #get 250 scale in terms of pixel scale of map
pind350=np.arange(0,101,1)*1.0/pixsize[1] #get 350 scale in terms of pixel scale of map
pind500=np.arange(0,101,1)*1.0/pixsize[2] #get 500 scale in terms of pixel scale of map
prior250.set_prf(prf250.array,pind250,pind250)#requires PRF as 2d grid, and x and y bins for grid (in pixel scale)
prior350.set_prf(prf350.array,pind350,pind350)
prior500.set_prf(prf500.array,pind500,pind500)
```
```python
print('fitting '+ str(prior250.nsrc)+' sources \n')
print('using ' + str(prior250.snpix)+', '+ str(prior350.snpix)+' and '+ str(prior500.snpix)+' pixels')
```
```python
prior250.get_pointing_matrix()
prior350.get_pointing_matrix()
prior500.get_pointing_matrix()
```
```python
prior250.upper_lim_map()
prior350.upper_lim_map()
prior500.upper_lim_map()
```
run XID+ and save the output
```python
from xidplus.stan_fit import SPIRE
fit=SPIRE.all_bands(prior250,prior350,prior500,iter=1000)
```
```python
posterior=xidplus.posterior_stan(fit,[prior250,prior350,prior500])
xidplus.save([prior250,prior350,prior500],posterior,'YOUR_FILE_NAME_HERE')
```
|
H-E-L-PREPO_NAMEXID_plusPATH_START.@XID_plus_extracted@XID_plus-master@docs@notebooks@examples@XID+_example_pyvo_prior.ipynb@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/graph_objs/streamtube/legendgrouptitle/__init__.py",
"type": "Python"
}
|
import sys
from typing import TYPE_CHECKING
if sys.version_info < (3, 7) or TYPE_CHECKING:
from ._font import Font
else:
from _plotly_utils.importers import relative_import
__all__, __getattr__, __dir__ = relative_import(__name__, [], ["._font.Font"])
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@graph_objs@streamtube@legendgrouptitle@__init__.py@.PATH_END.py
|
{
"filename": "_type.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/scattergeo/marker/gradient/_type.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class TypeValidator(_plotly_utils.basevalidators.EnumeratedValidator):
def __init__(
self, plotly_name="type", parent_name="scattergeo.marker.gradient", **kwargs
):
super(TypeValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
array_ok=kwargs.pop("array_ok", True),
edit_type=kwargs.pop("edit_type", "calc"),
role=kwargs.pop("role", "style"),
values=kwargs.pop("values", ["radial", "horizontal", "vertical", "none"]),
**kwargs
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@scattergeo@marker@gradient@_type.py@.PATH_END.py
|
{
"filename": "_stats_py.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/scipy/py3/scipy/stats/_stats_py.py",
"type": "Python"
}
|
# Copyright 2002 Gary Strangman. All rights reserved
# Copyright 2002-2016 The SciPy Developers
#
# The original code from Gary Strangman was heavily adapted for
# use in SciPy by Travis Oliphant. The original code came with the
# following disclaimer:
#
# This software is provided "as-is". There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fitness for a given application. In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.
"""
A collection of basic statistical functions for Python.
References
----------
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
import warnings
import math
from math import gcd
from collections import namedtuple
import numpy as np
from numpy import array, asarray, ma
from numpy.lib import NumpyVersion
from numpy.testing import suppress_warnings
from scipy.spatial.distance import cdist
from scipy.ndimage import _measurements
from scipy._lib._util import (check_random_state, MapWrapper, _get_nan,
rng_integers, _rename_parameter, _contains_nan)
import scipy.special as special
from scipy import linalg
from . import distributions
from . import _mstats_basic as mstats_basic
from ._stats_mstats_common import (_find_repeats, linregress, theilslopes,
siegelslopes)
from ._stats import (_kendall_dis, _toint64, _weightedrankedtau,
_local_correlations)
from dataclasses import dataclass
from ._hypotests import _all_partitions
from ._stats_pythran import _compute_outer_prob_inside_method
from ._resampling import (MonteCarloMethod, PermutationMethod, BootstrapMethod,
monte_carlo_test, permutation_test, bootstrap,
_batch_generator)
from ._axis_nan_policy import (_axis_nan_policy_factory,
_broadcast_concatenate)
from ._binomtest import _binary_search_for_binom_tst as _binary_search
from scipy._lib._bunch import _make_tuple_bunch
from scipy import stats
from scipy.optimize import root_scalar
# Functions/classes in other files should be added in `__init__.py`, not here
__all__ = ['find_repeats', 'gmean', 'hmean', 'pmean', 'mode', 'tmean', 'tvar',
'tmin', 'tmax', 'tstd', 'tsem', 'moment',
'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest',
'normaltest', 'jarque_bera',
'scoreatpercentile', 'percentileofscore',
'cumfreq', 'relfreq', 'obrientransform',
'sem', 'zmap', 'zscore', 'gzscore', 'iqr', 'gstd',
'median_abs_deviation',
'sigmaclip', 'trimboth', 'trim1', 'trim_mean',
'f_oneway', 'pearsonr', 'fisher_exact',
'spearmanr', 'pointbiserialr',
'kendalltau', 'weightedtau', 'multiscale_graphcorr',
'linregress', 'siegelslopes', 'theilslopes', 'ttest_1samp',
'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel',
'kstest', 'ks_1samp', 'ks_2samp',
'chisquare', 'power_divergence',
'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
'rankdata',
'combine_pvalues', 'wasserstein_distance', 'energy_distance',
'brunnermunzel', 'alexandergovern',
'expectile', ]
def _chk_asarray(a, axis):
if axis is None:
a = np.ravel(a)
outaxis = 0
else:
a = np.asarray(a)
outaxis = axis
if a.ndim == 0:
a = np.atleast_1d(a)
return a, outaxis
def _chk2_asarray(a, b, axis):
if axis is None:
a = np.ravel(a)
b = np.ravel(b)
outaxis = 0
else:
a = np.asarray(a)
b = np.asarray(b)
outaxis = axis
if a.ndim == 0:
a = np.atleast_1d(a)
if b.ndim == 0:
b = np.atleast_1d(b)
return a, b, outaxis
SignificanceResult = _make_tuple_bunch('SignificanceResult',
['statistic', 'pvalue'], [])
# note that `weights` are paired with `x`
@_axis_nan_policy_factory(
lambda x: x, n_samples=1, n_outputs=1, too_small=0, paired=True,
result_to_tuple=lambda x: (x,), kwd_samples=['weights'])
def gmean(a, axis=0, dtype=None, weights=None):
r"""Compute the weighted geometric mean along the specified axis.
The weighted geometric mean of the array :math:`a_i` associated to weights
:math:`w_i` is:
.. math::
\exp \left( \frac{ \sum_{i=1}^n w_i \ln a_i }{ \sum_{i=1}^n w_i }
\right) \, ,
and, with equal weights, it gives:
.. math::
\sqrt[n]{ \prod_{i=1}^n a_i } \, .
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : int or None, optional
Axis along which the geometric mean is computed. Default is 0.
If None, compute over the whole array `a`.
dtype : dtype, optional
Type to which the input arrays are cast before the calculation is
performed.
weights : array_like, optional
The `weights` array must be broadcastable to the same shape as `a`.
Default is None, which gives each value a weight of 1.0.
Returns
-------
gmean : ndarray
See `dtype` parameter above.
See Also
--------
numpy.mean : Arithmetic average
numpy.average : Weighted average
hmean : Harmonic mean
References
----------
.. [1] "Weighted Geometric Mean", *Wikipedia*,
https://en.wikipedia.org/wiki/Weighted_geometric_mean.
.. [2] Grossman, J., Grossman, M., Katz, R., "Averages: A New Approach",
Archimedes Foundation, 1983
Examples
--------
>>> from scipy.stats import gmean
>>> gmean([1, 4])
2.0
>>> gmean([1, 2, 3, 4, 5, 6, 7])
3.3800151591412964
>>> gmean([1, 4, 7], weights=[3, 1, 3])
2.80668351922014
"""
a = np.asarray(a, dtype=dtype)
if weights is not None:
weights = np.asarray(weights, dtype=dtype)
with np.errstate(divide='ignore'):
log_a = np.log(a)
return np.exp(np.average(log_a, axis=axis, weights=weights))
@_axis_nan_policy_factory(
lambda x: x, n_samples=1, n_outputs=1, too_small=0, paired=True,
result_to_tuple=lambda x: (x,), kwd_samples=['weights'])
def hmean(a, axis=0, dtype=None, *, weights=None):
r"""Calculate the weighted harmonic mean along the specified axis.
The weighted harmonic mean of the array :math:`a_i` associated to weights
:math:`w_i` is:
.. math::
\frac{ \sum_{i=1}^n w_i }{ \sum_{i=1}^n \frac{w_i}{a_i} } \, ,
and, with equal weights, it gives:
.. math::
\frac{ n }{ \sum_{i=1}^n \frac{1}{a_i} } \, .
Parameters
----------
a : array_like
Input array, masked array or object that can be converted to an array.
axis : int or None, optional
Axis along which the harmonic mean is computed. Default is 0.
If None, compute over the whole array `a`.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults to the
dtype of `a`, unless `a` has an integer `dtype` with a precision less
than that of the default platform integer. In that case, the default
platform integer is used.
weights : array_like, optional
The weights array can either be 1-D (in which case its length must be
the size of `a` along the given `axis`) or of the same shape as `a`.
Default is None, which gives each value a weight of 1.0.
.. versionadded:: 1.9
Returns
-------
hmean : ndarray
See `dtype` parameter above.
See Also
--------
numpy.mean : Arithmetic average
numpy.average : Weighted average
gmean : Geometric mean
Notes
-----
The harmonic mean is computed over a single dimension of the input
array, axis=0 by default, or all values in the array if axis=None.
float64 intermediate and return values are used for integer inputs.
References
----------
.. [1] "Weighted Harmonic Mean", *Wikipedia*,
https://en.wikipedia.org/wiki/Harmonic_mean#Weighted_harmonic_mean
.. [2] Ferger, F., "The nature and use of the harmonic mean", Journal of
the American Statistical Association, vol. 26, pp. 36-40, 1931
Examples
--------
>>> from scipy.stats import hmean
>>> hmean([1, 4])
1.6000000000000001
>>> hmean([1, 2, 3, 4, 5, 6, 7])
2.6997245179063363
>>> hmean([1, 4, 7], weights=[3, 1, 3])
1.9029126213592233
"""
if not isinstance(a, np.ndarray):
a = np.array(a, dtype=dtype)
elif dtype:
# Must change the default dtype allowing array type
if isinstance(a, np.ma.MaskedArray):
a = np.ma.asarray(a, dtype=dtype)
else:
a = np.asarray(a, dtype=dtype)
if np.all(a >= 0):
# Harmonic mean only defined if greater than or equal to zero.
if weights is not None:
weights = np.asanyarray(weights, dtype=dtype)
with np.errstate(divide='ignore'):
return 1.0 / np.average(1.0 / a, axis=axis, weights=weights)
else:
raise ValueError("Harmonic mean only defined if all elements greater "
"than or equal to zero")
@_axis_nan_policy_factory(
lambda x: x, n_samples=1, n_outputs=1, too_small=0, paired=True,
result_to_tuple=lambda x: (x,), kwd_samples=['weights'])
def pmean(a, p, *, axis=0, dtype=None, weights=None):
r"""Calculate the weighted power mean along the specified axis.
The weighted power mean of the array :math:`a_i` associated to weights
:math:`w_i` is:
.. math::
\left( \frac{ \sum_{i=1}^n w_i a_i^p }{ \sum_{i=1}^n w_i }
\right)^{ 1 / p } \, ,
and, with equal weights, it gives:
.. math::
\left( \frac{ 1 }{ n } \sum_{i=1}^n a_i^p \right)^{ 1 / p } \, .
When ``p=0``, it returns the geometric mean.
This mean is also called generalized mean or Hölder mean, and must not be
confused with the Kolmogorov generalized mean, also called
quasi-arithmetic mean or generalized f-mean [3]_.
Parameters
----------
a : array_like
Input array, masked array or object that can be converted to an array.
p : int or float
Exponent.
axis : int or None, optional
Axis along which the power mean is computed. Default is 0.
If None, compute over the whole array `a`.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults to the
dtype of `a`, unless `a` has an integer `dtype` with a precision less
than that of the default platform integer. In that case, the default
platform integer is used.
weights : array_like, optional
The weights array can either be 1-D (in which case its length must be
the size of `a` along the given `axis`) or of the same shape as `a`.
Default is None, which gives each value a weight of 1.0.
Returns
-------
pmean : ndarray, see `dtype` parameter above.
Output array containing the power mean values.
See Also
--------
numpy.average : Weighted average
gmean : Geometric mean
hmean : Harmonic mean
Notes
-----
The power mean is computed over a single dimension of the input
array, ``axis=0`` by default, or all values in the array if ``axis=None``.
float64 intermediate and return values are used for integer inputs.
.. versionadded:: 1.9
References
----------
.. [1] "Generalized Mean", *Wikipedia*,
https://en.wikipedia.org/wiki/Generalized_mean
.. [2] Norris, N., "Convexity properties of generalized mean value
functions", The Annals of Mathematical Statistics, vol. 8,
pp. 118-120, 1937
.. [3] Bullen, P.S., Handbook of Means and Their Inequalities, 2003
Examples
--------
>>> from scipy.stats import pmean, hmean, gmean
>>> pmean([1, 4], 1.3)
2.639372938300652
>>> pmean([1, 2, 3, 4, 5, 6, 7], 1.3)
4.157111214492084
>>> pmean([1, 4, 7], -2, weights=[3, 1, 3])
1.4969684896631954
For p=-1, power mean is equal to harmonic mean:
>>> pmean([1, 4, 7], -1, weights=[3, 1, 3])
1.9029126213592233
>>> hmean([1, 4, 7], weights=[3, 1, 3])
1.9029126213592233
For p=0, power mean is defined as the geometric mean:
>>> pmean([1, 4, 7], 0, weights=[3, 1, 3])
2.80668351922014
>>> gmean([1, 4, 7], weights=[3, 1, 3])
2.80668351922014
"""
if not isinstance(p, (int, float)):
raise ValueError("Power mean only defined for exponent of type int or "
"float.")
if p == 0:
return gmean(a, axis=axis, dtype=dtype, weights=weights)
if not isinstance(a, np.ndarray):
a = np.array(a, dtype=dtype)
elif dtype:
# Must change the default dtype allowing array type
if isinstance(a, np.ma.MaskedArray):
a = np.ma.asarray(a, dtype=dtype)
else:
a = np.asarray(a, dtype=dtype)
if np.all(a >= 0):
# Power mean only defined if greater than or equal to zero
if weights is not None:
weights = np.asanyarray(weights, dtype=dtype)
with np.errstate(divide='ignore'):
return np.float_power(
np.average(np.float_power(a, p), axis=axis, weights=weights),
1/p)
else:
raise ValueError("Power mean only defined if all elements greater "
"than or equal to zero")
ModeResult = namedtuple('ModeResult', ('mode', 'count'))
def _mode_result(mode, count):
# When a slice is empty, `_axis_nan_policy` automatically produces
# NaN for `mode` and `count`. This is a reasonable convention for `mode`,
# but `count` should not be NaN; it should be zero.
i = np.isnan(count)
if i.shape == ():
count = count.dtype(0) if i else count
else:
count[i] = 0
return ModeResult(mode, count)
@_axis_nan_policy_factory(_mode_result, override={'vectorization': True,
'nan_propagation': False})
def mode(a, axis=0, nan_policy='propagate', keepdims=False):
r"""Return an array of the modal (most common) value in the passed array.
If there is more than one such value, only one is returned.
The bin-count for the modal bins is also returned.
Parameters
----------
a : array_like
Numeric, n-dimensional array of which to find mode(s).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': treats nan as it would treat any other value
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
keepdims : bool, optional
If set to ``False``, the `axis` over which the statistic is taken
is consumed (eliminated from the output array). If set to ``True``,
the `axis` is retained with size one, and the result will broadcast
correctly against the input array.
Returns
-------
mode : ndarray
Array of modal values.
count : ndarray
Array of counts for each mode.
Notes
-----
The mode is calculated using `numpy.unique`.
In NumPy versions 1.21 and after, all NaNs - even those with different
binary representations - are treated as equivalent and counted as separate
instances of the same value.
By convention, the mode of an empty array is NaN, and the associated count
is zero.
Examples
--------
>>> import numpy as np
>>> a = np.array([[3, 0, 3, 7],
... [3, 2, 6, 2],
... [1, 7, 2, 8],
... [3, 0, 6, 1],
... [3, 2, 5, 5]])
>>> from scipy import stats
>>> stats.mode(a, keepdims=True)
ModeResult(mode=array([[3, 0, 6, 1]]), count=array([[4, 2, 2, 1]]))
To get mode of whole array, specify ``axis=None``:
>>> stats.mode(a, axis=None, keepdims=True)
ModeResult(mode=[[3]], count=[[5]])
>>> stats.mode(a, axis=None, keepdims=False)
ModeResult(mode=3, count=5)
""" # noqa: E501
# `axis`, `nan_policy`, and `keepdims` are handled by `_axis_nan_policy`
if not np.issubdtype(a.dtype, np.number):
message = ("Argument `a` is not recognized as numeric. "
"Support for input that cannot be coerced to a numeric "
"array was deprecated in SciPy 1.9.0 and removed in SciPy "
"1.11.0. Please consider `np.unique`.")
raise TypeError(message)
if a.size == 0:
NaN = _get_nan(a)
return ModeResult(*np.array([NaN, 0], dtype=NaN.dtype))
vals, cnts = np.unique(a, return_counts=True)
modes, counts = vals[cnts.argmax()], cnts.max()
return ModeResult(modes[()], counts[()])
def _mask_to_limits(a, limits, inclusive):
"""Mask an array for values outside of given limits.
This is primarily a utility function.
Parameters
----------
a : array
limits : (float or None, float or None)
A tuple consisting of the (lower limit, upper limit). Values in the
input array less than the lower limit or greater than the upper limit
will be masked out. None implies no limit.
inclusive : (bool, bool)
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to lower or upper are allowed.
Returns
-------
A MaskedArray.
Raises
------
A ValueError if there are no values within the given limits.
"""
lower_limit, upper_limit = limits
lower_include, upper_include = inclusive
am = ma.MaskedArray(a)
if lower_limit is not None:
if lower_include:
am = ma.masked_less(am, lower_limit)
else:
am = ma.masked_less_equal(am, lower_limit)
if upper_limit is not None:
if upper_include:
am = ma.masked_greater(am, upper_limit)
else:
am = ma.masked_greater_equal(am, upper_limit)
if am.count() == 0:
raise ValueError("No array values within given limits")
return am
def tmean(a, limits=None, inclusive=(True, True), axis=None):
"""Compute the trimmed mean.
This function finds the arithmetic mean of given values, ignoring values
outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None (default), then all
values are used. Either of the limit values in the tuple can also be
None representing a half-open interval.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to compute test. Default is None.
Returns
-------
tmean : ndarray
Trimmed mean.
See Also
--------
trim_mean : Returns mean after trimming a proportion from both tails.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmean(x)
9.5
>>> stats.tmean(x, (3,17))
10.0
"""
a = asarray(a)
if limits is None:
return np.mean(a, axis)
am = _mask_to_limits(a, limits, inclusive)
mean = np.ma.filled(am.mean(axis=axis), fill_value=np.nan)
return mean if mean.ndim > 0 else mean.item()
def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""Compute the trimmed variance.
This function computes the sample variance of an array of values,
while ignoring values which are outside of given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tvar : float
Trimmed variance.
Notes
-----
`tvar` computes the unbiased sample variance, i.e. it uses a correction
factor ``n / (n - 1)``.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tvar(x)
35.0
>>> stats.tvar(x, (3,17))
20.0
"""
a = asarray(a)
a = a.astype(float)
if limits is None:
return a.var(ddof=ddof, axis=axis)
am = _mask_to_limits(a, limits, inclusive)
amnan = am.filled(fill_value=np.nan)
return np.nanvar(amnan, ddof=ddof, axis=axis)
def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
"""Compute the trimmed minimum.
This function finds the miminum value of an array `a` along the
specified axis, but only considering values greater than a specified
lower limit.
Parameters
----------
a : array_like
Array of values.
lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored.
When lowerlimit is None, then all values are used. The default value
is None.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the lower limit
are included. The default value is True.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
tmin : float, int or ndarray
Trimmed minimum.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmin(x)
0
>>> stats.tmin(x, 13)
13
>>> stats.tmin(x, 13, inclusive=False)
14
"""
a, axis = _chk_asarray(a, axis)
am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False))
contains_nan, nan_policy = _contains_nan(am, nan_policy)
if contains_nan and nan_policy == 'omit':
am = ma.masked_invalid(am)
res = ma.minimum.reduce(am, axis).data
if res.ndim == 0:
return res[()]
return res
def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
"""Compute the trimmed maximum.
This function computes the maximum value of an array along a given axis,
while ignoring values larger than a specified upper limit.
Parameters
----------
a : array_like
Array of values.
upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored.
When upperlimit is None, then all values are used. The default value
is None.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the upper limit
are included. The default value is True.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
tmax : float, int or ndarray
Trimmed maximum.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmax(x)
19
>>> stats.tmax(x, 13)
13
>>> stats.tmax(x, 13, inclusive=False)
12
"""
a, axis = _chk_asarray(a, axis)
am = _mask_to_limits(a, (None, upperlimit), (False, inclusive))
contains_nan, nan_policy = _contains_nan(am, nan_policy)
if contains_nan and nan_policy == 'omit':
am = ma.masked_invalid(am)
res = ma.maximum.reduce(am, axis).data
if res.ndim == 0:
return res[()]
return res
def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""Compute the trimmed sample standard deviation.
This function finds the sample standard deviation of given values,
ignoring values outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tstd : float
Trimmed sample standard deviation.
Notes
-----
`tstd` computes the unbiased sample standard deviation, i.e. it uses a
correction factor ``n / (n - 1)``.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tstd(x)
5.9160797830996161
>>> stats.tstd(x, (3,17))
4.4721359549995796
"""
return np.sqrt(tvar(a, limits, inclusive, axis, ddof))
def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""Compute the trimmed standard error of the mean.
This function finds the standard error of the mean for given
values, ignoring values outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tsem : float
Trimmed standard error of the mean.
Notes
-----
`tsem` uses unbiased sample standard deviation, i.e. it uses a
correction factor ``n / (n - 1)``.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tsem(x)
1.3228756555322954
>>> stats.tsem(x, (3,17))
1.1547005383792515
"""
a = np.asarray(a).ravel()
if limits is None:
return a.std(ddof=ddof) / np.sqrt(a.size)
am = _mask_to_limits(a, limits, inclusive)
sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis))
return sd / np.sqrt(am.count())
#####################################
# MOMENTS #
#####################################
def _moment_outputs(kwds):
moment = np.atleast_1d(kwds.get('moment', 1))
if moment.size == 0:
raise ValueError("'moment' must be a scalar or a non-empty 1D "
"list/array.")
return len(moment)
def _moment_result_object(*args):
if len(args) == 1:
return args[0]
return np.asarray(args)
# `moment` fits into the `_axis_nan_policy` pattern, but it is a bit unusual
# because the number of outputs is variable. Specifically,
# `result_to_tuple=lambda x: (x,)` may be surprising for a function that
# can produce more than one output, but it is intended here.
# When `moment is called to produce the output:
# - `result_to_tuple` packs the returned array into a single-element tuple,
# - `_moment_result_object` extracts and returns that single element.
# However, when the input array is empty, `moment` is never called. Instead,
# - `_check_empty_inputs` is used to produce an empty array with the
# appropriate dimensions.
# - A list comprehension creates the appropriate number of copies of this
# array, depending on `n_outputs`.
# - This list - which may have multiple elements - is passed into
# `_moment_result_object`.
# - If there is a single output, `_moment_result_object` extracts and returns
# the single output from the list.
# - If there are multiple outputs, and therefore multiple elements in the list,
# `_moment_result_object` converts the list of arrays to a single array and
# returns it.
# Currently this leads to a slight inconsistency: when the input array is
# empty, there is no distinction between the `moment` function being called
# with parameter `moments=1` and `moments=[1]`; the latter *should* produce
# the same as the former but with a singleton zeroth dimension.
@_axis_nan_policy_factory( # noqa: E302
_moment_result_object, n_samples=1, result_to_tuple=lambda x: (x,),
n_outputs=_moment_outputs
)
def moment(a, moment=1, axis=0, nan_policy='propagate', *, center=None):
r"""Calculate the nth moment about the mean for a sample.
A moment is a specific quantitative measure of the shape of a set of
points. It is often used to calculate coefficients of skewness and kurtosis
due to its close relationship with them.
Parameters
----------
a : array_like
Input array.
moment : int or array_like of ints, optional
Order of central moment that is returned. Default is 1.
axis : int or None, optional
Axis along which the central moment is computed. Default is 0.
If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
center : float or None, optional
The point about which moments are taken. This can be the sample mean,
the origin, or any other be point. If `None` (default) compute the
center as the sample mean.
Returns
-------
n-th moment about the `center` : ndarray or float
The appropriate moment along the given axis or over all values if axis
is None. The denominator for the moment calculation is the number of
observations, no degrees of freedom correction is done.
See Also
--------
kurtosis, skew, describe
Notes
-----
The k-th moment of a data sample is:
.. math::
m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - c)^k
Where `n` is the number of samples, and `c` is the center around which the
moment is calculated. This function uses exponentiation by squares [1]_ for
efficiency.
Note that, if `a` is an empty array (``a.size == 0``), array `moment` with
one element (`moment.size == 1`) is treated the same as scalar `moment`
(``np.isscalar(moment)``). This might produce arrays of unexpected shape.
References
----------
.. [1] https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms
Examples
--------
>>> from scipy.stats import moment
>>> moment([1, 2, 3, 4, 5], moment=1)
0.0
>>> moment([1, 2, 3, 4, 5], moment=2)
2.0
"""
a, axis = _chk_asarray(a, axis)
# for array_like moment input, return a value for each.
if not np.isscalar(moment):
# Calculated the mean once at most, and only if it will be used
calculate_mean = center is None and np.any(np.asarray(moment) > 1)
mean = a.mean(axis, keepdims=True) if calculate_mean else None
mmnt = []
for i in moment:
if center is None and i > 1:
mmnt.append(_moment(a, i, axis, mean=mean))
else:
mmnt.append(_moment(a, i, axis, mean=center))
return np.array(mmnt)
else:
return _moment(a, moment, axis, mean=center)
# Moment with optional pre-computed mean, equal to a.mean(axis, keepdims=True)
def _moment(a, moment, axis, *, mean=None):
if np.abs(moment - np.round(moment)) > 0:
raise ValueError("All moment parameters must be integers")
# moment of empty array is the same regardless of order
if a.size == 0:
return np.mean(a, axis=axis)
dtype = a.dtype.type if a.dtype.kind in 'fc' else np.float64
if moment == 0 or (moment == 1 and mean is None):
# By definition the zeroth moment is always 1, and the first *central*
# moment is 0.
shape = list(a.shape)
del shape[axis]
if len(shape) == 0:
return dtype(1.0 if moment == 0 else 0.0)
else:
return (np.ones(shape, dtype=dtype) if moment == 0
else np.zeros(shape, dtype=dtype))
else:
# Exponentiation by squares: form exponent sequence
n_list = [moment]
current_n = moment
while current_n > 2:
if current_n % 2:
current_n = (current_n - 1) / 2
else:
current_n /= 2
n_list.append(current_n)
# Starting point for exponentiation by squares
mean = (a.mean(axis, keepdims=True) if mean is None
else np.asarray(mean, dtype=dtype)[()])
a_zero_mean = a - mean
eps = np.finfo(a_zero_mean.dtype).resolution * 10
with np.errstate(divide='ignore', invalid='ignore'):
rel_diff = np.max(np.abs(a_zero_mean), axis=axis,
keepdims=True) / np.abs(mean)
with np.errstate(invalid='ignore'):
precision_loss = np.any(rel_diff < eps)
n = a.shape[axis] if axis is not None else a.size
if precision_loss and n > 1:
message = ("Precision loss occurred in moment calculation due to "
"catastrophic cancellation. This occurs when the data "
"are nearly identical. Results may be unreliable.")
warnings.warn(message, RuntimeWarning, stacklevel=4)
if n_list[-1] == 1:
s = a_zero_mean.copy()
else:
s = a_zero_mean**2
# Perform multiplications
for n in n_list[-2::-1]:
s = s**2
if n % 2:
s *= a_zero_mean
return np.mean(s, axis)
def _var(x, axis=0, ddof=0, mean=None):
# Calculate variance of sample, warning if precision is lost
var = _moment(x, 2, axis, mean=mean)
if ddof != 0:
n = x.shape[axis] if axis is not None else x.size
var *= np.divide(n, n-ddof) # to avoid error on division by zero
return var
@_axis_nan_policy_factory(
lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1
)
def skew(a, axis=0, bias=True, nan_policy='propagate'):
r"""Compute the sample skewness of a data set.
For normally distributed data, the skewness should be about zero. For
unimodal continuous distributions, a skewness value greater than zero means
that there is more weight in the right tail of the distribution. The
function `skewtest` can be used to determine if the skewness value
is close enough to zero, statistically speaking.
Parameters
----------
a : ndarray
Input array.
axis : int or None, optional
Axis along which skewness is calculated. Default is 0.
If None, compute over the whole array `a`.
bias : bool, optional
If False, then the calculations are corrected for statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
skewness : ndarray
The skewness of values along an axis, returning NaN where all values
are equal.
Notes
-----
The sample skewness is computed as the Fisher-Pearson coefficient
of skewness, i.e.
.. math::
g_1=\frac{m_3}{m_2^{3/2}}
where
.. math::
m_i=\frac{1}{N}\sum_{n=1}^N(x[n]-\bar{x})^i
is the biased sample :math:`i\texttt{th}` central moment, and
:math:`\bar{x}` is
the sample mean. If ``bias`` is False, the calculations are
corrected for bias and the value computed is the adjusted
Fisher-Pearson standardized moment coefficient, i.e.
.. math::
G_1=\frac{k_3}{k_2^{3/2}}=
\frac{\sqrt{N(N-1)}}{N-2}\frac{m_3}{m_2^{3/2}}.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Section 2.2.24.1
Examples
--------
>>> from scipy.stats import skew
>>> skew([1, 2, 3, 4, 5])
0.0
>>> skew([2, 8, 0, 4, 1, 9, 9, 0])
0.2650554122698573
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.skew(a, axis, bias)
mean = a.mean(axis, keepdims=True)
m2 = _moment(a, 2, axis, mean=mean)
m3 = _moment(a, 3, axis, mean=mean)
with np.errstate(all='ignore'):
zero = (m2 <= (np.finfo(m2.dtype).resolution * mean.squeeze(axis))**2)
vals = np.where(zero, np.nan, m3 / m2**1.5)
if not bias:
can_correct = ~zero & (n > 2)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = np.sqrt((n - 1.0) * n) / (n - 2.0) * m3 / m2**1.5
np.place(vals, can_correct, nval)
return vals[()]
@_axis_nan_policy_factory(
lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1
)
def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'):
"""Compute the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the
variance. If Fisher's definition is used, then 3.0 is subtracted from
the result to give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to
eliminate bias coming from biased moment estimators
Use `kurtosistest` to see if result is close enough to normal.
Parameters
----------
a : array
Data for which the kurtosis is calculated.
axis : int or None, optional
Axis along which the kurtosis is calculated. Default is 0.
If None, compute over the whole array `a`.
fisher : bool, optional
If True, Fisher's definition is used (normal ==> 0.0). If False,
Pearson's definition is used (normal ==> 3.0).
bias : bool, optional
If False, then the calculations are corrected for statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'.
Returns
-------
kurtosis : array
The kurtosis of values along an axis, returning NaN where all values
are equal.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Examples
--------
In Fisher's definition, the kurtosis of the normal distribution is zero.
In the following example, the kurtosis is close to zero, because it was
calculated from the dataset, not from the continuous distribution.
>>> import numpy as np
>>> from scipy.stats import norm, kurtosis
>>> data = norm.rvs(size=1000, random_state=3)
>>> kurtosis(data)
-0.06928694200380558
The distribution with a higher kurtosis has a heavier tail.
The zero valued kurtosis of the normal distribution in Fisher's definition
can serve as a reference point.
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as stats
>>> from scipy.stats import kurtosis
>>> x = np.linspace(-5, 5, 100)
>>> ax = plt.subplot()
>>> distnames = ['laplace', 'norm', 'uniform']
>>> for distname in distnames:
... if distname == 'uniform':
... dist = getattr(stats, distname)(loc=-2, scale=4)
... else:
... dist = getattr(stats, distname)
... data = dist.rvs(size=1000)
... kur = kurtosis(data, fisher=True)
... y = dist.pdf(x)
... ax.plot(x, y, label="{}, {}".format(distname, round(kur, 3)))
... ax.legend()
The Laplace distribution has a heavier tail than the normal distribution.
The uniform distribution (which has negative kurtosis) has the thinnest
tail.
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.kurtosis(a, axis, fisher, bias)
n = a.shape[axis]
mean = a.mean(axis, keepdims=True)
m2 = _moment(a, 2, axis, mean=mean)
m4 = _moment(a, 4, axis, mean=mean)
with np.errstate(all='ignore'):
zero = (m2 <= (np.finfo(m2.dtype).resolution * mean.squeeze(axis))**2)
vals = np.where(zero, np.nan, m4 / m2**2.0)
if not bias:
can_correct = ~zero & (n > 3)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m4 = np.extract(can_correct, m4)
nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0)
np.place(vals, can_correct, nval + 3.0)
return vals[()] - 3 if fisher else vals[()]
DescribeResult = namedtuple('DescribeResult',
('nobs', 'minmax', 'mean', 'variance', 'skewness',
'kurtosis'))
def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'):
"""Compute several descriptive statistics of the passed array.
Parameters
----------
a : array_like
Input data.
axis : int or None, optional
Axis along which statistics are calculated. Default is 0.
If None, compute over the whole array `a`.
ddof : int, optional
Delta degrees of freedom (only for variance). Default is 1.
bias : bool, optional
If False, then the skewness and kurtosis calculations are corrected
for statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
nobs : int or ndarray of ints
Number of observations (length of data along `axis`).
When 'omit' is chosen as nan_policy, the length along each axis
slice is counted separately.
minmax: tuple of ndarrays or floats
Minimum and maximum value of `a` along the given axis.
mean : ndarray or float
Arithmetic mean of `a` along the given axis.
variance : ndarray or float
Unbiased variance of `a` along the given axis; denominator is number
of observations minus one.
skewness : ndarray or float
Skewness of `a` along the given axis, based on moment calculations
with denominator equal to the number of observations, i.e. no degrees
of freedom correction.
kurtosis : ndarray or float
Kurtosis (Fisher) of `a` along the given axis. The kurtosis is
normalized so that it is zero for the normal distribution. No
degrees of freedom are used.
See Also
--------
skew, kurtosis
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> a = np.arange(10)
>>> stats.describe(a)
DescribeResult(nobs=10, minmax=(0, 9), mean=4.5,
variance=9.166666666666666, skewness=0.0,
kurtosis=-1.2242424242424244)
>>> b = [[1, 2], [3, 4]]
>>> stats.describe(b)
DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])),
mean=array([2., 3.]), variance=array([2., 2.]),
skewness=array([0., 0.]), kurtosis=array([-2., -2.]))
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.describe(a, axis, ddof, bias)
if a.size == 0:
raise ValueError("The input must not be empty.")
n = a.shape[axis]
mm = (np.min(a, axis=axis), np.max(a, axis=axis))
m = np.mean(a, axis=axis)
v = _var(a, axis=axis, ddof=ddof)
sk = skew(a, axis, bias=bias)
kurt = kurtosis(a, axis, bias=bias)
return DescribeResult(n, mm, m, v, sk, kurt)
#####################################
# NORMALITY TESTS #
#####################################
def _normtest_finish(z, alternative):
"""Common code between all the normality-test functions."""
if alternative == 'less':
prob = distributions.norm.cdf(z)
elif alternative == 'greater':
prob = distributions.norm.sf(z)
elif alternative == 'two-sided':
prob = 2 * distributions.norm.sf(np.abs(z))
else:
raise ValueError("alternative must be "
"'less', 'greater' or 'two-sided'")
if z.ndim == 0:
z = z[()]
return z, prob
SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))
def skewtest(a, axis=0, nan_policy='propagate', alternative='two-sided'):
r"""Test whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of
the population that the sample was drawn from is the same
as that of a corresponding normal distribution.
Parameters
----------
a : array
The data to be tested.
axis : int or None, optional
Axis along which statistics are calculated. Default is 0.
If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
The following options are available:
* 'two-sided': the skewness of the distribution underlying the sample
is different from that of the normal distribution (i.e. 0)
* 'less': the skewness of the distribution underlying the sample
is less than that of the normal distribution
* 'greater': the skewness of the distribution underlying the sample
is greater than that of the normal distribution
.. versionadded:: 1.7.0
Returns
-------
statistic : float
The computed z-score for this test.
pvalue : float
The p-value for the hypothesis test.
Notes
-----
The sample size must be at least 8.
References
----------
.. [1] R. B. D'Agostino, A. J. Belanger and R. B. D'Agostino Jr.,
"A suggestion for using powerful and informative tests of
normality", American Statistician 44, pp. 316-321, 1990.
.. [2] Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test
for normality (complete samples). Biometrika, 52(3/4), 591-611.
.. [3] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly
Drawn." Statistical Applications in Genetics and Molecular Biology
9.1 (2010).
Examples
--------
Suppose we wish to infer from measurements whether the weights of adult
human males in a medical study are not normally distributed [2]_.
The weights (lbs) are recorded in the array ``x`` below.
>>> import numpy as np
>>> x = np.array([148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236])
The skewness test from [1]_ begins by computing a statistic based on the
sample skewness.
>>> from scipy import stats
>>> res = stats.skewtest(x)
>>> res.statistic
2.7788579769903414
Because normal distributions have zero skewness, the magnitude of this
statistic tends to be low for samples drawn from a normal distribution.
The test is performed by comparing the observed value of the
statistic against the null distribution: the distribution of statistic
values derived under the null hypothesis that the weights were drawn from
a normal distribution.
For this test, the null distribution of the statistic for very large
samples is the standard normal distribution.
>>> import matplotlib.pyplot as plt
>>> dist = stats.norm()
>>> st_val = np.linspace(-5, 5, 100)
>>> pdf = dist.pdf(st_val)
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> def st_plot(ax): # we'll re-use this
... ax.plot(st_val, pdf)
... ax.set_title("Skew Test Null Distribution")
... ax.set_xlabel("statistic")
... ax.set_ylabel("probability density")
>>> st_plot(ax)
>>> plt.show()
The comparison is quantified by the p-value: the proportion of values in
the null distribution as extreme or more extreme than the observed
value of the statistic. In a two-sided test, elements of the null
distribution greater than the observed statistic and elements of the null
distribution less than the negative of the observed statistic are both
considered "more extreme".
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> st_plot(ax)
>>> pvalue = dist.cdf(-res.statistic) + dist.sf(res.statistic)
>>> annotation = (f'p-value={pvalue:.3f}\n(shaded area)')
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
>>> _ = ax.annotate(annotation, (3, 0.005), (3.25, 0.02), arrowprops=props)
>>> i = st_val >= res.statistic
>>> ax.fill_between(st_val[i], y1=0, y2=pdf[i], color='C0')
>>> i = st_val <= -res.statistic
>>> ax.fill_between(st_val[i], y1=0, y2=pdf[i], color='C0')
>>> ax.set_xlim(-5, 5)
>>> ax.set_ylim(0, 0.1)
>>> plt.show()
>>> res.pvalue
0.005455036974740185
If the p-value is "small" - that is, if there is a low probability of
sampling data from a normally distributed population that produces such an
extreme value of the statistic - this may be taken as evidence against
the null hypothesis in favor of the alternative: the weights were not
drawn from a normal distribution. Note that:
- The inverse is not true; that is, the test is not used to provide
evidence for the null hypothesis.
- The threshold for values that will be considered "small" is a choice that
should be made before the data is analyzed [3]_ with consideration of the
risks of both false positives (incorrectly rejecting the null hypothesis)
and false negatives (failure to reject a false null hypothesis).
Note that the standard normal distribution provides an asymptotic
approximation of the null distribution; it is only accurate for samples
with many observations. For small samples like ours,
`scipy.stats.monte_carlo_test` may provide a more accurate, albeit
stochastic, approximation of the exact p-value.
>>> def statistic(x, axis):
... # get just the skewtest statistic; ignore the p-value
... return stats.skewtest(x, axis=axis).statistic
>>> res = stats.monte_carlo_test(x, stats.norm.rvs, statistic)
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> st_plot(ax)
>>> ax.hist(res.null_distribution, np.linspace(-5, 5, 50),
... density=True)
>>> ax.legend(['aymptotic approximation\n(many observations)',
... 'Monte Carlo approximation\n(11 observations)'])
>>> plt.show()
>>> res.pvalue
0.0062 # may vary
In this case, the asymptotic approximation and Monte Carlo approximation
agree fairly closely, even for our small sample.
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.skewtest(a, axis, alternative)
if axis is None:
a = np.ravel(a)
axis = 0
b2 = skew(a, axis)
n = a.shape[axis]
if n < 8:
raise ValueError(
"skewtest is not valid with less than 8 samples; %i samples"
" were given." % int(n))
y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) /
((n-2.0) * (n+5) * (n+7) * (n+9)))
W2 = -1 + math.sqrt(2 * (beta2 - 1))
delta = 1 / math.sqrt(0.5 * math.log(W2))
alpha = math.sqrt(2.0 / (W2 - 1))
y = np.where(y == 0, 1, y)
Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1))
return SkewtestResult(*_normtest_finish(Z, alternative))
KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))
def kurtosistest(a, axis=0, nan_policy='propagate', alternative='two-sided'):
r"""Test whether a dataset has normal kurtosis.
This function tests the null hypothesis that the kurtosis
of the population from which the sample was drawn is that
of the normal distribution.
Parameters
----------
a : array
Array of the sample data.
axis : int or None, optional
Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided': the kurtosis of the distribution underlying the sample
is different from that of the normal distribution
* 'less': the kurtosis of the distribution underlying the sample
is less than that of the normal distribution
* 'greater': the kurtosis of the distribution underlying the sample
is greater than that of the normal distribution
.. versionadded:: 1.7.0
Returns
-------
statistic : float
The computed z-score for this test.
pvalue : float
The p-value for the hypothesis test.
Notes
-----
Valid only for n>20. This function uses the method described in [1]_.
References
----------
.. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis
statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983.
.. [2] Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test
for normality (complete samples). Biometrika, 52(3/4), 591-611.
.. [3] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly
Drawn." Statistical Applications in Genetics and Molecular Biology
9.1 (2010).
.. [4] Panagiotakos, D. B. (2008). The value of p-value in biomedical
research. The open cardiovascular medicine journal, 2, 97.
Examples
--------
Suppose we wish to infer from measurements whether the weights of adult
human males in a medical study are not normally distributed [2]_.
The weights (lbs) are recorded in the array ``x`` below.
>>> import numpy as np
>>> x = np.array([148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236])
The kurtosis test from [1]_ begins by computing a statistic based on the
sample (excess/Fisher) kurtosis.
>>> from scipy import stats
>>> res = stats.kurtosistest(x)
>>> res.statistic
2.3048235214240873
(The test warns that our sample has too few observations to perform the
test. We'll return to this at the end of the example.)
Because normal distributions have zero excess kurtosis (by definition),
the magnitude of this statistic tends to be low for samples drawn from a
normal distribution.
The test is performed by comparing the observed value of the
statistic against the null distribution: the distribution of statistic
values derived under the null hypothesis that the weights were drawn from
a normal distribution.
For this test, the null distribution of the statistic for very large
samples is the standard normal distribution.
>>> import matplotlib.pyplot as plt
>>> dist = stats.norm()
>>> kt_val = np.linspace(-5, 5, 100)
>>> pdf = dist.pdf(kt_val)
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> def kt_plot(ax): # we'll re-use this
... ax.plot(kt_val, pdf)
... ax.set_title("Kurtosis Test Null Distribution")
... ax.set_xlabel("statistic")
... ax.set_ylabel("probability density")
>>> kt_plot(ax)
>>> plt.show()
The comparison is quantified by the p-value: the proportion of values in
the null distribution as extreme or more extreme than the observed
value of the statistic. In a two-sided test in which the statistic is
positive, elements of the null distribution greater than the observed
statistic and elements of the null distribution less than the negative of
the observed statistic are both considered "more extreme".
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> kt_plot(ax)
>>> pvalue = dist.cdf(-res.statistic) + dist.sf(res.statistic)
>>> annotation = (f'p-value={pvalue:.3f}\n(shaded area)')
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
>>> _ = ax.annotate(annotation, (3, 0.005), (3.25, 0.02), arrowprops=props)
>>> i = kt_val >= res.statistic
>>> ax.fill_between(kt_val[i], y1=0, y2=pdf[i], color='C0')
>>> i = kt_val <= -res.statistic
>>> ax.fill_between(kt_val[i], y1=0, y2=pdf[i], color='C0')
>>> ax.set_xlim(-5, 5)
>>> ax.set_ylim(0, 0.1)
>>> plt.show()
>>> res.pvalue
0.0211764592113868
If the p-value is "small" - that is, if there is a low probability of
sampling data from a normally distributed population that produces such an
extreme value of the statistic - this may be taken as evidence against
the null hypothesis in favor of the alternative: the weights were not
drawn from a normal distribution. Note that:
- The inverse is not true; that is, the test is not used to provide
evidence for the null hypothesis.
- The threshold for values that will be considered "small" is a choice that
should be made before the data is analyzed [3]_ with consideration of the
risks of both false positives (incorrectly rejecting the null hypothesis)
and false negatives (failure to reject a false null hypothesis).
Note that the standard normal distribution provides an asymptotic
approximation of the null distribution; it is only accurate for samples
with many observations. This is the reason we received a warning at the
beginning of the example; our sample is quite small. In this case,
`scipy.stats.monte_carlo_test` may provide a more accurate, albeit
stochastic, approximation of the exact p-value.
>>> def statistic(x, axis):
... # get just the skewtest statistic; ignore the p-value
... return stats.kurtosistest(x, axis=axis).statistic
>>> res = stats.monte_carlo_test(x, stats.norm.rvs, statistic)
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> kt_plot(ax)
>>> ax.hist(res.null_distribution, np.linspace(-5, 5, 50),
... density=True)
>>> ax.legend(['aymptotic approximation\n(many observations)',
... 'Monte Carlo approximation\n(11 observations)'])
>>> plt.show()
>>> res.pvalue
0.0272 # may vary
Furthermore, despite their stochastic nature, p-values computed in this way
can be used to exactly control the rate of false rejections of the null
hypothesis [4]_.
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.kurtosistest(a, axis, alternative)
n = a.shape[axis]
if n < 5:
raise ValueError(
"kurtosistest requires at least 5 observations; %i observations"
" were given." % int(n))
if n < 20:
warnings.warn("kurtosistest only valid for n>=20 ... continuing "
"anyway, n=%i" % int(n))
b2 = kurtosis(a, axis, fisher=False)
E = 3.0*(n-1) / (n+1)
varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) # [1]_ Eq. 1
x = (b2-E) / np.sqrt(varb2) # [1]_ Eq. 4
# [1]_ Eq. 2:
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
(n*(n-2)*(n-3)))
# [1]_ Eq. 3:
A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
term1 = 1 - 2/(9.0*A)
denom = 1 + x*np.sqrt(2/(A-4.0))
term2 = np.sign(denom) * np.where(denom == 0.0, np.nan,
np.power((1-2.0/A)/np.abs(denom), 1/3.0))
if np.any(denom == 0):
msg = "Test statistic not defined in some cases due to division by " \
"zero. Return nan in that case..."
warnings.warn(msg, RuntimeWarning)
Z = (term1 - term2) / np.sqrt(2/(9.0*A)) # [1]_ Eq. 5
# zprob uses upper tail, so Z needs to be positive
return KurtosistestResult(*_normtest_finish(Z, alternative))
NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))
def normaltest(a, axis=0, nan_policy='propagate'):
r"""Test whether a sample differs from a normal distribution.
This function tests the null hypothesis that a sample comes
from a normal distribution. It is based on D'Agostino and
Pearson's [1]_, [2]_ test that combines skew and kurtosis to
produce an omnibus test of normality.
Parameters
----------
a : array_like
The array containing the sample to be tested.
axis : int or None, optional
Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
``k`` is the z-score returned by `kurtosistest`.
pvalue : float or array
A 2-sided chi squared probability for the hypothesis test.
References
----------
.. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for
moderate and large sample size", Biometrika, 58, 341-348
.. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from
normality", Biometrika, 60, 613-622
.. [3] Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test
for normality (complete samples). Biometrika, 52(3/4), 591-611.
.. [4] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly
Drawn." Statistical Applications in Genetics and Molecular Biology
9.1 (2010).
.. [5] Panagiotakos, D. B. (2008). The value of p-value in biomedical
research. The open cardiovascular medicine journal, 2, 97.
Examples
--------
Suppose we wish to infer from measurements whether the weights of adult
human males in a medical study are not normally distributed [3]_.
The weights (lbs) are recorded in the array ``x`` below.
>>> import numpy as np
>>> x = np.array([148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236])
The normality test of [1]_ and [2]_ begins by computing a statistic based
on the sample skewness and kurtosis.
>>> from scipy import stats
>>> res = stats.normaltest(x)
>>> res.statistic
13.034263121192582
(The test warns that our sample has too few observations to perform the
test. We'll return to this at the end of the example.)
Because the normal distribution has zero skewness and zero
("excess" or "Fisher") kurtosis, the value of this statistic tends to be
low for samples drawn from a normal distribution.
The test is performed by comparing the observed value of the statistic
against the null distribution: the distribution of statistic values derived
under the null hypothesis that the weights were drawn from a normal
distribution.
For this normality test, the null distribution for very large samples is
the chi-squared distribution with two degrees of freedom.
>>> import matplotlib.pyplot as plt
>>> dist = stats.chi2(df=2)
>>> stat_vals = np.linspace(0, 16, 100)
>>> pdf = dist.pdf(stat_vals)
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> def plot(ax): # we'll re-use this
... ax.plot(stat_vals, pdf)
... ax.set_title("Normality Test Null Distribution")
... ax.set_xlabel("statistic")
... ax.set_ylabel("probability density")
>>> plot(ax)
>>> plt.show()
The comparison is quantified by the p-value: the proportion of values in
the null distribution greater than or equal to the observed value of the
statistic.
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> plot(ax)
>>> pvalue = dist.sf(res.statistic)
>>> annotation = (f'p-value={pvalue:.6f}\n(shaded area)')
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
>>> _ = ax.annotate(annotation, (13.5, 5e-4), (14, 5e-3), arrowprops=props)
>>> i = stat_vals >= res.statistic # index more extreme statistic values
>>> ax.fill_between(stat_vals[i], y1=0, y2=pdf[i])
>>> ax.set_xlim(8, 16)
>>> ax.set_ylim(0, 0.01)
>>> plt.show()
>>> res.pvalue
0.0014779023013100172
If the p-value is "small" - that is, if there is a low probability of
sampling data from a normally distributed population that produces such an
extreme value of the statistic - this may be taken as evidence against
the null hypothesis in favor of the alternative: the weights were not
drawn from a normal distribution. Note that:
- The inverse is not true; that is, the test is not used to provide
evidence for the null hypothesis.
- The threshold for values that will be considered "small" is a choice that
should be made before the data is analyzed [4]_ with consideration of the
risks of both false positives (incorrectly rejecting the null hypothesis)
and false negatives (failure to reject a false null hypothesis).
Note that the chi-squared distribution provides an asymptotic
approximation of the null distribution; it is only accurate for samples
with many observations. This is the reason we received a warning at the
beginning of the example; our sample is quite small. In this case,
`scipy.stats.monte_carlo_test` may provide a more accurate, albeit
stochastic, approximation of the exact p-value.
>>> def statistic(x, axis):
... # Get only the `normaltest` statistic; ignore approximate p-value
... return stats.normaltest(x, axis=axis).statistic
>>> res = stats.monte_carlo_test(x, stats.norm.rvs, statistic,
... alternative='greater')
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> plot(ax)
>>> ax.hist(res.null_distribution, np.linspace(0, 25, 50),
... density=True)
>>> ax.legend(['aymptotic approximation (many observations)',
... 'Monte Carlo approximation (11 observations)'])
>>> ax.set_xlim(0, 14)
>>> plt.show()
>>> res.pvalue
0.0082 # may vary
Furthermore, despite their stochastic nature, p-values computed in this way
can be used to exactly control the rate of false rejections of the null
hypothesis [5]_.
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.normaltest(a, axis)
s, _ = skewtest(a, axis)
k, _ = kurtosistest(a, axis)
k2 = s*s + k*k
return NormaltestResult(k2, distributions.chi2.sf(k2, 2))
@_axis_nan_policy_factory(SignificanceResult, default_axis=None)
def jarque_bera(x, *, axis=None):
r"""Perform the Jarque-Bera goodness of fit test on sample data.
The Jarque-Bera test tests whether the sample data has the skewness and
kurtosis matching a normal distribution.
Note that this test only works for a large enough number of data samples
(>2000) as the test statistic asymptotically has a Chi-squared distribution
with 2 degrees of freedom.
Parameters
----------
x : array_like
Observations of a random variable.
axis : int or None, default: 0
If an int, the axis of the input along which to compute the statistic.
The statistic of each axis-slice (e.g. row) of the input will appear in
a corresponding element of the output.
If ``None``, the input will be raveled before computing the statistic.
Returns
-------
result : SignificanceResult
An object with the following attributes:
statistic : float
The test statistic.
pvalue : float
The p-value for the hypothesis test.
References
----------
.. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality,
homoscedasticity and serial independence of regression residuals",
6 Econometric Letters 255-259.
.. [2] Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test
for normality (complete samples). Biometrika, 52(3/4), 591-611.
.. [3] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly
Drawn." Statistical Applications in Genetics and Molecular Biology
9.1 (2010).
.. [4] Panagiotakos, D. B. (2008). The value of p-value in biomedical
research. The open cardiovascular medicine journal, 2, 97.
Examples
--------
Suppose we wish to infer from measurements whether the weights of adult
human males in a medical study are not normally distributed [2]_.
The weights (lbs) are recorded in the array ``x`` below.
>>> import numpy as np
>>> x = np.array([148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236])
The Jarque-Bera test begins by computing a statistic based on the sample
skewness and kurtosis.
>>> from scipy import stats
>>> res = stats.jarque_bera(x)
>>> res.statistic
6.982848237344646
Because the normal distribution has zero skewness and zero
("excess" or "Fisher") kurtosis, the value of this statistic tends to be
low for samples drawn from a normal distribution.
The test is performed by comparing the observed value of the statistic
against the null distribution: the distribution of statistic values derived
under the null hypothesis that the weights were drawn from a normal
distribution.
For the Jarque-Bera test, the null distribution for very large samples is
the chi-squared distribution with two degrees of freedom.
>>> import matplotlib.pyplot as plt
>>> dist = stats.chi2(df=2)
>>> jb_val = np.linspace(0, 11, 100)
>>> pdf = dist.pdf(jb_val)
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> def jb_plot(ax): # we'll re-use this
... ax.plot(jb_val, pdf)
... ax.set_title("Jarque-Bera Null Distribution")
... ax.set_xlabel("statistic")
... ax.set_ylabel("probability density")
>>> jb_plot(ax)
>>> plt.show()
The comparison is quantified by the p-value: the proportion of values in
the null distribution greater than or equal to the observed value of the
statistic.
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> jb_plot(ax)
>>> pvalue = dist.sf(res.statistic)
>>> annotation = (f'p-value={pvalue:.6f}\n(shaded area)')
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
>>> _ = ax.annotate(annotation, (7.5, 0.01), (8, 0.05), arrowprops=props)
>>> i = jb_val >= res.statistic # indices of more extreme statistic values
>>> ax.fill_between(jb_val[i], y1=0, y2=pdf[i])
>>> ax.set_xlim(0, 11)
>>> ax.set_ylim(0, 0.3)
>>> plt.show()
>>> res.pvalue
0.03045746622458189
If the p-value is "small" - that is, if there is a low probability of
sampling data from a normally distributed population that produces such an
extreme value of the statistic - this may be taken as evidence against
the null hypothesis in favor of the alternative: the weights were not
drawn from a normal distribution. Note that:
- The inverse is not true; that is, the test is not used to provide
evidence for the null hypothesis.
- The threshold for values that will be considered "small" is a choice that
should be made before the data is analyzed [3]_ with consideration of the
risks of both false positives (incorrectly rejecting the null hypothesis)
and false negatives (failure to reject a false null hypothesis).
Note that the chi-squared distribution provides an asymptotic approximation
of the null distribution; it is only accurate for samples with many
observations. For small samples like ours, `scipy.stats.monte_carlo_test`
may provide a more accurate, albeit stochastic, approximation of the
exact p-value.
>>> def statistic(x, axis):
... # underlying calculation of the Jarque Bera statistic
... s = stats.skew(x, axis=axis)
... k = stats.kurtosis(x, axis=axis)
... return x.shape[axis]/6 * (s**2 + k**2/4)
>>> res = stats.monte_carlo_test(x, stats.norm.rvs, statistic,
... alternative='greater')
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> jb_plot(ax)
>>> ax.hist(res.null_distribution, np.linspace(0, 10, 50),
... density=True)
>>> ax.legend(['aymptotic approximation (many observations)',
... 'Monte Carlo approximation (11 observations)'])
>>> plt.show()
>>> res.pvalue
0.0097 # may vary
Furthermore, despite their stochastic nature, p-values computed in this way
can be used to exactly control the rate of false rejections of the null
hypothesis [4]_.
"""
x = np.asarray(x)
if axis is None:
x = x.ravel()
axis = 0
n = x.shape[axis]
if n == 0:
raise ValueError('At least one observation is required.')
mu = x.mean(axis=axis, keepdims=True)
diffx = x - mu
s = skew(diffx, axis=axis, _no_deco=True)
k = kurtosis(diffx, axis=axis, _no_deco=True)
statistic = n / 6 * (s**2 + k**2 / 4)
pvalue = distributions.chi2.sf(statistic, df=2)
return SignificanceResult(statistic, pvalue)
#####################################
# FREQUENCY FUNCTIONS #
#####################################
def scoreatpercentile(a, per, limit=(), interpolation_method='fraction',
axis=None):
"""Calculate the score at a given percentile of the input sequence.
For example, the score at `per=50` is the median. If the desired quantile
lies between two data points, we interpolate between them, according to
the value of `interpolation`. If the parameter `limit` is provided, it
should be a tuple (lower, upper) of two values.
Parameters
----------
a : array_like
A 1-D array of values from which to extract score.
per : array_like
Percentile(s) at which to extract score. Values should be in range
[0,100].
limit : tuple, optional
Tuple of two scalars, the lower and upper limits within which to
compute the percentile. Values of `a` outside
this (closed) interval will be ignored.
interpolation_method : {'fraction', 'lower', 'higher'}, optional
Specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`
The following options are available (default is 'fraction'):
* 'fraction': ``i + (j - i) * fraction`` where ``fraction`` is the
fractional part of the index surrounded by ``i`` and ``j``
* 'lower': ``i``
* 'higher': ``j``
axis : int, optional
Axis along which the percentiles are computed. Default is None. If
None, compute over the whole array `a`.
Returns
-------
score : float or ndarray
Score at percentile(s).
See Also
--------
percentileofscore, numpy.percentile
Notes
-----
This function will become obsolete in the future.
For NumPy 1.9 and higher, `numpy.percentile` provides all the functionality
that `scoreatpercentile` provides. And it's significantly faster.
Therefore it's recommended to use `numpy.percentile` for users that have
numpy >= 1.9.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
"""
# adapted from NumPy's percentile function. When we require numpy >= 1.8,
# the implementation of this function can be replaced by np.percentile.
a = np.asarray(a)
if a.size == 0:
# empty array, return nan(s) with shape matching `per`
if np.isscalar(per):
return np.nan
else:
return np.full(np.asarray(per).shape, np.nan, dtype=np.float64)
if limit:
a = a[(limit[0] <= a) & (a <= limit[1])]
sorted_ = np.sort(a, axis=axis)
if axis is None:
axis = 0
return _compute_qth_percentile(sorted_, per, interpolation_method, axis)
# handle sequence of per's without calling sort multiple times
def _compute_qth_percentile(sorted_, per, interpolation_method, axis):
if not np.isscalar(per):
score = [_compute_qth_percentile(sorted_, i,
interpolation_method, axis)
for i in per]
return np.array(score)
if not (0 <= per <= 100):
raise ValueError("percentile must be in the range [0, 100]")
indexer = [slice(None)] * sorted_.ndim
idx = per / 100. * (sorted_.shape[axis] - 1)
if int(idx) != idx:
# round fractional indices according to interpolation method
if interpolation_method == 'lower':
idx = int(np.floor(idx))
elif interpolation_method == 'higher':
idx = int(np.ceil(idx))
elif interpolation_method == 'fraction':
pass # keep idx as fraction and interpolate
else:
raise ValueError("interpolation_method can only be 'fraction', "
"'lower' or 'higher'")
i = int(idx)
if i == idx:
indexer[axis] = slice(i, i + 1)
weights = array(1)
sumval = 1.0
else:
indexer[axis] = slice(i, i + 2)
j = i + 1
weights = array([(j - idx), (idx - i)], float)
wshape = [1] * sorted_.ndim
wshape[axis] = 2
weights.shape = wshape
sumval = weights.sum()
# Use np.add.reduce (== np.sum but a little faster) to coerce data type
return np.add.reduce(sorted_[tuple(indexer)] * weights, axis=axis) / sumval
def percentileofscore(a, score, kind='rank', nan_policy='propagate'):
"""Compute the percentile rank of a score relative to a list of scores.
A `percentileofscore` of, for example, 80% means that 80% of the
scores in `a` are below the given score. In the case of gaps or
ties, the exact definition depends on the optional keyword, `kind`.
Parameters
----------
a : array_like
Array to which `score` is compared.
score : array_like
Scores to compute percentiles for.
kind : {'rank', 'weak', 'strict', 'mean'}, optional
Specifies the interpretation of the resulting score.
The following options are available (default is 'rank'):
* 'rank': Average percentage ranking of score. In case of multiple
matches, average the percentage rankings of all matching scores.
* 'weak': This kind corresponds to the definition of a cumulative
distribution function. A percentileofscore of 80% means that 80%
of values are less than or equal to the provided score.
* 'strict': Similar to "weak", except that only values that are
strictly less than the given score are counted.
* 'mean': The average of the "weak" and "strict" scores, often used
in testing. See https://en.wikipedia.org/wiki/Percentile_rank
nan_policy : {'propagate', 'raise', 'omit'}, optional
Specifies how to treat `nan` values in `a`.
The following options are available (default is 'propagate'):
* 'propagate': returns nan (for each value in `score`).
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
pcos : float
Percentile-position of score (0-100) relative to `a`.
See Also
--------
numpy.percentile
scipy.stats.scoreatpercentile, scipy.stats.rankdata
Examples
--------
Three-quarters of the given values lie below a given score:
>>> import numpy as np
>>> from scipy import stats
>>> stats.percentileofscore([1, 2, 3, 4], 3)
75.0
With multiple matches, note how the scores of the two matches, 0.6
and 0.8 respectively, are averaged:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
70.0
Only 2/5 values are strictly less than 3:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0
But 4/5 values are less than or equal to 3:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0
The average between the weak and the strict scores is:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0
Score arrays (of any dimensionality) are supported:
>>> stats.percentileofscore([1, 2, 3, 3, 4], [2, 3])
array([40., 70.])
The inputs can be infinite:
>>> stats.percentileofscore([-np.inf, 0, 1, np.inf], [1, 2, np.inf])
array([75., 75., 100.])
If `a` is empty, then the resulting percentiles are all `nan`:
>>> stats.percentileofscore([], [1, 2])
array([nan, nan])
"""
a = np.asarray(a)
n = len(a)
score = np.asarray(score)
# Nan treatment
cna, npa = _contains_nan(a, nan_policy, use_summation=False)
cns, nps = _contains_nan(score, nan_policy, use_summation=False)
if (cna or cns) and nan_policy == 'raise':
raise ValueError("The input contains nan values")
if cns:
# If a score is nan, then the output should be nan
# (also if nan_policy is "omit", because it only applies to `a`)
score = ma.masked_where(np.isnan(score), score)
if cna:
if nan_policy == "omit":
# Don't count nans
a = ma.masked_where(np.isnan(a), a)
n = a.count()
if nan_policy == "propagate":
# All outputs should be nans
n = 0
# Cannot compare to empty list ==> nan
if n == 0:
perct = np.full_like(score, np.nan, dtype=np.float64)
else:
# Prepare broadcasting
score = score[..., None]
def count(x):
return np.count_nonzero(x, -1)
# Despite using masked_array to omit nan values from processing,
# the CI tests on "Azure pipelines" (but not on the other CI servers)
# emits warnings when there are nan values, contrarily to the purpose
# of masked_arrays. As a fix, we simply suppress the warnings.
with suppress_warnings() as sup:
sup.filter(RuntimeWarning,
"invalid value encountered in less")
sup.filter(RuntimeWarning,
"invalid value encountered in greater")
# Main computations/logic
if kind == 'rank':
left = count(a < score)
right = count(a <= score)
plus1 = left < right
perct = (left + right + plus1) * (50.0 / n)
elif kind == 'strict':
perct = count(a < score) * (100.0 / n)
elif kind == 'weak':
perct = count(a <= score) * (100.0 / n)
elif kind == 'mean':
left = count(a < score)
right = count(a <= score)
perct = (left + right) * (50.0 / n)
else:
raise ValueError(
"kind can only be 'rank', 'strict', 'weak' or 'mean'")
# Re-insert nan values
perct = ma.filled(perct, np.nan)
if perct.ndim == 0:
return perct[()]
return perct
HistogramResult = namedtuple('HistogramResult',
('count', 'lowerlimit', 'binsize', 'extrapoints'))
def _histogram(a, numbins=10, defaultlimits=None, weights=None,
printextras=False):
"""Create a histogram.
Separate the range into several bins and return the number of instances
in each bin.
Parameters
----------
a : array_like
Array of scores which will be put into bins.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultlimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
printextras : bool, optional
If True, if there are extra points (i.e. the points that fall outside
the bin limits) a warning is raised saying how many of those points
there are. Default is False.
Returns
-------
count : ndarray
Number of points (or sum of weights) in each bin.
lowerlimit : float
Lowest value of histogram, the lower limit of the first bin.
binsize : float
The size of the bins (all bins have the same size).
extrapoints : int
The number of points outside the range of the histogram.
See Also
--------
numpy.histogram
Notes
-----
This histogram is based on numpy's histogram but has a larger range by
default if default limits is not set.
"""
a = np.ravel(a)
if defaultlimits is None:
if a.size == 0:
# handle empty arrays. Undetermined range, so use 0-1.
defaultlimits = (0, 1)
else:
# no range given, so use values in `a`
data_min = a.min()
data_max = a.max()
# Have bins extend past min and max values slightly
s = (data_max - data_min) / (2. * (numbins - 1.))
defaultlimits = (data_min - s, data_max + s)
# use numpy's histogram method to compute bins
hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits,
weights=weights)
# hist are not always floats, convert to keep with old output
hist = np.array(hist, dtype=float)
# fixed width for bins is assumed, as numpy's histogram gives
# fixed width bins for int values for 'bins'
binsize = bin_edges[1] - bin_edges[0]
# calculate number of extra points
extrapoints = len([v for v in a
if defaultlimits[0] > v or v > defaultlimits[1]])
if extrapoints > 0 and printextras:
warnings.warn("Points outside given histogram range = %s"
% extrapoints)
return HistogramResult(hist, defaultlimits[0], binsize, extrapoints)
CumfreqResult = namedtuple('CumfreqResult',
('cumcount', 'lowerlimit', 'binsize',
'extrapoints'))
def cumfreq(a, numbins=10, defaultreallimits=None, weights=None):
"""Return a cumulative frequency histogram, using the histogram function.
A cumulative histogram is a mapping that counts the cumulative number of
observations in all of the bins up to the specified bin.
Parameters
----------
a : array_like
Input array.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultreallimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
Returns
-------
cumcount : ndarray
Binned values of cumulative frequency.
lowerlimit : float
Lower real limit
binsize : float
Width of each bin.
extrapoints : int
Extra points.
Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> x = [1, 4, 2, 1, 3, 1]
>>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
>>> res.cumcount
array([ 1., 2., 3., 3.])
>>> res.extrapoints
3
Create a normal distribution with 1000 random values
>>> samples = stats.norm.rvs(size=1000, random_state=rng)
Calculate cumulative frequencies
>>> res = stats.cumfreq(samples, numbins=25)
Calculate space of values for x
>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size,
... res.cumcount.size)
Plot histogram and cumulative histogram
>>> fig = plt.figure(figsize=(10, 4))
>>> ax1 = fig.add_subplot(1, 2, 1)
>>> ax2 = fig.add_subplot(1, 2, 2)
>>> ax1.hist(samples, bins=25)
>>> ax1.set_title('Histogram')
>>> ax2.bar(x, res.cumcount, width=res.binsize)
>>> ax2.set_title('Cumulative histogram')
>>> ax2.set_xlim([x.min(), x.max()])
>>> plt.show()
"""
h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
cumhist = np.cumsum(h * 1, axis=0)
return CumfreqResult(cumhist, l, b, e)
RelfreqResult = namedtuple('RelfreqResult',
('frequency', 'lowerlimit', 'binsize',
'extrapoints'))
def relfreq(a, numbins=10, defaultreallimits=None, weights=None):
"""Return a relative frequency histogram, using the histogram function.
A relative frequency histogram is a mapping of the number of
observations in each of the bins relative to the total of observations.
Parameters
----------
a : array_like
Input array.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultreallimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
Returns
-------
frequency : ndarray
Binned values of relative frequency.
lowerlimit : float
Lower real limit.
binsize : float
Width of each bin.
extrapoints : int
Extra points.
Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> a = np.array([2, 4, 1, 2, 3, 2])
>>> res = stats.relfreq(a, numbins=4)
>>> res.frequency
array([ 0.16666667, 0.5 , 0.16666667, 0.16666667])
>>> np.sum(res.frequency) # relative frequencies should add up to 1
1.0
Create a normal distribution with 1000 random values
>>> samples = stats.norm.rvs(size=1000, random_state=rng)
Calculate relative frequencies
>>> res = stats.relfreq(samples, numbins=25)
Calculate space of values for x
>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,
... res.frequency.size)
Plot relative frequency histogram
>>> fig = plt.figure(figsize=(5, 4))
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.bar(x, res.frequency, width=res.binsize)
>>> ax.set_title('Relative frequency histogram')
>>> ax.set_xlim([x.min(), x.max()])
>>> plt.show()
"""
a = np.asanyarray(a)
h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
h = h / a.shape[0]
return RelfreqResult(h, l, b, e)
#####################################
# VARIABILITY FUNCTIONS #
#####################################
def obrientransform(*samples):
"""Compute the O'Brien transform on input data (any number of arrays).
Used to test for homogeneity of variance prior to running one-way stats.
Each array in ``*samples`` is one level of a factor.
If `f_oneway` is run on the transformed data and found significant,
the variances are unequal. From Maxwell and Delaney [1]_, p.112.
Parameters
----------
sample1, sample2, ... : array_like
Any number of arrays.
Returns
-------
obrientransform : ndarray
Transformed data for use in an ANOVA. The first dimension
of the result corresponds to the sequence of transformed
arrays. If the arrays given are all 1-D of the same length,
the return value is a 2-D array; otherwise it is a 1-D array
of type object, with each element being an ndarray.
References
----------
.. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and
Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990.
Examples
--------
We'll test the following data sets for differences in their variance.
>>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
>>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]
Apply the O'Brien transform to the data.
>>> from scipy.stats import obrientransform
>>> tx, ty = obrientransform(x, y)
Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the
transformed data.
>>> from scipy.stats import f_oneway
>>> F, p = f_oneway(tx, ty)
>>> p
0.1314139477040335
If we require that ``p < 0.05`` for significance, we cannot conclude
that the variances are different.
"""
TINY = np.sqrt(np.finfo(float).eps)
# `arrays` will hold the transformed arguments.
arrays = []
sLast = None
for sample in samples:
a = np.asarray(sample)
n = len(a)
mu = np.mean(a)
sq = (a - mu)**2
sumsq = sq.sum()
# The O'Brien transform.
t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2))
# Check that the mean of the transformed data is equal to the
# original variance.
var = sumsq / (n - 1)
if abs(var - np.mean(t)) > TINY:
raise ValueError('Lack of convergence in obrientransform.')
arrays.append(t)
sLast = a.shape
if sLast:
for arr in arrays[:-1]:
if sLast != arr.shape:
return np.array(arrays, dtype=object)
return np.array(arrays)
@_axis_nan_policy_factory(
lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1, too_small=1
)
def sem(a, axis=0, ddof=1, nan_policy='propagate'):
"""Compute standard error of the mean.
Calculate the standard error of the mean (or standard error of
measurement) of the values in the input array.
Parameters
----------
a : array_like
An array containing the values for which the standard error is
returned.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust
for bias in limited samples relative to the population estimate
of variance. Defaults to 1.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.
Notes
-----
The default value for `ddof` is different to the default (0) used by other
ddof containing routines, such as np.std and np.nanstd.
Examples
--------
Find standard error along the first axis:
>>> import numpy as np
>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([ 2.8284, 2.8284, 2.8284, 2.8284])
Find standard error across the whole array, using n degrees of freedom:
>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628
"""
n = a.shape[axis]
s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n)
return s
def _isconst(x):
"""
Check if all values in x are the same. nans are ignored.
x must be a 1d array.
The return value is a 1d array with length 1, so it can be used
in np.apply_along_axis.
"""
y = x[~np.isnan(x)]
if y.size == 0:
return np.array([True])
else:
return (y[0] == y).all(keepdims=True)
def _quiet_nanmean(x):
"""
Compute nanmean for the 1d array x, but quietly return nan if x is all nan.
The return value is a 1d array with length 1, so it can be used
in np.apply_along_axis.
"""
y = x[~np.isnan(x)]
if y.size == 0:
return np.array([np.nan])
else:
return np.mean(y, keepdims=True)
def _quiet_nanstd(x, ddof=0):
"""
Compute nanstd for the 1d array x, but quietly return nan if x is all nan.
The return value is a 1d array with length 1, so it can be used
in np.apply_along_axis.
"""
y = x[~np.isnan(x)]
if y.size == 0:
return np.array([np.nan])
else:
return np.std(y, keepdims=True, ddof=ddof)
def zscore(a, axis=0, ddof=0, nan_policy='propagate'):
"""
Compute the z score.
Compute the z score of each value in the sample, relative to the
sample mean and standard deviation.
Parameters
----------
a : array_like
An array like object containing the sample data.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'. Note that when the value is 'omit',
nans in the input also propagate to the output, but they do not affect
the z-scores computed for the non-nan values.
Returns
-------
zscore : array_like
The z-scores, standardized by mean and standard deviation of
input array `a`.
See Also
--------
numpy.mean : Arithmetic average
numpy.std : Arithmetic standard deviation
scipy.stats.gzscore : Geometric standard score
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses `asanyarray` instead of
`asarray` for parameters).
References
----------
.. [1] "Standard score", *Wikipedia*,
https://en.wikipedia.org/wiki/Standard_score.
.. [2] Huck, S. W., Cross, T. L., Clark, S. B, "Overcoming misconceptions
about Z-scores", Teaching Statistics, vol. 8, pp. 38-40, 1986
Examples
--------
>>> import numpy as np
>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,
0.6748, -1.1488, -1.3324])
Computing along a specified axis, using n-1 degrees of freedom
(``ddof=1``) to calculate the standard deviation:
>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
... [ 0.7149, 0.0775, 0.6072, 0.9656],
... [ 0.6341, 0.1403, 0.9759, 0.4064],
... [ 0.5918, 0.6948, 0.904 , 0.3721],
... [ 0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],
[ 0.33048416, -1.37380874, 0.04251374, 1.00081084],
[ 0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
An example with `nan_policy='omit'`:
>>> x = np.array([[25.11, 30.10, np.nan, 32.02, 43.15],
... [14.95, 16.06, 121.25, 94.35, 29.81]])
>>> stats.zscore(x, axis=1, nan_policy='omit')
array([[-1.13490897, -0.37830299, nan, -0.08718406, 1.60039602],
[-0.91611681, -0.89090508, 1.4983032 , 0.88731639, -0.5785977 ]])
"""
return zmap(a, a, axis=axis, ddof=ddof, nan_policy=nan_policy)
def gzscore(a, *, axis=0, ddof=0, nan_policy='propagate'):
"""
Compute the geometric standard score.
Compute the geometric z score of each strictly positive value in the
sample, relative to the geometric mean and standard deviation.
Mathematically the geometric z score can be evaluated as::
gzscore = log(a/gmu) / log(gsigma)
where ``gmu`` (resp. ``gsigma``) is the geometric mean (resp. standard
deviation).
Parameters
----------
a : array_like
Sample data.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'. Note that when the value is 'omit',
nans in the input also propagate to the output, but they do not affect
the geometric z scores computed for the non-nan values.
Returns
-------
gzscore : array_like
The geometric z scores, standardized by geometric mean and geometric
standard deviation of input array `a`.
See Also
--------
gmean : Geometric mean
gstd : Geometric standard deviation
zscore : Standard score
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses ``asanyarray`` instead of
``asarray`` for parameters).
.. versionadded:: 1.8
References
----------
.. [1] "Geometric standard score", *Wikipedia*,
https://en.wikipedia.org/wiki/Geometric_standard_deviation#Geometric_standard_score.
Examples
--------
Draw samples from a log-normal distribution:
>>> import numpy as np
>>> from scipy.stats import zscore, gzscore
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> mu, sigma = 3., 1. # mean and standard deviation
>>> x = rng.lognormal(mu, sigma, size=500)
Display the histogram of the samples:
>>> fig, ax = plt.subplots()
>>> ax.hist(x, 50)
>>> plt.show()
Display the histogram of the samples standardized by the classical zscore.
Distribution is rescaled but its shape is unchanged.
>>> fig, ax = plt.subplots()
>>> ax.hist(zscore(x), 50)
>>> plt.show()
Demonstrate that the distribution of geometric zscores is rescaled and
quasinormal:
>>> fig, ax = plt.subplots()
>>> ax.hist(gzscore(x), 50)
>>> plt.show()
"""
a = np.asanyarray(a)
log = ma.log if isinstance(a, ma.MaskedArray) else np.log
return zscore(log(a), axis=axis, ddof=ddof, nan_policy=nan_policy)
def zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate'):
"""
Calculate the relative z-scores.
Return an array of z-scores, i.e., scores that are standardized to
zero mean and unit variance, where mean and variance are calculated
from the comparison array.
Parameters
----------
scores : array_like
The input for which z-scores are calculated.
compare : array_like
The input from which the mean and standard deviation of the
normalization are taken; assumed to have the same dimension as
`scores`.
axis : int or None, optional
Axis over which mean and variance of `compare` are calculated.
Default is 0. If None, compute over the whole array `scores`.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle the occurrence of nans in `compare`.
'propagate' returns nan, 'raise' raises an exception, 'omit'
performs the calculations ignoring nan values. Default is
'propagate'. Note that when the value is 'omit', nans in `scores`
also propagate to the output, but they do not affect the z-scores
computed for the non-nan values.
Returns
-------
zscore : array_like
Z-scores, in the same shape as `scores`.
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses `asanyarray` instead of
`asarray` for parameters).
Examples
--------
>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])
"""
a = np.asanyarray(compare)
if a.size == 0:
return np.empty(a.shape)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
if axis is None:
mn = _quiet_nanmean(a.ravel())
std = _quiet_nanstd(a.ravel(), ddof=ddof)
isconst = _isconst(a.ravel())
else:
mn = np.apply_along_axis(_quiet_nanmean, axis, a)
std = np.apply_along_axis(_quiet_nanstd, axis, a, ddof=ddof)
isconst = np.apply_along_axis(_isconst, axis, a)
else:
mn = a.mean(axis=axis, keepdims=True)
std = a.std(axis=axis, ddof=ddof, keepdims=True)
if axis is None:
isconst = (a.item(0) == a).all()
else:
isconst = (_first(a, axis) == a).all(axis=axis, keepdims=True)
# Set std deviations that are 0 to 1 to avoid division by 0.
std[isconst] = 1.0
z = (scores - mn) / std
# Set the outputs associated with a constant input to nan.
z[np.broadcast_to(isconst, z.shape)] = np.nan
return z
def gstd(a, axis=0, ddof=1):
"""
Calculate the geometric standard deviation of an array.
The geometric standard deviation describes the spread of a set of numbers
where the geometric mean is preferred. It is a multiplicative factor, and
so a dimensionless quantity.
It is defined as the exponent of the standard deviation of ``log(a)``.
Mathematically the population geometric standard deviation can be
evaluated as::
gstd = exp(std(log(a)))
.. versionadded:: 1.3.0
Parameters
----------
a : array_like
An array like object containing the sample data.
axis : int, tuple or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Degree of freedom correction in the calculation of the
geometric standard deviation. Default is 1.
Returns
-------
gstd : ndarray or float
An array of the geometric standard deviation. If `axis` is None or `a`
is a 1d array a float is returned.
See Also
--------
gmean : Geometric mean
numpy.std : Standard deviation
gzscore : Geometric standard score
Notes
-----
As the calculation requires the use of logarithms the geometric standard
deviation only supports strictly positive values. Any non-positive or
infinite values will raise a `ValueError`.
The geometric standard deviation is sometimes confused with the exponent of
the standard deviation, ``exp(std(a))``. Instead the geometric standard
deviation is ``exp(std(log(a)))``.
The default value for `ddof` is different to the default value (0) used
by other ddof containing functions, such as ``np.std`` and ``np.nanstd``.
References
----------
.. [1] "Geometric standard deviation", *Wikipedia*,
https://en.wikipedia.org/wiki/Geometric_standard_deviation.
.. [2] Kirkwood, T. B., "Geometric means and measures of dispersion",
Biometrics, vol. 35, pp. 908-909, 1979
Examples
--------
Find the geometric standard deviation of a log-normally distributed sample.
Note that the standard deviation of the distribution is one, on a
log scale this evaluates to approximately ``exp(1)``.
>>> import numpy as np
>>> from scipy.stats import gstd
>>> rng = np.random.default_rng()
>>> sample = rng.lognormal(mean=0, sigma=1, size=1000)
>>> gstd(sample)
2.810010162475324
Compute the geometric standard deviation of a multidimensional array and
of a given axis.
>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> gstd(a, axis=None)
2.2944076136018947
>>> gstd(a, axis=2)
array([[1.82424757, 1.22436866, 1.13183117],
[1.09348306, 1.07244798, 1.05914985]])
>>> gstd(a, axis=(1,2))
array([2.12939215, 1.22120169])
The geometric standard deviation further handles masked arrays.
>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> ma = np.ma.masked_where(a > 16, a)
>>> ma
masked_array(
data=[[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]],
[[13, 14, 15, 16],
[--, --, --, --],
[--, --, --, --]]],
mask=[[[False, False, False, False],
[False, False, False, False],
[False, False, False, False]],
[[False, False, False, False],
[ True, True, True, True],
[ True, True, True, True]]],
fill_value=999999)
>>> gstd(ma, axis=2)
masked_array(
data=[[1.8242475707663655, 1.2243686572447428, 1.1318311657788478],
[1.0934830582350938, --, --]],
mask=[[False, False, False],
[False, True, True]],
fill_value=999999)
"""
a = np.asanyarray(a)
log = ma.log if isinstance(a, ma.MaskedArray) else np.log
try:
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
return np.exp(np.std(log(a), axis=axis, ddof=ddof))
except RuntimeWarning as w:
if np.isinf(a).any():
raise ValueError(
'Infinite value encountered. The geometric standard deviation '
'is defined for strictly positive values only.'
) from w
a_nan = np.isnan(a)
a_nan_any = a_nan.any()
# exclude NaN's from negativity check, but
# avoid expensive masking for arrays with no NaN
if ((a_nan_any and np.less_equal(np.nanmin(a), 0)) or
(not a_nan_any and np.less_equal(a, 0).any())):
raise ValueError(
'Non positive value encountered. The geometric standard '
'deviation is defined for strictly positive values only.'
) from w
elif 'Degrees of freedom <= 0 for slice' == str(w):
raise ValueError(w) from w
else:
# Remaining warnings don't need to be exceptions.
return np.exp(np.std(log(a, where=~a_nan), axis=axis, ddof=ddof))
except TypeError as e:
raise ValueError(
'Invalid array input. The inputs could not be '
'safely coerced to any supported types') from e
# Private dictionary initialized only once at module level
# See https://en.wikipedia.org/wiki/Robust_measures_of_scale
_scale_conversions = {'raw': 1.0,
'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)}
@_axis_nan_policy_factory(
lambda x: x, result_to_tuple=lambda x: (x,), n_outputs=1,
default_axis=None, override={'nan_propagation': False}
)
def iqr(x, axis=None, rng=(25, 75), scale=1.0, nan_policy='propagate',
interpolation='linear', keepdims=False):
r"""
Compute the interquartile range of the data along the specified axis.
The interquartile range (IQR) is the difference between the 75th and
25th percentile of the data. It is a measure of the dispersion
similar to standard deviation or variance, but is much more robust
against outliers [2]_.
The ``rng`` parameter allows this function to compute other
percentile ranges than the actual IQR. For example, setting
``rng=(0, 100)`` is equivalent to `numpy.ptp`.
The IQR of an empty array is `np.nan`.
.. versionadded:: 0.18.0
Parameters
----------
x : array_like
Input array or object that can be converted to an array.
axis : int or sequence of int, optional
Axis along which the range is computed. The default is to
compute the IQR for the entire array.
rng : Two-element sequence containing floats in range of [0,100] optional
Percentiles over which to compute the range. Each must be
between 0 and 100, inclusive. The default is the true IQR:
``(25, 75)``. The order of the elements is not important.
scale : scalar or str, optional
The numerical value of scale will be divided out of the final
result. The following string values are recognized:
* 'raw' : No scaling, just return the raw IQR.
**Deprecated!** Use ``scale=1`` instead.
* 'normal' : Scale by
:math:`2 \sqrt{2} erf^{-1}(\frac{1}{2}) \approx 1.349`.
The default is 1.0. The use of ``scale='raw'`` is deprecated infavor
of ``scale=1`` and will raise an error in SciPy 1.12.0.
Array-like `scale` is also allowed, as long
as it broadcasts correctly to the output such that
``out / scale`` is a valid operation. The output dimensions
depend on the input array, `x`, the `axis` argument, and the
`keepdims` flag.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
interpolation : str, optional
Specifies the interpolation method to use when the percentile
boundaries lie between two data points ``i`` and ``j``.
The following options are available (default is 'linear'):
* 'linear': ``i + (j - i)*fraction``, where ``fraction`` is the
fractional part of the index surrounded by ``i`` and ``j``.
* 'lower': ``i``.
* 'higher': ``j``.
* 'nearest': ``i`` or ``j`` whichever is nearest.
* 'midpoint': ``(i + j)/2``.
For NumPy >= 1.22.0, the additional options provided by the ``method``
keyword of `numpy.percentile` are also valid.
keepdims : bool, optional
If this is set to True, the reduced axes are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array `x`.
Returns
-------
iqr : scalar or ndarray
If ``axis=None``, a scalar is returned. If the input contains
integers or floats of smaller precision than ``np.float64``, then the
output data-type is ``np.float64``. Otherwise, the output data-type is
the same as that of the input.
See Also
--------
numpy.std, numpy.var
References
----------
.. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range
.. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale
.. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile
Examples
--------
>>> import numpy as np
>>> from scipy.stats import iqr
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],
[ 3, 2, 1]])
>>> iqr(x)
4.0
>>> iqr(x, axis=0)
array([ 3.5, 2.5, 1.5])
>>> iqr(x, axis=1)
array([ 3., 1.])
>>> iqr(x, axis=1, keepdims=True)
array([[ 3.],
[ 1.]])
"""
x = asarray(x)
# This check prevents percentile from raising an error later. Also, it is
# consistent with `np.var` and `np.std`.
if not x.size:
return _get_nan(x)
# An error may be raised here, so fail-fast, before doing lengthy
# computations, even though `scale` is not used until later
if isinstance(scale, str):
scale_key = scale.lower()
if scale_key not in _scale_conversions:
raise ValueError(f"{scale} not a valid scale for `iqr`")
if scale_key == 'raw':
msg = ("The use of 'scale=\"raw\"' is deprecated infavor of "
"'scale=1' and will raise an error in SciPy 1.12.0.")
warnings.warn(msg, DeprecationWarning, stacklevel=2)
scale = _scale_conversions[scale_key]
# Select the percentile function to use based on nans and policy
contains_nan, nan_policy = _contains_nan(x, nan_policy)
if contains_nan and nan_policy == 'omit':
percentile_func = np.nanpercentile
else:
percentile_func = np.percentile
if len(rng) != 2:
raise TypeError("quantile range must be two element sequence")
if np.isnan(rng).any():
raise ValueError("range must not contain NaNs")
rng = sorted(rng)
if NumpyVersion(np.__version__) >= '1.22.0':
pct = percentile_func(x, rng, axis=axis, method=interpolation,
keepdims=keepdims)
else:
pct = percentile_func(x, rng, axis=axis, interpolation=interpolation,
keepdims=keepdims)
out = np.subtract(pct[1], pct[0])
if scale != 1.0:
out /= scale
return out
def _mad_1d(x, center, nan_policy):
# Median absolute deviation for 1-d array x.
# This is a helper function for `median_abs_deviation`; it assumes its
# arguments have been validated already. In particular, x must be a
# 1-d numpy array, center must be callable, and if nan_policy is not
# 'propagate', it is assumed to be 'omit', because 'raise' is handled
# in `median_abs_deviation`.
# No warning is generated if x is empty or all nan.
isnan = np.isnan(x)
if isnan.any():
if nan_policy == 'propagate':
return np.nan
x = x[~isnan]
if x.size == 0:
# MAD of an empty array is nan.
return np.nan
# Edge cases have been handled, so do the basic MAD calculation.
med = center(x)
mad = np.median(np.abs(x - med))
return mad
def median_abs_deviation(x, axis=0, center=np.median, scale=1.0,
nan_policy='propagate'):
r"""
Compute the median absolute deviation of the data along the given axis.
The median absolute deviation (MAD, [1]_) computes the median over the
absolute deviations from the median. It is a measure of dispersion
similar to the standard deviation but more robust to outliers [2]_.
The MAD of an empty array is ``np.nan``.
.. versionadded:: 1.5.0
Parameters
----------
x : array_like
Input array or object that can be converted to an array.
axis : int or None, optional
Axis along which the range is computed. Default is 0. If None, compute
the MAD over the entire array.
center : callable, optional
A function that will return the central value. The default is to use
np.median. Any user defined function used will need to have the
function signature ``func(arr, axis)``.
scale : scalar or str, optional
The numerical value of scale will be divided out of the final
result. The default is 1.0. The string "normal" is also accepted,
and results in `scale` being the inverse of the standard normal
quantile function at 0.75, which is approximately 0.67449.
Array-like scale is also allowed, as long as it broadcasts correctly
to the output such that ``out / scale`` is a valid operation. The
output dimensions depend on the input array, `x`, and the `axis`
argument.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
mad : scalar or ndarray
If ``axis=None``, a scalar is returned. If the input contains
integers or floats of smaller precision than ``np.float64``, then the
output data-type is ``np.float64``. Otherwise, the output data-type is
the same as that of the input.
See Also
--------
numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean,
scipy.stats.tstd, scipy.stats.tvar
Notes
-----
The `center` argument only affects the calculation of the central value
around which the MAD is calculated. That is, passing in ``center=np.mean``
will calculate the MAD around the mean - it will not calculate the *mean*
absolute deviation.
The input array may contain `inf`, but if `center` returns `inf`, the
corresponding MAD for that data will be `nan`.
References
----------
.. [1] "Median absolute deviation",
https://en.wikipedia.org/wiki/Median_absolute_deviation
.. [2] "Robust measures of scale",
https://en.wikipedia.org/wiki/Robust_measures_of_scale
Examples
--------
When comparing the behavior of `median_abs_deviation` with ``np.std``,
the latter is affected when we change a single value of an array to have an
outlier value while the MAD hardly changes:
>>> import numpy as np
>>> from scipy import stats
>>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
>>> x.std()
0.9973906394005013
>>> stats.median_abs_deviation(x)
0.82832610097857
>>> x[0] = 345.6
>>> x.std()
34.42304872314415
>>> stats.median_abs_deviation(x)
0.8323442311590675
Axis handling example:
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],
[ 3, 2, 1]])
>>> stats.median_abs_deviation(x)
array([3.5, 2.5, 1.5])
>>> stats.median_abs_deviation(x, axis=None)
2.0
Scale normal example:
>>> x = stats.norm.rvs(size=1000000, scale=2, random_state=123456)
>>> stats.median_abs_deviation(x)
1.3487398527041636
>>> stats.median_abs_deviation(x, scale='normal')
1.9996446978061115
"""
if not callable(center):
raise TypeError("The argument 'center' must be callable. The given "
f"value {repr(center)} is not callable.")
# An error may be raised here, so fail-fast, before doing lengthy
# computations, even though `scale` is not used until later
if isinstance(scale, str):
if scale.lower() == 'normal':
scale = 0.6744897501960817 # special.ndtri(0.75)
else:
raise ValueError(f"{scale} is not a valid scale value.")
x = asarray(x)
# Consistent with `np.var` and `np.std`.
if not x.size:
if axis is None:
return np.nan
nan_shape = tuple(item for i, item in enumerate(x.shape) if i != axis)
if nan_shape == ():
# Return nan, not array(nan)
return np.nan
return np.full(nan_shape, np.nan)
contains_nan, nan_policy = _contains_nan(x, nan_policy)
if contains_nan:
if axis is None:
mad = _mad_1d(x.ravel(), center, nan_policy)
else:
mad = np.apply_along_axis(_mad_1d, axis, x, center, nan_policy)
else:
if axis is None:
med = center(x, axis=None)
mad = np.median(np.abs(x - med))
else:
# Wrap the call to center() in expand_dims() so it acts like
# keepdims=True was used.
med = np.expand_dims(center(x, axis=axis), axis)
mad = np.median(np.abs(x - med), axis=axis)
return mad / scale
#####################################
# TRIMMING FUNCTIONS #
#####################################
SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper'))
def sigmaclip(a, low=4., high=4.):
"""Perform iterative sigma-clipping of array elements.
Starting from the full sample, all elements outside the critical range are
removed, i.e. all elements of the input array `c` that satisfy either of
the following conditions::
c < mean(c) - std(c)*low
c > mean(c) + std(c)*high
The iteration continues with the updated sample until no
elements are outside the (updated) range.
Parameters
----------
a : array_like
Data array, will be raveled if not 1-D.
low : float, optional
Lower bound factor of sigma clipping. Default is 4.
high : float, optional
Upper bound factor of sigma clipping. Default is 4.
Returns
-------
clipped : ndarray
Input array with clipped elements removed.
lower : float
Lower threshold value use for clipping.
upper : float
Upper threshold value use for clipping.
Examples
--------
>>> import numpy as np
>>> from scipy.stats import sigmaclip
>>> a = np.concatenate((np.linspace(9.5, 10.5, 31),
... np.linspace(0, 20, 5)))
>>> fact = 1.5
>>> c, low, upp = sigmaclip(a, fact, fact)
>>> c
array([ 9.96666667, 10. , 10.03333333, 10. ])
>>> c.var(), c.std()
(0.00055555555555555165, 0.023570226039551501)
>>> low, c.mean() - fact*c.std(), c.min()
(9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
>>> upp, c.mean() + fact*c.std(), c.max()
(10.035355339059327, 10.035355339059327, 10.033333333333333)
>>> a = np.concatenate((np.linspace(9.5, 10.5, 11),
... np.linspace(-100, -50, 3)))
>>> c, low, upp = sigmaclip(a, 1.8, 1.8)
>>> (c == np.linspace(9.5, 10.5, 11)).all()
True
"""
c = np.asarray(a).ravel()
delta = 1
while delta:
c_std = c.std()
c_mean = c.mean()
size = c.size
critlower = c_mean - c_std * low
critupper = c_mean + c_std * high
c = c[(c >= critlower) & (c <= critupper)]
delta = size - c.size
return SigmaclipResult(c, critlower, critupper)
def trimboth(a, proportiontocut, axis=0):
"""Slice off a proportion of items from both ends of an array.
Slice off the passed proportion of items from both ends of the passed
array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and**
rightmost 10% of scores). The trimmed values are the lowest and
highest ones.
Slice off less if proportion results in a non-integer slice index (i.e.
conservatively slices off `proportiontocut`).
Parameters
----------
a : array_like
Data to trim.
proportiontocut : float
Proportion (in range 0-1) of total data set to trim of each end.
axis : int or None, optional
Axis along which to trim data. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
out : ndarray
Trimmed version of array `a`. The order of the trimmed content
is undefined.
See Also
--------
trim_mean
Examples
--------
Create an array of 10 values and trim 10% of those values from each end:
>>> import numpy as np
>>> from scipy import stats
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> stats.trimboth(a, 0.1)
array([1, 3, 2, 4, 5, 6, 7, 8])
Note that the elements of the input array are trimmed by value, but the
output array is not necessarily sorted.
The proportion to trim is rounded down to the nearest integer. For
instance, trimming 25% of the values from each end of an array of 10
values will return an array of 6 values:
>>> b = np.arange(10)
>>> stats.trimboth(b, 1/4).shape
(6,)
Multidimensional arrays can be trimmed along any axis or across the entire
array:
>>> c = [2, 4, 6, 8, 0, 1, 3, 5, 7, 9]
>>> d = np.array([a, b, c])
>>> stats.trimboth(d, 0.4, axis=0).shape
(1, 10)
>>> stats.trimboth(d, 0.4, axis=1).shape
(3, 2)
>>> stats.trimboth(d, 0.4, axis=None).shape
(6,)
"""
a = np.asarray(a)
if a.size == 0:
return a
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
lowercut = int(proportiontocut * nobs)
uppercut = nobs - lowercut
if (lowercut >= uppercut):
raise ValueError("Proportion too big.")
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
sl = [slice(None)] * atmp.ndim
sl[axis] = slice(lowercut, uppercut)
return atmp[tuple(sl)]
def trim1(a, proportiontocut, tail='right', axis=0):
"""Slice off a proportion from ONE end of the passed array distribution.
If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost'
10% of scores. The lowest or highest values are trimmed (depending on
the tail).
Slice off less if proportion results in a non-integer slice index
(i.e. conservatively slices off `proportiontocut` ).
Parameters
----------
a : array_like
Input array.
proportiontocut : float
Fraction to cut off of 'left' or 'right' of distribution.
tail : {'left', 'right'}, optional
Defaults to 'right'.
axis : int or None, optional
Axis along which to trim data. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
trim1 : ndarray
Trimmed version of array `a`. The order of the trimmed content is
undefined.
Examples
--------
Create an array of 10 values and trim 20% of its lowest values:
>>> import numpy as np
>>> from scipy import stats
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> stats.trim1(a, 0.2, 'left')
array([2, 4, 3, 5, 6, 7, 8, 9])
Note that the elements of the input array are trimmed by value, but the
output array is not necessarily sorted.
The proportion to trim is rounded down to the nearest integer. For
instance, trimming 25% of the values from an array of 10 values will
return an array of 8 values:
>>> b = np.arange(10)
>>> stats.trim1(b, 1/4).shape
(8,)
Multidimensional arrays can be trimmed along any axis or across the entire
array:
>>> c = [2, 4, 6, 8, 0, 1, 3, 5, 7, 9]
>>> d = np.array([a, b, c])
>>> stats.trim1(d, 0.8, axis=0).shape
(1, 10)
>>> stats.trim1(d, 0.8, axis=1).shape
(3, 2)
>>> stats.trim1(d, 0.8, axis=None).shape
(6,)
"""
a = np.asarray(a)
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
# avoid possible corner case
if proportiontocut >= 1:
return []
if tail.lower() == 'right':
lowercut = 0
uppercut = nobs - int(proportiontocut * nobs)
elif tail.lower() == 'left':
lowercut = int(proportiontocut * nobs)
uppercut = nobs
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
sl = [slice(None)] * atmp.ndim
sl[axis] = slice(lowercut, uppercut)
return atmp[tuple(sl)]
def trim_mean(a, proportiontocut, axis=0):
"""Return mean of array after trimming distribution from both tails.
If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of
scores. The input is sorted before slicing. Slices off less if proportion
results in a non-integer slice index (i.e., conservatively slices off
`proportiontocut` ).
Parameters
----------
a : array_like
Input array.
proportiontocut : float
Fraction to cut off of both tails of the distribution.
axis : int or None, optional
Axis along which the trimmed means are computed. Default is 0.
If None, compute over the whole array `a`.
Returns
-------
trim_mean : ndarray
Mean of trimmed array.
See Also
--------
trimboth
tmean : Compute the trimmed mean ignoring values outside given `limits`.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.trim_mean(x, 0.1)
9.5
>>> x2 = x.reshape(5, 4)
>>> x2
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
>>> stats.trim_mean(x2, 0.25)
array([ 8., 9., 10., 11.])
>>> stats.trim_mean(x2, 0.25, axis=1)
array([ 1.5, 5.5, 9.5, 13.5, 17.5])
"""
a = np.asarray(a)
if a.size == 0:
return np.nan
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
lowercut = int(proportiontocut * nobs)
uppercut = nobs - lowercut
if (lowercut > uppercut):
raise ValueError("Proportion too big.")
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
sl = [slice(None)] * atmp.ndim
sl[axis] = slice(lowercut, uppercut)
return np.mean(atmp[tuple(sl)], axis=axis)
F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))
def _create_f_oneway_nan_result(shape, axis):
"""
This is a helper function for f_oneway for creating the return values
in certain degenerate conditions. It creates return values that are
all nan with the appropriate shape for the given `shape` and `axis`.
"""
axis = np.core.multiarray.normalize_axis_index(axis, len(shape))
shp = shape[:axis] + shape[axis+1:]
if shp == ():
f = np.nan
prob = np.nan
else:
f = np.full(shp, fill_value=np.nan)
prob = f.copy()
return F_onewayResult(f, prob)
def _first(arr, axis):
"""Return arr[..., 0:1, ...] where 0:1 is in the `axis` position."""
return np.take_along_axis(arr, np.array(0, ndmin=arr.ndim), axis)
def f_oneway(*samples, axis=0):
"""Perform one-way ANOVA.
The one-way ANOVA tests the null hypothesis that two or more groups have
the same population mean. The test is applied to samples from two or
more groups, possibly with differing sizes.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group. There must be at least
two arguments. If the arrays are multidimensional, then all the
dimensions of the array must be the same except for `axis`.
axis : int, optional
Axis of the input arrays along which the test is applied.
Default is 0.
Returns
-------
statistic : float
The computed F statistic of the test.
pvalue : float
The associated p-value from the F distribution.
Warns
-----
`~scipy.stats.ConstantInputWarning`
Raised if all values within each of the input arrays are identical.
In this case the F statistic is either infinite or isn't defined,
so ``np.inf`` or ``np.nan`` is returned.
`~scipy.stats.DegenerateDataWarning`
Raised if the length of any input array is 0, or if all the input
arrays have length 1. ``np.nan`` is returned for the F statistic
and the p-value in these cases.
Notes
-----
The ANOVA test has important assumptions that must be satisfied in order
for the associated p-value to be valid.
1. The samples are independent.
2. Each sample is from a normally distributed population.
3. The population standard deviations of the groups are all equal. This
property is known as homoscedasticity.
If these assumptions are not true for a given set of data, it may still
be possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) or
the Alexander-Govern test (`scipy.stats.alexandergovern`) although with
some loss of power.
The length of each group must be at least one, and there must be at
least one group with length greater than one. If these conditions
are not satisfied, a warning is generated and (``np.nan``, ``np.nan``)
is returned.
If all values in each group are identical, and there exist at least two
groups with different values, the function generates a warning and
returns (``np.inf``, 0).
If all values in all groups are the same, function generates a warning
and returns (``np.nan``, ``np.nan``).
The algorithm is from Heiman [2]_, pp.394-7.
References
----------
.. [1] R. Lowry, "Concepts and Applications of Inferential Statistics",
Chapter 14, 2014, http://vassarstats.net/textbook/
.. [2] G.W. Heiman, "Understanding research methods and statistics: An
integrated introduction for psychology", Houghton, Mifflin and
Company, 2001.
.. [3] G.H. McDonald, "Handbook of Biological Statistics", One-way ANOVA.
http://www.biostathandbook.com/onewayanova.html
Examples
--------
>>> import numpy as np
>>> from scipy.stats import f_oneway
Here are some data [3]_ on a shell measurement (the length of the anterior
adductor muscle scar, standardized by dividing by length) in the mussel
Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a
much larger data set used in McDonald et al. (1991).
>>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735,
... 0.0659, 0.0923, 0.0836]
>>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835,
... 0.0725]
>>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105]
>>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764,
... 0.0689]
>>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045]
>>> f_oneway(tillamook, newport, petersburg, magadan, tvarminne)
F_onewayResult(statistic=7.121019471642447, pvalue=0.0002812242314534544)
`f_oneway` accepts multidimensional input arrays. When the inputs
are multidimensional and `axis` is not given, the test is performed
along the first axis of the input arrays. For the following data, the
test is performed three times, once for each column.
>>> a = np.array([[9.87, 9.03, 6.81],
... [7.18, 8.35, 7.00],
... [8.39, 7.58, 7.68],
... [7.45, 6.33, 9.35],
... [6.41, 7.10, 9.33],
... [8.00, 8.24, 8.44]])
>>> b = np.array([[6.35, 7.30, 7.16],
... [6.65, 6.68, 7.63],
... [5.72, 7.73, 6.72],
... [7.01, 9.19, 7.41],
... [7.75, 7.87, 8.30],
... [6.90, 7.97, 6.97]])
>>> c = np.array([[3.31, 8.77, 1.01],
... [8.25, 3.24, 3.62],
... [6.32, 8.81, 5.19],
... [7.48, 8.83, 8.91],
... [8.59, 6.01, 6.07],
... [3.07, 9.72, 7.48]])
>>> F, p = f_oneway(a, b, c)
>>> F
array([1.75676344, 0.03701228, 3.76439349])
>>> p
array([0.20630784, 0.96375203, 0.04733157])
"""
if len(samples) < 2:
raise TypeError('at least two inputs are required;'
f' got {len(samples)}.')
samples = [np.asarray(sample, dtype=float) for sample in samples]
# ANOVA on N groups, each in its own array
num_groups = len(samples)
# We haven't explicitly validated axis, but if it is bad, this call of
# np.concatenate will raise np.AxisError. The call will raise ValueError
# if the dimensions of all the arrays, except the axis dimension, are not
# the same.
alldata = np.concatenate(samples, axis=axis)
bign = alldata.shape[axis]
# Check this after forming alldata, so shape errors are detected
# and reported before checking for 0 length inputs.
if any(sample.shape[axis] == 0 for sample in samples):
warnings.warn(stats.DegenerateDataWarning('at least one input '
'has length 0'))
return _create_f_oneway_nan_result(alldata.shape, axis)
# Must have at least one group with length greater than 1.
if all(sample.shape[axis] == 1 for sample in samples):
msg = ('all input arrays have length 1. f_oneway requires that at '
'least one input has length greater than 1.')
warnings.warn(stats.DegenerateDataWarning(msg))
return _create_f_oneway_nan_result(alldata.shape, axis)
# Check if all values within each group are identical, and if the common
# value in at least one group is different from that in another group.
# Based on https://github.com/scipy/scipy/issues/11669
# If axis=0, say, and the groups have shape (n0, ...), (n1, ...), ...,
# then is_const is a boolean array with shape (num_groups, ...).
# It is True if the values within the groups along the axis slice are
# identical. In the typical case where each input array is 1-d, is_const is
# a 1-d array with length num_groups.
is_const = np.concatenate(
[(_first(sample, axis) == sample).all(axis=axis,
keepdims=True)
for sample in samples],
axis=axis
)
# all_const is a boolean array with shape (...) (see previous comment).
# It is True if the values within each group along the axis slice are
# the same (e.g. [[3, 3, 3], [5, 5, 5, 5], [4, 4, 4]]).
all_const = is_const.all(axis=axis)
if all_const.any():
msg = ("Each of the input arrays is constant;"
"the F statistic is not defined or infinite")
warnings.warn(stats.ConstantInputWarning(msg))
# all_same_const is True if all the values in the groups along the axis=0
# slice are the same (e.g. [[3, 3, 3], [3, 3, 3, 3], [3, 3, 3]]).
all_same_const = (_first(alldata, axis) == alldata).all(axis=axis)
# Determine the mean of the data, and subtract that from all inputs to a
# variance (via sum_of_sq / sq_of_sum) calculation. Variance is invariant
# to a shift in location, and centering all data around zero vastly
# improves numerical stability.
offset = alldata.mean(axis=axis, keepdims=True)
alldata -= offset
normalized_ss = _square_of_sums(alldata, axis=axis) / bign
sstot = _sum_of_squares(alldata, axis=axis) - normalized_ss
ssbn = 0
for sample in samples:
ssbn += _square_of_sums(sample - offset,
axis=axis) / sample.shape[axis]
# Naming: variables ending in bn/b are for "between treatments", wn/w are
# for "within treatments"
ssbn -= normalized_ss
sswn = sstot - ssbn
dfbn = num_groups - 1
dfwn = bign - num_groups
msb = ssbn / dfbn
msw = sswn / dfwn
with np.errstate(divide='ignore', invalid='ignore'):
f = msb / msw
prob = special.fdtrc(dfbn, dfwn, f) # equivalent to stats.f.sf
# Fix any f values that should be inf or nan because the corresponding
# inputs were constant.
if np.isscalar(f):
if all_same_const:
f = np.nan
prob = np.nan
elif all_const:
f = np.inf
prob = 0.0
else:
f[all_const] = np.inf
prob[all_const] = 0.0
f[all_same_const] = np.nan
prob[all_same_const] = np.nan
return F_onewayResult(f, prob)
def alexandergovern(*samples, nan_policy='propagate'):
"""Performs the Alexander Govern test.
The Alexander-Govern approximation tests the equality of k independent
means in the face of heterogeneity of variance. The test is applied to
samples from two or more groups, possibly with differing sizes.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group. There must be at least
two samples.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
res : AlexanderGovernResult
An object with attributes:
statistic : float
The computed A statistic of the test.
pvalue : float
The associated p-value from the chi-squared distribution.
Warns
-----
`~scipy.stats.ConstantInputWarning`
Raised if an input is a constant array. The statistic is not defined
in this case, so ``np.nan`` is returned.
See Also
--------
f_oneway : one-way ANOVA
Notes
-----
The use of this test relies on several assumptions.
1. The samples are independent.
2. Each sample is from a normally distributed population.
3. Unlike `f_oneway`, this test does not assume on homoscedasticity,
instead relaxing the assumption of equal variances.
Input samples must be finite, one dimensional, and with size greater than
one.
References
----------
.. [1] Alexander, Ralph A., and Diane M. Govern. "A New and Simpler
Approximation for ANOVA under Variance Heterogeneity." Journal
of Educational Statistics, vol. 19, no. 2, 1994, pp. 91-101.
JSTOR, www.jstor.org/stable/1165140. Accessed 12 Sept. 2020.
Examples
--------
>>> from scipy.stats import alexandergovern
Here are some data on annual percentage rate of interest charged on
new car loans at nine of the largest banks in four American cities
taken from the National Institute of Standards and Technology's
ANOVA dataset.
We use `alexandergovern` to test the null hypothesis that all cities
have the same mean APR against the alternative that the cities do not
all have the same mean APR. We decide that a significance level of 5%
is required to reject the null hypothesis in favor of the alternative.
>>> atlanta = [13.75, 13.75, 13.5, 13.5, 13.0, 13.0, 13.0, 12.75, 12.5]
>>> chicago = [14.25, 13.0, 12.75, 12.5, 12.5, 12.4, 12.3, 11.9, 11.9]
>>> houston = [14.0, 14.0, 13.51, 13.5, 13.5, 13.25, 13.0, 12.5, 12.5]
>>> memphis = [15.0, 14.0, 13.75, 13.59, 13.25, 12.97, 12.5, 12.25,
... 11.89]
>>> alexandergovern(atlanta, chicago, houston, memphis)
AlexanderGovernResult(statistic=4.65087071883494,
pvalue=0.19922132490385214)
The p-value is 0.1992, indicating a nearly 20% chance of observing
such an extreme value of the test statistic under the null hypothesis.
This exceeds 5%, so we do not reject the null hypothesis in favor of
the alternative.
"""
samples = _alexandergovern_input_validation(samples, nan_policy)
if np.any([(sample == sample[0]).all() for sample in samples]):
msg = "An input array is constant; the statistic is not defined."
warnings.warn(stats.ConstantInputWarning(msg))
return AlexanderGovernResult(np.nan, np.nan)
# The following formula numbers reference the equation described on
# page 92 by Alexander, Govern. Formulas 5, 6, and 7 describe other
# tests that serve as the basis for equation (8) but are not needed
# to perform the test.
# precalculate mean and length of each sample
lengths = np.array([ma.count(sample) if nan_policy == 'omit'
else len(sample) for sample in samples])
means = np.array([np.mean(sample) for sample in samples])
# (1) determine standard error of the mean for each sample
standard_errors = [np.std(sample, ddof=1) / np.sqrt(length)
for sample, length in zip(samples, lengths)]
# (2) define a weight for each sample
inv_sq_se = 1 / np.square(standard_errors)
weights = inv_sq_se / np.sum(inv_sq_se)
# (3) determine variance-weighted estimate of the common mean
var_w = np.sum(weights * means)
# (4) determine one-sample t statistic for each group
t_stats = (means - var_w)/standard_errors
# calculate parameters to be used in transformation
v = lengths - 1
a = v - .5
b = 48 * a**2
c = (a * np.log(1 + (t_stats ** 2)/v))**.5
# (8) perform a normalizing transformation on t statistic
z = (c + ((c**3 + 3*c)/b) -
((4*c**7 + 33*c**5 + 240*c**3 + 855*c) /
(b**2*10 + 8*b*c**4 + 1000*b)))
# (9) calculate statistic
A = np.sum(np.square(z))
# "[the p value is determined from] central chi-square random deviates
# with k - 1 degrees of freedom". Alexander, Govern (94)
p = distributions.chi2.sf(A, len(samples) - 1)
return AlexanderGovernResult(A, p)
def _alexandergovern_input_validation(samples, nan_policy):
if len(samples) < 2:
raise TypeError(f"2 or more inputs required, got {len(samples)}")
# input arrays are flattened
samples = [np.asarray(sample, dtype=float) for sample in samples]
for i, sample in enumerate(samples):
if np.size(sample) <= 1:
raise ValueError("Input sample size must be greater than one.")
if sample.ndim != 1:
raise ValueError("Input samples must be one-dimensional")
if np.isinf(sample).any():
raise ValueError("Input samples must be finite.")
contains_nan, nan_policy = _contains_nan(sample,
nan_policy=nan_policy)
if contains_nan and nan_policy == 'omit':
samples[i] = ma.masked_invalid(sample)
return samples
@dataclass
class AlexanderGovernResult:
statistic: float
pvalue: float
def _pearsonr_fisher_ci(r, n, confidence_level, alternative):
"""
Compute the confidence interval for Pearson's R.
Fisher's transformation is used to compute the confidence interval
(https://en.wikipedia.org/wiki/Fisher_transformation).
"""
if r == 1:
zr = np.inf
elif r == -1:
zr = -np.inf
else:
zr = np.arctanh(r)
if n > 3:
se = np.sqrt(1 / (n - 3))
if alternative == "two-sided":
h = special.ndtri(0.5 + confidence_level/2)
zlo = zr - h*se
zhi = zr + h*se
rlo = np.tanh(zlo)
rhi = np.tanh(zhi)
elif alternative == "less":
h = special.ndtri(confidence_level)
zhi = zr + h*se
rhi = np.tanh(zhi)
rlo = -1.0
else:
# alternative == "greater":
h = special.ndtri(confidence_level)
zlo = zr - h*se
rlo = np.tanh(zlo)
rhi = 1.0
else:
rlo, rhi = -1.0, 1.0
return ConfidenceInterval(low=rlo, high=rhi)
def _pearsonr_bootstrap_ci(confidence_level, method, x, y, alternative):
"""
Compute the confidence interval for Pearson's R using the bootstrap.
"""
def statistic(x, y):
statistic, _ = pearsonr(x, y)
return statistic
res = bootstrap((x, y), statistic, confidence_level=confidence_level,
paired=True, alternative=alternative, **method._asdict())
# for one-sided confidence intervals, bootstrap gives +/- inf on one side
res.confidence_interval = np.clip(res.confidence_interval, -1, 1)
return ConfidenceInterval(*res.confidence_interval)
ConfidenceInterval = namedtuple('ConfidenceInterval', ['low', 'high'])
PearsonRResultBase = _make_tuple_bunch('PearsonRResultBase',
['statistic', 'pvalue'], [])
class PearsonRResult(PearsonRResultBase):
"""
Result of `scipy.stats.pearsonr`
Attributes
----------
statistic : float
Pearson product-moment correlation coefficient.
pvalue : float
The p-value associated with the chosen alternative.
Methods
-------
confidence_interval
Computes the confidence interval of the correlation
coefficient `statistic` for the given confidence level.
"""
def __init__(self, statistic, pvalue, alternative, n, x, y):
super().__init__(statistic, pvalue)
self._alternative = alternative
self._n = n
self._x = x
self._y = y
# add alias for consistency with other correlation functions
self.correlation = statistic
def confidence_interval(self, confidence_level=0.95, method=None):
"""
The confidence interval for the correlation coefficient.
Compute the confidence interval for the correlation coefficient
``statistic`` with the given confidence level.
If `method` is not provided,
The confidence interval is computed using the Fisher transformation
F(r) = arctanh(r) [1]_. When the sample pairs are drawn from a
bivariate normal distribution, F(r) approximately follows a normal
distribution with standard error ``1/sqrt(n - 3)``, where ``n`` is the
length of the original samples along the calculation axis. When
``n <= 3``, this approximation does not yield a finite, real standard
error, so we define the confidence interval to be -1 to 1.
If `method` is an instance of `BootstrapMethod`, the confidence
interval is computed using `scipy.stats.bootstrap` with the provided
configuration options and other appropriate settings. In some cases,
confidence limits may be NaN due to a degenerate resample, and this is
typical for very small samples (~6 observations).
Parameters
----------
confidence_level : float
The confidence level for the calculation of the correlation
coefficient confidence interval. Default is 0.95.
method : BootstrapMethod, optional
Defines the method used to compute the confidence interval. See
method description for details.
.. versionadded:: 1.11.0
Returns
-------
ci : namedtuple
The confidence interval is returned in a ``namedtuple`` with
fields `low` and `high`.
References
----------
.. [1] "Pearson correlation coefficient", Wikipedia,
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
"""
if isinstance(method, BootstrapMethod):
ci = _pearsonr_bootstrap_ci(confidence_level, method,
self._x, self._y, self._alternative)
elif method is None:
ci = _pearsonr_fisher_ci(self.statistic, self._n, confidence_level,
self._alternative)
else:
message = ('`method` must be an instance of `BootstrapMethod` '
'or None.')
raise ValueError(message)
return ci
def pearsonr(x, y, *, alternative='two-sided', method=None):
r"""
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient [1]_ measures the linear relationship
between two datasets. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear relationship.
Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases.
This function also performs a test of the null hypothesis that the
distributions underlying the samples are uncorrelated and normally
distributed. (See Kowalski [3]_
for a discussion of the effects of non-normality of the input on the
distribution of the correlation coefficient.)
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets.
Parameters
----------
x : (N,) array_like
Input array.
y : (N,) array_like
Input array.
alternative : {'two-sided', 'greater', 'less'}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
The following options are available:
* 'two-sided': the correlation is nonzero
* 'less': the correlation is negative (less than zero)
* 'greater': the correlation is positive (greater than zero)
.. versionadded:: 1.9.0
method : ResamplingMethod, optional
Defines the method used to compute the p-value. If `method` is an
instance of `PermutationMethod`/`MonteCarloMethod`, the p-value is
computed using
`scipy.stats.permutation_test`/`scipy.stats.monte_carlo_test` with the
provided configuration options and other appropriate settings.
Otherwise, the p-value is computed as documented in the notes.
.. versionadded:: 1.11.0
Returns
-------
result : `~scipy.stats._result_classes.PearsonRResult`
An object with the following attributes:
statistic : float
Pearson product-moment correlation coefficient.
pvalue : float
The p-value associated with the chosen alternative.
The object has the following method:
confidence_interval(confidence_level, method)
This computes the confidence interval of the correlation
coefficient `statistic` for the given confidence level.
The confidence interval is returned in a ``namedtuple`` with
fields `low` and `high`. If `method` is not provided, the
confidence interval is computed using the Fisher transformation
[1]_. If `method` is an instance of `BootstrapMethod`, the
confidence interval is computed using `scipy.stats.bootstrap` with
the provided configuration options and other appropriate settings.
In some cases, confidence limits may be NaN due to a degenerate
resample, and this is typical for very small samples (~6
observations).
Warns
-----
`~scipy.stats.ConstantInputWarning`
Raised if an input is a constant array. The correlation coefficient
is not defined in this case, so ``np.nan`` is returned.
`~scipy.stats.NearConstantInputWarning`
Raised if an input is "nearly" constant. The array ``x`` is considered
nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``.
Numerical errors in the calculation ``x - mean(x)`` in this case might
result in an inaccurate calculation of r.
See Also
--------
spearmanr : Spearman rank-order correlation coefficient.
kendalltau : Kendall's tau, a correlation measure for ordinal data.
Notes
-----
The correlation coefficient is calculated as follows:
.. math::
r = \frac{\sum (x - m_x) (y - m_y)}
{\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}}
where :math:`m_x` is the mean of the vector x and :math:`m_y` is
the mean of the vector y.
Under the assumption that x and y are drawn from
independent normal distributions (so the population correlation coefficient
is 0), the probability density function of the sample correlation
coefficient r is ([1]_, [2]_):
.. math::
f(r) = \frac{{(1-r^2)}^{n/2-2}}{\mathrm{B}(\frac{1}{2},\frac{n}{2}-1)}
where n is the number of samples, and B is the beta function. This
is sometimes referred to as the exact distribution of r. This is
the distribution that is used in `pearsonr` to compute the p-value when
the `method` parameter is left at its default value (None).
The distribution is a beta distribution on the interval [-1, 1],
with equal shape parameters a = b = n/2 - 1. In terms of SciPy's
implementation of the beta distribution, the distribution of r is::
dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)
The default p-value returned by `pearsonr` is a two-sided p-value. For a
given sample with correlation coefficient r, the p-value is
the probability that abs(r') of a random sample x' and y' drawn from
the population with zero correlation would be greater than or equal
to abs(r). In terms of the object ``dist`` shown above, the p-value
for a given r and length n can be computed as::
p = 2*dist.cdf(-abs(r))
When n is 2, the above continuous distribution is not well-defined.
One can interpret the limit of the beta distribution as the shape
parameters a and b approach a = b = 0 as a discrete distribution with
equal probability masses at r = 1 and r = -1. More directly, one
can observe that, given the data x = [x1, x2] and y = [y1, y2], and
assuming x1 != x2 and y1 != y2, the only possible values for r are 1
and -1. Because abs(r') for any sample x' and y' with length 2 will
be 1, the two-sided p-value for a sample of length 2 is always 1.
For backwards compatibility, the object that is returned also behaves
like a tuple of length two that holds the statistic and the p-value.
References
----------
.. [1] "Pearson correlation coefficient", Wikipedia,
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
.. [2] Student, "Probable error of a correlation coefficient",
Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310.
.. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution
of the Sample Product-Moment Correlation Coefficient"
Journal of the Royal Statistical Society. Series C (Applied
Statistics), Vol. 21, No. 1 (1972), pp. 1-12.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x, y = [1, 2, 3, 4, 5, 6, 7], [10, 9, 2.5, 6, 4, 3, 2]
>>> res = stats.pearsonr(x, y)
>>> res
PearsonRResult(statistic=-0.828503883588428, pvalue=0.021280260007523286)
To perform an exact permutation version of the test:
>>> rng = np.random.default_rng(7796654889291491997)
>>> method = stats.PermutationMethod(n_resamples=np.inf, random_state=rng)
>>> stats.pearsonr(x, y, method=method)
PearsonRResult(statistic=-0.828503883588428, pvalue=0.028174603174603175)
To perform the test under the null hypothesis that the data were drawn from
*uniform* distributions:
>>> method = stats.MonteCarloMethod(rvs=(rng.uniform, rng.uniform))
>>> stats.pearsonr(x, y, method=method)
PearsonRResult(statistic=-0.828503883588428, pvalue=0.0188)
To produce an asymptotic 90% confidence interval:
>>> res.confidence_interval(confidence_level=0.9)
ConfidenceInterval(low=-0.9644331982722841, high=-0.3460237473272273)
And for a bootstrap confidence interval:
>>> method = stats.BootstrapMethod(method='BCa', random_state=rng)
>>> res.confidence_interval(confidence_level=0.9, method=method)
ConfidenceInterval(low=-0.9983163756488651, high=-0.22771001702132443) # may vary
There is a linear dependence between x and y if y = a + b*x + e, where
a,b are constants and e is a random error term, assumed to be independent
of x. For simplicity, assume that x is standard normal, a=0, b=1 and let
e follow a normal distribution with mean zero and standard deviation s>0.
>>> rng = np.random.default_rng()
>>> s = 0.5
>>> x = stats.norm.rvs(size=500, random_state=rng)
>>> e = stats.norm.rvs(scale=s, size=500, random_state=rng)
>>> y = x + e
>>> stats.pearsonr(x, y).statistic
0.9001942438244763
This should be close to the exact value given by
>>> 1/np.sqrt(1 + s**2)
0.8944271909999159
For s=0.5, we observe a high level of correlation. In general, a large
variance of the noise reduces the correlation, while the correlation
approaches one as the variance of the error goes to zero.
It is important to keep in mind that no correlation does not imply
independence unless (x, y) is jointly normal. Correlation can even be zero
when there is a very simple dependence structure: if X follows a
standard normal distribution, let y = abs(x). Note that the correlation
between x and y is zero. Indeed, since the expectation of x is zero,
cov(x, y) = E[x*y]. By definition, this equals E[x*abs(x)] which is zero
by symmetry. The following lines of code illustrate this observation:
>>> y = np.abs(x)
>>> stats.pearsonr(x, y)
PearsonRResult(statistic=-0.05444919272687482, pvalue=0.22422294836207743)
A non-zero correlation coefficient can be misleading. For example, if X has
a standard normal distribution, define y = x if x < 0 and y = 0 otherwise.
A simple calculation shows that corr(x, y) = sqrt(2/Pi) = 0.797...,
implying a high level of correlation:
>>> y = np.where(x < 0, x, 0)
>>> stats.pearsonr(x, y)
PearsonRResult(statistic=0.861985781588, pvalue=4.813432002751103e-149)
This is unintuitive since there is no dependence of x and y if x is larger
than zero which happens in about half of the cases if we sample x and y.
"""
n = len(x)
if n != len(y):
raise ValueError('x and y must have the same length.')
if n < 2:
raise ValueError('x and y must have length at least 2.')
x = np.asarray(x)
y = np.asarray(y)
if (np.issubdtype(x.dtype, np.complexfloating)
or np.issubdtype(y.dtype, np.complexfloating)):
raise ValueError('This function does not support complex data')
# If an input is constant, the correlation coefficient is not defined.
if (x == x[0]).all() or (y == y[0]).all():
msg = ("An input array is constant; the correlation coefficient "
"is not defined.")
warnings.warn(stats.ConstantInputWarning(msg))
result = PearsonRResult(statistic=np.nan, pvalue=np.nan, n=n,
alternative=alternative, x=x, y=y)
return result
if isinstance(method, PermutationMethod):
def statistic(y):
statistic, _ = pearsonr(x, y, alternative=alternative)
return statistic
res = permutation_test((y,), statistic, permutation_type='pairings',
alternative=alternative, **method._asdict())
return PearsonRResult(statistic=res.statistic, pvalue=res.pvalue, n=n,
alternative=alternative, x=x, y=y)
elif isinstance(method, MonteCarloMethod):
def statistic(x, y):
statistic, _ = pearsonr(x, y, alternative=alternative)
return statistic
if method.rvs is None:
rng = np.random.default_rng()
method.rvs = rng.normal, rng.normal
res = monte_carlo_test((x, y,), statistic=statistic,
alternative=alternative, **method._asdict())
return PearsonRResult(statistic=res.statistic, pvalue=res.pvalue, n=n,
alternative=alternative, x=x, y=y)
elif method is not None:
message = ('`method` must be an instance of `PermutationMethod`,'
'`MonteCarloMethod`, or None.')
raise ValueError(message)
# dtype is the data type for the calculations. This expression ensures
# that the data type is at least 64 bit floating point. It might have
# more precision if the input is, for example, np.longdouble.
dtype = type(1.0 + x[0] + y[0])
if n == 2:
r = dtype(np.sign(x[1] - x[0])*np.sign(y[1] - y[0]))
result = PearsonRResult(statistic=r, pvalue=1.0, n=n,
alternative=alternative, x=x, y=y)
return result
xmean = x.mean(dtype=dtype)
ymean = y.mean(dtype=dtype)
# By using `astype(dtype)`, we ensure that the intermediate calculations
# use at least 64 bit floating point.
xm = x.astype(dtype) - xmean
ym = y.astype(dtype) - ymean
# Unlike np.linalg.norm or the expression sqrt((xm*xm).sum()),
# scipy.linalg.norm(xm) does not overflow if xm is, for example,
# [-5e210, 5e210, 3e200, -3e200]
normxm = linalg.norm(xm)
normym = linalg.norm(ym)
threshold = 1e-13
if normxm < threshold*abs(xmean) or normym < threshold*abs(ymean):
# If all the values in x (likewise y) are very close to the mean,
# the loss of precision that occurs in the subtraction xm = x - xmean
# might result in large errors in r.
msg = ("An input array is nearly constant; the computed "
"correlation coefficient may be inaccurate.")
warnings.warn(stats.NearConstantInputWarning(msg))
r = np.dot(xm/normxm, ym/normym)
# Presumably, if abs(r) > 1, then it is only some small artifact of
# floating point arithmetic.
r = max(min(r, 1.0), -1.0)
# As explained in the docstring, the distribution of `r` under the null
# hypothesis is the beta distribution on (-1, 1) with a = b = n/2 - 1.
ab = n/2 - 1
dist = stats.beta(ab, ab, loc=-1, scale=2)
if alternative == 'two-sided':
prob = 2*dist.sf(abs(r))
elif alternative == 'less':
prob = dist.cdf(r)
elif alternative == 'greater':
prob = dist.sf(r)
else:
raise ValueError('alternative must be one of '
'["two-sided", "less", "greater"]')
return PearsonRResult(statistic=r, pvalue=prob, n=n,
alternative=alternative, x=x, y=y)
def fisher_exact(table, alternative='two-sided'):
"""Perform a Fisher exact test on a 2x2 contingency table.
The null hypothesis is that the true odds ratio of the populations
underlying the observations is one, and the observations were sampled
from these populations under a condition: the marginals of the
resulting table must equal those of the observed table. The statistic
returned is the unconditional maximum likelihood estimate of the odds
ratio, and the p-value is the probability under the null hypothesis of
obtaining a table at least as extreme as the one that was actually
observed. There are other possible choices of statistic and two-sided
p-value definition associated with Fisher's exact test; please see the
Notes for more information.
Parameters
----------
table : array_like of ints
A 2x2 contingency table. Elements must be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided': the odds ratio of the underlying population is not one
* 'less': the odds ratio of the underlying population is less than one
* 'greater': the odds ratio of the underlying population is greater
than one
See the Notes for more details.
Returns
-------
res : SignificanceResult
An object containing attributes:
statistic : float
This is the prior odds ratio, not a posterior estimate.
pvalue : float
The probability under the null hypothesis of obtaining a
table at least as extreme as the one that was actually observed.
See Also
--------
chi2_contingency : Chi-square test of independence of variables in a
contingency table. This can be used as an alternative to
`fisher_exact` when the numbers in the table are large.
contingency.odds_ratio : Compute the odds ratio (sample or conditional
MLE) for a 2x2 contingency table.
barnard_exact : Barnard's exact test, which is a more powerful alternative
than Fisher's exact test for 2x2 contingency tables.
boschloo_exact : Boschloo's exact test, which is a more powerful
alternative than Fisher's exact test for 2x2 contingency tables.
Notes
-----
*Null hypothesis and p-values*
The null hypothesis is that the true odds ratio of the populations
underlying the observations is one, and the observations were sampled at
random from these populations under a condition: the marginals of the
resulting table must equal those of the observed table. Equivalently,
the null hypothesis is that the input table is from the hypergeometric
distribution with parameters (as used in `hypergeom`)
``M = a + b + c + d``, ``n = a + b`` and ``N = a + c``, where the
input table is ``[[a, b], [c, d]]``. This distribution has support
``max(0, N + n - M) <= x <= min(N, n)``, or, in terms of the values
in the input table, ``min(0, a - d) <= x <= a + min(b, c)``. ``x``
can be interpreted as the upper-left element of a 2x2 table, so the
tables in the distribution have form::
[ x n - x ]
[N - x M - (n + N) + x]
For example, if::
table = [6 2]
[1 4]
then the support is ``2 <= x <= 7``, and the tables in the distribution
are::
[2 6] [3 5] [4 4] [5 3] [6 2] [7 1]
[5 0] [4 1] [3 2] [2 3] [1 4] [0 5]
The probability of each table is given by the hypergeometric distribution
``hypergeom.pmf(x, M, n, N)``. For this example, these are (rounded to
three significant digits)::
x 2 3 4 5 6 7
p 0.0163 0.163 0.408 0.326 0.0816 0.00466
These can be computed with::
>>> import numpy as np
>>> from scipy.stats import hypergeom
>>> table = np.array([[6, 2], [1, 4]])
>>> M = table.sum()
>>> n = table[0].sum()
>>> N = table[:, 0].sum()
>>> start, end = hypergeom.support(M, n, N)
>>> hypergeom.pmf(np.arange(start, end+1), M, n, N)
array([0.01631702, 0.16317016, 0.40792541, 0.32634033, 0.08158508,
0.004662 ])
The two-sided p-value is the probability that, under the null hypothesis,
a random table would have a probability equal to or less than the
probability of the input table. For our example, the probability of
the input table (where ``x = 6``) is 0.0816. The x values where the
probability does not exceed this are 2, 6 and 7, so the two-sided p-value
is ``0.0163 + 0.0816 + 0.00466 ~= 0.10256``::
>>> from scipy.stats import fisher_exact
>>> res = fisher_exact(table, alternative='two-sided')
>>> res.pvalue
0.10256410256410257
The one-sided p-value for ``alternative='greater'`` is the probability
that a random table has ``x >= a``, which in our example is ``x >= 6``,
or ``0.0816 + 0.00466 ~= 0.08626``::
>>> res = fisher_exact(table, alternative='greater')
>>> res.pvalue
0.08624708624708627
This is equivalent to computing the survival function of the
distribution at ``x = 5`` (one less than ``x`` from the input table,
because we want to include the probability of ``x = 6`` in the sum)::
>>> hypergeom.sf(5, M, n, N)
0.08624708624708627
For ``alternative='less'``, the one-sided p-value is the probability
that a random table has ``x <= a``, (i.e. ``x <= 6`` in our example),
or ``0.0163 + 0.163 + 0.408 + 0.326 + 0.0816 ~= 0.9949``::
>>> res = fisher_exact(table, alternative='less')
>>> res.pvalue
0.9953379953379957
This is equivalent to computing the cumulative distribution function
of the distribution at ``x = 6``:
>>> hypergeom.cdf(6, M, n, N)
0.9953379953379957
*Odds ratio*
The calculated odds ratio is different from the value computed by the
R function ``fisher.test``. This implementation returns the "sample"
or "unconditional" maximum likelihood estimate, while ``fisher.test``
in R uses the conditional maximum likelihood estimate. To compute the
conditional maximum likelihood estimate of the odds ratio, use
`scipy.stats.contingency.odds_ratio`.
References
----------
.. [1] Fisher, Sir Ronald A, "The Design of Experiments:
Mathematics of a Lady Tasting Tea." ISBN 978-0-486-41151-4, 1935.
.. [2] "Fisher's exact test",
https://en.wikipedia.org/wiki/Fisher's_exact_test
.. [3] Emma V. Low et al. "Identifying the lowest effective dose of
acetazolamide for the prophylaxis of acute mountain sickness:
systematic review and meta-analysis."
BMJ, 345, :doi:`10.1136/bmj.e6779`, 2012.
Examples
--------
In [3]_, the effective dose of acetazolamide for the prophylaxis of acute
mountain sickness was investigated. The study notably concluded:
Acetazolamide 250 mg, 500 mg, and 750 mg daily were all efficacious for
preventing acute mountain sickness. Acetazolamide 250 mg was the lowest
effective dose with available evidence for this indication.
The following table summarizes the results of the experiment in which
some participants took a daily dose of acetazolamide 250 mg while others
took a placebo.
Cases of acute mountain sickness were recorded::
Acetazolamide Control/Placebo
Acute mountain sickness 7 17
No 15 5
Is there evidence that the acetazolamide 250 mg reduces the risk of
acute mountain sickness?
We begin by formulating a null hypothesis :math:`H_0`:
The odds of experiencing acute mountain sickness are the same with
the acetazolamide treatment as they are with placebo.
Let's assess the plausibility of this hypothesis with
Fisher's test.
>>> from scipy.stats import fisher_exact
>>> res = fisher_exact([[7, 17], [15, 5]], alternative='less')
>>> res.statistic
0.13725490196078433
>>> res.pvalue
0.0028841933752349743
Using a significance level of 5%, we would reject the null hypothesis in
favor of the alternative hypothesis: "The odds of experiencing acute
mountain sickness with acetazolamide treatment are less than the odds of
experiencing acute mountain sickness with placebo."
.. note::
Because the null distribution of Fisher's exact test is formed under
the assumption that both row and column sums are fixed, the result of
the test are conservative when applied to an experiment in which the
row sums are not fixed.
In this case, the column sums are fixed; there are 22 subjects in each
group. But the number of cases of acute mountain sickness is not
(and cannot be) fixed before conducting the experiment. It is a
consequence.
Boschloo's test does not depend on the assumption that the row sums
are fixed, and consequently, it provides a more powerful test in this
situation.
>>> from scipy.stats import boschloo_exact
>>> res = boschloo_exact([[7, 17], [15, 5]], alternative='less')
>>> res.statistic
0.0028841933752349743
>>> res.pvalue
0.0015141406667567101
We verify that the p-value is less than with `fisher_exact`.
"""
hypergeom = distributions.hypergeom
# int32 is not enough for the algorithm
c = np.asarray(table, dtype=np.int64)
if not c.shape == (2, 2):
raise ValueError("The input `table` must be of shape (2, 2).")
if np.any(c < 0):
raise ValueError("All values in `table` must be nonnegative.")
if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
# If both values in a row or column are zero, the p-value is 1 and
# the odds ratio is NaN.
return SignificanceResult(np.nan, 1.0)
if c[1, 0] > 0 and c[0, 1] > 0:
oddsratio = c[0, 0] * c[1, 1] / (c[1, 0] * c[0, 1])
else:
oddsratio = np.inf
n1 = c[0, 0] + c[0, 1]
n2 = c[1, 0] + c[1, 1]
n = c[0, 0] + c[1, 0]
def pmf(x):
return hypergeom.pmf(x, n1 + n2, n1, n)
if alternative == 'less':
pvalue = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
elif alternative == 'greater':
# Same formula as the 'less' case, but with the second column.
pvalue = hypergeom.cdf(c[0, 1], n1 + n2, n1, c[0, 1] + c[1, 1])
elif alternative == 'two-sided':
mode = int((n + 1) * (n1 + 1) / (n1 + n2 + 2))
pexact = hypergeom.pmf(c[0, 0], n1 + n2, n1, n)
pmode = hypergeom.pmf(mode, n1 + n2, n1, n)
epsilon = 1e-14
gamma = 1 + epsilon
if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= epsilon:
return SignificanceResult(oddsratio, 1.)
elif c[0, 0] < mode:
plower = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
if hypergeom.pmf(n, n1 + n2, n1, n) > pexact * gamma:
return SignificanceResult(oddsratio, plower)
guess = _binary_search(lambda x: -pmf(x), -pexact * gamma, mode, n)
pvalue = plower + hypergeom.sf(guess, n1 + n2, n1, n)
else:
pupper = hypergeom.sf(c[0, 0] - 1, n1 + n2, n1, n)
if hypergeom.pmf(0, n1 + n2, n1, n) > pexact * gamma:
return SignificanceResult(oddsratio, pupper)
guess = _binary_search(pmf, pexact * gamma, 0, mode)
pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n)
else:
msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}"
raise ValueError(msg)
pvalue = min(pvalue, 1.0)
return SignificanceResult(oddsratio, pvalue)
def spearmanr(a, b=None, axis=0, nan_policy='propagate',
alternative='two-sided'):
r"""Calculate a Spearman correlation coefficient with associated p-value.
The Spearman rank-order correlation coefficient is a nonparametric measure
of the monotonicity of the relationship between two datasets.
Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply an exact monotonic relationship. Positive
correlations imply that as x increases, so does y. Negative correlations
imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. Although calculation of the
p-value does not make strong assumptions about the distributions underlying
the samples, it is only accurate for very large samples (>500
observations). For smaller sample sizes, consider a permutation test (see
Examples section below).
Parameters
----------
a, b : 1D or 2D array_like, b is optional
One or two 1-D or 2-D arrays containing multiple variables and
observations. When these are 1-D, each represents a vector of
observations of a single variable. For the behavior in the 2-D case,
see under ``axis``, below.
Both arrays need to have the same length in the ``axis`` dimension.
axis : int or None, optional
If axis=0 (default), then each column represents a variable, with
observations in the rows. If axis=1, the relationship is transposed:
each row represents a variable, while the columns contain observations.
If axis=None, then both arrays will be raveled.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
The following options are available:
* 'two-sided': the correlation is nonzero
* 'less': the correlation is negative (less than zero)
* 'greater': the correlation is positive (greater than zero)
.. versionadded:: 1.7.0
Returns
-------
res : SignificanceResult
An object containing attributes:
statistic : float or ndarray (2-D square)
Spearman correlation matrix or correlation coefficient (if only 2
variables are given as parameters). Correlation matrix is square
with length equal to total number of variables (columns or rows) in
``a`` and ``b`` combined.
pvalue : float
The p-value for a hypothesis test whose null hypothesis
is that two samples have no ordinal correlation. See
`alternative` above for alternative hypotheses. `pvalue` has the
same shape as `statistic`.
Warns
-----
`~scipy.stats.ConstantInputWarning`
Raised if an input is a constant array. The correlation coefficient
is not defined in this case, so ``np.nan`` is returned.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Section 14.7
.. [2] Kendall, M. G. and Stuart, A. (1973).
The Advanced Theory of Statistics, Volume 2: Inference and Relationship.
Griffin. 1973.
Section 31.18
.. [3] Kershenobich, D., Fierro, F. J., & Rojkind, M. (1970). The
relationship between the free pool of proline and collagen content in
human liver cirrhosis. The Journal of Clinical Investigation, 49(12),
2246-2249.
.. [4] Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric
statistical methods. John Wiley & Sons.
.. [5] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly Drawn."
Statistical Applications in Genetics and Molecular Biology 9.1 (2010).
.. [6] Ludbrook, J., & Dudley, H. (1998). Why permutation tests are
superior to t and F tests in biomedical research. The American
Statistician, 52(2), 127-132.
Examples
--------
Consider the following data from [3]_, which studied the relationship
between free proline (an amino acid) and total collagen (a protein often
found in connective tissue) in unhealthy human livers.
The ``x`` and ``y`` arrays below record measurements of the two compounds.
The observations are paired: each free proline measurement was taken from
the same liver as the total collagen measurement at the same index.
>>> import numpy as np
>>> # total collagen (mg/g dry weight of liver)
>>> x = np.array([7.1, 7.1, 7.2, 8.3, 9.4, 10.5, 11.4])
>>> # free proline (μ mole/g dry weight of liver)
>>> y = np.array([2.8, 2.9, 2.8, 2.6, 3.5, 4.6, 5.0])
These data were analyzed in [4]_ using Spearman's correlation coefficient,
a statistic sensitive to monotonic correlation between the samples.
>>> from scipy import stats
>>> res = stats.spearmanr(x, y)
>>> res.statistic
0.7000000000000001
The value of this statistic tends to be high (close to 1) for samples with
a strongly positive ordinal correlation, low (close to -1) for samples with
a strongly negative ordinal correlation, and small in magnitude (close to
zero) for samples with weak ordinal correlation.
The test is performed by comparing the observed value of the
statistic against the null distribution: the distribution of statistic
values derived under the null hypothesis that total collagen and free
proline measurements are independent.
For this test, the statistic can be transformed such that the null
distribution for large samples is Student's t distribution with
``len(x) - 2`` degrees of freedom.
>>> import matplotlib.pyplot as plt
>>> dof = len(x)-2 # len(x) == len(y)
>>> dist = stats.t(df=dof)
>>> t_vals = np.linspace(-5, 5, 100)
>>> pdf = dist.pdf(t_vals)
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> def plot(ax): # we'll re-use this
... ax.plot(t_vals, pdf)
... ax.set_title("Spearman's Rho Test Null Distribution")
... ax.set_xlabel("statistic")
... ax.set_ylabel("probability density")
>>> plot(ax)
>>> plt.show()
The comparison is quantified by the p-value: the proportion of values in
the null distribution as extreme or more extreme than the observed
value of the statistic. In a two-sided test in which the statistic is
positive, elements of the null distribution greater than the transformed
statistic and elements of the null distribution less than the negative of
the observed statistic are both considered "more extreme".
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> plot(ax)
>>> rs = res.statistic # original statistic
>>> transformed = rs * np.sqrt(dof / ((rs+1.0)*(1.0-rs)))
>>> pvalue = dist.cdf(-transformed) + dist.sf(transformed)
>>> annotation = (f'p-value={pvalue:.4f}\n(shaded area)')
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
>>> _ = ax.annotate(annotation, (2.7, 0.025), (3, 0.03), arrowprops=props)
>>> i = t_vals >= transformed
>>> ax.fill_between(t_vals[i], y1=0, y2=pdf[i], color='C0')
>>> i = t_vals <= -transformed
>>> ax.fill_between(t_vals[i], y1=0, y2=pdf[i], color='C0')
>>> ax.set_xlim(-5, 5)
>>> ax.set_ylim(0, 0.1)
>>> plt.show()
>>> res.pvalue
0.07991669030889909 # two-sided p-value
If the p-value is "small" - that is, if there is a low probability of
sampling data from independent distributions that produces such an extreme
value of the statistic - this may be taken as evidence against the null
hypothesis in favor of the alternative: the distribution of total collagen
and free proline are *not* independent. Note that:
- The inverse is not true; that is, the test is not used to provide
evidence for the null hypothesis.
- The threshold for values that will be considered "small" is a choice that
should be made before the data is analyzed [5]_ with consideration of the
risks of both false positives (incorrectly rejecting the null hypothesis)
and false negatives (failure to reject a false null hypothesis).
- Small p-values are not evidence for a *large* effect; rather, they can
only provide evidence for a "significant" effect, meaning that they are
unlikely to have occurred under the null hypothesis.
Suppose that before performing the experiment, the authors had reason
to predict a positive correlation between the total collagen and free
proline measurements, and that they had chosen to assess the plausibility
of the null hypothesis against a one-sided alternative: free proline has a
positive ordinal correlation with total collagen. In this case, only those
values in the null distribution that are as great or greater than the
observed statistic are considered to be more extreme.
>>> res = stats.spearmanr(x, y, alternative='greater')
>>> res.statistic
0.7000000000000001 # same statistic
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> plot(ax)
>>> pvalue = dist.sf(transformed)
>>> annotation = (f'p-value={pvalue:.6f}\n(shaded area)')
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
>>> _ = ax.annotate(annotation, (3, 0.018), (3.5, 0.03), arrowprops=props)
>>> i = t_vals >= transformed
>>> ax.fill_between(t_vals[i], y1=0, y2=pdf[i], color='C0')
>>> ax.set_xlim(1, 5)
>>> ax.set_ylim(0, 0.1)
>>> plt.show()
>>> res.pvalue
0.03995834515444954 # one-sided p-value; half of the two-sided p-value
Note that the t-distribution provides an asymptotic approximation of the
null distribution; it is only accurate for samples with many observations.
For small samples, it may be more appropriate to perform a permutation
test: Under the null hypothesis that total collagen and free proline are
independent, each of the free proline measurements were equally likely to
have been observed with any of the total collagen measurements. Therefore,
we can form an *exact* null distribution by calculating the statistic under
each possible pairing of elements between ``x`` and ``y``.
>>> def statistic(x): # explore all possible pairings by permuting `x`
... rs = stats.spearmanr(x, y).statistic # ignore pvalue
... transformed = rs * np.sqrt(dof / ((rs+1.0)*(1.0-rs)))
... return transformed
>>> ref = stats.permutation_test((x,), statistic, alternative='greater',
... permutation_type='pairings')
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> plot(ax)
>>> ax.hist(ref.null_distribution, np.linspace(-5, 5, 26),
... density=True)
>>> ax.legend(['aymptotic approximation\n(many observations)',
... f'exact \n({len(ref.null_distribution)} permutations)'])
>>> plt.show()
>>> ref.pvalue
0.04563492063492063 # exact one-sided p-value
"""
if axis is not None and axis > 1:
raise ValueError("spearmanr only handles 1-D or 2-D arrays, "
"supplied axis argument {}, please use only "
"values 0, 1 or None for axis".format(axis))
a, axisout = _chk_asarray(a, axis)
if a.ndim > 2:
raise ValueError("spearmanr only handles 1-D or 2-D arrays")
if b is None:
if a.ndim < 2:
raise ValueError("`spearmanr` needs at least 2 "
"variables to compare")
else:
# Concatenate a and b, so that we now only have to handle the case
# of a 2-D `a`.
b, _ = _chk_asarray(b, axis)
if axisout == 0:
a = np.column_stack((a, b))
else:
a = np.row_stack((a, b))
n_vars = a.shape[1 - axisout]
n_obs = a.shape[axisout]
if n_obs <= 1:
# Handle empty arrays or single observations.
res = SignificanceResult(np.nan, np.nan)
res.correlation = np.nan
return res
warn_msg = ("An input array is constant; the correlation coefficient "
"is not defined.")
if axisout == 0:
if (a[:, 0][0] == a[:, 0]).all() or (a[:, 1][0] == a[:, 1]).all():
# If an input is constant, the correlation coefficient
# is not defined.
warnings.warn(stats.ConstantInputWarning(warn_msg))
res = SignificanceResult(np.nan, np.nan)
res.correlation = np.nan
return res
else: # case when axisout == 1 b/c a is 2 dim only
if (a[0, :][0] == a[0, :]).all() or (a[1, :][0] == a[1, :]).all():
# If an input is constant, the correlation coefficient
# is not defined.
warnings.warn(stats.ConstantInputWarning(warn_msg))
res = SignificanceResult(np.nan, np.nan)
res.correlation = np.nan
return res
a_contains_nan, nan_policy = _contains_nan(a, nan_policy)
variable_has_nan = np.zeros(n_vars, dtype=bool)
if a_contains_nan:
if nan_policy == 'omit':
return mstats_basic.spearmanr(a, axis=axis, nan_policy=nan_policy,
alternative=alternative)
elif nan_policy == 'propagate':
if a.ndim == 1 or n_vars <= 2:
res = SignificanceResult(np.nan, np.nan)
res.correlation = np.nan
return res
else:
# Keep track of variables with NaNs, set the outputs to NaN
# only for those variables
variable_has_nan = np.isnan(a).any(axis=axisout)
a_ranked = np.apply_along_axis(rankdata, axisout, a)
rs = np.corrcoef(a_ranked, rowvar=axisout)
dof = n_obs - 2 # degrees of freedom
# rs can have elements equal to 1, so avoid zero division warnings
with np.errstate(divide='ignore'):
# clip the small negative values possibly caused by rounding
# errors before taking the square root
t = rs * np.sqrt((dof/((rs+1.0)*(1.0-rs))).clip(0))
t, prob = _ttest_finish(dof, t, alternative)
# For backwards compatibility, return scalars when comparing 2 columns
if rs.shape == (2, 2):
res = SignificanceResult(rs[1, 0], prob[1, 0])
res.correlation = rs[1, 0]
return res
else:
rs[variable_has_nan, :] = np.nan
rs[:, variable_has_nan] = np.nan
res = SignificanceResult(rs, prob)
res.correlation = rs
return res
def pointbiserialr(x, y):
r"""Calculate a point biserial correlation coefficient and its p-value.
The point biserial correlation is used to measure the relationship
between a binary variable, x, and a continuous variable, y. Like other
correlation coefficients, this one varies between -1 and +1 with 0
implying no correlation. Correlations of -1 or +1 imply a determinative
relationship.
This function may be computed using a shortcut formula but produces the
same result as `pearsonr`.
Parameters
----------
x : array_like of bools
Input array.
y : array_like
Input array.
Returns
-------
res: SignificanceResult
An object containing attributes:
statistic : float
The R value.
pvalue : float
The two-sided p-value.
Notes
-----
`pointbiserialr` uses a t-test with ``n-1`` degrees of freedom.
It is equivalent to `pearsonr`.
The value of the point-biserial correlation can be calculated from:
.. math::
r_{pb} = \frac{\overline{Y_1} - \overline{Y_0}}
{s_y}
\sqrt{\frac{N_0 N_1}
{N (N - 1)}}
Where :math:`\overline{Y_{0}}` and :math:`\overline{Y_{1}}` are means
of the metric observations coded 0 and 1 respectively; :math:`N_{0}` and
:math:`N_{1}` are number of observations coded 0 and 1 respectively;
:math:`N` is the total number of observations and :math:`s_{y}` is the
standard deviation of all the metric observations.
A value of :math:`r_{pb}` that is significantly different from zero is
completely equivalent to a significant difference in means between the two
groups. Thus, an independent groups t Test with :math:`N-2` degrees of
freedom may be used to test whether :math:`r_{pb}` is nonzero. The
relation between the t-statistic for comparing two independent groups and
:math:`r_{pb}` is given by:
.. math::
t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}}
References
----------
.. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math.
Statist., Vol. 20, no.1, pp. 125-126, 1949.
.. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous
Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25,
np. 3, pp. 603-607, 1954.
.. [3] D. Kornbrot "Point Biserial Correlation", In Wiley StatsRef:
Statistics Reference Online (eds N. Balakrishnan, et al.), 2014.
:doi:`10.1002/9781118445112.stat06227`
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[ 1. , 0.8660254],
[ 0.8660254, 1. ]])
"""
rpb, prob = pearsonr(x, y)
# create result object with alias for backward compatibility
res = SignificanceResult(rpb, prob)
res.correlation = rpb
return res
def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate',
method='auto', variant='b', alternative='two-sided'):
r"""Calculate Kendall's tau, a correlation measure for ordinal data.
Kendall's tau is a measure of the correspondence between two rankings.
Values close to 1 indicate strong agreement, and values close to -1
indicate strong disagreement. This implements two variants of Kendall's
tau: tau-b (the default) and tau-c (also known as Stuart's tau-c). These
differ only in how they are normalized to lie within the range -1 to 1;
the hypothesis tests (their p-values) are identical. Kendall's original
tau-a is not implemented separately because both tau-b and tau-c reduce
to tau-a in the absence of ties.
Parameters
----------
x, y : array_like
Arrays of rankings, of the same shape. If arrays are not 1-D, they
will be flattened to 1-D.
initial_lexsort : bool, optional, deprecated
This argument is unused.
.. deprecated:: 1.10.0
`kendalltau` keyword argument `initial_lexsort` is deprecated as it
is unused and will be removed in SciPy 1.12.0.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
method : {'auto', 'asymptotic', 'exact'}, optional
Defines which method is used to calculate the p-value [5]_.
The following options are available (default is 'auto'):
* 'auto': selects the appropriate method based on a trade-off
between speed and accuracy
* 'asymptotic': uses a normal approximation valid for large samples
* 'exact': computes the exact p-value, but can only be used if no ties
are present. As the sample size increases, the 'exact' computation
time may grow and the result may lose some precision.
variant : {'b', 'c'}, optional
Defines which variant of Kendall's tau is returned. Default is 'b'.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
The following options are available:
* 'two-sided': the rank correlation is nonzero
* 'less': the rank correlation is negative (less than zero)
* 'greater': the rank correlation is positive (greater than zero)
Returns
-------
res : SignificanceResult
An object containing attributes:
statistic : float
The tau statistic.
pvalue : float
The p-value for a hypothesis test whose null hypothesis is
an absence of association, tau = 0.
See Also
--------
spearmanr : Calculates a Spearman rank-order correlation coefficient.
theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
weightedtau : Computes a weighted version of Kendall's tau.
Notes
-----
The definition of Kendall's tau that is used is [2]_::
tau_b = (P - Q) / sqrt((P + Q + T) * (P + Q + U))
tau_c = 2 (P - Q) / (n**2 * (m - 1) / m)
where P is the number of concordant pairs, Q the number of discordant
pairs, T the number of ties only in `x`, and U the number of ties only in
`y`. If a tie occurs for the same pair in both `x` and `y`, it is not
added to either T or U. n is the total number of samples, and m is the
number of unique values in either `x` or `y`, whichever is smaller.
References
----------
.. [1] Maurice G. Kendall, "A New Measure of Rank Correlation", Biometrika
Vol. 30, No. 1/2, pp. 81-93, 1938.
.. [2] Maurice G. Kendall, "The treatment of ties in ranking problems",
Biometrika Vol. 33, No. 3, pp. 239-251. 1945.
.. [3] Gottfried E. Noether, "Elements of Nonparametric Statistics", John
Wiley & Sons, 1967.
.. [4] Peter M. Fenwick, "A new data structure for cumulative frequency
tables", Software: Practice and Experience, Vol. 24, No. 3,
pp. 327-336, 1994.
.. [5] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
Charles Griffin & Co., 1970.
.. [6] Kershenobich, D., Fierro, F. J., & Rojkind, M. (1970). The
relationship between the free pool of proline and collagen content
in human liver cirrhosis. The Journal of Clinical Investigation,
49(12), 2246-2249.
.. [7] Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric
statistical methods. John Wiley & Sons.
.. [8] B. Phipson and G. K. Smyth. "Permutation P-values Should Never Be
Zero: Calculating Exact P-values When Permutations Are Randomly
Drawn." Statistical Applications in Genetics and Molecular Biology
9.1 (2010).
Examples
--------
Consider the following data from [6]_, which studied the relationship
between free proline (an amino acid) and total collagen (a protein often
found in connective tissue) in unhealthy human livers.
The ``x`` and ``y`` arrays below record measurements of the two compounds.
The observations are paired: each free proline measurement was taken from
the same liver as the total collagen measurement at the same index.
>>> import numpy as np
>>> # total collagen (mg/g dry weight of liver)
>>> x = np.array([7.1, 7.1, 7.2, 8.3, 9.4, 10.5, 11.4])
>>> # free proline (μ mole/g dry weight of liver)
>>> y = np.array([2.8, 2.9, 2.8, 2.6, 3.5, 4.6, 5.0])
These data were analyzed in [7]_ using Spearman's correlation coefficient,
a statistic similar to to Kendall's tau in that it is also sensitive to
ordinal correlation between the samples. Let's perform an analagous study
using Kendall's tau.
>>> from scipy import stats
>>> res = stats.kendalltau(x, y)
>>> res.statistic
0.5499999999999999
The value of this statistic tends to be high (close to 1) for samples with
a strongly positive ordinal correlation, low (close to -1) for samples with
a strongly negative ordinal correlation, and small in magnitude (close to
zero) for samples with weak ordinal correlation.
The test is performed by comparing the observed value of the
statistic against the null distribution: the distribution of statistic
values derived under the null hypothesis that total collagen and free
proline measurements are independent.
For this test, the null distribution for large samples without ties is
approximated as the normal distribution with variance
``(2*(2*n + 5))/(9*n*(n - 1))``, where ``n = len(x)``.
>>> import matplotlib.pyplot as plt
>>> n = len(x) # len(x) == len(y)
>>> var = (2*(2*n + 5))/(9*n*(n - 1))
>>> dist = stats.norm(scale=np.sqrt(var))
>>> z_vals = np.linspace(-1.25, 1.25, 100)
>>> pdf = dist.pdf(z_vals)
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> def plot(ax): # we'll re-use this
... ax.plot(z_vals, pdf)
... ax.set_title("Kendall Tau Test Null Distribution")
... ax.set_xlabel("statistic")
... ax.set_ylabel("probability density")
>>> plot(ax)
>>> plt.show()
The comparison is quantified by the p-value: the proportion of values in
the null distribution as extreme or more extreme than the observed
value of the statistic. In a two-sided test in which the statistic is
positive, elements of the null distribution greater than the transformed
statistic and elements of the null distribution less than the negative of
the observed statistic are both considered "more extreme".
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> plot(ax)
>>> pvalue = dist.cdf(-res.statistic) + dist.sf(res.statistic)
>>> annotation = (f'p-value={pvalue:.4f}\n(shaded area)')
>>> props = dict(facecolor='black', width=1, headwidth=5, headlength=8)
>>> _ = ax.annotate(annotation, (0.65, 0.15), (0.8, 0.3), arrowprops=props)
>>> i = z_vals >= res.statistic
>>> ax.fill_between(z_vals[i], y1=0, y2=pdf[i], color='C0')
>>> i = z_vals <= -res.statistic
>>> ax.fill_between(z_vals[i], y1=0, y2=pdf[i], color='C0')
>>> ax.set_xlim(-1.25, 1.25)
>>> ax.set_ylim(0, 0.5)
>>> plt.show()
>>> res.pvalue
0.09108705741631495 # approximate p-value
Note that there is slight disagreement between the shaded area of the curve
and the p-value returned by `kendalltau`. This is because our data has
ties, and we have neglected a tie correction to the null distribution
variance that `kendalltau` performs. For samples without ties, the shaded
areas of our plot and p-value returned by `kendalltau` would match exactly.
If the p-value is "small" - that is, if there is a low probability of
sampling data from independent distributions that produces such an extreme
value of the statistic - this may be taken as evidence against the null
hypothesis in favor of the alternative: the distribution of total collagen
and free proline are *not* independent. Note that:
- The inverse is not true; that is, the test is not used to provide
evidence for the null hypothesis.
- The threshold for values that will be considered "small" is a choice that
should be made before the data is analyzed [8]_ with consideration of the
risks of both false positives (incorrectly rejecting the null hypothesis)
and false negatives (failure to reject a false null hypothesis).
- Small p-values are not evidence for a *large* effect; rather, they can
only provide evidence for a "significant" effect, meaning that they are
unlikely to have occurred under the null hypothesis.
For samples without ties of moderate size, `kendalltau` can compute the
p-value exactly. However, in the presence of ties, `kendalltau` resorts
to an asymptotic approximation. Nonetheles, we can use a permutation test
to compute the null distribution exactly: Under the null hypothesis that
total collagen and free proline are independent, each of the free proline
measurements were equally likely to have been observed with any of the
total collagen measurements. Therefore, we can form an *exact* null
distribution by calculating the statistic under each possible pairing of
elements between ``x`` and ``y``.
>>> def statistic(x): # explore all possible pairings by permuting `x`
... return stats.kendalltau(x, y).statistic # ignore pvalue
>>> ref = stats.permutation_test((x,), statistic,
... permutation_type='pairings')
>>> fig, ax = plt.subplots(figsize=(8, 5))
>>> plot(ax)
>>> bins = np.linspace(-1.25, 1.25, 25)
>>> ax.hist(ref.null_distribution, bins=bins, density=True)
>>> ax.legend(['aymptotic approximation\n(many observations)',
... 'exact null distribution'])
>>> plot(ax)
>>> plt.show()
>>> ref.pvalue
0.12222222222222222 # exact p-value
Note that there is significant disagreement between the exact p-value
calculated here and the approximation returned by `kendalltau` above. For
small samples with ties, consider performing a permutation test for more
accurate results.
"""
if initial_lexsort is not None:
msg = ("'kendalltau' keyword argument 'initial_lexsort' is deprecated"
" as it is unused and will be removed in SciPy 1.12.0.")
warnings.warn(msg, DeprecationWarning, stacklevel=2)
x = np.asarray(x).ravel()
y = np.asarray(y).ravel()
if x.size != y.size:
raise ValueError("All inputs to `kendalltau` must be of the same "
f"size, found x-size {x.size} and y-size {y.size}")
elif not x.size or not y.size:
# Return NaN if arrays are empty
res = SignificanceResult(np.nan, np.nan)
res.correlation = np.nan
return res
# check both x and y
cnx, npx = _contains_nan(x, nan_policy)
cny, npy = _contains_nan(y, nan_policy)
contains_nan = cnx or cny
if npx == 'omit' or npy == 'omit':
nan_policy = 'omit'
if contains_nan and nan_policy == 'propagate':
res = SignificanceResult(np.nan, np.nan)
res.correlation = np.nan
return res
elif contains_nan and nan_policy == 'omit':
x = ma.masked_invalid(x)
y = ma.masked_invalid(y)
if variant == 'b':
return mstats_basic.kendalltau(x, y, method=method, use_ties=True,
alternative=alternative)
else:
message = ("nan_policy='omit' is currently compatible only with "
"variant='b'.")
raise ValueError(message)
def count_rank_tie(ranks):
cnt = np.bincount(ranks).astype('int64', copy=False)
cnt = cnt[cnt > 1]
# Python ints to avoid overflow down the line
return (int((cnt * (cnt - 1) // 2).sum()),
int((cnt * (cnt - 1.) * (cnt - 2)).sum()),
int((cnt * (cnt - 1.) * (2*cnt + 5)).sum()))
size = x.size
perm = np.argsort(y) # sort on y and convert y to dense ranks
x, y = x[perm], y[perm]
y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp)
# stable sort on x and convert x to dense ranks
perm = np.argsort(x, kind='mergesort')
x, y = x[perm], y[perm]
x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp)
dis = _kendall_dis(x, y) # discordant pairs
obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True]
cnt = np.diff(np.nonzero(obs)[0]).astype('int64', copy=False)
ntie = int((cnt * (cnt - 1) // 2).sum()) # joint ties
xtie, x0, x1 = count_rank_tie(x) # ties in x, stats
ytie, y0, y1 = count_rank_tie(y) # ties in y, stats
tot = (size * (size - 1)) // 2
if xtie == tot or ytie == tot:
res = SignificanceResult(np.nan, np.nan)
res.correlation = np.nan
return res
# Note that tot = con + dis + (xtie - ntie) + (ytie - ntie) + ntie
# = con + dis + xtie + ytie - ntie
con_minus_dis = tot - xtie - ytie + ntie - 2 * dis
if variant == 'b':
tau = con_minus_dis / np.sqrt(tot - xtie) / np.sqrt(tot - ytie)
elif variant == 'c':
minclasses = min(len(set(x)), len(set(y)))
tau = 2*con_minus_dis / (size**2 * (minclasses-1)/minclasses)
else:
raise ValueError(f"Unknown variant of the method chosen: {variant}. "
"variant must be 'b' or 'c'.")
# Limit range to fix computational errors
tau = min(1., max(-1., tau))
# The p-value calculation is the same for all variants since the p-value
# depends only on con_minus_dis.
if method == 'exact' and (xtie != 0 or ytie != 0):
raise ValueError("Ties found, exact method cannot be used.")
if method == 'auto':
if (xtie == 0 and ytie == 0) and (size <= 33 or
min(dis, tot-dis) <= 1):
method = 'exact'
else:
method = 'asymptotic'
if xtie == 0 and ytie == 0 and method == 'exact':
pvalue = mstats_basic._kendall_p_exact(size, tot-dis, alternative)
elif method == 'asymptotic':
# con_minus_dis is approx normally distributed with this variance [3]_
m = size * (size - 1.)
var = ((m * (2*size + 5) - x1 - y1) / 18 +
(2 * xtie * ytie) / m + x0 * y0 / (9 * m * (size - 2)))
z = con_minus_dis / np.sqrt(var)
_, pvalue = _normtest_finish(z, alternative)
else:
raise ValueError(f"Unknown method {method} specified. Use 'auto', "
"'exact' or 'asymptotic'.")
# create result object with alias for backward compatibility
res = SignificanceResult(tau, pvalue)
res.correlation = tau
return res
def weightedtau(x, y, rank=True, weigher=None, additive=True):
r"""Compute a weighted version of Kendall's :math:`\tau`.
The weighted :math:`\tau` is a weighted version of Kendall's
:math:`\tau` in which exchanges of high weight are more influential than
exchanges of low weight. The default parameters compute the additive
hyperbolic version of the index, :math:`\tau_\mathrm h`, which has
been shown to provide the best balance between important and
unimportant elements [1]_.
The weighting is defined by means of a rank array, which assigns a
nonnegative rank to each element (higher importance ranks being
associated with smaller values, e.g., 0 is the highest possible rank),
and a weigher function, which assigns a weight based on the rank to
each element. The weight of an exchange is then the sum or the product
of the weights of the ranks of the exchanged elements. The default
parameters compute :math:`\tau_\mathrm h`: an exchange between
elements with rank :math:`r` and :math:`s` (starting from zero) has
weight :math:`1/(r+1) + 1/(s+1)`.
Specifying a rank array is meaningful only if you have in mind an
external criterion of importance. If, as it usually happens, you do
not have in mind a specific rank, the weighted :math:`\tau` is
defined by averaging the values obtained using the decreasing
lexicographical rank by (`x`, `y`) and by (`y`, `x`). This is the
behavior with default parameters. Note that the convention used
here for ranking (lower values imply higher importance) is opposite
to that used by other SciPy statistical functions.
Parameters
----------
x, y : array_like
Arrays of scores, of the same shape. If arrays are not 1-D, they will
be flattened to 1-D.
rank : array_like of ints or bool, optional
A nonnegative rank assigned to each element. If it is None, the
decreasing lexicographical rank by (`x`, `y`) will be used: elements of
higher rank will be those with larger `x`-values, using `y`-values to
break ties (in particular, swapping `x` and `y` will give a different
result). If it is False, the element indices will be used
directly as ranks. The default is True, in which case this
function returns the average of the values obtained using the
decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`).
weigher : callable, optional
The weigher function. Must map nonnegative integers (zero
representing the most important element) to a nonnegative weight.
The default, None, provides hyperbolic weighing, that is,
rank :math:`r` is mapped to weight :math:`1/(r+1)`.
additive : bool, optional
If True, the weight of an exchange is computed by adding the
weights of the ranks of the exchanged elements; otherwise, the weights
are multiplied. The default is True.
Returns
-------
res: SignificanceResult
An object containing attributes:
statistic : float
The weighted :math:`\tau` correlation index.
pvalue : float
Presently ``np.nan``, as the null distribution of the statistic is
unknown (even in the additive hyperbolic case).
See Also
--------
kendalltau : Calculates Kendall's tau.
spearmanr : Calculates a Spearman rank-order correlation coefficient.
theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
Notes
-----
This function uses an :math:`O(n \log n)`, mergesort-based algorithm
[1]_ that is a weighted extension of Knight's algorithm for Kendall's
:math:`\tau` [2]_. It can compute Shieh's weighted :math:`\tau` [3]_
between rankings without ties (i.e., permutations) by setting
`additive` and `rank` to False, as the definition given in [1]_ is a
generalization of Shieh's.
NaNs are considered the smallest possible score.
.. versionadded:: 0.19.0
References
----------
.. [1] Sebastiano Vigna, "A weighted correlation index for rankings with
ties", Proceedings of the 24th international conference on World
Wide Web, pp. 1166-1176, ACM, 2015.
.. [2] W.R. Knight, "A Computer Method for Calculating Kendall's Tau with
Ungrouped Data", Journal of the American Statistical Association,
Vol. 61, No. 314, Part 1, pp. 436-439, 1966.
.. [3] Grace S. Shieh. "A weighted Kendall's tau statistic", Statistics &
Probability Letters, Vol. 39, No. 1, pp. 17-24, 1998.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> res = stats.weightedtau(x, y)
>>> res.statistic
-0.56694968153682723
>>> res.pvalue
nan
>>> res = stats.weightedtau(x, y, additive=False)
>>> res.statistic
-0.62205716951801038
NaNs are considered the smallest possible score:
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, np.nan]
>>> res = stats.weightedtau(x, y)
>>> res.statistic
-0.56694968153682723
This is exactly Kendall's tau:
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> res = stats.weightedtau(x, y, weigher=lambda x: 1)
>>> res.statistic
-0.47140452079103173
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> stats.weightedtau(x, y, rank=None)
SignificanceResult(statistic=-0.4157652301037516, pvalue=nan)
>>> stats.weightedtau(y, x, rank=None)
SignificanceResult(statistic=-0.7181341329699028, pvalue=nan)
"""
x = np.asarray(x).ravel()
y = np.asarray(y).ravel()
if x.size != y.size:
raise ValueError("All inputs to `weightedtau` must be "
"of the same size, "
"found x-size {} and y-size {}".format(x.size, y.size))
if not x.size:
# Return NaN if arrays are empty
res = SignificanceResult(np.nan, np.nan)
res.correlation = np.nan
return res
# If there are NaNs we apply _toint64()
if np.isnan(np.sum(x)):
x = _toint64(x)
if np.isnan(np.sum(y)):
y = _toint64(y)
# Reduce to ranks unsupported types
if x.dtype != y.dtype:
if x.dtype != np.int64:
x = _toint64(x)
if y.dtype != np.int64:
y = _toint64(y)
else:
if x.dtype not in (np.int32, np.int64, np.float32, np.float64):
x = _toint64(x)
y = _toint64(y)
if rank is True:
tau = (
_weightedrankedtau(x, y, None, weigher, additive) +
_weightedrankedtau(y, x, None, weigher, additive)
) / 2
res = SignificanceResult(tau, np.nan)
res.correlation = tau
return res
if rank is False:
rank = np.arange(x.size, dtype=np.intp)
elif rank is not None:
rank = np.asarray(rank).ravel()
if rank.size != x.size:
raise ValueError(
"All inputs to `weightedtau` must be of the same size, "
"found x-size {} and rank-size {}".format(x.size, rank.size)
)
tau = _weightedrankedtau(x, y, rank, weigher, additive)
res = SignificanceResult(tau, np.nan)
res.correlation = tau
return res
# FROM MGCPY: https://github.com/neurodata/mgcpy
class _ParallelP:
"""Helper function to calculate parallel p-value."""
def __init__(self, x, y, random_states):
self.x = x
self.y = y
self.random_states = random_states
def __call__(self, index):
order = self.random_states[index].permutation(self.y.shape[0])
permy = self.y[order][:, order]
# calculate permuted stats, store in null distribution
perm_stat = _mgc_stat(self.x, permy)[0]
return perm_stat
def _perm_test(x, y, stat, reps=1000, workers=-1, random_state=None):
r"""Helper function that calculates the p-value. See below for uses.
Parameters
----------
x, y : ndarray
`x` and `y` have shapes `(n, p)` and `(n, q)`.
stat : float
The sample test statistic.
reps : int, optional
The number of replications used to estimate the null when using the
permutation test. The default is 1000 replications.
workers : int or map-like callable, optional
If `workers` is an int the population is subdivided into `workers`
sections and evaluated in parallel (uses
`multiprocessing.Pool <multiprocessing>`). Supply `-1` to use all cores
available to the Process. Alternatively supply a map-like callable,
such as `multiprocessing.Pool.map` for evaluating the population in
parallel. This evaluation is carried out as `workers(func, iterable)`.
Requires that `func` be pickleable.
random_state : {None, int, `numpy.random.Generator`,
`numpy.random.RandomState`}, optional
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
singleton is used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
If `seed` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
Returns
-------
pvalue : float
The sample test p-value.
null_dist : list
The approximated null distribution.
"""
# generate seeds for each rep (change to new parallel random number
# capabilities in numpy >= 1.17+)
random_state = check_random_state(random_state)
random_states = [np.random.RandomState(rng_integers(random_state, 1 << 32,
size=4, dtype=np.uint32)) for _ in range(reps)]
# parallelizes with specified workers over number of reps and set seeds
parallelp = _ParallelP(x=x, y=y, random_states=random_states)
with MapWrapper(workers) as mapwrapper:
null_dist = np.array(list(mapwrapper(parallelp, range(reps))))
# calculate p-value and significant permutation map through list
pvalue = (1 + (null_dist >= stat).sum()) / (1 + reps)
return pvalue, null_dist
def _euclidean_dist(x):
return cdist(x, x)
MGCResult = _make_tuple_bunch('MGCResult',
['statistic', 'pvalue', 'mgc_dict'], [])
def multiscale_graphcorr(x, y, compute_distance=_euclidean_dist, reps=1000,
workers=1, is_twosamp=False, random_state=None):
r"""Computes the Multiscale Graph Correlation (MGC) test statistic.
Specifically, for each point, MGC finds the :math:`k`-nearest neighbors for
one property (e.g. cloud density), and the :math:`l`-nearest neighbors for
the other property (e.g. grass wetness) [1]_. This pair :math:`(k, l)` is
called the "scale". A priori, however, it is not know which scales will be
most informative. So, MGC computes all distance pairs, and then efficiently
computes the distance correlations for all scales. The local correlations
illustrate which scales are relatively informative about the relationship.
The key, therefore, to successfully discover and decipher relationships
between disparate data modalities is to adaptively determine which scales
are the most informative, and the geometric implication for the most
informative scales. Doing so not only provides an estimate of whether the
modalities are related, but also provides insight into how the
determination was made. This is especially important in high-dimensional
data, where simple visualizations do not reveal relationships to the
unaided human eye. Characterizations of this implementation in particular
have been derived from and benchmarked within in [2]_.
Parameters
----------
x, y : ndarray
If ``x`` and ``y`` have shapes ``(n, p)`` and ``(n, q)`` where `n` is
the number of samples and `p` and `q` are the number of dimensions,
then the MGC independence test will be run. Alternatively, ``x`` and
``y`` can have shapes ``(n, n)`` if they are distance or similarity
matrices, and ``compute_distance`` must be sent to ``None``. If ``x``
and ``y`` have shapes ``(n, p)`` and ``(m, p)``, an unpaired
two-sample MGC test will be run.
compute_distance : callable, optional
A function that computes the distance or similarity among the samples
within each data matrix. Set to ``None`` if ``x`` and ``y`` are
already distance matrices. The default uses the euclidean norm metric.
If you are calling a custom function, either create the distance
matrix before-hand or create a function of the form
``compute_distance(x)`` where `x` is the data matrix for which
pairwise distances are calculated.
reps : int, optional
The number of replications used to estimate the null when using the
permutation test. The default is ``1000``.
workers : int or map-like callable, optional
If ``workers`` is an int the population is subdivided into ``workers``
sections and evaluated in parallel (uses ``multiprocessing.Pool
<multiprocessing>``). Supply ``-1`` to use all cores available to the
Process. Alternatively supply a map-like callable, such as
``multiprocessing.Pool.map`` for evaluating the p-value in parallel.
This evaluation is carried out as ``workers(func, iterable)``.
Requires that `func` be pickleable. The default is ``1``.
is_twosamp : bool, optional
If `True`, a two sample test will be run. If ``x`` and ``y`` have
shapes ``(n, p)`` and ``(m, p)``, this optional will be overridden and
set to ``True``. Set to ``True`` if ``x`` and ``y`` both have shapes
``(n, p)`` and a two sample test is desired. The default is ``False``.
Note that this will not run if inputs are distance matrices.
random_state : {None, int, `numpy.random.Generator`,
`numpy.random.RandomState`}, optional
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
singleton is used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
If `seed` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
Returns
-------
res : MGCResult
An object containing attributes:
statistic : float
The sample MGC test statistic within `[-1, 1]`.
pvalue : float
The p-value obtained via permutation.
mgc_dict : dict
Contains additional useful results:
- mgc_map : ndarray
A 2D representation of the latent geometry of the
relationship.
- opt_scale : (int, int)
The estimated optimal scale as a `(x, y)` pair.
- null_dist : list
The null distribution derived from the permuted matrices.
See Also
--------
pearsonr : Pearson correlation coefficient and p-value for testing
non-correlation.
kendalltau : Calculates Kendall's tau.
spearmanr : Calculates a Spearman rank-order correlation coefficient.
Notes
-----
A description of the process of MGC and applications on neuroscience data
can be found in [1]_. It is performed using the following steps:
#. Two distance matrices :math:`D^X` and :math:`D^Y` are computed and
modified to be mean zero columnwise. This results in two
:math:`n \times n` distance matrices :math:`A` and :math:`B` (the
centering and unbiased modification) [3]_.
#. For all values :math:`k` and :math:`l` from :math:`1, ..., n`,
* The :math:`k`-nearest neighbor and :math:`l`-nearest neighbor graphs
are calculated for each property. Here, :math:`G_k (i, j)` indicates
the :math:`k`-smallest values of the :math:`i`-th row of :math:`A`
and :math:`H_l (i, j)` indicates the :math:`l` smallested values of
the :math:`i`-th row of :math:`B`
* Let :math:`\circ` denotes the entry-wise matrix product, then local
correlations are summed and normalized using the following statistic:
.. math::
c^{kl} = \frac{\sum_{ij} A G_k B H_l}
{\sqrt{\sum_{ij} A^2 G_k \times \sum_{ij} B^2 H_l}}
#. The MGC test statistic is the smoothed optimal local correlation of
:math:`\{ c^{kl} \}`. Denote the smoothing operation as :math:`R(\cdot)`
(which essentially set all isolated large correlations) as 0 and
connected large correlations the same as before, see [3]_.) MGC is,
.. math::
MGC_n (x, y) = \max_{(k, l)} R \left(c^{kl} \left( x_n, y_n \right)
\right)
The test statistic returns a value between :math:`(-1, 1)` since it is
normalized.
The p-value returned is calculated using a permutation test. This process
is completed by first randomly permuting :math:`y` to estimate the null
distribution and then calculating the probability of observing a test
statistic, under the null, at least as extreme as the observed test
statistic.
MGC requires at least 5 samples to run with reliable results. It can also
handle high-dimensional data sets.
In addition, by manipulating the input data matrices, the two-sample
testing problem can be reduced to the independence testing problem [4]_.
Given sample data :math:`U` and :math:`V` of sizes :math:`p \times n`
:math:`p \times m`, data matrix :math:`X` and :math:`Y` can be created as
follows:
.. math::
X = [U | V] \in \mathcal{R}^{p \times (n + m)}
Y = [0_{1 \times n} | 1_{1 \times m}] \in \mathcal{R}^{(n + m)}
Then, the MGC statistic can be calculated as normal. This methodology can
be extended to similar tests such as distance correlation [4]_.
.. versionadded:: 1.4.0
References
----------
.. [1] Vogelstein, J. T., Bridgeford, E. W., Wang, Q., Priebe, C. E.,
Maggioni, M., & Shen, C. (2019). Discovering and deciphering
relationships across disparate data modalities. ELife.
.. [2] Panda, S., Palaniappan, S., Xiong, J., Swaminathan, A.,
Ramachandran, S., Bridgeford, E. W., ... Vogelstein, J. T. (2019).
mgcpy: A Comprehensive High Dimensional Independence Testing Python
Package. :arXiv:`1907.02088`
.. [3] Shen, C., Priebe, C.E., & Vogelstein, J. T. (2019). From distance
correlation to multiscale graph correlation. Journal of the American
Statistical Association.
.. [4] Shen, C. & Vogelstein, J. T. (2018). The Exact Equivalence of
Distance and Kernel Methods for Hypothesis Testing.
:arXiv:`1806.05514`
Examples
--------
>>> import numpy as np
>>> from scipy.stats import multiscale_graphcorr
>>> x = np.arange(100)
>>> y = x
>>> res = multiscale_graphcorr(x, y)
>>> res.statistic, res.pvalue
(1.0, 0.001)
To run an unpaired two-sample test,
>>> x = np.arange(100)
>>> y = np.arange(79)
>>> res = multiscale_graphcorr(x, y)
>>> res.statistic, res.pvalue # doctest: +SKIP
(0.033258146255703246, 0.023)
or, if shape of the inputs are the same,
>>> x = np.arange(100)
>>> y = x
>>> res = multiscale_graphcorr(x, y, is_twosamp=True)
>>> res.statistic, res.pvalue # doctest: +SKIP
(-0.008021809890200488, 1.0)
"""
if not isinstance(x, np.ndarray) or not isinstance(y, np.ndarray):
raise ValueError("x and y must be ndarrays")
# convert arrays of type (n,) to (n, 1)
if x.ndim == 1:
x = x[:, np.newaxis]
elif x.ndim != 2:
raise ValueError("Expected a 2-D array `x`, found shape "
"{}".format(x.shape))
if y.ndim == 1:
y = y[:, np.newaxis]
elif y.ndim != 2:
raise ValueError("Expected a 2-D array `y`, found shape "
"{}".format(y.shape))
nx, px = x.shape
ny, py = y.shape
# check for NaNs
_contains_nan(x, nan_policy='raise')
_contains_nan(y, nan_policy='raise')
# check for positive or negative infinity and raise error
if np.sum(np.isinf(x)) > 0 or np.sum(np.isinf(y)) > 0:
raise ValueError("Inputs contain infinities")
if nx != ny:
if px == py:
# reshape x and y for two sample testing
is_twosamp = True
else:
raise ValueError("Shape mismatch, x and y must have shape [n, p] "
"and [n, q] or have shape [n, p] and [m, p].")
if nx < 5 or ny < 5:
raise ValueError("MGC requires at least 5 samples to give reasonable "
"results.")
# convert x and y to float
x = x.astype(np.float64)
y = y.astype(np.float64)
# check if compute_distance_matrix if a callable()
if not callable(compute_distance) and compute_distance is not None:
raise ValueError("Compute_distance must be a function.")
# check if number of reps exists, integer, or > 0 (if under 1000 raises
# warning)
if not isinstance(reps, int) or reps < 0:
raise ValueError("Number of reps must be an integer greater than 0.")
elif reps < 1000:
msg = ("The number of replications is low (under 1000), and p-value "
"calculations may be unreliable. Use the p-value result, with "
"caution!")
warnings.warn(msg, RuntimeWarning)
if is_twosamp:
if compute_distance is None:
raise ValueError("Cannot run if inputs are distance matrices")
x, y = _two_sample_transform(x, y)
if compute_distance is not None:
# compute distance matrices for x and y
x = compute_distance(x)
y = compute_distance(y)
# calculate MGC stat
stat, stat_dict = _mgc_stat(x, y)
stat_mgc_map = stat_dict["stat_mgc_map"]
opt_scale = stat_dict["opt_scale"]
# calculate permutation MGC p-value
pvalue, null_dist = _perm_test(x, y, stat, reps=reps, workers=workers,
random_state=random_state)
# save all stats (other than stat/p-value) in dictionary
mgc_dict = {"mgc_map": stat_mgc_map,
"opt_scale": opt_scale,
"null_dist": null_dist}
# create result object with alias for backward compatibility
res = MGCResult(stat, pvalue, mgc_dict)
res.stat = stat
return res
def _mgc_stat(distx, disty):
r"""Helper function that calculates the MGC stat. See above for use.
Parameters
----------
distx, disty : ndarray
`distx` and `disty` have shapes `(n, p)` and `(n, q)` or
`(n, n)` and `(n, n)`
if distance matrices.
Returns
-------
stat : float
The sample MGC test statistic within `[-1, 1]`.
stat_dict : dict
Contains additional useful additional returns containing the following
keys:
- stat_mgc_map : ndarray
MGC-map of the statistics.
- opt_scale : (float, float)
The estimated optimal scale as a `(x, y)` pair.
"""
# calculate MGC map and optimal scale
stat_mgc_map = _local_correlations(distx, disty, global_corr='mgc')
n, m = stat_mgc_map.shape
if m == 1 or n == 1:
# the global scale at is the statistic calculated at maximial nearest
# neighbors. There is not enough local scale to search over, so
# default to global scale
stat = stat_mgc_map[m - 1][n - 1]
opt_scale = m * n
else:
samp_size = len(distx) - 1
# threshold to find connected region of significant local correlations
sig_connect = _threshold_mgc_map(stat_mgc_map, samp_size)
# maximum within the significant region
stat, opt_scale = _smooth_mgc_map(sig_connect, stat_mgc_map)
stat_dict = {"stat_mgc_map": stat_mgc_map,
"opt_scale": opt_scale}
return stat, stat_dict
def _threshold_mgc_map(stat_mgc_map, samp_size):
r"""
Finds a connected region of significance in the MGC-map by thresholding.
Parameters
----------
stat_mgc_map : ndarray
All local correlations within `[-1,1]`.
samp_size : int
The sample size of original data.
Returns
-------
sig_connect : ndarray
A binary matrix with 1's indicating the significant region.
"""
m, n = stat_mgc_map.shape
# 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
# with varying levels of performance. Threshold is based on a beta
# approximation.
per_sig = 1 - (0.02 / samp_size) # Percentile to consider as significant
threshold = samp_size * (samp_size - 3)/4 - 1/2 # Beta approximation
threshold = distributions.beta.ppf(per_sig, threshold, threshold) * 2 - 1
# the global scale at is the statistic calculated at maximial nearest
# neighbors. Threshold is the maximum on the global and local scales
threshold = max(threshold, stat_mgc_map[m - 1][n - 1])
# find the largest connected component of significant correlations
sig_connect = stat_mgc_map > threshold
if np.sum(sig_connect) > 0:
sig_connect, _ = _measurements.label(sig_connect)
_, label_counts = np.unique(sig_connect, return_counts=True)
# skip the first element in label_counts, as it is count(zeros)
max_label = np.argmax(label_counts[1:]) + 1
sig_connect = sig_connect == max_label
else:
sig_connect = np.array([[False]])
return sig_connect
def _smooth_mgc_map(sig_connect, stat_mgc_map):
"""Finds the smoothed maximal within the significant region R.
If area of R is too small it returns the last local correlation. Otherwise,
returns the maximum within significant_connected_region.
Parameters
----------
sig_connect : ndarray
A binary matrix with 1's indicating the significant region.
stat_mgc_map : ndarray
All local correlations within `[-1, 1]`.
Returns
-------
stat : float
The sample MGC statistic within `[-1, 1]`.
opt_scale: (float, float)
The estimated optimal scale as an `(x, y)` pair.
"""
m, n = stat_mgc_map.shape
# the global scale at is the statistic calculated at maximial nearest
# neighbors. By default, statistic and optimal scale are global.
stat = stat_mgc_map[m - 1][n - 1]
opt_scale = [m, n]
if np.linalg.norm(sig_connect) != 0:
# proceed only when the connected region's area is sufficiently large
# 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
# with varying levels of performance
if np.sum(sig_connect) >= np.ceil(0.02 * max(m, n)) * min(m, n):
max_corr = max(stat_mgc_map[sig_connect])
# find all scales within significant_connected_region that maximize
# the local correlation
max_corr_index = np.where((stat_mgc_map >= max_corr) & sig_connect)
if max_corr >= stat:
stat = max_corr
k, l = max_corr_index
one_d_indices = k * n + l # 2D to 1D indexing
k = np.max(one_d_indices) // n
l = np.max(one_d_indices) % n
opt_scale = [k+1, l+1] # adding 1s to match R indexing
return stat, opt_scale
def _two_sample_transform(u, v):
"""Helper function that concatenates x and y for two sample MGC stat.
See above for use.
Parameters
----------
u, v : ndarray
`u` and `v` have shapes `(n, p)` and `(m, p)`.
Returns
-------
x : ndarray
Concatenate `u` and `v` along the `axis = 0`. `x` thus has shape
`(2n, p)`.
y : ndarray
Label matrix for `x` where 0 refers to samples that comes from `u` and
1 refers to samples that come from `v`. `y` thus has shape `(2n, 1)`.
"""
nx = u.shape[0]
ny = v.shape[0]
x = np.concatenate([u, v], axis=0)
y = np.concatenate([np.zeros(nx), np.ones(ny)], axis=0).reshape(-1, 1)
return x, y
#####################################
# INFERENTIAL STATISTICS #
#####################################
TtestResultBase = _make_tuple_bunch('TtestResultBase',
['statistic', 'pvalue'], ['df'])
class TtestResult(TtestResultBase):
"""
Result of a t-test.
See the documentation of the particular t-test function for more
information about the definition of the statistic and meaning of
the confidence interval.
Attributes
----------
statistic : float or array
The t-statistic of the sample.
pvalue : float or array
The p-value associated with the given alternative.
df : float or array
The number of degrees of freedom used in calculation of the
t-statistic; this is one less than the size of the sample
(``a.shape[axis]-1`` if there are no masked elements or omitted NaNs).
Methods
-------
confidence_interval
Computes a confidence interval around the population statistic
for the given confidence level.
The confidence interval is returned in a ``namedtuple`` with
fields `low` and `high`.
"""
def __init__(self, statistic, pvalue, df, # public
alternative, standard_error, estimate): # private
super().__init__(statistic, pvalue, df=df)
self._alternative = alternative
self._standard_error = standard_error # denominator of t-statistic
self._estimate = estimate # point estimate of sample mean
def confidence_interval(self, confidence_level=0.95):
"""
Parameters
----------
confidence_level : float
The confidence level for the calculation of the population mean
confidence interval. Default is 0.95.
Returns
-------
ci : namedtuple
The confidence interval is returned in a ``namedtuple`` with
fields `low` and `high`.
"""
low, high = _t_confidence_interval(self.df, self.statistic,
confidence_level, self._alternative)
low = low * self._standard_error + self._estimate
high = high * self._standard_error + self._estimate
return ConfidenceInterval(low=low, high=high)
def pack_TtestResult(statistic, pvalue, df, alternative, standard_error,
estimate):
# this could be any number of dimensions (including 0d), but there is
# at most one unique non-NaN value
alternative = np.atleast_1d(alternative) # can't index 0D object
alternative = alternative[np.isfinite(alternative)]
alternative = alternative[0] if alternative.size else np.nan
return TtestResult(statistic, pvalue, df=df, alternative=alternative,
standard_error=standard_error, estimate=estimate)
def unpack_TtestResult(res):
return (res.statistic, res.pvalue, res.df, res._alternative,
res._standard_error, res._estimate)
@_axis_nan_policy_factory(pack_TtestResult, default_axis=0, n_samples=2,
result_to_tuple=unpack_TtestResult, n_outputs=6)
def ttest_1samp(a, popmean, axis=0, nan_policy='propagate',
alternative="two-sided"):
"""Calculate the T-test for the mean of ONE group of scores.
This is a test for the null hypothesis that the expected value
(mean) of a sample of independent observations `a` is equal to the given
population mean, `popmean`.
Parameters
----------
a : array_like
Sample observation.
popmean : float or array_like
Expected value in null hypothesis. If array_like, then its length along
`axis` must equal 1, and it must otherwise be broadcastable with `a`.
axis : int or None, optional
Axis along which to compute test; default is 0. If None, compute over
the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided': the mean of the underlying distribution of the sample
is different than the given population mean (`popmean`)
* 'less': the mean of the underlying distribution of the sample is
less than the given population mean (`popmean`)
* 'greater': the mean of the underlying distribution of the sample is
greater than the given population mean (`popmean`)
Returns
-------
result : `~scipy.stats._result_classes.TtestResult`
An object with the following attributes:
statistic : float or array
The t-statistic.
pvalue : float or array
The p-value associated with the given alternative.
df : float or array
The number of degrees of freedom used in calculation of the
t-statistic; this is one less than the size of the sample
(``a.shape[axis]``).
.. versionadded:: 1.10.0
The object also has the following method:
confidence_interval(confidence_level=0.95)
Computes a confidence interval around the population
mean for the given confidence level.
The confidence interval is returned in a ``namedtuple`` with
fields `low` and `high`.
.. versionadded:: 1.10.0
Notes
-----
The statistic is calculated as ``(np.mean(a) - popmean)/se``, where
``se`` is the standard error. Therefore, the statistic will be positive
when the sample mean is greater than the population mean and negative when
the sample mean is less than the population mean.
Examples
--------
Suppose we wish to test the null hypothesis that the mean of a population
is equal to 0.5. We choose a confidence level of 99%; that is, we will
reject the null hypothesis in favor of the alternative if the p-value is
less than 0.01.
When testing random variates from the standard uniform distribution, which
has a mean of 0.5, we expect the data to be consistent with the null
hypothesis most of the time.
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> rvs = stats.uniform.rvs(size=50, random_state=rng)
>>> stats.ttest_1samp(rvs, popmean=0.5)
TtestResult(statistic=2.456308468440, pvalue=0.017628209047638, df=49)
As expected, the p-value of 0.017 is not below our threshold of 0.01, so
we cannot reject the null hypothesis.
When testing data from the standard *normal* distribution, which has a mean
of 0, we would expect the null hypothesis to be rejected.
>>> rvs = stats.norm.rvs(size=50, random_state=rng)
>>> stats.ttest_1samp(rvs, popmean=0.5)
TtestResult(statistic=-7.433605518875, pvalue=1.416760157221e-09, df=49)
Indeed, the p-value is lower than our threshold of 0.01, so we reject the
null hypothesis in favor of the default "two-sided" alternative: the mean
of the population is *not* equal to 0.5.
However, suppose we were to test the null hypothesis against the
one-sided alternative that the mean of the population is *greater* than
0.5. Since the mean of the standard normal is less than 0.5, we would not
expect the null hypothesis to be rejected.
>>> stats.ttest_1samp(rvs, popmean=0.5, alternative='greater')
TtestResult(statistic=-7.433605518875, pvalue=0.99999999929, df=49)
Unsurprisingly, with a p-value greater than our threshold, we would not
reject the null hypothesis.
Note that when working with a confidence level of 99%, a true null
hypothesis will be rejected approximately 1% of the time.
>>> rvs = stats.uniform.rvs(size=(100, 50), random_state=rng)
>>> res = stats.ttest_1samp(rvs, popmean=0.5, axis=1)
>>> np.sum(res.pvalue < 0.01)
1
Indeed, even though all 100 samples above were drawn from the standard
uniform distribution, which *does* have a population mean of 0.5, we would
mistakenly reject the null hypothesis for one of them.
`ttest_1samp` can also compute a confidence interval around the population
mean.
>>> rvs = stats.norm.rvs(size=50, random_state=rng)
>>> res = stats.ttest_1samp(rvs, popmean=0)
>>> ci = res.confidence_interval(confidence_level=0.95)
>>> ci
ConfidenceInterval(low=-0.3193887540880017, high=0.2898583388980972)
The bounds of the 95% confidence interval are the
minimum and maximum values of the parameter `popmean` for which the
p-value of the test would be 0.05.
>>> res = stats.ttest_1samp(rvs, popmean=ci.low)
>>> np.testing.assert_allclose(res.pvalue, 0.05)
>>> res = stats.ttest_1samp(rvs, popmean=ci.high)
>>> np.testing.assert_allclose(res.pvalue, 0.05)
Under certain assumptions about the population from which a sample
is drawn, the confidence interval with confidence level 95% is expected
to contain the true population mean in 95% of sample replications.
>>> rvs = stats.norm.rvs(size=(50, 1000), loc=1, random_state=rng)
>>> res = stats.ttest_1samp(rvs, popmean=0)
>>> ci = res.confidence_interval()
>>> contains_pop_mean = (ci.low < 1) & (ci.high > 1)
>>> contains_pop_mean.sum()
953
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
df = n - 1
mean = np.mean(a, axis)
try:
popmean = np.squeeze(popmean, axis=axis)
except ValueError as e:
raise ValueError("`popmean.shape[axis]` must equal 1.") from e
d = mean - popmean
v = _var(a, axis, ddof=1)
denom = np.sqrt(v / n)
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(d, denom)
t, prob = _ttest_finish(df, t, alternative)
# when nan_policy='omit', `df` can be different for different axis-slices
df = np.broadcast_to(df, t.shape)[()]
# _axis_nan_policy decorator doesn't play well with strings
alternative_num = {"less": -1, "two-sided": 0, "greater": 1}[alternative]
return TtestResult(t, prob, df=df, alternative=alternative_num,
standard_error=denom, estimate=mean)
def _t_confidence_interval(df, t, confidence_level, alternative):
# Input validation on `alternative` is already done
# We just need IV on confidence_level
if confidence_level < 0 or confidence_level > 1:
message = "`confidence_level` must be a number between 0 and 1."
raise ValueError(message)
if alternative < 0: # 'less'
p = confidence_level
low, high = np.broadcast_arrays(-np.inf, special.stdtrit(df, p))
elif alternative > 0: # 'greater'
p = 1 - confidence_level
low, high = np.broadcast_arrays(special.stdtrit(df, p), np.inf)
elif alternative == 0: # 'two-sided'
tail_probability = (1 - confidence_level)/2
p = tail_probability, 1-tail_probability
# axis of p must be the zeroth and orthogonal to all the rest
p = np.reshape(p, [2] + [1]*np.asarray(df).ndim)
low, high = special.stdtrit(df, p)
else: # alternative is NaN when input is empty (see _axis_nan_policy)
p, nans = np.broadcast_arrays(t, np.nan)
low, high = nans, nans
return low[()], high[()]
def _ttest_finish(df, t, alternative):
"""Common code between all 3 t-test functions."""
# We use ``stdtr`` directly here as it handles the case when ``nan``
# values are present in the data and masked arrays are passed
# while ``t.cdf`` emits runtime warnings. This way ``_ttest_finish``
# can be shared between the ``stats`` and ``mstats`` versions.
if alternative == 'less':
pval = special.stdtr(df, t)
elif alternative == 'greater':
pval = special.stdtr(df, -t)
elif alternative == 'two-sided':
pval = special.stdtr(df, -np.abs(t))*2
else:
raise ValueError("alternative must be "
"'less', 'greater' or 'two-sided'")
if t.ndim == 0:
t = t[()]
if pval.ndim == 0:
pval = pval[()]
return t, pval
def _ttest_ind_from_stats(mean1, mean2, denom, df, alternative):
d = mean1 - mean2
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(d, denom)
t, prob = _ttest_finish(df, t, alternative)
return (t, prob)
def _unequal_var_ttest_denom(v1, n1, v2, n2):
vn1 = v1 / n1
vn2 = v2 / n2
with np.errstate(divide='ignore', invalid='ignore'):
df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))
# If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0).
# Hence it doesn't matter what df is as long as it's not NaN.
df = np.where(np.isnan(df), 1, df)
denom = np.sqrt(vn1 + vn2)
return df, denom
def _equal_var_ttest_denom(v1, n1, v2, n2):
# If there is a single observation in one sample, this formula for pooled
# variance breaks down because the variance of that sample is undefined.
# The pooled variance is still defined, though, because the (n-1) in the
# numerator should cancel with the (n-1) in the denominator, leaving only
# the sum of squared differences from the mean: zero.
v1 = np.where(n1 == 1, 0, v1)[()]
v2 = np.where(n2 == 1, 0, v2)[()]
df = n1 + n2 - 2.0
svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df
denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2))
return df, denom
Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))
def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2,
equal_var=True, alternative="two-sided"):
r"""
T-test for means of two independent samples from descriptive statistics.
This is a test for the null hypothesis that two independent
samples have identical average (expected) values.
Parameters
----------
mean1 : array_like
The mean(s) of sample 1.
std1 : array_like
The corrected sample standard deviation of sample 1 (i.e. ``ddof=1``).
nobs1 : array_like
The number(s) of observations of sample 1.
mean2 : array_like
The mean(s) of sample 2.
std2 : array_like
The corrected sample standard deviation of sample 2 (i.e. ``ddof=1``).
nobs2 : array_like
The number(s) of observations of sample 2.
equal_var : bool, optional
If True (default), perform a standard independent 2 sample test
that assumes equal population variances [1]_.
If False, perform Welch's t-test, which does not assume equal
population variance [2]_.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided': the means of the distributions are unequal.
* 'less': the mean of the first distribution is less than the
mean of the second distribution.
* 'greater': the mean of the first distribution is greater than the
mean of the second distribution.
.. versionadded:: 1.6.0
Returns
-------
statistic : float or array
The calculated t-statistics.
pvalue : float or array
The two-tailed p-value.
See Also
--------
scipy.stats.ttest_ind
Notes
-----
The statistic is calculated as ``(mean1 - mean2)/se``, where ``se`` is the
standard error. Therefore, the statistic will be positive when `mean1` is
greater than `mean2` and negative when `mean1` is less than `mean2`.
This method does not check whether any of the elements of `std1` or `std2`
are negative. If any elements of the `std1` or `std2` parameters are
negative in a call to this method, this method will return the same result
as if it were passed ``numpy.abs(std1)`` and ``numpy.abs(std2)``,
respectively, instead; no exceptions or warnings will be emitted.
References
----------
.. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
.. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test
Examples
--------
Suppose we have the summary data for two samples, as follows (with the
Sample Variance being the corrected sample variance)::
Sample Sample
Size Mean Variance
Sample 1 13 15.0 87.5
Sample 2 11 12.0 39.0
Apply the t-test to this data (with the assumption that the population
variances are equal):
>>> import numpy as np
>>> from scipy.stats import ttest_ind_from_stats
>>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13,
... mean2=12.0, std2=np.sqrt(39.0), nobs2=11)
Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487)
For comparison, here is the data from which those summary statistics
were taken. With this data, we can compute the same result using
`scipy.stats.ttest_ind`:
>>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26])
>>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21])
>>> from scipy.stats import ttest_ind
>>> ttest_ind(a, b)
Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486)
Suppose we instead have binary data and would like to apply a t-test to
compare the proportion of 1s in two independent groups::
Number of Sample Sample
Size ones Mean Variance
Sample 1 150 30 0.2 0.161073
Sample 2 200 45 0.225 0.175251
The sample mean :math:`\hat{p}` is the proportion of ones in the sample
and the variance for a binary observation is estimated by
:math:`\hat{p}(1-\hat{p})`.
>>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.161073), nobs1=150,
... mean2=0.225, std2=np.sqrt(0.175251), nobs2=200)
Ttest_indResult(statistic=-0.5627187905196761, pvalue=0.5739887114209541)
For comparison, we could compute the t statistic and p-value using
arrays of 0s and 1s and `scipy.stat.ttest_ind`, as above.
>>> group1 = np.array([1]*30 + [0]*(150-30))
>>> group2 = np.array([1]*45 + [0]*(200-45))
>>> ttest_ind(group1, group2)
Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258)
"""
mean1 = np.asarray(mean1)
std1 = np.asarray(std1)
mean2 = np.asarray(mean2)
std2 = np.asarray(std2)
if equal_var:
df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2)
else:
df, denom = _unequal_var_ttest_denom(std1**2, nobs1,
std2**2, nobs2)
res = _ttest_ind_from_stats(mean1, mean2, denom, df, alternative)
return Ttest_indResult(*res)
@_axis_nan_policy_factory(pack_TtestResult, default_axis=0, n_samples=2,
result_to_tuple=unpack_TtestResult, n_outputs=6)
def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate',
permutations=None, random_state=None, alternative="two-sided",
trim=0):
"""
Calculate the T-test for the means of *two independent* samples of scores.
This is a test for the null hypothesis that 2 independent samples
have identical average (expected) values. This test assumes that the
populations have identical variances by default.
Parameters
----------
a, b : array_like
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
arrays, `a`, and `b`.
equal_var : bool, optional
If True (default), perform a standard independent 2 sample test
that assumes equal population variances [1]_.
If False, perform Welch's t-test, which does not assume equal
population variance [2]_.
.. versionadded:: 0.11.0
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
The 'omit' option is not currently available for permutation tests or
one-sided asympyotic tests.
permutations : non-negative int, np.inf, or None (default), optional
If 0 or None (default), use the t-distribution to calculate p-values.
Otherwise, `permutations` is the number of random permutations that
will be used to estimate p-values using a permutation test. If
`permutations` equals or exceeds the number of distinct partitions of
the pooled data, an exact test is performed instead (i.e. each
distinct partition is used exactly once). See Notes for details.
.. versionadded:: 1.7.0
random_state : {None, int, `numpy.random.Generator`,
`numpy.random.RandomState`}, optional
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
singleton is used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
If `seed` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
Pseudorandom number generator state used to generate permutations
(used only when `permutations` is not None).
.. versionadded:: 1.7.0
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided': the means of the distributions underlying the samples
are unequal.
* 'less': the mean of the distribution underlying the first sample
is less than the mean of the distribution underlying the second
sample.
* 'greater': the mean of the distribution underlying the first
sample is greater than the mean of the distribution underlying
the second sample.
.. versionadded:: 1.6.0
trim : float, optional
If nonzero, performs a trimmed (Yuen's) t-test.
Defines the fraction of elements to be trimmed from each end of the
input samples. If 0 (default), no elements will be trimmed from either
side. The number of trimmed elements from each tail is the floor of the
trim times the number of elements. Valid range is [0, .5).
.. versionadded:: 1.7
Returns
-------
result : `~scipy.stats._result_classes.TtestResult`
An object with the following attributes:
statistic : float or ndarray
The t-statistic.
pvalue : float or ndarray
The p-value associated with the given alternative.
df : float or ndarray
The number of degrees of freedom used in calculation of the
t-statistic. This is always NaN for a permutation t-test.
.. versionadded:: 1.11.0
The object also has the following method:
confidence_interval(confidence_level=0.95)
Computes a confidence interval around the difference in
population means for the given confidence level.
The confidence interval is returned in a ``namedtuple`` with
fields ``low`` and ``high``.
When a permutation t-test is performed, the confidence interval
is not computed, and fields ``low`` and ``high`` contain NaN.
.. versionadded:: 1.11.0
Notes
-----
Suppose we observe two independent samples, e.g. flower petal lengths, and
we are considering whether the two samples were drawn from the same
population (e.g. the same species of flower or two species with similar
petal characteristics) or two different populations.
The t-test quantifies the difference between the arithmetic means
of the two samples. The p-value quantifies the probability of observing
as or more extreme values assuming the null hypothesis, that the
samples are drawn from populations with the same population means, is true.
A p-value larger than a chosen threshold (e.g. 5% or 1%) indicates that
our observation is not so unlikely to have occurred by chance. Therefore,
we do not reject the null hypothesis of equal population means.
If the p-value is smaller than our threshold, then we have evidence
against the null hypothesis of equal population means.
By default, the p-value is determined by comparing the t-statistic of the
observed data against a theoretical t-distribution.
When ``1 < permutations < binom(n, k)``, where
* ``k`` is the number of observations in `a`,
* ``n`` is the total number of observations in `a` and `b`, and
* ``binom(n, k)`` is the binomial coefficient (``n`` choose ``k``),
the data are pooled (concatenated), randomly assigned to either group `a`
or `b`, and the t-statistic is calculated. This process is performed
repeatedly (`permutation` times), generating a distribution of the
t-statistic under the null hypothesis, and the t-statistic of the observed
data is compared to this distribution to determine the p-value.
Specifically, the p-value reported is the "achieved significance level"
(ASL) as defined in 4.4 of [3]_. Note that there are other ways of
estimating p-values using randomized permutation tests; for other
options, see the more general `permutation_test`.
When ``permutations >= binom(n, k)``, an exact test is performed: the data
are partitioned between the groups in each distinct way exactly once.
The permutation test can be computationally expensive and not necessarily
more accurate than the analytical test, but it does not make strong
assumptions about the shape of the underlying distribution.
Use of trimming is commonly referred to as the trimmed t-test. At times
called Yuen's t-test, this is an extension of Welch's t-test, with the
difference being the use of winsorized means in calculation of the variance
and the trimmed sample size in calculation of the statistic. Trimming is
recommended if the underlying distribution is long-tailed or contaminated
with outliers [4]_.
The statistic is calculated as ``(np.mean(a) - np.mean(b))/se``, where
``se`` is the standard error. Therefore, the statistic will be positive
when the sample mean of `a` is greater than the sample mean of `b` and
negative when the sample mean of `a` is less than the sample mean of
`b`.
References
----------
.. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
.. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test
.. [3] B. Efron and T. Hastie. Computer Age Statistical Inference. (2016).
.. [4] Yuen, Karen K. "The Two-Sample Trimmed t for Unequal Population
Variances." Biometrika, vol. 61, no. 1, 1974, pp. 165-170. JSTOR,
www.jstor.org/stable/2334299. Accessed 30 Mar. 2021.
.. [5] Yuen, Karen K., and W. J. Dixon. "The Approximate Behaviour and
Performance of the Two-Sample Trimmed t." Biometrika, vol. 60,
no. 2, 1973, pp. 369-374. JSTOR, www.jstor.org/stable/2334550.
Accessed 30 Mar. 2021.
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
Test with sample with identical means:
>>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
>>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
>>> stats.ttest_ind(rvs1, rvs2)
Ttest_indResult(statistic=-0.4390847099199348, pvalue=0.6606952038870015)
>>> stats.ttest_ind(rvs1, rvs2, equal_var=False)
Ttest_indResult(statistic=-0.4390847099199348, pvalue=0.6606952553131064)
`ttest_ind` underestimates p for unequal variances:
>>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500, random_state=rng)
>>> stats.ttest_ind(rvs1, rvs3)
Ttest_indResult(statistic=-1.6370984482905417, pvalue=0.1019251574705033)
>>> stats.ttest_ind(rvs1, rvs3, equal_var=False)
Ttest_indResult(statistic=-1.637098448290542, pvalue=0.10202110497954867)
When ``n1 != n2``, the equal variance t-statistic is no longer equal to the
unequal variance t-statistic:
>>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100, random_state=rng)
>>> stats.ttest_ind(rvs1, rvs4)
Ttest_indResult(statistic=-1.9481646859513422, pvalue=0.05186270935842703)
>>> stats.ttest_ind(rvs1, rvs4, equal_var=False)
Ttest_indResult(statistic=-1.3146566100751664, pvalue=0.1913495266513811)
T-test with different means, variance, and n:
>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100, random_state=rng)
>>> stats.ttest_ind(rvs1, rvs5)
Ttest_indResult(statistic=-2.8415950600298774, pvalue=0.0046418707568707885)
>>> stats.ttest_ind(rvs1, rvs5, equal_var=False)
Ttest_indResult(statistic=-1.8686598649188084, pvalue=0.06434714193919686)
When performing a permutation test, more permutations typically yields
more accurate results. Use a ``np.random.Generator`` to ensure
reproducibility:
>>> stats.ttest_ind(rvs1, rvs5, permutations=10000,
... random_state=rng)
Ttest_indResult(statistic=-2.8415950600298774, pvalue=0.0052994700529947)
Take these two samples, one of which has an extreme tail.
>>> a = (56, 128.6, 12, 123.8, 64.34, 78, 763.3)
>>> b = (1.1, 2.9, 4.2)
Use the `trim` keyword to perform a trimmed (Yuen) t-test. For example,
using 20% trimming, ``trim=.2``, the test will reduce the impact of one
(``np.floor(trim*len(a))``) element from each tail of sample `a`. It will
have no effect on sample `b` because ``np.floor(trim*len(b))`` is 0.
>>> stats.ttest_ind(a, b, trim=.2)
Ttest_indResult(statistic=3.4463884028073513,
pvalue=0.01369338726499547)
"""
if not (0 <= trim < .5):
raise ValueError("Trimming percentage should be 0 <= `trim` < .5.")
NaN = _get_nan(a, b)
if a.size == 0 or b.size == 0:
# _axis_nan_policy decorator ensures this only happens with 1d input
return TtestResult(NaN, NaN, df=NaN, alternative=NaN,
standard_error=NaN, estimate=NaN)
if permutations is not None and permutations != 0:
if trim != 0:
raise ValueError("Permutations are currently not supported "
"with trimming.")
if permutations < 0 or (np.isfinite(permutations) and
int(permutations) != permutations):
raise ValueError("Permutations must be a non-negative integer.")
t, prob = _permutation_ttest(a, b, permutations=permutations,
axis=axis, equal_var=equal_var,
nan_policy=nan_policy,
random_state=random_state,
alternative=alternative)
df, denom, estimate = NaN, NaN, NaN
else:
n1 = a.shape[axis]
n2 = b.shape[axis]
if trim == 0:
if equal_var:
old_errstate = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
v1 = _var(a, axis, ddof=1)
v2 = _var(b, axis, ddof=1)
if equal_var:
np.seterr(**old_errstate)
m1 = np.mean(a, axis)
m2 = np.mean(b, axis)
else:
v1, m1, n1 = _ttest_trim_var_mean_len(a, trim, axis)
v2, m2, n2 = _ttest_trim_var_mean_len(b, trim, axis)
if equal_var:
df, denom = _equal_var_ttest_denom(v1, n1, v2, n2)
else:
df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2)
t, prob = _ttest_ind_from_stats(m1, m2, denom, df, alternative)
# when nan_policy='omit', `df` can be different for different axis-slices
df = np.broadcast_to(df, t.shape)[()]
estimate = m1-m2
# _axis_nan_policy decorator doesn't play well with strings
alternative_num = {"less": -1, "two-sided": 0, "greater": 1}[alternative]
return TtestResult(t, prob, df=df, alternative=alternative_num,
standard_error=denom, estimate=estimate)
def _ttest_trim_var_mean_len(a, trim, axis):
"""Variance, mean, and length of winsorized input along specified axis"""
# for use with `ttest_ind` when trimming.
# further calculations in this test assume that the inputs are sorted.
# From [4] Section 1 "Let x_1, ..., x_n be n ordered observations..."
a = np.sort(a, axis=axis)
# `g` is the number of elements to be replaced on each tail, converted
# from a percentage amount of trimming
n = a.shape[axis]
g = int(n * trim)
# Calculate the Winsorized variance of the input samples according to
# specified `g`
v = _calculate_winsorized_variance(a, g, axis)
# the total number of elements in the trimmed samples
n -= 2 * g
# calculate the g-times trimmed mean, as defined in [4] (1-1)
m = trim_mean(a, trim, axis=axis)
return v, m, n
def _calculate_winsorized_variance(a, g, axis):
"""Calculates g-times winsorized variance along specified axis"""
# it is expected that the input `a` is sorted along the correct axis
if g == 0:
return _var(a, ddof=1, axis=axis)
# move the intended axis to the end that way it is easier to manipulate
a_win = np.moveaxis(a, axis, -1)
# save where NaNs are for later use.
nans_indices = np.any(np.isnan(a_win), axis=-1)
# Winsorization and variance calculation are done in one step in [4]
# (1-3), but here winsorization is done first; replace the left and
# right sides with the repeating value. This can be see in effect in (
# 1-3) in [4], where the leftmost and rightmost tails are replaced with
# `(g + 1) * x_{g + 1}` on the left and `(g + 1) * x_{n - g}` on the
# right. Zero-indexing turns `g + 1` to `g`, and `n - g` to `- g - 1` in
# array indexing.
a_win[..., :g] = a_win[..., [g]]
a_win[..., -g:] = a_win[..., [-g - 1]]
# Determine the variance. In [4], the degrees of freedom is expressed as
# `h - 1`, where `h = n - 2g` (unnumbered equations in Section 1, end of
# page 369, beginning of page 370). This is converted to NumPy's format,
# `n - ddof` for use with `np.var`. The result is converted to an
# array to accommodate indexing later.
var_win = np.asarray(_var(a_win, ddof=(2 * g + 1), axis=-1))
# with `nan_policy='propagate'`, NaNs may be completely trimmed out
# because they were sorted into the tail of the array. In these cases,
# replace computed variances with `np.nan`.
var_win[nans_indices] = np.nan
return var_win
def _permutation_distribution_t(data, permutations, size_a, equal_var,
random_state=None):
"""Generation permutation distribution of t statistic"""
random_state = check_random_state(random_state)
# prepare permutation indices
size = data.shape[-1]
# number of distinct combinations
n_max = special.comb(size, size_a)
if permutations < n_max:
perm_generator = (random_state.permutation(size)
for i in range(permutations))
else:
permutations = n_max
perm_generator = (np.concatenate(z)
for z in _all_partitions(size_a, size-size_a))
t_stat = []
for indices in _batch_generator(perm_generator, batch=50):
# get one batch from perm_generator at a time as a list
indices = np.array(indices)
# generate permutations
data_perm = data[..., indices]
# move axis indexing permutations to position 0 to broadcast
# nicely with t_stat_observed, which doesn't have this dimension
data_perm = np.moveaxis(data_perm, -2, 0)
a = data_perm[..., :size_a]
b = data_perm[..., size_a:]
t_stat.append(_calc_t_stat(a, b, equal_var))
t_stat = np.concatenate(t_stat, axis=0)
return t_stat, permutations, n_max
def _calc_t_stat(a, b, equal_var, axis=-1):
"""Calculate the t statistic along the given dimension."""
na = a.shape[axis]
nb = b.shape[axis]
avg_a = np.mean(a, axis=axis)
avg_b = np.mean(b, axis=axis)
var_a = _var(a, axis=axis, ddof=1)
var_b = _var(b, axis=axis, ddof=1)
if not equal_var:
denom = _unequal_var_ttest_denom(var_a, na, var_b, nb)[1]
else:
denom = _equal_var_ttest_denom(var_a, na, var_b, nb)[1]
return (avg_a-avg_b)/denom
def _permutation_ttest(a, b, permutations, axis=0, equal_var=True,
nan_policy='propagate', random_state=None,
alternative="two-sided"):
"""
Calculates the T-test for the means of TWO INDEPENDENT samples of scores
using permutation methods.
This test is similar to `stats.ttest_ind`, except it doesn't rely on an
approximate normality assumption since it uses a permutation test.
This function is only called from ttest_ind when permutations is not None.
Parameters
----------
a, b : array_like
The arrays must be broadcastable, except along the dimension
corresponding to `axis` (the zeroth, by default).
axis : int, optional
The axis over which to operate on a and b.
permutations : int, optional
Number of permutations used to calculate p-value. If greater than or
equal to the number of distinct permutations, perform an exact test.
equal_var : bool, optional
If False, an equal variance (Welch's) t-test is conducted. Otherwise,
an ordinary t-test is conducted.
random_state : {None, int, `numpy.random.Generator`}, optional
If `seed` is None the `numpy.random.Generator` singleton is used.
If `seed` is an int, a new ``Generator`` instance is used,
seeded with `seed`.
If `seed` is already a ``Generator`` instance then that instance is
used.
Pseudorandom number generator state used for generating random
permutations.
Returns
-------
statistic : float or array
The calculated t-statistic.
pvalue : float or array
The p-value.
"""
random_state = check_random_state(random_state)
t_stat_observed = _calc_t_stat(a, b, equal_var, axis=axis)
na = a.shape[axis]
mat = _broadcast_concatenate((a, b), axis=axis)
mat = np.moveaxis(mat, axis, -1)
t_stat, permutations, n_max = _permutation_distribution_t(
mat, permutations, size_a=na, equal_var=equal_var,
random_state=random_state)
compare = {"less": np.less_equal,
"greater": np.greater_equal,
"two-sided": lambda x, y: (x <= -np.abs(y)) | (x >= np.abs(y))}
# Calculate the p-values
cmps = compare[alternative](t_stat, t_stat_observed)
# Randomized test p-value calculation should use biased estimate; see e.g.
# https://www.degruyter.com/document/doi/10.2202/1544-6115.1585/
adjustment = 1 if n_max > permutations else 0
pvalues = (cmps.sum(axis=0) + adjustment) / (permutations + adjustment)
# nans propagate naturally in statistic calculation, but need to be
# propagated manually into pvalues
if nan_policy == 'propagate' and np.isnan(t_stat_observed).any():
if np.ndim(pvalues) == 0:
pvalues = np.float64(np.nan)
else:
pvalues[np.isnan(t_stat_observed)] = np.nan
return (t_stat_observed, pvalues)
def _get_len(a, axis, msg):
try:
n = a.shape[axis]
except IndexError:
raise np.AxisError(axis, a.ndim, msg) from None
return n
@_axis_nan_policy_factory(pack_TtestResult, default_axis=0, n_samples=2,
result_to_tuple=unpack_TtestResult, n_outputs=6,
paired=True)
def ttest_rel(a, b, axis=0, nan_policy='propagate', alternative="two-sided"):
"""Calculate the t-test on TWO RELATED samples of scores, a and b.
This is a test for the null hypothesis that two related or
repeated samples have identical average (expected) values.
Parameters
----------
a, b : array_like
The arrays must have the same shape.
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
arrays, `a`, and `b`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided': the means of the distributions underlying the samples
are unequal.
* 'less': the mean of the distribution underlying the first sample
is less than the mean of the distribution underlying the second
sample.
* 'greater': the mean of the distribution underlying the first
sample is greater than the mean of the distribution underlying
the second sample.
.. versionadded:: 1.6.0
Returns
-------
result : `~scipy.stats._result_classes.TtestResult`
An object with the following attributes:
statistic : float or array
The t-statistic.
pvalue : float or array
The p-value associated with the given alternative.
df : float or array
The number of degrees of freedom used in calculation of the
t-statistic; this is one less than the size of the sample
(``a.shape[axis]``).
.. versionadded:: 1.10.0
The object also has the following method:
confidence_interval(confidence_level=0.95)
Computes a confidence interval around the difference in
population means for the given confidence level.
The confidence interval is returned in a ``namedtuple`` with
fields `low` and `high`.
.. versionadded:: 1.10.0
Notes
-----
Examples for use are scores of the same set of student in
different exams, or repeated sampling from the same units. The
test measures whether the average score differs significantly
across samples (e.g. exams). If we observe a large p-value, for
example greater than 0.05 or 0.1 then we cannot reject the null
hypothesis of identical average scores. If the p-value is smaller
than the threshold, e.g. 1%, 5% or 10%, then we reject the null
hypothesis of equal averages. Small p-values are associated with
large t-statistics.
The t-statistic is calculated as ``np.mean(a - b)/se``, where ``se`` is the
standard error. Therefore, the t-statistic will be positive when the sample
mean of ``a - b`` is greater than zero and negative when the sample mean of
``a - b`` is less than zero.
References
----------
https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples
Examples
--------
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
>>> rvs2 = (stats.norm.rvs(loc=5, scale=10, size=500, random_state=rng)
... + stats.norm.rvs(scale=0.2, size=500, random_state=rng))
>>> stats.ttest_rel(rvs1, rvs2)
TtestResult(statistic=-0.4549717054410304, pvalue=0.6493274702088672, df=499) # noqa
>>> rvs3 = (stats.norm.rvs(loc=8, scale=10, size=500, random_state=rng)
... + stats.norm.rvs(scale=0.2, size=500, random_state=rng))
>>> stats.ttest_rel(rvs1, rvs3)
TtestResult(statistic=-5.879467544540889, pvalue=7.540777129099917e-09, df=499) # noqa
"""
a, b, axis = _chk2_asarray(a, b, axis)
na = _get_len(a, axis, "first argument")
nb = _get_len(b, axis, "second argument")
if na != nb:
raise ValueError('unequal length arrays')
if na == 0 or nb == 0:
# _axis_nan_policy decorator ensures this only happens with 1d input
NaN = _get_nan(a, b)
return TtestResult(NaN, NaN, df=NaN, alternative=NaN,
standard_error=NaN, estimate=NaN)
n = a.shape[axis]
df = n - 1
d = (a - b).astype(np.float64)
v = _var(d, axis, ddof=1)
dm = np.mean(d, axis)
denom = np.sqrt(v / n)
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(dm, denom)
t, prob = _ttest_finish(df, t, alternative)
# when nan_policy='omit', `df` can be different for different axis-slices
df = np.broadcast_to(df, t.shape)[()]
# _axis_nan_policy decorator doesn't play well with strings
alternative_num = {"less": -1, "two-sided": 0, "greater": 1}[alternative]
return TtestResult(t, prob, df=df, alternative=alternative_num,
standard_error=denom, estimate=dm)
# Map from names to lambda_ values used in power_divergence().
_power_div_lambda_names = {
"pearson": 1,
"log-likelihood": 0,
"freeman-tukey": -0.5,
"mod-log-likelihood": -1,
"neyman": -2,
"cressie-read": 2/3,
}
def _count(a, axis=None):
"""Count the number of non-masked elements of an array.
This function behaves like `np.ma.count`, but is much faster
for ndarrays.
"""
if hasattr(a, 'count'):
num = a.count(axis=axis)
if isinstance(num, np.ndarray) and num.ndim == 0:
# In some cases, the `count` method returns a scalar array (e.g.
# np.array(3)), but we want a plain integer.
num = int(num)
else:
if axis is None:
num = a.size
else:
num = a.shape[axis]
return num
def _m_broadcast_to(a, shape):
if np.ma.isMaskedArray(a):
return np.ma.masked_array(np.broadcast_to(a, shape),
mask=np.broadcast_to(a.mask, shape))
return np.broadcast_to(a, shape, subok=True)
Power_divergenceResult = namedtuple('Power_divergenceResult',
('statistic', 'pvalue'))
def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None):
"""Cressie-Read power divergence statistic and goodness of fit test.
This function tests the null hypothesis that the categorical data
has the given frequencies, using the Cressie-Read power divergence
statistic.
Parameters
----------
f_obs : array_like
Observed frequencies in each category.
f_exp : array_like, optional
Expected frequencies in each category. By default the categories are
assumed to be equally likely.
ddof : int, optional
"Delta degrees of freedom": adjustment to the degrees of freedom
for the p-value. The p-value is computed using a chi-squared
distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
is the number of observed frequencies. The default value of `ddof`
is 0.
axis : int or None, optional
The axis of the broadcast result of `f_obs` and `f_exp` along which to
apply the test. If axis is None, all values in `f_obs` are treated
as a single data set. Default is 0.
lambda_ : float or str, optional
The power in the Cressie-Read power divergence statistic. The default
is 1. For convenience, `lambda_` may be assigned one of the following
strings, in which case the corresponding numerical value is used:
* ``"pearson"`` (value 1)
Pearson's chi-squared statistic. In this case, the function is
equivalent to `chisquare`.
* ``"log-likelihood"`` (value 0)
Log-likelihood ratio. Also known as the G-test [3]_.
* ``"freeman-tukey"`` (value -1/2)
Freeman-Tukey statistic.
* ``"mod-log-likelihood"`` (value -1)
Modified log-likelihood ratio.
* ``"neyman"`` (value -2)
Neyman's statistic.
* ``"cressie-read"`` (value 2/3)
The power recommended in [5]_.
Returns
-------
res: Power_divergenceResult
An object containing attributes:
statistic : float or ndarray
The Cressie-Read power divergence test statistic. The value is
a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D.
pvalue : float or ndarray
The p-value of the test. The value is a float if `ddof` and the
return value `stat` are scalars.
See Also
--------
chisquare
Notes
-----
This test is invalid when the observed or expected frequencies in each
category are too small. A typical rule is that all of the observed
and expected frequencies should be at least 5.
Also, the sum of the observed and expected frequencies must be the same
for the test to be valid; `power_divergence` raises an error if the sums
do not agree within a relative tolerance of ``1e-8``.
When `lambda_` is less than zero, the formula for the statistic involves
dividing by `f_obs`, so a warning or error may be generated if any value
in `f_obs` is 0.
Similarly, a warning or error may be generated if any value in `f_exp` is
zero when `lambda_` >= 0.
The default degrees of freedom, k-1, are for the case when no parameters
of the distribution are estimated. If p parameters are estimated by
efficient maximum likelihood then the correct degrees of freedom are
k-1-p. If the parameters are estimated in a different way, then the
dof can be between k-1-p and k-1. However, it is also possible that
the asymptotic distribution is not a chisquare, in which case this
test is not appropriate.
This function handles masked arrays. If an element of `f_obs` or `f_exp`
is masked, then data at that position is ignored, and does not count
towards the size of the data set.
.. versionadded:: 0.13.0
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 8.
https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html
.. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
.. [3] "G-test", https://en.wikipedia.org/wiki/G-test
.. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and
practice of statistics in biological research", New York: Freeman
(1981)
.. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
pp. 440-464.
Examples
--------
(See `chisquare` for more examples.)
When just `f_obs` is given, it is assumed that the expected frequencies
are uniform and given by the mean of the observed frequencies. Here we
perform a G-test (i.e. use the log-likelihood ratio statistic):
>>> import numpy as np
>>> from scipy.stats import power_divergence
>>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
(2.006573162632538, 0.84823476779463769)
The expected frequencies can be given with the `f_exp` argument:
>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[16, 16, 16, 16, 16, 8],
... lambda_='log-likelihood')
(3.3281031458963746, 0.6495419288047497)
When `f_obs` is 2-D, by default the test is applied to each column.
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> power_divergence(obs, lambda_="log-likelihood")
(array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225]))
By setting ``axis=None``, the test is applied to all data in the array,
which is equivalent to applying the test to the flattened array.
>>> power_divergence(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> power_divergence(obs.ravel())
(23.31034482758621, 0.015975692534127565)
`ddof` is the change to make to the default degrees of freedom.
>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)
The calculation of the p-values is done by broadcasting the
test statistic with `ddof`.
>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))
`f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has
shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
`f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared
statistics, we must use ``axis=1``:
>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8],
... [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))
"""
# Convert the input argument `lambda_` to a numerical value.
if isinstance(lambda_, str):
if lambda_ not in _power_div_lambda_names:
names = repr(list(_power_div_lambda_names.keys()))[1:-1]
raise ValueError("invalid string for lambda_: {!r}. "
"Valid strings are {}".format(lambda_, names))
lambda_ = _power_div_lambda_names[lambda_]
elif lambda_ is None:
lambda_ = 1
f_obs = np.asanyarray(f_obs)
f_obs_float = f_obs.astype(np.float64)
if f_exp is not None:
f_exp = np.asanyarray(f_exp)
bshape = np.broadcast_shapes(f_obs_float.shape, f_exp.shape)
f_obs_float = _m_broadcast_to(f_obs_float, bshape)
f_exp = _m_broadcast_to(f_exp, bshape)
rtol = 1e-8 # to pass existing tests
with np.errstate(invalid='ignore'):
f_obs_sum = f_obs_float.sum(axis=axis)
f_exp_sum = f_exp.sum(axis=axis)
relative_diff = (np.abs(f_obs_sum - f_exp_sum) /
np.minimum(f_obs_sum, f_exp_sum))
diff_gt_tol = (relative_diff > rtol).any()
if diff_gt_tol:
msg = (f"For each axis slice, the sum of the observed "
f"frequencies must agree with the sum of the "
f"expected frequencies to a relative tolerance "
f"of {rtol}, but the percent differences are:\n"
f"{relative_diff}")
raise ValueError(msg)
else:
# Ignore 'invalid' errors so the edge case of a data set with length 0
# is handled without spurious warnings.
with np.errstate(invalid='ignore'):
f_exp = f_obs.mean(axis=axis, keepdims=True)
# `terms` is the array of terms that are summed along `axis` to create
# the test statistic. We use some specialized code for a few special
# cases of lambda_.
if lambda_ == 1:
# Pearson's chi-squared statistic
terms = (f_obs_float - f_exp)**2 / f_exp
elif lambda_ == 0:
# Log-likelihood ratio (i.e. G-test)
terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp)
elif lambda_ == -1:
# Modified log-likelihood ratio
terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs)
else:
# General Cressie-Read power divergence.
terms = f_obs * ((f_obs / f_exp)**lambda_ - 1)
terms /= 0.5 * lambda_ * (lambda_ + 1)
stat = terms.sum(axis=axis)
num_obs = _count(terms, axis=axis)
ddof = asarray(ddof)
p = distributions.chi2.sf(stat, num_obs - 1 - ddof)
return Power_divergenceResult(stat, p)
def chisquare(f_obs, f_exp=None, ddof=0, axis=0):
"""Calculate a one-way chi-square test.
The chi-square test tests the null hypothesis that the categorical data
has the given frequencies.
Parameters
----------
f_obs : array_like
Observed frequencies in each category.
f_exp : array_like, optional
Expected frequencies in each category. By default the categories are
assumed to be equally likely.
ddof : int, optional
"Delta degrees of freedom": adjustment to the degrees of freedom
for the p-value. The p-value is computed using a chi-squared
distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
is the number of observed frequencies. The default value of `ddof`
is 0.
axis : int or None, optional
The axis of the broadcast result of `f_obs` and `f_exp` along which to
apply the test. If axis is None, all values in `f_obs` are treated
as a single data set. Default is 0.
Returns
-------
res: Power_divergenceResult
An object containing attributes:
chisq : float or ndarray
The chi-squared test statistic. The value is a float if `axis` is
None or `f_obs` and `f_exp` are 1-D.
pvalue : float or ndarray
The p-value of the test. The value is a float if `ddof` and the
return value `chisq` are scalars.
See Also
--------
scipy.stats.power_divergence
scipy.stats.fisher_exact : Fisher exact test on a 2x2 contingency table.
scipy.stats.barnard_exact : An unconditional exact test. An alternative
to chi-squared test for small sample sizes.
Notes
-----
This test is invalid when the observed or expected frequencies in each
category are too small. A typical rule is that all of the observed
and expected frequencies should be at least 5. According to [3]_, the
total number of samples is recommended to be greater than 13,
otherwise exact tests (such as Barnard's Exact test) should be used
because they do not overreject.
Also, the sum of the observed and expected frequencies must be the same
for the test to be valid; `chisquare` raises an error if the sums do not
agree within a relative tolerance of ``1e-8``.
The default degrees of freedom, k-1, are for the case when no parameters
of the distribution are estimated. If p parameters are estimated by
efficient maximum likelihood then the correct degrees of freedom are
k-1-p. If the parameters are estimated in a different way, then the
dof can be between k-1-p and k-1. However, it is also possible that
the asymptotic distribution is not chi-square, in which case this test
is not appropriate.
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 8.
https://web.archive.org/web/20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html
.. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
.. [3] Pearson, Karl. "On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling", Philosophical Magazine. Series 5. 50
(1900), pp. 157-175.
.. [4] Mannan, R. William and E. Charles. Meslow. "Bird populations and
vegetation characteristics in managed and old-growth forests,
northeastern Oregon." Journal of Wildlife Management
48, 1219-1238, :doi:`10.2307/3801783`, 1984.
Examples
--------
In [4]_, bird foraging behavior was investigated in an old-growth forest
of Oregon.
In the forest, 44% of the canopy volume was Douglas fir,
24% was ponderosa pine, 29% was grand fir, and 3% was western larch.
The authors observed the behavior of several species of birds, one of
which was the red-breasted nuthatch. They made 189 observations of this
species foraging, recording 43 ("23%") of observations in Douglas fir,
52 ("28%") in ponderosa pine, 54 ("29%") in grand fir, and 40 ("21%") in
western larch.
Using a chi-square test, we can test the null hypothesis that the
proportions of foraging events are equal to the proportions of canopy
volume. The authors of the paper considered a p-value less than 1% to be
significant.
Using the above proportions of canopy volume and observed events, we can
infer expected frequencies.
>>> import numpy as np
>>> f_exp = np.array([44, 24, 29, 3]) / 100 * 189
The observed frequencies of foraging were:
>>> f_obs = np.array([43, 52, 54, 40])
We can now compare the observed frequencies with the expected frequencies.
>>> from scipy.stats import chisquare
>>> chisquare(f_obs=f_obs, f_exp=f_exp)
Power_divergenceResult(statistic=228.23515947653874, pvalue=3.3295585338846486e-49)
The p-value is well below the chosen significance level. Hence, the
authors considered the difference to be significant and concluded
that the relative proportions of foraging events were not the same
as the relative proportions of tree canopy volume.
Following are other generic examples to demonstrate how the other
parameters can be used.
When just `f_obs` is given, it is assumed that the expected frequencies
are uniform and given by the mean of the observed frequencies.
>>> chisquare([16, 18, 16, 14, 12, 12])
Power_divergenceResult(statistic=2.0, pvalue=0.84914503608460956)
With `f_exp` the expected frequencies can be given.
>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
Power_divergenceResult(statistic=3.5, pvalue=0.62338762774958223)
When `f_obs` is 2-D, by default the test is applied to each column.
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
Power_divergenceResult(statistic=array([2. , 6.66666667]), pvalue=array([0.84914504, 0.24663415]))
By setting ``axis=None``, the test is applied to all data in the array,
which is equivalent to applying the test to the flattened array.
>>> chisquare(obs, axis=None)
Power_divergenceResult(statistic=23.31034482758621, pvalue=0.015975692534127565)
>>> chisquare(obs.ravel())
Power_divergenceResult(statistic=23.310344827586206, pvalue=0.01597569253412758)
`ddof` is the change to make to the default degrees of freedom.
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
Power_divergenceResult(statistic=2.0, pvalue=0.7357588823428847)
The calculation of the p-values is done by broadcasting the
chi-squared statistic with `ddof`.
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
Power_divergenceResult(statistic=2.0, pvalue=array([0.84914504, 0.73575888, 0.5724067 ]))
`f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has
shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
`f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared
statistics, we use ``axis=1``:
>>> chisquare([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
Power_divergenceResult(statistic=array([3.5 , 9.25]), pvalue=array([0.62338763, 0.09949846]))
""" # noqa
return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis,
lambda_="pearson")
KstestResult = _make_tuple_bunch('KstestResult', ['statistic', 'pvalue'],
['statistic_location', 'statistic_sign'])
def _compute_dplus(cdfvals, x):
"""Computes D+ as used in the Kolmogorov-Smirnov test.
Parameters
----------
cdfvals : array_like
Sorted array of CDF values between 0 and 1
x: array_like
Sorted array of the stochastic variable itself
Returns
-------
res: Pair with the following elements:
- The maximum distance of the CDF values below Uniform(0, 1).
- The location at which the maximum is reached.
"""
n = len(cdfvals)
dplus = (np.arange(1.0, n + 1) / n - cdfvals)
amax = dplus.argmax()
loc_max = x[amax]
return (dplus[amax], loc_max)
def _compute_dminus(cdfvals, x):
"""Computes D- as used in the Kolmogorov-Smirnov test.
Parameters
----------
cdfvals : array_like
Sorted array of CDF values between 0 and 1
x: array_like
Sorted array of the stochastic variable itself
Returns
-------
res: Pair with the following elements:
- Maximum distance of the CDF values above Uniform(0, 1)
- The location at which the maximum is reached.
"""
n = len(cdfvals)
dminus = (cdfvals - np.arange(0.0, n)/n)
amax = dminus.argmax()
loc_max = x[amax]
return (dminus[amax], loc_max)
@_rename_parameter("mode", "method")
def ks_1samp(x, cdf, args=(), alternative='two-sided', method='auto'):
"""
Performs the one-sample Kolmogorov-Smirnov test for goodness of fit.
This test compares the underlying distribution F(x) of a sample
against a given continuous distribution G(x). See Notes for a description
of the available null and alternative hypotheses.
Parameters
----------
x : array_like
a 1-D array of observations of iid random variables.
cdf : callable
callable used to calculate the cdf.
args : tuple, sequence, optional
Distribution parameters, used with `cdf`.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the null and alternative hypotheses. Default is 'two-sided'.
Please see explanations in the Notes below.
method : {'auto', 'exact', 'approx', 'asymp'}, optional
Defines the distribution used for calculating the p-value.
The following options are available (default is 'auto'):
* 'auto' : selects one of the other options.
* 'exact' : uses the exact distribution of test statistic.
* 'approx' : approximates the two-sided probability with twice
the one-sided probability
* 'asymp': uses asymptotic distribution of test statistic
Returns
-------
res: KstestResult
An object containing attributes:
statistic : float
KS test statistic, either D+, D-, or D (the maximum of the two)
pvalue : float
One-tailed or two-tailed p-value.
statistic_location : float
Value of `x` corresponding with the KS statistic; i.e., the
distance between the empirical distribution function and the
hypothesized cumulative distribution function is measured at this
observation.
statistic_sign : int
+1 if the KS statistic is the maximum positive difference between
the empirical distribution function and the hypothesized cumulative
distribution function (D+); -1 if the KS statistic is the maximum
negative difference (D-).
See Also
--------
ks_2samp, kstest
Notes
-----
There are three options for the null and corresponding alternative
hypothesis that can be selected using the `alternative` parameter.
- `two-sided`: The null hypothesis is that the two distributions are
identical, F(x)=G(x) for all x; the alternative is that they are not
identical.
- `less`: The null hypothesis is that F(x) >= G(x) for all x; the
alternative is that F(x) < G(x) for at least one x.
- `greater`: The null hypothesis is that F(x) <= G(x) for all x; the
alternative is that F(x) > G(x) for at least one x.
Note that the alternative hypotheses describe the *CDFs* of the
underlying distributions, not the observed values. For example,
suppose x1 ~ F and x2 ~ G. If F(x) > G(x) for all x, the values in
x1 tend to be less than those in x2.
Examples
--------
Suppose we wish to test the null hypothesis that a sample is distributed
according to the standard normal.
We choose a confidence level of 95%; that is, we will reject the null
hypothesis in favor of the alternative if the p-value is less than 0.05.
When testing uniformly distributed data, we would expect the
null hypothesis to be rejected.
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> stats.ks_1samp(stats.uniform.rvs(size=100, random_state=rng),
... stats.norm.cdf)
KstestResult(statistic=0.5001899973268688, pvalue=1.1616392184763533e-23)
Indeed, the p-value is lower than our threshold of 0.05, so we reject the
null hypothesis in favor of the default "two-sided" alternative: the data
are *not* distributed according to the standard normal.
When testing random variates from the standard normal distribution, we
expect the data to be consistent with the null hypothesis most of the time.
>>> x = stats.norm.rvs(size=100, random_state=rng)
>>> stats.ks_1samp(x, stats.norm.cdf)
KstestResult(statistic=0.05345882212970396, pvalue=0.9227159037744717)
As expected, the p-value of 0.92 is not below our threshold of 0.05, so
we cannot reject the null hypothesis.
Suppose, however, that the random variates are distributed according to
a normal distribution that is shifted toward greater values. In this case,
the cumulative density function (CDF) of the underlying distribution tends
to be *less* than the CDF of the standard normal. Therefore, we would
expect the null hypothesis to be rejected with ``alternative='less'``:
>>> x = stats.norm.rvs(size=100, loc=0.5, random_state=rng)
>>> stats.ks_1samp(x, stats.norm.cdf, alternative='less')
KstestResult(statistic=0.17482387821055168, pvalue=0.001913921057766743)
and indeed, with p-value smaller than our threshold, we reject the null
hypothesis in favor of the alternative.
"""
mode = method
alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
alternative.lower()[0], alternative)
if alternative not in ['two-sided', 'greater', 'less']:
raise ValueError("Unexpected alternative %s" % alternative)
if np.ma.is_masked(x):
x = x.compressed()
N = len(x)
x = np.sort(x)
cdfvals = cdf(x, *args)
if alternative == 'greater':
Dplus, d_location = _compute_dplus(cdfvals, x)
return KstestResult(Dplus, distributions.ksone.sf(Dplus, N),
statistic_location=d_location,
statistic_sign=1)
if alternative == 'less':
Dminus, d_location = _compute_dminus(cdfvals, x)
return KstestResult(Dminus, distributions.ksone.sf(Dminus, N),
statistic_location=d_location,
statistic_sign=-1)
# alternative == 'two-sided':
Dplus, dplus_location = _compute_dplus(cdfvals, x)
Dminus, dminus_location = _compute_dminus(cdfvals, x)
if Dplus > Dminus:
D = Dplus
d_location = dplus_location
d_sign = 1
else:
D = Dminus
d_location = dminus_location
d_sign = -1
if mode == 'auto': # Always select exact
mode = 'exact'
if mode == 'exact':
prob = distributions.kstwo.sf(D, N)
elif mode == 'asymp':
prob = distributions.kstwobign.sf(D * np.sqrt(N))
else:
# mode == 'approx'
prob = 2 * distributions.ksone.sf(D, N)
prob = np.clip(prob, 0, 1)
return KstestResult(D, prob,
statistic_location=d_location,
statistic_sign=d_sign)
Ks_2sampResult = KstestResult
def _compute_prob_outside_square(n, h):
"""
Compute the proportion of paths that pass outside the two diagonal lines.
Parameters
----------
n : integer
n > 0
h : integer
0 <= h <= n
Returns
-------
p : float
The proportion of paths that pass outside the lines x-y = +/-h.
"""
# Compute Pr(D_{n,n} >= h/n)
# Prob = 2 * ( binom(2n, n-h) - binom(2n, n-2a) + binom(2n, n-3a) - ... )
# / binom(2n, n)
# This formulation exhibits subtractive cancellation.
# Instead divide each term by binom(2n, n), then factor common terms
# and use a Horner-like algorithm
# P = 2 * A0 * (1 - A1*(1 - A2*(1 - A3*(1 - A4*(...)))))
P = 0.0
k = int(np.floor(n / h))
while k >= 0:
p1 = 1.0
# Each of the Ai terms has numerator and denominator with
# h simple terms.
for j in range(h):
p1 = (n - k * h - j) * p1 / (n + k * h + j + 1)
P = p1 * (1.0 - P)
k -= 1
return 2 * P
def _count_paths_outside_method(m, n, g, h):
"""Count the number of paths that pass outside the specified diagonal.
Parameters
----------
m : integer
m > 0
n : integer
n > 0
g : integer
g is greatest common divisor of m and n
h : integer
0 <= h <= lcm(m,n)
Returns
-------
p : float
The number of paths that go low.
The calculation may overflow - check for a finite answer.
Notes
-----
Count the integer lattice paths from (0, 0) to (m, n), which at some
point (x, y) along the path, satisfy:
m*y <= n*x - h*g
The paths make steps of size +1 in either positive x or positive y
directions.
We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk.
Hodges, J.L. Jr.,
"The Significance Probability of the Smirnov Two-Sample Test,"
Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
"""
# Compute #paths which stay lower than x/m-y/n = h/lcm(m,n)
# B(x, y) = #{paths from (0,0) to (x,y) without
# previously crossing the boundary}
# = binom(x, y) - #{paths which already reached the boundary}
# Multiply by the number of path extensions going from (x, y) to (m, n)
# Sum.
# Probability is symmetrical in m, n. Computation below assumes m >= n.
if m < n:
m, n = n, m
mg = m // g
ng = n // g
# Not every x needs to be considered.
# xj holds the list of x values to be checked.
# Wherever n*x/m + ng*h crosses an integer
lxj = n + (mg-h)//mg
xj = [(h + mg * j + ng-1)//ng for j in range(lxj)]
# B is an array just holding a few values of B(x,y), the ones needed.
# B[j] == B(x_j, j)
if lxj == 0:
return special.binom(m + n, n)
B = np.zeros(lxj)
B[0] = 1
# Compute the B(x, y) terms
for j in range(1, lxj):
Bj = special.binom(xj[j] + j, j)
for i in range(j):
bin = special.binom(xj[j] - xj[i] + j - i, j-i)
Bj -= bin * B[i]
B[j] = Bj
# Compute the number of path extensions...
num_paths = 0
for j in range(lxj):
bin = special.binom((m-xj[j]) + (n - j), n-j)
term = B[j] * bin
num_paths += term
return num_paths
def _attempt_exact_2kssamp(n1, n2, g, d, alternative):
"""Attempts to compute the exact 2sample probability.
n1, n2 are the sample sizes
g is the gcd(n1, n2)
d is the computed max difference in ECDFs
Returns (success, d, probability)
"""
lcm = (n1 // g) * n2
h = int(np.round(d * lcm))
d = h * 1.0 / lcm
if h == 0:
return True, d, 1.0
saw_fp_error, prob = False, np.nan
try:
with np.errstate(invalid="raise", over="raise"):
if alternative == 'two-sided':
if n1 == n2:
prob = _compute_prob_outside_square(n1, h)
else:
prob = _compute_outer_prob_inside_method(n1, n2, g, h)
else:
if n1 == n2:
# prob = binom(2n, n-h) / binom(2n, n)
# Evaluating in that form incurs roundoff errors
# from special.binom. Instead calculate directly
jrange = np.arange(h)
prob = np.prod((n1 - jrange) / (n1 + jrange + 1.0))
else:
with np.errstate(over='raise'):
num_paths = _count_paths_outside_method(n1, n2, g, h)
bin = special.binom(n1 + n2, n1)
if num_paths > bin or np.isinf(bin):
saw_fp_error = True
else:
prob = num_paths / bin
except (FloatingPointError, OverflowError):
saw_fp_error = True
if saw_fp_error:
return False, d, np.nan
if not (0 <= prob <= 1):
return False, d, prob
return True, d, prob
@_rename_parameter("mode", "method")
def ks_2samp(data1, data2, alternative='two-sided', method='auto'):
"""
Performs the two-sample Kolmogorov-Smirnov test for goodness of fit.
This test compares the underlying continuous distributions F(x) and G(x)
of two independent samples. See Notes for a description of the available
null and alternative hypotheses.
Parameters
----------
data1, data2 : array_like, 1-Dimensional
Two arrays of sample observations assumed to be drawn from a continuous
distribution, sample sizes can be different.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the null and alternative hypotheses. Default is 'two-sided'.
Please see explanations in the Notes below.
method : {'auto', 'exact', 'asymp'}, optional
Defines the method used for calculating the p-value.
The following options are available (default is 'auto'):
* 'auto' : use 'exact' for small size arrays, 'asymp' for large
* 'exact' : use exact distribution of test statistic
* 'asymp' : use asymptotic distribution of test statistic
Returns
-------
res: KstestResult
An object containing attributes:
statistic : float
KS test statistic.
pvalue : float
One-tailed or two-tailed p-value.
statistic_location : float
Value from `data1` or `data2` corresponding with the KS statistic;
i.e., the distance between the empirical distribution functions is
measured at this observation.
statistic_sign : int
+1 if the empirical distribution function of `data1` exceeds
the empirical distribution function of `data2` at
`statistic_location`, otherwise -1.
See Also
--------
kstest, ks_1samp, epps_singleton_2samp, anderson_ksamp
Notes
-----
There are three options for the null and corresponding alternative
hypothesis that can be selected using the `alternative` parameter.
- `less`: The null hypothesis is that F(x) >= G(x) for all x; the
alternative is that F(x) < G(x) for at least one x. The statistic
is the magnitude of the minimum (most negative) difference between the
empirical distribution functions of the samples.
- `greater`: The null hypothesis is that F(x) <= G(x) for all x; the
alternative is that F(x) > G(x) for at least one x. The statistic
is the maximum (most positive) difference between the empirical
distribution functions of the samples.
- `two-sided`: The null hypothesis is that the two distributions are
identical, F(x)=G(x) for all x; the alternative is that they are not
identical. The statistic is the maximum absolute difference between the
empirical distribution functions of the samples.
Note that the alternative hypotheses describe the *CDFs* of the
underlying distributions, not the observed values of the data. For example,
suppose x1 ~ F and x2 ~ G. If F(x) > G(x) for all x, the values in
x1 tend to be less than those in x2.
If the KS statistic is large, then the p-value will be small, and this may
be taken as evidence against the null hypothesis in favor of the
alternative.
If ``method='exact'``, `ks_2samp` attempts to compute an exact p-value,
that is, the probability under the null hypothesis of obtaining a test
statistic value as extreme as the value computed from the data.
If ``method='asymp'``, the asymptotic Kolmogorov-Smirnov distribution is
used to compute an approximate p-value.
If ``method='auto'``, an exact p-value computation is attempted if both
sample sizes are less than 10000; otherwise, the asymptotic method is used.
In any case, if an exact p-value calculation is attempted and fails, a
warning will be emitted, and the asymptotic p-value will be returned.
The 'two-sided' 'exact' computation computes the complementary probability
and then subtracts from 1. As such, the minimum probability it can return
is about 1e-16. While the algorithm itself is exact, numerical
errors may accumulate for large sample sizes. It is most suited to
situations in which one of the sample sizes is only a few thousand.
We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk [1]_.
References
----------
.. [1] Hodges, J.L. Jr., "The Significance Probability of the Smirnov
Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
Examples
--------
Suppose we wish to test the null hypothesis that two samples were drawn
from the same distribution.
We choose a confidence level of 95%; that is, we will reject the null
hypothesis in favor of the alternative if the p-value is less than 0.05.
If the first sample were drawn from a uniform distribution and the second
were drawn from the standard normal, we would expect the null hypothesis
to be rejected.
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> sample1 = stats.uniform.rvs(size=100, random_state=rng)
>>> sample2 = stats.norm.rvs(size=110, random_state=rng)
>>> stats.ks_2samp(sample1, sample2)
KstestResult(statistic=0.5454545454545454, pvalue=7.37417839555191e-15)
Indeed, the p-value is lower than our threshold of 0.05, so we reject the
null hypothesis in favor of the default "two-sided" alternative: the data
were *not* drawn from the same distribution.
When both samples are drawn from the same distribution, we expect the data
to be consistent with the null hypothesis most of the time.
>>> sample1 = stats.norm.rvs(size=105, random_state=rng)
>>> sample2 = stats.norm.rvs(size=95, random_state=rng)
>>> stats.ks_2samp(sample1, sample2)
KstestResult(statistic=0.10927318295739348, pvalue=0.5438289009927495)
As expected, the p-value of 0.54 is not below our threshold of 0.05, so
we cannot reject the null hypothesis.
Suppose, however, that the first sample were drawn from
a normal distribution shifted toward greater values. In this case,
the cumulative density function (CDF) of the underlying distribution tends
to be *less* than the CDF underlying the second sample. Therefore, we would
expect the null hypothesis to be rejected with ``alternative='less'``:
>>> sample1 = stats.norm.rvs(size=105, loc=0.5, random_state=rng)
>>> stats.ks_2samp(sample1, sample2, alternative='less')
KstestResult(statistic=0.4055137844611529, pvalue=3.5474563068855554e-08)
and indeed, with p-value smaller than our threshold, we reject the null
hypothesis in favor of the alternative.
"""
mode = method
if mode not in ['auto', 'exact', 'asymp']:
raise ValueError(f'Invalid value for mode: {mode}')
alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get(
alternative.lower()[0], alternative)
if alternative not in ['two-sided', 'less', 'greater']:
raise ValueError(f'Invalid value for alternative: {alternative}')
MAX_AUTO_N = 10000 # 'auto' will attempt to be exact if n1,n2 <= MAX_AUTO_N
if np.ma.is_masked(data1):
data1 = data1.compressed()
if np.ma.is_masked(data2):
data2 = data2.compressed()
data1 = np.sort(data1)
data2 = np.sort(data2)
n1 = data1.shape[0]
n2 = data2.shape[0]
if min(n1, n2) == 0:
raise ValueError('Data passed to ks_2samp must not be empty')
data_all = np.concatenate([data1, data2])
# using searchsorted solves equal data problem
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
cddiffs = cdf1 - cdf2
# Identify the location of the statistic
argminS = np.argmin(cddiffs)
argmaxS = np.argmax(cddiffs)
loc_minS = data_all[argminS]
loc_maxS = data_all[argmaxS]
# Ensure sign of minS is not negative.
minS = np.clip(-cddiffs[argminS], 0, 1)
maxS = cddiffs[argmaxS]
if alternative == 'less' or (alternative == 'two-sided' and minS > maxS):
d = minS
d_location = loc_minS
d_sign = -1
else:
d = maxS
d_location = loc_maxS
d_sign = 1
g = gcd(n1, n2)
n1g = n1 // g
n2g = n2 // g
prob = -np.inf
if mode == 'auto':
mode = 'exact' if max(n1, n2) <= MAX_AUTO_N else 'asymp'
elif mode == 'exact':
# If lcm(n1, n2) is too big, switch from exact to asymp
if n1g >= np.iinfo(np.int32).max / n2g:
mode = 'asymp'
warnings.warn(
f"Exact ks_2samp calculation not possible with samples sizes "
f"{n1} and {n2}. Switching to 'asymp'.", RuntimeWarning,
stacklevel=3)
if mode == 'exact':
success, d, prob = _attempt_exact_2kssamp(n1, n2, g, d, alternative)
if not success:
mode = 'asymp'
warnings.warn(f"ks_2samp: Exact calculation unsuccessful. "
f"Switching to method={mode}.", RuntimeWarning,
stacklevel=3)
if mode == 'asymp':
# The product n1*n2 is large. Use Smirnov's asymptoptic formula.
# Ensure float to avoid overflow in multiplication
# sorted because the one-sided formula is not symmetric in n1, n2
m, n = sorted([float(n1), float(n2)], reverse=True)
en = m * n / (m + n)
if alternative == 'two-sided':
prob = distributions.kstwo.sf(d, np.round(en))
else:
z = np.sqrt(en) * d
# Use Hodges' suggested approximation Eqn 5.3
# Requires m to be the larger of (n1, n2)
expt = -2 * z**2 - 2 * z * (m + 2*n)/np.sqrt(m*n*(m+n))/3.0
prob = np.exp(expt)
prob = np.clip(prob, 0, 1)
return KstestResult(d, prob, statistic_location=d_location,
statistic_sign=d_sign)
def _parse_kstest_args(data1, data2, args, N):
# kstest allows many different variations of arguments.
# Pull out the parsing into a separate function
# (xvals, yvals, ) # 2sample
# (xvals, cdf function,..)
# (xvals, name of distribution, ...)
# (name of distribution, name of distribution, ...)
# Returns xvals, yvals, cdf
# where cdf is a cdf function, or None
# and yvals is either an array_like of values, or None
# and xvals is array_like.
rvsfunc, cdf = None, None
if isinstance(data1, str):
rvsfunc = getattr(distributions, data1).rvs
elif callable(data1):
rvsfunc = data1
if isinstance(data2, str):
cdf = getattr(distributions, data2).cdf
data2 = None
elif callable(data2):
cdf = data2
data2 = None
data1 = np.sort(rvsfunc(*args, size=N) if rvsfunc else data1)
return data1, data2, cdf
@_rename_parameter("mode", "method")
def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', method='auto'):
"""
Performs the (one-sample or two-sample) Kolmogorov-Smirnov test for
goodness of fit.
The one-sample test compares the underlying distribution F(x) of a sample
against a given distribution G(x). The two-sample test compares the
underlying distributions of two independent samples. Both tests are valid
only for continuous distributions.
Parameters
----------
rvs : str, array_like, or callable
If an array, it should be a 1-D array of observations of random
variables.
If a callable, it should be a function to generate random variables;
it is required to have a keyword argument `size`.
If a string, it should be the name of a distribution in `scipy.stats`,
which will be used to generate random variables.
cdf : str, array_like or callable
If array_like, it should be a 1-D array of observations of random
variables, and the two-sample test is performed
(and rvs must be array_like).
If a callable, that callable is used to calculate the cdf.
If a string, it should be the name of a distribution in `scipy.stats`,
which will be used as the cdf function.
args : tuple, sequence, optional
Distribution parameters, used if `rvs` or `cdf` are strings or
callables.
N : int, optional
Sample size if `rvs` is string or callable. Default is 20.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the null and alternative hypotheses. Default is 'two-sided'.
Please see explanations in the Notes below.
method : {'auto', 'exact', 'approx', 'asymp'}, optional
Defines the distribution used for calculating the p-value.
The following options are available (default is 'auto'):
* 'auto' : selects one of the other options.
* 'exact' : uses the exact distribution of test statistic.
* 'approx' : approximates the two-sided probability with twice the
one-sided probability
* 'asymp': uses asymptotic distribution of test statistic
Returns
-------
res: KstestResult
An object containing attributes:
statistic : float
KS test statistic, either D+, D-, or D (the maximum of the two)
pvalue : float
One-tailed or two-tailed p-value.
statistic_location : float
In a one-sample test, this is the value of `rvs`
corresponding with the KS statistic; i.e., the distance between
the empirical distribution function and the hypothesized cumulative
distribution function is measured at this observation.
In a two-sample test, this is the value from `rvs` or `cdf`
corresponding with the KS statistic; i.e., the distance between
the empirical distribution functions is measured at this
observation.
statistic_sign : int
In a one-sample test, this is +1 if the KS statistic is the
maximum positive difference between the empirical distribution
function and the hypothesized cumulative distribution function
(D+); it is -1 if the KS statistic is the maximum negative
difference (D-).
In a two-sample test, this is +1 if the empirical distribution
function of `rvs` exceeds the empirical distribution
function of `cdf` at `statistic_location`, otherwise -1.
See Also
--------
ks_1samp, ks_2samp
Notes
-----
There are three options for the null and corresponding alternative
hypothesis that can be selected using the `alternative` parameter.
- `two-sided`: The null hypothesis is that the two distributions are
identical, F(x)=G(x) for all x; the alternative is that they are not
identical.
- `less`: The null hypothesis is that F(x) >= G(x) for all x; the
alternative is that F(x) < G(x) for at least one x.
- `greater`: The null hypothesis is that F(x) <= G(x) for all x; the
alternative is that F(x) > G(x) for at least one x.
Note that the alternative hypotheses describe the *CDFs* of the
underlying distributions, not the observed values. For example,
suppose x1 ~ F and x2 ~ G. If F(x) > G(x) for all x, the values in
x1 tend to be less than those in x2.
Examples
--------
Suppose we wish to test the null hypothesis that a sample is distributed
according to the standard normal.
We choose a confidence level of 95%; that is, we will reject the null
hypothesis in favor of the alternative if the p-value is less than 0.05.
When testing uniformly distributed data, we would expect the
null hypothesis to be rejected.
>>> import numpy as np
>>> from scipy import stats
>>> rng = np.random.default_rng()
>>> stats.kstest(stats.uniform.rvs(size=100, random_state=rng),
... stats.norm.cdf)
KstestResult(statistic=0.5001899973268688, pvalue=1.1616392184763533e-23)
Indeed, the p-value is lower than our threshold of 0.05, so we reject the
null hypothesis in favor of the default "two-sided" alternative: the data
are *not* distributed according to the standard normal.
When testing random variates from the standard normal distribution, we
expect the data to be consistent with the null hypothesis most of the time.
>>> x = stats.norm.rvs(size=100, random_state=rng)
>>> stats.kstest(x, stats.norm.cdf)
KstestResult(statistic=0.05345882212970396, pvalue=0.9227159037744717)
As expected, the p-value of 0.92 is not below our threshold of 0.05, so
we cannot reject the null hypothesis.
Suppose, however, that the random variates are distributed according to
a normal distribution that is shifted toward greater values. In this case,
the cumulative density function (CDF) of the underlying distribution tends
to be *less* than the CDF of the standard normal. Therefore, we would
expect the null hypothesis to be rejected with ``alternative='less'``:
>>> x = stats.norm.rvs(size=100, loc=0.5, random_state=rng)
>>> stats.kstest(x, stats.norm.cdf, alternative='less')
KstestResult(statistic=0.17482387821055168, pvalue=0.001913921057766743)
and indeed, with p-value smaller than our threshold, we reject the null
hypothesis in favor of the alternative.
For convenience, the previous test can be performed using the name of the
distribution as the second argument.
>>> stats.kstest(x, "norm", alternative='less')
KstestResult(statistic=0.17482387821055168, pvalue=0.001913921057766743)
The examples above have all been one-sample tests identical to those
performed by `ks_1samp`. Note that `kstest` can also perform two-sample
tests identical to those performed by `ks_2samp`. For example, when two
samples are drawn from the same distribution, we expect the data to be
consistent with the null hypothesis most of the time.
>>> sample1 = stats.laplace.rvs(size=105, random_state=rng)
>>> sample2 = stats.laplace.rvs(size=95, random_state=rng)
>>> stats.kstest(sample1, sample2)
KstestResult(statistic=0.11779448621553884, pvalue=0.4494256912629795)
As expected, the p-value of 0.45 is not below our threshold of 0.05, so
we cannot reject the null hypothesis.
"""
# to not break compatibility with existing code
if alternative == 'two_sided':
alternative = 'two-sided'
if alternative not in ['two-sided', 'greater', 'less']:
raise ValueError("Unexpected alternative %s" % alternative)
xvals, yvals, cdf = _parse_kstest_args(rvs, cdf, args, N)
if cdf:
return ks_1samp(xvals, cdf, args=args, alternative=alternative,
method=method)
return ks_2samp(xvals, yvals, alternative=alternative, method=method)
def tiecorrect(rankvals):
"""Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.
Parameters
----------
rankvals : array_like
A 1-D sequence of ranks. Typically this will be the array
returned by `~scipy.stats.rankdata`.
Returns
-------
factor : float
Correction factor for U or H.
See Also
--------
rankdata : Assign ranks to the data
mannwhitneyu : Mann-Whitney rank test
kruskal : Kruskal-Wallis H test
References
----------
.. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral
Sciences. New York: McGraw-Hill.
Examples
--------
>>> from scipy.stats import tiecorrect, rankdata
>>> tiecorrect([1, 2.5, 2.5, 4])
0.9
>>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
>>> ranks
array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5])
>>> tiecorrect(ranks)
0.9833333333333333
"""
arr = np.sort(rankvals)
idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0]
cnt = np.diff(idx).astype(np.float64)
size = np.float64(arr.size)
return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size)
RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue'))
@_axis_nan_policy_factory(RanksumsResult, n_samples=2)
def ranksums(x, y, alternative='two-sided'):
"""Compute the Wilcoxon rank-sum statistic for two samples.
The Wilcoxon rank-sum test tests the null hypothesis that two sets
of measurements are drawn from the same distribution. The alternative
hypothesis is that values in one sample are more likely to be
larger than the values in the other sample.
This test should be used to compare two samples from continuous
distributions. It does not handle ties between measurements
in x and y. For tie-handling and an optional continuity correction
see `scipy.stats.mannwhitneyu`.
Parameters
----------
x,y : array_like
The data from the two samples.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis. Default is 'two-sided'.
The following options are available:
* 'two-sided': one of the distributions (underlying `x` or `y`) is
stochastically greater than the other.
* 'less': the distribution underlying `x` is stochastically less
than the distribution underlying `y`.
* 'greater': the distribution underlying `x` is stochastically greater
than the distribution underlying `y`.
.. versionadded:: 1.7.0
Returns
-------
statistic : float
The test statistic under the large-sample approximation that the
rank sum statistic is normally distributed.
pvalue : float
The p-value of the test.
References
----------
.. [1] https://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
Examples
--------
We can test the hypothesis that two independent unequal-sized samples are
drawn from the same distribution with computing the Wilcoxon rank-sum
statistic.
>>> import numpy as np
>>> from scipy.stats import ranksums
>>> rng = np.random.default_rng()
>>> sample1 = rng.uniform(-1, 1, 200)
>>> sample2 = rng.uniform(-0.5, 1.5, 300) # a shifted distribution
>>> ranksums(sample1, sample2)
RanksumsResult(statistic=-7.887059, pvalue=3.09390448e-15) # may vary
>>> ranksums(sample1, sample2, alternative='less')
RanksumsResult(statistic=-7.750585297581713, pvalue=4.573497606342543e-15) # may vary
>>> ranksums(sample1, sample2, alternative='greater')
RanksumsResult(statistic=-7.750585297581713, pvalue=0.9999999999999954) # may vary
The p-value of less than ``0.05`` indicates that this test rejects the
hypothesis at the 5% significance level.
"""
x, y = map(np.asarray, (x, y))
n1 = len(x)
n2 = len(y)
alldata = np.concatenate((x, y))
ranked = rankdata(alldata)
x = ranked[:n1]
s = np.sum(x, axis=0)
expected = n1 * (n1+n2+1) / 2.0
z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
z, prob = _normtest_finish(z, alternative)
return RanksumsResult(z, prob)
KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))
@_axis_nan_policy_factory(KruskalResult, n_samples=None)
def kruskal(*samples, nan_policy='propagate'):
"""Compute the Kruskal-Wallis H-test for independent samples.
The Kruskal-Wallis H-test tests the null hypothesis that the population
median of all of the groups are equal. It is a non-parametric version of
ANOVA. The test works on 2 or more independent samples, which may have
different sizes. Note that rejecting the null hypothesis does not
indicate which of the groups differs. Post hoc comparisons between
groups are required to determine which groups are different.
Parameters
----------
sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as
arguments. Samples must be one-dimensional.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The Kruskal-Wallis H statistic, corrected for ties.
pvalue : float
The p-value for the test using the assumption that H has a chi
square distribution. The p-value returned is the survival function of
the chi square distribution evaluated at H.
See Also
--------
f_oneway : 1-way ANOVA.
mannwhitneyu : Mann-Whitney rank test on two samples.
friedmanchisquare : Friedman test for repeated measurements.
Notes
-----
Due to the assumption that H has a chi square distribution, the number
of samples in each group must not be too small. A typical rule is
that each sample must have at least 5 measurements.
References
----------
.. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in
One-Criterion Variance Analysis", Journal of the American Statistical
Association, Vol. 47, Issue 260, pp. 583-621, 1952.
.. [2] https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
Examples
--------
>>> from scipy import stats
>>> x = [1, 3, 5, 7, 9]
>>> y = [2, 4, 6, 8, 10]
>>> stats.kruskal(x, y)
KruskalResult(statistic=0.2727272727272734, pvalue=0.6015081344405895)
>>> x = [1, 1, 1]
>>> y = [2, 2, 2]
>>> z = [2, 2]
>>> stats.kruskal(x, y, z)
KruskalResult(statistic=7.0, pvalue=0.0301973834223185)
"""
samples = list(map(np.asarray, samples))
num_groups = len(samples)
if num_groups < 2:
raise ValueError("Need at least two groups in stats.kruskal()")
for sample in samples:
if sample.size == 0:
NaN = _get_nan(*samples)
return KruskalResult(NaN, NaN)
elif sample.ndim != 1:
raise ValueError("Samples must be one-dimensional.")
n = np.asarray(list(map(len, samples)))
if nan_policy not in ('propagate', 'raise', 'omit'):
raise ValueError("nan_policy must be 'propagate', 'raise' or 'omit'")
contains_nan = False
for sample in samples:
cn = _contains_nan(sample, nan_policy)
if cn[0]:
contains_nan = True
break
if contains_nan and nan_policy == 'omit':
for sample in samples:
sample = ma.masked_invalid(sample)
return mstats_basic.kruskal(*samples)
if contains_nan and nan_policy == 'propagate':
return KruskalResult(np.nan, np.nan)
alldata = np.concatenate(samples)
ranked = rankdata(alldata)
ties = tiecorrect(ranked)
if ties == 0:
raise ValueError('All numbers are identical in kruskal')
# Compute sum^2/n for each group and sum
j = np.insert(np.cumsum(n), 0, 0)
ssbn = 0
for i in range(num_groups):
ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / n[i]
totaln = np.sum(n, dtype=float)
h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
df = num_groups - 1
h /= ties
return KruskalResult(h, distributions.chi2.sf(h, df))
FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
('statistic', 'pvalue'))
def friedmanchisquare(*samples):
"""Compute the Friedman test for repeated samples.
The Friedman test tests the null hypothesis that repeated samples of
the same individuals have the same distribution. It is often used
to test for consistency among samples obtained in different ways.
For example, if two sampling techniques are used on the same set of
individuals, the Friedman test can be used to determine if the two
sampling techniques are consistent.
Parameters
----------
sample1, sample2, sample3... : array_like
Arrays of observations. All of the arrays must have the same number
of elements. At least three samples must be given.
Returns
-------
statistic : float
The test statistic, correcting for ties.
pvalue : float
The associated p-value assuming that the test statistic has a chi
squared distribution.
Notes
-----
Due to the assumption that the test statistic has a chi squared
distribution, the p-value is only reliable for n > 10 and more than
6 repeated samples.
References
----------
.. [1] https://en.wikipedia.org/wiki/Friedman_test
.. [2] P. Sprent and N.C. Smeeton, "Applied Nonparametric Statistical
Methods, Third Edition". Chapter 6, Section 6.3.2.
Examples
--------
In [2]_, the pulse rate (per minute) of a group of seven students was
measured before exercise, immediately after exercise and 5 minutes
after exercise. Is there evidence to suggest that the pulse rates on
these three occasions are similar?
We begin by formulating a null hypothesis :math:`H_0`:
The pulse rates are identical on these three occasions.
Let's assess the plausibility of this hypothesis with a Friedman test.
>>> from scipy.stats import friedmanchisquare
>>> before = [72, 96, 88, 92, 74, 76, 82]
>>> immediately_after = [120, 120, 132, 120, 101, 96, 112]
>>> five_min_after = [76, 95, 104, 96, 84, 72, 76]
>>> res = friedmanchisquare(before, immediately_after, five_min_after)
>>> res.statistic
10.57142857142857
>>> res.pvalue
0.005063414171757498
Using a significance level of 5%, we would reject the null hypothesis in
favor of the alternative hypothesis: "the pulse rates are different on
these three occasions".
"""
k = len(samples)
if k < 3:
raise ValueError('At least 3 sets of samples must be given '
'for Friedman test, got {}.'.format(k))
n = len(samples[0])
for i in range(1, k):
if len(samples[i]) != n:
raise ValueError('Unequal N in friedmanchisquare. Aborting.')
# Rank data
data = np.vstack(samples).T
data = data.astype(float)
for i in range(len(data)):
data[i] = rankdata(data[i])
# Handle ties
ties = 0
for d in data:
replist, repnum = find_repeats(array(d))
for t in repnum:
ties += t * (t*t - 1)
c = 1 - ties / (k*(k*k - 1)*n)
ssbn = np.sum(data.sum(axis=0)**2)
chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c
return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1))
BrunnerMunzelResult = namedtuple('BrunnerMunzelResult',
('statistic', 'pvalue'))
def brunnermunzel(x, y, alternative="two-sided", distribution="t",
nan_policy='propagate'):
"""Compute the Brunner-Munzel test on samples x and y.
The Brunner-Munzel test is a nonparametric test of the null hypothesis that
when values are taken one by one from each group, the probabilities of
getting large values in both groups are equal.
Unlike the Wilcoxon-Mann-Whitney's U test, this does not require the
assumption of equivariance of two groups. Note that this does not assume
the distributions are same. This test works on two independent samples,
which may have different sizes.
Parameters
----------
x, y : array_like
Array of samples, should be one-dimensional.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided
* 'greater': one-sided
distribution : {'t', 'normal'}, optional
Defines how to get the p-value.
The following options are available (default is 't'):
* 't': get the p-value by t-distribution
* 'normal': get the p-value by standard normal distribution.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The Brunner-Munzer W statistic.
pvalue : float
p-value assuming an t distribution. One-sided or
two-sided, depending on the choice of `alternative` and `distribution`.
See Also
--------
mannwhitneyu : Mann-Whitney rank test on two samples.
Notes
-----
Brunner and Munzel recommended to estimate the p-value by t-distribution
when the size of data is 50 or less. If the size is lower than 10, it would
be better to use permuted Brunner Munzel test (see [2]_).
References
----------
.. [1] Brunner, E. and Munzel, U. "The nonparametric Benhrens-Fisher
problem: Asymptotic theory and a small-sample approximation".
Biometrical Journal. Vol. 42(2000): 17-25.
.. [2] Neubert, K. and Brunner, E. "A studentized permutation test for the
non-parametric Behrens-Fisher problem". Computational Statistics and
Data Analysis. Vol. 51(2007): 5192-5204.
Examples
--------
>>> from scipy import stats
>>> x1 = [1,2,1,1,1,1,1,1,1,1,2,4,1,1]
>>> x2 = [3,3,4,3,1,2,3,1,1,5,4]
>>> w, p_value = stats.brunnermunzel(x1, x2)
>>> w
3.1374674823029505
>>> p_value
0.0057862086661515377
"""
x = np.asarray(x)
y = np.asarray(y)
# check both x and y
cnx, npx = _contains_nan(x, nan_policy)
cny, npy = _contains_nan(y, nan_policy)
contains_nan = cnx or cny
if npx == "omit" or npy == "omit":
nan_policy = "omit"
if contains_nan and nan_policy == "propagate":
return BrunnerMunzelResult(np.nan, np.nan)
elif contains_nan and nan_policy == "omit":
x = ma.masked_invalid(x)
y = ma.masked_invalid(y)
return mstats_basic.brunnermunzel(x, y, alternative, distribution)
nx = len(x)
ny = len(y)
if nx == 0 or ny == 0:
return BrunnerMunzelResult(np.nan, np.nan)
rankc = rankdata(np.concatenate((x, y)))
rankcx = rankc[0:nx]
rankcy = rankc[nx:nx+ny]
rankcx_mean = np.mean(rankcx)
rankcy_mean = np.mean(rankcy)
rankx = rankdata(x)
ranky = rankdata(y)
rankx_mean = np.mean(rankx)
ranky_mean = np.mean(ranky)
Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0))
Sx /= nx - 1
Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0))
Sy /= ny - 1
wbfn = nx * ny * (rankcy_mean - rankcx_mean)
wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy)
if distribution == "t":
df_numer = np.power(nx * Sx + ny * Sy, 2.0)
df_denom = np.power(nx * Sx, 2.0) / (nx - 1)
df_denom += np.power(ny * Sy, 2.0) / (ny - 1)
df = df_numer / df_denom
if (df_numer == 0) and (df_denom == 0):
message = ("p-value cannot be estimated with `distribution='t' "
"because degrees of freedom parameter is undefined "
"(0/0). Try using `distribution='normal'")
warnings.warn(message, RuntimeWarning)
p = distributions.t.cdf(wbfn, df)
elif distribution == "normal":
p = distributions.norm.cdf(wbfn)
else:
raise ValueError(
"distribution should be 't' or 'normal'")
if alternative == "greater":
pass
elif alternative == "less":
p = 1 - p
elif alternative == "two-sided":
p = 2 * np.min([p, 1-p])
else:
raise ValueError(
"alternative should be 'less', 'greater' or 'two-sided'")
return BrunnerMunzelResult(wbfn, p)
def combine_pvalues(pvalues, method='fisher', weights=None):
"""
Combine p-values from independent tests that bear upon the same hypothesis.
These methods are intended only for combining p-values from hypothesis
tests based upon continuous distributions.
Each method assumes that under the null hypothesis, the p-values are
sampled independently and uniformly from the interval [0, 1]. A test
statistic (different for each method) is computed and a combined
p-value is calculated based upon the distribution of this test statistic
under the null hypothesis.
Parameters
----------
pvalues : array_like, 1-D
Array of p-values assumed to come from independent tests based on
continuous distributions.
method : {'fisher', 'pearson', 'tippett', 'stouffer', 'mudholkar_george'}
Name of method to use to combine p-values.
The available methods are (see Notes for details):
* 'fisher': Fisher's method (Fisher's combined probability test)
* 'pearson': Pearson's method
* 'mudholkar_george': Mudholkar's and George's method
* 'tippett': Tippett's method
* 'stouffer': Stouffer's Z-score method
weights : array_like, 1-D, optional
Optional array of weights used only for Stouffer's Z-score method.
Returns
-------
res : SignificanceResult
An object containing attributes:
statistic : float
The statistic calculated by the specified method.
pvalue : float
The combined p-value.
Notes
-----
If this function is applied to tests with a discrete statistics such as
any rank test or contingency-table test, it will yield systematically
wrong results, e.g. Fisher's method will systematically overestimate the
p-value [1]_. This problem becomes less severe for large sample sizes
when the discrete distributions become approximately continuous.
The differences between the methods can be best illustrated by their
statistics and what aspects of a combination of p-values they emphasise
when considering significance [2]_. For example, methods emphasising large
p-values are more sensitive to strong false and true negatives; conversely
methods focussing on small p-values are sensitive to positives.
* The statistics of Fisher's method (also known as Fisher's combined
probability test) [3]_ is :math:`-2\\sum_i \\log(p_i)`, which is
equivalent (as a test statistics) to the product of individual p-values:
:math:`\\prod_i p_i`. Under the null hypothesis, this statistics follows
a :math:`\\chi^2` distribution. This method emphasises small p-values.
* Pearson's method uses :math:`-2\\sum_i\\log(1-p_i)`, which is equivalent
to :math:`\\prod_i \\frac{1}{1-p_i}` [2]_.
It thus emphasises large p-values.
* Mudholkar and George compromise between Fisher's and Pearson's method by
averaging their statistics [4]_. Their method emphasises extreme
p-values, both close to 1 and 0.
* Stouffer's method [5]_ uses Z-scores and the statistic:
:math:`\\sum_i \\Phi^{-1} (p_i)`, where :math:`\\Phi` is the CDF of the
standard normal distribution. The advantage of this method is that it is
straightforward to introduce weights, which can make Stouffer's method
more powerful than Fisher's method when the p-values are from studies
of different size [6]_ [7]_.
* Tippett's method uses the smallest p-value as a statistic.
(Mind that this minimum is not the combined p-value.)
Fisher's method may be extended to combine p-values from dependent tests
[8]_. Extensions such as Brown's method and Kost's method are not currently
implemented.
.. versionadded:: 0.15.0
References
----------
.. [1] Kincaid, W. M., "The Combination of Tests Based on Discrete
Distributions." Journal of the American Statistical Association 57,
no. 297 (1962), 10-19.
.. [2] Heard, N. and Rubin-Delanchey, P. "Choosing between methods of
combining p-values." Biometrika 105.1 (2018): 239-246.
.. [3] https://en.wikipedia.org/wiki/Fisher%27s_method
.. [4] George, E. O., and G. S. Mudholkar. "On the convolution of logistic
random variables." Metrika 30.1 (1983): 1-13.
.. [5] https://en.wikipedia.org/wiki/Fisher%27s_method#Relation_to_Stouffer.27s_Z-score_method
.. [6] Whitlock, M. C. "Combining probability from independent tests: the
weighted Z-method is superior to Fisher's approach." Journal of
Evolutionary Biology 18, no. 5 (2005): 1368-1373.
.. [7] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method
for combining probabilities in meta-analysis." Journal of
Evolutionary Biology 24, no. 8 (2011): 1836-1841.
.. [8] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method
"""
pvalues = np.asarray(pvalues)
if pvalues.ndim != 1:
raise ValueError("pvalues is not 1-D")
if method == 'fisher':
statistic = -2 * np.sum(np.log(pvalues))
pval = distributions.chi2.sf(statistic, 2 * len(pvalues))
elif method == 'pearson':
statistic = 2 * np.sum(np.log1p(-pvalues))
pval = distributions.chi2.cdf(-statistic, 2 * len(pvalues))
elif method == 'mudholkar_george':
normalizing_factor = np.sqrt(3/len(pvalues))/np.pi
statistic = -np.sum(np.log(pvalues)) + np.sum(np.log1p(-pvalues))
nu = 5 * len(pvalues) + 4
approx_factor = np.sqrt(nu / (nu - 2))
pval = distributions.t.sf(statistic * normalizing_factor
* approx_factor, nu)
elif method == 'tippett':
statistic = np.min(pvalues)
pval = distributions.beta.cdf(statistic, 1, len(pvalues))
elif method == 'stouffer':
if weights is None:
weights = np.ones_like(pvalues)
elif len(weights) != len(pvalues):
raise ValueError("pvalues and weights must be of the same size.")
weights = np.asarray(weights)
if weights.ndim != 1:
raise ValueError("weights is not 1-D")
Zi = distributions.norm.isf(pvalues)
statistic = np.dot(weights, Zi) / np.linalg.norm(weights)
pval = distributions.norm.sf(statistic)
else:
raise ValueError(
f"Invalid method {method!r}. Valid methods are 'fisher', "
"'pearson', 'mudholkar_george', 'tippett', and 'stouffer'"
)
return SignificanceResult(statistic, pval)
#####################################
# STATISTICAL DISTANCES #
#####################################
def wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None):
r"""
Compute the first Wasserstein distance between two 1D distributions.
This distance is also known as the earth mover's distance, since it can be
seen as the minimum amount of "work" required to transform :math:`u` into
:math:`v`, where "work" is measured as the amount of distribution weight
that must be moved, multiplied by the distance it has to be moved.
.. versionadded:: 1.0.0
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The first Wasserstein distance between the distributions :math:`u` and
:math:`v` is:
.. math::
l_1 (u, v) = \inf_{\pi \in \Gamma (u, v)} \int_{\mathbb{R} \times
\mathbb{R}} |x-y| \mathrm{d} \pi (x, y)
where :math:`\Gamma (u, v)` is the set of (probability) distributions on
:math:`\mathbb{R} \times \mathbb{R}` whose marginals are :math:`u` and
:math:`v` on the first and second factors respectively.
If :math:`U` and :math:`V` are the respective CDFs of :math:`u` and
:math:`v`, this distance also equals to:
.. math::
l_1(u, v) = \int_{-\infty}^{+\infty} |U-V|
See [2]_ for a proof of the equivalence of both definitions.
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] "Wasserstein metric", https://en.wikipedia.org/wiki/Wasserstein_metric
.. [2] Ramdas, Garcia, Cuturi "On Wasserstein Two Sample Testing and Related
Families of Nonparametric Tests" (2015). :arXiv:`1509.02237`.
Examples
--------
>>> from scipy.stats import wasserstein_distance
>>> wasserstein_distance([0, 1, 3], [5, 6, 8])
5.0
>>> wasserstein_distance([0, 1], [0, 1], [3, 1], [2, 2])
0.25
>>> wasserstein_distance([3.4, 3.9, 7.5, 7.8], [4.5, 1.4],
... [1.4, 0.9, 3.1, 7.2], [3.2, 3.5])
4.0781331438047861
"""
return _cdf_distance(1, u_values, v_values, u_weights, v_weights)
def energy_distance(u_values, v_values, u_weights=None, v_weights=None):
r"""Compute the energy distance between two 1D distributions.
.. versionadded:: 1.0.0
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The energy distance between two distributions :math:`u` and :math:`v`, whose
respective CDFs are :math:`U` and :math:`V`, equals to:
.. math::
D(u, v) = \left( 2\mathbb E|X - Y| - \mathbb E|X - X'| -
\mathbb E|Y - Y'| \right)^{1/2}
where :math:`X` and :math:`X'` (resp. :math:`Y` and :math:`Y'`) are
independent random variables whose probability distribution is :math:`u`
(resp. :math:`v`).
Sometimes the square of this quantity is referred to as the "energy
distance" (e.g. in [2]_, [4]_), but as noted in [1]_ and [3]_, only the
definition above satisfies the axioms of a distance function (metric).
As shown in [2]_, for one-dimensional real-valued variables, the energy
distance is linked to the non-distribution-free version of the Cramér-von
Mises distance:
.. math::
D(u, v) = \sqrt{2} l_2(u, v) = \left( 2 \int_{-\infty}^{+\infty} (U-V)^2
\right)^{1/2}
Note that the common Cramér-von Mises criterion uses the distribution-free
version of the distance. See [2]_ (section 2), for more details about both
versions of the distance.
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] Rizzo, Szekely "Energy distance." Wiley Interdisciplinary Reviews:
Computational Statistics, 8(1):27-38 (2015).
.. [2] Szekely "E-statistics: The energy of statistical samples." Bowling
Green State University, Department of Mathematics and Statistics,
Technical Report 02-16 (2002).
.. [3] "Energy distance", https://en.wikipedia.org/wiki/Energy_distance
.. [4] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
Munos "The Cramer Distance as a Solution to Biased Wasserstein
Gradients" (2017). :arXiv:`1705.10743`.
Examples
--------
>>> from scipy.stats import energy_distance
>>> energy_distance([0], [2])
2.0000000000000004
>>> energy_distance([0, 8], [0, 8], [3, 1], [2, 2])
1.0000000000000002
>>> energy_distance([0.7, 7.4, 2.4, 6.8], [1.4, 8. ],
... [2.1, 4.2, 7.4, 8. ], [7.6, 8.8])
0.88003340976158217
"""
return np.sqrt(2) * _cdf_distance(2, u_values, v_values,
u_weights, v_weights)
def _cdf_distance(p, u_values, v_values, u_weights=None, v_weights=None):
r"""
Compute, between two one-dimensional distributions :math:`u` and
:math:`v`, whose respective CDFs are :math:`U` and :math:`V`, the
statistical distance that is defined as:
.. math::
l_p(u, v) = \left( \int_{-\infty}^{+\infty} |U-V|^p \right)^{1/p}
p is a positive parameter; p = 1 gives the Wasserstein distance, p = 2
gives the energy distance.
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
Munos "The Cramer Distance as a Solution to Biased Wasserstein
Gradients" (2017). :arXiv:`1705.10743`.
"""
u_values, u_weights = _validate_distribution(u_values, u_weights)
v_values, v_weights = _validate_distribution(v_values, v_weights)
u_sorter = np.argsort(u_values)
v_sorter = np.argsort(v_values)
all_values = np.concatenate((u_values, v_values))
all_values.sort(kind='mergesort')
# Compute the differences between pairs of successive values of u and v.
deltas = np.diff(all_values)
# Get the respective positions of the values of u and v among the values of
# both distributions.
u_cdf_indices = u_values[u_sorter].searchsorted(all_values[:-1], 'right')
v_cdf_indices = v_values[v_sorter].searchsorted(all_values[:-1], 'right')
# Calculate the CDFs of u and v using their weights, if specified.
if u_weights is None:
u_cdf = u_cdf_indices / u_values.size
else:
u_sorted_cumweights = np.concatenate(([0],
np.cumsum(u_weights[u_sorter])))
u_cdf = u_sorted_cumweights[u_cdf_indices] / u_sorted_cumweights[-1]
if v_weights is None:
v_cdf = v_cdf_indices / v_values.size
else:
v_sorted_cumweights = np.concatenate(([0],
np.cumsum(v_weights[v_sorter])))
v_cdf = v_sorted_cumweights[v_cdf_indices] / v_sorted_cumweights[-1]
# Compute the value of the integral based on the CDFs.
# If p = 1 or p = 2, we avoid using np.power, which introduces an overhead
# of about 15%.
if p == 1:
return np.sum(np.multiply(np.abs(u_cdf - v_cdf), deltas))
if p == 2:
return np.sqrt(np.sum(np.multiply(np.square(u_cdf - v_cdf), deltas)))
return np.power(np.sum(np.multiply(np.power(np.abs(u_cdf - v_cdf), p),
deltas)), 1/p)
def _validate_distribution(values, weights):
"""
Validate the values and weights from a distribution input of `cdf_distance`
and return them as ndarray objects.
Parameters
----------
values : array_like
Values observed in the (empirical) distribution.
weights : array_like
Weight for each value.
Returns
-------
values : ndarray
Values as ndarray.
weights : ndarray
Weights as ndarray.
"""
# Validate the value array.
values = np.asarray(values, dtype=float)
if len(values) == 0:
raise ValueError("Distribution can't be empty.")
# Validate the weight array, if specified.
if weights is not None:
weights = np.asarray(weights, dtype=float)
if len(weights) != len(values):
raise ValueError('Value and weight array-likes for the same '
'empirical distribution must be of the same size.')
if np.any(weights < 0):
raise ValueError('All weights must be non-negative.')
if not 0 < np.sum(weights) < np.inf:
raise ValueError('Weight array-like sum must be positive and '
'finite. Set as None for an equal distribution of '
'weight.')
return values, weights
return values, None
#####################################
# SUPPORT FUNCTIONS #
#####################################
RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts'))
def find_repeats(arr):
"""Find repeats and repeat counts.
Parameters
----------
arr : array_like
Input array. This is cast to float64.
Returns
-------
values : ndarray
The unique values from the (flattened) input that are repeated.
counts : ndarray
Number of times the corresponding 'value' is repeated.
Notes
-----
In numpy >= 1.9 `numpy.unique` provides similar functionality. The main
difference is that `find_repeats` only returns repeated values.
Examples
--------
>>> from scipy import stats
>>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
RepeatedResults(values=array([2.]), counts=array([4]))
>>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
RepeatedResults(values=array([4., 5.]), counts=array([2, 2]))
"""
# Note: always copies.
return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64)))
def _sum_of_squares(a, axis=0):
"""Square each element of the input array, and return the sum(s) of that.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
sum_of_squares : ndarray
The sum along the given axis for (a**2).
See Also
--------
_square_of_sums : The square(s) of the sum(s) (the opposite of
`_sum_of_squares`).
"""
a, axis = _chk_asarray(a, axis)
return np.sum(a*a, axis)
def _square_of_sums(a, axis=0):
"""Sum elements of the input array, and return the square(s) of that sum.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
square_of_sums : float or ndarray
The square of the sum over `axis`.
See Also
--------
_sum_of_squares : The sum of squares (the opposite of `square_of_sums`).
"""
a, axis = _chk_asarray(a, axis)
s = np.sum(a, axis)
if not np.isscalar(s):
return s.astype(float) * s
else:
return float(s) * s
def rankdata(a, method='average', *, axis=None, nan_policy='propagate'):
"""Assign ranks to data, dealing with ties appropriately.
By default (``axis=None``), the data array is first flattened, and a flat
array of ranks is returned. Separately reshape the rank array to the
shape of the data array if desired (see Examples).
Ranks begin at 1. The `method` argument controls how ranks are assigned
to equal values. See [1]_ for further discussion of ranking methods.
Parameters
----------
a : array_like
The array of values to be ranked.
method : {'average', 'min', 'max', 'dense', 'ordinal'}, optional
The method used to assign ranks to tied elements.
The following methods are available (default is 'average'):
* 'average': The average of the ranks that would have been assigned to
all the tied values is assigned to each value.
* 'min': The minimum of the ranks that would have been assigned to all
the tied values is assigned to each value. (This is also
referred to as "competition" ranking.)
* 'max': The maximum of the ranks that would have been assigned to all
the tied values is assigned to each value.
* 'dense': Like 'min', but the rank of the next highest element is
assigned the rank immediately after those assigned to the tied
elements.
* 'ordinal': All values are given a distinct rank, corresponding to
the order that the values occur in `a`.
axis : {None, int}, optional
Axis along which to perform the ranking. If ``None``, the data array
is first flattened.
nan_policy : {'propagate', 'omit', 'raise'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': propagates nans through the rank calculation
* 'omit': performs the calculations ignoring nan values
* 'raise': raises an error
.. note::
When `nan_policy` is 'propagate', the output is an array of *all*
nans because ranks relative to nans in the input are undefined.
When `nan_policy` is 'omit', nans in `a` are ignored when ranking
the other values, and the corresponding locations of the output
are nan.
.. versionadded:: 1.10
Returns
-------
ranks : ndarray
An array of size equal to the size of `a`, containing rank
scores.
References
----------
.. [1] "Ranking", https://en.wikipedia.org/wiki/Ranking
Examples
--------
>>> import numpy as np
>>> from scipy.stats import rankdata
>>> rankdata([0, 2, 3, 2])
array([ 1. , 2.5, 4. , 2.5])
>>> rankdata([0, 2, 3, 2], method='min')
array([ 1, 2, 4, 2])
>>> rankdata([0, 2, 3, 2], method='max')
array([ 1, 3, 4, 3])
>>> rankdata([0, 2, 3, 2], method='dense')
array([ 1, 2, 3, 2])
>>> rankdata([0, 2, 3, 2], method='ordinal')
array([ 1, 2, 4, 3])
>>> rankdata([[0, 2], [3, 2]]).reshape(2,2)
array([[1. , 2.5],
[4. , 2.5]])
>>> rankdata([[0, 2, 2], [3, 2, 5]], axis=1)
array([[1. , 2.5, 2.5],
[2. , 1. , 3. ]])
>>> rankdata([0, 2, 3, np.nan, -2, np.nan], nan_policy="propagate")
array([nan, nan, nan, nan, nan, nan])
>>> rankdata([0, 2, 3, np.nan, -2, np.nan], nan_policy="omit")
array([ 2., 3., 4., nan, 1., nan])
"""
if method not in ('average', 'min', 'max', 'dense', 'ordinal'):
raise ValueError(f'unknown method "{method}"')
a = np.asarray(a)
if axis is not None:
if a.size == 0:
# The return values of `normalize_axis_index` are ignored. The
# call validates `axis`, even though we won't use it.
# use scipy._lib._util._normalize_axis_index when available
np.core.multiarray.normalize_axis_index(axis, a.ndim)
dt = np.float64 if method == 'average' else np.int_
return np.empty(a.shape, dtype=dt)
return np.apply_along_axis(rankdata, axis, a, method,
nan_policy=nan_policy)
arr = np.ravel(a)
contains_nan, nan_policy = _contains_nan(arr, nan_policy)
nan_indexes = None
if contains_nan:
if nan_policy == 'omit':
nan_indexes = np.isnan(arr)
if nan_policy == 'propagate':
return np.full_like(arr, np.nan)
algo = 'mergesort' if method == 'ordinal' else 'quicksort'
sorter = np.argsort(arr, kind=algo)
inv = np.empty(sorter.size, dtype=np.intp)
inv[sorter] = np.arange(sorter.size, dtype=np.intp)
if method == 'ordinal':
result = inv + 1
else:
arr = arr[sorter]
obs = np.r_[True, arr[1:] != arr[:-1]]
dense = obs.cumsum()[inv]
if method == 'dense':
result = dense
else:
# cumulative counts of each unique value
count = np.r_[np.nonzero(obs)[0], len(obs)]
if method == 'max':
result = count[dense]
if method == 'min':
result = count[dense - 1] + 1
if method == 'average':
result = .5 * (count[dense] + count[dense - 1] + 1)
if nan_indexes is not None:
result = result.astype('float64')
result[nan_indexes] = np.nan
return result
def expectile(a, alpha=0.5, *, weights=None):
r"""Compute the expectile at the specified level.
Expectiles are a generalization of the expectation in the same way as
quantiles are a generalization of the median. The expectile at level
`alpha = 0.5` is the mean (average). See Notes for more details.
Parameters
----------
a : array_like
Array containing numbers whose expectile is desired.
alpha : float, default: 0.5
The level of the expectile; e.g., `alpha=0.5` gives the mean.
weights : array_like, optional
An array of weights associated with the values in `a`.
The `weights` must be broadcastable to the same shape as `a`.
Default is None, which gives each value a weight of 1.0.
An integer valued weight element acts like repeating the corresponding
observation in `a` that many times. See Notes for more details.
Returns
-------
expectile : ndarray
The empirical expectile at level `alpha`.
See Also
--------
numpy.mean : Arithmetic average
numpy.quantile : Quantile
Notes
-----
In general, the expectile at level :math:`\alpha` of a random variable
:math:`X` with cumulative distribution function (CDF) :math:`F` is given
by the unique solution :math:`t` of:
.. math::
\alpha E((X - t)_+) = (1 - \alpha) E((t - X)_+) \,.
Here, :math:`(x)_+ = \max(0, x)` is the positive part of :math:`x`.
This equation can be equivalently written as:
.. math::
\alpha \int_t^\infty (x - t)\mathrm{d}F(x)
= (1 - \alpha) \int_{-\infty}^t (t - x)\mathrm{d}F(x) \,.
The empirical expectile at level :math:`\alpha` (`alpha`) of a sample
:math:`a_i` (the array `a`) is defined by plugging in the empirical CDF of
`a`. Given sample or case weights :math:`w` (the array `weights`), it
reads :math:`F_a(x) = \frac{1}{\sum_i w_i} \sum_i w_i 1_{a_i \leq x}`
with indicator function :math:`1_{A}`. This leads to the definition of the
empirical expectile at level `alpha` as the unique solution :math:`t` of:
.. math::
\alpha \sum_{i=1}^n w_i (a_i - t)_+ =
(1 - \alpha) \sum_{i=1}^n w_i (t - a_i)_+ \,.
For :math:`\alpha=0.5`, this simplifies to the weighted average.
Furthermore, the larger :math:`\alpha`, the larger the value of the
expectile.
As a final remark, the expectile at level :math:`\alpha` can also be
written as a minimization problem. One often used choice is
.. math::
\operatorname{argmin}_t
E(\lvert 1_{t\geq X} - \alpha\rvert(t - X)^2) \,.
References
----------
.. [1] W. K. Newey and J. L. Powell (1987), "Asymmetric Least Squares
Estimation and Testing," Econometrica, 55, 819-847.
.. [2] T. Gneiting (2009). "Making and Evaluating Point Forecasts,"
Journal of the American Statistical Association, 106, 746 - 762.
:doi:`10.48550/arXiv.0912.0902`
Examples
--------
>>> import numpy as np
>>> from scipy.stats import expectile
>>> a = [1, 4, 2, -1]
>>> expectile(a, alpha=0.5) == np.mean(a)
True
>>> expectile(a, alpha=0.2)
0.42857142857142855
>>> expectile(a, alpha=0.8)
2.5714285714285716
>>> weights = [1, 3, 1, 1]
"""
if alpha < 0 or alpha > 1:
raise ValueError(
"The expectile level alpha must be in the range [0, 1]."
)
a = np.asarray(a)
if weights is not None:
weights = np.broadcast_to(weights, a.shape)
# This is the empirical equivalent of Eq. (13) with identification
# function from Table 9 (omitting a factor of 2) in [2] (their y is our
# data a, their x is our t)
def first_order(t):
return np.average(np.abs((a <= t) - alpha) * (t - a), weights=weights)
if alpha >= 0.5:
x0 = np.average(a, weights=weights)
x1 = np.amax(a)
else:
x1 = np.average(a, weights=weights)
x0 = np.amin(a)
if x0 == x1:
# a has a single unique element
return x0
# Note that the expectile is the unique solution, so no worries about
# finding a wrong root.
res = root_scalar(first_order, x0=x0, x1=x1)
return res.root
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@scipy@py3@scipy@stats@_stats_py.py@.PATH_END.py
|
{
"filename": "polarizability.py",
"repo_name": "HajimeKawahara/exojax",
"repo_path": "exojax_extracted/exojax-master/src/exojax/atm/polarizability.py",
"type": "Python"
}
|
""" Gas Polarizability
Notes:
Originally taken from PICASO/GPLv3 picaso/rayleigh.py
polarizabilities are mainly taken from
CRC handbook of chemistry and physics vol. 95 unit=cm3
H3+ taken from Kawaoka & Borkman, 1971
Number density at reference conditions of refractive index measurements
i.e. number density of the ideal gas at T=273.15K (=0 C) and P=1atm [cm-2], as Patm*bar_cgs / (kB * 273.15)
http://refractiveindex.info
n_ref_refractive = 2.6867810458916872e+19
"""
polarizability = {
'H2': 0.804e-24,
'He': 0.21e-24,
'N2': 1.74e-24,
'O2': 1.57e-24,
'O3': 3.21e-24,
'H2O': 1.45e-24,
'CH4': 2.593e-24,
'C2H2': 3.33e-24,
'CO': 1.95e-24,
'CO2': 2.911e-24,
'NH3': 2.26e-24,
'HCN': 2.59e-24,
'PH3': 4.84e-24,
'SO2': 3.72e-24,
'SO3': 4.84e-24,
'C2H2': 3.33e-24,
'H2S': 3.78e-24,
'NO': 1.70e-24,
'NO2': 3.02e-24,
'H3+': 0.385e-24,
'OH': 6.965e-24,
'Na': 24.11e-24,
'K': 42.9e-24,
'Li': 24.33e-24,
'Rb': 47.39e-24,
'Cs': 59.42e-24,
'TiO': 16.9e-24,
'VO': 14.4e-24,
'AlO': 8.22e-24,
'SiO': 5.53e-24,
'CaO': 23.8e-24,
'TiH': 16.9e-24,
'MgH': 10.5e-24,
'NaH': 24.11e-24,
'AlH': 8.22e-24,
'CrH': 11.6e-24,
'FeH': 9.47e-24,
'CaH': 23.8e-24,
'BeH': 5.60e-24,
'ScH': 21.2e-24
}
king_correction_factor = {
"O3": 1.060000,
"CO": 1.016995,
"C2H2": 1.064385,
"C2H6": 1.006063,
"OCS": 1.138786,
"CH3Cl": 1.026042,
"H2S": 1.001880,
"SO2": 1.062638
}
|
HajimeKawaharaREPO_NAMEexojaxPATH_START.@exojax_extracted@exojax-master@src@exojax@atm@polarizability.py@.PATH_END.py
|
{
"filename": "gaussian_noise.py",
"repo_name": "keras-team/keras",
"repo_path": "keras_extracted/keras-master/keras/src/layers/regularization/gaussian_noise.py",
"type": "Python"
}
|
from keras.src import backend
from keras.src import layers
from keras.src import ops
from keras.src.api_export import keras_export
@keras_export("keras.layers.GaussianNoise")
class GaussianNoise(layers.Layer):
"""Apply additive zero-centered Gaussian noise.
This is useful to mitigate overfitting
(you could see it as a form of random data augmentation).
Gaussian Noise (GS) is a natural choice as corruption process
for real valued inputs.
As it is a regularization layer, it is only active at training time.
Args:
stddev: Float, standard deviation of the noise distribution.
seed: Integer, optional random seed to enable deterministic behavior.
Call arguments:
inputs: Input tensor (of any rank).
training: Python boolean indicating whether the layer should behave in
training mode (adding noise) or in inference mode (doing nothing).
"""
def __init__(self, stddev, seed=None, **kwargs):
super().__init__(**kwargs)
if not 0 <= stddev <= 1:
raise ValueError(
f"Invalid value received for argument "
"`stddev`. Expected a float value between 0 and 1. "
f"Received: stddev={stddev}"
)
self.stddev = stddev
self.seed = seed
if stddev > 0:
self.seed_generator = backend.random.SeedGenerator(seed)
self.supports_masking = True
self.built = True
def call(self, inputs, training=False):
if training and self.stddev > 0:
return inputs + backend.random.normal(
shape=ops.shape(inputs),
mean=0.0,
stddev=self.stddev,
dtype=self.compute_dtype,
seed=self.seed_generator,
)
return inputs
def compute_output_shape(self, input_shape):
return input_shape
def get_config(self):
base_config = super().get_config()
config = {
"stddev": self.stddev,
"seed": self.seed,
}
return {**base_config, **config}
|
keras-teamREPO_NAMEkerasPATH_START.@keras_extracted@keras-master@keras@src@layers@regularization@gaussian_noise.py@.PATH_END.py
|
{
"filename": "_densitymap.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/graph_objs/_densitymap.py",
"type": "Python"
}
|
from plotly.basedatatypes import BaseTraceType as _BaseTraceType
import copy as _copy
class Densitymap(_BaseTraceType):
# class properties
# --------------------
_parent_path_str = ""
_path_str = "densitymap"
_valid_props = {
"autocolorscale",
"below",
"coloraxis",
"colorbar",
"colorscale",
"customdata",
"customdatasrc",
"hoverinfo",
"hoverinfosrc",
"hoverlabel",
"hovertemplate",
"hovertemplatesrc",
"hovertext",
"hovertextsrc",
"ids",
"idssrc",
"lat",
"latsrc",
"legend",
"legendgroup",
"legendgrouptitle",
"legendrank",
"legendwidth",
"lon",
"lonsrc",
"meta",
"metasrc",
"name",
"opacity",
"radius",
"radiussrc",
"reversescale",
"showlegend",
"showscale",
"stream",
"subplot",
"text",
"textsrc",
"type",
"uid",
"uirevision",
"visible",
"z",
"zauto",
"zmax",
"zmid",
"zmin",
"zsrc",
}
# autocolorscale
# --------------
@property
def autocolorscale(self):
"""
Determines whether the colorscale is a default palette
(`autocolorscale: true`) or the palette determined by
`colorscale`. In case `colorscale` is unspecified or
`autocolorscale` is true, the default palette will be chosen
according to whether numbers in the `color` array are all
positive, all negative or mixed.
The 'autocolorscale' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["autocolorscale"]
@autocolorscale.setter
def autocolorscale(self, val):
self["autocolorscale"] = val
# below
# -----
@property
def below(self):
"""
Determines if the densitymap trace will be inserted before the
layer with the specified ID. By default, densitymap traces are
placed below the first layer of type symbol If set to '', the
layer will be inserted above every existing layer.
The 'below' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["below"]
@below.setter
def below(self, val):
self["below"] = val
# coloraxis
# ---------
@property
def coloraxis(self):
"""
Sets a reference to a shared color axis. References to these
shared color axes are "coloraxis", "coloraxis2", "coloraxis3",
etc. Settings for these shared color axes are set in the
layout, under `layout.coloraxis`, `layout.coloraxis2`, etc.
Note that multiple color scales can be linked to the same color
axis.
The 'coloraxis' property is an identifier of a particular
subplot, of type 'coloraxis', that may be specified as the string 'coloraxis'
optionally followed by an integer >= 1
(e.g. 'coloraxis', 'coloraxis1', 'coloraxis2', 'coloraxis3', etc.)
Returns
-------
str
"""
return self["coloraxis"]
@coloraxis.setter
def coloraxis(self, val):
self["coloraxis"] = val
# colorbar
# --------
@property
def colorbar(self):
"""
The 'colorbar' property is an instance of ColorBar
that may be specified as:
- An instance of :class:`plotly.graph_objs.densitymap.ColorBar`
- A dict of string/value properties that will be passed
to the ColorBar constructor
Supported dict properties:
bgcolor
Sets the color of padded area.
bordercolor
Sets the axis line color.
borderwidth
Sets the width (in px) or the border enclosing
this color bar.
dtick
Sets the step in-between ticks on this axis.
Use with `tick0`. Must be a positive number, or
special strings available to "log" and "date"
axes. If the axis `type` is "log", then ticks
are set every 10^(n*dtick) where n is the tick
number. For example, to set a tick mark at 1,
10, 100, 1000, ... set dtick to 1. To set tick
marks at 1, 100, 10000, ... set dtick to 2. To
set tick marks at 1, 5, 25, 125, 625, 3125, ...
set dtick to log_10(5), or 0.69897000433. "log"
has several special values; "L<f>", where `f`
is a positive number, gives ticks linearly
spaced in value (but not position). For example
`tick0` = 0.1, `dtick` = "L0.5" will put ticks
at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10
plus small digits between, use "D1" (all
digits) or "D2" (only 2 and 5). `tick0` is
ignored for "D1" and "D2". If the axis `type`
is "date", then you must convert the time to
milliseconds. For example, to set the interval
between ticks to one day, set `dtick` to
86400000.0. "date" also has special values
"M<n>" gives ticks spaced by a number of
months. `n` must be a positive integer. To set
ticks on the 15th of every third month, set
`tick0` to "2000-01-15" and `dtick` to "M3". To
set ticks every 4 years, set `dtick` to "M48"
exponentformat
Determines a formatting rule for the tick
exponents. For example, consider the number
1,000,000,000. If "none", it appears as
1,000,000,000. If "e", 1e+9. If "E", 1E+9. If
"power", 1x10^9 (with 9 in a super script). If
"SI", 1G. If "B", 1B.
labelalias
Replacement text for specific tick or hover
labels. For example using {US: 'USA', CA:
'Canada'} changes US to USA and CA to Canada.
The labels we would have shown must match the
keys exactly, after adding any tickprefix or
ticksuffix. For negative numbers the minus sign
symbol used (U+2212) is wider than the regular
ascii dash. That means you need to use −1
instead of -1. labelalias can be used with any
axis type, and both keys (if needed) and values
(if desired) can include html-like tags or
MathJax.
len
Sets the length of the color bar This measure
excludes the padding of both ends. That is, the
color bar length is this length minus the
padding on both ends.
lenmode
Determines whether this color bar's length
(i.e. the measure in the color variation
direction) is set in units of plot "fraction"
or in *pixels. Use `len` to set the value.
minexponent
Hide SI prefix for 10^n if |n| is below this
number. This only has an effect when
`tickformat` is "SI" or "B".
nticks
Specifies the maximum number of ticks for the
particular axis. The actual number of ticks
will be chosen automatically to be less than or
equal to `nticks`. Has an effect only if
`tickmode` is set to "auto".
orientation
Sets the orientation of the colorbar.
outlinecolor
Sets the axis line color.
outlinewidth
Sets the width (in px) of the axis line.
separatethousands
If "true", even 4-digit integers are separated
showexponent
If "all", all exponents are shown besides their
significands. If "first", only the exponent of
the first tick is shown. If "last", only the
exponent of the last tick is shown. If "none",
no exponents appear.
showticklabels
Determines whether or not the tick labels are
drawn.
showtickprefix
If "all", all tick labels are displayed with a
prefix. If "first", only the first tick is
displayed with a prefix. If "last", only the
last tick is displayed with a suffix. If
"none", tick prefixes are hidden.
showticksuffix
Same as `showtickprefix` but for tick suffixes.
thickness
Sets the thickness of the color bar This
measure excludes the size of the padding, ticks
and labels.
thicknessmode
Determines whether this color bar's thickness
(i.e. the measure in the constant color
direction) is set in units of plot "fraction"
or in "pixels". Use `thickness` to set the
value.
tick0
Sets the placement of the first tick on this
axis. Use with `dtick`. If the axis `type` is
"log", then you must take the log of your
starting tick (e.g. to set the starting tick to
100, set the `tick0` to 2) except when
`dtick`=*L<f>* (see `dtick` for more info). If
the axis `type` is "date", it should be a date
string, like date data. If the axis `type` is
"category", it should be a number, using the
scale where each category is assigned a serial
number from zero in the order it appears.
tickangle
Sets the angle of the tick labels with respect
to the horizontal. For example, a `tickangle`
of -90 draws the tick labels vertically.
tickcolor
Sets the tick color.
tickfont
Sets the color bar's tick label font
tickformat
Sets the tick label formatting rule using d3
formatting mini-languages which are very
similar to those in Python. For numbers, see: h
ttps://github.com/d3/d3-format/tree/v1.4.5#d3-
format. And for dates see:
https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two
items to d3's date formatter: "%h" for half of
the year as a decimal number as well as "%{n}f"
for fractional seconds with n digits. For
example, *2016-10-13 09:15:23.456* with
tickformat "%H~%M~%S.%2f" would display
"09~15~23.46"
tickformatstops
A tuple of :class:`plotly.graph_objects.density
map.colorbar.Tickformatstop` instances or dicts
with compatible properties
tickformatstopdefaults
When used in a template (as layout.template.dat
a.densitymap.colorbar.tickformatstopdefaults),
sets the default property values to use for
elements of densitymap.colorbar.tickformatstops
ticklabeloverflow
Determines how we handle tick labels that would
overflow either the graph div or the domain of
the axis. The default value for inside tick
labels is *hide past domain*. In other cases
the default is *hide past div*.
ticklabelposition
Determines where tick labels are drawn relative
to the ticks. Left and right options are used
when `orientation` is "h", top and bottom when
`orientation` is "v".
ticklabelstep
Sets the spacing between tick labels as
compared to the spacing between ticks. A value
of 1 (default) means each tick gets a label. A
value of 2 means shows every 2nd label. A
larger value n means only every nth tick is
labeled. `tick0` determines which labels are
shown. Not implemented for axes with `type`
"log" or "multicategory", or when `tickmode` is
"array".
ticklen
Sets the tick length (in px).
tickmode
Sets the tick mode for this axis. If "auto",
the number of ticks is set via `nticks`. If
"linear", the placement of the ticks is
determined by a starting position `tick0` and a
tick step `dtick` ("linear" is the default
value if `tick0` and `dtick` are provided). If
"array", the placement of the ticks is set via
`tickvals` and the tick text is `ticktext`.
("array" is the default value if `tickvals` is
provided).
tickprefix
Sets a tick label prefix.
ticks
Determines whether ticks are drawn or not. If
"", this axis' ticks are not drawn. If
"outside" ("inside"), this axis' are drawn
outside (inside) the axis lines.
ticksuffix
Sets a tick label suffix.
ticktext
Sets the text displayed at the ticks position
via `tickvals`. Only has an effect if
`tickmode` is set to "array". Used with
`tickvals`.
ticktextsrc
Sets the source reference on Chart Studio Cloud
for `ticktext`.
tickvals
Sets the values at which ticks on this axis
appear. Only has an effect if `tickmode` is set
to "array". Used with `ticktext`.
tickvalssrc
Sets the source reference on Chart Studio Cloud
for `tickvals`.
tickwidth
Sets the tick width (in px).
title
:class:`plotly.graph_objects.densitymap.colorba
r.Title` instance or dict with compatible
properties
titlefont
Deprecated: Please use
densitymap.colorbar.title.font instead. Sets
this color bar's title font. Note that the
title's font used to be set by the now
deprecated `titlefont` attribute.
titleside
Deprecated: Please use
densitymap.colorbar.title.side instead.
Determines the location of color bar's title
with respect to the color bar. Defaults to
"top" when `orientation` if "v" and defaults
to "right" when `orientation` if "h". Note that
the title's location used to be set by the now
deprecated `titleside` attribute.
x
Sets the x position with respect to `xref` of
the color bar (in plot fraction). When `xref`
is "paper", defaults to 1.02 when `orientation`
is "v" and 0.5 when `orientation` is "h". When
`xref` is "container", defaults to 1 when
`orientation` is "v" and 0.5 when `orientation`
is "h". Must be between 0 and 1 if `xref` is
"container" and between "-2" and 3 if `xref` is
"paper".
xanchor
Sets this color bar's horizontal position
anchor. This anchor binds the `x` position to
the "left", "center" or "right" of the color
bar. Defaults to "left" when `orientation` is
"v" and "center" when `orientation` is "h".
xpad
Sets the amount of padding (in px) along the x
direction.
xref
Sets the container `x` refers to. "container"
spans the entire `width` of the plot. "paper"
refers to the width of the plotting area only.
y
Sets the y position with respect to `yref` of
the color bar (in plot fraction). When `yref`
is "paper", defaults to 0.5 when `orientation`
is "v" and 1.02 when `orientation` is "h". When
`yref` is "container", defaults to 0.5 when
`orientation` is "v" and 1 when `orientation`
is "h". Must be between 0 and 1 if `yref` is
"container" and between "-2" and 3 if `yref` is
"paper".
yanchor
Sets this color bar's vertical position anchor
This anchor binds the `y` position to the
"top", "middle" or "bottom" of the color bar.
Defaults to "middle" when `orientation` is "v"
and "bottom" when `orientation` is "h".
ypad
Sets the amount of padding (in px) along the y
direction.
yref
Sets the container `y` refers to. "container"
spans the entire `height` of the plot. "paper"
refers to the height of the plotting area only.
Returns
-------
plotly.graph_objs.densitymap.ColorBar
"""
return self["colorbar"]
@colorbar.setter
def colorbar(self, val):
self["colorbar"] = val
# colorscale
# ----------
@property
def colorscale(self):
"""
Sets the colorscale. The colorscale must be an array containing
arrays mapping a normalized value to an rgb, rgba, hex, hsl,
hsv, or named color string. At minimum, a mapping for the
lowest (0) and highest (1) values are required. For example,
`[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the
bounds of the colorscale in color space, use `zmin` and `zmax`.
Alternatively, `colorscale` may be a palette name string of the
following list: Blackbody,Bluered,Blues,Cividis,Earth,Electric,
Greens,Greys,Hot,Jet,Picnic,Portland,Rainbow,RdBu,Reds,Viridis,
YlGnBu,YlOrRd.
The 'colorscale' property is a colorscale and may be
specified as:
- A list of colors that will be spaced evenly to create the colorscale.
Many predefined colorscale lists are included in the sequential, diverging,
and cyclical modules in the plotly.colors package.
- A list of 2-element lists where the first element is the
normalized color level value (starting at 0 and ending at 1),
and the second item is a valid color string.
(e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']])
- One of the following named colorscales:
['aggrnyl', 'agsunset', 'algae', 'amp', 'armyrose', 'balance',
'blackbody', 'bluered', 'blues', 'blugrn', 'bluyl', 'brbg',
'brwnyl', 'bugn', 'bupu', 'burg', 'burgyl', 'cividis', 'curl',
'darkmint', 'deep', 'delta', 'dense', 'earth', 'edge', 'electric',
'emrld', 'fall', 'geyser', 'gnbu', 'gray', 'greens', 'greys',
'haline', 'hot', 'hsv', 'ice', 'icefire', 'inferno', 'jet',
'magenta', 'magma', 'matter', 'mint', 'mrybm', 'mygbm', 'oranges',
'orrd', 'oryel', 'oxy', 'peach', 'phase', 'picnic', 'pinkyl',
'piyg', 'plasma', 'plotly3', 'portland', 'prgn', 'pubu', 'pubugn',
'puor', 'purd', 'purp', 'purples', 'purpor', 'rainbow', 'rdbu',
'rdgy', 'rdpu', 'rdylbu', 'rdylgn', 'redor', 'reds', 'solar',
'spectral', 'speed', 'sunset', 'sunsetdark', 'teal', 'tealgrn',
'tealrose', 'tempo', 'temps', 'thermal', 'tropic', 'turbid',
'turbo', 'twilight', 'viridis', 'ylgn', 'ylgnbu', 'ylorbr',
'ylorrd'].
Appending '_r' to a named colorscale reverses it.
Returns
-------
str
"""
return self["colorscale"]
@colorscale.setter
def colorscale(self, val):
self["colorscale"] = val
# customdata
# ----------
@property
def customdata(self):
"""
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note that,
"scatter" traces also appends customdata items in the markers
DOM elements
The 'customdata' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["customdata"]
@customdata.setter
def customdata(self, val):
self["customdata"] = val
# customdatasrc
# -------------
@property
def customdatasrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`customdata`.
The 'customdatasrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["customdatasrc"]
@customdatasrc.setter
def customdatasrc(self, val):
self["customdatasrc"] = val
# hoverinfo
# ---------
@property
def hoverinfo(self):
"""
Determines which trace information appear on hover. If `none`
or `skip` are set, no information is displayed upon hovering.
But, if `none` is set, click and hover events are still fired.
The 'hoverinfo' property is a flaglist and may be specified
as a string containing:
- Any combination of ['lon', 'lat', 'z', 'text', 'name'] joined with '+' characters
(e.g. 'lon+lat')
OR exactly one of ['all', 'none', 'skip'] (e.g. 'skip')
- A list or array of the above
Returns
-------
Any|numpy.ndarray
"""
return self["hoverinfo"]
@hoverinfo.setter
def hoverinfo(self, val):
self["hoverinfo"] = val
# hoverinfosrc
# ------------
@property
def hoverinfosrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
The 'hoverinfosrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["hoverinfosrc"]
@hoverinfosrc.setter
def hoverinfosrc(self, val):
self["hoverinfosrc"] = val
# hoverlabel
# ----------
@property
def hoverlabel(self):
"""
The 'hoverlabel' property is an instance of Hoverlabel
that may be specified as:
- An instance of :class:`plotly.graph_objs.densitymap.Hoverlabel`
- A dict of string/value properties that will be passed
to the Hoverlabel constructor
Supported dict properties:
align
Sets the horizontal alignment of the text
content within hover label box. Has an effect
only if the hover label text spans more two or
more lines
alignsrc
Sets the source reference on Chart Studio Cloud
for `align`.
bgcolor
Sets the background color of the hover labels
for this trace
bgcolorsrc
Sets the source reference on Chart Studio Cloud
for `bgcolor`.
bordercolor
Sets the border color of the hover labels for
this trace.
bordercolorsrc
Sets the source reference on Chart Studio Cloud
for `bordercolor`.
font
Sets the font used in hover labels.
namelength
Sets the default length (in number of
characters) of the trace name in the hover
labels for all traces. -1 shows the whole name
regardless of length. 0-3 shows the first 0-3
characters, and an integer >3 will show the
whole name if it is less than that many
characters, but if it is longer, will truncate
to `namelength - 3` characters and add an
ellipsis.
namelengthsrc
Sets the source reference on Chart Studio Cloud
for `namelength`.
Returns
-------
plotly.graph_objs.densitymap.Hoverlabel
"""
return self["hoverlabel"]
@hoverlabel.setter
def hoverlabel(self, val):
self["hoverlabel"] = val
# hovertemplate
# -------------
@property
def hovertemplate(self):
"""
Template string used for rendering the information that appear
on hover box. Note that this will override `hoverinfo`.
Variables are inserted using %{variable}, for example "y: %{y}"
as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When
showing info for several points, "xother" will be added to
those with different x positions from the first point. An
underscore before or after "(x|y)other" will add a space on
that side, only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format for
details on the formatting syntax. Dates are formatted using
d3-time-format's syntax %{variable|d3-time-format}, for example
"Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the date
formatting syntax. The variables available in `hovertemplate`
are the ones emitted as event data described at this link
https://plotly.com/javascript/plotlyjs-events/#event-data.
Additionally, every attributes that can be specified per-point
(the ones that are `arrayOk: true`) are available. Anything
contained in tag `<extra>` is displayed in the secondary box,
for example "<extra>{fullData.name}</extra>". To hide the
secondary box completely, use an empty tag `<extra></extra>`.
The 'hovertemplate' property is a string and must be specified as:
- A string
- A number that will be converted to a string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
"""
return self["hovertemplate"]
@hovertemplate.setter
def hovertemplate(self, val):
self["hovertemplate"] = val
# hovertemplatesrc
# ----------------
@property
def hovertemplatesrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
The 'hovertemplatesrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["hovertemplatesrc"]
@hovertemplatesrc.setter
def hovertemplatesrc(self, val):
self["hovertemplatesrc"] = val
# hovertext
# ---------
@property
def hovertext(self):
"""
Sets hover text elements associated with each (lon,lat) pair If
a single string, the same string appears over all the data
points. If an array of string, the items are mapped in order to
the this trace's (lon,lat) coordinates. To be seen, trace
`hoverinfo` must contain a "text" flag.
The 'hovertext' property is a string and must be specified as:
- A string
- A number that will be converted to a string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
"""
return self["hovertext"]
@hovertext.setter
def hovertext(self, val):
self["hovertext"] = val
# hovertextsrc
# ------------
@property
def hovertextsrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`hovertext`.
The 'hovertextsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["hovertextsrc"]
@hovertextsrc.setter
def hovertextsrc(self, val):
self["hovertextsrc"] = val
# ids
# ---
@property
def ids(self):
"""
Assigns id labels to each datum. These ids for object constancy
of data points during animation. Should be an array of strings,
not numbers or any other type.
The 'ids' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["ids"]
@ids.setter
def ids(self, val):
self["ids"] = val
# idssrc
# ------
@property
def idssrc(self):
"""
Sets the source reference on Chart Studio Cloud for `ids`.
The 'idssrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["idssrc"]
@idssrc.setter
def idssrc(self, val):
self["idssrc"] = val
# lat
# ---
@property
def lat(self):
"""
Sets the latitude coordinates (in degrees North).
The 'lat' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["lat"]
@lat.setter
def lat(self, val):
self["lat"] = val
# latsrc
# ------
@property
def latsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `lat`.
The 'latsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["latsrc"]
@latsrc.setter
def latsrc(self, val):
self["latsrc"] = val
# legend
# ------
@property
def legend(self):
"""
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2", "legend3",
etc. Settings for these legends are set in the layout, under
`layout.legend`, `layout.legend2`, etc.
The 'legend' property is an identifier of a particular
subplot, of type 'legend', that may be specified as the string 'legend'
optionally followed by an integer >= 1
(e.g. 'legend', 'legend1', 'legend2', 'legend3', etc.)
Returns
-------
str
"""
return self["legend"]
@legend.setter
def legend(self, val):
self["legend"] = val
# legendgroup
# -----------
@property
def legendgroup(self):
"""
Sets the legend group for this trace. Traces and shapes part of
the same legend group hide/show at the same time when toggling
legend items.
The 'legendgroup' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["legendgroup"]
@legendgroup.setter
def legendgroup(self, val):
self["legendgroup"] = val
# legendgrouptitle
# ----------------
@property
def legendgrouptitle(self):
"""
The 'legendgrouptitle' property is an instance of Legendgrouptitle
that may be specified as:
- An instance of :class:`plotly.graph_objs.densitymap.Legendgrouptitle`
- A dict of string/value properties that will be passed
to the Legendgrouptitle constructor
Supported dict properties:
font
Sets this legend group's title font.
text
Sets the title of the legend group.
Returns
-------
plotly.graph_objs.densitymap.Legendgrouptitle
"""
return self["legendgrouptitle"]
@legendgrouptitle.setter
def legendgrouptitle(self, val):
self["legendgrouptitle"] = val
# legendrank
# ----------
@property
def legendrank(self):
"""
Sets the legend rank for this trace. Items and groups with
smaller ranks are presented on top/left side while with
"reversed" `legend.traceorder` they are on bottom/right side.
The default legendrank is 1000, so that you can use ranks less
than 1000 to place certain items before all unranked items, and
ranks greater than 1000 to go after all unranked items. When
having unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and layout.
The 'legendrank' property is a number and may be specified as:
- An int or float
Returns
-------
int|float
"""
return self["legendrank"]
@legendrank.setter
def legendrank(self, val):
self["legendrank"] = val
# legendwidth
# -----------
@property
def legendwidth(self):
"""
Sets the width (in px or fraction) of the legend for this
trace.
The 'legendwidth' property is a number and may be specified as:
- An int or float in the interval [0, inf]
Returns
-------
int|float
"""
return self["legendwidth"]
@legendwidth.setter
def legendwidth(self, val):
self["legendwidth"] = val
# lon
# ---
@property
def lon(self):
"""
Sets the longitude coordinates (in degrees East).
The 'lon' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["lon"]
@lon.setter
def lon(self, val):
self["lon"] = val
# lonsrc
# ------
@property
def lonsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `lon`.
The 'lonsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["lonsrc"]
@lonsrc.setter
def lonsrc(self, val):
self["lonsrc"] = val
# meta
# ----
@property
def meta(self):
"""
Assigns extra meta information associated with this trace that
can be used in various text attributes. Attributes such as
trace `name`, graph, axis and colorbar `title.text`, annotation
`text` `rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta` values in
an attribute in the same trace, simply use `%{meta[i]}` where
`i` is the index or key of the `meta` item in question. To
access trace `meta` in layout attributes, use
`%{data[n[.meta[i]}` where `i` is the index or key of the
`meta` and `n` is the trace index.
The 'meta' property accepts values of any type
Returns
-------
Any|numpy.ndarray
"""
return self["meta"]
@meta.setter
def meta(self, val):
self["meta"] = val
# metasrc
# -------
@property
def metasrc(self):
"""
Sets the source reference on Chart Studio Cloud for `meta`.
The 'metasrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["metasrc"]
@metasrc.setter
def metasrc(self, val):
self["metasrc"] = val
# name
# ----
@property
def name(self):
"""
Sets the trace name. The trace name appears as the legend item
and on hover.
The 'name' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["name"]
@name.setter
def name(self, val):
self["name"] = val
# opacity
# -------
@property
def opacity(self):
"""
Sets the opacity of the trace.
The 'opacity' property is a number and may be specified as:
- An int or float in the interval [0, 1]
Returns
-------
int|float
"""
return self["opacity"]
@opacity.setter
def opacity(self, val):
self["opacity"] = val
# radius
# ------
@property
def radius(self):
"""
Sets the radius of influence of one `lon` / `lat` point in
pixels. Increasing the value makes the densitymap trace
smoother, but less detailed.
The 'radius' property is a number and may be specified as:
- An int or float in the interval [1, inf]
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
int|float|numpy.ndarray
"""
return self["radius"]
@radius.setter
def radius(self, val):
self["radius"] = val
# radiussrc
# ---------
@property
def radiussrc(self):
"""
Sets the source reference on Chart Studio Cloud for `radius`.
The 'radiussrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["radiussrc"]
@radiussrc.setter
def radiussrc(self, val):
self["radiussrc"] = val
# reversescale
# ------------
@property
def reversescale(self):
"""
Reverses the color mapping if true. If true, `zmin` will
correspond to the last color in the array and `zmax` will
correspond to the first color.
The 'reversescale' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["reversescale"]
@reversescale.setter
def reversescale(self, val):
self["reversescale"] = val
# showlegend
# ----------
@property
def showlegend(self):
"""
Determines whether or not an item corresponding to this trace
is shown in the legend.
The 'showlegend' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["showlegend"]
@showlegend.setter
def showlegend(self, val):
self["showlegend"] = val
# showscale
# ---------
@property
def showscale(self):
"""
Determines whether or not a colorbar is displayed for this
trace.
The 'showscale' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["showscale"]
@showscale.setter
def showscale(self, val):
self["showscale"] = val
# stream
# ------
@property
def stream(self):
"""
The 'stream' property is an instance of Stream
that may be specified as:
- An instance of :class:`plotly.graph_objs.densitymap.Stream`
- A dict of string/value properties that will be passed
to the Stream constructor
Supported dict properties:
maxpoints
Sets the maximum number of points to keep on
the plots from an incoming stream. If
`maxpoints` is set to 50, only the newest 50
points will be displayed on the plot.
token
The stream id number links a data trace on a
plot with a stream. See https://chart-
studio.plotly.com/settings for more details.
Returns
-------
plotly.graph_objs.densitymap.Stream
"""
return self["stream"]
@stream.setter
def stream(self, val):
self["stream"] = val
# subplot
# -------
@property
def subplot(self):
"""
Sets a reference between this trace's data coordinates and a
map subplot. If "map" (the default value), the data refer to
`layout.map`. If "map2", the data refer to `layout.map2`, and
so on.
The 'subplot' property is an identifier of a particular
subplot, of type 'map', that may be specified as the string 'map'
optionally followed by an integer >= 1
(e.g. 'map', 'map1', 'map2', 'map3', etc.)
Returns
-------
str
"""
return self["subplot"]
@subplot.setter
def subplot(self, val):
self["subplot"] = val
# text
# ----
@property
def text(self):
"""
Sets text elements associated with each (lon,lat) pair If a
single string, the same string appears over all the data
points. If an array of string, the items are mapped in order to
the this trace's (lon,lat) coordinates. If trace `hoverinfo`
contains a "text" flag and "hovertext" is not set, these
elements will be seen in the hover labels.
The 'text' property is a string and must be specified as:
- A string
- A number that will be converted to a string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
"""
return self["text"]
@text.setter
def text(self, val):
self["text"] = val
# textsrc
# -------
@property
def textsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `text`.
The 'textsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["textsrc"]
@textsrc.setter
def textsrc(self, val):
self["textsrc"] = val
# uid
# ---
@property
def uid(self):
"""
Assign an id to this trace, Use this to provide object
constancy between traces during animations and transitions.
The 'uid' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["uid"]
@uid.setter
def uid(self, val):
self["uid"] = val
# uirevision
# ----------
@property
def uirevision(self):
"""
Controls persistence of some user-driven changes to the trace:
`constraintrange` in `parcoords` traces, as well as some
`editable: true` modifications such as `name` and
`colorbar.title`. Defaults to `layout.uirevision`. Note that
other user-driven trace attribute changes are controlled by
`layout` attributes: `trace.visible` is controlled by
`layout.legend.uirevision`, `selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)` (accessible
with `config: {editable: true}`) is controlled by
`layout.editrevision`. Trace changes are tracked by `uid`,
which only falls back on trace index if no `uid` is provided.
So if your app can add/remove traces before the end of the
`data` array, such that the same trace has a different index,
you can still preserve user-driven changes if you give each
trace a `uid` that stays with it as it moves.
The 'uirevision' property accepts values of any type
Returns
-------
Any
"""
return self["uirevision"]
@uirevision.setter
def uirevision(self, val):
self["uirevision"] = val
# visible
# -------
@property
def visible(self):
"""
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as a
legend item (provided that the legend itself is visible).
The 'visible' property is an enumeration that may be specified as:
- One of the following enumeration values:
[True, False, 'legendonly']
Returns
-------
Any
"""
return self["visible"]
@visible.setter
def visible(self, val):
self["visible"] = val
# z
# -
@property
def z(self):
"""
Sets the points' weight. For example, a value of 10 would be
equivalent to having 10 points of weight 1 in the same spot
The 'z' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["z"]
@z.setter
def z(self, val):
self["z"] = val
# zauto
# -----
@property
def zauto(self):
"""
Determines whether or not the color domain is computed with
respect to the input data (here in `z`) or the bounds set in
`zmin` and `zmax` Defaults to `false` when `zmin` and `zmax`
are set by the user.
The 'zauto' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["zauto"]
@zauto.setter
def zauto(self, val):
self["zauto"] = val
# zmax
# ----
@property
def zmax(self):
"""
Sets the upper bound of the color domain. Value should have the
same units as in `z` and if set, `zmin` must be set as well.
The 'zmax' property is a number and may be specified as:
- An int or float
Returns
-------
int|float
"""
return self["zmax"]
@zmax.setter
def zmax(self, val):
self["zmax"] = val
# zmid
# ----
@property
def zmid(self):
"""
Sets the mid-point of the color domain by scaling `zmin` and/or
`zmax` to be equidistant to this point. Value should have the
same units as in `z`. Has no effect when `zauto` is `false`.
The 'zmid' property is a number and may be specified as:
- An int or float
Returns
-------
int|float
"""
return self["zmid"]
@zmid.setter
def zmid(self, val):
self["zmid"] = val
# zmin
# ----
@property
def zmin(self):
"""
Sets the lower bound of the color domain. Value should have the
same units as in `z` and if set, `zmax` must be set as well.
The 'zmin' property is a number and may be specified as:
- An int or float
Returns
-------
int|float
"""
return self["zmin"]
@zmin.setter
def zmin(self, val):
self["zmin"] = val
# zsrc
# ----
@property
def zsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `z`.
The 'zsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["zsrc"]
@zsrc.setter
def zsrc(self, val):
self["zsrc"] = val
# type
# ----
@property
def type(self):
return self._props["type"]
# Self properties description
# ---------------------------
@property
def _prop_descriptions(self):
return """\
autocolorscale
Determines whether the colorscale is a default palette
(`autocolorscale: true`) or the palette determined by
`colorscale`. In case `colorscale` is unspecified or
`autocolorscale` is true, the default palette will be
chosen according to whether numbers in the `color`
array are all positive, all negative or mixed.
below
Determines if the densitymap trace will be inserted
before the layer with the specified ID. By default,
densitymap traces are placed below the first layer of
type symbol If set to '', the layer will be inserted
above every existing layer.
coloraxis
Sets a reference to a shared color axis. References to
these shared color axes are "coloraxis", "coloraxis2",
"coloraxis3", etc. Settings for these shared color axes
are set in the layout, under `layout.coloraxis`,
`layout.coloraxis2`, etc. Note that multiple color
scales can be linked to the same color axis.
colorbar
:class:`plotly.graph_objects.densitymap.ColorBar`
instance or dict with compatible properties
colorscale
Sets the colorscale. The colorscale must be an array
containing arrays mapping a normalized value to an rgb,
rgba, hex, hsl, hsv, or named color string. At minimum,
a mapping for the lowest (0) and highest (1) values are
required. For example, `[[0, 'rgb(0,0,255)'], [1,
'rgb(255,0,0)']]`. To control the bounds of the
colorscale in color space, use `zmin` and `zmax`.
Alternatively, `colorscale` may be a palette name
string of the following list: Blackbody,Bluered,Blues,C
ividis,Earth,Electric,Greens,Greys,Hot,Jet,Picnic,Portl
and,Rainbow,RdBu,Reds,Viridis,YlGnBu,YlOrRd.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.densitymap.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Anything contained in tag `<extra>` is
displayed in the secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Sets hover text elements associated with each (lon,lat)
pair If a single string, the same string appears over
all the data points. If an array of string, the items
are mapped in order to the this trace's (lon,lat)
coordinates. To be seen, trace `hoverinfo` must contain
a "text" flag.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
lat
Sets the latitude coordinates (in degrees North).
latsrc
Sets the source reference on Chart Studio Cloud for
`lat`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.densitymap.Legendgrouptitl
e` instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
lon
Sets the longitude coordinates (in degrees East).
lonsrc
Sets the source reference on Chart Studio Cloud for
`lon`.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
radius
Sets the radius of influence of one `lon` / `lat` point
in pixels. Increasing the value makes the densitymap
trace smoother, but less detailed.
radiussrc
Sets the source reference on Chart Studio Cloud for
`radius`.
reversescale
Reverses the color mapping if true. If true, `zmin`
will correspond to the last color in the array and
`zmax` will correspond to the first color.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
showscale
Determines whether or not a colorbar is displayed for
this trace.
stream
:class:`plotly.graph_objects.densitymap.Stream`
instance or dict with compatible properties
subplot
Sets a reference between this trace's data coordinates
and a map subplot. If "map" (the default value), the
data refer to `layout.map`. If "map2", the data refer
to `layout.map2`, and so on.
text
Sets text elements associated with each (lon,lat) pair
If a single string, the same string appears over all
the data points. If an array of string, the items are
mapped in order to the this trace's (lon,lat)
coordinates. If trace `hoverinfo` contains a "text"
flag and "hovertext" is not set, these elements will be
seen in the hover labels.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
z
Sets the points' weight. For example, a value of 10
would be equivalent to having 10 points of weight 1 in
the same spot
zauto
Determines whether or not the color domain is computed
with respect to the input data (here in `z`) or the
bounds set in `zmin` and `zmax` Defaults to `false`
when `zmin` and `zmax` are set by the user.
zmax
Sets the upper bound of the color domain. Value should
have the same units as in `z` and if set, `zmin` must
be set as well.
zmid
Sets the mid-point of the color domain by scaling
`zmin` and/or `zmax` to be equidistant to this point.
Value should have the same units as in `z`. Has no
effect when `zauto` is `false`.
zmin
Sets the lower bound of the color domain. Value should
have the same units as in `z` and if set, `zmax` must
be set as well.
zsrc
Sets the source reference on Chart Studio Cloud for
`z`.
"""
def __init__(
self,
arg=None,
autocolorscale=None,
below=None,
coloraxis=None,
colorbar=None,
colorscale=None,
customdata=None,
customdatasrc=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
lat=None,
latsrc=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
lon=None,
lonsrc=None,
meta=None,
metasrc=None,
name=None,
opacity=None,
radius=None,
radiussrc=None,
reversescale=None,
showlegend=None,
showscale=None,
stream=None,
subplot=None,
text=None,
textsrc=None,
uid=None,
uirevision=None,
visible=None,
z=None,
zauto=None,
zmax=None,
zmid=None,
zmin=None,
zsrc=None,
**kwargs,
):
"""
Construct a new Densitymap object
Draws a bivariate kernel density estimation with a Gaussian
kernel from `lon` and `lat` coordinates and optional `z` values
using a colorscale.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Densitymap`
autocolorscale
Determines whether the colorscale is a default palette
(`autocolorscale: true`) or the palette determined by
`colorscale`. In case `colorscale` is unspecified or
`autocolorscale` is true, the default palette will be
chosen according to whether numbers in the `color`
array are all positive, all negative or mixed.
below
Determines if the densitymap trace will be inserted
before the layer with the specified ID. By default,
densitymap traces are placed below the first layer of
type symbol If set to '', the layer will be inserted
above every existing layer.
coloraxis
Sets a reference to a shared color axis. References to
these shared color axes are "coloraxis", "coloraxis2",
"coloraxis3", etc. Settings for these shared color axes
are set in the layout, under `layout.coloraxis`,
`layout.coloraxis2`, etc. Note that multiple color
scales can be linked to the same color axis.
colorbar
:class:`plotly.graph_objects.densitymap.ColorBar`
instance or dict with compatible properties
colorscale
Sets the colorscale. The colorscale must be an array
containing arrays mapping a normalized value to an rgb,
rgba, hex, hsl, hsv, or named color string. At minimum,
a mapping for the lowest (0) and highest (1) values are
required. For example, `[[0, 'rgb(0,0,255)'], [1,
'rgb(255,0,0)']]`. To control the bounds of the
colorscale in color space, use `zmin` and `zmax`.
Alternatively, `colorscale` may be a palette name
string of the following list: Blackbody,Bluered,Blues,C
ividis,Earth,Electric,Greens,Greys,Hot,Jet,Picnic,Portl
and,Rainbow,RdBu,Reds,Viridis,YlGnBu,YlOrRd.
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.densitymap.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Anything contained in tag `<extra>` is
displayed in the secondary box, for example
"<extra>{fullData.name}</extra>". To hide the secondary
box completely, use an empty tag `<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Sets hover text elements associated with each (lon,lat)
pair If a single string, the same string appears over
all the data points. If an array of string, the items
are mapped in order to the this trace's (lon,lat)
coordinates. To be seen, trace `hoverinfo` must contain
a "text" flag.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
lat
Sets the latitude coordinates (in degrees North).
latsrc
Sets the source reference on Chart Studio Cloud for
`lat`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.densitymap.Legendgrouptitl
e` instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
lon
Sets the longitude coordinates (in degrees East).
lonsrc
Sets the source reference on Chart Studio Cloud for
`lon`.
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
radius
Sets the radius of influence of one `lon` / `lat` point
in pixels. Increasing the value makes the densitymap
trace smoother, but less detailed.
radiussrc
Sets the source reference on Chart Studio Cloud for
`radius`.
reversescale
Reverses the color mapping if true. If true, `zmin`
will correspond to the last color in the array and
`zmax` will correspond to the first color.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
showscale
Determines whether or not a colorbar is displayed for
this trace.
stream
:class:`plotly.graph_objects.densitymap.Stream`
instance or dict with compatible properties
subplot
Sets a reference between this trace's data coordinates
and a map subplot. If "map" (the default value), the
data refer to `layout.map`. If "map2", the data refer
to `layout.map2`, and so on.
text
Sets text elements associated with each (lon,lat) pair
If a single string, the same string appears over all
the data points. If an array of string, the items are
mapped in order to the this trace's (lon,lat)
coordinates. If trace `hoverinfo` contains a "text"
flag and "hovertext" is not set, these elements will be
seen in the hover labels.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
z
Sets the points' weight. For example, a value of 10
would be equivalent to having 10 points of weight 1 in
the same spot
zauto
Determines whether or not the color domain is computed
with respect to the input data (here in `z`) or the
bounds set in `zmin` and `zmax` Defaults to `false`
when `zmin` and `zmax` are set by the user.
zmax
Sets the upper bound of the color domain. Value should
have the same units as in `z` and if set, `zmin` must
be set as well.
zmid
Sets the mid-point of the color domain by scaling
`zmin` and/or `zmax` to be equidistant to this point.
Value should have the same units as in `z`. Has no
effect when `zauto` is `false`.
zmin
Sets the lower bound of the color domain. Value should
have the same units as in `z` and if set, `zmax` must
be set as well.
zsrc
Sets the source reference on Chart Studio Cloud for
`z`.
Returns
-------
Densitymap
"""
super(Densitymap, self).__init__("densitymap")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Densitymap
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Densitymap`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("autocolorscale", None)
_v = autocolorscale if autocolorscale is not None else _v
if _v is not None:
self["autocolorscale"] = _v
_v = arg.pop("below", None)
_v = below if below is not None else _v
if _v is not None:
self["below"] = _v
_v = arg.pop("coloraxis", None)
_v = coloraxis if coloraxis is not None else _v
if _v is not None:
self["coloraxis"] = _v
_v = arg.pop("colorbar", None)
_v = colorbar if colorbar is not None else _v
if _v is not None:
self["colorbar"] = _v
_v = arg.pop("colorscale", None)
_v = colorscale if colorscale is not None else _v
if _v is not None:
self["colorscale"] = _v
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverinfosrc", None)
_v = hoverinfosrc if hoverinfosrc is not None else _v
if _v is not None:
self["hoverinfosrc"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("hovertemplate", None)
_v = hovertemplate if hovertemplate is not None else _v
if _v is not None:
self["hovertemplate"] = _v
_v = arg.pop("hovertemplatesrc", None)
_v = hovertemplatesrc if hovertemplatesrc is not None else _v
if _v is not None:
self["hovertemplatesrc"] = _v
_v = arg.pop("hovertext", None)
_v = hovertext if hovertext is not None else _v
if _v is not None:
self["hovertext"] = _v
_v = arg.pop("hovertextsrc", None)
_v = hovertextsrc if hovertextsrc is not None else _v
if _v is not None:
self["hovertextsrc"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("lat", None)
_v = lat if lat is not None else _v
if _v is not None:
self["lat"] = _v
_v = arg.pop("latsrc", None)
_v = latsrc if latsrc is not None else _v
if _v is not None:
self["latsrc"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgroup", None)
_v = legendgroup if legendgroup is not None else _v
if _v is not None:
self["legendgroup"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("lon", None)
_v = lon if lon is not None else _v
if _v is not None:
self["lon"] = _v
_v = arg.pop("lonsrc", None)
_v = lonsrc if lonsrc is not None else _v
if _v is not None:
self["lonsrc"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("radius", None)
_v = radius if radius is not None else _v
if _v is not None:
self["radius"] = _v
_v = arg.pop("radiussrc", None)
_v = radiussrc if radiussrc is not None else _v
if _v is not None:
self["radiussrc"] = _v
_v = arg.pop("reversescale", None)
_v = reversescale if reversescale is not None else _v
if _v is not None:
self["reversescale"] = _v
_v = arg.pop("showlegend", None)
_v = showlegend if showlegend is not None else _v
if _v is not None:
self["showlegend"] = _v
_v = arg.pop("showscale", None)
_v = showscale if showscale is not None else _v
if _v is not None:
self["showscale"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("subplot", None)
_v = subplot if subplot is not None else _v
if _v is not None:
self["subplot"] = _v
_v = arg.pop("text", None)
_v = text if text is not None else _v
if _v is not None:
self["text"] = _v
_v = arg.pop("textsrc", None)
_v = textsrc if textsrc is not None else _v
if _v is not None:
self["textsrc"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("z", None)
_v = z if z is not None else _v
if _v is not None:
self["z"] = _v
_v = arg.pop("zauto", None)
_v = zauto if zauto is not None else _v
if _v is not None:
self["zauto"] = _v
_v = arg.pop("zmax", None)
_v = zmax if zmax is not None else _v
if _v is not None:
self["zmax"] = _v
_v = arg.pop("zmid", None)
_v = zmid if zmid is not None else _v
if _v is not None:
self["zmid"] = _v
_v = arg.pop("zmin", None)
_v = zmin if zmin is not None else _v
if _v is not None:
self["zmin"] = _v
_v = arg.pop("zsrc", None)
_v = zsrc if zsrc is not None else _v
if _v is not None:
self["zsrc"] = _v
# Read-only literals
# ------------------
self._props["type"] = "densitymap"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@graph_objs@_densitymap.py@.PATH_END.py
|
{
"filename": "_len.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/barpolar/marker/colorbar/_len.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class LenValidator(_plotly_utils.basevalidators.NumberValidator):
def __init__(
self, plotly_name="len", parent_name="barpolar.marker.colorbar", **kwargs
):
super(LenValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "colorbars"),
min=kwargs.pop("min", 0),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@barpolar@marker@colorbar@_len.py@.PATH_END.py
|
{
"filename": "radec_to_chip.py",
"repo_name": "GalSim-developers/GalSim",
"repo_path": "GalSim_extracted/GalSim-main/tests/roman_files/radec_to_chip.py",
"type": "Python"
}
|
# Copyright (c) 2012-2023 by the GalSim developers team on GitHub
# https://github.com/GalSim-developers
#
# This file is part of GalSim: The modular galaxy image simulation toolkit.
# https://github.com/GalSim-developers/GalSim
#
# GalSim is free software: redistribution and use in source and binary forms,
# with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions, and the disclaimer given in the accompanying LICENSE
# file.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions, and the disclaimer given in the documentation
# and/or other materials provided with the distribution.
#
import numpy as np
MAX_RAD_FROM_BORESIGHT = 0.009
def radec_to_chip(obsRA, obsDec, obsPA, ptRA, ptDec):
"""
Converted from Chris' c code. Used here to limit ra, dec catalog to objects that fall in each pointing.
"""
AFTA_SCA_Coords = np.array([
0.002689724, 1.000000000, 0.181995021, -0.002070809, -1.000000000, 0.807383134, 1.000000000, 0.004769437, 1.028725015, -1.000000000, -0.000114163, -0.024579913,
0.003307633, 1.000000000, 1.203503349, -0.002719257, -1.000000000, -0.230036847, 1.000000000, 0.006091805, 1.028993582, -1.000000000, -0.000145757, -0.024586416,
0.003888409, 1.000000000, 2.205056241, -0.003335597, -1.000000000, -1.250685466, 1.000000000, 0.007389324, 1.030581048, -1.000000000, -0.000176732, -0.024624426,
0.007871078, 1.000000000, -0.101157485, -0.005906926, -1.000000000, 1.095802866, 1.000000000, 0.009147586, 2.151242511, -1.000000000, -0.004917673, -1.151541644,
0.009838715, 1.000000000, 0.926774753, -0.007965112, -1.000000000, 0.052835488, 1.000000000, 0.011913584, 2.150981875, -1.000000000, -0.006404157, -1.151413352,
0.011694346, 1.000000000, 1.935534773, -0.009927853, -1.000000000, -0.974276664, 1.000000000, 0.014630945, 2.153506744, -1.000000000, -0.007864196, -1.152784334,
0.011758070, 1.000000000, -0.527032681, -0.008410887, -1.000000000, 1.529873670, 1.000000000, 0.012002262, 3.264990040, -1.000000000, -0.008419930, -2.274065453,
0.015128555, 1.000000000, 0.510881058, -0.011918799, -1.000000000, 0.478274989, 1.000000000, 0.016194244, 3.262719942, -1.000000000, -0.011359106, -2.272508364,
0.018323436, 1.000000000, 1.530828790, -0.015281655, -1.000000000, -0.558879607, 1.000000000, 0.020320244, 3.264721809, -1.000000000, -0.014251259, -2.273955111,
-0.002689724, 1.000000000, 0.181995021, 0.002070809, -1.000000000, 0.807383134, 1.000000000, -0.000114163, -0.024579913, -1.000000000, 0.004769437, 1.028725015,
-0.003307633, 1.000000000, 1.203503349, 0.002719257, -1.000000000, -0.230036847, 1.000000000, -0.000145757, -0.024586416, -1.000000000, 0.006091805, 1.028993582,
-0.003888409, 1.000000000, 2.205056241, 0.003335597, -1.000000000, -1.250685466, 1.000000000, -0.000176732, -0.024624426, -1.000000000, 0.007389324, 1.030581048,
-0.007871078, 1.000000000, -0.101157485, 0.005906926, -1.000000000, 1.095802866, 1.000000000, -0.004917673, -1.151541644, -1.000000000, 0.009147586, 2.151242511,
-0.009838715, 1.000000000, 0.926774753, 0.007965112, -1.000000000, 0.052835488, 1.000000000, -0.006404157, -1.151413352, -1.000000000, 0.011913584, 2.150981875,
-0.011694346, 1.000000000, 1.935534773, 0.009927853, -1.000000000, -0.974276664, 1.000000000, -0.007864196, -1.152784334, -1.000000000, 0.014630945, 2.153506744,
-0.011758070, 1.000000000, -0.527032681, 0.008410887, -1.000000000, 1.529873670, 1.000000000, -0.008419930, -2.274065453, -1.000000000, 0.012002262, 3.264990040,
-0.015128555, 1.000000000, 0.510881058, 0.011918799, -1.000000000, 0.478274989, 1.000000000, -0.011359106, -2.272508364, -1.000000000, 0.016194244, 3.262719942,
-0.018323436, 1.000000000, 1.530828790, 0.015281655, -1.000000000, -0.558879607, 1.000000000, -0.014251259, -2.273955111, -1.000000000, 0.020320244, 3.264721809 ])
sort = np.argsort(ptDec)
ptRA = ptRA[sort]
ptDec = ptDec[sort]
# Crude cut of some objects more than some encircling radius away from the boresight - creates a fast dec slice. Probably not worth doing better than this.
begin = np.searchsorted(ptDec, obsDec-MAX_RAD_FROM_BORESIGHT)
end = np.searchsorted(ptDec, obsDec+MAX_RAD_FROM_BORESIGHT)
# Position of the object in boresight coordinates
mX = -np.sin(obsDec)*np.cos(ptDec[begin:end])*np.cos(obsRA-ptRA[begin:end]) + np.cos(obsDec)*np.sin(ptDec[begin:end])
mY = np.cos(ptDec[begin:end])*np.sin(obsRA-ptRA[begin:end])
xi = -(np.sin(obsPA)*mX + np.cos(obsPA)*mY) / 0.0021801102 # Image plane position in chips
yi = (np.cos(obsPA)*mX - np.sin(obsPA)*mY) / 0.0021801102
SCA = np.zeros(end-begin)
for i in range(18):
cptr = AFTA_SCA_Coords
mask = (cptr[0+12*i]*xi+cptr[1+12*i]*yi<cptr[2+12*i]) \
& (cptr[3+12*i]*xi+cptr[4+12*i]*yi<cptr[5+12*i]) \
& (cptr[6+12*i]*xi+cptr[7+12*i]*yi<cptr[8+12*i]) \
& (cptr[9+12*i]*xi+cptr[10+12*i]*yi<cptr[11+12*i])
SCA[mask] = i+1
if len(SCA) > 1:
return np.pad(SCA,(begin,len(ptDec)-end),'constant',constant_values=(0, 0))[np.argsort(sort)] # Pad SCA array with zeros and resort to original indexing
else:
return SCA[0]
|
GalSim-developersREPO_NAMEGalSimPATH_START.@GalSim_extracted@GalSim-main@tests@roman_files@radec_to_chip.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "njcuk9999/apero-drs",
"repo_path": "apero-drs_extracted/apero-drs-main/apero/tools/__init__.py",
"type": "Python"
}
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
# CODE NAME HERE
# CODE DESCRIPTION HERE
Created on 2019-01-17 at 14:31
@author: cook
"""
__all__ = []
# =============================================================================
# Define functions
# =============================================================================
# Nothing to see here.
# =============================================================================
# End of code
# ============================================================================
|
njcuk9999REPO_NAMEapero-drsPATH_START.@apero-drs_extracted@apero-drs-main@apero@tools@__init__.py@.PATH_END.py
|
{
"filename": "test_cassandra.py",
"repo_name": "langchain-ai/langchain",
"repo_path": "langchain_extracted/langchain-master/libs/community/tests/integration_tests/vectorstores/test_cassandra.py",
"type": "Python"
}
|
"""Test Cassandra functionality."""
import asyncio
import json
import math
import os
import time
from contextlib import asynccontextmanager, contextmanager
from typing import (
Any,
AsyncGenerator,
Generator,
Iterable,
List,
Optional,
Tuple,
Union,
)
import pytest
from langchain_core.documents import Document
from langchain_community.vectorstores import Cassandra
from tests.integration_tests.vectorstores.fake_embeddings import (
AngularTwoDimensionalEmbeddings,
ConsistentFakeEmbeddings,
Embeddings,
)
TEST_KEYSPACE = "vector_test_keyspace"
# similarity threshold definitions
EUCLIDEAN_MIN_SIM_UNIT_VECTORS = 0.2
MATCH_EPSILON = 0.0001
def _strip_docs(documents: List[Document]) -> List[Document]:
return [_strip_doc(doc) for doc in documents]
def _strip_doc(document: Document) -> Document:
return Document(
page_content=document.page_content,
metadata=document.metadata,
)
class ParserEmbeddings(Embeddings):
"""Parse input texts: if they are json for a List[float], fine.
Otherwise, return all zeros and call it a day.
"""
def __init__(self, dimension: int) -> None:
self.dimension = dimension
def embed_documents(self, texts: list[str]) -> list[list[float]]:
return [self.embed_query(txt) for txt in texts]
def embed_query(self, text: str) -> list[float]:
try:
vals = json.loads(text)
except json.JSONDecodeError:
return [0.0] * self.dimension
else:
assert len(vals) == self.dimension
return vals
@pytest.fixture
def embedding_d2() -> Embeddings:
return ParserEmbeddings(dimension=2)
@pytest.fixture
def metadata_documents() -> list[Document]:
"""Documents for metadata and id tests"""
return [
Document(
id="q",
page_content="[1,2]",
metadata={"ord": str(ord("q")), "group": "consonant", "letter": "q"},
),
Document(
id="w",
page_content="[3,4]",
metadata={"ord": str(ord("w")), "group": "consonant", "letter": "w"},
),
Document(
id="r",
page_content="[5,6]",
metadata={"ord": str(ord("r")), "group": "consonant", "letter": "r"},
),
Document(
id="e",
page_content="[-1,2]",
metadata={"ord": str(ord("e")), "group": "vowel", "letter": "e"},
),
Document(
id="i",
page_content="[-3,4]",
metadata={"ord": str(ord("i")), "group": "vowel", "letter": "i"},
),
Document(
id="o",
page_content="[-5,6]",
metadata={"ord": str(ord("o")), "group": "vowel", "letter": "o"},
),
]
class CassandraSession:
table_name: str
session: Any
def __init__(self, table_name: str, session: Any):
self.table_name = table_name
self.session = session
@contextmanager
def get_cassandra_session(
table_name: str, drop: bool = True
) -> Generator[CassandraSession, None, None]:
"""Initialize the Cassandra cluster and session"""
from cassandra.cluster import Cluster
if "CASSANDRA_CONTACT_POINTS" in os.environ:
contact_points = [
cp.strip()
for cp in os.environ["CASSANDRA_CONTACT_POINTS"].split(",")
if cp.strip()
]
else:
contact_points = None
cluster = Cluster(contact_points)
session = cluster.connect()
try:
session.execute(
(
f"CREATE KEYSPACE IF NOT EXISTS {TEST_KEYSPACE}"
" WITH replication = "
"{'class': 'SimpleStrategy', 'replication_factor': 1}"
)
)
if drop:
session.execute(f"DROP TABLE IF EXISTS {TEST_KEYSPACE}.{table_name}")
# Yield the session for usage
yield CassandraSession(table_name=table_name, session=session)
finally:
# Ensure proper shutdown/cleanup of resources
session.shutdown()
cluster.shutdown()
@pytest.fixture
def cassandra_session(
request: pytest.FixtureRequest,
) -> Generator[CassandraSession, None, None]:
request_param = getattr(request, "param", {})
table_name = request_param.get("table_name", "vector_test_table")
drop = request_param.get("drop", True)
with get_cassandra_session(table_name, drop) as session:
yield session
@contextmanager
def vector_store_from_texts(
texts: List[str],
metadatas: Optional[List[dict]] = None,
embedding: Optional[Embeddings] = None,
drop: bool = True,
metadata_indexing: Union[Tuple[str, Iterable[str]], str] = "all",
table_name: str = "vector_test_table",
) -> Generator[Cassandra, None, None]:
if embedding is None:
embedding = ConsistentFakeEmbeddings()
with get_cassandra_session(table_name=table_name, drop=drop) as session:
yield Cassandra.from_texts(
texts,
embedding=embedding,
metadatas=metadatas,
session=session.session,
keyspace=TEST_KEYSPACE,
table_name=session.table_name,
metadata_indexing=metadata_indexing,
)
@asynccontextmanager
async def vector_store_from_texts_async(
texts: List[str],
metadatas: Optional[List[dict]] = None,
embedding: Optional[Embeddings] = None,
drop: bool = True,
metadata_indexing: Union[Tuple[str, Iterable[str]], str] = "all",
table_name: str = "vector_test_table",
) -> AsyncGenerator[Cassandra, None]:
if embedding is None:
embedding = ConsistentFakeEmbeddings()
with get_cassandra_session(table_name=table_name, drop=drop) as session:
yield await Cassandra.afrom_texts(
texts,
embedding=embedding,
metadatas=metadatas,
session=session.session,
keyspace=TEST_KEYSPACE,
table_name=session.table_name,
metadata_indexing=metadata_indexing,
)
@pytest.fixture(scope="function")
def vector_store_d2(
embedding_d2: Embeddings,
table_name: str = "vector_test_table_d2",
) -> Generator[Cassandra, None, None]:
with get_cassandra_session(table_name=table_name) as session:
yield Cassandra(
embedding=embedding_d2,
session=session.session,
keyspace=TEST_KEYSPACE,
table_name=session.table_name,
)
async def test_cassandra() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
with vector_store_from_texts(texts) as vstore:
output = vstore.similarity_search("foo", k=1)
assert _strip_docs(output) == _strip_docs([Document(page_content="foo")])
output = await vstore.asimilarity_search("foo", k=1)
assert _strip_docs(output) == _strip_docs([Document(page_content="foo")])
async def test_cassandra_with_score() -> None:
"""Test end to end construction and search with scores and IDs."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
with vector_store_from_texts(texts, metadatas=metadatas) as vstore:
expected_docs = [
Document(page_content="foo", metadata={"page": "0.0"}),
Document(page_content="bar", metadata={"page": "1.0"}),
Document(page_content="baz", metadata={"page": "2.0"}),
]
output = vstore.similarity_search_with_score("foo", k=3)
docs = [o[0] for o in output]
scores = [o[1] for o in output]
assert _strip_docs(docs) == _strip_docs(expected_docs)
assert scores[0] > scores[1] > scores[2]
output = await vstore.asimilarity_search_with_score("foo", k=3)
docs = [o[0] for o in output]
scores = [o[1] for o in output]
assert _strip_docs(docs) == _strip_docs(expected_docs)
assert scores[0] > scores[1] > scores[2]
async def test_cassandra_max_marginal_relevance_search() -> None:
"""
Test end to end construction and MMR search.
The embedding function used here ensures `texts` become
the following vectors on a circle (numbered v0 through v3):
______ v2
/ \
/ | v1
v3 | . | query
| / v0
|______/ (N.B. very crude drawing)
With fetch_k==3 and k==2, when query is at (1, ),
one expects that v2 and v0 are returned (in some order).
"""
texts = ["-0.124", "+0.127", "+0.25", "+1.0"]
metadatas = [{"page": i} for i in range(len(texts))]
with vector_store_from_texts(
texts,
metadatas=metadatas,
embedding=AngularTwoDimensionalEmbeddings(),
) as vstore:
expected_set = {
("+0.25", "2.0"),
("-0.124", "0.0"),
}
output = vstore.max_marginal_relevance_search("0.0", k=2, fetch_k=3)
output_set = {
(mmr_doc.page_content, mmr_doc.metadata["page"]) for mmr_doc in output
}
assert output_set == expected_set
output = await vstore.amax_marginal_relevance_search("0.0", k=2, fetch_k=3)
output_set = {
(mmr_doc.page_content, mmr_doc.metadata["page"]) for mmr_doc in output
}
assert output_set == expected_set
def test_cassandra_add_texts() -> None:
"""Test end to end construction with further insertions."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
with vector_store_from_texts(texts, metadatas=metadatas) as vstore:
texts2 = ["foo2", "bar2", "baz2"]
metadatas2 = [{"page": i + 3} for i in range(len(texts))]
vstore.add_texts(texts2, metadatas2)
output = vstore.similarity_search("foo", k=10)
assert len(output) == 6
async def test_cassandra_add_texts_async() -> None:
"""Test end to end construction with further insertions."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
async with vector_store_from_texts_async(texts, metadatas=metadatas) as vstore:
texts2 = ["foo2", "bar2", "baz2"]
metadatas2 = [{"page": i + 3} for i in range(len(texts))]
await vstore.aadd_texts(texts2, metadatas2)
output = await vstore.asimilarity_search("foo", k=10)
assert len(output) == 6
def test_cassandra_no_drop() -> None:
"""Test end to end construction and re-opening the same index."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
with vector_store_from_texts(texts, metadatas=metadatas) as vstore:
output = vstore.similarity_search("foo", k=10)
assert len(output) == 3
texts2 = ["foo2", "bar2", "baz2"]
with vector_store_from_texts(texts2, metadatas=metadatas, drop=False) as vstore:
output = vstore.similarity_search("foo", k=10)
assert len(output) == 6
async def test_cassandra_no_drop_async() -> None:
"""Test end to end construction and re-opening the same index."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
async with vector_store_from_texts_async(texts, metadatas=metadatas) as vstore:
output = await vstore.asimilarity_search("foo", k=10)
assert len(output) == 3
texts2 = ["foo2", "bar2", "baz2"]
async with vector_store_from_texts_async(
texts2, metadatas=metadatas, drop=False
) as vstore:
output = await vstore.asimilarity_search("foo", k=10)
assert len(output) == 6
def test_cassandra_delete() -> None:
"""Test delete methods from vector store."""
texts = ["foo", "bar", "baz", "gni"]
metadatas = [{"page": i, "mod2": i % 2} for i in range(len(texts))]
with vector_store_from_texts([], metadatas=metadatas) as vstore:
ids = vstore.add_texts(texts, metadatas)
output = vstore.similarity_search("foo", k=10)
assert len(output) == 4
vstore.delete_by_document_id(ids[0])
output = vstore.similarity_search("foo", k=10)
assert len(output) == 3
vstore.delete(ids[1:3])
output = vstore.similarity_search("foo", k=10)
assert len(output) == 1
vstore.delete(["not-existing"])
output = vstore.similarity_search("foo", k=10)
assert len(output) == 1
vstore.clear()
time.sleep(0.3)
output = vstore.similarity_search("foo", k=10)
assert len(output) == 0
vstore.add_texts(texts, metadatas)
num_deleted = vstore.delete_by_metadata_filter({"mod2": 0}, batch_size=1)
assert num_deleted == 2
output = vstore.similarity_search("foo", k=10)
assert len(output) == 2
vstore.clear()
with pytest.raises(ValueError):
vstore.delete_by_metadata_filter({})
async def test_cassandra_delete_async() -> None:
"""Test delete methods from vector store."""
texts = ["foo", "bar", "baz", "gni"]
metadatas = [{"page": i, "mod2": i % 2} for i in range(len(texts))]
async with vector_store_from_texts_async([], metadatas=metadatas) as vstore:
ids = await vstore.aadd_texts(texts, metadatas)
output = await vstore.asimilarity_search("foo", k=10)
assert len(output) == 4
await vstore.adelete_by_document_id(ids[0])
output = await vstore.asimilarity_search("foo", k=10)
assert len(output) == 3
await vstore.adelete(ids[1:3])
output = await vstore.asimilarity_search("foo", k=10)
assert len(output) == 1
await vstore.adelete(["not-existing"])
output = await vstore.asimilarity_search("foo", k=10)
assert len(output) == 1
await vstore.aclear()
await asyncio.sleep(0.3)
output = vstore.similarity_search("foo", k=10)
assert len(output) == 0
await vstore.aadd_texts(texts, metadatas)
num_deleted = await vstore.adelete_by_metadata_filter({"mod2": 0}, batch_size=1)
assert num_deleted == 2
output = await vstore.asimilarity_search("foo", k=10)
assert len(output) == 2
await vstore.aclear()
with pytest.raises(ValueError):
await vstore.adelete_by_metadata_filter({})
def test_cassandra_metadata_indexing() -> None:
"""Test comparing metadata indexing policies."""
texts = ["foo"]
metadatas = [{"field1": "a", "field2": "b"}]
with vector_store_from_texts(texts, metadatas=metadatas) as vstore_all:
with vector_store_from_texts(
texts,
metadatas=metadatas,
metadata_indexing=("allowlist", ["field1"]),
table_name="vector_test_table_indexing",
embedding=ConsistentFakeEmbeddings(),
) as vstore_f1:
output_all = vstore_all.similarity_search("bar", k=2)
output_f1 = vstore_f1.similarity_search("bar", filter={"field1": "a"}, k=2)
output_f1_no = vstore_f1.similarity_search(
"bar", filter={"field1": "Z"}, k=2
)
assert len(output_all) == 1
assert output_all[0].metadata == metadatas[0]
assert len(output_f1) == 1
assert output_f1[0].metadata == metadatas[0]
assert len(output_f1_no) == 0
with pytest.raises(ValueError):
# "Non-indexed metadata fields cannot be used in queries."
vstore_f1.similarity_search("bar", filter={"field2": "b"}, k=2)
class TestCassandraVectorStore:
@pytest.mark.parametrize(
"page_contents",
[
[
"[1,2]",
"[3,4]",
"[5,6]",
"[7,8]",
"[9,10]",
"[11,12]",
],
],
)
def test_cassandra_vectorstore_from_texts_sync(
self,
*,
cassandra_session: CassandraSession,
embedding_d2: Embeddings,
page_contents: list[str],
) -> None:
"""from_texts methods and the associated warnings."""
v_store = Cassandra.from_texts(
texts=page_contents[0:2],
metadatas=[{"m": 1}, {"m": 3}],
ids=["ft1", "ft3"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
search_results_triples_0 = v_store.similarity_search_with_score_id(
page_contents[1],
k=1,
)
assert len(search_results_triples_0) == 1
res_doc_0, _, res_id_0 = search_results_triples_0[0]
assert res_doc_0.page_content == page_contents[1]
assert res_doc_0.metadata == {"m": "3.0"}
assert res_id_0 == "ft3"
Cassandra.from_texts(
texts=page_contents[2:4],
metadatas=[{"m": 5}, {"m": 7}],
ids=["ft5", "ft7"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
search_results_triples_1 = v_store.similarity_search_with_score_id(
page_contents[3],
k=1,
)
assert len(search_results_triples_1) == 1
res_doc_1, _, res_id_1 = search_results_triples_1[0]
assert res_doc_1.page_content == page_contents[3]
assert res_doc_1.metadata == {"m": "7.0"}
assert res_id_1 == "ft7"
v_store_2 = Cassandra.from_texts(
texts=page_contents[4:6],
metadatas=[{"m": 9}, {"m": 11}],
ids=["ft9", "ft11"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
search_results_triples_2 = v_store_2.similarity_search_with_score_id(
page_contents[5],
k=1,
)
assert len(search_results_triples_2) == 1
res_doc_2, _, res_id_2 = search_results_triples_2[0]
assert res_doc_2.page_content == page_contents[5]
assert res_doc_2.metadata == {"m": "11.0"}
assert res_id_2 == "ft11"
v_store_2.clear()
@pytest.mark.parametrize(
"page_contents",
[
["[1,2]", "[3,4]"],
],
)
def test_cassandra_vectorstore_from_documents_sync(
self,
*,
cassandra_session: CassandraSession,
embedding_d2: Embeddings,
page_contents: list[str],
) -> None:
"""from_documents, esp. the various handling of ID-in-doc vs external."""
pc1, pc2 = page_contents
# no IDs.
v_store = Cassandra.from_documents(
[
Document(page_content=pc1, metadata={"m": 1}),
Document(page_content=pc2, metadata={"m": 3}),
],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
hits = v_store.similarity_search(pc2, k=1)
assert len(hits) == 1
assert hits[0].page_content == pc2
assert hits[0].metadata == {"m": "3.0"}
v_store.clear()
# IDs passed separately.
with pytest.warns(DeprecationWarning) as rec_warnings:
v_store_2 = Cassandra.from_documents(
[
Document(page_content=pc1, metadata={"m": 1}),
Document(page_content=pc2, metadata={"m": 3}),
],
ids=["idx1", "idx3"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
f_rec_warnings = [
wrn for wrn in rec_warnings if issubclass(wrn.category, DeprecationWarning)
]
assert len(f_rec_warnings) == 1
hits = v_store_2.similarity_search(pc2, k=1)
assert len(hits) == 1
assert hits[0].page_content == pc2
assert hits[0].metadata == {"m": "3.0"}
assert hits[0].id == "idx3"
v_store_2.clear()
# IDs in documents.
v_store_3 = Cassandra.from_documents(
[
Document(page_content=pc1, metadata={"m": 1}, id="idx1"),
Document(page_content=pc2, metadata={"m": 3}, id="idx3"),
],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
hits = v_store_3.similarity_search(pc2, k=1)
assert len(hits) == 1
assert hits[0].page_content == pc2
assert hits[0].metadata == {"m": "3.0"}
assert hits[0].id == "idx3"
v_store_3.clear()
# IDs both in documents and aside.
with pytest.warns(DeprecationWarning) as rec_warnings:
v_store_4 = Cassandra.from_documents(
[
Document(page_content=pc1, metadata={"m": 1}),
Document(page_content=pc2, metadata={"m": 3}, id="idy3"),
],
ids=["idx1", "idx3"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
f_rec_warnings = [
wrn for wrn in rec_warnings if issubclass(wrn.category, DeprecationWarning)
]
hits = v_store_4.similarity_search(pc2, k=1)
assert len(hits) == 1
assert hits[0].page_content == pc2
assert hits[0].metadata == {"m": "3.0"}
assert hits[0].id == "idx3"
v_store_4.clear()
@pytest.mark.parametrize(
"page_contents",
[
[
"[1,2]",
"[3,4]",
"[5,6]",
"[7,8]",
"[9,10]",
"[11,12]",
],
],
)
async def test_cassandra_vectorstore_from_texts_async(
self,
*,
cassandra_session: CassandraSession,
embedding_d2: Embeddings,
page_contents: list[str],
) -> None:
"""from_texts methods and the associated warnings, async version."""
v_store = await Cassandra.afrom_texts(
texts=page_contents[0:2],
metadatas=[{"m": 1}, {"m": 3}],
ids=["ft1", "ft3"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
search_results_triples_0 = await v_store.asimilarity_search_with_score_id(
page_contents[1],
k=1,
)
assert len(search_results_triples_0) == 1
res_doc_0, _, res_id_0 = search_results_triples_0[0]
assert res_doc_0.page_content == page_contents[1]
assert res_doc_0.metadata == {"m": "3.0"}
assert res_id_0 == "ft3"
await Cassandra.afrom_texts(
texts=page_contents[2:4],
metadatas=[{"m": 5}, {"m": 7}],
ids=["ft5", "ft7"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
search_results_triples_1 = await v_store.asimilarity_search_with_score_id(
page_contents[3],
k=1,
)
assert len(search_results_triples_1) == 1
res_doc_1, _, res_id_1 = search_results_triples_1[0]
assert res_doc_1.page_content == page_contents[3]
assert res_doc_1.metadata == {"m": "7.0"}
assert res_id_1 == "ft7"
v_store_2 = await Cassandra.afrom_texts(
texts=page_contents[4:6],
metadatas=[{"m": 9}, {"m": 11}],
ids=["ft9", "ft11"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
search_results_triples_2 = await v_store_2.asimilarity_search_with_score_id(
page_contents[5],
k=1,
)
assert len(search_results_triples_2) == 1
res_doc_2, _, res_id_2 = search_results_triples_2[0]
assert res_doc_2.page_content == page_contents[5]
assert res_doc_2.metadata == {"m": "11.0"}
assert res_id_2 == "ft11"
await v_store_2.aclear()
@pytest.mark.parametrize(
"page_contents",
[
["[1,2]", "[3,4]"],
],
)
async def test_cassandra_vectorstore_from_documents_async(
self,
*,
cassandra_session: CassandraSession,
embedding_d2: Embeddings,
page_contents: list[str],
) -> None:
"""
from_documents, esp. the various handling of ID-in-doc vs external.
Async version.
"""
pc1, pc2 = page_contents
# no IDs.
v_store = await Cassandra.afrom_documents(
[
Document(page_content=pc1, metadata={"m": 1}),
Document(page_content=pc2, metadata={"m": 3}),
],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
hits = await v_store.asimilarity_search(pc2, k=1)
assert len(hits) == 1
assert hits[0].page_content == pc2
assert hits[0].metadata == {"m": "3.0"}
await v_store.aclear()
# IDs passed separately.
with pytest.warns(DeprecationWarning) as rec_warnings:
v_store_2 = await Cassandra.afrom_documents(
[
Document(page_content=pc1, metadata={"m": 1}),
Document(page_content=pc2, metadata={"m": 3}),
],
ids=["idx1", "idx3"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
f_rec_warnings = [
wrn for wrn in rec_warnings if issubclass(wrn.category, DeprecationWarning)
]
assert len(f_rec_warnings) == 1
hits = await v_store_2.asimilarity_search(pc2, k=1)
assert len(hits) == 1
assert hits[0].page_content == pc2
assert hits[0].metadata == {"m": "3.0"}
assert hits[0].id == "idx3"
await v_store_2.aclear()
# IDs in documents.
v_store_3 = await Cassandra.afrom_documents(
[
Document(page_content=pc1, metadata={"m": 1}, id="idx1"),
Document(page_content=pc2, metadata={"m": 3}, id="idx3"),
],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
hits = await v_store_3.asimilarity_search(pc2, k=1)
assert len(hits) == 1
assert hits[0].page_content == pc2
assert hits[0].metadata == {"m": "3.0"}
assert hits[0].id == "idx3"
await v_store_3.aclear()
# IDs both in documents and aside.
with pytest.warns(DeprecationWarning) as rec_warnings:
v_store_4 = await Cassandra.afrom_documents(
[
Document(page_content=pc1, metadata={"m": 1}),
Document(page_content=pc2, metadata={"m": 3}, id="idy3"),
],
ids=["idx1", "idx3"],
table_name=cassandra_session.table_name,
session=cassandra_session.session,
keyspace=TEST_KEYSPACE,
embedding=embedding_d2,
)
f_rec_warnings = [
wrn for wrn in rec_warnings if issubclass(wrn.category, DeprecationWarning)
]
assert len(f_rec_warnings) == 1
hits = await v_store_4.asimilarity_search(pc2, k=1)
assert len(hits) == 1
assert hits[0].page_content == pc2
assert hits[0].metadata == {"m": "3.0"}
assert hits[0].id == "idx3"
await v_store_4.aclear()
def test_cassandra_vectorstore_crud_sync(
self,
vector_store_d2: Cassandra,
) -> None:
"""Add/delete/update behaviour."""
vstore = vector_store_d2
res0 = vstore.similarity_search("[-1,-1]", k=2)
assert res0 == []
# write and check again
added_ids = vstore.add_texts(
texts=["[1,2]", "[3,4]", "[5,6]"],
metadatas=[
{"k": "a", "ord": 0},
{"k": "b", "ord": 1},
{"k": "c", "ord": 2},
],
ids=["a", "b", "c"],
)
# not requiring ordered match (elsewhere it may be overwriting some)
assert set(added_ids) == {"a", "b", "c"}
res1 = vstore.similarity_search("[-1,-1]", k=5)
assert {doc.page_content for doc in res1} == {"[1,2]", "[3,4]", "[5,6]"}
res2 = vstore.similarity_search("[3,4]", k=1)
assert len(res2) == 1
assert res2[0].page_content == "[3,4]"
assert res2[0].metadata == {"k": "b", "ord": "1.0"}
assert res2[0].id == "b"
# partial overwrite and count total entries
added_ids_1 = vstore.add_texts(
texts=["[5,6]", "[7,8]"],
metadatas=[
{"k": "c_new", "ord": 102},
{"k": "d_new", "ord": 103},
],
ids=["c", "d"],
)
# not requiring ordered match (elsewhere it may be overwriting some)
assert set(added_ids_1) == {"c", "d"}
res2 = vstore.similarity_search("[-1,-1]", k=10)
assert len(res2) == 4
# pick one that was just updated and check its metadata
res3 = vstore.similarity_search_with_score_id(
query="[5,6]", k=1, filter={"k": "c_new"}
)
doc3, _, id3 = res3[0]
assert doc3.page_content == "[5,6]"
assert doc3.metadata == {"k": "c_new", "ord": "102.0"}
assert id3 == "c"
# delete and count again
del1_res = vstore.delete(["b"])
assert del1_res is True
del2_res = vstore.delete(["a", "c", "Z!"])
assert del2_res is True # a non-existing ID was supplied
assert len(vstore.similarity_search("[-1,-1]", k=10)) == 1
# clear store
vstore.clear()
assert vstore.similarity_search("[-1,-1]", k=2) == []
# add_documents with "ids" arg passthrough
vstore.add_documents(
[
Document(page_content="[9,10]", metadata={"k": "v", "ord": 204}),
Document(page_content="[11,12]", metadata={"k": "w", "ord": 205}),
],
ids=["v", "w"],
)
assert len(vstore.similarity_search("[-1,-1]", k=10)) == 2
res4 = vstore.similarity_search("[11,12]", k=1, filter={"k": "w"})
assert res4[0].metadata["ord"] == "205.0"
assert res4[0].id == "w"
# add_texts with "ids" arg passthrough
vstore.add_texts(
texts=["[13,14]", "[15,16]"],
metadatas=[{"k": "r", "ord": 306}, {"k": "s", "ord": 307}],
ids=["r", "s"],
)
assert len(vstore.similarity_search("[-1,-1]", k=10)) == 4
res4 = vstore.similarity_search("[-1,-1]", k=1, filter={"k": "s"})
assert res4[0].metadata["ord"] == "307.0"
assert res4[0].id == "s"
# delete_by_document_id
vstore.delete_by_document_id("s")
assert len(vstore.similarity_search("[-1,-1]", k=10)) == 3
async def test_cassandra_vectorstore_crud_async(
self,
vector_store_d2: Cassandra,
) -> None:
"""Add/delete/update behaviour, async version."""
vstore = vector_store_d2
res0 = await vstore.asimilarity_search("[-1,-1]", k=2)
assert res0 == []
# write and check again
added_ids = await vstore.aadd_texts(
texts=["[1,2]", "[3,4]", "[5,6]"],
metadatas=[
{"k": "a", "ord": 0},
{"k": "b", "ord": 1},
{"k": "c", "ord": 2},
],
ids=["a", "b", "c"],
)
# not requiring ordered match (elsewhere it may be overwriting some)
assert set(added_ids) == {"a", "b", "c"}
res1 = await vstore.asimilarity_search("[-1,-1]", k=5)
assert {doc.page_content for doc in res1} == {"[1,2]", "[3,4]", "[5,6]"}
res2 = await vstore.asimilarity_search("[3,4]", k=1)
assert len(res2) == 1
assert res2[0].page_content == "[3,4]"
assert res2[0].metadata == {"k": "b", "ord": "1.0"}
assert res2[0].id == "b"
# partial overwrite and count total entries
added_ids_1 = await vstore.aadd_texts(
texts=["[5,6]", "[7,8]"],
metadatas=[
{"k": "c_new", "ord": 102},
{"k": "d_new", "ord": 103},
],
ids=["c", "d"],
)
# not requiring ordered match (elsewhere it may be overwriting some)
assert set(added_ids_1) == {"c", "d"}
res2 = await vstore.asimilarity_search("[-1,-1]", k=10)
assert len(res2) == 4
# pick one that was just updated and check its metadata
res3 = await vstore.asimilarity_search_with_score_id(
query="[5,6]", k=1, filter={"k": "c_new"}
)
doc3, _, id3 = res3[0]
assert doc3.page_content == "[5,6]"
assert doc3.metadata == {"k": "c_new", "ord": "102.0"}
assert id3 == "c"
# delete and count again
del1_res = await vstore.adelete(["b"])
assert del1_res is True
del2_res = await vstore.adelete(["a", "c", "Z!"])
assert del2_res is True # a non-existing ID was supplied
assert len(await vstore.asimilarity_search("[-1,-1]", k=10)) == 1
# clear store
await vstore.aclear()
assert await vstore.asimilarity_search("[-1,-1]", k=2) == []
# add_documents with "ids" arg passthrough
await vstore.aadd_documents(
[
Document(page_content="[9,10]", metadata={"k": "v", "ord": 204}),
Document(page_content="[11,12]", metadata={"k": "w", "ord": 205}),
],
ids=["v", "w"],
)
assert len(await vstore.asimilarity_search("[-1,-1]", k=10)) == 2
res4 = await vstore.asimilarity_search("[11,12]", k=1, filter={"k": "w"})
assert res4[0].metadata["ord"] == "205.0"
assert res4[0].id == "w"
# add_texts with "ids" arg passthrough
await vstore.aadd_texts(
texts=["[13,14]", "[15,16]"],
metadatas=[{"k": "r", "ord": 306}, {"k": "s", "ord": 307}],
ids=["r", "s"],
)
assert len(await vstore.asimilarity_search("[-1,-1]", k=10)) == 4
res4 = await vstore.asimilarity_search("[-1,-1]", k=1, filter={"k": "s"})
assert res4[0].metadata["ord"] == "307.0"
assert res4[0].id == "s"
# delete_by_document_id
await vstore.adelete_by_document_id("s")
assert len(await vstore.asimilarity_search("[-1,-1]", k=10)) == 3
def test_cassandra_vectorstore_massive_insert_replace_sync(
self,
vector_store_d2: Cassandra,
) -> None:
"""Testing the insert-many-and-replace-some patterns thoroughly."""
full_size = 300
first_group_size = 150
second_group_slicer = [30, 100, 2]
all_ids = [f"doc_{idx}" for idx in range(full_size)]
all_texts = [f"[0,{idx + 1}]" for idx in range(full_size)]
# massive insertion on empty
group0_ids = all_ids[0:first_group_size]
group0_texts = all_texts[0:first_group_size]
inserted_ids0 = vector_store_d2.add_texts(
texts=group0_texts,
ids=group0_ids,
)
assert set(inserted_ids0) == set(group0_ids)
# massive insertion with many overwrites scattered through
# (we change the text to later check on DB for successful update)
_s, _e, _st = second_group_slicer
group1_ids = all_ids[_s:_e:_st] + all_ids[first_group_size:full_size]
group1_texts = [
txt.upper()
for txt in (all_texts[_s:_e:_st] + all_texts[first_group_size:full_size])
]
inserted_ids1 = vector_store_d2.add_texts(
texts=group1_texts,
ids=group1_ids,
)
assert set(inserted_ids1) == set(group1_ids)
# final read (we want the IDs to do a full check)
expected_text_by_id = {
**dict(zip(group0_ids, group0_texts)),
**dict(zip(group1_ids, group1_texts)),
}
full_results = vector_store_d2.similarity_search_with_score_id_by_vector(
embedding=[1.0, 1.0],
k=full_size,
)
for doc, _, doc_id in full_results:
assert doc.page_content == expected_text_by_id[doc_id]
async def test_cassandra_vectorstore_massive_insert_replace_async(
self,
vector_store_d2: Cassandra,
) -> None:
"""
Testing the insert-many-and-replace-some patterns thoroughly.
Async version.
"""
full_size = 300
first_group_size = 150
second_group_slicer = [30, 100, 2]
all_ids = [f"doc_{idx}" for idx in range(full_size)]
all_texts = [f"[0,{idx + 1}]" for idx in range(full_size)]
all_embeddings = [[0, idx + 1] for idx in range(full_size)]
# massive insertion on empty
group0_ids = all_ids[0:first_group_size]
group0_texts = all_texts[0:first_group_size]
inserted_ids0 = await vector_store_d2.aadd_texts(
texts=group0_texts,
ids=group0_ids,
)
assert set(inserted_ids0) == set(group0_ids)
# massive insertion with many overwrites scattered through
# (we change the text to later check on DB for successful update)
_s, _e, _st = second_group_slicer
group1_ids = all_ids[_s:_e:_st] + all_ids[first_group_size:full_size]
group1_texts = [
txt.upper()
for txt in (all_texts[_s:_e:_st] + all_texts[first_group_size:full_size])
]
inserted_ids1 = await vector_store_d2.aadd_texts(
texts=group1_texts,
ids=group1_ids,
)
assert set(inserted_ids1) == set(group1_ids)
# final read (we want the IDs to do a full check)
expected_text_by_id = dict(zip(all_ids, all_texts))
full_results = await vector_store_d2.asimilarity_search_with_score_id_by_vector(
embedding=[1.0, 1.0],
k=full_size,
)
for doc, _, doc_id in full_results:
assert doc.page_content == expected_text_by_id[doc_id]
expected_embedding_by_id = dict(zip(all_ids, all_embeddings))
full_results_with_embeddings = (
await vector_store_d2.asimilarity_search_with_embedding_id_by_vector(
embedding=[1.0, 1.0],
k=full_size,
)
)
for doc, embedding, doc_id in full_results_with_embeddings:
assert doc.page_content == expected_text_by_id[doc_id]
assert embedding == expected_embedding_by_id[doc_id]
def test_cassandra_vectorstore_delete_by_metadata_sync(
self,
vector_store_d2: Cassandra,
) -> None:
"""Testing delete_by_metadata_filter."""
full_size = 400
# one in ... will be deleted
deletee_ratio = 3
documents = [
Document(
page_content="[1,1]", metadata={"deletee": doc_i % deletee_ratio == 0}
)
for doc_i in range(full_size)
]
num_deletees = len([doc for doc in documents if doc.metadata["deletee"]])
inserted_ids0 = vector_store_d2.add_documents(documents)
assert len(inserted_ids0) == len(documents)
d_result0 = vector_store_d2.delete_by_metadata_filter({"deletee": True})
assert d_result0 == num_deletees
count_on_store0 = len(
vector_store_d2.similarity_search("[1,1]", k=full_size + 1)
)
assert count_on_store0 == full_size - num_deletees
with pytest.raises(ValueError, match="does not accept an empty"):
vector_store_d2.delete_by_metadata_filter({})
count_on_store1 = len(
vector_store_d2.similarity_search("[1,1]", k=full_size + 1)
)
assert count_on_store1 == full_size - num_deletees
async def test_cassandra_vectorstore_delete_by_metadata_async(
self,
vector_store_d2: Cassandra,
) -> None:
"""Testing delete_by_metadata_filter, async version."""
full_size = 400
# one in ... will be deleted
deletee_ratio = 3
documents = [
Document(
page_content="[1,1]", metadata={"deletee": doc_i % deletee_ratio == 0}
)
for doc_i in range(full_size)
]
num_deletees = len([doc for doc in documents if doc.metadata["deletee"]])
inserted_ids0 = await vector_store_d2.aadd_documents(documents)
assert len(inserted_ids0) == len(documents)
d_result0 = await vector_store_d2.adelete_by_metadata_filter({"deletee": True})
assert d_result0 == num_deletees
count_on_store0 = len(
await vector_store_d2.asimilarity_search("[1,1]", k=full_size + 1)
)
assert count_on_store0 == full_size - num_deletees
with pytest.raises(ValueError, match="does not accept an empty"):
await vector_store_d2.adelete_by_metadata_filter({})
count_on_store1 = len(
await vector_store_d2.asimilarity_search("[1,1]", k=full_size + 1)
)
assert count_on_store1 == full_size - num_deletees
def test_cassandra_replace_metadata(self) -> None:
"""Test of replacing metadata."""
N_DOCS = 100
REPLACE_RATIO = 2 # one in ... will have replaced metadata
BATCH_SIZE = 3
with vector_store_from_texts(
texts=[],
metadata_indexing=("allowlist", ["field1", "field2"]),
table_name="vector_test_table_indexing",
) as vstore_f1:
orig_documents = [
Document(
page_content=f"doc_{doc_i}",
id=f"doc_id_{doc_i}",
metadata={"field1": f"f1_{doc_i}", "otherf": "pre"},
)
for doc_i in range(N_DOCS)
]
vstore_f1.add_documents(orig_documents)
ids_to_replace = [
f"doc_id_{doc_i}"
for doc_i in range(N_DOCS)
if doc_i % REPLACE_RATIO == 0
]
# various kinds of replacement at play here:
def _make_new_md(mode: int, doc_id: str) -> dict[str, str]:
if mode == 0:
return {}
elif mode == 1:
return {"field2": f"NEW_{doc_id}"}
elif mode == 2:
return {"field2": f"NEW_{doc_id}", "ofherf2": "post"}
else:
return {"ofherf2": "post"}
ids_to_new_md = {
doc_id: _make_new_md(rep_i % 4, doc_id)
for rep_i, doc_id in enumerate(ids_to_replace)
}
vstore_f1.replace_metadata(ids_to_new_md, batch_size=BATCH_SIZE)
# thorough check
expected_id_to_metadata: dict[str, dict] = {
**{
(document.id or ""): document.metadata
for document in orig_documents
},
**ids_to_new_md,
}
for hit in vstore_f1.similarity_search("doc", k=N_DOCS + 1):
assert hit.id is not None
assert hit.metadata == expected_id_to_metadata[hit.id]
async def test_cassandra_replace_metadata_async(self) -> None:
"""Test of replacing metadata."""
N_DOCS = 100
REPLACE_RATIO = 2 # one in ... will have replaced metadata
BATCH_SIZE = 3
async with vector_store_from_texts_async(
texts=[],
metadata_indexing=("allowlist", ["field1", "field2"]),
table_name="vector_test_table_indexing",
embedding=ConsistentFakeEmbeddings(),
) as vstore_f1:
orig_documents = [
Document(
page_content=f"doc_{doc_i}",
id=f"doc_id_{doc_i}",
metadata={"field1": f"f1_{doc_i}", "otherf": "pre"},
)
for doc_i in range(N_DOCS)
]
await vstore_f1.aadd_documents(orig_documents)
ids_to_replace = [
f"doc_id_{doc_i}"
for doc_i in range(N_DOCS)
if doc_i % REPLACE_RATIO == 0
]
# various kinds of replacement at play here:
def _make_new_md(mode: int, doc_id: str) -> dict[str, str]:
if mode == 0:
return {}
elif mode == 1:
return {"field2": f"NEW_{doc_id}"}
elif mode == 2:
return {"field2": f"NEW_{doc_id}", "ofherf2": "post"}
else:
return {"ofherf2": "post"}
ids_to_new_md = {
doc_id: _make_new_md(rep_i % 4, doc_id)
for rep_i, doc_id in enumerate(ids_to_replace)
}
await vstore_f1.areplace_metadata(ids_to_new_md, concurrency=BATCH_SIZE)
# thorough check
expected_id_to_metadata: dict[str, dict] = {
**{
(document.id or ""): document.metadata
for document in orig_documents
},
**ids_to_new_md,
}
for hit in await vstore_f1.asimilarity_search("doc", k=N_DOCS + 1):
assert hit.id is not None
assert hit.metadata == expected_id_to_metadata[hit.id]
def test_cassandra_vectorstore_mmr_sync(
self,
vector_store_d2: Cassandra,
) -> None:
"""MMR testing. We work on the unit circle with angle multiples
of 2*pi/20 and prepare a store with known vectors for a controlled
MMR outcome.
"""
def _v_from_i(i: int, n: int) -> str:
angle = 2 * math.pi * i / n
vector = [math.cos(angle), math.sin(angle)]
return json.dumps(vector)
i_vals = [0, 4, 5, 13]
n_val = 20
vector_store_d2.add_texts(
[_v_from_i(i, n_val) for i in i_vals], metadatas=[{"i": i} for i in i_vals]
)
res1 = vector_store_d2.max_marginal_relevance_search(
_v_from_i(3, n_val),
k=2,
fetch_k=3,
)
res_i_vals = {doc.metadata["i"] for doc in res1}
assert res_i_vals == {"0.0", "4.0"}
async def test_cassandra_vectorstore_mmr_async(
self,
vector_store_d2: Cassandra,
) -> None:
"""MMR testing. We work on the unit circle with angle multiples
of 2*pi/20 and prepare a store with known vectors for a controlled
MMR outcome.
Async version.
"""
def _v_from_i(i: int, n: int) -> str:
angle = 2 * math.pi * i / n
vector = [math.cos(angle), math.sin(angle)]
return json.dumps(vector)
i_vals = [0, 4, 5, 13]
n_val = 20
await vector_store_d2.aadd_texts(
[_v_from_i(i, n_val) for i in i_vals],
metadatas=[{"i": i} for i in i_vals],
)
res1 = await vector_store_d2.amax_marginal_relevance_search(
_v_from_i(3, n_val),
k=2,
fetch_k=3,
)
res_i_vals = {doc.metadata["i"] for doc in res1}
assert res_i_vals == {"0.0", "4.0"}
def test_cassandra_vectorstore_metadata_filter(
self,
vector_store_d2: Cassandra,
metadata_documents: list[Document],
) -> None:
"""Metadata filtering."""
vstore = vector_store_d2
vstore.add_documents(metadata_documents)
# no filters
res0 = vstore.similarity_search("[-1,-1]", k=10)
assert {doc.metadata["letter"] for doc in res0} == set("qwreio")
# single filter
res1 = vstore.similarity_search(
"[-1,-1]",
k=10,
filter={"group": "vowel"},
)
assert {doc.metadata["letter"] for doc in res1} == set("eio")
# multiple filters
res2 = vstore.similarity_search(
"[-1,-1]",
k=10,
filter={"group": "consonant", "ord": str(ord("q"))},
)
assert {doc.metadata["letter"] for doc in res2} == set("q")
# excessive filters
res3 = vstore.similarity_search(
"[-1,-1]",
k=10,
filter={"group": "consonant", "ord": str(ord("q")), "case": "upper"},
)
assert res3 == []
def test_cassandra_vectorstore_metadata_search_sync(
self,
vector_store_d2: Cassandra,
metadata_documents: list[Document],
) -> None:
"""Metadata Search"""
vstore = vector_store_d2
vstore.add_documents(metadata_documents)
# no filters
res0 = vstore.metadata_search(filter={}, n=10)
assert {doc.metadata["letter"] for doc in res0} == set("qwreio")
# single filter
res1 = vstore.metadata_search(
n=10,
filter={"group": "vowel"},
)
assert {doc.metadata["letter"] for doc in res1} == set("eio")
# multiple filters
res2 = vstore.metadata_search(
n=10,
filter={"group": "consonant", "ord": str(ord("q"))},
)
assert {doc.metadata["letter"] for doc in res2} == set("q")
# excessive filters
res3 = vstore.metadata_search(
n=10,
filter={"group": "consonant", "ord": str(ord("q")), "case": "upper"},
)
assert res3 == []
async def test_cassandra_vectorstore_metadata_search_async(
self,
vector_store_d2: Cassandra,
metadata_documents: list[Document],
) -> None:
"""Metadata Search"""
vstore = vector_store_d2
await vstore.aadd_documents(metadata_documents)
# no filters
res0 = await vstore.ametadata_search(filter={}, n=10)
assert {doc.metadata["letter"] for doc in res0} == set("qwreio")
# single filter
res1 = vstore.metadata_search(
n=10,
filter={"group": "vowel"},
)
assert {doc.metadata["letter"] for doc in res1} == set("eio")
# multiple filters
res2 = await vstore.ametadata_search(
n=10,
filter={"group": "consonant", "ord": str(ord("q"))},
)
assert {doc.metadata["letter"] for doc in res2} == set("q")
# excessive filters
res3 = await vstore.ametadata_search(
n=10,
filter={"group": "consonant", "ord": str(ord("q")), "case": "upper"},
)
assert res3 == []
def test_cassandra_vectorstore_get_by_document_id_sync(
self,
vector_store_d2: Cassandra,
metadata_documents: list[Document],
) -> None:
"""Get by document_id"""
vstore = vector_store_d2
vstore.add_documents(metadata_documents)
# invalid id
invalid = vstore.get_by_document_id(document_id="z")
assert invalid is None
# valid id
valid = vstore.get_by_document_id(document_id="q")
assert isinstance(valid, Document)
assert valid.id == "q"
assert valid.page_content == "[1,2]"
assert valid.metadata["group"] == "consonant"
assert valid.metadata["letter"] == "q"
async def test_cassandra_vectorstore_get_by_document_id_async(
self,
vector_store_d2: Cassandra,
metadata_documents: list[Document],
) -> None:
"""Get by document_id"""
vstore = vector_store_d2
await vstore.aadd_documents(metadata_documents)
# invalid id
invalid = await vstore.aget_by_document_id(document_id="z")
assert invalid is None
# valid id
valid = await vstore.aget_by_document_id(document_id="q")
assert isinstance(valid, Document)
assert valid.id == "q"
assert valid.page_content == "[1,2]"
assert valid.metadata["group"] == "consonant"
assert valid.metadata["letter"] == "q"
@pytest.mark.parametrize(
("texts", "query"),
[
(
["[1,1]", "[-1,-1]"],
"[0.99999,1.00001]",
),
],
)
def test_cassandra_vectorstore_similarity_scale_sync(
self,
*,
vector_store_d2: Cassandra,
texts: list[str],
query: str,
) -> None:
"""Scale of the similarity scores."""
vstore = vector_store_d2
vstore.add_texts(
texts=texts,
ids=["near", "far"],
)
res1 = vstore.similarity_search_with_score(
query,
k=2,
)
scores = [sco for _, sco in res1]
sco_near, sco_far = scores
assert sco_far >= 0
assert abs(1 - sco_near) < MATCH_EPSILON
assert sco_far < EUCLIDEAN_MIN_SIM_UNIT_VECTORS + MATCH_EPSILON
@pytest.mark.parametrize(
("texts", "query"),
[
(
["[1,1]", "[-1,-1]"],
"[0.99999,1.00001]",
),
],
)
async def test_cassandra_vectorstore_similarity_scale_async(
self,
*,
vector_store_d2: Cassandra,
texts: list[str],
query: str,
) -> None:
"""Scale of the similarity scores, async version."""
vstore = vector_store_d2
await vstore.aadd_texts(
texts=texts,
ids=["near", "far"],
)
res1 = await vstore.asimilarity_search_with_score(
query,
k=2,
)
scores = [sco for _, sco in res1]
sco_near, sco_far = scores
assert sco_far >= 0
assert abs(1 - sco_near) < MATCH_EPSILON
assert sco_far < EUCLIDEAN_MIN_SIM_UNIT_VECTORS + MATCH_EPSILON
def test_cassandra_vectorstore_massive_delete(
self,
vector_store_d2: Cassandra,
) -> None:
"""Larger-scale bulk deletes."""
vstore = vector_store_d2
m = 150
texts = [f"[0,{i + 1 / 7.0}]" for i in range(2 * m)]
ids0 = [f"doc_{i}" for i in range(m)]
ids1 = [f"doc_{i + m}" for i in range(m)]
ids = ids0 + ids1
vstore.add_texts(texts=texts, ids=ids)
# deleting a bunch of these
del_res0 = vstore.delete(ids0)
assert del_res0 is True
# deleting the rest plus a fake one
del_res1 = vstore.delete([*ids1, "ghost!"])
assert del_res1 is True # ensure no error
# nothing left
assert vstore.similarity_search("[-1,-1]", k=2 * m) == []
|
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@tests@integration_tests@vectorstores@test_cassandra.py@.PATH_END.py
|
{
"filename": "drs_lang.py",
"repo_name": "njcuk9999/apero-drs",
"repo_path": "apero-drs_extracted/apero-drs-main/apero/lang/core/drs_lang.py",
"type": "Python"
}
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Language database functionality
Created on 2020-11-2020-11-13 10:41
@author: cook
# import rules
only from:
- apero.base.base
- apero.base.drs_base
- apero.base.drs_db
"""
import os
import shutil
from typing import Any, Dict, List, Union
import numpy as np
import pandas as pd
from apero.base import base
from apero.base import drs_base
from apero.base import drs_db
# =============================================================================
# Define variables
# =============================================================================
__NAME__ = 'apero.lang.drs_lang.py'
__PACKAGE__ = base.__PACKAGE__
__INSTRUMENT__ = 'None'
__version__ = base.__version__
__author__ = base.__author__
__date__ = base.__date__
__release__ = base.__release__
# get language from base
DEFAULT_LANG = base.DEFAULT_LANG
LANG = base.IPARAMS.get('LANGUAGE', DEFAULT_LANG)
# get and load the language database once
# noinspection PyBroadException
try:
langdbm = drs_db.LanguageDatabase()
# load database
langdbm.load_db()
# if we can't access straight away go to proxy
langdbm.database.tries = 1
# Can be the case that we have the database but we are yet to
# create the language table - in this case we need to use the proxy
# dictionary instead - else we get the dictionary from the langauage
# database table
if langdbm.database.tname in langdbm.database.tables:
langdict = langdbm.get_dict(language=LANG)
else:
langdict = drs_base.lang_db_proxy()
# if we can't then we have no language database
except Exception as _:
langdict = drs_base.lang_db_proxy()
# define the database path relative to package
DATABASE_PATH = base.LANG_DEFAULT_PATH
# define the backup path relative to package
BACKUP_PATH = base.LANG_BACKUP_PATH
# define the database (xls file)
DATABASE_FILE = base.LANG_XLS_FILE
# =============================================================================
# Define classes
# =============================================================================
class LanguageException(Exception):
"""
Base language exception class
"""
pass
class LanguageError(LanguageException):
def __init__(self, message: Union[str, None] = None,
errorobj: Any = None,
func_name: Union[str, None] = None):
"""
Construct the Database Error instance
:param message: str a mesage to pass / print
:param errorobj: the error instance (or anything else)
:param func_name: str, the function name where error occured
"""
self.message = message
self.errorobj = errorobj
self.func_name = func_name
# call super class
super().__init__(message)
def __getstate__(self) -> dict:
"""
For when we have to pickle the class
:return:
"""
# set state to __dict__
state = dict(self.__dict__)
# return dictionary state (for pickle)
return state
def __setstate__(self, state):
"""
For when we have to unpickle the class
:param state: dictionary from pickle
:return:
"""
# update dict with state
self.__dict__.update(state)
def __str__(self):
"""
Standard __str__ return (used in raising as Exception)
:return:
"""
emsg = 'Language Error: {0}'.format(self.message)
return emsg
class Text(str):
"""
Special text container (so we can store text entry key)
"""
def __init__(self, *args, **kwargs):
str.__init__(*args, **kwargs)
self.tkey = None
self.tvalue = str(args[0])
self.targs = None
self.tkwargs = None
self.t_short = ''
self.formatted = False
def __getstate__(self) -> dict:
"""
For when we have to pickle the class
:return:
"""
# set state to __dict__
state = dict(self.__dict__)
# return dictionary state (for pickle)
return state
def __setstate__(self, state):
"""
For when we have to unpickle the class
:param state: dictionary from pickle
:return:
"""
# update dict with state
self.__dict__.update(state)
def __add__(self, other: Union['Text', str]):
"""
string-like addition (returning a Text instance)
Equivalent to x + y
:param other: Text or str, add 'other' (y) to end of self (x)
:return: combined string (x + y) (self + other)
"""
# must merge changes from other if Text instance
if isinstance(other, Text):
othertext = other.get_text()
else:
othertext = str(other)
# make new object
msg = Text(self.get_text() + othertext)
# set text properties
msg.set_text_props(self.tkey)
return msg
def __radd__(self, other: Union['Text', str]):
"""
string-like addition (returning a Text instance)
Equivalent to y + x
:param other: Text or str, add 'other' (y) to start of self (x)
:return: combined string (y + x) (other + self)
"""
# must merge changes from other if Text instance
if isinstance(other, Text):
othertext = other.get_text()
else:
othertext = str(other)
# make new object
msg = Text(othertext + self.get_text())
# set text properties
msg.set_text_props(self.tkey)
return msg
def __mul__(self, other: Any) -> Any:
"""
Do not allow multiplication
:param other: Any, anything else to multiple by
:return:
"""
NotImplemented('Multiply in {0}.Text not implemented'.format(__NAME__))
def __repr__(self) -> str:
"""
String representation of Text class
:return: str, the string representation of the Text class
"""
if not self.formatted:
self.get_formatting()
return str(self.tvalue)
def __str__(self) -> str:
"""
String representation of Text class
:return: str, the string representation of the Text class
"""
if not self.formatted:
self.get_formatting()
return str(self.tvalue)
def set_text_props(self, key: str,
args: Union[List[Any], str, None] = None,
kwargs: Union[Dict[str, Any], None] = None):
"""
Add the text properties to the Text (done so init is like str)
:param key: str, the key (code id) for the language database
:param args: if set a list of arguments to pass to the formatter
i.e. value.format(*args)
:param kwargs: if set a dictionary of keyword arguments to pass to the
formatter (i.e. value.format(**kwargs)
:return: None - updates tkey, tvalue, targs, tkwargs
"""
self.tkey = str(key)
# deal with arguments
if args is not None:
if isinstance(args, list):
self.targs = list(args)
else:
self.targs = [str(args)]
# deal with kwargs
if kwargs is not None:
self.tkwargs = dict(kwargs)
def get_text(self, report: bool = False,
reportlevel: Union[str, None] = None) -> str:
"""
Return the full text (with reporting if requested) for this Text
instance - this is returned as a string instance
if report = True:
"X[##-###-#####]: msg.format(*self.targs, **self.tkwargs)"
else:
"msg.format(*self.targs, **self.tkwargs)"
:param report: bool, - if true reports the code id of this text entry
in format X[##-###-#####] where X is the first
character in reportlevel
:param reportlevel: str, single character describing the reporting
i.e. E for Error, W for Warning etc
:return: string representation of the Text instance
"""
# ---------------------------------------------------------------------
# deal with report level character
if isinstance(reportlevel, str):
reportlevel = reportlevel[0].upper()
else:
reportlevel = self.t_short
# ---------------------------------------------------------------------
# make sure tvalue is up-to-date
self.get_formatting()
# ---------------------------------------------------------------------
vargs = [reportlevel, self.tkey, self.tvalue]
# deal with report
if report and (self.tkey != self.tvalue):
valuestr = '{0}[{1}]: {2}'.format(*vargs)
else:
valuestr = '{2}'.format(*vargs)
# ---------------------------------------------------------------------
return valuestr
def get_formatting(self, force=False):
"""
set the formatting (of self.tvalue) based on self.tkwargs and self.targs
:param force: bool, if True then override the condition that the text
is already formated (self.formatted)
:return: None, updates self.tvalue
"""
# don't bother if already formatted
if not force and self.formatted:
return
# set that we have formatted (so we don't do it again)
self.formatted = True
# ---------------------------------------------------------------------
# deal with no value
if self.tvalue is None:
value = str(self)
else:
value = self.tvalue
# ---------------------------------------------------------------------
# deal with no args
if self.targs is None and self.tkwargs is None:
self.tvalue = value
elif self.tkwargs is None and self.targs is not None:
self.tvalue = value.format(*self.targs)
elif self.targs is None and self.tkwargs is not None:
self.tvalue = value.format(**self.tkwargs)
else:
self.tvalue = value.format(*self.targs, **self.tkwargs)
def textentry(key: str, args: Union[List[Any], str, None] = None,
kwargs: Union[Dict[str, Any], None] = None) -> Text:
"""
Get text from a database
This is the only function that can use langdict and expect it to be
populated
:param key: str, the code by which to find the text in the language
dictionary
:param args: dict, arguments passed to text.format
:param kwargs: dict, keyword arguments passed to text.format
:return: Text class, the text taken from langdict[key] in Text class format
"""
# set function name
_ = __NAME__ + '.textentry()'
# deal with no entries
if key not in langdict:
message = key
else:
message = langdict[key]
# deal with args
if isinstance(args, str):
args = [args]
# create Text class for message
msg_obj = Text(message)
msg_obj.set_text_props(key, args, kwargs)
# return msg_obj
return msg_obj
# noinspection PyUnresolvedReferences
def read_xls(xls_file: str) -> pd.io.excel.ExcelFile:
"""
Read a Excel file
:param xls_file: str, the excel absolute path
:return: a pandas representation of the excel file
"""
# set function name
_ = __NAME__ + '.read_xls()'
# report progress: Loading database from file
wcode = '40-001-00026'
wmsg = drs_base.BETEXT[wcode]
drs_base.base_printer(wcode, wmsg, '', args=[xls_file])
try:
xls = pd.ExcelFile(xls_file)
except Exception as e:
ecode = '00-002-00026'
emsg = drs_base.BETEXT(ecode)
eargs = [xls_file, str(e), e]
raise drs_base.base_error(ecode, emsg, 'error', args=eargs,
exception=LanguageError)
return xls
# noinspection PyUnresolvedReferences
def convert_csv(xls: pd.io.excel.ExcelFile, out_dir: str):
"""
Use the pandas excel file to write the reset files (one default one and
one for each instrument)
:param xls: a pandas representation of the excel file
:param out_dir: str, the output directory for the reset files
:return: None - writes the reset files
"""
# set function name
func_name = __NAME__ + '.convert_csv()'
# create sheet names
sheet_names = ['HELP', 'TEXT']
instruments = ['NONE', 'NONE']
dataframes = dict(NONE=pd.DataFrame())
reset_paths = dict(NONE=base.LANG_DB_RESET)
# loop around instruments
for instrument in base.INSTRUMENTS:
# ignore None
cond1 = drs_base.base_func(drs_base.base_null_text, func_name,
instrument, ['None', '', 'NULL'])
if cond1:
continue
# add help sheet
sheet_names.append('HELP_{0}'.format(instrument.upper()))
instruments.append(instrument)
# add text sheet
sheet_names.append('TEXT_{0}'.format(instrument.upper()))
instruments.append(instrument)
# add to dataframes
dataframes[instrument] = pd.DataFrame()
# add to reset paths
reset_paths[instrument] = base.LANG_DB_RESET_INST.format(instrument)
# get sheets
for it, sheet in enumerate(sheet_names):
# print progress: Analyzing sheet
wcode = '40-001-00027'
wmsg = drs_base.BETEXT[wcode]
drs_base.base_printer(wcode, wmsg, '', args=[sheet])
# skip other sheets
if sheet not in xls.sheet_names:
continue
# get xls sheet
pdsheet = xls.parse(sheet)
# add to correct dataframe
dflist = [dataframes[instruments[it]], pdsheet]
dataframes[instruments[it]] = pd.concat(dflist, sort=True)
# push dataframes into csv files for reset
for instrument in dataframes:
# get dataframe
df = dataframes[instrument]
# get reset path
rpath = os.path.join(out_dir, reset_paths[instrument])
# write path to log: Saving reset file
wcode = '40-001-00028'
wmsg = drs_base.BETEXT[wcode]
drs_base.base_printer(wcode, wmsg, '', args=[rpath])
# remove non utf-8 characters
for column in df.columns:
# change encoding
values = df[column].str.encode('ascii', 'ignore')
values = values.str.decode('ascii')
# add back to columns
df[column] = values
# save to csv
# noinspection PyTypeChecker
df.to_csv(rpath, sep=',', quoting=2, index=False, encoding='utf-8')
def make_reset_csvs():
"""
Makes the reset csvs based on paths given
:return: None, re-writes reset csv files for language datse
"""
# ----------------------------------------------------------------------
# get abspath from relative path
database_path = drs_base.base_get_relative_folder(__PACKAGE__,
DATABASE_PATH)
backup_path = drs_base.base_get_relative_folder(__PACKAGE__, BACKUP_PATH)
# ----------------------------------------------------------------------
# get database abspath
dabspath = os.path.join(database_path, DATABASE_FILE)
babspath = os.path.join(backup_path, DATABASE_FILE)
# ----------------------------------------------------------------------
# check that we have database file in files
if not os.path.exists(dabspath):
ecode = '00-002-00027'
emsg = drs_base.BETEXT[ecode]
eargs = [DATABASE_FILE, database_path]
raise drs_base.base_error(ecode, emsg, 'error', args=eargs,
exception=LanguageError)
# ----------------------------------------------------------------------
# create a backup of the database: Backing up database
wcode = '40-001-00029'
wmsg = drs_base.BETEXT[wcode]
drs_base.base_printer(wcode, wmsg, '', args=[babspath])
shutil.copy(dabspath, babspath)
# ----------------------------------------------------------------------
# first get contents of database directory
files = np.sort(os.listdir(database_path))
# ----------------------------------------------------------------------
# clear files from database (other than database)
for filename in files:
abspath = os.path.join(database_path, filename)
if os.path.isdir(abspath):
continue
if filename != DATABASE_FILE:
# log message: Removing file
wcode = '40-001-00030'
wmsg = drs_base.BETEXT[wcode]
drs_base.base_printer(wcode, wmsg, '', args=[filename])
os.remove(abspath)
# ----------------------------------------------------------------------
# read the database file
xls_instance = read_xls(dabspath)
# convert to csv and save
convert_csv(xls_instance, database_path)
# =============================================================================
# Start of code
# =============================================================================
if __name__ == "__main__":
print('Hello World')
# =============================================================================
# End of code
# =============================================================================
|
njcuk9999REPO_NAMEapero-drsPATH_START.@apero-drs_extracted@apero-drs-main@apero@lang@core@drs_lang.py@.PATH_END.py
|
{
"filename": "mu_velfields.py",
"repo_name": "kapteyn-astro/kapteyn",
"repo_path": "kapteyn_extracted/kapteyn-master/doc/source/EXAMPLES/mu_velfields.py",
"type": "Python"
}
|
#!/usr/bin/env python
from kapteyn import wcsgrat, maputils
from matplotlib import pylab as plt
import numpy
# Create a maputils FITS object from a FITS file on disk
fitsobject = maputils.FITSimage(promptfie=maputils.prompt_fitsfile)
fitsobject.set_imageaxes(promptfie=maputils.prompt_imageaxes)
fitsobject.set_limits(promptfie=maputils.prompt_box)
fitsobject.set_skyout(promptfie=maputils.prompt_skyout)
clipmin, clipmax = maputils.prompt_dataminmax(fitsobject)
# Get connected to Matplotlib
fig = plt.figure()
frame = fig.add_subplot(1,1,1)
# Create an image to be used in Matplotlib
annim = fitsobject.Annotatedimage(frame, clipmin=clipmin, clipmax=clipmax)
annim.Image()
annim.Colorbar()
levs = numpy.arange(clipmin, clipmax, 20)
print(levs)
levs = [6, 26, 46, 66, 86, 106, 126,
146, 166, 186, 206, 226, 246]
levs = list(range(-154, 265, 20))
annim.Contours(levels=levs)
#annim.Graticule()
annim.plot()
annim.interact_toolbarinfo()
annim.interact_imagecolors()
annim.interact_writepos()
plt.show()
|
kapteyn-astroREPO_NAMEkapteynPATH_START.@kapteyn_extracted@kapteyn-master@doc@source@EXAMPLES@mu_velfields.py@.PATH_END.py
|
{
"filename": "_side.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/scatterpolargl/marker/colorbar/title/_side.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class SideValidator(_plotly_utils.basevalidators.EnumeratedValidator):
def __init__(
self,
plotly_name="side",
parent_name="scatterpolargl.marker.colorbar.title",
**kwargs
):
super(SideValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "calc"),
role=kwargs.pop("role", "style"),
values=kwargs.pop("values", ["right", "top", "bottom"]),
**kwargs
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@scatterpolargl@marker@colorbar@title@_side.py@.PATH_END.py
|
{
"filename": "test_RHT_timings.py",
"repo_name": "mjuvela/ISM",
"repo_path": "ISM_extracted/ISM-master/TM/test_RHT_timings.py",
"type": "Python"
}
|
import os, sys
ISM_DIRECTORY = os.path.expanduser('~/GITHUB')
try:
ISM_DIRECTORY = os.environ(['ISM_DIRECTORY'])
except:
pass
sys.path.append(ISM_DIRECTORY)
import ISM.Defs
from ISM.FITS.FITS import *
from scipy.ndimage import zoom
from ISM.TM.Pattern import RollingHoughTransformBasic
# set the directory where code from http://seclark.github.io/RHT/ is installed
RHT_DIRECTORY = '/home/mika/IN/seclark-RHT-f8b1f3e'
DK = 11
DW = 55
TH = 0.70
SIZES = logspace(log10(100.0), log10(2000.0), 7)
# SIZES = logspace(log10(100.0), log10(200.0), 3)
TIME = zeros((len(SIZES), 4), float32)
for isize in range(len(SIZES)):
F = pyfits.open('PSW.fits')
kzoom = SIZES[isize]/float(F[0].data.shape[0])
F[0].data = zoom(F[0].data.copy(), kzoom)
F.verify('fix')
F.writeto('test.fits', overwrite=True)
#
t0 = time.time()
os.system('python %s/rht.py -f -w %.0f -s %.0f -t %.3f test.fits' % (RHT_DIRECTORY, DW, DK, TH))
TIME[isize,0] = time.time()-t0
#
t0 = time.time()
RollingHoughTransformBasic(F, DK, DW, TH, GPU=0)
TIME[isize,1] = time.time()-t0
#
t0 = time.time()
RollingHoughTransformBasic(F, DK, DW, TH, GPU=1, platforms=[0,])
TIME[isize,2] = time.time()-t0
#
t0 = time.time()
RollingHoughTransformBasic(F, DK, DW, TH, GPU=1, platforms=[1,])
TIME[isize,3] = time.time()-t0
loglog(SIZES, TIME[:,0], 'ks-', label='Python')
loglog(SIZES, TIME[:,1], 'bo-', label='OpenCL/CPU')
loglog(SIZES, TIME[:,2], 'go-', label='OpenCL/GPU1')
loglog(SIZES, TIME[:,3], 'ro-', label='OpenCL/GPU2')
legend(loc='upper left')
xlabel('Size (pixels)')
ylabel('Time (s)')
savefig('test_RHT_timings.png')
show()
|
mjuvelaREPO_NAMEISMPATH_START.@ISM_extracted@ISM-master@TM@test_RHT_timings.py@.PATH_END.py
|
{
"filename": "README.md",
"repo_name": "AMReX-Astro/Castro",
"repo_path": "Castro_extracted/Castro-main/Exec/science/flame/flame_wave_tests/triple_alpha_plus_cago/README.md",
"type": "Markdown"
}
|
These files go together with the boosted flame for the `flame_wave`
problem. You should compile with the `triple_alpha_plus_cago`
network.
|
AMReX-AstroREPO_NAMECastroPATH_START.@Castro_extracted@Castro-main@Exec@science@flame@flame_wave_tests@triple_alpha_plus_cago@README.md@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "sibirrer/lenstronomy",
"repo_path": "lenstronomy_extracted/lenstronomy-main/lenstronomy/LensModel/LineOfSight/LOSModels/__init__.py",
"type": "Python"
}
|
sibirrerREPO_NAMElenstronomyPATH_START.@lenstronomy_extracted@lenstronomy-main@lenstronomy@LensModel@LineOfSight@LOSModels@__init__.py@.PATH_END.py
|
|
{
"filename": "releases.py",
"repo_name": "sdss/marvin",
"repo_path": "marvin_extracted/marvin-main/python/marvin/utils/datamodel/vacs/releases.py",
"type": "Python"
}
|
# !usr/bin/env python
# -*- coding: utf-8 -*-
#
# Licensed under a 3-clause BSD license.
#
# @Author: Brian Cherinka
# @Date: 2018-07-17 23:36:37
# @Last modified by: Brian Cherinka
# @Last Modified time: 2018-07-19 15:44:42
from __future__ import print_function, division, absolute_import
from collections import defaultdict
from marvin.utils.datamodel.drp import datamodel
from marvin.contrib.vacs.base import VACMixIn
from .base import VACList, VACDataModel
subvacs = VACMixIn.__subclasses__()
vacdms = []
# create a dictionary of VACs by release
vacdict = defaultdict(list)
for sv in subvacs:
# skip hidden VACs
if sv._hidden:
continue
# add versions to dictionary
for k in sv.version.keys():
vacdict[k].append(sv)
# create VAC datamodels
for release, vacs in vacdict.items():
vc = VACList(vacs)
dm = datamodel[release] if release in datamodel else None
aliases = dm.aliases if dm else None
vacdm = VACDataModel(release, vacs=vc, aliases=aliases)
vacdms.append(vacdm)
|
sdssREPO_NAMEmarvinPATH_START.@marvin_extracted@marvin-main@python@marvin@utils@datamodel@vacs@releases.py@.PATH_END.py
|
{
"filename": "_variant.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/funnel/outsidetextfont/_variant.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class VariantValidator(_plotly_utils.basevalidators.EnumeratedValidator):
def __init__(
self, plotly_name="variant", parent_name="funnel.outsidetextfont", **kwargs
):
super(VariantValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
array_ok=kwargs.pop("array_ok", True),
edit_type=kwargs.pop("edit_type", "calc"),
values=kwargs.pop(
"values",
[
"normal",
"small-caps",
"all-small-caps",
"all-petite-caps",
"petite-caps",
"unicase",
],
),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@funnel@outsidetextfont@_variant.py@.PATH_END.py
|
{
"filename": "class_lmv.py",
"repo_name": "radio-astro-tools/spectral-cube",
"repo_path": "spectral-cube_extracted/spectral-cube-master/spectral_cube/io/class_lmv.py",
"type": "Python"
}
|
import numpy as np
import struct
import warnings
import string
from astropy import log
from astropy.io import registry as io_registry
from ..spectral_cube import BaseSpectralCube
from .fits import load_fits_cube
"""
.. TODO::
When any section length is zero, that means the following values are to be
ignored. No warning is needed.
"""
# Constant:
r2deg = 180/np.pi
# see sicfits.f90
_ctype_dict={'LII':'GLON',
'BII':'GLAT',
'VELOCITY':'VELO',
'RA':'RA',
'DEC':'DEC',
'FREQUENCY': 'FREQ',
}
_cunit_dict = {'LII':'deg',
'BII':'deg',
'VELOCITY':'km s-1',
'RA':'deg',
'DEC':'deg',
'FREQUENCY': 'MHz',
}
cel_types = ('RA','DEC','GLON','GLAT')
# CLASS apparently defaults to an ARC (zenithal equidistant) projection; this
# is what is output in case the projection # is zero when exporting from CLASS
_proj_dict = {0:'ARC', 1:'TAN', 2:'SIN', 3:'AZP', 4:'STG', 5:'ZEA', 6:'AIT',
7:'GLS', 8:'SFL', }
_bunit_dict = {'k (tmb)': 'K'}
def is_lmv(origin, filepath, fileobj, *args, **kwargs):
"""
Determine whether input is in GILDAS CLASS lmv format
"""
return filepath is not None and filepath.lower().endswith('.lmv')
def read_lmv(lf):
"""
Read an LMV cube file
Specification is primarily in GILDAS image_def.f90
"""
log.warning("CLASS LMV cube reading is tentatively supported. "
"Please post bug reports at the first sign of danger!")
# lf for "LMV File"
filetype = _read_string(lf, 12)
#!---------------------------------------------------------------------
#! @ private
#! SYCODE system code
#! '-' IEEE
#! '.' EEEI (IBM like)
#! '_' VAX
#! IMCODE file code
#! '<' IEEE 64 bits (Little Endian, 99.9 % of recent computers)
#! '>' EEEI 64 bits (Big Endian, HPUX, IBM-RISC, and SPARC ...)
#!---------------------------------------------------------------------
imcode = filetype[6]
if filetype[:6] != 'GILDAS' or filetype[7:] != 'IMAGE':
raise TypeError("File is not a GILDAS Image file")
if imcode in ('<','>'):
if imcode =='>':
log.warning("Swap the endianness first...")
return read_lmv_type2(lf)
else:
return read_lmv_type1(lf)
def read_lmv_type1(lf):
header = {}
# fmt probably matters! Default is "r4", i.e. float32 data, but could be float64
fmt = np.fromfile(lf, dtype='int32', count=1) # 4
# number of data blocks
ndb = np.fromfile(lf, dtype='int32', count=1) # 5
gdf_type = np.fromfile(lf, dtype='int32', count=1) # 6
# Reserved Space
reserved_fill = np.fromfile(lf, dtype='int32', count=4) # 7
general_section_length = np.fromfile(lf, dtype='int32', count=1) # 11
#print "Format: ",fmt," ndb: ",ndb, " fill: ",fill," other: ",unknown
# pos 12
naxis,naxis1,naxis2,naxis3,naxis4 = np.fromfile(lf,count=5,dtype='int32')
header['NAXIS'] = naxis
header['NAXIS1'] = naxis1
header['NAXIS2'] = naxis2
header['NAXIS3'] = naxis3
header['NAXIS4'] = naxis4
# We are indexing bytes from here; CLASS indices are higher by 12
# pos 17
header['CRPIX1'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CRVAL1'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CDELT1'] = np.fromfile(lf,count=1,dtype='float64')[0] * r2deg
header['CRPIX2'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CRVAL2'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CDELT2'] = np.fromfile(lf,count=1,dtype='float64')[0] * r2deg
header['CRPIX3'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CRVAL3'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CDELT3'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CRPIX4'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CRVAL4'] = np.fromfile(lf,count=1,dtype='float64')[0]
header['CDELT4'] = np.fromfile(lf,count=1,dtype='float64')[0]
# pos 41
#print "Post-crval",lf.tell()
blank_section_length = np.fromfile(lf,count=1,dtype='int32')
if blank_section_length != 8:
warnings.warn("Invalid section length found for blanking section")
bval = np.fromfile(lf,count=1,dtype='float32')[0] # 42
header['TOLERANC'] = np.fromfile(lf,count=1,dtype='int32')[0] # 43 eval = tolerance
extrema_section_length = np.fromfile(lf,count=1,dtype='int32')[0] # 44
if extrema_section_length != 40:
warnings.warn("Invalid section length found for extrema section")
vmin,vmax = np.fromfile(lf,count=2,dtype='float32') # 45
xmin,xmax,ymin,ymax,zmin,zmax = np.fromfile(lf,count=6,dtype='int32') # 47
wmin,wmax = np.fromfile(lf,count=2,dtype='int32') # 53
description_section_length = np.fromfile(lf,count=1,dtype='int32')[0] # 55
if description_section_length != 72:
warnings.warn("Invalid section length found for description section")
#strings = lf.read(description_section_length) # 56
header['BUNIT'] = _read_string(lf, 12) # 56
header['CTYPE1'] = _read_string(lf, 12) # 59
header['CTYPE2'] = _read_string(lf, 12) # 62
header['CTYPE3'] = _read_string(lf, 12) # 65
header['CTYPE4'] = _read_string(lf, 12) # 68
header['CUNIT1'] = _cunit_dict[header['CTYPE1'].strip()]
header['CUNIT2'] = _cunit_dict[header['CTYPE2'].strip()]
header['CUNIT3'] = _cunit_dict[header['CTYPE3'].strip()]
header['COOSYS'] = _read_string(lf, 12) # 71
position_section_length = np.fromfile(lf,count=1,dtype='int32') # 74
if position_section_length != 48:
warnings.warn("Invalid section length found for position section")
header['OBJNAME'] = _read_string(lf, 4*3) # 75
header['RA'] = np.fromfile(lf, count=1, dtype='float64')[0] * r2deg # 78
header['DEC'] = np.fromfile(lf, count=1, dtype='float64')[0] * r2deg # 80
header['GLON'] = np.fromfile(lf, count=1, dtype='float64')[0] * r2deg # 82
header['GLAT'] = np.fromfile(lf, count=1, dtype='float64')[0] * r2deg # 84
header['EQUINOX'] = np.fromfile(lf,count=1,dtype='float32')[0] # 86
header['PROJWORD'] = _read_string(lf, 4) # 87
header['PTYP'] = np.fromfile(lf,count=1,dtype='int32')[0] # 88
header['A0'] = np.fromfile(lf,count=1,dtype='float64')[0] # 89
header['D0'] = np.fromfile(lf,count=1,dtype='float64')[0] # 91
header['PANG'] = np.fromfile(lf,count=1,dtype='float64')[0] # 93
header['XAXI'] = np.fromfile(lf,count=1,dtype='float32')[0] # 95
header['YAXI'] = np.fromfile(lf,count=1,dtype='float32')[0] # 96
spectroscopy_section_length = np.fromfile(lf,count=1,dtype='int32') # 97
if spectroscopy_section_length != 48:
warnings.warn("Invalid section length found for spectroscopy section")
header['RECVR'] = _read_string(lf, 12) # 98
header['FRES'] = np.fromfile(lf,count=1,dtype='float64')[0] # 101
header['IMAGFREQ'] = np.fromfile(lf,count=1,dtype='float64')[0] # 103 "FIMA"
header['REFFREQ'] = np.fromfile(lf,count=1,dtype='float64')[0] # 105
header['VRES'] = np.fromfile(lf,count=1,dtype='float32')[0] # 107
header['VOFF'] = np.fromfile(lf,count=1,dtype='float32')[0] # 108
header['FAXI'] = np.fromfile(lf,count=1,dtype='int32')[0] # 109
resolution_section_length = np.fromfile(lf,count=1,dtype='int32')[0] # 110
if resolution_section_length != 12:
warnings.warn("Invalid section length found for resolution section")
#header['DOPP'] = np.fromfile(lf,count=1,dtype='float16')[0] # 110a ???
#header['VTYP'] = np.fromfile(lf,count=1,dtype='int16')[0] # 110b
# integer, parameter :: vel_unk = 0 ! Unsupported referential :: planetary...)
# integer, parameter :: vel_lsr = 1 ! LSR referential
# integer, parameter :: vel_hel = 2 ! Heliocentric referential
# integer, parameter :: vel_obs = 3 ! Observatory referential
# integer, parameter :: vel_ear = 4 ! Earth-Moon barycenter referential
# integer, parameter :: vel_aut = -1 ! Take referential from data
header['BMAJ'] = np.fromfile(lf,count=1,dtype='float32')[0] # 111
header['BMIN'] = np.fromfile(lf,count=1,dtype='float32')[0] # 112
header['BPA'] = np.fromfile(lf,count=1,dtype='float32')[0] # 113
noise_section_length = np.fromfile(lf,count=1,dtype='int32')
if noise_section_length != 0:
warnings.warn("Invalid section length found for noise section")
header['NOISE'] = np.fromfile(lf,count=1,dtype='float32')[0] # 115
header['RMS'] = np.fromfile(lf,count=1,dtype='float32')[0] # 116
astrometry_section_length = np.fromfile(lf,count=1,dtype='int32')
if astrometry_section_length != 0:
warnings.warn("Invalid section length found for astrometry section")
header['MURA'] = np.fromfile(lf,count=1,dtype='float32')[0] # 118
header['MUDEC'] = np.fromfile(lf,count=1,dtype='float32')[0] # 119
header['PARALLAX'] = np.fromfile(lf,count=1,dtype='float32')[0] # 120
# Apparently CLASS headers aren't required to fill the 'value at
# reference pixel' column
if (header['CTYPE1'].strip() == 'RA' and header['CRVAL1'] == 0 and
header['RA'] != 0):
header['CRVAL1'] = header['RA']
header['CRVAL2'] = header['DEC']
# Copied from the type 2 reader:
# Use the appropriate projection type
ptyp = header['PTYP']
for kw in header:
if 'CTYPE' in kw:
if header[kw].strip() in cel_types:
n_dashes = 5-len(header[kw].strip())
header[kw] = header[kw].strip()+ '-'*n_dashes + _proj_dict[ptyp]
other_info = np.fromfile(lf, count=7, dtype='float32') # 121-end
if not np.all(other_info == 0):
warnings.warn("Found additional information in the last 7 bytes")
endpoint = 508
if lf.tell() != endpoint:
raise ValueError("Header was not parsed correctly")
data = np.fromfile(lf, count=naxis1*naxis2*naxis3, dtype='float32')
data[data == bval] = np.nan
# for no apparent reason, y and z are 1-indexed and x is zero-indexed
if (wmin-1,zmin-1,ymin-1,xmin) != np.unravel_index(np.nanargmin(data),
[naxis4,naxis3,naxis2,naxis1]):
warnings.warn("Data min location does not match that on file. "
"Possible error reading data.")
if (wmax-1,zmax-1,ymax-1,xmax) != np.unravel_index(np.nanargmax(data),
[naxis4,naxis3,naxis2,naxis1]):
warnings.warn("Data max location does not match that on file. "
"Possible error reading data.")
if np.nanmax(data) != vmax:
warnings.warn("Data max does not match that on file. "
"Possible error reading data.")
if np.nanmin(data) != vmin:
warnings.warn("Data min does not match that on file. "
"Possible error reading data.")
return data.reshape([naxis4,naxis3,naxis2,naxis1]),header
# debug
#return data.reshape([naxis3,naxis2,naxis1]), header, hdr_f, hdr_s, hdr_i, hdr_d, hdr_d_2
def read_lmv_tofits(fileobj):
from astropy.io import fits
data,header = read_lmv(fileobj)
# LMV may contain extra dimensions that are improperly labeled
data = data.squeeze()
bad_kws = ['NAXIS4','CRVAL4','CRPIX4','CDELT4','CROTA4','CUNIT4','CTYPE4']
cards = [fits.header.Card(keyword=k, value=v[0], comment=v[1])
if isinstance(v, tuple) else
fits.header.Card(''.join(s for s in k if s in string.printable),
''.join(s for s in v if s in string.printable)
if isinstance(v, str) else v)
for k,v in header.items()
if k not in bad_kws]
Header = fits.Header(cards)
hdu = fits.PrimaryHDU(data=data, header=Header)
return hdu
def load_lmv_cube(fileobj, target_cls=None, use_dask=None):
hdu = read_lmv_tofits(fileobj)
meta = {'filename':fileobj.name}
return load_fits_cube(hdu, meta=meta, use_dask=use_dask)
def _read_byte(f):
'''Read a single byte (from idlsave)'''
return np.uint8(struct.unpack('=B', f.read(4)[:1])[0])
def _read_int16(f):
'''Read a signed 16-bit integer (from idlsave)'''
return np.int16(struct.unpack('=h', f.read(4)[2:4])[0])
def _read_int32(f):
'''Read a signed 32-bit integer (from idlsave)'''
return np.int32(struct.unpack('=i', f.read(4))[0])
def _read_int64(f):
'''Read a signed 64-bit integer '''
return np.int64(struct.unpack('=q', f.read(8))[0])
def _read_float32(f):
'''Read a 32-bit float (from idlsave)'''
return np.float32(struct.unpack('=f', f.read(4))[0])
def _read_string(f, size):
'''Read a string of known maximum length'''
return f.read(size).decode('utf-8').strip()
def _read_float64(f):
'''Read a 64-bit float (from idlsave)'''
return np.float64(struct.unpack('=d', f.read(8))[0])
def _check_val(name, got,expected):
if got != expected:
log.warning("{2} = {0} instead of {1}".format(got, expected, name))
def read_lmv_type2(lf):
""" See image_def.f90 """
header = {}
lf.seek(12)
# DONE before integer(kind=4) :: ijtyp(3) = 0 ! 1 Image Type
# fmt probably matters! Default is "r4", i.e. float32 data, but could be float64
fmt = _read_int32(lf) # 4
# number of data blocks
ndb = _read_int64(lf) # 5
nhb = _read_int32(lf) # 7
ntb = _read_int32(lf) # 8
version_gdf = _read_int32(lf) # 9
if version_gdf != 20:
raise TypeError("Trying to read a version-2 file, but the version"
" number is {0} (should be 20)".format(version_gdf))
type_gdf = _read_int32(lf) # 10
dim_start = _read_int32(lf) # 11
pad_trail = _read_int32(lf) # 12
if dim_start % 2 == 0:
log.warning("Got even dim_start in lmv cube: this is not expected.")
if dim_start > 17:
log.warning("dim_start > 17 in lmv cube: this is not expected.")
lf.seek(16*4)
gdf_maxdims=7
dim_words = _read_int32(lf) # 17
if dim_words != 2*gdf_maxdims+2:
log.warning("dim_words = {0} instead of {1}".format(dim_words,
gdf_maxdims*2+2))
blan_start = _read_int32(lf) # 18
if blan_start != dim_start+dim_words+2:
log.warning("blan_star = {0} instead of {1}".format(blan_start,
dim_start+dim_words+2))
mdim = _read_int32(lf) # 19
ndim = _read_int32(lf) # 20
dims = np.fromfile(lf, count=gdf_maxdims, dtype='int64')
if np.count_nonzero(dims) != ndim:
raise ValueError("Disagreement between ndims and number of nonzero dims.")
header['NAXIS'] = ndim
valid_dims = []
for ii,dim in enumerate(dims):
if dim != 0:
header['NAXIS{0}'.format(ii+1)] = dim
valid_dims.append(ii)
blan_words = _read_int32(lf)
if blan_words != 2:
log.warning("blan_words = {0} instead of 2".format(blan_words))
extr_start = _read_int32(lf)
bval = _read_float32(lf) # blanking value
bval_tol = _read_float32(lf) # eval = tolerance
# FITS requires integer BLANKs
#header['BLANK'] = bval
extr_words = _read_int32(lf)
if extr_words != 6:
log.warning("extr_words = {0} instead of 6".format(extr_words))
coor_start = _read_int32(lf)
if coor_start != extr_start+extr_words+2:
log.warning("coor_start = {0} instead of {1}".format(coor_start,
extr_start+extr_words+2))
rmin = _read_float32(lf)
rmax = _read_float32(lf)
# position 168
minloc = _read_int64(lf)
maxloc = _read_int64(lf)
# lf.seek(184)
coor_words = _read_int32(lf)
if coor_words != gdf_maxdims*6:
log.warning("coor_words = {0} instead of {1}".format(coor_words,
gdf_maxdims*6))
desc_start = _read_int32(lf)
if desc_start != coor_start+coor_words+2:
log.warning("desc_start = {0} instead of {1}".format(desc_start,
coor_start+coor_words+2))
convert = np.fromfile(lf, count=3*gdf_maxdims, dtype='float64').reshape([gdf_maxdims,3])
# conversion of "convert" to CRPIX/CRVAL/CDELT below
desc_words = _read_int32(lf)
if desc_words != 3*(gdf_maxdims+1):
log.warning("desc_words = {0} instead of {1}".format(desc_words,
3*(gdf_maxdims+1)))
null_start = _read_int32(lf)
if null_start != desc_start+desc_words+2:
log.warning("null_start = {0} instead of {1}".format(null_start,
desc_start+desc_words+2))
ijuni = _read_string(lf, 12) # data unit
ijcode = [_read_string(lf, 12) for ii in range(gdf_maxdims)]
pad_desc = _read_int32(lf)
if ijuni.lower() in _bunit_dict:
header['BUNIT'] = (_bunit_dict[ijuni.lower()],
ijuni)
else:
header['BUNIT'] = ijuni
#! The first block length is thus
#! s_dim-1 + (2*mdim+4) + (4) + (8) + (6*mdim+2) + (3*mdim+5)
#! = s_dim-1 + mdim*(2+6+3) + (4+4+2+5+8)
#! = s_dim-1 + 11*mdim + 23
#! With mdim = 7, s_dim=11, this is 110 spaces
#! With mdim = 8, s_dim=11, this is 121 spaces
#! MDIM > 8 would NOT fit in one block...
#!
#! Block 2: Ancillary information
#!
#! The same logic of Length + Pointer is used there too, although the
#! length are fixed. Note rounding to even number for the pointer offsets
#! in order to preserve alignement...
#!
lf.seek(512)
posi_words = _read_int32(lf)
_check_val('posi_words', posi_words, 15)
proj_start = _read_int32(lf)
source_name = _read_string(lf, 12)
header['OBJECT'] = source_name
coordinate_system = _read_string(lf, 12)
header['RA'] = _read_float64(lf)
header['DEC'] = _read_float64(lf)
header['LII'] = _read_float64(lf)
header['BII'] = _read_float64(lf)
header['EPOCH'] = _read_float32(lf)
#pad_posi = _read_float32(lf)
#print pad_posi
#raise ValueError("pad_posi should probably be 0?")
#! PROJECTION
#integer(kind=4) :: proj_words = 9 ! Projection length: 9 used + 1 padding
#integer(kind=4) :: spec_start !! = proj_start + 12
#real(kind=8) :: a0 = 0.d0 ! 89 X of projection center
#real(kind=8) :: d0 = 0.d0 ! 91 Y of projection center
#real(kind=8) :: pang = 0.d0 ! 93 Projection angle
#integer(kind=4) :: ptyp = p_none ! 88 Projection type (see p_... codes)
#integer(kind=4) :: xaxi = 0 ! 95 X axis
#integer(kind=4) :: yaxi = 0 ! 96 Y axis
#integer(kind=4) :: pad_proj
#!
proj_words = _read_int32(lf)
spec_start = _read_int32(lf)
_check_val('spec_start', spec_start, proj_start+proj_words+2)
if proj_words == 9:
header['PROJ_A0'] = _read_float64(lf)
header['PROJ_D0'] = _read_float64(lf)
header['PROJPANG'] = _read_float64(lf)
ptyp = _read_int32(lf)
header['PROJXAXI'] = _read_int32(lf)
header['PROJYAXI'] = _read_int32(lf)
elif proj_words != 0:
raise ValueError("Invalid # of projection keywords")
for kw in header:
if 'CTYPE' in kw:
if header[kw].strip() in cel_types:
n_dashes = 5-len(header[kw].strip())
header[kw] = header[kw].strip()+ '-'*n_dashes + _proj_dict[ptyp]
for ii,((ref,val,inc),code) in enumerate(zip(convert,ijcode)):
if ii in valid_dims:
# jul14a gio/to_imfits.f90 line 284-313
if ptyp != 0 and (ii+1) in (header['PROJXAXI'],
header['PROJYAXI']):
#! Compute reference pixel so that VAL(REF) = 0
ref = ref - val/inc
if (ii+1) == header['PROJXAXI']:
val = header['PROJ_A0']
elif (ii+1) == header['PROJYAXI']:
val = header['PROJ_D0']
else:
raise ValueError("Impossible state - code bug.")
val = val*r2deg
inc = inc*r2deg
rota = r2deg*header['PROJPANG']
elif code in ('RA', 'L', 'B', 'DEC', 'LII', 'BII', 'GLAT',
'GLON', 'LAT', 'LON'):
val = val*r2deg
inc = inc*r2deg
rota = 0.0
# These are not implemented: prefer to maintain original units (we're
# reading in to spectral_cube after all, no need to change units until the
# output step)
#elseif (code.eq.'FREQUENCY') then
#val = val*1.0d6 ! MHz to Hz
#inc = inc*1.0d6
#elseif (code.eq.'VELOCITY') then
#code = 'VRAD' ! force VRAD instead of VELOCITY for CASA
#val = val*1.0d3 ! km/s to m/s
#inc = inc*1.0d3
header['CRPIX{0}'.format(ii+1)] = ref
header['CRVAL{0}'.format(ii+1)] = val
header['CDELT{0}'.format(ii+1)] = inc
for ii,ctype in enumerate(ijcode):
if ii in valid_dims:
header['CTYPE{0}'.format(ii+1)] = _ctype_dict[ctype]
header['CUNIT{0}'.format(ii+1)] = _cunit_dict[ctype]
spec_words = _read_int32(lf)
reso_start = _read_int32(lf)
_check_val('reso_start', reso_start, proj_start+proj_words+2+spec_words+2)
if spec_words == 14:
header['FRES'] = _read_float64(lf)
header['FIMA'] = _read_float64(lf)
header['FREQ'] = _read_float64(lf)
header['VRES'] = _read_float32(lf)
header['VOFF'] = _read_float32(lf)
header['DOPP'] = _read_float32(lf)
header['FAXI'] = _read_int32(lf)
header['LINENAME'] = _read_string(lf, 12)
header['VTYPE'] = _read_int32(lf)
elif spec_words != 0:
raise ValueError("Invalid # of spectroscopic keywords")
#! SPECTROSCOPY
#integer(kind=4) :: spec_words = 14 ! Spectroscopy length: 14 used
#integer(kind=4) :: reso_start !! = spec_words + 16
#real(kind=8) :: fres = 0.d0 !101 Frequency resolution
#real(kind=8) :: fima = 0.d0 !103 Image frequency
#real(kind=8) :: freq = 0.d0 !105 Rest Frequency
#real(kind=4) :: vres = 0.0 !107 Velocity resolution
#real(kind=4) :: voff = 0.0 !108 Velocity offset
#real(kind=4) :: dopp = 0.0 ! Doppler factor
#integer(kind=4) :: faxi = 0 !109 Frequency axis
#integer(kind=4) :: ijlin(3) = 0 ! 98 Line name
#integer(kind=4) :: vtyp = vel_unk ! Velocity type (see vel_... codes)
reso_words = _read_int32(lf)
nois_start = _read_int32(lf)
_check_val('nois_start', nois_start, proj_start+proj_words+2+spec_words+2+reso_words+2)
if reso_words == 3:
header['BMAJ'] = _read_float32(lf)
header['BMIN'] = _read_float32(lf)
header['BPA'] = _read_float32(lf)
#pad_reso = _read_float32(lf)
elif reso_words != 0:
raise ValueError("Invalid # of resolution keywords")
#! RESOLUTION
#integer(kind=4) :: reso_words = 3 ! Resolution length: 3 used + 1 padding
#integer(kind=4) :: nois_start !! = reso_words + 6
#real(kind=4) :: majo = 0.0 !111 Major axis
#real(kind=4) :: mino = 0.0 !112 Minor axis
#real(kind=4) :: posa = 0.0 !113 Position angle
#real(kind=4) :: pad_reso
nois_words = _read_int32(lf)
astr_start = _read_int32(lf)
_check_val('astr_start', astr_start, proj_start+proj_words+2+spec_words+2+reso_words+2+nois_words+2)
if nois_words == 2:
header['NOISE_T'] = (_read_float32(lf), "Theoretical Noise")
header['NOISERMS'] = (_read_float32(lf), "Measured (RMS) noise")
elif nois_words != 0:
raise ValueError("Invalid # of noise keywords")
#! NOISE
#integer(kind=4) :: nois_words = 2 ! Noise section length: 2 used
#integer(kind=4) :: astr_start !! = s_nois + 4
#real(kind=4) :: noise = 0.0 ! 115 Theoretical noise
#real(kind=4) :: rms = 0.0 ! 116 Actual noise
astr_words = _read_int32(lf)
uvda_start = _read_int32(lf)
_check_val('uvda_start', uvda_start, proj_start+proj_words+2+spec_words+2+reso_words+2+nois_words+2+astr_words+2)
if astr_words == 3:
header['MURA'] = _read_float32(lf)
header['MUDEC'] = _read_float32(lf)
header['PARALLAX'] = _read_float32(lf)
elif astr_words != 0:
raise ValueError("Invalid # of astrometry keywords")
#! ASTROMETRY
#integer(kind=4) :: astr_words = 3 ! Proper motion section length: 3 used + 1 padding
#integer(kind=4) :: uvda_start !! = s_astr + 4
#real(kind=4) :: mura = 0.0 ! 118 along RA, in mas/yr
#real(kind=4) :: mudec = 0.0 ! 119 along Dec, in mas/yr
#real(kind=4) :: parallax = 0.0 ! 120 in mas
#real(kind=4) :: pad_astr
#! real(kind=4) :: pepoch = 2000.0 ! 121 in yrs ?
code_uvt_last=25
uvda_words = _read_int32(lf)
void_start = _read_int32(lf)
_check_val('void_start', void_start, proj_start + proj_words + 2 +
spec_words + 2 + reso_words + 2 + nois_words + 2 + astr_words +
2 + uvda_words + 2)
if uvda_words == 18+2*code_uvt_last:
version_uv = _read_int32(lf)
nchan = _read_int32(lf)
nvisi = _read_int64(lf)
nstokes = _read_int32(lf)
natom = _read_int32(lf)
basemin = _read_float32(lf)
basemax = _read_float32(lf)
fcol = _read_int32(lf)
lcol = _read_int32(lf)
nlead = _read_int32(lf)
ntrail = _read_int32(lf)
column_pointer = np.fromfile(lf, count=code_uvt_last, dtype='int32')
column_size = np.fromfile(lf, count=code_uvt_last, dtype='int32')
column_codes = np.fromfile(lf, count=nlead+ntrail, dtype='int32')
column_types = np.fromfile(lf, count=nlead+ntrail, dtype='int32')
order = _read_int32(lf)
nfreq = _read_int32(lf)
atoms = np.fromfile(lf, count=4, dtype='int32')
elif uvda_words != 0:
raise ValueError("Invalid # of UV data keywords")
#! UV_DATA information
#integer(kind=4) :: uvda_words = 18+2*code_uvt_last ! Length of section: 14 used
#integer(kind=4) :: void_start !! = s_uvda + l_uvda + 2
#integer(kind=4) :: version_uv = code_version_uvt_current ! 1 version number. Will allow us to change the data format
#integer(kind=4) :: nchan = 0 ! 2 Number of channels
#integer(kind=8) :: nvisi = 0 ! 3-4 Independent of the transposition status
#integer(kind=4) :: nstokes = 0 ! 5 Number of polarizations
#integer(kind=4) :: natom = 0 ! 6. 3 for real, imaginary, weight. 1 for real.
#real(kind=4) :: basemin = 0. ! 7 Minimum Baseline
#real(kind=4) :: basemax = 0. ! 8 Maximum Baseline
#integer(kind=4) :: fcol ! 9 Column of first channel
#integer(kind=4) :: lcol ! 10 Column of last channel
#! The number of information per channel can be obtained by
#! (lcol-fcol+1)/(nchan*natom)
#! so this could allow to derive the number of Stokes parameters
#! Leading data at start of each visibility contains specific information
#integer(kind=4) :: nlead = 7 ! 11 Number of leading informations (at lest 7)
#! Trailing data at end of each visibility may hold additional information
#integer(kind=4) :: ntrail = 0 ! 12 Number of trailing informations
#!
#! Leading / Trailing information codes have been specified before
#integer(kind=4) :: column_pointer(code_uvt_last) = code_null ! Back pointer to the columns...
#integer(kind=4) :: column_size(code_uvt_last) = 0 ! Number of columns for each
#! In the data, we instead have the codes for each column
#! integer(kind=4) :: column_codes(nlead+ntrail) ! Start column for each ...
#! integer(kind=4) :: column_types(nlead+ntrail) /0,1,2/ ! Number of columns for each: 1 real*4, 2 real*8
#! Leading / Trailing information codes
#!
#integer(kind=4) :: order = 0 ! 13 Stoke/Channel ordering
#integer(kind=4) :: nfreq = 0 ! 14 ! 0 or = nchan*nstokes
#integer(kind=4) :: atoms(4) ! 15-18 Atom description
#!
#real(kind=8), pointer :: freqs(:) => null() ! (nchan*nstokes) = 0d0
#integer(kind=4), pointer :: stokes(:) => null() ! (nchan*nstokes) or (nstokes) = code_stoke
#!
#real(kind=8), pointer :: ref(:) => null()
#real(kind=8), pointer :: val(:) => null()
#real(kind=8), pointer :: inc(:) => null()
lf.seek(1024)
real_dims = dims[:ndim]
data = np.fromfile(lf, count=np.prod(real_dims),
dtype='float32').reshape(real_dims[::-1])
data[data==bval] = np.nan
return data,header
io_registry.register_reader('lmv', BaseSpectralCube, load_lmv_cube)
io_registry.register_reader('class_lmv', BaseSpectralCube, load_lmv_cube)
io_registry.register_identifier('lmv', BaseSpectralCube, is_lmv)
|
radio-astro-toolsREPO_NAMEspectral-cubePATH_START.@spectral-cube_extracted@spectral-cube-master@spectral_cube@io@class_lmv.py@.PATH_END.py
|
{
"filename": "conf.py",
"repo_name": "ajshajib/dolphin",
"repo_path": "dolphin_extracted/dolphin-main/docs_test/conf.py",
"type": "Python"
}
|
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
# -- Project information -----------------------------------------------------
project = "dolphin"
copyright = "2020, Anowar J. Shajib"
author = "Anowar J. Shajib"
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.file_type.*') or your custom
# ones.
extensions = []
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "alabaster"
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
|
ajshajibREPO_NAMEdolphinPATH_START.@dolphin_extracted@dolphin-main@docs_test@conf.py@.PATH_END.py
|
{
"filename": "mntes.py",
"repo_name": "tijmen/dfmux_calc",
"repo_path": "dfmux_calc_extracted/dfmux_calc-main/mntes.py",
"type": "Python"
}
|
"""
Electro-thermal solution for Transition Edge Sensors (TES) read out with DfMux.
Author: Tijmen de Haan
Email: <tijmen.dehaan@gmail.com>
Date: 15 May 2024
This module provides functions for simulating the thermal and electrical behavior of
Transition Edge Sensors (TES) based on the MNTES model. As of May 2024, this is
being drafted as a paper for the SPIE Astronomical Telescopes and Instrumentation
conference proceedings.
Functions:
- r_frac: fractional resistance as a function of temperature
- r: resistance as a function of temperature
- alpha: logarithmic temperature sensitivity of the resistance
- loop_gain: Computes the ETF loop gain using the MNTES model.
- responsivity: Computes the responsivity of the TES using the MNTES model.
- power_balance_eq: Calculates the deviation from power balance. This should be
zeroed to find the equilibrium temperature of the TES.
- calc_tes: Computes various TES parameters given input parameters.
- calc_nonlinearity: Computes TES nonlinearity.
Usage:
- The `calc_tes` function is the main entry point for solving the power balance equation.
- The `calc_nonlinearity` function can be used to get the leading-order nonlinearity by finite difference.
Dependencies:
- numpy
- scipy.optimize
- numba
"""
import numpy as np
from scipy.optimize import brentq
from numba import jit
@jit(nopython=True)
def r_frac(temperature, t_c, transition_width):
return (np.arctan((temperature - t_c) / (transition_width / 2.0)) / (np.pi / 2) + 1) / 2
@jit(nopython=True)
def r(temperature, r_normal, t_c, transition_width):
return r_normal * r_frac(temperature, t_c, transition_width)
@jit(nopython=True)
def alpha(temperature, r_normal, t_c, transition_width):
return temperature / r(temperature, r_normal, t_c, transition_width) * (
r_normal
* (transition_width / 2.0)
/ (np.pi * ((temperature - t_c) ** 2 + (transition_width / 2.0) ** 2))
)
@jit(nopython=True)
def loop_gain(v_thev, k, n_index, t, r_t, z_thev, alpha_t, beta_t=0):
"""
Implements the loop gain equation from the MNTES paper.
$\mathcal{L} = \frac{\alpha V_\mathrm{Th\acute{e}v}^2}{K n T^n R} \frac{R^2 \left( R^2 - \left| z_\mathrm{Th\acute{e}v} \right |^2 \right)}{\left| R + z_\mathrm{Th\acute{e}v} \right|^2 \left( \left| R + z_\mathrm{Th\acute{e}v} \right|^2 + \beta R (R + \Re{(z_\mathrm{Th\acute{e}v})}) \right) }$
"""
loop_gain_ideal = alpha_t*v_thev**2/(k*n_index*t**n_index*r_t)
abs_z_thev = np.sqrt(z_thev.real**2 + z_thev.imag**2)
abs_z_total = np.sqrt((r_t + z_thev.real)**2 + z_thev.imag**2)
loop_gain_excess_numerator = r_t**2 * (r_t**2 - abs_z_thev**2)
loop_gain_excess_denominator = abs_z_total**2 * (abs_z_total**2 + beta_t * r_t * (r_t + z_thev.real))
return loop_gain_ideal * loop_gain_excess_numerator / loop_gain_excess_denominator
@jit(nopython=True)
def responsivity(v_thev, loop_gain, r_t, z_thev):
"""
Implements the responsivity equation from the MNTES paper.
S \equiv \frac{\delta I}{\delta P_\mathrm{opt}} = - \frac{\sqrt{2}}{V_\mathrm{Th\acute{e}v}} \frac{\mathcal{L}}{\mathcal{L} + 1} \left( 1 + 2 z_\mathrm{Th\acute{e}v}^\star \frac{R + \Re{(z_\mathrm{Th\acute{e}v})}}{R^2 - \left| z_\mathrm{Th\acute{e}v} \right|^2 } \right) } \ .
"""
abs_z_thev_squared = z_thev.real**2 + z_thev.imag**2
responsivity_factor = -1 / v_thev * loop_gain / (loop_gain + 1)
responsivity_excess = 1 + 2 * z_thev.conjugate() * (r_t + z_thev.real) / (r_t**2 - abs_z_thev_squared)
return responsivity_factor * responsivity_excess
@jit(nopython=True)
def power_balance_eq(temperature, p_loading, v_thev, k, n_index, t_bath, r_normal, t_c, transition_width, z_thev):
r_t = r(temperature, r_normal, t_c, transition_width)
return (
p_loading
+ r_t * v_thev**2 / np.abs(r_t + z_thev) ** 2
- k * (temperature**n_index - t_bath**n_index)
)
def calc_tes(
t_c=180e-3,
transition_width=0.001143,
r_normal=1.0,
p_loading=0.5e-12,
t_bath=100e-3,
z_thev=0.05 + 0.05j,
n_index=3.6,
v_thev=0.8e-6,
p_sat_for_g=1.25e-12,
debug=False,
):
k = p_sat_for_g / (t_c**n_index - t_bath**n_index)
def power_balance_eq_wrapper(temperature):
return power_balance_eq(temperature, p_loading, v_thev, k, n_index, t_bath, r_normal, t_c, transition_width, z_thev)
t_0 = brentq(power_balance_eq_wrapper, t_c, 2*t_c)
r_0 = r(t_0, r_normal, t_c, transition_width)
I_0 = v_thev / (r_0 + z_thev)
alpha_0 = alpha(t_0, r_normal, t_c, transition_width)
loop_gain_0 = loop_gain(v_thev, k, n_index, t_0, r_0, z_thev, alpha_0)
responsivity_0 = responsivity(v_thev, loop_gain_0, r_0, z_thev)
p_electrical = r_0 * v_thev**2 / np.abs(r_0 + z_thev) ** 2
if debug:
# Add debugging code here if needed
pass
return {
"t": t_0,
"r": r_0,
"i": I_0,
"l": loop_gain_0,
"s": responsivity_0,
"p_electrical": p_electrical,
"p_sat_for_g": p_sat_for_g,
"alpha": alpha_0,
"k": k,
}
def calc_nonlinearity(param, value, fiducial_params, r_frac):
params = fiducial_params.copy()
if param.startswith('z_thev'):
z_real, z_imag = params['z_thev'].real, params['z_thev'].imag
params['z_thev'] = complex(value if param == 'z_thev_real' else z_real,
value if param == 'z_thev_imag' else z_imag)
else:
params[param] = value
v = 1e-6
r = calc_tes(v_thev=v, **params)['r']
r_target = r_frac * params['r_normal']
while r > r_target:
v -= 0.1e-9
r = calc_tes(v_thev=v, **params)['r']
delta_p = 0.03 * 5e-13
S0 = calc_tes(v_thev=v, **params)['s']
params['p_loading'] += delta_p
S1 = calc_tes(v_thev=v, **params)['s']
return S0, (S1 - S0) / delta_p
if __name__ == "__main__":
print(calc_tes(debug=True))
|
tijmenREPO_NAMEdfmux_calcPATH_START.@dfmux_calc_extracted@dfmux_calc-main@mntes.py@.PATH_END.py
|
{
"filename": "dunne2009.py",
"repo_name": "mirochaj/ares",
"repo_path": "ares_extracted/ares-main/input/litdata/dunne2009.py",
"type": "Python"
}
|
"""
Dunne, L., et al. 2009, MNRAS, 394, 3
http://arxiv.org/abs/0808.3139v2
For ssfr, values are corrected as seen in Behroozi et al. 2013 (http://arxiv.org/abs/1207.6105), Table 4, for I (Initial Mass Function) corrections.
"""
import numpy as np
info = \
{
'reference':'Dunne, L., et al. 2009, MNRAS, 394, 3',
'data': 'Behroozi, Table 4',
'imf': ('chabrier, 2003', (0.1, 100.)),
}
redshifts = [0.5, 0.95, 1.4, 1.85]
wavelength = 1600.
ULIM = -1e10
fits = {}
# Table 1
tmp_data = {}
tmp_data['ssfr'] = \
{
0.5: {'M': [9.3229011E+08, 2.3418069E+09, 5.8823529E+09, 1.4775803E+10, 2.9481602E+10, 5.8823529E+10],
'phi': [-9.52287874528034, -9.52287874528034, -9.60205999132796, -9.69897000433602, -9.76955107862172, -9.82390874094432],
'err': [(0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.3, 0.3)]
},
0.95: {'M': [3.7115138E+09, 5.8823529E+09, 1.4775803E+10, 2.9481602E+10, 7.4054436E+10],
'phi': [-9.0, -9.09691001300805, -9.15490195998574, -9.22184874961636, -9.15490195998574],
'err': [(0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.3, 0.3)]
},
1.4: {'M': [4.6725190E+09, 9.3229011E+09, 1.4775803E+10, 2.9481602E+10, 7.4054436E+10],
'phi': [-8.69897000433602, -8.74472749489669, -8.79588001734407, -8.82390874094432, -8.85387196432176],
'err': [(0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.3, 0.3)]
},
1.85: {'M': [9.3229011E+09, 1.4775803E+10, 3.3078901E+10, 7.4054436E+10],
'phi': [-8.39794000867204, -8.45593195564972, -8.52287874528034, -8.52287874528034],
'err': [(0.3, 0.3), (0.3, 0.3), (0.3, 0.3), (0.3, 0.3)]
},
}
units = {'ssfr': '1.'}
data = {}
data['ssfr'] = {}
for group in ['ssfr']:
for key in tmp_data[group]:
if key not in tmp_data[group]:
continue
subdata = tmp_data[group]
mask = []
for element in subdata[key]['err']:
if element == ULIM:
mask.append(1)
else:
mask.append(0)
mask = np.array(mask)
data[group][key] = {}
data[group][key]['M'] = np.ma.array(subdata[key]['M'], mask=mask)
data[group][key]['phi'] = np.ma.array(subdata[key]['phi'], mask=mask)
data[group][key]['err'] = tmp_data[group][key]['err']
|
mirochajREPO_NAMEaresPATH_START.@ares_extracted@ares-main@input@litdata@dunne2009.py@.PATH_END.py
|
{
"filename": "test_flexionfg.py",
"repo_name": "sibirrer/lenstronomy",
"repo_path": "lenstronomy_extracted/lenstronomy-main/test/test_LensModel/test_Profiles/test_flexionfg.py",
"type": "Python"
}
|
__author__ = "ylilan"
from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
from lenstronomy.LensModel.lens_model import LensModel
import numpy as np
import numpy.testing as npt
import pytest
class TestFlexionfg(object):
"""Tests the Gaussian methods."""
def setup_method(self):
self.flex = Flexionfg()
F1, F2, G1, G2 = 0.02, 0.03, -0.04, -0.05
self.kwargs_lens = {"F1": F1, "F2": F2, "G1": G1, "G2": G2}
def test_transform_fg(self):
values = self.flex.transform_fg(**self.kwargs_lens)
g1, g2, g3, g4 = 0.01, 0.02, 0.03, 0.04
npt.assert_almost_equal(values[0], g1, decimal=5)
npt.assert_almost_equal(values[1], g2, decimal=5)
npt.assert_almost_equal(values[2], g3, decimal=5)
npt.assert_almost_equal(values[3], g4, decimal=5)
def test_function(self):
x = np.array([1])
y = np.array([2])
values = self.flex.function(x, y, **self.kwargs_lens)
npt.assert_almost_equal(values[0], 0.135, decimal=5)
x = np.array([0])
y = np.array([0])
values = self.flex.function(x, y, **self.kwargs_lens)
npt.assert_almost_equal(values[0], 0, decimal=5)
x = np.array([2, 3, 4])
y = np.array([1, 1, 1])
values = self.flex.function(x, y, **self.kwargs_lens)
npt.assert_almost_equal(values[0], 0.09, decimal=5)
npt.assert_almost_equal(values[1], 0.18666666666666668, decimal=5)
def test_derivatives(self):
x = np.array([1])
y = np.array([2])
f_x, f_y = self.flex.derivatives(x, y, **self.kwargs_lens)
npt.assert_almost_equal(f_x[0], 0.105, decimal=5)
npt.assert_almost_equal(f_y[0], 0.15, decimal=5)
x = np.array([1, 3, 4])
y = np.array([2, 1, 1])
values = self.flex.derivatives(x, y, **self.kwargs_lens)
npt.assert_almost_equal(values[0][0], 0.105, decimal=5)
npt.assert_almost_equal(values[1][0], 0.15, decimal=5)
def test_hessian(self):
x = np.array(1)
y = np.array(2)
f_xx, f_xy, f_yx, f_yy = self.flex.hessian(x, y, **self.kwargs_lens)
npt.assert_almost_equal(f_xx, 0.05, decimal=5)
npt.assert_almost_equal(f_yy, 0.11, decimal=5)
npt.assert_almost_equal(f_xy, 0.08, decimal=5)
npt.assert_almost_equal(f_xy, f_yx, decimal=8)
x = np.array([1, 3, 4])
y = np.array([2, 1, 1])
values = self.flex.hessian(x, y, **self.kwargs_lens)
npt.assert_almost_equal(values[0][0], 0.05, decimal=5)
npt.assert_almost_equal(values[3][0], 0.11, decimal=5)
npt.assert_almost_equal(values[1][0], 0.08, decimal=5)
def test_flexion(self):
x = np.array(0)
y = np.array(2)
flex = LensModel(["FLEXIONFG"])
f_xxx, f_xxy, f_xyy, f_yyy = flex.flexion(x, y, [self.kwargs_lens])
_g1, _g2, _g3, _g4 = self.flex.transform_fg(**self.kwargs_lens)
npt.assert_almost_equal(f_xxx, _g1, decimal=9)
npt.assert_almost_equal(f_xxy, _g2, decimal=9)
npt.assert_almost_equal(f_xyy, _g3, decimal=9)
npt.assert_almost_equal(f_yyy, _g4, decimal=9)
def test_magnification(self):
ra_0, dec_0 = 1, -1
flex = LensModel(["FLEXIONFG"])
F1, F2, G1, G2 = 0.02, 0.03, -0.04, -0.05
kwargs = {"F1": F1, "F2": F2, "G1": G1, "G2": G2, "ra_0": ra_0, "dec_0": dec_0}
mag = flex.magnification(ra_0, dec_0, [kwargs])
npt.assert_almost_equal(mag, 1, decimal=8)
if __name__ == "__main__":
pytest.main()
|
sibirrerREPO_NAMElenstronomyPATH_START.@lenstronomy_extracted@lenstronomy-main@test@test_LensModel@test_Profiles@test_flexionfg.py@.PATH_END.py
|
{
"filename": "binding.py",
"repo_name": "amusecode/amuse",
"repo_path": "amuse_extracted/amuse-main/src/amuse/datamodel/binding.py",
"type": "Python"
}
|
amusecodeREPO_NAMEamusePATH_START.@amuse_extracted@amuse-main@src@amuse@datamodel@binding.py@.PATH_END.py
|
|
{
"filename": "_tickcolor.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/heatmap/colorbar/_tickcolor.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class TickcolorValidator(_plotly_utils.basevalidators.ColorValidator):
def __init__(
self, plotly_name="tickcolor", parent_name="heatmap.colorbar", **kwargs
):
super(TickcolorValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "colorbars"),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@heatmap@colorbar@_tickcolor.py@.PATH_END.py
|
{
"filename": "acb.py",
"repo_name": "bcalden/ClusterPyXT",
"repo_path": "ClusterPyXT_extracted/ClusterPyXT-master/acb.py",
"type": "Python"
}
|
import cluster
import pypeline_io as io
import numpy as np
import time
import argparse
import data_operations as do
from astropy.io import fits
import multiprocessing as mp
import ciao_contrib.runtool as rt
import ciao
from tqdm import tqdm
def get_arguments():
help_str = """
This part of the pypeline creates all of the adaptive circular binned (acb) files
needed to do the spectral fitting. This fitting should likely be offloaded onto a
high performance computer.
Sample call (with the ciao environment running):
python acb.py --cluster_config_file /data_dir/A115/A115_pypeline_config.ini --resolution 2
python acb.py --cluster_config_file /data/dir/A115/A115_pypeline_config.ini --temperature_map
"""
prog = 'python acb.py'
# logger.debug("Getting commandline arguments.")
parser = argparse.ArgumentParser(description=help_str, prog=prog)
parser.add_argument("--cluster_config_file", "-c", dest="cluster_config",
action="store", default=None,
help="Path to the cluster configuration file")
# parser.add_argument("--parallel", "-p", dest="parallel",
# action="store_true", default=False,
# help='Run in parallel (default False)')
parser.add_argument("--temperature_map", "-t", dest='temperature_map',
action="store_true", default=False,
help="Create a temperature map after the spectral fitting process.")
parser.add_argument("--resolution", "-r", dest='resolution',
action='store', default=2, type=int,
help='Generate a low, medium, or high resolution temperature map. Low = 1, Med = 2, High = 3. '
'High resolution is a fit for every pixel, medium pixels are 3x3, low pixels are 5x5.')
parser.add_argument('--make_fitting_commands', dest='commands', action='store_true', default=False)
parser.add_argument('--eff_times_to_fits', dest='eff_times_fits', action='store_true', default=False)
parser.add_argument('--make_pressure_map', dest='pressure', action='store_true', default=False)
parser.add_argument('--make_entropy_map', dest='entropy', action='store_true', default=False)
parser.add_argument('--shock_finder', dest='shock', action='store_true', default=False)
args = parser.parse_args()
return args, parser
n = 6700
full_x_max = n
full_y_max = n
YY, XX = np.meshgrid(np.arange(full_y_max * 2), np.arange(full_x_max * 2))
big_mask = np.sqrt((full_x_max - XX) ** 2 + (full_y_max - YY) ** 2)
def generate_radius_map(x, y, x_max, y_max):
x_start = full_x_max - x
y_start = full_y_max - y
x_stop = x_start + x_max
y_stop = y_start + y_max
return big_mask[x_start:x_stop, y_start:y_stop]
def create_circle_regions_in_parallel(cluster: cluster.ClusterObj, num_cpus=1):
start_time = time.time()
observation_lists = cluster.parallel_observation_lists(num_cpus)
for observation_list in observation_lists:
processes = [mp.Process(target=create_circle_region_for,
args=(observation,)) for observation in observation_list]
for process in processes:
process.start()
for process in processes:
process.join()
end_time = time.time()
print("Time elapsed making regions for fit: {:0.2f} (s)".format(end_time-start_time))
def create_circle_region_for(observation: cluster.Observation):
mask_fits = fits.open(observation.cluster.combined_mask)
region_map = observation.cluster.scale_map_region_index
scale_map = observation.cluster.scale_map
mask = mask_fits[0].data
bounds = scale_map.shape
xvals = np.arange(bounds[1])
yvals = np.arange(bounds[0])
print("Making circular fitting regions for observation {}".format(observation.id))
image_fits = fits.open(observation.acisI_comb_img)
image_header = image_fits[0].header
cdelt1p = image_header['CDELT1P']
cdelt2p = image_header['CDELT2P']
crval1p = image_header['CRVAL1P']
crval2p = image_header['CRVAL2P']
crpix1p = image_header['CRPIX1P']
crpix2p = image_header['CRPIX2P']
radii = mask * scale_map * cdelt1p
newx = ((xvals + 1 - crpix1p) * cdelt1p) + crval1p
newy = ((yvals + 1 - crpix2p) * cdelt2p) + crval2p
xx, yy = np.meshgrid(newx, newy)
non_zero_indices = np.nonzero(radii)
nz_rad = radii[non_zero_indices]
nz_x = xx[non_zero_indices]
nz_y = yy[non_zero_indices]
obs_regions = region_map[non_zero_indices]
region_array = np.array([(i, j, k, l) for i, j, k, l in zip(nz_x, nz_y, nz_rad, obs_regions)])
regions = [["circle({x},{y},{rad})".format(x=x[0], y=x[1], rad=x[2]), int(x[3])] for x in region_array]
observation.scale_map_region_list = regions
def create_circle_regions(cluster):
start_time = time.time()
scale_map_fits = fits.open(cluster.scale_map_file)
mask_fits = fits.open(cluster.combined_mask)
region_map = cluster.scale_map_region_index
scale_map = scale_map_fits[0].data
mask = mask_fits[0].data
bounds = scale_map.shape
xvals = np.arange(bounds[1])
yvals = np.arange(bounds[0])
for observation in cluster.observations:
print("Making circular fitting regions for observation {}".format(observation.id))
image_fits = fits.open(observation.acisI_comb_img)
image_header = image_fits[0].header
cdelt1p = image_header['CDELT1P']
cdelt2p = image_header['CDELT2P']
crval1p = image_header['CRVAL1P']
crval2p = image_header['CRVAL2P']
crpix1p = image_header['CRPIX1P']
crpix2p = image_header['CRPIX2P']
radii = mask * scale_map * cdelt1p
newx = ((xvals + 1 - crpix1p) * cdelt1p) + crval1p
newy = ((yvals + 1 - crpix2p) * cdelt2p) + crval2p
xx, yy = np.meshgrid(newx, newy)
non_zero_indices = np.nonzero(radii)
nz_rad = radii[non_zero_indices]
nz_x = xx[non_zero_indices]
nz_y = yy[non_zero_indices]
obs_regions = region_map[non_zero_indices]
region_array = np.array([(i, j, k, l) for i, j, k, l in zip(nz_x, nz_y, nz_rad, obs_regions)])
regions = [["circle({x},{y},{rad})".format(x=x[0], y=x[1], rad=x[2]), int(x[3])] for x in region_array]
observation.scale_map_region_list = regions
end_time = time.time()
print("Time elapsed making regions for fit: {:0.2f} (s)".format(end_time-start_time))
def create_region_index_map(cluster):
mask_fits = fits.open(cluster.combined_mask)
mask = mask_fits[0].data
sz = mask.shape
nx = sz[0]
ny = sz[1]
indexmap = np.zeros(sz)
position = 0
region_string = []
for ci in range(nx):
for cj in range(ny):
if mask[ci,cj] == 1:
if ci % 3 == 0 and cj % 3 == 0: # makes it a lower resolution image than it needs to be.
region_string.append(str(position))
indexmap[ci,cj] = position
position += 1
region_string = '\n'.join(region_string)
with open(cluster.region_list, 'w') as f:
f.write(region_string)
region_file = mask_fits
region_file[0].data = indexmap
region_file[0].writeto(cluster.region_to_index, overwrite=True)
def create_scale_map_region_index(cluster: cluster.ClusterObj):
scale_map = cluster.scale_map
scale_map_regions = np.zeros(scale_map.shape)
sx = scale_map.shape[0]
sy = scale_map.shape[1]
region_num = 1
for x in range(sx):
for y in range(sy):
if scale_map[x,y] != 0:
scale_map_regions[x,y] = region_num
region_num += 1
else:
scale_map_regions[x,y] = np.nan
fits.writeto(cluster.scale_map_region_file, # filename
scale_map_regions, # data to write
cluster.scale_map_header, # header so coordinate information is written
overwrite=True) # self explanatory
def _update_completed_things(current, max_num, thing):
io.clear_line()
io.write("{current} out of {max} {thing} complete. ".format(
current=current,
max=max_num,
thing=thing
))
io.flush()
def _source_free_region(counter, current, max_num):
io.clear_line()
io.write("Encountered a source-free region -- recalculating...{counter} - {current}/{max} complete".format(
counter=counter,
current=current,
max=max_num
))
io.flush()
def _update_effective_exposure_time(obsid, current_region, number_regions, time_elapsed):
#io.clear_line()
#io.write("{current_region} of {num_regions} complete. Time elapsed: {time}".format(
print("ObsID {obsid} -\t{current_region} of {num_regions} complete. Time elapsed: {time}".format(
obsid=obsid,
current_region=current_region,
num_regions=number_regions,
time=time_elapsed
))
io.flush()
def create_scale_map_in_parallel(cluster: cluster.ClusterObj):
mask = cluster.combined_mask_data
cts_image = np.zeros(mask.shape)
back_rescale = np.zeros(mask.shape)
for obs in cluster.observations:
cts_image += obs.acisI_combined_image
t_obs = obs.acisI_combined_image_header['EXPOSURE']
t_back = obs.backI_combined_image_header['EXPOSURE']
back_rescale += (t_obs / t_back) * obs.backI_combined_image
signal = cts_image - back_rescale
signal[np.where(signal < 0)] = 0
sz = signal.shape
max_x = sz[0]
max_y = sz[1]
io.make_directory(cluster.acb_dir)
cluster.initialize_scale_map_csv()
pix_x = np.zeros(sz)
pix_y = np.zeros(sz)
for j in range(max_y):
for i in range(max_x):
pix_x[i, j] = float(i)
pix_y[i, j] = float(j)
num_pix = max_x * max_y
start_time = time.time()
indices = np.vstack(np.where(mask==1)).T
num_index_lists = (indices.shape[0] // mp.cpu_count())
index_lists = np.array_split(indices, num_index_lists)
num_iterations = len(index_lists)
for i, index_list in enumerate(index_lists):
if i % 100 == 0:
print("{} of {} iterations complete.".format(i, num_iterations))
processes = [mp.Process(target=calculate_radius_at_index,
args=(index, cluster, pix_x, pix_y, cts_image, num_pix, back_rescale))
for index in index_list]
for process in processes:
process.start()
for process in processes:
process.join()
cluster.write_scale_map_csv_to_fits()
end_time = time.time()
print("Time elapsed {:0.2f} seconds.".format(end_time - start_time))
def calculate_radius_at_index(index, cluster: cluster.ClusterObj,
pix_x: np.ndarray, pix_y: np.ndarray,
counts_image: np.ndarray, num_pix: int,
back_rescale: np.ndarray):
x_index = index[0]
y_index = index[1]
#print("Working on region at x:{} y:{}".format(x_index, y_index))
delta_x = x_index-pix_x
delta_y = y_index-pix_y
radius = np.sqrt(delta_x**2 + delta_y**2)
dr = 24.0
min_dr = 0.125
hilo = 0
niter = 0
max_radius = 100
r = max_radius + 1 # potentially a IDL vestige
counter = 0
signal_to_noise = 0
scale_map_radius = 0
while (dr > min_dr) and (niter < 100):
indices = np.where(radius <= r)
counts_map_total = np.sum(counts_image[indices])
if counts_map_total == 0:
counter += 1
_source_free_region(counter, x_index*y_index, num_pix)
sn_val = 0
hilo = -1
else:
backmap_tot = np.sum(back_rescale[indices])
signal_total = counts_map_total - backmap_tot
noise_total = np.sqrt(counts_map_total + backmap_tot)
sn_val = signal_total / noise_total
if float(sn_val) < float(cluster.target_sn):
if r > max_radius:
r = max_radius + 1
niter = 110
# exit by setting niter=110.
# (niter=100 means niter hit max niter.
# niter=110 means radius hit max radius)
signal_to_noise = 0
scale_map_radius = 0
else:
if hilo == 1:
dr *= 0.5
r += dr
hilo = -1
else:
snmapval = signal_to_noise
if (sn_val < snmapval) or (snmapval == 0.0):
signal_to_noise = sn_val
scale_map_radius = r
if hilo == -1:
dr *= 0.5
r -= dr
hilo = 1
niter += 1
#print("x:{} y:{} -> radius: {}.".format(x_index, y_index, scale_map_radius))
cluster.write_scale_map_radius(x_index, y_index, scale_map_radius, signal_to_noise)
# def binary_search_radii(arguments):
# cluster, index = arguments
# radii = np.arange(start=1, stop=101, step=0.125)
# left = 0
# right = radii.shape[0]
# nx, ny = cluster.combined_mask_data.shape
# x, y = index
# radius = generate_radius_map(x, y, nx, ny)
# if np.sum(cluster.counts_image[radius<=radii[-1]]) == 0: # radii[-1] == max bin radius
# update_stuff()
# print("None @ {index}".format(index=index))
# cluster.write_scale_map_radius(x, y, 0, 0) # no radius, no S/N ratio
# return
# while left < right:
# middle = int((left+right)/2)
# r = radii[middle]
# #indices_within_r = np.where(radius<=r)
# indices_within_r = radius<=r
# total_counts = np.sum(cluster.counts_image[indices_within_r])
# back_map_total = np.sum(cluster.back_rescale[indices_within_r])
# signal_total = total_counts - back_map_total
# noise_total = np.sqrt(total_counts + back_map_total)
# signal_to_noise = signal_total / noise_total
# if signal_to_noise < cluster.target_sn:
# left = middle + 1
# else:
# right = middle
# update_stuff()
# if r <= 100:
# cluster.write_scale_map_radius(x, y, r, signal_to_noise)
# else:
# cluster.write_scale_map_radius(x, y, 0, 0)
update_counter = 0
def update_stuff():
global update_counter
update_counter += 1
if update_counter % 1000 == 0:
io.clear_line()
count = update_counter * mp.cpu_count()
io.write("{count} regions finished.".format(count=count))
io.flush()
def binary_search_radii_wrapper(args):
image, index, search_radii, s_to_n = args
return binary_search_radii(image, index, search_radii, float(s_to_n))
def binary_search_radii(image=np.zeros(0), index=(0,0), search_radii=np.arange(1,100.125,0.125), s_to_n=40):
"""Use a binary search algorithm to find the smallest radius circular bin, centered at the given index,
that affords the desired signal to noise ratio.
Keyword arguments:
image -- The image you are binning (2d numpy array)
index -- The pixel within the image the circular bin is centered on (e.g. [0,0])
search_radii -- The various radii to search through in an effort to find the smallest (1D numpy array)
s_to_n -- The desired signal to noise ratio each bin must achieve.
returns -- x,y (the seperated index argument), bin radius, signal to noise
"""
radii = search_radii
left = 0
right = radii.shape[0]
nx, ny = image.shape
x, y = index
max_radii = search_radii[-1]
buff_radius = int(max_radii+2)
x1 = x - buff_radius
x1 = 0 if x1 < 0 else x1
x2 = x + buff_radius
x2 = nx if x2 > nx else x2
y1 = y - buff_radius
y1 = 0 if y1 < 0 else y1
y2 = y + buff_radius
y2 = ny if y2 > ny else y2
small_image = image[x1:x2, y1:y2]
radius = generate_radius_map(x, y, nx, ny)[x1:x2, y1:y2]
if np.sum(small_image[radius<=radii[-1]]) == 0:
return x,y,0,0
last_good_radii = None
last_good_s_to_n = 0
while left < right:
middle = int((left+right)/2)
r = radii[middle]
indices_within_r = radius<=r
total_counts = np.sum(small_image[indices_within_r])
noise_total = np.sqrt(total_counts)
signal_to_noise = total_counts / noise_total
if signal_to_noise < s_to_n:
left = middle + 1
else:
last_good_radii=r
last_good_s_to_n = signal_to_noise
right = middle
if r <= 100:
return x,y,last_good_radii,last_good_s_to_n
else:
counter += 1
return x,y,0,0
def generate_acb_scale_map_for(indices=None, image=np.zeros(0), max_bin_radius=100, step_size=0.125, s_to_n=40, num_processes=20):
"""Generate an adaptive circular bin map for the given image.
Keyword arguments:
image -- The image you want an adaptive circular bin map for (2D numpy array)
max_bin_radius -- The maximum bin radius for each circular bin (int)
step_size -- The step size between different radii. (float)
s_to_n -- The desired signal to noise ratio for each bin (int although can be float)
num_processes -- The number of processes you want to use for your multiprocessing pool (int)
returns -- The adaptive circular bin map and the signal to noise map (both 2D numpy arrays)
"""
# indices = np.vstack(np.where(~np.isnan(image))).T
radii_to_search = np.arange(start=1, stop=max_bin_radius+step_size, step=step_size)
acb_scale_map = np.zeros(image.shape)
s_to_n_map = np.zeros(image.shape)
arguments = [[image, index, radii_to_search, s_to_n] for index in indices]
with mp.Pool(num_processes) as pool:
results = list(tqdm(pool.imap(binary_search_radii_wrapper, arguments), total=len(arguments), desc="Calculating ACB Map"))
np_res = np.array(results)
print(np_res.shape)
x = np_res[:,0].astype(int)
y = np_res[:,1].astype(int)
acb_scale_map[x,y] = np_res[:,2]
s_to_n_map[x,y] = np_res[:,3]
return acb_scale_map, s_to_n_map
def fast_acb_creation_parallel(cluster: cluster.ClusterObj, num_cpus=mp.cpu_count()):
start_time = time.time()
indices = cluster.scale_map_indices
print("Calculating {num_regions} regions".format(num_regions=indices.shape[0]))
cluster.initialize_scale_map_csv()
cluster.back_rescale
cluster.counts_image
cluster.combined_mask_data
scale_map, s_to_n_map = generate_acb_scale_map_for(indices, cluster.counts_image, num_processes=num_cpus, s_to_n=cluster.signal_to_noise)
io.write_numpy_array_to_fits(scale_map, cluster.scale_map_file, cluster.xray_surface_brightness_nosrc_cropped_header)
io.write_numpy_array_to_fits(s_to_n_map, f'{cluster.acb_dir}/{cluster.name}_signal_to_noise_map.fits', cluster.xray_surface_brightness_nosrc_cropped_header)
end_time = time.time()
print("Time elapsed {:0.2f} seconds.".format(end_time - start_time))
def fast_acb_creation_serial(cluster: cluster.ClusterObj):
start_time = time.time()
indices = cluster.scale_map_indices
print("Calculating {num_regions} regions".format(num_regions=indices.shape[0]))
cluster.initialize_scale_map_csv()
for index in indices:
binary_search_radii((cluster, index))
cluster.write_scale_map_csv_to_fits()
end_time = time.time()
print("Time elapsed {elapsed:0.2f} seconds.".format(elapsed=end_time - start_time))
def prepare_efftime_circle_parallel(cluster: cluster.ClusterObj, num_cpus=1):
try:
from ciao_contrib import runtool as rt
except ImportError:
print("Failed to import CIAO python scripts. ")
raise
observation_lists = cluster.parallel_observation_lists(num_cpus)
for observation_list in observation_lists:
print("Preparing for effective time calculations in parallel.")
processes = [mp.Process(target=prepare_effective_time_circles_for,
args=(observation,)) for observation in observation_list]
for process in processes:
process.start()
for process in processes:
process.join()
def prepare_effective_time_circles_for(observation: cluster.Observation):
io.delete_if_exists(observation.effbtime)
io.delete_if_exists(observation.effdtime)
if not io.file_exists(observation.acisI_nosrc_combined_mask_file):
print("Removing point sources from the observations combined mask file.")
print("dmcopy infile='{}[exclude sky=region({})]' outfile={} clobber=True".format(
observation.acisI_combined_mask_file,
observation.cluster.sources_file,
observation.acisI_nosrc_combined_mask_file
))
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[exclude sky=region({source_file})]".format(
fits_file=observation.acisI_combined_mask_file,
source_file=observation.cluster.sources_file
),
outfile=observation.acisI_nosrc_combined_mask_file,
clobber=True
)
else:
print("{acis} already exists.".format(
acis=observation.acisI_nosrc_combined_mask_file
))
# if not io.file_exists(observation.acisI_high_energy_combined_image_file):
print("Creating high band (9.5-12 keV) source image cropped to combined region.")
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[sky=region({crop_file})]".format(
fits_file=observation.clean,
crop_file=observation.cluster.master_crop_file
),
outfile=observation.acisI_high_energy_temp_image,
clobber=True
)
##########need to change to obs specific
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[EVENTS][bin sky=4][energy=9500:12000]".format(
fits_file=observation.acisI_high_energy_temp_image
),
outfile=observation.acisI_high_energy_combined_image_file,
option="image",
clobber=True
)
io.delete_if_exists(observation.acisI_high_energy_temp_image)
print("Creating high band (9.5-12 keV) background image cropped to combined region.")
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[sky=region({crop_file})]".format(
fits_file=observation.back,
crop_file=observation.cluster.master_crop_file
),
outfile=observation.backI_high_energy_temp_image,
clobber=True
)
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[EVENTS][bin sky=4][energy=9500:12000]".format(
fits_file=observation.backI_high_energy_temp_image
),
outfile=observation.backI_high_energy_combined_image_file,
option="image",
clobber=True
)
io.delete_if_exists(observation.backI_high_energy_temp_image)
def prepare_efftime_circle(cluster):
try:
from ciao_contrib import runtool as rt
except ImportError:
print("Failed to import CIAO python scripts. ")
raise
for observation in cluster.observations:
io.delete_if_exists(observation.effbtime)
io.delete_if_exists(observation.effdtime)
if not io.file_exists(observation.acisI_nosrc_combined_mask_file):
print("Removing point sources from the observations combined mask file.")
print("dmcopy infile='{}[exclude sky=region({})]' outfile={} clobber=True".format(
observation.acisI_combined_mask_file,
cluster.sources_file,
observation.acisI_nosrc_combined_mask_file
))
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[exclude sky=region({source_file})]".format(
fits_file=observation.acisI_combined_mask_file,
source_file=cluster.sources_file
),
outfile=observation.acisI_nosrc_combined_mask_file,
clobber=True
)
else:
print("{acis} already exists.".format(
acis=observation.acisI_nosrc_combined_mask_file
))
if not io.file_exists(observation.acisI_high_energy_combined_image_file):
print("Creating high band (9.5-12 keV) source image cropped to combined region.")
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[sky=region({crop_file})]".format(
fits_file=observation.clean,
crop_file=cluster.master_crop_file
),
outfile=observation.acisI_high_energy_temp_image,
clobber=True
)
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[EVENTS][bin sky=4][energy=9500:12000]".format(
fits_file=observation.acisI_high_energy_temp_image
),
outfile=observation.acisI_high_energy_combined_image_file,
option="image",
clobber=True
)
else:
print("{fits_file} already exists.".format(
fits_file=observation.acisI_high_energy_combined_image_file
))
io.delete_if_exists(observation.acisI_high_energy_temp_image)
if not io.file_exists(observation.backI_high_energy_combined_image_file):
print("Creating high band (9.5-12 keV) background image cropped to combined region.")
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[sky=region({crop_file})]".format(
fits_file=observation.back,
crop_file=cluster.master_crop_file
),
outfile=observation.backI_high_energy_temp_image,
clobber=True
)
rt.dmcopy.punlearn()
rt.dmcopy(
infile="{fits_file}[EVENTS][bin sky=4][energy=9500:12000]".format(
fits_file=observation.backI_high_energy_temp_image
),
outfile=observation.backI_high_energy_combined_image_file,
option="image",
clobber=True
)
else:
print("{fits_file} already exists.".format(
fits_file=observation.backI_high_energy_combined_image_file
))
io.delete_if_exists(observation.backI_high_energy_temp_image)
def calculate_effective_times(cluster: cluster.ClusterObj):
start_time = time.time()
scale_map = cluster.scale_map
number_of_regions = cluster.number_of_regions
nx = scale_map.shape[0]
ny = scale_map.shape[1]
effective_data_times = np.zeros(scale_map.shape)
effective_background_times = np.zeros(scale_map.shape)
for observation in cluster.observations:
print("Starting observation {obs}".format(obs=observation.id))
high_energy_data = observation.acisI_high_energy_combined_image
background = observation.backI_high_energy_combined_image
sum_acis_high_energy = np.sum(high_energy_data) # get the total counts in the high energy image
sum_back_high_energy = np.sum(background)
bg_to_data_ratio = sum_back_high_energy / sum_acis_high_energy
source_subtracted_data = observation.acisI_nosrc_combined_mask
exposure_time = observation.acisI_high_energy_combined_image_header['EXPOSURE']
YY, XX = np.meshgrid(np.arange(ny), np.arange(nx))
counter = 0
print("Starting effective exposure time calculations...")
for x in range(nx):
for y in range(ny):
if scale_map[x,y] >= 1:
radius = np.sqrt((x - XX)**2 + (y - YY)**2)
region = np.where(radius <= scale_map[x, y])
source_subtracted_area = np.sum(source_subtracted_data[region])
total_area = source_subtracted_data[region].size
fractional_area = source_subtracted_area / total_area
fractional_exposure_time = fractional_area * exposure_time
effective_data_times[x, y] = fractional_exposure_time
effective_background_times[x, y] = fractional_exposure_time * bg_to_data_ratio
counter += 1
if counter % 1000 == 0 or counter == number_of_regions or counter == 1:
time_elapsed = time.strftime("%H hours %M minutes %S seconds.",
time.gmtime(time.time()-start_time))
_update_effective_exposure_time(obsid=observation.id,
current_region=counter,
number_regions=number_of_regions,
time_elapsed=time_elapsed
)
observation.effective_data_time = effective_data_times
observation.effective_background_time = effective_background_times
def calculate_effective_times_in_parallel(cluster: cluster.ClusterObj, num_cpus=1):
observation_lists = cluster.parallel_observation_lists(num_cpus)
print('Calculating effective times in parallel using {} processes.'.format(num_cpus))
for observation_list in observation_lists:
processes = [mp.Process(target=calculate_effective_time_for,
args=(observation,)) for observation in observation_list]
for process in processes:
process.start()
for process in processes:
process.join()
def calculate_effective_times_in_parallel_map(cluster: cluster.ClusterObj, num_cpus=1):
with mp.Pool(num_cpus) as pool:
result = pool.map(calculate_effective_time_for, cluster.observations)
return result
def calculate_effective_times_in_serial(cluster: cluster.ClusterObj):
for observation in cluster.observations:
calculate_effective_time_for(observation)
def calculate_effective_time_for(observation: cluster.Observation):
"""This function returns 2 image maps, data and background, of the cluster representing the same area
of the cluster the scale map represents. Each pixel of the map represents the effective time observed
for each of the ACB regions. The effective observed time is essentially the integrated observing time
for each acb region. This is value differs from a simple, area of region * exposure time as some parts
of the region may be masked (i.e. a removed point source within the ACB region)."""
print("Starting observation {obs}".format(obs=observation.id))
start_time = time.time()
scale_map = observation.cluster.scale_map
nx = scale_map.shape[0]
ny = scale_map.shape[1]
effective_data_times = np.zeros(scale_map.shape)
effective_background_times = np.zeros(scale_map.shape)
if observation.acisI_nosrc_combined_mask.shape != scale_map.shape:
observation.reproject_nosrc_combined_mask(observation.cluster.scale_map_file)
if observation.acisI_combined_mask.shape != scale_map.shape:
observation.reproject_combined_mask(observation.cluster.scale_map_file)
high_energy_data = observation.acisI_high_energy_combined_image
background = observation.backI_high_energy_combined_image
sum_acis_high_energy = np.sum(high_energy_data) # get the total counts in the high energy image
sum_back_high_energy = np.sum(background)
bg_to_data_ratio = sum_back_high_energy / sum_acis_high_energy
source_subtracted_mask = observation.acisI_nosrc_combined_mask
exposure_time = observation.acisI_high_energy_combined_image_header['EXPOSURE']
indices = np.vstack(np.where(observation.acisI_combined_mask * scale_map > 0)).T
total = len(indices)
counter = 1
for index in indices:
x,y = index
if counter % 5000 == 0:
time_elapsed = time.strftime("%H h %M m %S s",
time.gmtime(time.time() - start_time))
print("ObsID {}\t {} of {} regions calculated. Time elapsed: {}. Avg {:2f} ms/region".format(
observation.id,
counter, total, time_elapsed, ((time.time() - start_time)/counter)*1000))
io.flush()
radius_map = generate_radius_map(x, y, nx, ny)
circle_mask = radius_map <= scale_map[x, y]
source_subtracted_area = np.sum(source_subtracted_mask[circle_mask])
total_area = source_subtracted_mask[circle_mask].size
fractional_area = source_subtracted_area / total_area
fractional_exposure_time = fractional_area * exposure_time
effective_data_times[x, y] = fractional_exposure_time
effective_background_times[x, y] = fractional_exposure_time * bg_to_data_ratio
counter += 1
observation.effective_data_time = effective_data_times
observation.effective_background_time = effective_background_times
time_elapsed = time.strftime("%H hours %M minutes %S seconds.",
time.gmtime(time.time() - start_time))
print("ObsID {} complete. Time elapsed: {}".format(observation.id, time_elapsed))
def prepare_for_spec(cluster_obj: cluster.ClusterObj):
try:
import ciao
except ImportError:
print("Must be running CIAO before running prepare_for_spec.")
raise
io.make_directory(cluster_obj.super_comp_dir)
cluster_obj.initialize_best_fits_file()
print("Preparing files for spectral analysis and copying to {super_comp_dir} for offloading computation.".format(
super_comp_dir=cluster_obj.super_comp_dir
))
io.copy(cluster_obj.configuration_filename, cluster_obj.super_comp_cluster_config)
for observation in cluster_obj.observations:
print("Copying files for {obsid}".format(obsid=observation.id))
io.copy(observation.clean, cluster_obj.acisI_clean_obs(observation.id))
io.copy(observation.back, cluster_obj.backI_clean_obs(observation.id))
io.copy(observation.aux_response_file, observation.arf_sc)
io.copy(observation.redistribution_matrix_file, observation.rmf_sc)
io.copy(observation.acis_mask, observation.acis_mask_sc)
exposure = ciao.get_exposure(observation.clean)
io.write_contents_to_file(exposure, observation.exposure_time_file, binary=False)
def make_commands_lis(cluster: cluster.ClusterObj, resolution):
print("Creating {}".format(cluster.command_lis))
offset = [None, 5, 3, 1][resolution]
start_time = time.time()
region_list = cluster.scale_map_regions_to_fit(resolution)
command_string = []
pypeline_dir = io.get_user_input("Enter the directory containing the pix2pix.py portion of the pypeline on the remote machine: ")
pix2pix_path = "{pypeline_dir}/pix2pix.py".format(pypeline_dir=pypeline_dir)
data_dir = io.get_user_input("Enter the directory containing the cluster data on the remote machine:\n"
"For example: /home/user/data/clustername/\n")
for region in region_list:
new_command = "python {pix2pix} {cluster_config} {region}".format(
pix2pix=pix2pix_path,
cluster_config="{data_dir}/{name}_pypeline_config.ini".format(
data_dir=data_dir,
name=cluster.name
),
region=region
)
command_string.append(new_command)
command_lis = "\n".join(command_string)
region_string = '\n'.join([str(x) for x in region_list])
io.write_contents_to_file(command_lis, cluster.command_lis, binary=False)
io.write_contents_to_file(region_string, cluster.filtered_region_list, binary=False)
end_time = time.time()
print("Time elapsed: {time:0.2f} sec".format(time=(end_time-start_time)))
def make_temperature_map(cluster: cluster.ClusterObj, resolution, average=False):
#coordinates = get_pixel_coordinates(cluster)
# indices of this array are the region number minus 1
# that is, region number 1 is coordinate array index 0
# region 100 = coordinates[99]
# high_res_offset = 0
# med_res_offset = 1
# low_res_offset = 2
io.make_directory(cluster.output_dir)
offset = [None, 2, 1, 0][resolution]
mask_fits = fits.open(cluster.combined_mask)
mask = mask_fits[0].data
scale_map_regions = cluster.scale_map_region_index
temps_with_errors = cluster.average_temperature_fits if average else cluster.temperature_fits
temperature_map = np.zeros(mask.shape)
temperature_error_map = np.zeros(mask.shape)
temperature_fractional_error_map = np.zeros(mask.shape)
regions = temps_with_errors['region']
temperatures = temps_with_errors['temperature']
temp_error_plus = temps_with_errors['temp_err_plus']
temp_error_minus = temps_with_errors['temp_err_minus']
for i, region in enumerate(regions):
if i % 1000 == 0:
_update_completed_things(i, len(regions), "regions")
coordinates = cluster.coordinates_for_scale_map_region(region, scale_map_regions)
x = int(coordinates[0])
y = int(coordinates[1])
low_x = x - offset
high_x = x + offset + 1
low_y = y - offset
high_y = y + offset + 1
temperature_map[low_x:high_x, low_y:high_y] = temperatures[i]
temperature_error_map[low_x:high_x, low_y:high_y] = (np.abs(temp_error_plus[i] -
temp_error_minus[i]))/2
temperature_fractional_error_map[low_x:high_x, low_y:high_y] = \
(temperature_error_map[x,y]/temperature_map[x,y])
if i:
_update_completed_things(i, len(regions), "regions")
header = mask_fits[0].header
# This header contains all coordinate information needed
fits.writeto(cluster.temperature_map_filename,
temperature_map,
header,
overwrite=True)
fits.writeto(cluster.temperature_error_map_filename,
temperature_error_map,
header,
overwrite=True)
fits.writeto(cluster.temperature_fractional_error_map_filename,
temperature_fractional_error_map,
header,
overwrite=True)
def make_fit_map(cluster: cluster.ClusterObj, fit_type='Norm', resolution=2):
io.make_directory(cluster.output_dir)
offset = [None, 2, 1, 0][resolution]
mask_fits = fits.open(cluster.combined_mask)
mask = mask_fits[0].data
scale_map_regions = cluster.scale_map_region_index
fits_with_errors = cluster.get_fits_from_file_for(fit_type)
fit_map = np.zeros(mask.shape)
fit_error_map = np.zeros(mask.shape)
fit_fractional_error_map = np.zeros(mask.shape)
err_high = "{fit_type}_err_+".format(fit_type=fit_type)
err_low = "{fit_type}_err_-".format(fit_type=fit_type)
regions = fits_with_errors['region']
actual_fits = fits_with_errors[fit_type]
fit_err_plus = fits_with_errors[err_high]
fit_err_low = fits_with_errors[err_low]
for i, region in enumerate(regions):
if i% 1000 == 0:
_update_completed_things(i, len(regions), 'regions')
coordinates = cluster.coordinates_for_scale_map_region(region, scale_map_regions)
x = int(coordinates[0])
y = int(coordinates[1])
low_x = x - offset
high_x = x + offset + 1
low_y = y - offset
high_y = y + offset + 1
fit_map[low_x:high_x, low_y:high_y] = actual_fits[i]
fit_error_map[low_x:high_x, low_y:high_y] = (np.abs(fit_err_plus[i] -
fit_err_low[i]))/2
fit_fractional_error_map[low_x:high_x, low_y:high_y] = \
(fit_error_map[x,y]/fit_map[x,y])
try:
if i:
_update_completed_things(i, len(regions), 'regions')
except ValueError:
io.print_red("Error trying to load the file, {spec_fits_file}".format(spec_fits_file=cluster.spec_fits_file))
raise
header = mask_fits[0].header
fits.writeto(cluster.fit_map_filename(fit_type),
fit_map,
header,
overwrite=True )
fits.writeto(cluster.fit_error_map_filename(fit_type),
fit_error_map,
header,
overwrite=True)
fits.writeto(cluster.fit_fractional_error_map_filename(fit_type),
fit_fractional_error_map,
header,
overwrite=True)
def fitting_preparation(clstr, args=None, num_cpus=None):
if args is None:
resolution = 2
cpu_count = mp.cpu_count()
else:
resolution = args.resolution
cpu_count = args.num_cpus
if num_cpus:
cpu_count = num_cpus
print("Creating the scale map.")
#create_scale_map_in_parallel(clstr)
fast_acb_creation_parallel(clstr, num_cpus=cpu_count)
print("Creating the region index map.")
create_scale_map_region_index(clstr)
print("Preparing the high-energy images and backgrounds.")
prepare_efftime_circle_parallel(clstr, cpu_count)
print("Calculating effective times.")
#calculate_effective_times_in_parallel(clstr, cpu_count)
#calculate_effective_times_in_serial(clstr)
calculate_effective_times_in_parallel_map(clstr, cpu_count)
print("Creating circular fitting regions.")
create_circle_regions_in_parallel(clstr, cpu_count)
print("Preparing for the spectral fits.")
prepare_for_spec(clstr)
#print("Making the command list for use with mpiexec.")
#make_commands_lis(clstr, resolution) # 3 for high_res, 2 for medium res, # 1 for low res
print("Finished all of the preparation for the spectral fits. At this point you should copy\n"
"the data folder over to a high performance computer. If speed and space aren't an issue,\n"
"copy the entire cluster folder over. The only files really needed are the configuration\n"
"file [cluster_pypeline_config.ini] and the acb folder (maintaining the original directory\n"
"structure).")
print("\nNext, you can either run wrapper.py directly or create a small bash file for scheduled\n"
"running. If you need to create the bash file to call wrapper.py, make sure you setup the\n"
"ciao environment in the bash file before calling python wrapper.py --configfile --etc.")
def eff_times_to_fits(clstr: cluster.ClusterObj):
for observation in clstr.observations:
effbt = observation.effective_background_time
effdt = observation.effective_data_time
temp = fits.open(clstr.scale_map_file)
temp[0].data = effbt
print(io.get_path("writing {}/{}_{}_eff_bkg_time.fits".format(clstr.directory, clstr.name, observation.id)))
temp.writeto(io.get_path('{}/{}_{}_eff_bkg_time.fits'.format(clstr.directory, clstr.name, observation.id)))
temp[0].data = effdt
print(io.get_path('writing {}/{}_{}_eff_data_time.fits'.format(clstr.directory, clstr.name, observation.id)))
temp.writeto(io.get_path('{}/{}_{}_eff_data_time.fits'.format(clstr.directory, clstr.name, observation.id)))
def make_density_map(clstr: cluster.ClusterObj):
xray_sb_fits = fits.open(clstr.smoothed_xray_sb_cropped_nosrc_filename)
xray_sb_header = xray_sb_fits[0].header
xray_sb = xray_sb_fits[0].data
# xray surface brightness is proportional to density squared.
# therefore, relative density is the square root of the xray surface brightness
n = np.sqrt(xray_sb)
fits.writeto(clstr.density_map_filename, n, header=xray_sb_header, overwrite=True)
return n
def reproject_density_map(clstr: cluster.ClusterObj):
import ciao
print("Reprojecting density map.")
ciao.reproject(infile=clstr.density_map_filename,
matchfile=clstr.combined_mask,
outfile=clstr.density_map_temp_filename)
io.move(clstr.density_map_temp_filename, clstr.density_map_filename)
return clstr.density_map
def reproject_temperature_map(clstr: cluster.ClusterObj):
import ciao
print("Reprojecting Temperature map.")
ciao.reproject(infile=clstr.temperature_map_filename,
matchfile=clstr.combined_mask,
outfile=clstr.temperature_map_temp_filename)
io.move(clstr.temperature_map_temp_filename, clstr.temperature_map_filename)
return clstr.temperature_map
def get_matching_density_and_temperature_maps(clstr: cluster.ClusterObj):
if not io.file_exists(clstr.density_map_filename):
make_density_map(clstr)
n, T = make_sizes_match(input_image=clstr.density_map_filename, second_image=clstr.temperature_map_filename)
# n = clstr.density_map
# T = clstr.temperature_map
# n, T = make_sizes_match(n, T)
return n, T
def make_pressure_map(clstr: cluster.ClusterObj):
n, T = get_matching_density_and_temperature_maps(clstr)
P = n*T
norm_P = do.normalize_data(P)
fits.writeto(clstr.pressure_map_filename, norm_P, header=clstr.temperature_map_header, overwrite=True)
def make_pressure_error_maps(clstr: cluster.ClusterObj):
pass
def make_entropy_map(clstr: cluster.ClusterObj):
n, T = get_matching_density_and_temperature_maps(clstr)
K = np.zeros(n.shape)
nonzero_indices = np.nonzero(n)
K[nonzero_indices] = T[nonzero_indices] * ((n[nonzero_indices])**(-2/3))
norm_K = do.normalize_data(K)
fits.writeto(clstr.entropy_map_filename, norm_K, header=clstr.temperature_map_header, overwrite=True)
def reproject(infile=None, matchfile=None, outfile=None, overwrite=False):
rt.reproject_image.punlearn()
rt.reproject_image(infile=infile, matchfile=matchfile, outfile=outfile, clobber=overwrite)
def repro_filename(original_filename):
split_filename = original_filename.split('.')
split_filename[-2] += "_repro"
return ".".join(split_filename)
def make_smoothed_xray_map(clstr: cluster.ClusterObj):
scale_map = clstr.scale_map_file
sb_map = clstr.xray_surface_brightness_nosrc_cropped_filename
print("Using {acb_map_file} and {xray_sb_map_file}".format(
acb_map_file=clstr.scale_map_file,
xray_sb_map_file=clstr.xray_surface_brightness_nosrc_cropped_filename
))
sb_map, scale_map = make_sizes_match(input_image=clstr.xray_surface_brightness_nosrc_cropped_filename, second_image=clstr.scale_map_file)
#sb_map, scale_map = do.make_sizes_match(sb_map, scale_map)
max_x, max_y = sb_map.shape
new_map = np.zeros(scale_map.shape)
for x in range(max_x):
print(f'{x} out of {max_x}')
for y in range(max_y):
if scale_map[x,y]:
radius_map = generate_radius_map(x, y, max_x, max_y)
radius_mask = radius_map <= scale_map[x,y]
new_map[x,y] = sb_map[radius_mask].mean()
fits.writeto(clstr.smoothed_xray_sb_cropped_nosrc_filename, new_map, header=clstr.scale_map_header, overwrite=True)
print("{smoothed_filename} written. X-ray SB ACB map complete.".format(
smoothed_filename=clstr.smoothed_xray_sb_cropped_nosrc_filename
))
def calc_acb_val_for(args):
index, sb_map, scale_map = args
x, y = index
max_x, max_y = sb_map.shape
if scale_map[x,y]:
radius_map = generate_radius_map(x, y, max_x, max_y)
radius_mask = radius_map <= scale_map[x,y]
return [x,y, sb_map[radius_mask].mean()]
return [x,y, 0]
def make_smoothed_xray_map_parallel(clstr: cluster.ClusterObj):
scale_map = clstr.scale_map_file
sb_map = clstr.xray_surface_brightness_nosrc_cropped_filename
sb_map, scale_map = make_sizes_match(
input_image=clstr.xray_surface_brightness_nosrc_cropped_filename,
second_image=clstr.scale_map_file)
new_map = np.zeros(scale_map.shape)
indices = np.array(list(np.ndindex(*new_map.shape)))
args = [[i, sb_map, scale_map] for i in indices]
with mp.Pool() as p:
# results = list(tqdm(p.imap(calc_acb_val_for, args), total=len(args)))
results = p.map(calc_acb_val_for, args)
results = np.array(results)
x = results[:,0].astype(int)
y = results[:,1].astype(int)
vals = results[:,2]
new_map[x,y] = vals
fits.writeto(clstr.smoothed_xray_sb_cropped_nosrc_filename, new_map, header=clstr.scale_map_header, overwrite=True)
print(f"{clstr.smoothed_xray_sb_cropped_nosrc_filename} written. X-ray SB ACB map complete.")
def make_sizes_match(input_image, second_image):
input_data = fits.open(input_image)[0].data
second_data = fits.open(second_image)[0].data
if input_data.shape != second_data.shape:
if input_data.size > second_data.size:
reprojected_filename = repro_filename(second_image)
reproject(infile=second_image, matchfile=input_image, outfile=reprojected_filename, overwrite=True)
second_data = fits.open(reprojected_filename)[0].data
else:
reprojected_filename = repro_filename(input_image)
reproject(infile=input_image, matchfile=second_image, outfile=reprojected_filename, overwrite=True)
input_data = fits.open(reprojected_filename)[0].data
return input_data, second_data
if __name__ == '__main__':
args, parser = get_arguments()
if args.cluster_config is not None:
clstr = cluster.load_cluster(args.cluster_config)
if args.commands:
make_commands_lis(clstr, args.resolution)
if args.eff_times_fits:
eff_times_to_fits(clstr)
elif args.temperature_map:
print("Creating temperature map.")
make_temperature_map(clstr, args.resolution)
elif args.pressure:
make_pressure_map(clstr)
elif args.entropy:
make_entropy_map(clstr)
elif args.shock:
import shockfinder
if io.check_yes_no("This is likely not going to work. Continue?"):
shockfinder.find_shock_in(clstr)
else:
fitting_preparation(clstr, args)
else:
parser.print_help()
# a115 = cluster.load_cluster('A115')
# fast_acb_creation_parallel(a115)
#fast_acb_creation_serial(a115)
|
bcaldenREPO_NAMEClusterPyXTPATH_START.@ClusterPyXT_extracted@ClusterPyXT-master@acb.py@.PATH_END.py
|
{
"filename": "plot.py",
"repo_name": "ConorMacBride/mcalf",
"repo_path": "mcalf_extracted/mcalf-main/src/mcalf/utils/plot.py",
"type": "Python"
}
|
import astropy.units
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from packaging import version
__all__ = ['hide_existing_labels', 'calculate_axis_extent', 'calculate_extent', 'class_cmap']
def _get_mpl_cmap(name):
if version.parse(mpl.__version__) >= version.parse("3.5"):
return mpl.colormaps[name]
else:
return mpl.cm.get_cmap(name)
def hide_existing_labels(plot_settings, axes=None, fig=None):
"""Hides labels for each dictionary provided if label already exists in legend.
Parameters
----------
plot_settings : dict of {str: dict}
Dictionary of lines to be plotted. Values must be dictionaries with a 'label'
entry that this function my append with a '_' to hide the label.
axes : list of matplotlib.axes.Axes, optional, default=None
List of axes to extract lines labels from. Extracts axes from `fig` if omitted.
fig : matplotlib.figure.Figure, optional, default=None
Figure to take line labels from. Uses current figure if omitted.
Notes
-----
Only the ``plot_settings[*]['label']`` values are uses to assess if a label has already
been used. Other `plot_settings` parameters such as `color` are ignored.
Examples
--------
Import plotting package:
>>> import matplotlib.pyplot as plt
Define various plot settings:
>>> plot_settings = {
... 'LineA': {'color': 'r', 'label': 'A'},
... 'LineB': {'color': 'g', 'label': 'B'},
... 'LineC': {'color': 'b', 'label': 'C'},
... }
Create a figure and plot two lines on the first axes:
>>> fig, axes = plt.subplots(1, 2)
>>> axes[0].plot([0, 1], [0, 1], **plot_settings['LineA']) # doctest: +ELLIPSIS
[<matplotlib.lines.Line2D object at 0x...>]
>>> axes[0].plot([0, 1], [1, 0], **plot_settings['LineB']) # doctest: +ELLIPSIS
[<matplotlib.lines.Line2D object at 0x...>]
Set labels already used to be hidden if used again:
>>> hide_existing_labels(plot_settings)
Anything already used will have an underscore prepended:
>>> [x['label'] for x in plot_settings.values()]
['_A', '_B', 'C']
Plot two lines on the second axes:
>>> axes[1].plot([0, 1], [0, 1], **plot_settings['LineB']) # Label hidden # doctest: +ELLIPSIS
[<matplotlib.lines.Line2D object at 0x...>]
>>> axes[1].plot([0, 1], [1, 0], **plot_settings['LineC']) # doctest: +ELLIPSIS
[<matplotlib.lines.Line2D object at 0x...>]
Show the figure with the legend:
>>> fig.legend(ncol=3, loc='upper center') # doctest: +ELLIPSIS
<matplotlib.legend.Legend object at 0x...>
>>> plt.show() # doctest: +SKIP
>>> plt.close()
"""
# Get axes:
if axes is None:
if fig is None:
fig = plt.gcf()
axes = fig.get_axes()
# Get plotted labels:
lines = []
for ax in axes:
lines.extend(ax.get_lines())
existing = [line.get_label() for line in lines]
# Hide labels already plotted:
for name in plot_settings:
if plot_settings[name]['label'] in existing:
plot_settings[name]['label'] = '_' + plot_settings[name]['label']
def calculate_axis_extent(resolution, px, offset=0, unit="Mm"):
"""Calculate the extent from a resolution value along a particular axis.
Parameters
----------
resolution : float or astropy.units.quantity.Quantity
Length of each pixel. Unit defaults to `unit` is not an astropy quantity.
px : int
Number of pixels extent is being calculated for.
offset : int or float, default=0
Number of pixels from the 0 pixel to the first pixel. Defaults to the first
pixel being at 0 length units. For example, in a 1000 pixel wide dataset,
setting offset to -500 would place the 0 Mm location at the centre.
unit : str, default="Mm"
Default unit string to use if `resolution` is not an astropy quantity.
Returns
-------
first : float
First extent value.
last : float
Last extent value.
unit : str
Unit of extent values.
"""
# Ensure a valid spatial and pixel resolution is provided
if not isinstance(resolution, (float, astropy.units.quantity.Quantity)):
raise TypeError('`resolution` values must be either floats or astropy quantities'
f', got {type(resolution)}.')
if not isinstance(px, (int, np.integer)):
raise TypeError(f'`px` must be an integer, got {type(px)}.')
if not isinstance(offset, (float, int, np.integer)):
raise TypeError(f'`offset` must be an float or integer, got {type(offset)}.')
# Update the default unit if a quantity is provided
if isinstance(resolution, astropy.units.quantity.Quantity):
unit = resolution.unit.to_string(astropy.units.format.LatexInline)
resolution = float(resolution.value) # Remove the unit
# Calculate the extent values
first = offset * resolution
last = (px + offset) * resolution
return first, last, unit
def calculate_extent(shape, resolution, offset=(0, 0), ax=None, dimension=None, **kwargs):
"""Calculate the extent from a particular data shape and resolution.
This function assumes a lower origin is being used with matplotlib.
Parameters
----------
shape : tuple[int]
Shape (y, x) of the :class:`numpy.ndarray` of the data being plotted.
First integer corresponds to the y-axis and the second integer is for the x-axis.
resolution : tuple[float] or astropy.units.quantity.Quantity
A 2-tuple (x, y) containing the length of each pixel in the x and y direction respectively.
If a value has type :class:`astropy.units.quantity.Quantity`, its axis label will
include its attached unit, otherwise the unit will default to Mm.
The `ax` parameter must be specified to set its labels.
If `resolution` is None, this function will immediately return None.
offset : tuple[float] or int, length=2, optional, default=(0, 0)
Two offset values (x, y) for the x and y axis respectively.
Number of pixels from the 0 pixel to the first pixel. Defaults to the first
pixel being at 0 length units. For example, in a 1000 pixel wide dataset,
setting offset to -500 would place the 0 Mm location at the centre.
ax : matplotlib.axes.Axes, optional, default=None
Axes into which axis labels will be plotted.
Defaults to not printing axis labels.
dimension : str or tuple[str] or list[str], length=2, optional, default=None
If an `ax` (and `resolution`) is provided, use this string as the `dimension name`
that appears before the ``(unit)`` in the axis label.
A 2-tuple (x, y) or list [x, y] can instead be given to provide a different name
for the x-axis and y-axis respectively.
Defaults is equivalent to ``dimension=('x-axis', 'y-axis')``.
**kwargs
Extra keyword arguments to pass to :func:`calculate_axis_extent`.
Returns
-------
extent : tuple[float], length=4
The extent value that will be passed to matplotlib functions with a lower origin.
Will return None if `resolution` is None.
"""
# Calculate a specific extent if a resolution is specified
if resolution is not None:
# Validate relevant parameters
for n, v in (('shape', shape), ('resolution', resolution), ('offset', offset)):
if not isinstance(v, tuple) or len(v) != 2:
raise TypeError(f'`{n}` must be a tuple of length 2.')
# Calculate extent values, and extract units
ypx, xpx = shape
l, r, x_unit = calculate_axis_extent(resolution[0], xpx, offset=offset[0], **kwargs)
b, t, y_unit = calculate_axis_extent(resolution[1], ypx, offset=offset[1], **kwargs)
# Optionally set the axis labels
if ax is not None:
# Extract the dimension name
if isinstance(dimension, (tuple, list)): # different value for each dimension
if len(dimension) != 2:
raise TypeError('`dimension` must be a tuple or list of length 2.')
x_dim = str(dimension[0])
y_dim = str(dimension[1])
elif dimension is None: # default values
x_dim, y_dim = 'x-axis', 'y-axis'
elif isinstance(dimension, str): # single value for both dimensions
x_dim = y_dim = str(dimension)
else:
raise TypeError('`dimension` must be a tuple or list of length 2.')
ax.set_xlabel(f'{x_dim} ({x_unit})')
ax.set_ylabel(f'{y_dim} ({y_unit})')
return l, r, b, t # extent
return None # default extent
def class_cmap(style, n):
"""Create a listed colormap for a specific number of classifications.
Parameters
----------
style : str
The named matplotlib colormap to extract a :class:`~matplotlib.colors.ListedColormap`
from. Colours are selected from `vmin` to `vmax` at equidistant values
in the range [0, 1]. The :class:`~matplotlib.colors.ListedColormap`
produced will also show bad classifications and classifications
out of range in grey.
The 'original' style is a special case used since early versions
of this code. It is a hardcoded list of 5 colours. When the number
of classifications exceeds 5, ``style='viridis'`` will be used.
n : int
Number of colours (i.e., number of classifications) to include in
the colormap.
Returns
-------
cmap : matplotlib.colors.ListedColormap
Colormap generated for classifications.
"""
# Validate `n`
if not isinstance(n, (int, np.integer)):
raise TypeError(f'`n` must be an integer, got {type(n)}.')
# Choose colours
if style == 'original' and n <= 5: # original colours
cmap_colors = np.array(['#0072b2', '#56b4e9', '#009e73', '#e69f00', '#d55e00'])[:n]
else:
if style == 'original':
style = 'viridis' # fallback for >5 classifications
c = _get_mpl_cmap(style) # query in equal intervals from [0, 1]
cmap_colors = np.array([c(i / (n - 1)) for i in range(n)])
# Generate colormap
cmap = mpl.colors.ListedColormap(cmap_colors)
cmap.set_over(color='#999999', alpha=1)
cmap.set_under(color='#999999', alpha=1)
return cmap
|
ConorMacBrideREPO_NAMEmcalfPATH_START.@mcalf_extracted@mcalf-main@src@mcalf@utils@plot.py@.PATH_END.py
|
{
"filename": "_opacity.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/barpolar/_opacity.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class OpacityValidator(_plotly_utils.basevalidators.NumberValidator):
def __init__(self, plotly_name="opacity", parent_name="barpolar", **kwargs):
super(OpacityValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "style"),
max=kwargs.pop("max", 1),
min=kwargs.pop("min", 0),
role=kwargs.pop("role", "style"),
**kwargs
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@barpolar@_opacity.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "waynebhayes/SpArcFiRe",
"repo_path": "SpArcFiRe_extracted/SpArcFiRe-master/scripts/SpArcFiRe-pyvenv/lib/python2.7/site-packages/astropy/vo/validator/__init__.py",
"type": "Python"
}
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
import os
from ... import config as _config
from ...utils.data import get_pkg_data_contents
# NOTE: This is deprecated along with other Cone Search stuff, but it feels
# weird for config item to be issuing deprecation warnings.
class Conf(_config.ConfigNamespace):
"""
Configuration parameters for `astropy.vo.validator`.
"""
conesearch_master_list = _config.ConfigItem(
'http://vao.stsci.edu/directory/NVORegInt.asmx/VOTCapabilityPredOpt?'
'predicate=1%3D1&capability=conesearch&VOTStyleOption=2',
'URL to the cone search services master list for validation.',
aliases=['astropy.vo.validator.validate.cs_mstr_list']
)
conesearch_urls = _config.ConfigItem(
get_pkg_data_contents(
os.path.join('data', 'conesearch_urls.txt')).split(),
'A list of conesearch URLs to validate.',
'list',
aliases=['astropy.vo.validator.validate.cs_urls'])
noncritical_warnings = _config.ConfigItem(
['W03', 'W06', 'W07', 'W09', 'W10', 'W15', 'W17', 'W20', 'W21', 'W22',
'W27', 'W28', 'W29', 'W41', 'W42', 'W48', 'W50'],
'A list of `astropy.io.votable` warning codes that are considered '
'non-critical.',
'list',
aliases=['astropy.vo.validator.validate.noncrit_warnings'])
conf = Conf()
|
waynebhayesREPO_NAMESpArcFiRePATH_START.@SpArcFiRe_extracted@SpArcFiRe-master@scripts@SpArcFiRe-pyvenv@lib@python2.7@site-packages@astropy@vo@validator@__init__.py@.PATH_END.py
|
{
"filename": "base_pipeline.py",
"repo_name": "MichelleLochner/astronomaly",
"repo_path": "astronomaly_extracted/astronomaly-main/astronomaly/base/base_pipeline.py",
"type": "Python"
}
|
from astronomaly.base import logging_tools
from os import path
import pandas as pd
import numpy as np
from pandas.util import hash_pandas_object
import time
class PipelineStage(object):
def __init__(self, *args, **kwargs):
"""
Base class defining functionality for all pipeline stages. To
contribute a new pipeline stage to Astronomaly, create a new class and
inherit PipelineStage. Always start by calling "super().__init__()" and
pass it all the arguments of the init function in your new class. The
only other function that needs to be changed is `_execute_function`
which should actually implement pipeline stage functionality. The base
class will take care of automatic logging, deciding whether or not a
function has already been run on this data, saving and loading of files
and error checking of inputs and outputs.
Parameters
----------
force_rerun : bool
If True will force the function to run over all data, even if it
has been called before.
save_output : bool
If False will not save and load any files. Only use this if
functions are very fast to rerun or if you cannot write to disk.
output_dir : string
Output directory where all outputs will be stored. Defaults to
current working directory.
file_format : string
Format to save the output of this pipeline stage to.
Accepted values are:
parquet
drop_nans : bool
If true, will drop any NaNs from the input before passing it to the
function
"""
# This will be the name of the child class, not the parent.
self.class_name = type(locals()['self']).__name__
self.function_call_signature = \
logging_tools.format_function_call(self.class_name,
*args, **kwargs)
# Disables the automatic saving of intermediate outputs
if 'save_output' in kwargs and kwargs['save_output'] is False:
self.save_output = False
else:
self.save_output = True
# Handles automatic file reading and writing
if 'output_dir' in kwargs:
self.output_dir = kwargs['output_dir']
else:
self.output_dir = './'
if 'drop_nans' in kwargs and kwargs['drop_nans'] is False:
self.drop_nans = False
else:
self.drop_nans = True
# This allows the automatic logging every time this class is
# instantiated (i.e. every time this pipeline stage
# is run). That means any class that inherits from this base class
# will have automated logging.
logging_tools.setup_logger(log_directory=self.output_dir,
log_filename='astronomaly.log')
if 'force_rerun' in kwargs and kwargs['force_rerun']:
self.args_same = False
self.checksum = ''
else:
self.args_same, self.checksum = \
logging_tools.check_if_inputs_same(self.class_name,
locals()['kwargs'])
if 'file_format' in kwargs:
self.file_format = kwargs['file_format']
else:
self.file_format = 'parquet'
self.output_file = path.join(self.output_dir,
self.class_name + '_output')
if self.file_format == 'parquet':
if '.parquet' not in self.output_file:
self.output_file += '.parquet'
if path.exists(self.output_file) and self.args_same:
self.previous_output = self.load(self.output_file)
else:
self.previous_output = pd.DataFrame(data=[])
self.labels = []
def save(self, output, filename, file_format=''):
"""
Saves the output of this pipeline stage.
Parameters
----------
output : pd.DataFrame
Whatever the output is of this stage.
filename : str
File name of the output file.
file_format : str, optional
File format can be provided to override the class's file format
"""
if len(file_format) == 0:
file_format = self.file_format
if self.save_output:
# Parquet needs strings as column names
# (which is good practice anyway)
output.columns = output.columns.astype('str')
if file_format == 'parquet':
if '.parquet' not in filename:
filename += '.parquet'
output.to_parquet(filename)
elif file_format == 'csv':
if '.csv' not in filename:
filename += '.csv'
output.to_csv(filename)
def load(self, filename, file_format=''):
"""
Loads previous output of this pipeline stage.
Parameters
----------
filename : str
File name of the output file.
file_format : str, optional
File format can be provided to override the class's file format
Returns
-------
output : pd.DataFrame
Whatever the output is of this stage.
"""
if len(file_format) == 0:
file_format = self.file_format
if file_format == 'parquet':
if '.parquet' not in filename:
filename += '.parquet'
output = pd.read_parquet(filename)
elif file_format == 'csv':
if '.csv' not in filename:
filename += '.csv'
output = pd.read_csv(filename)
return output
def hash_data(self, data):
"""
Returns a checksum on the first few rows of a DataFrame to allow
checking if the input changed.
Parameters
----------
data : pd.DataFrame or similar
The input data on which to compute the checksum
Returns
-------
checksum : str
The checksum
"""
try:
hash_per_row = hash_pandas_object(data)
total_hash = hash_pandas_object(pd.DataFrame(
[hash_per_row.values]))
except TypeError:
# Input data is not already a pandas dataframe
# Most likely it's an image (np.array)
# In order to hash, it has to be converted to a DataFrame so must
# be a 2d array
try:
if len(data.shape) > 2:
data = data.ravel()
total_hash = hash_pandas_object(pd.DataFrame(data))
except (AttributeError, ValueError) as e:
# I'm not sure this could ever happen but just in case
logging_tools.log("""Data must be either a pandas dataframe or
numpy array""", level='ERROR')
raise e
return int(total_hash.values[0])
def run(self, data):
"""
This is the external-facing function that should always be called
(rather than _execute_function). This function will automatically check
if this stage has already been run with the same arguments and on the
same data. This can allow a much faster user experience avoiding
rerunning functions unnecessarily.
Warning - all columns in data not 'human_label' or 'score' are assumed
to be features.
Parameters
----------
data : pd.DataFrame
Input data on which to run this pipeline stage on.
Returns
-------
pd.DataFrame
Output
"""
new_checksum = self.hash_data(data)
if self.args_same and new_checksum == self.checksum:
# This means we've already run this function for all instances in
# the input and with the same arguments
msg = "Pipeline stage %s previously called " \
"with same arguments and same data. Loading from file. " \
"Use 'force_rerun=True' in init args to override this " \
"behavior." % self.class_name
logging_tools.log(msg, level='WARNING')
return self.previous_output
else:
msg_string = self.function_call_signature + ' - checksum: ' + \
(str)(new_checksum)
# print(msg_string)
logging_tools.log(msg_string)
print('Running', self.class_name, '...')
t1 = time.time()
if self.drop_nans:
# This is ok here because everything after feature extraction
# is always a DataFrame
output = self._execute_function(data.dropna())
else:
output = self._execute_function(data)
self.save(output, self.output_file)
print('Done! Time taken:', (time.time() - t1), 's')
return output
def run_on_dataset(self, dataset=None):
"""
This function should be called for pipeline stages that perform feature
extraction so require taking a Dataset object as input.
This is an external-facing function that should always be called
(rather than _execute_function). This function will automatically check
if this stage has already been run with the same arguments and on the
same data. This can allow a much faster user experience avoiding
rerunning functions unnecessarily.
Parameters
----------
dataset : Dataset
The Dataset object on which to run this feature extraction
function, by default None
Returns
-------
pd.Dataframe
Output
"""
# *** WARNING: this has not been tested against adding new data and
# *** ensuring the function is called for new data only
dat = dataset.get_sample(dataset.index[0])
new_checksum = self.hash_data(dat)
if not self.args_same or new_checksum != self.checksum:
# If the arguments have changed we rerun everything
msg_string = self.function_call_signature + ' - checksum: ' + \
(str)(new_checksum)
logging_tools.log(msg_string)
else:
# Otherwise we only run instances not already in the output
msg = "Pipeline stage %s previously called " \
"with same arguments. Loading from file. Will only run " \
"for new samples. Use 'force_rerun=True' in init args " \
"to override this behavior." % self.class_name
logging_tools.log(msg, level='WARNING')
print('Extracting features using', self.class_name, '...')
t1 = time.time()
logged_nan_msg = False
nan_msg = "NaNs detected in some input data." \
"NaNs will be set to zero. You can change " \
"behaviour by setting drop_nan=False"
new_index = []
output = []
n = 0
for i in dataset.index:
if i not in self.previous_output.index or not self.args_same:
if n % 100 == 0:
print(n, 'instances completed')
input_instance = dataset.get_sample(i)
# Drop any object that's all zeros or all NaNs since it
# contains no data
try:
all_same = np.all(input_instance == input_instance[0])
all_nan = np.all(np.isnan(input_instance))
except KeyError: # This is a dataframe not an array
all_same = np.all(input_instance == input_instance.iloc[0])
all_nan = np.all(pd.isna(input_instance))
if all_same or all_nan:
input_instance = None
if input_instance is None:
none_msg = "Input sample is None, skipping sample"
logging_tools.log(none_msg, level='WARNING')
continue
if self.drop_nans:
found_nans = False
try:
if np.any(np.isnan(input_instance)):
input_instance = np.nan_to_num(input_instance)
found_nans = True
except TypeError:
# So far I've only found this happens when there are
# strings in a DataFrame
for col in input_instance.columns:
try:
if np.any(np.isnan(input_instance[col])):
input_instance[col] = \
np.nan_to_num(input_instance[col])
found_nans = True
except TypeError:
# Probably just a column of strings
pass
if not logged_nan_msg and found_nans:
print(nan_msg)
logging_tools.log(nan_msg, level='WARNING')
logged_nan_msg = True
out = self._execute_function(input_instance)
if np.any(np.isnan(out)):
logging_tools.log("Feature extraction failed for id " + i)
output.append(out)
new_index.append(i)
n += 1
new_output = pd.DataFrame(data=output, index=new_index,
columns=self.labels)
index_same = new_output.index.equals(self.previous_output.index)
if self.args_same and not index_same:
output = pd.concat((self.previous_output, new_output))
else:
output = new_output
if self.save_output:
self.save(output, self.output_file)
print('Done! Time taken: ', (time.time() - t1), 's')
return output
def _execute_function(self, data):
"""
This is the main function of the PipelineStage and is what should be
implemented when inheriting from this class.
Parameters
----------
data : Dataset object, pd.DataFrame
Data type depends on whether this is feature extraction stage (so
runs on a Dataset) or any other stage (e.g. anomaly detection)
Raises
------
NotImplementedError
This function must be implemented when inheriting this class.
"""
raise NotImplementedError
|
MichelleLochnerREPO_NAMEastronomalyPATH_START.@astronomaly_extracted@astronomaly-main@astronomaly@base@base_pipeline.py@.PATH_END.py
|
{
"filename": "test_simulation.py",
"repo_name": "dmentipl/plonk",
"repo_path": "plonk_extracted/plonk-main/tests/test_simulation.py",
"type": "Python"
}
|
"""Testing Simulation."""
from pathlib import Path
import numpy as np
import pytest
import plonk
DIR_PATH = Path(__file__).parent / 'data/phantom'
PREFIX = 'dustseparate'
TS_FILENAME = 'dustseparate01.ev'
def test_init_simulation():
"""Testing initialising simulation."""
plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH)
with pytest.raises(ValueError):
plonk.load_simulation(
prefix=PREFIX, directory=DIR_PATH, data_source='not_available'
)
with pytest.raises(FileNotFoundError):
plonk.load_simulation(prefix='does_not_exist', directory=DIR_PATH)
def test_sim_data():
"""Testing data in simulation."""
sim = plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH)
snaps = sim.snaps
assert len(snaps) == 1
assert len(snaps[0]) == 2000
properties = {
'adiabatic_index': 1.0,
'dust_method': 'dust as separate sets of particles',
'equation_of_state': 'locally isothermal disc',
'grain_density': [3000.0] * plonk.units('kg/m^3'),
'grain_size': [0.01] * plonk.units('m'),
'smoothing_length_factor': 1.0,
'time': [0.0] * plonk.units('s'),
}
for key, val in sim.properties.items():
if isinstance(val, plonk._units.Quantity):
assert np.allclose(val.m, properties[key].m)
else:
assert sim.properties[key] == properties[key]
assert sim.paths['time_series_global'][0].name == TS_FILENAME
def test_simulation_visualization():
"""Test simulation visualization."""
sim = plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH)
viz = sim.visualize(kind='particle', x='x', y='y')
viz.next()
viz.prev()
def test_to_array():
"""Testing to_array method."""
sim = plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH)
sim.to_array(quantity='density', indices=[0, 1, 2])
def test_set_units_time_series():
"""Test set/unset units time series."""
sim = plonk.load_simulation(prefix=PREFIX, directory=DIR_PATH)
sim.unset_units_on_time_series()
sim.set_units_on_time_series()
|
dmentiplREPO_NAMEplonkPATH_START.@plonk_extracted@plonk-main@tests@test_simulation.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/histogram/insidetextfont/__init__.py",
"type": "Python"
}
|
import sys
from typing import TYPE_CHECKING
if sys.version_info < (3, 7) or TYPE_CHECKING:
from ._weight import WeightValidator
from ._variant import VariantValidator
from ._textcase import TextcaseValidator
from ._style import StyleValidator
from ._size import SizeValidator
from ._shadow import ShadowValidator
from ._lineposition import LinepositionValidator
from ._family import FamilyValidator
from ._color import ColorValidator
else:
from _plotly_utils.importers import relative_import
__all__, __getattr__, __dir__ = relative_import(
__name__,
[],
[
"._weight.WeightValidator",
"._variant.VariantValidator",
"._textcase.TextcaseValidator",
"._style.StyleValidator",
"._size.SizeValidator",
"._shadow.ShadowValidator",
"._lineposition.LinepositionValidator",
"._family.FamilyValidator",
"._color.ColorValidator",
],
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@histogram@insidetextfont@__init__.py@.PATH_END.py
|
{
"filename": "flatiter.py",
"repo_name": "numpy/numpy",
"repo_path": "numpy_extracted/numpy-main/numpy/typing/tests/data/pass/flatiter.py",
"type": "Python"
}
|
import numpy as np
a = np.empty((2, 2)).flat
a.base
a.copy()
a.coords
a.index
iter(a)
next(a)
a[0]
a[[0, 1, 2]]
a[...]
a[:]
a.__array__()
a.__array__(np.dtype(np.float64))
|
numpyREPO_NAMEnumpyPATH_START.@numpy_extracted@numpy-main@numpy@typing@tests@data@pass@flatiter.py@.PATH_END.py
|
{
"filename": "cde_loss.py",
"repo_name": "lee-group-cmu/cdetools",
"repo_path": "cdetools_extracted/cdetools-master/python/src/cdetools/cde_loss.py",
"type": "Python"
}
|
import numpy as np
from scipy.spatial import KDTree
def cde_loss(cde_estimates, z_grid, z_test):
"""
Calculates conditional density estimation loss on holdout data
@param cde_estimates: a numpy array where each row is a density
estimate on z_grid
@param z_grid: a numpy array of the grid points at which cde_estimates is evaluated
@param z_test: a numpy array of the true z values corresponding to the rows of cde_estimates
@returns The CDE loss (up to a constant) for the CDE estimator on
the holdout data and the SE error
"""
if len(z_test.shape) == 1:
z_test = z_test.reshape(-1, 1)
if len(z_grid.shape) == 1:
z_grid = z_grid.reshape(-1, 1)
n_obs, n_grid = cde_estimates.shape
n_samples, feats_samples = z_test.shape
n_grid_points, feats_grid = z_grid.shape
if n_obs != n_samples:
raise ValueError("Number of samples in CDEs should be the same as in z_test."
"Currently %s and %s." % (n_obs, n_samples))
if n_grid != n_grid_points:
raise ValueError("Number of grid points in CDEs should be the same as in z_grid."
"Currently %s and %s." % (n_grid, n_grid_points))
if feats_samples != feats_grid:
raise ValueError("Dimensionality of test points and grid points need to coincise."
"Currently %s and %s." % (feats_samples, feats_grid))
z_min = np.min(z_grid, axis=0)
z_max = np.max(z_grid, axis=0)
z_delta = (z_max - z_min)/(n_grid_points-1)
integrals = z_delta * np.sum(cde_estimates**2, axis=1)
kdtree = KDTree(z_grid)
nn_ids = np.array(
[kdtree.query(z_test[ii, :])[1] for ii in range(n_samples)]).reshape(-1,)
likeli = cde_estimates[(tuple(np.arange(n_samples)), tuple(nn_ids))]
losses = integrals - 2 * likeli
loss = np.mean(losses)
se_error = np.std(losses, axis=0) / (n_obs ** 0.5)
return loss, se_error
|
lee-group-cmuREPO_NAMEcdetoolsPATH_START.@cdetools_extracted@cdetools-master@python@src@cdetools@cde_loss.py@.PATH_END.py
|
{
"filename": "test_jplspec_remote.py",
"repo_name": "astropy/astroquery",
"repo_path": "astroquery_extracted/astroquery-main/astroquery/jplspec/tests/test_jplspec_remote.py",
"type": "Python"
}
|
import pytest
from astropy import units as u
from astropy.table import Table
from ...jplspec import JPLSpec
@pytest.mark.remote_data
def test_remote():
tbl = JPLSpec.query_lines(min_frequency=500 * u.GHz,
max_frequency=1000 * u.GHz,
min_strength=-500,
molecule="18003 H2O")
assert isinstance(tbl, Table)
assert len(tbl) == 36
assert set(tbl.keys()) == set(['FREQ', 'ERR', 'LGINT', 'DR', 'ELO', 'GUP',
'TAG', 'QNFMT', 'QN\'', 'QN"'])
assert tbl['FREQ'][0] == 503568.5200
assert tbl['ERR'][0] == 0.0200
assert tbl['LGINT'][0] == -4.9916
assert tbl['ERR'][7] == 12.4193
assert tbl['FREQ'][35] == 987926.7590
@pytest.mark.remote_data
def test_remote_regex():
tbl = JPLSpec.query_lines(min_frequency=500 * u.GHz,
max_frequency=1000 * u.GHz,
min_strength=-500,
molecule=("28001", "28002", "28003"))
assert isinstance(tbl, Table)
assert len(tbl) == 16
assert set(tbl.keys()) == set(['FREQ', 'ERR', 'LGINT', 'DR', 'ELO', 'GUP',
'TAG', 'QNFMT', 'QN\'', 'QN"'])
assert tbl['FREQ'][0] == 576267.9305
assert tbl['ERR'][0] == .0005
assert tbl['LGINT'][0] == -3.0118
assert tbl['ERR'][7] == 8.3063
assert tbl['FREQ'][15] == 946175.3151
|
astropyREPO_NAMEastroqueryPATH_START.@astroquery_extracted@astroquery-main@astroquery@jplspec@tests@test_jplspec_remote.py@.PATH_END.py
|
{
"filename": "_tickvals.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/layout/coloraxis/colorbar/_tickvals.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class TickvalsValidator(_plotly_utils.basevalidators.DataArrayValidator):
def __init__(
self, plotly_name="tickvals", parent_name="layout.coloraxis.colorbar", **kwargs
):
super(TickvalsValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "colorbars"),
role=kwargs.pop("role", "data"),
**kwargs
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@layout@coloraxis@colorbar@_tickvals.py@.PATH_END.py
|
{
"filename": "calc_k_coeffs.py",
"repo_name": "ideasrule/platon",
"repo_path": "platon_extracted/platon-master/misc/calc_k_coeffs.py",
"type": "Python"
}
|
import scipy.special
import numpy as np
import sys
import matplotlib.pyplot as plt
def get_k_coeffs(absorb_coeffs, binsize=200, n_gauss=10):
points, weights = scipy.special.roots_legendre(n_gauss)
percentiles = 100 * (points + 1) / 2
k_coeffs = []
for i in range(absorb_coeffs.shape[2] // binsize):
vals = absorb_coeffs[:,:,i*binsize : (i+1)*binsize]
k_coeffs.append(np.percentile(vals, percentiles, axis=2))
k_coeffs = np.array(k_coeffs)
k_coeffs = k_coeffs.reshape((k_coeffs.shape[0] * k_coeffs.shape[1], k_coeffs.shape[2], k_coeffs.shape[3]))
k_coeffs = k_coeffs.transpose((1,2,0))
return k_coeffs
print(k_coeffs.shape)
plt.loglog(k_coeffs[20,7])
plt.show()
wavelengths = 1e-6 * np.exp(np.arange(np.log(0.2), np.log(30), 1./20000))
k_wavelengths = np.repeat(wavelengths[::200][:-1], 10)
for filename in sys.argv[1:]:
output_filename = filename.replace("absorb_coeffs_", "k_coeffs_")
absorb_coeffs = np.load(filename)
k_coeffs = get_k_coeffs(absorb_coeffs)
np.save("k_wavelengths.npy", k_wavelengths)
np.save(output_filename, k_coeffs)
|
ideasruleREPO_NAMEplatonPATH_START.@platon_extracted@platon-master@misc@calc_k_coeffs.py@.PATH_END.py
|
{
"filename": "_variant.py",
"repo_name": "plotly/plotly.py",
"repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/image/hoverlabel/font/_variant.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class VariantValidator(_plotly_utils.basevalidators.EnumeratedValidator):
def __init__(
self, plotly_name="variant", parent_name="image.hoverlabel.font", **kwargs
):
super(VariantValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
array_ok=kwargs.pop("array_ok", True),
edit_type=kwargs.pop("edit_type", "none"),
values=kwargs.pop(
"values",
[
"normal",
"small-caps",
"all-small-caps",
"all-petite-caps",
"petite-caps",
"unicase",
],
),
**kwargs,
)
|
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@image@hoverlabel@font@_variant.py@.PATH_END.py
|
{
"filename": "evolution.py",
"repo_name": "astropy/SPISEA",
"repo_path": "SPISEA_extracted/SPISEA-main/spisea/evolution.py",
"type": "Python"
}
|
import math
import logging
from numpy import genfromtxt
import numpy as np
import os
import glob
import pdb
import warnings
from astropy.table import Table, vstack, Column
from scipy import interpolate
import pylab as py
from spisea.utils import objects
from spisea import exceptions
logger = logging.getLogger('evolution')
# Fetch root directory of evolution models.
try:
models_dir = os.environ['SPISEA_MODELS']
models_dir += '/evolution/'
except KeyError:
warnings.warn("SPISEA_MODELS is undefined; functionality "
"will be SEVERELY crippled.")
models_dir = ''
# Function to get installed evo grid number
def get_installed_grid_num(input_models_dir):
"""
Get installed grid number
"""
# Define the installed model grid number
file_name = input_models_dir + '/grid_version.txt'
# Read in the file. In the case where it doesn't
# exist, then grid version is assumed to be 1.0
# (since this didn't always exist)
try:
file1 = open(file_name, 'r')
read = file1.readlines()
evo_grid_num = float(read[1])
file1.close()
except FileNotFoundError:
evo_grid_num = 1.0
return evo_grid_num
# Function to check evo grid version number
def check_evo_grid_number(required_num, input_models_dir):
"""
Check if installed grid meets the required
grid version number. Installed grid number must
be greater than or equal to this number
"""
# Get installed gridnumber
grid_num = get_installed_grid_num(input_models_dir)
# Check: is installed grid number < required_num?
# If not, raise mismatch error
if grid_num < required_num:
raise exceptions.ModelMismatch(required_num, grid_num, 'evolution')
return grid_num
class StellarEvolution(object):
"""
Base Stellar evolution class.
Parameters
----------
model_dir: path
Directory path to evolution model files
age_list: list
List of ages
mass_list: list
List of masses
z_list: list
List of metallicities
"""
def __init__(self, model_dir, age_list, mass_list, z_list):
self.model_dir = model_dir
self.z_list = z_list
self.mass_list = mass_list
self.age_list = age_list
return
class Geneva(StellarEvolution):
def __init__(self):
r"""
Define intrinsic properties for Geneva stellar models.
"""
# populate list of model masses (in solar masses)
mass_list = [(0.1 + i*0.005) for i in range(181)]
# define metallicity parameters for Geneva models
z_list = [0.01, 0.02, 0.03]
# populate list of isochrone ages (log scale)
age_list = [round(5.5 + 0.01*i, 2) for i in range(190)]
age_list += [round(7.4 + 0.05*i, 2) for i in range(12)]
age_list += [round(math.log10(1.e8*x), 2) for x in range(1, 10)]
age_list += [round(math.log10(1.e9*x), 2) for x in range(1, 10)]
age_list = age_list
# specify location of model files
model_dir = models_dir + 'geneva/'
StellarEvolution.__init__(self, model_dir, age_list, mass_list, z_list)
self.z_solar = 0.02
self.z_file_map = {0.01: 'z01/', 0.02: 'z02/', 0.03: 'z03/'}
# Define required evo_grid number
self.evo_grid_min = 1.0
def isochrone(self, age=1.e8, metallicity=0.0):
r"""
Extract an individual isochrone from the Geneva collection.
"""
# Error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
# convert metallicity to mass fraction
z_defined = self.z_solar*10.**metallicity
# check age and metallicity are within bounds
if ((log_age < np.min(self.age_list)) or (log_age > np.max(self.age_list))):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if ((z_defined < np.min(self.z_list)) or
(z_defined > np.max(self.z_list))):
logger.error('Requested metallicity {0} is out of bounds.'.format(z_defined))
# convert age (in yrs) to log scale and find nearest value in grid
log_age = np.log10(age)
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_' + str(self.age_list[age_idx]) + '.fits'
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
full_iso_file = self.model_dir + 'iso/' + z_dir + iso_file
# return isochrone data
return genfromtxt(full_iso_file, comments='#')
#---------------------------------------#
# Now for the Ekstrom+12 Geneva models
#---------------------------------------#
class Ekstrom12(StellarEvolution):
"""
Evolution models from
`Ekstrom et al. 2012 <https://ui.adsabs.harvard.edu/abs/2012A%26A...537A.146E/abstract>`_.
Downloaded from `website <http://obswww.unige.ch/Recherche/evoldb/index/Isochrone/>`_.
Parameters
----------
rot: boolean, optional
If true, then use rotating Ekstrom models. Default is true.
"""
def __init__(self, rot=True):
# define metallicity parameters for Ekstrom+12 models
self.z_list = [0.014]
# populate list of isochrone ages (log scale)
self.age_list = np.arange(6.0, 8.0+0.005, 0.01)
# Specify location of model files
self.model_dir = models_dir+'Ekstrom2012/'
# Specifying metallicity
self.z_solar = 0.014
self.z_file_map = {0.014: 'z014/'}
# Specify rotation or not
self.rot = rot
# Define required evo_grid number
self.evo_grid_min = 1.0
def isochrone(self, age=1.e8, metallicity=0.0):
r"""
Extract an individual isochrone from the Ekstrom+12 Geneva collection.
"""
# Error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
# convert metallicity to mass fraction
z_defined = self.z_solar*10.**metallicity
log_age = math.log10(age)
# check age and metallicity are within bounds
if ((log_age < np.min(self.age_list)) or (log_age > np.max(self.age_list))):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if ((z_defined < np.min(self.z_list)) or
(z_defined > np.max(self.z_list))):
logger.error('Requested metallicity {0} is out of bounds.'.format(z_defined))
# Find nearest age in grid to input grid
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_{0:.2f}.fits'.format(self.age_list[age_idx])
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
if self.rot:
full_iso_file = self.model_dir + 'iso/' + z_dir + 'rot/' + iso_file
else:
full_iso_file = self.model_dir + 'iso/' + z_dir + 'norot/' + iso_file
# Return isochrone data
iso = Table.read(full_iso_file, format='fits')
iso.rename_column('col4', 'Z')
iso.rename_column('col1', 'logAge')
iso.rename_column('col3', 'mass')
iso.rename_column('col6', 'mass_current')
iso.rename_column('col7', 'logL')
iso.rename_column('col8', 'logT')
iso.rename_column('col22', 'logg')
iso.rename_column('col9', 'logT_WR')
# Add isWR column
isWR = Column([False] * len(iso), name='isWR')
idx_WR = np.where(iso['logT'] != iso['logT_WR'])
isWR[idx_WR] = True
iso.add_column(isWR)
# Add a phase column... everything is just a star.
iso.add_column( Column(np.ones(len(iso)), name = 'phase'))
iso.meta['log_age'] = log_age
iso.meta['metallicity_in'] = metallicity
iso.meta['metallicity_act'] = np.log10(self.z_list[z_idx] / self.z_solar)
return iso
def format_isochrones(input_iso_dir):
r"""
Parse iso.fits (filename hardcoded) file downloaded from Ekstrom+12
models, create individual isochrone files for the different ages.
input_iso_directory should lead to
Ekstrom2012/iso/<metallicity>
directory, where iso.fits file should be located.
Creates two new directories, rot and norot, which contain their
respective isochrones.
"""
# Store current directory for later
start_dir = os.getcwd()
# Move into metallicity direcotry, read iso.fits file
os.chdir(input_iso_dir)
print( 'Read Input: this is slow')
iso = Table.read('iso.fits')
print( 'Done' )
ages_all = iso['col1']
# Extract the unique ages
age_arr = np.unique(ages_all)
# For each unique age, extract the proper rows and make corresponding
# table. Be sure to separate rotating from non-rotating, and put in
# separate subdirectories
# First make the rot and norot directories, if they don't exit
if os.path.exists('rot'):
pass
else:
os.mkdir('rot')
os.mkdir('norot')
print( 'Making individual isochrone files')
for age in age_arr:
good = np.where(ages_all == age)
# Identify rot vs. non-rot
idx_r = np.where(iso[good]['col2'] == 'r')
idx_n = np.where(iso[good]['col2'] == 'n')
tmp_r = iso[good][idx_r]
tmp_n = iso[good][idx_n]
# Write tables
tmp_r.write('rot/iso_{0:4.2f}.fits'.format(age))
tmp_n.write('norot/iso_{0:4.2f}.fits'.format(age))
# Return to starting directory
os.chdir(start_dir)
return
def create_iso(fileList, ageList, rot=True):
"""
Given a set of isochrone files downloaded from
the server, put in correct
iso.fits format for parse_iso code.
fileList: list of downloaded isochrone files (could be one)
ageList: list of lists of ages associated with each file in filelist.
MUST BE IN SAME ORDER AS ISOCHRONES IN FILE! Also needs to be in logAge
rot = TRUE: assumes that models are rotating, will add appropriate column
This code writes the individual files, which is then easiest to combine by hand
in aquamacs
"""
# Read each file in fileList individually, add necessary columns
for i in range(len(fileList)):
t = Table.read(fileList[i],format='ascii')
ages = ageList[i]
# Find places where new models start; mass here is assumed to be 0.8
start = np.where(t['M_ini'] == 0.8)
# Now, each identified start is assumed to be associated with the
# corresponding age in ages
if len(start[0]) != len(ages):
print( 'Ages mismatched in file! Quitting...')
return
age_arr = np.zeros(len(t))
for j in range(len(start[0])):
low_ind = start[0][j]
# Deal with case at end of file
if (j == len(start[0])-1):
high_ind = len(t)
else:
high_ind = start[0][j+1]
ind = np.arange(low_ind, high_ind, 1)
age_arr[ind] = ages[j]
# Add ages_arr column to column 1 in ischrone, as well as column
# signifying rotation
col_age = Column(age_arr, name = 'logAge')
rot_val = np.chararray(len(t))
rot_val[:] = 'r'
if not rot:
rot_val[:] = 'n'
col_rot = Column(rot_val, name='Rot')
t.add_column(col_rot, index=0)
t.add_column(col_age, index=0)
t.write('tmp'+str(i)+'.fits')
return
#---------------------------------------#
# Now for the Parsec version 1.2s models
#---------------------------------------#
class Parsec(StellarEvolution):
"""
Evolution models from
`Bressan et al. 2012 <https://ui.adsabs.harvard.edu/abs/2012MNRAS.427..127B/abstract>`_,
version 1.2s.
Downloaded from `here <http://stev.oapd.inaf.it/cgi-bin/cmd>_`
Notes
-----
Evolution model parameters used in download:
* n_Reimers parameter (mass loss on RGB) = 0.2
* photometric system: HST/WFC3 IR channel
* bolometric corrections OBC from Girardi+08, based on ATLAS9 ODFNEW models
* Carbon star bolometric corrections from Aringer+09
* no dust
* no extinction
* Chabrier+01 mass function
"""
def __init__(self):
r"""
Define intrinsic properties for the Parsec version 1.2s stellar
models.
"""
# populate list of model masses (in solar masses)
#mass_list = [(0.1 + i*0.005) for i in range(181)]
# define metallicity parameters for Parsec models
self.z_list = [0.005, 0.015, 0.04]
# populate list of isochrone ages (log scale)
self.age_list = np.arange(6.6, 10.12+0.005, 0.01)
self.age_list = np.append(6.40, self.age_list)
# Specify location of model files
self.model_dir = models_dir+'ParsecV1.2s/'
# Specifying metallicity
self.z_solar = 0.015
self.z_file_map = {0.005: 'z005/', 0.015: 'z015/', 0.04: 'z04/'}
# Define required evo_grid number
self.evo_grid_min = 1.0
def isochrone(self, age=1.e8, metallicity=0.0):
r"""
Extract an individual isochrone from the Parsec version 1.2s
collection.
"""
# Error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
# convert metallicity to mass fraction
z_defined = self.z_solar*10.**metallicity
log_age = math.log10(age)
# check age and metallicity are within bounds
if ((log_age < np.min(self.age_list)) or (log_age > np.max(self.age_list))):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if ((z_defined < np.min(self.z_list)) or
(z_defined > np.max(self.z_list))):
logger.error('Requested metallicity {0} is out of bounds.'.format(z_defined))
# Find nearest age in grid to input grid
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_{0:.2f}.fits'.format(self.age_list[age_idx])
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
full_iso_file = self.model_dir + 'iso/' + z_dir + iso_file
# return isochrone data
iso = Table.read(full_iso_file, format='fits')
iso.rename_column('col1', 'Z')
iso.rename_column('col2', 'logAge')
iso.rename_column('col3', 'mass')
iso.rename_column('col4', 'mass_current')
iso.rename_column('col5', 'logL')
iso.rename_column('col6', 'logT')
iso.rename_column('col7', 'logg')
iso.rename_column('col15', 'phase')
iso['logT_WR'] = iso['logT']
# Parsec doesn't identify WR stars, so identify all as "False"
isWR = Column([False] * len(iso), name='isWR')
iso.add_column(isWR)
iso.meta['log_age'] = log_age
iso.meta['metallicity_in'] = metallicity
iso.meta['metallicity_act'] = np.log10(self.z_list[z_idx] / self.z_solar)
return iso
def format_isochrones(input_iso_dir, metallicity_list):
r"""
Parse isochrone file downloaded from Parsec version 1.2 for different
metallicities, create individual isochrone files for the different ages.
input_iso_dir: points to ParsecV1.2s/iso directory. Assumes metallicity
subdirectories already exist with isochrone files downloaded in them
(isochrones files expected to start with "output*")
metallicity_list format: absolute (vs. relative to solar),
z + <digits after decimal>: e.g. Z = 0.014 --> z014
"""
# Store current directory for later
start_dir = os.getcwd()
# Move into isochrone directory
os.chdir(input_iso_dir)
# Work on each metallicity isochrones individually
for metal in metallicity_list:
# More into metallicity directory, read isochrone file
os.chdir(metal)
isoFile = glob.glob('output*')
print( 'Read Input: this is slow')
iso = Table.read(isoFile[0], format='fits')
print( 'Done')
ages_all = iso['col2']
# Extract the unique ages
age_arr = np.unique(ages_all)
# For each unique age, extract the proper rows and make corresponding
# table
print( 'Making individual isochrone files')
for age in age_arr:
good = np.where(ages_all == age)
tmp = iso[good]
#Write table
tmp.write('iso_{0:4.2f}.fits'.format(age))
# Move back into iso directory
os.chdir('..')
# Return to starting directory
os.chdir(start_dir)
return
#---------------------------------------#
# Now for the Pisa (Tognelli+11) models
#---------------------------------------#
class Pisa(StellarEvolution):
"""
Evolution models from
`Tognelli et al. 2011 <https://ui.adsabs.harvard.edu/abs/2011A%26A...533A.109T/abstract>`_.
Downloaded `online <http://astro.df.unipi.it/stellar-models/index.php?m=1>`_
Notes
------
Parameters used in download:
* Y = middle value of 3 provided (changes for different metallicities)
* mixing length = 1.68
* Deuterium fraction: 2*10^-5 for Z = 0.015, 0.03; 4*10^-4 for 0.005
"""
def __init__(self):
r"""
Define intrinsic properties for the Pisa (Tognelli+11) stellar
models.
"""
# define metallicity parameters for Pisa models
self.z_list = [0.015]
# populate list of isochrone ages (log scale)
self.age_list = np.arange(6.0, 8.01+0.005, 0.01)
# Specify location of model files
self.model_dir = models_dir+'Pisa2011/'
# Specifying metallicity
self.z_solar = 0.015
self.z_file_map = {0.015: 'z015/'}
# Define required evo_grid number
self.evo_grid_min = 1.0
def isochrone(self, age=1.e8, metallicity=0.0):
r"""
Extract an individual isochrone from the Pisa (Tognelli+11)
collection.
"""
# Error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
# convert metallicity to mass fraction
z_defined = self.z_solar*10.**metallicity
log_age = math.log10(age)
# check age and metallicity are within bounds
if ((log_age < np.min(self.age_list)) or (log_age > np.max(self.age_list))):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if ((z_defined < np.min(self.z_list)) or
(z_defined > np.max(self.z_list))):
logger.error('Requested metallicity {0} is out of bounds for evolution model. Available z-vals: {1}.'.format(z_defined, self.z_list))
# Find nearest age in grid to input grid
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_{0:.2f}.fits'.format(self.age_list[age_idx])
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
full_iso_file = self.model_dir + 'iso/' + z_dir + iso_file
# return isochrone data
iso = Table.read(full_iso_file, format='fits')
iso.rename_column('col1', 'logL')
iso.rename_column('col2', 'logT')
iso.rename_column('col3', 'mass')
iso.rename_column('col4', 'logg')
iso['logT_WR'] = iso['logT']
# Pisa models are too low for WR phase, add WR column with all False
isWR = Column([False] * len(iso), name='isWR')
iso.add_column(isWR)
# Add columns for current mass and phase.
iso.add_column( Column(np.zeros(len(iso)), name = 'phase'))
iso.add_column( Column(iso['mass'], name = 'mass_current'))
iso.meta['log_age'] = log_age
iso.meta['metallicity_in'] = metallicity
iso.meta['metallicity_act'] = np.log10(self.z_list[z_idx] / self.z_solar)
return iso
def format_isochrones(input_iso_dir, metallicity_list):
r"""
Rename the isochrone files extracted from Pisa (Tognelli+11) to fit
naming/directory scheme
input_iso_dir: points to Pisa2011/iso directory. Individual
metallicity directories with the downloaded isochrones are
expected to already exist there
metallicity_list is the list of metallicities on which function
is to be run.
format for metallicity_list : absolute (vs. relative to sun)
'z' + <digits after decimal>, e.g Z = 0.015 --> z015.
"""
# Store current directory for later
start_dir = os.getcwd()
# Move into isochrone directory
os.chdir(input_iso_dir)
# Work on each metallicity directory individually
for metal in metallicity_list:
# Move into directory, check to see if files are already formatted
os.chdir(metal)
if os.path.exists('iso_6.00.fits'):
print( 'Files in {0:s} already formatted'.format(metal))
else:
# Create a ReadMe with the original file names to preserve the
# model details
cmd = "ls *.FITS > ReadMe"
os.system(cmd)
# Collect all filenames in a list, rename files one
# by one
isoFile_list = glob.glob('*.FITS')
for File in isoFile_list:
name = File.split('_')
# Extract iso age from filename
age = float(name[1][1:])
logAge = np.log10(age * 10**6)
cmd = "mv {0:s} iso_{1:4.2f}.fits".format(File, logAge)
os.system(cmd)
# Return to overhead directory
os.chdir('..')
# Return to starting directory
os.chdir(start_dir)
return
def make_isochrone_grid(metallicity=0.015):
"""
Create isochrone grid of given metallicity with time sampling = 0.01
in logAge (hardcoded). This interpolates the downloaded isochrones
when necessary. Builds upon the online iscohrone grid.
Note: format of metallicity is important. After decimal point, must match
the format of the metallcity directory (i.e., 0.015 matches directory z015,
while 0.0150 would not)
"""
logAge_arr = np.arange(6.0, 8.0+0.005, 0.01)
count = 0
for logAge in logAge_arr:
# Could interpolate using evolutionary tracks, but less accurate.
make_isochrone_pisa_interp(logAge, metallicity=metallicity)
count += 1
print( 'Done {0} of {1} models'.format(count, (len(logAge_arr))))
return
#==============================#
# Baraffe+15 models
#==============================#
class Baraffe15(StellarEvolution):
"""
Evolution models published in
`Baraffe et al. 2015 <https://ui.adsabs.harvard.edu/abs/2015A%26A...577A..42B/abstract>`_.
Downloaded from `BHAC15 site <http://perso.ens-lyon.fr/isabelle.baraffe/BHAC15dir/BHAC15_tracks>`_.
"""
def __init__(self):
# define metallicity parameters for Baraffe models
self.z_list = [0.015]
# populate list of isochrone ages (log scale)
self.age_list = np.arange(6.0, 8.0+0.005, 0.01)
# Specify location of model files
self.model_dir = models_dir+'Baraffe15/'
# Specifying metallicity
self.z_solar = 0.015
self.z_file_map = {0.015: 'z015/'}
# Define required evo_grid number
self.evo_grid_min = 1.0
def isochrone(self, age=5.e7, metallicity=0.0):
r"""
Extract an individual isochrone from the Baraffe+15
collection.
"""
# Error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
# convert metallicity to mass fraction
z_defined = self.z_solar*10.**metallicity
log_age = math.log10(age)
# check age and metallicity are within bounds
if ((log_age < np.min(self.age_list)) or (log_age > np.max(self.age_list))):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if ((z_defined < np.min(self.z_list)) or
(z_defined > np.max(self.z_list))):
logger.error('Requested metallicity {0} is out of bounds.'.format(z_defined))
# Find nearest age in grid to input grid
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_{0:.2f}.fits'.format(self.age_list[age_idx])
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
full_iso_file = self.model_dir + 'iso/' + z_dir + iso_file
# Read isochrone, get in proper format
iso = Table.read(full_iso_file, format='fits')
iso.rename_column('Mass', 'mass')
iso.rename_column('logG', 'logg')
iso['logT'] = np.log10(iso['Teff'])
# Pisa models are too low for WR phase, add WR column with all False
iso['logT_WR'] = iso['logT']
isWR = Column([False] * len(iso), name='isWR')
iso.add_column(isWR)
# Add columns for current mass and phase.
iso.add_column( Column(np.zeros(len(iso)), name = 'phase'))
iso.add_column( Column(iso['mass'], name = 'mass_current'))
iso.meta['log_age'] = log_age
iso.meta['metallicity_in'] = metallicity
iso.meta['metallicity_act'] = np.log10(self.z_list[z_idx] / self.z_solar)
return iso
def tracks_to_isochrones(self, tracksFile):
r"""
Create isochrones at desired age sampling (6.0 < logAge < 8.0,
steps of 0.01; hardcoded) from the Baraffe+15 tracks downloaded
online.
tracksFile: tracks.dat file downloaded from Baraffe+15, with format
modified to be read in python
Writes isochrones in iso/ subdirectory off of work directory. Will
create this subdirectory if it doesn't already exist
"""
tracks = Table.read(tracksFile, format='ascii')
age_arr = np.arange(6.0, 8.0+0.005, 0.01)
#age_arr = [6.28]
# Loop through the masses, interpolating track over time at each.
# Resample track properties at hardcoded ages
masses = np.unique(tracks['col1'])
mass_interp = []
age_interp = []
Teff_interp = []
logL_interp = []
logG_interp = []
print( 'Begin looping over masses')
cnt=0
for mass in masses:
idx = np.where(tracks['col1'] == mass)
tmp = tracks[idx]
# First, extract Teff, logL, and logG, eliminating
# duplicated inputs (these crash the interpolator)
good_Teff = np.where( np.diff(tmp['col3']) != 0 )
good_logG = np.where( np.diff(tmp['col5']) != 0 )
good_logL = np.where( np.diff(tmp['col4']) != 0 )
# Interpolate Teff, logL, and logG using linear interpolator
tck_Teff = interpolate.interp1d(tmp['col2'], tmp['col3'])
tck_logL = interpolate.interp1d(tmp['col2'], tmp['col4'])
tck_logG = interpolate.interp1d(tmp['col2'], tmp['col5'])
Teff = tck_Teff(age_arr)
logL = tck_logL(age_arr)
logG = tck_logG(age_arr)
# Test interpolation if desired
test=False
if test:
py.figure(1, figsize=(10,10))
py.clf()
py.plot(tmp['col2'], tmp['col3'], 'k.', ms=8)
py.plot(age_arr, Teff, 'r-', linewidth=2)
py.xlabel('logAge')
py.ylabel('Teff')
py.savefig('test_Teff.png')
py.figure(2, figsize=(10,10))
py.clf()
py.plot(tmp['col2'], tmp['col4'], 'k.', ms=8)
py.plot(age_arr, logL, 'r-', linewidth=2)
py.xlabel('logAge')
py.ylabel('logL')
py.savefig('test_logL.png')
py.figure(3, figsize=(10,10))
py.clf()
py.plot(tmp['col2'], tmp['col5'], 'k.', ms=8)
py.plot(age_arr, logG, 'r-', linewidth=2)
py.xlabel('logAge')
py.ylabel('logG')
py.savefig('test_logG.png')
pdb.set_trace()
# Build upon arrays of interpolated values
mass_interp = np.concatenate((mass_interp, np.ones(len(Teff)) * mass))
age_interp = np.concatenate((age_interp, age_arr))
Teff_interp = np.concatenate((Teff_interp, Teff))
logL_interp = np.concatenate((logL_interp, logL))
logG_interp = np.concatenate((logG_interp, logG))
print( 'Done {0} of {1}'.format(cnt, len(masses)))
cnt+=1
# Now, construct the iso_*.fits files for each age, write files
# to iso subdirectory
# First check to see if subdirectory exists
if not os.path.exists('iso/'):
os.mkdir('iso')
# Now for the loop
ages = np.unique(age_interp)
print( 'Writing iso files')
for age in ages:
good = np.where( age_interp == age)
t = Table( (mass_interp[good], Teff_interp[good], logL_interp[good],
logG_interp[good]), names=('Mass', 'Teff', 'logL', 'logG') )
# Write out as fits table
name = 'iso_{0:3.2f}.fits'.format(age)
t.write('iso/'+name, format='fits', overwrite=True)
return
def test_age_interp(self, onlineIso, interpIso):
r"""
Compare one of our interpolated ischrones with one
of the isochrones provided online by Baraffe+15.
"""
true_iso = Table.read(onlineIso, format='ascii')
our_iso = Table.read(interpIso, format='fits')
# Compare the two isochrones using plots. Look at mass vs. Teff,
# mass vs. logG, mass vs. logL. Ideally these isochrones should
# be identical
py.figure(1, figsize=(10,10))
py.clf()
py.plot(true_iso['col1'], true_iso['col2'], 'k.', ms = 10)
py.plot(our_iso['Mass'], our_iso['Teff'], 'r.', ms = 10)
py.xlabel('Mass')
py.ylabel('Teff')
py.savefig('interp_test1.png')
py.figure(2, figsize=(10,10))
py.clf()
py.plot(true_iso['col1'], true_iso['col3'], 'k.', ms = 10)
py.plot(our_iso['Mass'], our_iso['logL'], 'r.', ms = 10)
py.xlabel('Mass')
py.ylabel('logL')
py.savefig('interp_test2.png')
py.figure(3, figsize=(10,10))
py.clf()
py.plot(true_iso['col1'], true_iso['col4'], 'k.', ms = 10)
py.plot(our_iso['Mass'], our_iso['logG'], 'r.', ms = 10)
py.xlabel('Mass')
py.ylabel('logG')
py.savefig('interp_test3.png')
# Look at the difference between values (assumes the masses are lined up)
Teff_diff = np.mean(abs(true_iso['col2'][7:] - our_iso['Teff']))
logL_diff = np.mean(abs(true_iso['col3'][7:] - our_iso['logL']))
logG_diff = np.mean(abs(true_iso['col4'][7:] - our_iso['logG']))
print( 'Average abs difference in Teff: {0}'.format(Teff_diff))
print( 'Average abs difference in logL: {0}'.format(logL_diff))
print( 'Average abs difference in logg: {0}'.format(logG_diff))
return
def compare_Baraffe_Pisa(BaraffeIso, PisaIso):
"""
Compare the Baraffe isochrones to the Pisa isochrones, since they overlap
over a significant portion of mass space.
"""
b = Table.read(BaraffeIso, format='fits')
p = Table.read(PisaIso, format='ascii')
name = BaraffeIso.split('_')
age = name[1][:4]
# Extract paramters we need
b_mass = b['Mass']
b_logT = np.log10(b['Teff'])
b_logL = b['logL']
b_logG = b['logG']
p_mass = p['col3']
p_logT = p['col2']
p_logL = p['col1']
p_logG = p['col4']
m05_b = np.where( abs(b_mass - 0.5) == min(abs(b_mass - 0.5)) )
m05_p = np.where( abs(p_mass - 0.5) == min(abs(p_mass - 0.5)) )
# Comparison plots
py.figure(1, figsize=(10,10))
py.clf()
py.plot(b_logT, b_logL, 'k-', linewidth=2, label='Baraffe+15')
py.plot(b_logT[m05_b], b_logL[m05_b], 'k.', ms=10)
py.plot(p_logT, p_logL, 'r', linewidth=2, label='Pisa')
py.plot(p_logT[m05_p], p_logL[m05_p], 'r.', ms=10)
py.xlabel('logT')
py.ylabel('logL')
py.title(age)
py.axis([4.4, 3.4, -3, 4])
#py.gca().invert_xaxis()
py.legend()
py.savefig('BaraffePisa_comp_{0}.png'.format(age))
py.figure(2, figsize=(10,10))
py.clf()
py.plot(b_mass, b_logL, 'k-', linewidth=2, label='Baraffe+15')
py.plot(b_mass[m05_b], b_logL[m05_b], 'k.', ms=10)
py.plot(p_mass, p_logL, 'r', linewidth=2, label='Pisa')
py.plot(p_mass[m05_p], p_logL[m05_p], 'r.', ms=10)
py.xlabel('Mass')
py.ylabel('logL')
py.title(age)
#py.axis([4.4, 3.4, -3, 4])
#py.gca().invert_xaxis()
py.legend()
py.savefig('BaraffePisa_comp_mass_{0}.png'.format(age))
return
#===============================#
# MIST v.1 (Choi+16)
#===============================#
class MISTv1(StellarEvolution):
"""
Define intrinsic properties for the MIST v1 stellar
models.
Models originally downloaded from `online server <http://waps.cfa.harvard.edu/MIST/interp_isos.html>`_.
Parameters
----------
version: '1.0' or '1.2', optional
Specify which version of MIST models you want. Version 1.0
was downloaded from MIST website on 2/2017, while Version 1.2
was downloaded on 8/2018 (solar metallicity)
and 4/2019 (other metallicities). Default is 1.2.
"""
def __init__(self, version=1.2):
# define metallicity parameters for MIST models
self.z_list = [0.0000014, # [Fe/H] = -4.00
0.0000045, # [Fe/H] = -3.50
0.000014, # [Fe/H] = -3.00
0.000045, # [Fe/H] = -2.50
0.00014, # [Fe/H] = -2.00
0.00025, # [Fe/H] = -1.75
0.00045, # [Fe/H] = -1.50
0.00080, # [Fe/H] = -1.25
0.0014, # [Fe/H] = -1.00
0.0025, # [Fe/H] = -0.75
0.0045, # [Fe/H] = -0.50
0.0080, # [Fe/H] = -0.25
0.014, # [Fe/H] = 0.00
0.025, # [Fe/H] = 0.25
0.045] # [Fe/H] = 0.50
# populate list of isochrone ages (log scale)
self.age_list = np.arange(5.01, 10.30+0.005, 0.01)
# Set version directory
self.version = version
if self.version == 1.0:
version_dir = 'v1.0/'
elif self.version == 1.2:
version_dir = 'v1.2/'
else:
raise ValueError('Version {0} not supported for MIST isochrones'.format(version))
# Specify location of model files
self.model_dir = models_dir+'MISTv1/' + version_dir
# Specifying metallicity
self.z_solar = 0.0142
self.z_file_map = {0.0000014: 'z0000014/',
0.0000045: 'z0000045/',
0.000014: 'z000014/',
0.000045: 'z000045/',
0.00014: 'z00014/',
0.00025: 'z00025/',
0.00045: 'z00045/',
0.00080: 'z00080/',
0.0014: 'z0014/',
0.0025: 'z0025/',
0.0045: 'z0045/',
0.0080: 'z0080/',
0.014: 'z014/',
0.025: 'z025/',
0.045: 'z045/'}
# Define required evo_grid number
self.evo_grid_min = 1.1
def isochrone(self, age=1.e8, metallicity=0.0):
r"""
Extract an individual isochrone from the MISTv1
collection.
"""
# First, error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
# convert metallicity to mass fraction
z_defined = self.z_solar * (10.**metallicity)
log_age = math.log10(age)
# check age and metallicity are within bounds
if ((log_age < np.min(self.age_list)) or (log_age > np.max(self.age_list))):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if ((z_defined < np.min(self.z_list)) or
(z_defined > np.max(self.z_list))):
logger.error('Requested metallicity {0} is out of bounds.'.format(z_defined))
# Find nearest age in grid to input grid
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_{0:.2f}.fits'.format(self.age_list[age_idx])
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
full_iso_file = self.model_dir + 'iso/' + z_dir + iso_file
# return isochrone data. Column locations depend on
# version
iso = Table.read(full_iso_file, format='fits')
if self.version == 1.0:
iso.rename_column('col7', 'Z')
iso.rename_column('col2', 'logAge')
iso.rename_column('col3', 'mass')
iso.rename_column('col4', 'logT')
iso.rename_column('col5', 'logg')
iso.rename_column('col6', 'logL')
iso.rename_column('col65', 'phase')
elif self.version == 1.2:
iso.rename_column('col2', 'logAge')
iso.rename_column('col3', 'mass')
iso.rename_column('col4', 'mass_current')
iso.rename_column('col9', 'logL')
iso.rename_column('col14', 'logT')
iso.rename_column('col17', 'logg')
iso.rename_column('col79', 'phase')
# For MIST isochrones, anything with phase = 6 is a WD.
# Following our IFMR convention, change the phase designation
# to 101
isWD = np.where(iso['phase'] == 6)[0]
iso['phase'][isWD] = 101
# Define "isWR" column based on phase info
isWR = Column([False] * len(iso), name='isWR')
idx_WR = np.where(iso['phase'] == 9)[0]
isWR[idx_WR] = True
iso.add_column(isWR)
iso.meta['log_age'] = log_age
iso.meta['metallicity_in'] = metallicity
iso.meta['metallicity_act'] = np.log10(self.z_list[z_idx] / self.z_solar)
return iso
def format_isochrones(self):
r"""
Parse isochrone file downloaded from MIST web server,
create individual isochrone files for the different ages.
Assumes all files start with MIST_iso*
Parameters:
-----------
input_iso_dir: path
Points to MISTv1/<version>/iso directory.
metallicity_list: array
List of metallicity directories to check (i.e. z015 is solar)
"""
# Get input iso dir, metallicity list from evo object
input_iso_dir = '{0}/iso'.format(self.model_dir)
metallicity_list = list(self.z_file_map.values())
# Store current directory for later
start_dir = os.getcwd()
# Move into isochrone directory
os.chdir(input_iso_dir)
# Work on each metallicity isochrones individually
for metal in metallicity_list:
# More into metallicity directory, read isochrone file
os.chdir(metal)
# Read all available iso files, stack them together
isoFile = glob.glob('MIST_iso*')
print( 'Read Input: this is slow')
iso_f = Table()
for ii in isoFile:
tmp = Table.read(ii, format='ascii')
iso_f = vstack([iso_f, tmp])
print( 'Done')
# Extract the unique ages
ages_all = iso_f['col2']
age_arr = np.unique(ages_all)
# For each unique age, extract the proper rows and make corresponding
# table
print( 'Making individual isochrone files')
for age in age_arr:
good = np.where(ages_all == age)
tmp = iso_f[good]
# Need to make sure the tables are unmasked...this causes
# problems later
tmp2 = Table(tmp, masked=False)
#Write table
tmp2.write('iso_{0:4.2f}.fits'.format(age))
# Move back into iso directory
os.chdir('..')
# Return to starting directory
os.chdir(start_dir)
return
#==============================#
# Merged model classes
#==============================#
class MergedBaraffePisaEkstromParsec(StellarEvolution):
"""
This is a combination of several different evolution models:
* Baraffe (`Baraffe et al. 2015 <https://ui.adsabs.harvard.edu/abs/2015A%26A...577A..42B/abstract>`_)
* Pisa (`Tognelli et al. 2011 <https://ui.adsabs.harvard.edu/abs/2011A%26A...533A.109T/abstract>`_)
* Geneva (`Ekstrom et al. 2012 <https://ui.adsabs.harvard.edu/abs/2012A%26A...537A.146E/abstract>`_)
* Parsec (version 1.2s, `Bressan+12 <https://ui.adsabs.harvard.edu/abs/2012MNRAS.427..127B/abstract>`_)
The model used depends on the age of the population and what stellar masses
are being modeled:
For logAge < 7.4:
* Baraffe: 0.08 - 0.4 M_sun
* Baraffe/Pisa transition: 0.4 - 0.5 M_sun
* Pisa: 0.5 M_sun to the highest mass in Pisa isochrone (typically 5 - 7 Msun)
* Geneva: Highest mass of Pisa models to 120 M_sun
For logAge > 7.4:
* Parsec v1.2s: full mass range
Parameters
----------
rot: boolean, optional
If true, then use rotating Ekstrom models. Default is true.
"""
def __init__(self, rot=True):
# populate list of model masses (in solar masses)
mass_list = [(0.1 + i*0.005) for i in range(181)]
# define metallicity parameters for Geneva models
z_list = [0.015]
# populate list of isochrone ages (log scale)
age_list = np.arange(6.0, 10.091, 0.01).tolist()
# specify location of model files
model_dir = models_dir + 'merged/baraffe_pisa_ekstrom_parsec/'
StellarEvolution.__init__(self, model_dir, age_list, mass_list, z_list)
self.z_solar = 0.015
# Switch to specify rotating/non-rotating models
if rot:
self.z_file_map = {0.015: 'z015_rot/'}
else:
self.z_file_map = {0.015: 'z015_norot/'}
# Define required evo_grid number
self.evo_grid_min = 1.0
def isochrone(self, age=1.e8, metallicity=0.0):
r"""
Extract an individual isochrone from the Baraffe-Pisa-Ekstrom-Parsec
collection
"""
# Error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
# convert metallicity to mass fraction
z_defined = self.z_solar*10.**metallicity
log_age = math.log10(age)
# check age and metallicity are within bounds
if ((log_age < np.min(self.age_list)) or (log_age > np.max(self.age_list))):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if ((z_defined < np.min(self.z_list)) or
(z_defined > np.max(self.z_list))):
logger.error('Requested metallicity {0} is out of bounds.'.format(z_defined))
# Find nearest age in grid to input grid
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_{0:.2f}.fits'.format(self.age_list[age_idx])
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
full_iso_file = self.model_dir + z_dir + iso_file
# return isochrone data
iso = Table.read(full_iso_file, format='fits')
iso.rename_column('col1', 'mass')
iso.rename_column('col2', 'logT')
iso.rename_column('col3', 'logL')
iso.rename_column('col4', 'logg')
iso.rename_column('col5', 'logT_WR')
iso.rename_column('col6', 'mass_current')
iso.rename_column('col7', 'phase')
iso.rename_column('col8', 'model_ref')
# Define "isWR" column based on phase info
isWR = Column([False] * len(iso), name='isWR')
idx_WR = np.where(iso['logT'] != iso['logT_WR'])
isWR[idx_WR] = True
iso.add_column(isWR)
iso.meta['log_age'] = log_age
iso.meta['metallicity_in'] = metallicity
iso.meta['metallicity_act'] = np.log10(self.z_list[z_idx] / self.z_solar)
return iso
class MergedPisaEkstromParsec(StellarEvolution):
"""
Same as MergedBaraffePisaEkstromParsec, but without
the Baraffe models.
Parameters
----------
rot: boolean, optional
If true, then use rotating Ekstrom models. Default is true.
"""
def __init__(self, rot=True):
# populate list of model masses (in solar masses)
mass_list = [(0.1 + i*0.005) for i in range(181)]
# define metallicity parameters for Geneva models
z_list = [0.015]
# populate list of isochrone ages (log scale)
age_list = np.arange(6.0, 8.001, 0.01).tolist()
# specify location of model files
model_dir = models_dir + 'merged/pisa_ekstrom_parsec/'
StellarEvolution.__init__(self, model_dir, age_list, mass_list, z_list)
self.z_solar = 0.015
#Switch to specify rot/notot
if rot:
self.z_file_map = {0.015: 'z015_rot/'}
else:
self.z_file_map = {0.015: 'z015_norot/'}
# Define required evo_grid number
self.evo_grid_min = 1.0
# Error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
def isochrone(self, age=1.e8, metallicity=0.0):
r"""
Extract an individual isochrone from the Pisa-Ekstrom-Parsec collection.
"""
# convert metallicity to mass fraction
z_defined = self.z_solar*10.**metallicity
log_age = math.log10(age)
# check age and metallicity are within bounds
if (log_age < self.age_list[0]) or (log_age > self.age_list[-1]):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if not z_defined in self.z_list:
logger.error('Requested metallicity {0} is out of bounds.'.format(z_defined))
# Find nearest age in grid to input grid
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_{0:.2f}.fits'.format(self.age_list[age_idx])
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
full_iso_file = self.model_dir + z_dir + iso_file
# return isochrone data
iso = Table.read(full_iso_file, format='fits')
iso.rename_column('col1', 'mass')
iso.rename_column('col2', 'logT')
iso.rename_column('col3', 'logL')
iso.rename_column('col4', 'logg')
iso.rename_column('col5', 'logT_WR')
iso.rename_column('col6', 'model_ref')
iso.meta['log_age'] = log_age
iso.meta['metallicity_in'] = metallicity
iso.meta['metallicity_act'] = np.log10(self.z_list[z_idx] / self.z_solar)
return iso
class MergedSiessGenevaPadova(StellarEvolution):
"""
This is a combination of several different evolution models.
The model used depends on the age of the population and what stellar masses
are being modeled:
* Siess (`Siess et al. 2000 <https://ui.adsabs.harvard.edu/abs/2000A%26A...358..593S/abstractt>`_)
* Geneva (`Meynet & Maeder 2003 <https://ui.adsabs.harvard.edu/abs/2003A%26A...404..975M/abstract>`_)
* Padova (`Marigo et al. 2008 <https://ui.adsabs.harvard.edu/abs/2008A%26A...482..883M/abstract>`_)
For logAge < 7.4:
* Siess: 0.1 - 7 M_sun
* Siess/Geneva transition: 7 - 9 M_sun
* Geneva: > 9 M_sun
For logAge > 7.4:
* Padova: full mass range
"""
def __init__(self):
"""
Define intrinsic properties for merged Siess-meynetMaeder-Padova
stellar models.
"""
# populate list of model masses (in solar masses)
mass_list = [(0.1 + i*0.005) for i in range(181)]
# define metallicity parameters for Geneva models
z_list = [0.02]
# populate list of isochrone ages (log scale)
age_list = np.arange(5.5, 7.41, 0.01).tolist()
age_list.append(7.48)
idx = np.arange(7.50, 8.01, 0.05)
for ii in idx:
age_list.append(ii)
age_list.append(8.30)
age_list.append(8.48)
age_list.append(8.60)
age_list.append(8.70)
age_list.append(8.78)
age_list.append(8.85)
age_list.append(8.90)
age_list.append(8.95)
age_list.append(9.00)
age_list.append(9.30)
age_list.append(9.60)
age_list.append(9.70)
age_list.append(9.78)
# specify location of model files
model_dir = models_dir + 'merged/siess_meynetMaeder_padova/'
StellarEvolution.__init__(self, model_dir, age_list, mass_list, z_list)
self.z_solar = 0.02
# Metallicity map
self.z_file_map = {0.02: 'z02/'}
# Define required evo_grid number
self.evo_grid_min = 1.0
# Error check to see if installed evolution model
# grid is compatible with code version. Also return
# current grid num
self.evo_grid_num = check_evo_grid_number(self.evo_grid_min, models_dir)
def isochrone(self, age=1.e8, metallicity=0.0):
r"""
Extract an individual isochrone from the Siess-Geneva-Padova collection.
"""
# convert metallicity to mass fraction
z_defined = self.z_solar*10.**metallicity
log_age = math.log10(age)
# check age and metallicity are within bounds
if (log_age < self.age_list[0]) or (log_age > self.age_list[-1]):
logger.error('Requested age {0} is out of bounds.'.format(log_age))
if not z_defined in self.z_list:
logger.error('Requested metallicity {0} is out of bounds.'.format(z_defined))
# Find nearest age in grid to input grid
age_idx = np.where(abs(np.array(self.age_list) - log_age) == min(abs(np.array(self.age_list) - log_age)) )[0][0]
iso_file = 'iso_{0:.2f}.fits'.format(self.age_list[age_idx])
# find closest metallicity value
z_idx = np.where(abs(np.array(self.z_list) - z_defined) == min(abs(np.array(self.z_list) - z_defined)) )[0][0]
z_dir = self.z_file_map[self.z_list[z_idx]]
# generate isochrone file string
full_iso_file = self.model_dir + z_dir + iso_file
# return isochrone data
iso = Table.read(full_iso_file, format='ascii')
iso.rename_column('col1', 'mass')
iso.rename_column('col2', 'logT')
iso.rename_column('col3', 'logL')
iso.rename_column('col4', 'logg')
iso.rename_column('col5', 'logT_WR')
iso.rename_column('col6', 'model_ref')
iso.meta['log_age'] = log_age
iso.meta['metallicity_in'] = metallicity
iso.meta['metallicity_act'] = np.log10(self.z_list[z_idx] / self.z_solar)
return iso
#================================================#
def make_isochrone_pisa_interp(log_age, metallicity=0.015,
tracks=None, test=False):
"""
Read in a set of isochrones and generate an isochrone at log_age
that is well sampled at the full range of masses.
Puts isochrones is Pisa2011/iso/<metal>/
"""
# If logage > 8.0, quit immediately...grid doesn't go that high
if log_age > 8.0:
print( 'Age too high for Pisa grid (max logAge = 8.0)')
return
# Directory with where the isochrones will go (both downloaded and interpolated)
rootDir = models_dir + '/Pisa2011/iso/'
metSuffix = 'z' + str(metallicity).split('.')[-1]
rootDir += metSuffix + '/'
# Can we find the isochrone directory?
if not os.path.exists(rootDir):
print( 'Failed to find Pisa PMS isochrones for metallicity = ' + metSuffix)
return
# Check to see if isochrone at given age already exists. If so, quit
if os.path.exists(rootDir+'iso_{0:3.2f}.fits'.format(log_age)):
print( 'Isochrone at logAge = {0:3.2f} already exists'.format(log_age))
return
# Name/directory for interpolated isochrone
isoFile = rootDir+'iso_%3.2f.fits' % log_age
outSuffix = '_%.2f' % (log_age)
print( '*** Generating Pisa isochrone for log t = %3.2f and Z = %.3f' % \
(log_age, metallicity))
print( time.asctime(), 'Getting original Pisa isochrones.')
iso = get_orig_pisa_isochrones(metallicity=metallicity)
# First thing is to find the isochrones immediately above and below desired
# age
iso_log_ages = iso.log_ages
tmp = np.append(iso_log_ages, log_age)
# Find desired age in ordered sequence; isolate model younger and older
tmp.sort()
good = np.where(tmp == log_age)
young_model_logage = tmp[good[0]-1]
old_model_logage = tmp[good[0]+1]
# Isolate younger/older isochrones
young_ind = np.where(iso.log_ages == young_model_logage)
old_ind = np.where(iso.log_ages == old_model_logage)
young_iso = iso.isochrones[young_ind[0]]
old_iso = iso.isochrones[old_ind[0]]
# Need both younger and older model on same temperature grid for time
# interpolation. Will adopt mass grid of whichever model is closer in time
if abs(young_model_logage - log_age) <= abs(old_model_logage - log_age):
# Use young model mass grid
young_iso, old_iso = interpolate_iso_tempgrid(young_iso, old_iso)
else:
# Use old model mass grid
old_iso, young_iso = interpolate_iso_tempgrid(old_iso, young_iso)
# Now, can interpolate in time over the two models. Do this star by star.
# Work in linear time here!!
numStars = len(young_iso.M)
interp_iso = Isochrone(log_age)
interp_iso.log_Teff = np.zeros(numStars, dtype=float)
interp_iso.log_L = np.zeros(numStars, dtype=float)
interp_iso.log_g = np.zeros(numStars, dtype=float)
interp_iso.M = young_iso.M # Since mass grids should already be matched
for i in range(numStars):
# Do interpolations in linear space
model_ages = [10**young_model_logage[0], 10**old_model_logage[0]]
target_age = 10**log_age
#model_ages = [young_model_logage[0], old_model_logage[0]]
#target_age = log_age
# Build interpolation functions
Teff_arr = [10**young_iso.log_Teff[i], 10**old_iso.log_Teff[i]]
logL_arr = [10**young_iso.log_L[i], 10**old_iso.log_L[i]]
logg_arr = [10**young_iso.log_g[i], 10**old_iso.log_g[i]]
f_log_Teff = interpolate.interp1d(model_ages, Teff_arr, kind='linear')
f_log_L = interpolate.interp1d(model_ages, logL_arr, kind='linear')
f_log_g = interpolate.interp1d(model_ages, logg_arr, kind='linear')
interp_iso.log_Teff[i] = np.log10(f_log_Teff(target_age))
interp_iso.log_L[i] = np.log10(f_log_L(target_age))
interp_iso.log_g[i] = np.log10(f_log_g(target_age))
# If indicated, plot new isochrone along with originals it was interpolated
# from
if test:
py.figure(1)
py.clf()
py.plot(interp_iso.log_Teff, interp_iso.log_L, 'k-', label = 'Interp')
py.plot(young_iso.log_Teff, young_iso.log_L, 'b-',
label = 'log Age = {0:3.2f}'.format(young_model_logage[0]))
py.plot(old_iso.log_Teff, old_iso.log_L, 'r-',
label = 'log Age = {0:3.2f}'.format(old_model_logage[0]))
rng = py.axis()
py.xlim(rng[1], rng[0])
py.xlabel('log Teff')
py.ylabel('log L')
py.legend()
py.title('Pisa 2011 Isochrone at log t = %.2f' % log_age)
py.savefig(rootDir + 'plots/interp_isochrone_at' + outSuffix + '.png')
print( time.asctime(), 'Finished.')
# Write output to file, MUST BE IN SAME ORDER AS ORIG FILES
_out = open(isoFile, 'w')
_out.write('%10s %10s %10s %10s\n' %
('# log L', 'log Teff', 'Mass', 'log g'))
_out.write('%10s %10s %10s %10s\n' %
('# (Lsun)', '(Kelvin)', '(Msun)', '(cgs)'))
for ii in range(len(interp_iso.M)):
_out.write('%10.4f %10.4f %10.4f %10.4f\n' %
(interp_iso.log_L[ii], interp_iso.log_Teff[ii], interp_iso.M[ii],
interp_iso.log_g[ii]))
_out.close()
return
def get_orig_pisa_isochrones(metallicity=0.015):
"""
Helper code to get the original pisa isochrones at given metallicity.
These are downloaded online
"""
pms_dir = models_dir + '/Pisa2011/iso/iso_orig/'
metSuffix = 'z' + str(metallicity).split('.')[-1]
pms_dir += metSuffix + '/'
if not os.path.exists(pms_dir):
print( 'Failed to find Siess PMS isochrones for metallicity = ' + metSuffix)
return
# Collect the isochrones
files = glob.glob(pms_dir + '*.dat')
count = len(files)
data = objects.DataHolder()
data.isochrones = []
data.log_ages = []
# Extract useful params from isochrones
for ff in range(len(files)):
d = Table.read(files[ff], format='ascii')
# Extract logAge from filename
log_age = float(files[ff].split('_')[2][:-4])
# Create an isochrone object
iso = Isochrone(log_age)
iso.M = d['col3']
iso.log_Teff = d['col2']
iso.log_L = d['col1']
# If a log g column exist, extract it. Otherwise, calculate
# log g from T and L and add column at end
if len(d.keys()) == 3:
# Calculate log g from T and L
L_sun = 3.8 * 10**33 #cgs
SB_sig = 5.67 * 10**-5 #cgs
M_sun = 2. * 10**33 #cgs
G_const = 6.67 * 10**-8 #cgs
radius = np.sqrt( (10**d['col1'] * L_sun) /
(4 * np.pi * SB_sig * (10**d['col2'])**4) )
g = (G_const * d['col3'] * M_sun) / radius**2
iso.log_g = np.log10(g.astype(np.float))
else:
iso.log_g = d['col4']
data.isochrones.append(iso)
data.log_ages.append(log_age)
# If it doesn't already exist, add a column with logg vals. This will
# be appended at the end
if len(d.keys()) == 3:
logg_col = Column(iso.log_g, name = 'col4')
d.add_column(logg_col, index=3)
d.write(files[ff],format='ascii')
data.log_ages = np.array(data.log_ages)
# Resort so that everything is in order of increasing age
sdx = data.log_ages.argsort()
data.masses = data.log_ages[sdx]
data.isochrones = [data.isochrones[ss] for ss in sdx]
return data
class Isochrone(object):
def __init__(self, log_age):
self.log_age = log_age
|
astropyREPO_NAMESPISEAPATH_START.@SPISEA_extracted@SPISEA-main@spisea@evolution.py@.PATH_END.py
|
{
"filename": "ConcurrentMpiCosmoHammerSampler.py",
"repo_name": "JulianBMunoz/21cmvFAST",
"repo_path": "21cmvFAST_extracted/21cmvFAST-master/public_21CMvFAST_MC/Programs/CosmoHammer_21CMMC/sampler/ConcurrentMpiCosmoHammerSampler.py",
"type": "Python"
}
|
from .MpiCosmoHammerSampler import MpiCosmoHammerSampler
import multiprocessing
class ConcurrentMpiCosmoHammerSampler(MpiCosmoHammerSampler):
"""
A sampler implementation extending the mpi sampler in order to allow to
distribute the computation with MPI and using multiprocessing on a single node.
:param threads: (optional)
The number of threads to use for parallelization. If ``threads == 1``,
then the ``multiprocessing`` module is not used but if
``threads > 1``, then a ``Pool`` object is created
:param kwargs: key word arguments passed to the CosmoHammerSampler
"""
def __init__(self, threads=1, **kwargs):
"""
CosmoHammer sampler implementation
"""
self.threads = threads
super(ConcurrentMpiCosmoHammerSampler, self).__init__(**kwargs)
def _getMapFunction(self):
if self.threads > 1:
pool = multiprocessing.Pool(self.threads)
return pool.map
else:
return map
|
JulianBMunozREPO_NAME21cmvFASTPATH_START.@21cmvFAST_extracted@21cmvFAST-master@public_21CMvFAST_MC@Programs@CosmoHammer_21CMMC@sampler@ConcurrentMpiCosmoHammerSampler.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "ratt-ru/montblanc",
"repo_path": "montblanc_extracted/montblanc-master/montblanc/impl/rime/tensorflow/helpers/__init__.py",
"type": "Python"
}
|
ratt-ruREPO_NAMEmontblancPATH_START.@montblanc_extracted@montblanc-master@montblanc@impl@rime@tensorflow@helpers@__init__.py@.PATH_END.py
|
|
{
"filename": "_lineposition.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/densitymap/colorbar/title/font/_lineposition.py",
"type": "Python"
}
|
import _plotly_utils.basevalidators
class LinepositionValidator(_plotly_utils.basevalidators.FlaglistValidator):
def __init__(
self,
plotly_name="lineposition",
parent_name="densitymap.colorbar.title.font",
**kwargs,
):
super(LinepositionValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type=kwargs.pop("edit_type", "colorbars"),
extras=kwargs.pop("extras", ["none"]),
flags=kwargs.pop("flags", ["under", "over", "through"]),
**kwargs,
)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@densitymap@colorbar@title@font@_lineposition.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "scikit-learn/scikit-learn",
"repo_path": "scikit-learn_extracted/scikit-learn-main/sklearn/semi_supervised/tests/__init__.py",
"type": "Python"
}
|
scikit-learnREPO_NAMEscikit-learnPATH_START.@scikit-learn_extracted@scikit-learn-main@sklearn@semi_supervised@tests@__init__.py@.PATH_END.py
|
|
{
"filename": "test_filestorage_io.py",
"repo_name": "itseez/opencv",
"repo_path": "opencv_extracted/opencv-master/modules/python/test/test_filestorage_io.py",
"type": "Python"
}
|
#!/usr/bin/env python
"""Algorithm serialization test."""
from __future__ import print_function
import base64
import json
import tempfile
import os
import cv2 as cv
import numpy as np
from tests_common import NewOpenCVTests
class MyData:
def __init__(self):
self.A = 97
self.X = np.pi
self.name = 'mydata1234'
def write(self, fs, name):
fs.startWriteStruct(name, cv.FileNode_MAP|cv.FileNode_FLOW)
fs.write('A', self.A)
fs.write('X', self.X)
fs.write('name', self.name)
fs.endWriteStruct()
def read(self, node):
if (not node.empty()):
self.A = int(node.getNode('A').real())
self.X = node.getNode('X').real()
self.name = node.getNode('name').string()
else:
self.A = self.X = 0
self.name = ''
class filestorage_io_test(NewOpenCVTests):
strings_data = ['image1.jpg', 'Awesomeness', '../data/baboon.jpg']
R0 = np.eye(3,3)
T0 = np.zeros((3,1))
def write_data(self, fname):
fs = cv.FileStorage(fname, cv.FileStorage_WRITE)
R = self.R0
T = self.T0
m = MyData()
fs.write('iterationNr', 100)
fs.startWriteStruct('strings', cv.FileNode_SEQ)
for elem in self.strings_data:
fs.write('', elem)
fs.endWriteStruct()
fs.startWriteStruct('Mapping', cv.FileNode_MAP)
fs.write('One', 1)
fs.write('Two', 2)
fs.endWriteStruct()
fs.write('R_MAT', R)
fs.write('T_MAT', T)
m.write(fs, 'MyData')
fs.release()
def read_data_and_check(self, fname):
fs = cv.FileStorage(fname, cv.FileStorage_READ)
n = fs.getNode('iterationNr')
itNr = int(n.real())
self.assertEqual(itNr, 100)
n = fs.getNode('strings')
self.assertTrue(n.isSeq())
self.assertEqual(n.size(), len(self.strings_data))
for i in range(n.size()):
self.assertEqual(n.at(i).string(), self.strings_data[i])
n = fs.getNode('Mapping')
self.assertEqual(int(n.getNode('Two').real()), 2)
self.assertEqual(int(n.getNode('One').real()), 1)
R = fs.getNode('R_MAT').mat()
T = fs.getNode('T_MAT').mat()
self.assertEqual(cv.norm(R, self.R0, cv.NORM_INF), 0)
self.assertEqual(cv.norm(T, self.T0, cv.NORM_INF), 0)
m0 = MyData()
m = MyData()
m.read(fs.getNode('MyData'))
self.assertEqual(m.A, m0.A)
self.assertEqual(m.X, m0.X)
self.assertEqual(m.name, m0.name)
n = fs.getNode('NonExisting')
self.assertTrue(n.isNone())
fs.release()
def run_fs_test(self, ext):
fd, fname = tempfile.mkstemp(prefix="opencv_python_sample_filestorage", suffix=ext)
os.close(fd)
self.write_data(fname)
self.read_data_and_check(fname)
os.remove(fname)
def test_xml(self):
self.run_fs_test(".xml")
def test_yml(self):
self.run_fs_test(".yml")
def test_json(self):
self.run_fs_test(".json")
def test_base64(self):
fd, fname = tempfile.mkstemp(prefix="opencv_python_sample_filestorage_base64", suffix=".json")
os.close(fd)
np.random.seed(42)
self.write_base64_json(fname)
os.remove(fname)
@staticmethod
def get_normal_2d_mat():
rows = 10
cols = 20
cn = 3
image = np.zeros((rows, cols, cn), np.uint8)
image[:] = (1, 2, 127)
for i in range(rows):
for j in range(cols):
image[i, j, 1] = (i + j) % 256
return image
@staticmethod
def get_normal_nd_mat():
shape = (2, 2, 1, 2)
cn = 4
image = np.zeros(shape + (cn,), np.float64)
image[:] = (0.888, 0.111, 0.666, 0.444)
return image
@staticmethod
def get_empty_2d_mat():
shape = (0, 0)
cn = 1
image = np.zeros(shape + (cn,), np.uint8)
return image
@staticmethod
def get_random_mat():
rows = 8
cols = 16
cn = 1
image = np.random.rand(rows, cols, cn)
return image
@staticmethod
def decode(data):
# strip $base64$
encoded = data[8:]
if len(encoded) == 0:
return b''
# strip info about datatype and padding
return base64.b64decode(encoded)[24:]
def write_base64_json(self, fname):
fs = cv.FileStorage(fname, cv.FileStorage_WRITE_BASE64)
mats = {'normal_2d_mat': self.get_normal_2d_mat(),
'normal_nd_mat': self.get_normal_nd_mat(),
'empty_2d_mat': self.get_empty_2d_mat(),
'random_mat': self.get_random_mat()}
for name, mat in mats.items():
fs.write(name, mat)
fs.release()
data = {}
with open(fname) as file:
data = json.load(file)
for name, mat in mats.items():
buffer = b''
if mat.size != 0:
if hasattr(mat, 'tobytes'):
buffer = mat.tobytes()
else:
buffer = mat.tostring()
self.assertEqual(buffer, self.decode(data[name]['data']))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
itseezREPO_NAMEopencvPATH_START.@opencv_extracted@opencv-master@modules@python@test@test_filestorage_io.py@.PATH_END.py
|
{
"filename": "__init__.py",
"repo_name": "langchain-ai/langchain",
"repo_path": "langchain_extracted/langchain-master/libs/community/langchain_community/tools/json/__init__.py",
"type": "Python"
}
|
"""Tools for interacting with a JSON file."""
|
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@langchain_community@tools@json@__init__.py@.PATH_END.py
|
{
"filename": "conf.py",
"repo_name": "martenlourens/pySDR",
"repo_path": "pySDR_extracted/pySDR-master/python/sphinx/source/conf.py",
"type": "Python"
}
|
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here.
import pathlib
import sys
sys.path.insert(1, pathlib.Path(__file__).parents[2].resolve().as_posix())
# Configuration file for the Sphinx documentation builder.
#
# For the full list of built-in configuration values, see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Project information -----------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
project = 'pySDR'
copyright = '2023, Marten Lourens'
author = 'Marten Lourens'
release = '0.1'
# -- General configuration ---------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
extensions = [
'sphinx.ext.duration',
'sphinx.ext.doctest',
'sphinx.ext.autodoc',
'sphinx.ext.autosummary',
]
templates_path = ['_templates']
exclude_patterns = []
# -- Options for HTML output -------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
html_theme = 'sphinx_rtd_theme'
html_static_path = ['_static']
|
martenlourensREPO_NAMEpySDRPATH_START.@pySDR_extracted@pySDR-master@python@sphinx@source@conf.py@.PATH_END.py
|
{
"filename": "compiler.py",
"repo_name": "catboost/catboost",
"repo_path": "catboost_extracted/catboost-master/contrib/python/ipykernel/py3/ipykernel/compiler.py",
"type": "Python"
}
|
"""Compiler helpers for the debugger."""
import os
import sys
import tempfile
from IPython.core.compilerop import CachingCompiler
def murmur2_x86(data, seed):
"""Get the murmur2 hash."""
m = 0x5BD1E995
data = [chr(d) for d in str.encode(data, "utf8")]
length = len(data)
h = seed ^ length
rounded_end = length & 0xFFFFFFFC
for i in range(0, rounded_end, 4):
k = (
(ord(data[i]) & 0xFF)
| ((ord(data[i + 1]) & 0xFF) << 8)
| ((ord(data[i + 2]) & 0xFF) << 16)
| (ord(data[i + 3]) << 24)
)
k = (k * m) & 0xFFFFFFFF
k ^= k >> 24
k = (k * m) & 0xFFFFFFFF
h = (h * m) & 0xFFFFFFFF
h ^= k
val = length & 0x03
k = 0
if val == 3:
k = (ord(data[rounded_end + 2]) & 0xFF) << 16
if val in [2, 3]:
k |= (ord(data[rounded_end + 1]) & 0xFF) << 8
if val in [1, 2, 3]:
k |= ord(data[rounded_end]) & 0xFF
h ^= k
h = (h * m) & 0xFFFFFFFF
h ^= h >> 13
h = (h * m) & 0xFFFFFFFF
h ^= h >> 15
return h
convert_to_long_pathname = lambda filename: filename # noqa: E731
if sys.platform == "win32":
try:
import ctypes
from ctypes.wintypes import DWORD, LPCWSTR, LPWSTR, MAX_PATH
_GetLongPathName = ctypes.windll.kernel32.GetLongPathNameW
_GetLongPathName.argtypes = [LPCWSTR, LPWSTR, DWORD]
_GetLongPathName.restype = DWORD
def _convert_to_long_pathname(filename):
buf = ctypes.create_unicode_buffer(MAX_PATH)
rv = _GetLongPathName(filename, buf, MAX_PATH)
if rv != 0 and rv <= MAX_PATH:
filename = buf.value
return filename
# test that it works so if there are any issues we fail just once here
_convert_to_long_pathname(__file__)
except Exception:
pass
else:
convert_to_long_pathname = _convert_to_long_pathname
def get_tmp_directory():
"""Get a temp directory."""
tmp_dir = convert_to_long_pathname(tempfile.gettempdir())
pid = os.getpid()
return tmp_dir + os.sep + "ipykernel_" + str(pid)
def get_tmp_hash_seed():
"""Get a temp hash seed."""
return 0xC70F6907
def get_file_name(code):
"""Get a file name."""
cell_name = os.environ.get("IPYKERNEL_CELL_NAME")
if cell_name is None:
name = murmur2_x86(code, get_tmp_hash_seed())
cell_name = get_tmp_directory() + os.sep + str(name) + ".py"
return cell_name
class XCachingCompiler(CachingCompiler):
"""A custom caching compiler."""
def __init__(self, *args, **kwargs):
"""Initialize the compiler."""
super().__init__(*args, **kwargs)
self.log = None
def get_code_name(self, raw_code, code, number):
"""Get the code name."""
return get_file_name(raw_code)
|
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@ipykernel@py3@ipykernel@compiler.py@.PATH_END.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.