metadata
dict
text
stringlengths
0
40.6M
id
stringlengths
14
255
{ "filename": "function_utils.py", "repo_name": "tensorflow/tensorflow", "repo_path": "tensorflow_extracted/tensorflow-master/tensorflow/python/util/function_utils.py", "type": "Python" }
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility to retrieve function args.""" import functools from tensorflow.core.protobuf import config_pb2 from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect def _is_bound_method(fn): _, fn = tf_decorator.unwrap(fn) return tf_inspect.ismethod(fn) and (fn.__self__ is not None) def _is_callable_object(obj): return hasattr(obj, '__call__') and tf_inspect.ismethod(obj.__call__) def fn_args(fn): """Get argument names for function-like object. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `tuple` of string argument names. Raises: ValueError: if partial function has positionally bound arguments """ if isinstance(fn, functools.partial): args = fn_args(fn.func) args = [a for a in args[len(fn.args):] if a not in (fn.keywords or [])] else: if _is_callable_object(fn): fn = fn.__call__ args = tf_inspect.getfullargspec(fn).args if _is_bound_method(fn) and args: # If it's a bound method, it may or may not have a self/cls first # argument; for example, self could be captured in *args. # If it does have a positional argument, it is self/cls. args.pop(0) return tuple(args) def has_kwargs(fn): """Returns whether the passed callable has **kwargs in its signature. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `bool`: if `fn` has **kwargs in its signature. Raises: `TypeError`: If fn is not a Function, or function-like object. """ if isinstance(fn, functools.partial): fn = fn.func elif _is_callable_object(fn): fn = fn.__call__ elif not callable(fn): raise TypeError( 'Argument `fn` should be a callable. ' f'Received: fn={fn} (of type {type(fn)})') return tf_inspect.getfullargspec(fn).varkw is not None def get_func_name(func): """Returns name of passed callable.""" _, func = tf_decorator.unwrap(func) if callable(func): if tf_inspect.isfunction(func): return func.__name__ elif tf_inspect.ismethod(func): return '%s.%s' % ( func.__self__.__class__.__name__, func.__func__.__name__, ) else: # Probably a class instance with __call__ return str(type(func)) else: raise ValueError( 'Argument `func` must be a callable. ' f'Received func={func} (of type {type(func)})') def get_func_code(func): """Returns func_code of passed callable, or None if not available.""" _, func = tf_decorator.unwrap(func) if callable(func): if tf_inspect.isfunction(func) or tf_inspect.ismethod(func): return func.__code__ # Since the object is not a function or method, but is a callable, we will # try to access the __call__method as a function. This works with callable # classes but fails with functool.partial objects despite their __call__ # attribute. try: return func.__call__.__code__ except AttributeError: return None else: raise ValueError( 'Argument `func` must be a callable. ' f'Received func={func} (of type {type(func)})') _rewriter_config_optimizer_disabled = None def get_disabled_rewriter_config(): global _rewriter_config_optimizer_disabled if _rewriter_config_optimizer_disabled is None: config = config_pb2.ConfigProto() rewriter_config = config.graph_options.rewrite_options rewriter_config.disable_meta_optimizer = True _rewriter_config_optimizer_disabled = config.SerializeToString() return _rewriter_config_optimizer_disabled
tensorflowREPO_NAMEtensorflowPATH_START.@tensorflow_extracted@tensorflow-master@tensorflow@python@util@function_utils.py@.PATH_END.py
{ "filename": "_reversescale.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/scatter/marker/line/_reversescale.py", "type": "Python" }
import _plotly_utils.basevalidators class ReversescaleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="reversescale", parent_name="scatter.marker.line", **kwargs ): super(ReversescaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@scatter@marker@line@_reversescale.py@.PATH_END.py
{ "filename": "_enabled.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/layout/coloraxis/colorbar/tickformatstop/_enabled.py", "type": "Python" }
import _plotly_utils.basevalidators class EnabledValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="enabled", parent_name="layout.coloraxis.colorbar.tickformatstop", **kwargs, ): super(EnabledValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@layout@coloraxis@colorbar@tickformatstop@_enabled.py@.PATH_END.py
{ "filename": "huggingface_hub.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/langchain/langchain/llms/huggingface_hub.py", "type": "Python" }
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.llms import HuggingFaceHub # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = {"HuggingFaceHub": "langchain_community.llms"} _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "HuggingFaceHub", ]
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@langchain@langchain@llms@huggingface_hub.py@.PATH_END.py
{ "filename": "imports.py", "repo_name": "CMB-S4/spt3g_software", "repo_path": "spt3g_software_extracted/spt3g_software-master/gcp/tests/imports.py", "type": "Python" }
import spt3g._libgcp for k in dir(spt3g._libgcp): print(k, getattr(spt3g._libgcp, k)) from spt3g._libgcp import ACUStatus import spt3g.gcp from spt3g import gcp from spt3g.gcp import ACUStatus
CMB-S4REPO_NAMEspt3g_softwarePATH_START.@spt3g_software_extracted@spt3g_software-master@gcp@tests@imports.py@.PATH_END.py
{ "filename": "acorns-adi.py", "repo_name": "t-brandt/acorns-adi", "repo_path": "acorns-adi_extracted/acorns-adi-master/acorns-adi.py", "type": "Python" }
#!/usr/bin/env python # # Original filename: flat_coadd.py # # Author: Tim Brandt # Email: tbrandt@astro.princeton.edu # Date: 7 June 2011 # # Summary: Reduce HiCIAO ADI Data # import optparse, sys, re, os import pyfits as pyf import numpy as np from scipy import signal from adiparam import * import centroid import transform import parallel import combine import loci import pca import utils import pickle import addsource import locitools import photometry def main(): """ Main program for ADI data reduction, configured with a call to adiparam.GetConfig(), which brings up a GUI to set parameters. The pipeline is currently designed for SEEDS data taken without an occulting mask. You must have scipy, numpy, pyephem, multiprocessing, and matplotlib installed to use this pipeline. """ parser = optparse.OptionParser(usage=__doc__) parser.add_option("-p", "--prefix", dest="prefix", default="HICA", help="Specify raw file name prefix (default=%default)") opts, args = parser.parse_args() exec_path = os.path.dirname(os.path.realpath(__file__)) filesetup, adipar, locipar = GetConfig(prefix=opts.prefix) nframes = len(filesetup.framelist) ngroup = 1 + int((nframes - 1) / locipar.max_n) flat = pyf.open(filesetup.flat) if filesetup.pixmask is not None: hotpix = pyf.open(filesetup.pixmask) else: hotpix = None dimy, dimx = pyf.open(filesetup.framelist[0])[-1].data.shape mem, ncpus, storeall = utils.config(nframes, dimy * dimx) if filesetup.scale_phot: x, y = np.meshgrid(np.arange(7) - 3, np.arange(7) - 3) window = (x**2 + y**2 < 2.51**2) * 1.0 window /= np.sum(window) ref_phot, ref_psf = photometry.calc_phot(filesetup, adipar, flat, hotpix, mem, window) else: ref_psf = None ref_phot = None ################################################################ # WCS coordinates are not reliable in HiCIAO data with the image # rotator off. Compute parallactic angle. Otherwise, trust the # WCS coordinates. ################################################################ if 'HICA' in filesetup.framelist[0]: pa = np.asarray([transform.get_pa(frame) * -1 * np.pi / 180 for frame in filesetup.framelist]) else: pa = np.ones(len(filesetup.framelist)) for i in range(len(filesetup.framelist)): cd2_1 = pyf.open(filesetup.framelist[i])[0].header['cd2_1'] cd2_2 = pyf.open(filesetup.framelist[i])[0].header['cd2_2'] pa[i] = -np.arctan2(cd2_1, cd2_2) fullframe = re.sub("-C.*fits", ".fits", filesetup.framelist[0]) try: objname = pyf.open(fullframe)[0].header['OBJECT'] except: objname = "Unknown_Object" objname = re.sub(' ', '_', objname) np.savetxt(filesetup.output_dir + '/' + objname + '_palist.dat', pa) dr_rms = None #################################################################### # Default save/resume points: destriping, recentering, final files # Configuration gives the option to skip the destriping step (only # performing a flat-field), the dewarping, and the centering. #################################################################### if np.all(utils.check_files(filesetup, ext="_r")): print "\nResuming reduction from recentered files." if ngroup == 1: flux = utils.read_files(filesetup, ext="_r") else: flux = utils.read_files(filesetup, ext="_r") else: if storeall and np.all(utils.check_files(filesetup, ext="_ds")): flux = utils.read_files(filesetup, ext="_ds") elif not np.all(utils.check_files(filesetup, ext="_ds")): flux = parallel._destripe(filesetup, flat, hotpix, mem, adipar, write_files=True, storeall=storeall, full_destripe=adipar.full_destripe, do_horiz=adipar.full_destripe) else: flux = None if adipar.dewarp: flux = parallel._dewarp(filesetup, mem, flux=flux, storeall=storeall) if adipar.do_centroid: centers, dr_rms = centroid.fit_centroids(filesetup, flux, pa, storeall=storeall, objname=objname, method=adipar.center, psf_dir=exec_path+'/psfref', ref_psf=ref_psf) #centers = np.ndarray((nframes, 2)) #centers[:, 0] = 1026 - 128 #centers[:, 1] = 949 + 60 #dr_rms = 30 np.savetxt(filesetup.output_dir + '/' + objname + '_centers.dat', centers) #################################################################### # Recenter the data onto a square array of the largest dimension # such that the entire array has data #################################################################### mindim = min(dimy - centers[:, 0].max(), centers[:, 0].min(), dimx - centers[:, 1].max(), centers[:, 1].min()) mindim = int(mindim) * 2 - 1 flux = parallel._rotate_recenter(filesetup, flux, storeall=storeall, centers=centers, newdimen=mindim, write_files=True) nframes = len(filesetup.framelist) #################################################################### # Perform scaled PCA on the flux array; alternatively, read in an # array of principal components. Neither is currently used. #################################################################### if False: pcapath = '/scr/wakusei1/users/tbrandt' flux, pca_arr = pca.pca(flux, ncomp=20, nread=2, dosub=True, pcadir=pcapath + '/psfref') for i in range(nframes): out = pyf.HDUList(pyf.PrimaryHDU(flux[i].astype(np.float32), pyf.open(filesetup.framelist[i])[0].header)) rootfile = re.sub('.*/', '', filesetup.framelist[i]) out.writeto(filesetup.reduce_dir + '/' + re.sub('.fits', '_r.fits', rootfile), clobber=True) if dr_rms is None: dr_rms = 20 elif False: pca_dir = '.' npca = 40 pca_arr = np.zeros((npca, flux.shape[1], flux.shape[2]), np.float32) for i in range(npca): tmp = pyf.open(pca_dir + '/pcacomp_' + str(i) + '.fits')[0].data dy, dx = [tmp.shape[0] // 2, tmp.shape[1] // 2] pca_arr[i, yc - dy:yc + dy + 1, xc - dx:xc + dx + 1] = tmp else: pca_arr = None #################################################################### # Find the n closest matches to each frame. Not currently used. #################################################################### if False: corr = pca.allcorr(range(int(locipar.rmax)), flux, n=80) ngroup = 1 else: corr = None #################################################################### # Subtract a radial profile from each frame. Not currently used. #################################################################### if False: flux = parallel._radialsub(filesetup, flux, mode='median', center=None, rmax=None, smoothwidth=0) #################################################################### # Run LOCI if that ADI reduction method is chosen #################################################################### partial_sub = None full_pa = pa.copy() full_framelist = [frame for frame in filesetup.framelist] for igroup in range(ngroup): if ngroup > 1: filesetup.framelist = full_framelist[igroup::ngroup] if np.all(utils.check_files(filesetup, ext="_r")): flux = utils.read_files(filesetup, ext="_r") else: print "Unable to read recentered files for LOCI." sys.exit() pa = full_pa[igroup::ngroup] x = np.arange(flux.shape[1]) - flux.shape[1] // 2 x, y = np.meshgrid(x, x) r = np.sqrt(x**2 + y**2) if adipar.adi == 'LOCI': ################################################################ # Set the maximum radius at which to perform LOCI ################################################################ deltar = np.sqrt(np.pi * locipar.fwhm**2 / 4 * locipar.npsf) rmax = int(flux.shape[1] // 2 - deltar - 50) locipar.rmax = min(locipar.rmax, rmax) if dr_rms is None: nf, dy, dx = flux.shape fluxmed = np.median(flux, axis=0)[dy // 2 - 100:dy // 2 + 101, dx // 2 - 100:dx // 2 + 101] sat = fluxmed > 0.7 * fluxmed.max() r2 = r[dy//2 - 100:dy//2 + 101, dx//2 - 100:dx//2 + 101]**2 dr_rms = np.sqrt(np.sum(r2 * sat) / np.sum(sat)) ################################################################ # This is regular LOCI ################################################################ if locipar.feedback == 0: partial_sub = loci.loci(flux, pa, locipar, mem, mode='LOCI', pca_arr=None, r_ex=dr_rms, corr=corr, method='matrix', do_partial_sub=True, sub_dir=exec_path) ################################################################ # The next block runs LOCI once, de-rotates, takes the median, # and re-rotates to each frame's position angle. It then runs # LOCI again to over-correct the result. Not recommended for # SEEDS data with AO188. ################################################################ else: fluxref = np.ndarray(flux.shape, np.float32) fluxref[:] = flux loci.loci(fluxref, pca_arr, pa, locipar, mem, mode='LOCI', r_ex=dr_rms, pca_arr=pca_arr, corr=corr, method='matrix', do_partial_sub=False) for i in range(flux.shape[0]): np.putmask(fluxref[i], r > locipar.rmax - 1, 0) np.putmask(fluxref[i], r < dr_rms + 1, 0) locipar.rmax -= 100 fluxref = parallel._rotate_recenter(filesetup, fluxref, theta=pa) for i in range(flux.shape[0]): np.putmask(fluxref[i], r > locipar.rmax - 1, 0) np.putmask(fluxref[i], r < dr_rms + 1, 0) locipar.rmax -= 100 fluxmed = np.median(fluxref, axis=0) for i in range(flux.shape[0]): fluxref[i] = fluxmed * locipar.feedback fluxref = parallel._rotate_recenter(filesetup, fluxref, theta=-pa) loci.loci(flux, pa, locipar, mem, mode='refine', fluxref=fluxref, pca_arr=pca_arr, rmin=dr_rms, r_ex=dr_rms) ################################################################ # Mask saturated areas (< dr_rms), do median subtraction at radii # beyond the limit of the LOCI reduction ################################################################ fluxmed = np.median(flux, axis=0) for i in range(flux.shape[0]): np.putmask(flux[i], r < dr_rms + 2, 0) np.putmask(flux[i], r > locipar.rmax - 1, flux[i] - fluxmed) #################################################################### # Alternative to LOCI: median PSF subtraction #################################################################### elif adipar.adi == 'median': medpsf = np.median(flux, axis=0) for i in range(flux.shape[0]): flux[i] -= medpsf else: print "Error: ADI reduction method " + adipar.adi + " not recognized." #sys.exit(1) #################################################################### # Derotate, combine flux array using mean/median hybrid (see # Brandt+ 2012), measure standard deviation at each radius #################################################################### if igroup == 0: newhead = utils.makeheader(flux[0], pyf.open(fullframe)[0].header, full_framelist, adipar, locipar) flux = parallel._rotate_recenter(filesetup, flux, theta=pa) fluxtmp, noise = combine.meanmed(flux) fluxbest = fluxtmp / ngroup if partial_sub is not None: partial_sub_tot = partial_sub / ngroup else: flux = parallel._rotate_recenter(filesetup, flux, theta=pa) fluxtmp, noise = combine.meanmed(flux) fluxbest += fluxtmp / ngroup if partial_sub is not None: partial_sub_tot += partial_sub / ngroup filesetup.framelist = full_framelist if partial_sub is not None: partial_sub = partial_sub_tot #################################################################### # Rescale all arrays to 2001x2001 so that the center is pixel number # (1000, 1000) indexed from 0. Use NaN to pad arrays. #################################################################### fluxbest = utils.arr_resize(fluxbest) if partial_sub is not None: partial_sub = utils.arr_resize(partial_sub, newdim=fluxbest.shape[0]).astype(np.float32) fluxbest /= partial_sub out = pyf.HDUList(pyf.PrimaryHDU(partial_sub)) out.writeto('partial_sub2.fits', clobber=True) x, y = np.meshgrid(np.arange(7) - 3, np.arange(7) - 3) window = (x**2 + y**2 < 2.51**2) * 1.0 window /= np.sum(window) fluxbest = signal.convolve2d(fluxbest, window, mode='same') noise = combine.radprof(fluxbest, mode='std', smoothwidth=2, sigrej=4.5)[0] r = utils.arr_resize(r) if dr_rms is not None: np.putmask(fluxbest, r < dr_rms + 3, np.nan) np.putmask(fluxbest, r > locipar.rmax - 2, np.nan) fluxsnr = (fluxbest / noise).astype(np.float32) #################################################################### # 5-sigma sensitivity maps--just multiply by the scaled aperture # photometry of the central star #################################################################### if partial_sub is not None: sensitivity = noise * 5 / partial_sub #################################################################### # Photometry of the central star #################################################################### if filesetup.scale_phot: #ref_phot = photometry.calc_phot(filesetup, adipar, flat, # hotpix, mem, window)[0] sensitivity /= ref_phot fluxbest /= ref_phot noise /= ref_phot sig_sens = combine.radprof(sensitivity, mode='std', smoothwidth=0)[0] outfile = open(filesetup.output_dir + '/' + objname + '_5sigma_sensitivity.dat', 'w') for i in range(sig_sens.shape[0] // 2, sig_sens.shape[0]): iy = sig_sens.shape[0] // 2 if np.isfinite(sensitivity[iy, i]): outfile.write('%8d %12.5e %12.5e %12e\n' % (i - iy, sensitivity[iy, i], sig_sens[iy, i], partial_sub[iy, i])) outfile.close() else: np.savetxt(filesetup.output_dir + '/' + objname + '_noiseprofile.dat', noise[noise.shape[0] // 2, noise.shape[1] // 2:].T) #################################################################### # Write the output fits files. #################################################################### snr = pyf.HDUList(pyf.PrimaryHDU(fluxsnr.astype(np.float32), newhead)) final = pyf.HDUList(pyf.PrimaryHDU(fluxbest.astype(np.float32), newhead)) if partial_sub is not None: contrast = pyf.HDUList(pyf.PrimaryHDU(sensitivity.astype(np.float32), newhead)) name_base = filesetup.output_dir + '/' + objname snr.writeto(name_base + '_snr.fits', clobber=True) final.writeto(name_base + '_final.fits', clobber=True) if partial_sub is not None: contrast.writeto(name_base + '_5sigma_sensitivity.fits', clobber=True) ############################################################# # end ############################################################# if __name__ == '__main__': main()
t-brandtREPO_NAMEacorns-adiPATH_START.@acorns-adi_extracted@acorns-adi-master@acorns-adi.py@.PATH_END.py
{ "filename": "test_box.py", "repo_name": "philbull/FastBox", "repo_path": "FastBox_extracted/FastBox-main/fastbox/tests/test_box.py", "type": "Python" }
#!/usr/bin/env python import pytest import numpy as np from fastbox.box import CosmoBox, default_cosmo def test_gaussian_box(): """Generate Gaussian density field in box.""" # Realise Gaussian box np.random.seed(11) box = CosmoBox(cosmo=default_cosmo, box_scale=(1e2, 1e2, 1e2), nsamp=16, realise_now=False) box.realise_density() # Check that density field is valid assert box.delta_x.shape == (16, 16, 16) assert box.delta_x.dtype == np.float64 assert np.all(~np.isnan(box.delta_x)) # Realise density field with same random seed and realise_now=True, and # manually setting the redshift and a single box_scale np.random.seed(11) box2 = CosmoBox(cosmo=default_cosmo, box_scale=1e2, nsamp=16, redshift=0., realise_now=True) assert np.allclose(box.delta_x, box2.delta_x) # Check that pixel resolution etc. is correct assert box.Lx == box.Ly == box.Lz == 1e2 assert box.x.size == box.y.size == box.z.size == 16 assert np.isclose(np.max(box.x) - np.min(box.x), 1e2) # Check that cuboidal boxes work box3 = CosmoBox(cosmo=default_cosmo, box_scale=(1e2, 2e2, 1e3), nsamp=16, redshift=1., realise_now=True) assert box3.delta_x.shape == (16, 16, 16) assert box3.delta_x.dtype == np.float64 assert np.all(~np.isnan(box3.delta_x)) def test_lognormal_box(): """Generate log-normal density field in box.""" # Realise Gaussian box np.random.seed(11) box = CosmoBox(cosmo=default_cosmo, box_scale=(1e2, 1e2, 1e2), nsamp=16, realise_now=True) # Apply log-normal transform delta_log = box.lognormal(box.delta_x) # Check that log-normal density field is valid assert delta_log.shape == (16, 16, 16) # assert delta_log.dtype == np.float64 assert np.all(~np.isnan(delta_log)) assert np.all(delta_log >= -1.) # delta_log >= -1 def test_box_redshift_space_density(): """Check that a redshift-space density field can be generated.""" # Realise Gaussian box and velocity field np.random.seed(11) box = CosmoBox(cosmo=default_cosmo, box_scale=(1e2, 1e2, 1e2), nsamp=16, realise_now=False) box.realise_density() box.realise_velocity() # Get redshift-space density field vel_z = np.fft.ifftn(box.velocity_k[2]).real delta_s = box.redshift_space_density(delta_x=box.delta_x, velocity_z=vel_z, sigma_nl=200., method='linear') # Check that redshift-space density field is valid assert delta_s.shape == (16, 16, 16) # assert delta_s.dtype == np.float64 assert np.all(~np.isnan(delta_s)) def test_box_transfer_function(): """Check that a transfer function can be applied to the density field.""" # Realise Gaussian box np.random.seed(11) box = CosmoBox(cosmo=default_cosmo, box_scale=(1e2, 1e2, 1e2), nsamp=16, realise_now=True) # Gaussian box with beam smoothing and foreground cut transfer_fn = lambda k_perp, k_par: \ (1. - np.exp(-0.5 * (k_par/0.001)**2.)) \ * np.exp(-0.5 * (k_perp/0.1)**2.) delta_smoothed = box.apply_transfer_fn(box.delta_k, transfer_fn=transfer_fn) # Check that smoothed density field is valid assert delta_smoothed.shape == (16, 16, 16) # assert delta_smoothed.dtype == np.float64 assert np.all(~np.isnan(delta_smoothed)) def test_box_power_spectrum(): """Check that the theoretical and box power spectra can be calculated.""" # Realise Gaussian box np.random.seed(14) box = CosmoBox(cosmo=default_cosmo, box_scale=(1e3, 1e3, 1e3), nsamp=64, realise_now=False) box.realise_density() # Calculate binned power spectrum and theoretical power spectrum re_k, re_pk, re_stddev = box.binned_power_spectrum() th_k, th_pk = box.theoretical_power_spectrum() # Check that sigma(R) and sigma_8 can be calculated sigR = box.sigmaR(R=8.) # R in units of Mpc/h sig8 = box.sigma8() assert np.isclose(sigR, sig8) # Run built-in test to print a report on sampling accuracy box.test_sampling_error() # Check that sigma_8 calculated from box is close to input cosmo sigma_8 # (this depends on box size/resolution) assert np.abs(sig8 - box.cosmo['sigma8']) < 0.09 # 0.09 is empirical def test_box_coordinates(): """Check that pixel and frequency coordinates are returned.""" # Realise Gaussian box np.random.seed(22) box = CosmoBox(cosmo=default_cosmo, box_scale=(1e3, 1e3, 1e3), nsamp=16, realise_now=True, redshift=0.8) # Check pixel array ang_x, ang_y = box.pixel_array() ang_x2, ang_y2 = box.pixel_array(redshift=0.82) # ^Higher z, so further away, so smaller angle # Check for valid output assert np.all(~np.isnan(ang_x)) assert np.all(~np.isnan(ang_y)) assert np.all(~np.isnan(ang_x2)) assert np.all(~np.isnan(ang_y2)) # Square box => equal pixel sizes assert np.isclose(ang_x[1] - ang_x[0], ang_y[1] - ang_y[0]) # Check that higher redshift pixels are smaller assert ang_x[1] - ang_x[0] > ang_x2[1] - ang_x2[0] assert ang_y[1] - ang_y[0] > ang_y2[1] - ang_y2[0] # Check that frequency array goes in descending order (highest z coord => # lowest frequency) assert np.all(np.diff(box.freq_array()) < 0.) # negative differences assert np.all(np.diff(box.freq_array(redshift=2.)) < 0.) # negative differences def test_box_errors(): """Check that correct errors are raised for invalid input.""" # Invalid cosmology object passed in with pytest.raises(TypeError): box = CosmoBox(cosmo=[0.7, 0.3], box_scale=(1e2, 1e2, 1e2), nsamp=16, realise_now=False) def test_box_builtin_tests(): """Run the built-in tests in the CosmoBox object.""" box = CosmoBox(cosmo=default_cosmo, box_scale=(1e2, 1e2, 1e2), nsamp=16, realise_now=True) # Test Parseval's theorem (integrals of power in real and Fourier space are # equal) s1, s2 = box.test_parseval() assert np.isclose(s1, s2)
philbullREPO_NAMEFastBoxPATH_START.@FastBox_extracted@FastBox-main@fastbox@tests@test_box.py@.PATH_END.py
{ "filename": "replace.py", "repo_name": "nasa/kepler-pipeline", "repo_path": "kepler-pipeline_extracted/kepler-pipeline-master/source-code/java/pi/python-src/replace.py", "type": "Python" }
#!/usr/bin/python # # Copyright 2017 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # This file is available under the terms of the NASA Open Source Agreement # (NOSA). You should have received a copy of this agreement with the # Kepler source code; see the file NASA-OPEN-SOURCE-AGREEMENT.doc. # # No Warranty: THE SUBJECT SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY # WARRANTY OF ANY KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, # INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT THE SUBJECT SOFTWARE # WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR FREEDOM FROM # INFRINGEMENT, ANY WARRANTY THAT THE SUBJECT SOFTWARE WILL BE ERROR # FREE, OR ANY WARRANTY THAT DOCUMENTATION, IF PROVIDED, WILL CONFORM # TO THE SUBJECT SOFTWARE. THIS AGREEMENT DOES NOT, IN ANY MANNER, # CONSTITUTE AN ENDORSEMENT BY GOVERNMENT AGENCY OR ANY PRIOR RECIPIENT # OF ANY RESULTS, RESULTING DESIGNS, HARDWARE, SOFTWARE PRODUCTS OR ANY # OTHER APPLICATIONS RESULTING FROM USE OF THE SUBJECT SOFTWARE. # FURTHER, GOVERNMENT AGENCY DISCLAIMS ALL WARRANTIES AND LIABILITIES # REGARDING THIRD-PARTY SOFTWARE, IF PRESENT IN THE ORIGINAL SOFTWARE, # AND DISTRIBUTES IT "AS IS." # # Waiver and Indemnity: RECIPIENT AGREES TO WAIVE ANY AND ALL CLAIMS # AGAINST THE UNITED STATES GOVERNMENT, ITS CONTRACTORS AND # SUBCONTRACTORS, AS WELL AS ANY PRIOR RECIPIENT. IF RECIPIENT'S USE OF # THE SUBJECT SOFTWARE RESULTS IN ANY LIABILITIES, DEMANDS, DAMAGES, # EXPENSES OR LOSSES ARISING FROM SUCH USE, INCLUDING ANY DAMAGES FROM # PRODUCTS BASED ON, OR RESULTING FROM, RECIPIENT'S USE OF THE SUBJECT # SOFTWARE, RECIPIENT SHALL INDEMNIFY AND HOLD HARMLESS THE UNITED # STATES GOVERNMENT, ITS CONTRACTORS AND SUBCONTRACTORS, AS WELL AS ANY # PRIOR RECIPIENT, TO THE EXTENT PERMITTED BY LAW. RECIPIENT'S SOLE # REMEDY FOR ANY SUCH MATTER SHALL BE THE IMMEDIATE, UNILATERAL # TERMINATION OF THIS AGREEMENT. # import os, sys usage = "usage: %s search_text replace_text file" % os.path.basename(sys.argv[0]) if len(sys.argv) < 4: print usage else: stext = sys.argv[1] rtext = sys.argv[2] infile = sys.argv[3] outfile = infile + '.tmp' print 'Replacing all occurences of', stext, 'with', rtext, 'in file', infile input = open(infile) output = open(outfile, 'w') for s in input: newText = s.replace(stext, rtext) if newText is not s: print s, '->', newText output.write(newText) input.close() output.close() os.rename(infile,infile+'.old') os.rename(outfile,infile)
nasaREPO_NAMEkepler-pipelinePATH_START.@kepler-pipeline_extracted@kepler-pipeline-master@source-code@java@pi@python-src@replace.py@.PATH_END.py
{ "filename": "test_stackexchange.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/community/tests/integration_tests/utilities/test_stackexchange.py", "type": "Python" }
"""Integration test for Stack Exchange.""" from langchain_community.utilities import StackExchangeAPIWrapper def test_call() -> None: """Test that call runs.""" stackexchange = StackExchangeAPIWrapper() # type: ignore[call-arg] output = stackexchange.run("zsh: command not found: python") assert output != "hello" def test_failure() -> None: """Test that call that doesn't run.""" stackexchange = StackExchangeAPIWrapper() # type: ignore[call-arg] output = stackexchange.run("sjefbsmnf") assert output == "No relevant results found for 'sjefbsmnf' on Stack Overflow" def test_success() -> None: """Test that call that doesn't run.""" stackexchange = StackExchangeAPIWrapper() # type: ignore[call-arg] output = stackexchange.run("zsh: command not found: python") assert "zsh: command not found: python" in output
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@tests@integration_tests@utilities@test_stackexchange.py@.PATH_END.py
{ "filename": "_size.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/violin/legendgrouptitle/font/_size.py", "type": "Python" }
import _plotly_utils.basevalidators class SizeValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="size", parent_name="violin.legendgrouptitle.font", **kwargs ): super(SizeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "style"), min=kwargs.pop("min", 1), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@violin@legendgrouptitle@font@_size.py@.PATH_END.py
{ "filename": "_marker.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/treemap/_marker.py", "type": "Python" }
import _plotly_utils.basevalidators class MarkerValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="marker", parent_name="treemap", **kwargs): super(MarkerValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Marker"), data_docs=kwargs.pop( "data_docs", """ autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if colorsis set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here colors) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if colorsis set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if colorsis set to a numerical array. Value should have the same units as colors and if set, `marker.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if colorsis set to a numerical array. Value should have the same units as colors. Has no effect when `marker.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if colorsis set to a numerical array. Value should have the same units as colors and if set, `marker.cmax` must be set as well. coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorbar :class:`plotly.graph_objects.treemap.marker.Col orBar` instance or dict with compatible properties colors Sets the color of each sector of this trace. If not specified, the default trace color set is used to pick the sector colors. colorscale Sets the colorscale. Has an effect only if colorsis set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,Reds,Bl ues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,E arth,Electric,Viridis,Cividis. colorssrc Sets the source reference on Chart Studio Cloud for colors . depthfade Determines if the sector colors are faded towards the background from the leaves up to the headers. This option is unavailable when a `colorscale` is present, defaults to false when `marker.colors` is set, but otherwise defaults to true. When set to "reversed", the fading direction is inverted, that is the top elements within hierarchy are drawn with fully saturated colors while the leaves are faded towards the background color. line :class:`plotly.graph_objects.treemap.marker.Lin e` instance or dict with compatible properties pad :class:`plotly.graph_objects.treemap.marker.Pad ` instance or dict with compatible properties reversescale Reverses the color mapping if true. Has an effect only if colorsis set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. showscale Determines whether or not a colorbar is displayed for this trace. Has an effect only if colorsis set to a numerical array. """, ), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@treemap@_marker.py@.PATH_END.py
{ "filename": "sr_mhd_linwave.py", "repo_name": "PrincetonUniversity/athena", "repo_path": "athena_extracted/athena-master/tst/regression/scripts/tests/sr/sr_mhd_linwave.py", "type": "Python" }
""" Regression test based on SR MHD linear wave convergence problem. Runs a linear wave convergence test in 3D and checks L1 errors as saved by the executable in linearwave-errors.dat. """ # Modules import logging import numpy as np import scripts.utils.athena as athena import sys sys.path.insert(0, '../../vis/python') import athena_read # noqa athena_read.check_nan_flag = True logger = logging.getLogger('athena' + __name__[7:]) # set logger name based on module # Prepare Athena++ def prepare(**kwargs): logger.debug('Running test ' + __name__) athena.configure('sb', prob='gr_linear_wave', coord='cartesian', flux='hlld', **kwargs) athena.make() # Run Athena++ def run(**kwargs): # Parameters rho = 1.0 pgas = 0.5 vx = 0.1 vy = 0.15 vz = 0.05 bx = 1.0 by = 2.0/3.0 bz = 1.0/3.0 gamma_adi = 4.0/3.0 # Go through all waves at low and high resolutions for wave_flag in range(7): wavespeed = calculate_wavespeed(rho, pgas, vx, vy, vz, bx, by, bz, gamma_adi, wave_flag) time = 1.0/abs(wavespeed) for res in (16, 32): arguments = ['time/ncycle_out=100', 'time/tlim='+repr(time), 'time/cfl_number=0.3', 'output1/dt=-1', 'mesh/nx1='+repr(res), 'mesh/nx2='+repr(res/2), 'mesh/nx3='+repr(res/2), 'meshblock/nx1='+repr(res/2), 'meshblock/nx2='+repr(res/2), 'meshblock/nx3='+repr(res/2), 'hydro/gamma='+repr(gamma_adi), 'problem/wave_flag='+repr(wave_flag), 'problem/compute_error=true', 'problem/rho='+repr(rho), 'problem/pgas='+repr(pgas), 'problem/vx='+repr(vx), 'problem/vy='+repr(vy), 'problem/vz='+repr(vz), 'problem/Bx='+repr(bx), 'problem/By='+repr(by), 'problem/Bz='+repr(bz)] athena.run('mhd_sr/athinput.linear_wave', arguments) # Analyze outputs def analyze(): # Expected wave properties names = ('leftgoing fast', 'leftgoing Alfven', 'leftgoing slow', 'entropy', 'rightgoing slow', 'rightgoing Alfven', 'rightgoing fast') high_res_errors = (4.0e-8, 3.0e-8, 3.0e-8, 2.0e-8, 4.0e-8, 3.0e-8, 3.0e-8) error_ratio = 0.4 # Read data from error file filename = 'bin/linearwave-errors.dat' data = athena_read.error_dat(filename) # Check errors status = True for wave_flag in range(7): if data[2*wave_flag+1][4] > high_res_errors[wave_flag]: logger.warning('{0} wave error too large ({1} vs. {2})'.format( names[wave_flag], data[2*wave_flag+1][4], high_res_errors[wave_flag])) status = False if data[2*wave_flag+1][4]/data[2*wave_flag][4] > error_ratio: logger.warning('{0} wave error not converging ({1} to {2})'.format( names[wave_flag], data[2*wave_flag][4], data[2*wave_flag+1][4])) status = False return status # Lab-frame wavespeed calculator def calculate_wavespeed(rho, pgas, vx, vy, vz, bx, by, bz, gamma_adi, wave_flag): # Handle simple entropy case if wave_flag == 3: return vx # Calculate 4-vectors v_sq = vx**2 + vy**2 + vz**2 u = np.empty(4) u[0] = 1.0 / (1.0 - v_sq)**0.5 u[1] = u[0]*vx u[2] = u[0]*vy u[3] = u[0]*vz b = np.empty(4) b[0] = bx*u[1] + by*u[2] + bz*u[3] b[1] = 1.0/u[0] * (bx + b[0]*u[1]) b[2] = 1.0/u[0] * (by + b[0]*u[2]) b[3] = 1.0/u[0] * (bz + b[0]*u[3]) # Calculate useful scalars gamma_adi_red = gamma_adi / (gamma_adi-1.0) b_sq = -b[0]**2 + sum(b[1:]**2) wgas = rho + gamma_adi_red * pgas wtot = wgas + b_sq cs_sq = gamma_adi * pgas / wgas # Calculate Alfven speeds lambda_ap = (b[1] + wtot**0.5 * u[1]) / (b[0] + wtot**0.5 * u[0]) lambda_am = (b[1] - wtot**0.5 * u[1]) / (b[0] - wtot**0.5 * u[0]) if wave_flag == 1: return min(lambda_ap, lambda_am) if wave_flag == 5: return max(lambda_ap, lambda_am) # Calculate magnetosonic speeds factor_a = wgas * (1.0/cs_sq - 1.0) factor_b = -(wgas + b_sq/cs_sq) a4 = factor_a * u[0]**4 - factor_b * u[0]**2 - b[0]**2 a3 = (-factor_a * 4.0 * u[0]**4 * vx + factor_b * 2.0 * u[0]**2 * vx + 2.0 * b[0] * b[1]) a2 = (factor_a * 6.0 * u[0]**4 * vx**2 + factor_b * u[0]**2 * (1.0-vx**2) + b[0]**2 - b[1]**2) a1 = (-factor_a * 4.0 * u[0]**4 * vx**3 - factor_b * 2.0 * u[0]**2 * vx - 2.0 * b[0] * b[1]) a0 = factor_a * u[0]**4 * vx**4 + factor_b * u[0]**2 * vx**2 + b[1]**2 roots = sorted(np.roots([a4, a3, a2, a1, a0])) if wave_flag == 0: return roots[0] if wave_flag == 2: return roots[1] if wave_flag == 4: return roots[2] if wave_flag == 6: return roots[3]
PrincetonUniversityREPO_NAMEathenaPATH_START.@athena_extracted@athena-master@tst@regression@scripts@tests@sr@sr_mhd_linwave.py@.PATH_END.py
{ "filename": "fastjsonschema_exceptions.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/setuptools/py3/setuptools/config/_validate_pyproject/fastjsonschema_exceptions.py", "type": "Python" }
import re SPLIT_RE = re.compile(r'[\.\[\]]+') class JsonSchemaException(ValueError): """ Base exception of ``fastjsonschema`` library. """ class JsonSchemaValueException(JsonSchemaException): """ Exception raised by validation function. Available properties: * ``message`` containing human-readable information what is wrong (e.g. ``data.property[index] must be smaller than or equal to 42``), * invalid ``value`` (e.g. ``60``), * ``name`` of a path in the data structure (e.g. ``data.property[index]``), * ``path`` as an array in the data structure (e.g. ``['data', 'property', 'index']``), * the whole ``definition`` which the ``value`` has to fulfil (e.g. ``{'type': 'number', 'maximum': 42}``), * ``rule`` which the ``value`` is breaking (e.g. ``maximum``) * and ``rule_definition`` (e.g. ``42``). .. versionchanged:: 2.14.0 Added all extra properties. """ def __init__(self, message, value=None, name=None, definition=None, rule=None): super().__init__(message) self.message = message self.value = value self.name = name self.definition = definition self.rule = rule @property def path(self): return [item for item in SPLIT_RE.split(self.name) if item != ''] @property def rule_definition(self): if not self.rule or not self.definition: return None return self.definition.get(self.rule) class JsonSchemaDefinitionException(JsonSchemaException): """ Exception raised by generator of validation function. """
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@setuptools@py3@setuptools@config@_validate_pyproject@fastjsonschema_exceptions.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/cli/langchain_cli/integration_template/tests/__init__.py", "type": "Python" }
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@cli@langchain_cli@integration_template@tests@__init__.py@.PATH_END.py
{ "filename": "eis_fit_cube_example.py", "repo_name": "USNavalResearchLaboratory/eispac", "repo_path": "eispac_extracted/eispac-main/examples/eis_fit_cube_example.py", "type": "Python" }
import matplotlib.pyplot as plt import astropy.units as u import eispac if __name__ == '__main__': # input data and template files data_filepath = '../data/eis_20190404_131513.data.h5' template_filepath = '../templates/eis_template_dir/fe_12_195_119.2c.template.h5' # read fit template tmplt = eispac.EISFitTemplate.read_template(template_filepath) # Read spectral window into an EISCube data_cube = eispac.read_cube(data_filepath, tmplt.central_wave) # Select a cutout of the raster (note the order of array & plotting indices!) # Note: we want the full wavelength axis, so we set the range far outside the bounds of EIS cutout_extent = [48, 165, 254, 378] # units of [arcsec] # w_coords = data_cube.axis_world_coords('em.wl') lower_left = (cutout_extent[2]*u.arcsec, cutout_extent[0]*u.arcsec, 0*u.angstrom) upper_right = (cutout_extent[3]*u.arcsec, cutout_extent[1]*u.arcsec, 1000*u.angstrom) raster_cutout = data_cube.crop_by_coords(lower_left, upper_corner=upper_right) # Fit the data, then save it to disk and test loading it back in fit_res = eispac.fit_spectra(raster_cutout, tmplt, ncpu='max') save_filepaths = eispac.save_fit(fit_res, save_dir='cwd') load_fit = eispac.read_fit(save_filepaths[0]) # Extract array of total data and fit intensites sum_data_inten = raster_cutout.sum_spectra().data fit_wave_cube, fit_inten_cube = fit_res.get_fit_profile(component=[0,1]) sum_fit_inten = fit_inten_cube.sum(axis=2) # Extract example fit profiles at a higher spectral resolution than the data ex_coords = [43, 28] # [Y,X] array coords in units of [pixels] fit_x, fit_y = fit_res.get_fit_profile(coords=ex_coords, num_wavelengths=100) c0_fit_x, c0_fit_y = fit_res.get_fit_profile(component=0, coords=ex_coords, num_wavelengths=100) c1_fit_x, c1_fit_y = fit_res.get_fit_profile(component=1, coords=ex_coords, num_wavelengths=100) c2_fit_x, c2_fit_y = fit_res.get_fit_profile(component=2, coords=ex_coords, num_wavelengths=100) sub_data = raster_cutout.data[ex_coords[0], ex_coords[1], :] sub_wave = raster_cutout.wavelength[ex_coords[0], ex_coords[1], :] sub_err = raster_cutout.uncertainty.array[ex_coords[0], ex_coords[1], :] # Make a multi-panel figure with the cutout and example fig = plt.figure() plot_grid = fig.add_gridspec(nrows=2, ncols=2, hspace=0.5, wspace=0.3) data_subplt = fig.add_subplot(plot_grid[0,0]) data_subplt.imshow(sum_data_inten, origin='lower', extent=cutout_extent, cmap='gray') data_subplt.set_title('Data Cutout') data_subplt.set_xlabel('Solar-X [arcsec]') data_subplt.set_ylabel('Solar-Y [arcsec]') fit_subplt = fig.add_subplot(plot_grid[0,1]) fit_subplt.imshow(sum_fit_inten, origin='lower', extent=cutout_extent, cmap='gray') fit_subplt.set_title('Total Fit Intensity') fit_subplt.set_xlabel('Solar-X [arcsec]') fit_subplt.set_ylabel('Solar-Y [arcsec]') profile_subplt = fig.add_subplot(plot_grid[1,:]) profile_subplt.errorbar(sub_wave, sub_data, yerr=sub_err, ls='', marker='o', color='k') profile_subplt.plot(fit_x, fit_y, color='b', label='Combined profile') profile_subplt.plot(c0_fit_x, c0_fit_y, color='r', label='Gaussian 1') profile_subplt.plot(c1_fit_x, c1_fit_y, color='r', ls='--', label='Gaussian 2') profile_subplt.plot(c2_fit_x, c2_fit_y, color='g', label='Background') profile_subplt.set_title(f'Cutout indices iy = {ex_coords[0]}, ix = {ex_coords[1]}') profile_subplt.set_xlabel('Wavelength [$\AA$]') profile_subplt.set_ylabel('Intensity ['+raster_cutout.unit.to_string()+']') profile_subplt.legend(loc='upper left') plt.show()
USNavalResearchLaboratoryREPO_NAMEeispacPATH_START.@eispac_extracted@eispac-main@examples@eis_fit_cube_example.py@.PATH_END.py
{ "filename": "_color_data.py", "repo_name": "matplotlib/matplotlib", "repo_path": "matplotlib_extracted/matplotlib-main/lib/matplotlib/_color_data.py", "type": "Python" }
BASE_COLORS = { 'b': (0, 0, 1), # blue 'g': (0, 0.5, 0), # green 'r': (1, 0, 0), # red 'c': (0, 0.75, 0.75), # cyan 'm': (0.75, 0, 0.75), # magenta 'y': (0.75, 0.75, 0), # yellow 'k': (0, 0, 0), # black 'w': (1, 1, 1), # white } # These colors are from Tableau TABLEAU_COLORS = { 'tab:blue': '#1f77b4', 'tab:orange': '#ff7f0e', 'tab:green': '#2ca02c', 'tab:red': '#d62728', 'tab:purple': '#9467bd', 'tab:brown': '#8c564b', 'tab:pink': '#e377c2', 'tab:gray': '#7f7f7f', 'tab:olive': '#bcbd22', 'tab:cyan': '#17becf', } # This mapping of color names -> hex values is taken from # a survey run by Randall Munroe see: # https://blog.xkcd.com/2010/05/03/color-survey-results/ # for more details. The results are hosted at # https://xkcd.com/color/rgb/ # and also available as a text file at # https://xkcd.com/color/rgb.txt # # License: https://creativecommons.org/publicdomain/zero/1.0/ XKCD_COLORS = { 'cloudy blue': '#acc2d9', 'dark pastel green': '#56ae57', 'dust': '#b2996e', 'electric lime': '#a8ff04', 'fresh green': '#69d84f', 'light eggplant': '#894585', 'nasty green': '#70b23f', 'really light blue': '#d4ffff', 'tea': '#65ab7c', 'warm purple': '#952e8f', 'yellowish tan': '#fcfc81', 'cement': '#a5a391', 'dark grass green': '#388004', 'dusty teal': '#4c9085', 'grey teal': '#5e9b8a', 'macaroni and cheese': '#efb435', 'pinkish tan': '#d99b82', 'spruce': '#0a5f38', 'strong blue': '#0c06f7', 'toxic green': '#61de2a', 'windows blue': '#3778bf', 'blue blue': '#2242c7', 'blue with a hint of purple': '#533cc6', 'booger': '#9bb53c', 'bright sea green': '#05ffa6', 'dark green blue': '#1f6357', 'deep turquoise': '#017374', 'green teal': '#0cb577', 'strong pink': '#ff0789', 'bland': '#afa88b', 'deep aqua': '#08787f', 'lavender pink': '#dd85d7', 'light moss green': '#a6c875', 'light seafoam green': '#a7ffb5', 'olive yellow': '#c2b709', 'pig pink': '#e78ea5', 'deep lilac': '#966ebd', 'desert': '#ccad60', 'dusty lavender': '#ac86a8', 'purpley grey': '#947e94', 'purply': '#983fb2', 'candy pink': '#ff63e9', 'light pastel green': '#b2fba5', 'boring green': '#63b365', 'kiwi green': '#8ee53f', 'light grey green': '#b7e1a1', 'orange pink': '#ff6f52', 'tea green': '#bdf8a3', 'very light brown': '#d3b683', 'egg shell': '#fffcc4', 'eggplant purple': '#430541', 'powder pink': '#ffb2d0', 'reddish grey': '#997570', 'baby shit brown': '#ad900d', 'liliac': '#c48efd', 'stormy blue': '#507b9c', 'ugly brown': '#7d7103', 'custard': '#fffd78', 'darkish pink': '#da467d', 'deep brown': '#410200', 'greenish beige': '#c9d179', 'manilla': '#fffa86', 'off blue': '#5684ae', 'battleship grey': '#6b7c85', 'browny green': '#6f6c0a', 'bruise': '#7e4071', 'kelley green': '#009337', 'sickly yellow': '#d0e429', 'sunny yellow': '#fff917', 'azul': '#1d5dec', 'darkgreen': '#054907', 'green/yellow': '#b5ce08', 'lichen': '#8fb67b', 'light light green': '#c8ffb0', 'pale gold': '#fdde6c', 'sun yellow': '#ffdf22', 'tan green': '#a9be70', 'burple': '#6832e3', 'butterscotch': '#fdb147', 'toupe': '#c7ac7d', 'dark cream': '#fff39a', 'indian red': '#850e04', 'light lavendar': '#efc0fe', 'poison green': '#40fd14', 'baby puke green': '#b6c406', 'bright yellow green': '#9dff00', 'charcoal grey': '#3c4142', 'squash': '#f2ab15', 'cinnamon': '#ac4f06', 'light pea green': '#c4fe82', 'radioactive green': '#2cfa1f', 'raw sienna': '#9a6200', 'baby purple': '#ca9bf7', 'cocoa': '#875f42', 'light royal blue': '#3a2efe', 'orangeish': '#fd8d49', 'rust brown': '#8b3103', 'sand brown': '#cba560', 'swamp': '#698339', 'tealish green': '#0cdc73', 'burnt siena': '#b75203', 'camo': '#7f8f4e', 'dusk blue': '#26538d', 'fern': '#63a950', 'old rose': '#c87f89', 'pale light green': '#b1fc99', 'peachy pink': '#ff9a8a', 'rosy pink': '#f6688e', 'light bluish green': '#76fda8', 'light bright green': '#53fe5c', 'light neon green': '#4efd54', 'light seafoam': '#a0febf', 'tiffany blue': '#7bf2da', 'washed out green': '#bcf5a6', 'browny orange': '#ca6b02', 'nice blue': '#107ab0', 'sapphire': '#2138ab', 'greyish teal': '#719f91', 'orangey yellow': '#fdb915', 'parchment': '#fefcaf', 'straw': '#fcf679', 'very dark brown': '#1d0200', 'terracota': '#cb6843', 'ugly blue': '#31668a', 'clear blue': '#247afd', 'creme': '#ffffb6', 'foam green': '#90fda9', 'grey/green': '#86a17d', 'light gold': '#fddc5c', 'seafoam blue': '#78d1b6', 'topaz': '#13bbaf', 'violet pink': '#fb5ffc', 'wintergreen': '#20f986', 'yellow tan': '#ffe36e', 'dark fuchsia': '#9d0759', 'indigo blue': '#3a18b1', 'light yellowish green': '#c2ff89', 'pale magenta': '#d767ad', 'rich purple': '#720058', 'sunflower yellow': '#ffda03', 'green/blue': '#01c08d', 'leather': '#ac7434', 'racing green': '#014600', 'vivid purple': '#9900fa', 'dark royal blue': '#02066f', 'hazel': '#8e7618', 'muted pink': '#d1768f', 'booger green': '#96b403', 'canary': '#fdff63', 'cool grey': '#95a3a6', 'dark taupe': '#7f684e', 'darkish purple': '#751973', 'true green': '#089404', 'coral pink': '#ff6163', 'dark sage': '#598556', 'dark slate blue': '#214761', 'flat blue': '#3c73a8', 'mushroom': '#ba9e88', 'rich blue': '#021bf9', 'dirty purple': '#734a65', 'greenblue': '#23c48b', 'icky green': '#8fae22', 'light khaki': '#e6f2a2', 'warm blue': '#4b57db', 'dark hot pink': '#d90166', 'deep sea blue': '#015482', 'carmine': '#9d0216', 'dark yellow green': '#728f02', 'pale peach': '#ffe5ad', 'plum purple': '#4e0550', 'golden rod': '#f9bc08', 'neon red': '#ff073a', 'old pink': '#c77986', 'very pale blue': '#d6fffe', 'blood orange': '#fe4b03', 'grapefruit': '#fd5956', 'sand yellow': '#fce166', 'clay brown': '#b2713d', 'dark blue grey': '#1f3b4d', 'flat green': '#699d4c', 'light green blue': '#56fca2', 'warm pink': '#fb5581', 'dodger blue': '#3e82fc', 'gross green': '#a0bf16', 'ice': '#d6fffa', 'metallic blue': '#4f738e', 'pale salmon': '#ffb19a', 'sap green': '#5c8b15', 'algae': '#54ac68', 'bluey grey': '#89a0b0', 'greeny grey': '#7ea07a', 'highlighter green': '#1bfc06', 'light light blue': '#cafffb', 'light mint': '#b6ffbb', 'raw umber': '#a75e09', 'vivid blue': '#152eff', 'deep lavender': '#8d5eb7', 'dull teal': '#5f9e8f', 'light greenish blue': '#63f7b4', 'mud green': '#606602', 'pinky': '#fc86aa', 'red wine': '#8c0034', 'shit green': '#758000', 'tan brown': '#ab7e4c', 'darkblue': '#030764', 'rosa': '#fe86a4', 'lipstick': '#d5174e', 'pale mauve': '#fed0fc', 'claret': '#680018', 'dandelion': '#fedf08', 'orangered': '#fe420f', 'poop green': '#6f7c00', 'ruby': '#ca0147', 'dark': '#1b2431', 'greenish turquoise': '#00fbb0', 'pastel red': '#db5856', 'piss yellow': '#ddd618', 'bright cyan': '#41fdfe', 'dark coral': '#cf524e', 'algae green': '#21c36f', 'darkish red': '#a90308', 'reddy brown': '#6e1005', 'blush pink': '#fe828c', 'camouflage green': '#4b6113', 'lawn green': '#4da409', 'putty': '#beae8a', 'vibrant blue': '#0339f8', 'dark sand': '#a88f59', 'purple/blue': '#5d21d0', 'saffron': '#feb209', 'twilight': '#4e518b', 'warm brown': '#964e02', 'bluegrey': '#85a3b2', 'bubble gum pink': '#ff69af', 'duck egg blue': '#c3fbf4', 'greenish cyan': '#2afeb7', 'petrol': '#005f6a', 'royal': '#0c1793', 'butter': '#ffff81', 'dusty orange': '#f0833a', 'off yellow': '#f1f33f', 'pale olive green': '#b1d27b', 'orangish': '#fc824a', 'leaf': '#71aa34', 'light blue grey': '#b7c9e2', 'dried blood': '#4b0101', 'lightish purple': '#a552e6', 'rusty red': '#af2f0d', 'lavender blue': '#8b88f8', 'light grass green': '#9af764', 'light mint green': '#a6fbb2', 'sunflower': '#ffc512', 'velvet': '#750851', 'brick orange': '#c14a09', 'lightish red': '#fe2f4a', 'pure blue': '#0203e2', 'twilight blue': '#0a437a', 'violet red': '#a50055', 'yellowy brown': '#ae8b0c', 'carnation': '#fd798f', 'muddy yellow': '#bfac05', 'dark seafoam green': '#3eaf76', 'deep rose': '#c74767', 'dusty red': '#b9484e', 'grey/blue': '#647d8e', 'lemon lime': '#bffe28', 'purple/pink': '#d725de', 'brown yellow': '#b29705', 'purple brown': '#673a3f', 'wisteria': '#a87dc2', 'banana yellow': '#fafe4b', 'lipstick red': '#c0022f', 'water blue': '#0e87cc', 'brown grey': '#8d8468', 'vibrant purple': '#ad03de', 'baby green': '#8cff9e', 'barf green': '#94ac02', 'eggshell blue': '#c4fff7', 'sandy yellow': '#fdee73', 'cool green': '#33b864', 'pale': '#fff9d0', 'blue/grey': '#758da3', 'hot magenta': '#f504c9', 'greyblue': '#77a1b5', 'purpley': '#8756e4', 'baby shit green': '#889717', 'brownish pink': '#c27e79', 'dark aquamarine': '#017371', 'diarrhea': '#9f8303', 'light mustard': '#f7d560', 'pale sky blue': '#bdf6fe', 'turtle green': '#75b84f', 'bright olive': '#9cbb04', 'dark grey blue': '#29465b', 'greeny brown': '#696006', 'lemon green': '#adf802', 'light periwinkle': '#c1c6fc', 'seaweed green': '#35ad6b', 'sunshine yellow': '#fffd37', 'ugly purple': '#a442a0', 'medium pink': '#f36196', 'puke brown': '#947706', 'very light pink': '#fff4f2', 'viridian': '#1e9167', 'bile': '#b5c306', 'faded yellow': '#feff7f', 'very pale green': '#cffdbc', 'vibrant green': '#0add08', 'bright lime': '#87fd05', 'spearmint': '#1ef876', 'light aquamarine': '#7bfdc7', 'light sage': '#bcecac', 'yellowgreen': '#bbf90f', 'baby poo': '#ab9004', 'dark seafoam': '#1fb57a', 'deep teal': '#00555a', 'heather': '#a484ac', 'rust orange': '#c45508', 'dirty blue': '#3f829d', 'fern green': '#548d44', 'bright lilac': '#c95efb', 'weird green': '#3ae57f', 'peacock blue': '#016795', 'avocado green': '#87a922', 'faded orange': '#f0944d', 'grape purple': '#5d1451', 'hot green': '#25ff29', 'lime yellow': '#d0fe1d', 'mango': '#ffa62b', 'shamrock': '#01b44c', 'bubblegum': '#ff6cb5', 'purplish brown': '#6b4247', 'vomit yellow': '#c7c10c', 'pale cyan': '#b7fffa', 'key lime': '#aeff6e', 'tomato red': '#ec2d01', 'lightgreen': '#76ff7b', 'merlot': '#730039', 'night blue': '#040348', 'purpleish pink': '#df4ec8', 'apple': '#6ecb3c', 'baby poop green': '#8f9805', 'green apple': '#5edc1f', 'heliotrope': '#d94ff5', 'yellow/green': '#c8fd3d', 'almost black': '#070d0d', 'cool blue': '#4984b8', 'leafy green': '#51b73b', 'mustard brown': '#ac7e04', 'dusk': '#4e5481', 'dull brown': '#876e4b', 'frog green': '#58bc08', 'vivid green': '#2fef10', 'bright light green': '#2dfe54', 'fluro green': '#0aff02', 'kiwi': '#9cef43', 'seaweed': '#18d17b', 'navy green': '#35530a', 'ultramarine blue': '#1805db', 'iris': '#6258c4', 'pastel orange': '#ff964f', 'yellowish orange': '#ffab0f', 'perrywinkle': '#8f8ce7', 'tealish': '#24bca8', 'dark plum': '#3f012c', 'pear': '#cbf85f', 'pinkish orange': '#ff724c', 'midnight purple': '#280137', 'light urple': '#b36ff6', 'dark mint': '#48c072', 'greenish tan': '#bccb7a', 'light burgundy': '#a8415b', 'turquoise blue': '#06b1c4', 'ugly pink': '#cd7584', 'sandy': '#f1da7a', 'electric pink': '#ff0490', 'muted purple': '#805b87', 'mid green': '#50a747', 'greyish': '#a8a495', 'neon yellow': '#cfff04', 'banana': '#ffff7e', 'carnation pink': '#ff7fa7', 'tomato': '#ef4026', 'sea': '#3c9992', 'muddy brown': '#886806', 'turquoise green': '#04f489', 'buff': '#fef69e', 'fawn': '#cfaf7b', 'muted blue': '#3b719f', 'pale rose': '#fdc1c5', 'dark mint green': '#20c073', 'amethyst': '#9b5fc0', 'blue/green': '#0f9b8e', 'chestnut': '#742802', 'sick green': '#9db92c', 'pea': '#a4bf20', 'rusty orange': '#cd5909', 'stone': '#ada587', 'rose red': '#be013c', 'pale aqua': '#b8ffeb', 'deep orange': '#dc4d01', 'earth': '#a2653e', 'mossy green': '#638b27', 'grassy green': '#419c03', 'pale lime green': '#b1ff65', 'light grey blue': '#9dbcd4', 'pale grey': '#fdfdfe', 'asparagus': '#77ab56', 'blueberry': '#464196', 'purple red': '#990147', 'pale lime': '#befd73', 'greenish teal': '#32bf84', 'caramel': '#af6f09', 'deep magenta': '#a0025c', 'light peach': '#ffd8b1', 'milk chocolate': '#7f4e1e', 'ocher': '#bf9b0c', 'off green': '#6ba353', 'purply pink': '#f075e6', 'lightblue': '#7bc8f6', 'dusky blue': '#475f94', 'golden': '#f5bf03', 'light beige': '#fffeb6', 'butter yellow': '#fffd74', 'dusky purple': '#895b7b', 'french blue': '#436bad', 'ugly yellow': '#d0c101', 'greeny yellow': '#c6f808', 'orangish red': '#f43605', 'shamrock green': '#02c14d', 'orangish brown': '#b25f03', 'tree green': '#2a7e19', 'deep violet': '#490648', 'gunmetal': '#536267', 'blue/purple': '#5a06ef', 'cherry': '#cf0234', 'sandy brown': '#c4a661', 'warm grey': '#978a84', 'dark indigo': '#1f0954', 'midnight': '#03012d', 'bluey green': '#2bb179', 'grey pink': '#c3909b', 'soft purple': '#a66fb5', 'blood': '#770001', 'brown red': '#922b05', 'medium grey': '#7d7f7c', 'berry': '#990f4b', 'poo': '#8f7303', 'purpley pink': '#c83cb9', 'light salmon': '#fea993', 'snot': '#acbb0d', 'easter purple': '#c071fe', 'light yellow green': '#ccfd7f', 'dark navy blue': '#00022e', 'drab': '#828344', 'light rose': '#ffc5cb', 'rouge': '#ab1239', 'purplish red': '#b0054b', 'slime green': '#99cc04', 'baby poop': '#937c00', 'irish green': '#019529', 'pink/purple': '#ef1de7', 'dark navy': '#000435', 'greeny blue': '#42b395', 'light plum': '#9d5783', 'pinkish grey': '#c8aca9', 'dirty orange': '#c87606', 'rust red': '#aa2704', 'pale lilac': '#e4cbff', 'orangey red': '#fa4224', 'primary blue': '#0804f9', 'kermit green': '#5cb200', 'brownish purple': '#76424e', 'murky green': '#6c7a0e', 'wheat': '#fbdd7e', 'very dark purple': '#2a0134', 'bottle green': '#044a05', 'watermelon': '#fd4659', 'deep sky blue': '#0d75f8', 'fire engine red': '#fe0002', 'yellow ochre': '#cb9d06', 'pumpkin orange': '#fb7d07', 'pale olive': '#b9cc81', 'light lilac': '#edc8ff', 'lightish green': '#61e160', 'carolina blue': '#8ab8fe', 'mulberry': '#920a4e', 'shocking pink': '#fe02a2', 'auburn': '#9a3001', 'bright lime green': '#65fe08', 'celadon': '#befdb7', 'pinkish brown': '#b17261', 'poo brown': '#885f01', 'bright sky blue': '#02ccfe', 'celery': '#c1fd95', 'dirt brown': '#836539', 'strawberry': '#fb2943', 'dark lime': '#84b701', 'copper': '#b66325', 'medium brown': '#7f5112', 'muted green': '#5fa052', "robin's egg": '#6dedfd', 'bright aqua': '#0bf9ea', 'bright lavender': '#c760ff', 'ivory': '#ffffcb', 'very light purple': '#f6cefc', 'light navy': '#155084', 'pink red': '#f5054f', 'olive brown': '#645403', 'poop brown': '#7a5901', 'mustard green': '#a8b504', 'ocean green': '#3d9973', 'very dark blue': '#000133', 'dusty green': '#76a973', 'light navy blue': '#2e5a88', 'minty green': '#0bf77d', 'adobe': '#bd6c48', 'barney': '#ac1db8', 'jade green': '#2baf6a', 'bright light blue': '#26f7fd', 'light lime': '#aefd6c', 'dark khaki': '#9b8f55', 'orange yellow': '#ffad01', 'ocre': '#c69c04', 'maize': '#f4d054', 'faded pink': '#de9dac', 'british racing green': '#05480d', 'sandstone': '#c9ae74', 'mud brown': '#60460f', 'light sea green': '#98f6b0', 'robin egg blue': '#8af1fe', 'aqua marine': '#2ee8bb', 'dark sea green': '#11875d', 'soft pink': '#fdb0c0', 'orangey brown': '#b16002', 'cherry red': '#f7022a', 'burnt yellow': '#d5ab09', 'brownish grey': '#86775f', 'camel': '#c69f59', 'purplish grey': '#7a687f', 'marine': '#042e60', 'greyish pink': '#c88d94', 'pale turquoise': '#a5fbd5', 'pastel yellow': '#fffe71', 'bluey purple': '#6241c7', 'canary yellow': '#fffe40', 'faded red': '#d3494e', 'sepia': '#985e2b', 'coffee': '#a6814c', 'bright magenta': '#ff08e8', 'mocha': '#9d7651', 'ecru': '#feffca', 'purpleish': '#98568d', 'cranberry': '#9e003a', 'darkish green': '#287c37', 'brown orange': '#b96902', 'dusky rose': '#ba6873', 'melon': '#ff7855', 'sickly green': '#94b21c', 'silver': '#c5c9c7', 'purply blue': '#661aee', 'purpleish blue': '#6140ef', 'hospital green': '#9be5aa', 'shit brown': '#7b5804', 'mid blue': '#276ab3', 'amber': '#feb308', 'easter green': '#8cfd7e', 'soft blue': '#6488ea', 'cerulean blue': '#056eee', 'golden brown': '#b27a01', 'bright turquoise': '#0ffef9', 'red pink': '#fa2a55', 'red purple': '#820747', 'greyish brown': '#7a6a4f', 'vermillion': '#f4320c', 'russet': '#a13905', 'steel grey': '#6f828a', 'lighter purple': '#a55af4', 'bright violet': '#ad0afd', 'prussian blue': '#004577', 'slate green': '#658d6d', 'dirty pink': '#ca7b80', 'dark blue green': '#005249', 'pine': '#2b5d34', 'yellowy green': '#bff128', 'dark gold': '#b59410', 'bluish': '#2976bb', 'darkish blue': '#014182', 'dull red': '#bb3f3f', 'pinky red': '#fc2647', 'bronze': '#a87900', 'pale teal': '#82cbb2', 'military green': '#667c3e', 'barbie pink': '#fe46a5', 'bubblegum pink': '#fe83cc', 'pea soup green': '#94a617', 'dark mustard': '#a88905', 'shit': '#7f5f00', 'medium purple': '#9e43a2', 'very dark green': '#062e03', 'dirt': '#8a6e45', 'dusky pink': '#cc7a8b', 'red violet': '#9e0168', 'lemon yellow': '#fdff38', 'pistachio': '#c0fa8b', 'dull yellow': '#eedc5b', 'dark lime green': '#7ebd01', 'denim blue': '#3b5b92', 'teal blue': '#01889f', 'lightish blue': '#3d7afd', 'purpley blue': '#5f34e7', 'light indigo': '#6d5acf', 'swamp green': '#748500', 'brown green': '#706c11', 'dark maroon': '#3c0008', 'hot purple': '#cb00f5', 'dark forest green': '#002d04', 'faded blue': '#658cbb', 'drab green': '#749551', 'light lime green': '#b9ff66', 'snot green': '#9dc100', 'yellowish': '#faee66', 'light blue green': '#7efbb3', 'bordeaux': '#7b002c', 'light mauve': '#c292a1', 'ocean': '#017b92', 'marigold': '#fcc006', 'muddy green': '#657432', 'dull orange': '#d8863b', 'steel': '#738595', 'electric purple': '#aa23ff', 'fluorescent green': '#08ff08', 'yellowish brown': '#9b7a01', 'blush': '#f29e8e', 'soft green': '#6fc276', 'bright orange': '#ff5b00', 'lemon': '#fdff52', 'purple grey': '#866f85', 'acid green': '#8ffe09', 'pale lavender': '#eecffe', 'violet blue': '#510ac9', 'light forest green': '#4f9153', 'burnt red': '#9f2305', 'khaki green': '#728639', 'cerise': '#de0c62', 'faded purple': '#916e99', 'apricot': '#ffb16d', 'dark olive green': '#3c4d03', 'grey brown': '#7f7053', 'green grey': '#77926f', 'true blue': '#010fcc', 'pale violet': '#ceaefa', 'periwinkle blue': '#8f99fb', 'light sky blue': '#c6fcff', 'blurple': '#5539cc', 'green brown': '#544e03', 'bluegreen': '#017a79', 'bright teal': '#01f9c6', 'brownish yellow': '#c9b003', 'pea soup': '#929901', 'forest': '#0b5509', 'barney purple': '#a00498', 'ultramarine': '#2000b1', 'purplish': '#94568c', 'puke yellow': '#c2be0e', 'bluish grey': '#748b97', 'dark periwinkle': '#665fd1', 'dark lilac': '#9c6da5', 'reddish': '#c44240', 'light maroon': '#a24857', 'dusty purple': '#825f87', 'terra cotta': '#c9643b', 'avocado': '#90b134', 'marine blue': '#01386a', 'teal green': '#25a36f', 'slate grey': '#59656d', 'lighter green': '#75fd63', 'electric green': '#21fc0d', 'dusty blue': '#5a86ad', 'golden yellow': '#fec615', 'bright yellow': '#fffd01', 'light lavender': '#dfc5fe', 'umber': '#b26400', 'poop': '#7f5e00', 'dark peach': '#de7e5d', 'jungle green': '#048243', 'eggshell': '#ffffd4', 'denim': '#3b638c', 'yellow brown': '#b79400', 'dull purple': '#84597e', 'chocolate brown': '#411900', 'wine red': '#7b0323', 'neon blue': '#04d9ff', 'dirty green': '#667e2c', 'light tan': '#fbeeac', 'ice blue': '#d7fffe', 'cadet blue': '#4e7496', 'dark mauve': '#874c62', 'very light blue': '#d5ffff', 'grey purple': '#826d8c', 'pastel pink': '#ffbacd', 'very light green': '#d1ffbd', 'dark sky blue': '#448ee4', 'evergreen': '#05472a', 'dull pink': '#d5869d', 'aubergine': '#3d0734', 'mahogany': '#4a0100', 'reddish orange': '#f8481c', 'deep green': '#02590f', 'vomit green': '#89a203', 'purple pink': '#e03fd8', 'dusty pink': '#d58a94', 'faded green': '#7bb274', 'camo green': '#526525', 'pinky purple': '#c94cbe', 'pink purple': '#db4bda', 'brownish red': '#9e3623', 'dark rose': '#b5485d', 'mud': '#735c12', 'brownish': '#9c6d57', 'emerald green': '#028f1e', 'pale brown': '#b1916e', 'dull blue': '#49759c', 'burnt umber': '#a0450e', 'medium green': '#39ad48', 'clay': '#b66a50', 'light aqua': '#8cffdb', 'light olive green': '#a4be5c', 'brownish orange': '#cb7723', 'dark aqua': '#05696b', 'purplish pink': '#ce5dae', 'dark salmon': '#c85a53', 'greenish grey': '#96ae8d', 'jade': '#1fa774', 'ugly green': '#7a9703', 'dark beige': '#ac9362', 'emerald': '#01a049', 'pale red': '#d9544d', 'light magenta': '#fa5ff7', 'sky': '#82cafc', 'light cyan': '#acfffc', 'yellow orange': '#fcb001', 'reddish purple': '#910951', 'reddish pink': '#fe2c54', 'orchid': '#c875c4', 'dirty yellow': '#cdc50a', 'orange red': '#fd411e', 'deep red': '#9a0200', 'orange brown': '#be6400', 'cobalt blue': '#030aa7', 'neon pink': '#fe019a', 'rose pink': '#f7879a', 'greyish purple': '#887191', 'raspberry': '#b00149', 'aqua green': '#12e193', 'salmon pink': '#fe7b7c', 'tangerine': '#ff9408', 'brownish green': '#6a6e09', 'red brown': '#8b2e16', 'greenish brown': '#696112', 'pumpkin': '#e17701', 'pine green': '#0a481e', 'charcoal': '#343837', 'baby pink': '#ffb7ce', 'cornflower': '#6a79f7', 'blue violet': '#5d06e9', 'chocolate': '#3d1c02', 'greyish green': '#82a67d', 'scarlet': '#be0119', 'green yellow': '#c9ff27', 'dark olive': '#373e02', 'sienna': '#a9561e', 'pastel purple': '#caa0ff', 'terracotta': '#ca6641', 'aqua blue': '#02d8e9', 'sage green': '#88b378', 'blood red': '#980002', 'deep pink': '#cb0162', 'grass': '#5cac2d', 'moss': '#769958', 'pastel blue': '#a2bffe', 'bluish green': '#10a674', 'green blue': '#06b48b', 'dark tan': '#af884a', 'greenish blue': '#0b8b87', 'pale orange': '#ffa756', 'vomit': '#a2a415', 'forrest green': '#154406', 'dark lavender': '#856798', 'dark violet': '#34013f', 'purple blue': '#632de9', 'dark cyan': '#0a888a', 'olive drab': '#6f7632', 'pinkish': '#d46a7e', 'cobalt': '#1e488f', 'neon purple': '#bc13fe', 'light turquoise': '#7ef4cc', 'apple green': '#76cd26', 'dull green': '#74a662', 'wine': '#80013f', 'powder blue': '#b1d1fc', 'off white': '#ffffe4', 'electric blue': '#0652ff', 'dark turquoise': '#045c5a', 'blue purple': '#5729ce', 'azure': '#069af3', 'bright red': '#ff000d', 'pinkish red': '#f10c45', 'cornflower blue': '#5170d7', 'light olive': '#acbf69', 'grape': '#6c3461', 'greyish blue': '#5e819d', 'purplish blue': '#601ef9', 'yellowish green': '#b0dd16', 'greenish yellow': '#cdfd02', 'medium blue': '#2c6fbb', 'dusty rose': '#c0737a', 'light violet': '#d6b4fc', 'midnight blue': '#020035', 'bluish purple': '#703be7', 'red orange': '#fd3c06', 'dark magenta': '#960056', 'greenish': '#40a368', 'ocean blue': '#03719c', 'coral': '#fc5a50', 'cream': '#ffffc2', 'reddish brown': '#7f2b0a', 'burnt sienna': '#b04e0f', 'brick': '#a03623', 'sage': '#87ae73', 'grey green': '#789b73', 'white': '#ffffff', "robin's egg blue": '#98eff9', 'moss green': '#658b38', 'steel blue': '#5a7d9a', 'eggplant': '#380835', 'light yellow': '#fffe7a', 'leaf green': '#5ca904', 'light grey': '#d8dcd6', 'puke': '#a5a502', 'pinkish purple': '#d648d7', 'sea blue': '#047495', 'pale purple': '#b790d4', 'slate blue': '#5b7c99', 'blue grey': '#607c8e', 'hunter green': '#0b4008', 'fuchsia': '#ed0dd9', 'crimson': '#8c000f', 'pale yellow': '#ffff84', 'ochre': '#bf9005', 'mustard yellow': '#d2bd0a', 'light red': '#ff474c', 'cerulean': '#0485d1', 'pale pink': '#ffcfdc', 'deep blue': '#040273', 'rust': '#a83c09', 'light teal': '#90e4c1', 'slate': '#516572', 'goldenrod': '#fac205', 'dark yellow': '#d5b60a', 'dark grey': '#363737', 'army green': '#4b5d16', 'grey blue': '#6b8ba4', 'seafoam': '#80f9ad', 'puce': '#a57e52', 'spring green': '#a9f971', 'dark orange': '#c65102', 'sand': '#e2ca76', 'pastel green': '#b0ff9d', 'mint': '#9ffeb0', 'light orange': '#fdaa48', 'bright pink': '#fe01b1', 'chartreuse': '#c1f80a', 'deep purple': '#36013f', 'dark brown': '#341c02', 'taupe': '#b9a281', 'pea green': '#8eab12', 'puke green': '#9aae07', 'kelly green': '#02ab2e', 'seafoam green': '#7af9ab', 'blue green': '#137e6d', 'khaki': '#aaa662', 'burgundy': '#610023', 'dark teal': '#014d4e', 'brick red': '#8f1402', 'royal purple': '#4b006e', 'plum': '#580f41', 'mint green': '#8fff9f', 'gold': '#dbb40c', 'baby blue': '#a2cffe', 'yellow green': '#c0fb2d', 'bright purple': '#be03fd', 'dark red': '#840000', 'pale blue': '#d0fefe', 'grass green': '#3f9b0b', 'navy': '#01153e', 'aquamarine': '#04d8b2', 'burnt orange': '#c04e01', 'neon green': '#0cff0c', 'bright blue': '#0165fc', 'rose': '#cf6275', 'light pink': '#ffd1df', 'mustard': '#ceb301', 'indigo': '#380282', 'lime': '#aaff32', 'sea green': '#53fca1', 'periwinkle': '#8e82fe', 'dark pink': '#cb416b', 'olive green': '#677a04', 'peach': '#ffb07c', 'pale green': '#c7fdb5', 'light brown': '#ad8150', 'hot pink': '#ff028d', 'black': '#000000', 'lilac': '#cea2fd', 'navy blue': '#001146', 'royal blue': '#0504aa', 'beige': '#e6daa6', 'salmon': '#ff796c', 'olive': '#6e750e', 'maroon': '#650021', 'bright green': '#01ff07', 'dark purple': '#35063e', 'mauve': '#ae7181', 'forest green': '#06470c', 'aqua': '#13eac9', 'cyan': '#00ffff', 'tan': '#d1b26f', 'dark blue': '#00035b', 'lavender': '#c79fef', 'turquoise': '#06c2ac', 'dark green': '#033500', 'violet': '#9a0eea', 'light purple': '#bf77f6', 'lime green': '#89fe05', 'grey': '#929591', 'sky blue': '#75bbfd', 'yellow': '#ffff14', 'magenta': '#c20078', 'light green': '#96f97b', 'orange': '#f97306', 'teal': '#029386', 'light blue': '#95d0fc', 'red': '#e50000', 'brown': '#653700', 'pink': '#ff81c0', 'blue': '#0343df', 'green': '#15b01a', 'purple': '#7e1e9c'} # Normalize name to "xkcd:<name>" to avoid name collisions. XKCD_COLORS = {'xkcd:' + name: value for name, value in XKCD_COLORS.items()} # https://drafts.csswg.org/css-color-4/#named-colors CSS4_COLORS = { 'aliceblue': '#F0F8FF', 'antiquewhite': '#FAEBD7', 'aqua': '#00FFFF', 'aquamarine': '#7FFFD4', 'azure': '#F0FFFF', 'beige': '#F5F5DC', 'bisque': '#FFE4C4', 'black': '#000000', 'blanchedalmond': '#FFEBCD', 'blue': '#0000FF', 'blueviolet': '#8A2BE2', 'brown': '#A52A2A', 'burlywood': '#DEB887', 'cadetblue': '#5F9EA0', 'chartreuse': '#7FFF00', 'chocolate': '#D2691E', 'coral': '#FF7F50', 'cornflowerblue': '#6495ED', 'cornsilk': '#FFF8DC', 'crimson': '#DC143C', 'cyan': '#00FFFF', 'darkblue': '#00008B', 'darkcyan': '#008B8B', 'darkgoldenrod': '#B8860B', 'darkgray': '#A9A9A9', 'darkgreen': '#006400', 'darkgrey': '#A9A9A9', 'darkkhaki': '#BDB76B', 'darkmagenta': '#8B008B', 'darkolivegreen': '#556B2F', 'darkorange': '#FF8C00', 'darkorchid': '#9932CC', 'darkred': '#8B0000', 'darksalmon': '#E9967A', 'darkseagreen': '#8FBC8F', 'darkslateblue': '#483D8B', 'darkslategray': '#2F4F4F', 'darkslategrey': '#2F4F4F', 'darkturquoise': '#00CED1', 'darkviolet': '#9400D3', 'deeppink': '#FF1493', 'deepskyblue': '#00BFFF', 'dimgray': '#696969', 'dimgrey': '#696969', 'dodgerblue': '#1E90FF', 'firebrick': '#B22222', 'floralwhite': '#FFFAF0', 'forestgreen': '#228B22', 'fuchsia': '#FF00FF', 'gainsboro': '#DCDCDC', 'ghostwhite': '#F8F8FF', 'gold': '#FFD700', 'goldenrod': '#DAA520', 'gray': '#808080', 'green': '#008000', 'greenyellow': '#ADFF2F', 'grey': '#808080', 'honeydew': '#F0FFF0', 'hotpink': '#FF69B4', 'indianred': '#CD5C5C', 'indigo': '#4B0082', 'ivory': '#FFFFF0', 'khaki': '#F0E68C', 'lavender': '#E6E6FA', 'lavenderblush': '#FFF0F5', 'lawngreen': '#7CFC00', 'lemonchiffon': '#FFFACD', 'lightblue': '#ADD8E6', 'lightcoral': '#F08080', 'lightcyan': '#E0FFFF', 'lightgoldenrodyellow': '#FAFAD2', 'lightgray': '#D3D3D3', 'lightgreen': '#90EE90', 'lightgrey': '#D3D3D3', 'lightpink': '#FFB6C1', 'lightsalmon': '#FFA07A', 'lightseagreen': '#20B2AA', 'lightskyblue': '#87CEFA', 'lightslategray': '#778899', 'lightslategrey': '#778899', 'lightsteelblue': '#B0C4DE', 'lightyellow': '#FFFFE0', 'lime': '#00FF00', 'limegreen': '#32CD32', 'linen': '#FAF0E6', 'magenta': '#FF00FF', 'maroon': '#800000', 'mediumaquamarine': '#66CDAA', 'mediumblue': '#0000CD', 'mediumorchid': '#BA55D3', 'mediumpurple': '#9370DB', 'mediumseagreen': '#3CB371', 'mediumslateblue': '#7B68EE', 'mediumspringgreen': '#00FA9A', 'mediumturquoise': '#48D1CC', 'mediumvioletred': '#C71585', 'midnightblue': '#191970', 'mintcream': '#F5FFFA', 'mistyrose': '#FFE4E1', 'moccasin': '#FFE4B5', 'navajowhite': '#FFDEAD', 'navy': '#000080', 'oldlace': '#FDF5E6', 'olive': '#808000', 'olivedrab': '#6B8E23', 'orange': '#FFA500', 'orangered': '#FF4500', 'orchid': '#DA70D6', 'palegoldenrod': '#EEE8AA', 'palegreen': '#98FB98', 'paleturquoise': '#AFEEEE', 'palevioletred': '#DB7093', 'papayawhip': '#FFEFD5', 'peachpuff': '#FFDAB9', 'peru': '#CD853F', 'pink': '#FFC0CB', 'plum': '#DDA0DD', 'powderblue': '#B0E0E6', 'purple': '#800080', 'rebeccapurple': '#663399', 'red': '#FF0000', 'rosybrown': '#BC8F8F', 'royalblue': '#4169E1', 'saddlebrown': '#8B4513', 'salmon': '#FA8072', 'sandybrown': '#F4A460', 'seagreen': '#2E8B57', 'seashell': '#FFF5EE', 'sienna': '#A0522D', 'silver': '#C0C0C0', 'skyblue': '#87CEEB', 'slateblue': '#6A5ACD', 'slategray': '#708090', 'slategrey': '#708090', 'snow': '#FFFAFA', 'springgreen': '#00FF7F', 'steelblue': '#4682B4', 'tan': '#D2B48C', 'teal': '#008080', 'thistle': '#D8BFD8', 'tomato': '#FF6347', 'turquoise': '#40E0D0', 'violet': '#EE82EE', 'wheat': '#F5DEB3', 'white': '#FFFFFF', 'whitesmoke': '#F5F5F5', 'yellow': '#FFFF00', 'yellowgreen': '#9ACD32'}
matplotlibREPO_NAMEmatplotlibPATH_START.@matplotlib_extracted@matplotlib-main@lib@matplotlib@_color_data.py@.PATH_END.py
{ "filename": "gen_qa_identity_models.py", "repo_name": "triton-inference-server/server", "repo_path": "server_extracted/server-main/qa/common/gen_qa_identity_models.py", "type": "Python" }
#!/usr/bin/env python3 # Copyright 2019-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import os from builtins import range import gen_ensemble_model_utils as emu import numpy as np from gen_common import ( np_to_model_dtype, np_to_onnx_dtype, np_to_tf_dtype, np_to_trt_dtype, ) FLAGS = None np_dtype_string = np.dtype(object) from typing import List, Tuple def create_tf_modelfile( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape ): if not tu.validate_for_tf_model(dtype, dtype, dtype, shape, shape, shape): return tf_dtype = np_to_tf_dtype(dtype) # Create the model that copies inputs to corresponding outputs. tf.compat.v1.reset_default_graph() for io_num in range(io_cnt): input_name = "INPUT{}".format(io_num) output_name = "OUTPUT{}".format(io_num) if max_batch == 0: tin = tf.compat.v1.placeholder( tf_dtype, tu.shape_to_tf_shape(shape), input_name ) else: tin = tf.compat.v1.placeholder( tf_dtype, [ None, ] + tu.shape_to_tf_shape(shape), input_name, ) toutput = tf.identity(tin, name=output_name) # Use model name based on io_cnt and non-batching variant if create_savedmodel: model_name = tu.get_zero_model_name( "savedmodel_nobatch" if max_batch == 0 else "savedmodel", io_cnt, dtype ) else: model_name = tu.get_zero_model_name( "graphdef_nobatch" if max_batch == 0 else "graphdef", io_cnt, dtype ) model_version_dir = os.path.join(models_dir, model_name, str(model_version)) os.makedirs(model_version_dir, exist_ok=True) if create_savedmodel: with tf.compat.v1.Session() as sess: input_dict = {} output_dict = {} for io_num in range(io_cnt): input_name = "INPUT{}".format(io_num) output_name = "OUTPUT{}".format(io_num) input_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name( input_name + ":0" ) output_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name( output_name + ":0" ) input_dict[input_name] = input_tensor output_dict[output_name] = output_tensor tf.compat.v1.saved_model.simple_save( sess, model_version_dir + "/model.savedmodel", inputs=input_dict, outputs=output_dict, ) else: with tf.compat.v1.Session() as sess: graph_io.write_graph( sess.graph.as_graph_def(), model_version_dir, "model.graphdef", as_text=False, ) def create_tf_modelconfig( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape ): if not tu.validate_for_tf_model(dtype, dtype, dtype, shape, shape, shape): return shape_str = tu.shape_to_dims_str(shape) # Use a different model name for the non-batching variant if create_savedmodel: model_name = tu.get_zero_model_name( "savedmodel_nobatch" if max_batch == 0 else "savedmodel", io_cnt, dtype ) else: model_name = tu.get_zero_model_name( "graphdef_nobatch" if max_batch == 0 else "graphdef", io_cnt, dtype ) config_dir = os.path.join(models_dir, model_name) config = """ name: "{}" platform: "{}" max_batch_size: {} """.format( model_name, "tensorflow_savedmodel" if create_savedmodel else "tensorflow_graphdef", max_batch, ) for io_num in range(io_cnt): config += """ input [ {{ name: "INPUT{}" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT{}" data_type: {} dims: [ {} ] }} ] """.format( io_num, np_to_model_dtype(dtype), shape_str, io_num, np_to_model_dtype(dtype), shape_str, ) os.makedirs(config_dir, exist_ok=True) with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) def create_ensemble_modelfile( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape ): if not tu.validate_for_ensemble_model( "zero", dtype, dtype, dtype, shape, shape, shape ): return emu.create_identity_ensemble_modelfile( "zero", models_dir, model_version, max_batch, dtype, [shape] * io_cnt, [shape] * io_cnt, ) def create_ensemble_modelconfig( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape ): if not tu.validate_for_ensemble_model( "zero", dtype, dtype, dtype, shape, shape, shape ): return emu.create_identity_ensemble_modelconfig( "zero", models_dir, model_version, max_batch, dtype, [shape] * io_cnt, [shape] * io_cnt, [shape] * io_cnt, [shape] * io_cnt, ) def create_onnx_modelfile( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape ): if not tu.validate_for_onnx_model(dtype, dtype, dtype, shape, shape, shape): return onnx_dtype = np_to_onnx_dtype(dtype) # Create the model model_name = tu.get_zero_model_name( "onnx_nobatch" if max_batch == 0 else "onnx", io_cnt, dtype ) model_version_dir = os.path.join(models_dir, model_name, str(model_version)) batch_dim = [] if max_batch == 0 else [None] onnx_nodes = [] onnx_inputs = [] onnx_outputs = [] idx = 0 for io_num in range(io_cnt): # Repeat so that the variable dimension name is different in_shape, idx = tu.shape_to_onnx_shape(shape, idx) out_shape, idx = tu.shape_to_onnx_shape(shape, idx) in_name = "INPUT{}".format(io_num) out_name = "OUTPUT{}".format(io_num) onnx_inputs.append( onnx.helper.make_tensor_value_info( in_name, onnx_dtype, batch_dim + in_shape ) ) onnx_outputs.append( onnx.helper.make_tensor_value_info( out_name, onnx_dtype, batch_dim + out_shape ) ) onnx_nodes.append(onnx.helper.make_node("Identity", [in_name], [out_name])) graph_proto = onnx.helper.make_graph( onnx_nodes, model_name, onnx_inputs, onnx_outputs ) if FLAGS.onnx_opset > 0: model_opset = onnx.helper.make_operatorsetid("", FLAGS.onnx_opset) model_def = onnx.helper.make_model( graph_proto, producer_name="triton", opset_imports=[model_opset] ) else: model_def = onnx.helper.make_model(graph_proto, producer_name="triton") os.makedirs(model_version_dir, exist_ok=True) onnx.save(model_def, model_version_dir + "/model.onnx") def create_onnx_modelconfig( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape ): if not tu.validate_for_onnx_model(dtype, dtype, dtype, shape, shape, shape): return # Use a different model name for the non-batching variant model_name = tu.get_zero_model_name( "onnx_nobatch" if max_batch == 0 else "onnx", io_cnt, dtype ) config_dir = os.path.join(models_dir, model_name) config = emu.create_general_modelconfig( model_name, "onnxruntime_onnx", max_batch, emu.repeat(dtype, io_cnt), emu.repeat(shape, io_cnt), emu.repeat(shape, io_cnt), emu.repeat(dtype, io_cnt), emu.repeat(shape, io_cnt), emu.repeat(shape, io_cnt), emu.repeat(None, io_cnt), force_tensor_number_suffix=True, ) os.makedirs(config_dir, exist_ok=True) with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) def create_libtorch_modelfile( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape ): if not tu.validate_for_libtorch_model( dtype, dtype, dtype, shape, shape, shape, max_batch ): return model_name = tu.get_zero_model_name( "libtorch_nobatch" if max_batch == 0 else "libtorch", io_cnt, dtype ) # Create the model if io_cnt == 1: if dtype == np_dtype_string: class IdentityNet(nn.Module): def __init__(self): super(IdentityNet, self).__init__() def forward(self, input0: List[str]) -> List[str]: return input0 else: class IdentityNet(nn.Module): def __init__(self): super(IdentityNet, self).__init__() def forward(self, input0): return input0 elif io_cnt == 2: if dtype == np_dtype_string: class IdentityNet(nn.Module): def __init__(self): super(IdentityNet, self).__init__() def forward( self, input0: List[str], input1: List[str] ) -> Tuple[List[str], List[str]]: return input0, input1 else: class IdentityNet(nn.Module): def __init__(self): super(IdentityNet, self).__init__() def forward(self, input0, input1): return input0, input1 elif io_cnt == 3: if dtype == np_dtype_string: class IdentityNet(nn.Module): def __init__(self): super(IdentityNet, self).__init__() def forward( self, input0: List[str], input1: List[str], input2: List[str] ) -> Tuple[List[str], List[str], List[str]]: return input0, input1, input2 else: class IdentityNet(nn.Module): def __init__(self): super(IdentityNet, self).__init__() def forward(self, input0, input1, input2): return input0, input1, input2 elif io_cnt == 4: if dtype == np_dtype_string: class IdentityNet(nn.Module): def __init__(self): super(IdentityNet, self).__init__() def forward( self, input0: List[str], input1: List[str], input2: List[str], input3: List[str], ) -> Tuple[List[str], List[str], List[str], List[str]]: return input0, input1, input2, input3 else: class IdentityNet(nn.Module): def __init__(self): super(IdentityNet, self).__init__() def forward(self, input0, input1, input2, input3): return input0, input1, input2, input3 identityModel = IdentityNet() traced = torch.jit.script(identityModel) model_version_dir = os.path.join(models_dir, model_name, str(model_version)) os.makedirs(model_version_dir, exist_ok=True) traced.save(model_version_dir + "/model.pt") def create_libtorch_modelconfig( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape ): if not tu.validate_for_libtorch_model( dtype, dtype, dtype, shape, shape, shape, max_batch ): return # Unpack version policy version_policy_str = "{ latest { num_versions: 1 }}" # Use a different model name for the non-batching variant model_name = tu.get_zero_model_name( "libtorch_nobatch" if max_batch == 0 else "libtorch", io_cnt, dtype ) shape_str = tu.shape_to_dims_str(shape) config_dir = os.path.join(models_dir, model_name) config = """ name: "{}" platform: "pytorch_libtorch" max_batch_size: {} version_policy: {} """.format( model_name, max_batch, version_policy_str ) for io_num in range(io_cnt): config += """ input [ {{ name: "INPUT__{}" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT__{}" data_type: {} dims: [ {} ] }} ] """.format( io_num, np_to_model_dtype(dtype), shape_str, io_num, np_to_model_dtype(dtype), shape_str, ) os.makedirs(config_dir, exist_ok=True) with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) def create_libtorch_linalg_modelfile(create_savedmodel, models_dir, model_version): model_name = "libtorch_float32_linalg" # To test the linalg library, this script uses two inverse matrix operations # to return the original input. class IdentityNet(nn.Module): def __init__(self, ref_pts): super(IdentityNet, self).__init__() ref_pts = torch.as_tensor(ref_pts) self.register_buffer("ref_pts", ref_pts) def forward(self, src: torch.Tensor): X = torch.linalg.tensorsolve(self.ref_pts, src) Y = torch.tensordot(self.ref_pts, X, dims=X.ndim) return Y ref_pts = torch.eye(2 * 3 * 4).reshape(2 * 3, 4, 2, 3, 4) identityModel = IdentityNet(ref_pts) traced = torch.jit.script(identityModel) model_version_dir = os.path.join(models_dir, model_name, str(model_version)) os.makedirs(model_version_dir, exist_ok=True) traced.save(model_version_dir + "/model.pt") def create_libtorch_linalg_modelconfig(create_savedmodel, models_dir, model_version): # Unpack version policy version_policy_str = "{ latest { num_versions: 1 }}" model_name = "libtorch_float32_linalg" dtype = np.float32 io_cnt = 1 max_batch = 0 shape = [6, 4] shape_str = tu.shape_to_dims_str(shape) config_dir = os.path.join(models_dir, model_name) config = """ name: "{}" platform: "pytorch_libtorch" max_batch_size: {} version_policy: {} """.format( model_name, max_batch, version_policy_str ) for io_num in range(io_cnt): config += """ input [ {{ name: "INPUT__{}" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT__{}" data_type: {} dims: [ {} ] }} ] """.format( io_num, np_to_model_dtype(dtype), shape_str, io_num, np_to_model_dtype(dtype), shape_str, ) os.makedirs(config_dir, exist_ok=True) with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) def create_openvino_modelfile( models_dir, model_version, io_cnt, max_batch, dtype, shape ): batch_dim = ( [] if max_batch == 0 else [ max_batch, ] ) if not tu.validate_for_openvino_model( dtype, dtype, dtype, batch_dim + shape, batch_dim + shape, batch_dim + shape ): return # Create the model model_name = tu.get_zero_model_name( "openvino_nobatch" if max_batch == 0 else "openvino", io_cnt, dtype ) model_version_dir = os.path.join(models_dir, model_name, str(model_version)) openvino_inputs = [] openvino_outputs = [] for io_num in range(io_cnt): in_name = "INPUT{}".format(io_num) out_name = "OUTPUT{}".format(io_num) openvino_inputs.append( ov.opset1.parameter(shape=batch_dim + shape, dtype=dtype, name=in_name) ) openvino_outputs.append( ov.opset1.result(openvino_inputs[io_num], name=out_name) ) model = ov.Model(openvino_outputs, openvino_inputs, model_name) os.makedirs(model_version_dir, exist_ok=True) ov.serialize( model, model_version_dir + "/model.xml", model_version_dir + "/model.bin" ) def create_openvino_modelconfig( models_dir, model_version, io_cnt, max_batch, dtype, shape ): batch_dim = ( [] if max_batch == 0 else [ max_batch, ] ) if not tu.validate_for_openvino_model( dtype, dtype, dtype, batch_dim + shape, batch_dim + shape, batch_dim + shape ): return # Unpack version policy version_policy_str = "{ latest { num_versions: 1 }}" # Use a different model name for the non-batching variant model_name = tu.get_zero_model_name( "openvino_nobatch" if max_batch == 0 else "openvino", io_cnt, dtype ) shape_str = tu.shape_to_dims_str(shape) config_dir = os.path.join(models_dir, model_name) config = """ name: "{}" backend: "openvino" max_batch_size: {} version_policy: {} """.format( model_name, max_batch, version_policy_str ) for io_num in range(io_cnt): config += """ input [ {{ name: "INPUT__{}" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT__{}" data_type: {} dims: [ {} ] }} ] """.format( io_num, np_to_model_dtype(dtype), shape_str, io_num, np_to_model_dtype(dtype), shape_str, ) os.makedirs(config_dir, exist_ok=True) with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) def create_plan_modelfile( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape, profile_max_size, ): if not tu.validate_for_trt_model(dtype, dtype, dtype, shape, shape, shape): return # generate models with different configuration to ensure test coverage if dtype != np.float32: create_plan_dynamic_rf_modelfile( models_dir, model_version, io_cnt, max_batch, dtype, shape, profile_max_size ) else: create_plan_dynamic_modelfile( models_dir, model_version, io_cnt, max_batch, dtype, shape, profile_max_size ) def create_plan_dynamic_rf_modelfile( models_dir, model_version, io_cnt, max_batch, dtype, shape, profile_max_size ): # Create the model TRT_LOGGER = trt.Logger(trt.Logger.INFO) builder = trt.Builder(TRT_LOGGER) network = builder.create_network() if max_batch == 0: shape_with_batchsize = [i for i in shape] else: shape_with_batchsize = [-1] + [i for i in shape] trt_dtype = np_to_trt_dtype(dtype) trt_memory_format = trt.TensorFormat.LINEAR for io_num in range(io_cnt): in_node = network.add_input( "INPUT{}".format(io_num), trt_dtype, shape_with_batchsize ) in_node.allowed_formats = 1 << int(trt_memory_format) out_node = network.add_identity(in_node) out_node.get_output(0).name = "OUTPUT{}".format(io_num) out_node.get_output(0).dtype = trt_dtype network.mark_output(out_node.get_output(0)) out_node.get_output(0).allowed_formats = 1 << int(trt_memory_format) if trt_dtype == trt.int8: in_node.dynamic_range = (-128.0, 127.0) out_node.get_output(0).dynamic_range = (-128.0, 127.0) min_shape = [] opt_shape = [] max_shape = [] if max_batch != 0: min_shape = min_shape + [1] opt_shape = opt_shape + [max(1, max_batch)] max_shape = max_shape + [max(1, max_batch)] for i in shape: if i == -1: # Generating a very generous optimization profile min_shape = min_shape + [1] opt_shape = opt_shape + [8] max_shape = max_shape + [profile_max_size] else: min_shape = min_shape + [i] opt_shape = opt_shape + [i] max_shape = max_shape + [i] profile = builder.create_optimization_profile() for io_num in range(io_cnt): profile.set_shape("INPUT{}".format(io_num), min_shape, opt_shape, max_shape) flags = 1 << int(trt.BuilderFlag.DIRECT_IO) flags |= 1 << int(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS) flags |= 1 << int(trt.BuilderFlag.REJECT_EMPTY_ALGORITHMS) datatype_set = set([trt_dtype]) for dt in datatype_set: if dt == trt.int8: flags |= 1 << int(trt.BuilderFlag.INT8) elif dt == trt.float16: flags |= 1 << int(trt.BuilderFlag.FP16) config = builder.create_builder_config() config.flags = flags config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) config.add_optimization_profile(profile) try: engine_bytes = builder.build_serialized_network(network, config) except AttributeError: engine = builder.build_engine(network, config) engine_bytes = engine.serialize() del engine model_name = tu.get_zero_model_name( "plan_nobatch" if max_batch == 0 else "plan", io_cnt, dtype ) model_version_dir = os.path.join(models_dir, model_name, str(model_version)) os.makedirs(model_version_dir, exist_ok=True) with open(model_version_dir + "/model.plan", "wb") as f: f.write(engine_bytes) def create_plan_shape_tensor_modelfile( models_dir, model_version, io_cnt, max_batch, dtype, shape, profile_max_size, shape_tensor_input_dtype, ): # Note that resize layer does not support int tensors. # The model takes two inputs (INPUT and DUMMY_INPUT) # and produce two outputs. # OUTPUT : The shape of resized output 'DUMMY_OUTPUT'. # DUMMY_OUTPUT : Obtained after resizing 'DUMMY_INPUT' # to shape specified in 'INPUT'. # Note that values of OUTPUT tensor must be identical # to INPUT values TRT_LOGGER = trt.Logger(trt.Logger.INFO) builder = trt.Builder(TRT_LOGGER) network = builder.create_network() if max_batch == 0: shape_with_batchsize = len(shape) dummy_shape = [-1] * shape_with_batchsize else: shape_with_batchsize = len(shape) + 1 dummy_shape = [-1] * shape_with_batchsize trt_dtype = np_to_trt_dtype(dtype) trt_shape_dtype = np_to_trt_dtype(shape_tensor_input_dtype) trt_memory_format = trt.TensorFormat.LINEAR for io_num in range(io_cnt): in_node = network.add_input( "INPUT{}".format(io_num), trt_shape_dtype, [shape_with_batchsize] ) in_node.allowed_formats = 1 << int(trt_memory_format) dummy_in_node = network.add_input( "DUMMY_INPUT{}".format(io_num), trt_dtype, dummy_shape ) dummy_in_node.allowed_formats = 1 << int(trt_memory_format) resize_layer = network.add_resize(dummy_in_node) resize_layer.set_input(1, in_node) out_node = network.add_shape(resize_layer.get_output(0)) dummy_out_node = resize_layer.get_output(0) out_node.get_output(0).name = "OUTPUT{}".format(io_num) dummy_out_node.name = "DUMMY_OUTPUT{}".format(io_num) dummy_out_node.dtype = trt_dtype network.mark_output(dummy_out_node) dummy_out_node.allowed_formats = 1 << int(trt_memory_format) out_node.get_output(0).dtype = trt.int64 network.mark_output_for_shapes(out_node.get_output(0)) out_node.get_output(0).allowed_formats = 1 << int(trt_memory_format) if trt_dtype == trt.int8: in_node.dynamic_range = (-128.0, 127.0) out_node.get_output(0).dynamic_range = (-128.0, 127.0) config = builder.create_builder_config() min_prefix = [] opt_prefix = [] max_prefix = [] if max_batch != 0: min_prefix = [1] opt_prefix = [max(1, max_batch)] max_prefix = [max(1, max_batch)] min_shape = min_prefix + [1] * len(shape) opt_shape = opt_prefix + [8] * len(shape) max_shape = max_prefix + [profile_max_size] * len(shape) profile = builder.create_optimization_profile() for io_num in range(io_cnt): profile.set_shape_input( "INPUT{}".format(io_num), min_shape, opt_shape, max_shape ) profile.set_shape( "DUMMY_INPUT{}".format(io_num), min_shape, opt_shape, max_shape ) config.add_optimization_profile(profile) flags = 1 << int(trt.BuilderFlag.DIRECT_IO) flags |= 1 << int(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS) flags |= 1 << int(trt.BuilderFlag.REJECT_EMPTY_ALGORITHMS) datatype_set = set([trt_dtype]) for dt in datatype_set: if dt == trt.int8: flags |= 1 << int(trt.BuilderFlag.INT8) elif dt == trt.float16: flags |= 1 << int(trt.BuilderFlag.FP16) config.flags = flags config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) try: engine_bytes = builder.build_serialized_network(network, config) except AttributeError: engine = builder.build_engine(network, config) engine_bytes = engine.serialize() del engine model_name = tu.get_zero_model_name( "plan_nobatch" if max_batch == 0 else "plan", io_cnt, dtype ) model_name = model_name + "_" + np.dtype(shape_tensor_input_dtype).name model_version_dir = os.path.join(models_dir, model_name, str(model_version)) os.makedirs(model_version_dir, exist_ok=True) with open(model_version_dir + "/model.plan", "wb") as f: f.write(engine_bytes) def create_plan_dynamic_modelfile( models_dir, model_version, io_cnt, max_batch, dtype, shape, profile_max_size ): # Create the model TRT_LOGGER = trt.Logger(trt.Logger.INFO) builder = trt.Builder(TRT_LOGGER) network = builder.create_network() if max_batch == 0: shape_with_batchsize = [i for i in shape] else: shape_with_batchsize = [-1] + [i for i in shape] trt_dtype = np_to_trt_dtype(dtype) for io_num in range(io_cnt): in_node = network.add_input( "INPUT{}".format(io_num), trt_dtype, shape_with_batchsize ) out_node = network.add_identity(in_node) out_node.get_output(0).name = "OUTPUT{}".format(io_num) network.mark_output(out_node.get_output(0)) min_shape = [] opt_shape = [] max_shape = [] if max_batch != 0: min_shape = min_shape + [1] opt_shape = opt_shape + [max(1, max_batch)] max_shape = max_shape + [max(1, max_batch)] for i in shape: if i == -1: # Generating a very generous optimization profile min_shape = min_shape + [1] opt_shape = opt_shape + [8] max_shape = max_shape + [profile_max_size] else: min_shape = min_shape + [i] opt_shape = opt_shape + [i] max_shape = max_shape + [i] profile = builder.create_optimization_profile() for io_num in range(io_cnt): profile.set_shape("INPUT{}".format(io_num), min_shape, opt_shape, max_shape) config = builder.create_builder_config() config.add_optimization_profile(profile) config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) if FLAGS.tensorrt_compat: config.set_flag(trt.BuilderFlag.VERSION_COMPATIBLE) try: engine_bytes = builder.build_serialized_network(network, config) except AttributeError: engine = builder.build_engine(network, config) engine_bytes = engine.serialize() del engine model_name_base = "plan" if max_batch == 0: model_name_base += "_nobatch" if FLAGS.tensorrt_compat: model_name_base += "_compatible" model_name = tu.get_zero_model_name(model_name_base, io_cnt, dtype) model_version_dir = os.path.join(models_dir, model_name, str(model_version)) os.makedirs(model_version_dir, exist_ok=True) with open(model_version_dir + "/model.plan", "wb") as f: f.write(engine_bytes) def create_plan_modelconfig( create_savedmodel, models_dir, model_version, io_cnt, max_batch, dtype, shape, shape_tensor_input_dtype=None, ): if not tu.validate_for_trt_model(dtype, dtype, dtype, shape, shape, shape): return shape_str = tu.shape_to_dims_str(shape) model_name_base = "plan" if max_batch == 0: model_name_base += "_nobatch" if FLAGS.tensorrt_compat: model_name_base += "_compatible" model_name = tu.get_zero_model_name(model_name_base, io_cnt, dtype) if shape_tensor_input_dtype: model_name = model_name + "_" + np.dtype(shape_tensor_input_dtype).name config_dir = os.path.join(models_dir, model_name) if FLAGS.tensorrt_shape_io: shape_tensor_dim = len(shape) config = """ name: "{}" platform: "tensorrt_plan" max_batch_size: {} """.format( model_name, max_batch ) for io_num in range(io_cnt): config += """ input [ {{ name: "DUMMY_INPUT{}" data_type: {} dims: [ {} ] }}, {{ name: "INPUT{}" data_type: {} dims: [ {} ] is_shape_tensor: true }} ] output [ {{ name: "DUMMY_OUTPUT{}" data_type: {} dims: [ {} ] }}, {{ name: "OUTPUT{}" data_type: TYPE_INT64 dims: [ {} ] is_shape_tensor: true }} ] """.format( io_num, np_to_model_dtype(dtype), shape_str, io_num, np_to_model_dtype(shape_tensor_input_dtype), shape_tensor_dim, io_num, np_to_model_dtype(dtype), shape_str, io_num, shape_tensor_dim, ) else: config = """ name: "{}" platform: "tensorrt_plan" max_batch_size: {} """.format( model_name, max_batch ) for io_num in range(io_cnt): config += """ input [ {{ name: "INPUT{}" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT{}" data_type: {} dims: [ {} ] }} ] """.format( io_num, np_to_model_dtype(dtype), shape_str, io_num, np_to_model_dtype(dtype), shape_str, ) os.makedirs(config_dir, exist_ok=True) with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) def create_shape_tensor_models( models_dir, dtype, shape, shape_tensor_input_dtype, io_cnt=1, no_batch=True ): model_version = 1 create_plan_modelconfig( True, models_dir, model_version, io_cnt, 8, dtype, shape, shape_tensor_input_dtype, ) create_plan_shape_tensor_modelfile( models_dir, model_version, io_cnt, 8, dtype, shape, 32, shape_tensor_input_dtype ) if no_batch: create_plan_modelconfig( True, models_dir, model_version, io_cnt, 0, dtype, shape, shape_tensor_input_dtype, ) create_plan_shape_tensor_modelfile( models_dir, model_version, io_cnt, 0, dtype, shape, 32, shape_tensor_input_dtype, ) def create_models(models_dir, dtype, shape, io_cnt=1, no_batch=True): model_version = 1 if FLAGS.graphdef: create_tf_modelconfig(False, models_dir, model_version, io_cnt, 8, dtype, shape) create_tf_modelfile(False, models_dir, model_version, io_cnt, 8, dtype, shape) if no_batch: create_tf_modelconfig( False, models_dir, model_version, io_cnt, 0, dtype, shape ) create_tf_modelfile( False, models_dir, model_version, io_cnt, 0, dtype, shape ) if FLAGS.savedmodel: create_tf_modelconfig(True, models_dir, model_version, io_cnt, 8, dtype, shape) create_tf_modelfile(True, models_dir, model_version, io_cnt, 8, dtype, shape) if no_batch: create_tf_modelconfig( True, models_dir, model_version, io_cnt, 0, dtype, shape ) create_tf_modelfile( True, models_dir, model_version, io_cnt, 0, dtype, shape ) if FLAGS.onnx: create_onnx_modelconfig( True, models_dir, model_version, io_cnt, 8, dtype, shape ) create_onnx_modelfile(True, models_dir, model_version, io_cnt, 8, dtype, shape) if no_batch: create_onnx_modelconfig( True, models_dir, model_version, io_cnt, 0, dtype, shape ) create_onnx_modelfile( True, models_dir, model_version, io_cnt, 0, dtype, shape ) if FLAGS.openvino: create_openvino_modelconfig(models_dir, model_version, io_cnt, 8, dtype, shape) create_openvino_modelfile(models_dir, model_version, io_cnt, 8, dtype, shape) if no_batch: create_openvino_modelconfig( models_dir, model_version, io_cnt, 0, dtype, shape ) create_openvino_modelfile( models_dir, model_version, io_cnt, 0, dtype, shape ) if FLAGS.libtorch: create_libtorch_modelconfig( True, models_dir, model_version, io_cnt, 8, dtype, shape ) create_libtorch_modelfile( True, models_dir, model_version, io_cnt, 8, dtype, shape ) if no_batch: create_libtorch_modelconfig( True, models_dir, model_version, io_cnt, 0, dtype, shape ) create_libtorch_modelfile( True, models_dir, model_version, io_cnt, 0, dtype, shape ) if FLAGS.tensorrt or FLAGS.tensorrt_compat: create_plan_modelconfig( True, models_dir, model_version, io_cnt, 8, dtype, shape ) create_plan_modelfile( True, models_dir, model_version, io_cnt, 8, dtype, shape, 32 ) if no_batch: create_plan_modelconfig( True, models_dir, model_version, io_cnt, 0, dtype, shape ) create_plan_modelfile( True, models_dir, model_version, io_cnt, 0, dtype, shape, 32 ) if FLAGS.tensorrt_big: create_plan_modelconfig( True, models_dir, model_version, io_cnt, 8, dtype, shape ) create_plan_modelfile( True, models_dir, model_version, io_cnt, 8, dtype, shape, 16 * 1024 * 1024 ) if no_batch: create_plan_modelconfig( True, models_dir, model_version, io_cnt, 0, dtype, shape ) create_plan_modelfile( True, models_dir, model_version, io_cnt, 0, dtype, shape, 16 * 1024 * 1024, ) if FLAGS.ensemble: emu.create_nop_modelconfig(models_dir, shape, dtype) create_ensemble_modelconfig( True, models_dir, model_version, io_cnt, 8, dtype, shape ) create_ensemble_modelfile( True, models_dir, model_version, io_cnt, 8, dtype, shape ) if no_batch: create_ensemble_modelconfig( True, models_dir, model_version, io_cnt, 0, dtype, shape ) create_ensemble_modelfile( True, models_dir, model_version, io_cnt, 0, dtype, shape ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--models_dir", type=str, required=True, help="Top-level model directory" ) parser.add_argument( "--graphdef", required=False, action="store_true", help="Generate GraphDef models", ) parser.add_argument( "--savedmodel", required=False, action="store_true", help="Generate SavedModel models", ) parser.add_argument( "--onnx", required=False, action="store_true", help="Generate Onnx Runtime Onnx models", ) parser.add_argument( "--onnx_opset", type=int, required=False, default=0, help="Opset used for Onnx models. Default is to use ONNXRT default", ) parser.add_argument( "--libtorch", required=False, action="store_true", help="Generate Pytorch LibTorch models", ) parser.add_argument( "--openvino", required=False, action="store_true", help="Generate OpenVino models", ) parser.add_argument( "--tensorrt", required=False, action="store_true", help="Generate TensorRT PLAN models", ) parser.add_argument( "--tensorrt-big", required=False, action="store_true", help="Generate TensorRT PLAN models w/ opt profile with large max", ) parser.add_argument( "--tensorrt-compat", required=False, action="store_true", help="Generate TensorRT version-compatible models", ) parser.add_argument( "--tensorrt-shape-io", required=False, action="store_true", help="Generate TensorRT PLAN models w/ shape tensor i/o", ) parser.add_argument( "--ensemble", required=False, action="store_true", help="Generate ensemble models", ) FLAGS, unparsed = parser.parse_known_args() if FLAGS.graphdef or FLAGS.savedmodel: import tensorflow as tf from tensorflow.python.framework import graph_io tf.compat.v1.disable_eager_execution() if FLAGS.onnx: import onnx if FLAGS.libtorch: import torch from torch import nn if ( FLAGS.tensorrt or FLAGS.tensorrt_big or FLAGS.tensorrt_compat or FLAGS.tensorrt_shape_io ): import tensorrt as trt if FLAGS.openvino: import openvino.runtime as ov import test_util as tu # Create models with variable-sized input and output. For big # and version-compatible TensorRT models, only create the one # needed for testing. if FLAGS.tensorrt_big: create_models(FLAGS.models_dir, np.float32, [-1], io_cnt=1) elif FLAGS.tensorrt_compat: create_models(FLAGS.models_dir, np.float32, [-1], io_cnt=1, no_batch=False) elif FLAGS.tensorrt_shape_io: create_shape_tensor_models( FLAGS.models_dir, np.float32, [-1, -1], np.int32, io_cnt=1 ) create_shape_tensor_models( FLAGS.models_dir, np.float32, [-1, -1], np.int64, io_cnt=1 ) else: create_models(FLAGS.models_dir, bool, [-1], io_cnt=1) create_models(FLAGS.models_dir, np.float32, [-1], io_cnt=1) create_models(FLAGS.models_dir, np.float32, [-1], io_cnt=3) create_models(FLAGS.models_dir, np.float16, [-1, -1], io_cnt=1) create_models(FLAGS.models_dir, np.float16, [-1, -1], io_cnt=3) create_models(FLAGS.models_dir, np_dtype_string, [-1], io_cnt=1) create_models(FLAGS.models_dir, np_dtype_string, [-1, -1], io_cnt=3) # Create libtorch linalg model if FLAGS.libtorch: model_version = 1 create_libtorch_linalg_modelconfig(True, FLAGS.models_dir, model_version) create_libtorch_linalg_modelfile(True, FLAGS.models_dir, model_version)
triton-inference-serverREPO_NAMEserverPATH_START.@server_extracted@server-main@qa@common@gen_qa_identity_models.py@.PATH_END.py
{ "filename": "_ticklabeloverflow.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/isosurface/colorbar/_ticklabeloverflow.py", "type": "Python" }
import _plotly_utils.basevalidators class TicklabeloverflowValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="ticklabeloverflow", parent_name="isosurface.colorbar", **kwargs, ): super(TicklabeloverflowValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), values=kwargs.pop("values", ["allow", "hide past div", "hide past domain"]), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@isosurface@colorbar@_ticklabeloverflow.py@.PATH_END.py
{ "filename": "move.py", "repo_name": "3fon3fonov/exostriker", "repo_path": "exostriker_extracted/exostriker-main/exostriker/lib/emcee_ES/moves/move.py", "type": "Python" }
# -*- coding: utf-8 -*- import numpy as np __all__ = ["Move"] class Move(object): def tune(self, state, accepted): pass def update(self, old_state, new_state, accepted, subset=None): """Update a given subset of the ensemble with an accepted proposal Args: coords: The original ensemble coordinates. log_probs: The original log probabilities of the walkers. blobs: The original blobs. new_coords: The proposed coordinates. new_log_probs: The proposed log probabilities. new_blobs: The proposed blobs. accepted: A vector of booleans indicating which walkers were accepted. subset (Optional): A boolean mask indicating which walkers were included in the subset. This can be used, for example, when updating only the primary ensemble in a :class:`RedBlueMove`. """ if subset is None: subset = np.ones(len(old_state.coords), dtype=bool) m1 = subset & accepted m2 = accepted[subset] old_state.coords[m1] = new_state.coords[m2] old_state.log_prob[m1] = new_state.log_prob[m2] if new_state.blobs is not None: if old_state.blobs is None: raise ValueError( "If you start sampling with a given log_prob, " "you also need to provide the current list of " "blobs at that position." ) old_state.blobs[m1] = new_state.blobs[m2] return old_state
3fon3fonovREPO_NAMEexostrikerPATH_START.@exostriker_extracted@exostriker-main@exostriker@lib@emcee_ES@moves@move.py@.PATH_END.py
{ "filename": "property_importer.py", "repo_name": "pynbody/tangos", "repo_path": "tangos_extracted/tangos-master/tangos/tools/property_importer.py", "type": "Python" }
import numbers import numpy as np from .. import core, parallel_tasks from ..log import logger from ..util import proxy_object, timestep_object_cache from . import GenericTangosTool class PropertyImporter(GenericTangosTool): tool_name = 'import-properties' tool_description = 'Import properties that were calculated by the halo finder' @classmethod def add_parser_arguments(self, parser): parser.add_argument('--sims', '--for', action='store', nargs='*', metavar='simulation_name', help='Specify a simulation (or multiple simulations) to run on') parser.add_argument('--type', action='store', type=str, dest='typetag', default='halo', help="Specify the object type to run on by tag name (e.g. 'halo' or 'group')") parser.add_argument('properties', action='store', nargs='*', help="The names of the halo-finder pre-calculated properties to import; if not specified, all available properties are imported.") parser.add_argument('--backwards', action='store_true', help='Process low-z timesteps first') def process_options(self, options): self.options = options def _create_property(self, name, object, value): """Create a single database property corresponding to the given value See _create_properties for more information.""" if isinstance(value, proxy_object.ProxyObjectBase): value = value.relative_to_timestep_cache(self._object_cache).resolve(self._session) if value is not None: return core.halo_data.HaloLink(object, value, name) elif isinstance(value, numbers.Number): return core.halo_data.HaloProperty(object, name, value) elif isinstance(value, np.ndarray): if np.issubdtype(value.dtype, np.number): return core.halo_data.HaloProperty(object, name, value) else: logger.warning("Ignoring stat file entry key='%s' value='%s' as the value is not a number or an array of numbers", name.text, value) elif value is not None: logger.warning("Ignoring stat file entry key='%s' value='%s' as the value is not a number or an array of numbers", name.text, value) return None def _create_properties(self, name, object, values): """Create database property or properties corresponding to the given values. The values can be proxy objects, to indicate a link should be created :arg name: the name ORM object :arg object: the object with which the property should be associated :arg values: the value, or a list of values :returns: a list of objects to be added to the database (always a list, even if there is only one value) """ if isinstance(values, list): objects = [self._create_property(name, object, v) for v in values] else: objects = [self._create_property(name, object, values)] return filter(lambda x: x is not None, objects) def _import_properties_for_timestep(self, ts, property_names, object_typetag): """Import the named properties for a specific timestep :arg ts: the database timestep :arg property_names: list of names to import, or empty list to import all available names :arg object_typetag: the type tag of the objects for which properties will be imported :type ts: core.timestep.TimeStep """ logger.info("Processing %s", ts) if len(property_names)==0: property_names = self.handler.available_object_property_names_for_timestep(ts.extension, object_typetag) self._object_cache = timestep_object_cache.TimestepObjectCache(ts) self._session = core.Session.object_session(ts) property_db_names = [core.dictionary.get_or_create_dictionary_item(self._session, name) for name in property_names] rows_to_store = [] for values in self.handler.iterate_object_properties_for_timestep(ts.extension, object_typetag, property_names): if len(values)!=2+len(property_db_names): raise RuntimeError(f"Incorrect length of row returned from iterate_object_properties_for_timestep. Check implementation of {type(self.handler)}.") db_object = self._object_cache.resolve_from_finder_offset(values[0], object_typetag) if db_object is not None: for db_name, value in zip(property_db_names, values[2:]): rows_to_store+=self._create_properties(db_name, db_object, value) logger.info("Add %d properties", len(rows_to_store)) with parallel_tasks.ExclusiveLock("add_properties"): self._session.add_all(rows_to_store) self._session.commit() def run_calculation_loop(self): base_sim = core.sim_query_from_name_list(self.options.sims) names = self.options.properties object_typetag = self.options.typetag for x in base_sim: timesteps = core.get_default_session().query(core.timestep.TimeStep).filter_by( simulation_id=x.id, available=True).order_by(core.timestep.TimeStep.redshift.desc()).all() if self.options.backwards: timesteps = timesteps[::-1] self.handler = x.get_output_handler() for ts in parallel_tasks.distributed(timesteps): self._import_properties_for_timestep(ts, names, object_typetag)
pynbodyREPO_NAMEtangosPATH_START.@tangos_extracted@tangos-master@tangos@tools@property_importer.py@.PATH_END.py
{ "filename": "conf.py", "repo_name": "pyro-ppl/pyro", "repo_path": "pyro_extracted/pyro-master/docs/source/conf.py", "type": "Python" }
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import os import sys import sphinx_rtd_theme # import pkg_resources # -*- coding: utf-8 -*- # # Pyro documentation build configuration file, created by # sphinx-quickstart on Thu Jun 15 17:16:14 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath("../..")) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.intersphinx", # "sphinx.ext.todo", # "sphinx.ext.mathjax", # "sphinx.ext.ifconfig", # "sphinx.ext.viewcode", # "sphinx.ext.githubpages", # "sphinx.ext.graphviz", # "sphinx.ext.autodoc", "sphinx.ext.doctest", 'sphinx.ext.napoleon', ] # Disable documentation inheritance so as to avoid inheriting # docstrings in a different format, e.g. when the parent class # is a PyTorch class. autodoc_inherit_docstrings = False # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = ".rst" # The master toctree document. master_doc = "index" # General information about the project. project = u"Pyro" copyright = u"2017-2018, Uber Technologies, Inc" author = u"Uber AI Labs" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. version = "" if "READTHEDOCS" not in os.environ: # if developing locally, use pyro.__version__ as version from pyro import __version__ # noqaE402 version = __version__ # release version release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = "en" # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # do not prepend module name to functions add_module_names = False # -- Options for HTML output ---------------------------------------------- # logo html_logo = "_static/img/pyro_logo_wide.png" # logo html_favicon = "_static/img/favicon/favicon.ico" # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { "navigation_depth": 3, "logo_only": True, } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_style = "css/pyro.css" # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = "Pyrodoc" # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "Pyro.tex", u"Pyro Documentation", u"Uber AI Labs", "manual"), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "pyro", u"Pyro Documentation", [author], 1)] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "Pyro", u"Pyro Documentation", author, "Pyro", "Deep Universal Probabilistic Programming.", "Miscellaneous", ), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "python": ("https://docs.python.org/3/", None), "torch": ("https://pytorch.org/docs/master/", None), "funsor": ("http://funsor.pyro.ai/en/stable/", None), "opt_einsum": ("https://optimized-einsum.readthedocs.io/en/stable/", None), "scipy": ("https://docs.scipy.org/doc/scipy/reference/", None), "Bio": ("https://biopython.org/docs/latest/api/", None), "horovod": ("https://horovod.readthedocs.io/en/stable/", None), "graphviz": ("https://graphviz.readthedocs.io/en/stable/", None), } # document class constructors (__init__ methods): """ comment out this functionality for now; def skip(app, what, name, obj, skip, options): if name == "__init__": return False return skip """ def setup(app): app.add_css_file("css/pyro.css") # app.connect("autodoc-skip-member", skip) # @jpchen's hack to get rtd builder to install latest pytorch # See similar line in the install section of .travis.yml if "READTHEDOCS" in os.environ: os.system("pip install numpy") os.system( "pip install torch==2.0+cpu torchvision==0.15.0+cpu " "-f https://download.pytorch.org/whl/torch_stable.html" )
pyro-pplREPO_NAMEpyroPATH_START.@pyro_extracted@pyro-master@docs@source@conf.py@.PATH_END.py
{ "filename": "_color.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/sankey/node/line/_color.py", "type": "Python" }
import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="color", parent_name="sankey.node.line", **kwargs): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "calc"), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@sankey@node@line@_color.py@.PATH_END.py
{ "filename": "sunf90.py", "repo_name": "rat-pac/rat-pac", "repo_path": "rat-pac_extracted/rat-pac-master/python/SCons/Tool/sunf90.py", "type": "Python" }
"""SCons.Tool.sunf90 Tool-specific initialization for sunf90, the Sun Studio F90 compiler. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/sunf90.py 4043 2009/02/23 09:06:45 scons" import SCons.Util from FortranCommon import add_all_to_env compilers = ['sunf90', 'f90'] def generate(env): """Add Builders and construction variables for sun f90 compiler to an Environment.""" add_all_to_env(env) fcomp = env.Detect(compilers) or 'f90' env['FORTRAN'] = fcomp env['F90'] = fcomp env['SHFORTRAN'] = '$FORTRAN' env['SHF90'] = '$F90' env['SHFORTRANFLAGS'] = SCons.Util.CLVar('$FORTRANFLAGS -KPIC') env['SHF90FLAGS'] = SCons.Util.CLVar('$F90FLAGS -KPIC') def exists(env): return env.Detect(compilers) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
rat-pacREPO_NAMErat-pacPATH_START.@rat-pac_extracted@rat-pac-master@python@SCons@Tool@sunf90.py@.PATH_END.py
{ "filename": "plotters.py", "repo_name": "pyspeckit/pyspeckit", "repo_path": "pyspeckit_extracted/pyspeckit-master/pyspeckit/spectrum/plotters.py", "type": "Python" }
""" ======= Plotter ======= .. moduleauthor:: Adam Ginsburg <adam.g.ginsburg@gmail.com> """ from __future__ import print_function import matplotlib import matplotlib.figure import numpy as np import astropy.units as u import copy import inspect from astropy import log # this mess is to handle a nested hell of different versions of matplotlib # (>=1.3 has BoundMethodProxy somewhere, >=3 gets rid of it) and python # (python >=3.4 has WeakMethod, earlier versions don't) try: from matplotlib.cbook import BoundMethodProxy except ImportError: try: from matplotlib.cbook import _BoundMethodProxy as BoundMethodProxy except ImportError: try: from matplotlib.cbook import WeakMethod except ImportError: try: from weakref import WeakMethod except ImportError: try: from weakrefmethod import WeakMethod except ImportError: raise ImportError("Could not import WeakMethod from " "anywhere. Try installing the " "weakrefmethod package or use a more " "recent version of python or matplotlib") class BoundMethodProxy(WeakMethod): @property def func(self): return self() from . import widgets from ..specwarnings import warn interactive_help_message = """ Interactive key commands for plotter. An additional help message may appear if you have initiated the fitter. '?' - bring up this message 'f' - initiate the /f/itter 'b' - initiate the /b/aseliner 'B' - initiate the /b/aseliner (reset the selection too) 'r' - re-attach matplotlib keys 'R' - redraw the plot cleanly 'i' : individual components / show each fitted component """ xlabel_table = {'speed': 'Velocity'} class Plotter(object): """ Class to plot a spectrum """ def __init__(self, Spectrum, autorefresh=True, title="", xlabel=None, silent=True, plotscale=1.0, **kwargs): import matplotlib.pyplot self._pyplot = matplotlib.pyplot self.figure = None self.axis = None self.Spectrum = Spectrum # plot parameters self.offset = 0.0 # vertical offset self.autorefresh = autorefresh self.xlabel = xlabel self.title = title self.errorplot = None self.plotkwargs = kwargs self._xlim = [None,None] self._ylim = [None,None] self.debug = False self.keyclick = None self.silent = silent self.plotscale = plotscale self._xclick1 = None self._xclick2 = None self.automake_fitter_tool = False self._active_gui = None @property def _xunit(self): return self.Spectrum.xarr.unit def _get_prop(xy, minmax): def getprop(self): if xy == 'x': if minmax == 'min': if self._xlim[0] is not None and self._xunit: try: self._xlim[0]._unit = self._xunit except AttributeError: self._xlim[0] = u.Quantity(self._xlim[0], self._xunit) return self._xlim[0] elif minmax == 'max': if self._xlim[1] is not None and self._xunit: try: self._xlim[1]._unit = self._xunit except AttributeError: self._xlim[1] = u.Quantity(self._xlim[1], self._xunit) return self._xlim[1] elif xy == 'y': if minmax == 'min': return self._ylim[0] elif minmax == 'max': return self._ylim[1] return getprop def _set_prop(xy, minmax): def setprop(self, value): if self.debug: frm = inspect.stack() print(frm[1],"Setting %s%s to %s" % (xy,minmax,value)) if xy == 'x': if minmax == 'min': self._xlim[0] = value elif minmax == 'max': self._xlim[1] = value elif xy == 'y': if minmax == 'min': self._ylim[0] = value elif minmax == 'max': self._ylim[1] = value return setprop xmin = property(fget=_get_prop('x','min'),fset=_set_prop('x','min')) xmax = property(fget=_get_prop('x','max'),fset=_set_prop('x','max')) ymin = property(fget=_get_prop('y','min'),fset=_set_prop('y','min')) ymax = property(fget=_get_prop('y','max'),fset=_set_prop('y','max')) def _disconnect_matplotlib_keys(self): """ Disconnected the matplotlib key-press callbacks """ if self.figure is not None: cbs = self.figure.canvas.callbacks.callbacks # this may cause problems since the dict of key press events is a # dict, i.e. not ordered, and we want to pop the first one... mpl_keypress_handler = self.figure.canvas.manager.key_press_handler_id try: self._mpl_key_callbacks = {mpl_keypress_handler: cbs['key_press_event'].pop(mpl_keypress_handler)} except KeyError: bmp = BoundMethodProxy(self.figure.canvas.manager.key_press) self._mpl_key_callbacks = {mpl_keypress_handler: bmp} def _reconnect_matplotlib_keys(self): """ Reconnect the previously disconnected matplotlib keys """ if self.figure is not None and hasattr(self,'_mpl_key_callbacks'): self.figure.canvas.callbacks.callbacks['key_press_event'].update(self._mpl_key_callbacks) elif self.figure is not None: mpl_keypress_handler = self.figure.canvas.manager.key_press_handler_id try: bmp = BoundMethodProxy(self.figure.canvas.manager.key_press) self.figure.canvas.callbacks.callbacks['key_press_event'].update({mpl_keypress_handler: bmp}) except AttributeError as ex: print(f"Error {ex} was raised when trying to connect the key_press handler. " "Please file an issue on github. You may try a different matplotlib backend " "as a temporary workaround") def __call__(self, figure=None, axis=None, clear=True, autorefresh=None, plotscale=1.0, override_plotkwargs=False, **kwargs): """ Plot a spectrum Keywords: figure - either a matplotlib figure instance or a figure number to pass into pyplot.figure. axis - Alternative to figure, can pass an axis instance and use it as the plotting canvas clear - Clear the axis before plotting? """ # figure out where to put the plot if isinstance(figure,matplotlib.figure.Figure): self.figure = figure self.axis = self.figure.gca() elif type(figure) is int: self.figure = self._pyplot.figure(figure) self.axis = self.figure.gca() elif self.figure is None: if isinstance(axis,matplotlib.axes.Axes): self.axis = axis self.figure = axis.figure else: self.figure = self._pyplot.figure() if hasattr(self.figure, 'number') and not self._pyplot.fignum_exists(self.figure.number): self.figure = self._pyplot.figure(self.figure.number) # always re-connect the interactive keys to avoid frustration... self._mpl_reconnect() if axis is not None: #self._mpl_disconnect() self.axis = axis self.figure = axis.figure #self._mpl_connect() elif len(self.figure.axes) > 0 and self.axis is None: self.axis = self.figure.axes[0] # default to first axis elif self.axis is None: self.axis = self.figure.gca() # A check to deal with issue #117: if you close the figure, the axis # still exists, but it cannot be reattached to a figure if (hasattr(self.axis.get_figure(), 'number') and not (self.axis.get_figure() is self._pyplot.figure(self.axis.get_figure().number))): self.axis = self.figure.gca() if self.axis is not None and self.axis not in self.figure.axes: # if you've cleared the axis, but the figure is still open, you # need a new axis self.figure.add_axes(self.axis) if clear and self.axis is not None: self.axis.clear() # Need to empty the stored model plots if hasattr(self.Spectrum, 'fitter'): self.Spectrum.fitter.clear() if autorefresh is not None: self.autorefresh = autorefresh self.plotscale = plotscale if self.plotkwargs and not override_plotkwargs: self.plotkwargs.update(kwargs) else: self.plotkwargs = kwargs self.plot(**kwargs) def _mpl_connect(self): if self.keyclick is None: self.keyclick = self.figure.canvas.mpl_connect('key_press_event',self.parse_keys) def _mpl_disconnect(self): self.figure.canvas.mpl_disconnect(self.keyclick) self.keyclick = None def disconnect(self): """ Disconnect the matplotlib interactivity of this pyspeckit plotter. """ self._mpl_disconnect() def connect(self): """ Connect to the matplotlib key-parsing interactivity """ self._mpl_connect() def _mpl_reconnect(self): self._mpl_disconnect() self._mpl_connect() # disable fullscreen & grid self._pyplot.rcParams['keymap.fullscreen'] = 'ctrl+f' self._pyplot.rcParams['keymap.grid'] = 'ctrl+g' def plot(self, offset=0.0, xoffset=0.0, color='k', drawstyle='steps-mid', linewidth=0.5, errstyle=None, erralpha=0.2, errcolor=None, silent=None, reset=True, refresh=True, use_window_limits=None, useOffset=False, **kwargs): """ Plot the spectrum! Tries to automatically find a reasonable plotting range if one is not set. Parameters ---------- offset : float vertical offset to add to the spectrum before plotting. Useful if you want to overlay multiple spectra on a single plot xoffset: float An x-axis shift. I don't know why you'd want this... color : str default to plotting spectrum in black drawstyle : 'steps-mid' or str 'steps-mid' for histogram-style plotting. See matplotlib's plot for more information linewidth : float Line width in pixels. Narrow lines are helpful when histo-plotting errstyle : 'fill', 'bars', or None can be "fill", which draws partially transparent boxes around the data to show the error region, or "bars" which draws standard errorbars. ``None`` will display no errorbars useOffset : bool Use offset-style X/Y coordinates (e.g., 1 + 1.483e10)? Defaults to False because these are usually quite annoying. xmin/xmax/ymin/ymax : float override defaults for plot range. Once set, these parameters are sticky (i.e., replotting will use the same ranges). Passed to `reset_limits` reset_[xy]limits : bool Reset the limits to "sensible defaults". Passed to `reset_limits` ypeakscale : float Scale up the Y maximum value. Useful to keep the annotations away from the data. Passed to `reset_limits` reset : bool Reset the x/y axis limits? If set, `reset_limits` will be called. """ if self.axis is None: raise Exception("You must call the Plotter class to initiate the canvas before plotting.") self.offset = offset # there is a bug where this only seems to update the second time it is called self.label(**kwargs) self.label(**kwargs) for arg in ['title','xlabel','ylabel']: if arg in kwargs: kwargs.pop(arg) reset_kwargs = {} for arg in ['xmin', 'xmax', 'ymin', 'ymax', 'reset_xlimits', 'reset_ylimits', 'ypeakscale']: if arg in kwargs: reset_kwargs[arg] = kwargs.pop(arg) if (use_window_limits is None and any(k in reset_kwargs for k in ('xmin','xmax','reset_xlimits'))): use_window_limits = False if use_window_limits: self._stash_window_limits() # for filled errorbars, order matters. inds = np.argsort(self.Spectrum.xarr) if errstyle is not None: if errcolor is None: errcolor = color if errstyle == 'fill': self.errorplot = [self.axis.fill_between(steppify(self.Spectrum.xarr.value[inds]+xoffset, isX=True), steppify((self.Spectrum.data*self.plotscale+self.offset-self.Spectrum.error*self.plotscale)[inds]), steppify((self.Spectrum.data*self.plotscale+self.offset+self.Spectrum.error*self.plotscale)[inds]), facecolor=errcolor, edgecolor=errcolor, alpha=erralpha, **kwargs)] elif errstyle == 'bars': self.errorplot = self.axis.errorbar(self.Spectrum.xarr[inds].value+xoffset, self.Spectrum.data[inds]*self.plotscale+self.offset, yerr=self.Spectrum.error[inds]*self.plotscale, ecolor=errcolor, fmt='none', **kwargs) self._spectrumplot = self.axis.plot(self.Spectrum.xarr.value[inds]+xoffset, self.Spectrum.data[inds]*self.plotscale+self.offset, color=color, drawstyle=drawstyle, linewidth=linewidth, **kwargs) self.axis.ticklabel_format(useOffset=useOffset) if use_window_limits: self._reset_to_stashed_limits() if silent is not None: self.silent = silent if reset: self.reset_limits(use_window_limits=use_window_limits, **reset_kwargs) if self.autorefresh and refresh: self.refresh() # Maybe it's OK to call 'plot' when there is an active gui tool # (e.g., baseline or specfit)? #if self._active_gui: # self._active_gui = None # warn("An active GUI was found while initializing the " # "plot. This is somewhat dangerous and may result " # "in broken interactivity.") def _stash_window_limits(self): self._window_limits = self.axis.get_xlim(),self.axis.get_ylim() if self.debug: print("Stashed window limits: ",self._window_limits) def _reset_to_stashed_limits(self): self.axis.set_xlim(*self._window_limits[0]) self.axis.set_ylim(*self._window_limits[1]) self.xmin,self.xmax = self._window_limits[0] self.ymin,self.ymax = self._window_limits[1] if self.debug: print("Recovered window limits: ",self._window_limits) def reset_limits(self, xmin=None, xmax=None, ymin=None, ymax=None, reset_xlimits=True, reset_ylimits=True, ypeakscale=1.2, silent=None, use_window_limits=False, **kwargs): """ Automatically or manually reset the plot limits """ # if not use_window_limits: use_window_limits = False if self.debug: frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) print(zip(args,values)) if use_window_limits: # this means DO NOT reset! # it simply sets self.[xy][min/max] = current value self.set_limits_from_visible_window() else: if silent is not None: self.silent = silent # if self.xmin and self.xmax: if (reset_xlimits or self.Spectrum.xarr.min().value < self.xmin or self.Spectrum.xarr.max().value > self.xmax): if not self.silent: warn("Resetting X-axis min/max because the plot is out of bounds.") self.xmin = None self.xmax = None if xmin is not None: self.xmin = u.Quantity(xmin, self._xunit) elif self.xmin is None: self.xmin = u.Quantity(self.Spectrum.xarr.min().value, self._xunit) if xmax is not None: self.xmax = u.Quantity(xmax, self._xunit) elif self.xmax is None: self.xmax = u.Quantity(self.Spectrum.xarr.max().value, self._xunit) xpixmin = np.argmin(np.abs(self.Spectrum.xarr.value-self.xmin.value)) xpixmax = np.argmin(np.abs(self.Spectrum.xarr.value-self.xmax.value)) if xpixmin>xpixmax: xpixmin,xpixmax = xpixmax,xpixmin elif xpixmin == xpixmax: if reset_xlimits: raise Exception("Infinite recursion error. Maybe there are no valid data?") if not self.silent: warn("ERROR: the X axis limits specified were invalid. Resetting.") self.reset_limits(reset_xlimits=True, ymin=ymin, ymax=ymax, reset_ylimits=reset_ylimits, ypeakscale=ypeakscale, **kwargs) return if self.ymin is not None and self.ymax is not None: # this is utter nonsense.... if (np.nanmax(self.Spectrum.data) < self.ymin or np.nanmin(self.Spectrum.data) > self.ymax or reset_ylimits): if not self.silent and not reset_ylimits: warn("Resetting Y-axis min/max because the plot is out of bounds.") self.ymin = None self.ymax = None if ymin is not None: self.ymin = ymin elif self.ymin is None: yminval = np.nanmin(self.Spectrum.data[xpixmin:xpixmax]) # Increase the range fractionally. This means dividing a positive #, multiplying a negative # if yminval < 0: self.ymin = float(yminval)*float(ypeakscale) else: self.ymin = float(yminval)/float(ypeakscale) if ymax is not None: self.ymax = ymax elif self.ymax is None: ymaxval = (np.nanmax(self.Spectrum.data[xpixmin:xpixmax])-self.ymin) if ymaxval > 0: self.ymax = float(ymaxval) * float(ypeakscale) + self.ymin else: self.ymax = float(ymaxval) / float(ypeakscale) + self.ymin self.ymin += self.offset self.ymax += self.offset self.axis.set_xlim(self.xmin.value if hasattr(self.xmin, 'value') else self.xmin, self.xmax.value if hasattr(self.xmax, 'value') else self.xmax) self.axis.set_ylim(self.ymin, self.ymax) def label(self, title=None, xlabel=None, ylabel=None, verbose_label=False, **kwargs): """ Label the plot, with an attempt to parse standard units into nice latex labels Parameters ---------- title : str xlabel : str ylabel : str verbose_label: bool """ if title is not None: self.title = title elif hasattr(self.Spectrum,'specname'): self.title = self.Spectrum.specname if self.title != "": self.axis.set_title(self.title) if xlabel is not None: log.debug("setting xlabel={0}".format(xlabel)) self.xlabel = xlabel elif self._xunit: try: self.xlabel = xlabel_table[str(self._xunit.physical_type).lower()] except KeyError: self.xlabel = str(self._xunit.physical_type) # WAS: self.xlabel += " ("+u.Unit(self._xunit).to_string()+")" self.xlabel += " ({0})".format(self._xunit.to_string()) log.debug("xunit is {1}. set xlabel={0}".format(self.xlabel, self._xunit)) if verbose_label: self.xlabel = "%s %s" % (str(self.Spectrum.xarr.velocity_convention), self.xlabel) else: log.warn("Plotter: xlabel was not set") if self.xlabel is not None: self.axis.set_xlabel(self.xlabel) if ylabel is not None: self.axis.set_ylabel(ylabel) elif self.Spectrum.unit in ['Ta*','Tastar']: self.axis.set_ylabel("$T_A^*$ (K)") elif self.Spectrum.unit in ['K']: self.axis.set_ylabel("Brightness Temperature $T$ (K)") elif self.Spectrum.unit == 'mJy': self.axis.set_ylabel("$S_\\nu$ (mJy)") elif self.Spectrum.unit == 'Jy': self.axis.set_ylabel("$S_\\nu$ (Jy)") else: if isinstance(self.Spectrum.unit, str) and "$" in self.Spectrum.unit: # assume LaTeX already self.axis.set_ylabel(self.Spectrum.unit) elif isinstance(self.Spectrum.unit, str): self.axis.set_ylabel(self.Spectrum.unit) else: label_units = self.Spectrum.unit.to_string(format='latex') if 'mathring{A}' in label_units: label_units = label_units.replace('\\mathring{A}', 'A') if '\\overset' in label_units: label_units = label_units.replace('\\overset', '^') self.axis.set_ylabel(label_units) @property def ylabel(self): return self.axis.get_ylabel() def refresh(self): if self.axis is not None: self.axis.figure.canvas.draw() def savefig(self,fname,bbox_inches='tight',**kwargs): """ simple wrapper of maplotlib's savefig. """ self.axis.figure.savefig(fname,bbox_inches=bbox_inches,**kwargs) def parse_keys(self,event): """ Parse key commands entered from the keyboard """ if hasattr(event,'key'): if event.key == '?': print(interactive_help_message) elif event.key == 'f': print("\n\nFitter initiated from the interactive plotter.") # extra optional text: # Matplotlib shortcut keys ('g','l','p',etc.) are disabled. Re-enable with 'r'" if self._active_gui == self.Spectrum.specfit and self._active_gui._check_connections(verbose=False): print("Fitter is already active. Use 'q' to quit the fitter.") elif self._active_gui == self.Spectrum.specfit and not self._active_gui._check_connections(verbose=False): # forcibly clear connections self._active_gui.clear_all_connections() # the 'clear_all_connections' code *explicitly* makes the # following line correct, except in the case that there is # no canvas... assert self._active_gui is None self.activate_interactive_fitter() else: self.activate_interactive_fitter() assert self._active_gui == self.Spectrum.specfit assert self._active_gui._check_connections(verbose=False) if not hasattr(self,'FitterTool') and self.automake_fitter_tool: self.FitterTool = widgets.FitterTools(self.Spectrum.specfit, self.figure) elif hasattr(self,'FitterTool') and self.FitterTool.toolfig.number not in self._pyplot.get_fignums(): self.FitterTool = widgets.FitterTools(self.Spectrum.specfit, self.figure) elif event.key is not None and event.key.lower() == 'b': if event.key == 'b': print("\n\nBaseline initiated from the interactive plotter") elif event.key == 'B': print("\n\nBaseline initiated from the interactive plotter (with reset)") print("Matplotlib shortcut keys ('g','l','p',etc.) are disabled. Re-enable with 'r'") self.activate_interactive_baseline_fitter(reset_selection=(event.key=='B')) if not hasattr(self,'FitterTool') and self.automake_fitter_tool: self.FitterTool = widgets.FitterTools(self.Spectrum.specfit, self.figure) elif hasattr(self,'FitterTool') and self.FitterTool.toolfig.number not in self._pyplot.get_fignums(): self.FitterTool = widgets.FitterTools(self.Spectrum.specfit, self.figure) elif event.key == 'r': # print("\n\nReconnected matplotlib shortcut keys.") self._reconnect_matplotlib_keys() elif event.key == 'R': self() elif event.key == 'i': self.Spectrum.specfit.plot_fit(show_components=True) def get_two_clicks(self,event): if self._xclick1 is None: self._xclick1 = event.xdata elif self._xclick2 is None: self._xclick2 = event.xdata def set_limits_from_visible_window(self, debug=False): """ Hopefully self-descriptive: set the x and y limits from the currently visible window (use this if you use the pan/zoom tools or manually change the limits) """ if debug: print("Changing x limits from {},{} to {},{}".format(self.xmin,self.xmax,self.axis.get_xlim()[0],self.axis.get_xlim()[1])) print("Changing y limits from {},{} to {},{}".format(self.ymin,self.ymax,self.axis.get_ylim()[0],self.axis.get_ylim()[1])) self.xmin, self.xmax = self.axis.get_xlim() self.ymin, self.ymax = self.axis.get_ylim() if debug: print("New x limits {},{} == {},{}".format(self.xmin,self.xmax,self.axis.get_xlim()[0],self.axis.get_xlim()[1])) print("New y limits {},{} == {},{}".format(self.ymin,self.ymax,self.axis.get_ylim()[0],self.axis.get_ylim()[1])) def copy(self, parent=None): """ Create a copy of the plotter with blank (uninitialized) axis & figure [ parent ] A spectroscopic axis instance that is the parent of the specfit instance. This needs to be specified at some point, but defaults to None to prevent overwriting a previous plot. """ newplotter = copy.copy(self) newplotter.Spectrum = parent newplotter.axis = None newplotter.figure = None return newplotter def line_ids(self, line_names, line_xvals, xval_units=None, auto_yloc=True, velocity_offset=None, velocity_convention='radio', auto_yloc_fraction=0.9, **kwargs): """ Add line ID labels to a plot using lineid_plot http://oneau.wordpress.com/2011/10/01/line-id-plot/ https://github.com/phn/lineid_plot http://packages.python.org/lineid_plot/ Parameters ---------- line_names : list A list of strings to label the specified x-axis values line_xvals : list List of x-axis values (e.g., wavelengths) at which to label the lines. Can be a list of quantities. xval_units : string The unit of the line_xvals if they are not given as quantities velocity_offset : quantity A velocity offset to apply to the inputs if they are in frequency or wavelength units velocity_convention : 'radio' or 'optical' or 'doppler' Used if the velocity offset is given auto_yloc : bool If set, overrides box_loc and arrow_tip (the vertical position of the lineid labels) in kwargs to be `auto_yloc_fraction` of the plot range auto_yloc_fraction: float in range [0,1] The fraction of the plot (vertically) at which to place labels Examples -------- >>> import numpy as np >>> import pyspeckit >>> sp = pyspeckit.Spectrum( xarr=pyspeckit.units.SpectroscopicAxis(np.linspace(-50,50,101), unit='km/s', refX=6562.8, refX_unit='angstrom'), data=np.random.randn(101), error=np.ones(101)) >>> sp.plotter() >>> sp.plotter.line_ids(['H$\\alpha$'],[6562.8],xval_units='angstrom') """ import lineid_plot if velocity_offset is not None: assert velocity_offset.unit.is_equivalent(u.km/u.s) doppler = getattr(u, 'doppler_{0}'.format(velocity_convention)) if self.Spectrum.xarr.refX is not None: equivalency = doppler(self.Spectrum.xarr.refX) else: equivalency = doppler(self.Spectrum.xarr.as_unit(u.GHz)[0]) xvals = [] linenames_toplot = [] for xv,ln in zip(line_xvals, line_names): if hasattr(xv, 'unit'): pass else: xv = u.Quantity(xv, xval_units) xv = xv.to(u.km/u.s, equivalencies=equivalency) if velocity_offset is not None: xv = xv + velocity_offset xv = xv.to(self.Spectrum.xarr.unit, equivalencies=equivalency) if self.Spectrum.xarr.in_range(xv): xvals.append(xv.value) linenames_toplot.append(ln) if len(xvals) != len(line_xvals): log.warn("Skipped {0} out-of-bounds lines when plotting line IDs." .format(len(line_xvals)-len(xvals))) if auto_yloc: yr = self.axis.get_ylim() kwargs['box_loc'] = (yr[1]-yr[0])*auto_yloc_fraction + yr[0] kwargs['arrow_tip'] = (yr[1]-yr[0])*(auto_yloc_fraction*0.9) + yr[0] lineid_plot.plot_line_ids(self.Spectrum.xarr, self.Spectrum.data, xvals, linenames_toplot, ax=self.axis, **kwargs) def line_ids_from_measurements(self, auto_yloc=True, auto_yloc_fraction=0.9, **kwargs): """ Add line ID labels to a plot using lineid_plot http://oneau.wordpress.com/2011/10/01/line-id-plot/ https://github.com/phn/lineid_plot http://packages.python.org/lineid_plot/ Parameters ---------- auto_yloc : bool If set, overrides box_loc and arrow_tip (the vertical position of the lineid labels) in kwargs to be `auto_yloc_fraction` of the plot range auto_yloc_fraction: float in range [0,1] The fraction of the plot (vertically) at which to place labels Examples -------- >>> import numpy as np >>> import pyspeckit >>> sp = pyspeckit.Spectrum( xarr=pyspeckit.units.SpectroscopicAxis(np.linspace(-50,50,101), units='km/s', refX=6562.8, refX_unit='angstroms'), data=np.random.randn(101), error=np.ones(101)) >>> sp.plotter() >>> sp.specfit(multifit=None, fittype='gaussian', guesses=[1,0,1]) # fitting noise.... >>> sp.measure() >>> sp.plotter.line_ids_from_measurements() """ import lineid_plot if hasattr(self.Spectrum,'measurements'): measurements = self.Spectrum.measurements if auto_yloc: yr = self.axis.get_ylim() kwargs['box_loc'] = (yr[1]-yr[0])*auto_yloc_fraction + yr[0] kwargs['arrow_tip'] = (yr[1]-yr[0])*(auto_yloc_fraction*0.9) + yr[0] lineid_plot.plot_line_ids(self.Spectrum.xarr, self.Spectrum.data, [v['pos'] for v in measurements.lines.values()], measurements.lines.keys(), ax=self.axis, **kwargs) else: warn("Cannot add line IDs from measurements unless measurements have been made!") def activate_interactive_fitter(self): """ Attempt to activate the interactive fitter """ if self._active_gui is not None: # This should not be reachable. Clearing connections is the # "right" behavior if this becomes reachable, but I'd rather raise # an exception because I don't want to get here ever self._active_gui.clear_all_connections() raise ValueError("GUI was active when 'f' key pressed") self._activate_interactive(self.Spectrum.specfit, interactive=True) def activate_interactive_baseline_fitter(self, **kwargs): """ Attempt to activate the interactive baseline fitter """ if self._active_gui is not None: # This should not be reachable. Clearing connections is the # "right" behavior if this becomes reachable, but I'd rather raise # an exception because I don't want to get here ever gui_was = self._active_gui self._active_gui.clear_all_connections() raise ValueError("GUI {0} was active when 'b' key pressed" .format(gui_was)) self._activate_interactive(self.Spectrum.baseline, interactive=True, **kwargs) def _activate_interactive(self, object_to_activate, **kwargs): self._disconnect_matplotlib_keys() self._active_gui = object_to_activate # activating the gui calls clear_all_connections, which disconnects the # gui try: self._active_gui(**kwargs) self._active_gui = object_to_activate assert self._active_gui is not None except Exception as ex: self._active_gui = None raise ex def parse_units(labelstring): import re labelstring = re.sub("um","$\\mu$m",labelstring) labelstring = re.sub("-1","$^{-1}$",labelstring) labelstring = re.sub("-2","$^{-2}$",labelstring) labelstring = re.sub("-3","$^{-3}$",labelstring) labelstring = re.sub("ergss","ergs s",labelstring) return labelstring def parse_norm(norm): """ Expected format: norm = 10E15 """ try: base, exp = norm.split('E') except ValueError: base, exp = norm.split('e') if float(base) == 1.0: norm = '10' else: norm = base norm += '^{%s}' % exp return norm def steppify(arr,isX=False): """ *support function* Converts an array to double-length for step plotting """ if isX: interval = abs(arr[1:]-arr[:-1]) / 2.0 newarr = np.array(list(zip(arr[:-1]-interval,arr[:-1]+interval))).ravel() newarr = np.concatenate([newarr,2*[newarr[-1]+interval[-1]]]) else: newarr = np.array(list(zip(arr,arr))).ravel() return newarr
pyspeckitREPO_NAMEpyspeckitPATH_START.@pyspeckit_extracted@pyspeckit-master@pyspeckit@spectrum@plotters.py@.PATH_END.py
{ "filename": "_size.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/densitymapbox/hoverlabel/font/_size.py", "type": "Python" }
import _plotly_utils.basevalidators class SizeValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="size", parent_name="densitymapbox.hoverlabel.font", **kwargs ): super(SizeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "none"), min=kwargs.pop("min", 1), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@densitymapbox@hoverlabel@font@_size.py@.PATH_END.py
{ "filename": "dbapi20.py", "repo_name": "mhammond/pywin32", "repo_path": "pywin32_extracted/pywin32-main/adodbapi/test/dbapi20.py", "type": "Python" }
#!/usr/bin/env python """Python DB API 2.0 driver compliance unit test suite. This software is Public Domain and may be used without restrictions. "Now we have booze and barflies entering the discussion, plus rumours of DBAs on drugs... and I won't tell you what flashes through my mind each time I read the subject line with 'Anal Compliance' in it. All around this is turning out to be a thoroughly unwholesome unit test." -- Ian Bicking """ __version__ = "$Revision: 1.15.0 $"[11:-2] __author__ = "Stuart Bishop <stuart@stuartbishop.net>" import sys import time import unittest # set this to "True" to follow API 2.0 to the letter TEST_FOR_NON_IDEMPOTENT_CLOSE = False # Revision 1.15 2019/11/22 00:50:00 kf7xm # Make Turn off IDEMPOTENT_CLOSE a proper skipTest # Revision 1.14 2013/05/20 11:02:05 kf7xm # Add a literal string to the format insertion test to catch trivial re-format algorithms # Revision 1.13 2013/05/08 14:31:50 kf7xm # Quick switch to Turn off IDEMPOTENT_CLOSE test. Also: Silence teardown failure # Revision 1.12 2009/02/06 03:35:11 kf7xm # Tested okay with Python 3.0, includes last minute patches from Mark H. # # Revision 1.1.1.1.2.1 2008/09/20 19:54:59 rupole # Include latest changes from main branch # Updates for py3k # # Revision 1.11 2005/01/02 02:41:01 zenzen # Update author email address # # Revision 1.10 2003/10/09 03:14:14 zenzen # Add test for DB API 2.0 optional extension, where database exceptions # are exposed as attributes on the Connection object. # # Revision 1.9 2003/08/13 01:16:36 zenzen # Minor tweak from Stefan Fleiter # # Revision 1.8 2003/04/10 00:13:25 zenzen # Changes, as per suggestions by M.-A. Lemburg # - Add a table prefix, to ensure namespace collisions can always be avoided # # Revision 1.7 2003/02/26 23:33:37 zenzen # Break out DDL into helper functions, as per request by David Rushby # # Revision 1.6 2003/02/21 03:04:33 zenzen # Stuff from Henrik Ekelund: # added test_None # added test_nextset & hooks # # Revision 1.5 2003/02/17 22:08:43 zenzen # Implement suggestions and code from Henrik Eklund - test that cursor.arraysize # defaults to 1 & generic cursor.callproc test added # # Revision 1.4 2003/02/15 00:16:33 zenzen # Changes, as per suggestions and bug reports by M.-A. Lemburg, # Matthew T. Kromer, Federico Di Gregorio and Daniel Dittmar # - Class renamed # - Now a subclass of TestCase, to avoid requiring the driver stub # to use multiple inheritance # - Reversed the polarity of buggy test in test_description # - Test exception hierarchy correctly # - self.populate is now self._populate(), so if a driver stub # overrides self.ddl1 this change propogates # - VARCHAR columns now have a width, which will hopefully make the # DDL even more portible (this will be reversed if it causes more problems) # - cursor.rowcount being checked after various execute and fetchXXX methods # - Check for fetchall and fetchmany returning empty lists after results # are exhausted (already checking for empty lists if select retrieved # nothing # - Fix bugs in test_setoutputsize_basic and test_setinputsizes # class DatabaseAPI20Test(unittest.TestCase): """Test a database self.driver for DB API 2.0 compatibility. This implementation tests Gadfly, but the TestCase is structured so that other self.drivers can subclass this test case to ensure compiliance with the DB-API. It is expected that this TestCase may be expanded in the future if ambiguities or edge conditions are discovered. The 'Optional Extensions' are not yet being tested. self.drivers should subclass this test, overriding setUp, tearDown, self.driver, connect_args and connect_kw_args. Class specification should be as follows: import dbapi20 class mytest(dbapi20.DatabaseAPI20Test): [...] Don't 'import DatabaseAPI20Test from dbapi20', or you will confuse the unit tester - just 'import dbapi20'. """ # The self.driver module. This should be the module where the 'connect' # method is to be found driver = None connect_args = () # List of arguments to pass to connect connect_kw_args = {} # Keyword arguments for connect table_prefix = "dbapi20test_" # If you need to specify a prefix for tables ddl1 = "create table %sbooze (name varchar(20))" % table_prefix ddl2 = "create table %sbarflys (name varchar(20), drink varchar(30))" % table_prefix xddl1 = "drop table %sbooze" % table_prefix xddl2 = "drop table %sbarflys" % table_prefix lowerfunc = "lower" # Name of stored procedure to convert string->lowercase # Some drivers may need to override these helpers, for example adding # a 'commit' after the execute. def executeDDL1(self, cursor): cursor.execute(self.ddl1) def executeDDL2(self, cursor): cursor.execute(self.ddl2) def setUp(self): """self.drivers should override this method to perform required setup if any is necessary, such as creating the database. """ pass def tearDown(self): """self.drivers should override this method to perform required cleanup if any is necessary, such as deleting the test database. The default drops the tables that may be created. """ try: con = self._connect() try: cur = con.cursor() for ddl in (self.xddl1, self.xddl2): try: cur.execute(ddl) con.commit() except self.driver.Error: # Assume table didn't exist. Other tests will check if # execute is busted. pass finally: con.close() except Exception: pass def _connect(self): try: r = self.driver.connect(*self.connect_args, **self.connect_kw_args) except AttributeError: self.fail("No connect method found in self.driver module") return r def test_connect(self): con = self._connect() con.close() def test_apilevel(self): try: # Must exist apilevel = self.driver.apilevel # Must equal 2.0 self.assertEqual(apilevel, "2.0") except AttributeError: self.fail("Driver doesn't define apilevel") def test_threadsafety(self): try: # Must exist threadsafety = self.driver.threadsafety # Must be a valid value self.assertTrue(threadsafety in (0, 1, 2, 3)) except AttributeError: self.fail("Driver doesn't define threadsafety") def test_paramstyle(self): try: # Must exist paramstyle = self.driver.paramstyle # Must be a valid value self.assertTrue( paramstyle in ("qmark", "numeric", "named", "format", "pyformat") ) except AttributeError: self.fail("Driver doesn't define paramstyle") def test_Exceptions(self): # Make sure required exceptions exist, and are in the # defined hierarchy. if sys.version[0] == "3": # under Python 3 StardardError no longer exists self.assertTrue(issubclass(self.driver.Warning, Exception)) self.assertTrue(issubclass(self.driver.Error, Exception)) else: self.failUnless(issubclass(self.driver.Warning, Exception)) self.failUnless(issubclass(self.driver.Error, Exception)) self.assertTrue(issubclass(self.driver.InterfaceError, self.driver.Error)) self.assertTrue(issubclass(self.driver.DatabaseError, self.driver.Error)) self.assertTrue(issubclass(self.driver.OperationalError, self.driver.Error)) self.assertTrue(issubclass(self.driver.IntegrityError, self.driver.Error)) self.assertTrue(issubclass(self.driver.InternalError, self.driver.Error)) self.assertTrue(issubclass(self.driver.ProgrammingError, self.driver.Error)) self.assertTrue(issubclass(self.driver.NotSupportedError, self.driver.Error)) def test_ExceptionsAsConnectionAttributes(self): # OPTIONAL EXTENSION # Test for the optional DB API 2.0 extension, where the exceptions # are exposed as attributes on the Connection object # I figure this optional extension will be implemented by any # driver author who is using this test suite, so it is enabled # by default. con = self._connect() drv = self.driver self.assertTrue(con.Warning is drv.Warning) self.assertTrue(con.Error is drv.Error) self.assertTrue(con.InterfaceError is drv.InterfaceError) self.assertTrue(con.DatabaseError is drv.DatabaseError) self.assertTrue(con.OperationalError is drv.OperationalError) self.assertTrue(con.IntegrityError is drv.IntegrityError) self.assertTrue(con.InternalError is drv.InternalError) self.assertTrue(con.ProgrammingError is drv.ProgrammingError) self.assertTrue(con.NotSupportedError is drv.NotSupportedError) def test_commit(self): con = self._connect() try: # Commit must work, even if it doesn't do anything con.commit() finally: con.close() def test_rollback(self): con = self._connect() # If rollback is defined, it should either work or throw # the documented exception if hasattr(con, "rollback"): try: con.rollback() except self.driver.NotSupportedError: pass def test_cursor(self): con = self._connect() try: cur = con.cursor() finally: con.close() def test_cursor_isolation(self): con = self._connect() try: # Make sure cursors created from the same connection have # the documented transaction isolation level cur1 = con.cursor() cur2 = con.cursor() self.executeDDL1(cur1) cur1.execute( "insert into %sbooze values ('Victoria Bitter')" % (self.table_prefix) ) cur2.execute("select name from %sbooze" % self.table_prefix) booze = cur2.fetchall() self.assertEqual(len(booze), 1) self.assertEqual(len(booze[0]), 1) self.assertEqual(booze[0][0], "Victoria Bitter") finally: con.close() def test_description(self): con = self._connect() try: cur = con.cursor() self.executeDDL1(cur) self.assertEqual( cur.description, None, "cursor.description should be none after executing a " "statement that can return no rows (such as DDL)", ) cur.execute("select name from %sbooze" % self.table_prefix) self.assertEqual( len(cur.description), 1, "cursor.description describes too many columns" ) self.assertEqual( len(cur.description[0]), 7, "cursor.description[x] tuples must have 7 elements", ) self.assertEqual( cur.description[0][0].lower(), "name", "cursor.description[x][0] must return column name", ) self.assertEqual( cur.description[0][1], self.driver.STRING, "cursor.description[x][1] must return column type. Got %r" % cur.description[0][1], ) # Make sure self.description gets reset self.executeDDL2(cur) self.assertEqual( cur.description, None, "cursor.description not being set to None when executing " "no-result statements (eg. DDL)", ) finally: con.close() def test_rowcount(self): con = self._connect() try: cur = con.cursor() self.executeDDL1(cur) self.assertTrue( cur.rowcount in (-1, 0), # Bug #543885 "cursor.rowcount should be -1 or 0 after executing no-result " "statements", ) cur.execute( "insert into %sbooze values ('Victoria Bitter')" % (self.table_prefix) ) self.assertTrue( cur.rowcount in (-1, 1), "cursor.rowcount should == number or rows inserted, or " "set to -1 after executing an insert statement", ) cur.execute("select name from %sbooze" % self.table_prefix) self.assertTrue( cur.rowcount in (-1, 1), "cursor.rowcount should == number of rows returned, or " "set to -1 after executing a select statement", ) self.executeDDL2(cur) self.assertEqual( cur.rowcount, -1, "cursor.rowcount not being reset to -1 after executing " "no-result statements", ) finally: con.close() lower_func = "lower" def test_callproc(self): con = self._connect() try: cur = con.cursor() if self.lower_func and hasattr(cur, "callproc"): r = cur.callproc(self.lower_func, ("FOO",)) self.assertEqual(len(r), 1) self.assertEqual(r[0], "FOO") r = cur.fetchall() self.assertEqual(len(r), 1, "callproc produced no result set") self.assertEqual(len(r[0]), 1, "callproc produced invalid result set") self.assertEqual(r[0][0], "foo", "callproc produced invalid results") finally: con.close() def test_close(self): con = self._connect() try: cur = con.cursor() finally: con.close() # cursor.execute should raise an Error if called after connection # closed self.assertRaises(self.driver.Error, self.executeDDL1, cur) # connection.commit should raise an Error if called after connection' # closed.' self.assertRaises(self.driver.Error, con.commit) # connection.close should raise an Error if called more than once #!!! reasonable persons differ about the usefulness of this test and this feature !!! if TEST_FOR_NON_IDEMPOTENT_CLOSE: self.assertRaises(self.driver.Error, con.close) else: self.skipTest( "Non-idempotent close is considered a bad thing by some people." ) def test_execute(self): con = self._connect() try: cur = con.cursor() self._paraminsert(cur) finally: con.close() def _paraminsert(self, cur): self.executeDDL2(cur) cur.execute( "insert into %sbarflys values ('Victoria Bitter', 'thi%%s :may ca%%(u)se? troub:1e')" % (self.table_prefix) ) self.assertTrue(cur.rowcount in (-1, 1)) if self.driver.paramstyle == "qmark": cur.execute( "insert into %sbarflys values (?, 'thi%%s :may ca%%(u)se? troub:1e')" % self.table_prefix, ("Cooper's",), ) elif self.driver.paramstyle == "numeric": cur.execute( "insert into %sbarflys values (:1, 'thi%%s :may ca%%(u)se? troub:1e')" % self.table_prefix, ("Cooper's",), ) elif self.driver.paramstyle == "named": cur.execute( "insert into %sbarflys values (:beer, 'thi%%s :may ca%%(u)se? troub:1e')" % self.table_prefix, {"beer": "Cooper's"}, ) elif self.driver.paramstyle == "format": cur.execute( "insert into %sbarflys values (%%s, 'thi%%s :may ca%%(u)se? troub:1e')" % self.table_prefix, ("Cooper's",), ) elif self.driver.paramstyle == "pyformat": cur.execute( "insert into %sbarflys values (%%(beer)s, 'thi%%s :may ca%%(u)se? troub:1e')" % self.table_prefix, {"beer": "Cooper's"}, ) else: self.fail("Invalid paramstyle") self.assertTrue(cur.rowcount in (-1, 1)) cur.execute("select name, drink from %sbarflys" % self.table_prefix) res = cur.fetchall() self.assertEqual(len(res), 2, "cursor.fetchall returned too few rows") beers = [res[0][0], res[1][0]] beers.sort() self.assertEqual( beers[0], "Cooper's", "cursor.fetchall retrieved incorrect data, or data inserted incorrectly", ) self.assertEqual( beers[1], "Victoria Bitter", "cursor.fetchall retrieved incorrect data, or data inserted incorrectly", ) trouble = "thi%s :may ca%(u)se? troub:1e" self.assertEqual( res[0][1], trouble, "cursor.fetchall retrieved incorrect data, or data inserted " f"incorrectly. Got={res[0][1]!r}, Expected={trouble!r}", ) self.assertEqual( res[1][1], trouble, "cursor.fetchall retrieved incorrect data, or data inserted " f"incorrectly. Got={res[1][1]!r}, Expected={trouble!r}", ) def test_executemany(self): con = self._connect() try: cur = con.cursor() self.executeDDL1(cur) largs = [("Cooper's",), ("Boag's",)] margs = [{"beer": "Cooper's"}, {"beer": "Boag's"}] if self.driver.paramstyle == "qmark": cur.executemany( "insert into %sbooze values (?)" % self.table_prefix, largs ) elif self.driver.paramstyle == "numeric": cur.executemany( "insert into %sbooze values (:1)" % self.table_prefix, largs ) elif self.driver.paramstyle == "named": cur.executemany( "insert into %sbooze values (:beer)" % self.table_prefix, margs ) elif self.driver.paramstyle == "format": cur.executemany( "insert into %sbooze values (%%s)" % self.table_prefix, largs ) elif self.driver.paramstyle == "pyformat": cur.executemany( "insert into %sbooze values (%%(beer)s)" % (self.table_prefix), margs, ) else: self.fail("Unknown paramstyle") self.assertTrue( cur.rowcount in (-1, 2), "insert using cursor.executemany set cursor.rowcount to " "incorrect value %r" % cur.rowcount, ) cur.execute("select name from %sbooze" % self.table_prefix) res = cur.fetchall() self.assertEqual( len(res), 2, "cursor.fetchall retrieved incorrect number of rows" ) beers = [res[0][0], res[1][0]] beers.sort() self.assertEqual( beers[0], "Boag's", 'incorrect data "%s" retrieved' % beers[0] ) self.assertEqual(beers[1], "Cooper's", "incorrect data retrieved") finally: con.close() def test_fetchone(self): con = self._connect() try: cur = con.cursor() # cursor.fetchone should raise an Error if called before # executing a select-type query self.assertRaises(self.driver.Error, cur.fetchone) # cursor.fetchone should raise an Error if called after # executing a query that cannnot return rows self.executeDDL1(cur) self.assertRaises(self.driver.Error, cur.fetchone) cur.execute("select name from %sbooze" % self.table_prefix) self.assertEqual( cur.fetchone(), None, "cursor.fetchone should return None if a query retrieves no rows", ) self.assertTrue(cur.rowcount in (-1, 0)) # cursor.fetchone should raise an Error if called after # executing a query that cannnot return rows cur.execute( "insert into %sbooze values ('Victoria Bitter')" % (self.table_prefix) ) self.assertRaises(self.driver.Error, cur.fetchone) cur.execute("select name from %sbooze" % self.table_prefix) r = cur.fetchone() self.assertEqual( len(r), 1, "cursor.fetchone should have retrieved a single row" ) self.assertEqual( r[0], "Victoria Bitter", "cursor.fetchone retrieved incorrect data" ) self.assertEqual( cur.fetchone(), None, "cursor.fetchone should return None if no more rows available", ) self.assertTrue(cur.rowcount in (-1, 1)) finally: con.close() samples = [ "Carlton Cold", "Carlton Draft", "Mountain Goat", "Redback", "Victoria Bitter", "XXXX", ] def _populate(self): """Return a list of sql commands to setup the DB for the fetch tests. """ populate = [ "insert into %sbooze values ('%s')" % (self.table_prefix, s) for s in self.samples ] return populate def test_fetchmany(self): con = self._connect() try: cur = con.cursor() # cursor.fetchmany should raise an Error if called without # issuing a query self.assertRaises(self.driver.Error, cur.fetchmany, 4) self.executeDDL1(cur) for sql in self._populate(): cur.execute(sql) cur.execute("select name from %sbooze" % self.table_prefix) r = cur.fetchmany() self.assertEqual( len(r), 1, "cursor.fetchmany retrieved incorrect number of rows, " "default of arraysize is one.", ) cur.arraysize = 10 r = cur.fetchmany(3) # Should get 3 rows self.assertEqual( len(r), 3, "cursor.fetchmany retrieved incorrect number of rows" ) r = cur.fetchmany(4) # Should get 2 more self.assertEqual( len(r), 2, "cursor.fetchmany retrieved incorrect number of rows" ) r = cur.fetchmany(4) # Should be an empty sequence self.assertEqual( len(r), 0, "cursor.fetchmany should return an empty sequence after " "results are exhausted", ) self.assertTrue(cur.rowcount in (-1, 6)) # Same as above, using cursor.arraysize cur.arraysize = 4 cur.execute("select name from %sbooze" % self.table_prefix) r = cur.fetchmany() # Should get 4 rows self.assertEqual( len(r), 4, "cursor.arraysize not being honoured by fetchmany" ) r = cur.fetchmany() # Should get 2 more self.assertEqual(len(r), 2) r = cur.fetchmany() # Should be an empty sequence self.assertEqual(len(r), 0) self.assertTrue(cur.rowcount in (-1, 6)) cur.arraysize = 6 cur.execute("select name from %sbooze" % self.table_prefix) rows = cur.fetchmany() # Should get all rows self.assertTrue(cur.rowcount in (-1, 6)) self.assertEqual(len(rows), 6) self.assertEqual(len(rows), 6) rows = [r[0] for r in rows] rows.sort() # Make sure we get the right data back out for i in range(0, 6): self.assertEqual( rows[i], self.samples[i], "incorrect data retrieved by cursor.fetchmany", ) rows = cur.fetchmany() # Should return an empty list self.assertEqual( len(rows), 0, "cursor.fetchmany should return an empty sequence if " "called after the whole result set has been fetched", ) self.assertTrue(cur.rowcount in (-1, 6)) self.executeDDL2(cur) cur.execute("select name from %sbarflys" % self.table_prefix) r = cur.fetchmany() # Should get empty sequence self.assertEqual( len(r), 0, "cursor.fetchmany should return an empty sequence if " "query retrieved no rows", ) self.assertTrue(cur.rowcount in (-1, 0)) finally: con.close() def test_fetchall(self): con = self._connect() try: cur = con.cursor() # cursor.fetchall should raise an Error if called # without executing a query that may return rows (such # as a select) self.assertRaises(self.driver.Error, cur.fetchall) self.executeDDL1(cur) for sql in self._populate(): cur.execute(sql) # cursor.fetchall should raise an Error if called # after executing a a statement that cannot return rows self.assertRaises(self.driver.Error, cur.fetchall) cur.execute("select name from %sbooze" % self.table_prefix) rows = cur.fetchall() self.assertTrue(cur.rowcount in (-1, len(self.samples))) self.assertEqual( len(rows), len(self.samples), "cursor.fetchall did not retrieve all rows", ) rows = [r[0] for r in rows] rows.sort() for i in range(0, len(self.samples)): self.assertEqual( rows[i], self.samples[i], "cursor.fetchall retrieved incorrect rows" ) rows = cur.fetchall() self.assertEqual( len(rows), 0, "cursor.fetchall should return an empty list if called " "after the whole result set has been fetched", ) self.assertTrue(cur.rowcount in (-1, len(self.samples))) self.executeDDL2(cur) cur.execute("select name from %sbarflys" % self.table_prefix) rows = cur.fetchall() self.assertTrue(cur.rowcount in (-1, 0)) self.assertEqual( len(rows), 0, "cursor.fetchall should return an empty list if " "a select query returns no rows", ) finally: con.close() def test_mixedfetch(self): con = self._connect() try: cur = con.cursor() self.executeDDL1(cur) for sql in self._populate(): cur.execute(sql) cur.execute("select name from %sbooze" % self.table_prefix) rows1 = cur.fetchone() rows23 = cur.fetchmany(2) rows4 = cur.fetchone() rows56 = cur.fetchall() self.assertTrue(cur.rowcount in (-1, 6)) self.assertEqual( len(rows23), 2, "fetchmany returned incorrect number of rows" ) self.assertEqual( len(rows56), 2, "fetchall returned incorrect number of rows" ) rows = [rows1[0]] rows.extend([rows23[0][0], rows23[1][0]]) rows.append(rows4[0]) rows.extend([rows56[0][0], rows56[1][0]]) rows.sort() for i in range(0, len(self.samples)): self.assertEqual( rows[i], self.samples[i], "incorrect data retrieved or inserted" ) finally: con.close() def help_nextset_setUp(self, cur): """Should create a procedure called deleteme that returns two result sets, first the number of rows in booze then "name from booze" """ raise NotImplementedError("Helper not implemented") # sql=""" # create procedure deleteme as # begin # select count(*) from booze # select name from booze # end # """ # cur.execute(sql) def help_nextset_tearDown(self, cur): "If cleaning up is needed after nextSetTest" raise NotImplementedError("Helper not implemented") # cur.execute("drop procedure deleteme") def test_nextset(self): raise NotImplementedError("Drivers need to override this test") def test_arraysize(self): # Not much here - rest of the tests for this are in test_fetchmany con = self._connect() try: cur = con.cursor() self.assertTrue( hasattr(cur, "arraysize"), "cursor.arraysize must be defined" ) finally: con.close() def test_setinputsizes(self): con = self._connect() try: cur = con.cursor() cur.setinputsizes((25,)) self._paraminsert(cur) # Make sure cursor still works finally: con.close() def test_setoutputsize_basic(self): # Basic test is to make sure setoutputsize doesn't blow up con = self._connect() try: cur = con.cursor() cur.setoutputsize(1000) cur.setoutputsize(2000, 0) self._paraminsert(cur) # Make sure the cursor still works finally: con.close() def test_setoutputsize(self): # Real test for setoutputsize is driver dependant raise NotImplementedError("Driver needed to override this test") def test_None(self): con = self._connect() try: cur = con.cursor() self.executeDDL1(cur) cur.execute("insert into %sbooze values (NULL)" % self.table_prefix) cur.execute("select name from %sbooze" % self.table_prefix) r = cur.fetchall() self.assertEqual(len(r), 1) self.assertEqual(len(r[0]), 1) self.assertEqual(r[0][0], None, "NULL value not returned as None") finally: con.close() def test_Date(self): d1 = self.driver.Date(2002, 12, 25) d2 = self.driver.DateFromTicks(time.mktime((2002, 12, 25, 0, 0, 0, 0, 0, 0))) # Can we assume this? API doesn't specify, but it seems implied # self.assertEqual(str(d1),str(d2)) def test_Time(self): t1 = self.driver.Time(13, 45, 30) t2 = self.driver.TimeFromTicks(time.mktime((2001, 1, 1, 13, 45, 30, 0, 0, 0))) # Can we assume this? API doesn't specify, but it seems implied # self.assertEqual(str(t1),str(t2)) def test_Timestamp(self): t1 = self.driver.Timestamp(2002, 12, 25, 13, 45, 30) t2 = self.driver.TimestampFromTicks( time.mktime((2002, 12, 25, 13, 45, 30, 0, 0, 0)) ) # Can we assume this? API doesn't specify, but it seems implied # self.assertEqual(str(t1),str(t2)) def test_Binary(self): b = self.driver.Binary(b"Something") b = self.driver.Binary(b"") def test_STRING(self): self.assertTrue(hasattr(self.driver, "STRING"), "module.STRING must be defined") def test_BINARY(self): self.assertTrue( hasattr(self.driver, "BINARY"), "module.BINARY must be defined." ) def test_NUMBER(self): self.assertTrue( hasattr(self.driver, "NUMBER"), "module.NUMBER must be defined." ) def test_DATETIME(self): self.assertTrue( hasattr(self.driver, "DATETIME"), "module.DATETIME must be defined." ) def test_ROWID(self): self.assertTrue(hasattr(self.driver, "ROWID"), "module.ROWID must be defined.")
mhammondREPO_NAMEpywin32PATH_START.@pywin32_extracted@pywin32-main@adodbapi@test@dbapi20.py@.PATH_END.py
{ "filename": "_stream.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/table/_stream.py", "type": "Python" }
import _plotly_utils.basevalidators class StreamValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="stream", parent_name="table", **kwargs): super(StreamValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Stream"), data_docs=kwargs.pop( "data_docs", """ maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart- studio.plotly.com/settings for more details. """, ), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@table@_stream.py@.PATH_END.py
{ "filename": "_len.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/bar/marker/colorbar/_len.py", "type": "Python" }
import _plotly_utils.basevalidators class LenValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="len", parent_name="bar.marker.colorbar", **kwargs): super(LenValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@bar@marker@colorbar@_len.py@.PATH_END.py
{ "filename": "test_simulations_gs_param_hist.py", "repo_name": "mirochaj/ares", "repo_path": "ares_extracted/ares-main/tests/test_simulations_gs_param_hist.py", "type": "Python" }
""" test_21cm_parameterized.py Author: Jordan Mirocha Affiliation: University of Colorado at Boulder Created on: Wed Aug 6 08:54:15 MDT 2014 Description: 21-cm signal in absence of astrophysical sources. """ import ares import numpy as np def test(): # Create instance of Hydrogen class hydr = ares.physics.Hydrogen(approx_thermal_history='piecewise') # Analytic approximation to thermal history Tk = lambda z: hydr.cosm.Tgas(z) # Spin temperature (arguments: z, Tk, Ja, xHII, ne) Ts = lambda z: hydr.SpinTemperature(z, Tk(z), 0.0, 0.0, 0.0) # Brightness temperature (arguments: z, Ts, xavg optional) dTb = lambda z: hydr.get_21cm_dTb(z, Ts(z)) # Define redshift interval of interest z = np.linspace(10, 1e3, 500) # Get CosmoRec recombination history CR = hydr.cosm._ics.get_inits_rec() # Assume neutral medium for simplicity Ts_CR = hydr.SpinTemperature(CR['z'], CR['Tk'], 0.0, 0.0, 0.0) dTb_CR = hydr.get_21cm_dTb(CR['z'], Ts_CR) if __name__ == '__main__': test()
mirochajREPO_NAMEaresPATH_START.@ares_extracted@ares-main@tests@test_simulations_gs_param_hist.py@.PATH_END.py
{ "filename": "example11_parse_measurements_log.py", "repo_name": "Vital-Fernandez/lime", "repo_path": "lime_extracted/lime-master/examples/tutorials/various/example11_parse_measurements_log.py", "type": "Python" }
import numpy as np from astropy.io import fits import lime def import_osiris_fits(file_address, ext=0): # Open fits file with fits.open(file_address) as hdul: data, hdr = hdul[ext].data, hdul[ext].header w_min, dw, n_pix = hdr['CRVAL1'], hdr['CD1_1'], hdr['NAXIS1'] w_max = w_min + dw * n_pix wavelength = np.linspace(w_min, w_max, n_pix, endpoint=False) return wavelength, data, hdr # State the data files obsFitsFile = './sample_data/gp121903_osiris.fits' lineMaskFile = './sample_data/osiris_bands.txt' cfgFile = './sample_data/config_file.cfg' # Load spectrum wave, flux, header = import_osiris_fits(obsFitsFile) # Load mask mask = lime.load_frame(lineMaskFile) # Load configuration obs_cfg = lime.load_cfg(cfgFile) fit_cfg = obs_cfg['gp121903_line_fitting'] # Declare line measuring object z_obj = obs_cfg['sample_data']['z_array'][2] norm_flux = obs_cfg['sample_data']['norm_flux'] gp_spec = lime.Spectrum(wave, flux, redshift=z_obj, norm_flux=norm_flux) # Find lines peaks_table, matched_masks_DF = gp_spec.match_line_mask(mask, obs_cfg['sample_data']['noiseRegion_array']) # Measure the emission lines for i, lineLabel in enumerate(matched_masks_DF.index.values): wave_regions = matched_masks_DF.loc[lineLabel, 'w1':'w6'].values gp_spec.fit_from_wavelengths(lineLabel, wave_regions, user_cfg=fit_cfg) # Save the results lime.save_frame('./sample_data/example_3.txt', gp_spec.frame) # Add new parameters to the log parameters = ['eqw_gaussian', 'eqw_gaussian_err'] formulation = ['profile_flux/cont', '(profile_flux/cont) * sqrt((profile_flux_err/profile_flux)**2 + (std_cont/cont)**2)'] lime.log_parameters_calculation('./sample_data/example_3.txt', parameters, formulation)
Vital-FernandezREPO_NAMElimePATH_START.@lime_extracted@lime-master@examples@tutorials@various@example11_parse_measurements_log.py@.PATH_END.py
{ "filename": "_pi_pi_etap.py", "repo_name": "LoganAMorrison/Hazma", "repo_path": "Hazma_extracted/Hazma-master/hazma/form_factors/vector/_pi_pi_etap.py", "type": "Python" }
""" Module implementing the pi-pi-eta' form factor. """ from dataclasses import InitVar, dataclass, field from typing import overload import numpy as np from hazma.phase_space import PhaseSpaceDistribution1D from hazma.utils import ComplexArray, ComplexOrComplexArray, RealArray, RealOrRealArray from ._three_body import Couplings, VectorFormFactorPPP2 from ._utils import FPI_GEV, METAP_GEV, MPI_GEV METAP = METAP_GEV * 1e3 MPI = MPI_GEV * 1e3 @dataclass class VectorFormFactorPiPiEtaPrimeFitData: """Storage class for the fit parameters of the pi-pi-eta' vector form-factor. Attributes ---------- masses: RealArray VMD resonance masses. widths: RealArray VMD resonance widths. amps: RealArray VMD resonance amplitudes. phases: RealArray VMD resonance phases. """ masses: RealArray = field( default_factory=lambda: np.array([0.77549, 1.54, 1.76, 2.11]) ) widths: RealArray = field( default_factory=lambda: np.array([0.1494, 0.356, 0.113, 0.176]) ) amps: RealArray = field(default_factory=lambda: np.array([1.0, 0.0, 0.0, 0.02])) phases: RealArray = field( default_factory=lambda: np.array([0, np.pi, np.pi, np.pi]) ) @dataclass class VectorFormFactorPiPiEtaPrime(VectorFormFactorPPP2): r"""Class for computing the pi-pi-eta' vector form-factor. Attributes ---------- fsp_masses: (float,float,float) Masses of the final state particles. fit_data: VectorFormFactorPiPiEtaPrimeFitData Fitted parameters for the pion-pion-eta vector form-factor. Methods ------- form_factor Compute the un-integrated form-factor. integrated_form_factor Compute the form-factor integrated over phase-space. width Compute the decay width of a vector into pi-pi-eta'. cross_section Compute the dark matter annihilation cross section into pi-pi-eta'. """ fsp_masses: tuple[float, float, float] = field( init=False, default=(METAP, MPI, MPI) ) _fsp_masses: tuple[float, float, float] = field( init=False, default=(METAP_GEV, MPI_GEV, MPI_GEV) ) fit_data: VectorFormFactorPiPiEtaPrimeFitData = field(init=False) masses: InitVar[RealArray] = field(default=np.array([0.77549, 1.54, 1.76, 2.11])) widths: InitVar[RealArray] = field(default=np.array([0.1494, 0.356, 0.113, 0.176])) amps: InitVar[RealArray] = field(default=np.array([1.0, 0.0, 0.0, 0.02])) phases: InitVar[RealArray] = field(default=np.array([0.0, np.pi, np.pi, np.pi])) def __post_init__( self, masses: RealArray, widths: RealArray, amps: RealArray, phases: RealArray, ): self.fit_data = VectorFormFactorPiPiEtaPrimeFitData( masses=masses, widths=widths, amps=amps, phases=phases, ) def __bw0(self, s): m0 = self.fit_data.masses[0] w0 = self.fit_data.widths[0] w = ( w0 * m0**2 / s * ((s - 4.0 * MPI_GEV**2) / (m0**2 - 4.0 * MPI_GEV**2)) ** 1.5 ) return m0**2 / (m0**2 - s - 1j * np.sqrt(s) * w) def __bw(self, s): w = self.fit_data.widths * s / self.fit_data.masses**2 bw = self.fit_data.masses**2 / ( self.fit_data.masses**2 - s - 1j * np.sqrt(s) * w ) bw[0] = self.__bw0(s) return bw def _form_factor(self, q, s, couplings: Couplings): """ Compute the form factor for a vector decaying into two charged pions and an eta-prime. """ pre = np.sqrt(2.0) / (4.0 * np.sqrt(3.0) * np.pi**2 * FPI_GEV**3) ci1 = couplings[0] - couplings[1] amps = self.fit_data.amps * np.exp(1j * self.fit_data.phases) amps /= np.sum(amps) return pre * ci1 * self.__bw0(s) * np.sum(amps * self.__bw(q**2)) @overload def form_factor( # pylint: disable=arguments-differ self, q: float, s: float, couplings: Couplings ) -> complex: ... @overload def form_factor( # pylint: disable=arguments-differ self, q: float, s: RealArray, couplings: Couplings ) -> ComplexArray: ... def form_factor( # pylint: disable=arguments-differ self, q: float, s: RealOrRealArray, couplings: Couplings ) -> ComplexOrComplexArray: r"""Compute the form factor for a vector decaying into two pions and an eta'. Parameters ---------- q: Center-of-mass energy in MeV. s: float Squared invariant mass of the pions s = (p2+p3)^2. t: float Squared invariant mass of the eta' and last pion t=(p1+p3)^2. gvuu, gvdd: float Coupling of vector to up-quarks and down-quarks. """ qq = q * 1e-3 ss = s * 1e-6 ff = self._form_factor(qq, ss, couplings) * 1e-9 return ff @overload def integrated_form_factor( # pylint: disable=arguments-differ self, q: float, couplings: Couplings ) -> float: ... @overload def integrated_form_factor( # pylint: disable=arguments-differ self, q: RealArray, couplings: Couplings ) -> RealArray: ... def integrated_form_factor( # pylint: disable=arguments-differ self, q: float | RealArray, couplings: Couplings ) -> float | RealArray: """ Compute the form factor for a vector decaying into two charged pions and an eta' integrated over the three-body phase-space. Parameters ---------- q: float or array-like Center-of-mass energy in MeV. gvuu, gvdd: float Vector coupling to up-quarks and down-quarks. """ return self._integrated_form_factor(q=q, couplings=couplings) @overload def width( # pylint: disable=arguments-differ self, mv: float, couplings: Couplings ) -> float: ... @overload def width( # pylint: disable=arguments-differ self, mv: RealArray, couplings: Couplings ) -> RealArray: ... def width( # pylint: disable=arguments-differ self, mv: float | RealArray, couplings: Couplings ) -> float | RealArray: r"""Compute the partial decay width of a massive vector into an eta' and two pions. Parameters ---------- mv: float Mass of the vector. gvuu, gvdd: float Coupling of vector to up-quarks and down-quarks. Returns ------- width: float Decay width of vector into an eta' and two pions. """ return self._width(mv=mv, couplings=couplings) @overload def cross_section( # pylint: disable=arguments-differ,too-many-arguments self, q: float, mx: float, mv: float, gvxx: float, wv: float, couplings: Couplings, ) -> float: ... @overload def cross_section( # pylint: disable=arguments-differ,too-many-arguments self, q: RealArray, mx: float, mv: float, gvxx: float, wv: float, couplings: Couplings, ) -> RealArray: ... def cross_section( # pylint: disable=arguments-differ,too-many-arguments self, q: RealOrRealArray, mx: float, mv: float, gvxx: float, wv: float, couplings: Couplings, ) -> RealOrRealArray: r"""Compute the cross section for dark matter annihilating into an eta' and two pions. Parameters ---------- q: float Center-of-mass energy. mx: float Mass of the dark matter in MeV. mv: float Mass of the vector mediator in MeV. gvxx: float Coupling of vector to dark matter. wv: float Width of the vector in MeV. gvuu, gvdd: float Coupling of vector to up-quarks and down-quarks. Returns ------- cs: float or array-like Annihilation cross section into an eta' and two pions. """ return self._cross_section( q=q, mx=mx, mv=mv, gvxx=gvxx, wv=wv, couplings=couplings ) def energy_distributions( # pylint: disable=arguments-differ self, q: float, nbins: int, *, couplings: Couplings, ) -> list[PhaseSpaceDistribution1D]: r"""Compute the energy distributions of the final state pions and eta'. Parameters ---------- q: float Center-of-mass energy. nbins: float Number of bins used to generate distribution. gvuu, gvdd: float Coupling of vector to up- and down-quarks. Returns ------- dists: List[PhaseSpaceDistribution1D] List of the energy distributions. """ return self._energy_distributions(q=q, nbins=nbins, couplings=couplings) def invariant_mass_distributions( # pylint: disable=arguments-differ self, q: float, nbins: int, *, couplings: Couplings ) -> dict[tuple[int, int], PhaseSpaceDistribution1D]: r"""Compute the invariant-mass distributions of the all pairs of the final-state particles. Parameters ---------- q: float Center-of-mass energy. nbins: float Number of bins used to generate distribution. gvuu, gvdd: float Coupling of vector to up- and down-quarks. Returns ------- dists: Dict[(int,int), PhaseSpaceDistribution1D] Dictionary of the invariant-mass distributions. Keys specify the pair of particles the distribution represents. """ return self._invariant_mass_distributions(q=q, nbins=nbins, couplings=couplings)
LoganAMorrisonREPO_NAMEHazmaPATH_START.@Hazma_extracted@Hazma-master@hazma@form_factors@vector@_pi_pi_etap.py@.PATH_END.py
{ "filename": "README.md", "repo_name": "sjforeman/bskit", "repo_path": "bskit_extracted/bskit-master/README.md", "type": "Markdown" }
# bskit `bskit` is a Python package for measuring density bispectra from snapshots of cosmological N-body or hydrodynamical simulations. It can measure auto or cross bispectra in a user-specified set of triangle bins (that is, triplets of 3-vector wavenumbers (k_1,k_2,k_3) such that k_1, k_2, and k_3 fall into separately specified vector magnitude bins and k_1+k_2+k_3=0). Several common sets of bins are also implemented: - all triangle bins with min(|k_1|,|k_2|,|k_3|) > k_min and max(|k_1|,|k_2|,|k_3|) < k_max for specified k_min and k_max; - equilateral triangles between specified k_min and k_max; - isosceles triangles defined by m*|k_1| ~ |k_2| ~ |k_3| for specified multiplier m; - squeezed isosceles triangles with |k_1| fixed and |k_2| ~ |k_3|. `bskit` is built upon the [nbodykit](github.com/bccp/nbodykit) simulation analysis package, and users should familiarize themselves with the central `nbodykit` concepts in the [documentation](https://nbodykit.readthedocs.io/en/latest/) before getting started with `bskit`. This package uses the FFT-based bispectrum measurement algorithm presented e.g. in Sec. 2 of > Tomlinson et al., *Efficient parallel algorithm for estimating higher-order polyspectra*, [Astrophys. J., 158, 116 (2019)](10.3847/1538-3881/ab3223), arXiv:[1904.11055](https://arxiv.org/abs/1904.11055) (see below for further references), and was first used for the bispectrum measurements in the following paper: > Foreman, Coulton, Villaescusa-Navarro, and Barreira, *Baryonic effects on the matter bispectrum*, 2019, arXiv:[1910.03597](https://arxiv.org/abs/1910.03597) ## Installation `bskit` requires Python 3; otherwise, its main dependency is on `nbodykit`. After following the `nbodykit` [installation instructions](https://nbodykit.readthedocs.io/en/latest/getting-started/install.html) (preferably via `conda`), all `bskit` dependencies will also be installed. At this point, simply clone this repository and ensure that the root `bskit` directory is in your `PYTHONPATH`, e.g. via `` export PYTHONPATH=/path/to/bskit:$PYTHONPATH `` ## Usage Usage instructions and a guide to the included examples can be found [here](https://github.com/sjforeman/bskit/blob/master/usage.md). ## References If `bskit` is used in original research, please cite the associated paper: > Foreman, Coulton, Villaescusa-Navarro, and Barreira, *Baryonic effects on the matter bispectrum*, 2019, arXiv:[1910.03597](https://arxiv.org/abs/1910.03597) In addition, please cite the `nbodykit` paper, > Hand et al., *nbodykit: an open-source, massively parallel toolkit for large-scale structure*, [Astron. J., 156, 160 (2018)](https://dx.doi.org/10.3847/1538-3881/aadae0), arXiv:[1712.05834](https://arxiv.org/abs/1712.05834) and the following standard references for the FFT-based bispectrum estimator that the package implements: > Scoccimarro, *The Bispectrum: From Theory to Observations*, [Astrophys. J., 544, 597 (2000)](https://dx.doi.org/10.1086/317248), arXiv:[astro-ph/0004086](https://arxiv.org/abs/astro-ph/0004086) > Sefusatti et al., *Accurate estimators of correlation functions in Fourier space*, [Mon. Not. Roy. Astron. Soc., 460, 3624 (2016)](https://dx.doi.org/10.1093/mnras/stw1229), arXiv:[1512.07295](https://arxiv.org/abs/1512.07295) ## Questions? If you have any questions or would like to contribute to this code, please open an issue or email Simon directly.
sjforemanREPO_NAMEbskitPATH_START.@bskit_extracted@bskit-master@README.md@.PATH_END.py
{ "filename": "make_lightcones_for_fisher.py", "repo_name": "charlottenosam/21cmfish", "repo_path": "21cmfish_extracted/21cmfish-master/scripts/make_lightcones_for_fisher.py", "type": "Python" }
import py21cmfast as p21c import os import glob import numpy as np import time from joblib import Parallel, delayed import argparse import configparser import multiprocessing import py21cmfish as p21fish import logging logger = logging.getLogger("21cmFAST") logger.setLevel(logging.INFO) print(f"21cmFAST version is {p21c.__version__}") # ============================================================================== # python make_lightcones_for_fisher.py ../21cmFAST_config_files/Park19.config --dry_run # TODO ===== # Took ---- Finished making lightcones, took 15.86 hours ---- for ETHOS. # Took 11 mins to make PS # # # python scripts/make_lightcones_for_fisher.py 21cmFAST_config_files/ETHOS.config --num_cores 2 --h_PEAK 0 --random_seed $r # ============================================================================== # ============================================================================== # # Script to create set of 21cmFAST simulations for Fisher matrix analysis. # Loads a configuration file of default parameters, and parameters to vary # # ============================================================================== # ============================================================================== # # Import config files config = configparser.ConfigParser(delimiters=':') config.optionxform = str # Managing arguments with argparse (see http://docs.python.org/howto/argparse.html) parser = argparse.ArgumentParser() # ---- required arguments ---- : parser.add_argument("config_file", type=str, help="Path to config file") # ---- optional arguments ---- parser.add_argument("--h_PEAK", type=float, help="h_PEAK for ETHOS model, only used if USE_ETHOS = True [default = vary]") parser.add_argument("--N_THREADS", type=int, help="Number of threads for 21cmFAST [default = 1, clogs memory if you use too many]") parser.add_argument("--num_cores", type=int, help="Number of cores to run on [default = n_cpu - 1]") parser.add_argument("--q_scale", type=float, help="Percentage step for the parameters [default = 3%]") parser.add_argument("--random_seed", type=int, help="Random seed [default = 12345]") # ---- flags ------ parser.add_argument("--save_Tb", action='store_true', help="Save BrightnessTemp boxes [default = False]") parser.add_argument("--fix_astro_params", action='store_true', help="Fix astro params (only vary k_peak, h_peak for ETHOS runs) [default = False]") parser.add_argument("--test_linear", action='store_true', help="Test linearity of PS derivatives by creating lightcones on a wider grid of parameters [default = False]") parser.add_argument("--clobber", action='store_true', help="make new lightcones [default = False]") parser.add_argument("--dry_run", action='store_true', help="Just print the parameters, don't run anything [default = False]") args = parser.parse_args() # ============================================================================== # Run Parameters num_cores = multiprocessing.cpu_count() - 1 if args.num_cores: num_cores = args.num_cores logger.info(f'Running on {num_cores} cores') N_THREADS = 1 if args.N_THREADS: N_THREADS = args.N_THREADS logger.info(f'Running on {N_THREADS} threads') q_scale = 3 if args.q_scale: q_scale = args.q_scale logger.info(f'Calculating derivatives at {q_scale} percent from fiducial') if args.h_PEAK is not None: h_PEAK = args.h_PEAK fix_h_PEAK = True h_peaks = [h_PEAK] logger.info(f'Running with fixed h_peak = {h_PEAK}') else: fix_h_PEAK = False h_PEAK = 0. # default h_peaks = np.arange(0., 1.1, 0.1) logger.info(f'Running with varied h_peak [if USE_ETHOS = True]') logger.info(f'Will make lightcones for h_peak={h_peaks}') save_Tb = False if args.save_Tb: save_Tb = True logger.info(f'Saving BrightnessTemp coeval boxes') vary_array = np.array([-1,1]) if args.test_linear: vary_array = np.arange(-10,11) vary_array = np.delete(vary_array,np.where(vary_array==0)) logger.info(f'Testing linearity of derivatives on a larger grid +/-{q_scale*np.max(vary_array)}% of fiducial') fix_astro_params = False if args.fix_astro_params: fix_astro_params = True logger.info(f'Fixing astro params') clobber = False if args.clobber: clobber = True logger.info(f'Clobber = True - making new lightcones') random_seed = 12345 if args.random_seed: random_seed = args.random_seed logger.info(f'Using random_seed = {random_seed}') # ============================================================================== # Get config config_file = args.config_file config.read(config_file) logger.info(f'Running with {config.get("run","name")}...') # ============================================================================== output_dir = config.get('run','output_dir') if not os.path.exists(output_dir): os.makedirs(output_dir) logger.info(f'Loading from cache at {output_dir}') p21c.config['direc'] = output_dir # -------------------------------------- lightcone_quantities = ("brightness_temp", 'density') global_quantities = ("brightness_temp", 'density', 'xH_box') # ================================== # parameters # Fidicual parameters user_params = dict(config.items('user_params')) user_params = {key:p21fish.read_config_params(user_params[key]) for key in user_params} user_params["N_THREADS"] = N_THREADS flag_options = dict(config.items('flag_options')) flag_options = {key:p21fish.read_config_params(flag_options[key]) for key in flag_options} astro_params_fid = dict(config.items('astro_params')) astro_params_fid = {key:float(astro_params_fid[key]) for key in astro_params_fid} if fix_astro_params: astro_params_vary = [] else: astro_params_vary = config.get('vary','astro_params_vary').split('\n') astro_params_vary = list(filter(None, astro_params_vary)) # ================================== min_redshift = float(config.get('redshifts','min')) max_redshift = float(config.get('redshifts','max')) HII_DIM = user_params["HII_DIM"] BOX_LEN = user_params["BOX_LEN"] logger.info(f'Making lightcone from z={min_redshift}-{max_redshift}') logger.info(f'Box HII_DIM={HII_DIM}, BOX_LEN={BOX_LEN}') # Clean up types if save_Tb: clear_kind = ['IonizedBox','TsBox'] else: clear_kind = ['IonizedBox','TsBox','BrightnessTemp', 'PerturbedField'] # ================================== # Make dictionary of sets of parameters for each run astro_params_run_all = {} # Set up parameters for fisher runs if flag_options['USE_ETHOS'] is True: dict_prefix = f'h_PEAK_{h_PEAK:.1f}_' else: dict_prefix = '' astro_params_run_all[f'{dict_prefix}fid'] = astro_params_fid for param in astro_params_vary: p_fid = astro_params_fid[param] # Make smaller for L_X if param == 'L_X': q = 0.001*vary_array else: q = q_scale/100*vary_array if p_fid == 0.: p = q else: p = p_fid - q*p_fid astro_params_run = astro_params_fid.copy() for i,pp in enumerate(p): astro_params_run[param] = pp if param == 'L_X': # change L_X and L_X_MINI at the same time astro_params_run['L_X_MINI'] = pp astro_params_run_all[f'{dict_prefix}{param}_{q[i]}'] = astro_params_run.copy() # TODO nicer for not ETHOS runs if flag_options['USE_ETHOS'] is True: # Vary k_peak and h_peak # inv_k_peak = np.array([0.01, 0.03]) # inv_k_peak = np.array([1e-4, 0.001, 0.002, 0.003]) # inv_k_peak = np.array([1e-8, 1e-6, 1e-4]) # inv_k_peak = np.array([1e-8, 1e-6, 0.002, 0.003]) # inv_k_peak = np.array([1e-5, 5e-5, 1e-4, 5e-4, 1e-3]) inv_k_peak = np.array([1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 5e-5, 5e-4, 1e-3]) # test for convergence # inv_k_peak = np.array([1e-5, 5e-5, 5e-4]) # this was default for h_peak = 0? for h_peak in h_peaks: for inv_k in inv_k_peak: log_k_peak = np.log10(1/inv_k) astro_params_run = astro_params_fid.copy() astro_params_run['log10_k_PEAK'] = log_k_peak astro_params_run['h_PEAK'] = h_peak astro_params_run_all[f'h_PEAK_{h_peak:.1f}_inv_k_PEAK_{inv_k}'] = astro_params_run.copy() logger.info(f'Going to make {len(astro_params_run_all)} lightcones') if 'ALPHA_ESC_-0.03' in astro_params_run_all: assert astro_params_run_all['ALPHA_ESC_-0.03']['ALPHA_ESC'] != astro_params_run_all['ALPHA_ESC_0.03']['ALPHA_ESC'],\ 'Parameters havent changed between fisher runs!!!' if 'ALPHA_STAR_MINI_-0.03' in astro_params_run_all: assert astro_params_run_all['ALPHA_STAR_MINI_-0.03']['ALPHA_STAR_MINI'] != astro_params_run_all['ALPHA_STAR_-0.03']['ALPHA_STAR'],\ 'ALPHA_STAR and ALPHA_STAR_MINI messed up!!!' if args.dry_run: for key in astro_params_run_all: print(key,':') logger.info(f'',astro_params_run_all[key]) else: # ================================== # Initial Conditions logger.info(f'Making initial conditions') initial_conditions = p21c.initial_conditions(user_params=user_params, random_seed=random_seed, direc=output_dir) # Find ICs and perturbed fields PerturbedField_files = glob.glob(f'{output_dir}PerturbedField*') IC_files = glob.glob(f'{output_dir}InitialConditions*') logger.info(f'Loaded or made initial conditions') # Will not write more boxes # p21c.config['write'] = False # ================================== # Run each filter def make_lightcone(astro_params_key): """ Make lightcone for a given set of astroparams """ # Save output for each parameter to a new directory # if save_Tb: output_dir_lc = f'{output_dir}_{astro_params_key}' if not os.path.exists(output_dir_lc): os.makedirs(output_dir_lc) # put PerturbedFields in output_dir_lc if len(PerturbedField_files) > 0: for PF in PerturbedField_files: PF_file = PF.split('/')[-1] linked_file = f'{output_dir_lc}/{PF_file}' if not os.path.exists(linked_file): os.symlink(PF, linked_file) for IC in IC_files: IC_file = IC.split('/')[-1] linked_file = f'{output_dir_lc}/{IC_file}' if not os.path.exists(linked_file): os.symlink(IC, linked_file) direc = output_dir_lc # else: # direc = None # Lightcone filename suffix = f'HIIDIM={HII_DIM}_BOXLEN={BOX_LEN}_fisher_{astro_params_key}' lightcone_filename = f'LightCone_z{min_redshift:.1f}_{suffix}_r{random_seed}.h5' logger.info(f'Will save lightcone to {lightcone_filename}') t1 = time.time() if not os.path.exists(f'{output_dir}{lightcone_filename}'): lightcone = p21c.run_lightcone( redshift = min_redshift, max_redshift = max_redshift, lightcone_quantities=lightcone_quantities, global_quantities=global_quantities, init_box = initial_conditions, user_params = user_params, flag_options = flag_options, astro_params = astro_params_run_all[astro_params_key], random_seed = random_seed, direc=direc, write=save_Tb ) # save in main dir lightcone_save = lightcone.save(fname=lightcone_filename, direc=output_dir, clobber=True) logger.info(f'Saved lightcone to {lightcone_save}') else: logger.info(f'{lightcone_filename} already exists, skipping...') # Clean up for kind in clear_kind: logger.info(f'Clearing cache') p21c.cache_tools.clear_cache(direc=output_dir_lc, kind=kind) os.system(f"rm -rf {output_dir_lc}") t2 = time.time() logger.info(f'Done with {astro_params_key}, took {(t2-t1)/3600:.2f} hours') return t1 = time.time() if num_cores == 1: print(astro_params_run_all.keys()) for key in astro_params_run_all.keys(): logger.info(f'Saved making lightcone for {key}') make_lightcone(key) else: Parallel(n_jobs=num_cores)(delayed(make_lightcone)(key) for key in astro_params_run_all.keys()) t2 = time.time() logger.info(f'---- Finished making lightcones, took {(t2-t1)/3600:.2f} hours')
charlottenosamREPO_NAME21cmfishPATH_START.@21cmfish_extracted@21cmfish-master@scripts@make_lightcones_for_fisher.py@.PATH_END.py
{ "filename": "_decomp_qr.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/scipy/py3/scipy/linalg/_decomp_qr.py", "type": "Python" }
"""QR decomposition functions.""" import numpy # Local imports from .lapack import get_lapack_funcs from ._misc import _datacopied __all__ = ['qr', 'qr_multiply', 'rq'] def safecall(f, name, *args, **kwargs): """Call a LAPACK routine, determining lwork automatically and handling error return values""" lwork = kwargs.get("lwork", None) if lwork in (None, -1): kwargs['lwork'] = -1 ret = f(*args, **kwargs) kwargs['lwork'] = ret[-2][0].real.astype(numpy.int_) ret = f(*args, **kwargs) if ret[-1] < 0: raise ValueError("illegal value in %dth argument of internal %s" % (-ret[-1], name)) return ret[:-2] def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False, check_finite=True): """ Compute QR decomposition of a matrix. Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal and R upper triangular. Parameters ---------- a : (M, N) array_like Matrix to be decomposed overwrite_a : bool, optional Whether data in `a` is overwritten (may improve performance if `overwrite_a` is set to True by reusing the existing input data structure rather than creating a new one.) lwork : int, optional Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed. mode : {'full', 'r', 'economic', 'raw'}, optional Determines what information is to be returned: either both Q and R ('full', default), only R ('r') or both Q and R but computed in economy-size ('economic', see Notes). The final option 'raw' (added in SciPy 0.11) makes the function return two matrices (Q, TAU) in the internal format used by LAPACK. pivoting : bool, optional Whether or not factorization should include pivoting for rank-revealing qr decomposition. If pivoting, compute the decomposition ``A P = Q R`` as above, but where P is chosen such that the diagonal of R is non-increasing. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- Q : float or complex ndarray Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned if ``mode='r'``. R : float or complex ndarray Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``. P : int ndarray Of shape (N,) for ``pivoting=True``. Not returned if ``pivoting=False``. Raises ------ LinAlgError Raised if decomposition fails Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, zungqr, dgeqp3, and zgeqp3. If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), with ``K=min(M,N)``. Examples -------- >>> import numpy as np >>> from scipy import linalg >>> rng = np.random.default_rng() >>> a = rng.standard_normal((9, 6)) >>> q, r = linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) True >>> q.shape, r.shape ((9, 9), (9, 6)) >>> r2 = linalg.qr(a, mode='r') >>> np.allclose(r, r2) True >>> q3, r3 = linalg.qr(a, mode='economic') >>> q3.shape, r3.shape ((9, 6), (6, 6)) >>> q4, r4, p4 = linalg.qr(a, pivoting=True) >>> d = np.abs(np.diag(r4)) >>> np.all(d[1:] <= d[:-1]) True >>> np.allclose(a[:, p4], np.dot(q4, r4)) True >>> q4.shape, r4.shape, p4.shape ((9, 9), (9, 6), (6,)) >>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True) >>> q5.shape, r5.shape, p5.shape ((9, 6), (6, 6), (6,)) """ # 'qr' was the old default, equivalent to 'full'. Neither 'full' nor # 'qr' are used below. # 'raw' is used internally by qr_multiply if mode not in ['full', 'qr', 'r', 'economic', 'raw']: raise ValueError("Mode argument should be one of ['full', 'r'," "'economic', 'raw']") if check_finite: a1 = numpy.asarray_chkfinite(a) else: a1 = numpy.asarray(a) if len(a1.shape) != 2: raise ValueError("expected a 2-D array") M, N = a1.shape overwrite_a = overwrite_a or (_datacopied(a1, a)) if pivoting: geqp3, = get_lapack_funcs(('geqp3',), (a1,)) qr, jpvt, tau = safecall(geqp3, "geqp3", a1, overwrite_a=overwrite_a) jpvt -= 1 # geqp3 returns a 1-based index array, so subtract 1 else: geqrf, = get_lapack_funcs(('geqrf',), (a1,)) qr, tau = safecall(geqrf, "geqrf", a1, lwork=lwork, overwrite_a=overwrite_a) if mode not in ['economic', 'raw'] or M < N: R = numpy.triu(qr) else: R = numpy.triu(qr[:N, :]) if pivoting: Rj = R, jpvt else: Rj = R, if mode == 'r': return Rj elif mode == 'raw': return ((qr, tau),) + Rj gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,)) if M < N: Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr[:, :M], tau, lwork=lwork, overwrite_a=1) elif mode == 'economic': Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr, tau, lwork=lwork, overwrite_a=1) else: t = qr.dtype.char qqr = numpy.empty((M, M), dtype=t) qqr[:, :N] = qr Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qqr, tau, lwork=lwork, overwrite_a=1) return (Q,) + Rj def qr_multiply(a, c, mode='right', pivoting=False, conjugate=False, overwrite_a=False, overwrite_c=False): """ Calculate the QR decomposition and multiply Q with a matrix. Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal and R upper triangular. Multiply Q with a vector or a matrix c. Parameters ---------- a : (M, N), array_like Input array c : array_like Input array to be multiplied by ``q``. mode : {'left', 'right'}, optional ``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if mode is 'right'. The shape of c must be appropriate for the matrix multiplications, if mode is 'left', ``min(a.shape) == c.shape[0]``, if mode is 'right', ``a.shape[0] == c.shape[1]``. pivoting : bool, optional Whether or not factorization should include pivoting for rank-revealing qr decomposition, see the documentation of qr. conjugate : bool, optional Whether Q should be complex-conjugated. This might be faster than explicit conjugation. overwrite_a : bool, optional Whether data in a is overwritten (may improve performance) overwrite_c : bool, optional Whether data in c is overwritten (may improve performance). If this is used, c must be big enough to keep the result, i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'. Returns ------- CQ : ndarray The product of ``Q`` and ``c``. R : (K, N), ndarray R array of the resulting QR factorization where ``K = min(M, N)``. P : (N,) ndarray Integer pivot array. Only returned when ``pivoting=True``. Raises ------ LinAlgError Raised if QR decomposition fails. Notes ----- This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``, ``?UNMQR``, and ``?GEQP3``. .. versionadded:: 0.11.0 Examples -------- >>> import numpy as np >>> from scipy.linalg import qr_multiply, qr >>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]]) >>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1) >>> qc array([[-1., 1., -1.], [-1., -1., 1.], [-1., -1., -1.], [-1., 1., 1.]]) >>> r1 array([[-6., -3., -5. ], [ 0., -1., -1.11022302e-16], [ 0., 0., -1. ]]) >>> piv1 array([1, 0, 2], dtype=int32) >>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1) >>> np.allclose(2*q2 - qc, np.zeros((4, 3))) True """ if mode not in ['left', 'right']: raise ValueError("Mode argument can only be 'left' or 'right' but " "not '{}'".format(mode)) c = numpy.asarray_chkfinite(c) if c.ndim < 2: onedim = True c = numpy.atleast_2d(c) if mode == "left": c = c.T else: onedim = False a = numpy.atleast_2d(numpy.asarray(a)) # chkfinite done in qr M, N = a.shape if mode == 'left': if c.shape[0] != min(M, N + overwrite_c*(M-N)): raise ValueError('Array shapes are not compatible for Q @ c' ' operation: {} vs {}'.format(a.shape, c.shape)) else: if M != c.shape[1]: raise ValueError('Array shapes are not compatible for c @ Q' ' operation: {} vs {}'.format(c.shape, a.shape)) raw = qr(a, overwrite_a, None, "raw", pivoting) Q, tau = raw[0] gor_un_mqr, = get_lapack_funcs(('ormqr',), (Q,)) if gor_un_mqr.typecode in ('s', 'd'): trans = "T" else: trans = "C" Q = Q[:, :min(M, N)] if M > N and mode == "left" and not overwrite_c: if conjugate: cc = numpy.zeros((c.shape[1], M), dtype=c.dtype, order="F") cc[:, :N] = c.T else: cc = numpy.zeros((M, c.shape[1]), dtype=c.dtype, order="F") cc[:N, :] = c trans = "N" if conjugate: lr = "R" else: lr = "L" overwrite_c = True elif c.flags["C_CONTIGUOUS"] and trans == "T" or conjugate: cc = c.T if mode == "left": lr = "R" else: lr = "L" else: trans = "N" cc = c if mode == "left": lr = "L" else: lr = "R" cQ, = safecall(gor_un_mqr, "gormqr/gunmqr", lr, trans, Q, tau, cc, overwrite_c=overwrite_c) if trans != "N": cQ = cQ.T if mode == "right": cQ = cQ[:, :min(M, N)] if onedim: cQ = cQ.ravel() return (cQ,) + raw[1:] def rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True): """ Compute RQ decomposition of a matrix. Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal and R upper triangular. Parameters ---------- a : (M, N) array_like Matrix to be decomposed overwrite_a : bool, optional Whether data in a is overwritten (may improve performance) lwork : int, optional Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed. mode : {'full', 'r', 'economic'}, optional Determines what information is to be returned: either both Q and R ('full', default), only R ('r') or both Q and R but computed in economy-size ('economic', see Notes). check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- R : float or complex ndarray Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``. Q : float or complex ndarray Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned if ``mode='r'``. Raises ------ LinAlgError If decomposition fails. Notes ----- This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf, sorgrq, dorgrq, cungrq and zungrq. If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead of (N,N) and (M,N), with ``K=min(M,N)``. Examples -------- >>> import numpy as np >>> from scipy import linalg >>> rng = np.random.default_rng() >>> a = rng.standard_normal((6, 9)) >>> r, q = linalg.rq(a) >>> np.allclose(a, r @ q) True >>> r.shape, q.shape ((6, 9), (9, 9)) >>> r2 = linalg.rq(a, mode='r') >>> np.allclose(r, r2) True >>> r3, q3 = linalg.rq(a, mode='economic') >>> r3.shape, q3.shape ((6, 6), (6, 9)) """ if mode not in ['full', 'r', 'economic']: raise ValueError( "Mode argument should be one of ['full', 'r', 'economic']") if check_finite: a1 = numpy.asarray_chkfinite(a) else: a1 = numpy.asarray(a) if len(a1.shape) != 2: raise ValueError('expected matrix') M, N = a1.shape overwrite_a = overwrite_a or (_datacopied(a1, a)) gerqf, = get_lapack_funcs(('gerqf',), (a1,)) rq, tau = safecall(gerqf, 'gerqf', a1, lwork=lwork, overwrite_a=overwrite_a) if not mode == 'economic' or N < M: R = numpy.triu(rq, N-M) else: R = numpy.triu(rq[-M:, -M:]) if mode == 'r': return R gor_un_grq, = get_lapack_funcs(('orgrq',), (rq,)) if N < M: Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq[-N:], tau, lwork=lwork, overwrite_a=1) elif mode == 'economic': Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq, tau, lwork=lwork, overwrite_a=1) else: rq1 = numpy.empty((N, N), dtype=rq.dtype) rq1[-M:] = rq Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq1, tau, lwork=lwork, overwrite_a=1) return R, Q
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@scipy@py3@scipy@linalg@_decomp_qr.py@.PATH_END.py
{ "filename": "pallas_call_registration.py", "repo_name": "google/jax", "repo_path": "jax_extracted/jax-main/jax/_src/pallas/mosaic/pallas_call_registration.py", "type": "Python" }
# Copyright 2023 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains registrations for pallas_call on TPU.""" from __future__ import annotations import os import tempfile from typing import Any import jax from jax import dtypes from jax._src import config from jax._src import core as jax_core from jax._src import sharding_impls from jax._src import tpu_custom_call from jax._src.interpreters import mlir from jax._src.lib.mlir import ir from jax._src.pallas import core from jax._src.pallas.mosaic import core as tpu_core from jax._src.pallas.mosaic import lowering from jax._src.pallas.mosaic import verification from jax.experimental import mosaic from jax.experimental.mosaic.dialects import tpu def _maybe_cast_to_int(x: jax.Array | jax_core.AbstractValue): """Casts boolean values to integers. We perform this cast because Mosaic does not directly support bool values for Memrefs. Instead, we load bools as integers and cast them to bools after loading from a memref inside of the kernel. """ assert isinstance( x, (jax.Array, jax_core.ShapedArray, jax_core.DShapedArray) ), type(x) if isinstance(x, jax.Array): if dtypes.issubdtype(x.dtype, jax.numpy.bool_): return x.astype(lowering.BOOL_MEMREF_TYPE) return x else: if dtypes.issubdtype(x.dtype, jax.numpy.bool_): return jax_core.ShapedArray(x.shape, lowering.BOOL_MEMREF_TYPE) return x _DUMP_PROMELA_TO = config.string_flag( "jax_pallas_dump_promela_to", default=os.getenv("JAX_PALLAS_DUMP_PROMELA_TO", ""), help=( "If set, dumps a Promela model of the kernel to the specified" " directory. The model can verify that the kernel is free of data" " races, deadlocks, etc." ), ) def _get_memory_space_from_aval( out_aval: jax_core.AbstractValue, ) -> tpu_custom_call.MemorySpace | None: if not isinstance(out_aval, jax_core.ShapedArray): raise ValueError('Memory spaces not defined for non-ShapedArrays') if not isinstance(out_aval, core.ShapedArrayWithMemorySpace): # If we are passed a regular old ShapedArray, we don't constrain the # memory space return None # If we are passed an aval with an explicit memory space tag, we use it # to constrain the memory space. match out_aval.memory_space: case None: return None case tpu_core.TPUMemorySpace.ANY: return None case tpu_core.TPUMemorySpace.VMEM: return tpu_custom_call.MemorySpace.VMEM case tpu_core.TPUMemorySpace.SEMAPHORE: return tpu_custom_call.MemorySpace.SEMAPHORE_MEM return None def _get_memory_spaces_from_avals( out_avals: tuple[jax_core.AbstractValue, ...], ) -> tuple[tpu_custom_call.MemorySpace | None, ...] | None: output_memory_spaces = None if any( isinstance(out_aval, core.ShapedArrayWithMemorySpace) for out_aval in out_avals ): output_memory_spaces = tuple(map(_get_memory_space_from_aval, out_avals)) return output_memory_spaces def pallas_call_tpu_lowering_rule( ctx: mlir.LoweringRuleContext, *in_nodes, jaxpr: jax_core.Jaxpr, name_and_src_info: core.NameAndSrcInfo, grid_mapping: core.GridMapping, input_output_aliases: tuple[tuple[int, int], ...], debug: bool, interpret: bool, compiler_params: dict[str, Any], cost_estimate: core.CostEstimate | None, out_avals: tuple[jax_core.AbstractValue, ...], ): """Lowers a pallas_call to a Mosaic TPU custom call.""" del interpret if debug: print(f"\nThe kernel jaxpr for pallas_call {name_and_src_info}:") print(jaxpr) if "mosaic" in compiler_params: mosaic_params = compiler_params["mosaic"] else: mosaic_params = {} mesh = None axis_context = ctx.module_context.axis_context if axis_context is not None: if isinstance(axis_context, sharding_impls.SPMDAxisContext): mesh = axis_context.mesh mlir_ctx = mlir.JaxIrContext() mlir_ctx.append_dialect_registry(mlir.upstream_dialects) mlir_ctx.load_all_available_dialects() tpu.register_dialect(mlir_ctx) def lower_module(for_verification: bool): if for_verification or tpu_core.runtime_assert_enabled(): mlir_ctx.allow_unregistered_dialects = True with mlir_ctx, ir.Location.unknown(mlir_ctx): dimension_semantics = mosaic_params.get("dimension_semantics", None) return lowering.lower_jaxpr_to_module( ctx, mlir_ctx, grid_mapping, jaxpr, dimension_semantics=dimension_semantics, mesh=mesh, for_verification=for_verification, name_and_src_info=name_and_src_info) mosaic_module, extra_args = lower_module(for_verification=False) if debug: print(f"\nThe Mosaic module for pallas_call {name_and_src_info}:") print(mosaic_module) num_extra_args = len(extra_args) num_dyn_bounds = grid_mapping.num_dynamic_grid_bounds input_output_aliases = tuple( (a[0] + num_dyn_bounds + num_extra_args, a[1]) for a in input_output_aliases ) if promela_dump_path := _DUMP_PROMELA_TO.value: num_devices = 1 if mesh is None else mesh.devices.size num_cores = ( jax.devices()[0].num_cores if mesh is None else mesh.devices[0].num_cores ) verification_module, _ = lower_module(for_verification=True) model = verification.export_promela_model( verification_module, num_devices, num_cores ) if promela_dump_path == "stdout": print(f"The Promela model for pallas_call {name_and_src_info}:") print(model) else: if promela_dump_path == "sponge": promela_dump_path = os.getenv("TEST_UNDECLARED_OUTPUTS_DIR", "") if not promela_dump_path: raise ValueError( "TEST_UNDECLARED_OUTPUTS_DIR must be set when" " --jax_pallas_dump_promela_to=sponge" ) dump_ctx = tempfile.NamedTemporaryFile( mode="w", prefix=name_and_src_info.name + "-", suffix=".pml", dir=promela_dump_path, delete=False, ) with dump_ctx as f: f.write(model) # Replace in_avals to physical avals. # This step is required for mapping logical types to physical types. # (e.g. PRNG key -> uint32[2]) physical_avals = [jax_core.physical_aval(aval) for aval in ctx.avals_in] ctx = ctx.replace(avals_in=physical_avals) # Booleans are loaded into the kernel as integers. def _maybe_cast_inputs(*args): args = [_maybe_cast_to_int(x) for x in args] return args kernel_in_avals = [_maybe_cast_to_int(x) for x in ctx.avals_in] kernel_out_avals = [_maybe_cast_to_int(x) for x in out_avals] cast_ctx = ctx.replace(avals_out=kernel_in_avals) in_nodes = mlir.lower_fun(_maybe_cast_inputs)(cast_ctx, *in_nodes) # Dynamic grid bounds have to go at the front. dynamic_grid_args, args = in_nodes[:num_dyn_bounds], in_nodes[num_dyn_bounds:] kernel_ctx = ctx.replace(avals_in=kernel_in_avals, avals_out=kernel_out_avals) output_memory_spaces = _get_memory_spaces_from_avals(out_avals) if cost_estimate is not None: mosaic_cost_estimate = tpu_custom_call.CostEstimate( flops=cost_estimate.flops, bytes_accessed=cost_estimate.bytes_accessed, transcendentals=cost_estimate.transcendentals, ) else: mosaic_cost_estimate = None out_nodes = mosaic.lower_module_to_custom_call( kernel_ctx, *dynamic_grid_args, *extra_args, *args, module=mosaic_module, out_type=kernel_out_avals, backend="tpu", kernel_name=name_and_src_info.name, cost_estimate=mosaic_cost_estimate, vmem_limit_bytes=mosaic_params.get("vmem_limit_bytes"), flags=mosaic_params.get("flags"), allow_input_fusion=mosaic_params.get("allow_input_fusion"), input_output_aliases=input_output_aliases, serialization_format=mosaic_params.get("serialization_format", 1), device_type=mosaic_params.get("device_type"), internal_scratch_in_bytes=mosaic_params.get("internal_scratch_in_bytes"), collective_id=mosaic_params.get("collective_id", None), output_memory_spaces=output_memory_spaces, ) _maybe_cast_to_bool = lambda x, aval: x.astype( jax.numpy.bool_) if aval.dtype == jax.numpy.bool_ else x def _maybe_cast_outputs(*args): args = [_maybe_cast_to_bool(x, aval) for x, aval in zip(args, out_avals)] return args cast_ctx = ctx.replace(avals_in=kernel_out_avals) return mlir.lower_fun(_maybe_cast_outputs)(cast_ctx, *out_nodes)
googleREPO_NAMEjaxPATH_START.@jax_extracted@jax-main@jax@_src@pallas@mosaic@pallas_call_registration.py@.PATH_END.py
{ "filename": "helpers.py", "repo_name": "jabesq-org/pyatmo", "repo_path": "pyatmo_extracted/pyatmo-master/src/pyatmo/helpers.py", "type": "Python" }
"""Collection of helper functions.""" from __future__ import annotations import logging from typing import Any, cast from pyatmo.const import RawData from pyatmo.exceptions import NoDevice LOG: logging.Logger = logging.getLogger(__name__) def fix_id(raw_data: RawData) -> dict[str, Any]: """Fix known errors in station ids like superfluous spaces.""" if not raw_data: return raw_data for station in raw_data: if not isinstance(station, dict): continue if station.get("_id") is None: continue station["_id"] = cast(dict, station)["_id"].replace(" ", "") for module in station.get("modules", {}): module["_id"] = module["_id"].replace(" ", "") return raw_data def extract_raw_data(resp: Any, tag: str) -> dict[str, Any]: """Extract raw data from server response.""" raw_data = {} if tag == "body": return {"public": resp["body"], "errors": []} if resp is None or "body" not in resp or tag not in resp["body"]: LOG.debug("Server response (tag: %s): %s", tag, resp) raise NoDevice("No device found, errors in response") if tag == "homes": return { tag: fix_id(resp["body"].get(tag)), "errors": resp["body"].get("errors", []), } if not (raw_data := fix_id(resp["body"].get(tag))): LOG.debug("Server response (tag: %s): %s", tag, resp) raise NoDevice("No device data available") return {tag: raw_data, "errors": resp["body"].get("errors", [])}
jabesq-orgREPO_NAMEpyatmoPATH_START.@pyatmo_extracted@pyatmo-master@src@pyatmo@helpers.py@.PATH_END.py
{ "filename": "collecting_1000th.ipynb", "repo_name": "jan-rybizki/Galaxia_wrap", "repo_path": "Galaxia_wrap_extracted/Galaxia_wrap-master/notebook/notebook_sweep/collecting_1000th.ipynb", "type": "Jupyter Notebook" }
```python %pylab inline from astropy.io import fits from numpy.lib.recfunctions import stack_arrays ``` Populating the interactive namespace from numpy and matplotlib /home/rybizki/anaconda3/lib/python3.6/site-packages/astropy/extern/bundled/six.py:60: ResourceWarning: unclosed file <_io.TextIOWrapper name='/home/rybizki/anaconda3/lib/python3.6/site-packages/astropy/extern/bundled/six.py' mode='r' encoding='utf-8'> class X(object): ```python mc = fits.getdata("../output/GDR3mock_extra/MCs_0/nbody.fits") mc.dtype print(len(mc)) mc = mc[np.random.choice(np.arange(len(mc)),int(len(mc)/100),replace=False)] print(len(mc)) ``` /home/rybizki/anaconda3/lib/python3.6/importlib/_bootstrap.py:205: ImportWarning: can't resolve package from __spec__ or __package__, falling back on __name__ and __path__ return f(*args, **kwds) /home/rybizki/anaconda3/lib/python3.6/importlib/_bootstrap.py:205: ImportWarning: can't resolve package from __spec__ or __package__, falling back on __name__ and __path__ return f(*args, **kwds) 2728627 27286 ```python cl = fits.getdata("../output/GDR3mock_extra/Clusters_1/nbody.fits") cl.dtype print(len(cl)) cl = cl[np.random.choice(np.arange(len(cl)),int(len(cl)/1000),replace=False)] print(len(cl)) ``` 441697 441 ```python mw = fits.getdata("../output/GDR3mock/0/GDR3mock207.fits") mw.dtype print(len(mw)) ``` 1546654 ```python x = stack_arrays((mc,cl,mw),usemask=False,asrecarray=True) ``` ```python x = np.sort(x,order = 'source_id') ``` ```python edges = round(len(x)/400) edges_array = x[::edges].source_id edges_array[0] = 0 edges_array = np.hstack((edges_array,[8931576916874782720])) print(edges_array) ``` [ 0 161000525582565376 190241590646669312 205827580287254528 238741701382897664 260424586078715904 281214461174349824 376312424451538944 419212653748027392 434001497458475008 459290814653136896 473006912971997184 506257553345216512 518036827572011008 530296897617788928 561471797476720640 759627535381168128 944006495668797440 1040369721951649792 1255394304688390144 1474976775439122432 1741324705534574592 1790290699963334656 1808727482736574464 1819886048289751040 1822801609529229312 1825109106478809088 1827664749458882560 1832812559820914688 1838462125442334720 1857229242740244480 1864013813599174656 1871967199678169088 1929099026448252928 1960210463870418944 1971591440010051584 1980320050506104832 1997472672417579008 2006800825988415488 2016674749643489280 2020634984368308224 2023410014277861376 2026188170923606016 2029748561373036544 2031976584247771136 2034011161795493888 2037941537907671040 2045798957237403648 2052181725315858432 2059282715005419520 2063545693384998912 2073126425392578560 2080238410198417408 2092100903711539200 2128972270234763264 2163964193428996096 2171955100342288384 2179776957342810112 2191148037877792768 2202326978755821568 2211928292246683648 2231575809120796672 2286857948095315968 2639650169561284608 2844586217717104640 2928305335158439936 2947826648713527296 3014250448249946112 3033455136815972352 3047843655214694400 3059447729135550464 3101322766918352896 3113168321080459264 3128946862694858752 3154598675129303040 3242442335564333056 3328470908460335104 3351027045906776064 3370789496105730048 3398130467638083584 3428571374765998080 3445687163037941760 3480352737437155328 3733830299813937152 4035615867629731840 4036828663314907136 4037599867642576896 4038530810393919488 4039095306535567360 4039591701675769856 4040246907526709248 4040707156222148608 4041261550600716288 4041667820147179520 4042098966144221184 4042414835219038208 4042752179130335232 4043060523422449664 4043363473235640320 4043724868963794944 4044015036954312704 4044364131896131584 4045435915215044608 4045963199760039936 4046800684023021568 4048057700691476480 4048868040761147392 4049171128013291520 4049506513419501568 4049809463232692224 4050069944409260032 4050254799801679872 4050418042918666240 4050637910884483072 4050833967551610880 4051108433141694464 4051576584576958464 4052155511808720896 4052449425010720768 4052746739826819072 4053179122774441984 4054090617913868288 4056095405568425984 4056328948710113280 4056576201387409408 4058360193363214336 4059134971103674368 4059773409402290176 4060841035192860672 4061834065991434240 4062363893157068800 4062492261139611648 4062658802791481344 4062844929494220800 4063012433218764800 4063230067801587712 4063918843116912640 4064646857253453824 4064985884791930880 4065414763046240256 4066361579996708864 4067952504602624000 4068619805081468928 4069903038230298624 4071285845900918784 4073456488012578816 4076157988082024448 4077170191614607360 4077951291546927104 4079694739031457792 4084865329900027904 4088450768598728704 4089692289025179648 4090370584620302336 4091069564777922560 4092166636864274432 4093254363101790208 4094818177874132992 4096497029050531840 4097917357555449856 4099795632653336576 4101931537069506560 4103357569290993664 4104180175787261952 4105068890420150272 4106540724172881920 4107362780913336320 4108191091126173696 4109639525897076736 4110886028485591040 4112922083502063616 4116166123840339968 4117045630063345664 4118075357062496256 4119249051365408768 4120552178802753536 4123114934248669184 4125097937829101568 4132304137037545472 4138499163505557504 4144234456674205696 4145768687711813632 4148283751840874496 4151153339750416384 4154588729471664128 4156720235841323008 4160109549153419264 4164476053424701440 4173161748607533056 4183065084198649856 4194740488936357888 4201030485721219072 4203246001651187712 4204504083471532032 4207748673565622272 4214137351519076352 4236123701424160768 4249140888304877568 4252016626607587328 4252794771602407424 4253810170590658560 4254961050027294720 4256649796808343552 4259413384925020160 4261775445139128320 4263664062518263808 4265313123801497600 4267381442612297728 4269142035606274048 4274763254443540480 4280098668977061888 4285079628449579008 4288820063928057856 4292441202394923008 4294774812745662464 4297876672486572032 4302944081060823040 4307653873478139904 4311003638731374592 4313171051027628032 4315005620538310656 4317185780297498624 4319582887444742144 4322968180667449344 4346606340634836992 4372445757240770560 4414351272111505408 4471222102308945920 4479473318600114176 4490903429165613056 4505091733368864768 4508939336871313408 4513839894556049408 4517168391131234304 4523225497609437184 4537650746568474624 4587791466092298240 4651041147358019584 4651929999429861376 4654742378375020544 4657309325709017088 4658131141931302912 4659220586155737088 4685905458483953664 4752009334496428032 5048627575618797568 5219424715445108736 5233961496114888704 5237655511586832384 5241283796879278080 5247578260430127104 5253317539328425984 5255512336336158720 5259769920236814336 5297659812484481024 5305849353045278720 5309762411849318400 5313139321295863808 5323313445985058816 5331000028695625728 5335160855573037056 5337642556396142592 5340266987572428800 5343656403963740160 5350462621457842176 5354722576180445184 5359458413279444992 5372887470343979008 5404963145103966208 5410571788276989952 5424220988185247744 5442675225705578496 5508257452170149888 5521906755157622784 5529933739796201472 5540320791784062976 5546108208675815424 5583112135069663232 5595949689238192128 5601613136193912832 5614335276001263616 5621941697442217984 5640128856716214272 5671690544149954560 5700966140751118336 5716945240158371840 5766837504414056448 5792882426615169024 5802883584381419520 5818014616726274048 5824544513204420608 5827317722047840256 5831197726783569920 5833472822499868672 5834633528821678080 5835820554703077376 5836584268607782912 5844699317255798784 5848652851831635968 5850924511574097920 5852524266632773632 5854022419945095168 5857492066325495808 5858927272597127168 5860855678553292800 5862852907065409536 5865046604561514496 5869000963771072512 5871370892365266944 5874081463405641728 5875585801470869504 5876931225746145280 5879421001107767296 5881995988620541952 5884080800105758720 5887131841793622016 5888770698234560512 5890363031589748736 5893058312546549760 5895628043019354112 5900250699140169728 5904354901168750592 5913874541561511936 5919725420890030080 5924441569858945024 5926972130230009856 5929102227850395648 5930678309049335808 5931684087310843904 5932349738522247168 5933174578401509376 5934095969145585664 5935796020280557568 5937111070547116032 5938525764054941696 5940292851039469568 5942406318546485248 5944115818609508352 5947882333129408512 5950513670613106688 5952165721193578496 5953570931413614592 5956003807048499200 5957924550783008768 5959238638976892928 5960370448758734848 5961583038285479936 5963056933622513664 5965315330505965568 5968019063958405120 5969643214431322112 5971116078976204800 5972674464909885440 5976388340310605824 5978043002231193600 5979719860542767104 5980600672435830784 5983573786237075456 5986047549960617984 5988772071054770176 5991739515499184128 5995044510013325312 6000602713090424832 6009501438651138048 6018305022096310272 6022181968815325184 6026558643569164288 6028494643027509248 6029656311421992960 6032022529164443648 6035830893845676032 6046287902260854784 6054119551786811392 6057337650522619904 6060242697682157568 6064027697741299712 6070987949942505472 6076648098363342848 6090704048854401024 6105062502482051072 6131616773444730880 6189459537561387008 6225770977788166144 6260198885877088256 6362808609516027904 6442940742070435840 6618300339755941888 6652038613536079872 6679890273859796992 6706241753646628864 6716109767426703360 6722991267107569664 6726135492405886976 6728692372336541696 6733950168221089792 6736718979017998336 6755124150831939584 6762744900283793408 6780826540801261568 6866936202679812096 8931576916874782720] ```python np.save('edges.npy', edges_array) ```
jan-rybizkiREPO_NAMEGalaxia_wrapPATH_START.@Galaxia_wrap_extracted@Galaxia_wrap-master@notebook@notebook_sweep@collecting_1000th.ipynb@.PATH_END.py
{ "filename": "astroserver.py", "repo_name": "Fermipy/fermipy", "repo_path": "fermipy_extracted/fermipy-master/fermipy/scripts/astroserver.py", "type": "Python" }
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function import subprocess from subprocess import call import os import glob import argparse from os.path import join, basename, dirname, splitext import yaml import numpy as np #from dsphs.utils.utc2met import utc2met from fermipy.utils import mkdir from fermipy.batch import bsub class astroserver(object): """ Wrapper around the glast astroserver. Pass in command-line args as kwargs changing '_' to '-'. Checks kwargs f""" def __init__(self): self.exe = "/u/gl/glast/astroserver/prod/astro" p = subprocess.Popen((self.exe + " --help").split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() self.opts = stdout def __call__(self, arg, **kwargs): command = self.exe for key, val in kwargs.items(): kwarg = key.replace('_', '-') if kwarg not in self.opts: raise Exception("%s\n%s" % (self.exe, self.opts)) command += " -%s %s" % (kwarg, val) command += " %s" % arg return command # Julian Year (365.25 days) in seconds YEAR = 31557600 def main(): usage = "Usage: %(prog)s [options] input" description = "python script" parser = argparse.ArgumentParser(usage=usage, description=description) parser.add_argument("-d", "--dryrun", action='store_true') parser.add_argument("-s", "--sleep", default='1m', help="Pause between") parser.add_argument("--ls1", action='store_true', default=False, help='Fetch LS1 files.') parser.add_argument("--emin", default=100) parser.add_argument("--emax", default=1e6) parser.add_argument("--tmin", default=239557414, type=int, help="Min time; default is start of first LAT run") parser.add_argument("--tmax", default=None, type=int, help="Default is current time.") parser.add_argument("--evtclass", default="Source", help="Event class") parser.add_argument("--evtsample", default="P7.6_P130_BASE", choices=['P7.6_P130_BASE', 'P6_public_v3', 'P7_P202_BASE', 'P7_P203_BASE', 'P8_P301_BASE', 'P8_P302_BASE', 'P8_P302_ALL'], help="Event sample") parser.add_argument("--chunk", default=int(YEAR // 12), type=int, help="Time chunk for download. Default is ~1 month.") args = parser.parse_args() basedir = os.environ['PWD'] codedir = join(basedir, dirname(os.path.relpath(__file__))) logdir = join(basedir, "log") if not args.dryrun: logdir = mkdir(logdir) astro = astroserver() chunk = args.chunk # Might want to think more about how tmin and tmax are set first = args.tmin if args.tmax is None: args.tmax = int(utc2met()) emin, emax = args.emin, args.emax evtclass = args.evtclass evtsample = args.evtsample sample = '_'.join(evtsample.split('_')[:-1]) events = evtclass.upper() # Break data into chunks epsilon = 1e-6 times = np.arange(args.tmin, args.tmax + epsilon, chunk).astype(int) # Get new full ft2 file. # Assumption is that it is a longer time period... ft2 = join(basedir, "%s_%s_%s_%s_ft2.fits" % (sample, events, min(times), max(times))) jobname = 'ft2' if os.path.exists(ft2): # exact ft2 already exists; skip print("%s exists; skipping.\n" % ft2) else: # Remove old ft2 file and replace with link if not args.dryrun: # for f in glob.glob(join(basedir, "*ft2.fits")): # os.remove(f) # os.symlink(ft2, f) for f in glob.glob(join(basedir, "*ft2_fix_checksums.sh")): os.remove(f) logfile = join(logdir, basename(ft2).replace('fits', 'log')) command = astro('storeft2', output_ft2_30s=ft2, _event_sample=evtsample, minTimestamp=min(times), maxTimestamp=max(times), excludeMaxTimestamp='', quiet='', brief='', ) print(command) bsub(jobname, command, logfile, sleep=args.sleep, submit=not args.dryrun, W=1000, R='rhel60') # Download ft1, ft2 files ft1dir = mkdir(join(basedir, 'ft1')) ft1_lst, ft1_cmnds, ft1_logs = [], [], [] ls1dir = mkdir(join(basedir, 'ls1')) ls1_lst, ls1_cmnds, ls1_logs = [], [], [] ft2dir = mkdir(join(basedir, 'ft2')) ft2_lst, ft2_cmnds, ft2_logs = [], [], [] for tmin, tmax in zip(times[:-1], times[1:]): # If ft1 file exists, skip it... ft1 = join(ft1dir, "%s_%s_%s_%s_ft1.fits" % (sample, events, tmin, tmax)) if os.path.exists(ft1): print("%s exists; skipping.\n" % ft1) else: ft1_kw = dict(_output_ft1=ft1, _event_sample=evtsample, minTimestamp=tmin, maxTimestamp=tmax, minEnergy=emin, maxEnergy=emax, _event_class_name=evtclass, excludeMaxTimestamp='', quiet='', brief='') ft1_cmnd = astro("store", **ft1_kw) ft1_logs.append(join(logdir, basename(ft1).replace('fits', 'log'))) ft1_cmnds.append(ft1_cmnd) ft1_lst.append(ft1) # If ls1 file exists, skip it... ls1 = join(ls1dir, "%s_%s_%s_%s_ls1.fits" % (sample, events, tmin, tmax)) if not args.ls1: print("%s; skipping.\n" % ls1) elif os.path.exists(ls1): print("%s exists; skipping.\n" % ls1) else: ls1_kw = dict(_output_ls1=ls1, _event_sample=evtsample, _output_ls1_max_bytes_per_file=0, minTimestamp=tmin, maxTimestamp=tmax, minEnergy=emin, maxEnergy=emax, _event_class_name=evtclass, excludeMaxTimestamp='', quiet='', brief='') ls1_cmnd = astro("store", **ls1_kw) ls1_logs.append(join(logdir, basename(ls1).replace('fits', 'log'))) ls1_cmnds.append(ls1_cmnd) ls1_lst.append(ls1) # If ft2 file exists, skip it... ft2 = join(ft2dir, "%s_%s_%s_%s_ft2.fits" % (sample, events, tmin, tmax)) if os.path.exists(ft2): print("%s exists; skipping.\n" % ft2) else: ft2_cmnd = astro('storeft2', output_ft2_30s=ft2, _event_sample=evtsample, minTimestamp=tmin, maxTimestamp=tmax, excludeMaxTimestamp='', quiet='', brief='', ) ft2_logs.append(join(logdir, basename(ft2).replace('fits', 'log'))) ft2_cmnds.append(ft2_cmnd) ft2_lst.append(ft2) resources = 'bullet,hequ,kiso' bsub('ft1', ft1_cmnds, ft1_logs, sleep=args.sleep, submit=not args.dryrun, W=1000, R=resources) bsub('ls1', ls1_cmnds, ls1_logs, sleep=args.sleep, submit=not args.dryrun, W=1000, R=resources) bsub('ft2', ft2_cmnds, ft2_logs, sleep=args.sleep, submit=not args.dryrun, W=1000, R=resources) # Create list of ft1 files ft1_lstfile = join(basedir, "%s_%s_%s_%s_ft1.lst" % (sample, events, min(times), max(times))) ls1_lstfile = join(basedir, "%s_%s_%s_%s_ls1.lst" % (sample, events, min(times), max(times))) ft2_lstfile = join(basedir, "%s_%s_%s_%s_ft2.lst" % (sample, events, min(times), max(times))) if not args.dryrun: for f in glob.glob(join(basedir, "*.lst")): os.remove(f) print("Creating ft1 file list: %s" % ft1_lstfile) np.savetxt(ft1_lstfile, ft1_lst, fmt='%s') print("Creating ls1 file list: %s" % ls1_lstfile) np.savetxt(ls1_lstfile, ls1_lst, fmt='%s') print("Creating ft2 file list: %s" % ft2_lstfile) np.savetxt(ft2_lstfile, ft2_lst, fmt='%s') if __name__ == "__main__": main()
FermipyREPO_NAMEfermipyPATH_START.@fermipy_extracted@fermipy-master@fermipy@scripts@astroserver.py@.PATH_END.py
{ "filename": "test_simpleRun.ipynb", "repo_name": "anchal-009/SAVED21cm", "repo_path": "SAVED21cm_extracted/SAVED21cm-master/tests_new/test_simpleRun.ipynb", "type": "Jupyter Notebook" }
```python import sys; sys.path.insert(1, "./../") from src.runpipe import Pipeline from settings import Settings %matplotlib inline ``` ```python set = Settings() set.ANT = ["dipole", "logspiral", "sinuous"] set.LST = 2 set.PATH21TS = "../data/TS21/lfcal_training_set_8-2020.hdf5" set.PATHFGTS = "../data/TSFG/Nreg_1/" set.printSettings() ``` ------------------ Settings for the pipeline ------------------ Frequencies: Between (50 - 200) MHz with step size of 1 MHz. 21 TS: ../data/TS21/lfcal_training_set_8-2020.hdf5 FG TS: ../data/TSFG/Nreg_1/ Number of time bins: 2 Start time of each time bin: 00:00:00 03:00:00 Each value is this list is integrated for 6 bins Antenna design: ['dipole', 'logspiral', 'sinuous'] Integration time for each time bin: 12.0 h Total number of foreground modes: 80 Total number of 21cm modes: 80 Information Criterion: DIC Filename to store the info criteria: ./DIC_search.txt Visualization: True Save figures: False ```python pipeline = Pipeline(nu=set.NU, nLST=set.LST, ant=set.ANT, path21TS=set.PATH21TS, pathFgTS=set.PATHFGTS, obsDate="2019-10-01", obsDateTime=set.timeList, intBins=set.intBins, numReg=1, fgModel="gsm", dT=set.dT, modesFg=set.MODES_FG, modes21=set.MODES_21, quantity=set.QUANTITY, file=set.FNAME, visual=set.VISUALS, index21=467) ``` ```python _ = pipeline.runPipeline() ``` -------------------- Running the pipeline --------------------- Modelling set: Reading 21 modelling set...Done! Modelling set: Reading FG modelling set...Done! Basis: Performing SVD of 21 modelling set...Done! Basis: Performing SVD of FG modelling set...Done! Info Criterion: Calculating info criterion over grid...Done! Info Critetion: Searching for minima over the grid...Done! Info Criterion: IC is minimzed for 4 FG and 14 signal modes. Extractor: Extracting the 21cm signal...Done! Extractor: RMS uncertainty = 3.43 mK Extractor: Signal Bias Statistic = 1.00 Extractor: Normalized Deviance = 0.95 ![png](output_3_1.png) ![png](output_3_2.png) ![png](output_3_3.png) ![png](output_3_4.png) ![png](output_3_5.png) ![png](output_3_6.png) ![png](output_3_7.png) ```python ```
anchal-009REPO_NAMESAVED21cmPATH_START.@SAVED21cm_extracted@SAVED21cm-master@tests_new@test_simpleRun.ipynb@.PATH_END.py
{ "filename": "_color.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/treemap/pathbar/textfont/_color.py", "type": "Python" }
import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="color", parent_name="treemap.pathbar.textfont", **kwargs ): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "plot"), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@treemap@pathbar@textfont@_color.py@.PATH_END.py
{ "filename": "TO_DO.md", "repo_name": "rpoleski/MulensModel", "repo_path": "MulensModel_extracted/MulensModel-master/examples/example_16/TO_DO.md", "type": "Markdown" }
### To be discussed: - periodic variables - log10 variables etc. - for plots: t_0, \Delta t_0, or t_0 - 2456780 ??? ### Documentation: - Delta t_0 - binary source - x_caustic_in etc. - ob08092-o4_prior.yaml - posterior files - print model - example with add_2450000: False - yaml output in README.md # NOW - plot trajectory: - test if works in ulens_model_plot.py - add satellite trajectory - add legend - mark lens positions (no built-in function) - note in README.md ## List of task to be done: ( **boldface** - do this before sending e-mail around) - **some documentation - see above** - Mroz+20 - finish - MN: add option to plot best model from each mode - MN: add more parameters to _parse_fitting_parameters_MultiNest(): n_clustering_params, max_iter, resume [previous run], const_efficiency_mode, wrapped_params [list of 0 or 1 (1 for wrap arround)], mode_tolerance, log_zero, seed [random no. generator seed], verbose [need update on sampling progress?]; FOR MORE INFO SEE: https://github.com/JohannesBuchner/PyMultiNest/blob/master/pymultinest/run.py AND https://github.com/farhanferoz/MultiNest/blob/master/MultiNest_v3.12/nested.F90 AND https://github.com/JohannesBuchner/MultiNest/blob/master/README - example with add_2450000: False - script and MM versions should be printed - EMCEE: we should have settings in one dict - similarly to self._kwargs_MultiNest - EMCEE backend - https://emcee.readthedocs.io/en/stable/user/backends/#emcee.backends.HDFBackend - add one more fitting method? scipy.optimize, ultranest, https://lmfit.github.io/lmfit-py/, sfit by Jen, ??? - add check if 't_0' is covered by data and give warning if not - print fixed parameters at begin or "no fixed parameters", so that full model can be extracted without the input file - LD coeffs - there should be check which bands there compare to the ones in datasets - random seed - first just print it early on (if used in calculations); then allow setting it for exact reproduction of results - all_parameters in _get_parameters_ordered() and _check_fixed_parameters() - combine in a single one - note that parameters are re-ordered (maybe in future add option for specifying order) - datasets - guessing 245/246; plotting as well - no_negative_blending_flux - only first dataset, or all datasets? Maybe add one more option - allow plotting multiple models - allow plotting many random models from posterior - add beta distribution to allowed distributions (search for "gauss") - for plot script add printing chi2 and fluxes - EMCEE: some of the starting values are calculated based on equation given in yaml file, eg. "s: equation 100 / t_E" and then substitute each value of t_E and then use: "exec('out = 100 / 20.12345')" and use variable 'out'; This requires import from math of log, log10, arcsin etc.; make sure "s" in x_caustic_in is not replaced etc.; - if Cassan08 paramaterization is used then make sure times are >2450000. - add automatic "obvious" checks on parameters: t_E>0, rho>0, s>0, 1>q>0 - even if they are not provided, then model should be rejected and warning given - if magnification calculations break then give warning, reject the model, and continue - binary source models - print fluxes of both sources separately - warnings if plots will overwrite existing files - check if output files (including plots) exists at the begin - similar to _warn_about_existing_output_files_MultiNest() - plot title - make plots tighter, i.e., reduce white space - EMCEE: add ln_prior values to blob? At some point we will want to save that information in output files - settings['input_file_root'] = input_file_root - in final function and use it for default output files names - EMCEE: posterior output: 1) add log(prior), 2) add chi2 or equivalent, 3) add option to add fluxes - EMCEE: print number of models calculated - MN: for multimode version add option to print statistics of all modes combined - MN: separate corner plot for each mode (requires same shift to be used in _shift_t_0_in_samples()) - periodic variables - suggest it for alpha, x_caustic_X - check if data files exist - allow log10() of parameter - Event.get_chi2() - add fit_blending=False option (actually this is different in MM v2) - allow turning off flux printing - warnings on time plotting and data limits - checks for add/subtract 245/246 - if code fails during fitting, then it should still print the best model found so far - add try/except in _run_fit() - example how to run fits on a grid of (s,q) - allow periodic (either based on number of steps, or execution time) print of best model etc. - print every n-th model - for parallax models check if t_0_par is fixed and give warning, if not - fits with 0 blending flux for some datasets - when plotting best model, plot ~100 points based on t_E etc. + all visible epochs in data so that anomalies are not missed etc. - add option to adjust Y scale to plot model fully - in _parse_fit_constraints_prior() add a check if the priors are defined for fit parameters - flux constraints for binary source models (note that for plotting it is now set to first dataset) - triangle and trace plots - add option to plot burn-in as well - methods - if only single string is provided, then this is a default method - move _get_weighted_percentile() to a separate file with utils because it doesnt depend on self; maybe there are other similar functions - allow LD parameters to be fitted - for trace and triangle plots, the setting `shift t_0` is common - it should be checked if it`s not set twice to different values
rpoleskiREPO_NAMEMulensModelPATH_START.@MulensModel_extracted@MulensModel-master@examples@example_16@TO_DO.md@.PATH_END.py
{ "filename": "test_ini.py", "repo_name": "timothydmorton/isochrones", "repo_path": "isochrones_extracted/isochrones-master/isochrones/tests/test_ini.py", "type": "Python" }
import os import numpy as np from isochrones.mist import MIST_Isochrone from isochrones import StarModel, BinaryStarModel, TripleStarModel from isochrones.starmodel import BasicStarModel FOLDER = os.path.abspath(os.path.join(os.path.dirname(__file__))) MIST = MIST_Isochrone() def test_ini(): _check_ini(MIST) ################# def _check_ini(ic): single_dirs = ["star1"] binary_dirs = ["star2"] triple_dirs = ["star3", "star4"] for d in single_dirs: SingleCheck().check(ic, os.path.join(FOLDER, d)) for d in binary_dirs: BinaryCheck().check(ic, os.path.join(FOLDER, d)) BinaryCheck_Unassoc().check(ic, os.path.join(FOLDER, d)) for d in triple_dirs: TripleCheck().check(ic, os.path.join(FOLDER, d)) TripleCheck_Unassoc1().check(ic, os.path.join(FOLDER, d)) TripleCheck_Unassoc2().check(ic, os.path.join(FOLDER, d)) # _ini1(ic) # _ini2(ic) # _ini3(ic) # _ini3_2(ic) # _ini4(ic) class IniCheck(object): index = 0 def get_mod(self, ic, folder): return StarModel.from_ini(ic, folder=folder, index=self.index) def check_asserts(self, mod): eep_pars = mod.convert_pars_to_eep(self.pars) print((self.pars, eep_pars)) assert self.n_params == len(eep_pars) assert mod.n_params == self.n_params assert mod.obs.systems == self.systems assert mod.obs.Nstars == self.Nstars assert np.isfinite(mod.lnlike(eep_pars)) def check_p0(self, mod): p0 = mod.emcee_p0(10) nbad = 0 for i, p in enumerate(p0): if not np.isfinite(mod.lnpost(p)): print(p) nbad += 1 assert nbad == 0 def check(self, ic, folder): print("checking {}".format(folder)) mod = self.get_mod(ic, folder) mod.print_ascii() self.check_asserts(mod) self.check_p0(mod) # if hasattr(self, 'get_mod_special'): # mod = self.get_mod_special(ic, folder) # self.check_asserts(mod) class SingleCheck(IniCheck): pars = [1.0, 9.4, 0.0, 100, 0.2] n_params = 5 systems = [0] Nstars = {0: 1} class BinaryCheck(IniCheck): pars = [1.0, 0.5, 9.4, 0.0, 100, 0.2] n_params = 6 systems = [0] Nstars = {0: 2} def get_mod_special(self, ic, folder): return BinaryStarModel(ic, folder=folder) class BinaryCheck_Unassoc(IniCheck): pars = [1.0, 9.4, 0.0, 100, 0.2, 0.8, 9.7, 0.1, 300, 0.3] n_params = 10 index = [0, 1] systems = [0, 1] Nstars = {0: 1, 1: 1} class TripleCheck(IniCheck): pars = [1.0, 0.8, 0.5, 9.4, 0.0, 100, 0.2] n_params = 7 systems = [0] Nstars = {0: 3} def get_mod_special(self, ic, folder): return TripleStarModel(ic, folder=folder) class TripleCheck_Unassoc1(IniCheck): pars = [1.0, 0.8, 9.4, 0.0, 100, 0.2, 1.0, 9.7, 0.0, 200, 0.5] n_params = 11 index = [0, 0, 1] systems = [0, 1] Nstars = {0: 2, 1: 1} class TripleCheck_Unassoc2(IniCheck): pars = [1.0, 9.4, 0.0, 100, 0.2, 1.0, 0.8, 9.7, 0.0, 200, 0.5] n_params = 11 index = [0, 1, 1] systems = [0, 1] Nstars = {0: 1, 1: 2}
timothydmortonREPO_NAMEisochronesPATH_START.@isochrones_extracted@isochrones-master@isochrones@tests@test_ini.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "telegraphic/fits2hdf", "repo_path": "fits2hdf_extracted/fits2hdf-master/fits2hdf/__init__.py", "type": "Python" }
from __future__ import absolute_import from . import io from . import idi from . import pyhdfits from . import pyhdfits as pf
telegraphicREPO_NAMEfits2hdfPATH_START.@fits2hdf_extracted@fits2hdf-master@fits2hdf@__init__.py@.PATH_END.py
{ "filename": "SED_prior_model_v2.ipynb", "repo_name": "H-E-L-P/XID_plus", "repo_path": "XID_plus_extracted/XID_plus-master/docs/build/html/notebooks/examples/SED_prior_model_v2.ipynb", "type": "Jupyter Notebook" }
```python import os import numpy as np from astropy.io import ascii from scipy.interpolate import interp1d import xidplus temps=os.listdir('/Users/pdh21/astrodata/SEDs/Berta2013/templates_berta_norm_LIR/') ``` ```python temps ``` ['Blue_SF_glx.norm_LIR', 'BroadFIR_SF_glx.norm_LIR', 'Cold_glx.norm_LIR', 'Elliptical.norm_LIR', 'Ly_break.norm_LIR', 'MIR_powlaw_SF_glx.norm_LIR', 'MIRex_SF_glx.norm_LIR', 'Mod_SF_glx.norm_LIR', 'Obs_SF_glx.norm_LIR', 'PAH_DF_glx.norm_LIR', 'Red_SF_glx_1.norm_LIR', 'Red_SF_glx_2.norm_LIR', 'Secular_glx.norm_LIR', 'SF_glx_1.norm_LIR', 'SF_glx_2.norm_LIR', 'SF_Type1_AGN_1.norm_LIR', 'SF_Type1_AGN_2.norm_LIR', 'SF_Type1_AGN_3.norm_LIR', 'SF_Type1_AGN_4.norm_LIR', 'SF_Type2_AGN_1.norm_LIR', 'SF_Type2_AGN_2.norm_LIR', 'SF_Type2_AGN_3.norm_LIR', 'Si_break.norm_LIR', 'Spiral.norm_LIR', 'Torus.norm_LIR', 'Type1_AGN_1.norm_LIR', 'Type2_AGN_1.norm_LIR', 'Type2_AGN_2.norm_LIR', 'Warm_SF_glx.norm_LIR', 'WeakPAH_SF_glx_1.norm_LIR', 'WeakPAH_SF_glx_2.norm_LIR', 'Young_SF_glx.norm_LIR'] Generate Redshift Grid and convert to denominator for flux conversion (e.g. $4 \pi D_l^2)$ ```python red=np.arange(0,8,0.001) red[0]=0.000001 from astropy.cosmology import Planck13 import astropy.units as u div=(4.0*np.pi * np.square(Planck13.luminosity_distance(red).cgs)) div=div.value ``` ```python len(red) ``` 8000 Get appropriate filters ```python from xidplus import filters filter=filters.FilterFile(file=xidplus.__path__[0]+'/../test_files/filters.res') ``` ```python filter.names() ``` 1 Koo-Kron U+ filter (Koo's thesis) - 0001 2 Koo-Kron J+ filter (Koo's thesis) - 0002 3 Koo-Kron F+ filter (Koo's thesis) - 0003 4 Koo-Kron N+ filter (Koo's thesis) - 0004 5 Koo-Kron R band (=127+RG610, data from Koo, Durham) - 0005 6 Couch and Newell (80) BJ (photographic) filter - 0006 7 Couch and Newell (80) RF (photographic) filter - 0007 8 Koo-Kron U+ filter (Bruzual's thesis) - 0008 9 Koo-Kron J+ filter (Bruzual's thesis) - 0009 10 Koo-Kron F+ filter (Bruzual's thesis) - 0010 11 Koo-Kron N+ filter (Bruzual's thesis) - 0011 12 Buser's U filter - 0012 13 Buser's B2 filter - 0013 14 Buser's B3 filter - 0014 15 Buser's V filter - 0015 16 Matthews and Sandage U filter - 0016 17 Matthews and Sandage B filter - 0017 18 Matthews and Sandage V filter - 0018 19 Sandage and Smith B filter - 0019 20 Sandage and Smith V filter - 0020 21 Sandage and Smith R filter - 0021 22 ST-UV14 filter - 0022 23 ST-UV17 filter - 0023 24 ST-UV22 filter - 0024 25 ST-UV27 filter - 0025 26 OAO-UV1 filter - 0026 27 OAO-UV2 filter - 0027 28 OAO-UV3 filter - 0028 29 OAO-UV4 filter - 0029 30 OAO-UV5 filter - 0030 31 OAO-UV6 filter - 0031 32 Johnson's R filter - 0032 33 Johnson's I filter - 0033 34 Johnson's J filter - 0034 35 Johnson's K filter - 0035 36 Johnson's L filter - 0036 37 Butcher's r filter - 0037 38 Butcher's i filter - 0038 39 Butcher-Oemler R filter (10/75 1978, data from Koo, Durham) - 0039 40 Butcher-Oemler R filter ( 5/76 1978, data from Koo, Durham) - 0040 41 Bessell u filter - 0041 42 Bessell g filter - 0042 43 Bessell r filter - 0043 44 UKIRT H FILTER (Leiden, 1983) - 0044 45 R. S. Ellis U(PE) filter - 0045 46 R. S. Ellis J filter - 0046 47 R. S. Ellis R filter - 0047 48 R. S. Ellis N filter - 0048 49 C. MacKay and P. Hall KG3 filter (Cambridge) - 0049 50 C. MacKay and P. Hall I filter (Cambridge) - 0050 51 Gunn g filter + four-shooter Ti CCD + Palomar 200" atmospher - 0051 52 Gunn r filter + four-shooter Ti CCD + Palomar 200" atmospher - 0052 53 Gunn i filter + four-shooter Ti CCD + Palomar 200" atmospher - 0053 54 Gunn z filter + four-shooter Ti CCD + Palomar 200" atmospher - 0054 55 IR J filter + Palomar 200 IR detectors + atmosphere - 0055 56 IR H filter + Palomar 200 IR detectors + atmosphere - 0056 57 IR K filter + Palomar 200 IR detectors + atmosphere - 0057 58 NOAO CTIO 4m ISPI J#186 - 0058 59 NOAO CTIO 4m ISPI H#187 - 0059 60 NOAO CTIO 4m ISPI K'#188 - 0060 61 A. Tyson J filter - 0061 62 A. Tyson R filter - 0062 63 A. Tyson I filter - 0063 64 ANS 1550 Wide Filter (J. Koorneef) - 0064 65 ANS 1800 Filter (J. Koorneef) - 0065 66 ANS 2200 Filter (J. Koorneef) - 0066 67 ANS 2500 Filter (J. Koorneef) - 0067 68 ANS 3300 Filter (J. Koorneef) - 0068 69 Approximate U band for Lilly and Cowie - 0069 70 Approximate I band for Lilly and Cowie - 0070 71 IRAS 12 micron, Neugebauer etal 1984,ApJL,278,L1 - 0071 72 IRAS 25 micron, Neugebauer etal 1984,ApJL,278,L1 - 0072 73 IRAS 60 micron, Neugebauer etal 1984,ApJL,278,L1 - 0073 74 IRAS 100 micron, Neugebauer etal 1984,ApJL,278,L1 - 0074 75 H filter Bessell and Brett PASP 100, 1134, 1988 - 0075 76 J filter Bessell and Brett PASP 100, 1134, 1988 - 0076 77 K filter Bessell and Brett PASP 100, 1134, 1988 - 0077 78 L (3.5 microns) filter Bessell and Brett PASP 100, 1134, 1988 - 0078 79 L' (3.8 microns) filter Bessell and Brett PASP 100, 1134, 1988 - 0079 80 M filter Bessell and Brett PASP 100, 1134, 1988 - 0080 81 IRAM MAMBO-1 1.2 mm, 37 channel (winter 99/00 -today) - 0081 82 IRAM MAMBO-2 1.2 mm,117 channel - 0082 83 g Gunn (original) - 0083 84 r Gunn (original) - 0084 85 i Gunn (original) - 0085 86 z (original) - 0086 87 z + RCA - 0087 88 CCD RCA ESO (JPP reference) - 0088 89 CCD RCA CAHA (Manual d'utilisateurs) - 0089 90 B CAHA (original manuel) - 0090 91 B Bessell - 0091 92 V Bessell - 0092 93 R Bessell - 0093 94 I Bessell - 0094 95 K Prime CFHT Redeye - 0095 96 CCD RCA2 CFHT (Manuel utilisateurs) - 0096 97 Bj TYSON (orig. filter AT, private com.) - 0097 98 CCD TEK#25 (ESO, Manuel Utilisateurs) - 0098 99 CCD LORAL#34 (ESO, Manuel Utilisateurs) - 0099 100 CCD SAIC#1 (CFH, Manuel Utilisateurs) - 0100 101 CCD Lick2 CFHT (CFH, Manuel Utilisateurs) - 0101 102 ESO NTT SUSI B Bessell#639 - 0102 103 ESO NTT SUSI V Bessell#641 - 0103 104 ESO NTT SUSI R Bessell#642 - 0104 105 ESO NTT EMMI V#606 - 0105 106 B#4402 CFHT - 0106 107 R#4609 CFHT - 0107 108 B #1412 CFHT FOCAM - 0108 109 B #1414 CFHT B Tyson selon JB - 0109 110 V #1504 CFHT - 0110 111 V #1510 CFHT FOCAM - 0111 112 R #1611 CFHT - 0112 113 I #1808 CFHT FOCAM - 0113 114 I #1809 CFHT FOCAM - 0114 115 Thomson THX 31156 CCD#17 ESO - 0115 116 Thomson THX 31156 CCD#18 ESO - 0116 117 R#585 Bessell ESO - 0117 118 K #6 UKIRT - 0118 119 Passe-tout - 0119 120 F555W + WFPC2 normalized - 0120 121 F814W + WFPC2 normalized - 0121 122 F300W + WFPC2 normalized - 0122 123 F450W + WFPC2 normalized - 0123 124 F606W + WFPC2 normalized - 0124 125 F702W + WFPC2 normalized - 0125 126 F675W + WFPC2 normalized - 0126 127 F336W + WFPC2 normalized - 0127 128 ESO NTT 3.6m SOFI Js - 0128 129 ESO NTT 3.6m SOFI J - 0129 130 ESO NTT 3.6m SOFI H - 0130 131 ESO NTT 3.6m SOFI Ks - 0131 132 KPNO IRIM 2.12 Filter - 0132 133 KPNO IRIM 2.14 Filter - 0133 134 KPNO IRIM 2.16 Filter - 0134 135 KPNO IRIM H Filter - 0135 136 KPNO IRIM J Filter - 0136 137 KPNO IRIM K Filter - 0137 138 KPNO IRIM K' Filter - 0138 139 VLT Test Camera Detector's Quantum Efficiency - 0139 140 B-band filter of the VLT Test Camera - 0140 141 V-band filter of the VLT Test Camera - 0141 142 R-band filter of the VLT Test Camera - 0142 143 I-band filter of the VLT Test Camera - 0143 144 SUSI2's CCDs Quantum Efficiency - 0144 145 SUSI Bessell U #801 - 0145 146 SUSI Bessell B #811 - 0146 147 SUSI Bessell V #812 - 0147 148 SUSI Bessell R #813 - 0148 149 SUSI Bessell I #814 - 0149 150 FORS Standard U (including instrument + CCD) - 0150 151 FORS Standard B (including instrument + CCD) - 0151 152 FORS Standard V (including instrument + CCD) - 0152 153 FORS Cousins R (including instrument + CCD) - 0153 154 FORS Cousins I (including instrument + CCD) - 0154 155 FORS Gunn G (including instrument + CCD) - 0155 156 ESO 2.2m WFI U#841 + CCD#57 + wfi_2p2_optics (U/38 AKA U38) - 0156 157 ESO 2.2m WFI B#842 + CCD#57 (old B/99, for new see B/123) - 0157 158 ESO 2.2m WFI V#843 + CCD#57 + wfi_2p2_optics (V/89) - 0158 159 ESO 2.2m WFI Rc#844 + CCD#57 + wfi_2p2_optics (Rc/162) - 0159 160 ESO 2.2m WFI Ic#845 + CCD#57 + wfi_2p2_optics (Ic/lwp) - 0160 161 ESO 2.2m WFI Z#846 + CCD#57 + wfi_2p2_optics (Z+/61) - 0161 162 ESO 2.2m WFI U#877 + CCD57 + wfi_2p2_optics (U/50 AKA U35) - 0162 163 ESO 2.2m WFI B#878 + CCD#57 + wfi_2p2_optic (latest B filter B/123) - 0163 164 SDSS u (http://www.sdss.org/dr7/instruments/imager/index.html) - 0164 165 SDSS g (http://www.sdss.org/dr7/instruments/imager/index.html) - 0165 166 SDSS r (http://www.sdss.org/dr7/instruments/imager/index.html) - 0166 167 SDSS i (http://www.sdss.org/dr7/instruments/imager/index.html) - 0167 168 SDSS z (http://www.sdss.org/dr7/instruments/imager/index.html) - 0168 169 ESO VST OmegaCAM u - 0169 170 ESO VST OmegaCAM g - 0170 171 ESO VST OmegaCAM r - 0171 172 ESO VST OmegaCAM i - 0172 173 ESO VST OmegaCAM z - 0173 174 CFHT CFH12k B (Mould) - 0174 175 CFHT CFH12k V (Mould) - 0175 176 CFHT CFH12k R (Mould) - 0176 177 CFHT CFH12k I (Mould) - 0177 178 CFHT CFH12k Z (Prime) - 0178 179 JCMT SCUBA 450 micron - 0179 180 JCMT SCUBA 850 micron - 0180 181 AzTEC 1.1 mm - 0181 182 Infamous 2.2m UH8K B filter + loral3 + MK atmosphere - 0182 183 2.2m UH8K V filter + loral 3 + atmosphere - 0183 184 2.2m UH8K I filter + MK atmosphere - 0184 185 KPNO B, from AAT Users Manual - 0185 186 H+K filter - 0186 187 Wyin filter U (filter + CCD reponse) - 0187 188 Wyin filter B (filter + CCD reponse) - 0188 189 ESO VLT ISAAC J (ESO web pages) - 0189 190 ESO VLT ISAAC H (ESO web pages) - 0190 191 ESO VLT ISAAC Ks (ESO web pages) - 0191 192 ESO VLT ISAAC L (ESO web pages) - 0192 193 ESO VLT ISAAC M (ESO web pages) - 0193 194 Palomar 200" WIRC J - 0194 195 Palomar 200" WIRC K - 0195 196 Calar Alto 3.5m Omega2000 J - 0196 197 Calar Alto 3.5m OmegaPrime K - 0197 198 Spitzer IRAC CH1 (3.6 micron) - 0198 199 Spitzer IRAC CH2 (4.5 microns) - 0199 200 Spitzer IRAC CH3 (5.8 microns) - 0200 201 Spitzer IRAC CH4 (8.0 microns) - 0201 202 Spitzer MIPS CH1 (24 microns) - 0202 203 Subaru SuprimeCam U - 0203 204 Subaru SuprimeCam B - 0204 205 Subaru SuprimeCam V - 0205 206 Subaru SuprimeCam r - 0206 207 Subaru SuprimeCam i - 0207 208 Subaru SuprimeCam z - 0208 209 UH 2.2m QUIRC H+K (AKA HK') - 0209 210 CFHT MEgaCam i2 AKA y (new,after October 2007 - http://cadcwww.dao.nrc.ca/megapipe/docs/filters.html) - 0210 211 NOAO KPNO 4m FLAMINGOS J (J-2000toJuly2003) - 0211 212 NOAO KPNO 4m FLAMINGOS H (H-2000toJuly2003) - 0212 213 NOAO KPNO 4m FLAMINGOS Ks (Ks-2000toJuly2003) - 0213 214 Spitzer MIPS CH2 (70 micron) - 0214 215 Spitzer MIPS CH3 (160 micron) - 0215 216 SPIRE 250 micron - 0216 217 SPIRE 350 micron - 0217 218 SPIRE 500 micron - 0218 219 2MASS J - 0219 220 2MASS H - 0220 221 2MASS Ks - 0221 222 UKIRT WFCAM (UKIDSS) J - 0222 223 UKIRT WFCAM (UKIDSS) H - 0223 224 UKIRT WFCAM (UKIDSS) K - 0224 225 INT WFC u - 0225 226 INT WFC g - 0226 227 INT WFC r - 0227 228 INT WFC i - 0228 229 INT WFC z - 0229 230 NOAO KPNO 4m MOSAIC1 U band (k1001) - 0230 231 NOAO KPNO 4m MOSAIC1 g band (SDSS k1017) - 0231 232 NOAO KPNO 4m MOSAIC1 r band (SDSS k1018) - 0232 233 NOAO KPNO 4m MOSAIC1 i band (SDSS k1019) - 0233 234 NOAO KPNO 4m MOSAIC1 z band (SDSS k1020) - 0234 235 NOAO CTIO 4m MOSAIC2 u band (SDSS c6022) - 0235 236 NOAO CTIO 4m MOSAIC2 g band (SDSS c6017) - 0236 237 NOAO CTIO 4m MOSAIC2 r band (SDSS c6018) - 0237 238 NOAO CTIO 4m MOSAIC2 i band (SDSS c6019) - 0238 239 NOAO CTIO 4m MOSAIC2 z band (SDSS c6022) - 0239 240 NOAO CTIO 4m MOSAIC2 U band (c6001) - 0240 241 CFHT MEgaCam u* http://www2.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLS-SG/docs/extra/filters.html - 0241 242 CFHT MegaCam g http://www2.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLS-SG/docs/extra/filters.html - 0242 243 CFHT MegaCam r http://www2.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLS-SG/docs/extra/filters.html - 0243 244 CFHT MegaCam i AKA i1 (old, before Octorber 2007 for new see CFHT MegaCam i2 AKA y; http://cadcwww.dao.nrc.ca/megapipe/docs/filters.html) - 0244 245 CFHT MegaCam z http://www2.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLS-SG/docs/extra/filters.html - 0245 246 AKARI N60 http://www.ir.isas.jaxa.jp/AKARI/Observation/RSRF/FIS_FAD/index.html - 0246 247 AKARI WIDE-S http://www.ir.isas.jaxa.jp/AKARI/Observation/RSRF/FIS_FAD/index.html - 0247 248 AKARI WIDE-L http://www.ir.isas.jaxa.jp/AKARI/Observation/RSRF/FIS_FAD/index.html - 0248 249 AKARI N160 http://www.ir.isas.jaxa.jp/AKARI/Observation/RSRF/FIS_FAD/index.html - 0249 250 PACS 70 Instrument Simulator as of Herschel Launch - 0250 251 PACS 100 Instrument Simulator as of Herschel Launch - 0251 252 PACS 160 Instrument Simulator as of Herschel Launch - 0252 253 NOAO KPNO 4m FLAMINGOS J from 2003 to present: http://flamingos.astro.ufl.edu/Filter_Info/index.html (FLAMINGOS.BARR.J.MAN240B.WarmFilter.txt) - 0253 254 NOAO KPNO 4m FLAMINGOS H from 2003 to present: http://flamingos.astro.ufl.edu/Filter_Info/index.html (FLAMINGOS.BARR.H.MAN109A.WarmFilter.txt) - 0254 255 NOAO KPNO 4m FLAMINGOS Ks from 2003 to present: http://flamingos.astro.ufl.edu/Filter_Info/index.html (FLAMINGOS.BARR.Ks.MAN306A.WarmFilter.txt) - 0255 256 NOAO KPNO 4m FLAMINGOS K from 2003 to present: http://flamingos.astro.ufl.edu/Filter_Info/index.html (FLAMINGOS.K-band.2000toPresentDay.NOAO-OCLI-Filter.txt) - 0256 257 Subaru SuprimeCam Rc - 0257 258 Subaru SuprimeCam Ic - 0258 259 Subaru SuprimeCam g - 0259 260 Spitzer IRS 16 micron (bluePUtrans) - 0260 261 Spitzer IRS 22 micron (redPUtrans) - 0261 262 ESO VLT VIMOS U (transmission is average of 4 quadrants) - 0262 263 ESO VLT VIMOS B (transmission is average of 4 quadrants) - 0263 264 ESO VLT VIMOS V (transmission is average of 4 quadrants) - 0264 265 ESO VLT VIMOS R (transmission is average of 4 quadrants) - 0265 266 ESO VLT VIMOS I (transmission is average of 4 quadrants) - 0266 267 ESO VLT VIMOS z (transmission is average of 4 quadrants) - 0267 268 NOAO KPNO 4m MOSAIC1 R - 0268 269 UKIRT WFCAM (UKIDSS) Z - 0269 270 UKIRT WFCAM (UKIDSS) Y - 0270 271 CFHT WIRCam J (cfh8101) - 0271 272 CFHT WIRCam H (cfh8201) - 0272 273 CFHT WIRCam Ks (cfh8302) - 0273 274 NOAO KPNO 4m MOSAIC1 Bw - 0274 275 NOAO KPNO 4m MOSAIC1 B - 0275 276 NOAO KPNO 4m MOSAIC1 V - 0276 277 NOAO KPNO 4m MOSAIC1 I - 0277 278 NOAO CTIO 4m MOSAIC2 B - 0278 279 NOAO CTIO 4m MOSAIC2 V - 0279 280 NOAO CTIO 4m MOSAIC2 R - 0280 281 NOAO CTIO 4m MOSAIC2 I - 0281 282 TIFKAM/ONIS J - 0282 283 TIFKAM/ONIS H - 0283 284 TIFKAM/ONIS K - 0284 285 90prime SDSS-u - 0285 286 90prime SDSS-z - 0286 287 90prime U - 0287 288 90prime B - 0288 289 90prime V - 0289 290 90prime R - 0290 291 90prime I - 0291 292 90prime_Washington_M - 0292 293 NEWFIRM J - 0293 294 NEWFIRM H - 0294 295 NEWFIRM Ks - 0295 296 GALEX NUV - 0296 297 GALEX FUV - 0297 298 MMT Megacam u - 0298 299 MMT Megacam g - 0299 300 MMT Megacam r - 0300 301 MMT Megacam i - 0301 302 MMT Megacam z - 0302 303 Subaru MOIRCS Y - 0303 304 Subaru MOIRCS J - 0304 305 Subaru MOIRCS H - 0305 306 Subaru MOIRCS Ks - 0306 307 Subaru MOIRCS K - 0307 308 APEX SABOCA 350 micron - 0308 309 APEX LABOCA 850 micron - 0309 310 HST NIC3 F110W (J) - 0310 311 HST NIC3 F160W (H) - 0311 312 HST NIC3 F222M (K) - 0312 313 HST ACS/WFC F435W (B) - 0313 314 HST ACS/WFC F606W (V) - 0314 315 HST ACS/WFC F814W (I) - 0315 316 HST ACS/WFC F475W (g) - 0316 317 HST ACS/WFC F625W (r) - 0317 318 HST ACS/WFC F775W (i) - 0318 319 HST ACS/WFC F850LP (z) - 0319 320 Subaru SuprimeCam IA427 - 0320 321 Subaru SuprimeCam IA445 - 0321 322 Subaru SuprimeCam IA464 - 0322 323 Subaru SuprimeCam IA484 - 0323 324 Subaru SuprimeCam IA505 - 0324 325 Subaru SuprimeCam IA527 - 0325 326 Subaru SuprimeCam IA550 - 0326 327 Subaru SuprimeCam IA574 - 0327 328 Subaru SuprimeCam IA598 - 0328 329 Subaru SuprimeCam IA624 - 0329 330 Subaru SuprimeCam IA651 - 0330 331 Subaru SuprimeCam IA679 - 0331 332 Subaru SuprimeCam IA709 - 0332 333 Subaru SuprimeCam IA738 - 0333 334 Subaru SuprimeCam IA767 - 0334 335 Subaru SuprimeCam IA797 - 0335 336 Subaru SuprimeCam IA827 - 0336 337 Subaru SuprimeCam IA856 - 0337 338 Subaru SuprimeCam IA907 - 0338 339 Subaru SuprimeCam NA656 - 0339 340 Subaru SuprimeCam NB711 - 0340 341 Subaru SuprimeCam NB816 - 0341 342 Subaru SuprimeCam NB921 - 0342 343 LBT-LBC blue Uspec - 0343 344 LBT-LBC blue U - 0344 345 LBT-LBC blue B - 0345 346 LBT-LBC blue V - 0346 347 LBT-LBC blue g (#1) - 0347 348 LBT-LBC blue r (#1) - 0348 349 LBT-LBC red V - 0349 350 LBT-LBC red R - 0350 351 LBT-LBC red I - 0351 352 LBT-LBC red r - 0352 353 LBT-LBC red i - 0353 354 LBT-LBC red z - 0354 355 LBT-LBC red F972N20 - 0355 356 LBT-LBC red Y - 0356 357 ISO CAM LW2 (6.7/7 micron) - 0357 358 ISO CAM LW10 (12 micron) - 0358 359 ISO CAM LW3 (14.3/15 micron) -0359 360 ISO PHT C100-DETECTOR C90-FILTER (90/5 micron) - 0360 361 ISO PHT C200-DETECTOR C160-FILTER (170/5 micron) - 0361 362 VISTA VIRCAM Z - 0362 363 VISTA VIRCAM Y - 0363 364 VISTA VIRCAM J - 0364 365 VISTA VIRCAM H - 0365 366 VISTA VIRCAM Ks - 0366 367 HST WFC3 F125W [J band]- 0367 368 HST WFC3 F160W [H band]- 0368 369 AKARI IRC N2 - 0369 370 AKARI IRC N3 - 0370 371 AKARI IRC N4 - 0371 372 AKARI IRC S7 - 0372 373 AKARI IRC S9W - 0373 374 AKARI IRC S11 - 0374 375 AKARI IRC L15 - 0375 376 AKARI IRC L18W - 0376 377 AKARI IRC L24 - 0377 378 WISE 1 (3.4 mum) - 0378 379 WISE 2 (4.6 mum) - 0379 380 WISE 3 (12 mum) - 0380 381 WISE 4 (22 mum) - 0381 382 Pan-STARRS1 gp1 - 0382 383 Pan-STARRS1 rp1 - 0383 384 Pan-STARRS1 ip1 - 0384 385 Pan-STARRS1 zp1 - 0385 386 Pan-STARRS1 yp1 - 0386 387 Pan-STARRS1 wp1 - 0387 388 ```python SPIRE_250=filter.filters[215] SPIRE_350=filter.filters[216] SPIRE_500=filter.filters[217] MIPS_24=filter.filters[201] PACS_100=filter.filters[250] PACS_160=filter.filters[251] bands=[SPIRE_250,SPIRE_350,SPIRE_500,MIPS_24,PACS_100,PACS_160] eff_lam=[250.0,350.0,500.0,24.0, 100.0,160.0] ``` ```python for b in bands: print(b.name) ``` SPIRE 250 micron - 0216 SPIRE 350 micron - 0217 SPIRE 500 micron - 0218 Spitzer MIPS CH1 (24 microns) - 0202 PACS 100 Instrument Simulator as of Herschel Launch - 0251 PACS 160 Instrument Simulator as of Herschel Launch - 0252 ```python import pandas as pd template=ascii.read('/Users/pdh21/astrodata/SEDs/Berta2013/templates_berta_norm_LIR/'+temps[0]) df=pd.DataFrame(template['col1'].data/1E4,columns=['wave']) print(template['col1'].data/1E4) SEDs=np.empty((len(temps),len(bands),red.size)) for i in range(0,len(temps)): template=ascii.read('/Users/pdh21/astrodata/SEDs/Berta2013/templates_berta_norm_LIR/'+temps[i]) df[temps[i]]=1E30*3.826E33*template['col2']*((template['col1']/1E4)**2)/3E14 flux=template['col2']*((template['col1']/1E4)**2)/3E14 wave=template['col1']/1E4 ind=(wave > 8) & (wave < 1E3) print(np.trapz(template['col2'][ind],x=wave[ind]*1E4)) print(np.trapz(flux[ind][::-1],x=3E14/(wave[ind][::-1]))) for z in range(0,red.size): sed=interp1d((red[z]+1.0)*wave, flux) for b in range(0,len(bands)): SEDs[i,b,z]=1E30*3.826E33*(1.0+red[z])*filters.fnu_filt(sed(bands[b].wavelength/1E4),3E8/(bands[b].wavelength/1E10),bands[b].transmission,3E8/(eff_lam[b]*1E-6),sed(eff_lam[b]))/div[z] ``` [ 9.09999900e-03 9.40000000e-03 9.59999900e-03 ..., 1.92899989e+03 1.93899920e+03 1.94899898e+03] 0.999999999975 9.99948820898e-05 0.99999999803 9.99972496544e-05 1.00000000022 9.99986398139e-05 0.999999998638 9.99981291963e-05 0.99999999959 9.99980481754e-05 0.999999998941 9.9994351254e-05 0.999999999473 9.99945356128e-05 0.999999998487 9.99985287929e-05 0.999999999224 9.99924626717e-05 1.00000000252 9.99942862546e-05 0.999999999244 9.99934616998e-05 0.999999998734 9.99978906062e-05 0.999999998627 9.99975982287e-05 1.00000000001 9.99978318847e-05 1.00000000032 9.99982075976e-05 0.999999999528 9.99931710553e-05 0.999999998064 9.99973969093e-05 0.999999998802 9.99981096303e-05 0.999999998357 9.99934745402e-05 1.0000000015 9.99946455636e-05 1.00000000065 9.99976450848e-05 0.999999999482 9.9997162806e-05 0.999999997908 9.99972721906e-05 1.00000000223 9.99944923657e-05 1.00000000041 9.99917794923e-05 1.00000000008 9.99882557381e-05 1.00000000182 9.99945487078e-05 0.99999999873 9.99930391064e-05 1.00000000335 9.99925550047e-05 1.00000000127 9.99968344864e-05 1.00000000007 9.99978574898e-05 0.999999999908 9.99987803337e-05 ## Read in Michael's templates Individual infrared templates are given in http://astro.imperial.ac.uk/public/mrr/swirephotzcat/templates/cirrus.dat http://astro.imperial.ac.uk/public/mrr/swirephotzcat/templates/M82.dat http://astro.imperial.ac.uk/public/mrr/swirephotzcat/templates/A220.dat as pairs of numbers log10 lambda(mu), log vu S(nu), and in http://astro.imperial.ac.uk/public/mrr/swirephotzcat/templates/dusttor.dat as pairs of numbers log10 lambda(mu), vu S(nu) [first two columns only]. ```python from astropy.table import Table ``` ```python cirrus=Table.read('/Users/pdh21/astrodata/SEDs/MRR/cirrus.dat', format='ascii') dusttor=Table.read('/Users/pdh21/astrodata/SEDs/MRR/dusttor.dat', format='ascii') M82=Table.read('/Users/pdh21/astrodata/SEDs/MRR/M82.dat', format='ascii') A220=Table.read('/Users/pdh21/astrodata/SEDs/MRR/A220.dat', format='ascii') dusttor['col2']=np.log(dusttor['col2']) cirrus.add_row([0.1,-15]) M82.add_row([0.1,-10]) ``` ```python import pylab as plt %matplotlib inline plt.plot(cirrus['col1'],cirrus['col2']) plt.plot(dusttor['col1'],dusttor['col2']) plt.plot(M82['col1'],M82['col2']) plt.plot(A220['col1'],A220['col2']) ``` [<matplotlib.lines.Line2D at 0x113c575c0>] ![png](output_14_1.png) ```python import pandas as pd df_comb=pd.DataFrame(np.power(10.0,cirrus['col1'].data),columns=['wave']) MRR_temps=[cirrus, A220,M82,dusttor] SEDs_comb=np.empty((len(MRR_temps),len(bands),red.size)) for i in range(0,len(MRR_temps)): flux=np.power(10.0,MRR_temps[i]['col2'])/(3.0E14/np.power(10.0,MRR_temps[i]['col1'])) wave=np.power(10.0,MRR_temps[i]['col1']) ind=(wave > 8) & (wave < 1E3) flux=1E-4*flux/np.trapz(flux[ind],x=3E14/wave[ind]) print(np.trapz(flux[ind],x=3E14/wave[ind])) sed=interp1d(wave, 1E30*3.826E33*flux) df_comb[str(i)]=sed(df_comb['wave']) for z in range(0,red.size): sed=interp1d((red[z]+1.0)*wave, flux) for b in range(0,len(bands)): try: SEDs_comb[i,b,z]=1E30*3.826E33*(1.0+red[z])*filters.fnu_filt(sed(bands[b].wavelength/1E4),3E8/(bands[b].wavelength/1E10),bands[b].transmission,3E8/(eff_lam[b]*1E-6),sed(eff_lam[b]))/div[z] except ValueError: print(red[z],bands[b].name) ``` 0.0001 0.0001 0.0001 0.0001 ```python import pylab as plt %matplotlib inline plt.semilogy(red,SEDs_comb[0,0,:]*np.power(10.0,9)) plt.semilogy(red,SEDs_comb[0,1,:]*np.power(10.0,9),c='g') plt.semilogy(red,SEDs_comb[0,2,:]*np.power(10.0,9),c='r') plt.semilogy(red,SEDs_comb[0,3,:]*np.power(10.0,9),c='m') ``` [<matplotlib.lines.Line2D at 0x116954c88>] ![png](output_16_1.png) ```python div_test=(4.0*np.pi * np.square(Planck13.luminosity_distance(0.001).cgs)) div_test=div_test.value ``` ```python plt.loglog(df_comb['wave'],np.power(10.0,8)*(1.0+0.001)*df_comb['0']/div_test) plt.loglog(df_comb['wave'],np.power(10.0,8)*(1.0+0.001)*df_comb['1']/div_test) plt.loglog(df_comb['wave'],np.power(10.0,8)*(1.0+0.001)*df_comb['2']/div_test) plt.loglog(df_comb['wave'],np.power(10.0,8)*(1.0+0.001)*df_comb['3']/div_test) plt.loglog(df['wave'],np.power(10.0,8)*(1.0+0.001)*df[temps[0]]/div_test) ``` [<matplotlib.lines.Line2D at 0x115d0f518>] ![png](output_18_1.png) ```python df_comb ``` <div> <style> .dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>wave</th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1450.106836</td> <td>1.468242e+44</td> <td>5.529822e+43</td> <td>1.761320e+43</td> <td>1.372804e+34</td> </tr> <tr> <th>1</th> <td>1200.107086</td> <td>2.976032e+44</td> <td>1.129513e+44</td> <td>3.620497e+43</td> <td>6.056712e+34</td> </tr> <tr> <th>2</th> <td>1000.000000</td> <td>5.700954e+44</td> <td>2.175560e+44</td> <td>7.035876e+43</td> <td>1.740812e+35</td> </tr> <tr> <th>3</th> <td>831.955314</td> <td>1.122917e+45</td> <td>4.327839e+44</td> <td>1.413508e+44</td> <td>9.295101e+35</td> </tr> <tr> <th>4</th> <td>691.990289</td> <td>2.110608e+45</td> <td>8.205426e+44</td> <td>2.716678e+44</td> <td>4.729118e+36</td> </tr> <tr> <th>5</th> <td>575.042575</td> <td>3.977567e+45</td> <td>1.570801e+45</td> <td>5.281633e+44</td> <td>2.223205e+37</td> </tr> <tr> <th>6</th> <td>478.960832</td> <td>7.157437e+45</td> <td>2.874161e+45</td> <td>9.859575e+44</td> <td>8.889300e+37</td> </tr> <tr> <th>7</th> <td>398.015514</td> <td>1.260310e+46</td> <td>5.177155e+45</td> <td>1.819945e+45</td> <td>2.591120e+38</td> </tr> <tr> <th>8</th> <td>330.978665</td> <td>2.140314e+46</td> <td>9.078020e+45</td> <td>3.287216e+45</td> <td>1.298570e+39</td> </tr> <tr> <th>9</th> <td>274.979299</td> <td>3.443718e+46</td> <td>1.523601e+46</td> <td>5.723190e+45</td> <td>6.115512e+39</td> </tr> <tr> <th>10</th> <td>228.981291</td> <td>5.189644e+46</td> <td>2.423936e+46</td> <td>9.523535e+45</td> <td>2.586673e+40</td> </tr> <tr> <th>11</th> <td>190.989724</td> <td>7.179886e+46</td> <td>3.599077e+46</td> <td>1.490041e+46</td> <td>9.061064e+40</td> </tr> <tr> <th>12</th> <td>158.019251</td> <td>9.071259e+46</td> <td>5.039543e+46</td> <td>2.231558e+46</td> <td>2.655488e+41</td> </tr> <tr> <th>13</th> <td>132.010963</td> <td>1.033469e+47</td> <td>6.582504e+46</td> <td>3.145489e+46</td> <td>1.085482e+42</td> </tr> <tr> <th>14</th> <td>109.999320</td> <td>1.004009e+47</td> <td>7.635388e+46</td> <td>4.027896e+46</td> <td>4.111664e+42</td> </tr> <tr> <th>15</th> <td>100.000000</td> <td>9.212077e+46</td> <td>7.798142e+46</td> <td>4.372081e+46</td> <td>5.894249e+42</td> </tr> <tr> <th>16</th> <td>91.201084</td> <td>8.160703e+46</td> <td>7.814859e+46</td> <td>4.681642e+46</td> <td>1.390562e+43</td> </tr> <tr> <th>17</th> <td>75.892699</td> <td>5.546354e+46</td> <td>7.147286e+46</td> <td>5.000900e+46</td> <td>3.903423e+43</td> </tr> <tr> <th>18</th> <td>63.095734</td> <td>3.092200e+46</td> <td>5.663712e+46</td> <td>4.795437e+46</td> <td>9.113723e+43</td> </tr> <tr> <th>19</th> <td>60.006735</td> <td>2.568547e+46</td> <td>5.185148e+46</td> <td>4.655949e+46</td> <td>1.382843e+44</td> </tr> <tr> <th>20</th> <td>52.504920</td> <td>1.526819e+46</td> <td>3.898083e+46</td> <td>4.136454e+46</td> <td>2.527836e+44</td> </tr> <tr> <th>21</th> <td>43.701868</td> <td>7.986703e+45</td> <td>2.368379e+46</td> <td>3.218016e+46</td> <td>1.298396e+45</td> </tr> <tr> <th>22</th> <td>36.298610</td> <td>5.091052e+45</td> <td>1.307709e+46</td> <td>2.272209e+46</td> <td>4.673905e+45</td> </tr> <tr> <th>23</th> <td>30.200213</td> <td>3.652057e+45</td> <td>6.988133e+45</td> <td>1.496333e+46</td> <td>1.460741e+46</td> </tr> <tr> <th>24</th> <td>24.998273</td> <td>2.686814e+45</td> <td>3.522501e+45</td> <td>9.378820e+45</td> <td>2.154686e+46</td> </tr> <tr> <th>25</th> <td>20.897773</td> <td>2.086592e+45</td> <td>1.704673e+45</td> <td>5.880418e+45</td> <td>2.108957e+46</td> </tr> <tr> <th>26</th> <td>17.398027</td> <td>1.750079e+45</td> <td>9.682804e+44</td> <td>3.783452e+45</td> <td>1.734996e+46</td> </tr> <tr> <th>27</th> <td>14.501068</td> <td>1.604270e+45</td> <td>1.106678e+45</td> <td>2.995768e+45</td> <td>1.317103e+46</td> </tr> <tr> <th>28</th> <td>12.001071</td> <td>1.540734e+45</td> <td>3.505509e+44</td> <td>1.854890e+45</td> <td>1.419808e+46</td> </tr> <tr> <th>29</th> <td>11.601122</td> <td>2.439819e+45</td> <td>2.792294e+44</td> <td>1.881561e+45</td> <td>1.393493e+46</td> </tr> <tr> <th>30</th> <td>11.301081</td> <td>1.103818e+46</td> <td>4.621374e+44</td> <td>3.928242e+45</td> <td>1.373751e+46</td> </tr> <tr> <th>31</th> <td>10.999932</td> <td>2.434656e+45</td> <td>1.525040e+44</td> <td>1.465204e+45</td> <td>1.326228e+46</td> </tr> <tr> <th>32</th> <td>10.899084</td> <td>1.475019e+45</td> <td>1.186728e+44</td> <td>1.199246e+45</td> <td>1.306905e+46</td> </tr> <tr> <th>33</th> <td>9.709570</td> <td>1.370243e+45</td> <td>3.578171e+43</td> <td>6.619089e+44</td> <td>1.117062e+46</td> </tr> <tr> <th>34</th> <td>9.399397</td> <td>1.329161e+45</td> <td>3.351901e+43</td> <td>6.185548e+44</td> <td>1.098289e+46</td> </tr> <tr> <th>35</th> <td>8.990834</td> <td>1.333821e+45</td> <td>4.999783e+43</td> <td>6.962548e+44</td> <td>1.073561e+46</td> </tr> <tr> <th>36</th> <td>8.590135</td> <td>1.896783e+45</td> <td>1.071029e+44</td> <td>9.306968e+44</td> <td>1.004993e+46</td> </tr> <tr> <th>37</th> <td>8.390735</td> <td>1.223088e+45</td> <td>1.342552e+44</td> <td>8.826290e+44</td> <td>9.655134e+45</td> </tr> <tr> <th>38</th> <td>8.199738</td> <td>1.177952e+45</td> <td>1.897366e+44</td> <td>9.410186e+44</td> <td>9.276975e+45</td> </tr> <tr> <th>39</th> <td>7.689534</td> <td>3.816344e+45</td> <td>7.737687e+44</td> <td>2.560874e+45</td> <td>8.105200e+45</td> </tr> <tr> <th>40</th> <td>7.000032</td> <td>1.065829e+45</td> <td>4.258250e+44</td> <td>9.635587e+44</td> <td>6.300909e+45</td> </tr> <tr> <th>41</th> <td>6.609978</td> <td>6.471539e+44</td> <td>3.015790e+44</td> <td>6.672340e+44</td> <td>5.280214e+45</td> </tr> <tr> <th>42</th> <td>6.369422</td> <td>9.788532e+44</td> <td>3.014541e+44</td> <td>7.481319e+44</td> <td>4.650726e+45</td> </tr> <tr> <th>43</th> <td>6.190133</td> <td>4.646517e+45</td> <td>6.538997e+44</td> <td>2.133183e+45</td> <td>4.384508e+45</td> </tr> <tr> <th>44</th> <td>6.029760</td> <td>8.760876e+44</td> <td>2.419475e+44</td> <td>6.375411e+44</td> <td>4.237337e+45</td> </tr> <tr> <th>45</th> <td>5.850595</td> <td>4.065440e+44</td> <td>1.763361e+44</td> <td>4.359013e+44</td> <td>4.072922e+45</td> </tr> <tr> <th>46</th> <td>4.799544</td> <td>1.408016e+44</td> <td>6.383082e+43</td> <td>2.109882e+44</td> <td>3.106764e+45</td> </tr> <tr> <th>47</th> <td>3.400165</td> <td>9.718238e+42</td> <td>1.137538e+43</td> <td>5.553007e+43</td> <td>1.754646e+45</td> </tr> <tr> <th>48</th> <td>3.339566</td> <td>7.890373e+44</td> <td>1.038773e+43</td> <td>8.542957e+43</td> <td>1.692606e+45</td> </tr> <tr> <th>49</th> <td>3.299894</td> <td>7.783547e+45</td> <td>9.741155e+42</td> <td>3.702697e+44</td> <td>1.651991e+45</td> </tr> <tr> <th>50</th> <td>3.269565</td> <td>7.822896e+44</td> <td>9.246852e+42</td> <td>8.030234e+43</td> <td>1.620941e+45</td> </tr> <tr> <th>51</th> <td>3.160094</td> <td>5.448006e+42</td> <td>7.495430e+42</td> <td>4.481982e+43</td> <td>1.508720e+45</td> </tr> <tr> <th>52</th> <td>3.069729</td> <td>4.346178e+42</td> <td>7.377868e+42</td> <td>4.016689e+43</td> <td>1.410144e+45</td> </tr> <tr> <th>53</th> <td>2.690296</td> <td>1.503376e+42</td> <td>6.884240e+42</td> <td>2.062980e+43</td> <td>9.962324e+44</td> </tr> <tr> <th>54</th> <td>2.511886</td> <td>1.013882e+42</td> <td>6.652136e+42</td> <td>1.144348e+43</td> <td>8.016116e+44</td> </tr> <tr> <th>55</th> <td>1.258925</td> <td>4.165696e+40</td> <td>4.008308e+41</td> <td>1.440649e+39</td> <td>5.149757e+42</td> </tr> </tbody> </table> </div> ```python np.save('SED_comb', SEDs_comb) ``` ```python df_comb.to_pickle('SEDS_IR_comb_full.pkl') ``` ```python ls ``` SEDS_Herschel_full.pkl SEDS_IR_comb_full.pkl SEDS_IR_full.pkl SEDS_full.pkl SED_Herschel.npy SED_IR.npy SED_IR_sig.npy SED_SPIRE_PACS100.npy SED_comb.npy SED_prior_model.ipynb SED_prior_model_v2.ipynb XID+SPIRE.pkl XID+example_run_script.ipynb XID+example_run_script_SED.ipynb XID+posterior_analysis_validation.ipynb foo.html log10_SED_IR_sig.npy test.fits test.pkl ```python from bokeh.io import output_notebook, show from bokeh.layouts import gridplot, column from bokeh.plotting import figure from bokeh.io import push_notebook output_notebook() from bokeh.models import HoverTool, Range1d from bokeh.models import ColumnDataSource, DataSource from bokeh.models import CustomJS, ColumnDataSource, Slider ``` <div class="bk-root"> <a href="http://bokeh.pydata.org" target="_blank" class="bk-logo bk-logo-small bk-logo-notebook"></a> <span id="fc787028-0eba-40c5-8440-ab44739a7eee">Loading BokehJS ...</span> </div> ```python from ipywidgets import interact import numpy as np from bokeh.io import push_notebook, show, output_notebook from bokeh.plotting import figure output_notebook() plot_options = dict(width=250, plot_height=250) LIR=12 # create a new plot source = ColumnDataSource( data=dict( x=SEDs[:,0,200]*10.0**LIR, y=SEDs[:,1,200]*10.0**LIR, z=SEDs[:,2,200]*10.0**LIR, width=(SEDs[:,0,200]*10.0**LIR)/5.0, height=(SEDs[:,1,200]*10.0**LIR)/5.0, depth=(SEDs[:,2,200]*10.0**LIR)/5.0, desc=temps, ) ) hover1 = HoverTool( tooltips=[ ("SED", "@desc"), ] ) hover2 = HoverTool( tooltips=[ ("SED", "@desc"), ] ) hover3 = HoverTool( tooltips=[ ("SED", "@desc"), ] ) s1 = figure(**plot_options,tools=[hover1, 'pan', 'wheel_zoom']) s1.circle('x', 'y', size=10, source=source,color="navy", alpha=0.0) s1.ellipse('x', 'y', height='height',width='width', source=source,color="navy", alpha=0.2) s1.yaxis.axis_label = r'350' # create a new plot and share both ranges s2 = figure(x_range=s1.x_range, **plot_options,tools=[hover2, 'pan', 'wheel_zoom']) s2.circle('x', 'z', size=10, source=source,color="navy", alpha=0.0) s2.ellipse('x', 'z',height='depth',width='width' , source=source,color="navy", alpha=0.2) s2.yaxis.axis_label = r'500' s2.xaxis.axis_label = r'250' # create a new plot and share only one range s3 = figure(x_range=s1.y_range,y_range=s2.y_range, **plot_options,tools=[hover3, 'pan', 'wheel_zoom']) s3.circle('y', 'z', size=10, source=source,color="navy", alpha=0.0) s3.ellipse('y', 'z',height='depth',width='height', source=source,color="navy", alpha=0.2) s3.xaxis.axis_label = r'350' p = gridplot([[s1,],[s2, s3]]) def update(LIR=12,z=red[200]): ind=np.long(z*100) print(ind) source.data['x']=SEDs[:,0,ind]*10.0**LIR source.data['y']=SEDs[:,1,ind]*10.0**LIR source.data['z']=SEDs[:,2,ind]*10.0**LIR source.data['width']=np.full(SEDs.shape[0],np.std(SEDs[:,0,ind]*10.0**LIR)) source.data['depth']=np.full(SEDs.shape[0],np.std(SEDs[:,1,ind]*10.0**LIR)) source.data['height']=np.full(SEDs.shape[0],np.std(SEDs[:,2,ind]*10.0**LIR)) push_notebook() show(p, notebook_handle=True) interact(update,LIR=(8,14,0.01),z=(red[0],red[-1],0.01)) ``` <div class="bk-root"> <a href="http://bokeh.pydata.org" target="_blank" class="bk-logo bk-logo-small bk-logo-notebook"></a> <span id="68d58652-53e2-48c0-934c-bae8ca860349">Loading BokehJS ...</span> </div> <div class="bk-root"> <div class="bk-plotdiv" id="0823d6c9-6577-49ef-976f-a959a4a82186"></div> </div> <script type="text/javascript"> (function(global) { function now() { return new Date(); } var force = false; if (typeof (window._bokeh_onload_callbacks) === "undefined" || force === true) { window._bokeh_onload_callbacks = []; window._bokeh_is_loading = undefined; } if (typeof (window._bokeh_timeout) === "undefined" || force === true) { window._bokeh_timeout = Date.now() + 0; window._bokeh_failed_load = false; } var NB_LOAD_WARNING = {'data': {'text/html': "<div style='background-color: #fdd'>\n"+ "<p>\n"+ "BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \n"+ "may be due to a slow or bad network connection. Possible fixes:\n"+ "</p>\n"+ "<ul>\n"+ "<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\n"+ "<li>use INLINE resources instead, as so:</li>\n"+ "</ul>\n"+ "<code>\n"+ "from bokeh.resources import INLINE\n"+ "output_notebook(resources=INLINE)\n"+ "</code>\n"+ "</div>"}}; function display_loaded() { if (window.Bokeh !== undefined) { var el = document.getElementById("0823d6c9-6577-49ef-976f-a959a4a82186"); el.textContent = "BokehJS " + Bokeh.version + " successfully loaded."; } else if (Date.now() < window._bokeh_timeout) { setTimeout(display_loaded, 100) } }if ((window.Jupyter !== undefined) && Jupyter.notebook.kernel) { comm_manager = Jupyter.notebook.kernel.comm_manager comm_manager.register_target("87154ed0-e30c-4803-9790-c352897e1969", function () {}); } function run_callbacks() { try { window._bokeh_onload_callbacks.forEach(function(callback) { callback() }); } finally { delete window._bokeh_onload_callbacks } console.info("Bokeh: all callbacks have finished"); } function load_libs(js_urls, callback) { window._bokeh_onload_callbacks.push(callback); if (window._bokeh_is_loading > 0) { console.log("Bokeh: BokehJS is being loaded, scheduling callback at", now()); return null; } if (js_urls == null || js_urls.length === 0) { run_callbacks(); return null; } console.log("Bokeh: BokehJS not loaded, scheduling load and callback at", now()); window._bokeh_is_loading = js_urls.length; for (var i = 0; i < js_urls.length; i++) { var url = js_urls[i]; var s = document.createElement('script'); s.src = url; s.async = false; s.onreadystatechange = s.onload = function() { window._bokeh_is_loading--; if (window._bokeh_is_loading === 0) { console.log("Bokeh: all BokehJS libraries loaded"); run_callbacks() } }; s.onerror = function() { console.warn("failed to load library " + url); }; console.log("Bokeh: injecting script tag for BokehJS library: ", url); document.getElementsByTagName("head")[0].appendChild(s); } };var element = document.getElementById("0823d6c9-6577-49ef-976f-a959a4a82186"); if (element == null) { console.log("Bokeh: ERROR: autoload.js configured with elementid '0823d6c9-6577-49ef-976f-a959a4a82186' but no matching script tag was found. ") return false; } var js_urls = []; var inline_js = [ function(Bokeh) { (function() { var fn = function() { var docs_json = {"90a18792-3a2a-4257-8879-201a0a1838be":{"roots":{"references":[{"attributes":{"formatter":{"id":"d8cfd234-a673-46f1-8958-d2b02b8b9411","type":"BasicTickFormatter"},"plot":{"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"},"ticker":{"id":"75384113-6638-44a9-9f47-995330e3d16c","type":"BasicTicker"}},"id":"17cfa7f5-e7a2-4db7-be2e-0ee0bb509d0e","type":"LinearAxis"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"821d4fe0-0f4a-475d-bf76-a38c22022534","type":"HoverTool"},{"id":"01a609b4-d2e4-4e0a-95db-e01fc10776c5","type":"PanTool"},{"id":"c35d4d8a-5933-4b17-bc10-0c8cf2b1144a","type":"WheelZoomTool"}]},"id":"48c5ddae-85e9-4709-a4ec-6d1cdf817b45","type":"Toolbar"},{"attributes":{"children":[{"id":"73b10e0a-7f99-47c4-834c-a0e1aa4361ea","type":"ToolbarBox"},{"id":"bba51219-6056-42cf-ba1b-b8d641560ea9","type":"Column"}]},"id":"19984f90-d412-45bc-a8fe-13f55b5d4b67","type":"Column"},{"attributes":{"data_source":{"id":"144a3e5c-c10a-4456-9f93-98602abc0008","type":"ColumnDataSource"},"glyph":{"id":"40ae1fe9-c8f6-43da-92eb-b1ecf6e962ca","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"09b3bf25-3aff-4c42-b5f8-a99fc183a217","type":"Ellipse"},"selection_glyph":null},"id":"fd36bbec-8d1f-424f-8a8b-75ee8b3948d6","type":"GlyphRenderer"},{"attributes":{"data_source":{"id":"144a3e5c-c10a-4456-9f93-98602abc0008","type":"ColumnDataSource"},"glyph":{"id":"2a3169ca-59d2-409f-9219-0be8dc8e0593","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"3406f636-16cd-4025-8b1d-c1d95f5bd744","type":"Circle"},"selection_glyph":null},"id":"1070fac1-8513-4122-88b6-80d9983ea46c","type":"GlyphRenderer"},{"attributes":{"callback":null},"id":"ac2ab27a-8e81-4b5f-acf0-2911fe77e247","type":"DataRange1d"},{"attributes":{"callback":null,"plot":{"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"cddf9f7a-9cc4-43a3-bc4c-aefe5913466e","type":"HoverTool"},{"attributes":{},"id":"18e47e86-71e9-40cb-8147-3863e3df179b","type":"BasicTicker"},{"attributes":{"callback":null},"id":"8b160ba3-06a2-436a-a612-6ad4ecf2448b","type":"DataRange1d"},{"attributes":{"children":[{"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"},{"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"}]},"id":"c843e93b-cda3-4a8b-a808-ca28ebc0c89c","type":"Row"},{"attributes":{"plot":{"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"}},"id":"ff9e5116-027c-4b73-b34f-11ce41ecb416","type":"PanTool"},{"attributes":{},"id":"fbe646ac-76fd-40ad-83c4-cbd478a33040","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"y"},"y":{"field":"z"}},"id":"2a3169ca-59d2-409f-9219-0be8dc8e0593","type":"Circle"},{"attributes":{},"id":"205c2fae-5159-4c27-9576-824b20f563ed","type":"BasicTickFormatter"},{"attributes":{},"id":"75384113-6638-44a9-9f47-995330e3d16c","type":"BasicTicker"},{"attributes":{"sizing_mode":"scale_width","toolbar_location":"above","tools":[{"id":"821d4fe0-0f4a-475d-bf76-a38c22022534","type":"HoverTool"},{"id":"01a609b4-d2e4-4e0a-95db-e01fc10776c5","type":"PanTool"},{"id":"c35d4d8a-5933-4b17-bc10-0c8cf2b1144a","type":"WheelZoomTool"},{"id":"cddf9f7a-9cc4-43a3-bc4c-aefe5913466e","type":"HoverTool"},{"id":"9b02ad98-79fd-4494-8254-94e0bd19cff6","type":"PanTool"},{"id":"e00ab26f-4d77-4d29-92bc-31b90dfbbc46","type":"WheelZoomTool"},{"id":"221bb262-3c38-45aa-b2ce-44a5442085c4","type":"HoverTool"},{"id":"ff9e5116-027c-4b73-b34f-11ce41ecb416","type":"PanTool"},{"id":"83844a73-4c86-446b-a3e0-8a48ae05664d","type":"WheelZoomTool"}]},"id":"73b10e0a-7f99-47c4-834c-a0e1aa4361ea","type":"ToolbarBox"},{"attributes":{"children":[{"id":"61499540-3108-43c7-9c7c-1b8d93af4a45","type":"Row"},{"id":"c843e93b-cda3-4a8b-a808-ca28ebc0c89c","type":"Row"}]},"id":"bba51219-6056-42cf-ba1b-b8d641560ea9","type":"Column"},{"attributes":{},"id":"b25464ee-f48c-4a13-8109-a92773296b5e","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"y"},"y":{"field":"z"}},"id":"3406f636-16cd-4025-8b1d-c1d95f5bd744","type":"Circle"},{"attributes":{"dimension":1,"plot":{"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"},"ticker":{"id":"18e47e86-71e9-40cb-8147-3863e3df179b","type":"BasicTicker"}},"id":"9fa2756c-0403-41f5-9842-64878d882df2","type":"Grid"},{"attributes":{},"id":"501390f0-aba9-468a-9604-5a828228c1e7","type":"BasicTickFormatter"},{"attributes":{"plot":null,"text":""},"id":"2854524b-c6b9-4583-8911-eb1b84a6eea8","type":"Title"},{"attributes":{"plot":{"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"}},"id":"83844a73-4c86-446b-a3e0-8a48ae05664d","type":"WheelZoomTool"},{"attributes":{"children":[{"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"}]},"id":"61499540-3108-43c7-9c7c-1b8d93af4a45","type":"Row"},{"attributes":{},"id":"51ecbff8-fa53-4561-b904-2a1284b3d450","type":"ToolEvents"},{"attributes":{"formatter":{"id":"501390f0-aba9-468a-9604-5a828228c1e7","type":"BasicTickFormatter"},"plot":{"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"},"ticker":{"id":"18e47e86-71e9-40cb-8147-3863e3df179b","type":"BasicTicker"}},"id":"9bd1d09e-7b77-4d92-a19a-59a21aa8ab51","type":"LinearAxis"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"height","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"width","units":"data"},"x":{"field":"x"},"y":{"field":"y"}},"id":"09b3bf25-3aff-4c42-b5f8-a99fc183a217","type":"Ellipse"},{"attributes":{"callback":null,"column_names":["x","y","z","width","height","depth","desc"],"data":{"depth":{"__ndarray__":"ZkNpxfv97T+QT7NU+rbuP5vR5BUHUwBAkbtKGzHJB0BzTs2tNJX2P87cHHtDLeA/gxNcrUKF6j86d0HXfm/zP+YqiAWSYtI/1x7H2Ki86D8lnRgU407eP39q3AMOY+E/a8RlbK8P8T+WPVYCPF76P0bSTBAvPPE/xegTDPkT8T9fEhZNE9LmP1XJY/ROLPA/fQYjP6Ah4j8oSnXwTQnuP24EvAHwLPM/MgxrckfJ7T96F29Q8JLoPxSAFAdABOk/+mH6nvs34j/6J+ktCRLXPxahMtPxR/A/qwY/Mu6i6z96e8XjctndP8axp3d/yPE/cn5/62988z8bsk97SAz3Pw==","dtype":"float64","shape":[32]},"desc":["Blue_SF_glx.norm_LIR","BroadFIR_SF_glx.norm_LIR","Cold_glx.norm_LIR","Elliptical.norm_LIR","Ly_break.norm_LIR","MIR_powlaw_SF_glx.norm_LIR","MIRex_SF_glx.norm_LIR","Mod_SF_glx.norm_LIR","Obs_SF_glx.norm_LIR","PAH_DF_glx.norm_LIR","Red_SF_glx_1.norm_LIR","Red_SF_glx_2.norm_LIR","Secular_glx.norm_LIR","SF_glx_1.norm_LIR","SF_glx_2.norm_LIR","SF_Type1_AGN_1.norm_LIR","SF_Type1_AGN_2.norm_LIR","SF_Type1_AGN_3.norm_LIR","SF_Type1_AGN_4.norm_LIR","SF_Type2_AGN_1.norm_LIR","SF_Type2_AGN_2.norm_LIR","SF_Type2_AGN_3.norm_LIR","Si_break.norm_LIR","Spiral.norm_LIR","Torus.norm_LIR","Type1_AGN_1.norm_LIR","Type2_AGN_1.norm_LIR","Type2_AGN_2.norm_LIR","Warm_SF_glx.norm_LIR","WeakPAH_SF_glx_1.norm_LIR","WeakPAH_SF_glx_2.norm_LIR","Young_SF_glx.norm_LIR"],"height":{"__ndarray__":"C3YMMbu08j+8q8xmzvbyPwabq5Z2pfw/TwCuWN5rAkDw0aArAUX9P1bwllneoeo/fbgXVhvW8T8iJ8WHhLn5P9jpMRn0WeE/tX/0FMM27T8DfYt0sv/oP5L9dI24GfA/GPIx7Blr+T8mQnH28Kf/PyvGR9896fU/kZut/oVL8D/e/7t/51nwP+IyjJDF/fc/vTWkzhO36T+tPp+6ndHtP0E8jgCmIvQ/O0f5mM7w8z+Lc8kRtf3zP7Q9FyWkxvE/yk0ydKPa6T+ynqd3tpHWP7AnwNRj5fQ/YIFTZeHA9D8uxXkk0VTmP0ivrv7rh/c/bUuKedct+z+DAz2VOtr/Pw==","dtype":"float64","shape":[32]},"width":{"__ndarray__":"cg1eZHr87z82Y2S+/y3zP25+GZQPk/M/aGEXAnUH7T/wknniXDj2P/9UHjqYLvA/rwQ9lcGb8D9sQHMoaRT4PzuDG5fVROo/0gp30X086z9gI3Y7fs/uP5YofigNuPU/PjCsPS8g+D8DMK8+GO/2P74CoR7V3vQ/0mHGanMX5T8+zPNvIgHzP567YDdJdfg/oJt/+uzD6j8A6CjgSa/qP25Rj4Vk6PI/m0O6rXaN8z9Z9Ne7D/71PwJ4fc70efE//t3yZt1+5z+GckMv5VbVP4oRrPL2cPE/+zn/SA1T9D/DhwDw3wTrPwXXRBaJ3PQ/rl8a1TX09z8Qofo0SEz7Pw==","dtype":"float64","shape":[32]},"x":{"__ndarray__":"Z8i6fsz9E0AEfP2tf/kXQAneH3nTdxhA4ZxOIakkEkCs9xcbdMYbQD/qpUg+OhRA20WM+rHCFECHEJBygxkeQAUycX4FaxBAw2bqos4FEUAc1inlrkETQLyynXIQJhtATjwXDTsoHkAE/FpO3qocQG5DSWaKFhpARvp3RVBdCkBOv/ALa8EXQIbqOIWbkh5ARMGPHHS6EEAAkRksjq0QQMol86Z9ohdAgtQoWdRwGEBv8c2qk30bQAPWHAJy2BVAfpWvwJReDUAoTxR7nqz6P+0VV680zRVAegg/m9BnGUDaVAD2C+MQQMYM1lurExpAmfdgSkPxHUCqpBwhrQ8hQA==","dtype":"float64","shape":[32]},"y":{"__ndarray__":"jpNP/elhF0Cr1n8AgrQXQORAKx5q5yFAY4DZ7tUGJ0A2g0S7IEsiQDZW/vcqpRBAnKadK6JLFkB1ONvU8hMgQE5kfh9xsAVA0c8Y7TlCEkBEXK4Rnz8PQPc80rAmIBRAnm4+Z+DFH0BYyQaa9sgjQLa3GVeNYxtAdQJZfmdeFEDV/6pfYXAUQJo/r/Q2/R1AlqEmYWwSEEAsh6OUAqMSQFHLsYBPKxlACpk3PwLtGEBu0DtWIv0YQCENXS5NOBZAnnCfKKYoEEBfhpEVJDb8P5wx8Mm8HhpAuGGovhnxGUB5NphtBeoLQBpbWv7maR1AJG/2q6b8IEAyIkadZOgjQA==","dtype":"float64","shape":[32]},"z":{"__ndarray__":"IMphW72+EkC6EfB0XDITQAIGXtvIZyRAdWodYn27LUAQokDZgTocQAIU5FmUOARAMoxZrEmTEEAJ1RGNXksYQJ816oY2+/Y/jeb4DtPrDkA3Yo/sTfECQB+F04TRuwVAhjV/R5tTFUB+5nWB5XogQNgGYNQ6ixVA9uIYT/dYFUD3llsgmIYMQKq7fLFiNxRAHMjrTgiqBkBZTkm20MUSQIoFKwIs+BdAn+eCp8ydEkBZ3YpkrLcOQBmg2QhQRQ9Aefq4hvrFBkD4cWN5i9b8P1tJ/0fuWRRAK2Rn39RFEUAsbVvO56cCQDiekVWfOhZADl5f5otbGECiniOaWs8cQA==","dtype":"float64","shape":[32]}}},"id":"144a3e5c-c10a-4456-9f93-98602abc0008","type":"ColumnDataSource"},{"attributes":{"data_source":{"id":"144a3e5c-c10a-4456-9f93-98602abc0008","type":"ColumnDataSource"},"glyph":{"id":"79b6311c-eb2f-4883-9d17-4da84f3bfe7a","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"7eb7f3f4-0b5a-4571-9bc1-ec69e4b02c06","type":"Ellipse"},"selection_glyph":null},"id":"c4517585-8ac2-4c24-a827-0e5e42a5e047","type":"GlyphRenderer"},{"attributes":{},"id":"9db86ba3-2f20-42b2-bf91-a8b9a1a9a3a2","type":"BasicTicker"},{"attributes":{"callback":null,"plot":{"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"221bb262-3c38-45aa-b2ce-44a5442085c4","type":"HoverTool"},{"attributes":{"data_source":{"id":"144a3e5c-c10a-4456-9f93-98602abc0008","type":"ColumnDataSource"},"glyph":{"id":"c6798bc8-503e-495c-8e25-a13d99fe9714","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"718f8878-51fd-46ac-852b-cd6290909090","type":"Ellipse"},"selection_glyph":null},"id":"50867ce3-f224-4320-be6b-db14e3c9e210","type":"GlyphRenderer"},{"attributes":{"plot":{"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"},"ticker":{"id":"75384113-6638-44a9-9f47-995330e3d16c","type":"BasicTicker"}},"id":"613e44dc-50af-4f30-8834-ce16d72e7bbf","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"depth","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"height","units":"data"},"x":{"field":"y"},"y":{"field":"z"}},"id":"718f8878-51fd-46ac-852b-cd6290909090","type":"Ellipse"},{"attributes":{"callback":null},"id":"c4fe1627-4796-4c0e-a956-7fff076d4577","type":"DataRange1d"},{"attributes":{},"id":"a5db0e6d-7569-44d5-b9f2-b945ba1084d6","type":"LinearScale"},{"attributes":{},"id":"c419104f-8562-439d-9580-70ad540189b1","type":"BasicTicker"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"depth","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"height","units":"data"},"x":{"field":"y"},"y":{"field":"z"}},"id":"c6798bc8-503e-495c-8e25-a13d99fe9714","type":"Ellipse"},{"attributes":{"axis_label":"350","formatter":{"id":"697de345-89c9-4f7e-8c2a-314cc760972d","type":"BasicTickFormatter"},"plot":{"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"},"ticker":{"id":"c419104f-8562-439d-9580-70ad540189b1","type":"BasicTicker"}},"id":"93493fdd-a523-4368-96ac-7cfb2a9d49e6","type":"LinearAxis"},{"attributes":{},"id":"dfd8fe8c-c544-4c20-8a20-e61ca8dae97d","type":"BasicTickFormatter"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"height","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"width","units":"data"},"x":{"field":"x"},"y":{"field":"y"}},"id":"40ae1fe9-c8f6-43da-92eb-b1ecf6e962ca","type":"Ellipse"},{"attributes":{},"id":"8aba755d-a5d3-499a-8335-319894146f93","type":"ToolEvents"},{"attributes":{},"id":"ac8293b5-270c-4ff3-b8d0-385967ec64a0","type":"LinearScale"},{"attributes":{"plot":{"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"},"ticker":{"id":"cb2ba7d1-aa84-4466-900a-6aaf4c07f9d7","type":"BasicTicker"}},"id":"cf1dc1d7-30d7-4c83-8c03-5e809e3f5be2","type":"Grid"},{"attributes":{"axis_label":"500","formatter":{"id":"dfd8fe8c-c544-4c20-8a20-e61ca8dae97d","type":"BasicTickFormatter"},"plot":{"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"},"ticker":{"id":"9db86ba3-2f20-42b2-bf91-a8b9a1a9a3a2","type":"BasicTicker"}},"id":"125f3abe-9418-4128-8c1e-f433dd88e990","type":"LinearAxis"},{"attributes":{"dimension":1,"plot":{"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"},"ticker":{"id":"c419104f-8562-439d-9580-70ad540189b1","type":"BasicTicker"}},"id":"8ae5bace-7362-4abc-9b21-9f6813fd82c4","type":"Grid"},{"attributes":{"plot":{"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"}},"id":"e00ab26f-4d77-4d29-92bc-31b90dfbbc46","type":"WheelZoomTool"},{"attributes":{"below":[{"id":"17cfa7f5-e7a2-4db7-be2e-0ee0bb509d0e","type":"LinearAxis"}],"left":[{"id":"93493fdd-a523-4368-96ac-7cfb2a9d49e6","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"17cfa7f5-e7a2-4db7-be2e-0ee0bb509d0e","type":"LinearAxis"},{"id":"613e44dc-50af-4f30-8834-ce16d72e7bbf","type":"Grid"},{"id":"93493fdd-a523-4368-96ac-7cfb2a9d49e6","type":"LinearAxis"},{"id":"8ae5bace-7362-4abc-9b21-9f6813fd82c4","type":"Grid"},{"id":"fcc2cf57-9132-4b61-b8d4-8eebbdf084d0","type":"GlyphRenderer"},{"id":"fd36bbec-8d1f-424f-8a8b-75ee8b3948d6","type":"GlyphRenderer"}],"title":{"id":"719dd365-df98-4d0c-ae24-c2386acea622","type":"Title"},"tool_events":{"id":"51ecbff8-fa53-4561-b904-2a1284b3d450","type":"ToolEvents"},"toolbar":{"id":"48c5ddae-85e9-4709-a4ec-6d1cdf817b45","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"8b160ba3-06a2-436a-a612-6ad4ecf2448b","type":"DataRange1d"},"x_scale":{"id":"b25464ee-f48c-4a13-8109-a92773296b5e","type":"LinearScale"},"y_range":{"id":"ac2ab27a-8e81-4b5f-acf0-2911fe77e247","type":"DataRange1d"},"y_scale":{"id":"fbe646ac-76fd-40ad-83c4-cbd478a33040","type":"LinearScale"}},"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"d8cfd234-a673-46f1-8958-d2b02b8b9411","type":"BasicTickFormatter"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"x"},"y":{"field":"z"}},"id":"69483fd7-98db-4a15-81e0-4631bb9d2c96","type":"Circle"},{"attributes":{},"id":"de777a2d-d2d2-4c60-94ae-6e38899a4a65","type":"ToolEvents"},{"attributes":{},"id":"d9327822-5887-49a4-9be8-594317b0b29e","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"depth","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"width","units":"data"},"x":{"field":"x"},"y":{"field":"z"}},"id":"79b6311c-eb2f-4883-9d17-4da84f3bfe7a","type":"Ellipse"},{"attributes":{"plot":{"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"}},"id":"9b02ad98-79fd-4494-8254-94e0bd19cff6","type":"PanTool"},{"attributes":{},"id":"697de345-89c9-4f7e-8c2a-314cc760972d","type":"BasicTickFormatter"},{"attributes":{"plot":null,"text":""},"id":"719dd365-df98-4d0c-ae24-c2386acea622","type":"Title"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"x"},"y":{"field":"y"}},"id":"95321e0d-c548-4cf1-bf6c-4e1325fc029e","type":"Circle"},{"attributes":{"plot":null,"text":""},"id":"f1f58342-750d-4e08-bd78-8fee987b2d7d","type":"Title"},{"attributes":{},"id":"255b3747-4329-4933-b0af-730a93ade2e4","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"}},"id":"c35d4d8a-5933-4b17-bc10-0c8cf2b1144a","type":"WheelZoomTool"},{"attributes":{"axis_label":"350","formatter":{"id":"205c2fae-5159-4c27-9576-824b20f563ed","type":"BasicTickFormatter"},"plot":{"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"},"ticker":{"id":"5c4e2c54-9b11-4502-a4e9-f175a53c822a","type":"BasicTicker"}},"id":"5f663813-44e9-4a3a-b4d7-59ca28626d64","type":"LinearAxis"},{"attributes":{"dimension":1,"plot":{"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"},"ticker":{"id":"9db86ba3-2f20-42b2-bf91-a8b9a1a9a3a2","type":"BasicTicker"}},"id":"6ce81989-a122-4ae2-8c9f-912711825fb5","type":"Grid"},{"attributes":{},"id":"cb2ba7d1-aa84-4466-900a-6aaf4c07f9d7","type":"BasicTicker"},{"attributes":{"plot":{"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"}},"id":"01a609b4-d2e4-4e0a-95db-e01fc10776c5","type":"PanTool"},{"attributes":{"callback":null,"plot":{"id":"f5e9ecfc-12d7-4533-943c-8ef7f12432ae","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"821d4fe0-0f4a-475d-bf76-a38c22022534","type":"HoverTool"},{"attributes":{"data_source":{"id":"144a3e5c-c10a-4456-9f93-98602abc0008","type":"ColumnDataSource"},"glyph":{"id":"69483fd7-98db-4a15-81e0-4631bb9d2c96","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"37f7459f-f7d1-466c-afdb-df52d11d3656","type":"Circle"},"selection_glyph":null},"id":"ad7bdb16-c665-40b6-baf3-1875405ac8f3","type":"GlyphRenderer"},{"attributes":{"plot":{"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"},"ticker":{"id":"5c4e2c54-9b11-4502-a4e9-f175a53c822a","type":"BasicTicker"}},"id":"23a728e2-941d-44c7-a469-ae98cc594d44","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"x"},"y":{"field":"y"}},"id":"ade82751-3a3b-489c-b13d-d798953d42f1","type":"Circle"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"cddf9f7a-9cc4-43a3-bc4c-aefe5913466e","type":"HoverTool"},{"id":"9b02ad98-79fd-4494-8254-94e0bd19cff6","type":"PanTool"},{"id":"e00ab26f-4d77-4d29-92bc-31b90dfbbc46","type":"WheelZoomTool"}]},"id":"bb39a551-a0dc-4d12-89a4-b0cddb0f0150","type":"Toolbar"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"221bb262-3c38-45aa-b2ce-44a5442085c4","type":"HoverTool"},{"id":"ff9e5116-027c-4b73-b34f-11ce41ecb416","type":"PanTool"},{"id":"83844a73-4c86-446b-a3e0-8a48ae05664d","type":"WheelZoomTool"}]},"id":"034d2bdb-54c9-4373-b6e2-3612af1918ba","type":"Toolbar"},{"attributes":{"below":[{"id":"dde20fcf-1180-4481-a9bf-8368f0abf503","type":"LinearAxis"}],"left":[{"id":"125f3abe-9418-4128-8c1e-f433dd88e990","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"dde20fcf-1180-4481-a9bf-8368f0abf503","type":"LinearAxis"},{"id":"cf1dc1d7-30d7-4c83-8c03-5e809e3f5be2","type":"Grid"},{"id":"125f3abe-9418-4128-8c1e-f433dd88e990","type":"LinearAxis"},{"id":"6ce81989-a122-4ae2-8c9f-912711825fb5","type":"Grid"},{"id":"ad7bdb16-c665-40b6-baf3-1875405ac8f3","type":"GlyphRenderer"},{"id":"c4517585-8ac2-4c24-a827-0e5e42a5e047","type":"GlyphRenderer"}],"title":{"id":"f1f58342-750d-4e08-bd78-8fee987b2d7d","type":"Title"},"tool_events":{"id":"de777a2d-d2d2-4c60-94ae-6e38899a4a65","type":"ToolEvents"},"toolbar":{"id":"bb39a551-a0dc-4d12-89a4-b0cddb0f0150","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"8b160ba3-06a2-436a-a612-6ad4ecf2448b","type":"DataRange1d"},"x_scale":{"id":"83d2b8bc-7361-4bea-ba53-d2036fc84861","type":"LinearScale"},"y_range":{"id":"c4fe1627-4796-4c0e-a956-7fff076d4577","type":"DataRange1d"},"y_scale":{"id":"ac8293b5-270c-4ff3-b8d0-385967ec64a0","type":"LinearScale"}},"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"},{"attributes":{"data_source":{"id":"144a3e5c-c10a-4456-9f93-98602abc0008","type":"ColumnDataSource"},"glyph":{"id":"95321e0d-c548-4cf1-bf6c-4e1325fc029e","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"ade82751-3a3b-489c-b13d-d798953d42f1","type":"Circle"},"selection_glyph":null},"id":"fcc2cf57-9132-4b61-b8d4-8eebbdf084d0","type":"GlyphRenderer"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"depth","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"width","units":"data"},"x":{"field":"x"},"y":{"field":"z"}},"id":"7eb7f3f4-0b5a-4571-9bc1-ec69e4b02c06","type":"Ellipse"},{"attributes":{},"id":"5c4e2c54-9b11-4502-a4e9-f175a53c822a","type":"BasicTicker"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"x"},"y":{"field":"z"}},"id":"37f7459f-f7d1-466c-afdb-df52d11d3656","type":"Circle"},{"attributes":{"axis_label":"250","formatter":{"id":"255b3747-4329-4933-b0af-730a93ade2e4","type":"BasicTickFormatter"},"plot":{"id":"0da3ab88-3201-4bbd-916b-1d7c4b055cbe","subtype":"Figure","type":"Plot"},"ticker":{"id":"cb2ba7d1-aa84-4466-900a-6aaf4c07f9d7","type":"BasicTicker"}},"id":"dde20fcf-1180-4481-a9bf-8368f0abf503","type":"LinearAxis"},{"attributes":{"below":[{"id":"5f663813-44e9-4a3a-b4d7-59ca28626d64","type":"LinearAxis"}],"left":[{"id":"9bd1d09e-7b77-4d92-a19a-59a21aa8ab51","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"5f663813-44e9-4a3a-b4d7-59ca28626d64","type":"LinearAxis"},{"id":"23a728e2-941d-44c7-a469-ae98cc594d44","type":"Grid"},{"id":"9bd1d09e-7b77-4d92-a19a-59a21aa8ab51","type":"LinearAxis"},{"id":"9fa2756c-0403-41f5-9842-64878d882df2","type":"Grid"},{"id":"1070fac1-8513-4122-88b6-80d9983ea46c","type":"GlyphRenderer"},{"id":"50867ce3-f224-4320-be6b-db14e3c9e210","type":"GlyphRenderer"}],"title":{"id":"2854524b-c6b9-4583-8911-eb1b84a6eea8","type":"Title"},"tool_events":{"id":"8aba755d-a5d3-499a-8335-319894146f93","type":"ToolEvents"},"toolbar":{"id":"034d2bdb-54c9-4373-b6e2-3612af1918ba","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"ac2ab27a-8e81-4b5f-acf0-2911fe77e247","type":"DataRange1d"},"x_scale":{"id":"d9327822-5887-49a4-9be8-594317b0b29e","type":"LinearScale"},"y_range":{"id":"c4fe1627-4796-4c0e-a956-7fff076d4577","type":"DataRange1d"},"y_scale":{"id":"a5db0e6d-7569-44d5-b9f2-b945ba1084d6","type":"LinearScale"}},"id":"d1360805-97eb-4605-97fb-f9246d3f1c70","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"83d2b8bc-7361-4bea-ba53-d2036fc84861","type":"LinearScale"}],"root_ids":["19984f90-d412-45bc-a8fe-13f55b5d4b67"]},"title":"Bokeh Application","version":"0.12.6"}}; var render_items = [{"docid":"90a18792-3a2a-4257-8879-201a0a1838be","elementid":"0823d6c9-6577-49ef-976f-a959a4a82186","modelid":"19984f90-d412-45bc-a8fe-13f55b5d4b67","notebook_comms_target":"87154ed0-e30c-4803-9790-c352897e1969"}]; Bokeh.embed.embed_items(docs_json, render_items); }; if (document.readyState != "loading") fn(); else document.addEventListener("DOMContentLoaded", fn); })(); }, function(Bokeh) { } ]; function run_inline_js() { if ((window.Bokeh !== undefined) || (force === true)) { for (var i = 0; i < inline_js.length; i++) { inline_js[i](window.Bokeh); }if (force === true) { display_loaded(); }} else if (Date.now() < window._bokeh_timeout) { setTimeout(run_inline_js, 100); } else if (!window._bokeh_failed_load) { console.log("Bokeh: BokehJS failed to load within specified timeout."); window._bokeh_failed_load = true; } else if (force !== true) { var cell = $(document.getElementById("0823d6c9-6577-49ef-976f-a959a4a82186")).parents('.cell').data().cell; cell.output_area.append_execute_result(NB_LOAD_WARNING) } } if (window._bokeh_is_loading === 0) { console.log("Bokeh: BokehJS loaded, going straight to plotting"); run_inline_js(); } else { load_libs(js_urls, function() { console.log("Bokeh: BokehJS plotting callback run at", now()); run_inline_js(); }); } }(this)); </script> <function __main__.update> ```python samps=np.empty((6,2000)) for i in range(0,2000): samps[:,i]=np.sum(SEDs_comb[:,:,np.random.randint(len(red))].T*10.0**np.random.uniform(low=np.array([5,5,5,5]),high=np.array([12,12,12,12])) ,axis=1) ``` ```python df=pd.DataFrame(samps.T,columns=['250','350','500','24', '100', '160']) import seaborn as sns import pylab as plt %matplotlib inline g=sns.PairGrid(df) g.map_diag(sns.kdeplot) g.map_lower(sns.kdeplot,n_levels=20, shade=True,shade_lowest=False) g.map_upper(plt.scatter, alpha=0.1) for i in range(0,6): for j in range(0,6): g.axes[i,j].set_ylim(-10,30) g.axes[i,j].set_xlim(-10,30) ``` ![png](output_26_0.png) ```python from ipywidgets import interact import numpy as np from bokeh.io import push_notebook, show, output_notebook from bokeh.plotting import figure output_notebook() plot_options = dict(width=250, plot_height=250) LIR=np.array([12,12,12,12]) # create a new plot source = ColumnDataSource( data=dict( s250=SEDs_comb[:,0,200]*10.0**LIR, s350=SEDs_comb[:,1,200]*10.0**LIR, s500=SEDs_comb[:,2,200]*10.0**LIR, s24=SEDs_comb[:,3,200]*10.0**LIR, s100=SEDs_comb[:,4,200]*10.0**LIR, s160=SEDs_comb[:,5,200]*10.0**LIR, ) ) s0_0 = figure(**plot_options,tools=[ 'pan', 'wheel_zoom']) s0_0.circle('s100', 's160', size=10, source=source,color="navy", alpha=0.2) s0_0.yaxis.axis_label = r'160' # create a new plot and share both ranges s0_1 = figure(x_range=s0_0.x_range, **plot_options,tools=[ 'pan', 'wheel_zoom']) s0_1.circle('s100', 's250', size=10, source=source,color="navy", alpha=0.2) s0_1.yaxis.axis_label = r'250' s0_2 = figure(x_range=s0_0.x_range, **plot_options,tools=[ 'pan', 'wheel_zoom']) s0_2.circle('s100', 's350', size=10, source=source,color="navy", alpha=0.0) s0_2.yaxis.axis_label = r'350' s0_3 = figure(x_range=s0_0.x_range, **plot_options,tools=['pan', 'wheel_zoom']) s0_3.circle('s100', 's500', size=10, source=source,color="navy", alpha=0.2) s0_3.yaxis.axis_label = r'500' s0_3.xaxis.axis_label = r'100' s1_1 = figure(x_range=s0_0.y_range,y_range=s0_1.y_range, **plot_options,tools=['pan', 'wheel_zoom']) s1_1.circle('s160', 's250', size=10, source=source,color="navy", alpha=0.2) s1_1.yaxis.axis_label = r'250' s1_2 = figure(x_range=s0_0.y_range,y_range=s0_2.y_range, **plot_options,tools=['pan', 'wheel_zoom']) s1_2.circle('s160', 's350', size=10, source=source,color="navy", alpha=0.0) s1_2.yaxis.axis_label = r'350' s1_3 = figure(x_range=s0_0.y_range,y_range=s0_3.y_range, **plot_options,tools=['pan', 'wheel_zoom']) s1_3.circle('s160', 's500', size=10, source=source,color="navy", alpha=0.0) s1_3.yaxis.axis_label = r'500' s1_3.xaxis.axis_label = r'160' s2_2 = figure(x_range=s0_1.y_range,y_range=s0_2.y_range, **plot_options,tools=['pan', 'wheel_zoom']) s2_2.circle('s250', 's350', size=10, source=source,color="navy", alpha=0.0) s2_2.yaxis.axis_label = r'350' s2_3 = figure(x_range=s0_1.y_range,y_range=s0_3.y_range, **plot_options,tools=['pan', 'wheel_zoom']) s2_3.circle('s250', 's500', size=10, source=source,color="navy", alpha=0.0) s2_3.yaxis.axis_label = r'500' s2_3.xaxis.axis_label = r'250' s3_3 = figure(x_range=s0_2.y_range,y_range=s0_3.y_range, **plot_options,tools=['pan', 'wheel_zoom']) s3_3.circle('s350', 's500', size=10, source=source,color="navy", alpha=0.0) s3_3.yaxis.axis_label = r'500' s3_3.xaxis.axis_label = r'350' p = gridplot([[s0_0,],[s0_1,s1_1,],[s0_2,s1_2,s2_2,],[s0_3,s1_3,s2_3,s3_3]]) def update(LIR_1=12,LIR_2=12,LIR_3=12,LIR_4=12,z=red[200]): LIR=np.array([LIR_1,LIR_2,LIR_3,LIR_4]) ind=np.long(z*100) print(ind) source.data['s250']=SEDs_comb[:,0,ind]*10.0**LIR source.data['s350']=SEDs_comb[:,1,ind]*10.0**LIR source.data['s500']=SEDs_comb[:,2,ind]*10.0**LIR source.data['s100']=SEDs_comb[:,3,ind]*10.0**LIR source.data['s160']=SEDs_comb[:,4,ind]*10.0**LIR push_notebook() show(p, notebook_handle=True) interact(update,LIR_1=(8,14,0.01),LIR_2=(8,14,0.01),LIR_3=(8,14,0.01),LIR_4=(8,14,0.01),z=(red[0],red[-1],0.01)) ``` <div class="bk-root"> <a href="http://bokeh.pydata.org" target="_blank" class="bk-logo bk-logo-small bk-logo-notebook"></a> <span id="9ddc1c96-8105-4f51-a1f0-72bbfbf0efdf">Loading BokehJS ...</span> </div> <div class="bk-root"> <div class="bk-plotdiv" id="c5e3c6ff-0c28-4d7d-95c8-1292587a694e"></div> </div> <script type="text/javascript"> (function(global) { function now() { return new Date(); } var force = false; if (typeof (window._bokeh_onload_callbacks) === "undefined" || force === true) { window._bokeh_onload_callbacks = []; window._bokeh_is_loading = undefined; } if (typeof (window._bokeh_timeout) === "undefined" || force === true) { window._bokeh_timeout = Date.now() + 0; window._bokeh_failed_load = false; } var NB_LOAD_WARNING = {'data': {'text/html': "<div style='background-color: #fdd'>\n"+ "<p>\n"+ "BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \n"+ "may be due to a slow or bad network connection. Possible fixes:\n"+ "</p>\n"+ "<ul>\n"+ "<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\n"+ "<li>use INLINE resources instead, as so:</li>\n"+ "</ul>\n"+ "<code>\n"+ "from bokeh.resources import INLINE\n"+ "output_notebook(resources=INLINE)\n"+ "</code>\n"+ "</div>"}}; function display_loaded() { if (window.Bokeh !== undefined) { var el = document.getElementById("c5e3c6ff-0c28-4d7d-95c8-1292587a694e"); el.textContent = "BokehJS " + Bokeh.version + " successfully loaded."; } else if (Date.now() < window._bokeh_timeout) { setTimeout(display_loaded, 100) } }if ((window.Jupyter !== undefined) && Jupyter.notebook.kernel) { comm_manager = Jupyter.notebook.kernel.comm_manager comm_manager.register_target("e25712c2-76fe-4aed-84ff-b37767249a07", function () {}); } function run_callbacks() { try { window._bokeh_onload_callbacks.forEach(function(callback) { callback() }); } finally { delete window._bokeh_onload_callbacks } console.info("Bokeh: all callbacks have finished"); } function load_libs(js_urls, callback) { window._bokeh_onload_callbacks.push(callback); if (window._bokeh_is_loading > 0) { console.log("Bokeh: BokehJS is being loaded, scheduling callback at", now()); return null; } if (js_urls == null || js_urls.length === 0) { run_callbacks(); return null; } console.log("Bokeh: BokehJS not loaded, scheduling load and callback at", now()); window._bokeh_is_loading = js_urls.length; for (var i = 0; i < js_urls.length; i++) { var url = js_urls[i]; var s = document.createElement('script'); s.src = url; s.async = false; s.onreadystatechange = s.onload = function() { window._bokeh_is_loading--; if (window._bokeh_is_loading === 0) { console.log("Bokeh: all BokehJS libraries loaded"); run_callbacks() } }; s.onerror = function() { console.warn("failed to load library " + url); }; console.log("Bokeh: injecting script tag for BokehJS library: ", url); document.getElementsByTagName("head")[0].appendChild(s); } };var element = document.getElementById("c5e3c6ff-0c28-4d7d-95c8-1292587a694e"); if (element == null) { console.log("Bokeh: ERROR: autoload.js configured with elementid 'c5e3c6ff-0c28-4d7d-95c8-1292587a694e' but no matching script tag was found. ") return false; } var js_urls = []; var inline_js = [ function(Bokeh) { (function() { var fn = function() { var docs_json = {"d37f38e3-4fa3-4ba8-aa19-142af4ef8a48":{"roots":{"references":[{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s250"}},"id":"15fc18b7-65c8-4dd0-8f2a-5ee2fc433572","type":"Circle"},{"attributes":{},"id":"974844b7-a1d6-42c5-ba2f-32b7271a0799","type":"LinearScale"},{"attributes":{"plot":{"id":"14684efd-a644-409a-8725-0068fd1b0033","subtype":"Figure","type":"Plot"},"ticker":{"id":"cc6dedb6-877a-414b-a160-8be4c2341131","type":"BasicTicker"}},"id":"163ec848-499c-4f9f-89e9-f418c94791c5","type":"Grid"},{"attributes":{"formatter":{"id":"3a645e02-cd75-4dfb-a0e5-8ba499ac0af0","type":"BasicTickFormatter"},"plot":{"id":"14684efd-a644-409a-8725-0068fd1b0033","subtype":"Figure","type":"Plot"},"ticker":{"id":"cc6dedb6-877a-414b-a160-8be4c2341131","type":"BasicTicker"}},"id":"eb44bcce-5999-4cde-a73f-606876ba756c","type":"LinearAxis"},{"attributes":{},"id":"cc6dedb6-877a-414b-a160-8be4c2341131","type":"BasicTicker"},{"attributes":{"axis_label":"250","formatter":{"id":"a72c47cf-83ba-4397-b9d6-42d0c4192516","type":"BasicTickFormatter"},"plot":{"id":"14684efd-a644-409a-8725-0068fd1b0033","subtype":"Figure","type":"Plot"},"ticker":{"id":"0eba0d5b-8825-47de-8c40-d4856e44e998","type":"BasicTicker"}},"id":"d5dc2213-8bee-4915-b943-434826049b81","type":"LinearAxis"},{"attributes":{},"id":"0eba0d5b-8825-47de-8c40-d4856e44e998","type":"BasicTicker"},{"attributes":{"dimension":1,"plot":{"id":"14684efd-a644-409a-8725-0068fd1b0033","subtype":"Figure","type":"Plot"},"ticker":{"id":"0eba0d5b-8825-47de-8c40-d4856e44e998","type":"BasicTicker"}},"id":"b63a40b6-57ec-4aa0-8f67-e54e5bf3d940","type":"Grid"},{"attributes":{"below":[{"id":"9d289d87-fdd6-4df0-875e-3d19dd8821c9","type":"LinearAxis"}],"left":[{"id":"ccf4fa90-387c-4a07-b25d-d93f185cd237","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"9d289d87-fdd6-4df0-875e-3d19dd8821c9","type":"LinearAxis"},{"id":"d97ebbbd-364b-4ff8-bab5-fd41e3c30092","type":"Grid"},{"id":"ccf4fa90-387c-4a07-b25d-d93f185cd237","type":"LinearAxis"},{"id":"c99cbc34-cf02-4f68-b6ea-f748aea84cbe","type":"Grid"},{"id":"8426a015-9fb8-49be-bc0f-89a19d200056","type":"GlyphRenderer"}],"title":{"id":"133d8bb0-9380-49b4-91f1-e550a9aab116","type":"Title"},"tool_events":{"id":"42983e5a-349f-4fe8-b929-4d35fc9ac1be","type":"ToolEvents"},"toolbar":{"id":"48ddead4-5172-43cb-818d-ddc600035b19","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"b00f42a5-ae3f-4e32-8ae4-9a7a0eb25ee7","type":"DataRange1d"},"x_scale":{"id":"9184f3d7-ea0d-44f7-adde-c2914e8f294a","type":"LinearScale"},"y_range":{"id":"0fc7a6b2-2f6b-45a2-a684-ae519b41f651","type":"DataRange1d"},"y_scale":{"id":"dfe81af9-1d56-434c-bf1c-be5c86612079","type":"LinearScale"}},"id":"1ec97038-d6c9-46bc-b01c-36fcec006290","subtype":"Figure","type":"Plot"},{"attributes":{"plot":{"id":"14684efd-a644-409a-8725-0068fd1b0033","subtype":"Figure","type":"Plot"}},"id":"6b9c1ab6-be17-47a7-8d00-c4ab4eec1d0c","type":"PanTool"},{"attributes":{},"id":"a72c47cf-83ba-4397-b9d6-42d0c4192516","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"14684efd-a644-409a-8725-0068fd1b0033","subtype":"Figure","type":"Plot"}},"id":"02bd06c2-9064-4e16-b6d9-e5970f22961b","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s250"}},"id":"affc81bf-967e-416c-8f6d-3de0420ed968","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"15fc18b7-65c8-4dd0-8f2a-5ee2fc433572","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"affc81bf-967e-416c-8f6d-3de0420ed968","type":"Circle"},"selection_glyph":null},"id":"49aeae9d-d685-41c3-950a-e452b3c52115","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"1db835e3-6b01-4360-a2ed-38e51c8fd425","type":"Title"},{"attributes":{"below":[{"id":"91caf193-5d90-4d47-8d90-355aa80c418c","type":"LinearAxis"}],"left":[{"id":"bb286c65-1f12-405b-a19a-9a1ad634027d","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"91caf193-5d90-4d47-8d90-355aa80c418c","type":"LinearAxis"},{"id":"6145c61c-8ec5-43cc-ae67-3a8a4684378c","type":"Grid"},{"id":"bb286c65-1f12-405b-a19a-9a1ad634027d","type":"LinearAxis"},{"id":"d167438d-cb4e-44cf-b9bb-4ac05c273cb1","type":"Grid"},{"id":"71d3c728-4ded-489a-8ff7-45584c52496e","type":"GlyphRenderer"}],"title":{"id":"95c415db-c453-491d-8ddd-a2d00275727f","type":"Title"},"tool_events":{"id":"dfe569d5-b407-49f9-a13e-6c558993de59","type":"ToolEvents"},"toolbar":{"id":"c1795b21-3c2b-48b2-9c77-afc49e778953","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"b00f42a5-ae3f-4e32-8ae4-9a7a0eb25ee7","type":"DataRange1d"},"x_scale":{"id":"1e6dbb9c-c397-489f-9ce6-f00649836f2b","type":"LinearScale"},"y_range":{"id":"58cfc91f-9d6b-4c06-97b9-79b663a6d270","type":"DataRange1d"},"y_scale":{"id":"b3acf5bd-f7ca-4bdf-b8da-9d135d6ad2eb","type":"LinearScale"}},"id":"ec2ea959-4a2a-4860-bfb4-77e14d673b09","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"3a645e02-cd75-4dfb-a0e5-8ba499ac0af0","type":"BasicTickFormatter"},{"attributes":{},"id":"dfe569d5-b407-49f9-a13e-6c558993de59","type":"ToolEvents"},{"attributes":{},"id":"42983e5a-349f-4fe8-b929-4d35fc9ac1be","type":"ToolEvents"},{"attributes":{},"id":"1e6dbb9c-c397-489f-9ce6-f00649836f2b","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s350"}},"id":"b04d2ae7-e339-4dee-b23f-936703b5ebec","type":"Circle"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"1908d8f8-454b-486d-a2af-87a4465f049c","type":"PanTool"},{"id":"74bdb051-0155-4ea3-b013-5c1dd372d80a","type":"WheelZoomTool"}]},"id":"c1795b21-3c2b-48b2-9c77-afc49e778953","type":"Toolbar"},{"attributes":{},"id":"b3acf5bd-f7ca-4bdf-b8da-9d135d6ad2eb","type":"LinearScale"},{"attributes":{"plot":{"id":"ec2ea959-4a2a-4860-bfb4-77e14d673b09","subtype":"Figure","type":"Plot"},"ticker":{"id":"68c89cde-cbef-47f2-bdcf-ebc48a3385bf","type":"BasicTicker"}},"id":"6145c61c-8ec5-43cc-ae67-3a8a4684378c","type":"Grid"},{"attributes":{"formatter":{"id":"9e848bb1-e7bb-4276-a935-24b834dc91b1","type":"BasicTickFormatter"},"plot":{"id":"ec2ea959-4a2a-4860-bfb4-77e14d673b09","subtype":"Figure","type":"Plot"},"ticker":{"id":"68c89cde-cbef-47f2-bdcf-ebc48a3385bf","type":"BasicTicker"}},"id":"91caf193-5d90-4d47-8d90-355aa80c418c","type":"LinearAxis"},{"attributes":{},"id":"68c89cde-cbef-47f2-bdcf-ebc48a3385bf","type":"BasicTicker"},{"attributes":{"axis_label":"350","formatter":{"id":"d29b5930-06b9-4c0a-a1ee-3fe245d69ed5","type":"BasicTickFormatter"},"plot":{"id":"ec2ea959-4a2a-4860-bfb4-77e14d673b09","subtype":"Figure","type":"Plot"},"ticker":{"id":"9b7449f7-46c2-4e82-ab45-caa1d310b0fc","type":"BasicTicker"}},"id":"bb286c65-1f12-405b-a19a-9a1ad634027d","type":"LinearAxis"},{"attributes":{},"id":"9b7449f7-46c2-4e82-ab45-caa1d310b0fc","type":"BasicTicker"},{"attributes":{"dimension":1,"plot":{"id":"ec2ea959-4a2a-4860-bfb4-77e14d673b09","subtype":"Figure","type":"Plot"},"ticker":{"id":"9b7449f7-46c2-4e82-ab45-caa1d310b0fc","type":"BasicTicker"}},"id":"d167438d-cb4e-44cf-b9bb-4ac05c273cb1","type":"Grid"},{"attributes":{"plot":{"id":"7a5f8c50-1475-486b-afd3-cca383f4a352","subtype":"Figure","type":"Plot"},"ticker":{"id":"840eee7e-b6cf-4c72-902f-af033daedbc4","type":"BasicTicker"}},"id":"bed90591-1c30-43b9-a415-ca69915eb6df","type":"Grid"},{"attributes":{"plot":{"id":"ec2ea959-4a2a-4860-bfb4-77e14d673b09","subtype":"Figure","type":"Plot"}},"id":"1908d8f8-454b-486d-a2af-87a4465f049c","type":"PanTool"},{"attributes":{},"id":"9184f3d7-ea0d-44f7-adde-c2914e8f294a","type":"LinearScale"},{"attributes":{"plot":{"id":"ec2ea959-4a2a-4860-bfb4-77e14d673b09","subtype":"Figure","type":"Plot"}},"id":"74bdb051-0155-4ea3-b013-5c1dd372d80a","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s350"}},"id":"c7b73d47-6b28-484b-ae95-6012ab899414","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"b04d2ae7-e339-4dee-b23f-936703b5ebec","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"c7b73d47-6b28-484b-ae95-6012ab899414","type":"Circle"},"selection_glyph":null},"id":"71d3c728-4ded-489a-8ff7-45584c52496e","type":"GlyphRenderer"},{"attributes":{"axis_label":"500","formatter":{"id":"95304441-d4d1-49db-81d2-3bc3d92c9e00","type":"BasicTickFormatter"},"plot":{"id":"7a5f8c50-1475-486b-afd3-cca383f4a352","subtype":"Figure","type":"Plot"},"ticker":{"id":"b468c001-d5dc-40ba-a603-49cdb84bd583","type":"BasicTicker"}},"id":"bce1bbb7-aaa0-4fed-8321-821ba24c5f6a","type":"LinearAxis"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"64088a28-bc1e-44c0-b65d-44aad7a0c192","type":"PanTool"},{"id":"899fa6a5-24d1-478e-86c0-59a073ec7be4","type":"WheelZoomTool"}]},"id":"48ddead4-5172-43cb-818d-ddc600035b19","type":"Toolbar"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s500"}},"id":"be72d193-87ca-4372-bc2f-8217628fc19e","type":"Circle"},{"attributes":{},"id":"dfe81af9-1d56-434c-bf1c-be5c86612079","type":"LinearScale"},{"attributes":{"plot":{"id":"1ec97038-d6c9-46bc-b01c-36fcec006290","subtype":"Figure","type":"Plot"},"ticker":{"id":"fe9fb25e-3ad0-4318-9e22-54820f58de56","type":"BasicTicker"}},"id":"d97ebbbd-364b-4ff8-bab5-fd41e3c30092","type":"Grid"},{"attributes":{"axis_label":"160","formatter":{"id":"b1b9c2c6-22a2-41ff-8d46-ac9086b00dd8","type":"BasicTickFormatter"},"plot":{"id":"1ec97038-d6c9-46bc-b01c-36fcec006290","subtype":"Figure","type":"Plot"},"ticker":{"id":"fe9fb25e-3ad0-4318-9e22-54820f58de56","type":"BasicTicker"}},"id":"9d289d87-fdd6-4df0-875e-3d19dd8821c9","type":"LinearAxis"},{"attributes":{},"id":"fe9fb25e-3ad0-4318-9e22-54820f58de56","type":"BasicTicker"},{"attributes":{"axis_label":"500","formatter":{"id":"7ca0b029-7edb-4c93-b13c-1362c25c6a56","type":"BasicTickFormatter"},"plot":{"id":"1ec97038-d6c9-46bc-b01c-36fcec006290","subtype":"Figure","type":"Plot"},"ticker":{"id":"5d32a840-6069-4177-8f66-7edeb6a78c91","type":"BasicTicker"}},"id":"ccf4fa90-387c-4a07-b25d-d93f185cd237","type":"LinearAxis"},{"attributes":{},"id":"5d32a840-6069-4177-8f66-7edeb6a78c91","type":"BasicTicker"},{"attributes":{"dimension":1,"plot":{"id":"1ec97038-d6c9-46bc-b01c-36fcec006290","subtype":"Figure","type":"Plot"},"ticker":{"id":"5d32a840-6069-4177-8f66-7edeb6a78c91","type":"BasicTicker"}},"id":"c99cbc34-cf02-4f68-b6ea-f748aea84cbe","type":"Grid"},{"attributes":{"below":[{"id":"6ed5bf7b-bf50-43f0-9a4a-0c0e496e5ebd","type":"LinearAxis"}],"left":[{"id":"38b10e56-350a-4a23-9461-c1cd8cc4736f","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"6ed5bf7b-bf50-43f0-9a4a-0c0e496e5ebd","type":"LinearAxis"},{"id":"32cd33fd-1aef-40f5-a45c-e057562066ce","type":"Grid"},{"id":"38b10e56-350a-4a23-9461-c1cd8cc4736f","type":"LinearAxis"},{"id":"ed4c4add-085e-4f9e-8563-371b63160e21","type":"Grid"},{"id":"e6373c20-492d-42d0-ad22-300dfa25348b","type":"GlyphRenderer"}],"title":{"id":"770419e9-bd6c-4bab-9dbc-f73bea046ede","type":"Title"},"tool_events":{"id":"fcb16a3c-423e-49ee-8fae-7c05c1393f49","type":"ToolEvents"},"toolbar":{"id":"44949b34-5969-460e-9c46-8d906b7d090f","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"fb99900c-e798-49b8-909f-8e3a44f7b082","type":"DataRange1d"},"x_scale":{"id":"a8d08d93-f8c1-4346-98db-b77fc51b4715","type":"LinearScale"},"y_range":{"id":"58cfc91f-9d6b-4c06-97b9-79b663a6d270","type":"DataRange1d"},"y_scale":{"id":"8cfb5489-5c24-4d94-bf92-073282a2d0cd","type":"LinearScale"}},"id":"5d3c8903-52cc-44a5-aba8-3b5d795b7443","subtype":"Figure","type":"Plot"},{"attributes":{"plot":{"id":"1ec97038-d6c9-46bc-b01c-36fcec006290","subtype":"Figure","type":"Plot"}},"id":"64088a28-bc1e-44c0-b65d-44aad7a0c192","type":"PanTool"},{"attributes":{},"id":"7ca0b029-7edb-4c93-b13c-1362c25c6a56","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"1ec97038-d6c9-46bc-b01c-36fcec006290","subtype":"Figure","type":"Plot"}},"id":"899fa6a5-24d1-478e-86c0-59a073ec7be4","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s500"}},"id":"169223f6-a586-440b-a299-0c80ec122ece","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"be72d193-87ca-4372-bc2f-8217628fc19e","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"169223f6-a586-440b-a299-0c80ec122ece","type":"Circle"},"selection_glyph":null},"id":"8426a015-9fb8-49be-bc0f-89a19d200056","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"133d8bb0-9380-49b4-91f1-e550a9aab116","type":"Title"},{"attributes":{},"id":"840eee7e-b6cf-4c72-902f-af033daedbc4","type":"BasicTicker"},{"attributes":{},"id":"b1b9c2c6-22a2-41ff-8d46-ac9086b00dd8","type":"BasicTickFormatter"},{"attributes":{},"id":"fcb16a3c-423e-49ee-8fae-7c05c1393f49","type":"ToolEvents"},{"attributes":{},"id":"b468c001-d5dc-40ba-a603-49cdb84bd583","type":"BasicTicker"},{"attributes":{},"id":"a8d08d93-f8c1-4346-98db-b77fc51b4715","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s250"},"y":{"field":"s350"}},"id":"6f76879e-794e-4456-93d4-079c31466208","type":"Circle"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"6ec86e20-c8c5-427c-9463-3848352d3871","type":"PanTool"},{"id":"8518a479-cae4-4e0c-8381-ca39927228c5","type":"WheelZoomTool"}]},"id":"44949b34-5969-460e-9c46-8d906b7d090f","type":"Toolbar"},{"attributes":{},"id":"8cfb5489-5c24-4d94-bf92-073282a2d0cd","type":"LinearScale"},{"attributes":{"plot":{"id":"5d3c8903-52cc-44a5-aba8-3b5d795b7443","subtype":"Figure","type":"Plot"},"ticker":{"id":"32279eff-80fd-4173-8c81-a56b81603d41","type":"BasicTicker"}},"id":"32cd33fd-1aef-40f5-a45c-e057562066ce","type":"Grid"},{"attributes":{"formatter":{"id":"0f9a3ba9-f5ae-4c09-8712-ccd7dde20e88","type":"BasicTickFormatter"},"plot":{"id":"5d3c8903-52cc-44a5-aba8-3b5d795b7443","subtype":"Figure","type":"Plot"},"ticker":{"id":"32279eff-80fd-4173-8c81-a56b81603d41","type":"BasicTicker"}},"id":"6ed5bf7b-bf50-43f0-9a4a-0c0e496e5ebd","type":"LinearAxis"},{"attributes":{},"id":"32279eff-80fd-4173-8c81-a56b81603d41","type":"BasicTicker"},{"attributes":{"axis_label":"350","formatter":{"id":"5deea4b4-4362-410e-a1cc-f7d002b2097f","type":"BasicTickFormatter"},"plot":{"id":"5d3c8903-52cc-44a5-aba8-3b5d795b7443","subtype":"Figure","type":"Plot"},"ticker":{"id":"7dcd348f-2ac5-4bdb-8e83-d62f1e601909","type":"BasicTicker"}},"id":"38b10e56-350a-4a23-9461-c1cd8cc4736f","type":"LinearAxis"},{"attributes":{},"id":"7dcd348f-2ac5-4bdb-8e83-d62f1e601909","type":"BasicTicker"},{"attributes":{"dimension":1,"plot":{"id":"5d3c8903-52cc-44a5-aba8-3b5d795b7443","subtype":"Figure","type":"Plot"},"ticker":{"id":"7dcd348f-2ac5-4bdb-8e83-d62f1e601909","type":"BasicTicker"}},"id":"ed4c4add-085e-4f9e-8563-371b63160e21","type":"Grid"},{"attributes":{"children":[{"id":"6326282c-2596-486a-9633-09d9864b45c4","subtype":"Figure","type":"Plot"},{"id":"1ec97038-d6c9-46bc-b01c-36fcec006290","subtype":"Figure","type":"Plot"},{"id":"7a5f8c50-1475-486b-afd3-cca383f4a352","subtype":"Figure","type":"Plot"},{"id":"92f81037-741d-46aa-9725-07d8de1bcdbf","subtype":"Figure","type":"Plot"}]},"id":"a520941a-350a-4f1b-b996-4612a7239e56","type":"Row"},{"attributes":{"plot":{"id":"5d3c8903-52cc-44a5-aba8-3b5d795b7443","subtype":"Figure","type":"Plot"}},"id":"6ec86e20-c8c5-427c-9463-3848352d3871","type":"PanTool"},{"attributes":{"plot":null,"text":""},"id":"770419e9-bd6c-4bab-9dbc-f73bea046ede","type":"Title"},{"attributes":{"plot":{"id":"5d3c8903-52cc-44a5-aba8-3b5d795b7443","subtype":"Figure","type":"Plot"}},"id":"8518a479-cae4-4e0c-8381-ca39927228c5","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s250"},"y":{"field":"s350"}},"id":"80f5c519-7cbc-40af-827d-2caf91875b2e","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"6f76879e-794e-4456-93d4-079c31466208","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"80f5c519-7cbc-40af-827d-2caf91875b2e","type":"Circle"},"selection_glyph":null},"id":"e6373c20-492d-42d0-ad22-300dfa25348b","type":"GlyphRenderer"},{"attributes":{},"id":"0f9a3ba9-f5ae-4c09-8712-ccd7dde20e88","type":"BasicTickFormatter"},{"attributes":{},"id":"5deea4b4-4362-410e-a1cc-f7d002b2097f","type":"BasicTickFormatter"},{"attributes":{"below":[{"id":"6464d413-6b18-462e-8656-fe90a6049a49","type":"LinearAxis"}],"left":[{"id":"bce1bbb7-aaa0-4fed-8321-821ba24c5f6a","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"6464d413-6b18-462e-8656-fe90a6049a49","type":"LinearAxis"},{"id":"bed90591-1c30-43b9-a415-ca69915eb6df","type":"Grid"},{"id":"bce1bbb7-aaa0-4fed-8321-821ba24c5f6a","type":"LinearAxis"},{"id":"af7e3436-da28-4231-aa24-ec672b000d35","type":"Grid"},{"id":"7048f184-a3a7-4886-ba86-c75fef66d87d","type":"GlyphRenderer"}],"title":{"id":"e71ebce4-723b-4214-9cf3-5eec164651b6","type":"Title"},"tool_events":{"id":"070634e2-ebea-4b2d-9aeb-acf49fd0d5c9","type":"ToolEvents"},"toolbar":{"id":"f5073991-1591-4284-83f0-53eb20c7cf8f","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"fb99900c-e798-49b8-909f-8e3a44f7b082","type":"DataRange1d"},"x_scale":{"id":"c7d6fbfb-52de-48a4-8075-2373f5f66a69","type":"LinearScale"},"y_range":{"id":"0fc7a6b2-2f6b-45a2-a684-ae519b41f651","type":"DataRange1d"},"y_scale":{"id":"7d01b8da-438a-4293-b44c-0ba2789307ef","type":"LinearScale"}},"id":"7a5f8c50-1475-486b-afd3-cca383f4a352","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"070634e2-ebea-4b2d-9aeb-acf49fd0d5c9","type":"ToolEvents"},{"attributes":{},"id":"c7d6fbfb-52de-48a4-8075-2373f5f66a69","type":"LinearScale"},{"attributes":{"dimension":1,"plot":{"id":"7a5f8c50-1475-486b-afd3-cca383f4a352","subtype":"Figure","type":"Plot"},"ticker":{"id":"b468c001-d5dc-40ba-a603-49cdb84bd583","type":"BasicTicker"}},"id":"af7e3436-da28-4231-aa24-ec672b000d35","type":"Grid"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"7c5c1547-2574-45b7-b729-b8b53c62bb67","type":"PanTool"},{"id":"71ef5c27-790f-4392-b4e1-c9c80beac8fc","type":"WheelZoomTool"}]},"id":"f5073991-1591-4284-83f0-53eb20c7cf8f","type":"Toolbar"},{"attributes":{},"id":"7d01b8da-438a-4293-b44c-0ba2789307ef","type":"LinearScale"},{"attributes":{"below":[{"id":"29e94d4e-ab01-4473-ac00-c9eeec25b98f","type":"LinearAxis"}],"left":[{"id":"506635fe-2491-4a6d-93d5-5bd498cbb950","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"29e94d4e-ab01-4473-ac00-c9eeec25b98f","type":"LinearAxis"},{"id":"dba50e9d-5e1e-470a-9a37-e3c1fc0fc4f4","type":"Grid"},{"id":"506635fe-2491-4a6d-93d5-5bd498cbb950","type":"LinearAxis"},{"id":"9648975f-b746-4891-ada5-63765d7f81fb","type":"Grid"},{"id":"3dbfd443-7867-4236-95f7-4ecbb92ec585","type":"GlyphRenderer"}],"title":{"id":"4cef6612-073d-49c3-af2f-5dcff909ce79","type":"Title"},"tool_events":{"id":"799e2da9-49a3-4123-8d4a-c3f3034de87d","type":"ToolEvents"},"toolbar":{"id":"d127e071-ea87-4033-a659-b55bc807d514","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"58cfc91f-9d6b-4c06-97b9-79b663a6d270","type":"DataRange1d"},"x_scale":{"id":"067a3ccd-483c-4e90-81f1-5ed71022969b","type":"LinearScale"},"y_range":{"id":"0fc7a6b2-2f6b-45a2-a684-ae519b41f651","type":"DataRange1d"},"y_scale":{"id":"105f765e-ba15-498f-bdac-33c74af2036c","type":"LinearScale"}},"id":"92f81037-741d-46aa-9725-07d8de1bcdbf","subtype":"Figure","type":"Plot"},{"attributes":{"axis_label":"250","formatter":{"id":"043d8b26-ab04-494a-9c40-56730fe5a669","type":"BasicTickFormatter"},"plot":{"id":"7a5f8c50-1475-486b-afd3-cca383f4a352","subtype":"Figure","type":"Plot"},"ticker":{"id":"840eee7e-b6cf-4c72-902f-af033daedbc4","type":"BasicTicker"}},"id":"6464d413-6b18-462e-8656-fe90a6049a49","type":"LinearAxis"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s250"},"y":{"field":"s500"}},"id":"5299d45c-e8b0-4094-8e6a-697aa84173ac","type":"Circle"},{"attributes":{"plot":{"id":"7a5f8c50-1475-486b-afd3-cca383f4a352","subtype":"Figure","type":"Plot"}},"id":"7c5c1547-2574-45b7-b729-b8b53c62bb67","type":"PanTool"},{"attributes":{},"id":"95304441-d4d1-49db-81d2-3bc3d92c9e00","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"7a5f8c50-1475-486b-afd3-cca383f4a352","subtype":"Figure","type":"Plot"}},"id":"71ef5c27-790f-4392-b4e1-c9c80beac8fc","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s250"},"y":{"field":"s500"}},"id":"c4680958-2c24-4fcb-90f6-0418f73ddea3","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"5299d45c-e8b0-4094-8e6a-697aa84173ac","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"c4680958-2c24-4fcb-90f6-0418f73ddea3","type":"Circle"},"selection_glyph":null},"id":"7048f184-a3a7-4886-ba86-c75fef66d87d","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"e71ebce4-723b-4214-9cf3-5eec164651b6","type":"Title"},{"attributes":{},"id":"043d8b26-ab04-494a-9c40-56730fe5a669","type":"BasicTickFormatter"},{"attributes":{},"id":"799e2da9-49a3-4123-8d4a-c3f3034de87d","type":"ToolEvents"},{"attributes":{},"id":"067a3ccd-483c-4e90-81f1-5ed71022969b","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s350"},"y":{"field":"s500"}},"id":"f92cb3a9-1cfb-47a4-b0bf-dc847f77a2de","type":"Circle"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"f8e1092b-0740-4fc6-b03f-00756814f9ed","type":"PanTool"},{"id":"942c34a3-c38e-4b06-b387-f72f52d31860","type":"WheelZoomTool"}]},"id":"d127e071-ea87-4033-a659-b55bc807d514","type":"Toolbar"},{"attributes":{},"id":"105f765e-ba15-498f-bdac-33c74af2036c","type":"LinearScale"},{"attributes":{},"id":"d9d5f489-8e58-4f4a-a696-24587d99a9d7","type":"LinearScale"},{"attributes":{"plot":{"id":"92f81037-741d-46aa-9725-07d8de1bcdbf","subtype":"Figure","type":"Plot"},"ticker":{"id":"be5b07ee-2662-4c88-8d3f-a326eed7c8f5","type":"BasicTicker"}},"id":"dba50e9d-5e1e-470a-9a37-e3c1fc0fc4f4","type":"Grid"},{"attributes":{"axis_label":"350","formatter":{"id":"63a84cc8-e5ae-4d9a-be46-c14aeae6df59","type":"BasicTickFormatter"},"plot":{"id":"92f81037-741d-46aa-9725-07d8de1bcdbf","subtype":"Figure","type":"Plot"},"ticker":{"id":"be5b07ee-2662-4c88-8d3f-a326eed7c8f5","type":"BasicTicker"}},"id":"29e94d4e-ab01-4473-ac00-c9eeec25b98f","type":"LinearAxis"},{"attributes":{},"id":"be5b07ee-2662-4c88-8d3f-a326eed7c8f5","type":"BasicTicker"},{"attributes":{"axis_label":"500","formatter":{"id":"23171374-c0bb-4db0-a976-fc3d6eef5e07","type":"BasicTickFormatter"},"plot":{"id":"92f81037-741d-46aa-9725-07d8de1bcdbf","subtype":"Figure","type":"Plot"},"ticker":{"id":"1be16d2d-9d60-421f-b56f-c6d9a2dc8e00","type":"BasicTicker"}},"id":"506635fe-2491-4a6d-93d5-5bd498cbb950","type":"LinearAxis"},{"attributes":{},"id":"1be16d2d-9d60-421f-b56f-c6d9a2dc8e00","type":"BasicTicker"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"b8281cb2-343a-49bc-a74f-758d88f8a5f3","type":"PanTool"},{"id":"ffa24880-2100-413e-a63d-688081fe0bc5","type":"WheelZoomTool"}]},"id":"38fbbad6-954a-4a8a-8fc7-cf5cf910e4ab","type":"Toolbar"},{"attributes":{"dimension":1,"plot":{"id":"92f81037-741d-46aa-9725-07d8de1bcdbf","subtype":"Figure","type":"Plot"},"ticker":{"id":"1be16d2d-9d60-421f-b56f-c6d9a2dc8e00","type":"BasicTicker"}},"id":"9648975f-b746-4891-ada5-63765d7f81fb","type":"Grid"},{"attributes":{"plot":{"id":"92f81037-741d-46aa-9725-07d8de1bcdbf","subtype":"Figure","type":"Plot"}},"id":"f8e1092b-0740-4fc6-b03f-00756814f9ed","type":"PanTool"},{"attributes":{},"id":"23171374-c0bb-4db0-a976-fc3d6eef5e07","type":"BasicTickFormatter"},{"attributes":{"below":[{"id":"9847a0ed-3261-44cd-a5cd-428685fc4413","type":"LinearAxis"}],"left":[{"id":"db3b2b89-5a38-4fbc-815c-95898c358b3b","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"9847a0ed-3261-44cd-a5cd-428685fc4413","type":"LinearAxis"},{"id":"3b8ad34c-7162-4143-97f8-dd745a8964b6","type":"Grid"},{"id":"db3b2b89-5a38-4fbc-815c-95898c358b3b","type":"LinearAxis"},{"id":"029b6f49-3d1f-4438-8024-375765bd5ddf","type":"Grid"},{"id":"0ae0fe55-38b4-402d-998d-aadd0374b5a9","type":"GlyphRenderer"}],"title":{"id":"5e87d8c4-b6dc-4f34-abe5-d264a1e28516","type":"Title"},"tool_events":{"id":"e81701da-c8c6-4776-bc71-6b67894db420","type":"ToolEvents"},"toolbar":{"id":"9a800abb-2598-47d9-a593-ee1673d424ca","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"63edc227-039a-4a18-a607-1fd93ff0e856","type":"DataRange1d"},"x_scale":{"id":"e1b1bf64-e550-4d70-8cc3-84c79deecce9","type":"LinearScale"},"y_range":{"id":"b00f42a5-ae3f-4e32-8ae4-9a7a0eb25ee7","type":"DataRange1d"},"y_scale":{"id":"d9d5f489-8e58-4f4a-a696-24587d99a9d7","type":"LinearScale"}},"id":"1541f194-64c9-4417-9ade-79081115b889","subtype":"Figure","type":"Plot"},{"attributes":{"plot":{"id":"92f81037-741d-46aa-9725-07d8de1bcdbf","subtype":"Figure","type":"Plot"}},"id":"942c34a3-c38e-4b06-b387-f72f52d31860","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s350"},"y":{"field":"s500"}},"id":"93bcfd70-7385-4916-920b-1e8e266be116","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"f92cb3a9-1cfb-47a4-b0bf-dc847f77a2de","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"93bcfd70-7385-4916-920b-1e8e266be116","type":"Circle"},"selection_glyph":null},"id":"3dbfd443-7867-4236-95f7-4ecbb92ec585","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"4cef6612-073d-49c3-af2f-5dcff909ce79","type":"Title"},{"attributes":{},"id":"63a84cc8-e5ae-4d9a-be46-c14aeae6df59","type":"BasicTickFormatter"},{"attributes":{"children":[{"id":"c16f3c40-d0e5-4935-acf4-1d1cdabed491","type":"ToolbarBox"},{"id":"41706667-e26d-411d-b2a6-2fe95a64cf40","type":"Column"}]},"id":"6ee4b9e8-7227-4869-96cb-b2670c0c72cc","type":"Column"},{"attributes":{"children":[{"id":"1541f194-64c9-4417-9ade-79081115b889","subtype":"Figure","type":"Plot"}]},"id":"bb45ac35-fcf0-4633-b4ea-a4afc52d8dcd","type":"Row"},{"attributes":{"children":[{"id":"26425551-4d26-4325-ba34-e41e3bb42029","subtype":"Figure","type":"Plot"},{"id":"14684efd-a644-409a-8725-0068fd1b0033","subtype":"Figure","type":"Plot"}]},"id":"0b76d411-c0f2-4f71-b681-6876588d8274","type":"Row"},{"attributes":{"children":[{"id":"fd76ffae-1644-44ae-889c-89c2644b0426","subtype":"Figure","type":"Plot"},{"id":"ec2ea959-4a2a-4860-bfb4-77e14d673b09","subtype":"Figure","type":"Plot"},{"id":"5d3c8903-52cc-44a5-aba8-3b5d795b7443","subtype":"Figure","type":"Plot"}]},"id":"639aaccc-2865-4909-a000-24fc186d2996","type":"Row"},{"attributes":{},"id":"e81701da-c8c6-4776-bc71-6b67894db420","type":"ToolEvents"},{"attributes":{"axis_label":"100","formatter":{"id":"6a4c1c4c-2934-4c8b-9e94-a40f6d4aec7e","type":"BasicTickFormatter"},"plot":{"id":"6326282c-2596-486a-9633-09d9864b45c4","subtype":"Figure","type":"Plot"},"ticker":{"id":"7e2d761c-c4ca-4154-80bc-cdf78febbc49","type":"BasicTicker"}},"id":"b84812df-06f3-4cb4-a6a1-6f1fc8d50775","type":"LinearAxis"},{"attributes":{},"id":"5dbe93e0-703f-4cdc-8c9d-9663f8f1c97f","type":"ToolEvents"},{"attributes":{"callback":null},"id":"63edc227-039a-4a18-a607-1fd93ff0e856","type":"DataRange1d"},{"attributes":{},"id":"d7576c04-f8a7-4b8c-a075-d79d1bef0605","type":"BasicTicker"},{"attributes":{"formatter":{"id":"5c6c213c-3f39-47f3-bd90-1160eef8c59c","type":"BasicTickFormatter"},"plot":{"id":"1541f194-64c9-4417-9ade-79081115b889","subtype":"Figure","type":"Plot"},"ticker":{"id":"d7576c04-f8a7-4b8c-a075-d79d1bef0605","type":"BasicTicker"}},"id":"9847a0ed-3261-44cd-a5cd-428685fc4413","type":"LinearAxis"},{"attributes":{"callback":null,"column_names":["s250","s350","s500","s24","s100","s160"],"data":{"s100":{"__ndarray__":"740EJHDC2z9wb0sUlPnvP7QPXd5h8v0/foUiG47R6z8=","dtype":"float64","shape":[4]},"s160":{"__ndarray__":"2kMvjXLy+T+L26T/u+wPQAo5Bya7kRBAJ+GbwM1JmD8=","dtype":"float64","shape":[4]},"s24":{"__ndarray__":"Q7Edq4jzyz9eQHrGaCilP2LkAfkg6sM/Dp5uIWAS7D8=","dtype":"float64","shape":[4]},"s250":{"__ndarray__":"KssMR+/uGkBqzQvOHYUdQCghJxQVJRNAqwQBk0IMYT8=","dtype":"float64","shape":[4]},"s350":{"__ndarray__":"HFpoUIUCJEATUZlKDegcQCs+PmQmtw1ApLXZbt/rMj8=","dtype":"float64","shape":[4]},"s500":{"__ndarray__":"G1tAEpTwIECqm0ga/2oSQHrtSUixGABATwt9VaTL9T4=","dtype":"float64","shape":[4]}}},"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"ff8d9860-2d70-4d75-aa9a-fa45b550bb3c","type":"PanTool"},{"id":"33cdbdf6-3017-400e-a763-31bcb8561e35","type":"WheelZoomTool"}]},"id":"9a800abb-2598-47d9-a593-ee1673d424ca","type":"Toolbar"},{"attributes":{"callback":null},"id":"b00f42a5-ae3f-4e32-8ae4-9a7a0eb25ee7","type":"DataRange1d"},{"attributes":{},"id":"e1b1bf64-e550-4d70-8cc3-84c79deecce9","type":"LinearScale"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"e0e85ddb-35ca-435e-a492-ae5c01cb0455","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"e1a03766-3426-4885-9bff-44c70b361093","type":"Circle"},"selection_glyph":null},"id":"0ae0fe55-38b4-402d-998d-aadd0374b5a9","type":"GlyphRenderer"},{"attributes":{"plot":{"id":"1541f194-64c9-4417-9ade-79081115b889","subtype":"Figure","type":"Plot"},"ticker":{"id":"d7576c04-f8a7-4b8c-a075-d79d1bef0605","type":"BasicTicker"}},"id":"3b8ad34c-7162-4143-97f8-dd745a8964b6","type":"Grid"},{"attributes":{"axis_label":"160","formatter":{"id":"f94cf545-06fe-4423-9aea-62554416f093","type":"BasicTickFormatter"},"plot":{"id":"1541f194-64c9-4417-9ade-79081115b889","subtype":"Figure","type":"Plot"},"ticker":{"id":"14cbe2bf-6cc8-4f35-b05a-d1b56c2e25e8","type":"BasicTicker"}},"id":"db3b2b89-5a38-4fbc-815c-95898c358b3b","type":"LinearAxis"},{"attributes":{},"id":"14cbe2bf-6cc8-4f35-b05a-d1b56c2e25e8","type":"BasicTicker"},{"attributes":{"dimension":1,"plot":{"id":"1541f194-64c9-4417-9ade-79081115b889","subtype":"Figure","type":"Plot"},"ticker":{"id":"14cbe2bf-6cc8-4f35-b05a-d1b56c2e25e8","type":"BasicTicker"}},"id":"029b6f49-3d1f-4438-8024-375765bd5ddf","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s160"}},"id":"e1a03766-3426-4885-9bff-44c70b361093","type":"Circle"},{"attributes":{},"id":"f94cf545-06fe-4423-9aea-62554416f093","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"1541f194-64c9-4417-9ade-79081115b889","subtype":"Figure","type":"Plot"}},"id":"ff8d9860-2d70-4d75-aa9a-fa45b550bb3c","type":"PanTool"},{"attributes":{"plot":{"id":"1541f194-64c9-4417-9ade-79081115b889","subtype":"Figure","type":"Plot"}},"id":"33cdbdf6-3017-400e-a763-31bcb8561e35","type":"WheelZoomTool"},{"attributes":{"plot":null,"text":""},"id":"5e87d8c4-b6dc-4f34-abe5-d264a1e28516","type":"Title"},{"attributes":{"below":[{"id":"cf58c79f-7418-4380-a6eb-6b29dbf7a1ef","type":"LinearAxis"}],"left":[{"id":"14bd6c29-4f00-439a-8fb1-51df1dfd24f3","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"cf58c79f-7418-4380-a6eb-6b29dbf7a1ef","type":"LinearAxis"},{"id":"8f89b3c7-9b02-48e0-b95a-cdacd6fb2751","type":"Grid"},{"id":"14bd6c29-4f00-439a-8fb1-51df1dfd24f3","type":"LinearAxis"},{"id":"c3851cd2-3ef5-4766-8718-7776d9c96835","type":"Grid"},{"id":"bb9d280c-59f3-4932-968d-2a1f78fbee9e","type":"GlyphRenderer"}],"title":{"id":"7aacc835-cd34-4287-9462-e8bfbc20a340","type":"Title"},"tool_events":{"id":"5dbe93e0-703f-4cdc-8c9d-9663f8f1c97f","type":"ToolEvents"},"toolbar":{"id":"38fbbad6-954a-4a8a-8fc7-cf5cf910e4ab","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"63edc227-039a-4a18-a607-1fd93ff0e856","type":"DataRange1d"},"x_scale":{"id":"b0d50f11-39d7-4688-abaf-a8e40102dab4","type":"LinearScale"},"y_range":{"id":"fb99900c-e798-49b8-909f-8e3a44f7b082","type":"DataRange1d"},"y_scale":{"id":"a7a69242-b636-49ba-bbe5-6d5b75d08eb4","type":"LinearScale"}},"id":"26425551-4d26-4325-ba34-e41e3bb42029","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"5c6c213c-3f39-47f3-bd90-1160eef8c59c","type":"BasicTickFormatter"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s250"}},"id":"35b31ee9-6981-4b42-954d-fc625ffc0d8a","type":"Circle"},{"attributes":{"sizing_mode":"scale_width","toolbar_location":"above","tools":[{"id":"ff8d9860-2d70-4d75-aa9a-fa45b550bb3c","type":"PanTool"},{"id":"33cdbdf6-3017-400e-a763-31bcb8561e35","type":"WheelZoomTool"},{"id":"b8281cb2-343a-49bc-a74f-758d88f8a5f3","type":"PanTool"},{"id":"ffa24880-2100-413e-a63d-688081fe0bc5","type":"WheelZoomTool"},{"id":"6b9c1ab6-be17-47a7-8d00-c4ab4eec1d0c","type":"PanTool"},{"id":"02bd06c2-9064-4e16-b6d9-e5970f22961b","type":"WheelZoomTool"},{"id":"7c522941-b326-4af0-84fc-6b4ce475efe0","type":"PanTool"},{"id":"6356e00c-bb6f-4a2f-9abb-c894f31adb86","type":"WheelZoomTool"},{"id":"1908d8f8-454b-486d-a2af-87a4465f049c","type":"PanTool"},{"id":"74bdb051-0155-4ea3-b013-5c1dd372d80a","type":"WheelZoomTool"},{"id":"6ec86e20-c8c5-427c-9463-3848352d3871","type":"PanTool"},{"id":"8518a479-cae4-4e0c-8381-ca39927228c5","type":"WheelZoomTool"},{"id":"5997eba3-08cb-4491-8003-51f3cae38d29","type":"PanTool"},{"id":"64e18121-1d1f-4b0c-a43c-0e7b24b1a3b3","type":"WheelZoomTool"},{"id":"64088a28-bc1e-44c0-b65d-44aad7a0c192","type":"PanTool"},{"id":"899fa6a5-24d1-478e-86c0-59a073ec7be4","type":"WheelZoomTool"},{"id":"7c5c1547-2574-45b7-b729-b8b53c62bb67","type":"PanTool"},{"id":"71ef5c27-790f-4392-b4e1-c9c80beac8fc","type":"WheelZoomTool"},{"id":"f8e1092b-0740-4fc6-b03f-00756814f9ed","type":"PanTool"},{"id":"942c34a3-c38e-4b06-b387-f72f52d31860","type":"WheelZoomTool"}]},"id":"c16f3c40-d0e5-4935-acf4-1d1cdabed491","type":"ToolbarBox"},{"attributes":{"callback":null},"id":"fb99900c-e798-49b8-909f-8e3a44f7b082","type":"DataRange1d"},{"attributes":{},"id":"a7a69242-b636-49ba-bbe5-6d5b75d08eb4","type":"LinearScale"},{"attributes":{},"id":"b0d50f11-39d7-4688-abaf-a8e40102dab4","type":"LinearScale"},{"attributes":{"plot":{"id":"26425551-4d26-4325-ba34-e41e3bb42029","subtype":"Figure","type":"Plot"},"ticker":{"id":"d79ed330-e7c2-4675-80ed-dfc9d7c04c57","type":"BasicTicker"}},"id":"8f89b3c7-9b02-48e0-b95a-cdacd6fb2751","type":"Grid"},{"attributes":{"formatter":{"id":"c46b7c4b-4285-4e22-b80f-0c980ca31156","type":"BasicTickFormatter"},"plot":{"id":"26425551-4d26-4325-ba34-e41e3bb42029","subtype":"Figure","type":"Plot"},"ticker":{"id":"d79ed330-e7c2-4675-80ed-dfc9d7c04c57","type":"BasicTicker"}},"id":"cf58c79f-7418-4380-a6eb-6b29dbf7a1ef","type":"LinearAxis"},{"attributes":{},"id":"d79ed330-e7c2-4675-80ed-dfc9d7c04c57","type":"BasicTicker"},{"attributes":{"axis_label":"250","formatter":{"id":"2a68dc20-d5a2-4be4-a65e-935bef53a820","type":"BasicTickFormatter"},"plot":{"id":"26425551-4d26-4325-ba34-e41e3bb42029","subtype":"Figure","type":"Plot"},"ticker":{"id":"f5380967-40a2-476c-a5aa-12ba725a78bd","type":"BasicTicker"}},"id":"14bd6c29-4f00-439a-8fb1-51df1dfd24f3","type":"LinearAxis"},{"attributes":{},"id":"f5380967-40a2-476c-a5aa-12ba725a78bd","type":"BasicTicker"},{"attributes":{"dimension":1,"plot":{"id":"26425551-4d26-4325-ba34-e41e3bb42029","subtype":"Figure","type":"Plot"},"ticker":{"id":"f5380967-40a2-476c-a5aa-12ba725a78bd","type":"BasicTicker"}},"id":"c3851cd2-3ef5-4766-8718-7776d9c96835","type":"Grid"},{"attributes":{"axis_label":"500","formatter":{"id":"fdc69840-b9b5-455d-835b-815b6d683b41","type":"BasicTickFormatter"},"plot":{"id":"6326282c-2596-486a-9633-09d9864b45c4","subtype":"Figure","type":"Plot"},"ticker":{"id":"4d123027-d551-4ce2-a12c-65c335840b28","type":"BasicTicker"}},"id":"13c8485a-64c5-4fd4-9e4a-468bc950030e","type":"LinearAxis"},{"attributes":{"plot":{"id":"26425551-4d26-4325-ba34-e41e3bb42029","subtype":"Figure","type":"Plot"}},"id":"b8281cb2-343a-49bc-a74f-758d88f8a5f3","type":"PanTool"},{"attributes":{},"id":"2a68dc20-d5a2-4be4-a65e-935bef53a820","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"26425551-4d26-4325-ba34-e41e3bb42029","subtype":"Figure","type":"Plot"}},"id":"ffa24880-2100-413e-a63d-688081fe0bc5","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s250"}},"id":"c91e9cb0-71d7-48b9-8dbf-a7623b900adb","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"35b31ee9-6981-4b42-954d-fc625ffc0d8a","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"c91e9cb0-71d7-48b9-8dbf-a7623b900adb","type":"Circle"},"selection_glyph":null},"id":"bb9d280c-59f3-4932-968d-2a1f78fbee9e","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"7aacc835-cd34-4287-9462-e8bfbc20a340","type":"Title"},{"attributes":{"below":[{"id":"cfea4d09-a01d-4baa-8d2f-fd496ff4130b","type":"LinearAxis"}],"left":[{"id":"d88f62c2-9deb-45e3-9bf3-11e08227745b","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"cfea4d09-a01d-4baa-8d2f-fd496ff4130b","type":"LinearAxis"},{"id":"9e8b24da-ca81-4268-a6c1-529b24379db2","type":"Grid"},{"id":"d88f62c2-9deb-45e3-9bf3-11e08227745b","type":"LinearAxis"},{"id":"13fdbb08-d5b9-4480-b0bb-dcbfab73cfba","type":"Grid"},{"id":"705c760a-a10b-48b4-aee2-ca1217487211","type":"GlyphRenderer"}],"title":{"id":"d7b9cd88-c938-4dd7-8cce-b2ce73055b3c","type":"Title"},"tool_events":{"id":"5e8cbcf2-a188-4bd4-ab65-79952662ca5e","type":"ToolEvents"},"toolbar":{"id":"e043f875-ce1e-480c-a73c-fb62259e9879","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"63edc227-039a-4a18-a607-1fd93ff0e856","type":"DataRange1d"},"x_scale":{"id":"ee372cd5-6e88-4170-a947-7053e2b1444c","type":"LinearScale"},"y_range":{"id":"58cfc91f-9d6b-4c06-97b9-79b663a6d270","type":"DataRange1d"},"y_scale":{"id":"425fd404-d17d-402e-98f2-466e59e1a176","type":"LinearScale"}},"id":"fd76ffae-1644-44ae-889c-89c2644b0426","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"c46b7c4b-4285-4e22-b80f-0c980ca31156","type":"BasicTickFormatter"},{"attributes":{},"id":"5e8cbcf2-a188-4bd4-ab65-79952662ca5e","type":"ToolEvents"},{"attributes":{},"id":"4d123027-d551-4ce2-a12c-65c335840b28","type":"BasicTicker"},{"attributes":{"callback":null},"id":"58cfc91f-9d6b-4c06-97b9-79b663a6d270","type":"DataRange1d"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"7c522941-b326-4af0-84fc-6b4ce475efe0","type":"PanTool"},{"id":"6356e00c-bb6f-4a2f-9abb-c894f31adb86","type":"WheelZoomTool"}]},"id":"e043f875-ce1e-480c-a73c-fb62259e9879","type":"Toolbar"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s350"}},"id":"f8b08a2d-9864-4834-983f-fe2cac837c20","type":"Circle"},{"attributes":{},"id":"ee372cd5-6e88-4170-a947-7053e2b1444c","type":"LinearScale"},{"attributes":{},"id":"425fd404-d17d-402e-98f2-466e59e1a176","type":"LinearScale"},{"attributes":{"plot":{"id":"fd76ffae-1644-44ae-889c-89c2644b0426","subtype":"Figure","type":"Plot"},"ticker":{"id":"e7592be4-0993-434d-90b0-946f78bea569","type":"BasicTicker"}},"id":"9e8b24da-ca81-4268-a6c1-529b24379db2","type":"Grid"},{"attributes":{"formatter":{"id":"3aa00a81-da4d-4084-a6c4-9c08bc3b6678","type":"BasicTickFormatter"},"plot":{"id":"fd76ffae-1644-44ae-889c-89c2644b0426","subtype":"Figure","type":"Plot"},"ticker":{"id":"e7592be4-0993-434d-90b0-946f78bea569","type":"BasicTicker"}},"id":"cfea4d09-a01d-4baa-8d2f-fd496ff4130b","type":"LinearAxis"},{"attributes":{},"id":"e7592be4-0993-434d-90b0-946f78bea569","type":"BasicTicker"},{"attributes":{"axis_label":"350","formatter":{"id":"7018a218-a68d-4025-a868-e239ad5b0cb5","type":"BasicTickFormatter"},"plot":{"id":"fd76ffae-1644-44ae-889c-89c2644b0426","subtype":"Figure","type":"Plot"},"ticker":{"id":"e837a4d6-37ca-446c-9613-70d128bf89f8","type":"BasicTicker"}},"id":"d88f62c2-9deb-45e3-9bf3-11e08227745b","type":"LinearAxis"},{"attributes":{},"id":"e837a4d6-37ca-446c-9613-70d128bf89f8","type":"BasicTicker"},{"attributes":{"dimension":1,"plot":{"id":"fd76ffae-1644-44ae-889c-89c2644b0426","subtype":"Figure","type":"Plot"},"ticker":{"id":"e837a4d6-37ca-446c-9613-70d128bf89f8","type":"BasicTicker"}},"id":"13fdbb08-d5b9-4480-b0bb-dcbfab73cfba","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s160"}},"id":"e0e85ddb-35ca-435e-a492-ae5c01cb0455","type":"Circle"},{"attributes":{},"id":"9e848bb1-e7bb-4276-a935-24b834dc91b1","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"fd76ffae-1644-44ae-889c-89c2644b0426","subtype":"Figure","type":"Plot"}},"id":"7c522941-b326-4af0-84fc-6b4ce475efe0","type":"PanTool"},{"attributes":{},"id":"7018a218-a68d-4025-a868-e239ad5b0cb5","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"fd76ffae-1644-44ae-889c-89c2644b0426","subtype":"Figure","type":"Plot"}},"id":"6356e00c-bb6f-4a2f-9abb-c894f31adb86","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s350"}},"id":"e0bdf4c6-dbc0-49c1-90e2-1214252fa6f2","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"f8b08a2d-9864-4834-983f-fe2cac837c20","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"e0bdf4c6-dbc0-49c1-90e2-1214252fa6f2","type":"Circle"},"selection_glyph":null},"id":"705c760a-a10b-48b4-aee2-ca1217487211","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"d7b9cd88-c938-4dd7-8cce-b2ce73055b3c","type":"Title"},{"attributes":{"below":[{"id":"b84812df-06f3-4cb4-a6a1-6f1fc8d50775","type":"LinearAxis"}],"left":[{"id":"13c8485a-64c5-4fd4-9e4a-468bc950030e","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"b84812df-06f3-4cb4-a6a1-6f1fc8d50775","type":"LinearAxis"},{"id":"ae696312-1f47-4df6-abe6-54177cd30d86","type":"Grid"},{"id":"13c8485a-64c5-4fd4-9e4a-468bc950030e","type":"LinearAxis"},{"id":"b7788f62-9147-4600-8310-d328eacc958f","type":"Grid"},{"id":"48eecc50-b084-4f16-8bdc-48ccd943ab60","type":"GlyphRenderer"}],"title":{"id":"5ebc56d3-4121-404e-933d-fcaa8c5f4d0c","type":"Title"},"tool_events":{"id":"7b7fd448-4553-43e1-989b-347a3c4d76d5","type":"ToolEvents"},"toolbar":{"id":"20391f68-e481-4dc8-9d18-8719f9edb90d","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"63edc227-039a-4a18-a607-1fd93ff0e856","type":"DataRange1d"},"x_scale":{"id":"52a86915-f271-4928-87d6-0ece02490d1e","type":"LinearScale"},"y_range":{"id":"0fc7a6b2-2f6b-45a2-a684-ae519b41f651","type":"DataRange1d"},"y_scale":{"id":"5500ab84-1079-485b-b3a3-fabe6f6dc054","type":"LinearScale"}},"id":"6326282c-2596-486a-9633-09d9864b45c4","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"3aa00a81-da4d-4084-a6c4-9c08bc3b6678","type":"BasicTickFormatter"},{"attributes":{},"id":"7b7fd448-4553-43e1-989b-347a3c4d76d5","type":"ToolEvents"},{"attributes":{"children":[{"id":"bb45ac35-fcf0-4633-b4ea-a4afc52d8dcd","type":"Row"},{"id":"0b76d411-c0f2-4f71-b681-6876588d8274","type":"Row"},{"id":"639aaccc-2865-4909-a000-24fc186d2996","type":"Row"},{"id":"a520941a-350a-4f1b-b996-4612a7239e56","type":"Row"}]},"id":"41706667-e26d-411d-b2a6-2fe95a64cf40","type":"Column"},{"attributes":{"callback":null},"id":"0fc7a6b2-2f6b-45a2-a684-ae519b41f651","type":"DataRange1d"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"5997eba3-08cb-4491-8003-51f3cae38d29","type":"PanTool"},{"id":"64e18121-1d1f-4b0c-a43c-0e7b24b1a3b3","type":"WheelZoomTool"}]},"id":"20391f68-e481-4dc8-9d18-8719f9edb90d","type":"Toolbar"},{"attributes":{},"id":"7e2d761c-c4ca-4154-80bc-cdf78febbc49","type":"BasicTicker"},{"attributes":{},"id":"52a86915-f271-4928-87d6-0ece02490d1e","type":"LinearScale"},{"attributes":{},"id":"5500ab84-1079-485b-b3a3-fabe6f6dc054","type":"LinearScale"},{"attributes":{"dimension":1,"plot":{"id":"6326282c-2596-486a-9633-09d9864b45c4","subtype":"Figure","type":"Plot"},"ticker":{"id":"4d123027-d551-4ce2-a12c-65c335840b28","type":"BasicTicker"}},"id":"b7788f62-9147-4600-8310-d328eacc958f","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s500"}},"id":"82e5ff21-4be0-46c8-aabc-c2abb05acb56","type":"Circle"},{"attributes":{"plot":{"id":"6326282c-2596-486a-9633-09d9864b45c4","subtype":"Figure","type":"Plot"},"ticker":{"id":"7e2d761c-c4ca-4154-80bc-cdf78febbc49","type":"BasicTicker"}},"id":"ae696312-1f47-4df6-abe6-54177cd30d86","type":"Grid"},{"attributes":{"below":[{"id":"eb44bcce-5999-4cde-a73f-606876ba756c","type":"LinearAxis"}],"left":[{"id":"d5dc2213-8bee-4915-b943-434826049b81","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"eb44bcce-5999-4cde-a73f-606876ba756c","type":"LinearAxis"},{"id":"163ec848-499c-4f9f-89e9-f418c94791c5","type":"Grid"},{"id":"d5dc2213-8bee-4915-b943-434826049b81","type":"LinearAxis"},{"id":"b63a40b6-57ec-4aa0-8f67-e54e5bf3d940","type":"Grid"},{"id":"49aeae9d-d685-41c3-950a-e452b3c52115","type":"GlyphRenderer"}],"title":{"id":"1db835e3-6b01-4360-a2ed-38e51c8fd425","type":"Title"},"tool_events":{"id":"d00002b5-56df-46dd-b31b-4b157c35ad20","type":"ToolEvents"},"toolbar":{"id":"d094a705-7776-430a-85c3-0d02856e5f82","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"b00f42a5-ae3f-4e32-8ae4-9a7a0eb25ee7","type":"DataRange1d"},"x_scale":{"id":"ce5dde8e-7dad-44c4-ae4b-03ff230dfb6f","type":"LinearScale"},"y_range":{"id":"fb99900c-e798-49b8-909f-8e3a44f7b082","type":"DataRange1d"},"y_scale":{"id":"974844b7-a1d6-42c5-ba2f-32b7271a0799","type":"LinearScale"}},"id":"14684efd-a644-409a-8725-0068fd1b0033","subtype":"Figure","type":"Plot"},{"attributes":{"plot":{"id":"6326282c-2596-486a-9633-09d9864b45c4","subtype":"Figure","type":"Plot"}},"id":"5997eba3-08cb-4491-8003-51f3cae38d29","type":"PanTool"},{"attributes":{},"id":"fdc69840-b9b5-455d-835b-815b6d683b41","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"6326282c-2596-486a-9633-09d9864b45c4","subtype":"Figure","type":"Plot"}},"id":"64e18121-1d1f-4b0c-a43c-0e7b24b1a3b3","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s500"}},"id":"6b521d22-3bcf-471f-89f5-fa7d6f4ef25a","type":"Circle"},{"attributes":{"data_source":{"id":"59bdb91c-9a2b-4ff0-8999-b69bdad3e496","type":"ColumnDataSource"},"glyph":{"id":"82e5ff21-4be0-46c8-aabc-c2abb05acb56","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"6b521d22-3bcf-471f-89f5-fa7d6f4ef25a","type":"Circle"},"selection_glyph":null},"id":"48eecc50-b084-4f16-8bdc-48ccd943ab60","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"5ebc56d3-4121-404e-933d-fcaa8c5f4d0c","type":"Title"},{"attributes":{"plot":null,"text":""},"id":"95c415db-c453-491d-8ddd-a2d00275727f","type":"Title"},{"attributes":{},"id":"6a4c1c4c-2934-4c8b-9e94-a40f6d4aec7e","type":"BasicTickFormatter"},{"attributes":{},"id":"d00002b5-56df-46dd-b31b-4b157c35ad20","type":"ToolEvents"},{"attributes":{},"id":"d29b5930-06b9-4c0a-a1ee-3fe245d69ed5","type":"BasicTickFormatter"},{"attributes":{},"id":"ce5dde8e-7dad-44c4-ae4b-03ff230dfb6f","type":"LinearScale"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"6b9c1ab6-be17-47a7-8d00-c4ab4eec1d0c","type":"PanTool"},{"id":"02bd06c2-9064-4e16-b6d9-e5970f22961b","type":"WheelZoomTool"}]},"id":"d094a705-7776-430a-85c3-0d02856e5f82","type":"Toolbar"}],"root_ids":["6ee4b9e8-7227-4869-96cb-b2670c0c72cc"]},"title":"Bokeh Application","version":"0.12.6"}}; var render_items = [{"docid":"d37f38e3-4fa3-4ba8-aa19-142af4ef8a48","elementid":"c5e3c6ff-0c28-4d7d-95c8-1292587a694e","modelid":"6ee4b9e8-7227-4869-96cb-b2670c0c72cc","notebook_comms_target":"e25712c2-76fe-4aed-84ff-b37767249a07"}]; Bokeh.embed.embed_items(docs_json, render_items); }; if (document.readyState != "loading") fn(); else document.addEventListener("DOMContentLoaded", fn); })(); }, function(Bokeh) { } ]; function run_inline_js() { if ((window.Bokeh !== undefined) || (force === true)) { for (var i = 0; i < inline_js.length; i++) { inline_js[i](window.Bokeh); }if (force === true) { display_loaded(); }} else if (Date.now() < window._bokeh_timeout) { setTimeout(run_inline_js, 100); } else if (!window._bokeh_failed_load) { console.log("Bokeh: BokehJS failed to load within specified timeout."); window._bokeh_failed_load = true; } else if (force !== true) { var cell = $(document.getElementById("c5e3c6ff-0c28-4d7d-95c8-1292587a694e")).parents('.cell').data().cell; cell.output_area.append_execute_result(NB_LOAD_WARNING) } } if (window._bokeh_is_loading === 0) { console.log("Bokeh: BokehJS loaded, going straight to plotting"); run_inline_js(); } else { load_libs(js_urls, function() { console.log("Bokeh: BokehJS plotting callback run at", now()); run_inline_js(); }); } }(this)); </script> <function __main__.update> ```python ####log 10 version from ipywidgets import interact import numpy as np from bokeh.io import push_notebook, show, output_notebook from bokeh.plotting import figure output_notebook() plot_options = dict(width=250, plot_height=250) LIR=12 # create a new plot source = ColumnDataSource( data=dict( s250=np.log10(SEDs[:,0,200]*10.0**LIR), s350=np.log10(SEDs[:,1,200]*10.0**LIR), s500=np.log10(SEDs[:,2,200]*10.0**LIR), s100=np.log10(SEDs[:,3,200]*10.0**LIR), s160=np.log10(SEDs[:,4,200]*10.0**LIR), s250_sig=np.full(SEDs.shape[0],sig[0,200]), s350_sig=np.full(SEDs.shape[0],sig[1,200]), s500_sig=np.full(SEDs.shape[0],sig[2,200]), s100_sig=np.full(SEDs.shape[0],sig[3,200]), s160_sig=np.full(SEDs.shape[0],sig[4,200]), desc=temps, ) ) hover=[] for i in range(0,10): hover.append(HoverTool( tooltips=[ ("SED", "@desc"), ] )) s0_0 = figure(**plot_options,tools=[hover[0], 'pan', 'wheel_zoom']) s0_0.circle('s100', 's160', size=10, source=source,color="navy", alpha=0.0) s0_0.ellipse('s100', 's160', height='s160_sig',width='s100_sig', source=source,color="navy", alpha=0.2) s0_0.yaxis.axis_label = r'160' # create a new plot and share both ranges s0_1 = figure(x_range=s0_0.x_range, **plot_options,tools=[hover[1], 'pan', 'wheel_zoom']) s0_1.circle('s100', 's250', size=10, source=source,color="navy", alpha=0.0) s0_1.ellipse('s100', 's250',height='s250_sig',width='s100_sig' , source=source,color="navy", alpha=0.2) s0_1.yaxis.axis_label = r'250' s0_2 = figure(x_range=s0_0.x_range, **plot_options,tools=[hover[2], 'pan', 'wheel_zoom']) s0_2.circle('s100', 's350', size=10, source=source,color="navy", alpha=0.0) s0_2.ellipse('s100', 's350',height='s350_sig',width='s100_sig' , source=source,color="navy", alpha=0.2) s0_2.yaxis.axis_label = r'350' s0_3 = figure(x_range=s0_0.x_range, **plot_options,tools=[hover[3], 'pan', 'wheel_zoom']) s0_3.circle('s100', 's500', size=10, source=source,color="navy", alpha=0.0) s0_3.ellipse('s100', 's500',height='s500_sig',width='s100_sig' , source=source,color="navy", alpha=0.2) s0_3.yaxis.axis_label = r'500' s0_3.xaxis.axis_label = r'100' s1_1 = figure(x_range=s0_0.y_range,y_range=s0_1.y_range, **plot_options,tools=[hover[4], 'pan', 'wheel_zoom']) s1_1.circle('s160', 's250', size=10, source=source,color="navy", alpha=0.0) s1_1.ellipse('s160', 's250',height='s250_sig',width='s160_sig' , source=source,color="navy", alpha=0.2) s1_1.yaxis.axis_label = r'250' s1_2 = figure(x_range=s0_0.y_range,y_range=s0_2.y_range, **plot_options,tools=[hover[5], 'pan', 'wheel_zoom']) s1_2.circle('s160', 's350', size=10, source=source,color="navy", alpha=0.0) s1_2.ellipse('s160', 's350',height='s350_sig',width='s160_sig' , source=source,color="navy", alpha=0.2) s1_2.yaxis.axis_label = r'350' s1_3 = figure(x_range=s0_0.y_range,y_range=s0_3.y_range, **plot_options,tools=[hover[6], 'pan', 'wheel_zoom']) s1_3.circle('s160', 's500', size=10, source=source,color="navy", alpha=0.0) s1_3.ellipse('s160', 's500',height='s500_sig',width='s160_sig' , source=source,color="navy", alpha=0.2) s1_3.yaxis.axis_label = r'500' s1_3.xaxis.axis_label = r'160' s2_2 = figure(x_range=s0_1.y_range,y_range=s0_2.y_range, **plot_options,tools=[hover[7], 'pan', 'wheel_zoom']) s2_2.circle('s250', 's350', size=10, source=source,color="navy", alpha=0.0) s2_2.ellipse('s250', 's350',height='s350_sig',width='s250_sig' , source=source,color="navy", alpha=0.2) s2_2.yaxis.axis_label = r'350' s2_3 = figure(x_range=s0_1.y_range,y_range=s0_3.y_range, **plot_options,tools=[hover[8], 'pan', 'wheel_zoom']) s2_3.circle('s250', 's500', size=10, source=source,color="navy", alpha=0.0) s2_3.ellipse('s250', 's500',height='s500_sig',width='s250_sig' , source=source,color="navy", alpha=0.2) s2_3.yaxis.axis_label = r'500' s2_3.xaxis.axis_label = r'250' s3_3 = figure(x_range=s0_2.y_range,y_range=s0_3.y_range, **plot_options,tools=[hover[9], 'pan', 'wheel_zoom']) s3_3.circle('s350', 's500', size=10, source=source,color="navy", alpha=0.0) s3_3.ellipse('s350', 's500',height='s500_sig',width='s350_sig' , source=source,color="navy", alpha=0.2) s3_3.yaxis.axis_label = r'500' s3_3.xaxis.axis_label = r'350' p = gridplot([[s0_0,],[s0_1,s1_1,],[s0_2,s1_2,s2_2,],[s0_3,s1_3,s2_3,s3_3]]) def update(LIR=12,z=red[200]): ind=np.long(z*100) print(ind) source.data['s250']=np.log10(SEDs[:,0,ind]*10.0**LIR) source.data['s350']=np.log10(SEDs[:,1,ind]*10.0**LIR) source.data['s500']=np.log10(SEDs[:,2,ind]*10.0**LIR) source.data['s100']=np.log10(SEDs[:,3,ind]*10.0**LIR) source.data['s160']=np.log10(SEDs[:,4,ind]*10.0**LIR) source.data['s250_sig']=np.full(SEDs.shape[0],sig[0,ind])#+LIR source.data['s350_sig']=np.full(SEDs.shape[0],sig[1,ind])#+LIR source.data['s500_sig']=np.full(SEDs.shape[0],sig[2,ind])#+LIR source.data['s100_sig']=np.full(SEDs.shape[0],sig[3,ind])#+LIR source.data['s160_sig']=np.full(SEDs.shape[0],sig[4,ind])#+LIR push_notebook() show(p, notebook_handle=True) interact(update,LIR=(8,14,0.01),z=(red[0],red[-1],0.01)) ``` <div class="bk-root"> <a href="http://bokeh.pydata.org" target="_blank" class="bk-logo bk-logo-small bk-logo-notebook"></a> <span id="20898cfc-44b0-41db-b4e8-4001a01297e2">Loading BokehJS ...</span> </div> <div class="bk-root"> <div class="bk-plotdiv" id="f5be8987-44e7-41c4-9f52-0fb326009ee8"></div> </div> <script type="text/javascript"> (function(global) { function now() { return new Date(); } var force = false; if (typeof (window._bokeh_onload_callbacks) === "undefined" || force === true) { window._bokeh_onload_callbacks = []; window._bokeh_is_loading = undefined; } if (typeof (window._bokeh_timeout) === "undefined" || force === true) { window._bokeh_timeout = Date.now() + 0; window._bokeh_failed_load = false; } var NB_LOAD_WARNING = {'data': {'text/html': "<div style='background-color: #fdd'>\n"+ "<p>\n"+ "BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \n"+ "may be due to a slow or bad network connection. Possible fixes:\n"+ "</p>\n"+ "<ul>\n"+ "<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\n"+ "<li>use INLINE resources instead, as so:</li>\n"+ "</ul>\n"+ "<code>\n"+ "from bokeh.resources import INLINE\n"+ "output_notebook(resources=INLINE)\n"+ "</code>\n"+ "</div>"}}; function display_loaded() { if (window.Bokeh !== undefined) { var el = document.getElementById("f5be8987-44e7-41c4-9f52-0fb326009ee8"); el.textContent = "BokehJS " + Bokeh.version + " successfully loaded."; } else if (Date.now() < window._bokeh_timeout) { setTimeout(display_loaded, 100) } }if ((window.Jupyter !== undefined) && Jupyter.notebook.kernel) { comm_manager = Jupyter.notebook.kernel.comm_manager comm_manager.register_target("aad86cbd-481c-4dd0-a50b-7aa8a6915481", function () {}); } function run_callbacks() { try { window._bokeh_onload_callbacks.forEach(function(callback) { callback() }); } finally { delete window._bokeh_onload_callbacks } console.info("Bokeh: all callbacks have finished"); } function load_libs(js_urls, callback) { window._bokeh_onload_callbacks.push(callback); if (window._bokeh_is_loading > 0) { console.log("Bokeh: BokehJS is being loaded, scheduling callback at", now()); return null; } if (js_urls == null || js_urls.length === 0) { run_callbacks(); return null; } console.log("Bokeh: BokehJS not loaded, scheduling load and callback at", now()); window._bokeh_is_loading = js_urls.length; for (var i = 0; i < js_urls.length; i++) { var url = js_urls[i]; var s = document.createElement('script'); s.src = url; s.async = false; s.onreadystatechange = s.onload = function() { window._bokeh_is_loading--; if (window._bokeh_is_loading === 0) { console.log("Bokeh: all BokehJS libraries loaded"); run_callbacks() } }; s.onerror = function() { console.warn("failed to load library " + url); }; console.log("Bokeh: injecting script tag for BokehJS library: ", url); document.getElementsByTagName("head")[0].appendChild(s); } };var element = document.getElementById("f5be8987-44e7-41c4-9f52-0fb326009ee8"); if (element == null) { console.log("Bokeh: ERROR: autoload.js configured with elementid 'f5be8987-44e7-41c4-9f52-0fb326009ee8' but no matching script tag was found. ") return false; } var js_urls = []; var inline_js = [ function(Bokeh) { (function() { var fn = function() { var docs_json = {"71b05b6d-91e3-4ddc-a716-e4388b1e0db1":{"roots":{"references":[{"attributes":{"dimension":1,"plot":{"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"},"ticker":{"id":"4e60c91a-5467-40c1-9397-b42a030a1d43","type":"BasicTicker"}},"id":"3d54b2ec-d934-4c3a-a5df-ebd8db8e7730","type":"Grid"},{"attributes":{"plot":{"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"}},"id":"2df988e0-2767-4f6a-bd30-39ee92c90f83","type":"PanTool"},{"attributes":{"callback":null},"id":"b95e7a6d-dce0-4a77-8d6b-737b63bce58c","type":"DataRange1d"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"e99c3653-cc5b-471e-8929-15d1b4b5b304","type":"HoverTool"},{"id":"58026c32-58f8-4446-b87a-ced90e71b728","type":"PanTool"},{"id":"2b983bb2-58a1-4395-86a4-7913ecc7a309","type":"WheelZoomTool"}]},"id":"1418c9d3-910d-4023-8c14-28f704aa26ee","type":"Toolbar"},{"attributes":{},"id":"4e60c91a-5467-40c1-9397-b42a030a1d43","type":"BasicTicker"},{"attributes":{"callback":null,"plot":{"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"55c2cd9d-023b-4d60-9177-60de91ad80c6","type":"HoverTool"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"289ae496-1cf6-46e2-bbf3-6ac0dbe8958b","type":"HoverTool"},{"id":"e612b153-ca01-44ff-8cd7-6157b4554cf9","type":"PanTool"},{"id":"715eb658-b2cc-4885-8ed2-d3a762e353fd","type":"WheelZoomTool"}]},"id":"38341d89-ba64-4063-8d69-e00b5e9eb758","type":"Toolbar"},{"attributes":{},"id":"3f81291a-b4f7-49d5-8385-45c00538aaee","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"}},"id":"01da0dee-b1cd-4ca7-9791-20bfc3d0b36f","type":"PanTool"},{"attributes":{},"id":"aad97e69-c12a-4684-91c9-2970247ec66b","type":"BasicTickFormatter"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"2fea8be2-d0f6-43c3-b390-dcd67fe37cb2","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"e0855281-3024-479c-96e2-0f49fba83715","type":"Circle"},"selection_glyph":null},"id":"0db0734a-3cd7-4345-b37b-34311c7c2a39","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"7c84a778-c4e3-487b-ac6e-ad720e73c0ee","type":"Title"},{"attributes":{"plot":{"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"},"ticker":{"id":"81e78520-4de1-4153-9e36-ef369a1d9947","type":"BasicTicker"}},"id":"015ef632-fa70-4c59-a322-f8920cffdf98","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s250"}},"id":"994d7fb8-3cd0-4196-81de-9e2b311246f0","type":"Circle"},{"attributes":{"plot":{"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"}},"id":"7bf358d3-edd2-4422-86b7-a48a1589d436","type":"WheelZoomTool"},{"attributes":{},"id":"28971196-1308-480c-9232-e2d2e86ba29e","type":"LinearScale"},{"attributes":{"plot":{"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"}},"id":"2b983bb2-58a1-4395-86a4-7913ecc7a309","type":"WheelZoomTool"},{"attributes":{"below":[{"id":"8ef5a998-1ba0-4a2f-91cc-c6065c655d24","type":"LinearAxis"}],"left":[{"id":"bbfdb492-995f-445c-b324-85177cde3282","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"8ef5a998-1ba0-4a2f-91cc-c6065c655d24","type":"LinearAxis"},{"id":"a17aaa19-1f25-4fe0-9fa1-41cab59f35a8","type":"Grid"},{"id":"bbfdb492-995f-445c-b324-85177cde3282","type":"LinearAxis"},{"id":"8e2db434-baad-41f7-8674-5fdccd500ccb","type":"Grid"},{"id":"5bdd7877-57ce-4551-9992-add02bf611bb","type":"GlyphRenderer"},{"id":"b1f50e0e-fc3e-4247-a041-c12bcdffe839","type":"GlyphRenderer"}],"title":{"id":"4f3e310a-465a-460a-a77b-6ee31ab05210","type":"Title"},"tool_events":{"id":"ade24f6b-ca2f-45c1-8e49-3bbe2c633129","type":"ToolEvents"},"toolbar":{"id":"4f1a2f95-db5b-4193-88c5-82f57dcc245a","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"634ce2e6-2373-4b83-9455-e4086ecb6e2d","type":"DataRange1d"},"x_scale":{"id":"9f8395e9-840a-4987-99e3-0f1bc206c295","type":"LinearScale"},"y_range":{"id":"e323f645-4aa3-4e2e-b501-182ea1149fc4","type":"DataRange1d"},"y_scale":{"id":"df36e5e0-6f1a-46e9-b7ae-a1c3f7c1b86e","type":"LinearScale"}},"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"},{"attributes":{"below":[{"id":"a62584a2-24e6-4fbc-abf0-b55f9ec15f0b","type":"LinearAxis"}],"left":[{"id":"932375b6-9de9-46db-b42b-09e1d87d7f42","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"a62584a2-24e6-4fbc-abf0-b55f9ec15f0b","type":"LinearAxis"},{"id":"3c13c9b9-92b8-4678-bcb2-09f5384920f9","type":"Grid"},{"id":"932375b6-9de9-46db-b42b-09e1d87d7f42","type":"LinearAxis"},{"id":"0500b553-4c3f-4636-806f-09d88cd33610","type":"Grid"},{"id":"0bf16baa-e8c4-4254-b584-2fa48fa88491","type":"GlyphRenderer"},{"id":"7cb3b8ad-b2b8-48de-8e5a-2e7bf410e2b6","type":"GlyphRenderer"}],"title":{"id":"7c84a778-c4e3-487b-ac6e-ad720e73c0ee","type":"Title"},"tool_events":{"id":"73795bdb-aecc-4022-8d37-3dab7ead29a5","type":"ToolEvents"},"toolbar":{"id":"1418c9d3-910d-4023-8c14-28f704aa26ee","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"e323f645-4aa3-4e2e-b501-182ea1149fc4","type":"DataRange1d"},"x_scale":{"id":"91b658bb-2ff5-4408-9cce-2f2760f061db","type":"LinearScale"},"y_range":{"id":"b55b7c69-bde4-42c9-9784-634fbd3b2d83","type":"DataRange1d"},"y_scale":{"id":"28971196-1308-480c-9232-e2d2e86ba29e","type":"LinearScale"}},"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"},{"attributes":{"axis_label":"100","formatter":{"id":"fcef4188-dd5b-4897-935f-07e49c2ace9a","type":"BasicTickFormatter"},"plot":{"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"},"ticker":{"id":"0a002689-3bd6-44d0-b09e-6718b1f187a3","type":"BasicTicker"}},"id":"dd42dd3f-3f4a-4a5a-87ab-ad3745dd33cf","type":"LinearAxis"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s500"}},"id":"e0855281-3024-479c-96e2-0f49fba83715","type":"Circle"},{"attributes":{},"id":"b5bca925-e2d6-48c2-8c94-ad09f1eb2f16","type":"BasicTicker"},{"attributes":{},"id":"2950cdb6-8fb9-4b76-bfb2-3e6739d5c7af","type":"LinearScale"},{"attributes":{},"id":"06079db0-c657-4f1e-a52e-4d200140d39e","type":"LinearScale"},{"attributes":{"callback":null,"column_names":["s250","s350","s500","s100","s160","s250_sig","s350_sig","s500_sig","s100_sig","s160_sig","desc"],"data":{"desc":["Blue_SF_glx.norm_LIR","BroadFIR_SF_glx.norm_LIR","Cold_glx.norm_LIR","Elliptical.norm_LIR","Ly_break.norm_LIR","MIR_powlaw_SF_glx.norm_LIR","MIRex_SF_glx.norm_LIR","Mod_SF_glx.norm_LIR","Obs_SF_glx.norm_LIR","PAH_DF_glx.norm_LIR","Red_SF_glx_1.norm_LIR","Red_SF_glx_2.norm_LIR","Secular_glx.norm_LIR","SF_glx_1.norm_LIR","SF_glx_2.norm_LIR","SF_Type1_AGN_1.norm_LIR","SF_Type1_AGN_2.norm_LIR","SF_Type1_AGN_3.norm_LIR","SF_Type1_AGN_4.norm_LIR","SF_Type2_AGN_1.norm_LIR","SF_Type2_AGN_2.norm_LIR","SF_Type2_AGN_3.norm_LIR","Si_break.norm_LIR","Spiral.norm_LIR","Torus.norm_LIR","Type1_AGN_1.norm_LIR","Type2_AGN_1.norm_LIR","Type2_AGN_2.norm_LIR","Warm_SF_glx.norm_LIR","WeakPAH_SF_glx_1.norm_LIR","WeakPAH_SF_glx_2.norm_LIR","Young_SF_glx.norm_LIR"],"s100":{"__ndarray__":"1a9ibU5z4b9zO5JE+lXlv36f+sZX4ee/CDIFVxmA+L+/abN6kwzUv9wPPCccSeu/EoLlFLBz67+tz//3zoflvzIioSgAfuq/rbCp2LZL3b+Ucge+JqTsv1bq7v1hAPG/s5L+fJMO4r8/k7W6hh3iv1s36D3oIee/88Hf146F1L/24ILmg+rivz8bT2LCS+W/kTKpXam6279gvAqMGOfev/iI1I508eG/1IOW9uM65b+llOmYiXfiv26cQLy+/++/BjMYoXLu0r/ljkbj2C7QvyX0IIXJzu6/tgZUaMnS8L+QTabfhbLsv5417hNw2ue/wtF0LMPe5b+bZHqcYi/nvw==","dtype":"float64","shape":[32]},"s100_sig":{"__ndarray__":"0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20P9HxE6WvHbQ/0fETpa8dtD/R8ROlrx20Pw==","dtype":"float64","shape":[32]},"s160":{"__ndarray__":"1GUf+5mCyT8y6qDZoo+WvzMtC07ntuK/tNylPV4v2r+ET0FBfOHbvwAmpJxR2NI/b07wlBLVzD8KmWYH2PnWv/PMlS8qN9s/WcEUlCDZ0T+VhxK9uo7XP4Ioh6Xpabo/25e/5sqb1b/aK5gsvCjivxjL/mID0qW/VZ4KJUG+vz/mf8ESqtq4P8IDpXX10tO/FXhIpOiI0D9viZEpmfrCP/eEwApK4bq/GarS0r0Ihz/HHvZQJPvEv4gXrx6NWNI/v7Wu5NPIxD9je9p/VIPOP6DpnuSjPcg/0Jdr7gQcpT8YsVU9wujZPyGz3R8IZ8K/03KteMC6078rYzkH9Aznvw==","dtype":"float64","shape":[32]},"s160_sig":{"__ndarray__":"R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3P0eK61pt17c/R4rrWm3Xtz9Hiutabde3Pw==","dtype":"float64","shape":[32]},"s250":{"__ndarray__":"h5LqsW5c5j+XtFoz2eLoP7Y93F9VK+k/+5TkUU8D5T+I2NyOXe7qPw9VAZU0huY/AnlW1L3i5j/XVfAjTQzsP7P6zOXWn+M/q/4fnIEg5D8Ugk4yMtflP2LRPfYxneo/IgT9CBcT7D/aCb04217rP4tDiwhqD+o/luEKNeGS4D/u307MMMLoP4s+NP7GQ+w/0xqE9HLi4z+g2aGot9fjP2t6CykNsOg/DsKselsn6T/ELqSTtsnqP8lxXe35l+c//eER5eMS4j9m91L3m2nMP4OYFJ/RkOc/JRA6rhix6T8UsBKMAwTkP/5LSWLiDeo/mjUFGqv56z8vB1qUl8rtPw==","dtype":"float64","shape":[32]},"s250_sig":{"__ndarray__":"EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPxLU71b4KqU/EtTvVvgqpT8S1O9W+CqlPw==","dtype":"float64","shape":[32]},"s350":{"__ndarray__":"jcqCJ+CJ6D/uWkI7obroP1dt6jMfdu4/jbCWra768D9CEBAHscLuP99fray40OM/nG+jzILg5z91fnbxZffsP8Ylq9jLuNs/DHygh+IZ5T/+SOKhh+/iP8TI27o7dOY/Z83Qz8fM7D9t++2ujNnvP2ZqnUuIvOo/Qj6ssfae5j90XnkdNavmP4zIUho2/+s/R0GBuQpU4z8/NOJxzGLlP+IREh7Yj+k/QIj7t0Zt6T+EuQxwQXbpP17+b7Vw1Oc/QncLbzVn4z8Y2tSV9IbPP2CrhC/HE+o/48cKzmn76T+gJX1sFF7hP58TwfJHuus/pI6JoA+77T+DPCHqju/vPw==","dtype":"float64","shape":[32]},"s350_sig":{"__ndarray__":"PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPz4We44qM6o/PhZ7jiozqj8+FnuOKjOqPw==","dtype":"float64","shape":[32]},"s500":{"__ndarray__":"z/X4rGp35T/l3k75HszlP3NVZ6eyI/A/IpwCe1TB8j/FJljs9ifrP5o09nkMxtk/mPyv88LB4z/6d9Iq/hHpP9uwcmXrIMQ/56hAxhDK4j+OecmTV/XXP1O/9UZcx9s/tUd80XJC5z8oALklSk/tP+TFDAqDZuc/yve2dfBF5z/cB5SkMKvhP0zw0Mw9hOY/QG4y1Krx3D9jJLObqHzlPw1p/UcU4ug/XN1lMele5T+zSIeCjLLiP1my6l4P8uI/tLl1idsT3T/lY7iByF/QP7eSo/3om+Y/qyTCWmVU5D/61hCt0YjXP+Lnxj7k1ec/tr/zHTwb6T/HYCv/f3DrPw==","dtype":"float64","shape":[32]},"s500_sig":{"__ndarray__":"QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwP0E07YUnFbA/QTTthScVsD9BNO2FJxWwPw==","dtype":"float64","shape":[32]}}},"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},{"attributes":{"formatter":{"id":"3f81291a-b4f7-49d5-8385-45c00538aaee","type":"BasicTickFormatter"},"plot":{"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"},"ticker":{"id":"b5bca925-e2d6-48c2-8c94-ad09f1eb2f16","type":"BasicTicker"}},"id":"a62584a2-24e6-4fbc-abf0-b55f9ec15f0b","type":"LinearAxis"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s250"}},"id":"729bb792-0d8a-481f-9133-112e6a23da1e","type":"Circle"},{"attributes":{"plot":{"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"},"ticker":{"id":"0a002689-3bd6-44d0-b09e-6718b1f187a3","type":"BasicTicker"}},"id":"e861e2ed-2412-46af-9c96-c9b79a4e0b9a","type":"Grid"},{"attributes":{"axis_label":"500","formatter":{"id":"24332c23-f3dc-46c5-914e-060e81adec10","type":"BasicTickFormatter"},"plot":{"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"},"ticker":{"id":"4e60c91a-5467-40c1-9397-b42a030a1d43","type":"BasicTicker"}},"id":"ce956e8c-1b9f-4918-93b4-21723faa1f6a","type":"LinearAxis"},{"attributes":{},"id":"60650a03-ba95-4b8c-a33d-73f1a9b67163","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"},"ticker":{"id":"b5bca925-e2d6-48c2-8c94-ad09f1eb2f16","type":"BasicTicker"}},"id":"3c13c9b9-92b8-4678-bcb2-09f5384920f9","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s350_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s100_sig","units":"data"},"x":{"field":"s100"},"y":{"field":"s350"}},"id":"f4287135-c212-4c50-bede-35ae1d8edf77","type":"Ellipse"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s250"},"y":{"field":"s350"}},"id":"b7a9ee09-b9fb-4f74-8878-ef102d40bcb8","type":"Circle"},{"attributes":{},"id":"8363c0ce-9521-4ffd-b92e-2852a3e1c9f7","type":"ToolEvents"},{"attributes":{},"id":"91b658bb-2ff5-4408-9cce-2f2760f061db","type":"LinearScale"},{"attributes":{"plot":null,"text":""},"id":"0ee81df9-da11-49d0-a713-3e2b74b434e7","type":"Title"},{"attributes":{"plot":{"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"}},"id":"d6877296-3d19-40f7-bef2-373769d6a892","type":"WheelZoomTool"},{"attributes":{"plot":{"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"}},"id":"894cc31d-0a96-40be-b908-5eaac2f54e37","type":"WheelZoomTool"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"928826d4-c025-4127-acce-b52e52e0c9de","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"f7322ff4-23e9-4815-846a-76e37678fbe9","type":"Circle"},"selection_glyph":null},"id":"0bf16baa-e8c4-4254-b584-2fa48fa88491","type":"GlyphRenderer"},{"attributes":{},"id":"b5681ebb-fd9d-499c-972c-18a89d34dd5b","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s250"}},"id":"2e4bb563-ac25-486c-be68-5f927c454d2c","type":"Circle"},{"attributes":{"plot":{"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"}},"id":"b142f931-ac7b-4a20-811b-dfdbcfd16db7","type":"PanTool"},{"attributes":{"plot":{"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"},"ticker":{"id":"d4868853-0496-47b2-8f38-d213e272a141","type":"BasicTicker"}},"id":"9cf2c95d-5fda-4752-bfda-174e760a4c6e","type":"Grid"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"507e1f95-6f50-496d-bc45-3a2091c0a9e0","type":"HoverTool"},{"id":"2df988e0-2767-4f6a-bd30-39ee92c90f83","type":"PanTool"},{"id":"b555b496-19a0-45f0-8acf-833eead60288","type":"WheelZoomTool"}]},"id":"93fa73a8-acc9-4c24-a099-107935226bb9","type":"Toolbar"},{"attributes":{},"id":"0a002689-3bd6-44d0-b09e-6718b1f187a3","type":"BasicTicker"},{"attributes":{"plot":null,"text":""},"id":"c3ed148c-a6ad-4a28-ad01-f6ff5ec8de61","type":"Title"},{"attributes":{"axis_label":"350","formatter":{"id":"6a30d4ca-a0f0-4b59-b0ce-7b0d80e87ac5","type":"BasicTickFormatter"},"plot":{"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"},"ticker":{"id":"dbce3ba8-9838-4f2c-9bfc-a7dce93b385a","type":"BasicTicker"}},"id":"614903e8-7823-4b6b-bae6-12ab0ef11927","type":"LinearAxis"},{"attributes":{},"id":"25fd45a7-ce1d-447e-8a38-a67699d2c3ef","type":"BasicTickFormatter"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"8c5b58fe-fbcd-4ed2-a5fb-a3a8dae21f81","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"2e4bb563-ac25-486c-be68-5f927c454d2c","type":"Circle"},"selection_glyph":null},"id":"540c45b6-f052-4934-a7bd-a92c34893f79","type":"GlyphRenderer"},{"attributes":{},"id":"8efa1df3-f44c-4b6e-b454-b55b3efcce00","type":"BasicTickFormatter"},{"attributes":{"callback":null,"plot":{"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"507e1f95-6f50-496d-bc45-3a2091c0a9e0","type":"HoverTool"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s250_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s160_sig","units":"data"},"x":{"field":"s160"},"y":{"field":"s250"}},"id":"f5aaf2ba-0812-4610-9d17-7979ea825acb","type":"Ellipse"},{"attributes":{"plot":{"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"}},"id":"45960b30-15e4-4ab0-8626-7da17e72d4be","type":"WheelZoomTool"},{"attributes":{"plot":null,"text":""},"id":"4f3e310a-465a-460a-a77b-6ee31ab05210","type":"Title"},{"attributes":{},"id":"97bf456f-15c6-49de-a62e-c586856dd9a0","type":"BasicTickFormatter"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"34f7c750-284d-47d7-a062-73d8f1900e8f","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"bc93af5a-a896-45a4-ab7b-179f5764aee8","type":"Circle"},"selection_glyph":null},"id":"5bdd7877-57ce-4551-9992-add02bf611bb","type":"GlyphRenderer"},{"attributes":{"axis_label":"250","formatter":{"id":"60650a03-ba95-4b8c-a33d-73f1a9b67163","type":"BasicTickFormatter"},"plot":{"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"},"ticker":{"id":"cb479754-f225-4e5a-bfd1-9bb2e5b42577","type":"BasicTicker"}},"id":"9c3a4f9b-5c8e-4e77-b10d-e7bad75b8775","type":"LinearAxis"},{"attributes":{},"id":"25d72997-0843-4eb3-853f-4ed0137322bd","type":"BasicTickFormatter"},{"attributes":{},"id":"187f431b-c33f-4291-bc1f-a17e118ca3a1","type":"BasicTicker"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s500_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s250_sig","units":"data"},"x":{"field":"s250"},"y":{"field":"s500"}},"id":"84eeabf6-7ace-4074-b18e-d291cc347fe6","type":"Ellipse"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"755d85ac-f96b-45a8-803b-61432cf31c2d","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"a74315a0-d424-4065-911e-134e0f67eefd","type":"Circle"},"selection_glyph":null},"id":"fb091e2e-48d0-4f2e-9216-361debfa28de","type":"GlyphRenderer"},{"attributes":{"below":[{"id":"188bdca8-f731-4297-b46a-53a9f19269d5","type":"LinearAxis"}],"left":[{"id":"ce956e8c-1b9f-4918-93b4-21723faa1f6a","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"188bdca8-f731-4297-b46a-53a9f19269d5","type":"LinearAxis"},{"id":"9cf2c95d-5fda-4752-bfda-174e760a4c6e","type":"Grid"},{"id":"ce956e8c-1b9f-4918-93b4-21723faa1f6a","type":"LinearAxis"},{"id":"3d54b2ec-d934-4c3a-a5df-ebd8db8e7730","type":"Grid"},{"id":"0db0734a-3cd7-4345-b37b-34311c7c2a39","type":"GlyphRenderer"},{"id":"4d3a2000-e1db-4c4c-b01a-400af5375dcf","type":"GlyphRenderer"}],"title":{"id":"18405a3a-e180-401f-9b8a-d079cb31cbcf","type":"Title"},"tool_events":{"id":"51028ad8-2539-4642-9232-5c90f404e590","type":"ToolEvents"},"toolbar":{"id":"ba1dc6ec-1148-4dd6-9e3b-b3ff06316456","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"e323f645-4aa3-4e2e-b501-182ea1149fc4","type":"DataRange1d"},"x_scale":{"id":"41135f7e-9683-4fef-8ad4-d74c447ad71d","type":"LinearScale"},"y_range":{"id":"b95e7a6d-dce0-4a77-8d6b-737b63bce58c","type":"DataRange1d"},"y_scale":{"id":"0646a364-5f22-40fc-bfaa-51ed21d9c002","type":"LinearScale"}},"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"f5aaf2ba-0812-4610-9d17-7979ea825acb","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"23f6af0e-cc88-4612-bdd5-d6ef9e27326d","type":"Ellipse"},"selection_glyph":null},"id":"ef5062dc-5f3d-4ec4-94f1-2668acfc5016","type":"GlyphRenderer"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s350_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s100_sig","units":"data"},"x":{"field":"s100"},"y":{"field":"s350"}},"id":"65e0de96-1f6f-4bfc-b1e8-ec3fb9798b5f","type":"Ellipse"},{"attributes":{"plot":null,"text":""},"id":"af2b0965-234f-40b1-908a-5e5962c4f0ae","type":"Title"},{"attributes":{"below":[{"id":"614903e8-7823-4b6b-bae6-12ab0ef11927","type":"LinearAxis"}],"left":[{"id":"74d18ff7-1636-419d-ad99-9a91ef7b74df","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"614903e8-7823-4b6b-bae6-12ab0ef11927","type":"LinearAxis"},{"id":"8d95f2d4-0112-412b-b45f-b36b04c8f4c0","type":"Grid"},{"id":"74d18ff7-1636-419d-ad99-9a91ef7b74df","type":"LinearAxis"},{"id":"b031b85d-8908-41ab-9003-fde9acbc5ba9","type":"Grid"},{"id":"f246bc83-a1ea-48bd-896c-e350a0e8c40a","type":"GlyphRenderer"},{"id":"a2888eb8-fd4b-494b-8e36-b62979463771","type":"GlyphRenderer"}],"title":{"id":"71398cb4-0330-4a4a-9f0e-242a5f86c014","type":"Title"},"tool_events":{"id":"9d0a4df5-b6e0-4429-9960-124e6be2dfed","type":"ToolEvents"},"toolbar":{"id":"e3ad4970-0b4e-48e8-b256-2bd7132cdb42","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"b55b7c69-bde4-42c9-9784-634fbd3b2d83","type":"DataRange1d"},"x_scale":{"id":"a72cc406-426a-4b7f-aed5-fa411189af99","type":"LinearScale"},"y_range":{"id":"b95e7a6d-dce0-4a77-8d6b-737b63bce58c","type":"DataRange1d"},"y_scale":{"id":"4cc0586d-a8b4-40ad-a724-0bfb136a7c24","type":"LinearScale"}},"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"},{"attributes":{"plot":{"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"}},"id":"b555b496-19a0-45f0-8acf-833eead60288","type":"WheelZoomTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s500_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s250_sig","units":"data"},"x":{"field":"s250"},"y":{"field":"s500"}},"id":"1d263216-33dd-4244-9a0d-d9a14a89fc51","type":"Ellipse"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s350"}},"id":"764d8e53-3ddb-41b1-9def-82320a6589d1","type":"Circle"},{"attributes":{},"id":"aaf761d3-9fcf-45fc-b729-5f191afc1df2","type":"BasicTickFormatter"},{"attributes":{"dimension":1,"plot":{"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"},"ticker":{"id":"f0c83c1b-2a26-4656-b829-5a92789e11a5","type":"BasicTicker"}},"id":"8e2db434-baad-41f7-8674-5fdccd500ccb","type":"Grid"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"b2879b79-660b-43f5-b0c3-45fd5e61f1cd","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"2b22a067-ed07-4a02-8ba0-352489ff27d8","type":"Ellipse"},"selection_glyph":null},"id":"4d3a2000-e1db-4c4c-b01a-400af5375dcf","type":"GlyphRenderer"},{"attributes":{"below":[{"id":"3f7f9fcd-06ed-4a77-bc40-8fd602d69728","type":"LinearAxis"}],"left":[{"id":"4caf1788-b66d-4e4c-a95f-fbd78e5b428a","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"3f7f9fcd-06ed-4a77-bc40-8fd602d69728","type":"LinearAxis"},{"id":"015ef632-fa70-4c59-a322-f8920cffdf98","type":"Grid"},{"id":"4caf1788-b66d-4e4c-a95f-fbd78e5b428a","type":"LinearAxis"},{"id":"d7926404-3887-4e0c-a411-523a5317ad3f","type":"Grid"},{"id":"4ca50640-cae0-438e-8ac7-4d9428cd4d1d","type":"GlyphRenderer"},{"id":"6ccafb0e-2cde-4337-8acb-7a4f50850643","type":"GlyphRenderer"}],"title":{"id":"b6b9cf89-3bf2-4e81-be67-4a8359988273","type":"Title"},"tool_events":{"id":"fd62c676-24a0-435a-928c-1c23746f2a20","type":"ToolEvents"},"toolbar":{"id":"ae4a4fe7-2f28-4c25-ba09-5231a4b447f6","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"634ce2e6-2373-4b83-9455-e4086ecb6e2d","type":"DataRange1d"},"x_scale":{"id":"b03cf740-a9b9-4160-8ae7-ab62f5d06257","type":"LinearScale"},"y_range":{"id":"979b6af0-ee19-499b-b2fd-c98a147f8e1e","type":"DataRange1d"},"y_scale":{"id":"876bc77e-a72c-488d-b4f0-dd698bc1260a","type":"LinearScale"}},"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"},{"attributes":{"plot":{"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"}},"id":"54833670-14b6-4e18-9c04-121aea99bf1b","type":"PanTool"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s160"}},"id":"bc93af5a-a896-45a4-ab7b-179f5764aee8","type":"Circle"},{"attributes":{},"id":"97b477c6-8f46-4693-a8f6-99652262028b","type":"LinearScale"},{"attributes":{"dimension":1,"plot":{"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"},"ticker":{"id":"a3aacc53-e64e-4054-9cc5-3dd7cb904b82","type":"BasicTicker"}},"id":"a9896d84-2ee7-48fc-ad71-18a22511d29e","type":"Grid"},{"attributes":{"plot":{"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"},"ticker":{"id":"79402af0-02ad-42d9-b6a6-23e6dd7af4d6","type":"BasicTicker"}},"id":"539f5e5e-9042-446c-b3ed-2bd94382a474","type":"Grid"},{"attributes":{},"id":"f0c83c1b-2a26-4656-b829-5a92789e11a5","type":"BasicTicker"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s500_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s160_sig","units":"data"},"x":{"field":"s160"},"y":{"field":"s500"}},"id":"2b22a067-ed07-4a02-8ba0-352489ff27d8","type":"Ellipse"},{"attributes":{},"id":"c37c1f20-3201-48a5-8d48-671a1a320289","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"}},"id":"9e65884f-0d9f-40af-b1c7-b63282181844","type":"PanTool"},{"attributes":{"axis_label":"350","formatter":{"id":"d2228d51-e85b-4d76-af83-815a482ce795","type":"BasicTickFormatter"},"plot":{"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"},"ticker":{"id":"a3aacc53-e64e-4054-9cc5-3dd7cb904b82","type":"BasicTicker"}},"id":"7923a2e6-a71a-42e6-a43a-9d06e91dc8e2","type":"LinearAxis"},{"attributes":{},"id":"df36e5e0-6f1a-46e9-b7ae-a1c3f7c1b86e","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s350"}},"id":"0c1367d3-ef87-49ad-b4e2-7b8e2b33259b","type":"Circle"},{"attributes":{"axis_label":"350","formatter":{"id":"8f9a9be7-91c9-4f71-93a7-3b7267ee79e8","type":"BasicTickFormatter"},"plot":{"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"},"ticker":{"id":"3c9be8f4-590a-4ea4-a812-7d0d96456518","type":"BasicTicker"}},"id":"bf39df54-0aad-4fff-9a5b-5c90b6f93353","type":"LinearAxis"},{"attributes":{},"id":"a3aacc53-e64e-4054-9cc5-3dd7cb904b82","type":"BasicTicker"},{"attributes":{"formatter":{"id":"97bf456f-15c6-49de-a62e-c586856dd9a0","type":"BasicTickFormatter"},"plot":{"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"},"ticker":{"id":"34c5a522-984d-456f-b6b9-ad24c3604f62","type":"BasicTicker"}},"id":"8ef5a998-1ba0-4a2f-91cc-c6065c655d24","type":"LinearAxis"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"8a2e3228-8300-4d26-ab27-977932be3379","type":"HoverTool"},{"id":"b142f931-ac7b-4a20-811b-dfdbcfd16db7","type":"PanTool"},{"id":"894cc31d-0a96-40be-b908-5eaac2f54e37","type":"WheelZoomTool"}]},"id":"9d77b76f-bc21-4c67-a17a-f814cd71b006","type":"Toolbar"},{"attributes":{"plot":{"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"},"ticker":{"id":"6fdb7d80-9036-4d6a-8cf3-195280571dfc","type":"BasicTicker"}},"id":"bafe0af8-ab71-4378-bfa7-bcd30859730d","type":"Grid"},{"attributes":{},"id":"34c5a522-984d-456f-b6b9-ad24c3604f62","type":"BasicTicker"},{"attributes":{"plot":{"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"},"ticker":{"id":"dbce3ba8-9838-4f2c-9bfc-a7dce93b385a","type":"BasicTicker"}},"id":"8d95f2d4-0112-412b-b45f-b36b04c8f4c0","type":"Grid"},{"attributes":{"axis_label":"160","formatter":{"id":"aaf761d3-9fcf-45fc-b729-5f191afc1df2","type":"BasicTickFormatter"},"plot":{"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"},"ticker":{"id":"f0c83c1b-2a26-4656-b829-5a92789e11a5","type":"BasicTicker"}},"id":"bbfdb492-995f-445c-b324-85177cde3282","type":"LinearAxis"},{"attributes":{"plot":{"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"},"ticker":{"id":"56244450-e96a-4d40-bcb3-a88e55732a4d","type":"BasicTicker"}},"id":"cb6ce00b-dce5-4786-9d57-3baefe0b61c4","type":"Grid"},{"attributes":{},"id":"1ceb1c75-7758-41e0-af41-427c1775661c","type":"ToolEvents"},{"attributes":{},"id":"79402af0-02ad-42d9-b6a6-23e6dd7af4d6","type":"BasicTicker"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s160"}},"id":"34f7c750-284d-47d7-a062-73d8f1900e8f","type":"Circle"},{"attributes":{"plot":{"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"},"ticker":{"id":"34c5a522-984d-456f-b6b9-ad24c3604f62","type":"BasicTicker"}},"id":"a17aaa19-1f25-4fe0-9fa1-41cab59f35a8","type":"Grid"},{"attributes":{},"id":"9f8395e9-840a-4987-99e3-0f1bc206c295","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s250_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s100_sig","units":"data"},"x":{"field":"s100"},"y":{"field":"s250"}},"id":"88f2b06f-87bc-4c12-979c-12bc82a3a58b","type":"Ellipse"},{"attributes":{"callback":null,"plot":{"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"c00f8e37-094d-4f2d-a2e3-c5bbce3366b7","type":"HoverTool"},{"attributes":{"callback":null},"id":"e323f645-4aa3-4e2e-b501-182ea1149fc4","type":"DataRange1d"},{"attributes":{"dimension":1,"plot":{"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"},"ticker":{"id":"3c9be8f4-590a-4ea4-a812-7d0d96456518","type":"BasicTicker"}},"id":"014fbf76-0457-4239-a598-dbbeb2eb4cae","type":"Grid"},{"attributes":{},"id":"3c9be8f4-590a-4ea4-a812-7d0d96456518","type":"BasicTicker"},{"attributes":{},"id":"51028ad8-2539-4642-9232-5c90f404e590","type":"ToolEvents"},{"attributes":{"formatter":{"id":"bb8b5716-1a9b-43b0-b348-1a5a3bd332fe","type":"BasicTickFormatter"},"plot":{"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"},"ticker":{"id":"81e78520-4de1-4153-9e36-ef369a1d9947","type":"BasicTicker"}},"id":"3f7f9fcd-06ed-4a77-bc40-8fd602d69728","type":"LinearAxis"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s350_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s160_sig","units":"data"},"x":{"field":"s160"},"y":{"field":"s350"}},"id":"d18b5925-2e01-43a1-9760-0d0dacda7514","type":"Ellipse"},{"attributes":{"callback":null},"id":"979b6af0-ee19-499b-b2fd-c98a147f8e1e","type":"DataRange1d"},{"attributes":{},"id":"876bc77e-a72c-488d-b4f0-dd698bc1260a","type":"LinearScale"},{"attributes":{"dimension":1,"plot":{"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"},"ticker":{"id":"ebdfc1e9-17ec-4dab-bbb4-a72b8e138a32","type":"BasicTicker"}},"id":"b031b85d-8908-41ab-9003-fde9acbc5ba9","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s350"}},"id":"928826d4-c025-4127-acce-b52e52e0c9de","type":"Circle"},{"attributes":{},"id":"bb9d5848-9500-4c31-baa4-3793f22f5444","type":"BasicTicker"},{"attributes":{"children":[{"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"},{"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"}]},"id":"2a3a2b93-7d14-4083-9113-7d42c786f8e4","type":"Row"},{"attributes":{"axis_label":"500","formatter":{"id":"1ba53787-3f37-462b-bc8f-dacf5c8739d1","type":"BasicTickFormatter"},"plot":{"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"},"ticker":{"id":"ebdfc1e9-17ec-4dab-bbb4-a72b8e138a32","type":"BasicTicker"}},"id":"74d18ff7-1636-419d-ad99-9a91ef7b74df","type":"LinearAxis"},{"attributes":{},"id":"4cc0586d-a8b4-40ad-a724-0bfb136a7c24","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s350"}},"id":"f7322ff4-23e9-4815-846a-76e37678fbe9","type":"Circle"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"1279fe26-0aa2-4e57-894a-10d645cd556a","type":"HoverTool"},{"id":"6b163998-c759-4187-b40a-24abb3a31ecc","type":"PanTool"},{"id":"19f426b2-e182-42d1-9777-e6a865d3e7ea","type":"WheelZoomTool"}]},"id":"e3ad4970-0b4e-48e8-b256-2bd7132cdb42","type":"Toolbar"},{"attributes":{},"id":"41135f7e-9683-4fef-8ad4-d74c447ad71d","type":"LinearScale"},{"attributes":{},"id":"789e926f-c717-4b1b-91e8-f9e6bb971133","type":"LinearScale"},{"attributes":{},"id":"8ed79270-82bc-4651-9ce8-c578d1eb7c4a","type":"BasicTicker"},{"attributes":{},"id":"56244450-e96a-4d40-bcb3-a88e55732a4d","type":"BasicTicker"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s250"},"y":{"field":"s500"}},"id":"a74315a0-d424-4065-911e-134e0f67eefd","type":"Circle"},{"attributes":{"plot":{"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"}},"id":"19f426b2-e182-42d1-9777-e6a865d3e7ea","type":"WheelZoomTool"},{"attributes":{"axis_label":"500","formatter":{"id":"c37c1f20-3201-48a5-8d48-671a1a320289","type":"BasicTickFormatter"},"plot":{"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"},"ticker":{"id":"8ed79270-82bc-4651-9ce8-c578d1eb7c4a","type":"BasicTicker"}},"id":"a2869d56-bec8-4533-8e40-fbd68e64eebe","type":"LinearAxis"},{"attributes":{},"id":"81e78520-4de1-4153-9e36-ef369a1d9947","type":"BasicTicker"},{"attributes":{"axis_label":"250","formatter":{"id":"ba2b7f95-c149-4577-b56d-8b5900a43d5e","type":"BasicTickFormatter"},"plot":{"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"},"ticker":{"id":"187f431b-c33f-4291-bc1f-a17e118ca3a1","type":"BasicTicker"}},"id":"4caf1788-b66d-4e4c-a95f-fbd78e5b428a","type":"LinearAxis"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"668fcbbb-886f-47be-9949-f5aeeff8c20c","type":"HoverTool"},{"id":"805c13aa-82e0-43f0-af43-d875a0fc2ff8","type":"PanTool"},{"id":"bead959a-d423-4ac5-8194-5e886ef368b9","type":"WheelZoomTool"}]},"id":"405644fd-be58-42ce-b311-6ef262c3d829","type":"Toolbar"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"84eeabf6-7ace-4074-b18e-d291cc347fe6","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"1d263216-33dd-4244-9a0d-d9a14a89fc51","type":"Ellipse"},"selection_glyph":null},"id":"667a2395-c874-49fe-a01e-779ffd6e8b83","type":"GlyphRenderer"},{"attributes":{"children":[{"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"},{"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"},{"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"},{"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"}]},"id":"48a430d0-8b50-4603-a235-2b9b444e1642","type":"Row"},{"attributes":{},"id":"b03cf740-a9b9-4160-8ae7-ab62f5d06257","type":"LinearScale"},{"attributes":{},"id":"ebdfc1e9-17ec-4dab-bbb4-a72b8e138a32","type":"BasicTicker"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s500_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s160_sig","units":"data"},"x":{"field":"s160"},"y":{"field":"s500"}},"id":"b2879b79-660b-43f5-b0c3-45fd5e61f1cd","type":"Ellipse"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s250"},"y":{"field":"s500"}},"id":"755d85ac-f96b-45a8-803b-61432cf31c2d","type":"Circle"},{"attributes":{"dimension":1,"plot":{"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"},"ticker":{"id":"8ed79270-82bc-4651-9ce8-c578d1eb7c4a","type":"BasicTicker"}},"id":"e3a9d9e1-27cb-49f8-8a76-40940aa26e97","type":"Grid"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"3e6dd210-3abd-4ed6-b48e-862a96bdefdc","type":"HoverTool"},{"id":"ae667f56-145a-4f62-bf6b-575c2ee74dac","type":"PanTool"},{"id":"9d654c6d-885a-44e9-8166-bbd588a0b537","type":"WheelZoomTool"}]},"id":"ba1dc6ec-1148-4dd6-9e3b-b3ff06316456","type":"Toolbar"},{"attributes":{},"id":"7ac80bdc-6884-4eee-bb77-e87d2cbb36ba","type":"LinearScale"},{"attributes":{"sizing_mode":"scale_width","toolbar_location":"above","tools":[{"id":"c00f8e37-094d-4f2d-a2e3-c5bbce3366b7","type":"HoverTool"},{"id":"9e65884f-0d9f-40af-b1c7-b63282181844","type":"PanTool"},{"id":"45960b30-15e4-4ab0-8626-7da17e72d4be","type":"WheelZoomTool"},{"id":"b9c12e7e-e0a9-49c8-b0c1-d3f713e90e6f","type":"HoverTool"},{"id":"01da0dee-b1cd-4ca7-9791-20bfc3d0b36f","type":"PanTool"},{"id":"7bf358d3-edd2-4422-86b7-a48a1589d436","type":"WheelZoomTool"},{"id":"8a2e3228-8300-4d26-ab27-977932be3379","type":"HoverTool"},{"id":"b142f931-ac7b-4a20-811b-dfdbcfd16db7","type":"PanTool"},{"id":"894cc31d-0a96-40be-b908-5eaac2f54e37","type":"WheelZoomTool"},{"id":"55c2cd9d-023b-4d60-9177-60de91ad80c6","type":"HoverTool"},{"id":"54833670-14b6-4e18-9c04-121aea99bf1b","type":"PanTool"},{"id":"d6877296-3d19-40f7-bef2-373769d6a892","type":"WheelZoomTool"},{"id":"e99c3653-cc5b-471e-8929-15d1b4b5b304","type":"HoverTool"},{"id":"58026c32-58f8-4446-b87a-ced90e71b728","type":"PanTool"},{"id":"2b983bb2-58a1-4395-86a4-7913ecc7a309","type":"WheelZoomTool"},{"id":"507e1f95-6f50-496d-bc45-3a2091c0a9e0","type":"HoverTool"},{"id":"2df988e0-2767-4f6a-bd30-39ee92c90f83","type":"PanTool"},{"id":"b555b496-19a0-45f0-8acf-833eead60288","type":"WheelZoomTool"},{"id":"289ae496-1cf6-46e2-bbf3-6ac0dbe8958b","type":"HoverTool"},{"id":"e612b153-ca01-44ff-8cd7-6157b4554cf9","type":"PanTool"},{"id":"715eb658-b2cc-4885-8ed2-d3a762e353fd","type":"WheelZoomTool"},{"id":"3e6dd210-3abd-4ed6-b48e-862a96bdefdc","type":"HoverTool"},{"id":"ae667f56-145a-4f62-bf6b-575c2ee74dac","type":"PanTool"},{"id":"9d654c6d-885a-44e9-8166-bbd588a0b537","type":"WheelZoomTool"},{"id":"668fcbbb-886f-47be-9949-f5aeeff8c20c","type":"HoverTool"},{"id":"805c13aa-82e0-43f0-af43-d875a0fc2ff8","type":"PanTool"},{"id":"bead959a-d423-4ac5-8194-5e886ef368b9","type":"WheelZoomTool"},{"id":"1279fe26-0aa2-4e57-894a-10d645cd556a","type":"HoverTool"},{"id":"6b163998-c759-4187-b40a-24abb3a31ecc","type":"PanTool"},{"id":"19f426b2-e182-42d1-9777-e6a865d3e7ea","type":"WheelZoomTool"}]},"id":"dee0a98e-ce16-406f-bfbb-8e371d292b24","type":"ToolbarBox"},{"attributes":{"plot":{"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"}},"id":"9d654c6d-885a-44e9-8166-bbd588a0b537","type":"WheelZoomTool"},{"attributes":{"dimension":1,"plot":{"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"},"ticker":{"id":"f2a93f54-4dda-4cea-ad02-81549f35f0b1","type":"BasicTicker"}},"id":"0500b553-4c3f-4636-806f-09d88cd33610","type":"Grid"},{"attributes":{"plot":{"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"},"ticker":{"id":"bb9d5848-9500-4c31-baa4-3793f22f5444","type":"BasicTicker"}},"id":"452d2b25-f7ae-4917-9057-3b47cbf49d32","type":"Grid"},{"attributes":{},"id":"5aa57fce-530e-4d68-acca-8120e0166f2b","type":"LinearScale"},{"attributes":{},"id":"a72cc406-426a-4b7f-aed5-fa411189af99","type":"LinearScale"},{"attributes":{},"id":"756e1d5f-bc86-4941-a25f-a544f2bee2c5","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"}},"id":"ae667f56-145a-4f62-bf6b-575c2ee74dac","type":"PanTool"},{"attributes":{},"id":"acce6d68-3c1e-4c78-b1e7-a48fd344bdb5","type":"ToolEvents"},{"attributes":{"axis_label":"160","formatter":{"id":"756e1d5f-bc86-4941-a25f-a544f2bee2c5","type":"BasicTickFormatter"},"plot":{"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"},"ticker":{"id":"d4868853-0496-47b2-8f38-d213e272a141","type":"BasicTicker"}},"id":"188bdca8-f731-4297-b46a-53a9f19269d5","type":"LinearAxis"},{"attributes":{"children":[{"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"},{"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"},{"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"}]},"id":"e215e045-5e17-43c9-a655-b3269a8781d0","type":"Row"},{"attributes":{},"id":"9d0a4df5-b6e0-4429-9960-124e6be2dfed","type":"ToolEvents"},{"attributes":{"axis_label":"250","formatter":{"id":"25d72997-0843-4eb3-853f-4ed0137322bd","type":"BasicTickFormatter"},"plot":{"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"},"ticker":{"id":"bb9d5848-9500-4c31-baa4-3793f22f5444","type":"BasicTicker"}},"id":"0440f4e7-d380-416c-85fa-c091d9db6a19","type":"LinearAxis"},{"attributes":{},"id":"24332c23-f3dc-46c5-914e-060e81adec10","type":"BasicTickFormatter"},{"attributes":{"formatter":{"id":"8efa1df3-f44c-4b6e-b454-b55b3efcce00","type":"BasicTickFormatter"},"plot":{"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"},"ticker":{"id":"56244450-e96a-4d40-bcb3-a88e55732a4d","type":"BasicTicker"}},"id":"c0d0cf17-4e26-4e06-aa74-2ef2cb582536","type":"LinearAxis"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"65e80489-3d81-44a6-b98f-768ec0b243e8","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"d18b5925-2e01-43a1-9760-0d0dacda7514","type":"Ellipse"},"selection_glyph":null},"id":"7cb3b8ad-b2b8-48de-8e5a-2e7bf410e2b6","type":"GlyphRenderer"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"bce8499a-8e8f-4487-8ba4-b9a167e2be99","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"180d4deb-1e0f-4067-bf77-680cfdb680d8","type":"Ellipse"},"selection_glyph":null},"id":"a2888eb8-fd4b-494b-8e36-b62979463771","type":"GlyphRenderer"},{"attributes":{},"id":"d4868853-0496-47b2-8f38-d213e272a141","type":"BasicTicker"},{"attributes":{"below":[{"id":"dd42dd3f-3f4a-4a5a-87ab-ad3745dd33cf","type":"LinearAxis"}],"left":[{"id":"1f61f165-0141-4053-bb4c-0c904f90ab6d","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"dd42dd3f-3f4a-4a5a-87ab-ad3745dd33cf","type":"LinearAxis"},{"id":"e861e2ed-2412-46af-9c96-c9b79a4e0b9a","type":"Grid"},{"id":"1f61f165-0141-4053-bb4c-0c904f90ab6d","type":"LinearAxis"},{"id":"ee1baea0-ea42-46ab-bb7c-49a00ac30b5c","type":"Grid"},{"id":"cd611097-0ed8-4072-b66f-248dbbfee5ce","type":"GlyphRenderer"},{"id":"343b56bd-8023-44e4-8f45-22d89b270417","type":"GlyphRenderer"}],"title":{"id":"816ff51e-a4cd-4460-b88e-e2cfdf031ac9","type":"Title"},"tool_events":{"id":"8363c0ce-9521-4ffd-b92e-2852a3e1c9f7","type":"ToolEvents"},"toolbar":{"id":"38341d89-ba64-4063-8d69-e00b5e9eb758","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"634ce2e6-2373-4b83-9455-e4086ecb6e2d","type":"DataRange1d"},"x_scale":{"id":"06079db0-c657-4f1e-a52e-4d200140d39e","type":"LinearScale"},"y_range":{"id":"b95e7a6d-dce0-4a77-8d6b-737b63bce58c","type":"DataRange1d"},"y_scale":{"id":"2950cdb6-8fb9-4b76-bfb2-3e6739d5c7af","type":"LinearScale"}},"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"dbce3ba8-9838-4f2c-9bfc-a7dce93b385a","type":"BasicTicker"},{"attributes":{"callback":null,"plot":{"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"b9c12e7e-e0a9-49c8-b0c1-d3f713e90e6f","type":"HoverTool"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"729bb792-0d8a-481f-9133-112e6a23da1e","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"994d7fb8-3cd0-4196-81de-9e2b311246f0","type":"Circle"},"selection_glyph":null},"id":"4ca50640-cae0-438e-8ac7-4d9428cd4d1d","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"18405a3a-e180-401f-9b8a-d079cb31cbcf","type":"Title"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s350_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s160_sig","units":"data"},"x":{"field":"s160"},"y":{"field":"s350"}},"id":"65e80489-3d81-44a6-b98f-768ec0b243e8","type":"Ellipse"},{"attributes":{"below":[{"id":"6967aa5c-cf5d-4516-9e22-0619f059f010","type":"LinearAxis"}],"left":[{"id":"bf39df54-0aad-4fff-9a5b-5c90b6f93353","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"6967aa5c-cf5d-4516-9e22-0619f059f010","type":"LinearAxis"},{"id":"539f5e5e-9042-446c-b3ed-2bd94382a474","type":"Grid"},{"id":"bf39df54-0aad-4fff-9a5b-5c90b6f93353","type":"LinearAxis"},{"id":"014fbf76-0457-4239-a598-dbbeb2eb4cae","type":"Grid"},{"id":"7e73aa10-2836-4792-a30b-37a1bc7218de","type":"GlyphRenderer"},{"id":"ab705a1e-0942-44f8-bcb2-5fb7d3a4618c","type":"GlyphRenderer"}],"title":{"id":"a550a567-4ef8-4607-91f3-c340e6a24a66","type":"Title"},"tool_events":{"id":"182f4a8e-0fd9-4b59-ba61-03388d6d7bab","type":"ToolEvents"},"toolbar":{"id":"93fa73a8-acc9-4c24-a099-107935226bb9","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"979b6af0-ee19-499b-b2fd-c98a147f8e1e","type":"DataRange1d"},"x_scale":{"id":"da295052-d734-4382-9ebd-ab5b18733c69","type":"LinearScale"},"y_range":{"id":"b55b7c69-bde4-42c9-9784-634fbd3b2d83","type":"DataRange1d"},"y_scale":{"id":"b5681ebb-fd9d-499c-972c-18a89d34dd5b","type":"LinearScale"}},"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"},{"attributes":{"children":[{"id":"4cfbc8e2-bcb2-4df3-9399-3bfd6c5377d8","subtype":"Figure","type":"Plot"}]},"id":"b899accd-db08-414b-951c-a3250fcd89f3","type":"Row"},{"attributes":{"plot":{"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"}},"id":"58026c32-58f8-4446-b87a-ced90e71b728","type":"PanTool"},{"attributes":{"plot":{"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"}},"id":"bead959a-d423-4ac5-8194-5e886ef368b9","type":"WheelZoomTool"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"b9c12e7e-e0a9-49c8-b0c1-d3f713e90e6f","type":"HoverTool"},{"id":"01da0dee-b1cd-4ca7-9791-20bfc3d0b36f","type":"PanTool"},{"id":"7bf358d3-edd2-4422-86b7-a48a1589d436","type":"WheelZoomTool"}]},"id":"ae4a4fe7-2f28-4c25-ba09-5231a4b447f6","type":"Toolbar"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"4467d356-fb58-4528-bd73-3f7bcb99d072","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"a86e87d9-a087-42c8-b726-6cd522a7be3e","type":"Ellipse"},"selection_glyph":null},"id":"b1f50e0e-fc3e-4247-a041-c12bcdffe839","type":"GlyphRenderer"},{"attributes":{},"id":"182f4a8e-0fd9-4b59-ba61-03388d6d7bab","type":"ToolEvents"},{"attributes":{},"id":"0646a364-5f22-40fc-bfaa-51ed21d9c002","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s500"}},"id":"2fea8be2-d0f6-43c3-b390-dcd67fe37cb2","type":"Circle"},{"attributes":{"plot":{"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"}},"id":"805c13aa-82e0-43f0-af43-d875a0fc2ff8","type":"PanTool"},{"attributes":{"plot":null,"text":""},"id":"b6b9cf89-3bf2-4e81-be67-4a8359988273","type":"Title"},{"attributes":{"children":[{"id":"dee0a98e-ce16-406f-bfbb-8e371d292b24","type":"ToolbarBox"},{"id":"a0e8e9d0-9884-4109-b11d-b75af313202e","type":"Column"}]},"id":"a3214aa3-a920-4d12-8a1a-4e1c49c0692b","type":"Column"},{"attributes":{"dimension":1,"plot":{"id":"b7c8916e-3fda-4dc1-8701-b5c29af241da","subtype":"Figure","type":"Plot"},"ticker":{"id":"187f431b-c33f-4291-bc1f-a17e118ca3a1","type":"BasicTicker"}},"id":"d7926404-3887-4e0c-a411-523a5317ad3f","type":"Grid"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s160_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s100_sig","units":"data"},"x":{"field":"s100"},"y":{"field":"s160"}},"id":"4467d356-fb58-4528-bd73-3f7bcb99d072","type":"Ellipse"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"b7a9ee09-b9fb-4f74-8878-ef102d40bcb8","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"07960b31-02f6-4dbb-9fb0-73c11613f203","type":"Circle"},"selection_glyph":null},"id":"7e73aa10-2836-4792-a30b-37a1bc7218de","type":"GlyphRenderer"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s350"},"y":{"field":"s500"}},"id":"9b4219a7-1e2e-47a9-821b-7bb6a134f1e0","type":"Circle"},{"attributes":{"plot":{"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"}},"id":"6b163998-c759-4187-b40a-24abb3a31ecc","type":"PanTool"},{"attributes":{},"id":"d2228d51-e85b-4d76-af83-815a482ce795","type":"BasicTickFormatter"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s160_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s100_sig","units":"data"},"x":{"field":"s100"},"y":{"field":"s160"}},"id":"a86e87d9-a087-42c8-b726-6cd522a7be3e","type":"Ellipse"},{"attributes":{},"id":"c230b6ac-d65f-4e34-a389-0affe46f7da3","type":"LinearScale"},{"attributes":{},"id":"fd62c676-24a0-435a-928c-1c23746f2a20","type":"ToolEvents"},{"attributes":{"callback":null,"plot":{"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"8a2e3228-8300-4d26-ab27-977932be3379","type":"HoverTool"},{"attributes":{},"id":"73795bdb-aecc-4022-8d37-3dab7ead29a5","type":"ToolEvents"},{"attributes":{"callback":null,"plot":{"id":"501a8099-e390-4c66-a6ce-db86421e3368","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"3e6dd210-3abd-4ed6-b48e-862a96bdefdc","type":"HoverTool"},{"attributes":{"callback":null},"id":"634ce2e6-2373-4b83-9455-e4086ecb6e2d","type":"DataRange1d"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"f4287135-c212-4c50-bede-35ae1d8edf77","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"65e0de96-1f6f-4bfc-b1e8-ec3fb9798b5f","type":"Ellipse"},"selection_glyph":null},"id":"312ce050-c29c-40e6-9712-a700a9fe2128","type":"GlyphRenderer"},{"attributes":{"plot":null,"text":""},"id":"71398cb4-0330-4a4a-9f0e-242a5f86c014","type":"Title"},{"attributes":{},"id":"f2a93f54-4dda-4cea-ad02-81549f35f0b1","type":"BasicTicker"},{"attributes":{},"id":"6a30d4ca-a0f0-4b59-b0ce-7b0d80e87ac5","type":"BasicTickFormatter"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s500_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s350_sig","units":"data"},"x":{"field":"s350"},"y":{"field":"s500"}},"id":"180d4deb-1e0f-4067-bf77-680cfdb680d8","type":"Ellipse"},{"attributes":{"axis_label":"350","formatter":{"id":"aad97e69-c12a-4684-91c9-2970247ec66b","type":"BasicTickFormatter"},"plot":{"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"},"ticker":{"id":"f2a93f54-4dda-4cea-ad02-81549f35f0b1","type":"BasicTicker"}},"id":"932375b6-9de9-46db-b42b-09e1d87d7f42","type":"LinearAxis"},{"attributes":{"below":[{"id":"d32c63c7-2e09-4a46-b1a3-3f93280abe66","type":"LinearAxis"}],"left":[{"id":"7923a2e6-a71a-42e6-a43a-9d06e91dc8e2","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"d32c63c7-2e09-4a46-b1a3-3f93280abe66","type":"LinearAxis"},{"id":"bafe0af8-ab71-4378-bfa7-bcd30859730d","type":"Grid"},{"id":"7923a2e6-a71a-42e6-a43a-9d06e91dc8e2","type":"LinearAxis"},{"id":"a9896d84-2ee7-48fc-ad71-18a22511d29e","type":"Grid"},{"id":"e665d77b-6c73-42a1-ade4-f97465a0025d","type":"GlyphRenderer"},{"id":"312ce050-c29c-40e6-9712-a700a9fe2128","type":"GlyphRenderer"}],"title":{"id":"0ee81df9-da11-49d0-a713-3e2b74b434e7","type":"Title"},"tool_events":{"id":"8842d08f-678d-46cd-88be-fc2b5b3cdedf","type":"ToolEvents"},"toolbar":{"id":"d74463a4-e53d-47b3-bec6-903cd6cfd13f","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"634ce2e6-2373-4b83-9455-e4086ecb6e2d","type":"DataRange1d"},"x_scale":{"id":"d5b9b409-41f4-4d25-b3cf-91799c259cb7","type":"LinearScale"},"y_range":{"id":"b55b7c69-bde4-42c9-9784-634fbd3b2d83","type":"DataRange1d"},"y_scale":{"id":"c230b6ac-d65f-4e34-a389-0affe46f7da3","type":"LinearScale"}},"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"},{"attributes":{"plot":{"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"}},"id":"e612b153-ca01-44ff-8cd7-6157b4554cf9","type":"PanTool"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s250_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s100_sig","units":"data"},"x":{"field":"s100"},"y":{"field":"s250"}},"id":"f7fc0d49-dac4-479e-b45e-2b8a762a1f97","type":"Ellipse"},{"attributes":{},"id":"9eac1245-8848-424e-a454-14156a0501a7","type":"BasicTicker"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"c00f8e37-094d-4f2d-a2e3-c5bbce3366b7","type":"HoverTool"},{"id":"9e65884f-0d9f-40af-b1c7-b63282181844","type":"PanTool"},{"id":"45960b30-15e4-4ab0-8626-7da17e72d4be","type":"WheelZoomTool"}]},"id":"4f1a2f95-db5b-4193-88c5-82f57dcc245a","type":"Toolbar"},{"attributes":{"callback":null,"plot":{"id":"ab05eb26-a12b-460d-a395-dc3b0756bf82","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"1279fe26-0aa2-4e57-894a-10d645cd556a","type":"HoverTool"},{"attributes":{},"id":"da295052-d734-4382-9ebd-ab5b18733c69","type":"LinearScale"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"6c6071eb-67bd-4b29-8901-25ef7caeedb3","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"6975b935-27ab-4346-8500-f29a408d1879","type":"Ellipse"},"selection_glyph":null},"id":"343b56bd-8023-44e4-8f45-22d89b270417","type":"GlyphRenderer"},{"attributes":{"children":[{"id":"b899accd-db08-414b-951c-a3250fcd89f3","type":"Row"},{"id":"2a3a2b93-7d14-4083-9113-7d42c786f8e4","type":"Row"},{"id":"e215e045-5e17-43c9-a655-b3269a8781d0","type":"Row"},{"id":"48a430d0-8b50-4603-a235-2b9b444e1642","type":"Row"}]},"id":"a0e8e9d0-9884-4109-b11d-b75af313202e","type":"Column"},{"attributes":{},"id":"bb8b5716-1a9b-43b0-b348-1a5a3bd332fe","type":"BasicTickFormatter"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s250"},"y":{"field":"s350"}},"id":"07960b31-02f6-4dbb-9fb0-73c11613f203","type":"Circle"},{"attributes":{"axis_label":"500","formatter":{"id":"cd87c64b-ea9d-4e88-88a5-8314fe07545b","type":"BasicTickFormatter"},"plot":{"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"},"ticker":{"id":"9eac1245-8848-424e-a454-14156a0501a7","type":"BasicTicker"}},"id":"1f61f165-0141-4053-bb4c-0c904f90ab6d","type":"LinearAxis"},{"attributes":{},"id":"fcef4188-dd5b-4897-935f-07e49c2ace9a","type":"BasicTickFormatter"},{"attributes":{},"id":"ade24f6b-ca2f-45c1-8e49-3bbe2c633129","type":"ToolEvents"},{"attributes":{"dimension":1,"plot":{"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"},"ticker":{"id":"9eac1245-8848-424e-a454-14156a0501a7","type":"BasicTicker"}},"id":"ee1baea0-ea42-46ab-bb7c-49a00ac30b5c","type":"Grid"},{"attributes":{"callback":null,"plot":{"id":"1220ff55-db08-4144-8f86-9b460c4157c1","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"e99c3653-cc5b-471e-8929-15d1b4b5b304","type":"HoverTool"},{"attributes":{"callback":null,"plot":{"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"668fcbbb-886f-47be-9949-f5aeeff8c20c","type":"HoverTool"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"f7fc0d49-dac4-479e-b45e-2b8a762a1f97","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"88f2b06f-87bc-4c12-979c-12bc82a3a58b","type":"Ellipse"},"selection_glyph":null},"id":"6ccafb0e-2cde-4337-8acb-7a4f50850643","type":"GlyphRenderer"},{"attributes":{"dimension":1,"plot":{"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"},"ticker":{"id":"cb479754-f225-4e5a-bfd1-9bb2e5b42577","type":"BasicTicker"}},"id":"8e50240c-9c3d-40ba-aab0-18d3fceb6012","type":"Grid"},{"attributes":{"callback":null,"plot":{"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"},"tooltips":[["SED","@desc"]]},"id":"289ae496-1cf6-46e2-bbf3-6ac0dbe8958b","type":"HoverTool"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"0c1367d3-ef87-49ad-b4e2-7b8e2b33259b","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"764d8e53-3ddb-41b1-9def-82320a6589d1","type":"Circle"},"selection_glyph":null},"id":"e665d77b-6c73-42a1-ade4-f97465a0025d","type":"GlyphRenderer"},{"attributes":{},"id":"ba2b7f95-c149-4577-b56d-8b5900a43d5e","type":"BasicTickFormatter"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s500_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s100_sig","units":"data"},"x":{"field":"s100"},"y":{"field":"s500"}},"id":"6975b935-27ab-4346-8500-f29a408d1879","type":"Ellipse"},{"attributes":{},"id":"cb479754-f225-4e5a-bfd1-9bb2e5b42577","type":"BasicTicker"},{"attributes":{},"id":"cd87c64b-ea9d-4e88-88a5-8314fe07545b","type":"BasicTickFormatter"},{"attributes":{"plot":{"id":"f588738b-c80b-4657-9cc2-0102ab4917e4","subtype":"Figure","type":"Plot"}},"id":"715eb658-b2cc-4885-8ed2-d3a762e353fd","type":"WheelZoomTool"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"9ee1923e-6cb7-4de7-b56a-547a34321efc","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"010f7657-4efa-4f87-be5e-fd0a7ef1b0b5","type":"Circle"},"selection_glyph":null},"id":"cd611097-0ed8-4072-b66f-248dbbfee5ce","type":"GlyphRenderer"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s500_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s100_sig","units":"data"},"x":{"field":"s100"},"y":{"field":"s500"}},"id":"6c6071eb-67bd-4b29-8901-25ef7caeedb3","type":"Ellipse"},{"attributes":{"callback":null},"id":"b55b7c69-bde4-42c9-9784-634fbd3b2d83","type":"DataRange1d"},{"attributes":{"below":[{"id":"c0d0cf17-4e26-4e06-aa74-2ef2cb582536","type":"LinearAxis"}],"left":[{"id":"9c3a4f9b-5c8e-4e77-b10d-e7bad75b8775","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"c0d0cf17-4e26-4e06-aa74-2ef2cb582536","type":"LinearAxis"},{"id":"cb6ce00b-dce5-4786-9d57-3baefe0b61c4","type":"Grid"},{"id":"9c3a4f9b-5c8e-4e77-b10d-e7bad75b8775","type":"LinearAxis"},{"id":"8e50240c-9c3d-40ba-aab0-18d3fceb6012","type":"Grid"},{"id":"540c45b6-f052-4934-a7bd-a92c34893f79","type":"GlyphRenderer"},{"id":"ef5062dc-5f3d-4ec4-94f1-2668acfc5016","type":"GlyphRenderer"}],"title":{"id":"c3ed148c-a6ad-4a28-ad01-f6ff5ec8de61","type":"Title"},"tool_events":{"id":"1ceb1c75-7758-41e0-af41-427c1775661c","type":"ToolEvents"},"toolbar":{"id":"9d77b76f-bc21-4c67-a17a-f814cd71b006","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"e323f645-4aa3-4e2e-b501-182ea1149fc4","type":"DataRange1d"},"x_scale":{"id":"97b477c6-8f46-4693-a8f6-99652262028b","type":"LinearScale"},"y_range":{"id":"979b6af0-ee19-499b-b2fd-c98a147f8e1e","type":"DataRange1d"},"y_scale":{"id":"789e926f-c717-4b1b-91e8-f9e6bb971133","type":"LinearScale"}},"id":"44171d81-0b4d-4501-a60f-80230215f7c6","subtype":"Figure","type":"Plot"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s350_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s250_sig","units":"data"},"x":{"field":"s250"},"y":{"field":"s350"}},"id":"023314ee-e260-4d78-9e70-70ac0a1b685a","type":"Ellipse"},{"attributes":{"formatter":{"id":"9f2f793a-2837-43f6-9688-413165b60c6a","type":"BasicTickFormatter"},"plot":{"id":"346d5261-7840-423c-abd6-40d9d8e569fd","subtype":"Figure","type":"Plot"},"ticker":{"id":"79402af0-02ad-42d9-b6a6-23e6dd7af4d6","type":"BasicTicker"}},"id":"6967aa5c-cf5d-4516-9e22-0619f059f010","type":"LinearAxis"},{"attributes":{"formatter":{"id":"25fd45a7-ce1d-447e-8a38-a67699d2c3ef","type":"BasicTickFormatter"},"plot":{"id":"b08797d1-58ff-4c1f-8a82-d3cf919f2994","subtype":"Figure","type":"Plot"},"ticker":{"id":"6fdb7d80-9036-4d6a-8cf3-195280571dfc","type":"BasicTicker"}},"id":"d32c63c7-2e09-4a46-b1a3-3f93280abe66","type":"LinearAxis"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"9b4219a7-1e2e-47a9-821b-7bb6a134f1e0","type":"Circle"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"da5814b8-edb8-4ad8-a866-cbf966f91cc4","type":"Circle"},"selection_glyph":null},"id":"f246bc83-a1ea-48bd-896c-e350a0e8c40a","type":"GlyphRenderer"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s500"}},"id":"010f7657-4efa-4f87-be5e-fd0a7ef1b0b5","type":"Circle"},{"attributes":{},"id":"8842d08f-678d-46cd-88be-fc2b5b3cdedf","type":"ToolEvents"},{"attributes":{"plot":null,"text":""},"id":"a550a567-4ef8-4607-91f3-c340e6a24a66","type":"Title"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s500_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s350_sig","units":"data"},"x":{"field":"s350"},"y":{"field":"s500"}},"id":"bce8499a-8e8f-4487-8ba4-b9a167e2be99","type":"Ellipse"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_scroll":"auto","active_tap":"auto","tools":[{"id":"55c2cd9d-023b-4d60-9177-60de91ad80c6","type":"HoverTool"},{"id":"54833670-14b6-4e18-9c04-121aea99bf1b","type":"PanTool"},{"id":"d6877296-3d19-40f7-bef2-373769d6a892","type":"WheelZoomTool"}]},"id":"d74463a4-e53d-47b3-bec6-903cd6cfd13f","type":"Toolbar"},{"attributes":{"plot":null,"text":""},"id":"816ff51e-a4cd-4460-b88e-e2cfdf031ac9","type":"Title"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"height":{"field":"s250_sig","units":"data"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"width":{"field":"s160_sig","units":"data"},"x":{"field":"s160"},"y":{"field":"s250"}},"id":"23f6af0e-cc88-4612-bdd5-d6ef9e27326d","type":"Ellipse"},{"attributes":{},"id":"8f9a9be7-91c9-4f71-93a7-3b7267ee79e8","type":"BasicTickFormatter"},{"attributes":{},"id":"d5b9b409-41f4-4d25-b3cf-91799c259cb7","type":"LinearScale"},{"attributes":{"fill_alpha":{"value":0.2},"fill_color":{"value":"navy"},"height":{"field":"s350_sig","units":"data"},"line_alpha":{"value":0.2},"line_color":{"value":"navy"},"width":{"field":"s250_sig","units":"data"},"x":{"field":"s250"},"y":{"field":"s350"}},"id":"cc32ee26-c1ba-4ee8-982b-e123d01ad9dd","type":"Ellipse"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s100"},"y":{"field":"s500"}},"id":"9ee1923e-6cb7-4de7-b56a-547a34321efc","type":"Circle"},{"attributes":{},"id":"9f2f793a-2837-43f6-9688-413165b60c6a","type":"BasicTickFormatter"},{"attributes":{},"id":"6fdb7d80-9036-4d6a-8cf3-195280571dfc","type":"BasicTicker"},{"attributes":{"data_source":{"id":"f1095f36-d304-464c-8ef5-a66233af7c65","type":"ColumnDataSource"},"glyph":{"id":"cc32ee26-c1ba-4ee8-982b-e123d01ad9dd","type":"Ellipse"},"hover_glyph":null,"muted_glyph":null,"nonselection_glyph":{"id":"023314ee-e260-4d78-9e70-70ac0a1b685a","type":"Ellipse"},"selection_glyph":null},"id":"ab705a1e-0942-44f8-bcb2-5fb7d3a4618c","type":"GlyphRenderer"},{"attributes":{"fill_alpha":{"value":0.0},"fill_color":{"value":"navy"},"line_alpha":{"value":0.0},"line_color":{"value":"navy"},"size":{"units":"screen","value":10},"x":{"field":"s160"},"y":{"field":"s250"}},"id":"8c5b58fe-fbcd-4ed2-a5fb-a3a8dae21f81","type":"Circle"},{"attributes":{"below":[{"id":"0440f4e7-d380-416c-85fa-c091d9db6a19","type":"LinearAxis"}],"left":[{"id":"a2869d56-bec8-4533-8e40-fbd68e64eebe","type":"LinearAxis"}],"plot_height":250,"plot_width":250,"renderers":[{"id":"0440f4e7-d380-416c-85fa-c091d9db6a19","type":"LinearAxis"},{"id":"452d2b25-f7ae-4917-9057-3b47cbf49d32","type":"Grid"},{"id":"a2869d56-bec8-4533-8e40-fbd68e64eebe","type":"LinearAxis"},{"id":"e3a9d9e1-27cb-49f8-8a76-40940aa26e97","type":"Grid"},{"id":"fb091e2e-48d0-4f2e-9216-361debfa28de","type":"GlyphRenderer"},{"id":"667a2395-c874-49fe-a01e-779ffd6e8b83","type":"GlyphRenderer"}],"title":{"id":"af2b0965-234f-40b1-908a-5e5962c4f0ae","type":"Title"},"tool_events":{"id":"acce6d68-3c1e-4c78-b1e7-a48fd344bdb5","type":"ToolEvents"},"toolbar":{"id":"405644fd-be58-42ce-b311-6ef262c3d829","type":"Toolbar"},"toolbar_location":null,"x_range":{"id":"979b6af0-ee19-499b-b2fd-c98a147f8e1e","type":"DataRange1d"},"x_scale":{"id":"5aa57fce-530e-4d68-acca-8120e0166f2b","type":"LinearScale"},"y_range":{"id":"b95e7a6d-dce0-4a77-8d6b-737b63bce58c","type":"DataRange1d"},"y_scale":{"id":"7ac80bdc-6884-4eee-bb77-e87d2cbb36ba","type":"LinearScale"}},"id":"7a5fab19-9963-4a08-9e2e-3ba9bcd12488","subtype":"Figure","type":"Plot"},{"attributes":{},"id":"1ba53787-3f37-462b-bc8f-dacf5c8739d1","type":"BasicTickFormatter"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#1f77b4"},"line_alpha":{"value":0.1},"line_color":{"value":"#1f77b4"},"size":{"units":"screen","value":10},"x":{"field":"s350"},"y":{"field":"s500"}},"id":"da5814b8-edb8-4ad8-a866-cbf966f91cc4","type":"Circle"}],"root_ids":["a3214aa3-a920-4d12-8a1a-4e1c49c0692b"]},"title":"Bokeh Application","version":"0.12.6"}}; var render_items = [{"docid":"71b05b6d-91e3-4ddc-a716-e4388b1e0db1","elementid":"f5be8987-44e7-41c4-9f52-0fb326009ee8","modelid":"a3214aa3-a920-4d12-8a1a-4e1c49c0692b","notebook_comms_target":"aad86cbd-481c-4dd0-a50b-7aa8a6915481"}]; Bokeh.embed.embed_items(docs_json, render_items); }; if (document.readyState != "loading") fn(); else document.addEventListener("DOMContentLoaded", fn); })(); }, function(Bokeh) { } ]; function run_inline_js() { if ((window.Bokeh !== undefined) || (force === true)) { for (var i = 0; i < inline_js.length; i++) { inline_js[i](window.Bokeh); }if (force === true) { display_loaded(); }} else if (Date.now() < window._bokeh_timeout) { setTimeout(run_inline_js, 100); } else if (!window._bokeh_failed_load) { console.log("Bokeh: BokehJS failed to load within specified timeout."); window._bokeh_failed_load = true; } else if (force !== true) { var cell = $(document.getElementById("f5be8987-44e7-41c4-9f52-0fb326009ee8")).parents('.cell').data().cell; cell.output_area.append_execute_result(NB_LOAD_WARNING) } } if (window._bokeh_is_loading === 0) { console.log("Bokeh: BokehJS loaded, going straight to plotting"); run_inline_js(); } else { load_libs(js_urls, function() { console.log("Bokeh: BokehJS plotting callback run at", now()); run_inline_js(); }); } }(this)); </script> <function __main__.update> ```python np.full(SEDs.shape[0],sig[0,200]) ``` array([ 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231, 0.02756231]) ```python for t in range(0,SEDs.shape[0]): cov=np.zeros((SEDs.shape[1],SEDs.shape[1])) for i in range(0,SEDs.shape[1]): cov[i,i]=0.3*SEDs[t,i,200]*10.0**LIR if t ==0: normal=np.random.multivariate_normal(SEDs[t,:,200]*10.0**LIR,cov, 100) else: normal=np.vstack((normal,np.random.multivariate_normal(SEDs[t,:,200]*10.0**LIR,cov, 100))) ``` ```python for t in range(0,SEDs.shape[0]): cov=np.zeros((SEDs.shape[1],SEDs.shape[1])) for i in range(0,SEDs.shape[1]): cov[i,i]=0.3*np.std(np.log10(SEDs[:,i,200]*10.0**LIR)) if t ==0: log_normal=np.random.multivariate_normal(np.log10(SEDs[t,:,200]*10.0**LIR),cov, 100) else: log_normal=np.vstack((log_normal,np.random.multivariate_normal(np.log10(SEDs[t,:,200]*10.0**LIR),cov, 100))) ``` ```python LIR ``` 12 ```python normal.shape ``` (3200, 6) ```python df=pd.DataFrame(normal,columns=['250','350','500','24', '100', '160']) ``` ```python import seaborn as sns import pylab as plt %matplotlib inline g=sns.PairGrid(df) g.map_diag(sns.kdeplot) g.map_lower(sns.kdeplot,n_levels=20, shade=True,shade_lowest=False) g.map_upper(plt.scatter, alpha=0.1) g.data=pd.DataFrame(np.power(10.0,log_normal),columns=['250','350','500','24', '100', '160']) g.map_diag(sns.kdeplot) g.map_lower(sns.kdeplot,n_levels=20, shade=True,shade_lowest=False, cmap="Reds", alpha=0.3) g.map_upper(plt.scatter, alpha=0.1, color='r') ``` <seaborn.axisgrid.PairGrid at 0x1416d2828> ![png](output_35_1.png) ```python g=sns.PairGrid(pd.DataFrame(log_normal,columns=['250','350','500','24', '100', '160'])) g.map_diag(sns.kdeplot) g.map_lower(sns.kdeplot,n_levels=20, shade=True,shade_lowest=False) g.map_upper(plt.scatter, alpha=0.1) ``` <seaborn.axisgrid.PairGrid at 0x152999fd0> ![png](output_36_1.png) ```python from sklearn.neighbors import NearestNeighbors import numpy as np X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(X) distances, indices = nbrs.kneighbors(X) indices ``` array([[0, 1, 2], [1, 0, 2], [2, 1, 0], [3, 4, 5], [4, 3, 5], [5, 4, 3]]) ```python SEDs.shape ``` (32, 6, 800) ```python sig=np.empty((SEDs.shape[0],SEDs.shape[2])) for i in range(0,SEDs.shape[2]): nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(SEDs[:,:,i]) distances, indices = nbrs.kneighbors(SEDs[:,:,i]) sig[:,i]=distances[:,1] ``` ```python for i in range(0,SEDs.shape[2]): sig[:,i]= ``` ```python LIR=8 sig[0,:]*np.power(10.0,10) ``` array([ 2.84348739e+10, 2.89852761e+02, 7.39912471e+01, 3.28076832e+01, 1.84215686e+01, 1.18328268e+01, 8.27184419e+00, 6.08707386e+00, 4.64899418e+00, 3.66615825e+00, 2.96778394e+00, 2.45399866e+00, 2.05449490e+00, 1.74368629e+00, 1.50220233e+00, 1.31623894e+00, 1.16295300e+00, 1.03081403e+00, 9.17509676e-01, 8.22262017e-01, 7.40674759e-01, 6.70752248e-01, 6.11260293e-01, 5.61158752e-01, 5.15448571e-01, 4.74220188e-01, 4.37594705e-01, 4.05656978e-01, 3.77708809e-01, 3.52824123e-01, 3.30828331e-01, 3.10742355e-01, 2.92361705e-01, 2.74746025e-01, 2.58322317e-01, 2.43058547e-01, 2.29758060e-01, 2.17732475e-01, 2.06540620e-01, 1.95669097e-01, 1.85435595e-01, 1.76616959e-01, 1.68405149e-01, 1.60811937e-01, 1.53362109e-01, 1.46320176e-01, 1.39890665e-01, 1.34135236e-01, 1.29036046e-01, 1.24362649e-01, 1.19743997e-01, 1.15061009e-01, 1.10486805e-01, 1.06270075e-01, 1.02373815e-01, 9.87416706e-02, 9.52888937e-02, 9.20433354e-02, 8.90041903e-02, 8.61122189e-02, 8.32837622e-02, 8.05738546e-02, 7.79885019e-02, 7.56974344e-02, 7.35582020e-02, 7.15360532e-02, 6.95923739e-02, 6.75860093e-02, 6.56830879e-02, 6.38573457e-02, 6.21128026e-02, 6.04294689e-02, 5.88192829e-02, 5.72369981e-02, 5.56733061e-02, 5.40824107e-02, 5.25701684e-02, 5.11019703e-02, 4.97307376e-02, 4.85555518e-02, 4.74010274e-02, 4.63600110e-02, 4.53813169e-02, 4.42815893e-02, 4.33002962e-02, 4.23199145e-02, 4.13333434e-02, 4.03725861e-02, 3.93910538e-02, 3.84494975e-02, 3.75666708e-02, 3.67284608e-02, 3.59681593e-02, 3.52488580e-02, 3.45362778e-02, 3.38418499e-02, 3.31514376e-02, 3.24784700e-02, 3.18159433e-02, 3.11313414e-02, 3.04672219e-02, 2.98517291e-02, 2.92494461e-02, 2.86952512e-02, 2.81774603e-02, 2.76668325e-02, 2.71762558e-02, 2.67157887e-02, 2.63030891e-02, 2.59132331e-02, 2.55286794e-02, 2.51409740e-02, 2.47303080e-02, 2.42381445e-02, 2.37153960e-02, 2.31796301e-02, 2.26762602e-02, 2.22043280e-02, 2.17710051e-02, 2.13649315e-02, 2.10009285e-02, 2.06568416e-02, 2.03217726e-02, 1.99767915e-02, 1.96368164e-02, 1.92951047e-02, 1.89720988e-02, 1.86612372e-02, 1.83890822e-02, 1.81259013e-02, 1.78776352e-02, 1.76334181e-02, 1.73949021e-02, 1.71463594e-02, 1.69012627e-02, 1.66576158e-02, 1.64188126e-02, 1.61842791e-02, 1.59489852e-02, 1.56980586e-02, 1.54545953e-02, 1.52158014e-02, 1.49875115e-02, 1.47659847e-02, 1.45365759e-02, 1.43109822e-02, 1.40944704e-02, 1.38717765e-02, 1.36540940e-02, 1.34449362e-02, 1.32779927e-02, 1.31148913e-02, 1.29523625e-02, 1.27898962e-02, 1.26311938e-02, 1.24627634e-02, 1.22608300e-02, 1.20654310e-02, 1.18810451e-02, 1.17129809e-02, 1.15499596e-02, 1.13897721e-02, 1.12317980e-02, 1.10782688e-02, 1.09221933e-02, 1.07591137e-02, 1.06006364e-02, 1.04496559e-02, 1.03128900e-02, 1.01802156e-02, 1.00560976e-02, 9.94332036e-03, 9.83485926e-03, 9.73172900e-03, 9.63502153e-03, 9.54018174e-03, 9.44410218e-03, 9.33802156e-03, 9.23263334e-03, 9.12469266e-03, 9.01593047e-03, 8.90464084e-03, 8.79427248e-03, 8.68799693e-03, 8.58194076e-03, 8.47944633e-03, 8.37967076e-03, 8.27689317e-03, 8.17732411e-03, 8.07844041e-03, 7.97876216e-03, 7.88128095e-03, 7.78619394e-03, 7.69347206e-03, 7.60598626e-03, 7.52152897e-03, 7.44254768e-03, 7.37567565e-03, 7.31313452e-03, 7.25809696e-03, 7.19852737e-03, 7.13932965e-03, 7.08532043e-03, 7.03420807e-03, 6.97448755e-03, 6.91234247e-03, 6.84947879e-03, 6.79634685e-03, 6.74711098e-03, 6.69857739e-03, 6.63980852e-03, 6.57616594e-03, 6.51177074e-03, 6.44271869e-03, 6.36856032e-03, 6.28367067e-03, 6.19438637e-03, 6.10915872e-03, 6.02650228e-03, 5.94201725e-03, 5.85229304e-03, 5.76515452e-03, 5.68714028e-03, 5.61731331e-03, 5.54787459e-03, 5.48371832e-03, 5.42442438e-03, 5.36953129e-03, 5.31643750e-03, 5.26578241e-03, 5.21726715e-03, 5.17089592e-03, 5.12034012e-03, 5.06249100e-03, 5.00640082e-03, 4.95181079e-03, 4.89764375e-03, 4.84244390e-03, 4.78853098e-03, 4.73691679e-03, 4.68970304e-03, 4.64310529e-03, 4.59742329e-03, 4.55291045e-03, 4.50995132e-03, 4.46848623e-03, 4.42771038e-03, 4.38646339e-03, 4.33722154e-03, 4.28450582e-03, 4.23276443e-03, 4.18215166e-03, 4.13187005e-03, 4.08196305e-03, 4.03337769e-03, 3.98600599e-03, 3.94533936e-03, 3.91442805e-03, 3.88442266e-03, 3.85511437e-03, 3.82694174e-03, 3.80031071e-03, 3.77420346e-03, 3.74851017e-03, 3.72538786e-03, 3.68907864e-03, 3.65358671e-03, 3.61904767e-03, 3.58542379e-03, 3.55277221e-03, 3.52128822e-03, 3.49083780e-03, 3.45726083e-03, 3.41999460e-03, 3.38379399e-03, 3.34879131e-03, 3.31596048e-03, 3.28481381e-03, 3.25438891e-03, 3.22482982e-03, 3.19655032e-03, 3.17059335e-03, 3.14826687e-03, 3.12209266e-03, 3.09175298e-03, 3.05869374e-03, 3.02525582e-03, 2.99193718e-03, 2.96011240e-03, 2.93040902e-03, 2.90197846e-03, 2.87442284e-03, 2.84832096e-03, 2.82329373e-03, 2.79921201e-03, 2.77678993e-03, 2.75579979e-03, 2.73549925e-03, 2.71581244e-03, 2.69366031e-03, 2.67132634e-03, 2.64943031e-03, 2.62801732e-03, 2.60729525e-03, 2.58589879e-03, 2.56296040e-03, 2.54095493e-03, 2.51884950e-03, 2.49711108e-03, 2.47552777e-03, 2.45474711e-03, 2.43383134e-03, 2.41329624e-03, 2.39339135e-03, 2.37400287e-03, 2.35499734e-03, 2.33665815e-03, 2.31833164e-03, 2.29901723e-03, 2.27700384e-03, 2.25509672e-03, 2.23399478e-03, 2.21315845e-03, 2.19297875e-03, 2.17432822e-03, 2.15573291e-03, 2.13812546e-03, 2.12055195e-03, 2.10322311e-03, 2.08628329e-03, 2.07013745e-03, 2.05398182e-03, 2.03821435e-03, 2.02125840e-03, 2.00224477e-03, 1.98339694e-03, 1.96483655e-03, 1.94670260e-03, 1.93021758e-03, 1.91480489e-03, 1.89959748e-03, 1.88472121e-03, 1.86992932e-03, 1.85709911e-03, 1.84720443e-03, 1.83776738e-03, 1.82810102e-03, 1.81815867e-03, 1.80609738e-03, 1.79286525e-03, 1.78024596e-03, 1.76763912e-03, 1.75537199e-03, 1.74329976e-03, 1.72938793e-03, 1.71548217e-03, 1.70183732e-03, 1.68869884e-03, 1.67905021e-03, 1.67128035e-03, 1.66383588e-03, 1.65656130e-03, 1.64939910e-03, 1.64254032e-03, 1.63454656e-03, 1.62487198e-03, 1.61581016e-03, 1.60665918e-03, 1.59630616e-03, 1.58326643e-03, 1.56980181e-03, 1.55640258e-03, 1.54338332e-03, 1.53051839e-03, 1.51780572e-03, 1.50719851e-03, 1.49714886e-03, 1.48766200e-03, 1.47834876e-03, 1.46990865e-03, 1.46267679e-03, 1.45537688e-03, 1.44819938e-03, 1.44120655e-03, 1.43447735e-03, 1.42794540e-03, 1.42001292e-03, 1.41145423e-03, 1.40310912e-03, 1.39478952e-03, 1.38675236e-03, 1.37898134e-03, 1.37177338e-03, 1.36463144e-03, 1.35760564e-03, 1.35069474e-03, 1.34374919e-03, 1.33704175e-03, 1.33044360e-03, 1.32376966e-03, 1.31719169e-03, 1.31070934e-03, 1.30312430e-03, 1.29521474e-03, 1.28718756e-03, 1.27938777e-03, 1.27198132e-03, 1.26462276e-03, 1.25748181e-03, 1.25218401e-03, 1.24777767e-03, 1.24339477e-03, 1.23937206e-03, 1.23569608e-03, 1.23298055e-03, 1.23033503e-03, 1.22745598e-03, 1.22490801e-03, 1.22226075e-03, 1.21977730e-03, 1.21713124e-03, 1.21100823e-03, 1.20475219e-03, 1.19849176e-03, 1.19232916e-03, 1.18587711e-03, 1.17896929e-03, 1.17203096e-03, 1.16516590e-03, 1.15848318e-03, 1.15172305e-03, 1.14525549e-03, 1.13875970e-03, 1.13390904e-03, 1.12945224e-03, 1.12506394e-03, 1.12071716e-03, 1.11655913e-03, 1.11232325e-03, 1.10847355e-03, 1.10481980e-03, 1.10135746e-03, 1.09775878e-03, 1.09436428e-03, 1.09115231e-03, 1.08778948e-03, 1.08426946e-03, 1.08093028e-03, 1.07763300e-03, 1.07441637e-03, 1.07126578e-03, 1.06809874e-03, 1.06439935e-03, 1.06073422e-03, 1.05718412e-03, 1.05368505e-03, 1.05023629e-03, 1.04683720e-03, 1.04247232e-03, 1.03786370e-03, 1.03331352e-03, 1.02882108e-03, 1.02438584e-03, 1.02053421e-03, 1.01713748e-03, 1.01419111e-03, 1.01122780e-03, 1.00840365e-03, 1.00560522e-03, 1.00285609e-03, 1.00021336e-03, 9.97618804e-04, 9.95001386e-04, 9.92454155e-04, 9.90069412e-04, 9.87626402e-04, 9.85204302e-04, 9.82593522e-04, 9.79425692e-04, 9.76318329e-04, 9.73224498e-04, 9.70182865e-04, 9.67131283e-04, 9.64164873e-04, 9.61156420e-04, 9.58163086e-04, 9.55207728e-04, 9.52292146e-04, 9.49367597e-04, 9.46337416e-04, 9.42971814e-04, 9.39613319e-04, 9.36275738e-04, 9.32977299e-04, 9.29728148e-04, 9.26530391e-04, 9.23393980e-04, 9.20318980e-04, 9.17324581e-04, 9.14398213e-04, 9.11525615e-04, 9.08704608e-04, 9.05888729e-04, 9.03352772e-04, 9.01123821e-04, 8.99632960e-04, 8.98176182e-04, 8.96735697e-04, 8.95328797e-04, 8.93954513e-04, 8.92632867e-04, 8.91375335e-04, 8.90211893e-04, 8.89090485e-04, 8.88014770e-04, 8.86953143e-04, 8.85955860e-04, 8.84979302e-04, 8.83962516e-04, 8.81077609e-04, 8.78096406e-04, 8.75094426e-04, 8.72066541e-04, 8.69088241e-04, 8.66238147e-04, 8.63411253e-04, 8.59837750e-04, 8.56014876e-04, 8.52164405e-04, 8.48324409e-04, 8.44592305e-04, 8.40826194e-04, 8.36854504e-04, 8.30307286e-04, 8.24100803e-04, 8.18155072e-04, 8.12400548e-04, 8.06764096e-04, 8.01329873e-04, 7.95661994e-04, 7.89973552e-04, 7.84151650e-04, 7.78415865e-04, 7.72325873e-04, 7.66474122e-04, 7.60436820e-04, 7.54893553e-04, 7.49576008e-04, 7.43183417e-04, 7.36911037e-04, 7.30825939e-04, 7.24760225e-04, 7.18681554e-04, 7.12966715e-04, 7.06996681e-04, 7.01306066e-04, 6.95545927e-04, 6.89405308e-04, 6.83411921e-04, 6.77259605e-04, 6.71402397e-04, 6.65683320e-04, 6.59709217e-04, 6.52840192e-04, 6.46112636e-04, 6.39548815e-04, 6.32932204e-04, 6.26403851e-04, 6.19859905e-04, 6.13482837e-04, 6.07204854e-04, 6.00974808e-04, 5.94606642e-04, 5.88346596e-04, 5.82252824e-04, 5.76269700e-04, 5.70276655e-04, 5.64369126e-04, 5.59466986e-04, 5.55715906e-04, 5.52011447e-04, 5.48394195e-04, 5.44814821e-04, 5.41376613e-04, 5.37838296e-04, 5.34205526e-04, 5.30518925e-04, 5.26249879e-04, 5.21946708e-04, 5.17707699e-04, 5.13524061e-04, 5.09496342e-04, 5.05425067e-04, 5.01381311e-04, 4.96703893e-04, 4.91999888e-04, 4.87090769e-04, 4.82223409e-04, 4.77614318e-04, 4.72758237e-04, 4.67861388e-04, 4.62919684e-04, 4.58395264e-04, 4.54090202e-04, 4.49786192e-04, 4.45543583e-04, 4.41381276e-04, 4.37434063e-04, 4.33299772e-04, 4.29135788e-04, 4.24813249e-04, 4.20150928e-04, 4.15722623e-04, 4.11012035e-04, 4.06615482e-04, 4.02303047e-04, 3.98212978e-04, 3.93983549e-04, 3.89897361e-04, 3.85876642e-04, 3.81861802e-04, 3.78111986e-04, 3.74386731e-04, 3.70750282e-04, 3.67201424e-04, 3.63886171e-04, 3.60533095e-04, 3.57665518e-04, 3.55090536e-04, 3.52368987e-04, 3.49481618e-04, 3.46585631e-04, 3.43569228e-04, 3.40704464e-04, 3.37978317e-04, 3.35195373e-04, 3.32435226e-04, 3.29712311e-04, 3.27036982e-04, 3.24459851e-04, 3.21964735e-04, 3.19532140e-04, 3.17062098e-04, 3.14622235e-04, 3.11825913e-04, 3.09134398e-04, 3.06504321e-04, 3.03963652e-04, 3.01540879e-04, 2.99197599e-04, 2.96821014e-04, 2.94594504e-04, 2.92501715e-04, 2.90447918e-04, 2.88243781e-04, 2.86397812e-04, 2.84373386e-04, 2.82587812e-04, 2.80778218e-04, 2.79041411e-04, 2.77495493e-04, 2.76053069e-04, 2.74596247e-04, 2.73416833e-04, 2.72492974e-04, 2.71768698e-04, 2.71362703e-04, 2.70874347e-04, 2.70804473e-04, 2.70617823e-04, 2.69937212e-04, 2.69735701e-04, 2.69207759e-04, 2.69239738e-04, 2.68518165e-04, 2.68373731e-04, 2.67964392e-04, 2.67631287e-04, 2.67424842e-04, 2.67223347e-04, 2.67093639e-04, 2.67353515e-04, 2.67281749e-04, 2.67287790e-04, 2.67626530e-04, 2.67296850e-04, 2.66694752e-04, 2.66310610e-04, 2.65344188e-04, 2.64401998e-04, 2.63041122e-04, 2.61987142e-04, 2.60425478e-04, 2.58766346e-04, 2.56538400e-04, 2.54464878e-04, 2.52218225e-04, 2.49997980e-04, 2.47574426e-04, 2.45216120e-04, 2.43647718e-04, 2.41587444e-04, 2.39752741e-04, 2.38014439e-04, 2.36481734e-04, 2.34562209e-04, 2.33715156e-04, 2.32477531e-04, 2.31953291e-04, 2.30864583e-04, 2.30302902e-04, 2.29350369e-04, 2.28588398e-04, 2.27970538e-04, 2.27007555e-04, 2.26287065e-04, 2.25432980e-04, 2.24719243e-04, 2.24257463e-04, 2.23676591e-04, 2.22935225e-04, 2.22446431e-04, 2.22126996e-04, 2.21696588e-04, 2.21227732e-04, 2.20540910e-04, 2.19990068e-04, 2.19125327e-04, 2.18538291e-04, 2.17781685e-04, 2.17134442e-04, 2.16676256e-04, 2.16255119e-04, 2.15723637e-04, 2.15110858e-04, 2.14585292e-04, 2.13890323e-04, 2.13497974e-04, 2.12885426e-04, 2.12291830e-04, 2.11943303e-04, 2.11361802e-04, 2.10759898e-04, 2.10222764e-04, 2.09647415e-04, 2.09111501e-04, 2.08723810e-04, 2.08559327e-04, 2.08324237e-04, 2.08262820e-04, 2.08167032e-04, 2.08561737e-04, 2.08690346e-04, 2.09174216e-04, 2.09687739e-04, 2.10188694e-04, 2.11270962e-04, 2.12074443e-04, 2.13729523e-04, 2.15643622e-04, 2.17312720e-04, 2.19654409e-04, 2.22535499e-04, 2.24862568e-04, 2.28510526e-04, 2.32225146e-04, 2.36449162e-04, 2.40884433e-04, 2.45547090e-04, 2.49783795e-04, 2.54242031e-04, 2.58748176e-04, 2.62921691e-04, 2.67162663e-04, 2.71492166e-04, 2.75915605e-04, 2.78738422e-04, 2.79428816e-04, 2.78862765e-04, 2.78831115e-04, 2.78397779e-04, 2.78247815e-04, 2.78412109e-04, 2.77930368e-04, 2.77400206e-04, 2.77338078e-04, 2.76925517e-04, 2.76958186e-04, 2.76489190e-04, 2.76119540e-04, 2.72192675e-04, 2.66340431e-04, 2.60170280e-04, 2.54452273e-04, 2.49218154e-04, 2.42186846e-04, 2.36606679e-04, 2.31823526e-04, 2.26369552e-04, 2.22013355e-04]) ```python sig=np.empty((SEDs.shape[1],SEDs.shape[2])) for i in range(0,SEDs.shape[2]): sig[:,i]=0.3*np.std(np.log10(SEDs[:,:,i]*10.0**LIR),axis=0) ``` ```python np.save('log10_SED_IR_sig', sig) ``` ```python np.trapz(df['Blue_SF_glx.norm_LIR'][(df['wave']>8) & (df['wave']<1000)][::-1],x=3.0E8/(df['wave'][(df['wave']>8) & (df['wave']<1000)][::-1]*1E-6))*1E-26/1E4 ``` 3.82580418875477e+29 ```python df['wave'] ``` 0 0.009100 1 0.009400 2 0.009600 3 0.009800 4 0.010000 5 0.010200 6 0.010400 7 0.010600 8 0.010800 9 0.011000 10 0.011400 11 0.011800 12 0.012100 13 0.012500 14 0.012700 15 0.012800 16 0.013100 17 0.013200 18 0.013400 19 0.013700 20 0.014000 21 0.014300 22 0.014700 23 0.015100 24 0.015500 25 0.015900 26 0.016200 27 0.016600 28 0.017000 29 0.017300 ... 10975 1658.999475 10976 1669.000456 10977 1679.000889 10978 1689.000047 10979 1699.000924 10980 1708.999095 10981 1718.999480 10982 1728.999534 10983 1739.000479 10984 1748.999742 10985 1759.000491 10986 1769.000155 10987 1779.000020 10988 1788.999448 10989 1798.999774 10990 1809.000387 10991 1819.000670 10992 1829.000006 10993 1838.999793 10994 1848.999437 10995 1859.000386 10996 1869.000021 10997 1878.999805 10998 1888.999164 10999 1898.999610 11000 1909.000599 11001 1918.999474 11002 1928.999890 11003 1938.999196 11004 1948.998977 Name: wave, Length: 11005, dtype: float64 ```python template=ascii.read('/Users/pdh21/astrodata/SEDs/Berta2013/templates_berta_norm_LIR/'+temps[0]) ``` ```python np.trapz(template['col2'][(template['col1']>8E3) & (template['col1']<1E6)],x=template['col1'][(template['col1']>8E3) & (template['col1']<1E6)]) ``` 0.99065289555174796 ```python template['col1'] ``` &lt;Column name=&apos;col1&apos; dtype=&apos;float64&apos; length=11005&gt; <table> <tr><td>90.99999</td></tr> <tr><td>94.0</td></tr> <tr><td>95.99999</td></tr> <tr><td>98.0</td></tr> <tr><td>100.0</td></tr> <tr><td>102.00001</td></tr> <tr><td>104.0</td></tr> <tr><td>105.99997</td></tr> <tr><td>107.99998</td></tr> <tr><td>109.99997</td></tr> <tr><td>113.99998</td></tr> <tr><td>118.0</td></tr> <tr><td>...</td></tr> <tr><td>18389997.9277</td></tr> <tr><td>18489994.3743</td></tr> <tr><td>18590003.8614</td></tr> <tr><td>18690000.2133</td></tr> <tr><td>18789998.0454</td></tr> <tr><td>18889991.6412</td></tr> <tr><td>18989996.1042</td></tr> <tr><td>19090005.9874</td></tr> <tr><td>19189994.7448</td></tr> <tr><td>19289998.9015</td></tr> <tr><td>19389991.964</td></tr> <tr><td>19489989.7706</td></tr> </table> ```python print(np.trapz(template['col2'][(template['col1']<8E3)],x=template['col1'][(template['col1']<8E3)])) print(np.trapz(template['col2'][(template['col1']>8E3) & (template['col1']<1E6)],x=template['col1'][(template['col1']>8E3) & (template['col1']<1E6)])) print(np.trapz(template['col2'][(template['col1']<1E6)],x=template['col1'][(template['col1']<1E6)])) ``` 0.210849971767 0.990652895552 1.20152082665 ```python plt.loglog(df['wave'],df['Blue_SF_glx.norm_LIR']) ``` [<matplotlib.lines.Line2D at 0x120493cc0>] ![png](output_50_1.png) ```python print(np.trapz(df['Blue_SF_glx.norm_LIR'][(df['wave']>8) & (df['wave']<1000)][::-1] ,x=3.0E8/(df['wave'][(df['wave']>8) & (df['wave']<1000)][::-1]*1E-6))*1E-26/1E4) print(np.trapz(df['Blue_SF_glx.norm_LIR'][(df['wave']<8)][::-1] ,x=3.0E8/(df['wave'][(df['wave']<8)][::-1]*1E-6))*1E-26/1E4) ``` 3.82580418875e+29 1.7493619078e+29 ```python ``` 2.1954022988505746 ## Test stan script ```python code=""" functions { int intFloor(int leftStart, int rightStart, real iReal) { // This is absurd. Use bisection algorithm to find int floor. int left; int right; left <- leftStart; right <- rightStart; while((left + 1) < right) { int mid; // print("left, right, mid, i, ", left, ", ", right, ", ", mid, ", ", iReal); mid <- left + (right - left) / 2; if(iReal < mid) { right <- mid; } else { left <- mid; } } return left; } // Interpolate arr using a non-integral index i // Note: 1 <= i <= length(arr) real interpolateLinear(real[] arr, real i) { int iLeft; real valLeft; int iRight; real valRight; // print("interpolating ", i); // Get i, value at left. If exact time match, then return value. iLeft <- intFloor(1, size(arr), i); valLeft <- arr[iLeft]; if(iLeft == i) { return valLeft; } // Get i, value at right. iRight <- iLeft + 1; valRight <- arr[iRight]; // Linearly interpolate between values at left and right. print(valLeft + (valRight - valLeft) * (i - iLeft)); return valLeft + (valRight - valLeft) * (i - iLeft); } } data { int<lower=0> nsrc;//number of sources // ----SED templates---- int nTemp; int nz; int nband; real SEDs[nTemp,nband,nz]; vector[nband] flux[nsrc];//vector of source src_fes vector[nband] flux_sig[nsrc];//vector of source src_fes } parameters { vector<lower=5, upper=14>[nTemp] Nbb[nsrc]; real<lower=0.001,upper=8> z[nsrc]; } transformed parameters{ vector[nband] src_f[nsrc];//vector of source src_fes for (i in 1:nsrc){ vector[nTemp] f_tmp[nband]; for (b in 1:nband){ for (t in 1:nTemp){ f_tmp[b,t]=log10(Nbb[i,t]+interpolateLinear(SEDs[t,b], z[i]*1000.0)); } src_f[i,b]=sum(f_tmp[b]); } } } model { for (s in 1:nsrc){ flux[s] ~ normal(src_f[s],flux_sig[s]); } } """ ``` ```python import pystan ``` ```python flux=np.sum(SEDs_comb[:,:,3000].T*10.0**np.array([12,11,11,9]),axis=1)+np.random.normal(0,[1,1,1,0.02,0.5,0.5]) ``` ```python flux ``` array([ 2.80180271, 3.14830712, 4.99304504, 0.00677361, 0.72103822, 0.41795028]) ```python data={ 'nsrc':1, 'nTemp':SEDs_comb.shape[0], 'nz':SEDs_comb.shape[2], 'nband':6, 'SEDs':SEDs_comb, 'flux':flux[np.newaxis], 'flux_sig':np.array([[1,1,1,0.2,0.5,0.5]])} ``` ```python sm=pystan.StanModel(model_code=code) ``` INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_aa797e4b6080b4b9bbdf06f49392a718 NOW. ```python fit_IR_combSED=sm.sampling(data=data,verbose=True, iter=1000,chains=1,seed=194838) ``` ```python fit_IR_combSED ``` Inference for Stan model: anon_model_aa797e4b6080b4b9bbdf06f49392a718. 4 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=2000. mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat Nbb[0,0] 9.34 0.11 2.37 5.25 7.22 9.47 11.69 12.83 452 1.0 Nbb[0,1] 9.96 0.12 2.44 5.32 7.85 10.63 12.24 12.84 391 1.0 Nbb[0,2] 10.85 0.15 2.51 5.4 8.99 12.36 12.79 13.05 288 1.0 Nbb[0,3] 8.74 0.09 2.15 5.18 6.87 8.72 10.64 12.19 594 1.0 z[0] 5.49 0.09 1.55 2.48 4.31 5.58 6.79 7.9 276 1.0 src_f[0,0] 1.76 0.02 0.58 0.7 1.37 1.75 2.12 2.99 999 1.0 src_f[0,1] 3.35 0.02 0.75 1.82 2.84 3.39 3.87 4.8 964 1.0 src_f[0,2] 4.8 0.03 0.97 2.98 4.11 4.82 5.45 6.7 1215 1.0 src_f[0,3] 0.02 1.6e-3 0.03 8.7e-4 3.4e-3 6.7e-3 0.02 0.12 443 1.0 src_f[0,4] 0.25 6.3e-3 0.17 0.06 0.14 0.23 0.31 0.71 746 1.0 src_f[0,5] 0.59 8.3e-3 0.26 0.18 0.41 0.57 0.75 1.19 958 1.0 lp__ -0.79 0.1 1.93 -5.51 -1.83 -0.41 0.66 1.7 351 1.0 Samples were drawn using NUTS at Tue Dec 19 15:59:45 2017. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1). ```python SEDs_com ``` --------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-54-6bca12ddae3b> in <module>() ----> 1 SEDs_com NameError: name 'SEDs_com' is not defined ```python import xidplus.stan_fit.stan_utility as stan_utility stan_utility.check_treedepth(fit_IR_combSED) stan_utility.check_energy(fit_IR_combSED) stan_utility.check_div(fit_IR_combSED) ``` 0 of 2000 iterations saturated the maximum tree depth of 10 (0.0%) 3.0 of 2000 iterations ended with a divergence (0.15%) Try running with larger adapt_delta to remove the divergences ```python samples=fit_IR_combSED.extract() ``` ```python nondiv_params, div_params = stan_utility.partition_div(fit_IR_combSED) ``` WARNING:root:`dtypes` ignored when `permuted` is False. ```python plt.plot(nondiv_params['Nbb'][:,1],nondiv_params['Nbb'][:,0], 'ro') plt.plot(div_params['Nbb'][:,1],div_params['Nbb'][:,0], 'go') ``` [<matplotlib.lines.Line2D at 0x125030860>] ![png](output_66_1.png) ```python plt.plot(nondiv_params['Nbb'][:,1],nondiv_params['Nbb'][:,3], 'ro') plt.plot(div_params['Nbb'][:,1],div_params['Nbb'][:,3], 'go') ``` [<matplotlib.lines.Line2D at 0x1283b40b8>] ![png](output_67_1.png) ```python plt.plot(nondiv_params['Nbb'][:,2],nondiv_params['Nbb'][:,3], 'ro') plt.plot(div_params['Nbb'][:,2],div_params['Nbb'][:,3], 'go') ``` [<matplotlib.lines.Line2D at 0x127a3c860>] ![png](output_68_1.png) ```python plt.plot(nondiv_params['z'][:],nondiv_params['Nbb'][:,0], 'ro') plt.plot(div_params['z'][:],div_params['Nbb'][:,1], 'go') ``` [<matplotlib.lines.Line2D at 0x12819bdd8>] ![png](output_69_1.png) ```python plt.figure(figsize=(10,10)) plt.plot(nondiv_params['Nbb'][:,0],nondiv_params['z'], 'ro') plt.plot(div_params['Nbb'][:,0],div_params['z'], 'go') plt.plot(x,y,'bo', alpha=0.2) ``` --------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-62-905f240c51b5> in <module>() 2 plt.plot(nondiv_params['Nbb'][:,0],nondiv_params['z'], 'ro') 3 plt.plot(div_params['Nbb'][:,0],div_params['z'], 'go') ----> 4 plt.plot(x,y,'bo', alpha=0.2) NameError: name 'x' is not defined ![png](output_70_1.png) ```python div_params['Nbb'].shape ``` (108, 4) ```python red[2000] ``` 2.0 ```python SEDs_comb.shape ``` (4, 6, 8000) ```python x,y=np.meshgrid(np.arange(11.8,12.5, 0.1), red) ``` ```python plt.plot(samples['z']) ``` [<matplotlib.lines.Line2D at 0x12818e9e8>] ![png](output_75_1.png) ```python plt.plot(samples['Nbb'][:,0,0]) ``` [<matplotlib.lines.Line2D at 0x1279541d0>] ![png](output_76_1.png) ```python div_z=[] for z in div_params['z']: div_z.append(np.abs(red-z).min()) nondiv_z=[] for z in nondiv_params['z']: nondiv_z.append(np.abs(red-z).min()) ``` ```python plt.hist(div_z,color='b', alpha=0.5); plt.hist(nondiv_z,color='r', alpha=0.5); ``` ![png](output_78_0.png) ```python import seaborn as sns sns.set_style("white") b=0 plt.figure(figsize=(6,6)) s1=0 from astropy.cosmology import Planck13 violin_parts=plt.violinplot(samples['src_f'][:,s1,0:3],[250,350,500], points=60, widths=100, showmeans=True, showextrema=True, showmedians=True,bw_method=0.5) # Make all the violin statistics marks red: for partname in ('cbars','cmins','cmaxes','cmeans','cmedians'): vp = violin_parts[partname] vp.set_edgecolor('purple') vp.set_linewidth(1) for pc in violin_parts['bodies']: pc.set_facecolor('purple') violin_parts=plt.violinplot(samples['src_f'][:,s1,0:3],[250,350,500], points=60, widths=100, showmeans=True, showextrema=True, showmedians=True,bw_method=0.5) # Make all the violin statistics marks red: for partname in ('cbars','cmins','cmaxes','cmeans','cmedians'): vp = violin_parts[partname] vp.set_edgecolor('green') vp.set_linewidth(1) for pc in violin_parts['bodies']: pc.set_facecolor('green') violin_parts=plt.violinplot(samples['src_f'][:,s1,3:6],[24,100,160], points=60, widths=20,showmeans=True, showextrema=True, showmedians=True,bw_method=0.5) # Make all the violin statistics marks red: for partname in ('cbars','cmins','cmaxes','cmeans','cmedians'): vp = violin_parts[partname] vp.set_edgecolor('green') vp.set_linewidth(1) for pc in violin_parts['bodies']: pc.set_facecolor('green') for s in np.arange(0,1000,1): z= samples['z'][s] div=(4.0*np.pi * np.square(Planck13.luminosity_distance(z).cgs)) div=div.value tot_sed=np.power(10.0,samples['Nbb'][s,s1,0])*(1.0+z)*df_comb[str(b)]/div for b in range(1,4): tot_sed+=np.power(10.0,samples['Nbb'][s,s1,b])*(1.0+z)*df_comb[str(b)]/div plt.loglog((z+1.0)*df_comb['wave'],tot_sed, 'b', alpha=0.1) plt.ylim(10E-7,10E2) plt.xlim(5,5E3) #plt.plot([3.6,4.5,5.7,7.9],[2.91E-3,2.38E-3,2.12E-3,9.6E-3], 'ro') plt.xlabel('Wavelength (microns)') plt.ylabel('Flux (mJy)') ``` <matplotlib.text.Text at 0x1265bcd30> ![png](output_79_1.png) ```python b=5 plt.hist(samples['src_f'][:,0,b], alpha=0.5,normed=True); plt.hist(nondiv_params['src_f'][:,b], color='red', alpha=0.5,normed=True); plt.hist(div_params['src_f'][:,b], color='green', alpha=0.5,normed=True); ``` ![png](output_80_0.png) ```python samples['z'].shape ``` (1000,) ## why/where am I getting divergent transitions? Its not obvious any parameters are causing the problem. They do not occur at any particular likelihood value Is it the grid causing issue? Is it the uniform prior? ```python plt.plot(samples['lp__'],samples['Nbb'][:,0,3], 'o',alpha=0.2) plt.plot(samples['lp__'][diverg],samples['Nbb'][diverg,0,3], 'ro',alpha=0.2) ``` --------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-67-34144de92271> in <module>() 1 plt.plot(samples['lp__'],samples['Nbb'][:,0,3], 'o',alpha=0.2) ----> 2 plt.plot(samples['lp__'][diverg],samples['Nbb'][diverg,0,3], 'ro',alpha=0.2) NameError: name 'diverg' is not defined ![png](output_83_1.png) ```python diverg=fit_IR_combSED.get_sampler_params()[0]['divergent__']==1.0 ``` ```python samples['Nbb'].shape ``` (1000, 1, 4) ```python np.arange(0,1000)[diverg] ``` array([ 1, 2, 3, 4, 62, 91, 100, 101, 123, 129, 151, 188, 192, 224, 251, 425, 451]) ```python samples['z'][424:427] ``` array([ 7.31326683, 2.97283728, 4.12264925]) ## GP alternative ```python GPcode="""functions { vector gp_pred_rng(real[] x2, vector y1, real[] x1, real alpha, real rho, real sigma, real delta) { int N1 = rows(y1); int N2 = size(x2); vector[N2] f2; { matrix[N1, N1] K = cov_exp_quad(x1, alpha, rho) + diag_matrix(rep_vector(square(sigma), N1)); matrix[N1, N1] L_K = cholesky_decompose(K); vector[N1] L_K_div_y1 = mdivide_left_tri_low(L_K, y1); vector[N1] K_div_y1 = mdivide_right_tri_low(L_K_div_y1', L_K)'; matrix[N1, N2] k_x1_x2 = cov_exp_quad(x1, x2, alpha, rho); vector[N2] f2_mu = (k_x1_x2' * K_div_y1); matrix[N1, N2] v_pred = mdivide_left_tri_low(L_K, k_x1_x2); matrix[N2, N2] cov_f2 = cov_exp_quad(x2, alpha, rho) - v_pred' * v_pred + diag_matrix(rep_vector(delta, N2)); f2 = multi_normal_rng(f2_mu, cov_f2); } return f2; } } data { int<lower=1> N; real x[N]; vector[N] y; int<lower=1> N_predict; real x_predict[N_predict]; real<lower=0> rho; real<lower=0> alpha; real<lower=0> sigma; } transformed data { matrix[N, N] cov = cov_exp_quad(x, alpha, rho) + diag_matrix(rep_vector(1e-10, N)); matrix[N, N] L_cov = cholesky_decompose(cov); } parameters {} model {} generated quantities { vector[N_predict] f_predict = gp_pred_rng(x_predict, y, x, alpha, rho, sigma, 1e-10); vector[N_predict] y_predict; for (n in 1:N_predict) y_predict[n] = normal_rng(f_predict[n], sigma); } """ ``` ```python sm=pystan.StanModel(model_code=GPcode) ``` INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_66d2b322c018ce81f1c399f4e91c226b NOW. ```python data={ 'N':SEDs_comb.shape[2], 'x':red, 'y':SEDs_comb[0,0,:], 'N_predict':1, 'x_predict':[3.2], 'rho':0.1, 'alpha':1, 'sigma':0.1 } ``` ```python SEDs_comb.shape ``` (4, 6, 8000) ```python GP=sm.sampling(data=data,verbose=True, iter=1000,chains=1,seed=194838,algorithm="Fixed_param") ``` Thinking and what to do in 2018: * First try log10 space for the SED_comb run. This may help divergence transitions * Try interpolation via GPs ```python ```
H-E-L-PREPO_NAMEXID_plusPATH_START.@XID_plus_extracted@XID_plus-master@docs@build@html@notebooks@examples@SED_prior_model_v2.ipynb@.PATH_END.py
{ "filename": "masterdark.py", "repo_name": "juanep97/iop4", "repo_path": "iop4_extracted/iop4-main/iop4admin/modeladmins/masterdark.py", "type": "Python" }
from django.contrib import admin from django.utils.html import format_html from django.urls import reverse from django.utils.safestring import mark_safe from iop4api.filters import * from iop4api.models import * from .fitfile import AdminFitFile, action_mark_ignore, action_unmark_ignore import logging logger = logging.getLogger(__name__) class AdminMasterDark(AdminFitFile): model = MasterDark list_display = ['id', 'telescope', 'night', 'instrument', 'imgsize', 'exptime', 'get_masterbias', 'get_built_from', 'options', 'status'] list_filter = ( RawFitIdFilter, RawFitTelescopeFilter, RawFitNightFilter, RawFitInstrumentFilter, RawFitFlagFilter, "imgsize", ) actions = [action_mark_ignore, action_unmark_ignore] @admin.display(description='Options') def options(self, obj): url_details = reverse('iop4admin:iop4api_masterdark_details', args=[obj.id]) url_viewer= reverse('iop4admin:iop4api_masterdark_details', args=[obj.id]) return format_html(rf'<a href="{url_details}">details</a> / <a href="{url_viewer}">advanced viewer</a>') @admin.display(description='Telescope') def telescope(self, obj): return obj.epoch.telescope @admin.display(description='Night') def night(self, obj): return obj.epoch.night @admin.display(description='MasterBias') def get_masterbias(self, obj): self.allow_tags = True if obj.masterbias is None: return "-" url = reverse('iop4admin:%s_%s_changelist' % (MasterBias._meta.app_label, MasterBias._meta.model_name)) + f"?id={obj.masterbias.id}" return mark_safe(rf'<a href="{url}">{obj.masterbias.id}</a>')
juanep97REPO_NAMEiop4PATH_START.@iop4_extracted@iop4-main@iop4admin@modeladmins@masterdark.py@.PATH_END.py
{ "filename": "_testutils.py", "repo_name": "waynebhayes/SpArcFiRe", "repo_path": "SpArcFiRe_extracted/SpArcFiRe-master/scripts/SpArcFiRe-pyvenv/lib/python2.7/site-packages/scipy/special/_testutils.py", "type": "Python" }
from __future__ import division, print_function, absolute_import import os from distutils.version import LooseVersion import functools import numpy as np from numpy.testing import assert_ import pytest import scipy.special as sc __all__ = ['with_special_errors', 'assert_tol_equal', 'assert_func_equal', 'FuncData'] #------------------------------------------------------------------------------ # Check if a module is present to be used in tests #------------------------------------------------------------------------------ class MissingModule(object): def __init__(self, name): self.name = name def check_version(module, min_ver): if type(module) == MissingModule: return pytest.mark.skip(reason="{} is not installed".format(module.name)) return pytest.mark.skipif(LooseVersion(module.__version__) < LooseVersion(min_ver), reason="{} version >= {} required".format(module.__name__, min_ver)) #------------------------------------------------------------------------------ # Enable convergence and loss of precision warnings -- turn off one by one #------------------------------------------------------------------------------ def with_special_errors(func): """ Enable special function errors (such as underflow, overflow, loss of precision, etc.) """ @functools.wraps(func) def wrapper(*a, **kw): with sc.errstate(all='raise'): res = func(*a, **kw) return res return wrapper #------------------------------------------------------------------------------ # Comparing function values at many data points at once, with helpful #------------------------------------------------------------------------------ def assert_tol_equal(a, b, rtol=1e-7, atol=0, err_msg='', verbose=True): """Assert that `a` and `b` are equal to tolerance ``atol + rtol*abs(b)``""" def compare(x, y): return np.allclose(x, y, rtol=rtol, atol=atol) a, b = np.asanyarray(a), np.asanyarray(b) header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol) np.testing.utils.assert_array_compare(compare, a, b, err_msg=str(err_msg), verbose=verbose, header=header) #------------------------------------------------------------------------------ # Comparing function values at many data points at once, with helpful # error reports #------------------------------------------------------------------------------ def assert_func_equal(func, results, points, rtol=None, atol=None, param_filter=None, knownfailure=None, vectorized=True, dtype=None, nan_ok=False, ignore_inf_sign=False, distinguish_nan_and_inf=True): if hasattr(points, 'next'): # it's a generator points = list(points) points = np.asarray(points) if points.ndim == 1: points = points[:,None] nparams = points.shape[1] if hasattr(results, '__name__'): # function data = points result_columns = None result_func = results else: # dataset data = np.c_[points, results] result_columns = list(range(nparams, data.shape[1])) result_func = None fdata = FuncData(func, data, list(range(nparams)), result_columns=result_columns, result_func=result_func, rtol=rtol, atol=atol, param_filter=param_filter, knownfailure=knownfailure, nan_ok=nan_ok, vectorized=vectorized, ignore_inf_sign=ignore_inf_sign, distinguish_nan_and_inf=distinguish_nan_and_inf) fdata.check() class FuncData(object): """ Data set for checking a special function. Parameters ---------- func : function Function to test filename : str Input file name param_columns : int or tuple of ints Columns indices in which the parameters to `func` lie. Can be imaginary integers to indicate that the parameter should be cast to complex. result_columns : int or tuple of ints, optional Column indices for expected results from `func`. result_func : callable, optional Function to call to obtain results. rtol : float, optional Required relative tolerance. Default is 5*eps. atol : float, optional Required absolute tolerance. Default is 5*tiny. param_filter : function, or tuple of functions/Nones, optional Filter functions to exclude some parameter ranges. If omitted, no filtering is done. knownfailure : str, optional Known failure error message to raise when the test is run. If omitted, no exception is raised. nan_ok : bool, optional If nan is always an accepted result. vectorized : bool, optional Whether all functions passed in are vectorized. ignore_inf_sign : bool, optional Whether to ignore signs of infinities. (Doesn't matter for complex-valued functions.) distinguish_nan_and_inf : bool, optional If True, treat numbers which contain nans or infs as as equal. Sets ignore_inf_sign to be True. """ def __init__(self, func, data, param_columns, result_columns=None, result_func=None, rtol=None, atol=None, param_filter=None, knownfailure=None, dataname=None, nan_ok=False, vectorized=True, ignore_inf_sign=False, distinguish_nan_and_inf=True): self.func = func self.data = data self.dataname = dataname if not hasattr(param_columns, '__len__'): param_columns = (param_columns,) self.param_columns = tuple(param_columns) if result_columns is not None: if not hasattr(result_columns, '__len__'): result_columns = (result_columns,) self.result_columns = tuple(result_columns) if result_func is not None: raise ValueError("Only result_func or result_columns should be provided") elif result_func is not None: self.result_columns = None else: raise ValueError("Either result_func or result_columns should be provided") self.result_func = result_func self.rtol = rtol self.atol = atol if not hasattr(param_filter, '__len__'): param_filter = (param_filter,) self.param_filter = param_filter self.knownfailure = knownfailure self.nan_ok = nan_ok self.vectorized = vectorized self.ignore_inf_sign = ignore_inf_sign self.distinguish_nan_and_inf = distinguish_nan_and_inf if not self.distinguish_nan_and_inf: self.ignore_inf_sign = True def get_tolerances(self, dtype): if not np.issubdtype(dtype, np.inexact): dtype = np.dtype(float) info = np.finfo(dtype) rtol, atol = self.rtol, self.atol if rtol is None: rtol = 5*info.eps if atol is None: atol = 5*info.tiny return rtol, atol def check(self, data=None, dtype=None): """Check the special function against the data.""" if self.knownfailure: pytest.xfail(reason=self.knownfailure) if data is None: data = self.data if dtype is None: dtype = data.dtype else: data = data.astype(dtype) rtol, atol = self.get_tolerances(dtype) # Apply given filter functions if self.param_filter: param_mask = np.ones((data.shape[0],), np.bool_) for j, filter in zip(self.param_columns, self.param_filter): if filter: param_mask &= list(filter(data[:,j])) data = data[param_mask] # Pick parameters from the correct columns params = [] for j in self.param_columns: if np.iscomplexobj(j): j = int(j.imag) params.append(data[:,j].astype(complex)) else: params.append(data[:,j]) # Helper for evaluating results def eval_func_at_params(func, skip_mask=None): if self.vectorized: got = func(*params) else: got = [] for j in range(len(params[0])): if skip_mask is not None and skip_mask[j]: got.append(np.nan) continue got.append(func(*tuple([params[i][j] for i in range(len(params))]))) got = np.asarray(got) if not isinstance(got, tuple): got = (got,) return got # Evaluate function to be tested got = eval_func_at_params(self.func) # Grab the correct results if self.result_columns is not None: # Correct results passed in with the data wanted = tuple([data[:,icol] for icol in self.result_columns]) else: # Function producing correct results passed in skip_mask = None if self.nan_ok and len(got) == 1: # Don't spend time evaluating what doesn't need to be evaluated skip_mask = np.isnan(got[0]) wanted = eval_func_at_params(self.result_func, skip_mask=skip_mask) # Check the validity of each output returned assert_(len(got) == len(wanted)) for output_num, (x, y) in enumerate(zip(got, wanted)): if np.issubdtype(x.dtype, np.complexfloating) or self.ignore_inf_sign: pinf_x = np.isinf(x) pinf_y = np.isinf(y) minf_x = np.isinf(x) minf_y = np.isinf(y) else: pinf_x = np.isposinf(x) pinf_y = np.isposinf(y) minf_x = np.isneginf(x) minf_y = np.isneginf(y) nan_x = np.isnan(x) nan_y = np.isnan(y) olderr = np.seterr(all='ignore') try: abs_y = np.absolute(y) abs_y[~np.isfinite(abs_y)] = 0 diff = np.absolute(x - y) diff[~np.isfinite(diff)] = 0 rdiff = diff / np.absolute(y) rdiff[~np.isfinite(rdiff)] = 0 finally: np.seterr(**olderr) tol_mask = (diff <= atol + rtol*abs_y) pinf_mask = (pinf_x == pinf_y) minf_mask = (minf_x == minf_y) nan_mask = (nan_x == nan_y) bad_j = ~(tol_mask & pinf_mask & minf_mask & nan_mask) point_count = bad_j.size if self.nan_ok: bad_j &= ~nan_x bad_j &= ~nan_y point_count -= (nan_x | nan_y).sum() if not self.distinguish_nan_and_inf and not self.nan_ok: # If nan's are okay we've already covered all these cases inf_x = np.isinf(x) inf_y = np.isinf(y) both_nonfinite = (inf_x & nan_y) | (nan_x & inf_y) bad_j &= ~both_nonfinite point_count -= both_nonfinite.sum() if np.any(bad_j): # Some bad results: inform what, where, and how bad msg = [""] msg.append("Max |adiff|: %g" % diff.max()) msg.append("Max |rdiff|: %g" % rdiff.max()) msg.append("Bad results (%d out of %d) for the following points (in output %d):" % (np.sum(bad_j), point_count, output_num,)) for j in np.where(bad_j)[0]: j = int(j) fmt = lambda x: "%30s" % np.array2string(x[j], precision=18) a = " ".join(map(fmt, params)) b = " ".join(map(fmt, got)) c = " ".join(map(fmt, wanted)) d = fmt(rdiff) msg.append("%s => %s != %s (rdiff %s)" % (a, b, c, d)) assert_(False, "\n".join(msg)) def __repr__(self): """Pretty-printing, esp. for Nose output""" if np.any(list(map(np.iscomplexobj, self.param_columns))): is_complex = " (complex)" else: is_complex = "" if self.dataname: return "<Data for %s%s: %s>" % (self.func.__name__, is_complex, os.path.basename(self.dataname)) else: return "<Data for %s%s>" % (self.func.__name__, is_complex)
waynebhayesREPO_NAMESpArcFiRePATH_START.@SpArcFiRe_extracted@SpArcFiRe-master@scripts@SpArcFiRe-pyvenv@lib@python2.7@site-packages@scipy@special@_testutils.py@.PATH_END.py
{ "filename": "recipes_ARC_LS_SPECT.py", "repo_name": "GeminiDRSoftware/DRAGONS", "repo_path": "DRAGONS_extracted/DRAGONS-master/geminidr/niri/recipes/sq/recipes_ARC_LS_SPECT.py", "type": "Python" }
""" MS: this is just an MVP, copying the corresponding GNIRS recipe. Expect Olesja will improve this after she finds some bandwidth. Recipes available to data with tags ['NIRI', 'SPECT', 'LS'], excluding data with tags ['FLAT', 'DARK', 'BIAS']. These are NIRI longslit arc-lamp or sky-line calibrations. Default is "makeProcessedArc". """ recipe_tags = {'NIRI', 'SPECT', 'LS', 'ARC'} def makeProcessedArc(p): """ Process NIRI longslist arc and calculate wavelength and distortion solutions. No stacking, arcs are processed individually if more than one is given. Inputs are: * raw arc * processed flat """ p.prepare() p.addDQ() p.ADUToElectrons() p.addVAR(poisson_noise=True, read_noise=True) p.nonlinearityCorrect() p.flatCorrect() p.makeIRAFCompatible() p.determineWavelengthSolution() p.determineDistortion() p.storeProcessedArc() p.writeOutputs() _default = makeProcessedArc
GeminiDRSoftwareREPO_NAMEDRAGONSPATH_START.@DRAGONS_extracted@DRAGONS-master@geminidr@niri@recipes@sq@recipes_ARC_LS_SPECT.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "mikecokina/elisa", "repo_path": "elisa_extracted/elisa-master/src/elisa/observer/__init__.py", "type": "Python" }
mikecokinaREPO_NAMEelisaPATH_START.@elisa_extracted@elisa-master@src@elisa@observer@__init__.py@.PATH_END.py
{ "filename": "ifttt.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/langchain/langchain/tools/ifttt.py", "type": "Python" }
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import IFTTTWebhook # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = {"IFTTTWebhook": "langchain_community.tools"} _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "IFTTTWebhook", ]
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@langchain@langchain@tools@ifttt.py@.PATH_END.py
{ "filename": "_hoverinfo.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/bar/_hoverinfo.py", "type": "Python" }
import _plotly_utils.basevalidators class HoverinfoValidator(_plotly_utils.basevalidators.FlaglistValidator): def __init__(self, plotly_name="hoverinfo", parent_name="bar", **kwargs): super(HoverinfoValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "none"), extras=kwargs.pop("extras", ["all", "none", "skip"]), flags=kwargs.pop("flags", ["x", "y", "z", "text", "name"]), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@bar@_hoverinfo.py@.PATH_END.py
{ "filename": "11143_rval_050015.py", "repo_name": "shreeyesh-biswal/Rvalue_3D", "repo_path": "Rvalue_3D_extracted/Rvalue_3D-main/Codes/Zero/AR_11143/11143_rval_050015.py", "type": "Python" }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 26 20:36:28 2022 @author: shreeyeshbiswal """ import os import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib.pyplot import figure AR = "11143" core_dir = "/home/shreeyeshbiswal/IDLWorkspace/Dataset_PF/" base_dir = "/home/shreeyeshbiswal/IDLWorkspace/Dataset_PF/AR_" + AR dir_list = sorted(os.listdir(base_dir)) n = len(dir_list) m = 10 # values per file d = '15' th = '50' rval_matrix = np.zeros(shape=(n,m)) index = np.arange(0,n) height = np.arange(0,m)*0.36 P4 = 'Log of R-value (Mx); AR ' + AR colorbarticks = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] cbar_min = 15 cbar_max = 23 for i in range(0,n): Time_tag = dir_list[i] Time = Time_tag[0:19] Hour = Time[11:13] print(Time) dir = "/home/shreeyeshbiswal/IDLWorkspace/Dataset_PF/AR_" + AR + "/" + Time_tag os.chdir(dir) # the if-else statement takes care of missing data if len(os.listdir(dir)) != 0: rval = np.loadtxt("PF_ext_rvals_050015_" + Time + ".dat") rval = rval + 15.1172 # LOG FACTOR FOR 1.3141 x 10^15 print(rval) print(np.shape(rval)) rval_matrix[i,:] = rval print(Hour) else: rval_matrix[i,:] = np.nan print("Empty directory") os.chdir(core_dir) x = np.arange(0,n) figure(figsize=(10,10), dpi=100000) figure, axs = plt.subplots(10) figure.set_figheight(15) figure.set_figwidth(9) cm = plt.cm.get_cmap('afmhot') mpl.rc('xtick', labelsize=13) # Plot sc = axs[0].scatter(x, rval_matrix[:,9], c = rval_matrix[:,9], vmin=cbar_min, vmax=cbar_max, s=10, cmap=cm) for i in range(0,m): axs[i].scatter(x, rval_matrix[:,9-i], c = rval_matrix[:,9-i], vmin=cbar_min, vmax=cbar_max, s=10, cmap=cm) for i in range(0,m): axs[i].set_ylim([cbar_min, cbar_max]) plt.setp(plt.gcf().get_axes(), xticks=[], yticks=[]); axs[9].tick_params(axis='x', labelsize=16) axs[9].set_xticks(np.arange(0,n,24)) # Hide the ylims of individual boxes for i in range(0,m): axs[i].set_yticks([]) # Show heights in the altitude heightfont = 16 for i in range(0,m): max_alt = (m-1)*0.36 altitude = max_alt-(i*0.36) alt_str = "{:.2f}".format(altitude) axs[i].set_ylabel(alt_str + ' ', fontsize = heightfont, rotation = 0) # Orient the text st = dir_list[0] start_time = st[0:4] + '/' + st[5:7] + '/' + st[8:10] + '/' + st[11:13] + ':' + st[14:16] axs[0].text(12, (cbar_max + (0.35*(cbar_max - cbar_min))), P4, fontsize=23) axs[5].text(-36, cbar_min + 0.5*(cbar_max - cbar_min), 'Height (Mm)', rotation = 90, fontsize=18) axs[9].text(-15, (cbar_min - (0.65*(cbar_max - cbar_min))), 'Time after ' + start_time + ' (hrs)' + '; ($B_{th}$, $D_{sep}$) = ' + '(' + th + ',' + d + ')', rotation = 0, fontsize=18) figure.subplots_adjust(right=0.8) cbar_ax = figure.add_axes([0.85, 0.15, 0.05, 0.7]) cbar_ax.tick_params(labelsize=16) figure.colorbar(sc, cax=cbar_ax, ticks=range(cbar_min,cbar_max+1,1)) plt.subplots_adjust(wspace=0.5, hspace=0) plt.show() mpl.rcParams.update(mpl.rcParamsDefault)
shreeyesh-biswalREPO_NAMERvalue_3DPATH_START.@Rvalue_3D_extracted@Rvalue_3D-main@Codes@Zero@AR_11143@11143_rval_050015.py@.PATH_END.py
{ "filename": "generate_observation.py", "repo_name": "Smithsonian/ngehtsim", "repo_path": "ngehtsim_extracted/ngehtsim-main/examples/example_data_generation/generate_observation.py", "type": "Python" }
####################################################### # imports import ngehtsim.obs.obs_generator as og import ngehtsim.obs.obs_plotter as op import ngehtsim.metrics as cm ####################################################### # generate an observation # input settings file yamlfile = './settings.yaml' # initialize the observation generator obsgen = og.obs_generator(settings_file=yamlfile) # generate the observation obs = obsgen.make_obs() # save it as a uvfits file obs.save_uvfits('./example_datafile.uvfits') ####################################################### # make some plots of the data op.plot_uv(obs, filename='./example_plot_uv.png') op.plot_amp(obs, filename='./example_plot_amp.png') op.plot_phase(obs, filename='./example_plot_phase.png') op.plot_snr(obs, filename='./example_plot_snr.png') ####################################################### # compute various metrics # compute FF metric ff = cm.calc_ff(obs, fov=200.0) print('FF metric value is: ', ff) # compute BFF metric for each Stokes parameter for stokes in ['I', 'Q', 'U', 'V']: bff = cm.calc_bff(obs, fov=200.0, stokes=stokes) print('Stokes ' + stokes + ' BFF metric value is: ', bff) # compute LCG metric lcg = cm.calc_lcg(obs) print('LCG metric value is: ', lcg) # compute PSS metric pss = cm.calc_pss(obs) print('PSS metric value (in Jy) is: ', pss) # compute angular resolution metric with different weightings for weighting in ['natural', 'uniform', 'robust']: ar = cm.calc_ar(obs, artype='mean', weighting=weighting) print('Average beam size (in uas) with ' + weighting + ' weighting is: ', ar) ####################################################### # plot a metric versus time for the observation op.plot_snapshot(obs, obsgen, 'FF', fov=200.0, filename='./example_plot_FF.png')
SmithsonianREPO_NAMEngehtsimPATH_START.@ngehtsim_extracted@ngehtsim-main@examples@example_data_generation@generate_observation.py@.PATH_END.py
{ "filename": "test_avg.py", "repo_name": "NannyML/nannyml", "repo_path": "nannyml_extracted/nannyml-main/tests/stats/test_avg.py", "type": "Python" }
# Author: Niels Nuyttens <niels@nannyml.com> # Author: Nikolaos Perrakis <nikos@nannyml.com> # # License: Apache Software License 2.0 """Tests for Drift package.""" import pytest import pandas as pd from typing import Tuple from nannyml.datasets import load_synthetic_car_loan_dataset from nannyml.stats import SummaryStatsAvgCalculator @pytest.fixture def binary_classification_data() -> Tuple[pd.DataFrame, pd.DataFrame]: # noqa: D103 reference, monitored, _ = load_synthetic_car_loan_dataset() return reference.head(15_000), monitored.tail(5_000) @pytest.fixture def calculator_results(binary_classification_data): reference, monitored = binary_classification_data column_names = ['car_value', 'debt_to_income_ratio', 'driver_tenure'] calc = SummaryStatsAvgCalculator( column_names=column_names, chunk_size=5_000 ).fit(reference) results = calc.calculate(data=monitored) return results def test_stats_avg_calculator_with_default_params_should_not_fail( # noqa: D103 binary_classification_data ): reference, monitored = binary_classification_data try: calc = SummaryStatsAvgCalculator( column_names=['car_value', 'debt_to_income_ratio', 'driver_tenure'], ).fit(reference) _ = calc.calculate(data=monitored) except Exception: pytest.fail() @pytest.mark.parametrize( 'column, expected_dir', [ ('value', { 'car_value': [29660.4932, 29617.694, 29577.5972, 48706.3372], 'debt_to_income_ratio': [0.5851, 0.5827, 0.5863, 0.585], 'driver_tenure': [4.6161, 4.6169, 4.5716, 4.6028], }), ('sampling_error', { 'car_value': [287.7624, 287.7624, 287.7624, 287.7624], 'debt_to_income_ratio': [0.0022, 0.0022, 0.0022, 0.0022], 'driver_tenure': [0.0325, 0.0325, 0.0325, 0.0325], }), ('upper_confidence_boundary', { 'car_value': [30523.7803, 30480.9811, 30440.8843, 49569.6243], 'debt_to_income_ratio': [0.5917, 0.5893, 0.593, 0.5916], 'driver_tenure': [4.7136, 4.7144, 4.6691, 4.7003], }), ('lower_confidence_boundary', { 'car_value': [28797.2061, 28754.4069, 28714.3101, 47843.0501], 'debt_to_income_ratio': [0.5785, 0.5761, 0.5797, 0.5784], 'driver_tenure': [4.5187, 4.5195, 4.4741, 4.5053], }), ('upper_threshold', { 'car_value': [29720.1392, 29720.1392, 29720.1392, 29720.1392], 'debt_to_income_ratio': [0.5892, 0.5892, 0.5892, 0.5892], 'driver_tenure': [4.6651, 4.6651, 4.6651, 4.6651], }), ('lower_threshold', { 'car_value': [29517.0504, 29517.0504, 29517.0504, 29517.0504], 'debt_to_income_ratio': [0.5802, 0.5802, 0.5802, 0.5802], 'driver_tenure': [4.538, 4.538, 4.538, 4.538], }), ('alert', { 'car_value': [False, False, False, True], 'debt_to_income_ratio': [False, False, False, False], 'driver_tenure': [False, False, False, False], }), ], ) def test_stats_avg_calculator_results(calculator_results, column, expected_dir): # noqa: D103 column_names = ['car_value', 'debt_to_income_ratio', 'driver_tenure'] eval_cols = [(col, column) for col in column_names] exp_cols = pd.MultiIndex.from_tuples(eval_cols) expected = pd.DataFrame(expected_dir) expected.columns = exp_cols pd.testing.assert_frame_equal(calculator_results.to_df()[eval_cols].round(4), expected) def test_stats_avg_calculator_returns_distinct_but_consistent_results_when_reused( # noqa: D103 binary_classification_data ): reference, monitored = binary_classification_data column_names = ['car_value', 'debt_to_income_ratio', 'driver_tenure'] calc = SummaryStatsAvgCalculator( column_names=column_names, chunk_size=5_000 ).fit(reference) results1 = calc.calculate(data=monitored) results2 = calc.calculate(data=monitored) assert results1 is not results2 pd.testing.assert_frame_equal(results1.to_df(), results2.to_df()) def test_stats_avg_calculator_returns_distinct_but_consistent_results_when_data_reused( # noqa: D103 binary_classification_data ): reference, monitored = binary_classification_data reference2 = reference.copy(deep=True) monitored2 = monitored.copy(deep=True) column_names = ['car_value', 'debt_to_income_ratio', 'driver_tenure'] calc = SummaryStatsAvgCalculator( column_names=column_names, chunk_size=5_000 ).fit(reference2) results = calc.calculate(data=monitored2) # noqa: F841 pd.testing.assert_frame_equal(monitored, monitored2) pd.testing.assert_frame_equal(reference, reference2)
NannyMLREPO_NAMEnannymlPATH_START.@nannyml_extracted@nannyml-main@tests@stats@test_avg.py@.PATH_END.py
{ "filename": "deterministics.ipynb", "repo_name": "statsmodels/statsmodels", "repo_path": "statsmodels_extracted/statsmodels-main/examples/notebooks/deterministics.ipynb", "type": "Jupyter Notebook" }
# Deterministic Terms in Time Series Models ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd plt.rc("figure", figsize=(16, 9)) plt.rc("font", size=16) ``` ## Basic Use Basic configurations can be directly constructed through `DeterministicProcess`. These can include a constant, a time trend of any order, and either a seasonal or a Fourier component. The process requires an index, which is the index of the full-sample (or in-sample). First, we initialize a deterministic process with a constant, a linear time trend, and a 5-period seasonal term. The `in_sample` method returns the full set of values that match the index. ```python from statsmodels.tsa.deterministic import DeterministicProcess index = pd.RangeIndex(0, 100) det_proc = DeterministicProcess(index, constant=True, order=1, seasonal=True, period=5) det_proc.in_sample() ``` The `out_of_sample` returns the next `steps` values after the end of the in-sample. ```python det_proc.out_of_sample(15) ``` `range(start, stop)` can also be used to produce the deterministic terms over any range including in- and out-of-sample. ### Notes * When the index is a pandas `DatetimeIndex` or a `PeriodIndex`, then `start` and `stop` can be date-like (strings, e.g., "2020-06-01", or Timestamp) or integers. * `stop` is always included in the range. While this is not very Pythonic, it is needed since both statsmodels and Pandas include `stop` when working with date-like slices. ```python det_proc.range(190, 210) ``` ## Using a Date-like Index Next, we show the same steps using a `PeriodIndex`. ```python index = pd.period_range("2020-03-01", freq="M", periods=60) det_proc = DeterministicProcess(index, constant=True, fourier=2) det_proc.in_sample().head(12) ``` ```python det_proc.out_of_sample(12) ``` `range` accepts date-like arguments, which are usually given as strings. ```python det_proc.range("2025-01", "2026-01") ``` This is equivalent to using the integer values 58 and 70. ```python det_proc.range(58, 70) ``` ## Advanced Construction Deterministic processes with features not supported directly through the constructor can be created using `additional_terms` which accepts a list of `DetermisticTerm`. Here we create a deterministic process with two seasonal components: day-of-week with a 5 day period and an annual captured through a Fourier component with a period of 365.25 days. ```python from statsmodels.tsa.deterministic import Fourier, Seasonality, TimeTrend index = pd.period_range("2020-03-01", freq="D", periods=2 * 365) tt = TimeTrend(constant=True) four = Fourier(period=365.25, order=2) seas = Seasonality(period=7) det_proc = DeterministicProcess(index, additional_terms=[tt, seas, four]) det_proc.in_sample().head(28) ``` ## Custom Deterministic Terms The `DetermisticTerm` Abstract Base Class is designed to be subclassed to help users write custom deterministic terms. We next show two examples. The first is a broken time trend that allows a break after a fixed number of periods. The second is a "trick" deterministic term that allows exogenous data, which is not really a deterministic process, to be treated as if was deterministic. This lets use simplify gathering the terms needed for forecasting. These are intended to demonstrate the construction of custom terms. They can definitely be improved in terms of input validation. ```python from statsmodels.tsa.deterministic import DeterministicTerm class BrokenTimeTrend(DeterministicTerm): def __init__(self, break_period: int): self._break_period = break_period def __str__(self): return "Broken Time Trend" def _eq_attr(self): return (self._break_period,) def in_sample(self, index: pd.Index): nobs = index.shape[0] terms = np.zeros((nobs, 2)) terms[self._break_period :, 0] = 1 terms[self._break_period :, 1] = np.arange(self._break_period + 1, nobs + 1) return pd.DataFrame(terms, columns=["const_break", "trend_break"], index=index) def out_of_sample( self, steps: int, index: pd.Index, forecast_index: pd.Index = None ): # Always call extend index first fcast_index = self._extend_index(index, steps, forecast_index) nobs = index.shape[0] terms = np.zeros((steps, 2)) # Assume break period is in-sample terms[:, 0] = 1 terms[:, 1] = np.arange(nobs + 1, nobs + steps + 1) return pd.DataFrame( terms, columns=["const_break", "trend_break"], index=fcast_index ) ``` ```python btt = BrokenTimeTrend(60) tt = TimeTrend(constant=True, order=1) index = pd.RangeIndex(100) det_proc = DeterministicProcess(index, additional_terms=[tt, btt]) det_proc.range(55, 65) ``` Next, we write a simple "wrapper" for some actual exogenous data that simplifies constructing out-of-sample exogenous arrays for forecasting. ```python class ExogenousProcess(DeterministicTerm): def __init__(self, data): self._data = data def __str__(self): return "Custom Exog Process" def _eq_attr(self): return (id(self._data),) def in_sample(self, index: pd.Index): return self._data.loc[index] def out_of_sample( self, steps: int, index: pd.Index, forecast_index: pd.Index = None ): forecast_index = self._extend_index(index, steps, forecast_index) return self._data.loc[forecast_index] ``` ```python import numpy as np gen = np.random.default_rng(98765432101234567890) exog = pd.DataFrame(gen.integers(100, size=(300, 2)), columns=["exog1", "exog2"]) exog.head() ``` ```python ep = ExogenousProcess(exog) tt = TimeTrend(constant=True, order=1) # The in-sample index idx = exog.index[:200] det_proc = DeterministicProcess(idx, additional_terms=[tt, ep]) ``` ```python det_proc.in_sample().head() ``` ```python det_proc.out_of_sample(10) ``` ## Model Support The only model that directly supports `DeterministicProcess` is `AutoReg`. A custom term can be set using the `deterministic` keyword argument. **Note**: Using a custom term requires that `trend="n"` and `seasonal=False` so that all deterministic components must come from the custom deterministic term. ### Simulate Some Data Here we simulate some data that has an weekly seasonality captured by a Fourier series. ```python gen = np.random.default_rng(98765432101234567890) idx = pd.RangeIndex(200) det_proc = DeterministicProcess(idx, constant=True, period=52, fourier=2) det_terms = det_proc.in_sample().to_numpy() params = np.array([1.0, 3, -1, 4, -2]) exog = det_terms @ params y = np.empty(200) y[0] = det_terms[0] @ params + gen.standard_normal() for i in range(1, 200): y[i] = 0.9 * y[i - 1] + det_terms[i] @ params + gen.standard_normal() y = pd.Series(y, index=idx) ax = y.plot() ``` The model is then fit using the `deterministic` keyword argument. `seasonal` defaults to False but `trend` defaults to `"c"` so this needs to be changed. ```python from statsmodels.tsa.api import AutoReg mod = AutoReg(y, 1, trend="n", deterministic=det_proc) res = mod.fit() print(res.summary()) ``` We can use the `plot_predict` to show the predicted values and their prediction interval. The out-of-sample deterministic values are automatically produced by the deterministic process passed to `AutoReg`. ```python fig = res.plot_predict(200, 200 + 2 * 52, True) ``` ```python auto_reg_forecast = res.predict(200, 211) auto_reg_forecast ``` ## Using with other models Other models do not support `DeterministicProcess` directly. We can instead manually pass any deterministic terms as `exog` to model that support exogenous values. Note that `SARIMAX` with exogenous variables is OLS with SARIMA errors so that the model is $$ \begin{align*} \nu_t & = y_t - x_t \beta \\ (1-\phi(L))\nu_t & = (1+\theta(L))\epsilon_t. \end{align*} $$ The parameters on deterministic terms are not directly comparable to `AutoReg` which evolves according to the equation $$ (1-\phi(L)) y_t = x_t \beta + \epsilon_t. $$ When $x_t$ contains only deterministic terms, these two representation are equivalent (assuming $\theta(L)=0$ so that there is no MA). ```python from statsmodels.tsa.api import SARIMAX det_proc = DeterministicProcess(idx, period=52, fourier=2) det_terms = det_proc.in_sample() mod = SARIMAX(y, order=(1, 0, 0), trend="c", exog=det_terms) res = mod.fit(disp=False) print(res.summary()) ``` The forecasts are similar but differ since the parameters of the `SARIMAX` are estimated using MLE while `AutoReg` uses OLS. ```python sarimax_forecast = res.forecast(12, exog=det_proc.out_of_sample(12)) df = pd.concat([auto_reg_forecast, sarimax_forecast], axis=1) df.columns = columns = ["AutoReg", "SARIMAX"] df ```
statsmodelsREPO_NAMEstatsmodelsPATH_START.@statsmodels_extracted@statsmodels-main@examples@notebooks@deterministics.ipynb@.PATH_END.py
{ "filename": "_showtickprefix.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/choroplethmapbox/colorbar/_showtickprefix.py", "type": "Python" }
import _plotly_utils.basevalidators class ShowtickprefixValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showtickprefix", parent_name="choroplethmapbox.colorbar", **kwargs ): super(ShowtickprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["all", "first", "last", "none"]), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@choroplethmapbox@colorbar@_showtickprefix.py@.PATH_END.py
{ "filename": "sim_chime_repeaters.py", "repo_name": "TRASAL/frbpoppy", "repo_path": "frbpoppy_extracted/frbpoppy-master/tests/dm_snr/sim_chime_repeaters.py", "type": "Python" }
"""Plot DM/SNR distributions of repeater populations observed with CHIME.""" import numpy as np import matplotlib.pyplot as plt from frbpoppy import CosmicPopulation, Survey, SurveyPopulation, plot from frbpoppy import split_pop, pprint from tests.convenience import hist, plot_aa_style, rel_path DAYS = 4 INTERACTIVE_PLOT = False PLOTTING_LIMIT_N_SRCS = 0 SNR = True r = CosmicPopulation.simple(n_srcs=int(1e4), n_days=DAYS, repeaters=True) r.set_dist(z_max=2) r.set_lum(model='powerlaw', low=1e35, high=1e45, power=-1.7, per_source='different') r.set_time(model='poisson', rate=3) r.set_dm_igm(model='ioka', slope=1000, std=0) r.set_dm(mw=False, igm=True, host=False) r.set_w('constant', value=1) r.generate() # Set up survey survey = Survey('chime-frb', n_days=DAYS) survey.set_beam(model='chime-frb') survey.snr_limit = 1e-13 surv_pop = SurveyPopulation(r, survey) pprint(f'{r.n_bursts()}:{surv_pop.n_bursts()}') pprint(f'{surv_pop.n_sources()} sources detected') if r.n_bursts() < PLOTTING_LIMIT_N_SRCS: pprint('Not sufficient FRB sources for plotting') exit() # Split population into seamingly one-off and repeater populations mask = ((~np.isnan(surv_pop.frbs.time)).sum(1) > 1) pop_rep, pop_one = split_pop(surv_pop, mask) pop_rep.name += ' (> 1 burst)' pop_one.name += ' (1 burst)' if INTERACTIVE_PLOT: plot(r, pop_rep, pop_one, frbcat=False, mute=False) # Plot dm distribution if SNR: plot_aa_style(cols=2) f, (ax1, ax2) = plt.subplots(1, 2) else: plot_aa_style(cols=1) f, ax1 = plt.subplots(1, 1) prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] pops = (r, pop_rep, pop_one) for i, pop in enumerate(pops): # Distinguish populations if pop.name.endswith('(1 burst)'): label = '1 burst' linestyle = 'solid' elif pop.name.endswith('(> 1 burst)'): label = '$>$1 burst' linestyle = 'dashed' else: label = 'cosmic' linestyle = 'dashdot' pprint(f'Number of bursts in {label}: {pop.n_bursts()}') # Do stuff with data dm = pop.frbs.dm x, y = hist(dm) # Plot DM distributions ax1.step(x, y, where='mid', linestyle=linestyle, label=label, color=colors[i]) # Plot fluence distributions snr = pop.frbs.snr if snr is None: continue if not SNR: continue try: ax2.step(*hist(snr, bin_type='log'), where='mid', linestyle=linestyle, color=colors[i]) except ValueError: pprint('Zero sources available to plot') continue ax1.set_xlabel(r'DM ($\textrm{pc}\ \textrm{cm}^{-3}$)') ax1.set_ylabel('Fraction') if SNR: ax2.set_xlabel(r'SNR') ax2.set_xscale('log') ax2.set_yscale('log') ax2.yaxis.tick_right() plt.figlegend(loc='upper center', ncol=len(pops), framealpha=1) else: plt.figlegend(loc='upper center', ncol=3, framealpha=1, prop={'size': 8}, bbox_to_anchor=(0.5, 1.07), bbox_transform=ax1.transAxes) plt.tight_layout() plt.savefig(rel_path('plots/sim_dm_snr_chime.pdf')) plt.clf()
TRASALREPO_NAMEfrbpoppyPATH_START.@frbpoppy_extracted@frbpoppy-master@tests@dm_snr@sim_chime_repeaters.py@.PATH_END.py
{ "filename": "_tickmode.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/scattermapbox/marker/colorbar/_tickmode.py", "type": "Python" }
import _plotly_utils.basevalidators class TickmodeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="tickmode", parent_name="scattermapbox.marker.colorbar", **kwargs, ): super(TickmodeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), implied_edits=kwargs.pop("implied_edits", {}), values=kwargs.pop("values", ["auto", "linear", "array"]), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@scattermapbox@marker@colorbar@_tickmode.py@.PATH_END.py
{ "filename": "tod.py", "repo_name": "hpc4cmb/toast", "repo_path": "toast_extracted/toast-main/src/toast/tod/tod.py", "type": "Python" }
# Copyright (c) 2015-2020 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. from ..mpi import MPI import numpy as np from ..dist import distribute_samples from ..cache import Cache from .. import qarray as qa from ..timing import function_timer from .interval import Interval class TOD(object): """ Base class for an object that provides detector pointing and timestreams for a single observation. This class provides high-level functions that are common to all derived classes. It also defines the internal methods that should be overridden by all derived classes. These internal methods throw an exception if they are called. A TOD base class should never be directly instantiated. Args: mpicomm (mpi4py.MPI.Comm): the MPI communicator over which the data is distributed, or None. detectors (list): The list of detector names. samples (int): The total number of samples. detindx (dict): the detector indices for use in simulations. Default is { x[0] : x[1] for x in zip(detectors, range(len(detectors))) }. detranks (int): The dimension of the process grid in the detector direction. If not None, the MPI communicator size must be evenly divisible by this number. detbreaks (list): Optional list of hard breaks in the detector distribution. sampsizes (list): Optional list of sample chunk sizes which cannot be split. sampbreaks (list): Optional list of hard breaks in the sample distribution. meta (dict): Optional dictionary of metadata properties. """ def __init__( self, mpicomm, detectors, samples, detindx=None, detranks=1, detbreaks=None, sampsizes=None, sampbreaks=None, meta=None, ): self._mpicomm = mpicomm self._detranks = detranks self._sampranks = 1 self._rank_det = 0 self._rank_samp = 0 self._comm_row = None self._comm_col = None rank = 0 if mpicomm is None: if detranks != 1: raise RuntimeError("MPI is disabled, so detranks must equal 1") else: rank = mpicomm.rank if mpicomm.size % detranks != 0: raise RuntimeError( "The number of detranks ({}) does not divide evenly into the " "communicator size ({})".format(detranks, mpicomm.size) ) self._sampranks = mpicomm.size // detranks self._rank_det = mpicomm.rank // self._sampranks self._rank_samp = mpicomm.rank % self._sampranks # Split the main communicator into process row and column # communicators, since this is useful for gathering data in some # operations. if self._sampranks == 1: self._comm_row = MPI.COMM_SELF else: self._comm_row = self._mpicomm.Split(self._rank_det, self._rank_samp) if self._detranks == 1: self._comm_col = MPI.COMM_SELF else: self._comm_col = self._mpicomm.Split(self._rank_samp, self._rank_det) self._dets = detectors self._nsamp = samples self._sizes = sampsizes self.meta = meta if meta is None: self.meta = {} if detindx is not None: for d in self._dets: if d not in detindx: raise RuntimeError("detindx must have a value for every detector") self._detindx = detindx else: self._detindx = {x[0]: x[1] for x in zip(detectors, range(len(detectors)))} # if sizes is specified, it must be consistent with # the total number of samples. if self._sizes is not None: test = np.sum(self._sizes) if samples != test: raise RuntimeError( "Sum of sampsizes ({}) does not equal total samples ({})" "".format(test, samples) ) (self._dist_dets, self._dist_samples, self._dist_sizes) = distribute_samples( self._mpicomm, self._dets, self._nsamp, detranks=self._detranks, detbreaks=detbreaks, sampsizes=sampsizes, sampbreaks=sampbreaks, ) if self._sizes is None: # in this case, the chunks just come from the uniform distribution. self._sizes = [self._dist_samples[x][1] for x in range(self._sampranks)] if rank == 0: # check that all processes have some data, otherwise print warning for d in range(self._detranks): if len(self._dist_dets[d]) == 0: print( "WARNING: detector rank {} has no detectors" " assigned.".format(d) ) for r in range(self._sampranks): if self._dist_samples[r][1] <= 0: print( "WARNING: sample rank {} has no data assigned " "in TOD.".format(r) ) self.cache = Cache() TIMESTAMP_NAME = "timestamps" """Default cache name for timestamps.""" COMMON_FLAG_NAME = "common_flags" """Default cache name for common flags.""" VELOCITY_NAME = "velocity" """Default cache name for velocity.""" POSITION_NAME = "position" """Default cache name for position.""" SIGNAL_NAME = "signal" """Default cache name for signal.""" FLAG_NAME = "flags" """Default cache name for flags.""" POINTING_NAME = "quat" """Default cache name for pointing quaternions.""" HWP_ANGLE_NAME = "hwp_angle" """Default cache name for HWP angle.""" def __repr__(self): clsname = self.__class__.__name__ csize = self.cache.report(silent=True) lsamp = self._dist_samples[self._rank_samp] ldet = self._dist_dets[self._rank_det] ldetstr = [" {}".format(x) for x in ldet] lines = [ " {} total detectors and {} total samples".format( len(self._dets), self._nsamp ), " Using MPI communicator {}".format(self._mpicomm), " In grid dimensions {} sample ranks x {} detranks".format( self._sampranks, self._detranks ), " Process at ({}, {}) in grid has data for:".format( self._rank_samp, self._rank_det ), " Samples {} - {} (inclusive)".format(lsamp[0], lsamp[0] + lsamp[1] - 1), " Detectors:", ] lines.extend(ldetstr) lines.append(" Cache contains {} bytes".format(csize)) return "<{}\n{}\n>".format(clsname, "\n".join(lines)) @property def detectors(self): """ (list): The total list of detectors. """ return self._dets def detoffset(self): """ Return dictionary of detector quaternions. This returns a dictionary with the detector names as the keys and the values are 4-element numpy arrays containing the quaternion offset from the boresight. Args: None Returns (dict): the dictionary of quaternions. """ raise NotImplementedError("Fell through to TOD base class method") return None @property def detindx(self): """ (dict): The detector indices. """ return self._detindx @property def local_dets(self): """ (list): The detectors assigned to this process. """ return self._dist_dets[self._rank_det] @property def total_chunks(self): """ (list): the full list of sample chunk sizes that were used in the data distribution. """ return self._sizes @property def dist_chunks(self): """ (list): this is a list of 2-tuples, one for each column of the process grid. Each element of the list is the same as the information returned by the "local_chunks" member for a given process column. """ return self._dist_sizes @property def local_chunks(self): """ (2-tuple): the first element of the tuple is the index of the first chunk assigned to this process (i.e. the index in the list given by the "total_chunks" member). The second element of the tuple is the number of chunks assigned to this process. """ return self._dist_sizes[self._rank_samp] def local_times(self, name=None, **kwargs): """Timestamps covering locally stored data. Args: name (str): Optional cache key to use. Returns: A cache reference to a timestamp vector. If 'name' is None a default name 'timestamps' is used and the vector may be constructed and cached using the 'read_times' method. If 'name' is given, then the times must already be cached. """ if name is None: cachename = self.TIMESTAMP_NAME if not self.cache.exists(cachename): times = self.read_times(**kwargs) self.cache.put(cachename, times) else: cachename = name return self.cache.reference(cachename) def local_signal(self, det, name=None, **kwargs): """Locally stored signal. Args: det (str): Name of the detector. name (str): Optional cache key to use. Returns: A cache reference to a signal vector. If 'name' is None a default name 'signal' is used and the vector may be constructed and cached using the 'read' method. If 'name' is given, then the signal must already be cached. """ if name is None: cachename = "{}_{}".format(self.SIGNAL_NAME, det) if not self.cache.exists(cachename): signal = self.read(detector=det, **kwargs) self.cache.put(cachename, signal) else: cachename = "{}_{}".format(name, det) return self.cache.reference(cachename) def local_pointing(self, det, name=None, **kwargs): """Locally stored pointing. Args: det (str): Name of the detector. name (str): Optional cache key to use. Returns: A cache reference to a pointing array. If 'name' is None a default name 'quat' is used and the array may be constructed and cached using the 'read_pntg' method. If 'name' is given, then the pointing must already be cached. """ if name is None: cachename = "{}_{}".format(self.POINTING_NAME, det) if not self.cache.exists(cachename): quats = self.read_pntg(detector=det, **kwargs) self.cache.put(cachename, quats) else: cachename = "{}_{}".format(name, det) return self.cache.reference(cachename) def local_position(self, name=None, **kwargs): """Locally stored position. Args: name (str): Optional cache key to use. Returns: A cache reference to a position array. If 'name' is None a default name 'position' is used and the array may be constructed and cached using the 'read_position' method. If 'name' is given, then the position must already be cached. """ if name is None: cachename = self.POSITION_NAME if not self.cache.exists(cachename): pos = self.read_position(**kwargs) self.cache.put(cachename, pos) else: cachename = name return self.cache.reference(cachename) def local_velocity(self, name=None, **kwargs): """Locally stored velocity. Args: name (str): Optional cache key to use. Returns: A cache reference to a velocity array. If 'name' is None a default name 'velocity' is used and the array may be constructed and cached using the 'read_velocity' method. If 'name' is given, then the velocity must already be cached. """ if name is None: cachename = self.VELOCITY_NAME if not self.cache.exists(cachename): vel = self.read_velocity(**kwargs) self.cache.put(cachename, vel) else: cachename = name return self.cache.reference(cachename) def local_flags(self, det, name=None, **kwargs): """Locally stored flags. Args: det (str): Name of the detector. name (str): Optional cache key to use. Returns: A cache reference to a flag vector. If 'name' is None a default name 'flags' is used and the vector may be constructed and cached using the 'read_flags' method. If 'name' is given, then the flags must already be cached. """ if name is None: cachename = "{}_{}".format(self.FLAG_NAME, det) if not self.cache.exists(cachename): flags = self.read_flags(detector=det, **kwargs) self.cache.put(cachename, flags) else: cachename = "{}_{}".format(name, det) return self.cache.reference(cachename) def local_common_flags(self, name=None, **kwargs): """Locally stored common flags. Args: name (str): Optional cache key to use. Returns: A cache reference to a common flag vector. If 'name' is None a default name 'common_flags' is used and the vector may be constructed and cached using the 'read_common_flags' method. If 'name' is given, then the flags must already be cached. """ if name is None: cachename = self.COMMON_FLAG_NAME if not self.cache.exists(cachename): common_flags = self.read_common_flags(**kwargs) self.cache.put(cachename, common_flags) else: cachename = name return self.cache.reference(cachename) def local_hwp_angle(self, name=None, **kwargs): """Locally stored half-wave plate angle. Args: name (str): Optional cache key to use. Returns: A cache reference to a hwp angle vector. If 'name' is None a default name 'hwp_angle' is used and the vector may be constructed and cached using the 'read_hwp_angle' method. If 'name' is given, then the angles must already be cached. """ if name is None: cachename = self.HWP_ANGLE_NAME if not self.cache.exists(cachename): hwp_angle = self.read_hwp_angle(**kwargs) if hwp_angle is None: return None self.cache.put(cachename, hwp_angle) else: cachename = name return self.cache.reference(cachename) def local_intervals(self, intervals): """Translate observation-wide intervals into local sample indices.""" if intervals is None: intervals = [ Interval(start=0, stop=0, first=0, last=self.total_samples - 1) ] offset, nsamp = self.local_samples local_intervals = [] times = self.local_times() if len(times) != nsamp: raise RuntimeError( "Length of cached timestamps does not match local samples. " "Cannot produce local intervals." ) for ival in intervals: previous_last = None if ival.last >= offset and ival.first < offset + nsamp: local_first = max(0, ival.first - offset) if previous_last is not None and previous_last >= local_first: raise RuntimeError("Provided intervals overlap") local_last = min(nsamp - 1, ival.last - offset) previous_last = local_last local_start = times[local_first] local_stop = times[local_last] local_intervals.append( Interval( start=local_start, stop=local_stop, first=local_first, last=local_last, ) ) return local_intervals @property def total_samples(self): """ (int): the total number of samples in this TOD. """ return self._nsamp @property def dist_samples(self): """ (list): This is a list of 2-tuples, with one element per column of the process grid. Each tuple is the same information returned by the "local_samples" member for the corresponding process grid column rank. """ return self._dist_samples @property def local_samples(self): """ (2-tuple): The first element of the tuple is the first global sample assigned to this process. The second element of the tuple is the number of samples assigned to this process. """ return self._dist_samples[self._rank_samp] @property def mpicomm(self): """ (mpi4py.MPI.Comm): the communicator assigned to this TOD. """ return self._mpicomm @property def grid_size(self): """ (tuple): the dimensions of the process grid in (detector, sample) directions. """ return (self._detranks, self._sampranks) @property def grid_ranks(self): """ (tuple): the ranks of this process in the (detector, sample) directions. """ return (self._rank_det, self._rank_samp) @property def grid_comm_row(self): """ (mpi4py.MPI.Comm): a communicator across all detectors in the same row of the process grid (or None). """ return self._comm_row @property def grid_comm_col(self): """ (mpi4py.MPI.Comm): a communicator across all detectors in the same column of the process grid (or None). """ return self._comm_col def _get(self, detector, start, n): raise NotImplementedError("Fell through to TOD._get base class method") return None def _put(self, detector, start, data): raise NotImplementedError("Fell through to TOD._put base class method") return def _get_boresight(self, start, n): raise NotImplementedError( "Fell through to TOD._get_boresight base class method" ) return None def _put_boresight(self, start, data): raise NotImplementedError( "Fell through to TOD._put_boresight base class method" ) return def _get_boresight_azel(self, start, n): raise NotImplementedError( "Fell through to TOD._get_boresight_azel base class method" ) return None def _put_boresight_azel(self, start, data): raise NotImplementedError( "Fell through to TOD._put_boresight_azel base class method" ) return def _get_pntg(self, detector, start, n): raise NotImplementedError("Fell through to TOD._get_pntg base class method") return None def _put_pntg(self, detector, start, data): raise NotImplementedError("Fell through to TOD._put_pntg base class method") return def _get_flags(self, detector, start, n): raise NotImplementedError("Fell through to TOD._get_flags base class method") return None def _put_flags(self, detector, start, flags): raise NotImplementedError("Fell through to TOD._put_flags base class method") return def _get_common_flags(self, start, n): raise NotImplementedError( "Fell through to TOD._get_common_flags base class method" ) return None def _put_common_flags(self, start, flags): raise NotImplementedError( "Fell through to TOD._put_common_flags base class method" ) return None def _get_hwp_angle(self, start, n): raise NotImplementedError( "Fell through to TOD._get_hwp_angle base class method" ) return None def _put_hwp_angle(self, start, flags): raise NotImplementedError( "Fell through to TOD._put_hwp_angle base class method" ) return None def _get_times(self, start, n): raise NotImplementedError("Fell through to TOD._get_times base class method") return None def _put_times(self, start, stamps): raise NotImplementedError("Fell through to TOD._put_times base class method") return None def _get_position(self, start, n): raise NotImplementedError("Fell through to TOD._get_position base class method") return None def _put_position(self, start, pos): raise NotImplementedError("Fell through to TOD._put_position base class method") return def _get_velocity(self, start, n): raise NotImplementedError("Fell through to TOD._get_velocity base class method") return None def _put_velocity(self, start, vel): raise NotImplementedError("Fell through to TOD._put_velocity base class method") return # Read and write the common timestamps @function_timer def read_times(self, local_start=0, n=0, **kwargs): """Read timestamps. This reads the common set of timestamps that apply to all detectors in the TOD. Args: local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: (array): a numpy array containing the timestamps. """ if n == 0: n = self.local_samples[1] - local_start if self.local_samples[1] <= 0: raise RuntimeError( "cannot read times- process has no assigned local samples" ) if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get_times(local_start, n, **kwargs) @function_timer def write_times(self, local_start=0, stamps=None, **kwargs): """Write timestamps. This writes the common set of timestamps that apply to all detectors in the TOD. Args: local_start (int): the sample offset relative to the first locally assigned sample. stamps (array): the array of timestamps to write. """ if stamps is None: raise ValueError("you must specify the vector of time stamps") if self.local_samples[1] <= 0: raise RuntimeError( "cannot write times- process has no assigned local samples" ) if (local_start < 0) or (local_start + stamps.shape[0] > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + stamps.shape[0] - 1) ) self._put_times(local_start, stamps, **kwargs) return # Read and write telescope boresight pointing @function_timer def read_boresight(self, local_start=0, n=0, **kwargs): """Read boresight quaternion pointing. This returns the pointing of the boresight in quaternions. Args: local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: A 2D array of shape (n, 4) """ if n == 0: n = self.local_samples[1] - local_start if self.local_samples[1] <= 0: raise RuntimeError("cannot read boresight- process has no local samples") if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get_boresight(local_start, n, **kwargs) @function_timer def write_boresight(self, local_start=0, data=None, **kwargs): """Write boresight quaternion pointing. This writes the quaternion pointing for the boresight. Args: local_start (int): the sample offset relative to the first locally assigned sample. data (array): 2D array of quaternions with shape[1] == 4. """ if len(data.shape) != 2: raise ValueError("data should be a 2D array") if data.shape[1] != 4: raise ValueError("data should have second dimension of size 4") if self.local_samples[1] <= 0: raise RuntimeError("cannot write boresight- process has no local samples") if (local_start < 0) or (local_start + data.shape[0] > self.local_samples[1]): raise ValueError("local sample range is invalid") self._put_boresight(local_start, data, **kwargs) return @function_timer def read_boresight_azel(self, local_start=0, n=0, **kwargs): """Read boresight Azimuth / Elevation quaternion pointing. This returns the pointing of the boresight in the horizontal coordinate system, if it exists. Args: local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: A 2D array of shape (n, 4) Raises: NotImplementedError: if the telescope is not on the Earth. """ if n == 0: n = self.local_samples[1] - local_start if self.local_samples[1] <= 0: raise RuntimeError("cannot read boresight- process has no local samples") if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get_boresight_azel(local_start, n, **kwargs) @function_timer def write_boresight_azel(self, local_start=0, data=None, **kwargs): """Write boresight Azimuth / Elevation quaternion pointing. This writes the quaternion pointing for the boresight in the horizontal coordinate system, if it exists. Args: local_start (int): the sample offset relative to the first locally assigned sample. data (array): 2D array of quaternions with shape[1] == 4. Raises: RuntimeError or AttributeError : if the telescope is not on the Earth. """ if len(data.shape) != 2: raise ValueError("data should be a 2D array") if data.shape[1] != 4: raise ValueError("data should have second dimension of size 4") if self.local_samples[1] <= 0: raise RuntimeError("cannot write boresight- process has no local samples") if (local_start < 0) or (local_start + data.shape[0] > self.local_samples[1]): raise ValueError("local sample range is invalid") self._put_boresight_azel(local_start, data, **kwargs) return # Read and write detector data @function_timer def read(self, detector=None, local_start=0, n=0, **kwargs): """Read detector data. This returns the timestream data for a single detector. Args: detector (str): the name of the detector. local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: An array containing the data. """ if detector is None: raise ValueError("you must specify the detector") if detector not in self.local_dets: raise ValueError("detector {} not found".format(detector)) if n == 0: n = self.local_samples[1] - local_start if self.local_samples[1] <= 0: raise RuntimeError("cannot read- process has no assigned local samples") if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get(detector, local_start, n, **kwargs) @function_timer def write(self, detector=None, local_start=0, data=None, **kwargs): """Write detector data. This writes the detector data. Args: detector (str): the name of the detector. local_start (int): the sample offset relative to the first locally assigned sample. data (array): the data array. """ if detector is None: raise ValueError("you must specify the detector") if detector not in self.local_dets: raise ValueError("detector {} not found".format(detector)) if data is None: raise ValueError("data array must be specified") if self.local_samples[1] <= 0: raise RuntimeError("cannot write- process has no assigned local samples") if (local_start < 0) or (local_start + data.shape[0] > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + data.shape[0] - 1) ) self._put(detector, local_start, data, **kwargs) return # Read and write detector quaternion pointing @function_timer def read_pntg(self, detector=None, local_start=0, n=0, **kwargs): """Read detector quaternion pointing. This returns the pointing for a single detector in quaternions. Args: detector (str): the name of the detector. local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: A 2D array of shape (n, 4) """ if detector is None: raise ValueError("you must specify the detector") if detector not in self.local_dets: raise ValueError("detector {} not found".format(detector)) if n == 0: n = self.local_samples[1] - local_start if self.local_samples[1] <= 0: raise RuntimeError( "cannot read pntg- process has no assigned local samples" ) if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get_pntg(detector, local_start, n, **kwargs) @function_timer def write_pntg(self, detector=None, local_start=0, data=None, **kwargs): """Write detector quaternion pointing. This writes the quaternion pointing for a single detector. Args: detector (str): the name of the detector. local_start (int): the sample offset relative to the first locally assigned sample. data (array): 2D array of quaternions with shape[1] == 4. """ if detector is None: raise ValueError("you must specify the detector") if detector not in self.local_dets: raise ValueError("detector {} not found".format(detector)) if data is None: raise ValueError("data must be specified") if len(data.shape) != 2: raise ValueError("data should be a 2D array") if data.shape[1] != 4: raise ValueError("data should have second dimension of size 4") if self.local_samples[1] <= 0: raise RuntimeError( "cannot write pntg- process has no assigned local samples" ) if (local_start < 0) or (local_start + data.shape[0] > self.local_samples[1]): raise ValueError("local sample range is invalid") self._put_pntg(detector, local_start, data, **kwargs) return # Read and write detector flags @function_timer def read_flags(self, detector=None, local_start=0, n=0, **kwargs): """Read detector flags. This returns the detector-specific flags. Args: detector (str): the name of the detector. local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: An array containing the detector flags. """ if detector is None: raise ValueError("you must specify the detector") if detector not in self.local_dets: raise ValueError("detector {} not found".format(detector)) if n == 0: n = self.local_samples[1] - local_start if self.local_samples[1] <= 0: raise RuntimeError( "cannot read flags- process has no assigned local samples" ) if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get_flags(detector, local_start, n, **kwargs) @function_timer def read_common_flags(self, local_start=0, n=0, **kwargs): """Read common flags. This reads the common set of flags that should be applied to all detectors. Args: local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: (array): a numpy array containing the flags. """ if self.local_samples[1] <= 0: raise RuntimeError( "cannot read common flags- process has no assigned local samples" ) if n == 0: n = self.local_samples[1] - local_start if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get_common_flags(local_start, n, **kwargs) @function_timer def write_common_flags(self, local_start=0, flags=None, **kwargs): """Write common flags. This writes the common set of flags that should be applied to all detectors. Args: local_start (int): the sample offset relative to the first locally assigned sample. flags (array): array containing the flags to write. """ if flags is None: raise ValueError("flags must be specified") if self.local_samples[1] <= 0: raise RuntimeError( "cannot write common flags- process has no assigned local samples" ) if (local_start < 0) or (local_start + flags.shape[0] > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + flags.shape[0] - 1) ) self._put_common_flags(local_start, flags, **kwargs) return @function_timer def read_hwp_angle(self, local_start=0, n=0, **kwargs): """Read half-wave plate angle This reads the common HWP angle that should be applied to all detectors. Args: local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: (array): a numpy array containing the angles or None if the angle is not defined. """ if self.local_samples[1] <= 0: raise RuntimeError( "cannot read HWP angle- process has no assigned local samples" ) if n == 0: n = self.local_samples[1] - local_start if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) try: hwpangle = self._get_hwp_angle(local_start, n, **kwargs) except: hwpangle = None return hwpangle @function_timer def write_hwp_angle(self, local_start=0, hwpangle=None, **kwargs): """Write half-wave plate angle This writes the common HWP angle that should be applied to all detectors. Args: local_start (int): the sample offset relative to the first locally assigned sample. flags (array): array containing the flags to write. """ if hwpangle is None: raise ValueError("hwpangle must be specified") if self.local_samples[1] <= 0: raise RuntimeError( "cannot write HWP angle- process has no assigned local samples" ) if (local_start < 0) or (local_start + flags.shape[0] > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + flags.shape[0] - 1) ) self._put_hwp_angle(local_start, flags, **kwargs) return @function_timer def write_flags(self, detector=None, local_start=0, flags=None, **kwargs): """Write detector flags. This writes the detector-specific flags. Args: detector (str): the name of the detector. local_start (int): the sample offset relative to the first locally assigned sample. flags (array): the detector flags. """ if detector is None: raise ValueError("you must specify the detector") if detector not in self.local_dets: raise ValueError("detector {} not found".format(detector)) if flags is None: raise ValueError("flags must be specified") if self.local_samples[1] <= 0: raise RuntimeError( "cannot write flags- process has no assigned local samples" ) if (local_start < 0) or (local_start + flags.shape[0] > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + flags.shape[0] - 1) ) self._put_flags(detector, local_start, flags, **kwargs) return # Read and write telescope position @function_timer def read_position(self, local_start=0, n=0, **kwargs): """Read telescope position. This reads the telescope position in solar system barycenter coordinates (in Kilometers). Args: local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: (array): a 2D numpy array containing the x,y,z coordinates at each sample. """ if n == 0: n = self.local_samples[1] - local_start if self.local_samples[1] <= 0: raise RuntimeError( "cannot read position- process has no assigned local samples" ) if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get_position(local_start, n, **kwargs) @function_timer def write_position(self, local_start=0, pos=None, **kwargs): """Write telescope position. This writes the telescope position in solar system barycenter coordinates (in Kilometers). Args: local_start (int): the sample offset relative to the first locally assigned sample. pos (array): the 2D array of x,y,z coordinates at each sample. """ if pos is None: raise ValueError("you must specify the array of coordinates") if self.local_samples[1] <= 0: raise RuntimeError( "cannot write position- process has no assigned local samples" ) if (local_start < 0) or (local_start + pos.shape[0] > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + pos.shape[0] - 1) ) self._put_position(local_start, pos, **kwargs) return # Read and write telescope velocity @function_timer def read_velocity(self, local_start=0, n=0, **kwargs): """Read telescope velocity. This reads the telescope velocity in solar system barycenter coordinates (in Kilometers/s). Args: local_start (int): the sample offset relative to the first locally assigned sample. n (int): the number of samples to read. If zero, read to end. Returns: (array): a 2D numpy array containing the x,y,z velocity components at each sample. """ if n == 0: n = self.local_samples[1] - local_start if self.local_samples[1] <= 0: raise RuntimeError( "cannot read position- process has no assigned local samples" ) if (local_start < 0) or (local_start + n > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + n - 1) ) return self._get_velocity(local_start, n, **kwargs) @function_timer def write_velocity(self, local_start=0, vel=None, **kwargs): """Write telescope velocity. This writes the telescope velocity in solar system barycenter coordinates (in Kilometers/s). Args: local_start (int): the sample offset relative to the first locally assigned sample. vel (array): the 2D array of x,y,z velocity components at each sample. """ if vel is None: raise ValueError("you must specify the array of velocities.") if self.local_samples[1] <= 0: raise RuntimeError( "cannot write times- process has no assigned local samples" ) if (local_start < 0) or (local_start + vel.shape[0] > self.local_samples[1]): raise ValueError( "local sample range {} - {} is invalid" "".format(local_start, local_start + vel.shape[0] - 1) ) self._put_velocity(local_start, vel, **kwargs) return class TODCache(TOD): """TOD class that uses a memory cache for storage. This class simply uses a manually managed Cache object to store time ordered data. You must "write" the data before you can "read" it. Args: mpicomm (mpi4py.MPI.Comm): the MPI communicator over which the data is distributed (or None). detectors (list): The list of detector names. samples (int): The total number of samples. detindx (dict): the detector indices for use in simulations. Default is { x[0] : x[1] for x in zip(detectors, range(len(detectors))) }. detquats (dict): Dictionary of detector quaternions. detranks (int): The dimension of the process grid in the detector direction. The MPI communicator size must be evenly divisible by this number. detbreaks (list): Optional list of hard breaks in the detector distribution. sampsizes (list): Optional list of sample chunk sizes which cannot be split. sampbreaks (list): Optional list of hard breaks in the sample distribution. """ def __init__( self, mpicomm, detectors, samples, detindx=None, detquats=None, detranks=1, detbreaks=None, sampsizes=None, sampbreaks=None, ): super().__init__( mpicomm, detectors, samples, detindx=detindx, detranks=detranks, detbreaks=detbreaks, sampsizes=sampsizes, sampbreaks=sampbreaks, ) self._detquats = detquats self._pref_detdata = self.SIGNAL_NAME + "_" # "toast_tod_detdata_" self._pref_detflags = self.FLAG_NAME + "_" # "toast_tod_detflags_" self._pref_detpntg = "toast_tod_detpntg_" self._bore = "toast_boresight" self._bore_azel = "toast_boresight_azel" self._common = self.COMMON_FLAG_NAME # "toast_tod_common_flags" self._stamps = self.TIMESTAMP_NAME # "toast_tod_stamps" self._pos = "toast_tod_pos" self._vel = "toast_tod_vel" def detoffset(self): if self._detquats is None: raise NotImplementedError("TODCache does not contain detector quaternions.") return None else: return self._detquats # This class just uses a Cache object to store things. def _get(self, detector, start, n): if detector not in self.local_dets: raise ValueError( "detector {} not assigned to local process".format(detector) ) cachedata = "{}{}".format(self._pref_detdata, detector) if not self.cache.exists(cachedata): raise ValueError("detector {} data not yet written".format(detector)) dataref = self.cache.reference(cachedata)[start : start + n] return dataref def _put(self, detector, start, data): if detector not in self.local_dets: raise ValueError( "detector {} not assigned to local process".format(detector) ) cachedata = "{}{}".format(self._pref_detdata, detector) if not self.cache.exists(cachedata): self.cache.create(cachedata, np.float64, (self.local_samples[1],)) n = data.shape[0] refdata = self.cache.reference(cachedata)[start : start + n] refdata[:] = data return def _get_boresight(self, start, n): if not self.cache.exists(self._bore): raise ValueError("boresight not yet written") ref = self.cache.reference(self._bore)[start : start + n, :] return ref def _put_boresight(self, start, data): if not self.cache.exists(self._bore): self.cache.create(self._bore, np.float64, (self.local_samples[1], 4)) ref = self.cache.reference(self._bore) ref[start : (start + data.shape[0]), :] = data return def _get_boresight_azel(self, start, n): if not self.cache.exists(self._bore_azel): raise ValueError("boresight not yet written") ref = self.cache.reference(self._bore_azel)[start : start + n, :] return ref def _put_boresight_azel(self, start, data): if not self.cache.exists(self._bore_azel): self.cache.create(self._bore_azel, np.float64, (self.local_samples[1], 4)) ref = self.cache.reference(self._bore_azel) ref[start : (start + data.shape[0]), :] = data return def _get_pntg(self, detector, start, n): cachepntg = "{}{}".format(self._pref_detpntg, detector) if not self.cache.exists(cachepntg): # No detector-specific pointing written. See if we have # boresight pointing and detector quaternions. if self.cache.exists(self._bore) and (self._detquats is not None): return qa.mult( self.cache.reference(self._bore)[start : start + n, :], self._detquats[detector], ) else: raise ValueError( "detector {}: pointing data not yet written, and boresight" " and detector quaternions do not exist.".format(detector) ) else: return self.cache.reference(cachepntg)[start : start + n, :] def _put_pntg(self, detector, start, data): if detector not in self.local_dets: raise ValueError( "detector {} not assigned to local process".format(detector) ) cachepntg = "{}{}".format(self._pref_detpntg, detector) if not self.cache.exists(cachepntg): self.cache.create(cachepntg, np.float64, (self.local_samples[1], 4)) pntgref = self.cache.reference(cachepntg)[start : (start + data.shape[0]), :] pntgref[:] = data return def _get_flags(self, detector, start, n): if detector not in self.local_dets: raise ValueError( "detector {} not assigned to local process".format(detector) ) cacheflags = "{}{}".format(self._pref_detflags, detector) if not self.cache.exists(cacheflags): raise ValueError("detector {} flags not yet written".format(detector)) flagsref = self.cache.reference(cacheflags)[start : start + n] return flagsref def _put_flags(self, detector, start, flags): if detector not in self.local_dets: raise ValueError( "detector {} not assigned to local process".format(detector) ) cacheflags = "{}{}".format(self._pref_detflags, detector) if not self.cache.exists(cacheflags): self.cache.create(cacheflags, np.uint8, (self.local_samples[1],)) n = flags.shape[0] refflags = self.cache.reference(cacheflags)[start : start + n] refflags[:] = flags return def _get_common_flags(self, start, n): if not self.cache.exists(self._common): raise ValueError("common flags not yet written") comref = self.cache.reference(self._common)[start : start + n] return comref def _put_common_flags(self, start, flags): if not self.cache.exists(self._common): self.cache.create(self._common, np.uint8, (self.local_samples[1],)) n = flags.shape[0] comref = self.cache.reference(self._common)[start : start + n] comref[:] = flags return def _get_times(self, start, n): if not self.cache.exists(self._stamps): raise ValueError("timestamps not yet written") ref = self.cache.reference(self._stamps)[start : start + n] return ref def _put_times(self, start, stamps): if not self.cache.exists(self._stamps): self.cache.create(self._stamps, np.float64, (self.local_samples[1],)) n = stamps.shape[0] ref = self.cache.reference(self._stamps)[start : start + n] ref[:] = stamps return def _get_position(self, start, n): if not self.cache.exists(self._pos): raise ValueError("telescope position not yet written") ref = self.cache.reference(self._pos)[start : start + n] return ref def _put_position(self, start, pos): if not self.cache.exists(self._pos): self.cache.create(self._pos, np.float64, (self.local_samples[1], 3)) n = pos.shape[0] ref = self.cache.reference(self._pos)[start : start + n, :] ref[:, :] = pos return def _get_velocity(self, start, n): if not self.cache.exists(self._vel): raise ValueError("telescope velocity not yet written") ref = self.cache.reference(self._vel)[start : start + n] return ref def _put_velocity(self, start, vel): if not self.cache.exists(self._vel): self.cache.create(self._vel, np.float64, (self.local_samples[1], 3)) n = vel.shape[0] ref = self.cache.reference(self._vel)[start : start + n, :] ref[:, :] = vel return
hpc4cmbREPO_NAMEtoastPATH_START.@toast_extracted@toast-main@src@toast@tod@tod.py@.PATH_END.py
{ "filename": "bhlight.py", "repo_name": "AFD-Illinois/ebhlight", "repo_path": "ebhlight_extracted/ebhlight-master/script/bhlight.py", "type": "Python" }
################################################################################ # # # BASE MODULE FOR PYTHON SCRIPTING # # # ################################################################################ import os import sys; sys.dont_write_bytecode = True PATHS = {} PATHS['BASE'] = os.path.join(os.path.abspath(__file__).rsplit('/', 2)[0], '') PATHS['CORE'] = os.path.join(PATHS['BASE'], 'core') PATHS['SCRIPT'] = os.path.join(PATHS['BASE'], 'script') PATHS['ANALYSIS'] = os.path.join(PATHS['BASE'], 'script', 'analysis') PATHS['MACHINE'] = os.path.join(PATHS['BASE'], 'script', 'machine') PATHS['PROB'] = os.getcwd() sys.path.insert(0, PATHS['SCRIPT']) sys.path.insert(0, PATHS['ANALYSIS']) sys.path.insert(0, PATHS['MACHINE']) import units cgs = units.get_cgs() import util import config import hdf5_to_dict as io def build(PROBLEM): config.build(PROBLEM, PATHS) print(os.getcwd().split('/')[-1])
AFD-IllinoisREPO_NAMEebhlightPATH_START.@ebhlight_extracted@ebhlight-master@script@bhlight.py@.PATH_END.py
{ "filename": "loss-function-short-desc.md", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/catboost/docs/en/_includes/work_src/reusage/loss-function-short-desc.md", "type": "Markdown" }
The [metric](../../../concepts/loss-functions.md) to use in training. The specified value also determines the machine learning problem to solve. Some metrics support optional parameters (see the [Objectives and metrics](../../../concepts/loss-functions.md) section for details on each metric).
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@catboost@docs@en@_includes@work_src@reusage@loss-function-short-desc.md@.PATH_END.py
{ "filename": "test_traps.py", "repo_name": "wfirst-cgi/emccd_detect", "repo_path": "emccd_detect_extracted/emccd_detect-master/arcticpy_folder/build/lib/test_arcticpy/test_traps.py", "type": "Python" }
import numpy as np import pytest from scipy import integrate import matplotlib.pyplot as plt from copy import deepcopy import arcticpy as ac # Example traps (timescale such that 50% (25%) of charges released each step) traps_1_spec = [ ac.TrapInstantCapture(density=10, release_timescale=-1 / np.log(0.5)), ] traps_2_spec = [ ac.TrapInstantCapture(density=10, release_timescale=-1 / np.log(0.5)), ac.TrapInstantCapture(density=5, release_timescale=-1 / np.log(0.75)), ] # Example watermarks trap_manager_1_col = ac.TrapManagerInstantCapture( traps=traps_1_spec, n_columns=1, max_n_transfers=6 ) trap_manager_2_col = ac.TrapManagerInstantCapture( traps=traps_2_spec, n_columns=2, max_n_transfers=3 ) trap_manager_3_col = ac.TrapManagerInstantCapture( traps=traps_2_spec, n_columns=3, max_n_transfers=6 ) unset = trap_manager_1_col.unset watermarks_1_col = np.array( [ # Total volumes [ [0], [0.5], [0.2], [0.1], [unset], [unset], ], # Individual volumes [ [0], [0.3], [0.1], [0.1], [unset], [unset], ], # Fill fractions [ [0], [0.6], [0.8], [1], [unset], [unset], ], ] ) watermarks_2_col = np.array( [ # Total volumes, each column [ [0.8, 0], [0.4, 0.5], [unset, unset], ], # Individual volumes, each column [ [0.4, 0], [0.4, 0.5], [unset, unset], ], # Fill fractions of first trap species, each column [ [0.5, 0], [1, 1], [unset, unset], ], # Fill fractions of second trap species, each column [ [0.75, 0], [1, 1], [unset, unset], ], ] ) watermarks_3_col = np.array( [ # Total volumes, each column [ [0, 0.1, 0.4], [0.5, 0.7, 0.3], [0.2, 0, 0.2], [0.1, 0.2, 0.1], [unset, unset, unset], [unset, unset, unset], ], # Individual volumes, each column [ [0, 0.1, 0.1], [0.3, 0.5, 0.1], [0.1, 0, 0.1], [0.1, 0.1, 0.1], [unset, unset, unset], [unset, unset, unset], ], # Fill fractions of first trap species, each column [ [0, 1, 0.4], [0.6, 0.6, 0.6], [0.8, 0, 0.8], [1, 1, 1], [unset, unset, unset], [unset, unset, unset], ], # Fill fractions of second trap species, each column [ [0, 1, 0.7], [0.8, 0.8, 0.8], [0.9, 0, 0.9], [1, 1, 1], [unset, unset, unset], [unset, unset, unset], ], ] ) unset_watermark_index_1_col = trap_manager_1_col.unset_watermark_index_from_watermarks( watermarks_1_col ) unset_watermark_index_2_col = trap_manager_2_col.unset_watermark_index_from_watermarks( watermarks_2_col ) unset_watermark_index_3_col = trap_manager_3_col.unset_watermark_index_from_watermarks( watermarks_3_col ) class TestTraps: def test__electrons_released_from_electrons_and_dwell_time(self): trap = ac.Trap(release_timescale=1.0) assert trap.electrons_released_from_electrons_and_dwell_time( electrons=1.0 ) == pytest.approx(0.6321, 1e-4) assert trap.electrons_released_from_electrons_and_dwell_time( electrons=2.0 ) == pytest.approx(2.0 * 0.6321, 1e-4) trap = ac.Trap(release_timescale=2.0) assert trap.electrons_released_from_electrons_and_dwell_time( electrons=1.0 ) == pytest.approx(0.39346, 1e-4) assert trap.electrons_released_from_electrons_and_dwell_time( electrons=2.0 ) == pytest.approx(2.0 * 0.39346, 1e-4) class TestInitialWatermarks: def test__initial_watermark_array__shape_from_numbers_of_traps_columns_and_transfers( self, ): for n_traps, n_columns, max_n_transfers in zip( [1, 2, 3, 4], [4, 2, 1, 7], [3, 4, 5, 1], ): traps = [ac.Trap()] * n_traps trap_manager = ac.TrapManager( traps=traps, n_columns=n_columns, max_n_transfers=max_n_transfers ) assert trap_manager.watermarks == pytest.approx( np.ones((2 + n_traps, max_n_transfers * 2 + 1, n_columns)) * unset ) class TestTrapManagerUtilities: def test__n_traps_per_pixel(self): assert trap_manager_3_col.n_traps_per_pixel == pytest.approx([10, 5]) def test__unset_watermark_index_from_watermarks(self): unset_watermark_index = ( trap_manager_3_col.unset_watermark_index_from_watermarks(watermarks_3_col) ) assert unset_watermark_index == 4 def test__empty_all_traps(self): trap_manager_3_col.watermarks = deepcopy(watermarks_3_col) trap_manager_3_col.empty_all_traps() assert trap_manager_3_col.watermarks == pytest.approx( np.ones_like(watermarks_3_col) * unset ) def test__n_trapped_electrons_from_watermarks(self): # Empty watermarks trap_manager_3_col.empty_all_traps() assert trap_manager_3_col.n_trapped_electrons_from_watermarks( watermarks=trap_manager_3_col.watermarks ) == pytest.approx([0, 0, 0]) # Example watermarks, 2 columns assert trap_manager_2_col.n_trapped_electrons_from_watermarks( watermarks=watermarks_2_col ) == pytest.approx( [ # First column, (individual volumes * fill fractions) * density (0.4 * 0.5 + 0.4 * 1) * traps_2_spec[0].density + (0.4 * 0.75 + 0.4 * 1) * traps_2_spec[1].density, # Second column, (individual volumes * fill fractions) * density (0 + 0.5 * 1) * traps_2_spec[0].density + (0 + 0.5 * 1) * traps_2_spec[1].density, ] ) # Example watermarks, 3 columns assert trap_manager_3_col.n_trapped_electrons_from_watermarks( watermarks=watermarks_3_col ) == pytest.approx( # First trap species, (individual volumes * fill fractions) * density np.sum( watermarks_3_col[1, :unset_watermark_index_3_col] * watermarks_3_col[2, :unset_watermark_index_3_col], axis=0, ) * traps_2_spec[0].density # Second trap species, (individual volumes * fill fractions) * density + np.sum( watermarks_3_col[1, :unset_watermark_index_3_col] * watermarks_3_col[3, :unset_watermark_index_3_col], axis=0, ) * traps_2_spec[1].density ) class TestElectronsReleasedAndCapturedInstantCapture: def test__empty_release(self): trap_manager_1_col.empty_all_traps() n_electrons_released = trap_manager_1_col.n_electrons_released() assert n_electrons_released == pytest.approx(0) assert np.all(trap_manager_1_col.watermarks == unset) trap_manager_3_col.empty_all_traps() n_electrons_released = trap_manager_1_col.n_electrons_released() assert n_electrons_released == pytest.approx(0) assert np.all(trap_manager_3_col.watermarks == unset) def test__single_trap_release__single_column(self): trap_manager_1_col.watermarks = deepcopy(watermarks_1_col) n_trapped_electrons_initial = ( trap_manager_1_col.n_trapped_electrons_from_watermarks( watermarks=trap_manager_1_col.watermarks ) ) n_electrons_released = trap_manager_1_col.n_electrons_released() # Half released assert n_electrons_released == n_trapped_electrons_initial / 2 watermarks = deepcopy(watermarks_1_col) watermarks[2, :unset_watermark_index_1_col] /= 2 assert trap_manager_1_col.watermarks == pytest.approx(watermarks) def test__multiple_traps_release__single_column(self): trap_manager_2_col.watermarks = deepcopy(watermarks_2_col) n_trapped_electrons_initial = ( trap_manager_2_col.n_trapped_electrons_from_watermarks( watermarks=trap_manager_2_col.watermarks ) ) n_electrons_released = trap_manager_2_col.n_electrons_released() # Half released from first species, 25% released from second species assert n_electrons_released == pytest.approx( [ 0.5 * (0.4 * 0.5 + 0.4 * 1) * traps_2_spec[0].density + 0.25 * (0.4 * 0.75 + 0.4 * 1) * traps_2_spec[1].density, 0.5 * (0 + 0.5 * 1) * traps_2_spec[0].density + 0.25 * (0 + 0.5 * 1) * traps_2_spec[1].density, ] ) assert trap_manager_2_col.watermarks == pytest.approx( np.array( [ watermarks_2_col[0], watermarks_2_col[1], [ [0.25, 0], [0.5, 0.5], [unset, unset], ], [ [0.75 * 0.75, 0], [0.75, 0.75], [unset, unset], ], ] ) ) def test__single_trap_release__change_time(self): # Compared with test__single_trap_release__single_column: 1/3 the dwell # time with 1/3 the lifetime --> same result traps = [ ac.TrapInstantCapture(density=10, release_timescale=-1 / np.log(0.5) / 3) ] trap_manager = ac.TrapManagerInstantCapture( traps=traps, n_columns=1, max_n_transfers=6 ) trap_manager.watermarks = deepcopy(watermarks_1_col) n_trapped_electrons_initial = trap_manager.n_trapped_electrons_from_watermarks( watermarks=trap_manager.watermarks ) n_electrons_released = trap_manager.n_electrons_released(dwell_time=1 / 3) assert n_electrons_released == pytest.approx(n_trapped_electrons_initial / 2) watermarks = deepcopy(watermarks_1_col) watermarks[2, :unset_watermark_index_1_col] /= 2 assert trap_manager.watermarks == pytest.approx(watermarks) def test__first_capture(self): ccd = ac.CCD(well_fill_power=0.5, full_well_depth=10000, well_notch_depth=1e-7) n_free_electrons = [2500] # --> cloud fractional volume = 0.5 trap_manager = ac.TrapManagerInstantCapture( traps=traps_1_spec, n_columns=2, max_n_transfers=6 ) n_electrons_captured = trap_manager.n_electrons_captured( n_free_electrons=n_free_electrons, ccd_filling_function=ccd.well_filling_function(), ) assert n_electrons_captured == pytest.approx(5) assert trap_manager.watermarks[0, 0] == pytest.approx([0.5, 0.5]) assert trap_manager.watermarks[1, 0] == pytest.approx([0.5, 0.5]) assert trap_manager.watermarks[2, 0] == pytest.approx([1, 1]) assert (trap_manager.watermarks[:, 1:] == unset).all def test__full_release_and_capture__multiple_traps__multiple_columns(self): ccd = ac.CCD(well_fill_power=1, full_well_depth=1000, well_notch_depth=1e-7) trap_manager_3_col.watermarks = deepcopy(watermarks_3_col) # Release n_electrons_released = trap_manager_3_col.n_electrons_released() watermarks = deepcopy(watermarks_3_col) watermarks[2, :unset_watermark_index_3_col] *= 0.5 watermarks[3, :unset_watermark_index_3_col] *= 0.75 assert trap_manager_3_col.watermarks == pytest.approx(watermarks) assert n_electrons_released == pytest.approx([2.3375, 3.25, 1.825]) # Capture n_free_electrons = [300, 150, 0] # --> volumes = [0.3, 0.15, 0] n_electrons_captured = trap_manager_3_col.n_electrons_captured( n_free_electrons=n_free_electrons, ccd_filling_function=ccd.well_filling_function(), ) assert trap_manager_3_col.watermarks == pytest.approx( np.array( [ # Total volumes, each column [ [0, 0.1, 0.4], [0.5, 0.7, 0.3], [0.2, 0, 0.2], [0.1, 0.2, 0.1], [0.3, 0.15, 0], [unset, unset, unset], ], # Indv. volumes, each column [ [0, 0.1, 0.1], [0.2, 0.5, 0.1], [0.1, 0, 0.1], [0.1, 0.05, 0.1], [0.1, 0.05, 0], [unset, unset, unset], ], # Fill fractions, first trap species, each column [ [1, 1, 0.2], [0.3, 0.3, 0.3], [1, 1, 0.4], [1, 0.5, 0.5], [1, 1, 1], [unset, unset, unset], ], # Fill fractions, second trap species, each column [ [1, 1, 0.525], [0.6, 0.6, 0.6], [1, 1, 0.675], [1, 0.75, 0.75], [1, 1, 1], [unset, unset, unset], ], ] ) ) assert n_electrons_captured == pytest.approx([2.2875, 0.9375, 0]) # Check combined release and capture function gives same results watermarks_out = deepcopy(trap_manager_3_col.watermarks) trap_manager_3_col.watermarks = deepcopy(watermarks_3_col) n_electrons_released_and_captured = ( trap_manager_3_col.n_electrons_released_and_captured( n_free_electrons=np.array(n_free_electrons) - np.array(n_electrons_released), ccd_filling_function=ccd.well_filling_function(), ) ) assert n_electrons_released - n_electrons_captured == pytest.approx( n_electrons_released_and_captured ) assert trap_manager_3_col.watermarks == pytest.approx(watermarks_out) def test__capture_same_cloud_volume_as_existing_watermark(self): ccd = ac.CCD(well_fill_power=1, full_well_depth=1000, well_notch_depth=0) n_free_electrons = [200] # --> cloud fractional volume = 0.2 trap_manager_1_col.watermarks = np.array( [ [ [0.3], [0.2], [0.1], [unset], ], [ [0.1], [0.1], [0.1], [unset], ], [ [0.125], [0.25], [0.5], [unset], ], ] ) n_electrons_captured = trap_manager_1_col.n_electrons_captured( n_free_electrons=n_free_electrons, ccd_filling_function=ccd.well_filling_function(), ) # Normal total volume and fill fraction, but zero individual volume assert trap_manager_1_col.watermarks == pytest.approx( np.array( [ [ [0.3], [0.2], [0.1], [0.2], ], [ [0.1], [0.1], [0.1], [0], ], [ [0.125], [1], [1], [1], ], ] ) ) assert ( n_electrons_captured == (0.5 * 0.1 + 0.75 * 0.1) * traps_1_spec[0].density ) def test__not_enough_capture__first_capture(self): ccd = ac.CCD(well_fill_power=0.5, full_well_depth=10000, well_notch_depth=1e-7) n_free_electrons = [ 2.5e-3 # --> cloud fractional volume = 4.9999e-4, enough = 0.50001 ] trap_manager = ac.TrapManagerInstantCapture( traps=traps_1_spec, n_columns=2, max_n_transfers=6 ) n_electrons_captured = trap_manager.n_electrons_captured( n_free_electrons=n_free_electrons, ccd_filling_function=ccd.well_filling_function(), ) assert n_electrons_captured == pytest.approx(2.5e-3) assert trap_manager.watermarks[0, 0] == pytest.approx([4.9999e-4, 4.9999e-4]) assert trap_manager.watermarks[1, 0] == pytest.approx([4.9999e-4, 4.9999e-4]) assert trap_manager.watermarks[2, 0] == pytest.approx([0.50001, 0.50001]) assert (trap_manager.watermarks[:, 1:] == unset).all def test__not_enough_capture__multiple_traps_capture(self): ccd = ac.CCD(well_fill_power=0.1, full_well_depth=1000, well_notch_depth=1e-7) n_free_electrons = [3, 3] # --> volume = 0.55938668 enough_1 = 0.74182903 enough_2 = 0.74704911 trap_manager_2_col.watermarks = np.array( [ [ [0.8, 0], [0.4, 0.5], [unset, unset], ], [ [0.4, 0], [0.4, 0.5], [unset, unset], ], [ [0.25, 0], [0.5, 0.5], [unset, unset], ], [ [0.5625, 0], [0.75, 0.75], [unset, unset], ], ] ) n_electrons_captured = trap_manager_2_col.n_electrons_captured( n_free_electrons=n_free_electrons, ccd_filling_function=ccd.well_filling_function(), ) assert trap_manager_2_col.watermarks == pytest.approx( np.array( [ [ [0.8, 0], [0.4, 0.5], [volume, volume], ], [ [0.8 - volume, 0], [0.4, 0.5], [volume - 0.4, volume - 0.5], ], [ [0.25, enough_2], [0.5 + 0.5 * enough_1, 0.5 + 0.5 * enough_2], [enough_1, enough_2], ], [ [0.5625, enough_2], [0.75 + 0.25 * enough_1, 0.75 + 0.25 * enough_2], [enough_1, enough_2], ], ] ) ) assert n_electrons_captured == pytest.approx( [ enough_1 * ( 0.4 * (0.5 * traps_2_spec[0].density + 0.25 * traps_2_spec[1].density) + (volume - 0.4) * (traps_2_spec[0].density + traps_2_spec[1].density) ) - (volume - 0.4) * (0.25 * traps_2_spec[0].density + 0.5625 * traps_2_spec[1].density), enough_2 * ( 0.5 * (0.5 * traps_2_spec[0].density + 0.25 * traps_2_spec[1].density) + (volume - 0.5) * (traps_2_spec[0].density + traps_2_spec[1].density) ), ] ) class TestAllTrapManager: def test__single_or_multiple_trap_managers__add_cti_similar_result(self): image = np.zeros((6, 2)) image[1, 1] = 1000 print("image\n", image) # Single trap manager traps = traps_2_spec ccd = ac.CCD(well_fill_power=0.8, full_well_depth=8.47e4, well_notch_depth=1e-7) image_single = ac.add_cti(image=image, parallel_traps=traps, parallel_ccd=ccd) # Multiple trap managers traps = [[traps_2_spec[0]], [traps_2_spec[1]]] # print("\n\n # # multi") image_multi = ac.add_cti(image=image, parallel_traps=traps, parallel_ccd=ccd) # Slightly different result because the single trap manager has both # traps release followed by both capture, but the multi has one release # then capture, followed by the other release then capture. assert image_single == pytest.approx(image_multi, rel=1e-3) def test__n_trapped_electrons_currently(self): trap_managers = ac.AllTrapManager( traps=[traps_2_spec, traps_1_spec], n_columns=3, max_n_transfers=6, ccd=ac.CCD(), ) trap_managers[0][0].watermarks = deepcopy(watermarks_3_col) trap_managers[0][1].watermarks = watermarks_3_col[:3] # Ignore 2nd species n_trapped_electrons_1 = trap_manager_3_col.n_trapped_electrons_from_watermarks( watermarks=watermarks_3_col ) n_trapped_electrons_2 = ac.TrapManagerInstantCapture( traps=traps_1_spec, n_columns=3, max_n_transfers=6 ).n_trapped_electrons_from_watermarks(watermarks=watermarks_3_col[:3]) assert trap_managers.n_trapped_electrons_currently == pytest.approx( n_trapped_electrons_1 + n_trapped_electrons_2 ) def test__save_and_restore(self): trap_managers = ac.AllTrapManager( traps=traps_2_spec, n_columns=3, max_n_transfers=6, ccd=ac.CCD() ) trap_managers[0][0].watermarks = deepcopy(watermarks_3_col) trap_managers.save() trap_managers[0][0].empty_all_traps() # Confirm emptied assert (trap_managers[0][0].watermarks == unset).all() trap_managers.restore() # Confirm restored assert trap_managers[0][0].watermarks == pytest.approx(watermarks_3_col) class TestMiscTrapParameters: def test__delta_ellipticity_of_trap(self): trap = ac.Trap(density=0.5, release_timescale=2.0) assert trap.delta_ellipticity == pytest.approx(0.047378295117617694, 1.0e-5) def test__delta_ellipticity_of_arctic_params(self): parallel_1_trap = ac.Trap(density=0.1, release_timescale=4.0) parallel_2_trap = ac.Trap(density=0.1, release_timescale=4.0) serial_1_trap = ac.Trap(density=0.2, release_timescale=2.0) serial_2_trap = ac.Trap(density=0.7, release_timescale=7.0) trap_manager = ac.TrapManager( traps=[parallel_1_trap], n_columns=1, max_n_transfers=1 ) assert trap_manager.delta_ellipticity == parallel_1_trap.delta_ellipticity trap_manager = ac.TrapManager( traps=[parallel_1_trap, parallel_2_trap], n_columns=1, max_n_transfers=1 ) assert ( trap_manager.delta_ellipticity == parallel_1_trap.delta_ellipticity + parallel_2_trap.delta_ellipticity ) trap_manager = ac.TrapManager( traps=[serial_1_trap], n_columns=1, max_n_transfers=1 ) assert trap_manager.delta_ellipticity == serial_1_trap.delta_ellipticity trap_manager = ac.TrapManager( traps=[serial_1_trap, serial_2_trap], n_columns=1, max_n_transfers=1 ) assert ( trap_manager.delta_ellipticity == serial_1_trap.delta_ellipticity + serial_2_trap.delta_ellipticity ) trap_manager = ac.TrapManager( traps=[parallel_1_trap, parallel_2_trap, serial_1_trap, serial_2_trap], n_columns=1, max_n_transfers=1, ) assert trap_manager.delta_ellipticity == pytest.approx( parallel_1_trap.delta_ellipticity + parallel_2_trap.delta_ellipticity + serial_1_trap.delta_ellipticity + serial_2_trap.delta_ellipticity, 1.0e-6, ) def test_1_trap__density_01__1000_column_pixels__1_row_pixel_so_100_traps__poisson_density_near_01( self, ): parallel_vary = ac.Trap.poisson_trap( trap=list( map( lambda density: ac.Trap(density=density, release_timescale=1.0), (0.1,), ) ), shape=(1000, 1), seed=1, ) assert [trap.density for trap in parallel_vary] == [0.098] def test__1_trap__density_1__1000_column_pixels_so_1000_traps__1_row_pixel__poisson_value_is_near_1( self, ): parallel_vary = ac.Trap.poisson_trap( trap=list( map( lambda density: ac.Trap(density=density, release_timescale=1.0), (1.0,), ) ), shape=(1000, 1), seed=1, ) assert [trap.density for trap in parallel_vary] == [0.992] def test__1_trap__density_1___2_row_pixels__poisson_value_is_near_1(self): parallel_vary = ac.Trap.poisson_trap( trap=list( map( lambda density: ac.Trap(density=density, release_timescale=1.0), (1.0,), ) ), shape=(1000, 2), seed=1, ) assert [trap.density for trap in parallel_vary] == [0.992, 0.962] def test__2_trap__1_row_pixel__poisson_for_each_trap_drawn(self): parallel_vary = ac.Trap.poisson_trap( trap=list( map( lambda density: ac.Trap(density=density, release_timescale=1.0), (1.0, 2.0), ) ), shape=(1000, 1), seed=1, ) assert [trap.density for trap in parallel_vary] == [0.992, 1.946] def test__2_trap__2_row_pixel__poisson_for_each_trap_drawn(self): parallel_vary = ac.Trap.poisson_trap( trap=list( map( lambda density: ac.Trap(density=density, release_timescale=1.0), (1.0, 2.0), ) ), shape=(1000, 2), seed=1, ) assert [trap.density for trap in parallel_vary] == [ 0.992, 1.946, 0.968, 1.987, ] def test__same_as_above_but_3_trap_and_new_values(self): parallel_vary = ac.Trap.poisson_trap( trap=list( map( lambda density: ac.Trap(density=density, release_timescale=1.0), (1.0, 2.0, 0.1), ) ), shape=(1000, 3), seed=1, ) assert [trap.density for trap in parallel_vary] == [ 0.992, 1.946, 0.09, 0.991, 1.99, 0.098, 0.961, 1.975, 0.113, ] # # class TestTrapManagerTrackTime: # def test__fill_fraction_from_time_elapsed(self): # # trap = ac.TrapInstantCapture(density=10, release_timescale=2) # # fill = trap.fill_fraction_from_time_elapsed(1) # assert fill == np.exp(-0.5) # # time_elapsed = trap.time_elapsed_from_fill_fraction(0.5) # assert time_elapsed == -2 * np.log(0.5) # # assert fill == trap.fill_fraction_from_time_elapsed( # trap.time_elapsed_from_fill_fraction(fill) # ) # assert time_elapsed == trap.time_elapsed_from_fill_fraction( # trap.fill_fraction_from_time_elapsed(time_elapsed) # ) # # def test__watermarks_converted_to_fill_fractions_from_elapsed_times(self): # # trap = ac.TrapInstantCapture(density=10, release_timescale=2) # trap_manager = ac.TrapManagerTrackTime(traps=[trap], n_columns=2, max_n_transfers=6) # watermarks_fill = np.array( # [[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]] # ) # watermarks_time = np.array( # [ # [0.5, trap.time_elapsed_from_fill_fraction(0.8)], # [0.2, trap.time_elapsed_from_fill_fraction(0.4)], # [0.1, trap.time_elapsed_from_fill_fraction(0.2)], # [0, 0], # [0, 0], # [0, 0], # ] # ) # # assert watermarks_fill == pytest.approx( # trap_manager.watermarks_converted_to_fill_fractions_from_elapsed_times( # watermarks_time # ) # ) # assert watermarks_time == pytest.approx( # trap_manager.watermarks_converted_to_elapsed_times_from_fill_fractions( # watermarks_fill # ) # ) # assert watermarks_fill == pytest.approx( # trap_manager.watermarks_converted_to_fill_fractions_from_elapsed_times( # trap_manager.watermarks_converted_to_elapsed_times_from_fill_fractions( # watermarks_fill # ) # ) # ) # # def test__n_trapped_electrons_from_watermarks_using_time(self): # # trap = ac.TrapInstantCapture(density=10, release_timescale=-1 / np.log(0.5)) # trap_manager_fill = ac.TrapManagerInstantCapture( # traps=[trap], n_columns=2, max_n_transfers=6 # ) # trap_manager_time = ac.TrapManagerTrackTime(traps=[trap], n_columns=2, max_n_transfers=6) # # trap_manager_fill.watermarks = np.array( # [[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]] # ) # trap_manager_time.watermarks = np.array( # [ # [0.5, trap.time_elapsed_from_fill_fraction(0.8)], # [0.2, trap.time_elapsed_from_fill_fraction(0.4)], # [0.1, trap.time_elapsed_from_fill_fraction(0.2)], # [0, 0], # [0, 0], # [0, 0], # ] # ) # n_electrons_fill = trap_manager_fill.n_trapped_electrons_from_watermarks( # watermarks=trap_manager_fill.watermarks # ) # n_electrons_time = trap_manager_time.n_trapped_electrons_from_watermarks( # watermarks=trap_manager_time.watermarks # ) # # assert n_electrons_fill == n_electrons_time # # def test__electrons_released_and_captured_using_time(self): # # n_free_electrons = 5e4 # cloud fractional volume ~= 0.656 # ccd = ac.CCD(well_fill_power=0.8, full_well_depth=8.47e4, well_notch_depth=1e-7) # # ccd = ac.CCDPhase(ccd) # # trap = ac.TrapInstantCapture(density=10, release_timescale=-1 / np.log(0.5)) # trap_manager_fill = ac.TrapManagerInstantCapture( # traps=[trap], n_columns=2, max_n_transfers=6 # ) # trap_manager_time = ac.TrapManagerTrackTime(traps=[trap], n_columns=2, max_n_transfers=6) # # trap_manager_fill.watermarks = np.array( # [[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]] # ) # trap_manager_time.watermarks = np.array( # [ # [0.5, trap.time_elapsed_from_fill_fraction(0.8)], # [0.2, trap.time_elapsed_from_fill_fraction(0.4)], # [0.1, trap.time_elapsed_from_fill_fraction(0.2)], # [0, 0], # [0, 0], # [0, 0], # ] # ) # # net_electrons_fill = trap_manager_fill.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # net_electrons_time = trap_manager_time.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # assert net_electrons_fill == net_electrons_time # assert trap_manager_fill.watermarks == pytest.approx( # trap_manager_time.watermarks_converted_to_fill_fractions_from_elapsed_times( # trap_manager_time.watermarks # ) # ) # # def test__electrons_released_and_captured_using_time_multiple_traps(self): # n_free_electrons = 1e3 # ccd = ac.CCD(well_fill_power=0.8, full_well_depth=8.47e4, well_notch_depth=1e-7) # # ccd = ac.CCDPhase(ccd) # # trap_1 = ac.TrapInstantCapture(density=10, release_timescale=-1 / np.log(0.5)) # trap_2 = ac.TrapInstantCapture(density=10, release_timescale=-2 / np.log(0.5)) # trap_manager_fill = ac.TrapManagerInstantCapture( # traps=[trap_1, trap_2], n_columns=2, max_n_transfers=6 # ) # trap_manager_time = ac.TrapManagerTrackTime( # traps=[trap_1, trap_2], n_columns=2, max_n_transfers=6 # ) # # trap_manager_fill.watermarks = np.array( # [ # [0.5, 0.8, 0.6,], # [0.2, 0.4, 0.2,], # [0.1, 0.3, 0.1,], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # ] # ) # trap_manager_time.watermarks = np.array( # [ # [ # 0.5, # trap_1.time_elapsed_from_fill_fraction(0.8), # trap_2.time_elapsed_from_fill_fraction(0.6), # ], # [ # 0.2, # trap_1.time_elapsed_from_fill_fraction(0.4), # trap_2.time_elapsed_from_fill_fraction(0.2), # ], # [ # 0.1, # trap_1.time_elapsed_from_fill_fraction(0.3), # trap_2.time_elapsed_from_fill_fraction(0.1), # ], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # ] # ) # # net_electrons_fill = trap_manager_fill.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # net_electrons_time = trap_manager_time.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # assert net_electrons_fill == pytest.approx(net_electrons_time) # assert trap_manager_fill.watermarks == pytest.approx( # trap_manager_time.watermarks_converted_to_fill_fractions_from_elapsed_times( # trap_manager_time.watermarks # ) # ) # # # class TestTrapLifetimeContinuum: # def test__distribution_of_traps_with_lifetime(self): # # release_timescale_mu = -1 / np.log(0.5) # release_timescale_sigma = 0.5 # # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # trap = ac.TrapLifetimeContinuumAbstract( # density=10, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale_mu, # release_timescale_sigma=release_timescale_sigma, # ) # # # Check that the integral from zero to infinity is one # assert integrate.quad( # trap.distribution_of_traps_with_lifetime, # 0, # np.inf, # args=(trap.release_timescale_mu, trap.release_timescale_sigma), # )[0] == pytest.approx(1) # # def test__fill_fraction_from_time_elapsed_narrow_continuum(self): # # # Check that narrow continuum gives similar results to single release_timescale # # Simple trap # trap = ac.TrapInstantCapture(density=10, release_timescale=1) # fill_single = trap.fill_fraction_from_time_elapsed(1) # # # Narrow continuum # release_timescale_mu = 1 # release_timescale_sigma = 0.1 # # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # trap = ac.TrapLifetimeContinuumAbstract( # density=10, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale_mu, # release_timescale_sigma=release_timescale_sigma, # ) # fill_continuum = trap.fill_fraction_from_time_elapsed(1) # # assert fill_continuum == pytest.approx(fill_single, rel=0.01) # # def test__time_elapsed_from_fill_fraction_narrow_continuum(self): # # # Check that narrow continuum gives similar results to single release_timescale # # Simple trap # trap = ac.TrapInstantCapture(density=10, release_timescale=1) # time_single = trap.time_elapsed_from_fill_fraction(0.5) # # # Narrow continuum # release_timescale_mu = 1 # release_timescale_sigma = 0.1 # # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # trap = ac.TrapLifetimeContinuumAbstract( # density=10, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale_mu, # release_timescale_sigma=release_timescale_sigma, # ) # time_continuum = trap.time_elapsed_from_fill_fraction(0.5) # # assert time_continuum == pytest.approx(time_single, rel=0.01) # # def test__fill_fraction_from_time_elapsed_continuum(self): # # release_timescale_mu = 1 # release_timescale_sigma = 0.5 # # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # trap = ac.TrapLifetimeContinuumAbstract( # density=10, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale_mu, # release_timescale_sigma=release_timescale_sigma, # ) # # fill = trap.fill_fraction_from_time_elapsed(2) # time_elapsed = trap.time_elapsed_from_fill_fraction(0.4) # # assert fill == pytest.approx( # trap.fill_fraction_from_time_elapsed( # trap.time_elapsed_from_fill_fraction(fill) # ) # ) # assert time_elapsed == pytest.approx( # trap.time_elapsed_from_fill_fraction( # trap.fill_fraction_from_time_elapsed(time_elapsed) # ) # ) # # def test__n_trapped_electrons_from_watermarks(self): # # # Single trap # trap = ac.TrapInstantCapture(density=10, release_timescale=1) # trap_manager_single = ac.TrapManagerTrackTime(traps=[trap], n_columns=2, max_n_transfers=6) # trap_manager_single.watermarks = np.array( # [ # [0.5, trap.time_elapsed_from_fill_fraction(0.8)], # [0.2, trap.time_elapsed_from_fill_fraction(0.4)], # [0.1, trap.time_elapsed_from_fill_fraction(0.2)], # [0, 0], # [0, 0], # [0, 0], # ] # ) # n_electrons_single = trap_manager_single.n_trapped_electrons_from_watermarks( # trap_manager_single.watermarks # ) # # # Continua # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # for sigma in [0.1, 1, 2]: # median = 1 # trap = ac.TrapLifetimeContinuumAbstract( # density=10, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=median, # release_timescale_sigma=sigma, # ) # trap_manager_continuum = ac.TrapManagerTrackTime( # traps=[trap], n_columns=2, max_n_transfers=6 # ) # trap_manager_continuum.watermarks = np.array( # [ # [0.5, trap.time_elapsed_from_fill_fraction(0.8)], # [0.2, trap.time_elapsed_from_fill_fraction(0.4)], # [0.1, trap.time_elapsed_from_fill_fraction(0.2)], # [0, 0], # [0, 0], # [0, 0], # ] # ) # n_electrons_continuum = trap_manager_continuum.n_trapped_electrons_from_watermarks( # trap_manager_continuum.watermarks # ) # # assert n_electrons_continuum == pytest.approx(n_electrons_single) # # def test__electrons_released_and_captured_continuum(self): # # # Check that narrow continuum gives similar results to single traps # # and that a wider continuum gives somewhat similar results # # n_free_electrons = 5e4 # cloud fractional volume ~= 0.656 # ccd = ac.CCD(well_fill_power=0.8, full_well_depth=8.47e4, well_notch_depth=1e-7) # # ccd = ac.CCDPhase(ccd) # # # Single trap # trap = ac.TrapInstantCapture(density=10, release_timescale=1) # trap_manager_single = ac.TrapManagerTrackTime(traps=[trap], n_columns=2, max_n_transfers=6) # trap_manager_single.watermarks = np.array( # [ # [0.5, trap.time_elapsed_from_fill_fraction(0.8)], # [0.2, trap.time_elapsed_from_fill_fraction(0.4)], # [0.1, trap.time_elapsed_from_fill_fraction(0.2)], # [0, 0], # [0, 0], # [0, 0], # ] # ) # net_electrons_single = trap_manager_single.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # # Narrow continuum # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # release_timescale_mu = 1 # release_timescale_sigma = 0.01 # trap = ac.TrapLifetimeContinuumAbstract( # density=10, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale_mu, # release_timescale_sigma=release_timescale_sigma, # ) # trap_manager_narrow = ac.TrapManagerTrackTime(traps=[trap], n_columns=2, max_n_transfers=6) # trap_manager_narrow.watermarks = np.array( # [ # [0.5, trap.time_elapsed_from_fill_fraction(0.8)], # [0.2, trap.time_elapsed_from_fill_fraction(0.4)], # [0.1, trap.time_elapsed_from_fill_fraction(0.2)], # [0, 0], # [0, 0], # [0, 0], # ] # ) # net_electrons_narrow = trap_manager_narrow.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # # Continuum # release_timescale_mu = 1 # release_timescale_sigma = 1 # trap = ac.TrapLifetimeContinuumAbstract( # density=10, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale_mu, # release_timescale_sigma=release_timescale_sigma, # ) # trap_manager_continuum = ac.TrapManagerTrackTime( # traps=[trap], n_columns=2, max_n_transfers=6 # ) # trap_manager_continuum.watermarks = np.array( # [ # [0.5, trap.time_elapsed_from_fill_fraction(0.8)], # [0.2, trap.time_elapsed_from_fill_fraction(0.4)], # [0.1, trap.time_elapsed_from_fill_fraction(0.2)], # [0, 0], # [0, 0], # [0, 0], # ] # ) # net_electrons_continuum = trap_manager_continuum.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # assert net_electrons_narrow == pytest.approx(net_electrons_single, rel=1e-4) # assert net_electrons_continuum == pytest.approx(net_electrons_single, rel=2) # # assert trap_manager_narrow.watermarks == pytest.approx( # trap_manager_single.watermarks, rel=1e-4 # ) # assert trap_manager_continuum.watermarks == pytest.approx( # trap_manager_single.watermarks, rel=0.5 # ) # # def test__TrapLogNormalLifetimeContinuum(self): # # release_timescale_mu = -1 / np.log(0.5) # release_timescale_sigma = 0.5 # # trap = ac.TrapLogNormalLifetimeContinuum( # density=10, # release_timescale_mu=release_timescale_mu, # release_timescale_sigma=release_timescale_sigma, # ) # # # Check that the integral from zero to infinity is one # assert integrate.quad( # trap.distribution_of_traps_with_lifetime, # 0, # np.inf, # args=(trap.release_timescale_mu, trap.release_timescale_sigma), # )[0] == pytest.approx(1) # # # Check the automatic distribution function is set correctly # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # assert trap.distribution_of_traps_with_lifetime( # 1.2345, release_timescale_mu, release_timescale_sigma # ) == trap_distribution(1.2345, release_timescale_mu, release_timescale_sigma) # # def test__electrons_released_and_captured_compare_continuum_with_distributions_of_single_traps( # self, # ): # # ccd = ac.CCD(well_fill_power=0.8, full_well_depth=8.47e4, well_notch_depth=1e-7) # # density = 10 # release_timescale = 5 # sigma = 1 # linear_min_lifetime = 1e-3 # linear_max_lifetime = 1000 # linear_sample = 10000 # min_log_lifetime = -3 # max_log_lifetime = 5 # log_sample = 1000 # t_elapsed = 1 # dwell_time = 1 # n_free_electrons = 1e4 # # # Log-normal distribution # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # # Split into two # def trap_distribution_a(release_timescale, median, sigma): # return ( # 2 # * np.heaviside(release_timescale - 2 * median, 0) # * trap_distribution(release_timescale, median, sigma) # ) # # def trap_distribution_b(release_timescale, median, sigma): # return ( # 2 # * np.heaviside(2 * median - release_timescale, 0) # * trap_distribution(release_timescale, median, sigma) # ) # # # Continuum traps # trap_continuum = ac.TrapLifetimeContinuumAbstract( # density=density, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale, # release_timescale_sigma=sigma, # ) # trap_manager_continuum = ac.TrapManagerTrackTime( # traps=[trap_continuum], n_columns=2, max_n_transfers=6 # ) # trap_manager_continuum.watermarks = np.array( # [[0.5, t_elapsed], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0],] # ) # net_electrons_continuum = trap_manager_continuum.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # # Separated continuum traps # trap_continuum_split_a = ac.TrapLifetimeContinuumAbstract( # density=density / 2, # distribution_of_traps_with_lifetime=trap_distribution_a, # release_timescale_mu=release_timescale, # release_timescale_sigma=sigma, # ) # trap_continuum_split_b = ac.TrapLifetimeContinuumAbstract( # density=density / 2, # distribution_of_traps_with_lifetime=trap_distribution_b, # release_timescale_mu=release_timescale, # release_timescale_sigma=sigma, # ) # trap_manager_continuum_split = ac.TrapManagerTrackTime( # traps=[trap_continuum_split_a, trap_continuum_split_b], n_columns=2, max_n_transfers=6 # ) # trap_manager_continuum_split.watermarks = np.array( # [[0.5, t_elapsed, t_elapsed], [0] * 3, [0] * 3, [0] * 3, [0] * 3, [0] * 3,] # ) # net_electrons_continuum_split = trap_manager_continuum_split.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # # Equivalent distributions of single traps, linearly spaced # lifetimes_linear = np.linspace( # linear_min_lifetime, linear_max_lifetime, linear_sample # ) # densities_linear = trap_distribution(lifetimes_linear, release_timescale, sigma) # densities_linear *= density / densities_linear.sum() # traps_linear = [ # ac.TrapInstantCapture(density=density, release_timescale=release_timescale) # for density, release_timescale in zip(densities_linear, lifetimes_linear) # ] # trap_manager_linear = ac.TrapManagerTrackTime( # traps=traps_linear, n_columns=2, max_n_transfers=6 # ) # trap_manager_linear.watermarks = np.array( # [ # np.append([0.5], [t_elapsed] * linear_sample), # [0] * (linear_sample + 1), # [0] * (linear_sample + 1), # [0] * (linear_sample + 1), # [0] * (linear_sample + 1), # [0] * (linear_sample + 1), # ] # ) # net_electrons_linear = trap_manager_linear.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # # Equivalent distributions of single traps, logarithmically spaced # lifetimes_log = np.logspace(min_log_lifetime, max_log_lifetime, log_sample) # lifetimes_fractional_widths = np.append( # np.append( # np.exp(0.5 * (np.log(lifetimes_log[1]) + np.log(lifetimes_log[0]))), # np.exp(0.5 * (np.log(lifetimes_log[2:]) + np.log(lifetimes_log[:-2]))), # ), # np.exp(0.5 * (np.log(lifetimes_log[-1]) + np.log(lifetimes_log[-2]))), # ) # densities_log = trap_distribution(lifetimes_log, release_timescale, sigma) # densities_log *= lifetimes_fractional_widths # densities_log *= density / densities_log.sum() # traps_log = [ # ac.TrapInstantCapture(density=density, release_timescale=release_timescale) # for density, release_timescale in zip(densities_log, lifetimes_log) # ] # trap_manager_log = ac.TrapManagerTrackTime(traps=traps_log, n_columns=2, max_n_transfers=6) # trap_manager_log.watermarks = np.array( # [ # np.append([0.5], [t_elapsed] * log_sample), # [0] * (log_sample + 1), # [0] * (log_sample + 1), # [0] * (log_sample + 1), # [0] * (log_sample + 1), # [0] * (log_sample + 1), # ] # ) # net_electrons_log = trap_manager_log.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # net_electrons_log_2 = trap_manager_log.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # ) # # assert net_electrons_continuum == pytest.approx(net_electrons_continuum_split) # assert net_electrons_continuum == pytest.approx(net_electrons_linear, rel=0.001) # assert net_electrons_continuum == pytest.approx(net_electrons_log, rel=0.001) # # def test__trails_from_continuum_traps_compare_with_distributions_of_single_traps( # self, # ): # # # This test is VERY slow! # # size = 10 # pixels = np.arange(size) # image_orig = np.zeros((size, 1)) # image_orig[1, 0] = 1e4 # # ccd = ac.CCD(well_fill_power=0.8, full_well_depth=8.47e4, well_notch_depth=1e-7) # # density = 10 # release_timescale = 5 # sigma = 1 # min_log_lifetime = -3 # max_log_lifetime = 5 # log_sample = 100 # # # Log-normal distribution # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # # Continuum traps # trap_continuum = ac.TrapLifetimeContinuumAbstract( # density=density, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale, # release_timescale_sigma=sigma, # ) # image_continuum = ac.add_cti( # image=image_orig, parallel_traps=[trap_continuum], parallel_ccd=ccd, # ) # # # Equivalent distributions of single traps, logarithmically spaced # lifetimes_log = np.logspace(min_log_lifetime, max_log_lifetime, log_sample) # lifetimes_fractional_widths = np.append( # np.append( # np.exp(0.5 * (np.log(lifetimes_log[1]) + np.log(lifetimes_log[0]))), # np.exp(0.5 * (np.log(lifetimes_log[2:]) + np.log(lifetimes_log[:-2]))), # ), # np.exp(0.5 * (np.log(lifetimes_log[-1]) + np.log(lifetimes_log[-2]))), # ) # densities_log = trap_distribution(lifetimes_log, release_timescale, sigma) # densities_log *= lifetimes_fractional_widths # densities_log *= density / densities_log.sum() # traps_log = [ # ac.TrapInstantCapture(density=density, release_timescale=release_timescale) # for density, release_timescale in zip(densities_log, lifetimes_log) # ] # image_log = ac.add_cti( # image=image_orig, parallel_traps=traps_log, parallel_ccd=ccd, # ) # # assert image_continuum == pytest.approx(image_log) # # def test__plot_trails_from_continuum_traps_different_distributions(self,): # # # Plotting test -- manually set True to make the plot # do_plot = False # # do_plot = True # # if do_plot: # size = 20 # pixels = np.arange(size) # image_orig = np.zeros((size, 1)) # image_orig[1, 0] = 1e4 # # ccd = ac.CCD( # well_fill_power=0.8, full_well_depth=8.47e4, well_notch_depth=1e-7 # ) # # density = 1000 # release_timescale = 3 # # # Log-normal distribution # def trap_distribution(release_timescale, median, sigma): # return np.exp( # -((np.log(release_timescale) - np.log(median)) ** 2) # / (2 * sigma ** 2) # ) / (release_timescale * sigma * np.sqrt(2 * np.pi)) # # plt.figure() # # # Single trap # trap_single = ac.TrapInstantCapture( # density=density, release_timescale=release_timescale # ) # image_single = ac.add_cti( # image=image_orig, parallel_traps=[trap_single], parallel_ccd=ccd, # ) # plt.scatter(pixels, image_single[:, 0], c="k", marker=".", label="Single") # # # Pure exponential for comparison # exp_trail = np.exp(-pixels[2:] / release_timescale) # exp_trail *= image_single[2, 0] / exp_trail[0] # plt.plot(pixels[2:], exp_trail, c="k", alpha=0.3) # # # Different sigma scales # for sigma in [0.1, 0.5, 1, 2]: # trap_continuum = ac.TrapLifetimeContinuumAbstract( # density=density, # distribution_of_traps_with_lifetime=trap_distribution, # release_timescale_mu=release_timescale, # release_timescale_sigma=sigma, # ) # image_continuum = ac.add_cti( # image=image_orig, parallel_traps=[trap_continuum], parallel_ccd=ccd, # ) # plt.plot( # pixels, image_continuum[:, 0], label=r"$\sigma = %.1f$" % sigma # ) # # plt.legend() # plt.yscale("log") # plt.xlabel("Pixel") # plt.ylabel("Counts") # # plt.show() # # # class TestElectronsReleasedAndCapturedIncludingSlowTraps: # # ccd = ac.CCD(well_fill_power=0.8, full_well_depth=8.47e4, well_notch_depth=0) # # density = 10 # release_timescale = 1 # # # Old-style traps # traps_instant = [ # ac.TrapInstantCapture(density=density, release_timescale=release_timescale) # ] # trap_manager_instant = ac.TrapManagerInstantCapture( # traps=traps_instant, n_columns=2, max_n_transfers=6 # ) # # # Fast capture # traps_fast = [ # ac.Trap( # density=density, release_timescale=release_timescale, capture_timescale=0 # ) # ] # trap_manager_fast = ac.TrapManager(traps=traps_fast, n_columns=2, max_n_transfers=3) # # # Slow capture # traps_slow = [ # ac.Trap( # density=density, release_timescale=release_timescale, capture_timescale=0.1 # ) # ] # trap_manager_slow = ac.TrapManager(traps=traps_slow, n_columns=2, max_n_transfers=3) # # def test__collapse_redundant_watermarks(self): # # # None full # watermarks = self.trap_manager_fast.collapse_redundant_watermarks( # np.array([[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]]) # ) # assert watermarks == pytest.approx( # np.array([[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]]) # ) # # # None overwritten # watermarks = self.trap_manager_fast.collapse_redundant_watermarks( # np.array([[0.5, 1], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]]) # ) # assert watermarks == pytest.approx( # np.array([[0.5, 1], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]]) # ) # # # Some overwritten # watermarks = self.trap_manager_fast.collapse_redundant_watermarks( # np.array([[0.5, 1], [0.2, 1], [0.1, 0.2], [0, 0], [0, 0], [0, 0]]) # ) # assert watermarks == pytest.approx( # np.array([[0.7, 1], [0.1, 0.2], [0, 0], [0, 0], [0, 0], [0, 0]]) # ) # # # All overwritten # watermarks = self.trap_manager_fast.collapse_redundant_watermarks( # np.array([[0.5, 1], [0.2, 1], [0.1, 1], [0, 0], [0, 0], [0, 0]]) # ) # assert watermarks == pytest.approx( # np.array([[0.8, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]) # ) # # # Some overwritten, with copy # ( # watermarks, # watermarks_copy, # ) = self.trap_manager_fast.collapse_redundant_watermarks( # watermarks=np.array( # [[0.5, 1], [0.2, 1], [0.1, 0.2], [0, 0], [0, 0], [0, 0]] # ), # watermarks_copy=np.array( # [[0.5, 0.5], [0.2, 0.5], [0.1, 0.1], [0, 0], [0, 0], [0, 0]] # ), # ) # assert watermarks == pytest.approx( # np.array([[0.7, 1], [0.1, 0.2], [0, 0], [0, 0], [0, 0], [0, 0]]) # ) # assert watermarks_copy == pytest.approx( # np.array([[0.7, 0.5], [0.1, 0.1], [0, 0], [0, 0], [0, 0], [0, 0]]) # ) # # # Multiple trap species, some overwritten, with copy # ( # watermarks, # watermarks_copy, # ) = self.trap_manager_fast.collapse_redundant_watermarks( # watermarks=np.array( # [ # [0.4, 1, 1], # [0.2, 1, 1], # [0.1, 0.2, 0.3], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # ] # ), # watermarks_copy=np.array( # [ # [0.4, 0.5, 0.8], # [0.2, 0.5, 0.4], # [0.1, 0.1, 0.2], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # ] # ), # ) # assert watermarks == pytest.approx( # np.array( # [ # [0.6, 1, 1], # [0.1, 0.2, 0.3], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # ] # ) # ) # assert watermarks_copy == pytest.approx( # np.array( # [ # [0.6, 0.5, 2 / 3], # [0.1, 0.1, 0.2], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # ] # ) # ) # # # Multiple trap species, not all full # watermarks = self.trap_manager_fast.collapse_redundant_watermarks( # watermarks=np.array( # [ # [0.4, 1, 1], # [0.3, 1, 1], # [0.2, 1, 0.9], # [0.1, 0.2, 0.3], # [0, 0, 0], # [0, 0, 0], # ] # ), # ) # assert watermarks == pytest.approx( # np.array( # [ # [0.7, 1, 1], # [0.2, 1, 0.9], # [0.1, 0.2, 0.3], # [0, 0, 0], # [0, 0, 0], # [0, 0, 0], # ] # ) # ) # # def test__first_slow_capture(self): # # n_free_electrons = 5e4 # cloud fractional volume ~= 0.656 # # net_electrons_instant = self.trap_manager_instant.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_fast = self.trap_manager_fast.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_slow = self.trap_manager_slow.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # # # Fast traps reproduce old-style behaviour # assert self.trap_manager_fast.watermarks == pytest.approx( # self.trap_manager_instant.watermarks # ) # assert net_electrons_fast == net_electrons_instant # # # Slow traps capture fewer electrons but same watermark volumes # assert self.trap_manager_slow.watermarks[:, 0] == pytest.approx( # self.trap_manager_instant.watermarks[:, 0] # ) # assert net_electrons_instant < net_electrons_slow # # def test__new_lowest_watermark_slow_capture(self): # # n_free_electrons = 5e3 # cloud fractional volume ~= 0.104 # # watermarks = np.array( # [[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]] # ) # self.trap_manager_instant.watermarks = deepcopy(watermarks) # self.trap_manager_fast.watermarks = deepcopy(watermarks) # self.trap_manager_slow.watermarks = deepcopy(watermarks) # # net_electrons_instant = self.trap_manager_instant.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_fast = self.trap_manager_fast.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_slow = self.trap_manager_slow.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # # # Fast traps reproduce old-style behaviour # assert self.trap_manager_fast.watermarks == pytest.approx( # self.trap_manager_instant.watermarks, rel=1e-3 # ) # assert net_electrons_fast == pytest.approx(net_electrons_instant, rel=1e-3) # # # Slow traps capture less than fast # assert net_electrons_fast < net_electrons_slow # # # Lowest watermark volumes add up to previous volume, fill fractions # # increased below the cloud, decreased above it # assert self.trap_manager_slow.watermarks[:3, 0].sum() == watermarks[0, 0] # assert (self.trap_manager_slow.watermarks[:1, 1] > watermarks[0, 1]).all() # assert self.trap_manager_slow.watermarks[2, 1] < watermarks[0, 1] # # # Upper watermark volumes unchanged, fill fractions decreased # assert self.trap_manager_slow.watermarks[3:, 0] == pytest.approx( # watermarks[1:-2, 0] # ) # assert (self.trap_manager_slow.watermarks[3:, 1] <= watermarks[1:-2, 1]).all() # # def test__new_middle_watermark_slow_capture(self): # # n_free_electrons = 5e4 # cloud fractional volume ~= 0.656 # # watermarks = np.array( # [[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]] # ) # self.trap_manager_instant.watermarks = deepcopy(watermarks) # self.trap_manager_fast.watermarks = deepcopy(watermarks) # self.trap_manager_slow.watermarks = deepcopy(watermarks) # # net_electrons_instant = self.trap_manager_instant.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_fast = self.trap_manager_fast.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_slow = self.trap_manager_slow.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # # assert self.trap_manager_fast.watermarks == pytest.approx( # self.trap_manager_instant.watermarks, rel=1e-3 # ) # assert net_electrons_fast == pytest.approx(net_electrons_instant, rel=1e-3) # # # Slow traps capture less than fast # assert net_electrons_fast < net_electrons_slow # # # Lowest watermark volume unchanged, fill fractions increased # assert self.trap_manager_slow.watermarks[0, 0] == watermarks[0, 0] # assert self.trap_manager_slow.watermarks[0, 1] > watermarks[0, 1] # # # mu watermark volumes add up to previous volume, fill fractions # # increased below the cloud, decreased above it # assert self.trap_manager_slow.watermarks[1:4, 0].sum() == watermarks[1, 0] # assert (self.trap_manager_slow.watermarks[1:3, 1] > watermarks[1, 1]).all() # assert self.trap_manager_slow.watermarks[3, 1] < watermarks[1, 1] # # # Upper watermark volumes unchanged, fill fractions decreased # assert self.trap_manager_slow.watermarks[4:, 0] == pytest.approx( # watermarks[2:-2, 0] # ) # assert (self.trap_manager_slow.watermarks[4:, 1] <= watermarks[2:-2, 1]).all() # # def test__new_highest_watermark_slow_capture(self): # # n_free_electrons = 7e4 # cloud fractional volume ~= 0.859 # # watermarks = np.array( # [[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]] # ) # self.trap_manager_instant.watermarks = deepcopy(watermarks) # self.trap_manager_fast.watermarks = deepcopy(watermarks) # self.trap_manager_slow.watermarks = deepcopy(watermarks) # # net_electrons_instant = self.trap_manager_instant.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_fast = self.trap_manager_fast.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_slow = self.trap_manager_slow.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=self.ccd.well_filling_function(), # dwell_time=1, # ) # # # Fast traps reproduce old-style behaviour # assert self.trap_manager_fast.watermarks == pytest.approx( # self.trap_manager_instant.watermarks, rel=1e-3 # ) # assert net_electrons_fast == pytest.approx(net_electrons_instant, rel=1e-3) # # # Slow traps capture less than fast # assert net_electrons_fast < net_electrons_slow # # # Lower watermark volumes unchanged, fill fractions increased # assert (self.trap_manager_slow.watermarks[:3, 0] == watermarks[:3, 0]).all() # assert (self.trap_manager_slow.watermarks[:3, 1] > watermarks[:3, 1]).all() # # # New upper watermark volume added, fill fraction increased # assert self.trap_manager_slow.watermarks[3, 0] > watermarks[3, 0] # assert self.trap_manager_slow.watermarks[3, 1] > watermarks[3, 1] # # def test__no_available_electrons_slow_capture(self): # # ccd = ac.CCD(well_fill_power=0.5, full_well_depth=10000, well_notch_depth=1e-7) # n_free_electrons = 0 # # watermarks = np.array( # [[0.5, 0.8], [0.2, 0.4], [0.1, 0.2], [0, 0], [0, 0], [0, 0]] # ) # self.trap_manager_instant.watermarks = deepcopy(watermarks) # self.trap_manager_fast.watermarks = deepcopy(watermarks) # self.trap_manager_slow.watermarks = deepcopy(watermarks) # # net_electrons_instant = self.trap_manager_instant.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_fast = self.trap_manager_fast.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # dwell_time=1, # ) # net_electrons_slow = self.trap_manager_slow.n_electrons_released_and_captured( # n_free_electrons=n_free_electrons, # ccd_filling_function=ccd.well_filling_function(), # dwell_time=1, # ) # # # Fast traps reproduce old-style behaviour # assert self.trap_manager_fast.watermarks == pytest.approx( # self.trap_manager_instant.watermarks, rel=1e-3 # ) # assert net_electrons_fast == pytest.approx(net_electrons_instant, rel=1e-3) # # # Slow traps capture less than fast # assert net_electrons_fast < net_electrons_slow # # # Lowest watermark volumes add up to previous volume, fill fractions # # increased in the new lowest level, decreased above it # assert self.trap_manager_slow.watermarks[:2, 0].sum() == watermarks[0, 0] # assert self.trap_manager_slow.watermarks[0, 1] > watermarks[0, 1] # assert self.trap_manager_slow.watermarks[1, 1] < watermarks[0, 1] # # # Upper watermark volumes unchanged, fill fractions decreased # assert self.trap_manager_slow.watermarks[2:, 0] == pytest.approx( # watermarks[1:-1, 0] # ) # assert (self.trap_manager_slow.watermarks[2:, 1] <= watermarks[1:-1, 1]).all() # # # Fast traps reproduce old-style behaviour # assert net_electrons_fast == pytest.approx(net_electrons_instant) # # Slow traps re-capture less so net release slightly more # assert net_electrons_fast < net_electrons_slow # # def test__updated_watermarks_from_capture_not_enough(self): # # # Initial watermarks with updated volumes to match current watermarks # watermarks_initial = np.array( # [[0.5, 0.8], [0.1, 0.4], [0.1, 0.4], [0.1, 0.2], [0, 0], [0, 0]] # ) # # Initial number of trapped electrons # trapped_electrons_initial = self.trap_manager_slow.n_trapped_electrons_from_watermarks( # watermarks=watermarks_initial # ) # # watermarks = np.array( # [[0.5, 0.9], [0.1, 0.8], [0.1, 0.4], [0.1, 0.2], [0, 0], [0, 0]] # ) # self.trap_manager_slow.watermarks = watermarks # # Expected number of trapped electrons # trapped_electrons_attempted = ( # self.trap_manager_slow.n_trapped_electrons_from_watermarks( # watermarks=watermarks # ) # - trapped_electrons_initial # ) # # # But only half the required number of electrons available # n_free_electrons = 0.5 * trapped_electrons_attempted # enough = n_free_electrons / trapped_electrons_attempted # # watermarks_not_enough = self.trap_manager_slow.updated_watermarks_from_capture_not_enough( # self.trap_manager_slow.watermarks, watermarks_initial, enough # ) # # # Filled half-way to their old-style-capture fill fractions # assert watermarks_not_enough == pytest.approx( # np.array([[0.5, 0.85], [0.1, 0.6], [0.1, 0.4], [0.1, 0.2], [0, 0], [0, 0]]) # ) # # # Resulting number of trapped electrons # self.trap_manager_slow.watermarks = watermarks_not_enough # trapped_electrons_final = ( # self.trap_manager_slow.n_trapped_electrons_from_watermarks( # watermarks=watermarks_not_enough # ) # - trapped_electrons_initial # ) # # # Only capture the available electrons # assert trapped_electrons_final == pytest.approx(n_free_electrons) #
wfirst-cgiREPO_NAMEemccd_detectPATH_START.@emccd_detect_extracted@emccd_detect-master@arcticpy_folder@build@lib@test_arcticpy@test_traps.py@.PATH_END.py
{ "filename": "intro.md", "repo_name": "exo-cesm/CESM2.1.3", "repo_path": "CESM2.1.3_extracted/CESM2.1.3-main/intro.md", "type": "Markdown" }
# Welcome to your Jupyter Book This is a small sample book to give you a feel for how book content is structured. It shows off a few of the major file types, as well as some sample content. It does not go in-depth into any particular topic - check out [the Jupyter Book documentation](https://jupyterbook.org) for more information. Check out the content pages bundled with this sample book to see more. ```{tableofcontents} ```
exo-cesmREPO_NAMECESM2.1.3PATH_START.@CESM2.1.3_extracted@CESM2.1.3-main@intro.md@.PATH_END.py
{ "filename": "base.py", "repo_name": "waynebhayes/SpArcFiRe", "repo_path": "SpArcFiRe_extracted/SpArcFiRe-master/scripts/SpArcFiRe-pyvenv/lib/python2.7/site-packages/scipy/integrate/_ivp/base.py", "type": "Python" }
from __future__ import division, print_function, absolute_import import numpy as np def check_arguments(fun, y0, support_complex): """Helper function for checking arguments common to all solvers.""" y0 = np.asarray(y0) if np.issubdtype(y0.dtype, np.complexfloating): if not support_complex: raise ValueError("`y0` is complex, but the chosen solver does " "not support integration in a complex domain.") dtype = complex else: dtype = float y0 = y0.astype(dtype, copy=False) if y0.ndim != 1: raise ValueError("`y0` must be 1-dimensional.") def fun_wrapped(t, y): return np.asarray(fun(t, y), dtype=dtype) return fun_wrapped, y0 class OdeSolver(object): """Base class for ODE solvers. In order to implement a new solver you need to follow the guidelines: 1. A constructor must accept parameters presented in the base class (listed below) along with any other parameters specific to a solver. 2. A constructor must accept arbitrary extraneous arguments ``**extraneous``, but warn that these arguments are irrelevant using `common.warn_extraneous` function. Do not pass these arguments to the base class. 3. A solver must implement a private method `_step_impl(self)` which propagates a solver one step further. It must return tuple ``(success, message)``, where ``success`` is a boolean indicating whether a step was successful, and ``message`` is a string containing description of a failure if a step failed or None otherwise. 4. A solver must implement a private method `_dense_output_impl(self)` which returns a `DenseOutput` object covering the last successful step. 5. A solver must have attributes listed below in Attributes section. Note that `t_old` and `step_size` are updated automatically. 6. Use `fun(self, t, y)` method for the system rhs evaluation, this way the number of function evaluations (`nfev`) will be tracked automatically. 7. For convenience a base class provides `fun_single(self, t, y)` and `fun_vectorized(self, t, y)` for evaluating the rhs in non-vectorized and vectorized fashions respectively (regardless of how `fun` from the constructor is implemented). These calls don't increment `nfev`. 8. If a solver uses a Jacobian matrix and LU decompositions, it should track the number of Jacobian evaluations (`njev`) and the number of LU decompositions (`nlu`). 9. By convention the function evaluations used to compute a finite difference approximation of the Jacobian should not be counted in `nfev`, thus use `fun_single(self, t, y)` or `fun_vectorized(self, t, y)` when computing a finite difference approximation of the Jacobian. Parameters ---------- fun : callable Right-hand side of the system. The calling signature is ``fun(t, y)``. Here ``t`` is a scalar and there are two options for ndarray ``y``. It can either have shape (n,), then ``fun`` must return array_like with shape (n,). Or alternatively it can have shape (n, n_points), then ``fun`` must return array_like with shape (n, n_points) (each column corresponds to a single column in ``y``). The choice between the two options is determined by `vectorized` argument (see below). t0 : float Initial time. y0 : array_like, shape (n,) Initial state. t_bound : float Boundary time --- the integration won't continue beyond it. It also determines the direction of the integration. vectorized : bool Whether `fun` is implemented in a vectorized fashion. support_complex : bool, optional Whether integration in a complex domain should be supported. Generally determined by a derived solver class capabilities. Default is False. Attributes ---------- n : int Number of equations. status : string Current status of the solver: 'running', 'finished' or 'failed'. t_bound : float Boundary time. direction : float Integration direction: +1 or -1. t : float Current time. y : ndarray Current state. t_old : float Previous time. None if no steps were made yet. step_size : float Size of the last successful step. None if no steps were made yet. nfev : int Number of the system's rhs evaluations. njev : int Number of the Jacobian evaluations. nlu : int Number of LU decompositions. """ TOO_SMALL_STEP = "Required step size is less than spacing between numbers." def __init__(self, fun, t0, y0, t_bound, vectorized, support_complex=False): self.t_old = None self.t = t0 self._fun, self.y = check_arguments(fun, y0, support_complex) self.t_bound = t_bound self.vectorized = vectorized if vectorized: def fun_single(t, y): return self._fun(t, y[:, None]).ravel() fun_vectorized = self._fun else: fun_single = self._fun def fun_vectorized(t, y): f = np.empty_like(y) for i, yi in enumerate(y.T): f[:, i] = self._fun(t, yi) return f def fun(t, y): self.nfev += 1 return self.fun_single(t, y) self.fun = fun self.fun_single = fun_single self.fun_vectorized = fun_vectorized self.direction = np.sign(t_bound - t0) if t_bound != t0 else 1 self.n = self.y.size self.status = 'running' self.nfev = 0 self.njev = 0 self.nlu = 0 @property def step_size(self): if self.t_old is None: return None else: return np.abs(self.t - self.t_old) def step(self): """Perform one integration step. Returns ------- message : string or None Report from the solver. Typically a reason for a failure if `self.status` is 'failed' after the step was taken or None otherwise. """ if self.status != 'running': raise RuntimeError("Attempt to step on a failed or finished " "solver.") if self.n == 0 or self.t == self.t_bound: # Handle corner cases of empty solver or no integration. self.t_old = self.t self.t = self.t_bound message = None self.status = 'finished' else: t = self.t success, message = self._step_impl() if not success: self.status = 'failed' else: self.t_old = t if self.direction * (self.t - self.t_bound) >= 0: self.status = 'finished' return message def dense_output(self): """Compute a local interpolant over the last successful step. Returns ------- sol : `DenseOutput` Local interpolant over the last successful step. """ if self.t_old is None: raise RuntimeError("Dense output is available after a successful " "step was made.") if self.n == 0 or self.t == self.t_old: # Handle corner cases of empty solver and no integration. return ConstantDenseOutput(self.t_old, self.t, self.y) else: return self._dense_output_impl() def _step_impl(self): raise NotImplementedError def _dense_output_impl(self): raise NotImplementedError class DenseOutput(object): """Base class for local interpolant over step made by an ODE solver. It interpolates between `t_min` and `t_max` (see Attributes below). Evaluation outside this interval is not forbidden, but the accuracy is not guaranteed. Attributes ---------- t_min, t_max : float Time range of the interpolation. """ def __init__(self, t_old, t): self.t_old = t_old self.t = t self.t_min = min(t, t_old) self.t_max = max(t, t_old) def __call__(self, t): """Evaluate the interpolant. Parameters ---------- t : float or array_like with shape (n_points,) Points to evaluate the solution at. Returns ------- y : ndarray, shape (n,) or (n, n_points) Computed values. Shape depends on whether `t` was a scalar or a 1-d array. """ t = np.asarray(t) if t.ndim > 1: raise ValueError("`t` must be float or 1-d array.") return self._call_impl(t) def _call_impl(self, t): raise NotImplementedError class ConstantDenseOutput(DenseOutput): """Constant value interpolator. This class used for degenerate integration cases: equal integration limits or a system with 0 equations. """ def __init__(self, t_old, t, value): super(ConstantDenseOutput, self).__init__(t_old, t) self.value = value def _call_impl(self, t): if t.ndim == 0: return self.value else: ret = np.empty((self.value.shape[0], t.shape[0])) ret[:] = self.value[:, None] return ret
waynebhayesREPO_NAMESpArcFiRePATH_START.@SpArcFiRe_extracted@SpArcFiRe-master@scripts@SpArcFiRe-pyvenv@lib@python2.7@site-packages@scipy@integrate@_ivp@base.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "lockepatton/sonipy", "repo_path": "sonipy_extracted/sonipy-master/tests/__init__.py", "type": "Python" }
lockepattonREPO_NAMEsonipyPATH_START.@sonipy_extracted@sonipy-master@tests@__init__.py@.PATH_END.py
{ "filename": "channel_info.py", "repo_name": "nu-radio/NuRadioMC", "repo_path": "NuRadioMC_extracted/NuRadioMC-master/NuRadioReco/detector/detector_browser/channel_info.py", "type": "Python" }
from NuRadioReco.detector.detector_browser.app import app from dash import html from dash.dependencies import Input, Output import NuRadioReco.detector.detector_browser.detector_provider layout = html.Div([ html.Div([ html.Div('Channel Info', className='panel panel-heading'), html.Div([ html.Div('', id='channel-info-table') ], className='panel panel-body') ], className='panel panel-default') ]) @app.callback( Output('channel-info-table', 'children'), [Input('selected-station', 'children'), Input('selected-channel', 'children')] ) def update_channel_info_table(station_id, channel_id): """ Controls the content of the channel properties table Parameters: --------------------- station_id: int ID of the station whose properties are displayed channel_id: int ID of the channel whose properties are displayed """ detector_provider = NuRadioReco.detector.detector_browser.detector_provider.DetectorProvider() detector = detector_provider.get_detector() if station_id is None or channel_id is None: return '' if detector is None: return '' if channel_id not in detector.get_channel_ids(station_id): print('channel not in station', channel_id) return '' channel_info = detector.get_channel(station_id, channel_id) table_rows = [ html.Div( 'Station {}, Channel {}'.format(station_id, channel_id), className='custom-table-header' ) ] for key, value in channel_info.items(): table_rows.append(html.Div([ html.Div(key, className='custom-table-title'), html.Div(value, className='custom-table-cell') ], className='custom-table-row')) return table_rows
nu-radioREPO_NAMENuRadioMCPATH_START.@NuRadioMC_extracted@NuRadioMC-master@NuRadioReco@detector@detector_browser@channel_info.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "pandas-dev/pandas", "repo_path": "pandas_extracted/pandas-main/pandas/tests/indexes/datetimes/__init__.py", "type": "Python" }
pandas-devREPO_NAMEpandasPATH_START.@pandas_extracted@pandas-main@pandas@tests@indexes@datetimes@__init__.py@.PATH_END.py
{ "filename": "_colorsrc.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/scattermapbox/hoverlabel/font/_colorsrc.py", "type": "Python" }
import _plotly_utils.basevalidators class ColorsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="colorsrc", parent_name="scattermapbox.hoverlabel.font", **kwargs ): super(ColorsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@scattermapbox@hoverlabel@font@_colorsrc.py@.PATH_END.py
{ "filename": "parsescan.py", "repo_name": "igmhub/baofit", "repo_path": "baofit_extracted/baofit-master/data/parsescan.py", "type": "Python" }
#!/usr/bin/env python # usage example: ./parsescan.py BOSSDR11QSOLyaF_scan.dat BOSSDR11QSOLyaF.scan 10 11 import sys # expected command-line args are <infile> <outfile> <index1> <index2> infile,outfile,index1,index2 = sys.argv[1:] # check that the parameter indices are integers try: index1,index2 = map(int,(index1,index2)) except ValueError, e: print 'indices should be integer' sys.exit(-1) try: # open the files with open(infile,'r') as fin, open(outfile,'w') as fout: # read the header... # npar = total number of floating+fixed parameters # ndump = number of r values used to dump ell=0,2,4 multipoles for each fit # nfit = number of different fits performed (1 or 2) npar,ndump,nfit = map(int,fin.readline().split()) # best-fit errors on each parameter from each fit errors = map(float,fin.readline().split()) if len(errors) != npar*nfit: print 'unexpected length of header line 2' sys.exit(-1) # parameter values (and optional multipole dumps) from best fit and each scan point bestfit = map(float,fin.readline().split()) if len(bestfit) != 1+npar+3*ndump: print 'unexpected length',len(bestfit),'of header line 3' sys.exit(-1) print 'best fit is at (%.3f,%.3f)' % (bestfit[index1],bestfit[index2]) min1 = max1 = bestfit[index1] min2 = max2 = bestfit[index2] bestchisq = bestfit[npar] lineno = 3 for line in fin.readlines(): lineno += 1 scanfit = map(float,line.split()) if len(scanfit) != 1+npar+3*ndump: print 'unexpected length',len(scanfit),'of line',lineno sys.exit(-1) print >>fout, scanfit[index1],scanfit[index2],scanfit[npar]-bestchisq min1 = min(min1,scanfit[index1]) max1 = max(max1,scanfit[index1]) min2 = min(min2,scanfit[index2]) max2 = max(max2,scanfit[index2]) print 'parsed %d scan points covering [%.3f,%.3f] x [%.3f,%.3f]' % (lineno-3,min1,max1,min2,max2) except IOError,e: print str(e) sys.exit(-1)
igmhubREPO_NAMEbaofitPATH_START.@baofit_extracted@baofit-master@data@parsescan.py@.PATH_END.py
{ "filename": "2022_06_20_123921_7296741dff68_add_protected_column_for_block_types.py", "repo_name": "PrefectHQ/prefect", "repo_path": "prefect_extracted/prefect-main/src/prefect/server/database/_migrations/versions/postgresql/2022_06_20_123921_7296741dff68_add_protected_column_for_block_types.py", "type": "Python" }
"""Add protected column for block types Revision ID: 7296741dff68 Revises: d335ad57d5ba Create Date: 2022-06-20 12:39:21.112876 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "7296741dff68" down_revision = "29ad9bef6147" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table("block_type", schema=None) as batch_op: batch_op.add_column( sa.Column("is_protected", sa.Boolean(), server_default="0", nullable=False) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table("block_type", schema=None) as batch_op: batch_op.drop_column("is_protected") # ### end Alembic commands ###
PrefectHQREPO_NAMEprefectPATH_START.@prefect_extracted@prefect-main@src@prefect@server@database@_migrations@versions@postgresql@2022_06_20_123921_7296741dff68_add_protected_column_for_block_types.py@.PATH_END.py
{ "filename": "atmosphere.py", "repo_name": "LSSTDESC/Spectractor", "repo_path": "Spectractor_extracted/Spectractor-master/spectractor/simulation/atmosphere.py", "type": "Python" }
import os import numpy as np import matplotlib.pyplot as plt from astropy.io import fits from scipy.interpolate import interp1d, RegularGridInterpolator from spectractor.config import set_logger import spectractor.parameters as parameters import spectractor.simulation.libradtran as libradtran from spectractor.simulation.throughput import plot_transmission_simple class Atmosphere: def __init__(self, airmass, pressure, temperature, lambda_min=250, lambda_max=1200, altitude=parameters.OBS_ALTITUDE): """Class to evaluate an atmospheric transmission using Libradtran. Parameters ---------- airmass: float Airmass of the source object. pressure: float Pressure of the atmosphere at observatory altitude in hPa. temperature: float Temperature of the atmosphere at observatory altitude in Celsius degrees. lambda_min: float Minimum wavelength for simulation in nm (default: 250). lambda_max: float Maximum wavelength for simulation in nm (default: 1200). altitude: float Observatory altitude in km (default: parameters.OBS_ALTITUDE). Examples -------- >>> a = Atmosphere(airmass=1.2, pressure=800, temperature=5) >>> print(a.airmass) 1.2 >>> print(a.pressure) 800 >>> print(a.temperature) 5 >>> print(a.transmission(500)) 1.0 """ self.my_logger = set_logger(self.__class__.__name__) self.airmass = airmass self.pressure = pressure self.temperature = temperature self.altitude = altitude self.pwv = None self.ozone = None self.aerosols = None self.transmission = lambda x: np.ones_like(x).astype(float) self.lambda_min = lambda_min self.lambda_max = lambda_max self.title = "" self.label = "" self.emulator = None self.angstrom_exponent_default = 1.2 if parameters.SPECTRACTOR_ATMOSPHERE_SIM.lower() == "getobsatmo": import getObsAtmo if not getObsAtmo.is_obssite(parameters.OBS_NAME): raise ValueError(f"getObsAtmo does not have observatory site {parameters.OBS_NAME}.") self.emulator = getObsAtmo.ObsAtmo(obs_str=parameters.OBS_NAME, pressure=self.pressure) self.emulator.lambda0 = 500. self.angstrom_exponent_default = 1.2 self.lambda_min = self.emulator.WLMIN self.lambda_max = self.emulator.WLMAX elif parameters.SPECTRACTOR_ATMOSPHERE_SIM.lower() == "none": raise ValueError(f"Can not compute atmospheric transmission with {parameters.SPECTRACTOR_ATMOSPHERE_SIM=}. " f"Check your configuration.") elif parameters.SPECTRACTOR_ATMOSPHERE_SIM.lower() == "libradtran": self.emulator = None else: raise ValueError(f"Unknown value for {parameters.SPECTRACTOR_ATMOSPHERE_SIM=}.") def set_title(self): """Make a title string for the simulation. """ self.title = f'Atmospheric transmission with z={self.airmass:4.2f}, P={self.pressure:4.2f} hPa, ' \ rf'T={self.temperature:4.2f}$\degree$C' def set_label(self): """Make a label string for the simulation. """ self.label = f'PWV={self.pwv:4.2f}mm, OZ={self.ozone:4.2f}DB, VAOD={self.aerosols:4.2f} ' def set_lambda_range(self, lambdas): """Reset the Atmosphere wavelength range for optimized computations. Parameters ---------- lambdas: array_like Wavelength array in nm. Examples -------- >>> a = Atmosphere(airmass=1.2, pressure=800, temperature=5, lambda_min=350, lambda_max=1000) >>> a.lambda_min 350 >>> a.lambda_max 1000 >>> a.set_lambda_range(np.arange(400, 810, 10)) >>> a.lambda_min 400 >>> a.lambda_max 800 """ self.lambda_min = int(np.min(lambdas)) self.lambda_max = int(np.ceil(np.max(lambdas))) def simulate(self, aerosols, ozone, pwv, angstrom_exponent=None): """Simulate the atmosphere transparency with Libradtran given atmospheric composition. Values outside the Libradtran simulation range are set to zero. Parameters ---------- aerosols: float VAOD Vertical Aerosols Optical Depth. ozone: float Ozone quantity in Dobson. pwv: float Precipitable Water Vapor quantity in mm. angstrom_exponent: float, optional Angstrom exponent for aerosols. If None, the Atmosphere.angstrom_exponent_default value is used (default: None). Returns ------- transmission: callable The transmission function of wavelengths in nm. Examples -------- >>> parameters.SPECTRACTOR_ATMOSPHERE_SIM = "getobsatmo" >>> a = Atmosphere(airmass=1.2, pressure=800, temperature=5, lambda_min=350, lambda_max=1000) CTIO site name validated as CTIO observatory >>> transmission = a.simulate(aerosols=0.05, ozone=400, pwv=5, angstrom_exponent=None) >>> a.ozone 400 >>> a.pwv 5 >>> a.aerosols 0.05 >>> transmission([350, 550, 600, 800, 950]) array([0.49958183, 0.82905252, 0.83742397, 0.93720044, 0.71533991]) >>> a.plot_transmission() >>> transmission_ang_exp = a.simulate(aerosols=0.05, ozone=400, pwv=5, angstrom_exponent=2) >>> transmission_ang_exp([350, 550, 600, 800, 950]) array([0.48462457, 0.83231609, 0.84292117, 0.94728051, 0.72336351]) >>> a.plot_transmission() Test concordance of atmospheric simualtors without emulator >>> parameters.SPECTRACTOR_ATMOSPHERE_SIM = "libradtran" >>> transmission_ang_exp2 = a.simulate(aerosols=0.05, ozone=400, pwv=5, angstrom_exponent=2) >>> transmission_ang_exp2([350, 550, 600, 800, 950]) array([0.4846117, 0.8323524, 0.8426985, 0.9465884, 0.71872 ]) .. doctest:: :hide: >>> assert transmission is not None >>> assert transmission_ang_exp is not None >>> assert a.transmission(500) > 0 >>> assert a.transmission(1000) > 0 .. plot:: from spectractor.simulation.atmosphere import Atmosphere a = Atmosphere(airmass=1.2, pressure=800, temperature=5, lambda_min=300, lambda_max=1000) transmission = a.simulate(ozone=400, pwv=5, aerosols=0.05) a.plot_transmission() """ self.pwv = pwv self.ozone = ozone self.aerosols = aerosols self.set_title() self.set_label() self.my_logger.debug(f'\n\t{self.title}\n\t\t{self.label}') if angstrom_exponent is not None and angstrom_exponent < 0: raise ValueError(f"If not None, angstrom_exponnent must be positive. Got {angstrom_exponent=}.") if parameters.SPECTRACTOR_ATMOSPHERE_SIM.lower() == "getobsatmo": if angstrom_exponent is None: angstrom_exponent = 1.2 # value that makes getObsAtmo and Libradtran class close wl = parameters.LAMBDAS atm = self.emulator.GetAllTransparencies(wl, am=self.airmass, pwv=pwv, oz=ozone, tau=aerosols, beta=angstrom_exponent, flagAerosols=True) elif parameters.SPECTRACTOR_ATMOSPHERE_SIM.lower() == "libradtran": lib = libradtran.Libradtran() wl, atm = lib.simulate(self.airmass, aerosols, ozone, pwv, self.pressure, angstrom_exponent=angstrom_exponent, lambda_min=self.lambda_min, lambda_max=self.lambda_max, altitude=self.altitude) else: raise ValueError(f"Unknown value for {parameters.SPECTRACTOR_ATMOSPHERE_SIM=}.") self.transmission = interp1d(wl, atm, kind='linear', bounds_error=False, fill_value=(0, 0)) return self.transmission def plot_transmission(self, lambdas=parameters.LAMBDAS): """Plot the atmospheric transmission computed with Libradtran. Parameters ---------- lambdas: array_like, optional Array of wavelengths in nm (default: parameters.LAMBDAS). Examples -------- >>> a = Atmosphere(airmass=1.2, pressure=800, temperature=5) >>> transmission = a.simulate(ozone=400, pwv=5, aerosols=0.05) >>> a.plot_transmission() """ plot_transmission_simple(plt.gca(), lambdas, self.transmission(lambdas), title=self.title, label=self.label) if parameters.DISPLAY: # pragma: no cover plt.show() else: plt.close('all') class AtmosphereGrid(Atmosphere): def __init__(self, image_filename="", spectrum_filename="", atmgrid_filename="", airmass=1., pressure=800., temperature=10., pwv_grid=[0, 10, 10], ozone_grid=[100, 700, 7], aerosol_grid=[0, 0.1, 10], lambdas=parameters.LAMBDAS, altitude=parameters.OBS_ALTITUDE): """Class to load and interpolate grids of atmospheric transmission computed with Libradtran. Parameters ---------- image_filename: str, optional The original image fits file name from which the grid was computed or has to be computed (default: ""). spectrum_filename: str, optional The file name of the spectrum fits file name from which the grid was computed or has to be computed (default: ""). atmgrid_filename: str, optional The file name of the atmospheric grid if it exists (default: ""). airmass: float, optional Airmass of the source object (default: 1). Overwritten if spectrum_filename is given. pressure: float, optional Pressure of the atmosphere at observatory altitude in hPa (default: 800). Overwritten if spectrum_filename is given. temperature: float, optional Temperature of the atmosphere at observatory altitude in Celsius degrees (default: 10). Overwritten if spectrum_filename is given. pwv_grid: list, optional List of 3 numbers for the PWV quantity: min, max, number of simulations (default: [0, 10, 10]). ozone_grid: list, optional List of 3 numbers for the ozone quantity: min, max, number of simulations (default: [100, 700, 7]). aerosol_grid: list, optional List of 3 numbers for the aerosol quantity: min, max, number of simulations (default: [0, 0.1, 10]). lambdas: array_like, optional Array of wavelengths (default: parameters.LAMBDAS). altitude: float Observatory altitude in km (default: parameters.OBS_ALTITUDE). Examples -------- >>> a = AtmosphereGrid(atmgrid_filename='./tests/data/reduc_20170530_134_atmsim.fits') >>> a.image_filename.split('/')[-1] 'reduc_20170530_134_spectrum.fits' """ Atmosphere.__init__(self, airmass, pressure, temperature, lambda_min=np.min(lambdas), lambda_max=np.max(lambdas), altitude=altitude) self.my_logger = set_logger(self.__class__.__name__) self.image_filename = image_filename if spectrum_filename != "": self.image_filename = spectrum_filename self.filename = atmgrid_filename # Definition of data format for the atmospheric grid self.index_atm_count = 0 # row 0 : count number self.index_atm_aer = 1 # row 1 : aerosol value self.index_atm_pwv = 2 # row 2 : pwv value self.index_atm_oz = 3 # row 3 : ozone value self.index_atm_data = 4 # row 4 : data start # specify parameters for the atmospheric grid self.lambdas = lambdas self.model = None self.atmgrid = None self.NB_ATM_HEADER = self.index_atm_data + 1 self.NB_ATM_DATA = len(self.lambdas) - 1 self.NB_ATM_POINTS = 0 self.AER_Points = np.array([]) self.OZ_Points = np.array([]) self.PWV_Points = np.array([]) # set the initial grid self.set_grid(pwv_grid=pwv_grid, ozone_grid=ozone_grid, aerosol_grid=aerosol_grid, lambdas=self.lambdas) self.header = fits.Header() if atmgrid_filename != "": self.load_file(atmgrid_filename) if spectrum_filename != "": hdr = fits.getheader(spectrum_filename) self.pressure = hdr["OUTPRESS"] self.temperature = hdr["OUTTEMP"] self.airmass = hdr["AIRMASS"] def set_grid(self, pwv_grid=[0, 10, 10], ozone_grid=[100, 700, 7], aerosol_grid=[0, 0.1, 10], lambdas=parameters.LAMBDAS): """Set the size of the simulation grid self.atmgrid before compute it. The first column of self.atmgrid will contain the wavelengths set by lambdas argument, the other columns the future simulations. Parameters ---------- pwv_grid: list List of 3 numbers for the PWV quantity: min, max, number of simulations (default: [0, 10, 10]). ozone_grid: list List of 3 numbers for the ozone quantity: min, max, number of simulations (default: [100, 700, 7]). aerosol_grid: list List of 3 numbers for the aerosol quantity: min, max, number of simulations (default: [0, 0.1, 10]). lambdas: array_like, optional Array of wavelengths (default: parameters.LAMBDAS). """ self.lambdas = lambdas # aerosols NB_AER_POINTS = int(aerosol_grid[2]) AER_MIN = float(aerosol_grid[0]) AER_MAX = float(aerosol_grid[1]) # ozone NB_OZ_POINTS = int(ozone_grid[2]) OZ_MIN = float(ozone_grid[0]) OZ_MAX = float(ozone_grid[1]) # pwv NB_PWV_POINTS = int(pwv_grid[2]) PWV_MIN = float(pwv_grid[0]) PWV_MAX = float(pwv_grid[1]) # definition of the grid self.AER_Points = np.linspace(AER_MIN, AER_MAX, NB_AER_POINTS) self.OZ_Points = np.linspace(OZ_MIN, OZ_MAX, NB_OZ_POINTS) self.PWV_Points = np.linspace(PWV_MIN, PWV_MAX, NB_PWV_POINTS) # total number of points self.NB_ATM_POINTS = NB_AER_POINTS * NB_OZ_POINTS * NB_PWV_POINTS # create the numpy array that will contain the atmospheric grid self.atmgrid = np.zeros((self.NB_ATM_POINTS + 1, self.NB_ATM_HEADER + self.NB_ATM_DATA)) self.atmgrid[0, self.index_atm_data:] = self.lambdas def compute(self): """Compute atmospheric transmissions and fill self.atmgrid. The wavelengths used for the computation are the ones set by self.lambdas. Returns ------- atmospheric_grid: array_like The atmospheric grid self.atmgrid. Examples -------- >>> a = AtmosphereGrid(image_filename='tests/data/reduc_20170605_028.fits', ... pwv_grid=[5, 5, 1], ozone_grid=[400, 400, 1], aerosol_grid=[0.0, 0.1, 2]) >>> atmospheric_grid = a.compute() >>> atmospheric_grid # doctest: +ELLIPSIS array([[0.000000e+00, ... ...]) >>> a.save_file(a.image_filename.replace('.fits', '_atmsim.fits')) >>> a.plot_transmission() .. plot:: from spectractor.simulation.atmosphere import AtmosphereGrid a = AtmosphereGrid(image_filename='tests/data/reduc_20170605_028.fits', pwv_grid=[5, 5, 1], ozone_grid=[400, 400, 1], aerosol_grid=[0.0, 0.1, 2]) atmospheric_grid = a.compute() a.plot_transmission() .. doctest:: :hide: >>> assert os.path.isfile(a.image_filename.replace('.fits', '_atmsim.fits')) >>> assert np.all(np.isclose(a.atmgrid[0, a.index_atm_data:], parameters.LAMBDAS)) >>> assert not np.any(np.isclose(a.atmgrid[1, a.index_atm_data:], ... np.zeros_like(parameters.LAMBDAS), rtol=1e-6)) >>> assert a.atmgrid.shape == (3, a.index_atm_data+len(parameters.LAMBDAS)) """ # first determine the length self.my_logger.debug(f'\n\tAtmosphere simulations for z={self.airmass:4.2f}, P={self.pressure:4.2f}hPa, ' rf'T={self.temperature:4.2f}$\degree$C, for data-file={self.image_filename} ') count = 0 for aer in self.AER_Points: for pwv in self.PWV_Points: for oz in self.OZ_Points: count += 1 # fills headers info in the numpy array self.atmgrid[count, self.index_atm_count] = count self.atmgrid[count, self.index_atm_aer] = aer self.atmgrid[count, self.index_atm_pwv] = pwv self.atmgrid[count, self.index_atm_oz] = oz transmission = super(AtmosphereGrid, self).simulate(aerosols=aer, ozone=oz, pwv=pwv) transm = transmission(self.lambdas) self.atmgrid[count, self.index_atm_data:] = transm # each of atmospheric spectrum return self.atmgrid def plot_transmission(self, lambdas=parameters.LAMBDAS): """Plot the atmospheric transmission contained in the grid. Parameters ---------- lambdas: array_like, optional Array of wavelengths in nm (default: parameters.LAMBDAS). Examples -------- >>> a = AtmosphereGrid(atmgrid_filename='tests/data/reduc_20170530_134_atmsim.fits') >>> a.plot_transmission() .. plot:: from spectractor.simulation.atmosphere import AtmosphereGrid a = AtmosphereGrid(image_filename='tests/data/reduc_20170605_028.fits', pwv_grid=[5, 5, 1], ozone_grid=[400, 400, 1], aerosol_grid=[0.0, 0.1, 2]) atmospheric_grid = a.compute() a.plot_transmission() """ plt.figure() counts = self.atmgrid[1:, self.index_atm_count] for count in counts: label = f'PWV={self.atmgrid[int(count), self.index_atm_pwv]} ' \ f'OZ={self.atmgrid[int(count), self.index_atm_oz]} ' \ f'VAOD={self.atmgrid[int(count), self.index_atm_aer]}' plot_transmission_simple(plt.gca(), lambdas, np.interp(lambdas, self.lambdas, self.atmgrid[int(count), self.index_atm_data:]), title="Atmospheric grid", label=label) if parameters.DISPLAY: # pragma: no cover plt.show() else: plt.close('all') def plot_transmission_image(self): """Plot the atmospheric transmission contained in the grid using imshow. Examples -------- >>> a = AtmosphereGrid(atmgrid_filename='tests/data/reduc_20170530_134_atmsim.fits') >>> a.plot_transmission_image() .. plot:: from spectractor.simulation.atmosphere import AtmosphereGrid a = AtmosphereGrid(image_filename='tests/data/reduc_20170530_134_atmsim.fits', pwv_grid=[5, 5, 1], ozone_grid=[400, 400, 1], aerosol_grid=[0.0, 0.1, 2]) atmospheric_grid = a.compute() a.plot_transmission_image() """ plt.figure() img = plt.imshow(self.atmgrid[1:, self.index_atm_data:], origin='lower', cmap='jet', aspect="auto") plt.grid(True) plt.xlabel(r"$\lambda$ [nm]") plt.ylabel("Simulation number") plt.title("Atmospheric variations") cbar = plt.colorbar(img) cbar.set_label('Atmospheric transmission') if parameters.DISPLAY: plt.show() else: plt.close('all') def save_file(self, filename=""): """Save the atmospheric grid in a fits file. Parameters ---------- filename: str The output file name. Examples -------- >>> a = AtmosphereGrid(image_filename='tests/data/reduc_20170605_028.fits', ... pwv_grid=[5, 5, 1], ozone_grid=[400, 400, 1], aerosol_grid=[0.0, 0.1, 2]) >>> atmospheric_grid = a.compute() >>> a.save_file(a.image_filename.replace('.fits', '_atmsim.fits')) .. doctest:: :hide: >>> assert os.path.isfile('tests/data/reduc_20170605_028_atmsim.fits') """ hdr = fits.Header() if filename != "": self.filename = filename if self.filename == "": self.my_logger.error('\n\tNo file name is given...') else: hdr['ATMSIM'] = parameters.SPECTRACTOR_ATMOSPHERE_SIM hdr['DATAFILE'] = self.image_filename hdr['SIMUFILE'] = os.path.basename(self.filename) hdr['AIRMASS'] = self.airmass hdr['PRESSURE'] = self.pressure hdr['TEMPERAT'] = self.temperature hdr['NBATMPTS'] = self.NB_ATM_POINTS hdr['NBAERPTS'] = self.AER_Points.size hdr['AERMIN'] = self.AER_Points.min() hdr['AERMAX'] = self.AER_Points.max() hdr['NBPWVPTS'] = self.PWV_Points.size hdr['PWVMIN'] = self.PWV_Points.min() hdr['PWVMAX'] = self.PWV_Points.max() hdr['NBOZPTS'] = self.OZ_Points.size hdr['OZMIN'] = self.OZ_Points.min() hdr['OZMAX'] = self.OZ_Points.max() hdr['NBWLBIN'] = self.lambdas.size hdr['WLMIN'] = np.min(self.lambdas) hdr['WLMAX'] = np.max(self.lambdas) hdr['IDX_CNT'] = self.index_atm_count hdr['IDX_AER'] = self.index_atm_aer hdr['IDX_PWV'] = self.index_atm_pwv hdr['IDX_OZ'] = self.index_atm_oz hdr['IDX_DATA'] = self.index_atm_data hdu = fits.PrimaryHDU(self.atmgrid, header=hdr) hdu.writeto(self.filename, overwrite=True) self.my_logger.info(f'\n\tAtmosphere.save atm-file={self.filename}') def load_file(self, filename): """Load the atmospheric grid from a fits file and interpolate across the points using RegularGridInterpolator. Automatically called from __init__. Parameters ---------- filename: str The input file name. Examples -------- >>> a = AtmosphereGrid(image_filename='tests/data/reduc_20170605_028.fits', ... pwv_grid=[5, 5, 1], ozone_grid=[400, 400, 1], aerosol_grid=[0.0, 0.1, 2]) >>> atmospheric_grid = a.compute() >>> a.save_file(a.image_filename.replace('.fits', '_atmsim.fits')) >>> assert os.path.isfile('tests/data/reduc_20170605_028_atmsim.fits') >>> a.load_file(a.image_filename.replace('.fits', '_atmsim.fits')) >>> a.AER_Points array([0. , 0.1]) >>> a.PWV_Points array([5.]) >>> a.OZ_Points array([400.]) """ if filename != "": self.filename = filename if self.filename == "": self.my_logger.error('\n\tNo file name is given...') else: with fits.open(self.filename) as hdu: hdr = hdu[0].header self.header = hdr self.image_filename = hdr['DATAFILE'] self.airmass = hdr['AIRMASS'] self.pressure = hdr['PRESSURE'] self.temperature = hdr['TEMPERAT'] self.NB_ATM_POINTS = hdr['NBATMPTS'] NB_AER_POINTS = hdr['NBAERPTS'] AER_MIN = hdr['AERMIN'] AER_MAX = hdr['AERMAX'] NB_PWV_POINTS = hdr['NBPWVPTS'] PWV_MIN = hdr['PWVMIN'] PWV_MAX = hdr['PWVMAX'] NB_OZ_POINTS = hdr['NBOZPTS'] OZ_MIN = hdr['OZMIN'] OZ_MAX = hdr['OZMAX'] self.AER_Points = np.linspace(AER_MIN, AER_MAX, NB_AER_POINTS) self.OZ_Points = np.linspace(OZ_MIN, OZ_MAX, NB_OZ_POINTS) self.PWV_Points = np.linspace(PWV_MIN, PWV_MAX, NB_PWV_POINTS) NBWLBINS = hdr['NBWLBIN'] self.index_atm_count = hdr['IDX_CNT'] self.index_atm_aer = hdr['IDX_AER'] self.index_atm_pwv = hdr['IDX_PWV'] self.index_atm_oz = hdr['IDX_OZ'] self.index_atm_data = hdr['IDX_DATA'] self.atmgrid = np.zeros((self.NB_ATM_POINTS + 1, self.NB_ATM_HEADER + NBWLBINS - 1)) self.atmgrid[:, :] = hdu[0].data[:, :] self.my_logger.debug(f'\n\tAtmosphere.load_image atm-file={self.filename}') # interpolate the grid self.lambdas = self.atmgrid[0, self.index_atm_data:] self.model = RegularGridInterpolator((self.lambdas, self.OZ_Points, self.PWV_Points, self.AER_Points), ( self.atmgrid[1:, self.index_atm_data:].reshape(NB_AER_POINTS, NB_PWV_POINTS, NB_OZ_POINTS, len(self.lambdas))).T, bounds_error=False, fill_value=0) def simulate(self, ozone, pwv, aerosols, angstrom_exponent=None): """Interpolate from the atmospheric grid to get the atmospheric transmission. First ozone, second pwv, last aerosols, to respect order of loops when generating the grid Parameters ---------- ozone: float Ozone quantity in Dobson. pwv: float Precipitable Water Vapor quantity in mm. aerosols: float VAOD Vertical Aerosols Optical Depth. angstrom_exponent: float, optional Angstrom exponent for aerosols. If None, the Atmosphere.angstrom_exponent_default value is used (default: None). Examples -------- .. plot:: :include-source: >>> from spectractor.simulation.atmosphere import AtmosphereGrid, plot_transmission_simple >>> from spectractor import parameters >>> import numpy as np >>> import matplotlib.pyplot as plt >>> a = AtmosphereGrid(atmgrid_filename='tests/data/reduc_20170530_134_atmsim.fits') >>> lambdas = np.arange(200, 1200) >>> fig = plt.figure() >>> for pwv in np.arange(5): ... transmission = a.simulate(ozone=400, pwv=pwv, aerosols=0.05) ... plot_transmission_simple(plt.gca(), lambdas, transmission(lambdas), ... title=a.title, label=a.label) >>> if parameters.DISPLAY: plt.show() """ if angstrom_exponent is not None and angstrom_exponent < 0: raise ValueError(f"Angstrom exponent not implemented in AtmosphericGrid() yet. " f"Please provide angstrom_exponent=None. Got {angstrom_exponent=} instead.") self.pwv = pwv self.ozone = ozone self.aerosols = aerosols self.set_title() self.set_label() ones = np.ones_like(self.lambdas) points = np.array([self.lambdas, ozone * ones, pwv * ones, aerosols * ones]).T atm = self.model(points) self.transmission = interp1d(self.lambdas, atm, kind='linear', bounds_error=False, fill_value=(0, 0)) return self.transmission if __name__ == "__main__": import doctest doctest.testmod()
LSSTDESCREPO_NAMESpectractorPATH_START.@Spectractor_extracted@Spectractor-master@spectractor@simulation@atmosphere.py@.PATH_END.py
{ "filename": "callStack.py", "repo_name": "GeminiDRSoftware/DRAGONS", "repo_path": "DRAGONS_extracted/DRAGONS-master/gempy/library/config/callStack.py", "type": "Python" }
# # LSST Data Management System # Copyright 2017 AURA/LSST. # # This product includes software developed by the # LSST Project (http://www.lsst.org/). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the LSST License Statement and # the GNU General Public License along with this program. If not, # see <https://www.lsstcorp.org/LegalNotices/>. # __all__ = ['getCallerFrame', 'getStackFrame', 'StackFrame', 'getCallStack'] from builtins import object import inspect import linecache def getCallerFrame(relative=0): """Retrieve the frame for the caller By "caller", we mean our user's caller. Parameters ---------- relative : `int`, non-negative Number of frames above the caller to retrieve. Returns ------- frame : `__builtin__.Frame` Frame for the caller. """ frame = inspect.currentframe().f_back.f_back # Our caller's caller for ii in range(relative): frame = frame.f_back return frame def getStackFrame(relative=0): """Retrieve the stack frame for the caller By "caller", we mean our user's caller. Parameters ---------- relative : `int`, non-negative Number of frames above the caller to retrieve. Returns ------- frame : `StackFrame` Stack frame for the caller. """ frame = getCallerFrame(relative + 1) return StackFrame.fromFrame(frame) class StackFrame(object): """A single element of the stack trace This differs slightly from the standard system mechanisms for getting a stack trace by the fact that it does not look up the source code until it is absolutely necessary, reducing the I/O. Parameters ---------- filename : `str` Name of file containing the code being executed. lineno : `int` Line number of file being executed. function : `str` Function name being executed. content : `str` or `None` The actual content being executed. If not provided, it will be loaded from the file. """ _STRIP = "/DRAGONS/" # String to strip from the filename def __init__(self, filename, lineno, function, content=None): loc = filename.rfind(self._STRIP) if loc > 0: filename = filename[loc + len(self._STRIP):] self.filename = filename self.lineno = lineno self.function = function self._content = content @property def content(self): """ Getter for content being executed. Load from file on demand. """ if self._content is None: self._content = linecache.getline(self.filename, self.lineno).strip() return self._content @classmethod def fromFrame(cls, frame): """ Construct from a Frame object inspect.currentframe() provides a Frame object. This is a convenience constructor to interpret that Frame object. Parameters ---------- frame : `Frame` Frame object to interpret. Returns ------- output : `StackFrame` Constructed object. """ filename = frame.f_code.co_filename lineno = frame.f_lineno function = frame.f_code.co_name return cls(filename, lineno, function) def __repr__(self): return "%s(%s, %s, %s)" % (self.__class__.__name__, self.filename, self.lineno, self.function) def format(self, full=False): """Format for printing Parameters ---------- full : `bool` Print full details, including content being executed? Returns ------- result : `str` Formatted string. """ result = " File %s:%s (%s)" % (self.filename, self.lineno, self.function) if full: result += "\n %s" % (self.content,) return result def getCallStack(skip=0): """ Retrieve the call stack for the caller By "caller", we mean our user's caller - we don't include ourselves or our caller. The result is ordered with the most recent frame last. Parameters ---------- skip : `int`, non-negative Number of stack frames above caller to skip. Returns ------- output : `list` of `StackFrame` The call stack. """ frame = getCallerFrame(skip + 1) stack = [] while frame: stack.append(StackFrame.fromFrame(frame)) frame = frame.f_back return list(reversed(stack))
GeminiDRSoftwareREPO_NAMEDRAGONSPATH_START.@DRAGONS_extracted@DRAGONS-master@gempy@library@config@callStack.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/treemap/__init__.py", "type": "Python" }
import sys from typing import TYPE_CHECKING if sys.version_info < (3, 7) or TYPE_CHECKING: from ._visible import VisibleValidator from ._valuessrc import ValuessrcValidator from ._values import ValuesValidator from ._uirevision import UirevisionValidator from ._uid import UidValidator from ._tiling import TilingValidator from ._texttemplatesrc import TexttemplatesrcValidator from ._texttemplate import TexttemplateValidator from ._textsrc import TextsrcValidator from ._textposition import TextpositionValidator from ._textinfo import TextinfoValidator from ._textfont import TextfontValidator from ._text import TextValidator from ._stream import StreamValidator from ._sort import SortValidator from ._root import RootValidator from ._pathbar import PathbarValidator from ._parentssrc import ParentssrcValidator from ._parents import ParentsValidator from ._outsidetextfont import OutsidetextfontValidator from ._opacity import OpacityValidator from ._name import NameValidator from ._metasrc import MetasrcValidator from ._meta import MetaValidator from ._maxdepth import MaxdepthValidator from ._marker import MarkerValidator from ._level import LevelValidator from ._legendwidth import LegendwidthValidator from ._legendrank import LegendrankValidator from ._legendgrouptitle import LegendgrouptitleValidator from ._legend import LegendValidator from ._labelssrc import LabelssrcValidator from ._labels import LabelsValidator from ._insidetextfont import InsidetextfontValidator from ._idssrc import IdssrcValidator from ._ids import IdsValidator from ._hovertextsrc import HovertextsrcValidator from ._hovertext import HovertextValidator from ._hovertemplatesrc import HovertemplatesrcValidator from ._hovertemplate import HovertemplateValidator from ._hoverlabel import HoverlabelValidator from ._hoverinfosrc import HoverinfosrcValidator from ._hoverinfo import HoverinfoValidator from ._domain import DomainValidator from ._customdatasrc import CustomdatasrcValidator from ._customdata import CustomdataValidator from ._count import CountValidator from ._branchvalues import BranchvaluesValidator else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [], [ "._visible.VisibleValidator", "._valuessrc.ValuessrcValidator", "._values.ValuesValidator", "._uirevision.UirevisionValidator", "._uid.UidValidator", "._tiling.TilingValidator", "._texttemplatesrc.TexttemplatesrcValidator", "._texttemplate.TexttemplateValidator", "._textsrc.TextsrcValidator", "._textposition.TextpositionValidator", "._textinfo.TextinfoValidator", "._textfont.TextfontValidator", "._text.TextValidator", "._stream.StreamValidator", "._sort.SortValidator", "._root.RootValidator", "._pathbar.PathbarValidator", "._parentssrc.ParentssrcValidator", "._parents.ParentsValidator", "._outsidetextfont.OutsidetextfontValidator", "._opacity.OpacityValidator", "._name.NameValidator", "._metasrc.MetasrcValidator", "._meta.MetaValidator", "._maxdepth.MaxdepthValidator", "._marker.MarkerValidator", "._level.LevelValidator", "._legendwidth.LegendwidthValidator", "._legendrank.LegendrankValidator", "._legendgrouptitle.LegendgrouptitleValidator", "._legend.LegendValidator", "._labelssrc.LabelssrcValidator", "._labels.LabelsValidator", "._insidetextfont.InsidetextfontValidator", "._idssrc.IdssrcValidator", "._ids.IdsValidator", "._hovertextsrc.HovertextsrcValidator", "._hovertext.HovertextValidator", "._hovertemplatesrc.HovertemplatesrcValidator", "._hovertemplate.HovertemplateValidator", "._hoverlabel.HoverlabelValidator", "._hoverinfosrc.HoverinfosrcValidator", "._hoverinfo.HoverinfoValidator", "._domain.DomainValidator", "._customdatasrc.CustomdatasrcValidator", "._customdata.CustomdataValidator", "._count.CountValidator", "._branchvalues.BranchvaluesValidator", ], )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@treemap@__init__.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/graph_objs/box/__init__.py", "type": "Python" }
import sys from typing import TYPE_CHECKING if sys.version_info < (3, 7) or TYPE_CHECKING: from ._hoverlabel import Hoverlabel from ._legendgrouptitle import Legendgrouptitle from ._line import Line from ._marker import Marker from ._selected import Selected from ._stream import Stream from ._unselected import Unselected from . import hoverlabel from . import legendgrouptitle from . import marker from . import selected from . import unselected else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [".hoverlabel", ".legendgrouptitle", ".marker", ".selected", ".unselected"], [ "._hoverlabel.Hoverlabel", "._legendgrouptitle.Legendgrouptitle", "._line.Line", "._marker.Marker", "._selected.Selected", "._stream.Stream", "._unselected.Unselected", ], )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@graph_objs@box@__init__.py@.PATH_END.py
{ "filename": "household.py", "repo_name": "PrefectHQ/prefect", "repo_path": "prefect_extracted/prefect-main/tests/test-projects/tasks/household.py", "type": "Python" }
from prefect import task @task def do_the_dishes(): return "The dishes are :sparkles: clean!"
PrefectHQREPO_NAMEprefectPATH_START.@prefect_extracted@prefect-main@tests@test-projects@tasks@household.py@.PATH_END.py
{ "filename": "contributing.md", "repo_name": "google/flax", "repo_path": "flax_extracted/flax-main/docs/contributing.md", "type": "Markdown" }
# How to contribute Everyone can contribute to Flax, and the Flax development team values everyone's contributions! You can contribute in many more ways than just writing code. Answering questions on the [Flax GitHub Discussions page](https://github.com/google/flax/discussions), helping each other, and improving Flax documentation are extremely valuable to the Flax ecosystem. We also appreciate if you spread the word, for instance by starring the [Flax GitHub repository](https://github.com/google/flax), or referencing Flax in blog posts of projects that used it. This project follows [Google's Open Source Community Guidelines](https://opensource.google/conduct/). ## Ways to contribute We welcome pull requests (PRs), in particular for those issues [marked as PR-ready](https://github.com/google/flax/issues?q=is%3Aopen+is%3Aissue+label%3A%22Status%3A+pull+requests+welcome%22). For other proposals, you should first open a GitHub Issue or a GitHub Discussion to start a conversation about your planned contribution. ## Contributing code using pull requests The Flax development team performs all development using [Git](https://git-scm.com/). To contribute, you should have basic knowledge of [Git](https://git-scm.com/) and [GitHub](https://docs.github.com). (You can learn how to set up Git by following Git's official [Getting Started - First-Time Git Setup](https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup) and GitHub's [Set Up Git](https://docs.github.com/en/get-started/quickstart/set-up-git) guides.) To contribute code to Flax on GitHub, follow these steps: ### To create a pull request from a fork 1. Using GitHub's web UI, fork the Flax repository by clicking the 'Fork' button on the [`github.com/google/flax` repository page](http://www.github.com/google/flax). This creates a fork (a copy) of the Flax repository in your own GitHub. Reference: [Creating a pull request from a fork](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork). 2. Install [Python >=3.7](https://www.python.org/downloads/). 3. (Optional) Create a virtual environment or a Docker container. See [`dev/README.md`](https://github.com/google/flax/blob/main/dev/README.md) for details on how to set up a Docker Container. To set up a virtual environment, run the following: ```bash python3 -m virtualenv env . env/bin/activate ``` This ensures all your dependencies are installed in this environment. 4. Clone your local forked Flax repo with `git clone`. Then, install the required packages with [PyPi](https://pip.pypa.io/en/stable/cli/pip_install/). This enables you to immediately test the code after modifying it: ```bash git clone https://github.com/YOUR_USERNAME/flax cd flax pip install -e ".[all,testing,docs]" ``` You can also use [uv](https://docs.astral.sh/uv/) to setup the development environment: ```bash uv sync --all-extras ``` 5. Set up pre-commit hooks, this will run some automated checks during each `git` commit and possibly update some files that require changes. ```bash pip install pre-commit pre-commit install ``` 6. Add the Google Flax repo (not your fork) as an upstream remote, so you can use it to sync your changes. ```bash git remote add upstream http://www.github.com/google/flax ``` 7. Create a branch, such as `my_development_branch`, you will develop from: ```bash git checkout -b my_development_branch ``` 8. Implement your changes using your favorite editor (we recommend [Visual Studio Code](https://code.visualstudio.com/)). Make sure the tests pass by running the following command from the top of the repository: ```bash ./tests/run_all_tests.sh ``` 9. Once you finish making changes, don't forget to create commits ([learn how to write a commit message](https://chris.beams.io/posts/git-commit/)): ```bash git add file1.py file2.py ... # or use `git add .` to add all changed files git commit -m "Your commit message" ``` Then sync your code with the main repository: ```bash git fetch upstream git rebase upstream/main ``` 10. Finally, push your commit on your `my_development_branch`, and create a remote branch in your fork that you can use to create a pull request from: ```bash git push --set-upstream origin my_development_branch ``` After running the command, you should get a GitHub link in your (VS Code) terminal output for creating a pull request. If you don't receive a link after `git push`, use the [GitHub web UI](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request?tool=webui) to create a pull request. 11. Make sure your pull request passes the [Flax PR checklist](https://github.com/google/flax/blob/main/.github/pull_request_template.md#checklist). If so, create a pull request from the Flax repository and send it for review. Consult [GitHub Help](https://help.github.com/articles/about-pull-requests/) for more information on using pull requests. You can learn more in GitHub's [Creating a pull request from a fork ](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request-from-a-fork). documentation. ### Adding or updating dependencies To add or update dependencies, you must use `uv` after updating the `pyproject.toml` file to ensure that the `uv.lock` file is up-to-date. ```bash uv sync --all-extras ``` Alternatively use can use `uv add` to add or update the dependencies automatically, for example: ```bash uv add 'some-package>=1.2.3' ``` ### Updating Jupyter Notebooks We use [jupytext](https://jupytext.readthedocs.io/) to maintain two synced copies of docs in `docs/notebooks`: one in the Jupyter Notebook (`.ipynb`) format, and one in Markdown (`.md`). The former can be opened and executed directly in [Google Colab](https://colab.research.google.com/). Markdown makes it easier to track changes/diffs within version control and, for example, GitHub web UI, since `.ipynb` files are based on JSON. #### Editing Jupyter Notebooks (`.ipynb`) For making large changes that substantially modify code and outputs, it's recommended to edit the notebooks in [Jupyter](https://jupyter.org/install) or in [Colab](https://colab.research.google.com/). If you choose to work in Colab, go to **File** and click **Upload notebook**, then pick your file. After loading it into Colab and editing it, make sure you run the cells, and that there aren't any errors. Click on **Runtime**, then select **Run all**. After you finish, click **File** > **Download** > **Download ipynb**. You may also want to test that the file executes properly by using `sphinx-build`, as explained above. After you make changes in your Jupyter Notebook, follow the steps _Syncing notebooks_ below. #### Editing Markdown files (`.md`) For making smaller changes to the text content of the notebooks, it is easiest to edit the `.md` versions using a text editor. After you make changes in your Markdown file, follow the steps _Syncing notebooks_ below. #### Syncing notebooks After editing either the `.ipynb` or `.md` versions of the docs, sync the two versions using [jupytext](https://jupytext.readthedocs.io/) by running `jupytext --sync` on the updated notebooks. First, make sure you have jupytext installed. The jupytext version should match the one specified in [.pre-commit-config.yaml](https://github.com/google/flax/blob/main/.pre-commit-config.yaml) (currently, it is v1.13.8). ```bash pip install jupytext==1.13.8 ``` Then, after you have made your changes in the Jupyter Notebook, sync the contents with its Markdown-equivalent file by running the following command: ```bash jupytext --sync path/to/the/file.ipynb ``` Similarly, to sync your Markdown file with its Jupyter Notebook version, run: ```bash jupytext --sync path/to/the/file.md ``` Note that if you receive an error, and it is the first time you worked in a Jupyter Notebook, you may need to (re)create a synced copy of the document (which is explained in detail in _Creating new notebooks_ section below): ```bash jupytext --set-formats ipynb,md:myst path/to/the/notebook.ipynb ``` Once you're finished with syncing the `.md` and `.ipynb` files, you can check that they are properly synced using the [pre-commit](https://pre-commit.com/) framework to perform the same checks used in the Flax GitHub CI: ```bash git add docs -u # pre-commit runs on files in git staging. pre-commit run jupytext ``` #### Creating new notebooks If you are adding a new Jupyter Notebook to the documentation, you can use `jupytext --set-formats`. It can set up both the Jupyter Notebook (`.ipynb`) and Markdown (`.md`) versions of the file: ```bash jupytext --set-formats ipynb,md:myst path/to/the/notebook.ipynb ``` This works by adding a `"jupytext"` metadata field to the notebook file which specifies the desired formats. The `jupytext --sync` command can then recognize them when invoked. After you make changes in your file(s), follow the steps from the _Syncing notebooks_ section above to keep the contents of both Markdown and Jupyter Notebook files in sync. #### Notebooks within the Sphinx build Some of the notebooks are built automatically as part of the pre-submit checks and as part of the [Read the Docs](https://flax.readthedocs.io/en/latest) build. The build will fail if cells raise errors. If the errors are intentional, you can either catch them, or tag the cell with `raises-exceptions` metadata ([example PR](https://github.com/jax-ml/jax/pull/2402/files)). You have to add this metadata by hand in the `.ipynb` file. It will be preserved when somebody else re-saves the notebook. We exclude some notebooks from the build because, for example, they contain long computations. See `exclude_patterns` in [`conf.py`](https://github.com/google/flax/blob/main/docs/conf.py). ### Updating the pull request contents Every pull request should ideally be limited to just one commit, so if you have multiple commits please squash them. Assuming you now have only one commit in your pull request, and want to add changes requested during review: 1. Make the changes locally in your editor. 2. Run `git commit -a --amend`. This updates the commit contents and allows you to edit the commit message. 3. At this point, `git push` alone will result in an error. Instead, use `git push --force`. 4. Check that it's done: The changes to your commit should be immediately reflected in the Github web UI. ## Troubleshooting ### Too many commits in a pull request If your PR has too many commits associated with it (for example, more than five), you need to squash them. Otherwise, the Flax docs build process may fail with an error message. This is because of the following reasons: * There are more than five commits in your pull request; and * The Flax source sync process fails when the commit tree is too large. To squash your commits, you can rebase your branch to `main` and create a new commit containing all your changes, run the following command: ```bash git rebase main && git reset --soft main && git commit ``` This will apply all your changes to the main branch. Note that if you had to resolve any conflicts while working on your change (for instance, you did a `pull upstream main` which led to conflict), then you will have to resolve these conflicts again. After you have successfully rebased your branch, you should push your changes. And because you changed the commit history, you may have to use `git push --force`. ## Contributor License Agreement Contributions to this project must be accompanied by a Contributor License Agreement. You (or your employer) retain the copyright to your contribution; this simply gives us permission to use and redistribute your contributions as part of the project. Head over to <https://cla.developers.google.com/> to see your current agreements on file or to sign a new one. You generally only need to submit a CLA once, so if you've already submitted one (even if it was for a different project), you probably don't need to do it again.
googleREPO_NAMEflaxPATH_START.@flax_extracted@flax-main@docs@contributing.md@.PATH_END.py
{ "filename": "parsec.py", "repo_name": "danxhuber/evolstate", "repo_path": "evolstate_extracted/evolstate-master/parsec.py", "type": "Python" }
# code to generate TAMS and base of the RGB files from Parsec models import numpy as np import matplotlib.pyplot as plt from astropy.io import ascii import glob # models from https://people.sissa.it/~sbressan/CAF09_V1.2S_M36_LT/ # solar metallicity files=glob.glob('Z0.017Y0.279/*') # [M/H]~0.3 #files=glob.glob('Z0.03Y0.302/*') plt.ion() plt.clf() f = open('tams_parsec.txt','w') f2 = open('rgb_parsec.txt','w') for i in range(0,50): data=ascii.read(files[i]) print(i,files[i]) #rad=np.log10(10**data['LOG_R']/6.96e10) rad=np.log10(np.sqrt(10**data['LOG_L'] * (10**data['LOG_TE']/5777.)**(-4.))) age=(data['AGE'])*1e-9 um=np.where(data['PHASE'] > 4.)[0] plt.plot(data['LOG_TE'][um],rad[um],'.',color='black',ms=0.2) um=np.where((data['PHASE'] == 7.) & (age < 20.))[0] if (len(um) != 0): plt.plot(data['LOG_TE'][um],rad[um],'o',color='red') f.write('%12.5f %12.5f \n' % (10**data['LOG_TE'][um[0]],10**rad[um[0]])) um=np.where((data['PHASE'] == 8.) & (age < 20.))[0] if (len(um) != 0): plt.plot(data['LOG_TE'][um],rad[um],'o',color='green') f2.write('%12.5f %12.5f \n' % (10**data['LOG_TE'][um[0]],10**rad[um[0]])) #plt.draw() #input(':') f.close() f2.close()
danxhuberREPO_NAMEevolstatePATH_START.@evolstate_extracted@evolstate-master@parsec.py@.PATH_END.py
{ "filename": "splittst.py", "repo_name": "mhammond/pywin32", "repo_path": "pywin32_extracted/pywin32-main/Pythonwin/pywin/Demos/splittst.py", "type": "Python" }
import commctrl import fontdemo import win32ui from pywin.mfc import docview, window # derive from CMDIChild. This does much work for us. class SplitterFrame(window.MDIChildWnd): def __init__(self): # call base CreateFrame self.images = None window.MDIChildWnd.__init__(self) def OnCreateClient(self, cp, context): splitter = win32ui.CreateSplitter() doc = context.doc frame_rect = self.GetWindowRect() size = ((frame_rect[2] - frame_rect[0]), (frame_rect[3] - frame_rect[1]) // 2) sub_size = (size[0] // 2, size[1]) splitter.CreateStatic(self, 2, 1) self.v1 = win32ui.CreateEditView(doc) self.v2 = fontdemo.FontView(doc) # CListControl view self.v3 = win32ui.CreateListView(doc) sub_splitter = win32ui.CreateSplitter() # pass "splitter" so each view knows how to get to the others sub_splitter.CreateStatic(splitter, 1, 2) sub_splitter.CreateView(self.v1, 0, 0, (sub_size)) sub_splitter.CreateView(self.v2, 0, 1, (0, 0)) # size ignored. splitter.SetRowInfo(0, size[1], 0) splitter.CreateView(self.v3, 1, 0, (0, 0)) # size ignored. # Setup items in the imagelist self.images = win32ui.CreateImageList(32, 32, 1, 5, 5) self.images.Add(win32ui.GetApp().LoadIcon(win32ui.IDR_MAINFRAME)) self.images.Add(win32ui.GetApp().LoadIcon(win32ui.IDR_PYTHONCONTYPE)) self.images.Add(win32ui.GetApp().LoadIcon(win32ui.IDR_TEXTTYPE)) self.v3.SetImageList(self.images, commctrl.LVSIL_NORMAL) self.v3.InsertItem(0, "Icon 1", 0) self.v3.InsertItem(0, "Icon 2", 1) self.v3.InsertItem(0, "Icon 3", 2) # self.v3.Arrange(commctrl.LVA_DEFAULT) Hmmm - win95 aligns left always??? return 1 def OnDestroy(self, msg): window.MDIChildWnd.OnDestroy(self, msg) if self.images: self.images.DeleteImageList() self.images = None def InitialUpdateFrame(self, doc, makeVisible): self.v1.ReplaceSel("Hello from Edit Window 1") self.v1.SetModifiedFlag(0) class SampleTemplate(docview.DocTemplate): def __init__(self): docview.DocTemplate.__init__( self, win32ui.IDR_PYTHONTYPE, None, SplitterFrame, None ) def InitialUpdateFrame(self, frame, doc, makeVisible): # print("frame is ", frame, frame._obj_) # print("doc is ", doc, doc._obj_) self._obj_.InitialUpdateFrame(frame, doc, makeVisible) # call default handler. frame.InitialUpdateFrame(doc, makeVisible) def demo(): template = SampleTemplate() doc = template.OpenDocumentFile(None) doc.SetTitle("Splitter Demo") if __name__ == "__main__": import demoutils if demoutils.NeedGoodGUI(): demo()
mhammondREPO_NAMEpywin32PATH_START.@pywin32_extracted@pywin32-main@Pythonwin@pywin@Demos@splittst.py@.PATH_END.py
{ "filename": "DivFrhoResolutionStudy.py", "repo_name": "mmicromegas/ransX", "repo_path": "ransX_extracted/ransX-master/EQUATIONS/FOR_RESOLUTION_STUDY/DivFrhoResolutionStudy.py", "type": "Python" }
import numpy as np from scipy import integrate import matplotlib.pyplot as plt from UTILS.Calculus import Calculus from UTILS.SetAxisLimit import SetAxisLimit from UTILS.Tools import Tools from UTILS.Errors import Errors import sys # Theoretical background https://arxiv.org/abs/1401.5176 # Mocak, Meakin, Viallet, Arnett, 2014, Compressible Hydrodynamic Mean-Field # # Equations in Spherical Geometry and their Application to Turbulent Stellar # # Convection Data # class DivFrhoResolutionStudy(Calculus, SetAxisLimit, Tools, Errors, object): def __init__(self, filename, ig, intc, data_prefix): super(DivFrhoResolutionStudy, self).__init__(ig) # load data to list of structured arrays eht = [] for ffile in filename: eht.append(self.customLoad(ffile)) # declare data lists xzn0, nx, ny, nz, tavg = [], [], [], [], [] divfrho = [] for i in range(len(filename)): # load grid xzn0.append(np.asarray(eht[i].item().get('xzn0'))) nx.append(np.asarray(eht[i].item().get('nx'))) ny.append(np.asarray(eht[i].item().get('ny'))) nz.append(np.asarray(eht[i].item().get('nz'))) tavg.append(np.asarray(eht[i].item().get('tavg'))) # pick specific Reynolds-averaged mean fields according to: # https://github.com/mmicromegas/ransX/blob/master/DOCS/ransXimplementationGuide.pdf divfrho.append(self.Div((np.asarray(eht[i].item().get('ddux')[intc])- np.asarray(eht[i].item().get('dd')[intc])*np.asarray(eht[i].item().get('ux')[intc])),np.asarray(eht[i].item().get('xzn0')))) # share data globally self.data_prefix = data_prefix self.xzn0 = xzn0 self.nx = nx self.ny = ny self.nz = nz self.divfrho = divfrho self.ig = ig self.tavg = tavg def plot_divfrho(self, LAXIS, xbl, xbr, ybu, ybd, ilg): """Plot div TurbulentMass flux in the model""" if (LAXIS != 2): print("ERROR(DivFrhoResolutionStudy.py): Only LAXIS=2 is supported.") sys.exit() # load x GRID grd = self.xzn0 # load DATA to plot plt1 = self.divfrho nx = self.nx ny = self.ny nz = self.nz # find maximum resolution data grd_maxres = self.maxresdata(grd) plt1_maxres = self.maxresdata(plt1) plt_interp = [] for i in range(len(grd)): plt_interp.append(np.interp(grd_maxres, grd[i], plt1[i])) # create FIGURE plt.figure(figsize=(7, 6)) # format AXIS, make sure it is exponential plt.gca().yaxis.get_major_formatter().set_powerlimits((0, 0)) plt10_tmp = plt1[0] plt11_tmp = plt1[0] plt1_foraxislimit = [] plt1max = np.max(plt1[0]) for plt1i in plt1: if (np.max(plt1i) > plt1max): plt1_foraxislimit = plt1i # set plot boundaries to_plot = [plt1_foraxislimit] self.set_plt_axis(LAXIS, xbl, xbr, ybu, ybd, to_plot) # plot DATA plt.title(r"-Div $\overline{\rho' u'_x}$ ") for i in range(len(grd)): plt.plot(grd[i], -1.*plt1[i], label=str(self.nx[i]) + ' x ' + str(self.ny[i]) + ' x ' + str(self.nz[i])+ ' '+'(tavg = ' + str(np.int(self.tavg[i])) +' s)') #bbndry = grd[0][289] #tbndry = grd[0][316] #plt.text(tbndry,0.8e2,r"$\sim$0.23 Hp") # convective boundary #plt.axvline(bbndry, linestyle='--', linewidth=0.7, color='k') #plt.axvline(tbndry, linestyle='--', linewidth=0.7, color='k') # define and show x/y LABELS if self.ig == 1: setxlabel = r"x (cm)" setylabel = r"$-\nabla_x \overline{\rho' u'_x}}$" plt.xlabel(setxlabel) plt.ylabel(setylabel) elif self.ig == 2: setxlabel = r"r (cm)" setylabel = r"$-\nabla_r \overline{\rho' u'_r}}$" plt.xlabel(setxlabel) plt.ylabel(setylabel) plt.axhline(y=0., linestyle='--',color='k') # show LEGEND plt.legend(loc=ilg, prop={'size': 14}) # display PLOT plt.show(block=False) # save PLOT plt.savefig('RESULTS/' + self.data_prefix + 'mean_divfrho.png') plt.savefig('RESULTS/' + self.data_prefix + 'mean_divfrho.eps') # find data with maximum resolution def maxresdata(self, data): tmp = 0 for idata in data: if idata.shape[0] > tmp: data_maxres = idata else: tmp = idata.shape[0] return data_maxres
mmicromegasREPO_NAMEransXPATH_START.@ransX_extracted@ransX-master@EQUATIONS@FOR_RESOLUTION_STUDY@DivFrhoResolutionStudy.py@.PATH_END.py
{ "filename": "test_fm_fakedisk.py", "repo_name": "vortex-exoplanet/VIP", "repo_path": "VIP_extracted/VIP-master/tests/pre_3_10/test_fm_fakedisk.py", "type": "Python" }
""" Tests for fm/fakecomp.py """ import sys sys.path.append(".../tests") from tests.helpers import aarc import sys sys.path.append(".../tests") from tests.helpers import fixture import sys sys.path.append(".../tests") from tests.helpers import np from vip_hci.fm import cube_inject_fakedisk from vip_hci.fm import cube_inject_trace # ===== utility functions @fixture(scope="module", params=["3D"]) def dataset(request): """ Create 3D and 4D datasets for use with ``test_cube_inject_companions``. """ if request.param == "3D": cube = np.zeros((3, 25, 25)) psf = np.ones((1, 1)) angles = np.array([0, 90, 180]) return cube, psf, angles def test_cube_inject_fakedisk(dataset): """ Verify position of injected disk image with 1 value, for 3D and 4D cases. """ def _expected(): """ Expected positions. """ return [(15, 12), (12, 15), (9, 12)] psf = np.zeros((25, 25)) psf[15, 12] = 1 _, _, angles = dataset cube = cube_inject_fakedisk(psf, angle_list=angles) # find coords coords = [] for i in range(cube.shape[0]): max_idx = np.argmax(cube[i]) coords.append(np.unravel_index(max_idx, cube[0].shape)) yx_expected = _expected() aarc(coords, yx_expected) def test_cube_inject_trace(dataset): """ Verify position of injected disk image with 1 value, for 3D and 4D cases. """ def _expected(ang): """ Expected positions. """ if ang == 0: return [(7, 12), (12, 8), (15, 12)] elif ang == 90: return [(12, 7), (12, 15), (16, 12)] elif ang == 180: return [(9, 12), (12, 16), (17, 12)] cube, psf, angles = dataset rads = [3, 4, 5] thetas = [90, 180, 270] cube = cube_inject_trace( cube, psf, angles, flevel=1, rad_dists=rads, theta=thetas, plsc=0.01225, n_branches=1, imlib="vip-fft", interpolation="lanczos4", verbose=True, ) for i in range(cube.shape[0]): # find coords of trace in each image of the cube coords = [] nspi = len(rads) frame_tmp = cube[i].copy() for s in range(nspi): max_idx = np.argmax(frame_tmp) coords_tmp = np.unravel_index(max_idx, frame_tmp.shape) coords.append(coords_tmp) frame_tmp[coords_tmp] = 0 idx_order = np.argsort(np.sum(coords, axis=1)) coords_sort = [coords[i] for i in idx_order] yx_expected = _expected(angles[i]) aarc(coords_sort, yx_expected)
vortex-exoplanetREPO_NAMEVIPPATH_START.@VIP_extracted@VIP-master@tests@pre_3_10@test_fm_fakedisk.py@.PATH_END.py
{ "filename": "optical_flow.py", "repo_name": "itseez/opencv", "repo_path": "opencv_extracted/opencv-master/samples/dnn/optical_flow.py", "type": "Python" }
#!/usr/bin/env python ''' This sample using FlowNet v2 and RAFT model to calculate optical flow. FlowNet v2 Original Paper: https://arxiv.org/abs/1612.01925. FlowNet v2 Repo: https://github.com/lmb-freiburg/flownet2. Download the converted .caffemodel model from https://drive.google.com/open?id=16qvE9VNmU39NttpZwZs81Ga8VYQJDaWZ and .prototxt from https://drive.google.com/file/d/1RyNIUsan1ZOh2hpYIH36A-jofAvJlT6a/view?usp=sharing. Otherwise download original model from https://lmb.informatik.uni-freiburg.de/resources/binaries/flownet2/flownet2-models.tar.gz, convert .h5 model to .caffemodel and modify original .prototxt using .prototxt from link above. RAFT Original Paper: https://arxiv.org/pdf/2003.12039.pdf RAFT Repo: https://github.com/princeton-vl/RAFT Download the .onnx model from here https://github.com/opencv/opencv_zoo/raw/281d232cd99cd920853106d853c440edd35eb442/models/optical_flow_estimation_raft/optical_flow_estimation_raft_2023aug.onnx. ''' import argparse import os.path import numpy as np import cv2 as cv class OpticalFlow(object): def __init__(self, model, height, width, proto=""): if proto: self.net = cv.dnn.readNetFromCaffe(proto, model) else: self.net = cv.dnn.readNet(model) self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) self.height = height self.width = width def compute_flow(self, first_img, second_img): inp0 = cv.dnn.blobFromImage(first_img, size=(self.width, self.height)) inp1 = cv.dnn.blobFromImage(second_img, size=(self.width, self.height)) self.net.setInputsNames(["img0", "img1"]) self.net.setInput(inp0, "img0") self.net.setInput(inp1, "img1") flow = self.net.forward() output = self.motion_to_color(flow) return output def motion_to_color(self, flow): arr = np.arange(0, 255, dtype=np.uint8) colormap = cv.applyColorMap(arr, cv.COLORMAP_HSV) colormap = colormap.squeeze(1) flow = flow.squeeze(0) fx, fy = flow[0, ...], flow[1, ...] rad = np.sqrt(fx**2 + fy**2) maxrad = rad.max() if rad.max() != 0 else 1 ncols = arr.size rad = rad[..., np.newaxis] / maxrad a = np.arctan2(-fy / maxrad, -fx / maxrad) / np.pi fk = (a + 1) / 2.0 * (ncols - 1) k0 = fk.astype(np.int32) k1 = (k0 + 1) % ncols f = fk[..., np.newaxis] - k0[..., np.newaxis] col0 = colormap[k0] / 255.0 col1 = colormap[k1] / 255.0 col = (1 - f) * col0 + f * col1 col = np.where(rad <= 1, 1 - rad * (1 - col), col * 0.75) output = (255.0 * col).astype(np.uint8) return output if __name__ == '__main__': parser = argparse.ArgumentParser(description='Use this script to calculate optical flow', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-input', '-i', required=True, help='Path to input video file. Skip this argument to capture frames from a camera.') parser.add_argument('--height', default=320, type=int, help='Input height') parser.add_argument('--width', default=448, type=int, help='Input width') parser.add_argument('--proto', '-p', default='', help='Path to prototxt.') parser.add_argument('--model', '-m', required=True, help='Path to model.') args, _ = parser.parse_known_args() if not os.path.isfile(args.model): raise OSError("Model does not exist") if args.proto and not os.path.isfile(args.proto): raise OSError("Prototxt does not exist") winName = 'Calculation optical flow in OpenCV' cv.namedWindow(winName, cv.WINDOW_NORMAL) cap = cv.VideoCapture(args.input if args.input else 0) hasFrame, first_frame = cap.read() if args.proto: divisor = 64. var = {} var['ADAPTED_WIDTH'] = int(np.ceil(args.width/divisor) * divisor) var['ADAPTED_HEIGHT'] = int(np.ceil(args.height/divisor) * divisor) var['SCALE_WIDTH'] = args.width / float(var['ADAPTED_WIDTH']) var['SCALE_HEIGHT'] = args.height / float(var['ADAPTED_HEIGHT']) config = '' proto = open(args.proto).readlines() for line in proto: for key, value in var.items(): tag = "$%s$" % key line = line.replace(tag, str(value)) config += line caffemodel = open(args.model, 'rb').read() opt_flow = OpticalFlow(caffemodel, var['ADAPTED_HEIGHT'], var['ADAPTED_WIDTH'], bytearray(config.encode())) else: opt_flow = OpticalFlow(args.model, 360, 480) while cv.waitKey(1) < 0: hasFrame, second_frame = cap.read() if not hasFrame: break flow = opt_flow.compute_flow(first_frame, second_frame) first_frame = second_frame cv.imshow(winName, flow)
itseezREPO_NAMEopencvPATH_START.@opencv_extracted@opencv-master@samples@dnn@optical_flow.py@.PATH_END.py
{ "filename": "InstrumentData.py", "repo_name": "agreenbaum/ImPlaneIA", "repo_path": "ImPlaneIA_extracted/ImPlaneIA-master/nrm_analysis/InstrumentData.py", "type": "Python" }
#! /usr/bin/env python """ InstrumentData Class -- defines data format, wavelength info, mask geometry Instruments/masks supported: GPI NRM NIRISS AMI VISIR SAM ** we like acronyms ** """ # Standard Imports from __future__ import print_function import numpy as np from astropy.io import fits import os, sys, time # Module imports # mask geometries, GPI, NIRISS, VISIR supported... from .misctools.mask_definitions import NRM_mask_definitions from .misctools import utils um = 1.0e-6 # utility routines for InstrumentData classes def show_cvsupport_threshold(instr): """ Show threshold for where 'splodge' data in CV space contains signal """ print("cvsupport_threshold is: ", instr.cvsupport_threshold) print(instr.cvsupport_threshold) def set_cvsupport_threshold(instr, k, v): """ Set threshold for where 'splodge' data in CV space contains signal Parameters ---------- instr: InstrumentData instance thresh: Threshold for the absolute value of the FT(interferogram). Normalize abs(CV = FT(a)) for unity peak, and define the support of "good" CV when this is above threshold """ instr.cvsupport_threshold[k] = v print("New cvsupport_threshold is: ", instr.cvsupport_threshold) class GPI: def __init__(self, reffile, **kwargs): """ Initialize GPI class ARGUMENTS: reffile - one or a list of reference fits files gpi-pipeline reduced containing useful header info optionally: 'gpifilterpath' - Point to a directory which contains GPI filter files code will read in the relevant file and pick out a sample of wavelengths and transmissions that span the list, to be used later to generate the model. """ # only one NRM on GPI: self.arrname = "gpi_g10s40" self.pscale_mas = 14.1667 #14.27 looks like a better match March 2019 self.pscale_rad = utils.mas2rad(self.pscale_mas) self.mask = NRM_mask_definitions(maskname=self.arrname) self.mask.ctrs = np.array(self.mask.ctrs) # Hard code -1.5 deg rotation in data (April 2016) # (can be moved to NRM_mask_definitions later) self.mask.ctrs = utils.rotate2dccw(self.mask.ctrs, (-3.7)*np.pi/180.) # Add in hole/baseline properties ? self.holeshape="circ" affine2d = kwargs.get( 'affine2d', None) if affine2d is None: self.affine2d = utils.Affine2d(mx=1.0,my=1.0, sx=0.0,sy=0.0, xo=0.0,yo=0.0, name="Ideal") else: self.affine2d = affine2d # Get info from reference file self.hdr0 = [] self.hdr1 = [] self.refdata = [] if type(reffile)==str: reffile = [reffile,] for fn in reffile: reffits = fits.open(fn) self.hdr0.append(reffits[0].header) self.hdr1.append(reffits[1].header) self.refdata.append(reffits[1].data) reffits.close() # instrument settings self.mode = self.hdr0[0]["DISPERSR"] self.obsmode = self.hdr0[0]["OBSMODE"] self.band = self.obsmode[-1] # K1 is two letters self.ref_imgs_dir = "refimgs_"+self.band+"/" # finding centroid from phase slope only considered cv_phase data # when cv_abs data exceeds this cvsupport_threshold. # Absolute value of cv data normalized to unity maximum # for the threshold application. # Data reduction gurus: tweak the threshold value with experience... self.cvsupport_threshold = {"Y":0.02, "J":0.02, "H":0.02, "1":0.02, "2":0.02} self.threshold = self.cvsupport_threshold[self.band] # Special mode for collapsed data if self.hdr1[0]["NAXIS3"]==1: # This is just a way handle data that is manually collapsed. # Not a standard data format for GPI. print("No NAXIS3 keyword. This is probably collapsed data.") print("Going to fake some stuff now") self.mode = "WOLLASTON_FAKEOUT" # wavelength info: spect mode or pol more if "PRISM" in self.mode: # GPI's spectral mode self.nwav = self.hdr1[0]["NAXIS3"] self.wls = np.linspace(self.hdr1[0]["CRVAL3"], \ self.hdr1[0]["CRVAL3"]+\ self.hdr1[0]['CD3_3']*self.nwav,\ self.nwav)*um self.eff_band = um*np.ones(self.nwav)*(self.wls[-1] - \ self.wls[0])/self.nwav elif "WOLLASTON" in self.mode: # GPI's pol mode. Will define this for the DIFFERENTIAL VISIBILITIES # diff vis: two channels 0/45 and 22/67 self.nwav = 2 # Define the bands in case we use a tophat filter band_ctrs = {"Y":(1.14+0.95)*um/2., "J":(1.35+1.12)*um/2., \ "H":(1.80+1.50)*um/2., "1":(2.19+1.9)*um/2., \ "2":(2.4+2.13)*um/2.0} band_wdth = {"Y":(1.14-0.95)*um, "J":(1.35-1.12)*um, "H":(1.80-1.50)*um, \ "1":(2.19-1.9)*um, "2":(2.4-2.13)*um} wghts = np.ones(15) wavls = np.linspace(band_ctrs[self.band]-band_wdth[self.band]/2.0, \ band_ctrs[self.band]+band_wdth[self.band]/2.0, num=15) if 'gpifilterpath' in kwargs: print("Using GPI filter file ", end='') if self.band=="Y": filterfile = kwargs["gpifilterpath"]+"GPI-filter-Y.fits" print(kwargs["gpifilterpath"]+"GPI-filter-Y.fits") cutoff=0.7 if self.band=="J": filterfile = kwargs["gpifilterpath"]+"GPI-filter-J.fits" print(kwargs["gpifilterpath"]+"GPI-filter-J.fits") cutoff=0.7 if self.band=="H": filterfile = kwargs["gpifilterpath"]+"GPI-filter-H.fits" print(kwargs["gpifilterpath"]+"GPI-filter-H.fits") cutoff=0.7 if self.band=="1": filterfile = kwargs["gpifilterpath"]+"GPI-filter-K1.fits" print(kwargs["gpifilterpath"]+"GPI-filter-K1.fits") cutoff=0.94 if self.band=="2": filterfile = kwargs["gpifilterpath"]+"GPI-filter-K2.fits" print(kwargs["gpifilterpath"]+"GPI-filter-K2.fits") cutoff=0.94 # Read in gpi filter file fitsfilter = fits.open(filterfile)[1].data wavls = [] wghts = [] # Sample the filter file so the filter is only 50 elements long skip = len(fitsfilter[0][0]) / 50 for ii in range(len(fitsfilter[0][0])/skip): if fitsfilter[0][1][skip*ii]>cutoff: wavls.append(fitsfilter[0][0][skip*ii]*1.0e-6) wghts.append(fitsfilter[0][1][skip*ii]) lam_c = band_ctrs[self.band] lam_w = band_wdth[self.band] transmission = np.array([[wghts[f], wavls[f]] for f in range(len(wghts))]) if "FAKEOUT" in self.mode: self.nwav=1 self.wls = [transmission, ] self.eff_band = np.array([lam_w, ]) else: self.wls = [transmission, transmission] self.eff_band = np.array([lam_w, lam_w]) else: sys.exit("Check your reference file header. "+\ "Keywork DISPERSR='{0}' not understood".format(self.mode)) # For OIFits structure self.wavextension = (self.wls, self.eff_band) if "FAKEOUT" in self.mode: self.wavextension = ([lam_c,], [lam_w,]) # Observation info self.telname= "GEMINI" self.ra, self.dec = self.hdr0[0]["RA"], self.hdr0[0]["DEC"] try: self.date = self.hdr0[0]["DATE"] except: self.date = self.hdr0[0]["DATE-OBS"] self.month = self.date[-5:-3] self.day = self.date[-2:] self.year = self.date[:4] #self.parang = self.hdr0["PAR_ANG"] # AVPARANG added Aug 2 2016 self.parangs = [] self.itime = [] self.crpa = [] for ii in range(len(reffile)): self.parangs.append(self.hdr1[ii]["AVPARANG"]) self.itime.append(self.hdr1[ii]["ITIME"]) if "CRPA" in self.hdr0[ii]: self.crpa.append(self.hdr0[ii]["CRPA"]) self.avparang = np.mean(self.parangs) if len(self.crpa)>0: self.avcassang = np.mean(self.crpa) else: self.avcassang = 0.0 self.parang_range = abs(self.parangs[-1] - self.parangs[0]) self.totalinttime = np.sum(self.itime) try: self.pa = self.hdr0[0]["PA"] except: self.pa = 0.0 try: self.objname = self.hdr0[0]["OBJECT"] except: self.objname = "Unknown" # Look for additional keyword arguments ? def read_data(self, fn): fitsfile = fits.open(fn) sci=fitsfile[1].data hdr=fitsfile[1].header fitsfile.close() #fitshdr = fitsfile[0].header if 'distorcorr' in fn: self.sub_dir_str = fn[-32:-21] else: self.sub_dir_str = fn[-21:-10] return sci, hdr class VISIR: def __init__(self, objname="obj", band="11.3", src = "A0V", affine2d=None): """ Initialize VISIR class ARGUMENTS: objname - string w/name of object observed src - if pysynphot is installed, can provide a guess at the stellar spectrum """ self.band = band self.objname = objname self.arrname = "visir_sam" self.pscale_mas = 45 self.pscale_rad = utils.mas2rad(self.pscale_mas) self.mask = NRM_mask_definitions(maskname=self.arrname) self.mask.ctrs = np.array(self.mask.ctrs) #self.mask.ctrs[:,1]*=-1 self.holeshape="hex" #self.mask.ctrs = utils.rotate2dccw(self.mask.ctrs, 7.5*np.pi/180.) if affine2d is None: self.affine2d = utils.Affine2d(mx=1.0,my=1.0, sx=0.0,sy=0.0, xo=0.0,yo=0.0, name="Ideal") else: self.affine2d = affine2d # tophat filter # this can be swapped with an actual filter file if self.band=="11.3": self.lam_c = 11.3*1e-6 # 11.3 microns self.lam_w = 0.6/11.3 # 0.6 micron bandpass elif self.band=="10.5": self.lam_c = 10.6*1e-6 # 11.3 microns self.lam_w = 0.1/10.5 # 0.6 micron bandpass else: raise ValueError("options for band are '11.3' or '10.5' \n{0} not supported".format(band)) self.filt = utils.tophatfilter(self.lam_c, self.lam_w, npoints=10) try: self.wls = [utils.combine_transmission(self.filt, src), ] except: self.wls = [self.filt, ] #self.wavextension = (self.lam_c, self.lam_w) #self.wavextension = (self.lam_c*np.ones(self.nexp), \ # self.lam_w*np.ones(self.nexp)) self.wavextension = ([self.lam_c,], [self.lam_w,]) self.nwav=1 # finding centroid from phase slope only considered cv_phase data when cv_abs data exceeds this. # absolute value of cv data normalized to unity maximum for the threshold application. self.cvsupport_threshold = {"10.5":0.02, "11.3":0.02} # Gurus: tweak with use... self.threshold = self.cvsupport_threshold[self.band] self.ref_imgs_dir = "refimgs/" ############################# # Observation info - I don't know yet how JWST data headers will be structured self.telname= "VLT" try: self.ra, self.dec = self.hdr0["RA"], self.hdr0["DEC"] except: self.ra, self.dec = 00, 00 try: self.date = self.hdr0["DATE"] self.month = self.date[-5:-3] self.day = self.date[-2:] self.year = self.date[:4] except: lt = time.localtime() self.date = "{0}{1:02d}{2:02d}".format(lt[0],lt[1],lt[2]) self.month = lt[1] self.day = lt[2] self.year = lt[0] try: self.parang = self.hdr0["PAR_ANG"] except: self.parang = 00 try: self.pa = self.hdr0["PA"] except: self.pa = 00 try: self.itime = self.hdr1["ITIME"] except: self.itime = 00 ############################# def read_data(self, fn): # for datacube of exposures, need to read as 3D (nexp, npix, npix) fitsfile = fits.open(fn) scidata=fitsfile[0].data hdr=fitsfile[0].header #self.sub_dir_str = self.filt+"_"+objname self.sub_dir_str = '/' + fn.split('/')[-1].replace('.fits', '') #self.nexp = scidata.shape[0] # rewrite wavextension to be same length as nexp if len(scidata.shape)==3: self.nwav=scidata.shape[0] [self.wls.append(self.wls[0]) for f in range(self.nwav-1)] return scidata, hdr elif len(scidata.shape)==2: return np.array([scidata,]), hdr else: sys.exit("invalid data dimensions for NIRISS. Should have dimensionality of 2 or 3.") return scidata, hdr class NIRISS: def __init__(self, filt, objname="obj", src="A0V", out_dir='', chooseholes=None, affine2d=None, **kwargs): """ Initialize NIRISS class ARGUMENTS: kwargs: UTR Or just look at the file structure Either user has webbpsf and filter file can be read, or this will use a tophat and give a warning """ if chooseholes: print(" **** InstrumentData.NIRISS: ", chooseholes) # define bandpass either by tophat or webbpsf filt file #self.wls = np.array([self.bandpass,]) self.filt = filt self.objname = objname ############################# lam_c = {"F277W":2.77e-6, "F380M": 3.8e-6, "F430M": 4.3e-6, "F480M": 4.8e-6} lam_w = {"F277W":0.2, "F380M": 0.1, "F430M": 0.05, "F480M": 0.08} lam_bin = {"F277W": 50, "F380M": 20, "F430M":20, "F480M":30} ############################# # only one NRM on JWST: self.arrname = "jwst_g7s6c" self.pscale_mas = 65 self.pscale_rad = utils.mas2rad(self.pscale_mas) self.mask = NRM_mask_definitions(maskname=self.arrname, chooseholes=chooseholes ) self.mask.ctrs = np.array(self.mask.ctrs) # Hard code any rotations? # (can be moved to NRM_mask_definitions later) # Add in hole/baseline properties ? self.holeshape="hex" # save affine deformation of pupil object or create a no-deformation object. # We apply this when sampling the PSF, not to the pupil geometry. # This will set a default Ideal or a measured rotation, for example, # and include pixel scale changes due to pupil distortion. # Separating detector tilt pixel scale effects from pupil distortion effects is # yet to be determined... see comments in Affine class definition. # AS AZG 2018 08 15 Ann Arbor if affine2d is None: self.affine2d = utils.Affine2d(mx=1.0,my=1.0, sx=0.0,sy=0.0, xo=0.0,yo=0.0, name="Ideal") else: self.affine2d = affine2d # finding centroid from phase slope only considered cv_phase data # when cv_abs data exceeds this cvsupport_threshold. # Absolute value of cv data normalized to unity maximum # for the threshold application. # Data reduction gurus: tweak the threshold value with experience... # Gurus: tweak cvsupport with use... self.cvsupport_threshold = {"F277W":0.02, "F380M": 0.02, "F430M": 0.02, "F480M": 0.02} show_cvsupport_threshold(self) self.threshold = self.cvsupport_threshold[filt] self.ref_imgs_dir = os.path.join(out_dir,"refimgs_"+self.filt+"/") # Wavelength info for NIRISS bands F277W, F380M, F430M, or F480M try: # If user has webbpsf installed, this will work #self.throughput = utils.get_webbpsf_filter(self.filt+"_throughput.fits", \ # trim = (lam_c[self.filt], lam_w[self.filt])) self.throughput = utils.trim_webbpsf_filter(self.filt, specbin=lam_bin[self.filt]) except: self.throughput = utils.tophatfilter(lam_c[self.filt], lam_w[self.filt], npoints=11) try: self.wls = [utils.combine_transmission(self.throughput, src), ] except: self.wls = [self.throughput, ] self.wavextension = ([lam_c[self.filt],], [lam_w[self.filt],]) self.nwav=1 ############################# # Observation info - I don't know yet how JWST data headers will be structured self.telname= "JWST" try: self.ra, self.dec = self.hdr0["RA"], self.hdr0["DEC"] except: self.ra, self.dec = 00, 00 try: self.date = self.hdr0["DATE"] self.month = self.date[-5:-3] self.day = self.date[-2:] self.year = self.date[:4] except: lt = time.localtime() self.date = "{0}{1:02d}{2:02d}".format(lt[0],lt[1],lt[2]) self.month = lt[1] self.day = lt[2] self.year = lt[0] try: self.parang = self.hdr0["PAR_ANG"] except: self.parang = 00 try: self.pa = self.hdr0["PA"] except: self.pa = 00 try: self.itime = self.hdr1["ITIME"] except: self.itime = 00 ############################# def read_data(self, fn, mode="slice"): # mode options are slice or UTR # for single slice data, need to read as 3D (1, npix, npix) # for utr data, need to read as 3D (ngroup, npix, npix) fitsfile = fits.open(fn) scidata=fitsfile[0].data hdr=fitsfile[0].header #self.sub_dir_str = self.filt+"" self.sub_dir_str = '/' + fn.split('/')[-1].replace('.fits', '') if len(scidata.shape)==3: self.nwav=scidata.shape[0] [self.wls.append(self.wls[0]) for f in range(self.nwav-1)] return scidata, hdr elif len(scidata.shape)==2: return np.array([scidata,]), hdr else: sys.exit("invalid data dimensions for NIRISS. Should have dimensionality of 2 or 3.") def _generate_filter_files(): """Either from WEBBPSF, or tophat, etc. A set of filter files will also be provided""" return None class NIRC2: def __init__(self, reffile, **kwargs): """ Initialize NIRC2 class ARGUMENTS: objname - string w/name of object observed src - if pysynphot is installed, can provide a guess at the stellar spectrum IFU simulation option set IFU = True """ if "IFU" in kwargs: if kwargs["IFU"]==True: self.mode = "PRISM" else: self.mode = "BROADBAND" else: self.mode = "BROADBAND" if "src" in kwargs: src = kwargs["src"] else: pass affine2d = kwargs.get( 'affine2d', None ) if affine2d is None: self.affine2d = utils.Affine2d(mx=1.0,my=1.0, sx=0.0,sy=0.0, xo=0.0,yo=0.0, name="Ideal") else: self.affine2d = affine2d self.arrname = "NIRC2_9NRM" self.pscale_mas = 9.952 # mas self.pscale_rad = utils.mas2rad(self.pscale_mas) self.mask = NRM_mask_definitions(maskname=self.arrname) self.mask.ctrs = np.array(self.mask.ctrs) # Hard code -1.5 deg rotation in data (April 2016) # (can be moved to NRM_mask_definitions later) self.mask.ctrs = utils.rotate2dccw(self.mask.ctrs, 1.0*np.pi/180.0)#, np.pi/10.) # Add in hole/baseline properties ? self.holeshape="circ" self.threshold = 0.02 # Get info from reference file self.hdr = [] #self.refdata = [] if type(reffile)==str: reffile = [reffile,] for fn in reffile: reffits = fits.open(fn) self.hdr.append(reffits[0].header) reffits.close() # instrument settings self.band = self.hdr[0]["FWINAME"] self.objname = self.hdr[0]["OBJECT"] # tophat filter # this can be swapped with an actual filter file #band_ctrs = {"Kp":1.633*um/2.0,"Lp":3.1*um} band_ctrs = {"J":1.248*um, "H":1.633*um, "CH4_short":1.5923*um,"Kp":2.2*um,"Lp":3.1*um} band_wdth = {"J":0.163*um, "H":0.296*um, "CH4_short":(0.1257)*um,"Kp":(0.3)*um, "Lp":(4.126 - 3.426)*um} lam_c = band_ctrs[self.band] lam_w = band_wdth[self.band] # wavelength info: spect mode or pol more if "PRISM" in self.mode: # GPI's spectral mode self.nwav = 36 #self.hdr1[0]["NAXIS3"] self.wls = np.linspace(lam_c - lam_w/2.0, lam_c+lam_w/2.0, num=36)*1e-6 self.eff_band = um*np.ones(self.nwav)*(self.wls[-1] - self.wls[0])/self.nwav # For OIFits structure self.wavextension = (self.wls, self.eff_band) elif "BROADBAND" in self.mode: # Copied from GPI's pol mode. self.nwav=1 # Define the bands in case we use a tophat filter wghts = np.ones(11) wavls = np.linspace(lam_c-lam_w/2.0, \ lam_c+lam_w/2.0, num=len(wghts)) transmission = np.array([[wghts[f], wavls[f]] for f in range(len(wghts))]) self.wls = [transmission, ] #self.wls = [np.sum(wghts*wavls) /float(len(wavls)), ] self.eff_band = np.array([lam_w, ]) # For OIFits structure self.wavextension = ([lam_c,], [lam_w,]) try: self.wls = [utils.combine_transmission(transmission, src), ] except: self.wls = [transmission, ] #self.wavextension = (lam_c, lam_w) self.nwav=1 # finding centroid from phase slope only considered cv_phase data when cv_abs data exceeds this. # absolute value of cv data normalized to unity maximum for the threshold application. self.cvsupport_threshold = {"threshold":0.02} # Gurus: tweak with use... self.ref_imgs_dir = "refimgs/" ############################# # Observation info - I don't know yet how JWST data headers will be structured self.telname= "Keck" try: self.ra, self.dec = self.hdr[0]["RA"], self.hdr[0]["DEC"] except: self.ra, self.dec = 00, 00 try: self.date = self.hdr[0]["DATE"] self.month = self.date[8:10] self.day = self.date[5:7] self.year = self.date[:4] except: lt = time.localtime() self.date = "{0}{1:02d}{2:02d}".format(lt[0],lt[1],lt[2]) self.month = lt[1] self.day = lt[2] self.year = lt[0] self.parangs = [] self.itime = [] self.crpa = [] self.rotposns = [] self.instangs = [] self.derotangs = [] for ii in range(len(reffile)): self.parangs.append(self.hdr[ii]["PARANG"]) self.rotposns.append(self.hdr[ii]["ROTPOSN"]) self.instangs.append(self.hdr[ii]["INSTANGL"]) # From Tom Esposito: # PARANG + ROTPOSN - INSTANGL - 0.262 self.derotangs.append(self.hdr[ii]["PARANG"]+self.hdr[ii]["ROTPOSN"] \ -self.hdr[ii]["INSTANGL"]-0.262) self.itime.append(self.hdr[ii]["ITIME"]) if "CRPA" in self.hdr[ii]: self.crpa.append(self.hdr[ii]["CRPA"]) self.avderotang = np.mean(self.derotangs) self.avparang = np.mean(self.parangs) if len(self.crpa)>0: self.avcassang = np.mean(self.crpa) else: self.avcassang = 0.0 self.parang_range = abs(self.parangs[-1] - self.parangs[0]) self.totalinttime = np.sum(self.itime) try: self.pa = self.hdr0["PA"] except: self.pa = 00 #############################:w self.parang_range = abs(self.parangs[-1] - self.parangs[0]) self.totalinttime = np.sum(self.itime) self.ref_imgs_dir = "refimgs/" def read_data(self, fn): fitsfile = fits.open(fn) sci=fitsfile[0].data hdr=fitsfile[0].header fitsfile.close() #fitshdr = fitsfile[0].header self.sub_dir_str = fn.split("/")[-1][:-5] if len(sci.shape)==3: if self.mode=="PRISM": return sci, hdr elif self.mode=="BROADBAND": self.nwav=sci.shape[0] [self.wls.append(self.wls[0]) for f in range(self.nwav-1)] return sci, hdr elif len(sci.shape)==2: if self.mode=="BROADBAND": return np.array([sci,]), hdr else: sys.exit("invalid data dimensions for NIRC2. Should have dimensionality of 2 or 3.") return sci, hdr
agreenbaumREPO_NAMEImPlaneIAPATH_START.@ImPlaneIA_extracted@ImPlaneIA-master@nrm_analysis@InstrumentData.py@.PATH_END.py
{ "filename": "DIP.py", "repo_name": "EjjeSynho/DIP", "repo_path": "DIP_extracted/DIP-main/DIP.py", "type": "Python" }
#%% # Commom modules import torch import numpy as np from torch import nn from torch.nn.functional import conv3d class DIP(nn.Module): def __init__(self, tel, device, norm_mode): super().__init__() self.oversampling = 1 self.norm_mode = norm_mode self.img_size = tel.img_resolution self.device = device self.tel = tel self.tel_pupil = torch.tensor(self.tel.pupil).to(self.device) #flux is [photon/m2/s] per λ TODO: account for the reflectivity map self.flux = torch.tensor( [point['flux'] for point in self.tel.src.spectrum], device=self.device ) self.λs = torch.tensor( [point['wavelength'] for point in self.tel.src.spectrum], device=self.device ) #TODO: redo flux for my sampling! #TODO: set oversampling when undersampled pixels_λ_D = self.tel.f/self.tel.det.pixel_size * self.λs.cpu().numpy()/self.tel.D self.oversampling = self.oversampling + int(self.oversampling%2 != self.img_size%2)*int(self.oversampling!=1) # this is to bin images with odd number of pixels properly pad = np.round((self.oversampling*pixels_λ_D-1)*self.tel_pupil.shape[0]/2).astype('int') self.φ_size = self.tel_pupil.shape[0] + 2*pad self.photons = self.flux/self.tel_pupil.sum() * self.tel.pupilReflectivity * self.tel.area * self.tel.det.sampling_time self.padders = [torch.nn.ZeroPad2d(val.item()) for val in pad] def _to_device_recursive(self, obj, device): if isinstance(obj, torch.Tensor): if obj.device != device: if isinstance(obj, nn.Parameter): obj.data = obj.data.to(device) if obj.grad is not None: obj.grad = obj.grad.to(device) else: obj = obj.to(device) elif isinstance(obj, nn.Module): obj.to(device) elif isinstance(obj, (list, tuple)): for item in obj: self._to_device_recursive(item, device) elif isinstance(obj, dict): for item in obj.values(): self._to_device_recursive(item, device) return obj def to(self, device): if isinstance(device, str): device = torch.device(device) if self.device == device: return self self.device = device for name, attr in self.__dict__.items(): new_attr = self._to_device_recursive(attr, device) if new_attr is not attr: # print(f"Transferring '{name}' to device '{device}'") setattr(self, name, new_attr) return self def binning(self, inp, N): return torch.nn.functional.avg_pool2d(inp.unsqueeze(1),N,N).squeeze(1) * N**2 if N > 1 else inp def OPD2PSF(self, photons, λ, OPD, φ_size, padder, oversampling): amplitude = torch.sqrt(photons)*self.tel_pupil # V--- conversion of OPD [nm]->[m] EMF = padder( amplitude * torch.exp(2j*torch.pi/λ*OPD*1e-9) ) lin = torch.linspace(0, φ_size-1, steps=φ_size, device=self.device) xx, yy = torch.meshgrid(lin, lin, indexing='xy') center_aligner = torch.exp(-1j*torch.pi/φ_size*(xx+yy)*(1-self.img_size%2)) PSF = torch.fft.fftshift(1./φ_size * torch.fft.fft2(EMF*center_aligner, dim=(-2,-1)), dim=(-2,-1)).abs()**2 cropper = slice(φ_size//2-(self.img_size*oversampling)//2, φ_size//2+round((self.img_size*oversampling+1e-6)/2)) return self.binning(PSF[...,cropper,cropper], oversampling) def forward(self, OPD, obj=None): if OPD.ndim == 2: OPD = OPD.unsqueeze(0) N = OPD.shape[0] # number of PSF samples in the stack PSF = torch.zeros([N, self.img_size, self.img_size], dtype=OPD.dtype, device=self.device) for i in range(len(self.tel.src.spectrum)): PSF += self.OPD2PSF(self.photons[i], self.λs[i], OPD, self.φ_size[i].item(), self.padders[i], self.oversampling) if obj is not None: PSF_conv = conv3d( PSF.unsqueeze(1).unsqueeze(0), obj.unsqueeze(1).unsqueeze(1), bias=None, stride=1, padding='same', groups=N).squeeze(0).squeeze(1) return self.normalize(PSF_conv) else: return self.normalize(PSF) # Normalize a PSF batch depending on the normalization regime def normalize(self, inp): if self.norm_mode == 'sum': return inp / inp.sum(dim=(1,2), keepdim=True) elif self.norm_mode == 'max': return inp / torch.amax(inp, dim=(1,2), keepdim=True) else: return inp try: from graphviz import Digraph except ImportError: pass else: def iter_graph(root, callback): queue = [root] seen = set() while queue: fn = queue.pop() if fn in seen: continue seen.add(fn) for next_fn, _ in fn.next_functions: if next_fn is not None: queue.append(next_fn) callback(fn) def register_hooks(var): fn_dict = {} def hook_c_b(fn): def register_grad(grad_input, grad_output): fn_dict[fn] = grad_input fn.register_hook(register_grad) iter_graph(var.grad_fn, hook_c_b) def is_bad_grad(grad_output): if grad_output is None: return False return grad_output.isnan().any() or (grad_output.abs() >= 1e6).any() def make_dot(): node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) def size_to_str(size): return '('+(', ').join(map(str, size))+')' def build_graph(fn): if hasattr(fn, 'variable'): # if GradAccumulator u = fn.variable node_name = 'Variable\n ' + size_to_str(u.size()) dot.node(str(id(u)), node_name, fillcolor='lightblue') else: def grad_ord(x): mins = "" maxs = "" y = [buf for buf in x if buf is not None] for buf in y: min_buf = torch.abs(buf).min().cpu().numpy().item() max_buf = torch.abs(buf).max().cpu().numpy().item() if min_buf < 0.1 or min_buf > 99: mins += "{:.1e}".format(min_buf) + ', ' else: mins += str(np.round(min_buf,1)) + ', ' if max_buf < 0.1 or max_buf > 99: maxs += "{:.1e}".format(max_buf) + ', ' else: maxs += str(np.round(max_buf,1)) + ', ' return mins[:-2] + ' | ' + maxs[:-2] assert fn in fn_dict, fn fillcolor = 'white' if any(is_bad_grad(gi) for gi in fn_dict[fn]): fillcolor = 'red' dot.node(str(id(fn)), str(type(fn).__name__)+'\n'+grad_ord(fn_dict[fn]), fillcolor=fillcolor) for next_fn, _ in fn.next_functions: if next_fn is not None: next_id = id(getattr(next_fn, 'variable', next_fn)) dot.edge(str(next_id), str(id(fn))) iter_graph(var.grad_fn, build_graph) return dot return make_dot # Q = loss_fn(dip(OPD=GetOPD_prob(mu_A, sigma_A)), data) # get_dot = register_hooks(Q) # Q.backward() # dot = get_dot() # # #dot.save('tmp.dot') # to get .dot # # #dot.render('tmp') # to get SVG # dot # in Jupyter, you can just render the variable
EjjeSynhoREPO_NAMEDIPPATH_START.@DIP_extracted@DIP-main@DIP.py@.PATH_END.py
{ "filename": "create_skeleton.py", "repo_name": "galtay/urchin", "repo_path": "urchin_extracted/urchin-main/src/eagle/create_skeleton.py", "type": "Python" }
import os import sys import h5py import h5py_wrap as h5 import numpy as np def create_skeleton( fname0 ): """ Given the name of any file in an Eagle snapshot, this function creates a set of skeleton output files which contain fields for gas particle IDs and HI number density. """ if not os.path.isfile( fname0 ): raise IOError( fname0 + ' is not a file.' ) cmnd = 'rm -rf example_skeleton' os.system( cmnd ) cmnd = 'mkdir example_skeleton' os.system( cmnd ) n_files = h5.ra( fname0, '/Header', 'NumFilesPerSnapshot' ) for ifile in range( n_files ): in_file = fname0.split('.')[0] + '.' + str(ifile) + '.hdf5' sk_file = 'example_skeleton/out.' + str(ifile) + '.hdf5' if os.path.exists( sk_file ): raise IOError( 'output file already exists.' ) print 'working on file: ', in_file print 'sk file: ', sk_file head = h5.raa( in_file, 'Header' ) ngas = head['NumPart_ThisFile'][0] h5_in = h5py.File( in_file, 'r' ) h5_sk = h5py.File( sk_file, 'w' ) # use copy method to copy attribute groups #------------------------------------------------------------- groups = ['Config', 'Constants', 'HashTable', 'Header', 'Parameters/ChemicalElements', 'RuntimePars', 'Units' ] for grp in groups: h5_sk.copy( h5_in[grp], h5_sk['/'] ) # copy over gas IDs #------------------------------------------------------------- h5_sk.create_group( 'PartType0' ) dset = 'PartType0/ParticleIDs' h5_sk.copy( h5_in[dset], dset ) # make dummy arrays for Urchin particle data #------------------------------------------------------------- dum = np.ones( ngas, dtype=np.float32 ) * -1 dset_name = 'PartType0/HydrogenOneFraction' h5_sk.create_dataset( dset_name, data=dum ) attrs = {'CGSConversionFactor': 1.0, 'h-scale-exponent': 0.0, 'aexp-scale-exponent': 0.0, 'VarDescription': 'Hydrogen neutral fraction = n_HI / (n_HI + n_HII)'} for k,v in attrs.items(): h5_sk[dset_name].attrs[k] = v h5_in.close() h5_sk.close() if __name__ == '__main__': if len(sys.argv) != 2: txt = 'create_skeleton takes a single file name as its only argument.' raise SyntaxError( txt ) create_skeleton( sys.argv[1] )
galtayREPO_NAMEurchinPATH_START.@urchin_extracted@urchin-main@src@eagle@create_skeleton.py@.PATH_END.py
{ "filename": "XID+posterior_analysis_validation.ipynb", "repo_name": "H-E-L-P/XID_plus", "repo_path": "XID_plus_extracted/XID_plus-master/docs/build/html/notebooks/examples/XID+posterior_analysis_validation.ipynb", "type": "Jupyter Notebook" }
# XID+ Example Output Analysis (This is based on a Jupyter notebook, available in the [XID+ package](https://github.com/H-E-L-P/XID_plus/tree/master/docs/notebooks/examples/) and can be interactively run and edited) This notebook provides some example code for basic analysis of the XID+ outputs, including: 1. Loading up output 2. Creating Posterior replicated maps and animations 3. Creating marginalised posterior plots 4. Creating Bayesian p-value maps Import required modules ```python import pylab as plt %matplotlib inline import numpy as np import xidplus from xidplus import moc_routines output_folder='./' ``` /Users/pdh21/anaconda3/envs/xidplus/lib/python3.6/site-packages/dask/config.py:168: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details. data = yaml.load(f.read()) or {} WARNING: AstropyDeprecationWarning: block_reduce was moved to the astropy.nddata.blocks module. Please update your import statement. [astropy.nddata.utils] Load up posterior output from XID+ ```python priors,posterior=xidplus.load('test.pkl') ``` In order to compare how good our fit is, its often useful to look at original map. There is a routine within XID+ that makes the original fits map from the data stored within the prior class. Lets use that to make the SPIRE maps for the region we have fit. Now lets use the [Seaborn](https://stanford.edu/~mwaskom/software/seaborn/index.html) plotting package and [APLpy](http://aplpy.readthedocs.io/en/stable/) package to view those maps, plotting the sources we have fit on top of those maps. ```python figs,fig=xidplus.plot_map(priors) ``` ![png](output_8_0.png) ### Posterior replicated data We can use each sample we have from the posterior, and use it to make a replicated map, including simulating the instrumental noise, and the estimated confusion noise. You can think of these maps as all the possible maps that are allowed by the data. > NOTE: You will require the `FFmpeg` library installed to run the movie ```python xidplus.replicated_map_movie(priors,posterior,50) ``` <video style="max-width:100%" controls> <source src="data:video/x-m4v;base64,AAAAIGZ0eXBpc29tAAACAGlzb21pc28yYXZjMW1wNDEAAAAIZnJlZQAOny1tZGF0AAACrgYF//+q3EXpvebZSLeWLNgg2SPu73gyNjQgLSBjb3JlIDE0OCByMjc0OCA5N2VhZWYyIC0gSC4yNjQvTVBFRy00IEFWQyBjb2RlYyAtIENvcHlsZWZ0IDIwMDMtMjAxNiAtIGh0dHA6Ly93d3cudmlkZW9sYW4ub3JnL3gyNjQuaHRtbCAtIG9wdGlvbnM6IGNhYmFjPTEgcmVmPTMgZGVibG9jaz0xOjA6MCBhbmFseXNlPTB4MzoweDExMyBtZT1oZXggc3VibWU9NyBwc3k9MSBwc3lfcmQ9MS4wMDowLjAwIG1peGVkX3JlZj0xIG1lX3JhbmdlPTE2IGNocm9tYV9tZT0xIHRyZWxsaXM9MSA4eDhkY3Q9MSBjcW09MCBkZWFkem9uZT0yMSwxMSBmYXN0X3Bza2lwPTEgY2hyb21hX3FwX29mZnNldD0tMiB0aHJlYWRzPTYgbG9va2FoZWFkX3RocmVhZHM9MSBzbGljZWRfdGhyZWFkcz0wIG5yPTAgZGVjaW1hdGU9MSBpbnRlcmxhY2VkPTAgYmx1cmF5X2NvbXBhdD0wIGNvbnN0cmFpbmVkX2ludHJhPTAgYmZyYW1lcz0zIGJfcHlyYW1pZD0yIGJfYWRhcHQ9MSBiX2JpYXM9MCBkaXJlY3Q9MSB3ZWlnaHRiPTEgb3Blbl9nb3A9MCB3ZWlnaHRwPTIga2V5aW50PTI1MCBrZXlpbnRfbWluPTIwIHNjZW5lY3V0PTQwIGludHJhX3JlZnJlc2g9MCByY19sb29rYWhlYWQ9NDAgcmM9Y3JmIG1idHJlZT0xIGNyZj0yMy4wIHFjb21wPTAuNjAgcXBtaW49MCBxcG1heD02OSBxcHN0ZXA9NCBpcF9yYXRpbz0xLjQwIGFxPTE6MS4wMACAAACJx2WIhAA3//728P4FNjuY0JcRzeidMx+/Fbi6NDe9zgAAAwAAAwAAAwAAAwAAAwCWvQvB7OynZLwwAAADAAADAAAg4AAAAwCPAAADAAREBMwPA7X5gpgMZLg9a+/qIMMYHXKzIJmaoSiTU2YMJ27451vZgsIgH0FdxzvOohtJBvOnJR7ix487momD1itmA+AUIpSM6jMYdY6TC7yuGYl6u/KC0g/sF/ZOBQkXUj87/S5CbWQIt3t9Zwd+YWt5PXoLwE2d74q4fD6/ZLMZRYqOLL1M98tHpCcqUvm+D+dlMIPGBEPZ7HwASjpTSeVFBSc2/4IzAThg/SeyI/lxfY94Z2HSVPNAbz8s4SzsAdLLzKmGaOomBUaqddTAP9jOtdSdXXTqN1HyfjKQNjFAFq5VYQYaf7STA1JH5SQOjNioleYXCMKVTkwFlNIfxKJ31x1VrQiuCpN465PRZ8PPlyV8MFIVUrmuAH2YHlZvSou9U+krdTRWZOVq+ikPwh7g3TZjNXLT1H9locoAACGvKUx+vq6R+lugqkrIKxHgNfRhsqkr+Z6FnkXnm3I/bbQjXdomvfnhpniT2/A8ENJ1ixqxaSG9RnNS2iv/WJjRMpBynbA50jSUJEKyRfAVqkbEXWHg3phvgWx4PaZ2mjAZhaZYOz6i2LsUknOOjmsfm+QBQDQsa85JImIe0nYQgTB7v40hgZrcXPJ5VTscUo2Lkd7i3/ZywOBP5uwJJgYh9ILBAJ2Awq9n+pmpt9E0yNbjo7yCF4ouBlcpggCBbjwKW7VPQr+L3n6O4wCVNaqWuls6sRAY973/z/1PmD53KAiIehHlwogu+TJ3bJzLKvYwCtfOQbtvVjU/FDnWMtuc7iheqgZhAYRBGDIb9fZV5ZGeYzOZwNvEKssYW4bIg5vY4MFu4vm5sgcvgzowV3DqvDf5bedi1NMe+ir5ulSGZbqsocFXNMMXdZitmUV3eEImN1rU24e6QdBusXUNbP1j1C8ZoM6Wk8ozP5MEPbt4NT5HTtaCv9xSX4NKl8oLrWG3Tj2Sm6BfwhOn+20JYiAfT41iCKRXGSGSODrSibC7tpYN2pZNOvTlysxoNHTsnmVZD7nqx1YENfToEDE4ZxaeFBR7gUZmu7JSB354kyB5lokOl68GszKVy/t6ulahjVKALhBGr+Iaw49z9/WQb68KvVOHuEfylomrre2XStzjtmJdakU0LCRYcpkfC2Jpipu3yqnVOSZ3mgwNuMpXxJWu5EyYbrGOxX0tA81vn50kSPDXIgwe2OmodlWN8F9yN3pqOHNpTNdtoZ9uP3EuDWATUZ2BWz7ywz6bNVZew1oUVuthoIWvq261jNenPfRxZjq/8o70mtNvo/ETfD3euZ/30jhtCBM8g1mmGAAAAwAAAwCytl+DzRTGOFYovYlQnQdjfHK9517+P//d4Auhdv7D/6D0HduX3TLctdLjtDqIeAAdcPRFE+E7OOTW+Q/FmNn6AVqZ3IdgQsjD9K5jTalyByQMugJVezmHVLpVqjvLAsFxyXX7vMcPktXknGwPmhUpBk/fOA2sPxFH0gtuIyRt4CRsR9Mk+ioNS+3Frst3Ozt7i3DZmKDZV5kZtHr0OYwMB8hfg59j2yTzga/ABN26HMcokS/cxKgPOnWzNP34hPMJCMNN96p3Zxa0eFffRUEC9jEbOxC3N7CtdUCf53vyfj4MQx80T3KcAaMrSskGpUFyFnNjIysoBnEetIRltYIqhc08XVCxDZeQlyk7FZ/dLFO+grkHtG10NEgnO/cA/TQP4sHolqHKeF/mkGxw7952gH2XSycyhQBOOEjVtEdVqYQnD+2mzIfRK4TL0M+peOW6769kp2lmo1g8sKDE0l2SC9CVX3BLTJN74R9hVrVvFZ6otPaYZG9T7E1EWz4+1PLnc7+TajXJFwfLAAENB19riE79AKCM5j3PNnbSwvZHqlwRuGz2IWaVKqa7NbywE1uEosfQ8Ef694fdl7t5hKyyGqpgF2iX3j9u76RWXvXC0nx1yTlTTXqd3YKAOCZM6xCwcBrTdCJVL8nUuxBUX6nbJAYg537hvW6kI01LP+Ji4NVGsXgTPjRbTqgU5HxzpvPCV1WSNS5LTd/+VPGFKgqEzxcZig+9//xHHqfaqH4CNHHFmOovCVhcx/prMrzPalyq1uOkSCtCeloISL0vnXhsiIxkvFloHLIdVl8eeqFfWKRW33tb700IOj8RHTOMGTJi+4f5zZnMBEC3I+X41uL8V5bjM+K3uaEEM7bvX/V5aFz5j9hEoWFL3iHxiKmb743UzPQudrNN5enzGeehj7w1AAtV+XIMigTbvIQ5h+Hf9mhd88AZrThVqw+KlZhsVJENWjNvN91AEufwJgWbZ7xphPYce72brUo//+9AKyzZw2CfkGv79Av2uPFGCvxArGa2d+sKrEzL2bz2Y8cllobgEVey9FW5dl3Q7Doqw3Qx2d2cSFLxDUujWkk96x/uAeqndDIqkjd8rxekZNxQFweb44FeAEuaKJ6rVMPQBQ0sgu/RljiXV7rm5+S7zV9EdMjC1w0lmj46myoORwLoMlb8rdEyYEGTyHO3n6MU1Fm7lsdtXt4hcj13y9o0c7ywlksxHzxYLZaoJiw6tU2+/geFaA0xMZgzJqNoFd71oIoqu6KruqVJG6Sjn2Rufw0pdYanvSQLxcPqHEm59fs/bNcmlZQCoHElG82n0cT/QY/NbPQoTp9y7INOWtEM+41AL541lHrGe37BhPrJOxs0TER7IE618h579N+kQQtzYji8I61X63+KSA6AqaAHc6gor6lUgaxSwSM6E1la57mawWMLEGypDMIgHcmgIirV4DLPsC6GaIoRn4SvbPCb5t6OREI221KrEj57vDXBIniTNPxMDIQrcXWguzx4nyxXBx5eWNGyE+vtSVtkm7TfzQmDLqctougE0wt42WnN3/feANHIEyOReH6sp4OohDQNy17NbjzLjtadxdplBbnzNk6gf05ntRQKHA9O6F55efLXpZbEiJ+yCzaXph4Mt75GKk5l86ezIEUE93EDY2il1z1NUaroF2r7LrEosZ6nZKYjfXUBV4wqex7KqJbBudyqtVShCaQOeAz0tZ4qj6k/3Gx0YumWOL6mPS5PkuaHz+/9tOzbj3GjRDflfy2moAAPBTLl8l6Iz277YCyzfPGkNQTsLAyWYB33KqeSpvGowwGbVUiSjawZM4zmwVkzGqThWn9ysxBlJPqryrGkfr4qAkJXz0QmThdcAc8/Cm79z8bKgxdjDx/Wnb5ui8OiyZ+FBRTmkgHkE0SmRxfUg8xTDeSc2s7UlBraiiK7lZThy5y8sotCsdxNAk9H93VKFPkEthDBny82wvduIGGxTjOi66DcnUez1mt+508M9raZ3wMDgynw0Q+4iNppcHX7MAAAAwAPcSLB7n0kXmjQL20bU9YRReKZeodK1/hIZIj+gGDRjeZBd//McIs74rzUqgiQl3WH3xwfGXvzGRgTHdG0wkp+inlO1GFanvHeqf66Uew9gvPAduBuowxLkE9TqWqMkQITfQNT2AwzMoJiXGvAyiHVWrWe8eqXmxuysXfOCdYPlWIcEpwNlgQ4eDGI2V37efG7E9CeXL6l9ufpaReGnucG8iX2DhuAgZG2ZoP2SftM+NE2dxMEGVUGnRsAGsQNQIkTjMgN0TbXhS0rTBax62IPc7/4dAEFKlAVJDArT2nU9TZpkkKre4Y2u90/UypzjSo7CNFRi1KHBLPpOQLMkFLojdz7YvqPWj8vn6zv7zFtkQj6t5+nQB+V4B9w/vKq6DZkA1ZMe6/ahwsDZOe/u8O9QzZLRT4NO7DO2FE7isSmQ7dkzheTqkNJLB3KIy5NN+eYb4aSPzn/eZ4mjwX7+/L9SUuF6vE/EG9j3O01AfFBx2zwI1Y31+/aUlKcQ7aCk4mw65p5dNy7mot8ROCPl1d3T06R+XoZWM4Z5U1iQU1VZQvCM66+l4mSM68dA3LtArY6BnIKc3Z/niIgVvTk18tmYj8/DTHAYY5klCG3QjBefKkWxSowuLL+9g1gstQHfsVXJf+gBsPxsnwsQ/QmsjqETe/QnQpKeH6hgP3f1R/B3n6CgU6jYnNe01+1TJUksqIhiPgePacQPInwImdYGbxXw+DYeiXtf3UIQtT6yv6NzSYkdw7QADcwCEkr4Ol1J7Uw0188o6IzqiS/32ojE4lZWqn8P/hXMGXgjiRx8pHKVd+3itrqSEGEPXjHVpLsr8rSM5IL8NtSK0memeDRGDk7tGrxeHXEbjoNQK/eBuMa4fS9Xv/VuLLHqXpB/OefRP4eMSnUAZSqL7RM/3VVfU+/gQxftgtRL4WVr9A9/fIL6qEele2iFP+M7S8RmtkJ5wSYIFWhPSGJ3ZK99EUdXfPOl5UChwF1cTob6LiLaavxg7rCoByFxFGT/ygeJ8vGs7AH0i68+Q4JpxaBFbi/OSBqLiFxbNYrieYukBggr9AgNEQyjd+4kE91C5AMuIi2oe/c9zMZtsxmfaAaQTE58TaA6wiEmr+uZOiWGTFSxGDoBl+Dt6+2/dM/H9rTCvEmQpM8SEq2LME/uIC+QL+2n/IOZZ/RgdKbuPXKV1bL3J8ZytYj/sqAKsHO35s5Jwhcx6GUJXbIvTUmEmECMCwHHNyw20EaQRwQryWh5mzE5P+VabxdtUQRbpE/zylhlz1cKIN/7QVK2G87Zj41WMlFit5vFm3RiUwU7psIx1dCWaJV3OWWEY7IeWIBpHzz0AA6zk6bHWjtz87FyqxOn8G7dFbfRB/x8UJuUhWyLdNkkiG/SvD30o+OgloTZkr4dXRPWr7YvySltr351ki4JBFJZZvGE/9VUtUmD4XVeSJThdjgTw5ij/dGXKY/GdUTb8Zx5+754Ay/040jlyPbXeBnPJw6Qyoalze7HkSffze8xHi1LvQFoG0jz90J2KufZovjKXBu0MauJd3/wCGv/y6IeZfiGKnfyt8SDwRaO5svU4T+Ekdmcyk5C0uz5qKe3phqTpxlJi39/bkXOxamng+EaVEJq51kgvzdDKUFdm67JRLuhSmhJvTSP/904X804O5SDE4IqKegAAGjWZrF2lbezTX9zzrFOHdHkTYP/Wc/74+ls7/W+4yVVdp0N67EClmn/gpQXNHYKrz+5ytwjLqxj4cFKU+ZPTPeHkYm6jS/wkwC//zg1LwGrxTDW0AKsHBGbgD8kmGzXRlkEHNtKnWSV5rXnarH0wU2dLPCAmkJMkIIgePoMez0YQkR327IPQJnHGSBrEh6fo+Qz/HH1g3t7gwh3FoMoaNPXmOnMH+8bDy62LFhNtbRiaSovpBL1yq6Y8m93aMrgz1tolO/lSePiIrmB07jtGB0b94YnEPRMsz+AHkQMXmYEeBmiJsPA+bhGjiXqwbNAXVPiExmfc5zNgaHU4i3NYEl5bMIj2E0pu/IoPasp6lJu1p3D0oNfcPveGfIuR/jl+gUBdNGaPYqqN3t4Hrg5F2HZG2kbdHkeQEy83ng4djB+2j+eo2dRS3wvg2zRqFxmsyy1YX9T7B83xQIOPC4DbsZJjD5omGdG/+6kjI/tC85Mo1Dl5LbhFixmcx9FGYTmmMzLbfpDraE7SPMfDAimncIqySlhadfozlxxPz5GUUJ/uTh4lr18OBG2KpPE0TSPWsK7AEp0iDhYPyBSNlvKQy1GGRYIZlLj2fz7pI/XPJX42EQRMxbSO3e5GcSye1tFXIGuXM10E85ukAGhkbtEHwd2FqX8e+MX3qnLDRIZIThrRZk76EphpdA+cHuIvDK3YoNADfNgFWAo8t2mpaXfEb5W6/iO9AMRbsBSrv6UAPCk/2QKzVvm2UJJ88EyYlox7UH3iVbttJkzhlakyKJspzmx8FxC8IQzJta5sA+ogAAAwAAAwAAAwAARxws7+hYgMYs35+WGdN0oYGYz0SoaNMg0kqZAIT0i9kicbchrZyAklfUPd1xLZp7G207axwvVi5yWcT9CfxYOBcWSmLvVlDvv3NBm5SQfOqBvT7p8jeWyX0dgtmP4dPoEWxQ3VY3q6ahPvRiAr1/PfRVyrbPVr0pLfRuQCoJn4vHyXIKY1Yez1p36YeV1w+8mzsGma6+HxB3cLb2+ndxvSrzlmvUnByPgYGr+nT35VrBKcKzK3crhpdms6yNUWC2gqkWazufiqmtho8LQaSoPWoSruJymmL548ubOnRKM476iEA59c2Auj8tDGRyPNRABpVzE8kSZyL4ohgKHycGa/N4QmNh73bm7Qa6hRZKVkGzFuuNA4855y4kqLzLoa5VQblNYLmu4lSpTX7glzB8FoqW3Sd/Qo1vpAB2fEfrg32DirGZABB8/tcxqy2ciAJJsK/YhxDcQEsV7bpOmb0dOlEr4IwAj5yQ6YwZH+yOrH6aPcNBLndbH+qBXNkGHa4O3o6xD5KIskPAX4QrQ5SvBnKFLyFbVnyDybIAB5iFylGz+DA7QKGSEFJNUMKZTQTLW+5Qr/RHnjLYKFnFmV9HRoCNvot3rdvYDyVMbbEwxuDPcS84tvweHGIXVMjfd6iSG20toxhy7cT/emlxTPCA5+p/T24IIz3xgCDnyfIETE/syXLHoOOMjmpKo/SqyGKKgUcZGbFKhMNeo+WHURsa/cN+M9hZbWS6FqLDim9FI73x7eK6QEqsKvulyAKalRTrZWDLaYwN3C2YVEr3RJnEd/Hu0SfS8d5UmkTIe8VVMjqSNoAAAAMAAAMAAAMATlW0XGtdJVUdukbfVf0QOQo0DESLTCHUpCDUD/ZrYgoFDfzX9wZhY9XvMs38sSvV3I2hu0Hg3zUDfVXRWUB8c0tP7fTGDvMkdrEfqdk19sDH/K8AJg+7uQrIg1RWmqz05IXiMPmaq1UEHBwrilARyDmos0tzgR76ZKFrHLsyyrTjCJeWocHIPL0ymqJScfa3eFwDUJYmVF0dnTVV0xAbFsngENGNf98Ac+OyKhqk6noGuJXyz24gcmGwzP12FmjrhCIueRpzPo7C78/LvTtKjHhW7E0dvgC+MKclXUi/ByRcYCskEQoG6c+lPfCckAdzCwKPOC6QNNxfZ5phNbyO6+XcQqWFznV6ynbYo0Pt4Af0DM6MXj8ke3VhshvIqEa+WT/6XJLU7ic+sUbRzhxuEb1WAGU4uZ6qhPtU1zhnlx4vmDCxLozKFkLO7wM0V6P/jZJplKAMLz3vwBVFCkn4+ru/gg1an0EmP5jhaQb3H2zl2V/V8aNaf1Ji7vjfXBO3ijaagK0v4NXlPGgw70GVq0LG3YnZ+EpgGYg9XwkI0hvAq2a7f8OtNO5F61JjB51TcHYlxqsUJg2xNxltBN1kU6jfzGygmWzxuBv09lG/LcRSHokSg7hyiGxM856FHsn5j5Uz2L5f4SHfuXG2AHOAmgdGT3GZPPpzX2S27fCSrj14JMWLfVSk+HslVVp9R/gSAm9pF5f/tycPKbEh6k9mnuzABqPRaeYGXB8p4i9++WQ87/wv58AT2j7mhSbmbSWIl28Jt7rWjSaYFqeP49ZCMVdh2YjD2EqFj3/4zkpMIPfyzJd6TwBt4pPLdANMEpg9kjAAM1iq2LHZKFyusmvrmAJ8NXVleDoLbMcHN47+D7O67l0AfqhhOmQSrdVeGfDq/D1IohADYIOwVPypyONWWlXPyBMOze/ujR5wZmEfvz27Kp+p3YpwAAAM+ddxr2eDUOLs9fbK0+ZyUjzan1GriZbl1+NljaKE8gZ2PAo2dHRH/aV0wHpbyTI9S4vusS7j9jiIkk65KW/TpZ+uhMxQ4OZ4LsSUOKnvmTaYNGe34enQApbsfOoqs5KLA3edB+fBgo1e18FbQvxNCIcAAAMBEXgo8joGrgE0VHAwIgSpRSM52AZJ2bZPOB1pC08vCdsbfnRbpsh4O2xSwvPVX0ufPhWA+k6uo1FXKyRyVUVN8QC14GqN9IZhsr5fO1MBo6gBz3+9LuVt8zg+0G3eMPu1P83FItxtTOgoNDRWVSokVooFFiv3WoQftaWo35g+59/uQvPRXoVWDsNi08AlHzo6fKGxUdqczKYDTlXWxnuTLPz/sijyq7u4hAABrcSSVgfWSFFMmOAfgARLnqlfWrN8nOCoqmPcI3y2+3dVoTUZFwD//27q8JdKn9GMm6Qp8ucnXxxuy/xpH71FYNIn9F9f3dMWjF5nxWxLNpaIyQa3FxbJ876tnPpwirXvbr4Eva8mRUMBzbX49PZvlv5994rB/5bBj3cVxptMSLQPLNOlMRlvWUbllcxUc4CEPAM2vwWQoiPK9xjAlO3s6fRaPDKA7sNwWhBrz4jtc9wFObx4dBr/Behtka+kgvwTEqau0xwGistYDu4zEedvlpZ3naETHkm0G2pg5+pjyDW5FhSi9U8R3I+sFhMP98YLqSKTPQ7b1KC7OxdQ0GfAxEVAKdhveSlxgzL8IOnX1Y1kPAoIQEpmu9mwQx9SQFzCfvjNwbiyZCLsFYhsEpxObo09hbFZv1aKEx5SSovj2TisAZ+5oQ4XWtBRUUiPwTISz1SaWGPyKSLkN2+z2wc6HfpCPsPCCi2A1r6r8n+LUV94g0GKFxWsp0R4zsoFyOMd3DL4VGZOF8F8ACqF6f5qcuMdKRRX2yFz9C9LftZDKSuJ21ndE7gWwFIgme+Pk4FdNe4BvwR5V9tcpnDUMdxvpN0R7xOFvlvoSnJu1j4IbseB/VctWFhm2g0IAmWOPThWqkF/FG+k4bC8CiBKCkTl8eB2B+sDXXgQqiz0jtPj7/xe9FQjpF85vF3FRnWFoAvQIJqNTvyOvWzAzw+5vEAboBucZmnyOTmKsiQBUr7NRXUYxf/ovlWGO8e5g7az6F9TnyqQcpHyRCPRuZyfzsJEsp6NNzPonCmahjFqPuPcL0c4Gef6NsEzHf5vCSOzZ1f/Ia1XovtOmX7dPGz7xiUv2zHu00iBw5IMcEYHcRsDvYI+xlqVEVmDW7Xmcm3CbeojebFP1K0furYQ3FjugedWJEn44n5eL5oAYoqa6EbQMTQRWgxUGOmpnYgMLJRBeyDupVkogch+UgrmUe+7BK6bBxh8m9LhcQlWnJ+iAUMnwXR2aEiEvqPHRieazdSTiXVc9apLINsUDzrSCqoJaV6u+7FuuoTOJCGV4UqMPKwlE0yvg08+0yZ/kTcfmKXxEs59Xaxr5jF9lzBEFT/V9ilxsfRREfp2Nw1QfGmspEJtPXumOjOHsoK/xGnImj8gZ7BBic7J77qJ19ifklmMqkfaO45VT0zDJ4nRD7s8SgPPfxA/nzAYP9UKClh2Y2L04cuVEZeuhHfpi4t+byUanyomgdLg0PlxuW3jKZinaM+7cLS7dyKFWCtoR429cjfM1cbpGWRX482BJT1mkcmbdLeDffl7bqhSdVqvQ5skjybhuqpGBND3u1SWaI8DaYCT0xasBRr96oxTQVFjpc2TTYA+J14VKtkACbz7tVd5GN4pya5k+8fyIbqWx5CfWAnUbAft6yWH4lPfdat3pKzs3jxZgMiuWVpEAC9nktd+CQ7+1imJLgDNMs93fncbte0ah7RDgN0RLfPVYUnLAAADAAADAJ/h+mG1rA4QamSVdE7nL3TGIVI183vnpbsL2pq7vzSQJ3rJStoKNQ5hFPwsXepYChcau31V9SGbU7ZHjiX9mSWSomIS28wimx4SrliZoUc6CoA+58iHWieB79I0k8DYPQycmJmWISiHnf8qYaCPnF709DIEaHILGrVq8RTKh1pJBoP5avVVwz2Qaav5eubTFIP+qDXXv1nfuQOo8mGoW5PdKg+HWKlr+CDN5ck4X6Xf5v6YzM6BlkJk7KwWkS52ttegP6jxwnAZLauDS58jP8XvRrohqBwKssUZn0Kek3HBzFArVnxXLXifxvDAaGbLVVx3eVePhtR16szuazOBi3YjpSN5N/iEq0ROFGEzkoWNfj9AuhaYYpfsKARDsCXU96NRz99BNsXaUUpKe0dBVMeGPidBYQECiQlTBdqeQ6Vi2mSC2CReg4DAwyHl00qwutTBv3yQ4jZDiSqqQKrjSUi6AfOjDWE4xuYe3IW1H6yVn2IhCzlEdX1mDGyOddCCYJC9TuzIH2mSYCmKDX6PXDLBEqcg4wyZzMkEbLtEuHh2qnu1MA26v2Ayz6FcOd3d2CTY2kEjZiVGlu2wb1DLWiFmnMvBLZ2ubHfWBzUvtKtD6kGr9vgVZmZBbAIxFFrwW776RGpcthTmqqvyP4JJ8ADRnHMf/pmbwSMs4jSboFMAdpiqw8grJKeNKgdX8BtycpG+ABE1IpCp5pQpf86+nITFoSEb91XnaLQ6+42IZwCp+fArgDXK3matTk7/yPpNmP8+npSpjZ/BuO9HdnUjfIHj4xZpgsH5P5RWU8ZSbazNFax48noMYFtpEazWfuepd1pVeWQAAKCRRaeqFFWX1sdfQoYpoYdCqQrVuJTRi6XBcybWyFMLT0VPqCNRf3ZQqtLs+hUo1sxorE/zIfeJccIEHf1hmHUOnZnxxDdF6u6wTdNEzrmgmNU8nAKUBv+nO0hIYOslMnCul6cTEGe5Ej4uzldFaRqjhlieJIE6e66C0fYX2lRNQ93b/0Y7YT+DKe1wB7FtTFedN0yAuJdX8LSjTZS3pi33q1+EUsui6qjxCz2bNbtS8iEsMr5qZtUoT0VrXbapjZNOMfAwI/yOSj+7XGWr+FW8beQfN63YLXmzjOnXk8FqStqvmNS1Wqa9eOnf7j58bJJX7m0fkkKd9Ea2jh7Y+WLkq8JTI6D+8ERQJGhLO3pgn1fLQbjzB7ChxcTnoGHMz0RikYmR2zE1BOVZpkW6puoLJWlUQQ0cthqHpKygmYjFmXOJZyJ8cplOg6+66I9wtp3Zq8zviwY3r8RnPIDZOKKVKy3AWcTUn1UIGgUTpkhL9NlV2n+0KKvcaHAHwKN1lgu0/3fn1x9Jmi57M4dUPmV7S+EujVRXKVRBOaRx6UlJWXmtXASAa2twvTcIGQOu3GCjDDYbxiMiu6PVtQ1q7byqPAmLpjwYLooKH+zjaukzkJUqhpPNd/R4D8hN9uNWZ4NHLA0qgPIxP0ABWrCtY89LInQ7VE53Sfpnl5NmXjqFDUU2hOqAiDaLUaOpFGYfHFkVh//0K5HTNa+PenoKR+sBMSOlhpFYuwps3JWxlQFXxK3Bfb1kpvmBvPRFq/NXL12p6fSPxfL0hBDm6FBDQFHkQV2dZk5RjH3UyWZFzUvllvpD/zuP6mFnNCqKftNlTTksvdT+KHPX2d3TO3CEBqIQEgH7/khC8pA29CW40OYAR5pwzqHmQWSjlQOwGnuxkRb65+uPiUvH05I1v/H40oWBJJMDrSikCSIv4JhCj/CyiVjn/Tnje+oAVfGQ6Oi6sdWzVt2IJwbba9qQcp+6LpGtTM7+I4nOMluO/aI386AYV12+0d3OjwNgAuXjyaiYVoArN2Kv5TS6wFm8byzH1+IJf8w4QIYdrdqGXpkk1w+8ck0y5jL15ukqEXupQpx0t7IuGVTipTNkNHhgWibobq+iF/4qzQCaDvqP68gzRFjx0HajNCPEes1TnwYO0OVuHNDZ8xanuNJxKnP00TOHHDfas21hM5ssWVwQOuwOKkX31gAAgwZe9YhthS+aNIQ6odyeqBCEeVleQcD54ufHXGl/YxBxNLI3vwujeG2rGCxm9yMY7Juo8jZPM/ZR0vBswnnOno6wW6kFY3RYzEQqK/BxCotDbUKD7s9Atw+uiDPEIa94y8CLe6I8GKgIxt+uU9vVgArMQL+0Uw3VhUdCvSi5dMnERFhTjHqCzVy9ybLKAz2//IrKnPFxZNiDAE0y0pfM0IJ2i/1myXOzaJp2zfx9pgvlIhs6ztjBwkCJ2XqSU4mKscrCUyMaRjB2D6IjjXVnBQysDAwI0zDHIpZDY5MPLx2Ch6nO+C46ERK+yfj49pq+6mxtFeEGFWhYHqm2Ez+o43s+kHpPFchg55fszZHYRgVV8zxdFPN9vlI1hgEadNZBEULCiVQrFbrtr+3l0TKFnSLl+ADJDO7/MfivWOXaCzV//7NPXT13O8r1Gx4Rl+X32yQTRvqIkoADY4qJh53jypzuS7SmXxg15+QeCK9FFrW1R3peE4zVebVbe7a8ePeE8zmIGo2aTtayrCPAD4le+FdGmASxRqsRNDkLZKfiFMZ0J9QCv7Po0Rlr8nMcmATvyQdyilLufR9NjLzoly8e0wOC/PEr1SlV+UJRLXg0Es5fYgTr3C2W+l0ZP7ZWvcCPWh9qTMXTWtcXdIihSF8rBS8eklQuS5/qETsAP4SdZPNlFQJPuLOkVIdzgUZvZt2kstyTdC7iD0ytXbkjzyK8VpWGyE6op14ygQBC0ugAxH9U9/v/tAEbOu2gL9qCsXZ/vGvlCTmeFDBV7tbZ1EVQLwG1v/WUlsR3aaCs2/N0iPCLDAGq9HNtSnGjnHtksqFly4owmr0lKtZNwFqjIM020gkejCKavvXo5KOcf8ToO35cuoEw1Q5b+wqXq8VjLmpOwqmAtcj0ZquspXpACaZNYzN9jvHCZ+h5rWMN5+kZMTUy1do8AW/NhgcMVzXIMfRyCfxFMJ9fJNPEKHmO3eyAlxn7q8BcIeJJh1VAAABswjg72gWZnt8y8suLxLrIa39zT6ZX06gjqydw4O0Cxj2e8zMmmFj07K+CxWDNDEpk6PcCphz89AIVgEdDASK5rGVuLNzUIXUoyonGps1lXlvFRgEXnz17z3Ir6Ue9hu3TOWGmrt86QXLS5jfldhu96AnjpGziuOE+dombl96e6BSqF9qgEqfO4IlFk1T8tw/4FdwQsElWU8hbLX4mIABGUv27LaZ96kRVQ1Ahg6VETeYw7RsAHdYxX23kkaakWAp0WuXMxggWODmfnjurMTGoqfMe6ZRkE5qWP83RYoZJIK9t/LlxegXz9fGg8bpdBnwdhtXryjyUKCOJT7Q/FZ9Cydzr+RVyZczMFu2FNDWFyVKW+BfH/PnbEnPf00q2f+ZUJw38ofr+ibOOEm3HO9gcBT5PPt2QQsQuRVI1rmXjDDAx8GciAUUppW4Q4osNv81L36AVWGjsrMlOkwD0TSV0HDIY8HBvO9jtOdBJ9xNXzcjAnWYlUjyg9L4jydYXJcDg72MLp3GmSBMgzNX8SffevOb3gXX9m/KYfQQhHhcRLDirWgiWoB80n+378A3bOAeDbjC9/UU0Sp1/HIMIYFQJ1I9u+2vyVcPSGdqrzIlY9EbzLYrd10SEwuuaC5fxvgQfCzSycnpOpRy+3czxvJlV4XdvDtQv4EhNdNWXxgqBsEa67Vf4TZnGOGPXPwuiwtAq/2NK8XjMAcRjj9GUJLjAFs43g9VXPB2krMNnclK9Ri5DqcCXgFCeAJJaPgr4aANfr4jeFTkninFpq34459fP00lYoYJtaucb1nv1OLXaQJ8pD1+cgKEaOwysnnfiDMGelGvF0xGTeNHc9Mrj2ML43cLCnXxVV+zAFM1C9KAm5r8lnx3gnaFZBNQ+yUq/0FUrhkrVlqt6WpxDueVSgQ20WnaZbpKUrOTeQhsQV2BMJpdMRWto+gqHGG/Zle2GiH+I/1xIziRh3/p7eqQ23NagKlEfEYC3lFPWMpY8nYYoVrMGiEvLFcGj9q1tDRsLqKz3xullipybAmLXGtsn0akyCusKMgmXsq/oHG1IAUdq6hwZ3IMrhdAUAvGPkF4NccsiHLIUbphWszf4jdpvQdBzGmbrB/G760kwSMeP95ICOsvVEhgg1r9epkXyE06NzcZaDvd8eTsfKlu7d/NacT5YbLWQqvSqMUMeVwJYCv2ZYg2lqEQnRPmyhQgnRCYgaoS99dm7D+0UrsCsjGWHuVdUnKSITj0gv6XDtmdH90S05/ELL1ojyLlvEr9olhn49aC8JENXUPNXVDyhrX8IQMvzAA5Rtwe//5jnb7kweKiJaEqI9LjePtw6cwnTtvX/YiidYipkuyzy1I43cz6wQxM4j0Vu18QuZYqZkCYX7MTrrz59bVSlMYw/YJssJPqdjEc43c+EVaTKgehueFrZ8a7Cq/gSR8Y5YVYFZm9IKc7fNHhcgHEHpQn5xAO/RYwxWoezeOAI7/C+mj+/nszOZeW8lbVKAkHZMOgLNfuTIUaUnu4MPcgMgCTEhg632HYZmdB36V/UQjpzI0TO+Cxkejf8ALv4WkRNFtY8RLxL0qdjSlcnbIcDFkyHrcQU59F6wz/VJ9pIyBRBqHJyh7LT7ivVLMlTAuXPJT3wgLBwY+Nn1P+7HTomTmjzvgts5FPWD+tkpOhXevRcuXict5xSVJWeXMsqoutzxivmvVMHMdPxDoQRpqDRacuu1UqzoFAmHOj+QsxhlejF2STgDgVhmE171FYrI20X+n9stk/y1nBOkowH/ce01D9p9+u59uHg4R3uSthJ92DyAWN6ZZTD4bxNfBZ7E7+DJMukWyfOZWiQWet2GClD356UJ1yZEORTal1xNTFy0M96wDdQCeyxmZNZ+2hOFaTqE237uTz1Q+5nQhQHjIcAAvo23BRn3OFWUD3CTvmh0cHm+96NnZ6LdfbBZy4XpewhSP/ZsiBCeULEoKllx2gANZnJvk336m9bHJRbr4UMNBuxv0VFeV5NOKpsbKiVuKxAHBMI33a1uIS/S76VaQQpcnOxVOl8hNPI5/ShmckcloyFTanHP8L7q/1hDryovfXtsrHAR1W/jrKW6rUarLV65d8jLPiCXcf0BknQi1o19qbyagkcGuzQGdSfubhRfeHJRqcDDiAIWPQSMDiS018mg0SiTW/cXA25C58w6sAwgxs1Mo+Tn3xxgSaGxREl7ylJrn28aGEeXALeUa5d8crdQLpr2PymE7JfSV9tmRlFYwZefSENnfK1onFQVo9IcaKADE42nmk962hetDoQ+D9+LZNX3QOlJvPMORhsBszoS7k/DVrXOlcMEpMTsA0vsIzZbIDah2VqWd47XthPZ0Tg4dACtVYQqHAN+HzfFv1haE1SNBUtVftsUgfvW+3bXKZFmY/fX5s5R7aF/P9nHwzmDTjvCf8ltzjHB2ipfWHUkTDdLN5kfxXCZggqOSr2LY03wo6v4ka0gObHVNk8xXeIleGw1QC5o+al1/+6Gg0YoaNyJI7rqGbl5HLKPk6BZdFz/RrnS06Xt92yPrmJSvVcXd8Db4jEU9woEuXeF/QbAoCyGT/fTjE2Pw8hLaJa6XuIh6bAJD2U6e1Euq6/a80FcyqwspT/yNHo8x40PDHe9dpdd+KsZK7808gZAoLdRgZPXfGatLDtt8+h4/aYRNwZ2sI635osXtflRi6yFj7ugm/3kx8FMWlqRGoEXLvdDgNhhwX3ZgtZCFHcIMT/uptOT9YCWsLs0T1iJCAkqaZBbCbJ+KSeGYpZ0Dipwvb5pRqtACrQoVJarDpH2K/Fw5/beUDfH8qMMuEQiKJPwyTHz6l4uYeV//93ZEVKSh5OYgwbjRtgk8gHRJJd09E98QZvPUAc7gJfLdvFOYa/0jVEEA77cU9CEXpikI5DgRdTiBaqJ8wHsmPW85YWiEy1TrUT6eraf6VTZshJlZ3WiXb+MLLZD24EmsiK8+BlF1gbm6NDnPqe0fNlShTH8mlfvkXMPktINV/jdVlfyN727Cocn54h1uHJRopFY6NzUfY0YuBqJSNb9P6S3iwGUDpiiIkY1djYbH6rd3vsSYRb5qv+kCtDbvyA3qtNRsMqwyztuIdLYNK1L6tZvh2mKQ+P8YJlZ8wXto9XC8M5CB2tkC2hkkcqCCxN8/j1a0fsOSNuDRAQxidAAFMI0I9uqRV7CXEdF7cf6h467gpORCkowjGi44B4898mBOhXy7e7UYA+Jzbjbw+ZmheEJIeESk+x8bymQD8GljI85W+fgj2cJZM24X+JsM7Ix2MLXDLC/ZJgEA2Dl4FSKNSB/ZIkgxbhqMhZAbzB+0EnEc1HHsIODLC7PUCtolpYzAc56mYYi3fHOsLZgducs9+4Gg8CYu4i45nMscOCu/HuiJW8SdD9E8xCuQEY2YAaZL/GOpgnyADwQ/bQl6vZ62h9D6o1fpi7c5ZWJfFHKynfJCnttlfkLc0fy6zPn9mh65HVprjNsoAQZ1Tmou59LVnpAniHlDxuXtkuEp8ENzzr2IonPIOcUmDnWUww0P8XiFnaBR/Xu7OrjLFi14i3q5NtTXBT19NJgA2sI1GZDvAJtXgYG0Gy+zKQJffkHPb3+r1kzzYblX+h0wcmYMyl7HR+KOodzygtGpukBk2gdd+NIDtjMkoKtDrq5U3JUr+c03y4ar133Er17S5iqCUCLYRA1MYKne9cGF5qNt8W9jrwVkNxiXXjAoJBxlxNA6dKtsXR/+gs5uawR4UkkaNDHHAaiK83pLIKpThXiD2bGoZGwOUUslC0O/3WjtBCzG0HRuEXjJUz6SbaDBUjrtNfDWWZ6XU4EhReOHbkKqn9XcYfPWSwV76Ry4zgyVJx9r9mz6djysdDazGLDf0oV57EvM7A8ETHXJnkv3sOjHM5QR4ZQDmJalk3IpdVCDyKE+ggt+vddbYShmSw3Fm9pRrSoRNFrI0J+mra2GAwIxdZdyObkJlwRyhktQE55ir2ER3iF8C5u0AQHozdZAptpuFFd/cJsUlxzcpHSDl7rdvhXk9U9IDLnwnIPGbRBiQ6AD9/FUjpz0kZPn9BNgDEE8gFKTonXES5YehaPR+0EQ+ehBX4+G4fnBbBfWaNxep36xnihTUgW5DODoWtAiJbzP+VWKmTYcLRSQa3I3GhH9l7ukQL+IhHQWty2WYzKFNHq3AuUnu4mBAy3KV/hTb6E93YHT1xu1xwK+Glxa1L9QTq4QIn9sjj1bn41QKlLsXsOVgNcFC5jUNBwuwGZE+57ZUTrbCruv7+WMng0qbINIyO/O4GrOSdczhjV1755Do4OeBhkezUZgkR6ndNGo4MuaL+8hbKCNX+ytXp7VmWZxLoOncBPo2Kp3GCj1tv30WPxJHk2HEGNrFmdPZvmXHW6dLcxaoWxt1aX9XkWZfvZi4WJy45I9H3wvmDgu1caKIAeQ5orPC7qaeHT+ZYn3K4v3A4dycGLioKJ8N79spdfxK0uvMBc4m0ZgpX4QBFTQAAXvC5JDzQx0OIaacxXhWHf0jXuhYBzA2emr3Wsr5XmF57h0fXAyj2dbl5tU3fAi4a3wQ5Cty2yTNqUFJxZC2Up5ciBGCXqk/ZAabXhL5ByQ5yMkpuW6jPyaqSQ8T2XPRYTe7+ro/+qkLEJ4X8G3LvHWmQGhKZsgkpq0/WNA/lIli//b1rFmVrXl+3/QbV7hrxcrN3y647nZ0Sv6JFLKq3uh01KoqKgXQS1sM+detq0VlkgLsTkgxt+IdIghUnU752IC7guXdrtdqGecxz+6C3wnmcq5qI1lU6tHjnv8nUVIg/4s0+fUiPf06SEvq8gwXQj4a29WWHH/WMd50DvGQAh3shBiAvyXEMvjGCaVWt+2HtnaGFx8N2QCRrsI3p8hcsTyebBGnowpzjmzmgv9PWouCy0slSuPs0TNOeBU4Jd2iP1UgXQVadtSkjaPzQFuFVIVyHudbM4ntgCm9EePaSp6OWNkUl95qFZ/mptEKNdNZ8oxs0LwkC0F0Voo+py2Yi3djvS1TmUo0tqIOxeE0K0xE23PKH5uyat8A4DD5jH1BX/b0xVFP9rM/R6nAb8SQX0A8ix0f7tLZP1BnpL1R/5IB4+IvmO7i1pjNJGXwz+DbjrVJIPC+A4FsqFXu67YMHaPDGuUOELc96NEVyGzNmxgNlawsMeECCvp2OyCh+Kmjkox/aFsoJEqCsJ/6H+qbW0YXkG8a8dWRmTCDCUMvuYM80xX+dhpD1pnMnCyzJ1MdMxX+RgVXS8RuoPVtdYJykC8DeMi064qMHfpW6OrmIKeNW+c9iO7SXsPdpsZTgEMzZ4HBNQtTi3XhCUJV79tIBRG8ntQD/ejyTz510XxeiXm4A6qU4+Nt1ef93r/AiJNxo3AvybQlxVMyodxDZxhNmwd0wt5BZETZQxW8zaAAAMdyEd1jkIfNg24MoKZHcF2s1Nc6eec3SQ5nslGaLPPlt+ivZwjlC0GaIvnzWcHtFtO2OAcYNSWCUlkISbPXpYMbBNlvAoJaT5XCb9mp5g28R8l8lOEaHsvGbFAxNAeA5eLiHWJ3nLem5Y6ZU1sWIFhAdlOeRKMWLzw3PlENaeZJY0LAk0X6a6ToEl4UKBF/cgu4Ycig21dIV5L3SK4RlmCM+52Too7oRpeLcjKMf5W7Jg1Gxf+7rjgGNixnOl7WYtSnqy4kYrh2ThnSK8fts1svsRnC+v+qzE4+xwnTZ24CObg5BWPIy8rPbtsl5AvRqj3XWsrUf3X3iVdpfdRqC73ygzdbhsWcaU8ucF1fIe4dbixELlF9mqhl9+zjJDFiCBBikq0co7n8ZlHK23A8teZhiiK9bAuyMG9Iup5PxaTLE0sgPh2qlVJrVNqtc3PS4azgTkBnqLlgmUW704Q44xkTA+Q2ea/aJ3acmN7b7OBYx3yqGWYZHdU6KPCT28e1upSpV5GtPU5ux1NGYPQh/cQ1sXuJNlh/c5ZlH6s4c/upP3mcrzdBm3uPhBaH+0+gE6+aVMAX1GLiKfH+f1ie+6w5OQ5uFxp0usq7LcH93zqluVediMSb+XJJ/C1wikdcF7AFV5B91dP4qMpgpjzNLjilxLcIHXZWf/fcqkqxinB/x9J564BRZrfhl9pW9fDDgpx2N0mvPBxlOmAjmaiekBWGgrqOK5NYCHi2DMDpU+kzjUWeSeYMnrEATpLvipD8MxFo9H2r+TEkeImrxHnAI8m0ofpE95b3edpAyluUsLi1K3QwwAW3BHphj+X9t850eFV/i6lPPWGccoI39je0/5kB1PZxqjNnyvAV7JRtNpigmY8u+v/dU2H3veyJjc0i11vHFaWJmpHSvKwDMAkoheyPyjArg8B4+rfct5Fr7/dESfYD8Zzlhihovx18e0+yx8iUuU1fXSNfVO/RrUhGlzglXJ/vplX1pXrglYpVeAAAkZnkzoYgKf/B05qjp7aYXlLLkKLWguP9hCMqeR0aceGlDToKzP5dzr27QtwkB6LEjGEeJ1eErjWbeF1HvKKXpVyKDhbrl0anRaZFOyz9FbKobw60vR+jkgsfFCtgJbO2Jh7S1YCuj/UYoa1v3rR641Hc0ml1vpDh09nJOTXV2i5PWxvm3PphgI3b7YmkX5ZNn6dp+FQ9c+K31MFJ47fKHpsfr5BHNKGj69MIubvz7j2b7iOmi234AUCbmC4pRDsytqtu3Z/lt8eJbsRAAkxWngtQGTm7zqo1f1rlU5iqYkd3xvjFRbEvgP605aU2z6RYqiI5AI+hZzxFoF+R4ccfI7yM3T34t52Erl/AVvEVLzV3YH0zn1/J38w1Qaf6kcnez1vCs+NyGOLD3oEdaNcqNgKiRi0KNGMbZOTyfID0bYf620VoziO8h/hHkcdp6La7jgYF6tl05tTahukyVCe5mdoknL/3rp3GWuPJj4vUj8YbvuRSHx8CHTPTA0j3oiWUYw/3Tl+B6vZm2ZtIGkWd+M3dK0/NnbPl1YdjNIXZc6n/tJi+M6R2uYyAI0JwYaL1ZhPbSuUlLKRPMCU4L58953YJwsdoyk5RFaHn7uZhOiodEgfDUjPFLR8Z+NclSZMWfrYlVmqHaGoSZDBHhecwmFewSMKbTpH4/07jlMckK2I0QwmuJKzw4x0nMqB0aSIhRR5eF3EQHkigwSh4+IrhjT9D3P31fsWV3rh/x5yAhESyP1ZWvr135PMCAJjSncH2tZQ9IwjPaLJoTceAull6S5abaB4cIn+q3CjjzWtIm0u7wZJUZS2IUwDcG5KwiAxqMl9J04C0OEu2FN8tj1vFEz8faB36JvyFNQjpE8O5TpYb0IlN8BOlvg+sXibXy5xpzn8XGmntPSo4VGJbIwqAJDvfWBY1W4ITNISvKp0yV2s8P+Pk+UECB9xOqd6aSsM3zzqr/2NFznCH70+Ra8B67GKrjvGL12H4LQKPoAxLOOTejjNg+aNqvt2VBHhGiQCz3+ELM1WezN2oYu1JpNlL7BSCd1aQbR0JW4Zrdt+iwXfMjDn69n2JlH+qeVQkqg04O0wdw7JTyuhZoQ4p/dxfszozHkAk7KzcewEpj5pb50lkmuFF5U4pI4CqXj6OOjYyw8t/abOYoD/EwSVTChfG6aIflzl7HgTIJNkt1Nx7bCsTQGa2pOiHuuLJMwlF5Omp+hZkCEmAy935sPJOvgEvIuoNv/PL8uqdgZYlrnOP/trL7kB7QZ5MUCTSEt2FJWRJ+uTwa8/CMadhar5zLnsSnBXwL/xR7/ZhSa+zkiaXk5K0LM7YfHueeoVcOwLGzv3TKDthSYjZ19txH1ObKOCaFa4eY6Rzxas4yMypWQefEI3BRrZXf3rsinJ/6W1yw5MkwLpWfTh4vBx77hUny0durBd0AxfYcHnCqFUK9it0cAt53mMyEin5q74NENvfwD02B0tvGe9d45vqO23RXus26L1Zj8OGId6m5ZQntP+APCBtPK7N914TJJRx3d9nEYvcCGhTocxtR7BvNlXl9fKOjwIcss6jBKg3gvEBh+xyB4kBsW1qrzQWCy36hILNY5f0NsQVVMj1FPiOCweeEJsh7TfiwBSXMeDhH8hiCRcg6mS4c+t63ESZfofp1WDqJvVRtwgBtvoX4oqJdStUaOhIGcToyfVVEe/j9vRuSUA/AOpxCLvkX4wIeps0NU9xjLHRu5L2MWWYl4VOwz+toNowhpY8gxi11wgdBZHoCn/165B39Ul325qFL1SRFxgHT/tfHSi7ZYYvLaaaj38cDrIUeBlUNEth7YxGDXkAADOT/oyi2wlYwg/uSger66+LbQTHSncIaeiKHUfTfodtoCk+UZHxKPy+Cj7i4/dp2CLdqQcKABOxpcSxNFPgSdj6FITuKO5l+tBDAj4/Io2NML/Sz0VokaNTEotSY1rlexThec/zEVKENC5zI+WukWk4XmcE96OqzO1expS+fKrJPTIC9Tt5aixaZgP8ShBBucXYBOOe/XXVXaCPL6YiNewlIQiIUyDuq3c5aGLW5yOO1kSlmPInz3Q93XE9y7d9MKLhiyfiPPTlgH4BHSgBUhsFoJPvTgqyHWequwAlHdzt0puPJI2xZMumJCVfULkbTMgD1+7sruyKbC+3qrZVWKChYg6IYy9+JMxbGWQ+I3agU9Gq7F+Ggxw4QPoMvUVVRXg6JDt3sAqIkuedM31TwEUVwUjamro0H5UfceLawfr1b2V277dRauZlIVnoHChCs646LljC6hkdQKQvv7nY7/ofv/3xGM8/WIUbZ3/odcn1jMd4RV7ZEqtKFu/GbYewynZtSlOZg95CWX3MMxuQztNAT2SFTzDz7koOP9BOsc3lFvxQFEz+8eWmlLm83HkU+CPy+7MVu9HFbb9Zod5mOiphdH/kcJnx9BxoxJoLkQktM8bHG/5sL8lNz1Ud9g97PM8yZphfkAmwKMKj71ar/hcyeyBaoNKvU3O5QHigaytT8wHJOllMGiKfuzjd9+AMFS1eclZQlppFtiboP4byOK1/BCvWsRiTqziMptmE7CF1dEPOyEiq4xUUk5WAk7pxOiO1fMlZwirlvv9/L11NCAnvZxdt5MtCp199gK2fbOH6Ri2mbswvvi1iU2ReNLtWcGwHx08GL+PwHNlLMp6jzayrT0obOavSqXcCBYT061k+4E+FLYiLZ8iFu7wiEvdvHLJnSReErY9uv0hzow9Zwr3R/PdEdOwsi8DJWI8wYXlm5OPcNBXugbjwLe9xPjWULztavczjZLm9ic212MbIqiqE46KirZOlvSDPZeuk8z5j961yq39MZ8znS6Wf4bgRrf6NvEP9gcz3M6oCodDmdpS6FrDLXzmrH5o6/JVllCZ8S8716wspk72gCJNAV3DdOBFrac6kHKYGymv8ZF/PzlbLEo2RD8hZl0lSrMn2ZB4NxDSe/dQpTGv6L2joZxQ5Q3VNgcHYnKgvdMBlQyQpldAGH5RJnlCci/trMa7Rr0VwXAvMKLpanKQy6KE2NuVa0Jub9Tj0wARQtzUocreyFV6yD8IHs8EE6RvjWvsB0tNUgItUPPWhpdVY+sGPRqOYxpdtKfga/v4xm/JQPx30090r3Ci4BScvxNjBbf//f4y0mD2WPsiG6UF7VYi2Xw2AdDexFeb0KTWp2Rz117zq6ID/c/sA8FzbsK9Z0WZITzYBCfSjZC4dtPCUxif/O951aMsU7c7EFjbOJsO4pJxGDb7gPEJ2Z76Cu/8m4jmtECQiTcVfBiIN9Uk3Nqzspu7+CQ/bZi6hMIAC9LSbff40aih5FILy6SzAnNdQotKwJNUSPj72tFaADAHHZBa/wCueo4b4c8aUvcB3kHe8AWzrYSGPmOlEsVdEgeY2V0GTjofoS77Rv6xixdYyesJ+5h2mAh2gFsMJ9y32MROrIVqPzoHtx3pr4mqvcePi0U9K8rg6EutFPEMy+3xVk02YzP1ErbBdN9B8Qef5a6e7TMrZyq/ayMltky4UsKLSsqIrqg1jLUs0VOWT4btp/UgN88g2EA/FUr6GBp8+xG7qLz7RIQ/iMZSZG3DXATN/Xx1Poz6E6/x7vu1eVi6dB9WlBekNWwfsJ/I5qIJByDiPDrp3nFFhXgLNIU+BdQLSYZnhazZClDTW+WaQetYKxjnZPWlQjvU0bGEfC7anjdRlg0Psjn9oWEluPV0Fz2133AefOPu1bO5SXpHn5XCN3WjotQJLdQOITJDMm1KbFtrUvIjZMXx467KufMAxUIGTpJ7rBLNE7woQVqQu1Rlc1vbN3sI6LnMHvqT8H6DeMMhYJvBEMIrC6yGVFLGhgW721jjdigoGrTruyjqvlQ2qOZg/lu7Im6KYufvG5znaNJzighLn1Q4G/hlZKVnJ6XnOPaeQv8fva6C+2OPsWLxXoY0sZ0RDkqOrOEUAyWZqv3pxDtbfU5WZ1eBpJBf1FFky+UC3BE1/ckv5RnlwANOiXjibMuRzBczJ9bgLew26/XF+z3Xp8bk1OuvhiCnWX2Ss+RXYcJFe3FnDpd1hGbmdpWevQRI1tZtUgeh5hiDcHXBLS1f+zSNMpZ6QeYutmq0k+jrJNVShUjUPEOIEjMPGLlKUSgJm5DoreaC71Pn1qduFTck/LV7nOtxIZsiCCbZqbcDFnMT9Sq5Y6NtbzbqphVptNR38kWIW5Ftiybj3A8UJ3bqLBc/yMtLS1R7dZyx4xPXizzhhVpKf80O2+yi4okWGopNqiNae3jRaaA1UrP+R5TTuTe3+xYsj+EX//a5TmY0EIGHwcNMQ/DzBzKqtsLsyyqqkWv+N5WWzkqBeCQ4Dnly1Nm1rS3aHHbsjB9cG7fLwG3AIL9J1WJUjKC3UL9k9PxAXyfNjBpvr0nZc5IBIuwZ+OxgT7R/lh3/cIlFj2kIGMVZlN7R5gleWrytqQ5GC9F0YE3HhoHZ29AKeAFI4JvSe8w1Z0Mkk7P7CLYhBY1XQYxT6JQZpe0GLar6p9tsh2puAewhOvdB5wz4co+zkANYYMiBr4I6tAcDhb8fWxy4BB0OS5aAJHcAEaQhv3i70W6iE2zPdAfndVhblhfky0/Z/Y94otl9zWE5ICGC3cqcy0y2CjF0x22MhZgEwQzr5MG2lO35xPrRsJUl92BLWs5An5mv0K6QykQAbGioDQOhSdXH/4Ek4WT/xrkF50p6TI33CQUzRzxGaH9bZT+fQL7628T9zBf1NDgDjbKi4NU4PImmE5UiZaTDGm814sQZA6FG320Tgk/+krlSswUrmKlDZyLLvtgwghbtIhYligPMMSak+FQ441ePIQc8fJY8D4gKDj6BCw7yHN5IaqrIBiCAEu+eCwy7nQYgPI2Tzqwsdnd5BKOsr7bS6UkQXMONvIrIcDhXyUbzvNZoVg3hNzTUfFm+BM3wO9ScnLgG/9k9qzgepiJMyiO5Y/jhmiKRNSQuWjwnsAT4EA2tdXEGuu0MqLjBmO7dS8TG50aaMDQfkwgQGdOCmHPlM2RvHUdW123PBDuRzIIQfDphQt0f5McvIQvlN5RScC6x5F7DJ6tsjOgfSux5CABAnOMspAYA50FDJkSsel5E2/kGADEHzSPWruYU2XoSQ+Jp8mUcKYdm5N78wezbAtwjSnkElKemGNutBpqEY0Yef/xXwxJi183Gb4iNhvTtNqyYlC255Lyra/G3A2uh9OlNBMpUJBzBhmiX2y3aMx97LTku6uazjmu01U39REhCZLRjVUIIMmU2JkvBhTFZwDHhJow/ESIKmQFYIPY27R50+K48C1Stn2btGObcD8PeE+iJ+M37Ak3kCbz+ERNqeq9bHxhsvD90/NtK+8k74vtXGxPneBBjsArSsdHOwbXkHXSUJtmHDS1d5c4KzdQu1Yi6ZLtRs559FM3YjOr8ZuDsGDHYM1VvhE5c7/lIDdPhsCLA/sovzo5pAYVq/TuC0E5iq+Ttunm9X7W/fwVMYblCzwocuJOKSYPxff4cxc++qLGrhco6a8RtnUX2+ZRfd2m4Z73RfLOfZqmD5J3I7ieU4rHzlhktfDRm8e6LaxThDbPJFaJ0+rBCCZM9U84L953S6sduQx80qSdtof9/q90daaxF7FQ3M83jxeEpc8V5R630Cn7QdmhzXrX6+5uQgRusiJOWaY+c8wuMCHk6hBvgBVCvB5iFncOIsGSNbbbm0ZhZ+4F+vsoX4GGsY8jeT3Yl8jFLwbrN6nNio3Mzj8dxyEeKs7mB3vDnVWcLvBnvxMyP8jzv2pCaBtNm899emfkJ+M72ohQ4KIohuldhbxNFDhtZ69GlBWCXH7ZjM71KqWAQkODLm3SHqm8PQ9plYEDTfm7SG4lc6dbpYbPdEDHT9dv0Hkbir7HiQ+fGs0bb93XYanlLoTS387jABXxQSgXtB5qPBYLNQzmLHoHhIUMBQVqDNV2go/EreAnj8M3FbcPiHwB72eiNC9d79TLr6s8HCcWD9OCj30EArJnJ9lGD2jsHP+akRo3NoJU9YWfpmoVIq3jKOvGBYermyQsmOFRT6Z7OIPb4mdv64YnSJhk/b91HUImfoCp5Dyx+q7ZpBhjvkQgy05Yh6y3eWJRB1vBjMpQE4+2Mid3lu6uxFbNKRDcZ4EShjAd8NHKnZzg3cVN3uRWiesWeT7G16M83qX2gsG1WrrN85ZNpHWtZC0+abwjGslUYq6tj/rdyOKdJLFX0Rh9+LmtHrbB8O5DllbLix+Xhw1Qep8+zf29IEScs0WjkqaLI4ewkp2pQOyLguFjNsx4D1U8JShIYaaDMHSnI8klIUPkCYUzSh19JNWzw7duV9yBsNmlmk/5UHuSLNpcgcMiZM1HWOnx/YLgoqeyinsm2O81CUWG+UXXu0Hmib1e8qpGbaYzdzRnn+x30/uPSoDz0JNiNta39ywglCp0NZwPLac1H//iR8dvEvZi8jD9DxQDHdFqN6DikQTbXzsKkxYAcTwVX9zjqWT9qUOi6eiPX1HjOobmC0Kn2snTdqHKkW1o0EXb3TUBE8ICWaG8ngk+t9NkcrrLo+UEAyQhVpPP6wwfdUT/DpZTbw64u3tL55PVxv7dBO1SgsVWt8q2SMG6xt2TlaaqI/vVRlB38WP9pvur1dgBwLpZWCrk3STpIQVvidm/Ocf5OdMkS5ef32RqyFN/JcCskKN1oIGdh3hpD7HNxTulNz0OVWklRP1S7HJMf86mKNm0sYIXql/VZw3EFpMHk+LO1J92SoK3fYfkU/joxk/vzFypfhZRGlrKP2GdZ1j51BvQ1ufu6ITOZrikfFjA8sOzeZMISwYof806upxK51/7+cxQIaR+26B+XCLcpJOb+5KS9R9BEz1O3QpCXcvAAo8BhtNxnPDEJQsDpwfGmmTATk36C+7hBlkZ84TKAKG/IdF9hGie+1eqq49Eg0ju8mptZv21iQf1FVbx6UhZCesWuPdVVHhEXlnmAj+pSxmGcF/gTtVBo2TWKvLGjWCbbHyITbFD4lyKnuJMrHcfP1SMY3RrbM07FK8uulWZp8qpfswwh0qRUwJ07Ts3gJUf0QeofEROkHjmjD1L0IpBByE06i8sTDzlRJMWdHBX871MM2UMxNQPBzenVwQivMnLYyVcLoYQjrStE5qZYRAYoEf6L2GBYYjp1BcRDxtIjX1CyISe0XMzFY5yjvGK+FcVmV7lhQjqNaAFNqc9F5CTMlkJqfT/wnlUcmbQI1B72upK0TWwFuM0ajXU89gOwLPIzuNkiUVM+6dgOOD6TZq9jKu17VFpE8aOccE5x9TGu5d/Eb+NkYSIrMqNeLqtJECx5nOhqgDYm+VvyIAiDEWy5YDs52jEulURQt826OA9XIsKYeKmnBdAWxGSjHq006xUDkjrrooRW18E+5xOu1g5lRrjQ48v14M2/phYbGKwDMVsVY9Sj1P/LBp9WQClcgvtDj3oPXq8cvgMcecsTusaNWMLicyYyYz9yBgSDMTT64QsGuJXeOmxyT+ZsbjW6dsXQlyLo1dj3fvQvHise0rppXDtjEP9c0wKatRwejjpg/UD0itF4gESDX/WxI7dlrcaN2/iUq3D+00eZAXZ6Avrfkt2KJ9TDH39H6jZJbNBtsfM6VyQ16F2pe9bAle0fldEAzkvBaRVEYxbjxWLFwtavpL+b/sH2956x3ISoFAhSM/yrQb7TEokqbcclMKl2dVhJ1YJJnWaXkiImnel28BzJ1ZxrUfcXy0RXwDoYVACE/XwKlW+S6whyR/H52rWZqgAzeRfCntKVjNW6stUhiF5jywpHT0xsuBFpHqmsiz5ZddoGNgC+82OuPHJjLbQw+7r159ArEYTN/vK/Flu36SFQ/lb2AxCrBD75fRd4eLA41wen3vQ7n4AAdSqG+BuNNH+Z6NhhTOpR9WpAoWAHTj7KXe7qvO10vUe+E/vstM/6KeDlawzS3TdO+4EKxXV81VosHZxk7PB/xoWDAvxvxFKw3ZGpHB1OLVfHBu27M3gPw0qD0eiZvWzEeJ2b4FjjlVq9bAZvBgw/YV6PHafDVh0+6+qEeGmv6eivfl7TITwt4rPKccqPnVOCI+gRUVbxTAcZgLixHyngav5zNyCpecu7IIo2z1FQtMRxtVYgKyA3W/if2CL12Zi3luNC9QE1RH8Sy0Jmvvedd6SVm+XS160VJL1p5nwFICNECRJTsPEj+agYyC4bRDxEqElm9puRNBWs23wZP+gSeXNy5IHk4FFUnkCMnbejNDwCO3AAbdm+URMF/fC6pt9/uktD+keSGuE35+qwKDo+T/lnEcMQV4zKwEClEKHFBuhAX5H1JoFBfpomYvU+cI+H2k0Btqk71ASCwxKXClKNikZdf8gMys+gUyCu/CdudtiyFW38brq3g8JQnb3sg8mOxmYdQhTrnAsmRzT0JrAPUrc48/h5B91spVfZGM9alZRvWcT18pW7ZYcp9rdvEv2qNNe9av+uUq6jIsgnw4UNF6QTdUMVyvOgF1Nm2D0ndQY177RoNzpLggX35hqgtrDVZqlv+WqzLH5NJsnbgxZmwARI+Y+beh3mFPh/p9QDJ0X6RdEr8B3q0KG7hj/lnFdMQ/v+2DWD0kToWR5851VVaHz8C7Z3W4TqGLYLrJ2y7Eva1Fnc2GLedAuamCVdwbEK1g5gfa5ruzytJQtkQH4apeUmh9I2vb5rkEKupEkhfEX+1nPYo64isCNntE2UWsCmEYnOPPUQunXF4nRhmmCO6zoaZxa49uAoxlOz/OlYjyl+r0JyH/gPfOzYQYE1PgtQUthztp1bIcFRv3kJj6C0j9dijdK+J/qCuIP1OUPxWoqn1sQmCbBNQzzljVB44xlpXZ7oDzfSwsa1NPhxxrl8+K9VbgHYdwV/h4H3meMQzfLkm4UTo4QBTQc2xC601Xsn8JEcM2Whw2EMclYXH0lzCyburfq9eRi9b1yPcs2u1/E7/NvY2z2IQ8ycao2/nR0XW2Ilz/Ya3MOq9uxn/yV9x/GqhvrU+FH8Qszc+3RyZ9bKlCvp8JJycKWVZl/Uwgrbu6kocMuhRllvEKnt1TV/B5UZW+nqbQM3H1jmZanew8CG3THoKv+xJ4aTsPaWASH6MhMMBhoroKuFTqbv9ckhTsMNmAuTRyA9smNzMr5Q/fu99WQXU91Y2N3S2gqkveXUmR/AhjanbwBMb7ISVi4FWVC5XZmKsllrzbFP51wFWPJyDweGl0ROcuG249zG+nzRQvDC/QKR/laV2EVN3afCHxe/7Wz/yYVf7UmHnv+84uGssoU1vSSips05JZTTe3cdpUTI0dx+oHsiYEprRs/etrgQpm6xCHgIqK/kt1GM3egd4lW779eiWmrJ2KpiZrChJgt78cdnAmUG4lk2wWCHycM+EnKUFPspxIsTJ6CxwD8tN9zQHU0wec/8cSCJoZju2qZQlrcwWui8A7I75lMYtv2TzJi9F2zlhovjLPRlXlAH9ld9NHw7+1oxd5UH5fy0+nzjGRvOEW2GkPSnkDS/ShiMq6n5Ia4u4WSkVaByaSbU13O6DBJHbjLAp/P+YCmbAEhx05l+ra1Bxy3OF2yZ6uXXu/89W1DpM3PCBU0trOkGEQLeYF3BTPs/UER6cHQ4k7jnixBhnOoAQh8ia8BJ0Sil/Uqv5IedGK1zBbAumWA4UvoZxEaDwHRsvipgG1ifMFKREVI5tuFGOZA4J1lhsKUMiJHCUkk0yALXSm9H3D7SU5fEyZLMkUTQQqm6VywmBi73QZZxTlQp9ZQlKW7ZnXp+sRquu6UyHZP0xJeJZ3jFUr6DWW5YoNECijkhK59Wz7ieCD5JBviaBxFukubktS8KkCzBcz7HZhloSDX1kISNKsat9A1SyT2QiH9YY7hsx7EyLbdHN+ppiMsnYh7EfZYqHwC5HdGCPa6ZaKfMI+riJJoEGv9fsUkjzGBkchvK0Hl9kvn2R3X41PpvEbTh9aO0a6LvmMVrkiZ/H1Rh+ebATEYHlwzABDvpV49k9yK4GNQVQGcztc06NXGoC0UH73ECH8Y5eBLW8C0XG7ADajqQkHaDf8S4s5cGYqWeLwcSCNdcfqWc+zWsuZySNTN1nUFJu6hWAJvUDI4HbfeoIbs0upl/6udfCGLEyHW3iSTgrf599bVWtTuJ3ffMq2UMBHnCkUr0xm0SQy7/FSlw+TrI2trPuRlM1pJwI3VYiMnv6ik6vydLiARbyaP8gK6sPkvA06qEroYYzZqdb8aL3wMP2p99Nar9GIn40rTiHHZB+8rw8HbAdBN8pyOUuvgFINJDWiRmewZLKc2KpEuCj07Yd2ZgnjI2WnYPKiEEca2EkfO1CASHkYttmeeUvijzSoEC/B17Qchaf8gCZHe9U0C147tRojqJlBI3xR7eX8ZBxG3B2U4vBYpYDAt/CiqGoDOXpBSbNDdzXAKg/5w6zvMEwTWKiDRcsC9SpIpqkBDNzQuVU3HBcZWeWGBIZMMjmWqU+GeFKAALRV8LR04+OxK6TB/yFl7bGyanHq6Hgm+tVogohwRlLsKyZklCP2OfqFTL2pHWJSWo7y1nHcgHGd2BLxh6yL0rbEj4GN6PmFqz05P/qYvexnPK9M66y7vdj3e4M2QqipV3BaBFO8gpP5pI2iUBgtwl4Vwl608zgYCYmNI/w7V5VcJrH92SmSoTrUuHley4IyH2bF+fzid1cVzF8muR/OePPb4hqaPnOxhBtl8Jq3qUKrpb91Cc7C2RDTOHMmaxdk9v2VEK76aaFXndI6ylcKq16Crj/4aO2QIIISwBKUJUxC2IchEhfU4mmaOBXfvakY3SBHO6A7TMoJDCcPsFCuo1NnUB+srL6Wa4Xl+0v7Rpzrji5yGwEOe/wubtJidxlrOSy7T7sJ0bvDC8uLNlXyYhuw/dDNKCLF8VSV5kUWwho4DKtHqfnZASsd5UL+V8x39x8KxCrCz6WX6Vu/tqn9AxnRFPtRikJt82H35Q6BBn8ZdaxdhQZZn3ZFf77IL2lyDlcOAMPwxdADhFwAxyAcOCdg3yve4fdwsvfHmQzmvhr7j3dSI7G5X5UebJIoa1djZb229eAXiFTEG6mfG3unYYnw6KtTi2nB2IjO05+k9+Y7ROHPw5+9EUHyiT5ehcOL1HMUhMDGwiYzEAOmmrT9CZQrCBE2M6pt4palvm7qrPZpuKr2ovSaoFjNPEMXfkhMJwLEcKlpyvEYGYv+O6KheF0oYC+et5VsaA4ddhnvlxC4BEsCLgPSd3LJlMxlUfMmTz/Cpyf3SiM/b0wgv7Rkp0Gq+idBDr9r4Ei/7uveg3oW0I+MNKCOuXIzW2HZLp8m5zNHb+kL1Xq/6XyaDvueyJh1tF4k0+SUE57UkE0J4IUxFw4dXNytiMpUeQHGIDTAFgAWTpDwWN0WejAPqGfFGrvR1RjWN6X2Rnp9ORVAoAHcWFTMF2AW2VIG18rrGghxmVbO9Y6/hHEHObxRNbhhxddEVs3CE2Lxu2HlWs/qK4ub4GzB475BbOKFfA6DSm7Lr+lphSKuUaoWiv/l20ZaXy2V+VQbKBX+2KTPJi5yXy7jSIWNiWiLOXXKIKVPdH9IQsmbJZhC5ASSuuMGDvbwWLX4dv2BrrtTA0pDsLLy0p/v2CTV5Z+2Fl/RlYYnwr2eSUfFDUK/lD+Oaz2t/a9rgUV5LyjbEaYvLpTERurKFxtC6ty2Hc/I46QvPL1sM+xH9nAOLYCkm53seTfNJmZPWZsAJSmJvTGFZq7QGdACG4Nx3xLN55cokZ6eGDJ5VUOFP1Bq4ksYCGhUY2HUm6lcloaDs26WNjiasFqWLhHlwzcF5bIjcY+4YW29RCMyRAuF1YUsnMCe8BXZOqn0ZtKvJ9P9Iv1OEG+RzGuSO5NYVK7fEwBskP5SsH0ExbazNkA3ALL+Df1XKud9B2Z/zEWolU2uUHTORlHLL4opmqRSsi/h36w9oCZCsJqEDAlTr1fRwRyVfHU5f60npRtUn7rPActh1LhUXDRDa1AkTHEU83Gr53rl+Lnk7LQI6na3vdcOM4WsQd5NwzDl1E9dKkyCUK9rLHujNddtGgVMSB7FEUCP75oIRjpb2fPmF+oEeaK609zNmEpUmb0/UOGwe/rACnCkOn5zBY9d/OSmF946NAjQKDX/K77mRPBtpCoPk3gCYzgihiExjf+NzQKF055x7r8Sm9X+UI5wCUxJZxAKAyQ1sgWSmNm3A/kJ9IjB2lfV10uCQ7VfTJYwDI1sCtaJXvxnn3kTY3DQJFuWHfsiX7T7FAPZ6Sku24zJ/oi+Sl+tZy/npAIU1DH7rwiGYk1DRKlAClkZgeloV1NPCU/GoBmXfsY/RZMLX4jr1x6XoGZBu5Df5cq+V3lLwblDs8UXzYYof/U9jqMh2HeJmEry+t3DtXkuME9XKh5AJ2XslPCdt4cz1Rs7eyVhQOfXDPoKVfpq5WDZFtAoPg8Fqg+CsKgNZl2ePSMq5fOmiBFBnNu4mbj+fBDO1/SXeH1epghQlDx1fIRGTS7+48jN+29g+ZgTaUGaeHAKzcxtCaWc15Dtxm7KilLiplaR9bfIpH8SktIOJzw/Ux8WsS9Jq/N42FgpgxuA0Pt+iHFivzYBggNx2UnNPg2+kn4c8OpCLFXAUbmXa/ggSOkwYW+kZNEcJACgnxlAT0VoRooHD6H5Ri88YjkTAIBUM6iQzQTy47uLx2jwzc0BiwD6g681V0ghVmhoDXKXHMJIhorbVbo2RRUqmDaCbVdHrx7TC5b4/KF/QQ1s+2A1qExZR4sHnQQ+Y98StJ+eUbKTPwu9B56titMCV4oPdv7iA/VFLLb+mLvJuGwD1kdcybK40bYBXA1V0w1HwrmYDUWbfqct4eD5KBKeyTOSFH9aXaAkulApV6I6VFRddxEWXy4fFqeS4gimQKkbK2JZRNXGmlmVsccQNdNrn1cd/4CHatlyMFNWwBIKQY8DRs+rrN617ZGRbZE2JcDAP/4iNd2+lkWyVebQf+6dCbve34zT6VGa9AW2du7KSrqw4TV1X5RKfPVX5vIWOhAdTJwpk2o2PefVZFm1oBQG/4hUxVxwKXVKCfo8OKdtE5u872xgut+JOf9kmGB7wWvwvZ8aNP+RuD2cxlaKxNfdYF0Y1wQoyEDBr+9Ar7X0DTBf0rh00kWb9ds66CApaVo99GsTqmB5yLvsHnu3E1tEOLQIhClE8D1nd7FRsh1TM4fbcT4vnr/CMHyFHjc/UJTDjlh3/tOKIcB4yH2Qgbxu/6WiU2r5XJC6bZjmSku8u8g5l68EOpNs6BK3EONx6NPIFVcZYsvfR+qjr3s5K0Dm1kgIgNlmM+7NUJZjPKSF3t/9uuWw4h8siz8bzc5Enn8AYD5Ktk3NzSUKuA53g9tcBonlrv3hD35yQP+ThTT9x6SsXINaJRdQtJ56FqP8VfATJZEQG2fpmlZxRUbigRnStIEN7vskW47usw6aEQ7IX4CCS0ySF7P6/fajpa/DNmVbwegANISJP4WsIx6Mktp2EPgJXWnbBDbKpSxmTIaVoqxsl1JsjTekgrJrP/A959ZKPOjeY8A7okQvCHdNJkzMGlKgVIHklIU56sX5eRz3JJu4rwWcsA+qkbeQ4amKP49bQNkYJhZ5CYd6Es6SzNnE2GFx6iYAfGZqq+on7k78siVIcPz87vc4Cj3vje3jJcZKkVjdPWa9d/qM6qA4n99nAlQrjD0RajOUVqSCQIdxNbp3KkarCOEE5BWN4JoVALstWlaF0mw5npV4AWwldUqRfuNXoRBLetjpXxnT1CBIdAQxzHNKGMB/VMyyd3AX06RQFH1X96t5nqquV/og7WCoOy5m0xVgftHr+BwxdYBbwqZIJxDBrBcfRTu8KTIzBso/Dc8kpBArWnvjWgnBDXTeqcZmjB6i4buUPzesmZRW1KJqPUmMjqRoDqMzHWa5GaJ0BQIGkajcvFlljE6fUlohJzEl2mjllr6L7a8j2p1GcMtG1kUIWG9h1NuCbnVG52CDABFBlP7EUW2tSy/XrS8Jii0pAJcCL9NYp9SouSLSzfqoLlsvxv1yG943XncDYEUUQF/2G5GJcmN86n1Bn3MyHK/tZgFeAAmdoxsausknNUKsJ9I4tBJDOSN7QyfG0NhXMmRQWMziDlRCde4l0jU7dQ6qwiBRD2RoACCqKjcTs3G20tkfnB+zpbHoJPGX4ScorgMl5cHeV7rJ4EW8OQQ4kFxaEqC5mpGLlI/dRBNxHVRsNfozOHwaVl+84B8F8aZ+/gU5UD6wANeAJt9I/UjQIr/JUYLw1/xZJjPtM7EvWMtRjx/vgyR/klmCrRFqYSyT8fPawuvx/fNpwy0k1ogiGtCVvY5f3F3Nxr1uvBq8RBF//Z7lNN19OeUNnbS2ejVbzK0WPEWfGbbbeHjzSvIbnAYkSxUirt37KESAlbnifHR0zhTEN1Ki5NHjjM9lEoiFP0MXS4M+yRkcVNH50mTW0St+KSRZXEiV0Lyuu+l5b8G4w0i+kNz6U5RQG7A4ToDTrCV0WNCVkGtRRO0i8LYRc0kYmY6GMfdv/O+t63SPAjJxtRYn5rWdPMKlMHYPdKApiWmCi+RygJS+GrsgzkM3FRnGV94/+LDNCxUKUw6I++sWUpnFSEIHk2AOQs0NP3mH41KfEEl7BBA8fPz30d4pkdp1IIMdGSbEtEsa7KNoP1E/fGcui+mEcroK1IGucSrSlNiUAuR6TnndapyKreORY7e0UxYAkgnq3isGvKAeSTio3I3J8juF3TD+009zyN3FNOvHfk8TrXDylhJV3WhNXfjsNiFtojqAMBd2sCMvTSqeRJF6Bir8RdbNoR+oxTE6rx5Xbe75Z/iFMZRZBy9oY/D0y11niWipGrkwrk5IPp4cqRpen9vDvXIMQ3d5WWcEAABTSCkl0Er7SqiogL79BJROOaK2doAikPNLHP/D9DKmJXehQePk/vRV2kVailwUOw3tXwTbeIbx7OClXdLg4yu6q19I5IGPHhAJ1vZ/2fzB0Nkw6th1aR7NE0Pve8+0mkl9Tm7vb1DSqgdHon7vj1i9NyvzIbLKkixCaQawnJfxHxtWAOCdtkCadlpL4UIXu14CqsZyO+2GJnWchf5NyFFuFLewJR++Mv3178vxycP69V9YOIZKYA9Q2pERv9YNFGohySNs2L6Sc+MIE0VCeD9etFQtGANjGQShSWx8/UNwEcgYMii0zBu0YcS9vDUvTKCYy4bnzYEaVltuICpVTeblRUdUhxIz1R18MgOCsoZqvHRBM9jErqMygD+jeFvI1cL7+cBdXWfKFz+bAEhuXx0JftRsXDXwln3wBQ2UTQ+y/YvQvo0TxbM+C99Fh0U8OFSeIfbeufYwEieXzth9HM6ceXSng5RNzs2g7UhYnvwLCf0CQ9VP5lqt5F64dGLcmfh62x4S9EnKcZmSVtokDnMcLboPrXmv7Wd8JvmL2qnWrSWKhlD98R2dXUMMGz64YZwtbzISjhgXGOkF/mi/cse1FcikxaKBOhYAxr8Qfizue/NvOplho0XxUV8nbky9Fy1LRMvUCa2Cvj0IB5jezSo0md2veFrASzTK0Lu12UkSXk7WSQgIqNEV9EUSz6Oh5J2uLcKalKQydulcaRf2x1G/9Nd+WayfhEsl9xdcsmuh+Cq76qEQdRv73DmJL6NDf9S+W/S7wb7xd0TsNRnUPf/PuEXZmbtcyqa/vdTv8e78nJpRER7y7fz82e/RmamDTsjFNZBhNe8amvl7D1Pz+jRcAwKyisdyXo596rwPbZqpZJbBazyp8yVKRmnl8eMWVFuwL6D6QQ+12L3M9wYiLWRtKe/0aPPV60up777+mRJo/BgLTa3zkJJwkbP7MOBBkZQUvY86xbCyeS3eolu+UQy9NJubaiRNtMisTxMvu1a6Q93ZDnZ+3tWPexro1lGx2DvQ9QArY6TOAOI5UQOgzXzQPa3SkgtKHpWCD9OwfSmV8EuXSBlglwGqCTYd17aTsG2d4lvNU5VY05v0deR6iI/qENOgDj/ANF9kp4X4d9dRGA6RU4T4aeF0mQx5naiYXtsEIb18Nhzrn9Rt6iqsUviCTeUdfSNsT4VY4bX3zbXs/yZnOTnIMmnYJjrWAvc58BjgLgIDeS+6LPRRAHiMi20WBTFj3bgxUD2I5gG1gd+VZ0HbQAAO0MHDq4qi3gOgb6vWIgLHKvXHqp/jJsEL19B2XmmVKz/khgXFUnl/VRE5dYD/V63MZFKN4Kz9UIERnmz4v4MWfxUyX7cKJl1YoyQZU11dnBvwz3e5mpvOau9lnmYu7Dfl0ROc/b6Lwm5FDheAwOBI5BzD3VHNpZ3O+v5J4GOBfPCS51faFs75o/eoM+AvUXUuQ0HYeft0p0AbJtMeYt5RLrdiaFOHs8C6NAWM4DQ5yRxuyEPJTZReeja5wuaMINI0MpaUJ3oEP5OUBwafzq4HyALi0qkkGEKBso8kqil4guK1df5ZzjKTMrKpnCwOy+Y2XyRSudHOuQS/bUqXBD2Rn1hnOBiNBof8p/Qz4CYEab6klK3STHhL3e/7g1dTJqA4C6IpMaur/xyvHSnmDWQ6JFFqiPApj1Leoxm3SldPrLHI5OunTiMFctMfaPiReyoCv4locIjb0tcmz9ZrXT+AQ3gm9PTNhdIEiyIzojRqgTsHrLUWois1kTngmMWHdWaHwlfa7S0y8B3GCkfx5AUjr3+w83p5vSa386QboV6U3bKf9bU3LWPOnivK8cSyYVK2EFqo59BHCE75psCsBeYhSHtoI/IHEuMybDJ60A7IXe/+H1rlFLH7oqOYbjDhLZBfD0Z9W1zT791McMYSIiLseO0uGJZeeYt9sQlMeKm/hoOZrMpMzSTm/UfZuRFxkmuT8uq3VIQkzBvOAJqeDhP/GWsB9ykvjrBL8xJ00bcrZc6cdovRdqXSXMv4mvGa6F3Lt0N+/p6XuZLUTHbHDGU1iLwJoc/ATorFlOIJI3CbmyuJu3Z7VgI4yWuKMFz6xzSlDKRJLf0UmlE4O22UzCncRtEMZb6HdeUHO1U2oESKE7rUHCW5RSz1GtsXvOeNjz/zcWdhjmLMFXloszcAsAAAKBUsu1EkwOXwtOvdu7PjW0yjO0os+HvYW9aow4PqkSOGsTpb6Le04BJB+psYWQhdknLUlwYYMEAPDgyr9ixzunP5d9S9RGkWGLYN7Hg/tyLitqPs1j5JvhGMDvOCrJf/l5t9/7swQpxpj3hHyIObPKDLErroQ4cbS2PoXc1YS2sGolYjBcy4iqybvtvhMKJxKesPzwM6Dx10KfN22auVGoEm4Hmr7aTjUezXhvjfeb2MI4v/O3hq4AW26Sk955eyTKHJzhz/oI106kCml9V4gQ9UN7D8G2q0a97AxK9oHGHV8VW6hnJVbso2qLPtFdczecj1oZDxvWSokAQV8LxaSkNXNaIsgXsWQOsRFc/EL0dkmXaZ/dKVrjV92Ow+JImm/gPLsl3PZ2Ew2KeRbqcr6jeDffh1+JQ8Jn+PIJMABFeErTzKU2f7ZlIPoibG/3EGfhRiLgaU4e/bMwNjfJ8cWgcx2bASRX29MgiOT2m2oPulOhvdsaW6eHPaEIkTFY608PTFD7Tt2ZnyoJdbewsd0iOflAQkSh4nHF4TpDwBejn0rL/kq30/ixL/nhxNa5Euy6ECtQ9yG3ltrVph9kGlnDd8Myh5buK8II1z3tlE2camugOsjfZ9zP9Zn7jEB8ZwKXGDfyYTx5Hxq+KhJzmaS84uUkurocA7eXVSaiWQTdGKzNdKjiv7UZLMmbXv/0V7TLH9Msu07dhJa38ltNXPTZO3753RWdYYGYyr+dBVCcdvctrfL14ARvpwUwsxkfQquH7XQ3/0WpXnm/5yzvrMPBC3oUW7g63hVqWKkdwftzGxHthIvWiJinr4liSS//YWawDW8jXWodzCqd73T91hv4RPgNJ7+Tro2oTMQ+4u/VBkCAG7G524z3fim40xxdm/aegJ9ffSnXciuyIyh/iA3w58gXg+FkBU/PaERNH5WE+ApkJ2dJ6fswcuA5zWPQ/CLpyf/FmD+y1jU5AI402rGIsBLG96/Z5bTHOLahFNGf2lqwgAAAMBHlP/2AdJWdKbCX3Ym1sdjS+H/PvVdsKmpHXnTpqsTdL2aN7dL+Qq8dPiTdFXOh5uQbQOoflIL8IJxv7zT44LAxfaizGFdsyVwUAFV5b7aTv04lqDHIhhyG8k1wW2GWLvYpc03zlx3ROUEBQP/FT6sJCC4k5Gk9mrWwLTOcdWQ4AJyRl3oGhyHY6fa2bjGTpZ5mh5mfYcCZt0xVESgQ34sQhUf4xDOr0F3YjaAFnl1oQXS8ata5Qlhwr4v+d078Zl+Y/8nZQuh8vBLx4Xs2gAOUkpE1T7WxDYRA+BkO7Fc+bRS0jxJSv5olTWiIk7wRU3MvRULcKIggCv+cnYCYvbn9HAZXYBuWQJRp4/mCA1vWQNdZMF8jbYuD42qSOUx97lN0Hx/2gTk861DjtPMOI0XmbJlHnb0EQ/vFmR8LUnFTF4DdZKBznHo0SBJExGkaBsJK6+csPEutPSkefeZq7qbPCOZHjll9gZZL1zT4hl0lJQtN2EOuJO0IfmdUBe+3BC9pfF7HbecR4pYjpwt4FZHuhY3X4W+OuzD6lYo7xQlQHQg3HBXEHMWG5j8XFvcIvLXJCTyq8IuZrzqV+rN/ueWQF+ocWaTW+q2S8dQWcXzBKjW04yFGckBtsJGc2VuOke6QY650PvI9LiBFcq2YuP0nS3PtfU0hlSxgdOJG53GC5lTyrBNvjapqP+3PIRo5MkyWs0PtWl1DC8XTcoEL9zGhU0xiGN0Uf7PGjsWAAEZ1/9vSlAT0NCbxNXE7qOURvlH6ZNwg2dKCGb487w5ZtYJdJ2H7WP/4eiK6KDerpvCJOYg9kWSSx/RfAtGlfznaAgSJuiyX0fCGXR6Bk0g9b+mqMtiX0CmgNjmXza8vfwDyuRaPww48VKCHLCeR0syXSJkS3MUHOyxcUjgnKdfU6XT7wyRlodoN2WUVSXA/N0eMg6FFoGpVa0PotT5J4v6H5n+00khUVnjiP1CuRdEWnU64ZkFMNPIoMJeDiMa4PMqQmTbq5B35NkV9Fgje0tVGskN2Vx2DUBak26BTaH+HuE7ZVml9oeLL8oirtqgPHYvzT0Y/kawbGHM/WEptW20k/6btn4mWQ9LGDYgliCO9QKYGEn7JMxixYabIZ5bUKFVB/tKh+jKcSHA/eUL/+xODS+UwGrHfVuYHuPMpOsu1ALYTDUPWSyJMmlxvKtMkfwF97ZopASW93gSqGm5LTnGt6cILwg4u5GpQJv2Il4H0FkOJDqcLVQdmeyQJUcnbmDQAAAAwHS+8jHcfXIUtC/o6SGKPOclWpAz2x+GltXLRJmDmqA52NxQ3D/aFPFuIwIHQamlfpHFlRX0HawV9QGLXUmD71LjIL32S9lcHkCgkSsR0tETCDKY91zWy/1K+a6m+fB+g9PYqsboVq5jBtLwLU5GRS1UZ7yG72ZktNmVSIzqESio2QQ4FGhd4iECyCMGTB9+O4zwwwc3HOR1lFlyZmem/m6Vny0zGp3BzXYHABhQzGULTuksvH8xMjeqS0Vox1OBm+KkwA1753BmHyPKJ0QnRTC8WEB5h4F8biI9aPkZEMMFYaF8aXb624Er3LuacAXoZ9nppSHP8pWnHlK+CYDH638rf6vlHbrqM0uck2cMkoHxU2dApZn9/4jGhIGRL/OFwpAdtZXQgFZQ+gTK3Q62IRwI7eXGeykrNAg71MUcyQEIqXb/NyOErmfblK0DQk5lvflLrmBuv36J47LHKJVG9K7sLlvyLpolVFd3uktmTjmm9YhHIKg2Fo4sOEB/CM6rbk4QUBgf90YIBVnbH/J29JedVSTuYM9kXKoLS5lWg/wFoUwBj33Ko9BT1GMOdsTWBwUKMD8qNEjTlSwAyS6qCnlJdpqjG+80nhLC9SKDDxvlAjnPOFPX0OZ2ZV1pIjjuYEIFi99IJr4DU7ogh2xj7QHQX7p2VaHiwkLRY0H1zkJYiTUyz53PGu+iINJrNACCbZAx/MRUKPm1vdbrkDXEMofoG6GIIe8U+G6lSnKnRTklnQ7G0weVm7f+fvONJV9gIP3CP20Q+miRVFMz7M2Mf78lXag56XbBgapiH9JWkNHQJkeAzFfWY1chBbdeSsUy02u+bmk1bF/BNCVpJri5+qGWK3XWJSitgBbkSjZd3AtdUWd3wgxg6puxk7VOvz92P5QjHoyS73LjBpImTv4K9JRwoLkoh3o5hYQ4xllfEj74FeZmWNZVfsvuEOx7o4tJVRC7P/LO8pkXyUj1z/gNUfx6CLQzZpBvnkpySYbfhtxSMWU+P4A6WRIokh6IFCVjvPtEHgXpUzIyyMUjyKQSHDjIY2l7YQ7FVFK7TRzGw9PmatE43zeZs+munuuIPJTi9S5yGq9U6ZsKqiMOtJVu7JQxeYQyspJ9mVTuS6g80ywd5dwGw+48I3vYfEKvoxKEbbk6SSJ6DVhSkL/wx0tqOPxJma3NVci10PbN+k8zTkHWVd2wd+0K44OZ7BtsYdT34ht0+3mQtLnjWbFAUWF7y3GcCC69B2bgEAN2TjLoSpkwhW9od6IYeaNf8B9OX72aYBNzgFEKU7tIQO5bo9T2gP5yvAdc4eOl4/fDZs0B61v+3sRkoNNBtt5uMhEdVb1fa2ita7NwTCjBh9aFsz+VjhjMBlBte8C/GJiy3vHLcX/ElXjE+wr1ilrszw6c6kEY15TsBLqAo0RuLQDM2Kn+7hRJd7fyINCMp2vffBeS2fnNOHprz8n7Ll/Kulz0/XQZs4CM47ueXguAfgd6uzhRsIAXt5ZwHxpx0qKjN7Y/c1Cx3oIv12mNtsF+qbxZdYlMsQzH8WOmXa4pgbRDs3Ael5jAO3eBEVWa/nXkQ1upVs1V0jbZAKE26vhlpA+6oZV3+iAPnSMCB5zqPWllK4oqKg5ezCmoCSvz673+Z6WLmMezYwTVcDIY2YYfhOAKAHWUdHyK/UWKjdHDiJEoNfbiVtNUPVT9KCp4vPVLqS6s0MAMm1EUnuhPI6E5hYQnDPEOxx3GS0m7Hjdbq2VAzeoAAADAJOgXE5ei2ZG235FYXe5ENvOZk1fq1bT6x1YELiLfYimt6eC1ca87bSZ/6rL40Wta9nyE7WdJCne18oiuz8/k0VmH2Goi5jZW7MGh4r4+XBjYC8EKeKKy89OYxhjFPG4zCcYfCXxfSNrJhX1+umE5slnJZ+HnEb4L1VeluXRlj/NRaJE1E4DG7xELu9KlCcZqsTHaM1jNUcuB11yWlJoqE3ngx5IQdG6TIYn9nEwfjUlnS9HOzxkebzOIj1sERIphaLNpM6tVZnhtjHXAz0tuAdc1yrfzSyTgivZoWHLVM/ivuQqQRKs4I03xtncB6GMOPvyOvwbiJd412KDslyHrBUd33Hy4dsY94Vr84SMp7MubkDAYKSJt0p9+AAmTmnsl+EC6GlzMaevRB41Xoqrf+4ZsYcRqRUNoELvVU1r6I4rbnrfB+dzC6N6Nj4g3VTgHATY/rbmnyqvRamYmNnWIoZCNXzS3KnaqmqDeXpJiFeeQ98L96jQAzQDT2N8kjwAS9zN5P1lfWg9cs2L3RuJEt9kPQkzVwuW1BhIAZDlmSwBHhDEgAFOsFtnsgaxZ6RJFVl/ommzIlG+4UPPHlEy1cyF6tHFHPgQNp26kiOuMSInM7Y/MAYzMm/h3JvjBMhhrdvPvGNhMbbZQosqiSd7GqOd8r8geucdfzpkzVCXVTpEBrLcrlpqVpmu4eH27pbfLv+JceaDslPL6o0wyzHBw2q6P1R1l3vZFkiZnf2EzFUL7HF6KaaiGIgBRPgUak5UySLLOSsLa6kfh+dW8dIkUPFHVtFbJaB45QYMewXsLANcJKh2Mr4VAHeOgE4QrwQrtzWhtTobuVvv9EJU51IM9bmPWDhx42TNmsM0+WtdfVRH8YN1suYGdyyd1/X5VVoAAczM8RZXBed1DdIzVM7DbpZHnupi8y/3R4KDV6fEv+OXLZEzYMPXTfnT7gvhbWU12iXgodSKuIg+2C4xEmT0mM50MvH/vmQBr6tLDhgmwUJNLgFp2n3O5m/y2x968MDwEF+z+eRSiF43g+qEpqbpgAqVTYLepgd4/ZPPzVy5ueB6MENfN6aXdvIMvTaLt1scGW/mq2Oal/6HWFEAUyD2jwn7VuUDULQIsxbqR29rq4tLqO9i2NG6FVbYxxpCHk5rqRnGcVeC5nwPeQltxN7uKgq1eL8Nb5Ceo3v7pVlto7r2brmIlWGmqSftt99rejfjTKHmeDxhxZAYDXUwJRbNT3nwl9b4JZt0ddEZY3aLrMp+BZG7MZE875p7+9i2VrmY7Bo2BMn/Djbgu/7dxnI2Gu7oaVzCc+lIfPNKNxRDpQlP+Yx+lj2QEDtNaw/XUY4FG3adVmfC137gLknxCvbPimcTqNSYrleHYw876k3+EOJjE5NkolhRgy0gJHrWfgqF/o/7sHLdHmYLwGkZol9P2FSQg5buZBRAV9Q7xXsFfxAbNoeDKgE2ZhnwXMZpVGqwCvXi8jTT9k/0T5UewG1UhtLdocLfxzgXMQFJG7hryycurW7z+S6sfQQa1VGvALDS14Gb8ETMwv2HRtvOF+rueORucLBXyKXMyEc460MK6TwPf95iHzA8Thjdddqq3FiS/0LpPdsXLoZ84mPV1kBs0Vtowz5nafPh+BzoSMNuCEwtc2NSyW40m0adQ4sZjLXokRnDzhGrCnVs93F4vvIg7dWB10l0r/4OKN98hZAAAAMAIMjBDNh/0LjWiiVjb/7yJV6kJlFJJLOKSHhoKuZiPECfWkVleX05Vg+XwXt8erIy4Ja4W8nJXOJ2TddtPKZBczLwNJT3BXShY2tXgLCuKrfjIFtIC7s7W5s21N9GE4mrtH/GF3WHxxa6Eut6AoKHATlcyXU89nWCxSLKThlTwwWQEN3+zN74QcXqtmzKyPzzn1T7yswBrzFAIFDtX3kDOiKZSM4Vm/kVA3Nk5G6fQaH7nd5XqqiuZEh9dNhvTHURSM4FEE4NRClSOC6wulOObRx3PDCCs1Sm8nGFNC5rfmgvhDp2QjzLSqWoA4fKemaxJjb6204nlIBpbFNl2Ra4KZAbBqZ9CSxbINRtNlO11lbieWErTRRQ5GuZVy+FY4JYMcBbnpjGRo6J66FJn+6HCERnBQ2BoJsHkzfVU6+5+XXKFNtWkpllmDWGPoGZy4bRMX4lNcjcmgwTpoDr6yWsCu9oCJ3syMD3TRdGDSMqKlco8kOnibmjNrj8YIy+TfIpD93LEDs3StVVad5/Luvg3tNQLsjIIyLCgYMD1xNqrWKJeb3rYCxtG+E8ooQ02SxJMvOdhCGRkEotlAc+lSQL11P1+O3oxfEBvQ69jk4krX1HQJqB3lBBhUy5t7Yud0vLPjA22Pv2q2OOH7TBe4NQtVtfRkigo1+4Z4wVtMW10dbwS9QrJKlUDBlDHaltd5IwDia+pt3mdsu3MjMeGSND27r93Rg5TO4TQnGBezttilwt9dTyzbRwVT/78929RvNVm+NxDTShgURMiZ6P7kBaTn3+krME4lNdXAsOx+q/e+oVuq51rOqlJhkx0ID8POBxxpGjfDsIzK+rUVIK+CEXJhEpf95edXK+gdAf5DtJOrdRyQyI2i3FQGlAzHzM3jdT9HLolVwAfT6z6uVUEq9XJJreusas6eCXx0vl3jMtHlWA78wTRXegDIQSD5y+z56fiZ/TDpiwwHYvIhd8/HECJtz9G9cux1z1e2i1Dye3CHElj99ZforXb30q3iFpkTM+/OayaHif1WizQQARdAkhlBIa9yUTfui1a9Y/W+onrQmVtuHzAPMbl5IKCzzSYX6CvCJI/2lUnn840wtT1AvPFIx12jdTUhW/MzjY5DWDFA0eA9Uht875MjqYeTPYATyYMPku7InBk98gxz7LLtLOWeE4/9RFFAXbBS69MLCFwVHWD2LLF4SYu4yvm+wnMrQNl7jr3QczGhCBNiotnDsUwwCAwiGTbfvC8pgF/8z3p93EEj7NVYyPCPq0U2jmxicdZg229HowDS5gE6Dly9E+oJkkKc6hM+BoqWOv38MzPx+nXK0JAAADArgNWV6FbBaN0flUJ0jkRSZR2StSuQ59SWppq1NZDLz6jMtG42edfdfa0thFJ2KXsKU1bXIyp9oyYsbN764yWLWHEB7H0rIlCJBIQY136JyH8N41Y/QiI5jAoXegwhP3mzD3HE5vgArvf9wcH1LBgrJQ89Anc5YIonmO/oJMcRhrwEbaMC4BZrXrrN2qR/IqZjQxCA/f9cblYiJby/80D4YZxMKW4XnLSGCTYOeEC/n8RnA/U1AAlPVZJ7YEh+u7vc9noa3JIuwKIUAXpE1h9cRypeTCYEOlJU9koBSshU8Jjd9tf8XYFZD0SRtj5ladyD5l9HijsOWimllk4uPW/vkUh+ULWMMXCDTQ3vVUXGurCKiHeMLbBDCfNpGZQnOr9YEUrXGhKFe1chIRgCC3JezK2LXzXjLZ5tR0Fe70NdD71Dcw4aKL/XBrGkGw5z0BdcdksuqPkXrxiQlAy89tKLV/4zYqxlNY5XIZsTYRiyG2HeCPHudy4dPNHSxifo6HStRrqgZ3ph2RUgr4n7jxXiRlM01DA3JSntX9tLDGAA80hLJlVC90gJq0KesJ0kfkc3K7omnntcgtS7yY+yPt/um4MwNCv4r9De0JrT1DGp/UHmo5QeE4ddmZWuxvpFmYLG7tjzYKWTRarF7YIxhDMwbUGmSHdBMvLtizHNQke1utBnqAhtvP51kQ8Xuiu1gkqUZGcO3Nl56i1MerdE8FUd3kSKyj8FCBCSHJwLvHwRldL8z5OMH1m7V3JE111whJ44Z5kiJEp0SjSsmA+H85XeDWhvqlMT9EDZQJhwzBshMlbqrKQZbvJdcGmCDDcdPHT1GlHXNilK3Ev0mcF2vXZqOXkesfYvUZDmdADjlVXVnZHuN+gQxfvA9FDYeWCxEOyOTu+slzeDVYzDMBOyntUNx1N78D7pDfr1uOsbOOX/tABA9jxs4HR4Jx+BmO5gAAAwAAAwAAPO505V1ZrYL5wPg2U1Y64BCsFiwORB6pTQHmOPC6YADXvs809MeM4Nnth2/lGO4WzXZvMuMfYzkf2k7A6T2RaaScrLDcFy30JPBnfsUUuxFVvzGOz9TIHyNO/c0Jqy9sfA6vp60pKkyGzmw00Nw9u1BRf69rBQuFEF7bTz+9xN1QkokuCdVREcHGbd7rml0dwOUw8defZTW36KEi+PS2Y8OOGowEze1LZNNovVwNfnP20iVRBMlqnSuq2hoPvDL2xaJ/ZdhqILwxlduD+XEUSbFgRUqDDTdZqVGBnrxjCj+N3wMOT59TXT7M6WYZCzjYVCKyTMRavcQZ7xeDo3qACST5Y57kIjN/fz+n3u0ezhnmGSVO9XT4g25f/D2+pl28MYvGDJfaz9pX51GZV2xpJkxatZqBrxbgm/0akqjfcTSVTZZtU8uLU0wJoKI+AQLL+6f895X/rZibGi0bmx54zcMBitUnZjEv1itF+uHyNYsOkZM9n497hBwcRNoVDjDbA/poJY336b1Hlapbg2POXHkWrqyvzqG8AXaBm0RHsUAAI+ZNUpqqp/vXs2hqzIjkWssXij1Bq9N8LeGhViU4gU93c4YlQspZ9x9aFdB9CS3/k1uELRtRGJ5UAk8bLHRJLkGrHtVWNb9v4kbDnqcC7CjXNoGcyIQw08pvPcBKBpzcx5gszJWgK16iffk239m73QEWwviOhIz0C1kuF11p84DCJrKMl7AXJCE6oRN3hlwwavW17qRCPGdj03Jat+8773jU+wWgPLl9nrLh19lNJdYEKKx/E6tecN+ZFR/pnJ7SPbvzOyZOnDqgYk6Co0N4jhphrrpATNPExl3Wzyf12YdUy9Yv0AzZXw7kzocIwM/NAKHfoe5QkK4MbwiQ+hBvfFzNO44YjrxnvGKLgCImVaf+440LwSY4I7L9JxEo+NFt3anlvrei89qXRUZiXDHT+/TiTkSgb4PtprM/ZApyTNfGiP7sqFirxxCqiMjSeVVn4iShAjHr22+9DmBzjkNuBGvIPtgL/waCWEPLZOqAlwzOX3QXFEK5ZrbmocY5T5i6A/7NW813BZB7Y+yB9Tvcbeth8qzGwlPmBoWv7tyfaAleYAbxqft25TksU+LX8+3BRlF6zMoUm2Jl4u3YYSxhm+RAhzef0SEtb6BZfzFeb1abOE6lEouPQ0PjKpn0NLcYcrMM6jY5+ivqo2qxYJcfPeKr2TON1dnVtm8mPUFJI68UQ9QmSU9G/d85shl3VenqVaQizIOcy1P7VVarkN4a8zVF0iKbm8PX6Guj4xJXip2b+GohZdpHuQtAS7PJa0M96DkX7e9boUrokmzdbFMuWtexXF32UgECUsRYrkdcWyEm5ph7DU4tQ0Sahn5ywp6Dd06z3TPRjcaBg5BHaylOf1J0/88siJGfZ3eS5y5NrI6HNr0tAhiP1eYFvuc13JIxBur5U5A/sqSzb0eir1D+3VAe/AgOrPFLn9mbMW0MWQ+wYqDuowDa17pJXJlknHGwUUGPoAAf5dxKinahu0717wSe5ds70E4us3kwfyUsSzdY+lRxSwdljYgsGCEhb44szqJqyVfNvnSl+cWqBzvXjwGNff4K7CY1dmlfnSLAlYrjQE7OrRigc3s8GIkE2euDI9Z9ivAPZHdLE/z7wEBgB0MnJHG2Vp27RE3jaClLpNYAQxl7XFMfrPi939Lb8YV+vVs8jfPNUJ4zG4iTXAwQ3GJyYqcW1X/y8H9+sLkSlvym32jRIxUDujYj8g+bSziw8olYTISpYnsKvkYyuTm6LVqM7NV2o7bpkDQnW9Vvi0MTYefZnRCfrtj3KKvm9YrV/MDASgVAV2Mre0jcv7tQjdfQGIE7Oy8XbJxT4nyjhVGiHeDN/Xneyrcymn2iOyThjc0ziSzym6Y9uykXXBqAm20cRC/auuDIJS1dCqM8I5ZjPr3y3WheTPoDdq11hCby6rH3vJnp13lNPCnaoeURQbpeYnfuFxcq3VRlbyPH37cU8aq4yiAXO+mzKUuUh/2trIlvj/LinRF0ca49J9II1K3nlOBBCHn37mr/JaB5DWOll4OKy3lys6ZJoo4RGrcthyxEuJB7vwiHQ8g1uRevTO+p7hrJbY3mJaqapoEyaIDOXIsM1V2wnsUwDErWafvNLavzc02g74Y39VVlAAVEzysAokzPUL1PvwGhlzJPS3888HCyydH1ewmag2180dlFPAtQckbkM9Qj9Kj6AjCJzHjgtZWLAuZHaBc/H3qpcavQYu2YTX1gkjeN9kfee3ziQsjR2sJfeFrbWZkWbBr/0Id1FKk+l9XGpPKyKsTA6DnHnXjeO5SfvYuhvUPEf6wPWLNyTk1CE2WeoGVuZ+M/aMMrgHU+wMg4rat9iBrXuEMioj01s9U7cLGAAAPxAABDYcsbmbzh5GjXVjv63cUtm7hnbUSAOw8xHMzOh/IjCteMRbIBnjNbeBclYauDGGGu3vs/nxnNRddMZqmJ9qH7/GoxFJ2hQdglA5KmSt7BpEMGwNIw9O0HW0S3i7S0fZUSeM31DpzEDcZpM3Y6l6AIqlJ7koNdXmv13XOr8y8IIoDT/M612V0kZtbAfXjuNOE5E+6xekTPDY/PgUeo2NxAfyWIj6gplRCrrfPIUEQWsX7BYiNIbo1FO0Lb34TZbZ8ZCYIAq3W4/qLtF3nbtwra2WJscGpn1V4Un8XAzIFY5aDjTzAvj5fWZSblpjc4WFzNjXdwEh6SGaLN4k10eG0lRwqDoTF24ICjO34wqfGBSTfXifAPe+OpkeSev/YwSnTSDhzkGvpzDKAikVOyvA3QcBnwtZAJwktrYHmelOz+MQbp0MnIn+svCIevZwSEYX94t5GsJkGgpcWHWSR8q0AAAAQGAAExM8IAAAMAAAMAAAMAAAMAAAMAAAMAAAMAAAMAAAMAAAMC4wAAUx9BmiFsQ3/+p4QAAAMAE1VLcB/3Ha5YP4yHL5WbDZe9lqOx9FkXgZqf5J7YToFiMj8HkbNSEVRBBd0YgDyZcSskZZy0d7IkaCuLhHmSLkXr6Z0PGagkDXZ0Jz6VYmA8+CjWQCtg4i51DfK965sLZ5LW7BG+ze2jYNUr18KqFkQ6SuIyz1m6yZbGUnd+95VGwZK8XurE1mV+Lglrsb0Z8XBUjpRUXkS5FBcL2k9WvpY4Xlu3ZklSLnLmU9oxrz0YctfoN/7Esm+9yG2IYukoK4mwXfni+esm+HKt5OgBgJoSmJ5DAZ2nBRzXWqVOr839MLMZ4HshjfwXDJjXhGEUm7ZeMxSZpspNEaQ183ObaYyB/AGXJL9KKP8X+qjAVr8NbBvfPtEVi+toL/dfMqrkwRdtHbQxBZTvIoS3CmW13QbQ0XFDhVOkK2Ed4Didp0zAC2xC+RwJwpfiywbuUUocnbH3GsGo7lA2gzH/0CD+r/wK3/nHp3blzBMkoAc3XvSJGn02Ps8C4vXkcSgmigV3ziZlH6TCmZAIbZW/SEdXwy9uGAD5BUGZ6EuGeH1wr8f5SiSu8IvE1dQBPnqT0UBpv9SPMsIOaVGhB9sHX+vg8CX7RBN5WX1yrYrNXZ8kMBX5TSbrXy5ttq5InYZzIk61/oJWtlyeJjfQFZJeSjKmUsYyRAboAwz7/6mbAdiGMv7TfNJip5zXJg5FumxXH7nOLtcEYvnmVfimAZDsi4c/oMpmcPmrVG8vgjvWTCYMfK/RCgtkM4fv+PXtlMM43mZyBQDkVvhgCV0icVWtMEF2/D85GUb05MiDqV0KJdFBEqsV5lVrRCHlrVJ99+8lIpJeq6EL8uDWkpea3zN+rPj/hqtalKvREOY4dY42krN1AJF+btXOVu3JrtQhCxRTSzYoKm4D4CCMT/x76/SIWtlos5bOTVNigLc/CUXZuGbY6pYBBXzGAYU1My6UcJNh/B1CUDWTxFKxp/DfPk9vftRSDixQQZIa7not45YN9b/1QnlpMLQQvHdc2tIJ032NW0v9nKenHJx2mff2D1b3Ug3jMzL83GBgfysfaXgoN+QhtsiCErLujT3u0K9XomQntJcmn9Uqz50TymxzIuT4rrwz+W0j59Ks+4dpfNEFljHd29mzM9KePfHv0UqD+NzHuIXPgqWgLn4fAeUAsy/3ne93WYWNbLw3+CrlPxaohX56yPNPpaWKuTPUJEJGbE3I4gFjyJLmxRzQnc4qnanRsBRUbA9S/gCADenHLlDHLbtblJXSa5LYZ2L2xXDnYUopfwF6ncTMfIqjA4qKYyVPWgsZxPi303WJVYWMpkaog8JiT2lGK32FfM+m4alJOamqt2wwO45HneNYDhtw0VSIueRxCPQNviFb12dnAT+yL6U5wJg4LN38wPWGOVY0gzOgYfPRhogW23NmZuvxAmxZA1q5Pnyht8jg2vf0FwsE5/pu8HBkvvVl5bClMEpDzml2svDJZZEwoZ/UOetCYkPK6Go1kSO4zY/vNDN2i6Et3EhcmlRAGHhsjF0NRJQsqI9lY71YWIFVjXt274fJXsNYbL4wiX4GZqKIrnpqeEvSHeEbstE2JNYJkDZiSEetZFqqgKlxI6SGudOTueKYQnJejL+A16HsrSPm70XFq+cyS57OoxCXQnsQkWnv7fqZI6E1ogop8iTrjbCUxQbUPLRk1nxiBIyIIxQbsHU2M+VypxDXBCaG2gfxxycytj9EVvQuVmnfv1w2t21XjLgYIMs3JRJUUmSU12oVB70hV/gFT5j/tpNixce+rEfoHXhNeI1r9MiEMIsriAkLl4ARH1dH0ycBnnxoAAA9cvT+/Um5n3q1FPkMd9TZMGyJQEP56VEzx80y2YidvT/Yf+Q0psOF0GQY0iBo26mxgPbZEJsYH/KOUIL8o0Enhrn5jaIrXfhzsRJ6SBJBgESNAKH969bNzFyAlGnTnl9/CTfBJp3jC6359B0vCQx/Wq7eRy/CpjbMIT6aWRM6dIw3bT18YRQ4Nh/ubfxc7K5WcFRcfErKNOhl346UgGo+I7kG7NktWO/9qXlI74MRGCgWp/snH/W52tCdYVx+ldqYAkmAej2hWgXuipyFN4e0F5KTl1pBr+mmgDGbQ9qx/6SYt8PLhemcjBs1503l4XS4Qa+lP/CKaA6cIi1X5XlU/yevkLnAjkO8lRUOcr7vDBQcl0yXL7DS6IedQBO75J5laAlBt9HttQRXBaU3CTjMPPk2VAkv6bNh10/kgPxZ6uVt4sf3IfSPvgpuSS4/ql6px40vcr4zlQ+TT+RrRiXUk0Kel1zQWUSSz1IJSvvS4LvmsWnFUzZSghy379tln6h9P12Q4cVtxR9l16Bv9MRf0+JQxDYFtqIg6TAo1EO1guYHlVTB3+i9eXw0GgpsEZbL2oFrSOzmP1fhiwZCUHhEG9GyYPoYMjddMCv6RfxG/A3VOMyJMxFMrfEpocFONIWonUNEJCJCeW2h0jud/umRCBpbGYR8CQHttv7jG1wfR02kN48Cp3hvpc0ApelS3OwkK+TtF6oDSgSnfZP4IePHqrfzMXP2h1hl6Guo40Ts4eStQzGqUUdsRMjt41gCFal1tiAZUtbzb4bZmvNnA0ngM4JJGJGhXvu/pzA/b5CRZzR4WtnckgtMPcLw0C6JQeNBAo9tvbRITULD7uKuuTALRRooLVIgsR9IJ/Q/EcKlhjAYp1PfqnGJOBb6TgK7qjax5XKnAQqO9wxk402kxPgqJ5NuzsDzb5YwY/9+c+AMy+MwvFQLq7ovQZHaKOPLM65ukcKekgeFFCuuMo7V8Yc558exByEq/lhOrHBGSQvP9QBhyIBxGKcCRWXeSYeBighUP6IJTRYSDIEo57u/De5e7LCDWmGvmvvjfAobndTkutohduhFEKaVeypLD5bp+Mhb+FqF2guMmJ9CWnyZ6p3A2qKeRZZzh5Y9F28TjScng+fWByxdoB2gBOJ1+Aphcu6pFQ2EFRHoADejItjpf6fZsFo9MWX2KlhMkj0BTw/cl+7RoP8cqho4HYTuor9n7FEEy8b802a0FUc8/eIOyLMxMXOykupMBhiiShoDH2pg2knGY5U4YZ5QDOC+Gp6gc0CdKuuLMW3qN88WLSNgG/+EyzC3yrpUMPtptvJ7z6RLOB6WIwrba8/2+oJ9GKMM6je0h5N1/93BXHFWRm6Sz0DNvoI2FRVpIP/78qJIInK46oPeWcG33hbOXuR5ThBgCO0IlTqh0GK2VH6P4Q7GlQPTBDraGACDNd9EloKFYiXMT3ITwU3034+fqp6xuBRhd4ToGwe90lUfqC5w2sJ59kFvc/tpAXFvhNU8KDR3vgvTG0Zqj6hM6SuQMa0ybfvRFSDkqE38sGLXA30FW6lXs91QkhBzkUajdNgixMA6vccqFFveGhE4Hx+yLHYG6OKUx+BSCHAyDXi2DO2z8ouSfpB8SLiw52WIt+QuRla3Zytj4w668m7Hw2Ubhqvh71poiPCjYvSJXjfAa71lyXBqPpieplESky8gkzmwfnDRCTGxiSEURxbAPtO1ANTduX4/peg2HNvE23T2HfWsQoWGE+i8UOkgqye1hxoXjESS+S30gsZK66f9tdPFBr8jh7k7tarpWzxtyQKY+6RrfqZ+KkBKFMK6cWFKbN8zcIjGp9/Vd7UEVcP9fmncufYonL8BrFyq4mnEzzvTM3+7HdDWQgDyoqH89lgi01LZji6Wqq+IGTktzrPaCZzrW2jcVARr+QQf7Hfd/vpBy0aZscjeNLqmiun7qPVIgsF+Iveagcua9chHbtFdOshMYZxSoVONnCleSbsbn0mukf8QTBjunswB6BwFlgUWP1SATIy8lrdw4QdFQqhmlaLmJKR9yGEXF5bbtsUZiyhAa8qesHjUuZusk9UZfXlpT0yq+lNbdk5S+kaBbhw05Ftx33OG6cUDI1III88PwoTp6ShYUTqp9vQJAjJY9ikoR5uW2xE99KpGAJQwFQQxqSfd2UNIuPGu74yLswZG8Wf34RCE8q2mH2NysFtt1Y89vAuEaI60y9Plnsv2fjLrkD712dmCIxxSsF+4VYF7YhVF02h5E3HQdx6Rk2nhk8eg/excOtyxUzAL4XXR0GLv/PsHevJ7Me8NiY+v9LzdJp39sNZgJccNKMUQOKIxC/dYDhQKp1Qv5G3rUfYbtKbB5d/9Gm1Sv9mhEPHCM59n4F8DAPR2G7DPTgc/B78zqMh3f2pjZfk4Ih5yFwRgA/9pzjB09vQM14bhn6zW62xC+OitVkEUVxQLuTq4OyGHo4ZXRfhe1nGaUWV/zvBncaWScwG+33oIvpwM0mqv6MUnGiGNleG97A+ClvAo4ZD6QCh5j2CprIInh8B/Y3t8TPlO2oVgno161PTsLwb6m1P/ZW/7DOzCsJUWd/11qZ1loGKsOGXIdkOf4bPNeY/TLkku3RF2Ik1tWnS4CGo1E9k8QpZr5dQ+twfMKepoXGLuOL/mqzaNVw4Y7f6UQTLhnQocNuNzS9Jz7Gbmbxb/DF6Y0lUFSctwWajD0X8NPlmlkvw2dRnDVelcYcsC0v96gqt3emXqOr8nGcm/Cq5aaw5yakBfXMZTH14ndOkV/vZa1UNqmbX4lthdHnKgWCmeTHBWeWCeubaqRvd2RKDrBRxmol//5mrnLwVrl9g2sDypSdwiY+g9d1QMO/8a7nMgGbTDOhhVvsIJlQbUHq1OrSPVD2AjBhVb5e+/ZH9Wg2JbA3LgExPCvcXati6BxtwpoEtyV476FVsJ40rtYkCkC3jciU2h6e2p9A5CBTpzg6lp1vv6JdDHw2nJYneFmlH7zDIhwXNe8jx2EENQY2RcxktnYgHaXasl/8AxDQMQXSK+JBc1jok3171w78G3I2E+sAZH5Z0cmFR+soDa7ZqM/BMPJUz83NcD4FNnDFyMp6GP1aepFbEGKJFPJh+++DKXPh52av+LnufWUDTo3VK63ptKOy6i5GYTy3CKndf9ipHBlkQKBaYcJOZh0pMBRrNQsH2uXCaLmpsGL4BNBqFpeE32kasckvwbaZYbpJi2hrN2/mD+Wm1I09H/AQvGJFamS2NZ8r3qef7tzj/dHSG2kO9SX9lLfhR3kfgEwakG9laxbIRp47Tm0W7CNQm3ldGuudpWnqPaK+y0D/kCqe7a0u5Fu9/Q88QSQm36rxz3kE4u6EtfQsPng1SR1vKQuBSLvc3RFiWXjOCu6jXkj0sbBQyNIez0MeKQxuksln0lIl0lDR802cYRf1EL6Ml2GuYPQo+/AsbWCAy+7y4ZwS40vTWQ1MQVASgllvFlwWJ1sN+XsUh3oXrcV3VAYj21WeXlEI9xBxvp5H+X6Nuj/QmQQFv0P5Rz1eBEaGQMvj/n9dShkyeNZ469+gZJ9tMzryvLHxqck2o32d/zgjbOHtyBVMzK2d64CwrMM9CAYEYMSZKEwb3zlvb2zdQHJqwWOVxFGRXcafHllmxYMUKuEXwNN3IvwDqP4COFjdqBP9cn+9TRGX3oyaOUr0T2D6rL7hf+cKBMsRCX645Cay2KyH3POkMu6O9t4emNqTReNeiaD6mh1iDY45uhl+8q+JBPuGlJFxiKuF+qYPl+aDSnyUK7EQbPbnj4Iurk2iTyxkNmERlpqsibHruOVGLBYpAUkqkOfzq6iBBaqUSDD3qAsuJ+/ihsRAHlR5CdzUdjOt3cLq8i43D5djUn/mV5pcYekk+jnIIlbz2KUY7kXxLf9hrcsRXBeAOXUo7eOoXlmWhMEGc1wj1SnZTe8nTa4FaPLcQ2CN6CJB1Vuw8EuJjUoDg8oaCOIQCE0L+DnIstuWfTxOxDgwo4qCRSwul/qx1Y5+6o0UcZ5Wl7MUJGzGKCa03aHNarWt8ilnZSQcXYlUiYyfzenY6jIrWsxZcFZ/v//1pWRDneQ/PsLiRTruTyY6jdoKvnfBBQKD/9yuLVoI5hiFj/wHmyIFurRpEIgD1+XjIbGpbRYSzSrjHrvGQXiqIW82qg3uaVd10DrQAUvClYsTGIVYtd35Q4UuDkXsy5Hi3Z6m5u00C+uoLFS45C6tNX2cXsuTQfZLGU1FRe8OBOAibqooxOMLwp8UVvMLQDqQCsdAEyKnvTyVR6erfbDNu4MCQ3zSPXg5HD+OsdwrYU4765rmkEOoImGp4f7XIY7RiuGe3N2f3i8noG6iymNAJnPM48FhhMPbIJsddAD2H/I/d8//bHfUYT/DefX2lZ7rRUBpRffUcrm5kj+rwVfVhA/JaJhWVZF9apjRIEkzvPuGCQ51Ndv8TPd0M6xtJf26dcVG5djRpB2d451yn4j4KrCXgOCQhofho5V+75m3ORiR3gj9Yt13+iDiLSL4d8jq4WvegO4qo55lxn/lMmnw7HMkV3C26MfFZBT4aH8Qzg2Q/aRs52srG+nq8Y0YMx3U0ZCzn0TxTBLuzmxxSiZJrZ5ekcpuROTrE4QkooK8rBj2kOqTD5jie+uTbViVh+TaQdUt1K/kKCzCQxuAhiRxmFhN8xaFKjcZlavTQTNue0S4iE89CnPiFSUdCi2weSRs71W9B+ygTzVpQRt7LgU5WJbxfIpb6Tueco/7vkiWlrHbINu9SP8Xv7t1yBM44keon8/2ApHGT3iwu7TNEepfEJRC+6QLnuLfxRkfjJjHcDQF+tNw5K8i4SRLheVZQH56AGV1Zvi32R7I8GgZaMEM/3znANnLa3PuimnHAqKFAfCCz25Se4gv7zBYFBzdLSYrwP51mS4jz/9q2ZBQwuOaWVlxQJZyYXZTSkWGe8xfwDPSJl9nXmNKidJcDLtzl3T9U4zeAZoQVaDTiTHYotAADTFzVy43q03dAFV8A3M08roIo0NWuSnpqEH00Oogcgd4WJhrX8o+04w/6yQJ1efJWKmUMaZ2f7vj4pRBCfMWAx5KYIwdelv1zSNzziT/6Sq6pC9PXa5hGFw/tcscZuonsIJ/ZJ+hBSkS0SYhpgutc+/VMVOvj1Jdf2xbsRBB4TZD8GDp8CzwiHJuuW1bf1hJAAtW2EmaZ0GP0+zvIZUiSxN2a6PnsqL4SqezCvntqaYHkqZx2ejNnfj5bgwFBsPe7FdSw4Ga6/Z/HLcCLnZAhTly4dRj2MZSR5MdEzUmFQlP/fPspdbakJE6AaleNJDvOAaiF1ptPt71uYYTei8SsDP5n+Lwu9aiCztR0hhpMRPZ65iwSjl4jnZZ1fsePUGSg+kHIkj8RWHg1WBmCBkb1aii3+UNkXA9LI90M7Ip6Mt7GVOv02V9EwlU5Ht2kF+hVJ59tZfR3b5HkOEi2Slj7blSliFFO2c1QzxAqaIdXZVxk6Fhe51ubbSM4qkEs9drKfiUG0Wa9jV8BiQRCeemN4rxPMgPvWSYi81VSwaz/0XQ2OPNFUCrdS9JmIAnSYPfHYLKhDiqUqDZZq6poWfoEf6fzvMcbBlAB8J07xZkgfsXyYkz1B5l6Odm4/Xm5v/iQz7S9MbjIlb4J3kHZNbH74SNd/kb4dgZdlKHBvwCORp72VLlqi0VA6XPVute+OBb1NnGGNaqyaeIHpQRDsfixVCVB16whguEIzH9frRPp5iu97de3XIavkLvCRTOldGcl/it1FFTVgKkjJOU4JYxyMpnEKYeJAObRBqWjGHRo/309nF/522x5HwXJqhfV4x94RXUbfgEd6L+jR7C6rO6tE0R14zvgpRHqRWhh6TFyY9Ur022SZa2waEDS3N5TqcsF7N32f4RcuJ++QRybHNp0UmofBrfMFa+/F5PP8wJP1XaxppkLcBPDWVkJfY04xduVx5/AzYncdFC8irlvFkFe8G4ZtNIybkiGknWx4Z6ilfzNtCyJkPSWhfWcV33j2wTTqzKkKutMrsyxDTjQcj6zRitaJpOFhOo7jna89kiX0AWjt5mSuLJgxAvdDoWqQILWnHZ3gU7TkKfNY+l2Y53JoBa1MIXI258SaEoELS1uM0mQHS+Y5KuQW5UbtT7eZp0MeAvHeuyDz7Fgu6H63jhkMPT+1qGaYLUrIhfy/M7mnECShOuMf7Ce6bdiq2kFhySkahc4D4eaUVrkgPNjvxqbbO6F/nIks/zRIvJkGnxsQ/JcRTGEybvwgLc6ddXYq7J8TSNwLp9XoUNm/K2fHexaMkxNM7zRnfDp5EPRFcFBGfFr/XrPPobr8nDI76zG3cIfnHbYaz9cslTHYNQD7QysLi6hNkoQIfT0y0MLhD7pfZM2iYC9XG2pUHb8nh4eOCT8yhOcrHi6gGAa6wtrIHZnWYH0wfFjO40aTWkbijqU4GeCUl9R+QM72jKeWcmR4+JC388HYcDvEGfVcaen+2VgbtE/rCuCPlLzI7qnzEM/QmiLVO0R50NN3gxew+19vmFTLx9wXi7jEKhTJjvbyO+vkHCEHBT8eR3137gT6rvbEnyaAerd3CQsWU5VkakpQ7VrehFDVyQ0vpC7PN3HjLeRlJr59ysciT+GGkMnKJZn+A+PelxVndrZov2ZM0zyDL4tQYo9heZ6ZslTJeCVB1qVwQGC/xr74edG5nB8gRPIjma12U7ziJFgbby6IhMRvNc5RcuzTVnwDuOafhSvOIo5S3fnVvm1u7U1QY230WDDN3Xm6Zz104y7M5MLt2dr6ahEqQhWIUHYtCpp9O1S5iIEKSKlEIrcxG5T0PM5a/+uUUqeQ4MXOLwuH3u4wn3m7ef7z1x86tCkMWwQaJPs314x7DSReSvZ++C1zsqaQsWHczKp8CoLVnbBguHd9kDg9+ft1ymGGFPZTWNNKDrPMTnqEsnk9gc6aBfC1gL1HiTuNsFjIpo88xL8O7Q6mkNVBM9Cp4+mdl2v1/DUrnifU94VbAQwYDCepTegrosWOOV7VhpJe2aO764SKi8bJWEsijAihashQu7JguQQhrDDSscFfXSh0LG0qlfEH981NigF5aOVR5dtIye6WwdEO1GPxH/hFI9YHhsfXO6EAmqJ5T35w3AJ2yFqYX7CiVJ2BYqfVSAENgnPbC5aMtLZ6elckE0vboxON/bHk4KSQwOExAAAr0Pa4OyUI5WmJRVOIp3ONshUpfSJc5Irwy1S73mNvdewKD4USY8dcLQ+tKxLzgvHSIZEmMk8Jx1wqdSWNtkv04m/EflqZ+y8tFB//jCccwcGi4qemATWXfU2go8HFtuVxw+FjEiM/5SDm4EJzB3iDJg3cVMeHyY9sDFPjOnraffCWnTSkGEU75KCrhN+RspvhjG13cYZQfSQ2E3aGtbBS3JGY+EnoKgLhW3ySQbKF77BVc8qClDhZoAlr9vXzV3KmpZLOkD+l6Csu3LZ5EINy6moUp3kr6GwdD02SUAoifmWUcX3WxQUp7wjNUJ7hcbi927p2Z6G4ixiQ6zFmeIvUSbsxzAHY7AyAoq0Rthlmxf7+CTrShL6qIOeCYS0a2hK9P9sHrWf0Fou/S3VpkmpVMijzr7t3vCh0iJUPPV7DKZxDyYGfNjWEzSbmzmMhdH5ZtH50qSbDrJYRUnpWube+8NZFqg/Gwwh5YFLlUtNHSSUFxBPedtr0qcoYoUypv9RaDAhvFpN9/pk/2hg3v4Www1UDM4mJ6o88gs+T5pTy0YuTpyNwKZPDcrUCqQ/Z5wbrf8T9SoX4z/tSldOkItsB62snpnWr7OxjO77UiN1qxfT5QevfOUkDCRGWpGpc6uFSSg043TLpEvLFs7O974QjVQOnaoLwljnqUOriXc6LhAJbdHqHAONuvJumGHWUJqQUVwBHavZPNGJRJJycAKAwB49L3JAhXpj9ToTN/7yyaw9yKqtAQJ54B3zP5cP/ruAzSGofDhMF+npXIWFzPbE2hvdonu1mdeo4Djjt7bf0gs5dDliGh7TFIuB5oPvzCuSo4qsbU6xoProv3DfiM8Edi9JHtBSifs4RIKlpGdv1mMdB/OWsUok6las1T24ywTnQp8vyCPWX+JGpoQ8KSr8lPL6yaDJjUksqhZMjABOk2PCAnpB9D3bt8euZw5/XtnZG3aSCb8ttqqt+/1h4786a6tbt5ihtvv1yypziQORl5XGEGU6h4JkFIgz2buwdOxvNEPETGeNxVUqrpgblxj24ziRiz5wiNUfNmB0TegP5KToSxtj4g2zyud9lH6ou1uApAmm95MOgoo7U9blSivCRVPhy4cZLu+Fk6bIyfNSt4XvsQOAmycwUM/kgTbNhmidQfMqcfJAKDmXMdHk/qo6DKLUj+PB01TNw92khUfak+kevQIT7zalLdJUzMFrKfctB966vEMxE+HCKgF91T1xIdodXU+ocUSYM2jCWZEhNtenGXxeSDh1EoAw1QJSuRWlP6eBUm4hikOWXWWrpWYp31dEsCq/LOR7C82A4OohI99tedf3F66BL+VtjpHmgSB//geJVFFUnwvdq6TQVHBd6tqS40VqPhuGyVmwXvS/OG2pk5HQ4ALGjAAHtLJb9T591QCdyxqlYs0wvy2xqGi5L5T3ICfzgVZ+8YxhnBsX7Tq72fBCIO6pr5RiZoy2hBx8Ejg/Hrimmh985D3KxLWjpehVpExfM1/fO4fEfNXDeIpoZIMojqvlQGP4gjENelJZp2M+5RLy7VVDxfOKepUqA9Y1OE+g2WvKkvh9rq+GsGT3JB93IQaYNGWQ9WprEsP+IbjvT54nqn+JyApETZElxzgKzmZtTf/oLhB1PoS4s0BlEcZsJdKGcx7uLveSViDpe/T0Nq5by4rXj0IFY8Fs1yxL0okFfOLZFQyNfsXviXx3PmeZYsWaTKvpVRVj+oaAijPcxG4+Jv5v4cFha3E4zVx10eQ7hvdtuJmQaPoUuIy86kPycyvfA5CGMcdcJ6cUMXSnffdSt2GgqJBlNFijz5goUyVLpAD+KxNetyzJtUkzBdqXtLzf3o7FyZpjEQxoIN0bz0a+o/A3wx83rl1Dy4r0IphO/eG+RJOdrB8UtuA6IzkgsT5ZfsBN8aoQAyrwXTBYm9jrS8ctZxKpfmDFA3nXe25ekNhXYrz6L+89LI9hGRiDC1pR3aINY3IlcLhFQ4hvdpJpO/0DUuQTYFn17P9MlmICMlL6l2unS48M+hMWOs/7CV0i0jA8wQUjgcBG5Tyi+1vrl/YQpY+oqJBWOhvQpeW7HfxMMWGrpJ6vB8YUikxFgAh6hgGLRPSa+DFOCO0I/344QxvFPQiS+KYyDT5YdNBrk0aPdHsBOY9JszfetZmoMN2ByJ8lLslxs8H2okychGCmam7jvsMe7ZzQiVqOVcd+NS26TK4TKq8odFPpkPoxoGT8N+xwgQLa2ErXUD/Lbxo265Oeu2B9aref0eAhonPkOSEAJsB51S5M2ZIpvGjXehAXiBsEmw6epIO2oD7L/61JAwzVl45+x9plObMgI6ZOeTHVX10NHuVMmx6eLT8bYAingNWevR3C+Oihk9LFof4GiumsYF0z7NVY2PtEDhfLceqOVBux6n0TGmT+eQo2otx1JyLFcUGezatdzK4CbxXjiB5Jmesj2zdTFLmVRdWffOc7wMiAR2/vKQltQau5VlWTtXaXIMcpcz4WnEuARgH3QnBv1JRTCZKvLkzPWVNSfmS8XwN252tKTCdO57jnVTpGmytrJBhMdD9MQAFKnyBeqKFhBgM5Jz1H7sPNEkGJngPT8uYK3iTHI9LV1RRlsRY3rFdNQ1Qw2eZFZIUfy/m1bD43CFBeR46H40sA80aB6QKDtx7+bWZFix0ywWK7PnaW7HbiNt+J6KMP+YK7BCfLKtQ3HC/OeZuZ3hlVmnh740dd8LCT1v6pLo8uewDTxAdHcWgqD3XdfEIJzTi/BPuRWS1MOXdQ6+D17GkOs36GAZWNYwzHPB7U9h+Iq3k4eds3RVMJ3sTjtCHQSaWJ4jyOzA9B5PbWvVmv1FtkbWOvTbaZsqxHPn8fVAyPEE8HTB7avgh2KUB/6aPkhGGPG/MRRZEXJJ0oS2GPPjyYqt5PvjXz4GcQPg2/c5tX097VTgcJrw9ld+4N9DA+lCTa3vapBPpGE7kwlvUzXVDbNgWqosaeSkUqbS+oCVzePSdKsxQ2YGXDr5YgGiZlxELQ5dj5mKIL5o3OvQhuwfvnnlQxkoHiezUKUcP7HeA3vzhW1I7+K1gKI2cQHVl1/0MLGIL0IaKkc3vdqRdB0Noy/7h3yuoPV2sqUUTHyZnDYwi2vIk0JG6q+qTdIBVyemoGCkF1BgNp7qs2+e972ZolxxGBeHNsoB4XV+QKc9qyimT2agEPnyjfln4kHi//DW+2RFHjLtASAtlBOA01pCYthyrBuqMRxmL2lVm8BKern/pK1OiAkCHJGYQlaP2TEApCZuDGZwrFBvHc1ORrG9FTOR6Hufgq60NDSIuUv39L0A1mnYiF3wWmPxLdfxTxfYNAEuofxXKc27EQDv8NqisvegpVlaQ1e6ClKMKWmOSy6tMfe1nhSsaZrk/ZTJBulcxmI+kbS4lsxa8giZeGqNtEmd3yuHSjJrc5uRHICocfXuMHGQ6Yadc9kAdZ20iTo/YejNurD30RogjEUlppargfrbbpl53ImfDjHxHfK5t3Dn3wc2nq0ypVzdVVdEOSWnaO6pHQnJzuL2s7BoAO1C02cf+enpynwdnmI3Gi0+ORW0+O1agLkAoUPzqDAFvqWFb2bLEwWEUFrtPqpv1VHYvteL7xxjAuIXQ6od313BeNaV/7MhoC1R+Fyn+7PHXGQXldJA0WRO8MV31WspIG8bRQvWW/L77mSV2fqGyy6adjOfaPNVbbc3JP1raTUl7+EPqhphK5Aqrg3MPE+fgqivyjSpZAIl1VU38Rsm/5FuN/kuYzbzG5RSjtZY+1mkNyyRW3UsnDfBQvydfXmalCuOI+1iBmEEkR4cp7zioxay/7TacR7QFIbI1RhnpkehiQAEim4rQ0n7Qxfwt1CvjH0Nobnt/qJCME+cIOJ2lUUfY1AC8r+mb7D6tZouleK2OCDGdzCjXf0QSpkhSI8awuLg44lPhVbraAzfSWzELB/OsPaXfGOiCIaNgN3o0YEPsx6NG9wQVa4HIwxvBJwKR7SjXFRjGmm5jUNIIAqMhFqDTMqg+ev7IEAcanVVXzXT7+kY9Q1E6G5E0834ZgENNOSMAJ85V9OldH7b3i/eByYB1m1C7brb+3mm3tqj+PUjPTfyjZZBAdoWf0XxrWpd5dgbSi4Toq+yfw5kOdniOd0zKE6sJjp3ZEvTPv/7hJaDyKi2yRRnAtBvh41PU4+wliwH+3RjLySEI8snG3zHckhNMbeaCTnXr4NTL6BY67l/sGTusqfH+RnX9tpqA16DAxE+pgYDqtI0ylUiRKKP0CbBWrjU4XTIB9hls/EnxZTWjQ9WTqmK3009i31kj7PRULvs9sLd+QQjt//r+99wB3xX0zdA9MA5j/sATqIlr68uZCpB4aR7jTtORykOEORt0OCP8x84bJberNS3QPzMPzpTJibaQ3jYh7WxYbU8MRBWZ/NvTvMQ2D3KbjyJV74xYT5oUTJ2CY+bBDSgmEv6r7B+Oi7rSi2jfoDlpOKeoC22N8rNBbbRdlPfgcd4wZ9jQi2o+rLf//vLuffy6R8dxlsD6mB4o3FUAjGjwdXDz4qZ/H1XkQ1anyDlmepAneyqPsCZBuKN07eSecYnZyOouyHKHV06T8Ng2Wum1psePwaQdMd6Xun18ll7OYdXKgDskDRPwAjLQdkDwtggn9mr+mQWkgb95ZH34slEnJ5pX7D+6mhpMImVtyjifpzg7lINdQBr1XG/R/EgCyJwKk17qHo3zfeuAVV3GEbm0b5EkVz+QbD+2h716GBeC+5nsVgQIl5Z62RXH2IzvWf8ySlGzlaAMtgGG+df6LTamfdERuPdkZ6DsWb6S/hlMMlBSiDdhqzOEw1Fkn3Lv6pp8LV6v9HMifGrt4esPcJrT/Kd7xX0htCKMM9n6ffLdvnzro2ZH6IB2otsmN8WNBffP52TkV5YiTco30OYsjeVBrSeq8F06+78IqcruhKrSqJGHUMRgcI714nN5srC0AAIn8F5Hw5Dug2mB7jG2U1T/aL9Rjzl2Khx9xO01ZxUtiHIndlHf6XvKHdTNUMVUEoeVVBxWnAZaaXFZsPoLGvOkAQnnKZ+/HsGXxY7/LfN/Hu3Yph4sLNwykxgbUH60XlEVznSkyKj3i+/js5Le2hjEIpLUp3N+ZLlWBqcI5H/9hZZIKn31aK0o4CkL2J56dvHnUeMcHmF8RYLWBS5P7l0s+VRdpKk6G8tc/leOrR+10eQ/9Cuvr4L6fQoFeBX4g/yAgr3lobFENcjpnMIcORZFZCAebUlXgRPbcbJQ7vW1tGDpaX8GkcaAslWj22uT3G4tz1Op60MZbwsqWUqgbUtMFaF+2JOwcnUcvsvc8cEgP2qRrfnJL6ozCT90wkzByNwQbhPPIVuXhAPLQVT6PQJEdujoSEoq20m/gQix+cMCpaLBdv/VCa7b+YinH3+x2MhCXmOS0o76SROlHTtWwtTrbU+80/fpULKNEi+AwxqU6izudigDBUlx/kNP0A6hxwtraCdmoFckJyiyidOUubKqNL9Zn5j0qF30nrnq1b/RqgkYQjmjJS7MRXeeIA/Jcr03yhjjnvZ7uUh4BAdTSRYkbebNvuWLoomvtRy0FDu3GKeHYz21IOxF+6S1Ejt5kepPTA308g7AY/mSh8IMp5ulj+RuzFtRNLCbB4dOtSQWd34/iFZKageqUDUZsApuwW9eGU2CDr6wdJvkQD2qFI9C3UTVhatpqqXK/yuSMPl12LSCne8/S832nkIiHMs/Qx5ARHg4Ew/avBra/2OhakcoVe6vq7tgL2AvCATsV6J6hC1OWcSgNAnZAY8ZELgLHlL5qJ8ec7kXqUoS5O/3mxTMk8IMQtms7zj/60qvyx5BnY0iKAzBSOoSjqN4x1DGoc/vP/pg2ESZOWEkaMixW00Q3eCb5RDJ3OsaW21FOHl9THzWnU58m4AlEOmoOG7BMgioZjD6bRe1vtPLaV2WOHagNYS67RvsBvFfQI6+vJR285DG3YiuE8EIOORW+9P8rxAStjvWM1uzpbuJ/uFB6k5ZI/bTEfrfm4o7IMIo/WHRumXdp8tHlVaQAD15BV9//5x7yuoAuYpPprSLQATKxAZ5nee/132t33xtatghZQGchyDOnEpmWvnhUOkIKv8JtBTVpx3fTkEZ3u33DlRnkTHU2b/uUHrrh7AHOU3wX6jnnHqIny9weJJZffvRCC9sNVGi0XRPP5yiFvMlKmh0f5cZkJbnCHG8ec3/H9FFf/Ul48n588FWThcUa6pTyNaiULcvLbScz7pNWL59zVmIcA8t0cnZt+JjgYVt8+EGkNObLnlTy7LNFq50wqQVd+dm588mv4qszxkIaU2IwMConqsPYQVRTYmpUAdvXgdzrGUq3971zZDK85oVqpZrMjbWxuZgvHbcxruSsx8/bel2DhgwHKHOSDv5SKwa8JT9dLbapYbft0585Zjr1weCdGAokIjjEPeK6mehqHaWVQyh1aiprYok4+63RzLaU7hdFZvSG7rEOeFvmOPNY/mhxdZFCmPIhLdnjBxxY45QS2GFeq3v0lrFvlBXal+/SDTADQhMKIXG3I4K5M8Ulhko3HDnJcufLtc1FbhucJu7Bi0ck7Te9pJDaImVYNM90ndbzpbLADramGPFircS3Wg75mNF9efV/kqKNWWWWpHrZR8ID551L5w+R0ERmlwv37ZQIW6GfVcsXIzF0ucoYyw85B7Uhbj6zjKosn3bkY5oMo1Cm27WrTUi12fWSYqaLQc042CIxcq67YhPLyuTAHSTYdTW327QIvn/i6buMMbNOXO9TxSDr8hp0Ygv8Xmsz4WP8NlPq3Vj0xaDf3yUoeOvASuRp1+tidetV92jQy2IaOes3dkeKG2JGZOiZIdWUtSxByR4jALfePdN6Q6pv7nC4eXQxle2Bvabze4d3O4oxTCQ4rmtzNgQS5eqZfNvruJ/1ifRKDwl1RvzU8eWDnSjfEHjVZSpReo9XlHo56+wt0dv+qEEwnFxYtQSAg5hL/4bC+x5qvdZsDtIVzcGz75BjVppXnEyowmoILz8JoqMNA6IEjSeHLxHWZi0gaG5BzTwttppjwn24cU4VGAYJmB46Ys45GMuPAGU0XfEKXwlx7JbckZF9CJFYjGXP2ezWT6y8hD72kmmWHe1BBh/gbYIyPbPvNZMmYY6x+fErC3nT8ZAxfN4XpXrMGdx5VqTrkZ9z/lCiAtr0Sj31UhGghsk+++3hS4VwKVDf+IQj5BSFtTGv+uLm7IAzUDDXZWea3Fy5xKCDZirExRS1N0B89JXEHT0jcJajIu1G39uLL50CQCNc6nCfAAII47qGlLCuBJfz9hPxziIX5o/Tji7OhmkhPLwgA8RZ+8AjFRXhm4LPsXatAY96a8Zkt4iMbFqzpqcghlGgYFgziik7muS5wVZh5xD5vQQsT7l6Id2OvdmL9qysVq6DaMdTxcOaDgkTA2yaQ2gF1M69g5y+x76X/K2vV9Jp/6gs+ZzneI8eFGWdrF6om3ryJlpDRPGqHqag42AKU9vN2KUFMdkEh2EldiCuxT2q+K0+w+85n2yMXsG0UlrIopTX/hr8HKOGSV/lb/4RXW6zlRuxxceLj1r/rx6IdHQ4LQOVIq8qd28GMJyd3lsjuvp5P3mkI6L/gbwVhRM/R1WuQxXPBrxNL7b6LvbTJHp5lZlljMAWpsj2TXdqZi7TEvqthRLt8gIuNF67yz7hQeKzSjTIvJTHF+mG4MIiOLIDWWJaU5tGvQ7tAbrnkgii//TtQ5iQHGRreG7y6KodBbqTer3KoWaXxVLs7QWVPliBMkbwiPKYvWp2BrPOt4srdUqYRjeke7+nDIfPNmBOu6wfcSQci74EF+X2yZ1Gmi6uyDimQ3QI23zgCp5X1JilU1kFQ29+9K5C/peykL2/utxmsuY1KwMKWallT4njuqHYJLNiwO9ogwpIwAsMTrmP9nKsEHchE0vufQN2H3+e4rPsqJnln4tGpDbVbWeIeqCpaZJWJOCqD+zOvKQKOQ3Rep4SUbD1jBjkVM+LrSzc+3Ml7I2k9fPWMDhJJmeiQcP0Q33uGaXrkIN/w335lsGtpDRPlRnQuXwH/BaZN3yfei1gc25FKUfxCmMW1XzFPCY4hhhTCktfPYbRRLpsERdqftQSIeRiAfnfiPK/PwBg6RgGXRj/Cieb/dX/wzR3oQdUJY5emNyfewYHGPYIKq29ucbjmGK/sdQKl9OQBiB8KKqVel+UGpwVTK3AIz771ahcXO6F3nnddLTdEToomsl5CQ+VD0V8GuL3ibqFpL/rPiSsIQOQerQQZQgpfze1iiK+HfOU34aNKYq48N7idI7sKuX8KaNGWePzDBtPY4oU/EAQyVF0xgwuFOp5mE5yHPvQyiRS4rz8SuqqS5bAcAlWqay1PaR6UsVI/3c13OACE66n8Q36U4YK05OXeb7+UPBKagG/1kxzeM5N8SrYZO53ZbLMHrwwKgfn++ZJaHmL87Tp2JY3pYGS9TxVOwDKktwBNVowoN4LcJmzJqSCHi24oO8Yo0KZ5KFch3unDenDieLkvWXhjfTqk+PLJ8758diWeyEGQIn5+2GFDdeLDOz+wQKqi/SYtbq/SlMQ1rm45hQN8Qs3zn/r25y0xIWeHT/XVxeLnfm6oHz8r1u2SztsSgKG9YvjUDlOzXwpZXItjp5XMQ0vFexEeQgcZepgAXwap7Kg++WzOL4iJ1tcO6uLpx/+qVqnap+RotSZLX8NhlGG+HuOtIFN8lPEuh5No7+D2JZaxbH/D4OpxT1uEOoPQj2fgZGqLhjKQv74nUchoN5+fuDqWc/+fOAl2kEHHdJuIxNXDbKJoTOuHKvzhnPK/HKCKuff32l1BCMEqEoN6MAJB6KVZ9mpOQCD4qBCuhyt+uIBy/+aY2nywe5j7yVzOJ35jS1v+dBBglyfH6O49zHnplQqhQXIXecKq2CwlW+jVNY8yYR8SAZyhiPx9Va6A1Kk0QzaGEJPGriGpeBmBKr+WFCHiIEHVLbRMaXNqtA+DQ/UEpe+C8Q+U1SuQSC6kkALI119FqOynJPTfnRwfxX79aIrt6XjMr4Ts7YJlmOq/3soQR/GQJAX0iQFsrjJ1TXn4slw5CPO3TcBmkPWhoaVqobHbeahM2uOxfU3B3Y0n2s28A9Iigxt1Bo+KLqQyf+9XwoSGWtGiQ6EH5FW2oU0jjZXEQzcZijpB1O/5T/0XV+kpoSBkacrNEyFEDkBngC+Ou0/YykHoVQobwRB+LldA7IrWiY5q3l2+NrnqZkyCw5JIW1b0yMYAao1cb6WwandkveNz4r4HBg0xjeyyVt8YkyvRV3vPTMpOqFqozTdxtY+mn2ivXIkisqra0iag0Q0Bknef29/dKFuLuU+ZuWLM8fBLTftRgFfZwymMSeRMCcFQIgjMg6Wv6Kks8OWCByQhw5gp1SC/X1eJWCoXwppBxhGdOU+5wjIjFw0lhY7/XofMp5UwLogLn4WB9jpvfoxqEn8QJ6rs62GOdTEUx0SUKXhoz8rgwusJG02cCf35gw6U2zjaTIdI4t0y9t6TQtxl3I5ILNYc+eA9nSbJPVjZCysRKGERV5QBdG9yCJ/L5h3O6w4ioboHIb+2r3PijGOtO6e/paUmXYJ9dPGyROnE1s3WGhfN3JTN9QZ/y1/4LlHOTOGK62IGU7ZrtFdAW/853putbSlxaPYzdpIyVuuuVS3Tck5xl72ys76MVAyXjTZs3BSGdvpsIiPjPzjGgsOW3tnqc7St//2x0b3uONypvLTNKxAfZLinRHwS9SWYNRrrFRWyPVJjBD/BxYI7pgUuUBsNHMTJFV39y9nSaeFEnG7PZRbobnKwSiIJ3SBFC/Z58EPfYnx6929Gh9v0D+XRpf+hJguOjbeT2ualY6b7uNp4n/GEETPZngvimF82rBJxVjEDyQII+K3jD9TUMfpT1aZRf6IMcDJHEVdd2k4Ejls0+V8BC2PzKLSvRTGlNn5/fPsBYggYw/kq3QLlKqW5l85T/QJXamEqkkdA5ul59C7ke7RKe70kwPsjcF41bNzjWTUyQ5URsXskCw2j9L8zk7fQiyVBeXop8udFGTXXPY34uiVsGfjagWtNJvibidX/MYVYOBfFDscKJX4fhUlotCXf3aSe9rZS1F/wCe1bWCHyS4hcd6rVxehoH9FW7gdmgtWweehVZwl+OpUZlKvV2XbmvcPJvvkH1H7BVNH4GxEm+cB7+PU5Dli2FePsmfmfj5Nq5Wkxl1SsdW/n1OoV2hRHbathAVp10Ub8dZ1TR+05ElcUzQDVTTJTWhyNY0hCI8yH7KI6rcMZUhJC/LzL/JMggi9WMFAInEG2POm8uXdsrarYPvxdyGnuBNkaNC3+eJgrvrZPxYRcasRzmebkNJBN/Jr6M+wzTJ48HPxMmcYJDANl0+nLR+5sy/vqkGszKrSlgcdjO8Ii4hZ5p+BZ0Iz3ZUaJIsG6gAnV7Xib00C8d2YRD9umoTnbeCiBhRJ8wRrUtV/TIvacbhaArAYeNN8Ay+bdDVskzcEHRs3ecLpfDxXEWuZiBlzOob6apNXbnSZvMW+jDQQuIdVzbDqLXprdcIXskQ1SpCg18ydmXUt9QsT2ljo2M3K04dMCcUtuxVCeWL8/cr9fnYLZTNrYmVx8XJW/BeMRlUPiZt51z2K1GQH7jZ5X/oFgRCgHE1qAF3XIExxrf0A8fw9r/i2rtKqE1LkwARgGE7KxPfpOoLaSaC8xgb6bfI27MMREwtwwkIcuQiuTIORMR95dh33xVBVtLbZOixbkWa/M/8CSYk9H/2HX/UsqrXZutsi3X+SgWGk/1XsAc9FGnFVh3lcyasFjzPpoLLLLLOSAD/j5+bN+cZCwIYTcSkUQC64872FLy5CwRftCm2jYJ1Ehhp1+2zVKt+v0FcMqMoQi2djod0ljuXMNlAZ81M0pSXUhM3M2QYtqPZcUBAozSOaD/YVWrqyH4MhjH3TtSAxHJvzRG/K2Vw6MN14BzKtXDv9UE/qn8p0YDRrZS0ru6TK6TVNlPfle+lnNkfjC+fus7YII6PGFkkr8+6tuVbTmSX5LlzIQgnkUXCq1b4PMlBJjefMUFZvFMMIzlFmjYKE4EEKkCi0NVLJ9gStIPkivjkdSDycmq/2BMPMmu2owwoi5JjypTjjI8OuK+z91F/VOxx/GspgbFSeu3pWTDDEIZAghbLwnUJyv1sBlUDa0GW8cLJZKKBZhPKFDIyAQxsg1vNP0DqRgWXMcxghk9sx2aVucnYMy55T0cHgXxcFIc+xLiYLhiGJUptbSp1UxNBbs2v8i+oOdBAb113Jr5cJpJTWNN++SaQ+NzRQxBI0ynSTl1zvHe+PP9LZmmmRvn/jk9J2arwYN185yxcub18D5zIM4DRaHI04VP7mb+T3f+yOzGgJmr3+HAoJ42ij/+TFpmoWvL2boOSn+3IB4c1c4AfFL+n3S+NVGx6is2YCor4DgafZqeKQzwriy9lWbq+P/dbC4iOvoW5c7M+1VJcd+Plfm3uyU5ZzGIwSld2UlXASRV7mbPRJMri61egPsKpU5Gfcyi69ASgVD7DuI5GAj/UGxLTAba6i3sxOvx8M7jmPiuZo6/ocVoWg1K+jQOSs91VgFpNG/52KpHdRkJL8Sw3NZM6D35+CpFfclyvcAZwmApjHNwcqH1k/YXGiTQ61wgsqFUefP8R3kU3ls2e8SQzQ95uyiiDGk2is1SfEh0+rTtCCRzHVcSVg0GeI50OGAW073+MIb4pGlw2YDaO/nxqi+Yz4RyHaXQhUAOKlchgjZQUQGNZH1Znr+/UJiits2eATKgPziunSTnipKC1Cqy9EdUKjBo+QVQKUuEm3P0Ju/vBv41FclBF7kpNEbK9h0Dhun6hmX7WY97r+HdaRt7eIOLBgzhKzyNJUUf5glciXG3cQV2Fym66aaYEquaqg7DMmxHByTue+8KbQvDNwmm1WL31A42MqO1lGAecy5ln/ziCVkRzbiWgAIxLsKjz1RzNlzxB8xK3ksyHLfXefoiZTIj/ie0b5DqE89mVnDlrEGIt/EPg6/dfho5G5ergYLTRR60//wmIVbnsaexfjdewa3Hphu3+7GYJbwoDaiEZRiJYSyKsTcKyK92awIgFt1v/2tQDcfMRqqfwNuZyQu5OeswxP0uRwLcQCtODKpWzznJpEDZU/OnUsqywtJpGd0peND66l9sxvi3DxaeJLPMkFbKG3Uj5ONzazYYxdvN5DZad/0UUmYuT5S5tMOLNcqR2MzI4hEdkK2hXttBAL8UZPbLZMulj4iAhvz6sl69RdOlMK9/CGgymmyedlC8mK9xGZx0MW1DxhJ2b+mrl18GBe5Ege+W0IjVP76VH4Xn5r+sWcmTtqyKyvZN5vT/90x6+hbXPx7quUTvY9enGM1OwqAODa1WTiptB8qXTW1+QwveLlSgPWJBlWvRFe/B1OBEoaBNMvO3I3VXrnt5y32VaYAI67H+kg/HTBkGjh91bg3wj7t1fFF1oC/m56eEms9uunofr/g3rYVahKuQqROO93ZUK0wxbEwzUPhytREe3jatDJ/JPqlwHVfsjUnGyCEe3cXacbCb4hn3K9ufhUPA9+gIhgfftRotXMbyDCmgDOeXJs7UaW67Rpsf0OaFeuR0q4URkqbaRp3wC7YQYEpvq4PcnmF6Moyz2AzCA3+1+un2e1FdXoodOE9+guWkcPGEcZGqhHE3G9lIZV4A3lRqG8rGqGuGtKo1R/Xla/4frnW5d+RTe+ok/deUJN1g5T9bgFi87jp5vgH2RRPkPaxPjEzSbnXM6dvKxtftzKtZxqmPX0DlkimsRJ89hxUKW5MVBvzaj9eucP221owasm3LSfwmq6TffthQODg8H+zqEkfJN2/Lb4Ke0g/TQt2F5IGjsnnDCzN/u7jxoAj9q0RBaNOevNCo+6EaJ5JxNG2WNVCBsSLvN3mhZ6EDPmIGCXRr/bm5jq+wNYRkFElYJGElMtkhGz3QVcTFg7Ukct3ZLI1oFrpW1EMyxEhreE9WJCvikNGNCbEe1r7F4PHMfh882VH4LRCeB2Zw7qXEdsFDSE6N0aIOEN4dwCGO4yoEm0puodcLHJk3Qf6pRDDQ/ReOgK2wDN/bZI+kgdAGn9fhPQ8uz308/gh7FSRbblXLRtNGkoewDbapNKrt4j40oTutiBe8b/vbesDDbqlTqHplAeDL47Kq7h/csUvy/1buFHUUogGEfYsSSu+hS+wsKRpXbWkOKq4eR+N0Tebof3OgvCgF5mujlvJVT5ZzTYStaF9VJWJSatBVbiyPKH/7pF3/nF+XfjyhDTu47IDOICqobRbeaH2drWOult2596+hYwYIgNoVXWgCjDLQUbAGwkjLZAb3psH1RHvuFpuxfENCOcKH0GhqCAR2Bi3XS8BrepVKSew/8x0ze0ERwiMT0NgJlX4Yoh89bNYVCq3jBGhstQ83F0OnAx5dIJU93fWC93YkJu6SDogxWNoXTY8+7WcqTkEKpBu7k5n/U6i4jSjusUqvVsF99MOrByr5+unwjrVTpOsx6K+S4rHxDDRWTXjMxXa07nT2G/K3twp4su3bbdfpZ7PYh3ahgHC0OhjnW7u/E8+rCNknVhsL/l8Iy/n9eTbHNv10trTQwzeELom4q923rHBkKaXw0XO8yVCS64tV64DgjbwfpvpkI0UFxjoAUkTbNis6yqbhOXQwK50JUv4Bh5rmCVhP//hq8jYrQVp3+Mfi3ic5GBNt7ztFoclCJ8RFwcLvs0yN7FpVFrOX36EzdRPZMzLDN8BCaGXyOyHFMXN2zfJsOlD0WWXPTlmMZtRbvM3cHZ/yAtWIqML/b/YlLbf7fussJiemu6kqJ/4vToH64HY3uPjHLjvT04o0RKD3wvA/yfQ5FRhDp4x9z6iLjag8p3AJU/6Yjjg76p9nFHW3Lor+MgKBkSDqnc+s6tXxfLocZOB5qZeAizrkyOs+qdLwIocBU+wN332wWrZP4PrBVikFkKQAE2Y3BLG3LMo/XbpTY9Ui1IkrgD3UihEOJ3/PM/JYy0fkeXjDQJ8zmMlMjlons0MGiSObHNsEUyGtMpuFS9hFcT5CDDrVt8wcVtcj2f/fCGldnqm0LW4lJyPUkpDvNwc+fBF16QTrazFJhyCB+YGeG0inMZDvvJMvRbU2ohYorCErG2IONCaKzBUU9yC6vH/yOZYhvOYQIAMZHaBYVQjvEIMvYY0nIrv/2RLuUgUPWY2Mi55wkbEl2ciIDvcIFVyBXCC7a2fQSc0dlJcuWsavE6jBNTHWJWuxjSXyoDePbgAi62gOEJGZ4kMHgN4djcAYLbgy7wTEqpofAB7+FE7Xpl2UYeAjGvnEmjTQZRTn25oHVpEXa8qpI8/UZM0zwu+KwI8y4oZ2qCNArbNovlSkRpbfbH3oA/iaLCR+3LoPhN9qrk40fKlKUqmFiZaw2i65YN8i0IcW0WHfw/CObBnm5VVYecNzP6I4gJGcLWaZl02PHb5vBbdKseDmG5cdMJRfC7mXNlYz3flcjZBhNpPBupnT1OppKf7fB4lfk/CH05VFwvI6tK+s+TW5AEc0AJkR56T0nyNkFV/2rEXveJ6ZQchZttveWRO8kjmlRWdz2CMYrQ1B6O0g51kxmuXjSwtmcVOFKTHDFp/ndNpQWxzVS6f/8XJ6IR90V1kX92b1LknOKdvJ25HpYLjSAk8VpXbsa7+xvyPN54EuUP3DcM+Vlo/ndAhBJps88KYnNde7lRiNGPs1IWJiEMvr+FQRQZiXO4lREyWsLTCanOpjiioJAG7pPjKRtqWXtaAv4nZUtEvmVRAB2LrCLoTLaKCf8UKE09hNxEJuhU35dqdgBOF3i7fhZHsnFuAsLngove7JDr4SDCy/rCY2MJGsvNpsjvQ8w+SCveDgQcGU/2ss/F8m6oiaUlZFWhdNmsg/JaM/IuR0tLuN6PD5WjvV9jdc/JP7wxzDNy5287iI7NMZqis/rjbVeD+w4kvaOw7dm3MUeKc1mN3qMwlKGESKHovIVlx/qVtEwzMMqsDYA08eCmYW/TqVozCSAMqnezZEhzY+e1L0a2BH5Aie4DNE/JITejnvhOjgscv3vORTvmWhhXA1qMfdaMDK6cbfFiCeg+B46iHVN54W0IwkaxhSB+UBr33AN09dCwrYM4gnYO3suNBQK9bIPcEePtWa6p9NcTg+DkWXxbEbolQjswO/hn5kZVHNtN243mitKO+rINPyHrhvsBBwwjWA3evMVYbcWLZT0hehBgAOhREho3zCcPvj312uhVzjEDv1uIF4fbZJTRE0a+UEsUMxDHXDUgzwBH1yG+//Rfra+79DT873d77EP13WAW3AgUKa2x4FiLQovpjtMFwvA1ZL+oGQ+WdW6m06SSezuX27JeGIRfXZv4zn02LpDvwRO87HNkQn4SPYZq5kbe7zDgpCbJKvvWU7g+FMO+tQia109QugOkvAU0QRJU7q0tTNKCIo4iQkuZltE+0H62ZHRql493sib/6aQjlF2qYUkTAR74kx2rZpC9wVwHi2FnozuGXjNGFlZ3yYIgFbPMxJPRRMePgYYcVjUu+7Lf+be54Bk6s3IVUV9wZ87+gDmnewrjTH0ZtTrrM1XK+2vjOXSZb0QZQQ1zLzLYlFfIzB/w3W8TcL6rSbjnayWwPonf6ieynIhYltKhpozVwbioIHD848by7LtuskSINYd0HjHR3tAgbu2btQIA5fk3WREW2ry5QTdx1d3wkXTa57TA5qVFPumFbs6qgP5CbvlSkDHB5hMSh44jUH6WfcuaIT8PEnbkBT2+Z27DGnFVbB4jcD97AuHYlVQczhpu2ZAf6478v8ZvsaxqDo0ZUP3DzTChZpSAXc64iesMLOBDCzYhtfHyG3tDAV+IV94pwJTELiCyD2WJh9ls1SX4wjKJgDTYmv/DfbBIqoeSEOjM/s1UxdEfsVQ1bz0idii3JxNFfyeOxeKX3Dp/2WI2w+r/kmMf9H6S5awdQqj/hEZ2M90lfMyRK2KyiXVBkSJSwF/afctopARKK5p1T+9xNi2f2NIPJIRVzZv/Bz+iITpjIjTRTFMzNmhNiVU6RrAX4pU7n1cWjxpAX/LkMMd/T9yrXQk5hSAEXxLxH8KcD6l8Qj+t4kT9S8sAdopdZKwxezAIuR7S5oEWOHU4GZ+VbKk/zpzW6f94LTcasRHlT9NJ9RIiBBkJELv3tdaoDBlG4/fmG42f9liVVv/Ftsn55Z/zHsZOEkSQSvfJbctqyDzctWVkdM9klCXVi1Rt2d8SQYFkEeBKuqquBE/eEFZjqxuRe8Wkrla32ZNbuTPK/tMVgcp1P/4qhMdYv/EKTwcJucqx+0kIjVWYPlOTpVtkJ7ASQeBQDMxe+Vd19uKRibf4dPOcGlOoWbQLSrKqhVN3v9BX89eCXgOS/g93O0xXduHuvvucfjx20eM7AiQh/6aUcCVKx1m50r02Pia6dNd7C6WpOKZ+zTgGz66DCtg+rZz2RQ6AqWklG/213P00JVBob1Yv/uDQBmF9RAlOXZBLk/gliRdMes36RSz3un9IQYTwzurqeJPTUFe9udO+FPYm45BnJWZm0Wu4081hlOAP2dyANO6eQCu4dzS+CeomRm///0R7Gxa39Oo9I1UbS3nJQ32h4K6WWH9N1eYqPfHHSpgJap+GDTb3NilSvzpGbIHsv6gOlcrNI1J4bIljTLhszMO1mp4gQ6fiPxmzY+UQd6l51XmbdJ+Z4rBQX2UsLR+6nq/2civupeJttztpc0+sEj6G4gSBSDRykxyXeKLrpLiAM2wMJWJP8q/HlU+KP+mj0giyCp+iXpxpNch/hK+G+NjGkg1oTI8afpTLUdWWsfOxkyb/goCzK4RaKxvOi5zH7T/O6SNFlvqD1ywIq1XEcGBvgNdDMgJaA0BxnaIaonZl/YQa5V8fymCsRUKMzznMLT/iaoiaq63T2siD1Tymy1Er2vppQqsosY1tjfoji/E4sFQq55cZQl/RQoxcQmwKCX7uEqDvH9b3qll6iFlu/IIHO+SstQmbr9rMVu7A/iqgyrmAK8rDzlin61WvLrcUGZ7lzi4jv5C+z0gn7omjgnONT1EOOnT0Rj+oN/B/bBBB3YWAvYEpAjgBOEOJU7w+Chfzfz6arT2R9xlC0XY2fck+kvtEDqNPss9USHfFtk9hHJ8proXoBs7udPG5vQbY6LNibU215s0XPrDZbFQjZdGhl1oZXV9+krkfaVr7jLncMQBNXKl4A+TPVvYZrSHzvaGHwKEJ7ZFXR+mnVn2nPNIOfDgMAT/IaJpuQse1x4IM6N23V3V0zAiaUQDdG+y9UbYaFt5LMoKuG1w12VzPO7V1j2pcOjqCVb04y5VmP9XHnvTREH1UNJdEYOl0gLG/JOiEzf+XOkHhwAktXjNeKId75tJUSLFZw0c42+zl/m/YYZMzfviBK2ahFYXBiwdl1Y3P/arERb/kUjPgOpMTlQGUA+Jlta+DitXdBgNqlLJly3g3ZH4FLVnLNPzX9Zc7LMglWGJRyRFZrP/LYq3VvjkTYWpflH63ygNc2QFbKz7rfg6EVZZ5v5z3rcToNX+t6sexZaDQtZ/y9rIJGBbk/lsgWY5q9oslNuyQIT8OPJo/ZMF9aFjSv7buTaYzqNGBBRvvwKnNttG1OX13lAN/QEmwCIFWmhc+bWGlqOuyF8PCROzx+GKXn9woUR4+um8bsZtdlTZZn4hun7nA9lOhZcmDNm26xsegDEMIIxc/2KHBRnGrUIqMLfFDsyTIaVlqIOVf2ccXUdPsy4aEsGWXndZLkBoiRr0zEPo2tUApC8zRE5rLQb5gUrpBzBAjV4jOU0h15mfHjF9FI1Y7TX4fBqMpiBcCkZK2/jH5Uy5cE+DHcOji6gIf1MMg+TowYXmlXK6/S+5DfMP55UX7YrZTDzYBnDozYsO4cd1zbT/ocQd3VhCinafI8TvITC1KniZfWfzYfL3ZwJXnjooZR094Kjcm1UQhND7R68XFldT5gRQlsegDeoevrpCIsPnDsWNEyZ3HkMqExejLaqZeNVf7GV82j5TNQ3/qN/W4+nHk2M3PFMjQKl/R6pqsZLN3NQyVcXsSvjok2AVsLuTl6im58G5rThXbXTO0n9qIHPfBqWqXXwULcTzG/FqLteLlFyW9E2H/xKiQ5tZLq0cnG/tHZpLuMe9HBIvdOon5jAQK+mjtbqD3D1SiKSc03y6/Z3BVbV0Aek9DOev2g/d0GFPLf69Uq4CzAgVRuaHju40O+kVYPYBtOxkUKrWpy2oI/CO/Dv+ir1m1/QMKtDp9J3wOxFfk5zd74qc0wo/aXaoxhcMHY2fZAQ/yKAjX2RQaRo04QXEuH/SCP3gNGEpXQLKSffQrg/MYcBzEZTz662//qUW2Hct3HbHcdMxS+MVvQBFoituXRf6A8a9nStINGGH3iL/SU7VXA8vjTGlFnXrskF1CBYeXlbPc1KCd1ud4dY+M805qLhRVzRIAlPGPZlbLTq32/vcxf0CHZiw6KNPfxyPPY6he6N/4SzEh7smmgve4kNkbYVLnqN+2LF3faqpkP3phpajgbgzFXUphKrnCDi8u7HbFSlJ/mHkrY7lbGUF4IwwTErYXy3bLUl9gKBE2oRy4crCYx5rc0IZ+cKe+hclqJqwfpZZOv/3vP87BZTRvG2kvsG4//QDG/HBIiPJ74e4ea7sRkNWkJnrApZ2CPfv0GXUSPvhR6b03WxHttC6QmQ16b+mSQRtOftz48LtRt0BAeEZUzD1/3rnt+bRN51fYNWU5Jof3kgUSWsLz5OSoeIKvALgV+PWefu6sxoag0G63Ng6sM7e7mA9tH/sr/VYXjKS9C4vXgCeOOV3cY+EyHmyBS/7zALB9YDz2WqSdwveUkQ64sgmlWekSyorDGjs+pwSvCfp7R1Rw2yZ68yDTkYldtCFiBRuiWLd/jFbMfSgny46OUQmejSu9Ui35Yd91bH1Kujp3vKOxD/s9e9/Y3cpfP9S6DYNR/f8StmDJVG/W4IjTArZYY+3nlXnN69/n2AQABoMxIc+hxTANjnURPh8gBABHkk7nLYV/UKs747+GnpMtYtk7d50bKM4UcvAp3O71LZR3J65PhZJv8+pVEXGzMjN3dtCxfJLlAQbUupd+gF59RNmk12mF51Rq2IeYAoj3CjBCRSYdqI6bfqtr21Htzd0hd7jxAYjQrYA0gMjTVtpIqglui2j6b4eVcOd+84+n0ou1sOk1Eq4VwF3uKqWV39imOIJfYSIdfQGQdAR41hW4yAapXPmuWgxkdrqPbKeE6SxN2s0RAZU8rcKBuh09lpArxJfjmixLV0cnzmagcIreOVDFq0Rzmocsgt8F5+lFtJkFKr4rxNzgAAWcAAFD1QZpCPCGTKYQ3//6nhAAAAwAAmqg82lP+FYBUyAKvxBCWLT5aka9alhHCcRc+OK0wm4b/Sn2FUvbMyVXQl8YqFJzNj0/kR+X8ondRz0tXzpQTK1gW8ZnDUGk/vHDHfP1fhSdtTPZdhGaNuEodJaryiLn20+uiO3C459Ij9kiWJz1bVRQz+loQBIp2sCxen8IWAuGTARk+mQJYOm7uZGIrjmElHph/Tk9nh5gQJcYBca0IoZO7QzilVuV5njOzxBpJVe5Zr/SfjsP83QKcTeA34RLrkeN20I/EujazLvYaDs0ZPrH8Au1go+kMonjhGcJ0SEKf5kT2SBXHor6TYMdpPgfsbfeACmjmE2fXlPjtZsDGMMVR5GL/PweIVDcnyfsNNkv/Vw1SdXZOcPzbLhhR/r37+gSoNmmQ8nVzfEdwBTa83seHSAOJO5lw4GiEx0FFI74ndO3Th2FnaPBLllS+oAF1YbbfPLogEqxygHc6FLoa2+4dZlHXMULoekgAISGc7ZK9bDSSLWHTGS69x6GSACrLCEJVFtAdeET+WtwTVKU0NTyNQ58DmYZcZGsq0/EeyohbDkYjgEQSVhYVAq6rjwH055KnPQsbkiwGrlDQdkCWhHhUMH5PE/SgYTeCQWZB6DJDbft5oXz7Vk0KsYOHw9EIxbuUSrZFpS6rasS5sNmLsd2LCgmBuIgTvw2EQi7gFRHERmXfkLNXfAju/u/Pvj1hKj2t2YFDNPAUbJbceOb8WkwufHELItKKfowcaw2dV1APeadANeMDvWd5DYAbFMnAc5pDigDKxnxhBLDlWJWz/AisCcpBfYxN16dExirHqId1eFPmTWYVaryCJUo8X4JVXoKi/uhYk8VCpJG3fwLKDJtR1RnDWOC53jvFJH1r45DYbEkzkYEWbgdE9VK6he0rSq1WXU6ZSYlo/bjvMY8hxHOd0oD6bowi8fWGBnuxHY0iSwVpRaH+K9dinjqb4MIP/TOofROmPKWxoe2WHzAfoXMFi+BY11qRlI310e7IiH3hQC3mgMb/7FPbBk/npHYyJ2sTVVbEk39Lr6CGryeq87K7j62EC2E6CG2sCZw7hVlFMdOHfuc2V+Y2Hv+kNvYL/CUM41f5TqOl0yhN44MAQ9EuzThZ5imcDayZpk8KDWglgVwI0xcBFNsDhE0TEOcne/c5Wu7AwDg/LHVKr3FvredBhHuHIH3awfgRcsOwZ2mIZUShdEOFubuA+XTjeuT+3VKltv+baUl99ydZZ/4M4OxOO5SUk+1kP7bdeSfdbhxJilRqRa1aOHJZ+kwNCS3i6w+QMYBE3ZJel5C21exsxhunWjF0A1717sjjvIKGiRRYYziBCZ1VsJWbqplkcmyGJOfRgm1zGCtC/ooOE38YbA4c6EmCw1vjkWX5qAMhJpywiVbVMZkXwBKZOXvbbyl7we+c7/5VveYFxrPgB0XXcnHPnQ/dtl2T5UBvbwbLf41umwFbrDushMouP1uGP+r6IEKuEAMBcr17pcLjeniX+UqTrakUEfQM3MeDnblXvtAlyfsmeQ53EVXvRVOEd+JHpJ9yGB63iDlx9iNa9cHsyLIlJbBPmWLUtTLNS05b5Ogp4nnR8Eax/2jDdv5J9H4CBABxUw+JGs2synHQwaKcWQ8drrpl3zr1tewY2hIjf3eiZzULxke45NTfM6FNJ7sZDkqEE5WSsBKnA5cfEpz9SGbty8hpnX9CxpOGfpuzdCTXDlD4t4ayzr4py6Cd7DzYkwY+/UF/oDEUKO9KE6MC2Fal0KnNYh7BroV4h78O6Bw1DV/JOxGLcPJzPkT7v3jU3nC83DDrV5Y2U2fAzGMbE1qQ/dxLEHNhzqoB8SLcYIb/Y8NNC86bSCpn4xdMGG4HLw33KtemPgsoR8aOKXR0EwE35ufr5h8Dt8yfGXLi4EW9ylbrVztqnIZNE0qywlZwmRwlDOgYYOG+eWCJbB4fWVgP/jLBRR9+hovYEIamMJbXjoMDswBwUhK998nJGWqeD2MslUvgYjPrgk8eJIYgWl6Y8ZHSwqH6AKJD+3HGH65ZFvRP6gPKjorwNKXU0IyBluyG+zMz/fyRMu1wmsLMtirJYcMP5oLgkGKM2IgbDcgf1le8Qh+QdKTutuvJ4Cm1DiExBgPVtgznPhK/hg6sVa6HfpYG882oV9Jc9s9sZHCxhOhQ8sPryn0WHYl8F1C47UsASPQIHT95/JC3qzuqTwyo7YfUKuCinWg8Edl5NnE7PsVDDM8tcu3KaveCcP00nlZf22+1j6W04KSLDqjpRtbfJjvw6n6n/fF/xZSRwlmuIYkOa1p30PNsf3bFVZe+QEPiEhKeBd2XTjh8pvVi8nE2Fk2QVvzzlGZIQcztAf+xa7e9LRzLonbIS03EjKaEPkSbdINYy7mAqXvgkLLb5njAUgLAJ0wE19MYg4rIo2kBh19yEfjYZ5t7Y+zjVbb2mwXHGqsleGHLBE+8QNXifViDw9HrkZ+VGcxWfxj6eYH9Cwx2Eded91HNjYmP9KLKCGPQPRpzLvCX9o5GbZXCyp9qYWjaehaMWw18DaZBkabZQzkIuLgRV7qyAXjMEahUgYp7O/g/gd4jX2jgh50PXy+ED0FasdMMz34m4yvNu4ys2YDZLD4e9cPRuZvZYJFaw65Qv7KubwKfRfUO6/ObZ0yjHiBy6ASe3ZpUmZHyU+zQW8PWmz65kbE79WNMeMM2E2qPV3Sf5Q7ULvhCsOiKCUoOshZJFADopRl/C/vy2zj0OHGAOq1DykX1C6Vg+v3ipo2CKlbBHPfu7309Wn+dP7EH9gKYiXZ5ZY3oO7ChmXynqxzOFhSOD9G+BPgRYE4Rgg5IZW0ykmrPl8yb3oKwxAhymAUCLoC0WziY4rh+wKi0niHJINSiQh5k5koaDxEmPxdc41MHwRd6EyVregVQxxaKWWwrkOeLwuXf/nS+VarCCKs/FlOUNCHm9d8PuSBBrFwcNZuajwkpUyXL1/wpIWbU2w7+IoJxo9XJj3G4SZCyg/8pi44Xqu5yQyf7htA9jA/jH0Jw5JtaURRlm3QsJ2iMk+PRKH3bYbzstXpAbUu8vnJrJ16n0FctGll+/iQNamXzGNeSCcv6jXpKKklJPIlwfWWeutsMhFcxujUjVsrdMHxV/BNQRi6wGswZrn1wZ/+ywHjbboaQOSpjOijxMnE0CuKxmUtUv+NzCh/qZcN5KJeeN5tGDp9a23dGp1OVC/iG2PyuxA2ebRkSklIUqPgJrhRHLvQk57Hm04omC8ofu8pWGdnapjp0FHl4Izv9fNimIhe9Wg+rQe4v5cynQkhCAXx8rjplaOLfuNzq7iohOksS7H+wMOz1K9X0+m3BMwtj52IfAWD7cxnrIBcFpQTXX3wjDhVJi7mjtUVHgNcSSpHMAF/x/k/NH+a3rz03rrKgEFoV9YRVXIjpjCKYAopY3vj6/JIXe5mejufIgwtMcAHKXe1tidIVH89zmZaulI0fBIoAoKN6mmp9NL6GDqKwphr09d4OTkOaI5GDY8nrZAQdgAotdTsk2RcriDkWNUESAzLQt9Q13zKN1IBQV8435T2LMJRbifzyS+NKV5ht2KucWCzbR0qxRyq6QUnkAh5v29rCyyQR0Pmjdqr2zqLHg+3bA1xoJGrsKDrZ4ReagzIha55kKI9fIenTZqVdR8ACdr5E98WjMTgGNltNJaRvPT93pp/jypnuUGqpBvceCZu4v9gjcMkUUq046VYrh4NzyJNfOHwe3GCA0AcsnlcgLCM81gkZgUue8m9skQXDIVkTdkqXBERykWfJtS70+9voB+G3RtDL+GCdrrg39iZPuMIHauPkVl0xawAoet8YAsbNIk10Pqumjx6Pku2D9AO2JwhQcoSBKX3cXjA9GVidYYiTDa33V+Bm/mKGoOcrsHTWN4ScuGEJcYXqPtUw7NTX405x5PSNbliJr7qGKb94uXI2wmUlfQL0GHMYHGhonUvwJTZYwdzQ8dcNyfQ1bZLIEgOnVwUvRnmRkDQaEsxzh0r8uHeOA5W1PvsK4zcOFwqVGNs/23ul0PvaGWDSvlAYvr/GaHmWiZMvwLt4iFWoVqSgNQHu/f4orWy1PH9B2nBiKg2QxGhtbas97JSs5I3k08EJxjKKxFu6NxN6tPGPPH6KHT/0+W+FwBeuYAa2OuBSsTlwql6rTGaLUuiOvpY/f/z43T2VJdNYsYPfdGmokv72IEygja98z+9fp+9Ohgn88t0M++HrR5p3WJSCRAXDzBL58uUBA9LqIP4s80psF+bjQs7kGV/Em1vXrXyhidv9OYMOR2dw7LreXvVIAoLkEWk1Iod9DtJ5H9l3tdCfwXeaVvwvhSF4U5BwQWq0yO2Dz/YMRZb883mvU8VrRrFVpW3SZW8cwZBLChJrqGjcAgbQpA8Y5hTCv8jnyOhXSQ23VYQrQsoPbg44BeyB32hv6tlcLZopUyGB879ClI2K/Nu4S3/XVDklrFaU/SdMNc4E2HDRwe5Gb16HJjXtJpDaWnmZ/o6hTiJcDZwn7pk/qtvTM9RPqHqf4pNI0PP3yT5uezT5TnydDu3XqOTjNNLdPn9yeeZArdDcZDdznys4kwLum4m15eDHZb8HJ4hWaT0LaRgRWRmeDrwcu8l5rH413ZO4hnMHfRp2zVoI/pge5jqhHsO8SI/JWdMTt7iaSfnutpZJ8IQAGZ0vdutke0VWdfVpuCSOblqynPrvOdn8j4davWy61YgUe3rnvPRSq6ybhRSEjL9hp4KCjeKQCiW5NUclRL+798YV00Dr1gcpCZetPsUildQ7iUEJGOFjQFPN0gXN6GDySRC4KNckr4SqqQOQZqr+rvye2/wtwiHoqHRrJMSJz+gi4diAj0V1XDJcxbYCuMu6yiamv9MINbkWp31yidBN7vkgEiE6QxpkdrtUUVsJShn7aVwB20r5g7BUo/SvdBwwMeVf+IOPp4NQLzL6Hs8lmdKw4LxXIA9DYnMhZiVTrjEW+nplYLZff7Mf8pMufX/dz60Yc65cHGfUfZI1VzZHQwbdotDJ6KymholM5FogZ7g48GBjE+nRqenMwEwn8HavnS1coel+Rx7wos8WK6PFb3AgLF+ZK/ki4WW/bzGTMTpzBg1TT5Q47iFbTvxw7iKbZqaZg18jTA2BCWUKLLGyyUVGwJdR7FUGQWhKxlV/qlMT+ODjuvhvg0Yw7YcXneXrUxKdMzO6aSutnTt+Du2Kyp2F37PSWhQiVvcRVNW0b6k02wDe6QSshRM28ySKHGzyGNi98czc0g3sP+rCZY0MY2mrv+73joHKPShJsEebPumhI5C8wndY0In4JN08PvFs7NtmRaMvlAn10f4ZRQH3oT/kZtYPiV/i42BawSv5/VnyvMewOR8eWnHyJkpPlFVndYOeJGHtQNQqVESktDVF2LgGN5wFGGlGLTH8/e0wvITtNxT5k3dWSdQoxWrRCIzKpSFX4k/+lERPKFuaOZFozVqknmyDtotbweSHLy+U+hu0KZU2R97dyvriH/KnawK2/DkPLveprjPNQtPXD3toPWM6RPmiUXWz3rYeAMvnxsrPxOvHIIrCtN4o7Upx4UAPUFEn/+HGmYrh2jOxCNMa4IWb7boHDvQxyCmi/M1nyQ8pX8GkcAke+5XStZxnV63ns2xBP6DPmM4n0Z8zoloX9i697Uf9dPsVb0c6TtNh2T2UM80mb75+XJrhazTPpXHXM0EMgzz1hrsjbCJmWJ3ZgngZ/csPOyRsCQZZ7Y+nMTV177VNGyMwzA4YzykCqjExkIYmIpPhwtXlk2MakXB6X2hJn5ULjdoIL55PLo6ErJBezL/MGzT4pZePdSTcdacXyJ0CcGuNfWFWx2DlT9Zq+bUBCX7FmIKK7Y93v7xYdy9iP9tFa4Yf88IOVpGvCxsJl8iTk4PqWL9bKwcH9RpVmBL42nKFKPmtDqu932FE/mbUmf9//2tnQ59josVKK4gUSfQSAHQOw6puWxHj7dC6Cd4qNmCGLYSljMF1xRWB4Xsldd6SsiHm9Xgr2belqeQOIUbTJRWzmszSTGaZJE2zMd0c3l0d3nturGrPgBdXOZJj7ZpQ8zwjqKlzq8gwUstCjGe+D1Dz06ieo1FxUH+hc6GP1F4ht9m+Mhq0BGuEnDlm8UiNvvyL2bF2pWzBlhffTUywIuzzg8z0NYxrWXkzyQoAduOVvsQM6QcC5+b2gRtyB+VJKay4yLIXDRIH4LqSVZCAYWJ1haNbNuW0efYdSDZJesjeWBLJ8t4c8EEqmYlYvcl08kYcrXYF0J3UzKvDW+mdPvbB4W1C6RZ4GAmRfQFfV1fi9Bt+7BQj3UTz0NYl1AL5i3EuuAjKEEXgZi4xltjjtUEuYmhNp/+7gBRDNDbD14rwzg7nyr0DA5WCxcmdcDHu+43jLYD+HTk01zYT9zeX28VOO6/zQBh1td5eXgluNEhR7Gl7nxkowOIT/L8kCorcxs4F1VTB8VfIg+2C5cjO75qMiwC9VWa0+G1q622S3YKWx0uHxvnnbOi9wZ7fUn4/sGNbNLblnXhTE29SxD9L4qEVihr5UCh68IsH2Dqr1xJ6eUasBygYSwlq4VYnYMHzV3rIVNkBvdp01qZYQCUUpoIVxiBrmFQs5cFkVoCWyYhdvt2gGpLDJo9IxBFQNNRIO+YfvnhsW1tXdadmWRaDsTsLC/cNV5C9NrfFQW2bEjL/HGYNM/ifvHK9aw+rDHvGyAMeD8sozEcO5ZaakCAqCPLXckBm7zBeWpEyXuBD5nSMgZ5whSOoQUS7FkbwVaEy839DnubqiJSXl6A1VccuCdiU7m+8ADCsoXgEyIDl5dqPJQuxHOBgl+lpcaKqSRy/p25VQbmUu1eKGIdFiMRjmlBkdJwAaT3yZmGYR6uDwv64TKktFoinOIB6O/xR3gr8dF8Bvvgy+Fm7++eze2yWn3+IqjfW7cIKQDNew4Hjxt1jjEt5ZuoBPjgF52E7+XAkBFg206K4e4E2rl6T147cUtmcpCKfa7kS0Y1iV997PM05amnH8lF0VkHo91wT8us+TUdP0oqSHahz/XDd9iH56BZmJas4JsZYq7AFlylXds4iCkDkMq2NuiZqY3CsxvD3kB3s9egmX7qgBN1RfpHfKeweUVjDyBTfksOSBuGu4ERJKonWBmIv5DkRjiYuOu49PJhoe6Gi0Iw1wuUJavDwnMXcZP0WdgNNWtYuOuDEQ10kuTxAntx0c5bJLtVKg5XD8mAwc+91Kc/HX+7xw1GpPH96QM0v2C4U9RpIrLBxJBtr5sm3GmSEWXgJGj4nj+vgmJR1J4sCPjEkY9I9YwQdSNL4l0eDOryjnT46QhmHX2T5g9QvvrmMnZzUm/1H+oO3Razg/AyNy0a8isbqI1DRQBrULtG/r6VCGXvgK5Gy39lIYaFqY0gvZDD5tAYkCwpS+265YPxtsPHIXE3iWGjp7KVAjCgVU6U56mta+td3RsbjUYp/Cnc8XBlURMmj2QEOlCB9Skx0lm3PRLKb5bVb6MJJ9gPCqkjeQ3SA4XKtwGoGGd6WOu2WYpRh/0SplI/4ZVqztHBFxt9ovs3sIYvQih0fVC3IkjDdE5owJSCWXUGs+0xgrcGhfmJue5IcSrHTEOcUCeoCUm/bA3UisAhRHoZr9YHCN6tCk/jZSd8BiGR2nBzM2EmcIZWLuh5uzUdVI31/37DJkizOLSHV1BjeHjt+5uhuCIFAJM/aodX27hkpQ67GAcaVNEHVvSjDtgzE/kXU73Ptcd52pX12nDy4jtCBKyxmigpJlavN31BVFMM/aFyZO4uFegTeBZzy4Pv92nnimiLql061BW1OwBg6BbFmSGgBQ6//eEo9Lyb54qFK5gngKN5lpuQrc/hi2qQXIrKc+Oou08KNePAT0F8XCf/VNy5w5F97y/qNHssFFWsTXWIhlrmAGd/Gmh3LH5rJ7NKCnvQ8Pt1P41NRHcesILQKjJ9SZpxb5n1tLoj0IdVbwoz7DAhMt3+Ju+8HHlYw6PJFgEgXGWtWgO1DEHy6Xu4/lWeIQdweEiUV8XfphsODGD1J6oiKcEyxbXSy9SB8mRdMPxoXshnN6rfaVWQSEvJTefH/H/BtJBW5PFKA/6AZNAAeU3SRDPrqYy/UddvSS4QQ4slrrdDTP9vObEfNgJGfYnnVWZuD/rMwOcq+2OqNqu57uoV1FOG2e2B31DH+eyCR85B2xrqtvd9VRUrkxCaaIml9coTZTsChSpMVhGgCyVA3RRljIZmTK8KnHEjEpwa4wGDsQHoFWJrnchWuf3z+4tPUtsYeQ4yqVM/Sz+KIrK4N1146LwRDj/zOJRspUrFXvt2d8ARlyiIinKyjpsVlGkp2BbBG4r+odU5Q8h9wWYgC7aa7if0ktwJlQlar8Hs9QLHk0NcLJ0mwdBgDCSN/TwT6R2H46e7GD+pIHXHg0nit8dVfQZPJc2olFIqBxRPF9t9gn+SYzug93vDj1u8YyuH7befPEJcYlGaEDvSRyvFe5pOs7R5z1nU4D0wOoGakvf0WYnZMN6WKxkQAqDFNHu4jdd2FupdBb/oJslaXKKiF9ctftHKsrSPq5KXOFpHJ/vjZVHLuAHJUBbKUTp02vIdjuXI6qnv2zsru6wYnIl6WgRo+nESEARv86Nh/P92dht1+B7setCL2LTAgfD9T8PpomMEMpFZgPDidkm6+l/dk0xdxbswwrdVDRtjTptTLls7nholXfODxKpFYSn61obOORZaxK+MAl46QVbMze21FMwEcmPJM4kVVvlB7DgSwKnsTGyzo1JiLKMze+fwga9mrFVbDeGjdnELieMRlAYAs68cviUyNAWpV6cRRQVrEnv/KQvVq5Y+WrSWVHsi/3RwonUCXBwmy579BjoDWC0DZpJBMF13N1iBauYNtYrbp/szMiabOEmxsBN+eQ2qlFooNdMDTDilMKkEKDN6RZVWF4DoaSMZuVd18Upm9yGiftresqWwg17nQ1tIpYp++nTmjSqbutXRPLXB7kw9JR8Z2K1/3/aFTE5enWsLZgSiPWL8hbKLqxtwMgd8jGsSNgzofsgcJXCAWHKQ+wHCfEjMzeXIAEXCDdcInwdzzsXYjSHSbjCRpC6oe886jL04Elawawqh83fQzgZjbGKrCo//nIiOcKG1gFN8q65ZPAMlSBTA6aTpAwlicJnHm2b9sQr2VzO9jxlVeGoNdbaGXYWcDBjikV1dMvw5SyAytS7j5kmy3UOEFjDolynl8v0csuAr0EcaCOLpKFFYnsW3ODG9lweoegydgPQ0jNAkTZHP7Tka6OTaqR04Yb1D76b6yk+PKLMOyTkIDYrrg71pt4RoZz8Xb99JxCbQnwPInftV9AvBNU81iqTw9VONsZO+F+d/oyWHqW93xlUd49NYcURlKBS6qO0M3VeHZKAAgOlr3LPfU/lbvCnQWwqA4xNlKXxXfRaDXZZcTu/R7nUPYuMyR2/u9vRYPFvQzkkA2M3VmkqcffK4vPOzac0HZyIq3JWJ+bbnjZM8kz3VymhTZettFGIhHudz4xqytiXxwhSgg9JIyWUMFk2UFt+reWrEKW+wMPvhAlXcnlTWuqkPRVZg13e+EXfEb+uaj8pporenLwHFOzXH+SvTdpYoGzaz63KLNWqerJqaTEe6tlaXDIUB9wpmxKhzfEORKkPUXU0uF4SHhS11mkPQDcv6oVeQEjmp3/JJvQ43FMJ4Kxvm8eZaWoVWPPDFX3z3Rf/v8TCKSrmEX712YvCLZgG9PZoVqblk5jYyGhkw5mZs4ZnRX6ZI6HOmsFzCqOdLdMERYyNZQytn1RI3+EOArHn2oxByEy3xXsFuFqEG2HFRCzqSXVX3iKw+B4cZ3GziyN9gRDu/jCejGSNy8ENy+9TZtWa942hgyOex+xfvRpCPfYY418l07QFLNfYda3tnzvji+KtgmnWeIv3hpXcHBqGvkOqxM6rsVkVEICPyucT2LDOG/GPxS+QnFeAl9UG08jFderFRV8zzYjnfSYSDLMVLhWh88eSI5GFGDabnKazJ6ZUhEoOhwXhUJEh4KpogISCRBCD22CP+k5I/N24BP3jNGTeQLnPtrbxb9T0RRX383fgvgR3cTl57ehKi0dUCRuO49wmOiN8gFe/R+Y/+Vkbabvf+BmoZpMFZxOCPO4oMHbsTBOZGA0MfsH5g4y2oOBaY+duPR0SE95NxLDgkIrUieiu/NZZvAgp6cna69tJw2unSFNep1W0+fFzLRbghw/eaADp8DcwYKAchCd+hBbvP7yZ7mARgVAhYeiPiDjVW13AOfBtDlLgtbR7ZdPE1E3O6hSx89mz26GR7KUoAW54ATHp0Y4C7rJm2ciag7wFzWWlm22TbYT0CRdIaTWTj2huBifLrBPvbw9cRPF0Hq/Tb1tFW5RQw6H6Eamt+No+dJDiZetYKdnfr1Fcb7RWb6F93E05VsysCvuEGCgMkZ+ELCT91r+gNo34KyMM0A8iEReKHHATYg45bKLqlgFQ8//hAsBCdthqmXKpojGyfx9hhPjNk8DRxrxnrv3rEftLsXQkqbl9chZJg0ILZPFwpNoed2aQh7OQJ8ZkawcQ07oGD4y9EBznfX8clpmGfbY7MV3NpLfM0pIZppbbIpMPJhYoUmZQ2u4Dhd9ampU/ci6lCu93aJF31uzIsUW7FfBfiAuylw+hWX3XSLPkgbfl+wHN9VktkE/stiwEYPz4EPTYIdTRjg36fCGRsUKr+/d7Cy5TQgxRzGdOMoJA4pKfL5+7/UGT7mumpa7hcFlXRBHBjpxXMlgQCg4iMZzVIMvIQHLqRD7JXsY8SF8w+JZS11WWBgOWOiVlFBTz2ST/wBExPrwZq7JMuoyqUqMKnRQleqe/vg655BjcIrQnHDoXHgU3QUkYcTr/BTn1nXLnHrNGuRHWvz5No3ljAEQiR2sVQtth+0KkYyKWpXAg54RS+1daa2N/BPnR2FvLdZEFrlqATgwYF/AP9MXiELSp+/LQa7xA+4F9FpKFuvseDW8qc+YD1vuVk0iG9my9xbheIklyxCc8zedUgy5jmxOolveAWVAI4eO21vcGJicvRfQKCMB8XwkuCfcDH1dBA08ouPlwqQ01Psn/pHkd/L+QRb0+fRJ8K6wdfAjxtp/jJNhYmAIubrUFj4/J/3XLev4HzSaMRLpkhusD4T5r9ONNqKHElgxHtSkXF5JZNPziqNXJbpTRHUm8Yk7bXFzYV63aJakKn9jJRdOgNZz3R7bviFFRMstcqNPtm9VsFwiyjog367+3Rp2Lou1/+rm6GCdnWMAh2kxwpR0ZeX1OKNGO9GSJ7OY6+6/cMnF4Lo6kOv596EYYWuaBzOk5+kXo8m7P6OMw325gPorkGD/cfi4D4LmK6aF3YIwOijILOvruVzw9ybvDK7dWOy9MTiiuvcZH0bCM3Uh+d1+Mhk0ajmv5pY5AVi8R7mOtgFSV8JsDxxVwBTXgE66iPYdYwlPV8MYpiEQiYbUsYSUKNJAbb/dGUiecG0Af3XVv3ReIZrERBqrzhUwEaX6k21Kpd1wKv3tFW0f9732mYV2MwDtfGkX7bXFW8cNmSer/YfJa732/NEIPt2xXaXQhoKV7aUs7kI2nmVhLAd9f4NHqGaKT25dLVGnzVQ8lCEpDZ/LantozCrzbFIt3tHWmgbFBD2aa4nNwsc0hhPqim15XXI+SlLGwJLFtdQ5GzkHH/fav+b87Vrb25WNa/zDrC0ipRVcQ4e1SbCJikLVqAHeXq0ou8nRTd5QUmM+v470XUv5N8BHnOAZnV5UDi2J1ke1wuvGIR+Vjz2UzlyTiJv0XBy2TPnOQMr7w7Dr68eD53bp6i4nQ7xKn2BjVnc8OKQ9RnH7Bt8BLVUklRJP1xuBUwbUduWdMTI/XULD3dGbJ6D/moL6bT/ClKAhVg4TMGPFt5oXwsln6PwLyWu+qm7yHw5rUg273kOJaBcftTrn2imbGb6E5WoFk572eYZXQwP3rFYI9PtBQwb+08iV3gtP5YWAf8h1COMAHZnmUivUPOziG9eG3GF5NIIbyyktSZZLo1CA9+FmSObn2og6JzJJaKOQcXQsbOF3AfnJ73nwId3LWo3GSExTP+eT+p5SKHv7MwmLvcmaLrNC5VtSG9NO5A7kWAB7+C1mghaIeEGcxCpp5B9/KEdC1ocazEnOy/EII9ijVVmZOCHZiESj0GjBFe/tkLLfz04PJtjgU95xmTE/XqN+gXn1mkz++YxC7zTWEaSGwbVVQBFbbqvHEzntK8CrRFx3e86m+7tYOEGUAQ061CJVosT5pZuMFmg+5e50SIFj0hdABXWPowC4yNk4cjQzvOQSXeW6CcLOmCw2Kln5eAGJmr4Qj8516QBCNy6Xh0BKk7n58RWSZgJxv4Gcae7PkHAtkmiUIT2D/WmFzooTPuHc7EfNa0NtB3U2tZjA9FhMrYB0pmHw3u0pbDJM9KJILQpL39KtCoOoeg3nWisloc36wj0DzUrH2VB/+H1dSl1ZXQQJeV2twqhOTCbkYDoM3T2YzqVlLK/o66WdpjTE6ZRgV7vB9LXAmy2mFT5SikZzhTtvPqCWi7xShb1MKnNeiA1dTebNpNoaiR+SOMvIDT00ZfAdAoVV/UnKrLYSyKu+/jmxpRbcZFqYReJ8fXi3L2zcgec5nMROFHXMLvjxO/JwpTeqtiZeC6Cndk/bh+JxDnp8U/G+iUNwCkAYtP6mwf+ZFAmzxUalauFqqL8ubfLkNZQAawyVxOQGcf+lsrg5yNUN9g9QstojzgT09Zd4me0ffZMFNNElEvjaW58nGaSh0o9GucwAz09d3jTHOEA84sd6HCFAyM4YZewTWsKF/k+AHsOrucRSE5XcFOoKeZuMoADO1ld3ck4OcQcUOahNEMBm7QW4ruc84XTGaN5sYqkLjRqt78yntcnwcIJhqZ2O03TPQ1J5QuGShOeKg3NFz0lWDcJlHEb4kkDHeyQs3QIn3Y/8QFun1vyceXTRQcpPSmiKZ38Du76HaYK3pCKCnj/JZ/Wnsp0uDN8PfKX+adWmdz72LjlrUi512qZe61e8+kaORGEAw2SVMT6Cw155Z0/djexnvb8OHZOiKW7fMgjvwc4dUbYnMyLsye6VR8kIGf7Rt3JP/MZsdW13Kdb7fUC2RTjnVb1+ID0+xomupvqxgno5cW83tfqxxXJdLuqLMGlf1y+HdmreP3/uUZyCNkoBdG5G9oKZVmR4+ohyoS8gEvLqtx+x+RQQjip+AE97FVJg/gQQlS3nGpW1VuoHf8Mf+wOg/Moy/fI6oAELNgf1vqUTH788F9MqmHdH01O1la8A8T7mHWNb7cnJQKPJ56pvKu4XxlXRZ0EZjp+hlpaR7o/dDl/Zhc4AdLhRnzPvU+G8hvBxVClmkPQ2WKmZtRkBv9IfNBARpDDmzJ7t54mcK5XDnemtWgxFTej5O5kGPne20KmlGwrddXv/DM91m37rVhxv6n+P/Kec6TiS1sBz8py3kobE4PjW7nM+Q/ajFO3kZq3+hJ0unLmRzkiJXOEihQpVCN5xuvS+JUkhRFxqWxvMsDvxiBf4oCVsY4s1Qktw95z6PBJ5JIsB41uLfiGIqCYm07AToN9gPtxrfDskJC/l4B1bcLr8SGH2m+juIve6Xn9iq//9Ja0usf/UG+ayse3eMEyZTVe1gNVAF0HGKfZ/ye4AKI99ClBoRlWzFLEGNNblDro6bwUdVx7+m13MPlEen/dTXkpzZ1CJ0UY4E26hO8saEeAJikZQkobS6CchzOX9cqf7Hit94Blc0X7O1nLTx4X8EdqTgVDwrE8FfXK6v6MzG7s87SaekZ8fZYQHkXQgf40l7VipRT0/NKT6biNBEqkh48350GNLFxc4sQS4SNNUWYk15slKVLajRPq7J79PQfh0I5vnu3ohgiD577yTrjHpDNLqXHpLqQf0P/8XygJvL4VsZ2J73ZdTUv1d2RS5aARRySZm0A0rYLolfAQ+NENLNETcZdU2q8IcUnNXrVVKB2de3XXCksA2JcchdVXKfC5esz/a6hOoylqHDq4jyx8cRukdo6MGjvgQPHQgxwaD73yLiPKaQfBdxb0YRyWFRvw+1Fa/VX9+sEtMZYHxNUq1Z9EDdib6L4KeWYGyC5QcjDFOi9l1YZqThtlhv03PlZXXzZmArh96VL10VnMqw/NcqQLkE5iVsgC8ONJ6XI41JKYZNF+G/tHBTm62P04DR6YPyfZrhZrxm7wmOtgBGJ3oI04xQ2vNse2eqSIisl36bu320AASxZr67Hiyv6oVKlMmX3FPUdZV+seNFOvvcqbfZo5B/E4xjABkmUC9rLyXvallqPdWeVppsKj69jemdSF+cpDFyuB1wJvKbVAhYdMyTtc9zAoWH0LMEGsX95zfIHzsM+I4JZ1wVbHQ39s4ubKChdxA0X7UaByeAXzRV0dx3X/15J+AEDxlyew0fVnN034rGFQPuzb5zBcAV1gIAVoAE89KaDCCNyAT9/UkAwKVYfCJrlarZtyTryLTeimobb9zpJ4mhhRbeWuDvhDOqoR9jr7JrAIwLfRyuF2SYeNKULIdiI28tmMGLctJY8VAptvKlu9yCyN+CRcjXP+W5pclUC4qTxWaDxEHRnM43K9I7iZwzIgom6VymcqF6h8FzlrnmnOjF+b94kHBQYfixj6U9EzhtpclLCON2vLmrOcOqdiXgMgTvnXhsbCMj2l24PHJ93eQnlWr2ZNqqem40nYGTDjQJ5heV+3jC1n5imts5ehfRLbQchQFJ+1fNU/wXmp5DPnG+VOhjcDnCmD3KB4tOvWQ4cgIUdrzYToZFAuhAx4se/vsgN+BxG+zqZ8EhWTRFl4W6JTrJ+Maf0QYjse96WQrqiHJh0ryzxQlYjD4r67JV3ZN/APGRIEzVCE46MNoVCdzxyPUtNAkOBw4u0TdwHnT5NRpdcD3ooYFKyMFSG6iFb/88nRT9Wbpta4HGYB6vKXEqwF2YeMRkA3g+QnXQfyj8ZvgPxhJ1Nk+fS18XCUZEYaoaNDChQxkkPd4j6qijGjgLy7HxX9ksa5he6OISGnIlTpnLquOcbhA6ArYUsvS0btqNKDrC5DgsjB7n1hjrz5ISH78BytcU2NKfCCu3fFycO0/XgxSUD61zZ6e3QriQiWIcCr4N2PKVp3Q4u/oZDkLm/i2vHtTNGJnrrh8ML3dBL29OA9+Zn62zfl4Ps7djJ+q8KEYesPpGwMCvzW75GOzg1pYKxLrosxtCVGT2imsqmkJkwR2xqC15YEsScGKvG6QQFx/TUM8tXKg6F0DDN4X8RNu9H8RUBry6tEqeKth5SVEmfW8G/08af2V/57zT4f9SjCXBk8D9kwRFkMdW53z1fUz7LDFTHywHNwS1DGQmbSu+X8RGzbLh3MH6gXeepU2UQqYs/BEy25khYNvhqzZcreufwPPAyxG9gAudJVomyLuMjPHnKn2i4oxQVigwqa8uX/5D8uiIt+KLiWXDsv/7jIOAPCtRrwGEeD5h5gtLA1UExYBjXzGrVefxKaUHtDbm6IobmGQRlgpO1NYtsvH4atA4D+ZDPNAqaO/w/7K33xwheO35W/gcw5nv/MH49+dfO73texaKy5nKWXaS3IT3vtoz/YYVaJAM2drXPnC5kA9sdhAAcdG43oiIPQfccsBEoOC80ndphnxlKdy87WLAK3x4H/+2iL63FFyjndDQoSqf0IlOrLaWSlJ/KrtuPzFMTLAsXKesa8YR0/MAqNWuB2XCxIaRjEw9E7sowX2QVFeXn6xSBnyklUlpvS1IpZ0bDmn3tGgo+cxGLSPYfgN6TVfmUx8zJ0/m8vh5wSAz4SibOu0hSLoW9yH27ISHeY4MKjxQCQnehUKF00Hqu+iponw8M44FANkOn8qFHRBwrG7SENWwTTb0pmzCbkTf0Yf1i2Bj32maOMlfY6EFIRolG/tF7PpfvyBkGPBEBcpqg5l7AlYgf7ujH9hNzNf68PF8Mu4p52BAj3WmF63Zv8Lbim6v8IoelqnGKrN61b6ivN+16fHO//mz8bC/hYifMQJ0VPXlQ+UBORDSTuVi0GVkVcgGacXYjCZ6MYATizdgW0v930HM0oLmkOx6o+jxwOq5LLi+9M6s4CRHNlBdRvmSibNJcWuTrs0scN22Cd504q/vey56kf5EhXZGtZjQZ1GJxj2ySm2vtIWIRB67Gi0v/E9cNvILQ2LT7ZP0p1xDuTuLE3rYgC9S0RWJyUd63IefaXwFeFC6Wyp9fByGBlswxBQAy1fACvKXInBHeWWWHiMura7XadVNMFFZjyC/Q2Rmfn8Rr2BmkOxgEfnnkhXIvy8OQm27P0Bsiex2NVRB3j++fXBzAl+fTYebYLrsbFpc1c/3PZXRaSLjiFyDMoH4RCLIOPuVxj4VR2ju0cLjAxzNWu3WoKLA0lNxbBarlLvtCA2d44RLceyyEln37LumPhi5mmgV6dQ+Z6ETa9I/lgSw+2VtHKgeVRkA8PJaIH69sCvq9+xrHzwRf8n4szMXPeThvvOyzRq7n/LxSn/8jKB5oF12T0WHcs+XwA7O87Mxg8RXSqP3Mb3wLUeerGQrPLHiA3QFlcfHAggAVO7ykFcgnTtmZCcA+2xDMfvAwOPn4W81IL65sLe3k9o+tmL0iLnzAbUih97FvDDo/SI+TxIy6THVTfKS6xMuuVi0RnEQvFRicY6edtdWvISo6muVDjuvEBHC0b5TrA/8djR6wilI28asF1G62rwavqQMJpaqx2ioh4JQH6Jw7SbPljVYkSkVuWCKcNFvY8hxwjnGLLje1acxHZpMZct0i0h4g9kDap/86iV7TS+RvjRze+puJ51fVpbh5nnpEbO1eFqTjPA6QY7RLutEWBo6uXBwNBwqiW3PzmCj7HsDeEw0R1EaVJavCFWeiN5SYh8IYt+zj7Oxw5+WE6zePviPy9xhC0f4LgVomBwDzaUP8JQguyqTicYoc1wnw1KKwAPg0EaJXaKuGHiqqjmBOb3B5JqKCSSm3RR6i4Pqqps4ZfH+Pf/1puR82ae3kT9qcqMHCBv6j3TfxZwMmtuRlSHnUHKUjlx7k+7o43568vu7uJqdarRdfRTI7VLAyjPbZ6tD3uf8/SikgkIxCmJT4IX3qY2hJJhuQJLw8Q2vhd0T0YTLWuOtpEeLaBZiGs7boYSWSPk4HdiUMbDEFNpL5jHZLc8wIIl7y/Qk8up/WiFNUVoGMTd8e//6NmyrXHsZ0mNXc51xtLnhWLSXqKR9zoz+k7jGeXxyAtYAZCfIozdwedimIP7FlBo8yxsV6HTuLGyngK/IkdvBUl+AL52nJSrfnHG5i5bG3+q5oiP9wydVoQyC0vgVvzSrEDt9YfTBhse0mQ5Enc6lI6cxl3WwTxJ+sExi8TISmEB0OF1Y0s3XbBefd3cK1IbCz4+cg9thyvQ4x7F5oQbVmS9D3vl2nkI1ACJ6E7b6eZX7Qu/zsA090bS9RUbYZ7gzJVZx2aHutCMUI0j4/Wkn5huIGYzUvJpFM05j6xlbopuujgJSuQXlP47APjRPborf3SkmBNyqSBjHfubs/szNByHFtVjyFWmo0hgM8+eTbDhUJQP/m6yKQOsYDHy0F2YwM2L5l4YM7ykh45TXl7Q82ox6U50ODy3NjNgGr4sinv8OPaFvLDsYmEFStjLKzepH0MZQDkhATnWYxYlDeoKdE06ygDevOcRWPXwNDfH8YjASyXbe0I6WENkfpkqJ3E/XrT3LviV3xyUtk2I0KSD1brcELDwBRSZ/TXkHsYwNWE7i/08+p/0iAUTbK1I+B1F2dRWA+IynRyKdmgSQtNrVgPdQexj7DkDo2VXtlJwoTHtey8DTv1vBP5hBAEHK8p3PHC2MyhG/R4EvEUWEZBTOlXPaWtHGd97GIKoN7Yodvp8U++yfJACp7aj+sqWhx8XW/Ct/g/+ptnjxPWO0XX01RDnAk5Co0dk+P+ZFnI5OFFt2RJQ9LU7K7dD9xxsYgQTVXTjMs0+t0eZkh3VW28Tbrd5yhTcGYTbsyZQX8uF/QIhgb6iGPwRcmoogJ/Vjc+dgkeqGIM4RnG+cDfHfCPZmy1NPqVUJ1qplyNlFE+1XklMDs3L4kf7IHdxhC45QZHWCurNcJeJfj5QEV8KTwWKdQKeqXDk/bOWV8UoHFpACONlIXncdem691AvJBI82+xnJHhzBeXsxU3qUyfkmvG1VBNYXuhHttuMCvA4uQCt99fpU3sGh3Wjn/T8XstsHMML3ymozTc8JrM1VOWaXyB9zKWp7zW/GrmC0bMbA9YdHEVzeDpMytyo0AZWup9kuxLzUEBi7zoUP8CkKZzJeDIncEkjZoL89yBxqRV/7DuOIxFHrpBuS1leJMMB5iFclRDwMsApMssJvxvXmciXE7xIgsw4TJdcn5GnmeN8HcSQKJYdePqHYno5yF/1XWSQpsSWZuak/VLGOTxDBW0xNaRJjA2psq2fK9AoLVJ2uGjA+beHXNlWlYdqoU6841BAK5s6qgxy2pSjdJxtnlc36JyiThRKRakEFZEoJ+AusQZxZaPkZG+bn6c5UHlOzIoT+FKoWWiEvfztzclX1ipsTI/NHZxZjpiC62pDV0FVFQmu2Ktm394u7/28KlMqyq09nYXSNseyC9u5cKgDp2SxBEll7sPb/Za8NVfEzRQIjT5KogYUV+Ph3+Xrd+93bUs0VonFWUAv/IKT0UZE4ZZS0Eair4B9z+YflK2+DQiNY9G+lMSSBfaO5yH9uZtHujliZOpXOo6PAdfp64Dkixee+7ERRvxL6iEvgYA/pciD7MpsJJC3ThjH/8q1Vk5qIBxKYO9nOgAbHl6y6c3Uj3zZUoME+dJKgpIezDszRem02vpYpA50GUzdw9Us6OebTbqash85P+7EO6fCTrtRVxcbYfoISWY24z2UmcQwjXgvVae2X1rPiggE4qQnLlZvtx8Wj0D6wekaEyRUoBItnGEL9TeiDaN1vt0oS50NSBiteoCHyUCPHwtXWwdDFusjqvlEJzh6mAzkaMlMXcBFnqXdxkiHaxHWBa8WhHanPV4uYFPWaZMwfQBy0cYB7FFMsa8Zd3aCNH64fXKFFABDvF83DFph6UoZOD4hNItqUWXjBDTzaPMhZfJRg1+JKCFeDp0mshulp34zbcWAoq18v8FjCCNyIfGBPHz59ghICt95rmsd+ebkSLcUet4PWWaOX5JTAozwnnsqLfVfW8v+BSlQZoR45e9ZosyTQnlYui0zqrMxW7yboOGdXoQPIcMm6dobxscqY2pRVLVf3ReRxFAFK2vFHD2rtdmzv16GfmMuT3i6YnMPVjFotjCvuBih71PsHVOmNbIvGJlJVMNwsykBlc226lSDp/8/8j4/2uv2qW6APFw59ROtQnBKAm2/Ss1SxVS7spOLPCaekrtPjLg6/rdUDLvqKp9jNr0sGugO7WfvNWG7baz92OXijzcwVtNar3uft3e++4VE4+SNhq05hEPl/0Gf3tnSbqO9sqf781w5WG4I2IDRE63t+GJcblo/fPAkvAs1LHZweRWZeJ+zKMo0//TXTHBk7fpikkfrXOy5Ckq18AgwQC8Wj5XdUSPeAFPI0w7iX8CK5t5T/iyO5rRtUBHT7rhdaSC3qxc9pQmhUEZKtz3CLYnGAd9+Y0Sq0dMLgOI4091KHXap3/AZdmQyBoExfJX5wVf3WkZD6TPVPr0V6VIZ/oers4Jj/wq6K0dGMDvSfcvmXlv+G7oIqsni5GI+s+NrMr1K9KLhHftRDod0/0mKz7ouPN+rEUvtnaBtIC/p5E9imvECATeHI8y3jR3p3vXD3z60LSCuV+hV6pufJAcznyEo6OQRqtqbhpsKHsFxzWzQc2OCaCLBEFKQcqxdceAaLhYAhQYHcgUTmVuw4VvzWziB56AYBs3mZvYVZX2/U2vV22ZLWK0m2BojqJZU/ckPyj5BvjHYSAB4J3Y/gNgtdcnfWssKXQh4jpXAMk0i4SddyGvFEBH0u868iqx++XZFEe6RoSBVxhNlP/95CdrAafEqqESv+iP+7Sbtt3VETxm5NvlKvC311Wj+CTjQ6QYrcua8/LDtBcWCr9hxXvinq1SM1ZF1GgJBVTooXHo8XpJVIv7t6dzW5wuttpkKfhTMualFjdJ9/Kw7vm5BQKJw31DWmCMdZIILbKdqlAL34n1AnRcR58rmYyxaxRgdHfRWgiswiMG1F9SBR4GT6WAcUcM17WXGSJ4lc024gqeuE6Au1/3fwoJ2YB4kWQSwFH3/tN7WABqFNCYtzRc67HXbq4lF1nWTQ8OCniME71E1fc9roJ/QZ6JgeDNTpTn/MUAJ2K8fUhYPt1khoDuaLTtyYuQpYz0qjXIMy0Zqwbbolneis4B0tMGhAS3TerObeUfTpXoeKMwjH1rbqcZbqubdQSJcPXFLd1iA5uVJP8wSefymG1sg8cA//O3/tMuM2nbk5CA04aOtBG0nRLPt+hxroxWc0ZjUibCQd3/0ri9d9ZVwejgeFT0CgGrCXdix/hUhg5rR2hosR1lwINwbjkUwIPcKhlj4jgf7bnm2rx2yqgENHAxWxfNpWf7IFt+gnLpu+/ox3VQ3nzIDeQ49jFy4J/swGMdVGU1ZsA6/dtx3+Y7qac81KSc6RXHH7famhxzh3LynxoL9jPrkSSxisQxzSb5Ok94UKzWzY9v8xAbQOshi35koq7IbbjhsR6LOzcpb5+FR45jTaq8zeD2KbRn8f5kXG2cWbdflm7DFkpL1M4wgaKLh/JvkQ2uiXAcFYieDvSmcYAV69luHD4uQ4ivnqSsDjQ0qotPtARsv2byN7f3ltdd25N6akucBqDh+rs7c7FsvReRfVPUeqgRS4+dw4O9DQiLI5hrTYZ5GCbHZmhGRGakr+F9g2MgSyfC21GPY4c8gVdwkxLyjj8pWeE7PaHJR3lboipavh1s49xrDG46nvQ2/lFcaALdPNNHrvWwFCebioMpzwZBRO1g88/kwn1jS+IZwIox5EjTsXSszp/EMXbBRkrEMxZCYoDO8kGFDKCDWZvGJTwXXvcLqWTNLvtBzGLhrqsbuLhbhGNsvUq74NanLeSOEyq4NDD+0hiJ3JLan7AmzwOdJvqs+VcZB947c/YFqbE011H8jpmMa+2yT2uZ6/wAi2KYDzcbDJHNfc82PVAQ8Ytz97T1SzKC0J6tcFxw07Z1TNf4Co0xMS+ldHVRrq2QuMdlHiWOWdE0JMs+m5Sbc6wegm2nO+zASmjnZHXiKxYKVgebZ33VHrHf57EaeJUD3jg0fgIIW2IXffiOkfdg6rI2YdaR4osTvOYE+u/xZNv5WDPKQcW2Ro+MJJiw0z1QWP9eH6+dzqGPdeAMBShU3UZtpLyASdJ1yCAW+A1ner9Sf5gkGQfbMKY9iL4peOrbBdWrdAFCk1GATUSZsCOrlzyN5jNSfZwCnrZbYQumgl//8jpf1/PzC97VJfEt63pe86MR4u8Hp92PxNu6LLptARWC/Fa62bYxsMPSrYTrC7EDvxHdICMskH9ElGrUYsrhsfD3W2Cf93iQYlHMh6FWyJFm288Zl5l80ci+9uQ3Y2QSXVUAkzIjhGY7xdzgLbcJGcrQU7iDIulwR8U5xQQS869Z4yEsYDYIS5czMpY4LhyaC9X6Li2gA9hby95PidNopblOzrHTiZtyaPf/zXzpoLuuMK/CYKExXLEMoU2d6yBzR6mg5prhFhRDpoWPCIHcn2OtAf7Ul0iZf4BtDOmH8J6Gkcq8VT3W8jb0yM2PixoaRp375HBOTRS4KaDxpAWWe+2CQT6Ld7f9bjvyPmywFy3SABnVcyIgbleoITxTMTGUhcTHXKKlVjHnAc9yFZcm/HULnYLzpbORa34w6JrRNidaJtvSHNRH2KWKC/wkt5/f5c9S8udyNtJwmnAgkAwu8snkIWmuviAeJZHm2LMEpn4STD7uDUScl/EKvGlaUqwQ1MlUZ3IPyTo4HN2mEYFUylDPaEV4aTK3zif0FY+f5v7exqrWA1cRtxkU92jUsfgsRnGaWj3awz9UYqo2I3Iws+AhTjMbC2ZD+5ePAK/jis2s7tx0TJtJfVM9byna65ZQb2YpBhUf+2juDhrpPtTBOvD+VSqDQw3czpGTiBTEKjPlLt6tOC4YZsJHphABtRWmSg+XjlCvMF1RgQnn0l7b8WMqsHN+iSGgfto7dmfR2AWOxfzj1w2nnxZcyhfZT3q9oi7cz+2deughoaY+xRiv88FnP6MiZ5lKF0LJa5iV2wralXiBtz875TXoECCnoXH17FAraFfMHTz84fDSgROsnm1eO5bSWCdqfi2nfzix3VbNWfyJMUQD3rb+pchLCFl2JsXCLqc+WBxlzYswQLUqPs9exCq9tmcv3dFlZwS4Fkq+LUO9j5GzoXsyIcvPadOEXpzSiCePhuPsW2cBEqx6LScRohWgRBpMKRg88qraH0bMsDwIUfeXIu8V/jwdWGHkamxB6j07lxAUWeM/dciA9Eo6NWQOrvAJvCWkW0qZCZykXxUxHl24+CAPmf0OVJiX0F8nQleqHjKu2NwpQCYUnDd3T9pLORNsqAezbKq6ILLua0S3jK2ylq9zuQo5mK4K84Pct0ckJKBPXe8ZxXoXfQpj2EjK5jEEXPEnTHZ78IPNQSZHWk9dYhcVFt9dWzhANkTe/UbyOd8knsIXEvmssfgZgKwGw84gZxEw3JfrtWOv6Dxlcs/inQaRObU7GEm2WrQNZv1Has5//dEC9uyxR1ICeqZvOtZYiXwaT7FsXb0QtM+guK3Elg6yUIWjxybfjtSCf//aHWfOOp12hKnXhLtihJj1pZmpY22pNn8tCCxAWVnMJ1mrgznIAlKRvihTPvbMk47vJ0Xew5gtd/DaHOzS6ruBk7mnVFyYbXzXJS0WLW6H0PLOAhgHAxltnGuF/xT3/QGNvzz3yz9vg8wf8mOoAHy2WQfMznxc8Qiah7YeIRMY1D0zdtE9ZSMqqK6VhJIrPvqv7i93zcDLhx3cKjIPsD2hLAoH0GLDklVcR9PuvPCRD4VPhI2fkPIQ1YGtuE0FZcQ02MDkrwOoWvaW5iUlKpItVYHyHB5Rg7XVgh6qZeIhSOiZmmTb1tIEG/4iQF3Qbk3X0+yJpmHZRoMOlPi68CcAiSKDCcATAAQcQcqAXEWOhwiZv2+KRuaKrFSCEAAW1Z6J5bs9lL82O9bV3XLbop8XuomeF+zJrNkscOntfdhd3zdfIRAFXtW3BSNIZyxHJMvgsLKdmyqQMclRJZW8gSyUbAR0oLEDK/V/6YvijMs/0Bm3pE+jXuDjw9JDpuGgHxSWJ0pJ0W9ucjhAhvyT7Upt6BW8w5GsnS40CF9LA5bMeWzLodkgd/ZffiOioztjvMmrL4bQU4GqoJoTQsz+RE6qJEF/NzyeYvQ5Tdx98voBjbugd6QN6LcXrH9Opov+OyghkThtLaJACtQ1Z8N7t0ES6nFEd74a/j9vDRUkxaIbKq9KUjvxxRsCZguLxUlF3C2hDnFMzj2e17GHp5ZlTq8SkbOAj2SwfombFozcVl05/6LR8mtKKqU26mn70ozWUq+g30TjAPtv+pongWIBYU6k8lVy0JyR0YFEZXaqIsUuTSe4LcZIvzuyIO+uX9o3lUU/xggFYw5sc3T+VPOidG2zPvGHQkn7JBHDna/ztwXQ9eDtsjEmSSa2ZS0LNynoT5xE2IxktjS3fzPpC57uyUX3ZiEaKDcF+OgxAgVEQjw5pBQ8AVHBp63l5s6vS8FGmtcftaA+CA5WnBYcnQMTDZTDHLH5hieWU207KvUzO9+FSHBJNur9qBksRGZIZuboIiOSIyFC1Hc8VpGl5plfiGcNwdSiFPa0xlr1YRzWSUxzO9i3Hg3gB5puqo9kz/DPgwAOlKCqC3hruYOacBSjL5p4ttVzV2VzBdp3YEHpqCD8d9u+6hGSb5RXgg8iOn6ig/Z3LGwbLrLy1x58yDt8/OKedN9ujfY42DiKbQCVzCJAjPxJemJSOXrbgntoKmrvMAMyshC1uQ669ZOu/7lG1b70YgFoMotTPBUP0EHKlkYlUrYe/7Sw87e0/Djagzot0CJuePUxb3I8zwejO4E7oxNg7QZdp058nvP2Mr2ZI2UWQotNGpTBN9JFrB3rCpVle3vIx5PeTqXCnroersy1/tTTxzIRbkoBlA8llGYeXLTNXoyGihbYS/1dhklYfPSDHTDiMEPoBSbpWGGeommXJuW0CremxvQk3vWqAhucw0SXsEt4lCaXGIGW+u54yG35S0MmxddLIzRzro5OE14lwXqLz80vcNXUklN1VBgBMKdiMbEo14rjp6iG0R7q+o+mSddLOxH2EJGoOFalANO5hK3z/1eOxGBThByaKqzx/ppUmcsqT5StNR4JITR3u2Zt3FJlumAHH9ssWi1Cfkx7XrIK9dCcuDSiX2lk0YIiutInfEu/3jWdRYmuw3xcHNcJ0j5wKOBkWncaURQ2pB8w+tLBG7rAXwLgTx5S2LXvfPdX8dq2hmvkss4mYTf009op2BQXIrnjO7SDT8lDbKIgZnPA81VSZsAYIGKKXEnQX/vs2XRM0pbGjX6F6/WKUwWDDyHl65ZXP670leWLFGXLHQJs6xk2+tuKFlSSPcYZxsGfAsIIfSVYNW0r3bujvcY2YwInlJ3j/qQ+uYYx5eXtdOxtRlS1Je2nrCjfDr3CE/+yDDI0Ih2NXUIlkaVB0uVlYTwfiJOxisaGu81U97xJZkf/qZjdQmxGcQaJai82VcP0gJA0c9ibho9dSLbw/uOotbaVP1ihhSUH7Qqkul4Ml+f4HZ8uOtQO0YHLfdOJZC8ZqnMdjDSGlqIg4RFezfzmN7hU/R92oNSiDEC87b0O/of6+0sDltJNGMqasw7GGsfMO8IEJmZaFc4sTREWDZdXB5yasLewZEv9Z3feYOk/NckrxVawCSima7wZ9KSwCiwldPqCaY3vclHcYaK3n6Tfm98m3gyTPh0s8wvFDYABTDR/DKU684BUHdn8yinRlSnbQ4WddHpyynikpLq645a4IFn56PD7KaFCBgTMeZotNPb8Tv1Yy4FmM4dlnytGTNN/Pr6gcfPYP4UW1dE9I4D6wR2p9ovjlI+upl3cUflZaF7+4Ls2TsApAgNEAWsvJC8326KuKWxpGtov/oQSp/ZtbmFyJ01Af1+5k1ZG5VEbjxWQ3z9IcjmbuYkAEltBJY86OX0MYupZXkTjm2Bt0QrP9YW7ByMTyBuCEVcqZmNrhyWNHig++ZZ17iFWberZyq6nfBjeOuHqLUVbY8bvU/E1FRC5Qm1HaW69F9bJ9va8vg65ig+Q3iKzzdzB+CPGzFkfCIpUy9M/lWt46mw9Hb4K9VhvZP/Pestgys71IS8dja/bujlWkcDlQ3W+P1NYS1pMdaubTCBXkXq0XG2og927nPMmjLaHWUkU4Q4xu0S//XHUb/lOgTq4oWg31/HzyQzRVGmkaSE83TNRlYaPzDSByom3mNlFXnjW3Ub8IuaeLwsP37YHpqJjsLuh/OiOMIwAPUF8CjovkqeV0WXrYIOeesi/1dKfT1UoFaRn/1Y0HJG5iOAAzlNnYX9wa6W9PO2nSL4LI6or0Vy17bBi7P7p6zeOiWl48X1kCaNSXYU36x7Zbz5R6+Yosu1QufVEdYuQNyOGcVx5norymZl4BaX3yLZufPrQC/KTQP709x78PIMz3BlvXxVErDSFadoOW1LEXRfJ16Pq6Jc9xE49VC2X3RKEh1lEemsdfYOrwURe1XlhT6IJtPCsc5xlOlzWT/xMgP+OI4VX116Z8owrBzg90nVM61d+ihs+cD2YhVHRL/X+gGRzibUD9YjCTXMUT3KlpSb4POIhlztH9ierpXLDoxogK/m1GF3Guq8X5AARHUQVGhNGurjjSD/iqBOrewADFQKWibmFB/38Y31cpG2TMqQLBkBK60d0IaXhMY+6V4N59k0vQh9PtXw1IVZY0VuwKTPMciPKOT9XDVewozo8wkieK7Aj5V1THkspqUnfK9HFHakIYpg4mxpPAcLi70f4jZ8alU989YpXDqqVRSTbM9BRtU2afw9XfOt/GMi0i1Aiu9N2deq5eaTkzamf9evl2KkKSgGwcqbPnx3Asi2i4DTfbZqQ0fNBQTV7nx9RrUz4FSRTQQnNjjQ4F8hC4V92kRi2j3+t1ToKgxN0Rg7+1p+bnm2Zv2kdmayFe+X29d7maUrtMoN1zLqTNYV4YwO6h5yLO9r75pkLyHavLr35Qrnf4PrbUqn9cunO3jGCxyUwWRFCCtIFwJ+hGCq9UCls2TD97lspBcvR3Md6b8fsfvGpr0K5T2KFEw2tELwzhyDch41kqb+sn/btZGux6v+/jDYe2kQLtTQrDGaRiU3MwwDVLGJrKIFrKJ/7EsN4tvwvyNj+ItOpXGk5aJ57mRVRGD9FOWOViczXtrQn4vg0fv39ZGLOl6OzUXSMfTGaZasqEV7HFPw10kg9nbQb36WgU6xov/QiTnqroZLY/jmEdkxk5vdz8liHTnvDLuyy/nqG3uBEFK2uc+4sAANNohjkjKa3kBxShou4iABF6hlV4YJF9b/5w78P7Z53esPHurJrYNyKjfIHJMd8lrtISUnIQR/xaEgStq80Jd5SmNaOupePKPuxIjcDqedppDIoZKcmlR9+2/7LWtUnLYYCydZuTIdgKJj0dCQwlOaUqJUwpj7t4HJPrkgZVNKC9ZrX/nUHFcRh4xkLUqzX1NzxIKmJLfeXlyGu4xnIzwWJZ5Nf5Uizt3qFooUDi5EhWXjgzLyhxYVTZI05ue/g88teopSRO8a9oX9yo3ATHOLbXngC2Pj66vSNEC+dY7KMaS04fJYufYVpwJ9a7Ckp8Ikp/hOqN46beh9zT0iXZx3/vPM24p3wDoE4V9cKMbyzfyC5tSKNXotq26XdKRrFnaY0zE0qz6JToMems44QJBw1eXwxKT9NHjfS02nTpTXoIC+ICSIgJ5oWVesa+A++feW6mSxcAI3BJRutSkzqgw765Zg/w5NeZ+lfhNJ+DWFFQMy97k3iOJdkH4GD6fcG6h69qEJpLn2yUabCy9vihTqx5Hs3ck8OTFiENKdXD10wvDoFX2ObFmzFFW4EBFfm6EPsyzQYQM9bUvoE8HzNOJRWOPSjiEJUmoB9Jv1DpzvrEqHA8Nccpqr/fRawRvTK4h0AMTR8+mVVxSnxPTLJOO9pEfYrF3owyVLtEZ1d2Fv3NbQ+5COkjGkhS97Q9bfhUualA7kQLexdA+Dr8s8Ww4O9EQw8B1kclTMv+YOlWILE+Bb2g/j+9b+wFN4KVv3G8SzIgVKtHKqjfn9wV4S8y9TW29y2KrM+7s+xTJl0cn1UBrRDAor4D1mqjHYjKFbow4Q0VNOWqLB6860b3xegDXVBftTXW9DMqoDWAtiZfuxJhfYqRNK4wsaQYNRvg8nwCp528Q+gq0n+fwxDzlo3yzvWdkjwb2hy6zkuvJbjYf1RFCOaKCWHcc7Gjf+TekAeYyROkW6YrIRC4Om1tOwD0gYGP18LIVENDBokgKol5j5/LBQG9R6rvCY3ShC1cbV+ku6UXrA5eee6g91girwfuftsU3EtUYs9gZ1u+Mpfo7ieZtOFW5y25+jLlXo7WCfOxg36BXwhxuZkvKwAS/MYAACJgQAASlZBmmRJ4Q8mUwU8N//+p4QAAAMAAAX3K/uAG7BeflUDfqn8G8H5DbBls98DxmZZEm/gvKfnNtG7qt3X/LS8pQoHX/TXjb92lh3iZilrX2I62nj7mPyGoYvdxLDZcQHcX/hov9rnH6axjQCQFiKDeQEUVB0CpDdfgrBWnv9ixh2gsT7EuqUpXglXLhnARbdgtOGZ0Y/QPtLWD/UtjhSbJSlxE6saP6M93w9oTkvoZ0zdFFkvFIY4jsX8NPo4Q06+NqAmox3339UFPPONBDQ8h7mrTze9dc7g3MyYlXKUuWJmeUSBXv3mk0h5HUh+vpPQa3lV40JKnc04PzTS7IPdG4qrYfv8P/v7tQhblkmJPuEdn5sxYvJT0Ph2lqPFzS1VpJ8GP78H4c34KNhnzbcn86soWfjwg+1F7LiE9Ntnx4ZyES34jdCyfXyZhZ5KWgfkklBW3tUPGzDQbhjVZAoVbGzrHTPGxzv6PpDnbs1TwvbWlAYS1SiP2ULNfdPHGrKrRnp0UfY963cGtmN/V3d5dYgK/wWZFAXnxRsiX2143bySC5B9bEIrjrRR2XsiCig0n5oa8bDqK0XeM0Z8YBIy1J9OIwLjwOzrETvLc9abpOi9Cy9EU1lYV7JtBltQZQlEH6vPvLLPfMADerVmlfol+o+pEC5Acs1ENBVmmfp95nfNvjmdknEdee+yE4gaPj9aO8/NqWZUBOtqFbpbb6wcW8/YsIgtLhAw2e4XDI8akTEwYxGyjqkKck2oOqyD8RlkCdpkoj1IlWI6J9IqypRIS5oxQYSEWhRjUt0bL4Ump3maXJOdD7wrTQipAI5GbT2Zt0A9pqaY5RlY8+S93mLgwDQBYn19r21sGhMb5wtP1H/1VJe0lniWcJCqRsQv2AAJqDFR5NlN6df7O72YaQnfpkCnm9kFDJ7PoyrPb9/K4EgE83rbROvhyLD4JZOIwJ1GlqZcWWSMrrfeTFAROGZYKqt2rOBB8qN+eYlG3rUM+dRB5koh6fJr3QG+3TZ+P16mxxb7aDLq5/tZA0w2wMj5KAb/1FBcpjj/vwsQ2ML7HiV0IZfZS8XIdcdQjxoh3RTgUpuWWRN7GxpcJtWvJmhiWMPQNWwJgbEymi5uuObJKTm5rtDymuzx1dLAU1OcNAC5t8Cl2G16VS/2oE9H9g+9PG3bNn0y2AoOmsrvt88yphXo/NYZFD6MqoGVa30tk7VjpVP2LcRF4br5NI/Eu60cDNR3QCbCObp8azg3MAKvcvvinVc8PTDzEY7ur7EviG55U52/VFOfTy14SH6pRvGiEH6b4Gp5CQjbPx6PBbyTUv8qX3Yz7y3e4rymMzduVt+Q9MJTccGUOe/i4Doaj++7vOL6BT5hTIiRyTwMqggMDeLcMYJkxGjq2pWQ8bjl+rnrFPrRRH85oTLFfCqaNWpL5tGCsVTZt+6ycDFz3um3n8N46lgy99Q7tDZ8bd7i6bjCV/jJ3sGiFt0+q1AAfLJowokoiuht+/I7GLJ5fyq51sRs4xm/zJoZHgYjD3NEMDVUT+lLLWCXDQI5nu+SgCAmKJRoXlGe1FeGkefAJcX/liZgLNmJNz9mUUPOexxgVnrf3ZiZKz2KMx9rCPWJOv8tf9pUqQVRoLBP48cU1sq2Z21IPF1nuuSWRlT/zdLih1bd1seepmcdrtc9Zj9sXFiLQUQw2eI4NDluL+IrGH07HtVDTKP+Zh62EIURbjADxvwcp7IslLSaGYlaE4U+3DkyDeQHQ32OIthc7byZGxjb2UKoREYy5q/D013alNuGB6j2z1uACX2NPnvZmgJ4OPk8ANdu0cMDfC4lx8fB9xeHqkVV8uV7EX5zo/5Wv2iqfnXuyhnP0FsRHG+BOlpiyHNJVv2VGTwDObZ1IMgeZd2Blq3x2FGWAolCoZsrCH3MUvcrCgfx8B6qD5rGrYOM+cPJNtD0uav1c6cmz25+vdgiKdIOqattnm7N+BX+h/gsMjevvIvBf2TN/TmyQPd1Vc3L1H0ly81taSQosuv+aK1KRtjB043GFUPwP4Ft8trdL5btcIJYj+bIA3QBxo7jD/vPuqVThpPCK62AN9kvJKGAanmS4QmUpiLHfrNzwjmkyfXyjExYVB9yWio2dUp8n3BTuJmbPMf7BMDDV0ac2R8fj2QMvipJWZtsx51zRozWWwFzklMb0uIaOM2u0b3AHMVVY45DHgxXAS1DpKaI0sc8Ff/yswJmNcLbNFGHknInITx6Y0j04/zpXFqghsTxNXTXWDUA3LQEJRL01wUMmM4t0ZGV1ISHicASyK2Bu70QsU/Ly/C51hfwBcn3Ir+Lh9Ut5Q4wcBVlDhwqvRj3tbJ5UMJ9npWNvjOQkzs8arX1SYp4znfBMhOZhECkC2C52oWEqafnleWPEjDttIsbcr5kVf+mrumFBZUAiEPjjDV3zPFAAQ9R+55MbcP76IuCkdUc5hPCFXyVJjX0PtWvs/1I3j11WxOp46BvOmjnLBYBT/E2qqnZas8zyBMRMiumDKl/7p5tWPXiOPMzvIHAz44dNZfgo9gCP1LRqshEEwJ1/5x2icjb3GZUauDFCJefbYjzm8FXdnUCCpZcn94LPpgfVlY+vYEg+IqyRD9yFAa1dLY0LWq7l3fmNp5GC4shz9dJw7OdwznC2+5WmtskHIRBESDrXLOQFz/KxnZAkbSh4vBtmVcxxoT/59R3ahzeu3caupKDpARqlvf0TFAQKqlB3rVf/5Ks2IjBogdnqo42UyHxgdGcX0VEdo7Ng0Vyw9mJLHTroE74JS60Tp7gOgeZCOxNf/SsQYdmoYQyi5azF1NVHXb3LbeegyHpLzOYcoKUwGSgMsof8TeG5DqA5P/e/7YKZGYoBozOEsxyC2mLevL0XHBrjFbESk5PdABUihI8RusnVJUQMO3fRxlR1tdXnpK8hgEwTWsXZ8TT5qWm7P/8E6+IYZderXLFkIyCt8u9TxuIhYlzrqM3D1t5lfC2nVwZd/uWgrIQzDikMk4LNpRglr7AYn6+H4h2WWw0Svc1cWDlNjOlGX319ZwueUd/dMGD5tCDFjFnqDt4wm9AI8rGayd1MJAbOKyHyCdWntIZ75sj63ZrHBU1glo8pTrKJnyFsuWu+MEegwoXzG2beHA3Xlzh2o/JRRK64IOznxtlKDIKZcObgp8O0hj5AVR65TDD+11elP53DjK7zLOZMqjyHbT4M+urrRu5BjK8YKZCd9CxM0TaR/wnQn/rnV35ygkzl/xPywY/usxAch3LTIflWEqUbMetD3vQ+r0q+ZuIBF41zG31Tkth7yA9XrubYg9+3sVPR4natoZRZq+3EzibZwdfF+9cx3sznnhx3o0wK7pv2j6L7fy5RAAb1my5dZ171bg6sX3f1Krk8U8V82nF0C2P1e+7Y2D8Zu6NoTVDhgt95ssnpm7e+tLgufiS4ZlmQeqMGI3opdoDFmsAYFI/H+HYy2SXofDjTLo/AUON+gH1WhDvSMkwH5sGcAOKziEDhUkI9ZTU49Qgwa29lr/NhrYY1+QaQGPuZ/gTLO/4pXgb9sOlR+bUXnAGlbks56HTY4ZfYaiyVWRgkvbbdtFz/Zzd/0b/OThjOyvXCsZ/pPgwMl9YfTwWjWB70qxN6ov9k4EOXx8rEoYJXFkJ8Xo6ViJsKeb4PrV7McQT6n3cHm2W2Dz0Ua0kvE/+n4l0XZ5yZKcDOpp1FIMZn+G0pHi4xrGttMzR2ocoM3qZxKHBzSzm4RejDQQHAaD0rFYbfwEXSM0D3iSv2xKIZ4xl5vWG2MUGhm3lKkYlIImmmHjf9itoOfQebJE6dvH4UTqdkSVmq7/EtH3t74QmsRH77wNHUVCgk8nuvVTKOwje2ayzP5d842I9oxm1OP+3G548zptLhI1n04cX7Um7pWO64LTWJe6W/mK1Lkgw3/T/udLt7Y3CRCHDEycQebsTkuQL0sqK94CWulJ4eC6ZgqXPDNu9v1XB2fXbVcjuiQTK11pOfCoHAznyGqodBUueif2wG38Xyp7MaP3GJvGHW846ZzoqFehMmlt/NRXPgDSh4OmO3FoyAekorxGcFqAOVUXrdl4BhyK3CRiAb1kGXPZdP/7h02O8ukVcj3DxDprMF86T/NaS3ThLLgRAr0udUscPWEokZyVYvbx1M+Yoveih0I4MjMtFxrdfSTPpsWvv/5dnEZ8VHQRnB9jQ2yPYYSLrCOcLVvWF5VG2P2UYRiYFcn087JaC0zzBGIVYx+oX9IyxHl9uzOgHAEEEj9xP/LUj7eumCdW64jO28rIg2OIqUJDu5uAbJJ85s2sx45BYGRe0ZFdyiJRVCEilo0vbF9eXQSg19a7onPLOpwu8AwujiPu87q79DbGVKL/wE0GUkR4c6NFkLfwc2NI3eX5VBk82O3uz6sLmmFESHQa41CT4b7eQlqxUY2cSpj8sCaPgnMeifgcQHOsv0y3OPfONzEIIJJ3hLb6GVnYPUSy4scucrBRD0RVVlsCpa5f41t2VJnSruqAWxw3/g6jxBWwdgoKocdwlMz4oNQj8wudRENbs1L9qK0cY4f0mBKYdYC/vJjfy41IcH0YH7iofFHyl4KyZWF2nL2GfSPM/PkqzJwx3RzBFSwUt9T++vHhHlyb+17I+oyd6/3dqIMhhheo3zWcRnCkkv+75ZW2rc9iMdpKai/+SHoVBoXPIgf5/fHEBy61RHHaVBWMkexXm39SonlWVsVW0ekWxKOPsdq3IIHi1U92Nx7Odfwl6mZOIUQ4jeX6wq1yyC7+VxLRBLSv3UFA24E4hAFBcng/DCxn6/AJ/MFe9hTxaCf1jDDC2XQWLvjuAzhriRShluUuf0xpngv3xhWtaRS5Iusha6VaTkH4F1oczGxOpVOeastsccvWc7Y4RgU25EUaBryblqho8wlHiTSkITJ7iCNTPjdlzHlk7aMO+VLyulHEM+rZb3LG8l1a+63KdX3yRYVIzUUg3dpl+ujvB4YumrdQHpTcQVXohtLxIhU/5NBCWSAC9F/yiwiOS4bNFmmfvSCpDwEi1MLTR+WXScT/3ufuvUnuhay4K8Q6/T2hqSTWssbiqVdtaovt2t/vZ7TJf0r+Aa5DHoJy8bw7TgzNRcJ+c38ITgzpvgWJMXqryM6S1DddWNdPP5VXfeInwSRV0yX325MqZwTiQuj3Gp70nNoHvbgrgIsQKyNvJvsDFNdG5vyvZ5bmDRuQoWw9FcFy0g0kv0U4uLYpN2V+G195Qqa5EQx+wijI+4Fm/obtOWj46//Z7mM9LVRmJ3MZWycDDDyONoqCuPtO3ka8NdEKzQenX/xfFOMBM24PlW4VG5UUSGYqnSAzQSjYxaAJYCotND4L11GwISL+T3XB/btWupQdM9/cg2COCn1tTR0UwgL0yBhiQMc4La9UUQQ9NbSBO/jpvGniZUSgI+5gcAjuf5k94lKyzAOgqD3yY569Gh6k9fCeKmkRNjJw1kH3/cTEauwd/1rvN8V6lrNzZIz/zSa/QgThUj0aDTurKG940lZAgKHeOctSYW249o5kq/eY04jufK20sMuT9ia0X1+B+P3ULiJjIjym/bJG+RbvuQvzNT5jbIuApaeG6LcwRFMpmAtBqS2Q5aZvpc5P/LiD64KbJR2wWQ2+/FfbBICutS01rqw86F8+ITMiH6n8YDui/Q7/yelEvbuNuPu911Yyzmlg3twkpysMtvcvfRutc8KFdAbUg2h6hxMyxibuJxUwlHu/0vp/r/dynoD6K0y0UUHkM4FnCsnDCfL5e89B7DArzyMpQjPV+XDo/E8wDLoTvGUsWTFSWxEl30RIw0HxHPsUczBMlcK7p0suP8JVuydTOXsviw8whj1pOJcHERLZlcMJbWZTEAnL8dklQLHTr9Oows3aewhBVM3Jn63VqdqB4eGqYirLOcwVjDxgfPc1GiYNOSN/z4ynTXvWMgLI3el9m8GEr34U0F/aGioJqNTGzv7JzT9toeTBxC/To/3ks/WCKTE1smF1zUxTLSNyGWXXg9UU4e2cqVvZrWuT+rqxWBo/jcofqEi5AekVhR0cozf4U5M6BHsFUY/9jYogzj4e77c+RFZp0f2hvtu18IbPDUYugY6ljWJ8T2NaNJ7mDTLV3J6cdC8gFvp+eJEWf3TfZkc71qqc5X7p8QPPn2slJp9W2vijUmYzR9oHaqnCoebDw8+/mYTW2FyvyzjetPJb0Yt72F1Utwst0b0tadHvDuiEjqenCPpwVnJ/zEvUS7FjQbx/7GxJb+itD9aZs4RildV0E1fg2qENqBPAQjGKGg9BgbhemeL7OZFrmfhnIK9/CephJxsavSo+kzpVCa5VODzIxXpktHQjs9R8pjCK7AQ6qWocOaEQmCGVtgYB2z0E5oqwuU15QnFi3kJJaGWwvSOje2OehBcS631DBrzHDTm8nJa+7KeAe350ZbySzFiFiqZ5HkhgfzYe5DT5yJKqw+Vpk7HoFyMzXB0P45MHelU9OKIDwh8C09ojU70tw+It7D1J3YJ2nNB5plT8CXGXPfU9c86J42XoI+dkGX7rHaAW/Wi7NM3wYecQhlGTWBS9DtbQheeXdMRQcu7VF3yLvnv2yB2RxdOrCYymYGhPvOJ1yJHsnTj+OTqu+vhH8zIAAALSLG9nRQvetAWFmQ7NzfdRamTw17Rh4g0ewnFUf5irZ8RP+UaaxS1VaRip6tjJ0vpi5j+Vq4Wqh0Y3H4JBulgc4JSv2B/1Y0UAfmr5E93o2qqyB++6KKJFVkAluSHpa9ljNE6VZcWTrsCfRnfAWZCBTtSaDYmmO0YZ6m7U6ileisKvhNJuGeyFY35WuhAAVB0DHvfG+9coZmCJH8a9TMTxmXrXnqfqQhHhxTV3pBbaaQG1k0D6WuBhEy4qWAsWnP2B/s/v3OPbglz/bG3Jb6kiSQo8Fhcw3eEO/dSj6eF2Rbq9E+k8HVYtZqQR4cGZoXYqW7Cbl3Jm+knndhuPT0b0hAZAdJUCCgWYeNcmYbpFR7pfIyqw2CCsn7BueYyYAc3wqBZNfZ89BONIA86YWxPtiIEstearmyohps1G8Z+I1Xej9JU3A7fFPEamGi3gQMk1as0IyfQfjSA6zZhXNjgvPFFBhfa5cBHdy7qFJ3+cw2XuYGLzA2oQ4kP9IBU9+4N9JBzhr0s0gUw4adZIi/yG9zWOwfqBC5R12dYWXBtWL7lLI2Y9kAYMYFMtZTqLunZo6CncC27oZq3KaRDyNCbjuVZatsYvsfUu0VyOdP6tBMcZ5ihXb1vA9rRLb5QdN0K3Iebz3AtnGzRDTYKGHc7wO9T8PKxh79lUqKJRhixDgskCJT+smj7AgweczQTqUdFwVvgBK670wLrVBqWxc9UGdsTT9m8DSmlTXhgpgq6ZR/huvHDLhQdO4kEVUJA4pA9F49HEr4mEozkur3WpJ0W0CokdKJyv6flfIt0ZtqQyhnc5Gmssr4814zYoQgtx/XJ/7x0Z4RAyCvtZ/GeF648vwTXeZILO9zRHe7p7uJ85DAMVsx31ASZ0iLpOLG9uxDZ0yyD9G26LQcCXqC/HR0GaPBFGIrWbfwzztG1bYXAAf/g/eSjVm2XfI4X4X6YT18XXgSIkj6hAjmS/ePdE9oEbIdmSne6tUEWHx/JgMWxsIOHIMLMiK8IoXQLfdoe3eNqp3Cxf712nGewV3Gb/iG+kxbIaXHFfYKJ2A6sKIuhLkLC6Zz7u72SBMy435PIZwmIhn7jH2Zw9HI8kUppnabAf90LBNlYGEHaD5qhqpMcbA5hvoS5lhQI6xkLI9YJK8N/th2hLpUFe4z0HJk0Q2sqD2O/5kIsF8EguRioiZEbh+ihLDmEkvA7O8HziUQKbIJ6pGI9vwDkUPa0LJAe7WiEL+z02gE1sc1wVYxTpY2mSO7SOakhCIahN5hVqOi1/84SlinQwWS6hMnATHvk37BvAbhz6tj93RGm/7A1rNSxgkyElrZPqgcPCEL0nbeCChTVVOggfRB77V1jgw4iG6FyKJxj2CDjCxJbHtOLz+FWGpiYmd+0NtU/pvBEAkAC7A1+otRVsaBQNscxUuorJQOmYr8GgIfBHEkHQz/jWZgdZhrgrQrB8kV5oGERQsIqhYIYr78RxlPMt2w2WqyUcm2HIsl21xUmyv0gaYxB7Pt/5nZKiqqyZpTkOIirAXKzN44LPUgOqCHKQlNTICTfV68MpVcmKrLKxr6iIoOjOOUcsXK4K1AQI4m46em2VrSlTCKz1b/51IKjXXw3IAcqAW73Wub6zrCPMLHyMTFSkf69+Rw71hRiVkWVr5Go4GwgrcHDBKkzqn2WDPJE4dX+FqpLuI3qLEUw3r7mGh/SzNl1vRbM1EAcwO2glW3kzvFXXi5OtRN0A4Hwi7Y/AbRnz/sHYuxJi37nhZRx+Tkw6b9LwUgaG3488gzmRBM0hFtvekcQwi5dMBrh+LSNOOypJ88nU7qgAJzAuesGUdnSyhr0myxXwzCTE4KtoxkYASUhovfUv+5xknK9VaIxmb63z9oxRE+26EYkIeqggQmsmi48ki1qyddtV/psDnaIK1DvfExf8kaLU39fcFeNM+Vqjd/bGVAC7QJOPsjmYE47qKzGzZ/HhV74CISLAzKUph1Mlpdgwb3OYB3QEu3VUVHnjhc4AjvZ7pq4CWl75+cbjwhoFqwZL4cn0bIE/1DYxFxBbbvrf/LhO5R9bf6Gq9JFFVwCwotZ8SA513N/SaYnXNj0ki8QKIG7dxasGymbpoKPn0+b+537jWW+Y8wjwFAoLHXFSa0TlJXhCfiVOOC7WHT1NmfPjdWgpoqmYg3Q++lm0QD1kTCXZc7PX9FvuB6TIrRYQBXVihQRpS7Lk97Bn5tmxRuRh0uxOsEDqG6RQQuEzXFJOLd5aBiCw6U3eUgh13ES2wvej6Dk1UNYugiNPcNZRzjHDOTS7/0+1mhqgUZXVKvD+R1u/73OZtaHbur/UzrBDfgXcnP+RBwGTqA2E0+k74SV2oS5fl93664OrON5FYZdTQQnOyTNmb2RCWGBAJ/bpNt5dutXYH0SmACedZK4BiYK70/sYM3oSw3fxaEcRUdadXCAlcqinp//7h07EjG5PUCoGJH+7T+9095tWS2Fzj/N0maMT6T3jLmbF55O7Gi6oGrFoJqkwMCK+R1jL7odeyYKobIjo1clfbzbEffvSQ8QHPfrhsrkxPB9uV3a4HGeyt/lCNLZVHBt+bolukTEjqnCUYS3BQr3azIMVB0mw+zYixk4BJRkMjGts5LsTLvrEMOKP6FbKKYVVbpGLY9ek6z5JFm+xwCLAgbrwV/JjzirIGAzhuLoE1aEQ0vLL6/Z7OjJaug5B+PRIuG0oPDmzDayHl/Swofp6g7YxC0WcI62exuMNXxvZRiAHGKYhhMTtATxP/E54dxtX4ojOy/48J96/HMmyZRAW2ukGBirmwSI69wL0e2JwiDCHwlRiQbQZxgMFW6JBrWaCEL/nBO5vIarCsy3SzufLN1lrLOkUToJ9KyR+89dEAMpIzNl8qH0ENdMoq3e0dEgi8yas1uW1FTC7A7M2b/Qa+H00ym76V6uR2cQ9tbJ3MkuNKc5dwlYTAHXfYm3BjnYkIwkZptsNT71rxZwBCYUGFWSjcTCN/NSY/wrMV+iLfGa2dNGfVGGsidyL2dCzSyob+wTM84FPQ6PCxT4nR//rqlXbBn9vDXwO7c4WYI3GV94BZRvNz3u+ff5MMBC2KEJL0hQB3x7mR9hj/3yd4rHhf9DEUm+2gLiHhez79QaLWGCvbePq3uNMk4yxAC+oZepAEmlqN9jk7qspUWOYVuT0cI0jqpSW9jKsojzevhC+n0hZsKWhFzeFxE4Q/GjgaK2XX6mUj76D1hI2e4M84S09pci+8nH7SduKupmAUn3Bnw31tpVM6IF91N5t/s+9rWY5Jcl3LEVqj3yYGmkohczLGVBsaXhYk6gdZgKnA9KzFnaS3KxMqCEuKjHMV6sEYzisVDTMortHmLnluJJsdjKaQtQWIuTE5MTNrTKBjayDAby5b/zC5GbJ2RMwpMG96LI402A+JXb7EuqfBDY5agkViuRuiDRuE6qa2Y9daE2QCXYblkPzHPGIbzGspbszxcxZZvtgWl/vL6UF/AmKrFoG/aiaXTHzf5RkFfJ9czrz6Xkt9XbxrxnHrlsgziYmE7g7Cbd+OAydpkOlNqs/5hGXReC/VRifAw8Woc7h854TbWpWCiq4shDx7jILn6CfpHFeBcXJ056KfDz3zX24BWzZK8t1nB3y/SZ2wCzXfTD72lGPCwFSo/vh85H93C5Jw9oEljZV35Ypvf0wzo2nA9PXiABng1p3qv0dSTrmebLqFrO9Yu0nstK1AjAwzqPp9FKOa2o/Oyk0GjZZEJstF3z4OjkHgox/b/rjiatYqjQOcippZXk0y8TZJUUDloJAPnP1JQs5d56cR9HUGExiX2nkAHUFCx2y6QXDZRUUyJjP6k+rcDbVcHLXu2iRnfLLshjN7XsmEE0KPAWap+O45z7pT39KWahP34oyhvvlMkF5hfPg5gX5JzorHPNzalmOmhDSp8McE0Q9Of582srU9T5wUOeF7XDk/4zwUtTvy32sQYD8tU86T0bwrnSgpvVpKY/7OkaGjxXo7GG4bbxnYlH+NRAIZGsMVVJbIQQxhgWb7iq9uRaxGkFXonucv6nxmUOXWYmTyygAIDaGeQorxqDGgER/FcZQFKMZuG8KeaFG+eZu0nSfx+d9G5j07hili9ER4VI3BrH9rHKyx2SLLSDEvtRniOq5SUHT4k+6aqHAqGmIUGY4mXVDZmW/e6OWewtaMNaA45Wt5Mu4URPI1EiziUUDys2zG2vs4xbx7YDWKlM+i8JrrQo8UHLXSuUv/Tn7FvrztDv9tsKaMV04PHoIe6CLL8c/WP0cDncSttwXzCOT9W8xtRoCi4gTx0VOfB+NxKMTACJfHtIce4xhqiEvwk+rr+z9DLzufDC7j0R1n/X8kX4Z7I3jsNO5cr/UqX85KlcjYxfwlmpldwVarbpiLCxJHw4FtWF8S4ixSfNTdJG89uNji0XXwqyS8anizpPoW0tkqRmnhMaf+vHRY1WxfDtBhaukeIJ0TcUYsrJj+6X5DPMXWwTm8Fs4VmKCjwMuy91FHcO6GMnWclk69XvhjbIgPIdWxOzRzDAzIm7IPCMryKPeacgknTvfqTGoE8RMgeYV5UwXbkX0s7OWCQPLFA+gElRaZg8+KzeTvtd4rLiOhxSN9Ht9jG45ejmXW1JR2LtAWJ4xCUjdT5sfd4VHljCaEXjBnwwrDOeUby2bifM3Oxlfo0EUOlQazgcxn5MAo7S9uH0hJYLavIoZhT57Z6y60RJ7YNCPra8cm42rWbp7cm6+ZTfQ5iagzYxPOEMYEs48+ATVW5e6wBjgjsWcgljfS6EBi160+nklJcLu3qkl2tN/SdFL8BxUjnknpa+oYC8jmib43iILb6h8Hq4rgaS5hNQNKeULSLKZ7snVwMRIHo14a4XPoqwzOi1y85G82+2OyzfEef8H9iqJZqU4Hzeo17P3iuYrGKEIeMHBabZxuBNhGRbwCbg1leFkVdeS1VBU390dHOvaOa2Wqk1ADa3djN0RmT/Wz1AsN4Oop+fI4CSdXmCSGnvqLZMvgl3viAyNQVWYoTIHTJB2d8sF5+h1bsONvpI23lMHAGdpEWmjFuCme7/Pl94e9Ek6O/Id6rx3VzKZawRlZtWcCQdsRPEfKfu4W7krVTRKSQLNRmTdkOJJPzraiaLRg7xCnU/yQMjeyp39X2FxOH5mKAIb7JJA8mHsEU0FRKcz0aB2P9Z5G45NGYfm4rb7CCPnfCCBVkDIlovUUUoW6ccW0XyCOEaO2+UcQSoHCcz17HuoQ5+cPgzXN1hz0Bg+6XvNJndQTrzcG/1nLUA9ORt9QEmcu9ReHvXDYp1OrBaTZ2mQ5zt6FGEn4/Onsva5W1EDzRkAJphWqbxh6JwI9IIaAdjRKAu1avv5J6vTfW61PzY8ljBSTPH5q55wQv0K5C0x2VaHkTqdCPr4uXyj9qsccR6ExoDhi39IcSB9uq9flvI+VrUmYlS1P3qKOv8BxDQxX1KA+p4VJ+oXbR/xu8ZVGLFG+RjTgiP0PxKwix6TxxNIkVJEY51EnqpGd1DmBvxUnUEs4+YLovTSxGptEWT0Vt6L8HbV9Yc++MYlEdCoPtyZu+2k0RXKlCSrPqglv5omj5hSZJl5ZdrsjXqrGpoVYx6VNyK4wPML5n/QVlPQvrTIl7UkgnbE1WAbQckd4zVmiSyJnd9Ku+fitvHki5zUdnyk2DpnaR3rnmLjfyZTNUbfn9ln21E6LQXXlfne1r81/2nirB5+S2///2fn+IRUwlNrdF8WTjgN6ZY3N55Ri6EB2fGwlXD8ALJVz51yHgTmOsttHan+Ki+ZV9lXe+ku6OfkeLefhgCdRsRWlbF1btXP79uPjFTgg+PcNpgIM3p6T6t/lqXtFvXNe1Jm6oOAEN8786FkqL9zryC8Om8J+InrPGGrFawJ35iKxd4LGVhHI4TbQvZwv0CFidDGvjzkCrv6qOKtm+8Ajb0/T9HmTQL6QH6LBlc248RCBYbebN0g2AigNnQl8UEXV3/X/may0jk52JaDvDlPO8VKmtnvV6fdJQXzPo8qTa1dtXckOLmoN7kXh0hQWlR6vewLf6VK1/i3FdbeWB03HU9Lrlt+8+sYeZEgSDDNUpmJ2a7FXHTVTp2dKOEgdlBm1TZk1ZoqDMtueRi1lCuD48Xr1Bx2htSxDTWYDYF/PS49MnIH06CHBH8lesviSdvFcL3G9JdRqcd1gB5fAcrI6Lzxi/YJTwijm1aDztu/vTmkvUy0dvt3swhdDh2Xu0mZLZVZdF70beghYqRD06JotHyNbkWTx3wmudxbe2Z69qK9Nnum1zpytlVoeQ7qHKq708NnM/aSTmMiWy7ndit7udt1ChQSf760RiUrc5GQ7KdQURmzzCztWYLEkC/fhiHooG+lvsTCGqEzrrrW/8YWyeZSkdfnXovf44u9aOkNIcIfWUuqebeENAuFVQyfJ+35eplogVBg0KefPngLnoOhiUHc7rabdSyLFBSJ3i+23Sldc7cjTRKjDMOzuQAF8/cM9B+iyvYU+qF+K2MxGJwolSk/IGQO7k3AgSlv3utBdXBOvYzB/v/ikIKZ0FZGvZ+MsoJvJvrRcxRZ+Zc8XsuKPBaPhRIN1tvhVBzF5dJ/7FZZ3DNltFnkqVshf6dLARC8ML8UihodxWpV2ovIV2XCmG9UGcrfKd0/ZKuxLZ+iQkvh1CrUacJWb4XhNNuk5ABZam8sneTndWNcbQ9s+4t5+dyQ+UiPupYw8t6uyP5aa2ixZctlOJ7EJDL6TTWc6Q64pg5zMTwT6S0EEg5BIONKp1ZBCTAJ0XciiO+34k8NGS2PONNiJCSALGMRBaahwuArOoAR4JftmSyqBbkuNo2FegGvmeinX3vlVn03bNAEN6mHpQpF7J9Tb2lTaZq42oueSXHzXvV0Vnwy2YXU5z+wmXwyAPvUbDmaPi6HE25W2wJI6Szd/V5i+DRwahyFvZl+QDAt3R60iOTgHMwu3c+eTGgELcoJ/BCQvwyGeVG+x3OwcK/7zGc7enI9vTbAcrgldmZihmZB2twM3ugcL7xJfoc7oTEFCK3gfL7xtaNfd096di9I6Z7e3BUVwCGg7L1rbncF+/eE/R0WQhjLqGIiPVy3Wt0jm2Ceeb2vrZxEX3uRCj58ZvA5RWOZG8ISJDtz3IQdiPa5q4N9g+HemnfZrFWA3aYYFC/IPOtUfjgSFjnReJpARN3Ny/cYsQs3xRiS8iuVectNRCWiCFGNGh4ZFSalItKPwiA+8KKgGs2Qz4b1HYxyR5THmeZY8swvJ0gotGgqTTapwu6diA2hH+aWezjcTJuSq+xLEe/R8SsA7h4lQjkygtzemCvldaiIcnd711ZwgiKBNbFGJ0g2T/LzXVI/+mkE+TyVdw5lARcS1eYYbpVzMMFFZ5X8ydQtjkHGaZq3cJySLYL5keVdvK2zGr6j+pU3y9Koq2T9MnqTPxlb+K8pavye/4+wWdBqnr2U3SlpyKOMIOAbBuAvL1teT8geiPL57gBbgUyNvAQNPFBdtJUFVTbNC9tX5ytmZTFBN+Zz4qub1p1bQNrnUUMpn5snR4LtY5INOTeSmIeCrWrRU/qcVSW6m5m3tnKj+DHEY5lKFk6qDCwk6bSrmTSuk89hr+g7ro/ValTyDJTXVI0/JTmDrFvt3EMDuCiUK4qtEkh9gbavlli4N0//SyUMUf54woZt1JDiLnWJoaoeZQqtHMQL159X5O852x1VO6DQfioE12kz9o7MTCyKWP3guVahN2zQEXba02/SYNYr4KJXsMQ7QJC7OJXIb714sjEsqlfkk0/Q0cjknqogwk9bLNFktBvkX6i28oXAbbo5eCFhceWKxQacYLZJCOGLjyE3RzvdDS+Nff6XqwBP/HisWl1Ot5oMwWp5P/1GIyDbNP90Eu9qnmyJl4/rurqV5mUZNcWHRYL/yfGPXpFd3JgJ/NkBgoIxcZHZBl6gCOgycrY7BKMEdOMxAknUr8gck6UofcvL3M0g7MnhSt3OvGm1+lCvYu9h74sDhUFDjY7zMUoMM3dAsFGXJPNxEN+1bXTDRIrBfKTCxc0xTGHZvZC9hOZq8VuqkTZe+LdXAX3uoF5XJH9w6pWsQaFs7I0hzaC/BSK/Wh+sS6hjE/iCtTvClTlrq4ZzZrJHhBp/B/tNh9c3CIzegELWbWivRsaW/nR/RpXR6XWygddqaEuvmd90DLuNclQJB81zMia0LnsQeVOpaa5tas4K3Tw0Cv9bX1BCGTt+oS/wwXavTDRi8VTkAhw/HsCuoOlVwOylhi/Y4mR+e0CvLuhReN0E6i99nBIWcn1J48ngwePOwf/I3SjLHpvHf1alzmFr6kIhfwwLyBy5FQ1oS13ywa0Kx9s2xC7He10OC1wj2xm8y0Vxe6m3URPzxpGJQpLizun8+aroNtTrss/sE5BgJJ9lRV7jP8NDCxF/fKKns+q4ERKyeki6A0vp4cv17/898y7yMXXISUvur+vtDOqDB0X37bI82JbIzhcJK4MqfBGRW0ENeU2wBchxjQTrImh8vYddz6VVmBxBfQ6C/xqidkACcrG7AdyLD7InoT1hFnDoDiTbaXJeyN6jnJYiInh1ShRQyh6yF4IdvEj+J+Ug0VGhMko6srV1J7SmMcYzac4LmtkvgHbi7iHlw7gLfqvIOsEVmZEXb4feE8465ClF9UYRWWWhHfwrVWV7CDZHJjEzgvpQ0e3YNfxGNETXPB6/XipHN35+Cqqaxq4GxYIW2aMNXNmDn3Dmj8M8NQgercFNDeCj1IRXcXbIi3tbYDzt+tnb3Dr5pFyFHdepb1CkfheN0KTVbTEP0tFu9wLr60Dl7zR+xA9MVGeuDqSG334QfWBeUFhXin8Igyf/J9ubrRIgzpGXKwbDt3795lvruyVNc9yTd5aV3Q8h9yydsTEv60AhyG8pkx17tpLiIBIF96j0pvQm3breeqd2c00DhimOmlxuFKNXHwpcN0pTX5vvjJH9ugMOYVtJsZVHOMYJ1QO3/inUhCRCtnbH88xjWoOykTG8lzwMIAF6Rezu8elmqk4bNAHhhpJ5+4+vZcNfnwiCEcj7c+4Gr+PIjZukpXcDC5eMl6AJPiFJOfiICHFfwDyRTU+ul/AI8oxipcamX7nJ6TC6wcXj1uLLWwMnTnzFi5xFNoojl27PLvlYRYYlZ+Nz6rRRIJh6I4XCutdIBKWFaP45yP0Da178OvYGcZARVcb1L1pHGy3WcUYOQFDo2MmBGFKKSFAPuxxgtSRqiJ1tm5tita7zW14NNw6JZEIgTn6gGb63NjlLisiKnhyqtVcojEpYKV6T7qSchU5vpMr4Z0xV9wUvkD5Jh3WPf9ninDiFUQ0VeZC6+sJJb9llvmG49UY7OLen6Kp7/J/bcPWQ8tP2C8Pv15bHYJGrCzq8yNNuCMPptGyiASYz/nR2lY8pfjhDek44Y3IPfMKtWeXXzDqYdYhVymb+IrcgwPN78d+h7YeAU9bnEQmpKEhz6LkM/6rye3CxE1N5Qnj6tvZD8kvKhwqXty5SKH/RAfxuIITfZ0BvkOqvL1uFf3Pw4GZmCNEECzkLq2hNOsTpA7Zdcp+QIuP8RXvetUH5d51j9LQaMCWT/cyrd6Ldg0DDTcAAIkeVdqupkWb+5hOjXEQqo4P38n3q3+c8Pc5Q0C7xw/2BFnYDB39o8PEfU0OyfpkjvXdMl1FsWAOp0RRja2Oc0LXr5/XV3820fYZH5ITXEBb6b9FXgjWSFJctbTN8n8VQ2znx6AdCrCRsMhipknEWEF0CjnvFBs+IKNtrqSpJajKGqv/FxbeUGtVVUWWONa0z+6wBidvHPbJ2OkgtYdDxRLHkC5TzrNJzWNfQmra542TUaoxYdIoInhku+Qtwi2rfD3luxbOJ3Ik+Naz6zZcBq+72rKr1Y//67BZh7W0oIM+jwfnL/xUQI+IN0xESGObMHY6n30H5lwU5o/QsarOJHquBLSDN/ODIgZfm8hltV7Cq4vXYmbF8Hh4JS3lKbh0zeEEpZr3+jndoZ9pW58+nydkKKfUziYNi1AkLwKqchlfThTViyXJKqQ9Ft66Ou+iDw0AJlu98LfaZGuxT1QOlYhXsl+OHHevbIPh1te6VxC4A9HpU/43PyfuczQmf+tNpOur1MAjZsfuuuC6HwQ7GG6LRt7f0qfS5Lck2Vi7kAzm2f4yHroYM8Scu5c00Qe2EBXhOrDbDrHw69Iw+DoCfgu393coXzU97rhjC8skWn3zmfs425eSEb8WvSa4yy7c3Ym+PtcM0nEyoroA7b0+u6xVd3uGNQ7FunnbHYPPP3OwwH1WdTracB0T3Pn/5YtTWN4vpF7cfFCLHkfPVcjdYYOyekSB12WmLb+9PCh8h7yTBef7du4oU9okyKVulpjwslYi/Lyv01qUJaX8Qcd5z1LlsM/W5sJLOaW3D6JJJyOmrDcpGwL4+2wCxoqYP7/onooh5W+5S3NWirreFgVMh0PDnUFrXZCSV/1zitA8jgtv6bYIyui15T1wCSmyrvVenuJPeCCipxByndn/aWYCRGWZj9HCQfB2cbsN8IqRy/vsnVBgT/Vl6roZuLCnyk3lWpsMCYOHOARF6EsABSM0p4Pc4ibCQlu3T9btavPwvLUNnTCJH4GJ7yuOwErDk4X1O78zQWSme6l2FeJDdX1jWNxnXgOhQxe0EPK73M7QZoVfZYz9ayJYH5Y4mexZyOheSB5bfQrbNaUjB/P3t7PK9TyLEQ0X6PbY3ZRjdSRuBhzwFO1yM7FT4VfpWgu5Nf/nx9WAo8u06mLxq3En1bGRuzvBbON+QTHT2svJl+Fd27siaP4SLQHBzf+23Nim2ha1UdZmutHgpbT/sKdp2OIr+IT3hz85JHoG1yGLj0Te3HiyyU94sFd5AjzuYlPVAXDk4v5QraUwEUOCKpmEnKwwelZvs0HT+X7Kkzh+9iosU4PJCe5kp9p654q9nIF1fRnG4Rs+Who/IjVtwmatndsz7ZLhjMifgQNGztjdV3AHHOu3ewU8SheswEDYGtnKJk2AQDYAVm848/6jR3u1i62TNyNYpXhD6hY5c6DSC3RNzsD2I7ck/A8uI1/PN1JIahQ9FX1ZUFYuJ5h/z60i//Z6w8iFzJGjsy9x8pXkbAmP8WhaLPP3in9gVMQZYPXwqh1SS7X7GoSnc5yhkkX2zW7ecMfUPqEiiMmq99lUPt2qs2BgJZRyuE+DCt/6P9VrK0ziMDG+iZwdL0j+M2L/4VIfmDe7/nZWAMIoBAcG8KxeYTcY8qbBTxvPOm0FlwPipIQywQSm/UJuMcu2PxbhYRJlqS+9QPXY+6tlqDIF0Fh4nQgg2p6FDh7Fq33WCX7fyN54zcpWNFzjeXzvJWOQUnOigBhO+3rMWWzBsHFNzCgIu2PWy8d2c9+nur1Rzan4+GLifseu36sDpRLNpbBefDm65edyN0PknL4Vr/TesO5LgLR76Cua4bwe3Oeuq1h8VpXLQh5tPBPiOq3L8dbLmTb5s9bWSLYfl+tzQSfekw5z1261sbs3JNih6IM+BdziKmL/qY9FwwFhBHH161lAhnT7u2fg6yt95Rtq3L6RyUMXdvWCVsScGciatAfRq9/Z1t9FNeTfNN1YzDa/0GAVkYIRIkcKcMMsnCF13Y4BX828qgqr/T0hSVej38zV4+1r0Me2T1lHdZzDyF+KZNLsCHRKg3hbSTvPMwH9+2WAuuxw7zYnMfJp5Yd7amcH1RZ1IMQIMPJsd/pnzkoZ/RHOVppBADNmkTgEpjVydxiBZf+5xDTKAEa2WBrNCS2fouKoOgprUF+ZshiGZ87VZFP4ssQxTwSaAMzfcStyT6WwqDcrRyImFn9HZ7HXx3M3s2MdsE+DXL3XlagZaItUQ0qZP9GTpsC26aRV/908C3fITP8NA35WuJOaZfMgPXiksrJr82zh22xxl6ZFDcIEa+19Hco9gTLOQike57uvotrTLo2Yiq3G2Rm339TuG2lYTf/FV151HYTLXuA8qDKg6qkWrv95Lh2IdJiU/N6x/qU+xZvMJ8G+glkqb2sg9zP2PoEWD6fq2dxmdgl+wW5qI0XMmptYzACZzSo+owU56gzGH8BQyD+eKKOcTNwE9HglTiom5ZgZAcTK23EAXI5wBvZW64JVe36zJyFCof3Mid5+Vt/PRPFDl8z/EEYHInMWEc30hpmOXeMWCH2Ijrl1A/J69ov9/FegTUfHeJQn0GxhvzJGW+rViuyTPrF9Y+st6j1zhXKAA8bNHEpRtY39zza0FOG2LPUgkwEgHYWymxq7TQAFH++a7V85QXz6NEZtBxHQFHjzXQsy3+h8AQ0DmLCchFBfDZ7kr4R+vVc12UUfax70wNM7tXMlFHaeE4MzkO/Fg9n7i5p6hJ00HRLmQLgHN8mrQDTURUojp+WWO4Sbwp4lSBmyFGLvS3gV4UCkdEy2dU95614ifmRPHsDjyY8QCcFebtHOjC4aa//ooY/FZUarAgiv39kpEkc200wpf/A+vVO9/k0ToD3Ej1aseK2cmIq7gIVLuQtDWuHh97dYBSXr/dvt36+NM9vcj3nm25NoRrMtjwJtdrvvR+TmBZW9qVUrqWb6yA91yRin4tZgBJJbA/GEv1l0D2O5JSZCdoKaM6dkWxdtn7h59IxmWZjv1tVC93EWURHS/PKMLU9aS/GlaNuUdYMZof8VRADXMVSNYU01QVuUB3xn3BpaIQAlWepMwmZ3v9YJiQHu2BZ/ZNKQeAEvyAwttXeUEfvqju+DVGF8AYT2nyQ0a/VcQRbKjX6v6xhLWN39+6+rM38ku6UC19mhoMf7ffWBJubQTkc5+bQiBFHctVLjkiLcJR2n7+qcGdJ67YPhlOkLwYJvhEDs6BnwOLYcckf95TKOx2W8YdyfMQiqA/FDtxrZIYA/kemgCXQUIoWDwtUVlKZ2PnFPXv32RQ7XmUyiUDDMGv0Nf2az3lkxz0VeBrZNmXP72JSZPnLH9m1LOzkJA1Hzz+PQs3WPnHRNl8hCCO75v951D1XAhIGfqx69CfaQNHepJ1SMqBzRvs3FNowag9FWmJZMUXKK2ZMrfnka3G9UjA6GjUhNPzbZnTHARlNbzJGJp9FfhPujrKgAMlun0KuV1240cYYx/9S4WZ5L9pDUMNot7glsmcbRzOrXxzLElQVKyohBZfu0WK+77e5ulIjtavdLcAIXf0+GECWEjHuemvnoryAIs1A11JnGpHBWPncU0kLYEehtI0pyIdGeCB2xVZo8dPQRZ9+j9mNnrwKd5OmaAb8gs/pfZsDDZRIpebCtZNZyfRdAvPp/xQlLZ4lr0gYX2z8KejauL9klFreUrtV9AEdfj5VFRspoGypEqNlhYTWes0Zf2C0RUSBzhpMtqxnos38mMEJj8ZZXe9H45jeGdCg8gNTi41xRl725+by24q5ODyMTgBKMEsGqYWo5DAtvXZRCkE7/hu9rOKd927wxj8M5jKl7HYTcDcnZnrt95bjsfhiFW3ZSxcL4QgS924ameC4wJ3IWeIKog1jUd9qlx7LHUL3Be7YU5zMw9dhZbGQALazVgOS4HZVR6PqSDJxJJcNvvWR0B4Cog/UbP86rPhtCy6MmwymG546RT84W5tNlkN1+MDxpMcpnrVEQYR2Zq0l6fSDl+T2CaW/fOroSjG9mfzKGsiEzutdG7XxQB3b/Sk+M48jkcG+64vIi/WMUchb3wKn1nw/kcYI+NmhJVkoaJtRbXUbRdGz1TyxFVF0wfNcT/0dFc+hNKtIYwvlP884xADsV2FFJSo/P3LIr6K2E4siH+QIyAWQxUpZsrTIg1vDLZKjd7k4LGsvmyZ7h6q+tbz35aKoCc3YFQ7liDoqopi76eiG2zfG1fM3IVig+iZjIrwZsD5hieYwDRYhvozyfgCgBj6pqexRyfVgdi5ts51pK9unTrFMYUKiEGVkHg025r6oWuPpWUP+4PiH2j8GEIEKF/EGNU5QrN5kDnYGbeA7mR1tWKh3aKuo8XccC3yys04O0uT0rC/4gQLFgp+gf1v3eApLPfgZhvTa3rFXdTrph0sc/LI/7M7l5+6jBFsmln3jqHUy9J5e8PhQ/AJAFVS9uqxhEPIy7iaNDXgckcjyfIzEtvsVM8ap1PTBCGz1WpP2J4XKlquTXGYnzC1raEaoN78/dc6lQjSzpP4QCpHpkrIjsAJtQLje9Yicv9mF0XZMVgLcF76J8lJd8AUyOZDpA6znYnoKEOpfKVmEUN3BfgY/8mV6pLCWEwUL7HkU/bsLGNnGD0vMM+/79sJo9T+cl1HOBBq6fRmkFOsWdhwqoO6JuOS148OGEVzLxp70P5JqQSqyqG0yZhS51yxaHVGdTw5YnccwycNGsdnGWDlqna802lO7P5bVxkID0olLyJh2qXtGCdGis8o37zk2qb96hPOsVP8D6kjGpQYqtF0q4ddANBL3PLII2KEnp88irI92diWpZMP90/X1XlJBPC1t5rP18RMZbESBHKumZJM/xtPBYhZFY6JBVIE5rgjGctZTTkJ3Ma/7Ixn8dRqIV8sQf/z5LVhX1PjII2YioH9l/2PXPcSbWyI5GF0xqvetZfZBfatqk0emra4HjNN7SbAeXCo/qN7W8tbM29CrvyIqsgHPx2FqsHAsjWGfbA7racCTNhCERsKE40/NvdFPKEElhAwDOEhAzXXgeyh+7LiaBNoqWnWxhys4E5i/6K/bxfngO1SsCIaXAV5Hoh0+zbyj6A83cSA7vdjwgBSI/uXwQ9/IvTIYTFZpBghXNJwKAkRkWJNfT/Q2Yt3JOGmAGwgDkZ14y8ENuxtnmlCxfKx5XkXmHBXodCSRTyjx7uKvuSUAMXJjkhWSEb95tXMRrHBbIST/vRqWd6yfkxR8EgzuC5yrxLbYgwV5YpEaLhdsySF3/SYML/3aLxf6XCXp2EcmTLAEQocBS+rk0w0lENpKoHL1IqZaJtwYwqssp53M5t6sRtwY3f/yzOVpG5jy+IuZWST2laprodqDrAkrEdAsPLpmK6L7shC09KixzIGw6tUg6IXE0Gtbz9Ymm3T3RDjWMQMnzioIzvXzNubJSpcqd1GO9yfVl5U4Wt7CXJ3SDyU8yuIvK8sMk8ffjJQGs00wRd3T1MRvEARapSQFxDAN+hE/GsyMrTyK+RRelvwPxQDNN3+j6hrqklDdXftItavzhfRErNuZQ+J41d5q/BMnCD/78G8EcP0L+U++eTHZEuCHm+U7X0JkKydDcnUeHUzZZTi/bRHU4dD3pQ+pcVCmZGR9ZL/HoUQPkikwftfKiZWs0/kUjOonsLAAdtqAD2x3Nhwr+xSJuLVvCdVv0rg1AWBbWx38/cGfbs+asZmApdFiYRQxMCspE8H7aUO+LB/YIy052f2rUytu6jdQgRBGaCt66y4QnWL8Y914oD+OEQ/fQcRog/tWyMc0CJw806wFHGdydmCyVHjX+Vul8pK+zzbjVw2EJAyhrPyomMYPsk2g5utk0+GiReeY1y2YMsSbgi8mkswrNBC6MoLvbd8aoA1P2bgwGmQ0JzusyhweotOGO8xgpyYyUAHPcHGODAj/T6TAZkbe+2SryPF5AE24avrY7Tgg5fCF74OOnjn6AfOEINI2PyI5H0vkiKswE+2vJ7r4LK0T5sqYzDJbP024uk+Y9SG/zlB+OFTyGeeaI0+jz4HySs+OY34CmZww8EPZVseCd73u1zjQBelBUlC3VGdpV5Y6tuho0ESw/nE345/+gepWZuV9LElFkdp6K+u2SQgvkSWzdTW4waNq5mIGni+fMBajkOtOLpfeKRMj4OCQ1wrnTtFoCw9rEbtuHKJReqxg+7B0eAbGN2jCuUQNu9+TPClK8+2MYg0ua9sREpGULRQewDZMeVYr+dOzSvSCCwn/sIMyM5KaTkWDjPlEo05O5fRF8GFR4Cjxm+toqv/QsjeZWIYyIsJvnK+w6tgGQyn2MrFpv2QgWw/U46tjYia/qWAbSBq9TqOqkWNLr5og64tmth/WKEv/DR/72j2tBgLMDsxTHzdTubIYQ0Ewrw13CMJru7/NKG0H+9ybOgg2OSj4ftJsaeA+evGdesDEO1Oc9NS5QzJgaWNSBTZyvLYaj/sy6JN3FgOPQIYNnbggvbx/EpCjlG40eyu8xNBP/TjAlRzeWHmGOu00yJ+uLjICO5ZeYPMrDD7VkP/7bEn/MTLGEyGTQ3RC2Pgdmy/69TAs9TtPut5UPhp6wMw6hZe7zweeqaFGb0szzZQRTOoTNbDLIBYnomRUi+ibVSOOoyJBvcyaC/jgrdPlu4KoW6sHMSdKvrqbZpJj3bab0nQIzi2MyIUBhIfb/AMCkCRB9BZn6TZvYDHyFC8AEuPAn3n6+xtzfe5TgA4QHcojOjTEzulMDFhtnnqybURmIuqqDDsNTzouWqCl+IfIB/Mocmxlz0UDlu8nusLNXcORZiwnPSIPc3kwipWlYYkGcGiDr0eVcNvnLR9k7zQm1K5mRXS+2L+JlDT6eoEWJTJo+C2pcEcuy+ZJUU/Mpk5W0eL0viDOaXKSOonTKOs/LWZeY9FPrbBWrJvj6Y9t7zDGnFrsbHmZRjTvuo/7lBZSYvousbzwWZtYIZ+hij7uL/5J8WCKZb13Aoze1Qn0US3Q88mcN7cacdqICAvLtCj+FF8DJ8cmGNA4aAqXXRXXRbDLb+FJOTrTi2Ubd+Q+HUMlSJiyco/PAU2Zs0bdF1jXPZ/pKDSC2T/vttmCzOdTRBbhAQezBxJWRGJ8sBbjycL3cdt4XGhwl191EiwXagYvcGd+/crjl+aJ5HN0B5lZnmueHIjebZJ5O/sjzQlV4SFne7WAIpd2r0xfFINe1+eAORGiVJSqnpdudmEGxlOgZsKy6Rpj+DkkJcgat1qGYYKi1jINJsQsOZYplKOvmcilwtEIiHaPZAMiZJJxaB7Ar0J0t/A2MBCQmbHtlrCFvZyRp4qp3cKZk+DuQPMYAJRcf6gLHkKuNRFM0e+kaV93Ksta9V7+jqqUnqSX14QTbzl6U4+EXVLioLcF5mAWtkzye/CYMhE6koFxhIpyl9AOmklsZ7R3z3tizZ+4Muf06N4zdThmQUFzHe6Stwe3qDa1XkoxyeoQHUiC+Xx6qPPKXomLUsU4faZet/wkPC8Sj1ebE0FKUtHDe3tZtUxzRldHlLwhqBCK7Epee6DJyavDu6KqdFKrQH7Ob5V32LBSL33Zo0D7z2ar9+0pkWe7f49olN9cXKfaQgL6RlbWnh4OlJiG2RBsEHX4TCR21KPPeMV5vumZ0omKoK1SgZuCodR04290R5Gh3ypq51c13lFzFzprqAMgus1kjRjhSUZ0Wr4TvISj1cQJBTKOlM3+STRn/O/XEB/2pkmDP92qM4shQ4DvaDDThaZJPrkFvYtA9BI9VTGXdyjVYusttMfb3Ro6O/zvyrwUIBqzx6qJG1KJm+z8oyzwqrlbqVv1vKc506gbseYUUEn7mk5TahynL4sikgKfTrqT4WXwQnNiWIK3IsK0TY/D1PuzMkNJp/t5lM30P6iAZioAWApqXFk/rB+XoemViMpxQAk7PwP91TKRCROJD1QzSXXOy3h/gbY9Ynwp539sLODe9eZrwn18Dq0LwX0Mv+Qx8F35I1VjgHPDD3P/b97m8wCcdLVAgaNHxUOOnSpZ+SEgFKgVlLvGucgXQfwevxnJKONQwvqBGALWRUn84yeTWViS7P+Ckyv3ZWiu2eRVqIcVlcREesJXdb1uXOsmVLZ4lFRvtYjmom9MGxQUYSpugMFpc2ouLcSrkFzI+3RT9bBNNw04gR3bzBKMTVs4ZpJaM7xHKeKnFrbhkPDAnRdLt4k+8Ks/GVnAxcifldAHL+alTWxgnDIQFB3ljnVzgx0/0BQkGXb8yrGxdzgb/m+nIwRzMpmv8C0rU+m40T5OA7L9Wn5l+0mvCHPkaXKjeMpbubD6udcT05pIb6UmTVQbBqdMTeyNIFBV22RhFHUkoO6j9QwgR5NTLmzRtcWhlCXKb1DRdrjSyY+nAeidVL7kTjsJrJa3gozCplUlPbL7y4wbUWfpS95O+I6ddA+aLmpcJVAZOE2j/AQKNZh2bqJHJWUu/EdmliOxXzAHkzaRqXuw/IR2B/JTANo7ezXtGP6wuM5sjiijwDl9/5X6uT8ytsSvdNO5iQ8cUH64a7J/AjggWKBl3vQFBx6QqyLAgF5HmcaDOV/ArcWwnPN0qlgZH19TfuRFSsxamnSEu+8a1ewhlSKnoOQ6CBEwLa9fsFCFO+UxrIn4Yry798esm/j6H815pGiPIBF1taFG9jkhowVjZrucjjyJOM9WfLdxRlKwVMQbqRyzw5R0q8Kl9NVD+zUT0iK+PIxLeLysm5USE8gafxZ7lhEmkfEQbWgUAok3shs+VF6fz1722K92cT4X027Yfu5HHDslFaxbfDjrOsGAmZGITbmdD4qQe4w0dNmb9aac2Y4Q40+wKqUflDFxwrNmF4QffASPeJYY25qcdp3sqVFWN7E9z+8o0qOXy4VqrX+KxGBLQuRz0HUXSLZWS4yNxP1XDt0gKCs1SipuHKQt+3U8pGBQYy7BMhRfMG7VkMbrDMBxNYmWi/c44TzFXqMeZDMOxzMt4wWKNWDS56/lv7Kzmb7XkrV+LqcTmxyzOvdcCB2/FUgYbdaY7bUnK1g+bX/ZRGbNjR4PHLurKH4JagxrLYtxMZX5pot77ULXUL/uBMLW5r5TeJgVQm107xAdSxS4mlQTuwD+Q5znW/XzFO3XTGcVrNPfQS5Vo/+dA1t5SpHyDISTVTAABnwAABFwgGeg2pCvwAAAwAABNVhNgAJjN2DpOaX2L2TnnMfA+vLkajEDgVb8WEB5Gbg/pjb6WnFNFVlbNgfmYBfyt5hmYn2BURTrIQ4wZV7GEijBAetdPBpZtTSk5eMUdPR+55iM7NfyNNs98gJwXgXr3HBz/UQJb9y9d0aetU55mTQX6wTe7ndIhFH4l7SKt+rz5ZB8T1c8gCES3VLpGdEzhWDXRvbaUUxMvcXwtKNFhARlZzD0TmvhHe+uFjwFVr2+s+NMflz4HFH80uaq3mjox0xn4zJWKrLoq56Ofy3pInLrS4JwYxSvY4g4lYhy57nJRuUxW2udFyIHwY+RUaKlrRDf4L7aya1o48RbJFKD5sGykwiaUWPNs7boD1n7i6OS0RimstEbCp9UId2bmtrzzJansGfPd7LIl81c2ypGsWp0AWblf8CwlwcDiFF95DM9ZtyGJKn99ZOJepvW7G3Em8FAPgIGEv9TwLqrlkA/EQF3QvoCtaWoi9rhW5QA48e3XNXoalEl6YPrBryiPG6fSW70LJCp4hWdRgj+xSihfLTGxEFVtvN8e5/5NSY3vjxSnw6bav1RtjPObT2tDvf8q02CmMnm4q3UbLxX+0P211ylOug/RCdG0ybmJbcN/S2kqUdJcpl1V2N63lkr2q3hhJp0mVAmEue94WsSvg3M0I5P55I7oA3dXmnS8BhctyIESHrs5nneQweMe5NCPDDtTL0QNCM10vDyTTL3xfQ6C1NKmYm7nq13UyHSM7VXGyas0NDeMuiF2rwgF1vq+v9IVcxWUL2MfMPdfPnU/RkoZFoFbqqKjTAXDWM6wRNGJd33JoS48WVqxUF72dVRBUpKbP8U2T3Lms9DyKL0SdlxrOsh6imY2M7PT/MMoHwHTnuPoYE33nE+qpYn3vB/4UTbMxjnrBFwpSsFLe9q3Pbqo5fWB4AMnvJ4BZUmawVot1qfI1GyceWrXugZrWX7CQwNuyB0vyf5M3hJc2kvNq1tpdr8jT8jNholEmGbK6p4q9+2LCeLXQua+LMUK77dFmybS7s5IOblblFu7QDQV2e6jeGHNqQaqf7vwFoBYXVi5YNMuEg4LZ+LF6TBZovqJy7WOG9m8y5UL+tE6i8s0WdCV78880u0f68b1S1HW/uSI+Dcn9qd1Ce4h9+POYyuw31tmL97maXNftY0bjjVZ1vwLa9EmccYm1YO+aGWq8IxFD9LZ8epAaqVpzLO6SDtuqUlXV+kEKQEH3jAOrtDY2CZSJ+sPaoC3ZSrAx6NMfekIDDBCTD1/gN1HNyscnnAvo5FMRGWsuRU6P+DwCEvqI6IdJPG2RsVniLQ6ZYzj50YevzYwE6MNiliusSWoYwahan0ddPOYFpEryMqxFqfz9KkuOgRhmHzVlZNlCiaHEkXPOBmaPXNLKNOP/bvnjo2NE1JDa+DqIhLTbtn+4ZL7pJ22BLLqI4gcFm2Ye0tMxe8brcUSuaDbkMHHBigSxEtvEj7yYYkkV5J2rxpFLf1g6u+KFhp8ywKqVNw/0WDedTDUZM8/PnCzQhTZvq/EKSuvhFZganLthxSD27GBbTHJvfTeyIr06hNJ1JWaUo9CrslHW5r99BR2Phja1YpIpgcCbfXtBQMj3953kjf5Kn0hsrL1Acn2xtAMnEmEux7dLjvbTLTfFKXEJ8ICJXM4AjSOzEk6ZJ39rwLIK88sIunk8gCQ+m8pbhYOhlCZpgmkn5RyxmDMFfFKpshBd2tx00jcE1jfWwbNUNtJQPrDl+qEwLqhf7H02zvKBURxS8vjRXMuSJoACY1w5S8kzakpZDetNZV673y/DUI0ZxmczofPmsXU7SOlOedE+UJatuhEc1zw46EEzsNCYJJ1t3nS7x2/3eOceo33zWg7EL0c+xe92mWKEiLmKHGI/e/5I0MGDmVkpNbAYzal29gGI1VeToaVIS8qwrNKGCcQQieAqexxSf7p7PHQM8KEJU5ctiejsL8tYwHWqj410KjdLY3qQZXNKrKqty77OCFsW0kARI4us+MRQTcrL2zyUyc+1Uu1MLlJyyXcKJhwhNUdwQrhZqapFe+IO6W5JzsrIfpcXmhioW+Fmz4mlud5BR/0WCoqfvmSLX2F2Jbn1ydL8edkTDUsPBFZvSBNwoUCQHGFuJrx9mDGcUBUKaCWl237VCM4ZZc70c1A2O4+lna0pmIb0TFOI3wCvLkCmT1o39i/pKcEquk3R7uZwfS7zDWOcAkNf+8SCx2+gAwyl7rhRlArWJhxfgDVH/qVBHpK8SWyw9R/agpiPKZyJn07Kc74Su0J6lV8c233SI/0u3E/JR4dU0iLAhXbs0DmQ0RjN3kIeVVFP4B0bgYdylFEJTOVyg6O8/UKaw7GVStVB18pLg3xvlAbI5qqhNusgMWrYlACxkEm1gczKZvsV2nidcieweBRXHrPJj5QrbJmRaKAH3QYHAEcfLzbwCGtXeKa73hZB0xVBBSLKTmvNW8eqW4jSNKjBdt2xdZavOEpeHSV8gIbDZVvsOXnQsAmT5lMqL0SCvBPWnISPL6YFSSJWaSbwn5QtGbwINlfcpNAsKZz1fpUiPLjU/ElmeWp2S87cpy5DSGJv68/0a5266F9OZMsua/lVpe6qa+oU4DeoWPq+Mb9BtguDtt06lXoYE+dLORrzGs/2MVdN4rk01nZLCftZlV8FgKnlP2Bkl0AoKYT3x87onD7UvNKXWPH0bqFprSy4kIO1qFHwKmvm4w+daBwgzC/g0kmdBv62jRQSPSN4CmIMQpPTx+zRTt24XRlvDSMxtE0+DwhPg+BgsmA3EqZBCAmaVXDYbvVR77ClGlHsi3W+0GsDvQtiGvuf3zOmV1xUV/1xoXKK5w9vs6iefYlDVp6hPWtFxcE4xeDJQCWPvoM97lZ7a5qtNYSuJmM/s0CXkZpvJTchU8A8CkR0GInAo5FYOieVFgf+k3N4gscxiQpoiAvtKimlD65QiaP0A3IY1hLAi3NaWEosBUxj/CmSHhXC5Y9xdlgO0gGsZ89GQNvyKervwkeIXvoJdwsujgVcK5lCgFsDRKo08ktJzYZ6rHqEZF6zw0KSO9wHzydEriirRzLTeM/nG6zTAEAKJNFVKHCixhQgG5sWVvcXaSQhT/bv6rHW8s/5c5sFOe5WnJaoq5r/dUz7Gs6ci+h5e5aA2ASfBmKsPK4BAYW60H7Xltn6EMr4U51zN9M4/age8fGVaWR3sASeeWSwtMLZdTUdsN+kD4k6Jvufok5vGcgg17+1qkTc5qJL7LSudWVxuPidXLweGXw3yfiIs+uPsGHy+wbtDwQemLHM91rk99MIhnFMAnCWEZ968nHf8PVx63hFT92OrXvMU8iH9GhYVwa9uD6E4JQsdgafgQbukJNdBWmE077EdCWzxZUcadh+LRisW4Wc+XslOCtNyCgLxArGyS8Uc2wuUK0SqRDjS0YfcaD6SZnZ3F8mj3RtIRoymC4dTVMnmdwalUDpJMfj8NgMB9cEaH4Ush3jCeuirVV1b1DM/Y3JtIHjcAl7XQoPmINt7Rp+DleAU2ADLKcQowi4LeCQDz7+n9xrbF2JGsfU1Bjbhye4xThwQcwxk7l5FLyY/3upX/qTsAc8LDdwUKpu+fU1ELxsSguTjcaees4f1nk7opBXj5WPMxKcoLDSdBKsXqsN6ahkwg0quPrexJPDEsKI2wFwpiAiM+ECPPWFVFphdmtDHyGWA+mgl9GMfPtxXr1zwGKCX7h4eTlZ8AFLTwR8wyWs5B6rENTIgiVUNAzSOk6dXfxFUy69UBmssCQ73SyyiwKaHEayY6bKaU5PAJndaY2+VrTCNm15czLXp9wqercPtx7GQhU7INPCmdDhjGm1erOYqwMROeELnHFILqsihYc7XG/WGCFER7G8pM35GQpp2w2h5x68UUhz3YnJ8/mceQNZhl4XtwxFuw5NnrQxOw32NZ1jh20amEXW8itlgPofcIm/IhOeqo+P7NcyR7qeAQ5xNHst6KcIZe+YfH4FxV2OjQ9dA/vZl3OXdJRVrwbzn56BV7XVNfHb3aFJF8plcH+MjUHOYw7PFnw99R7G6/ahzX8CPJGnkVAJquD0WmAzKm4h0qA4+9KnkKMPBVCpiYeHHkh0qQ/k5MWov+L7h7C1HaqBliFGQQmOv1izU/oBMd3Si1rfdDj1+Sr719jxHxGMteNm6QETwDmTUiO1YKArZ8e69FR1LXqlMiihfrW79f+5OLSAP8bAreKfvIsdC1PR43YmdbXaNYB3MNgiKAurWFgJ1qA6W/x7V6iRsl9f0QLtieq9pkIVrQtslojQcOHdIDw3+83qQynPLqFPjUufd8xpFeK1/uSSYmsGLW2sNlpNz6itNpqohu/V5Va2uDsoeJhOtRLOf4BwLGTa3tox6UWgRNEjG3LNSBjM/MtX8+j61j+t0WCg7BSekP5IAzeTV8QmbgPLmIOWGCXTshDcKHG8K7tywfhNu7fHYclydKaVEz1drpE3JobC9ynkZqHNm0ljNI8/1VlohggKMiHxGfRj/NneG5xDALT6f0HS48PkcKzOjp9UOO1Cnm2mRqe0hkbgRRpIQ3+LYEjRgu9Lp1AtpYYSc50P8AO18CR/GavjAUlhF+oLcYha9CqvTrIXrkuLSK2stFsqCNKySIgpMin//0C4Qk+d1woEUIilwSu3GFbNNgxC5yzAuXL23oPNg0GVIaAv87mxZLN2lv58XQ8ypZpIuCmcsgY7kkW7LB6Zk/W9ypNxlYQlKXn30qH82uirplJXaVLE66SdA18lVFxQggaAR0n6o0A+i6fB3Z5EwnBzL2L3Di2+RlT1hSILaC0ShAWo+eZamMhVxq1nescnb2W5EPdCSIC7ngvf/zTax0T61nI6eaLjbMwVj3Y1+tUsEeNP95ldZvUVDPNbgy7QQ61M1yH95HeFI2WA/P5rFstejNmjpRF/RqFdXy4SXpvisT/KT7IYM07ZFP1kVlk+4Mx3C9LAlttCF4Fc4ara+8oNmwhBX+8PvKnOPH3HR69JPwxT3lKtkQFNGollpL3nxzGHL62eD9ViDcayPnZyUGsTmLyU++zDAOCmeac+LVbf3gHqr1bcqwzBpZgX4tHpmZwh782rFdpI5y9n9eKUCtVlLOLkIA9w5G143I+oJhgNXe05cIh5d/U6Q8CMGdS9AhAjuvdcYq/+3bz0VGg1wRFu7mwSyvxZ9JA62IiIDkpXf3cISmCDir379FhFfbzk53xNMZihegH1zoZgpQ1Gz8oy8uXkLgLjZBpEPzI49Nu6BWYWV788Y0c5YtRlMbRzSuUrL6rIA4J/pNkooGg3HlGZMJmxR0mx/WmemdWeBtD7Fajs5VTfs+fTevMLkoVv7kmmzeevjIrIuiYa8hSRiCHb2ydP+Q08ebKVyBT4HlYKX2rqCHmajDJrgoju3SJtRQe1wPY+YvBJnxQ/vlUUHmkY1V4hsa5dFebBuPa7cXZnpNTFP+O1y6BstNzABbrLEYzfZuq0KL7hwLRiGI6tpICyiq2seu4P8O/8vWWBDAKfhJ/M6q7Qy7jp3CzV3gMjaBRHHqQazshSm+bYyqyBiRYAPLqLakdsGHo+X8RJZHVW9qqDuEBvvt0T+iH5kB9RYMHvVe2AByM2IaggLSniPsKIIA30yt2EdEFsadx6VY0P3pP4o3ktlJBoCD9JD0mD2il1kyVFjnWP1aOIS45I8cqWwS4LfwfjxIIpDy/b3xnNxluO0W/Cf2E9xPGltynH2LgLvgACM2zPvswLCxwoXcKJwpQbdT11Q7x0sbN/u0rF6eQVfRlzwa0omAYfTBb1ocknzqUVsERIr9h6SagJOBrDtWz/1BwUH6N42Qyg7YuZ1ULMAmPcoTApCuSQzXuHRTmiwKusrouraclMmhJn7xt/Q0DNzuC6Y8EqVG9HxLcjZSE+26b0aeyMcrhM1q55W/v8RwZ+ZiJvewTKO/PPdUcsH/JMPvha6p8rTCsWrYef/c3gWNxDVXlX1REaD44aDIagumWofF3bsRa3kdmVgggzJc0UU5JKNE8JKZh/1HY+XLNutvS6AWYRtktdm9yzAgzugr0LZcGz5SDy1xJPsL5WxMN+FQQK+CPlk3ze0eaHpQQGpNGTkQEBJvrN1Gu73OICQWT5euB9CzBeYoB9kI8My7/+foxDt0ZBrI3TUmWo1hyHCxbvdigDK7yDEfbLVPZH0b/Nrqxfi6ZBUMYtiZfYXNL/EAjD9lpiKAixFXfqfAvhxTbJfOq1a6YUgejA8evCDq2wCZ1gj0Rslkqazy03jMYbCIQMV8tb6EOLbCHH43d1iBFZHuq7a28b1pf4Z2fxU4rAbrD8a8qufElYXsawDfFIxvGu7fXWLKQyPaXWSS1oFj58ABOFLD1/66/t24Nz2c+7ZyhQUf2OH+sWy7z3ByWdz2zp96GyS8DbQoexvtK4xlIJOxn4k3jmVp2hAvpoZOxoCyH6X4bNlXczYG3TX8jllQ26/og30smXR1K4Dx6TkrlBFGX+GgRrIGxD87+u9FBtc0LhRSAEL2DGOhWkPkXJJ73zjnTmv8lEYCK9lOuieXlLyj1Ux9Tx/GvvkH5vzIrSNSbAIjdy+iFTyHj0VwzGaHSwF0AccvAEktfC3HY/FSLyWD51+xO/O9UkJihLtexYZQiqXPrkyjQsjyGLiRuFJoSkZBE1OJZWelPxoIilCecJdeJQ4OioogTpKX0umN+4T/uurK5VQVWO7uhysmAb8re35W94Kbm6/N+dVyMo64HKVWWHBuLKzCIUPoUqlMh7ak9exd409t7SiX5wtkCr2As/NGxSn1pEa2SXJMg40V6vZZJqmHrx2tODJO7gaaQhjfx0RXjEWr7E3C/pnWCtjQMb1nxj2iiZW815HIWbrMvnI4xO9Yue0741STCyxTMepC+IURosqlGI1XwG9biGdR5Y0cyuasIs4qgEikAX6ACkM3pzthIfcFgnoAq3JnUg12n6VUBUl7D3nYgdKQBB7g7xTYG0wnsyxy4o2Hnh7yhqHyAVs4+QBIVTbbyCu4p+hOvlfH3epxBpTAWCnjjcjUr7YPSR48Pg+O5Jdr6Jz01i/y58SegkB2QCLtVqWxYmkuNe8Th/Rbvy0R9hZl5kmVSOCeiOPZxprABNzJLr6xgsoJCEa+PJIUU/jaUF4AelKBfEZGSJCM/LXl9A6w6X9/30tQYmUGjmiS1XpXqfHQKmt1ihbrAjb4ZwtEXkyYCwHOcPJ778M3ZUO/fZ4fZZikDpyi8Obj6lufIsInD1sgZhbAztM1a8wFOGgMTyukgpZKpounDkUxK6NcnBR4leob24P1a7DpEE69vr1xYkmLumLEfsPUZqMoQNf189u5sRAT9XmIf6jrk4wp8pebYIbfHIttnZsNlkcQWQZ3D9Trni7rIKuHTl4HJqu8sENf6XhbE62NSopoTTwuCHY52X1LDHYoeo7bVpqCqxr/KhWx5toCXLE3zlrkpR7ARDfzTperZwq7yWyNlJnDNBfiL0vFbUm5rsi22v8vUKuo/dXIE/URSoeyO63HXRTIm0yuxIbTCvIhn8Fuc2RwSn0IXdiYMfIGV5kVWk+oDyhNEc1awk1kP6c31yfJ6WCGGLXISlu66AAAz0enQdPS7qg+ZPtPdVge/OcDH/QgDkx0CklC3zKkzNTfpQLvdfL5fPxpWEiyizq9At2pXCn+eo8ZRe5mE2nhWiDxbTj/XcI0qsxCIPCRPhS89jbLSjrki159fw+C9DpbF2oMB2gQktbSbBAHYGh9yA3QYv/RXMRs1qsoRAAkmN8KMDGT9kuj7icimSSG1SrBYVdmBX76jhtrqCfVSNUk5CO/ydgyG2IgGTNgiJWdqBZj6SB1zyPHeJyC4G3MZ9AQ6L1bfrjTo7nB9ziNtw88h75ou52attCXITyUvvdv/vNRp5LNd4uUM0riduS0B+DrMSOpRwAH3t1xwRGPrPc/ETPgOCH5JtyqCGYUGJrzNHKYU3XzVnvKv1pj2UmR/iwBBGf1RAJM7Z59HVAP5b9VIRchPC1AAcD0Lv93iCaCDApJElf2Uw6NfUfPTUeBohGxWwZzKLya7YCOAcPjblbyyi3DiBw372w3inNQ+NPZtwYKpDwVPLLDbQOOVPT+Rq/k1nOcZY2vMeY8tVXgZcgtsqzz7Qc1t9BeG/DwTz5UqNYL6BWXcsydvd1Th5iqXqW309QG1Zhgmpgydv9g/EXJZyJ4P0zNUL5ITQxtkIOin3E0+BhafR5HiKvdAQQD/i6/+q9iMTLrMBMFHEqt5KfYFrRolomUlan1rey9/4ukeYyzBMWKIwZYt/VCC/FGV7JU7AzI2+h5JNZxr4MvzedFrHVXKu2rO0aN2SddAV0Sxhy+Svvkvwjyh5s/uJZpjIJ5Y5wyH/9LeOCOjeRt4N7o+PIjsVMe0gQoVDhmKNYogwMyqJAg2rfBt7r5lquYGyoMc+rOHJ4k7Ivi6Vl14O/3lPJIuZBXt/NeKMAW88s0rK3paWNJWD7Ro7c3Ww47O3WI8vE7AUZAlzNaJsdcwf+B5GF9wIZv3Byp1F5GPPM/uBkr6qD6cQxlzZoogYo6eYWehjvpjXu2S6sVCRW8fKtcMKFRBfFh2zFdHJW63ftLDAj+JGR/0SKw6OjzLvN2aN4BtxMUhcLjdamQDBH4RwzEVpHaJ/Q9NNRMxPicmUvG9ybgSvfZeKYXGy5VwZwkT87qC42iJ4UBfD3hfOmYGYJZz9TkmtcoFx07tOuF6WbkP+kIEWM2xrIZIZLDZeS/Hra4c7ZiSdjP1d5tzKJ1DtV8/JerQKn7ZIoUuVeFX/aLFpfkBKClXUW3CZ76B//E/2GFRyTM4wlpcQIqpEK/1G7HtYsuL9BnwRMIUHu9jbwbJciO8LCTwsZg7uFtHsAHuME+aNHgHNhfDYQ9LjBs+7BkYMPhTZMsOy97s8gmxWoYSnDdr3AeG2tIeA1faftwkax1yt1EkpPcjrktMfHlCP9qZmpw9q3HmuiQQzQlXQ/E/sIReglSHewbdbKjZJQK6PCV8C9lBaOgPfdnoKN2ebo4crqAbEisElzP0upznTS6IjkUkpAGods9dliNxWkp1xJJyGtD03Fb2NYfZUNhgG8PHRNNawCnwf3haEkcdlc2H5mGyYQJ7cRO0pmgz4j4zGtRfhsCa5s2R4ernjrZ7oz48hCTPyK8SmyXus7OFZkilw97XIWRrzhwkYpbW4MEsYB4Yw9sLn5DIdexq2chj/xpqh59Xa7iDBENvbr3mavMQASO3RNPXfJCTyH3nFhQtcrOaDugXSRt3+GrY+o56JBOCvcTghGRsdNmGiD7+3POhkwBdTerzyLeCn0lYLSkshmvpQSrXX0fmkjENXbkgmz7K9wcLvkpUkzgBt9LCIoRfHtAqDtzjlVjEyvirMSz81+knHgDWHFn1yzICWKXtWCDAnrECmzH6dHAMIZHtCcikDhFvpIYTIjlBaRMy+4G/9JidseYJwoFX5mhFVgPs25p+OlCRGNahU0EPtN19brIw06OQctM9HHVMGXb3C1Xs9vN454uyeOQtkfWfD75gaPruuz+vd4O4fIqq5tHS4J7j7qx8K4/Y71nDbTfJizdYbWsgxvmLhGMpo+AEmBfcOZi2VSuWAxL5Yzn88s9Wk1OJ7DTy/yMtYjqNvYetObci5iJyLLfrGD42IDHbyYmYFYO74xcJdFol8C4eu94noFuhY8OoQ4R1aJk9rP9MxEvsT3XXN3Hysj/dWnjJc7IBCmybT9VGc7viW6+SqTRtt2lRUbNHXEEcjZCbv2wt85ok7bTAZ7YhgwAFoRNh1byNgUuSnQZBGNtkxkjN5Fwa3mXne+4/cYfnxxn71Y9dMqd6+Q7yH5SvOUZrmDByBry1DekjuwqHA1c5YsH4LbrIrLUjlLaJO4XBAcDgq1X/hzMfwIGx/dvN12+emyK8cGK9RH1pHjHRp0HYKrCfyGI7H9aoYOuOIq9HfnAsuXzCG0ODHV1WWHogLRd0Ecu07rOSgcnbQCgQ5ZjEOYTWIL16l+9zu9CFTxx7T4iA/a8qOMHA1IPotAsZryVJcf8kD4KXfLFaeoRLU21NBAljSzCI1R2DCP9YkAr1aakEVRUg/5ZQ0gboqF9+I2jtyndTkfhvgrbvKIifazIiaWSmS40B7Iz3b6XYLXfuuxot1hpQkOPVeK49zywPll2hpBb+KM7dZ4IWXnXpbIHPTD+lX7QnmfebeNZKZF3XLRuyC07DNGd9ZSoDFVeOc90NY0VZOSpuagvV7/XyseS7iHv4gIXxToj+6EMtuLy3ynWaNYmImsJPiSrROdBOCaGP4F17ppg6jhpZYJZIix0HbIDMOJYqaD1Rp8NZq2cfcLwAvAhK6S30cw3KQzB4rKR3czLKxUBCd/NbtZREYSA75rc9UGkLY69glpb96RuLgq9tCRBmhnVQbsx7Bcjyww0GGhPZBExkCiiJXEGk0RmsKG6erlCfAbIFWw3SiFT2NecKOHx7eRKFqo9pzUWJ83q7SQ8Au/b0MTANZwwDyX2eHiR+4DBG9sZbICZG4+blCLHe+PVaopcbxFg87ZO+NvWlXvKtoM3FRuth17Ymv2qvDt+sf3N2/Yceutg7QHswHDKRFE+hJaXccOhWzrdoSeO6grdOpQy8a0iY7yi67HwjlCryCBD+egwHfdIARqhPI6rgvZ/rmcyPRaf99sQBvWQsg7Dqb4AjczzBL7mL3T7vuSRSDjq3uDaRfi63NqO3CU/wbDw1JQ8Xon4iog4ZnwW+rXDn5+o/60VZE2VkcRV5LgAdeSW+rSjCUgbMzrdbIblNJFcBK4KgRVJI9Qe0EbPRIvaVXO3ZUHezHA+ok8liwIg/wtJMDRyrfbBs2kEl0R14N5Ckha0MBVpaHBWsRnYi+PmcSKofGLToDvoIrDkX4AfZ7VxKuNiXskP3XYKuqkMe8tGYwKC/1MHVN3qnzmFzp2IAcxt8ICRlJl90jLplBzujPDxNjUavC9lE3uJW/nWMmfAuSPc7PoQ9BV3NwRU7PgTFf//8KLsDA7tj06oMx73otU6c00SPBkYX5i7da7vtJIQCMHKNplxdKPPRAeGAqvcHdaLgWes6ya/A3GM8xSUSRRLARk5GkMpB+p6GK9FPG8I0PovyR/y9wn5MinMAott1nNatZ0E2CzEWEe9AnxjSa3OU2Z5VP8QsLUP20zL7v7Qs2KN7ngzgx79esdJ2vk5qVWc/jMSWZQyB3+IZzAMJk5r+q2NE4pXn83elV+lEOw+YVDS5FuxPUU7vwmu13o26CPsvIE9VUAW8JLqA62Bi4+V9qwoWOZNwxbQio7KtfDLXWD6v+BO5gRq2akxZDfHz8iQSPsiGGsWb45lz8TWIGrPo6hy83y/koLGxbc4Fi1mqITvQ2d8jn6KPxM6r2mc5phf+hBobWkWREV1QzzOh4dcTzNcGdY9M3yDtld+MTUSLO82r36p+d0r15bdAVCtWvUuraYSKVat/MpvLmzI1/+qcZPGa/9nOlPzVYmGNCITeGfh6/lMZTEkoEr22lQlJcUjo1j9WwyPyBhUJHRsOJFAa0oT+X2aXJ5IkpIcWTu5SKCiRwx02LtcnrcvS/6l99GMxA5WvpdhmB9sQfpOT/FFv4qXfpINtW5crF/O0oi7jrcyXrC+FVQCN1QSrEPRzYOGo/P0PNvNWq0lqNJvRP6xYT0f5kMPKOjtOL4V8MhIsWLUx9fM9EEw18AKLD+xhopLml+1HspsliLzbZX0pl/qZlvzUouxwLFc6uORvx5FnSC6lAL4xPTy+MD9dAIEL2gQ7OIcCTITSS+cxX1Uzw6DMBARULy9gRddmB763/CGQ3Dj+ymO/q+a0KLxR25W70H+mKFVzRTrp/5HZz6bPvTYgO2cKuPJNpvG5waOVtJzMh+qEgOJRwDrlju80zMN83T21bUKwCDLcYip942tHn83usynC8hRl0OqxfMtQf8tXtITPaQxBHIBxFVKKBw4LLp7uJyLOBCnMli0vdkhaGv4PjyM1peQEqy3wiCYwSg4JUHTZywt4M6PV6achKA1leNoaGDMBZuIeSU1vVsJdTVhR8oLZv2mFWBCpQg7mUC7kVYe7jjbbcYYzijSOelTpkQ0+aTzc6Nub4xK52g3NrMKHx83JCLGizxBSUkanUvVmV06XiZjENPiMvB74boyYAD/gBL9t9lteo4Zvwus+j/m4Cpf/2XhO+qtI8103b4SlzbxAx9mxf+us2go3VoWuKm5JaLVYqzdRQlnP/KH+05W322p6wgnQ0n/sSqHIMpZlymfDVaMUqywP8zNwGaIOkfmbcyZMFMfFPClVTOpCBhG8WhrH5+YIMg0Ji6XtgBD8+OeP9hnS5pNjfHJaWxM6nLdX60EEX2yKxBn+8motTx8fo3A+evQIiTq1jv6F33PqFc8MYjTjJ2z+BbMSHsOaQ2Q4lWv8Z83YsKIyNKoTRMcU77O97lsCKQFBCcaLSWIZDly/Pt5B/0VMS0koXpQk82MHBjfbc+kzMMKkjbLREqn43b/68NXhdNL6if6bowR2lQWhbMAmr8gfUY217vz8X3KUu3ih/p7ifzDFcBkHLBDmY7nl/ArjQV+oVMJMGueJFXKADyPHDIfjhNHTCTFD0/PcqdhX3VgymYg4ZMpiDFec6hNLzHpCLV/ok/lxhfdVTg/WjvsGAhCWhhTdjrERwXKjDyHrRWnvIboWAg3RmSQqiEYGk2N0EsF1rHHeG7tBnLkEfx46RXtmeF+Bqzf/vhv+sclcyb+wbl2H/8KKvOWAyPZfTrJTRe/vE9rpEz/8yfYdTFMlqTA/AeYKqG5Flae7Gxgflm0sR1it2lx5eMMba7N2ARzwSqqz7nxaDsqkP+0J51XlOHEmTMfNj+bYVXbY8qVHxGTyyRUbQQNfQaxzUHkfiFNB3gMwf4o0idchK8aKn8holYlwQVhy6peBsqwtiAvodlSFF73m5/QNDJe7crES5+hWIrXyZyTt9Q7DSA++aY3GbNDQ8UivH1lX/XruifohbKdKK50SMaSwq5JXqPE1ucNroAWlUTL4pXhEGChSegg6QX3XwNdbW2RP+zaxK/qtIfCW2G1/8T4or9zkv5a+usotrSM/0yXbdemyN2MRplbnaogNkRwRogy6IS0LLc06XYMF8iKcXqsRH9Qaq5NnzcfbxpLbBhPqRv6Z3eYlWfvcgcDeGHN/8lJmYv9jpPdhW9PAEO1cxC0UMRYITwj3PrQDGgtU2LiQUGM1kTNuKzUb3Sg4KjT1ToLYMifZMfw1Hk8WR3P5Y0Bj9G6EjbojuknEgAUecsUB88AY2/rY1Sw9EYneO8jEXogDeuYhm2Tvet5KJWdJ0GhdE6gRvuQ8SFJZ5U5q/JdbfxyJmsCVjCJg3gpQro3SDliBjY0VPfAKPXkQqGoSmKekRigAoLJMmB/cv9zypl2whf3uZXj1RnItQvMZjUSVOawLTIo/8wDJCv5S9cvjReF3g/9uiYCX4g9tU2+cO6EQeTbj2iDvUf0W2acrnvUQC6pZ/meVJ9//BYykXRKY+f7rPAvSkP16xq7+DrH0EBZyB3csTCBwVU9MmGIUJw5nYYScCxEJS64GISVZg4QqKJspgW2nlrZZnXJ2bSjFFDeL1zEfjrT9VVSxZKA2e5Ygo+NL+qrgnJ4Fp3WWmLj5QfFb2B/HR0yRkRvo1gzihYUhMgeg3GuBlIYXu8gwCTUV40GWf4LZJaQrsV5M3QuDgq4VVlSMx5PcFSNet6JFiv43M8oJSzx2HZ/Csocky8mX0ZKZcZE8Rc6MGyD9YfAQ/XadNV/EbCcbtUwa8EKQUOqBRH8Znw01+4IG47YZGavX+ubcuyVGKVaxhy6D+iv8609VrwdNCSRP0gwkN6wCX/+YFk++5h9DbiRVc7hepXXdhBOB9Tg09jCjytWlYGV2fg1De3pagQIwNIrRHmIO8Cdmk337WzwnPpf8OJ3kl5/dooTBiFB04KpTxdATtqjhcoVfQeMPIiCtDK9P8mAKocUIr5MRBXD18KYecmhDHyQgblRk35x2nYA1YE25/yZ9Z87TtUqkgMlF+sAWwvoqZg3BRE1IyiLEkc7QmsTZ2nJm8GVOwyebLtMTg/2ze/4L8MJnA85v2RjoMTQVe3NcjwFtF2oC6XmvHATPIdShQdFjpetKO4VtdNKPdezTwnkzOQV+/5zQeiD31ZhVLaobMmLsiw9Fb7ukNH5n2pfz5dL4iOQVpt4Lxh0pX9Pzh/h6dTSFun/JilL97YoPrXVkuCPI6sYWZ+E1SN31nI8LB/7qV6wB7ZtBErmO3W1wzN09k2GUoBY8DhEB+FkcX2PgeXrhQhtxAgzjLkmetajQr8Ya0UVJypj7RCBXsTcZLlCgQKNVCxjDt332DSmGOjG5asmEy9FORcqpDULEteIgk5qy0cgbXJxbDQAPGIBxIunRWqiyTqZeomI/VlBEKpZAe32pQJPoVudyde4SJMXkXNutSuVxlHReUbA8323eKBNke3s6Sx3FrfIiK/MZltuQunhiochF7Gqfg4RxIFnSojC45X2ToalX9UDLH6wfHZRR9Hc4SrtId4UqpiCup4AUgPRMEOnJJhr7YbCCNDcJYVlEAJajE1daIDtW0ZxCYQgb46FoxXnxsnDAVh7qKj4KhjZk2OLQE+wEp7PNaGSAHLPv0kcM44guhzr3PHCGgBKb/W6ry+XQxkX2+gsiYmYjPM4xbPO7+MOLvJ2Lu1hTtHDG+d2SSr6jgpS6oR+7TPx0fG8RXn1qg7Q3acACvOHXADlv1qvRTU+cTxtciLc+LHas6OuXYfCBMwClZGElPZzILqnmPLXLUNIwLGet8LigjoW6H7U2YI2ZtY7bPpO+7HBE1p5p7x/nn30RhF7koqWqYogp9ah/Dq/eerievLtXJZDB9ybO8WI4NP0cJa67Pyr+xuVp+SEsKXIQEwHqXEEULq8XyLiK0U7nj6cOIf/krovAHAWkAu36VfbrgGCwGJ5R2alFsR5GB4ugF3uwlzBZVk76majMcbig3rr2xVbCPjDNAY7+CyJh38QSHeVySNcdsxXUVwlbw9KGlPkKMzB2v6QlEH8DuJzV5hIwx0mKYT4M4K62RGc/aMN/xTZCbIcu0/BiHHMLYExCFDKzVQ6zz3+VPNEuH7HaOMFQsfSXIryvYWlHhJCGeJ4HFVze3YPAENHD5o25WPiHlCKDRLrttq9556XZgP69akO2oKePP6w+k/fyk29P+hqFhl9/fa0NS487BDDHlPmMjUkyQSUuSU3rr0WeSg0KwCW3fo5Caz+3NTFI2l/72Ie2oqNkOdykz0/8uWBX5/OFHaeZ2z7zFVb69kKm1BAnUluC7qLoOR2/9k8eI0CypLCjEImJXMZ7kWiWBz66+g++ZdXMw5eL33kavu6+syeplf2RAXYKUP3Upd9Nw9+eOfW4KV1m6BOvEBBTfCr+wSo8sOcPxHtm8YiawHIMs4TRrhUmHuSSqZehujPGJFU1jgQECIHd2Nt3i7qG/bvLToU/fcVIQ0eoc7BAEmUSJ483OaXdjenYgec8Q579iHq8zL2ocZhFo+TVevr3jRZBwlmLseIrHpzKfhfJ/+QS5rrZmF00xRgTwJN2ttgJOpq+fe5/09v7Oyw3hkfMWRe/uWN9z8YH1DigynCT05Ozgd/ybpKdttKbrPRAEpJJCs9BTSLxTdt8yxTcxkFUXLX8FCrv7slhs6xa6SNvpHaYCDEy+G6/mkv2WJMHHRtMKS9pO959asLuia0ZJ+oOKWiZtDjrC8lbempDIxBXH96Gete8x4e4uOTsDHvASjhEOfn3bBpkzL+nGNV+gEq8gw3yAhmZc+fYdFCEb5wBcxPUWL5LaAG1CfQ8QVuw504HC/ZCf+3WcDv+3Rd08uss1Q4dt5BM6rRx28P5n6PywkoTAgmHrMeiRNbms0juiIKxXr/RAZ8pOBS+Mu34AmU5SugLoL4HLDmALWVW5KNvTN5UV1AtV1LC7MHFzNXaPM+IWRZ8MIKgrs3oj+RCHXaohrwsj1xviYXafsG9Tu+AnitVTnBfF6/u4qTPjv/XKwAN9qKTP2wMuSXUUv38JnbpfZaUn+xtFZhkWq7t6FUjDstw83H1Iv+QY5bJ97SBSvAY4FownRNWlhYhQq8UiJje/tWrkTsbIDAyLAOxpXD2iAafd4Onwff1mBuyDwafvuubfQi4Ss37IsYn0wnKr27xYBoBZrS6WJPf9JX2fK2nrFkoId/iZ3KStlfPEl7nKf5Jw8q0XngOLtuACpQw/0Cj+w6MbaXuamGb6uqkKhde6OiWv0FdkKgX+dWiSNpADCBFTyh4S0l2S0vI+2TGvv7Ej6P9fsdO8sFNTMgcF97VrY2uyOQAtWW169Ci3xmfBcWjtye43Rc91kjgaJuGH5logtBLDSX/Dwmq1DcPdRy0PqN4Pr3k3eVgh+PoOxo4I7BrCxi/oVkKQAWpcJEwI96ySLtdriCYRc7ILqreiXlLiuWFrexdwWjuws7ZBfVMLvZB/7upUkKTNZ38I93tEZFVgeGeCik4AszoM8dn3+DlGzjaZn9iQtuUX4zkKrqXe2Ax3C6SeKEC+fdxNAa1MV2m8vsfh4C+o52UddKil1yvNe551l3RbK8VB+H9VkCZPWloEdtdFIeFG7M4KtneWX0iZOENJxQUIWxFQR+0HdRIuRJK9nKdbahK46bNVDO12jenMf4qHW+lO2oLuQ/ycSNKMRPY9GzEoNnT12ou7TuhJwuK4zS4OYbvaScc/MaLTsSIwjt1Q9XnQcfUFIkgVEfDZYIxvDjIg5YfDwhjOAfGMx/eMC4UtW9w80n/soSdM02ief1ZlBEqMOzXZG9L71sl/Jb/5+4idB0R4K68FtMBBinpBRX+wV3kycuYEzuYkdOBWu3FSy0ympuFyDyXh5cSxa/F0bBaE5eZXTXj3n/1/Jvj5upT9diVqedftIAlC0BK6d40+g545rYsBqAoaEzQJeeXofiAsFmCsGV3gvilPgirpIE6unfjSe2uDBcv8x+D24AienUuH41hNX9IXehPN4vkFGp/jYplsQCKIKlojWoSjJT2JH+WAkZ5ooDvr73kjCkT9P304W5wM32zwcGfxrVqA+4rE8S23xXHP+cH0MjHECtf3OTdDQlc8v7VA4djwbI2TvJnRA+Fg2dH0xMhW/gzYwP+tc5N3SgP5fpb7mV0CflUUjt/G11KXYhVJwWl9/BCW/FgkJM5bNfoN8JkFZZ4sCRSTfPZZL4yYKrfJ164/9J/2g9s+4/Eluj20gdT/kmkxZWumpZFGylkANTwcbkRtuyESlVJtpnWiPJ6AU7BmkMzm0K8fZu7Leb4yipNO9NRGcWkF0wlpyQFXjSMuO1RTKxUA8PeDkU8exGhlu8kmmMbUI2BcIyDIqOyVwS7I/PD8tQ0MzpdlnR+ovFGKzpH7pgYCd0KM0uB5unqKidIH83iDziW1in3Vx0+ljX21Q9T8G94vScuYkVIO7QyXG+7FMlvsrLP/xUUy2rj94bRgb8D0G2yzUm/Yko9HXAoTxypiij82e33biGZTo5OFoAE6zPe9/qgYFupbAK/DR+wCIuHiGLuutwp7WLcRmdqD5DFWh6SqXNNXu1ddPToknyhJN+VH1xQk5cc+H1+LKES0p5ujGcYqn8RFi4wD//9kUH8dfuLJ4KjdWs1MSigA0Bq7LHBtM/Ckj8jR17kvR9AkV2rWDlxjJwHS53alybHDulvifHL8h/z5wuG9MBo2gNsSifKKFBaaul31hmbKBXCCg3j16gx++ROj3IsbEHvKkWrfXz/TppXJDc++MMKIJLW3cDTRwHzvOlQ0ow1Veu+HO3mNL0EBJvl8grYFy4LjZ8uvNrZuP+M8s5DFBvxwFLUyY446pQrhxVLAjPDTGFoE6m2Q11ECAImEfXILqU1/0pldYdURuRqrEeLAGiuuAimutvYoOPN3Bb421pv4qDkPai57YjKB0CyQphO1Ks05g9ebmF1ttqWFRqdzg5PgkJ04GVWmdUcm/KB0T2oPqp3w9h5bGeKrr5JA5e+upo4XQKY3TZMp+sSoMFNWBD8jkhk3sQhagH7IBJW2ShwqNR1ByGo1RA5WonH376b2tfYVjhipj3bSMuN0AWx61iSSCHqr3A74fxiv4VhPYuurp42s3taQXhj6sEVL0YByI0xtSuH6G8mvKCdt4xSif+iyHQYksDIticumZeLUJwIem4cHS3Oluyc/ocCFukJJhjq+hRQdwRFugUeiLiSyHKuWElBctV0h04AjH+d45qfBTL8rvBaZT+5GxXn2eBig1bQcyr1V2SGxDVO3xLgFNX54BEbvnph/0seE+ovUvyfPLDvr9lu1NsMud38CmMS1oUL9Utffon5MCObCxuURt1x8bwhATJIlOEOB4VVOuJ9FxBwR6bZLEWWZb501bRBFJk3SmBahmL106Z05kc0Qn/LvJHtHkXa8SNPG3+BGYFkBt2L1Fd1rsVmXIQS2oXnwXXSBvIXKB51co2VtI+AtOTkfLyXA5HkGWf+FZk+mJ2kWYsqCM94S7JTVrxx1Gqsxzejrvz7RU+Ru6qkBqn8BmNuOHPt//9OQelH/h4oLbd4QTRrDoB1O+Y80Dx8NW3P77bCF/ezmD9Zh+Ve73N4SDd2J2drmD1CrpgVNQhypOJvIA28bcqs1XJEiNhoydKwZ0LQpOZmQOQG4KIfkaYhG7gZBKHQxpCdZ40MfMcodR32TaOnzdonHsKXnkGcsYIJid3dri3vqiE8eIl86pU/pKVgsANKIvnGKUtcdtHTxYiOpcc1g6bKKjTUzdSyKa7fSdcM2wXCutNgDW+UJtvEfoB8L0Fbf2grIlAurXssJMBJfNEm9QyN6lzNMgCCuiQWpg09siE31x8RIngYLN5BSLEBKuUC4o4pLD1CkUYSwJmc8szccknec8wTaiiAq0GONusHDuIr4IyUfKuq5PK/MnnX5n/kAhqT9tFVidII6o/a4i2CQaevudAMnOVgPmKLS3NA2WyqMUAw1gq++Az+Yvu2PdkNI96OrXN5UUaPm/D1KoK0gj9pHzxkb+crrnld4O1ZdQ15jBnfG6CrtyCe2oOSLM2mrYrJbrl7gKTi+mBqfNc+EBVycnKUgv7bRmFWhVWfjgMT+a7LBTBUylclK8BjnfnCQXGAVc8mJ2+ShddiFwSzC7F5eS+adQP5XeKsNbaThgCVWepTVjTTqFoduSVq/S1RvdXwQ9OtSvWsqci7tyQsbCplFdxWAHApQWfRok1fB7ao2SXJybrnpvocKmG5sq8Pw45psKPLSu41bnyzSNnmVnukowdWKBayT8ngEhgxf/YK38V0ofXF9W8hZiY66lDipU1x+pcniWX+SDmy95HAs3gAj/7eD+UpnQHvGeHMTzuE/c5a+RFeHOxfjiCLtyJD3GrD2wb6L9wl6VQhXRPMPCNk45mOAV66U7CFspAceZTkDoNP6NXouI6HQDrAbpBADhfUV1FizBOvhbl6KYmFbQekm2lt5wCSzRMzA2M3Y9GOfUXhflGmXAAPr9g982VXcjuhd2sarAta24dkMDk5S9TUS3FOy/5uZuP9RI8acGWRR7z4/AW2tYnUr7AFjlK+sHekf//mseuBquIw1xHgnIqXr39PmmAY/ji82xlBeY6ypIyc/4xXalrEkLM90uC1Z/IF1+aM8PHDJeRxbf/i8q6GOWkHCQxyg7++M3i/mcbY1qomztnc65O1HAp9xbtU5rXSo0YrvUnuB1vMpXMxQ/hCKACIheLm5I39zgwGOmINAQq1mOXZGMpOun32keRNnW5vygIQEvx+rXWHChzUqZe470DO7CwAqmuvGka8TobwRbPO2GLFe25YLJSQv/68S74EWhBMO35HqSiLi4aEddOdq/i9AQFuxbZvVoEAxVb5Yp1XyLT+rQExwJTfb11ngXOAFjJa0/QaXEkyk28Ea1hLGwyrtbrGfJHHBf4soR3ZwpE/OpkbwZqYBi30cmL3qgsGaeBVM4taU0cmpsE0M03XmPmahJvJVjIcNPLaCVLe3vOVi1jEmlOXEnlRfaseltVZ3EHtMI7SmSG3twkAwV+pcPSiHOLl9/Z2kmrIhvJ1qDK8nfQfyrbxcx+Ow/ThV2+phSTR4U1uPFwtlNjg2FY/kYjDxow3fie1WwGTFVaO+NYUxboIL0bTZrm6LXR6/VMeJAr/6t8YbxgM3rSzbHPLE7q+WQqmJhQx53CKfeljzVNypLdW8V/1ljXcGwC2IjzRU1P1SoXPKbo8UJ6KMQpbS3OWVIMYSJ5vAlQFud0kKsDqdo4vPcG7bCqMdBLz/GaAfC4WrHY8IwC2sfOg0ytvLbdQlFosQCMqj1ykKGyQYryoo5bdNsQBK7Ns+BXeZfpv9/o999GGlPKxwzChAgaR3jRZ7l3W/12KwTu5uEStFphHfYzuaRUtVD7i/wDnbF4sU7gvr0f483iozOXsK+eOHm9K6fZA7oGmT4jCCIoW1Uqbyami5ssQAbQPbM5g02H5cFlebePwt5z7zWPg04j7Hp76Bloe0lCyEztcQoISmOb90sGwOTVuMQI0DaOc+rDryGw+VD+nMXJGvUpjxRI01I0qW1Xuy0GAeS+Yl3e1ucBuvkDHE3VYkhqddFGrOhz09lEGf9DDcbVhXMKy3q1bRDp0rakH0xm7U5Jg1uc3z3gB3dYWEVmvGZd3qD7vrbTJVWMo633RWeYgGfTGt1JH8VPVzkKN5G4BuIklR6kl25oW2UpJzGWVGmwHG7zNDKiDvjOZT9KkfyEVJkGzMBXz7ilWxYrPxKFj/ILYOozl8vY4Urd13JSdggbCMSdSuGUoTHB8nBRvsjl8ms+K1BmUu5WZDjAYkfAczGqgWPbPsH3SXNzmCFOMVug4cBvbUvdBVkkqSmQj7XOtuLi2FNxGtV5vQHS9TWAwV1/0Nrd3BYhV4GfzRoj7LmXv/+zIfTqSBhNRJoB6RqX1zOenChsd8IDfhRGxwLz+KR+ErWsKTrXqn9Lda4Tq3jS6Inh3HCRBcv9dHM4xqlC++X2MI95tfSa+sPLmBlJCMqRIcAs1vKnKe1zyV4DJh8EvPZPiArLYOaZcQ+TqcNSIlT4fhkzBxq7aU3fjNL6eqtyTbxzE84+XVzdU2KmTmB4Xxz355Pii/gvF8kf5of4KQkP4oBUZXy+t89q5PFRSMqHdt47PJKrrYOTBWpJtJMZYfqLOOIirivlAqQ/vZSJNs71kE2CxjIhA8js7kAFkuOCYBtE2rI+BIElPW81hlnbFHdXQ3rEZgx/oIBg2NveEM85WNxyiHTPMGHJDzXpUA6dtFvxZPOcghprg4OdzCBwc5wj2tae0NqUtgAH1CMQQZCFFm1bl7FLou9JGePmnkBkliBLpgS6kH0qVa2CmltdV4BzDVfCrCtP4kd8w1Vg3n5H/7kqHFtovaYftWFDhuJVdqMZzZ3fqJRbqFYiQOGrQOTMsHAlUttSlYPtET10gys6qfSpiOzSF2B/IrW8VMnLszz4J44wPyjR/+4ZpYhUMjtaN/tzyxiATHD8plgVcumAfaMKqqQ2i0l8WqjiwukyLw7ma/HhXX8uEYaH6DfliGpjI9FBvP6dR0K24trKZUHyx2n6JQEZLpqHhwf9NJyjRjUQ+HsDJSuci2ZCqBFHI5uYGW/CLJlRtPY971pM8yKBSyfp6QX1u9bvs6S/UZ3b37Nzz/2bbWOU9V8VlkSzd55/2Kj0wQgCe7lhkErTb8eu+5p/aNya3PbUeph7ye1xsZSAqNj9VYweMVcV3N/VpbXREqzSNFKafiQo+dZpPeayaPTU36PhODHrTIm0nX7VWENXjUgxw1SClbzzca+wv0eyje3rA57q075/yOHDrt/RtYSxNe2Oy8J/MOkS+caJ5Rw81kzj4KTuuzYP2CSbfLpCpfmtUkswaOF5//PMgQfiwlILfjK8iKHGpUJHHFCAXrkPunbhFicBZvAgE2l/AH5qc1XqlfCald8EKoAuhtf446wA3IGT7NYo9Og0OHVaeIc62NMtH1KmdJwswL0qs2edn4WEpw4XqqwD7MFAk/M6V3MiM/zyXUBVc82qdVG75UyPtL9pM38fpm3i0OODrmShJqguKge08Q0mki3ec4MB7uR/FVV9iuQp95K4Jgg2MCVjP+xQNGm8ylcC9jJ9Wlc+MyAeeuBTlasR8FrYRlaQOLUXrc3ZCwniDU4eMKWfRo6rx1m8C4X3/XgQE5CH0hSaUmRxFsQyifZoHZi4/RG2jDff+/3PPyZH5s3aCbrceEgydit+cxPg551kMdOcHuPgPHdEskkFh92OnArAfQOnJpWXKb8q2Mx6aw47WH2vnYo7pvOkrR/nxCJgq2EDk76en6s8siLyOc3VnKURd7eXzmRNRYTurrCNsGE+Rsdn7MDaEAuscR8QklNWZkS1ne1IluvOqHa8Uhwrnh1QyHQBCyF/jA4Jq4eSIvqCIY2AEZFG2QN+UPKlWNJm8bZ2pq4osGnmapoZyjgbdkjntWxWob6AQ0X9rL13boo2CPIBSH19MFqeOO8V4kHk+wpmfgUz+5vTfCKZURR9Gk5mTou4z9oQrwP/s7K7klXQxbDIwfQiAbhdvXAWQYIry804fvLzTzvRa+ohkQbr0n14ajxHl3FxvikBUkTwgpM2bIhvhUoJmkgUA2FMEiDASRSrwhCoA99zqG4Pr85UvgDPdDwdnOGI2tZnW7b+ciBZ1PU9TjWxDWe1CWXj1IFQz6R0+Ug6R06CUllvioGXDv5HDVUSyTqTzhS7daAxTXSP/AiEuC9d36KlWKsiiG6svoCiE+6tzjMugNNXDISuCYPOqS7JSMOUR41QC4GtKLxfR0JPTgVV3blOVx+v0QcgHHDJkYq5iTYIpiWUMbpXoUsv3h3N3inj7VD3YzzvZb3VzqfeaNI6kqXlJAJAXzrmXIddvpRkpiVZE+B+r0d001kPK7h3S2ZISJY5SQsuT1iyXzXj4MhcL0xT7Q1MdKKyZhovxnqUN8WwBZH3QSdNcgXQ5trzi80cV0gVC+UqUz/hNScU82g0CQyAb3H7D5wNFFlQpRAfTsEEurSm9leVEAAJgvWQ18FTmbrBrNE8XOdMtZ6XqURqIHGIWX899YED1JA8Igj2W8HnY8bl5GmgeKbyNZkrzmEmCsPNFr8M7SGXJgOHvSOZYvxHamuI80EZiJG4hZBUcjMR3e6k82d2ovaGY3w0bzx/5hYE8Civ1TQRIaC6jZaXkMgFswHLlWVuFp7f1VRDGVOWxaseuSAyMmKSXiv+JyVDrS45GTbw8SD7iJTHUsaMiWtywR0ntmXkI+qzmC19I/+cWjfqm/U9QMsbTLaulV3PuUZXGeTWT0VvAxc5qbOhMhvb74YtKKA9Xpda4zGJCITPjqr3HO6kJO+YFNQJFI+pfymEEpNIWseU91oWCMq/+fkQNABEaeIVlCcnAM+OxYtRDKLG9achpMmsaVzZEn/jqo10CbEzLCiO/1wBrVXSqso8ymzCdQAA4sg1WZYgtvDUoxyiU+zuLEkBIaMHFd6H/YTUPooLxSd/aNiJd6QnvvnFgCfDSmTxzR/oGnL9lNVSSgFpmH0DSRHWylTkrWZjJwzXPbBsDfcSHJsufJdtDz9rVleUYG7sUwdhZQCewfYHlOE1Lv2ELKzXwYbtdq7f/SzpoQLliE8e0+7E560FrbVp+yJIj/B6Z8vbADLQNMqS/FQD2/jltc9+bJmPVwo2V2MqtypemLVW5h4juT6xPNxHGdijqNb7M1KLo9bQOAIeZFbD5rT7ET5axmJ4xOHv2DcbVDUnCL3sSP5nxxSsBBlL+oM/5NgAHzBAABK5EGahUnhDyZTAhv//qeEAAADAAAE93pNAB6CAYpDADd/ETlpJ+ndV/QvKzX+qLIlTH0h1Izmg0AklhuCjRea1vvZNvlNUMGnDB64YOb8lHD1Ff/9XM/oe6KMbe7+Pprs9OQMvwDmAzMdk30zGTIAdgQ0kwfK556O66Um2qaAT3BNk/5Vr9ZE5wlrq4pzvXyQsBSpfNJCybLxdzzV9fQapNpqWlPbzDmcpH6vEGu11yVFH3z/46M/ylrZZxblazQo/QrlWlnwgWFM9iH52WOQEkkAsYX6n1hMKAoVHd6XAZDdZit3tnZ4A3OFnEHre9dqV8aM5Nfm/36fULM0hzx5TsBnRYMi72DLahU+K5rw802cCDX2lvYZd4e8ux43iBfagYJrwWhkXcxZ27mTChndTIfehfpZKDVWXBla2nMEVs+xTwxlR7FWn9F3PcrIUP0ktvu+XGIZGErP2JfWiWIRU7yeN6+Yin4ibLcyUnCuLSpZOw0Eo66h5xhfBQ326wV43NQbvqsGlfCFxiBU+USgnsjO5vInlC6cMogAGpr05rIUXTtzjmiuDlTxma+YMIBrYqAs6Yt88825uG0cJq7LHfM0lkMLpA+ONQKZwY2V7ZIaVfAiN0TWooVDR36IQJGuPK4h81QP3m2raKoh67XkBN+9jDoWnN0nUmsERCRo97AnXQPP7Y9nlApgKy6TrNHer4mR3WIgYXXBrXw+j5dkOR+zYRY4hNjb0KqU/6Yu37SFEQUVU56Y0/3eV/Ls+5xJoZwD/MoNLEiOWI0WrEn2shr3W86l6xvmRcspITgFABYY4aMFpLl3CxLGlkx3yKPN/o24S0F1KBZkEsPw944Sg9uE1dg7THZKY71Vs85jsz8TmwfVO2CWG9Yl5dcaKm7uIqs6d+59tpxbD7O7io57/VxVNTU3Lxur2yqzKDnwidHKBvbQeF6OsnYnFNxfosG9amd3+INx5FXXqY1/26QxHT/4/OkEmdEJYH0PV+0g8wQHoVzoEnDKg1Usng4hbCyHIVxyVrap/N+Y/y7A4MRja7QB9rfxob3M4ZIeBO9pe4oZPnBKTXwDUYF3IQ+/qCw+8bonE4xxJUeAMMN/dVt/ZP3w2NEkNN+zGsLU0L16FTvKGtc5fd7yh3faZTL1C9UOCyLdfqkKv+sTBwmYvODm3z85txuLMqu3N+rzkz7ZvHAr8lplJvjuUp32mIXIfQbflOBbAzTFWjvcCcNtFxZcpPJ5usi698F3R/t0os0qwyYoOZsvGWFTlFbvqU5mjPuVKiktytn0V0+D9gcGf8WKPikJRUSvJ8f2mRx/c9MSyW9RJKaP31xEo68Te7KEMt/wECCDzf2IwFIxfIHbJ2mvdH60HGkPzD0AhoHN/vvu1dZOrHyoNhRMvCkbNGabJTTfBlK4YXyi1WkHE5v4iDJLoShW5uSmvNPjeXwBEwwlrUvzPza0mU4XtJ//FJh1ZFeCFnwvoFSoaADvxMcm7vLQDbbMBvuZYgH8hRx++ut28wknJW+vK1uFxdkiuFGpLdae9umLcIgXvFhjgOYMCN9PDwdHEcp1uIHL2rSnz7jSxfL1/cVVcMEcAhFiQVcck1/YtTCCopWMkr/Fh+jaqZBaPe2241Y8gUtou2GUe8akeCPi9K0lwdphhxRDrLDckdhypQJGPDWCOmBeop9UbYQ8D4NIQ2DxWCWDm3dKbxwx8ytkbffaWgkGRzXB/5L0911Wsgnd4xsLf8y1IWvXNEULxaWadQ/u9xJlhz09++phulSQecdS73q7FP6UC+7v8HpqQARWWJDXJt43aYHkWLPsxSqyG3y599GP4xroP8Fadh73FL5oWNF+VcOxOnVaQCVF5jTiYXAK+0z9ZkiLwLPeRGX6DH8IdF+8ZEEGhoAzc5mgvoLzJg9k08fA0Udyk0vZhkxKIY4EXxwwDtg/BvcIOTKBuge6wgSHXQOfAUv3R2N/nd50g3UmTIidnruDVKeY1zVZsBPsPkekSvoXonxqyyt7Pn882SdUolJGomSPiQqa5jNCmP06ZLh4JKH+DQipiA20fqdZnG3RxB/DAVxBBP6d18MaNcXc07/NjukS1+AEk3gQ4j3gtVZShwYvdVOLHMeKl+EW2DQhZ6Iv70a9mg2XRfFRa/ZSO3m/wBAhs6Mzmdxqr4vm5CnZDUV2GU1xZVZhEWTgcMOytF90ewqW62AQeog2XtUNWUB0jsR8hK5o7+/9LVgN/aZK/cOph+gwDpclGrQ0a3YIuYBTSvhMyWK6yPNFBKVM0u6Oswr1VK5kPtvQT8R7I5cgp8E3QocsIomr9GKlYH4qhoJl4QIg1yHeTcqkYTODd9A1IqQwKXHcLrqN0muu1bFIBzdsUjkPFYV8vHNJVm00MZ7vvuoiCx8UCvtmHnzQaojwh+7BRrUPPUXc2S2Q0IIzIvAQA831F9DSAmVs7VxXFVq2UbjUAXg2PStzf3LlDb6wiwcsYM9bPFw7gqYqbipiT3dSvDo92GfTSRbVngpZ5cQ2oclWEfKmXEGyXDrdu3egtQcBMMZcmUmkbW19EiuQ4Zpr4EZvkn5CrEEnfZIcdR/NjBvZ7xI5tlcO0oaFuoxWslpb0po50cv0S/0uMtQ1K2wN3liBhb7mwXo0GacGVbxkji9XXHq+g/AlLFjn/JbJ9LLsALoAhlxVcs7p4hr4Fo35nYY5wEO62LXWuiF3DfKO1WqpRrGXuV6u+vu73lcBNRCIJGEj7L+5wMeT6nZs4Bbc/SOgkO0zJZ+rmnpjc1izcDj0Cm0QsQhP1HPhx2Gb4McmRd1w6Y8lMn0VxS3A/ED7Xv+14NdUPVMq8RgTOGgsERZ3KFBO4nyR6hXTe352C44C1ImspSxeNup31RUhSVdO2/Ie/Zy7UVxGKfs/Z5gOtwXaN1AU7bqrr9lH/2fxenoFJlAuTcXE2CzM836aaEx6f+c3v/kxT9nRBxbyiLZ14gAkrBT75gpeKELFiTfBYzJ43YTHwXzjSWzq+1ue0A//f8Sv2MzKioJcaK9xECWvxjqmrDXDPnuPibbVHzEaU7M+gV4aMt0NGIw6mEv3TQYskuzFD9TNvm3ROEl4cY/oDqUXUw/GbP8hx7hj+bggjbbEwo84MTd5LfL7BfoKXPtw6EJi73DxBqPZSmjGlLpnrbOfmVNZjQ4fcxfEgD856r66E8+fSdgIsz6mR3nk8GKeHRLbOUOXMRVMKpo1l7BOUyg8GKmT2f0XPi0YR/tGWu1wfCrZWfNgk0N2PfuHymFIhHwT7CDYJjNs7bZrGFBLq056qVegv/3D6IDVqsq9qVrLPUM1Kr6v1F1/HT9b9uynA/agkmGe5E0fCO6zKfSKJVHNRTanfLB9m7E2VuN1XajDu5G+jv0kkTRN/skjgymexBIw0zbDq2b9lJLik+b58NYm2ZTfcOigQ1534RWulK+8pCCvruUtMXJ6SWs4f2FyeJfeWPXXqSALL9vRr0HuI7m2rvOyweiSrJPXHRrkLWgVFZXOaeCsMzVD7sJQoVmLXSIwleAZqksMzHuizJ9X9UevZJScNDB9ehS+TauD1mtiXgbx1yfsv4I5uMUDuvbSw3q8vNR2pZJIVuNSdRvFt+2jPdamR4ryn47pylr+lOx38mW2MmuCyrxSTHrOAG878B8LOARY6ZBPJvjUP76Ch0N6ePhd5sP+dEl80VeffTjVoxhcYdONmBF8zU/O6lp1ld+uNBTKsE1kh8RVvdl7K3U3+mQ2I4rKj0onxGvbpJAR5e2YsWqT4zQZFbvY8U6+VK9zOCvmdiocLzz0upl59cUI9283bcadoHpZsdMh0iJZNJ2b0Dn36HOJODR9I773zdzaPQe2QP+gbZ4G1GjYWzvXM53W6dpWgiEi4h8bP0Pu4lApcEBRS7WW9e7U+3G+Ugzqbj72/71L+galZ+tFU7o/i+nEngzrdxGd6XclWB1cgfEISfI6K30/u16zdYMf5XlJVstvmetEa0/DfFY8i+hmiP9wySFYO9lTZ5cl9vcGKKyJVRa95YX6iAGxPq+Q3wc/RW3/tCrBo4g2SLzAI/WDe0+AZ5WE/pAGYhyx/m1F/7oony2Lr3jZPEgggfFzBAAj/OSVQpbFMPUHkzvDC25t9BbyOGA/S8vEB4lAlCJhoKlvvXVFeN2WEF6yEe6CpSyFnomg/Myn9JaE3dHJaMFNQejEY1k1HuOVjxtL7UacRaE8DjfSnCN8Wc4qurjVCuWxrIw2ieW9jB2wpa/NerQFKCj/NiI4uEfV3Nkmq62HpgDqG90lZ/2yV/BH4euorHTK6Rk2jCwZAxC53b6QstY2XTiTp3/N64aT2SzUTiC/gXHTEBd4rKhweZWU/gaDVK9MgAQDZCApCjLxybKdOkOUstUbIDrkJilR12SQ0V0ZOjKOMjUPtDj0YjB6p3SOOaCdalnQynElzu/AU2iNIQRZdU52KsPmcn2bsu7/qOB0R1tmzSArtgX2NdZWmD743ixd5tsVEWKPVamvSJ+vtdtJtpVHWAogtceaJ2E+AaYRAfxByDzhO6/dH9gg32EA4/54cKil7GxH9NUM0c68fWJQ/shOX3oZkHrASmGu0skykhFQo2dYMW2ay7HyXzr0Fimu7j0YilswUHmj73JHnmLUvWWX78QpnWkPBVKoNlpX0wWibbN0ginWpy9OxoOHC609dMMx22AD8udZX6N/9E9M4kqVlr0vG0yWS6NIk1pcs8U6qtLtIPhDc64e8pB+Ik8qMJ30XwZUjW0vVJvpZrdB94mAdI+SJl7ObmdsE6dnzxxhUWUr8qF1y8+bKG/4SYylukgKtY8XyiA4OOvAEnPHKhD/WLKOD4jvOnIjvT4OW0b3O12+h8selqGT7kaMEGpxHawpnaOLxov/5/ilaoQEPFKb9gB7JrmIECvfNRXwsK6AJ4+ZA+XcJDvCeGB/NrkBLmHN/ib9rY/YRkRtsMoRk05PKAopl7xqgaFpMbrJJnGhX27VKWYz/Fl/AfJWcP8pl31ksYmi+fTEvDdo41Q1vg95Q7UfC05kx1r4PxKVO0YI398W9Ir8UYXB+ETfc0QwiCkvBGmUiLG0/ml5YBkPcDoAOGgyBkUgPAn7U8kQicEaeL4+k0xKTunONr8Zy1XqPxJ7ZGFMK4sy2cKUcr3HSwvAVVJyyRFogi7bZBI2/DFlZnzm0XbaWnNK9gcOtOUh4Dc0ZYurg1zk1OSTp00aJxjkc7vgbBTBGQxGKeRdNhUW/e0gJlPU8kPNNW2m5uqod4qrr3VGkoGAuy4GjfRE/6i9w3gJU+4eoGyNvdUI+TrLNyEdUfM+FlqOR1s8tE6niJSIKArI4Wr5K6OXBhvMMr0xojDra8pSLkeEmZS2Y/21U3CFwi0PhSMuB8JIerYetEshc+kmwMInyzVVYb/rBGyHIxuSvgn00KOKxtFJpe9pEUA6Qq/yf/dx8CvvpldpXBOfPnNtYegiwKpQ9G3K+dZcPZELnBis4BJeZB+kvGHYAy+74g5dcI/7wHEOPnlr2SC0toAiWqgipLwp0YeFqM4Bh1sGqGQznQa+BcqG8d1pQv6OEQd47DeknrBuxHx/uzbrsp/JMkfM86cFH3Te3Xdu47fNpme+rBpXWiFVbedtvxLo01Kx03tNTLZxfVaIaqI5tCUTm+HVpkaYNi5S8814YWfqm+RMou4HFMGJzLFGcMTYY6D9xiRNo7jFXxVXc+SB8YMdhDumIKhJidJPdluCNHUg1H9zB2qnJwHrPy012tljYIq0TDhGgupyTpCl6/x3aOtuOXblRQaDBQIUzzng9tdZ1rPSW+CfpF6oER4/mPvAvMze0sr8G1DRfpYKE7HeMFOkVos0wIbUEHm96DjhPGnmjKIPA5uy30ooU+TjXHxhPxPe/u14lbz8RtXbek/ycIpmvi4WSMx8Mge8NRadjZYgAbetbXOgtvCbuSSoYFp+ggfgjWs0YUMf+fkeGwSZdJbY8rhgd3W/e16zZebnJHYGbqgCHj5kkD0FL4ARDF8QTGlTje0ocfZ6UDaKKB+UH27UEJBWJdYyo7uirGJ9izVXA2FSQqJkfsOn4HVgre7iFVfKqgdVlFFbpec0FQ3XiCAZ/kzf7oXzmmYCcoGCFvaxeldvMI/8pJADE3DKQqnD7sWSaBGJI0/VkDC7ojJHQwhjUZogcWtfrc7dHRaA1yOo/nZ4ovSq/FGU50uAz8B1L7GEeX71ntIwkv94goKy6OlYjMeTD/ctsWIUleE5FBfiIsPGobLU49Ps00Komb9xyWJh9jdv1HxZ0pYmg5ZZhERUzNFhY7sB/TblPicWh9jMTQqnI6XKzvsAS/53BSSNi4hmj3qLnM2pghGFuJX5v6i8my5fKJ/fc7tmNdBo3QLjSpQFVIos+GtMbLIfXbKNnaoZwhRfB59h4qxAF8uMj69XZlkO4WWAeW6nR2m6EYvmbvMpz5e8WfX7cn89vjPrbYM6GwVMDmOEKh2rwxkydHz4fx3tYFuKCiIk3tBsBW/kPcELd2DCnQ/sOndqLcQ6EQZX9/Au9CF1kpAk9vMfWdvN7RZ9sB13K47Qq+O9v+yzkL5pQJ8N8lVO7g7og+ydgoUp8TjK9Nq3Yg57e2EVvt7m8IsElfV7QrDTQGcHUjdW1vpeBrMNOpLNoVwvnsEXombTU3kTZvRAcBGpTCXfXh1MK2ZPMrWN/two42OL07UXjeMs7kbjL3rDsl9Y2c4tKOp+dsKwDEWdc2aBSIGirDdWOz8FCNNfjW8vAbxGRglINhtMeQwa37E14TAtL3eagznnzHnQ4hjYostk3eui+iaLwdL+8LWNjBr5HXkXXrmW1HJI28/DoP9Ja7EgrDJPmz+xkP4IJd6dnuGJztt9e1s5HYUJW+VuFzKo6KHr1qf2XsJaeOUiiN7JTzsBIi21R/9ALJ6ckDEI3j0Bm5iOlB7IdsSnVSqX2T8fSR5kT7DSjeglTYrQeYvdxUokrzPUJQhMmZOThyg5dCAlWigB7rQ8o9kYG25fphmHeISwFhyOprGq2MZm5XnSAubzPvN5JoiPVsyQJSMYMFiFfG3zz6wXQKf/e2kiM/CyoV8FqANieUXnZMIEcASU+jgrSd7q37QyHUV19N7uzlKCvw+jc0+NepuTB4eZeBx9F9DzeaNAP5n/W6lC8LVlO6aqWCNCqnQ9qT69+5aFjivWDRiS37ToueaVkB9c5iSqHSR/6ft9ogEZqFPS6mubOyqGtLLjsrNLHE8ixLtkp20ndhFbRHXNxfeOQNJzIvhDUInvSGVcv34IYmL1Hqv+wF+ZWy2Zm4fyLoW5TZ+dD+0bj1I2O8JQ2IlgLmW54yH2920hELNNfpjPhMDc6PAEyuN+rv485BEJersKJTgmYQ8BYifixo4PZx2I6pSggHWkHyvJ1UXx/eqg8Fq5FxqV9P63UlHy5boSv48NN9dlJhr20F1QbjB7XA/rPIUPlVWzPnKOp8xC3lchtnJpjb8fbG1OYY6HKOgcpMUXi1GBue3oUXpiRkoY0bEs9A8TwjSrJCrR5eNk73cukufVkXo8+2zhAA2OZCRN2fjjCt7KOdyKYJqL0JArhuQAAiCZ7fGENgv3RVuAao0+2WXr8DTcqsV9+0eRDvPMohejdWvXKTPM9e9tL/2QYm4N10q/QcDePCA7zMozXKiuWZzJkQvYtSebrIJuY7tc+ZaHpD9TyTVys0KiZEQqMEDDIXEdradccAq3E+4X2qt05I90I/vFpJbDx+6CeALxyQ4bIMUcK2AvNecD1cZbwdF3v4wEEMcu+uKlni5t5fCLNV72CfWyWpIe2OOApTs0O1HK6Vy4BswdLToSn9VV6HR2Au/jIlNGY23gPaX5TH0uQdwoH5EhhkMvLpKeGzX7o67MZdPR8H9X/0DrrY0YNQNnk0DXl4GKMoJ5NZo6pJvgPI9fJYhTHqtoj/sIMGEf4SNDLhXi+5mlXdBR+NaiFpMeCcCmAz1LbvYAuShnwqHfWRJLzU/P0IDjKPhHBfbWfNmp3rV2ZSBgDTUon1c2hTsQVZvyB0uSIqjok6WkPky5na52v0RqgtrGm1UC9usROvB67g1Nsjg0rGqFrHEze6h+fvIecS/VJb4rg6WyuSTyGryRFUUhppCRAXjvMYsxRoLbk2popbS8hSCnFyjA8hdrBFhoyZEMjjv95ckAM2EMTDNE1DffQ7ifFxXqsJ1xyJpW5MKm7k2xlenvYMobJie6EGox7tOccWZqxt8yN05qhckpT0oSzhHYyVINk4FeuLyNlDZY7BMSWfO/uZn8UB4SSZwkZuxB4NVsagJGUDgL5SnvAE10Mr6K2EkwYtTWrtAzF0QQZAjrkkXiQ0CR7vpVQ5+ZshTWZo0cPT6nVOHHzqYoLon4sMAWo75LkbsGU5h46wlaNGgT1+HuWuOWOWkxo+zhOlFVcowztLot+ra4rQtT9GwAhW4s3i/apoUxhisgBQm7jLsXtKDs8+OV2wnIRXhA/L8cLSpWoP8TnKLf2lmH8KOu8wMXyTNrdb9ctv2TZQYdPgW3NyTutq3iDAYPqevLEqqbA3Qh/6I7hgwwoxru9RvAnaqueTqo4ZN6gbnVtmHrUbbvfobsr8AOJoyQEk4uijjG7PcaQpZPk9Cq4FJ5pavXqPnRcYvYhM3Ph8e4j+r//3z4ZVvZ61rK/YJN69eiz8JwZQuA4Dvb0LyPfqigV5gpN99BaXh5SFECOefNGjAv6Xu2FaCfcYFIfNzfUnvyLD+YwsWsAWiUUk4PYd/OzxkUsTohTIf6yZ8eZ810tr4EU7hgiPYvl8TuN9QUDV3eaRO/XOO3eHY717sbqi+3wdZ6G69VkDnuFMPsm5QCp8zL2DPmHv14d55P9r/gIUOVxjS3/WPxbSdCKxHW3mJnXvtrlbLtSzsaiSemlfDjBZwHDL6yjAD0e7moT684sa/lWbBQAzBGRGZ/bex5Itb8MoTnBa5CCtM9y9id2BKd1hp4qocrwZchlhEbm71NjNJzVgLfSbWbz6niJD4nVb9Ng7HGnE+Atf6dho57LPVxsp8b56V0dBnPZ1NrhUdJk+IYxj32XLkNt7uI50B5oq3x58sihmUrW3vt76cF9IRZYZzX654S9ZEDqiTIB4boGK7iZaj5ChU+fwnn62eHB81O9Y16VqRtGhZU4I9luPAILIzanh8K7ypnKkXP+LpPE61NvuwqSd6bB1BOVZRFd5YZXzdp2T5IUwk8z88yy0fXVgEzS+Fa/gOWzsryicS0go55jnPXo5ywr0SzF4Y+DXMr1lenBLwVoV+/o78S/ddbaPQMzxFLxH5hNwLhlU2cTx1SNBSYaotmKJB5zTGlCiIn2SCVrt4PQ7LPHC2V1I4chxWgITvIPDh5q34VfLcQsH5WgfjNJZVv3qJNSdPuXu+bolb6+hZDQXkffvDW3QLQHsPzDxy/53skI4T+tXsEsbh8BDnqH8Caoq8aqFn4Jhu3MUHHkfKU76JBG/CBkMi+ALH9XmOfGOMKWt54F83SL73RLptrZ8Brnfnf9wyQrL3YePhAPJ+DbGw4hZKiNVCR+Nu+15641NeQuhU86QIw3t8nswOBezF0oVwTh5fBDdazhEk7JjGM994DNWNucDGfk6l2VpGsqvbQtILo8pMnYUAfxIUZAGCXp7AGDq1J9OLtdCT++GJeOgkaomQSYNdlaZiWCwBLpC1hcOX+692bKfGjlpaggTGHlMk3iiyj7uc288Sm7tG0VBRBuQd1SBegNun1A5CFtz2reWKUOa21UgJvJnsFo8RthEmZy1YVwxRcg+bwvTGh2uTAHV+S47N6+7XGiGU5K0YfmCLLOPvP0xQgXIWJwMwFulNloaIDLFVlgeVZfvdrA1JIgg2mxJQqBGzw6PieLVNyYzdyubf6Kzbo8b+eOP3TbzLYo+IJ8oo9NifrxCluLM55uDVjEpqk1qj4KkRGEvjKdLbKaxbAJqfYNeAJq7euDZjRkUlT66yVyQAITSyBEZ6s5t3JXuFBd5+yp3TtEPxhUhAA/EIRgR7rssiBEMVpRmMr2hxpHrgiqQFpx7PKpEDia2tU8oVxKAvoFkQXOpAC/vxeAPGCQGfIPdho1ZC9I+0EpMeMIOw/BM0kIsdf810RHecSuqVZnRcvwe+I2Dl1L6AyYRdP7fEizVWztnMNfaGiz2A1IfeCc4fqL63t+rJFWwf9pxEyR1f/gX4Ww1CU3ULWuy2i3JYCcae02qu/69wjwEFiKpu45+DvEOMWFVGkFo9fbcdNErfFxmX/EbUVsHYOaas/oFnK6d21qlOJe3bWV3g8msXyBtxjoPwaNJwd5MUO37x/KwH0bXzifJFp3A/VSxiV8zpbTfdh0REtcq8w3ufULoZM0Dhh6dDBU4d0fVOs3uYdlltnXU5/KQX9x+KwPzg+EXgFT7R67UYrwaudgfhlz1OyYGqAsGnrC28TuwDMoRjDNKtT3JdvQpWZnKA7C+n8qJvd/6gINJx7Kotn+G+2uRLeKXKsvFQsVMh9lL7Y01PZYhqQKEE7UZsLIvQSt+IIic8TOuWxY1aXKHz2ZnZJmoM1EtBo8xK/bFSgIE4mlm09SmQEwCLUiz5LgwFWMqr4IGpzTLdXsY+TLD1zZnAh8xvW1SX/6+//iiOQJlv+onyLV++U4E4eB7LhrwoqIT5B9+g/L5EiPidxXcpAMJoTlTg6tAyCA9Mmndua/IDMYqM50RwYAsNZu6JGdAdA0HlJqU2CXFwKI7dhyqiJU0/1uFD2BDHPAlXA+6oDfsHSTOzTNn8m5IwXzWqmzjjPslGKQafXO6VkzUIWnb6ztuovd7332UyOfqoZEW7kF1f05M3y1moCH3PeMWIeVTTYMMtMcd/CJABJKh6AEij3OfAhPZy3/t3g4kPHU2Ikb/koEFRA6l9TsnVYqxlf0IWNiLNf4Phv4CZ9RFQu4mZdgf7U6+eNOB//mqj1+5ytBRHnhj30pfpnpu2wTJOMV6is7ROui1rbnlBRpGq6kOLa55ngwj1riNquNCEL414FDY707EFdu3NszzcyUAjSZxlxnRFmy70eimptN8Rfrrc5yAFhceyibotv3to9QpWetflTAESg7NNc9xfyP+tDgGMHzRs7jyRTV9UNb4I+d3LVQ0XHEPCz9z8CFHTmppyMeyg3LnJRyd9lN3XJoj1ZcNG9jO/hZgx5ol9bO28IKygp5vEt99zz5Q4u0KOhFYa1NamLZvjWXjtSejOj7dXXB+A4REz86AWM9V8+uD5k0AExv/dpmUz3Yg2JNf1Zf+BiSHpeFKKO3oXgmtVX79OYVJqF2epoVD7yvEUKTZBoHWORst9xIuTvao0Vxmw0YToexqcQndrAWTmwSr+20HMZ4aP+h+C/zXqbbRK51+U+mGMEj8mNppFbNVVmVpVRUoN8Br5wiB3SHZpEvZ7Djd6dRkIpbRBdnKNDuYFAsFRZ7YkIokgbbjicpRsBDKW8W1LDI2PPeRU3Js49+zxyGF0S6wd91S2ULupjUedWcSHtK7uo0AbYzX5eA6bYm4EIBJhD4VTE+jijrhzZJ3RzhgTjtu+5OpriU6pkOI2QqCiAvOY6IRYDB3PYroMbVoUzZ68KUwYhPKFtHZNgXWJ/w/rxJM2kp9UbuyRudIfGhIk4fbVmypRNwY77LwUdROSP+ZSubwkF4H5CddhazVwVtcrIoWm93UBlHk7EF62cY94USwuqQrr63j505Toaui2MATXKXMHqz0PqDkxC/XSsr7x2dOLXRNaKpzPeR31W3UC/n6Wn83+0J9+G9ZEw2YH1VW8UYN1ypXzF2mhXFnMWUuUegslpdnvvncYbMU1YzDehgRSolBNqycsR+pJQLHZGxEjTeWjd57GlnQA2WjPwOsn7IjHyQzYOtVjaWwoLlAoMYuNNBqDtXyUBPe3jqjO/8N1i/DyZk0VBTqH9fE/YTJee89Mbxhhwxr096LDIb3Es6eMGF26kcl3NqkiTPlsaxUhENH4dEB13ftghYT1rTgS2mc18LlaIYJsUjytYxcvSbCJDWsBrC+6s1OsmBsMRRPzbEU3YmPF1ZfCsRKtMbqvU74jds/oriFapr4LyG23DAlJRM7okTPhiKUOl9Dt05/C6RmZCgX1s4WOJ9K6EkqoPtVg6CM92SubFRpglGdkAR1pgPdrdQWBQEEgW0cdQ4K9NKUbuTTIIJKPVRrdnODdVnhrDFURyr8bL2CFoPui2Tb9XFFY2RYGMXZuFtUTSi+3ISgA2swnUE0z/5AfGwQEMkzeNmHUKipckxPeHImTn2avJJMQtvnSc8EVelXkDBRNXoCFjTXKCCBgz5mu6BsNG/JTcKRaSSdFhuo16LL0IA8AkBkfQVEUR1Iyb7+yC3VDIHa82NcIengbg6cJT5sXWRdIWIVk3ENJqDqGtoH4IOdvqLGTVO1FOjSlO2DdUaAfFjlm4n6kHzDJLA4JX6fCidgqJWL3rA1tLh5QbDoSumrfgypCX/BbNSF+qiCZDKtkZM9edCeksTg2EmrV/H5FXiEJmXnR+xKbMhuPv0hzwcn07x9glgkfBLHs1MQW73JxvMMKn+4mMWxjYyMPIO26BY6KGwTa7ueuEv67S0fu8wBQW4hnQSVV8q+761zZ09wd2kIo2XDnaOWn20TdLpvwKljrNm/klJ0hxDDGQCDssq3WaLwvW7mbqC642Gtk1Ttyy+AHl1bB43n2E+V1GO5+VQv7GhX/oXeukLooYKylVKEYOupWE5oC+tqWV4OqG136TMwjXecVQQL4BWs2/H8kU57kkJKBah/Cl9GfeemkGAvTCuUbVAYfnKX6N6V2AN9z+SLpfqiCs7nBt8u8v/fUSWMJPk3uPmeCMDqE6RjcjX9gprGoLNT4mjyPy1r4ZgyU9g/8n3upl5yHv7+aLEXkDvqJ0tV6H4li9Y1YVjkAaSTOTXYEAGsqS7/kIA7ZOZkKlTvK9b//ahvJbuaRG6GCj+tojA36X7hlOM3FJWgjeZq2ZeQ7u87L0Uwbj5WvUQSYvS7qiuiTZJqU4ddtm+95/pAEkiLbTO/HVBKsa+N5J35tY6DTeOYz7igSl4OyyqVMMV2w6IeBvc0b3xa8JDgnarsfJaDv4KHwIEcy/vJM+YBZoCaiy6KGuEWmK1sJtR5czAv3ftRkRx3AABkMnVdemGUy1XfTkwkHdhJLxssZrdjhZwEMsqsDLDUdPVF4TcIGqQnpPLQvuChyi/A//54gdhGMyO2XM+qFqnqKKd/LqBhG8osq2sfffdpLsGvkjcnSWl0l7H5EftD9tyG1dybi6p0QURm6pvtn13dLhi7dh7Rbf7Z4ktLcolgM5JSv6Hoaac+R/8+4eYABmEq+ZGqzWvrK6BgBhpYE+ajkr2/tfUXFoMFCWeJOl3YwG6axhzxW/LrpuiCzCZq3aSpDE/bnyDITZOtobSXkRJzPLveLxIfN7mt91xSZpKofSTaVxKNq4dm+dk282oJw/Xzi1vnxmdnDKK506Ee51hiXmM6DCobgC3HsROJo5OY7/Twf0OjfrlzZPis7LvnKhCg/PY0cXyhERnvikbXQ9m4AgxTIF8L33I5q3+oXk/E7MJ5uI8k01kZ7CbIoTVoe1uoyUNRgccvDyJOlHxT533kOhQQcBki4WU851N2DNhLpfne5CI7uQHm9dnxlwO5RLdNqS+vsFksjk07gXXHUaw2GvjeHoLxsPijK+gB8Z1Mv9o3n1dqGciqBRWiamtW9qywcs7aWIKWB+indD8N0pNzvzjdEKoVuvcyh/AaE7Ix4CCL+cqPN74ZuPJ2MymVyn/0i+oLR6vurkH09G/gpcnxsmOAsX/NWDfFd9BV3a3rGFA5dukyqOxCxiDov7dvzodRAsny+Fagay+GpM/ar9npUIR1eikawXkuiyAaWptcBc+dZApXmhTGe4bDfn5kex2jLzKLZRQrz1AxXjO3ZVuQ6ypisaq66qYiA9DxkqT90W95/jRDnKlQfWJyY4D79lYhRu11uKY8wHzT37cZgOux2LBV3GXTuZQFNjLCmDv4ZXwF7vm+SJ7FGVdFbREXdjJQ0GB6lsbG74m1KBcwFgBVdUxRgOPQLORrRnXzY3JB4nIMbEnUjhUL0zPseTLedmZ54WuFeXY16uIMkAWCkCp4DoWpPDmP19BuEeX6/hy7JgE6s40wNWt5U7VlNrmDn4HGfWcKzxct5vegHggzhvP7EF0PjpTj2BeJG9cXa59YY44R/yPvvLI1fnxrJm3s17TD3xfttNaOD0ZTIjjs/n0qD6ne6lmRnfoPHhb8tv89t635ADb9Vrrf1yZAGfeoRjqqm3OFKsNX5Cc3Xd3GXegjDH/TQs80DavVJQbE2nRL5L0O6dJSshYVYmCpRFRm3/YsPWCxL/HpbBiN8QzQo7atk7q6ShNxos9L0WjPtKKJ8mb245mBI4hPpazGDzutL54d8EVAGe7l9U11RsxAm5o/fT4OMtaPIFE7ZFYnTjDJA9znqt2W0WEsP5Qr3DqzMfrkFn81mmllVeZo1pQKlFhA2bYR+NnUp75B42RvkciiP05Q5DK55cTYD+3e0F6koT/H4IAH1Nw+hz1DS+Pp4NeJLLITIQjTyFWR8UIJdvr4FVVyPrGoMA1ri52+UtxbiraDe6TYT4KPX9X8Ugx2ZJMdx2U58hslA2WvKall7zw4t+/QI9cUmz33Rd4O+Fs9z5lMefehqh4vrYw/+n4nRssK2TL0kAWSZ2+KABzd+YAHr1lAHqrf6VnXwbv878FiTFSc7Zn4h35uoplLLKpn/ylo+9Sm1nF04vsKvmsLiajQBf25HCByA5R16ZbDkDk2kpjvcOcrg1MJMdMbq69OqCIjKPu8o2M5PfIUdEbz5PdUsAiiUG7nnWuqUvmz/JeIPkTA0zwFjAVSmou0ROmd7eaaQzUdYhyX3k1VJb2BG1THkp1QA+GM0y2pkDZpWp8jVoE68d8LuBsPnIw6a2S9E2d1OOIpVO/8yQImxPjdDp9QSzvB5AJui7xnbvDzPaNde0P6al1zAaHzKUGJck/JEWjdDYfNGBYjU3cO5qZSIX0Ii4IIltSRE9ak1ibafeORUex0r86m5k/yyPTMDXUG0FZIvzKVt9uMH+AuzGOTVg6vlyWVr7OUIulkGYdlpZpNVCkpbUXX19lGC/gCeNg3+o0gi2LYaqaWFjlanSCKJFvRubVh9L9BBFYOPIJIdm+WS69bW15E4TDPFKAFiRxwdKFCQlk/PQLbGCoqRaUba/faaj2fn/n9vcq+YVNj9IPD88YKYli9WUGi6PBqQlSNjKjYc/GLbfSbk7VQOnaNx9xs8GgFN5VuvWm//p2HEgafZR5S3GG8y8CahgkMGezFB5AdZoVTwzfA1IelRMgWaRmSZbBMitq4zDP2CSeIUxkMbqX9ZeEUGEZILl2YU4X8PGqVheYaXBarpcRBt3/+lIb79KC0DE2At1Hhrr345ImkyKCADt35Y2MaBF4NwhyPveTyrC3qU6NBwJeZU5Y6HIPA6VUUdw74NTjaWaz0sP3iYJMiN+ll+mF/CInIR+xUWgOceGhOQTHbHYrvyu9DlRt8uDFrdhTdVImQycsbE3ZNk7UEsGOF89uKmABdS4AvsWm0gPXkSUy0/noT24b4Q97Sevw4F1LMhIReXPdngKd7VsJnG3SohOd58EAG3FFWfoR5EGI5mBoT7FZttt2MFR8fjf0drLCl1zYnXk3n+VCfgUc0/Z7fHELu+7MQDsAq2n5Cu/bdllqcHfiNevkvzjTR1asrTbwi1JH/ejlGQJkj5Wywu8b1a992i6W2W6UB5pfgmQ35DB/H4lbYf194qmwYvN0sabr+71cX1dTc/Mw0xJ9qdoG+pe8DvkREbxin/bdX4/rZjtgH0RVCrfE+b0yzs51rXlxRnv56ck1mFeFEG/uSMORqRJEPe5Cf1dYB1YSmNWj6qTc+E9vUsLh5ff/80hJNIzITYzWG4A8uHRFhOT8xwjImny0oqEzkq6nYR3uSX4GAywwDUbkv/ZBfS/i0O1Uv9tk5vNq2gFCI9G9loYUTwR1RejnJImIthMtl5GNBJPGBBMZq9L0+Z8cBd88HGNmqaouTyhfg7+MOTJaLdAsgk+jDJ8485dL7Qazvto0Zwx4kKuBsD0csrIk33YAHvXZ+zZfsQke1qdeyHSu1qsxzDvtrIgrFq7EseKEnrvdL0g7TB2j5Aa50WFge9wgk/oFBcTSz61XxG8xnUafHBJ/0cKFZGpCXuJcLHdaQ5sbGvsNpGMoyf12gaXqIue1Lj1tpkEvzleBFXHy/hIcdfHaZ0xmoM3Gh6m3PgaXJNdg+S/mJ73meY5y6+pDcUkbxq9PME85BCghAPsLz59I0iH4ZOJLfeshaeOQ2ISMdPUYmXfiS+I21sVmLzSgJCXwcXrZV3Q6awTRTtAHUVD2LftI5Md0LE/RGbZjg518DV3N0XC95ys06WG+nOaVaVDtkYhwmzdi9e2PxEAN/ef44Hp6ZAi85VvwBxl7udyJ864M7qMajuslEWL2dK+JpfVUdAGPhHkGBOJ65FMJCjjuBgIl/ATWUmZQskuJEyvxSHIv4f42e6e0k0AjQQMdfO1WY65UnwKMjWBG5VVrbC4AbO6FxsXbSVSliES7Mx2XcOF6AsMrYAGZGLt5gk22g2W53W3ZhxrIGxMAy0r9gzzCDG7M5Ba53iO4v0yT50OlrNjqL5fZPCg8prJAofutEAjp64FiZnfO1P50cQKt1cE3b1XInrGmHUAPsoQT8lNNWBB8UqGXu3DJALoDXBmqyI4rARFWVzFPSBvmU7/RSP2nu81IlTEpgZa0xlJKVLJSCuMfyMojjynb9vaXMo3XA5hvTvn5ZZe9ls4Mk3cbKZFFO7HngmPC26ILH+m8oIdK9hhSrdzO4rP8lIfMKUDNgySwQ5fcY3Xb6ZAbfCGH+LSo+ZeJvHn0vVik5DEdYYv4fIPBFIYHZspyQ7EF5hsxXlMkmcd2p76aogJrFIr6WIobynK1ZE9X3QVZLaChG0FD+VsXD+J4Vo+VasC4L1T5SkgUFBacWBu3sTMYHQau89c9AGqGJTkrBvKaC8ckbnE70KPMapgEswMKdrbg3cEJRxUwxadSa5jrw7HhOu9t0M/dCnizSpBB9QR1VBWRfy2z035Bq4+DNH529ZfEU10BizscRKc2nc7yyORCjVaS3Upo5hOyvFm+O/dN+nlR00NwGTt517kmrsxdPoR4FZ5b8z+4SRB8N0k5DSHXNsDf6LR+qrfh2P/l8xmx1Kojryj5dosK9JsfwqOnC+fzwc+l0FD9dMCwPk8MH/Knz2JPKTraNKRLFgEcEC1hQhLXwBk+OOrZkrWFtc7Kfr/oFLkWxm9G3ErNfMuteXSaOgs5d0pQ3d7ZgJ7grpDDIbF3HIfnvcrD2f5Ehl8zkcF0aFdAK3ml034PG7Yee7v3MPH6i5ENMCPhD+ZqSSKWUknKynK+feOHIPQxMRHMdgsi5A6/9mTp1sre4IxSq1jiOnDZA5mE+MQyMWfMXku3cD06FiExpWQ/gqf3uGuvqVQXKS6ciH6qRLzO2XKPbF36YmHsylYMgLuBrPjno06tK/P/2dDLGMrQnzG2Xw4bFtvh3rukj6FKBJQ5WowNvxPzfqP/4flzhrJ4Q5/DbTvV8qcz5kIEMtv6dJbjfKAGvjvDSfJfwDf0g1habqREpTjCI1Dn54bu6932roAbe8KQDzTjkYsc9xquEBX6p01l6qPQjNnZ7Eo0F4ETDCx2p72MBP44IDxa16flekXDuIMxXHv1FtopnhBDBnKrn+w4/nbtSBErFhzj7nJ6u4xs77Tda+JYdGLbfR1Wc2iINmLGDj+mrseBNwAqezcNGf40vO6h/4/gy8FYoH+ecgDvlll/WJqjCL2CdzXgazVGbcv+B3bWWo/QllCaE0K32+2DWm9+cQDr5yhq41oFN1BrsY5BI5xfsWsk6aqoYqqr1rcNxb4bd47irK+dzn6xoV7jzhS91sP9GUlrmU5pKynEVB88X2KDkCR1egR69WbcUN8CUlYMvl0C/8GGWcQ5EWaSj+oWLdbRwaGv7VxhpEB70R11nND/Wf63zc6AOccscnmM8nKj31lFtb20tktERGp1QrXddbXM/gi2BUoYz0UdBuevqARjidUYpkRlMH7B2QutcXeTv7QL4KRK7V+lq1Sd37GczO0ivPxR/Al7C/af3ePzkeHedDrm6czrwtRC5NT0Mt+grMQ3wwmJ8McEgx+Mqgf90i8TSaCHFeNk2aXvWylTJ9galQ1PnP8kd4j2xG1JAi6uLBjxlHIIDRCPqVTLNBTHTJ2E/h/6gWqNM0ge2FJqFahMz81yBesQ1X7+Q4sh6uTDcaNv7tEaH9eMS38RF7xn29vMCUOze11CCz5qnTT05dY4CSwe2JcNsyqSaBQSmCxiMh4sg8m0DfjR0QiJzLqATglke7xS0v5ILSlJJv8cXWh3/Um1yPXyfD+UWWlo8EmutZNlLa2gJT84wRbsOAdSvOYtfuNtrade7UIuMAaRlE2+epVpV/1tVTu3nbriTFnwVIDiqoikCinSLEQp/xOiiXoGVW/nNPzp9HSdrmBKDVg/OdFyEbS+HrwCbXbIGrOXqAUBQnA5R1MqhhpfWsUQ8zsppxH3AKElM5WAdSeBmxOuvAWsR4mN+lEVTe7GbOZ/DUIRvC7XBe567azpT2ra33namSiKjuIvUyh32zhL/xQ7oxWgv34Rb9lud/rdYCg3pyo3TCfxi3fD80x05IQHuM/wVEKlvvdm24+Xbl+GL36puCUna/4nBfQ8MpqqRWSgtcqXZ6swIIi7/LJEm9XC6Rhe5hzoXHgXMH+Hs5TMI+MOWsZwuvJLklV+8HykMARIWw/RvwOZku2QHRN9cXpjvntU9I0neOxbhMiyD7xvpG+56wysDuPBgPvX0//eknD0QnMDwwV47qG7TIx0PBytaJYASDykvRzgeFnMZ2YDLEzAXwCGTC44piY34NN8qSJh4cw48FLP/tNSUMRiCaqYJrtpnq4XFoZa3eakQs5Qv1FBElYyq19l8//+RFkqA6Ffrn4WIG6rMN8EF+pKKFL5WRhuT5daYrwnJGpdWS1iKHI0BkvtYnlBl5HT30KozCfVKPHnJtBKPqdgjnqSRKrlfhjFn+n1sQZCsSL2no2ZjR64jdmixbKDjlxOGFzVJ32Cd1nup5Zu8k/eYZGgpK+xoBXOY9OKANkj0rusN9SUwzGCjs3/hQeuGO1wbkmnOIjrS4/Mof9mhibltHthcKigrZ4s2SGwTy9dlU9EVMABkU55S3wXde5W0qfUMqePU3GtgJn36Y2gDo1rhRQ9rfv6/FXC1PFlawcZprtVHk0YptazdMIC6i1N34Ep134M0nF3Tb/3wzh6DVsaUIVQmCdnt6v097IrtabSX0j0E7J6iB8SbS1NX8sjvJrBoPR109hRMvj39gP+umDfIcPrvwS6T06Y8N7aKsVh5pX79c9RpWsj5xlzyNhFoY8tV0IhYpEfS41uuhwBkXf2AQiMfT7AlACAh2wmQilXZcG8hEyfGlLoleWnCKe4r8s4C0hVNj8/tzX+Hvn7fnAMcqAkCo9pXCfL3rJeoT80IYSTT2ILDLpUgHw98xmgbFo6W1Em91SYuM5BG42p1cAE2VWCzKJ1Pd9gbPSR5CrOFddDgRJJTVEfL/YvOUHC70B68XdHxs163Pre7PXRxpa4lYt7Q4kp21glVjw2Y4YDu8+yCFLg5hh593hzjXVs7hWh0EVsnCzwauyYgnZ0zWgIK7q7tK46/IzEiJigyfre8+ZxxC7IuW21xjq51nPgsL3qdKnXc79YaMgzB6EkYk0NdTPZ8Vwjz1xFh3WaoCuVCcy8U0wqMkhlMW6i8ZRVT0Ad0cL9t3qiEenkcFp7MIri0lTGxXe6MzXvmnExxPBXMTrxKDtpmOP9AXQJDtykDsdkvihezVfmyA5UipaxJ/J+zts3PyqgwlL2yiRgNyzCSDAq9HyXyJVHU137EN3T3rvKjP8Gpi0VIZqRKclZNCaf+4nDGPB25aIqo0G4VinvQ7qFW/7W4KFhZi5sthQ9uhF1TJj8sqHVH+ARaza84oY/bJFXEwOxMKmtyAb/bobUFpBiFVNHlF3NzcckoFapv4hcOzhpGhcLcYf+lV00MFfNl7hK+8LfQoyyZFG4UnWK+StnA5XSReW0C86rlQdI7UbP4r+zcXWiO7yTe8b1mKyFXU4eIPYdqIjZEGN3e0lW7sNb/0/KOImLYyT9KlKSOIZCxp/QfZW14f4qgS7NSHq+M+6ICKahjJb/qGjfbqIioC0dxZxRWw29G2UU9QysUUtk0RZOUuKX3aQHFbeWX6J5mtGJOAW0tud0mgy5Md9GBveQyA1Z3/g20m/YQ5I+9+IpVYK9LbRG9xbA0M3dSEG3qVnK6Hxss1ued3ADRmDJPHcZds9rKTci5UVLFxck2Lcg/D1fcZUbhwZRzMIw8JPOMI+BHwz0EHUI1Ay0z/oBr+utpBgIY3CG8nHKaYIJGJGLmzRHgUeD5EvqYOhnCb7qA+YcQQ3qEuGrEwkrBGol4uUOPCsBqSvylmvDUYtzE+5qyyg4WW8+A+U1UJRw2FLEurAwLAv4D2SxQrJKX1Z1JNJAdTE3R0tri7rbqkdvmDdp/8wd+NI6xf5pcZW+ERSroZmvpEmdqNjZg5bwHPyk9Xm2In7CjmSYHkJruGrqsXpakMJV0Z8A/ReX63CAQwCODvsnRiFGVjxVjQGcN1AeRIL5n9saEyeIGAJFOhR3m+O5VUKnHAXLHfVJbavaHQwQtF5G3wpXlSgm52uQW0sh5FQGhReFPeJ3LKD55eFKBlPbD8aFK/OIs18k2dk9J/pzBHQ+8TzaQzNNyCKSBVr9roPXTqJTmXHApWSlrDdQtwI+UCNyLPcsEc566M97u4OebukF/EMhTJXagNO4ior2tT2OvgPwCrWr9NuTnKIORBOceg61QnfNU/fpeB9XT2Sdv3XCnz3Yyc3nZqilr6x7XfzMdnCmP5dcSIT+LjmzA6hf+o/11c0MrCjbAor6IpkCIsrBi5/8hI6QnakfQZqrja+1H3twiSAeqPdqU3Nhu8f0j+NLbig+bIrn4xomLBW0SD57Z7jq6c21gWGKeSTKkzuEoOgyWg4EJ5zFKWhR/h/tiX/BP9OIGyZwZ2M7tjf5prqs9v8eCOgBww3XJFJFpxiN30iDnsPj/DZA69W698gheApiAS4mUSMIOmAKUadhgaVal1rn7NPTqUD3CD9TrWBl3NytfJeJE4mrBgjce4RFMhZG1JJijgOkkqhuDZu3RQCsKwUG+2lOSSqE2I7ZP6wFuDscKUi8Q63XdIFgAF/Gy3PywxGPW4ryF38JLMhHOim5yNpWb+vxQJJDteigtkVLFpIpJew8oONxPUR4ERdVntQiEIBPGHAyhiZyIoQc69A0+/Y0jo8jsrnhdA7puz+G/GUT150njpOE6/zqaDhsmHf8ZaOZ7WZBAIPNDp/44v1CAPDqQyEuFrkO6Nlz+KrlY6TRbXXV+fiEHEjV1NYFNSqvPWu7F2ccmw2AI3ANd2WzcgMZw0f9fVCjLbb372l1eT+Np7hO71fMbKNm8ZmMGvc+apeStMemOHWOg/6oTPvyKM2wUtwbMbfLiDipo2UfcoWRRxwj+QjQ4zn8AJuWCtnRAsm9x4JozhcB6qqaNa+kwp+ddyyhk276RKr5ftZWDQSRhkpQBfcoDOrERrpm5Q1DxVnbDwIXvZXLv92g/ck/xLR8T0pikmEvC+i5CERQv0423xEgzb836IeWUDKYcrZgbq7RJTGpdO5ZN5QYj4b7OwWXnzNwbQEhTsVSHxDD6hvADPukLQTqJlMWLLOw4G1DcVLMQbAN8fEDMGfWE5dFbw4ROohDlyY+JGgT1iwiGUHqNKRzpRPMEt4Cm4AxJoK6PUFzf8KCZ2AUG9Nly9OI9Y/PWyewZwchbwpAg+2qRBCesyCyxi2DSURmNd4F+Zcp2dXZwkMsI4g01zO6w++6xd16B0fUHujiyKcCpH4z0HZrkbstkDBKDIuP7Hd68zTwMmpF5HElXyMh4mDADqrWjTot3G4TT/nS0vbc6Vb6V3I+I8YV/2u+JDLMx5D3EushgyHIrzi5XCV7Ece5LRUfxwXTQJPOsYvmj4Kp46hkm1dLa4q9kAyitPuytIokOjsUdRrQi4f/pnc5VCpWoTVpal807EvW2ssfH+UPVgxxUCao6bO55ewj7IErkY9tctamssNLPPDZcmRXON4QsmlngnM5k+TpeYNu7zZLtO9EqUVqQYM3h1xqyyj/sYdEwRpcqnQggScVrWuN2/6+ng6lnT5bhUArv6E045M1zQAGx8/bRGSFGynJGlAzucQysct97VgPdsqxcQ0yOoWLW1sOgk0Ap3DgX+eBW2rrLhkepfrYzX14FqqOZlBlZtapXdxmrDTTdF89jfz/qkgNujgcdmUT82rNt9KT+8FCWmR4ixGWVqA/gyAFDPTxWgdbmBmVPjDG7MiTfZHPZOw3qw0XjZL0JdB5o+wCoY76o/YTsNvZezN4g9MlCe51/SBTJOLh2LV48tdlVflvzMNdvU+zgZBc9iqqMFbGVyzXhKZUPX5R1pLLYpSRMJ5Ba2txHWhEPAjgUKLzh0XP1qDrTuqsla7hSyylgg0MqoBGoXljXWKoVnkGFRJEtb5XrvyRBGL29/qF6UbYCv6GkfH+L8HQ6yi//E509h5VrZumXTBSFt1JZRETdvqGEeALUMJxMCD/2i4puT4fSkj65Ak8URmkoJLkQHuXVQ+HARJ5EmcAvTPL8iuP3XC9NHB+E7XRLdVnRCzuP3w/lOb6f/LeS7XT+GHfo9Ie6wBlgC9k44nJG1Vv/kVQaV+E6WZDYz58Il/+UgqrCX+bw5X6kgHj4QeJBTM8BUZxodveB9UkgYWtPiFU/N8ybn0wQBwEhkwpVY6FO3MhKW6quNCUOBkuTEXDwbjq+oiiqONkN5///6FOyWyQ4JQq9tIU3CI6kXxp334Hz5mPKrzxrfvoY5czbu/uKVZm+H16GGyqbH2TazajticlhISoo1fAJ/GF2giDzO0FJQZJgWSf4jHBJw5YieyOZKkXqggZ9cpH/5dcU6sqIlvPwV+kcZyhi5oHlKHQuVYFBoOWwdG6oMZBbdQLVjDg3Qwgbfs9+/ZGo+AiR15ns58+7I38rs8jgPZeomijwHyxKl1ZJgf1UDKlW944zAkLkoi0msztyOJftcFI3FBN65v8Hau8PIovvefkSA7uA6PpQY59L92i9kb58MiBtAtev5V4iQ3yrjPALceyeLM4gtsVvmpnzOs9PonLahtuGnKNJHLMZAR0DYOv6WhmYA1j/lYaGaxaqW736YCA7EeUgrcpEhky8l0fmrg6Nt+FL/qIAT4+NsoUoL435Wtao+5AkEvJd14QIDR+wDwg7D+YRGo8qEzg2Ljj59YU4XWY4mMUrfflZE6BBsTUNbGj8ilYkmBWOa65YLvcln7xlBZaxlwsbQKpeRnagEHB7UJbFN3jDlqDOLlV4vxwrPuOuQGtk1HGXl2erjIwxgYMKCP2NBxSPArg5EVOUpkH1uneFE1G9Ujrqw+4avhZWB+yqomc5SXnVctOFSA778afv4jhupI7A+02r4dnGnXWpF2uml+HpMeLuqEcKP0gXE0G0463njXJ1Jp5lSV8Yxal37an8N0b/5k56f3jo8JRZvbFa1ZpicM4JCTjow/plclla3MFmnYaTMkKGHFLzmAO0GL4ry9nuOj+nrPn0PKhBBxvw7/d8T7ai84+s0a3l3vBDqVNZsg99O6nFd9k5wsmTovBIzoo6Ov9X/XV8TpfW7UMI29JvexK59R9PNiZQcqw4dm+QQErTena6wTPZb/9RY1xD3GJZ47SAL+nSD/D/6hHmTTIqjoKTb0uPI1OWD/3sYYh2frf2eB3Hi7GJccptRwe7iOWlVq4YSYT/Mo9TZOacOjW5dThvvy49iO7bvqUCJeWzN6qVNpKSQuaANF2Z3luBcHdK9qpNTwFLinzlgJmSMcKoJCRBLowZot7IQXJybiHzTNbK+o0Hz6EfbYCWPp2OXREq3FA9Iu9a7TZFjG/NiGs5LvOfOp3tK3m0IIWSYUM1wVRyD1anSkh5q3LpW5pejLs87/jey9UOL8E1LEFOnV8gKA8wkP4ml/YO+u+3sgM7Zgyi1aor03zA6fxA8BE8P00sr0u7+//oYm7/zZdHH/jbnn+kBCwH34lxw+jLE6Hhg7fqjihee/EMNthWL2XcGLVzf9uNRre264ZE2gwqhxqjNvYnzgccAwbs54FLy42/PHqb1smlhNbJi0QDW3aC6Snfga6oV2xElLfa8aXoCt4F2kJeiqENludkgnQe9rVFzP3GZXD0c4Ss69OfeG4n9axyxz+VdRIg2F3xfk6YiRKcbcrGrdMOaS1i88oYbECtoDoyAR9nNO9UlXKVT/xf9rwMlYKOX62gAj9ZYoauxAqr1DC3blp0cu1E84xJn8ZruHO1aRmIFhHcFHxuQEqCWkx1cDbPuEONkIkctQiHVxK3/3OaMs7japKnxpTMXXa93evK4MhjpjfCOOs84/b1LBUsW/qvCwCRwYEEjUeoFm1Ir1lIJ4XKeNanpIOKDLaRLUAbh/1j4on6VO1UTWGi3aAEXvwnHV+L7o+0JHbRqSLfBrhLVM3ejFxIR1c83XbN9wTFZ20CsM53/MHNx2hz7/qjcroYWF+rMTEMMEzuKjvFON4feBevqQaC2LpbTa+DG1ORVu8hKelUTvYrKBfFE/9DAx+v41ZgEMn4DXNBadMsEvNHADa3kyUl05DE9O2KIIieWXav+J+ouTCX5xUOo9D5DYPsooE6H1fVN2PBwu2NkesRxDVL7Lmyho49+X6isgkz9jvyqG5c+pKS/NdF5sPwdNPu7ZWx/a8FU5x3KnGxQPFWxsQ0U7bi6O96DYfcw0Gh0RrtFWMeErO/PYRrPSAnquvrAj9PeSjdCabfyrLOr30XW3DUSWS6MMxd2lqo69hukikVOXFEQlet354L0bw2msLhUJd3Wlt9Bg2o0mM+0cexR3kGh/KONphwrBzkKtlwgfbgyYrJgZRpWo69aw0u/UCvSKO8etvybp1PjdcvOXyIpn8n++rckjoUVqSRNFe4/d5Wk44jkNfpHxrbQOESClKPqy2k21qnSXpf99xQdiLa379vYb5rvXeHXnt/rb8eGNe0dC25BO6Km2ZQKRLvxNjyMbvONb+MEifymVsZVV5/hu4Tu5HZC/xqHSO4EnKCvutsgyPiIsIYVxnfeHT/iU9sNBzUmB3lBFZ5zjAdi7kTTSvM9Tg7R3X6Gs6UNiGJrl52YPWHCmr2oD0xWpOdwfWtyhKelJ6QikXvqEcfH5qhIcJ4V2fgw58tieIWqihu+Ot0C1n8G6Yq4s7XNlNdRDuC09vgrN+QOiRQQZBQCWC4OxJF0l+WpRK69PwQRBKFG/DqEnqOYv7Qvjre6O0coX+n+xLXkC6ONhNXYnuWLXC5E2KfyNjEIlPalxiUBqWrRucPt6ULcLsGrLNt9HRzvBCn+JPw6Irb0rMcgvF5XQcVwWnUMFPqgv9BTq40i9AABJYkGap0nhDyZTBRE8N//+p4QAAAMAAAX3Ar9MAfM5oAVoZScahElHSvAKyfmWNODNf3yqluISzQ5MobzvcSgKq6w8CU8Vch37h7IaOkjiC7gKm5wsKQ/7POFxhb8cjS47fwa1lwcat45ON3pR6X0CHN5t5viuE5aXhk1u8NH01HmSYDW1Q/SCKPzNUq53KV1QFD5j2WVzWg9tqN3dzTHbgcEawXq+Kh1bSDCB0RtHYj1H82ry6SHwJ+0E5nIQerYKv21zEd0IaoZffDdXOyh3A3FleohqLxpB0HoQE5pk7u9I0a99OP0EnLHr5DPpoRAPVbXMpJyD4DAnJM9raQGkhjBVgTBFS9WPBxr4wV2EhEQbtnrATpAuVqBZBi9l+7C+Ewlqh4elXhSY9kqNawoeJhZtXKWEHpv2Kc9bOm6Og+Ihz2+IGIc3LNLQ/XZvbSQtNbcKfyAW6vyUbSXNL5Cl+8mOI5XGVfIez0ZgBo84xqXF95pDjbgrngNXsQwnO19U04sy2e0v9Tp1ep5PLQhNvf3lkHHqIx/tzQIq5PHz/ZnkC3c27NrSc1ljlv1TvJLmSXh+CNMkN5Khj3naFXJZxH+W9eWj4xBQEoqocyQJB0VIfKsvlWZY35p+OgeA/gvm7mDduQDOYhA9t7yFV5Fy9qcS95gQGAsg1yHfD/DwJbRLdmLDJckDLErt3KlCK04ycv3KvbcM9wNjsNWdINhVuVCKPNzUi1B0rXGAn8fP8e5c1hC2qm8NGHJD2AXkMUvXqpavLe8axwrsOxg+a9jy6X7+LqG4ZaFuUGRSD6O7TWe3MVR7scFR2KVylh/voxRq4Zl1EWd+VisodiKnMk4EY/fi/r+GQkJlXHqX2uAbmISfOzzgG3cVzlkOAFEdWA5VXYnf1wCloJJx0a0XoBvhx6FxYYqJLeeUST3K5qTgpFBDXUmp/0WZkzntSDG9z+ZjIpweQMWPOHDrvFCQkZofaZjdkV23T5b0aGfeLeqQojHuunXqihYOU8XI95rwixV02KZCIANL8irWxAA46ZsIEL5w4j5551zGxO8WQNgjhLmS9sKmslZXfuOeoYUoYeRtkpbsya1XPAoxUW3UmDKg6Hsugw2IM6DWmtg3CEBbI5KzSSwz1/nsj435tGTDPaZuOPALGLOtmWu6/5yyL+hHdaT5/7HChtk/PQ7ocOSC23ArhSxf50WLZbeKvOGq0bvWCdLb95EyP3HVNV8eJdNmQME/0YesOLaCbuQkupOS6LPr51hcF2plxPVQtwkkatKyWD5WSLGrkGbE0u5+f4DTJBskd2WsRPH04NoskYCGUBgsLJo+oaI2Ye+V7xCPc6EOl3rqLgt5K+T+mOEvPSBKy+S4sTId5ap/Fsh5/qu6o52+PM4CbUnB825/ZJftjLiu/YkqMWIMIp/WABoNXTw/Z9TjYtc7gyHriH0gODXiUxeDtJWHGeCc/f7WQa4HLBK8QWCCSea8mNZ3E3HjtgOIZ/oPxxSBF1p84xTeb5Pz2DLa8MUNAm+NOxTmb0duBLN4icsfdJQPqb5bypJpa+45KuDvZk6+sZHwtdDFVLJ61mHvU55g8YEAtXlSRz20GIQ7Y9JR+9/YkgP8Fb42FOPKvFA4o5Lcrnvo1ykmzcq0oo+q42HKWQllHGYzYZlIFEqAONwO+dLc0Ayb1hKOze/R7epZDe6CFZWPn3p2N9tdCsrwcZyRfMqKDzE7G40yM4DX9TZ8lseELE4YJoMSseO6PLuoqzrM1KHyBj/CPD5umyxbtcW/i4AAMNUne7l8NjyXoaSEg1GpQL9f6GJds/b1ZTp8ZaZ1YZEmAKzUy+ailkRIhYgo5uaYIj5DHByb3MQUGZsB/qPLVBVskasu1Io5D0087SeT1/QREjTjJnHGFBBmlCVg61L0OCj7ZwermiR0zhivNOwlAniTygBbUIObe1lb8bW2wL80kRmQXb5MKo5L7dMKuS0itixD8nI4eZEY/Vfdgp54AoBPX/9gsKyUhWZDf78TI+vfruFk5lUIHAPnuiX49oNuEvtZf0XSB01a5J2z/T1Ks//MYk6XZXQVQ49L+2AFh7wAlcSp7LtYQ/17sy00vNf1VD4n0HcU/Ny6LZURMuJma5muxcnKc/2gY+3sz3ViPqlQtQZRjPA7u+w0Pu6LufWkCXYdelYfqHCXx7rPO9ztMFZE70T0GuxLSEvsOXOMgOGU0HrsT5w1toIY4xQxpZVfYbGtncxHkT5O7cPgSKP5J0SsNk7QfoxaaxH6a5MX3nvRuVp+SgswCUkeC4zjuzo1HKrXgokqEz0xksGYB2ys2QJGcT/6kY6GcMbrjcZXQBqra4jpgvZkxGSE4iiTPnfb8KCLDNjKD9oU2/Pw3SlwQa8VPu0DhPriV2RwSLRxybn+2b7s7+NssMnVFBd+kUQmri6o6I22MQNGBHkahWgK0jmOV9fsdbZ4RBFxBGSdQOJfITBr/gp1Bf1T9Hl11lCqYbvOpAw5V/AGH9cuzjeqacEaOWujIJilIHIgITAz66sCLaFbjfHmJwu5xEgTnnJ4/Zx/8MfXhVNi3r6fnSSgdFGLriQaTKxHPamkLofD4PfSeFN0TweKmREpYTZdChMEtfkUDUTnffcKhOOvLfYtJO5PYtFceYUNNJeHesBNCicoi3KXsJywc9zVawKG+a5J3aCl4tIX35hdRn0aYSusDKzPsOMWechRTgGKfo2ZjSqlMQYL9OQlWiWOzdwSv0YS2OOQhzjKQIUfBJti51Y8LeGMFz+g071alCU8GB4x+5VWw8cUaYMsaRYz24NceBVr4w2SGFeypjy/LiXRq1ea+/aLBMyFkfumDN1wU9xKPfuY2Yf+75ZNo9DLQL5OKRKTA+5pMEjPSo5HrjhnAOAcXC7YFAc4BgaPvZJvSv8II9PpkUNDtxG/VbkL2VHKnzpqhnx4FtB7EQyit3lDORLvdA6rh9Gh9szIdhc+5IYsc1tZ/acxAL7sUCYRvVS6dM+oVyQIumjJ9vKnLuUZA5SsxORDwhmTaAbznzOKM9OySAtGHOfyrQMhv1wvo+JD0K6UkQ3pFSaGkmADJf9COlg7f/1zc2BAVCbrtjWqbo77vhZGodwZ0ZYqAUwXxE9EryDdkKLf8h36yBj36g6d5oqp4iAA+NVzCvbwd9mJCZZlXz/58pQdsqYL+1wlumd6kUjBGWDxjDN2lTH7mEpVa/6vIXqIw8EJ3qkKbx5Un0mnCfph2G+1/m1ZiK+W5fi3u7WgOusfcaISwSB3/2qCa1XqXUo1e1KG8gcwjokwqlrJfp/WjINLXsWr8hZ64q7NBZrjlzbzVIAuZOoVXu+ZuQM/tTrPP/xlsNT5LCIXAF0dqdShMXUxcd+FuO8qLEAChxroev7GEzNVkIEET6tEZAu9frk1UvOIj3g5o6WvDk2ED+DAptGal8XWbvTNXAqBLNSTz47hYZpqhk5Ea0j2C9gcamWwX9E5HQJzZZMVwzylZgcSPPzMVmPh2q0gqgTUaBNP0nYDhYVGGW5qIk2LOE3u6RP1qW62aeg+ihtHuk5lyui6lMAeq6B6ogO+AP61lYhipqCacwV1/pHnTS3+18pXxb6DB7gYSfttQzlhujFM61ciDM9izG+vivaUYl5tR5R/QZvIiawTpwLb4rb+9HL/4DcVS5rNeT8wi3DKtBRcj1IZU3ECVOuRDfRxUcgLEdiPhHH5fnP8frpfmHZufMxJEqvTSpdhWrXl1+m6xfM5jYlVBgwy3QKe62geCd8g5bNaqQLK6A1XQRXBqZW2hUtK0lDaWr5B6lD0ML6fvch781HreFkWtSLTaojx1myYwLp/JD4RKQ3hzUasaBHdUud8O6gjqhByR19Tce5adNmsTI1cVx5TNjGGRZX2sBYgnA+yAl7NyZpTtu0Pyc7+7wX+agbhAWXoW8PWzl5JQH0V9bFcE/a3znBcEkIWgF6Xe+hG0lbefgrzu7kOc4DMdCEKUckmehQF7f0EB1GyOXpRFR29WlPkcz/6F1kRFy/cwdBb5fv56FfnL4QCme79ULotjr3cYOBqiHhXSV60v7FhkiFVKj4b0P27XwvcO1+l+ljttjmY6Fp03OnTzvKhHfPO9CkLM8zq3iQ2qqfwgTBH5UNseJeasSPuiTUEIPGtz8944yYigypFE37nNJ2DpaCarmDib3gQ1r8HL4UCwXnia1FU4fjixCiwYMZWCWkfe7BFzjfJeqFaa7Nlb6Gnvq1NRXk/Q5ZEKHqaETg/hATMG7HSo1p9wjuXqhxb46haJcN5P1x0jXi9kEcnXPXcfI0TjNoXuAyHgbC6DhbZofR3KB2X28fQLZIwdC2pKYbpvDfMDR95Q3NXVMhpKCxuBe69gU/ek7BXFzerRZDV3s1w/rQnteI4cZwyg4uNQfGVqFPF+rrHsGXe5AACaJpflalzHKfbKYqqI5CUF+0jSXNvUBOrQmpk+AI03bF+9+BaspByTatqF7mecyDm1eWBuyxxshWeM9NPu41D9ldSdJbBUE6bh0s+NDnNbgMAncRMcD0CkdsIEAHNQuuJUGX7wsSM6vWKu/Mi7KPYtsq5u0OjPW6MwprRm2ExJQmFYKNs5Iacw/Prl8Z31oAJR1syDiRuOG6WigefdlaQ/EwsX0hUg4QzcCB/Jgf25LsfxZwENdjn6o9v36GMmVNA55juLyeC17v4ktjoelMm7s0X3scPYcGJf/wpaaSlE/5OPKavCT9ETcAy29YT6gKOzeaNxEdNA+DSoNTK0LKOG8Mmp7firyE83jjdGfQXd9whrJMvrMRAUjsNR253cbo53HYoDEflUu/FR+vKmkCNEfWiOg57NBHtbcihjUHTFV6ooySFdc+P3SjsKEZcnioiapIv9eN/udMNiQKttcTbs59HZYlW64/mVtK2KbvuiPHYg4fRwqn8zY8625GMvg9GSyx9qFrxZn/eip+7//9pHTkqtWGxyVNX/jXgKwY/by+fv1PxF2KdSjWNjLW0Zc1WyGWyvwSoIvOtK3+J0MWisJD/ypx6QAKlM8A288LX7EOw+jhxHiwdJe/lHaAprgr/i6DJGJvkXksVgGzR8JrvJ5zDvGWTdiyqKXyxoDu/ErbBRT4OTH9fyDSmaDH8AaDaY31rOWtzwo1b749mac5uvoqU21cKVFUCpjiT00bYbzgH19HX+QVHPlaw9IINGLWuILg3dUJIzNCJzOCTr66i7Lt6ZlwhPeBTBTrZurUn245H42oRVUjZrWRK0+/Nx4U2h+OLDN7CgUa9fUjYoPnlHlcI+6ELmRMPOQCOINiGpQTDN7mpOgO2sFJiPaN+O8BuZ4fHD6ACPLqrQOPnOL4bZHvvg6nUaT8wA+e0DBgqYzibxqLLdFXCFCrKuhZ7ESRY1sTJJMHY2t0j2U3WFj8XzBog6w9nMbyV3YCGoo0dVhaZoGqcEq91c01jzMM7HJ51sj0G6DUwQJOAxPNc6P/WHlUtbMvXtwp5tG0D9DRlF+P9045VjWbhYXGur4NAZ8CeY+7WSxezxZgvv2Sp1HawKYrBuWX62LMH4K2BxPI8lZPhW5H8zKciRqZrFSoijhbKSVsBQNAV2CU1hUzXWi0+J1Kyb2Agd1PzUGgHqH34ARc5ejSMsjpkgV7n4mkaWsMd08Jp30KbV7mKs0JasKu/om+xgHwPGlXwL79ZdscTdpZ9pNkyz6GYCJe4b8RvjzIiwB63kakhs1UF3bAomsIF+no4zbid4CLq/d1UuwOT8foYdsmgXBy2R9E13T9bxS0bb/3Nzy3OYjagSOBQZUu5DL1sqLG+kiBo4JwRZn2FQqN90wN2JtWPQF9j7466B9XmeUYoZDRdPf5WB9M3yd7X/U1IuwYRiXHWpDqiNXwtDN66yQ2aWJrTc8nkRwmX5i6Joq5fmcjqZX/dfxF85AMot/lP22DLJqOadlQZgRw5kiM+53WRo1AvWZ6m+OL6WuEXyUCmyi/h+6hIJxC/6K/xmHFcsQkmtatQyChay1/DgTnlbYkbjNgx7VaIGuSUC2upj10ypw9U46rk9M9LGl04GpUHWYxh3FgWGX4399Ddz//f7Dht34Fji0HQQgZBS5GHxzK3HUglo5RUEPdaXLdgtHOIFrKVOhxQrNulPN0v09jxaOspeDXfDTIaCqJ9QsSyGqjoxdbS+pvO5zdzoYrSn6hX9qcuIJv2JyikX7b+ds6BYKis9PtVXKdbA9lq+5zlSEugL3LSwFcOMC7nXHFVMbm/i3S+Jp8qMgqQocy9R1Ne8nEdA+aGoyYdpY+rgr4eevJCkyPHe+xeyGwp0sUVpik4xb7znGXffbhb57E6cK5stOkDG1DeXXM8Q5i7LmNcU2V90uMvbwiJMehTORiX7h7J09FktHcopyflyKgxzeFxVtf3bhGgE1HLvTU1S0v3hMAvUJQxdjNMxMqhm9kEWMB5sFmJB9GQY4QXO28n3G0kFnRP7GWVLDE32jU2cU+X7Qoo+jy2DOcmt5HQpBoOg1v59/yicDSJ7MOo+yXuDByRqNIuTT6JnSLeeLcJKR9VUqQK6gjBs5nOuupnRzXH0DjLkW9qNt7A7va1NSCHpWsX4e8Va1VWNYiuiD2NbK+WgPC85+YOCvG19PpP+keGbY/2rt38yd41IICvJWZ+WQKx7R8KzD+xTFcbQEme/u3Ip/DPT5kIBDH8eM6QEAGruy18tTs2XOPVQhQ56pC/qW0ZRtq0Uorqm9hYU30BDb3oZsz9bvLzje4TVg2e9cDx7kEeGhLpie2E8+5CQBt40FepfpE4KQeS795iYDkjRTIg/ti9q4EKksSnmEKLDnAxdMYlVZgRiy5w81HIasXPWyhI8kIYveZVK4ZTCjWwEp2NfJkot+0f6GIeGL5zhUH+9a5akT6DklPptahlOL81SFFDlcKIc7VG8IlI4UGirEE0OJGHeBKmI6BhKqjeqkt/n6CQ57EOB1fW36Pp+xda0oxe0E2ONBDnl9ggzKVDxc+xN2Fuv3eVApW5fiZVhp0UFWsWvgb+dBcoLwA/OD8otAGQmSkFez/asnRgSqIuTHvz3aUPpcmgfeHCkE4AxkBMkkQUvSdUyueDkCm+cMkEi0JQ3H6aLPY8T4bMxrUzEa8zhjIeLYCfEODgTSOATYLWEWl+rZrJBR4r+WvhWI0aRjCiCzMlJbpMpSTUQHM7vgIGEmzW+l38ZaApwNOiY33+p1hhuyb1ciHL7cqoIviHeO6lMZo+dL9iVKMG6pADz87toHPmDqcriIfLYpLKYreBpM0AmYH1chsqf4WxpSUDeXaHPzdRaUw+qfmAgeVBswQ+vnaKZhVW6OMV0UJ3SaKA5J5j/cwh0BIIpCn4nkomtuuVMoirgpH7g2aCBdhIHKYRes1YxFCuu/Vdweveyu85FKHFfy3nOeIRagUs60imDjwFnz2XUhu4WgjRdGYBJYf+IrehNjFfRuGSYd2KKUpW+xq131eMRBckhlaxIHS3Y1gDFWOHkmUfAIYq41LEmo+6+ullZEqk+s3UrlUFxLEEsn2cMT1sp7B0dlssLIwaVifr29e4Jv5uaqrgrL9gjj86uAUvijcapeETAXUiNc2E9YzwqOlzAvszOkD9rbbMd/s50Vm8VWQrD3I18j6Q2WMjKUXst+kvStN+YHSGLuI7+srRGjsdGEtrftHPuwFCAYkcIzWJARG+lNnqJQxPVTGoWYYaKxVk75GnHTSq2H+epYjscoTLW8DsLyWjVhfILj1bUPikRiPdoh8WSb0b/bz+UpSEsSwQsLNtM1RMw2IOktEcd0yUwwQXfAOJmFAboEjE8aSJJXZ2zTZoo4QQTX3Q+jcuI3zKpIk1uwgPjguZu7DNNaWXdqt1KxSOOhl+U8xCO0lcXfpGWGR7Iv9NhQuRAltQ9Rd8jp68W/eyQ8AYpZXv0FKQ5NP6lXwvtNntO1gOla3ihjzkl0RvkCOO385Zu5M5SfoU0ItPXKiT3jvUHfVgHClMicQnXl7EEW/ECHuPTdLx+gV/f4v+m41QgZqj7YSYIXc+5OWVUZz5RTznOxYHtW3ODC10s58hEACAfVtSivvZQToqpDaSn8GGcGgY9iik/3B9nWsdxUzrQZzjCbz/rP2be0Ow/Iie9WKSCi40xUTl9UM3QqZBs+J6PuRYNlOHLYT1XqYusYJCbu6ggHEC0fR51/MsSLzBp66QVY8awwkQCJ46rUfBsJxyNGFIVVsostmNmqM5UqE/447x5BQRqPug1z9/rfsJek0upMfX82N0F/IaamnTgnnhmBXE1tzZfRheQ6H6kmUD2kB81C8BUFoWIfQIhMjUr6ta8c6iM0dqw3JNJ1feX+R6uJSBgs9NkewrAT4JvX6w4aijReLtKNmpf+CUhPgjsGnyya3ozfa0hX+LGlCvP8HYtAJHg79L30MTCUXMHUQ9m0Bx36FqhcYz2Nr8Z0limfx6qu1UmTI2b7OdW5mzFoPxg7I6nmaeezj3DR7YjvD/WjSVFT9hOvugLJDbGUuiN7tfuiEvl1gbX2rdy9s81cr0PYyMxDsnSmGHZpMuNqc6r/XInpSTqqwTceHsxtXSUbWiGhf2jPuUf//PAsrfTpe+H55tbxLLufL2mo5GeOnl5Q5WOYLXC6YQv3XA/YIua0SyWVNnZ1tsUGQcTIC14KgN7s+Z4OiMwyOSdfGRIbfaD5WY90ULuDVaWobh6gNcyyIL9DEXAx007TwyjAEMRVgeBz6PLftB8yckUoqodaIbkJ7ujf5KYElfPMYJOj1o09If8v3lo9s15lzXUKX2eQ4qLXIfK/HFomKZvgyKISs1d3cWid8C+W0ExRmDXturVn8xRUxWIcCS36q0Jz414LmL+NZF+fDqdRAU1qaq/wKLelCpzp9Q8QCETW4IgQoCtD8Bgrxn9OGRPAq+KlftMqGEx9LJIze1vsVsFTBiDZpl5Y+D7l29Ews0MiLchpRQFhvNeLQUjQOXuIUBYer488ryq92DsuvyNVZx79wEHrl0DMf8fVh9VmIZYv+ndHzdofjj2vKGtiUWRtgmOKKrSmla4vlLfF7EKhsHcWYhcGIP7nl5GPXTf/pn2g1D75nl4T2YAQcOUcrtv2hpDnt2PHKc1eUvqvxXiDGCnxXlZ9MakRIcjDf+0U7Ybk4pB0X3POVAU9yKYBoztrd7wvHWOlJ/r0WsUVTkYDRAdrPuWPqDxBVuEjodDEfOOE4nX8u37lDfSyYop3GHoQbDgHBM4dN8pzbXvAt/9B2jBULgWBO8PmaQd4Zma9PiWH25zbneE/4or8aJaw3SIwnkkxDDLVmBI/tKvT5vUQb2eBjR6ao7ZR20Zx5QMjvgytgzBBerRjqT1ZNCXsqa5j5V6lKaCyzhb3TZ3CkB1AMnvlAT3cxMoKozSnvwSugYgyOlyc8CNcIXoUUKBI/nwI5wc4l+6AXO9+zuuMl+foBxccZn8eY8AuFxabHZSVGoD6JGaf8dUAA2HPWjiF76kQ307nsPcGNd88Bed66J1h1/XIcwDbMJEtRn8o15ukqNuDkoU0inQjmwzRqf39i93TrbLVhhR7QQch9HIfsGM4lb0GhJKTVDXFZ3z6NIvqt3DZM0zIkYGmzGQJCGx14CLXO/1MIDZA7BKvACTmyVzl+mOwYIDD6sSB+6jim63KolPp/vTyFPhSqKIvqyuRY/Xz7lDA922wU7FHsA+kfxZjCNMexJ2J27AXlS6WkvVg2whnjN8091+FlVRYNN3mtqjaZdV8GTv5D17D8KH55ItvFpMti8+lb2SZvcQKTWiI7AWkQkea+aaVhzUN9vodYijsnbk85OiBNUn46Th+vcvNhFChYwYpCD8LSM4SGAMI8koUzo4d2AQCo7GHp1foJrvkdsH0wDxQ7OoYWsS8cGbRbmWqfzZhKhpOUzRQBknXrafVbvZLAycgM/kWHPrM4Hmjkyyoa/Gc4/wesfWObYpwVdxPIkUQitMV35TErseLY5tvTsoOA++rT25oj35HcpihSbUsoW3eIqh+slb2g36WC1YFeKd1097qEWSOs8OlScz6kBdCTGma9N6CHtKV16CVDh0FY6G0DUOvM4eyHxRyHf8KKLJGAwJRMIbr4+Cr38MIEvgWTRvVEjJn3GgeAZKyLjzsOJiADiNaCibEoAxy1OnKNHBbgU+wtzynZqchY9e2iWNRC/5Gp5pJAwOx6K8PJQALXTGrmSpV2N/mkmLYYk6fnMiCikXR5zMZuRcSsH/feA18SFaz7yXWjvyeP+J3SOv+YVqs1WK7Dq/C0T1RDCFfvjCvsU+8OsoinRsSv98yRJl5lFCNZ5N8HtPJn4gjjFRfxVAu1/JZjYH57XnDRiG1imW728bZNkhO8MuvmHYA0aAM/7Sv0Kd2vp7tuj1QVTk1h6926el/f8V0uV9Gq2ESBukB5f8cB8orzoTyIGc0PReGh3AMR5FAc7juCrnKslEainPZYU5RAnHuH621/p/Ns3/EVRigErfquey0KfUxkeUg/AbjFzgsWT3/VRS/QZs2AOeOUL6X+Ya5fVqbdSc2sl7to4kWGLId1fsr6g82uqQwQdcVq888GK1Lyvhb4FHaRRIl4iUJI+BK8xnLoFHpxzxhLqKroys3cdEHPDTbi9lKTwr5PdoHIVkpk8UAtXQ7J8RDr2O8513wOqmb8EQ7N0h0jumJ5hdjwkuKmgYaKpTJrz6fmlcVblR6mOhYsMAV3f737bnCmjWI9eFVo0BwNJbXoDqoyHb38PV8tXOtslP9BkCx78kNQ+1ca/K219J/w/rTrMVpfYW+3xGWOmFRkR/f78wMM4k68E5IeOYhacbuqcxdfVLBobEN9i1E3WDEt9922TqJ9ziJr4tuGEpYj1jj77/3X5gjl4gPtjA/iM1x2iQRDotTLtapDzloaHjrOz4hC2vuHK+if9YCN4cIBH8R2Gpu5tQ7E3zsHlsINp5AbVDNo4rvCU9ravQWIr7mV24sFwILkoCx665AupnUC/L1wOTRSN79F1p1PenMB1AWV17seEUb2qxceHCZqfwcrw97E/f4Q+qrM3OCDwENFPfX5yetqnnLyfbOMZATFtcv65Ra7sUp+y1Z1WCpA9G6GrYxotbPtBYMO9QJEVq+/+t/FnwOlBMdGaF4BUhQa01J7iTD+GOkIpdzeaOuS/W46agV9qEa/PF4q1P58McIsyA6JVjm+I9lUZ6jWGtOp+QwMfo+n2rnfVo7qUrVbrMxj7t78IqlgedTZrNmw3cz6i//nZuq55uEa7RDvm9JFGqKSGItk05kaUIuQupJcm8U72IQbUcS345fWwWbRFlX1EG7CEdQ0sGLsbdqY6b3esvL95mBLFky6v1pBGepSEc4CApfN16G6p3aVMjR+0lQ0lNQvlyBaIb0PmlTJqf5W29ia+26trjwf2JpuwfQeoejRGsXjNiDHPyPQg+YxyjYPO0yLVixGyeIAwGQ4rVQL/UM7VWkV38L6p7tcE/tpQbsfJH8/YoT0boDVwafdbWfoMfEknsd7+jUjsfxvIa7jZgqgi2+gH5kzcPUJR6zQ+BGgTmzXSRgBpwyPcqkRhCWB8pm74Gg7ctR4GvpAYLaNnZ1z5ec8PgVMptQPIZhgkoIxDD6vHmQL5eiVaag/AiklTYHFJIxtahNGD0tjsKG60TL2+zIMg2xctNwslg1SgIVDkM3upttbRN3jtSOcbqh7/7mejd6E1uUxtyAdGBB2Vl5h3WAkRUaGbmLECy6dvcdwv28EFPiiaxSSrG3L2QYWVjEAjIZiMTmgAWDirYzOAMrpF3NXtENYGvt7IF6XGQrInpT1zj4Br5zmlvbJGcLA4m2V5NT/j6IlJgVCcKFpQzl8e6CqIJskkxYsWc1rd0vDfHKFyv4SCTU5sf4YAJisGQLfyV5IOhrsGFreT567/OZBC3dY3eUJBdqTCZBQpPaSRO/eYzErb0RjaI8kbT/N3HbFt7aoIniZjgbRlZuqH1t+xQ1wF8MnWD5cZr9xhJKyeO6nNKNUnXnwDHkfKu0thgSntyV1tcfFXPwBqgEVDwhIdOsbkFzlPWNGGJPg3H1LMabAhYMAH4IPV0rtBAws0vVwq4OM5kDgq7M8e+AnuihS1+rzFriRWtaUVWmhnrVBtQh5JhDC/p+kpNY7Q5YcX46kMyV6FQYtrJ6Me32J4pcvPZaChF+KoToHKzt5kIgw8Yp7/TGb+l6ICgX2QqfNVmt1z6tcxUZtdPqKUiYgWGLzd/7mB1jtDJdev0RIGvncEWJPF5FT8+RytS1zO+vKazld3tcjaQjznFnBri/if05ZI3BaoSf6OhaX1FB/FdiNoqBAFBFB+Hqv0UE/KO4YRetyYXbGmY5IzQ6Ax1IPsqT/6xQHDv1EeaW5ZBzfafWFzQunb0tfsdLbgSMH+uUgC2JahYhsnMs3AtU4RFn8llzGTlqhLcebBQQGKgt2jOoV6kgINK3/vn59xyIayah4fyBu3p2RtbD162O4viD9MIwLQPHQQ2w/1SohRj/PHkLWG9YLzRoCHOIe3xL+d2K0TBbfabMULz9qHh4wZw716LB7wvnW38S5sPmad37rjukNc8O8JpPHm4ZltRDm/HwhNoq303uPzeyqTXSf6CbTGS6ftE2muq83XOnsGWrcdHqVGGhli6goLwEfFK7ADC8V5CPaJWl0rcS1izhAnS/xvFljBDMFxY2lpvJ4poghpSDprBEWh8ij3dgmzMn2PzhlY8ClwcfjWbwmBb9wlpvRSSuYcFTW1kQ1nv37VCHQ3vrB3CA2wiF23HtrI+HhmM4LOg1lMpaWB3VR1bisGaehw1jp2/OpVb/StCO8Nd2kRfRvXAgMLszfbEHTdiRjlFnWIUxdtP4zgxQUOrjEj2DzPIsKWE2wM+JGlPg7eWapNnY6V2Yh6W8uvd0ZA9/uzb8buyuMCE3gCN+WtrPtaYYgsCnlFid5LlCnLGre+m2W21UfTSdzIalHgZbu6gU8XXRRb9MAxg9NTuVQC9pjD6eS6dB9tLrEcdW0aQ1aWOOye0iiWz9wqYu2xitW24T86+JtDOMgouQlPqlpyLsKxqlRzb99YEHq+iIUBFTeXH8o7QdkNJyEy+/sFjd1Pd2EDwsDq9o54LG2g+jcrf58WgVLGdAP7sjX/t0qxG0t2/Z92ZoWdh1OS3g4tRUJtCIVVq6lijECBpqj8G7VzRyU+t/a+gRztWyILJRoCuUNWRc24H8Whr8HU7fotnn/i0JR5K8O1/kFzGlzPgS2m5ARLxhbxQWYfqPsoDT12x9/PPJTINR0eMDlu96XsDMCaRBcRW9JZXIVm2U82Ynn+frVysTvXA3oZN8hvyug1AlPpBzML8N34PlSGHsxMHMx2l6Jx6VRABA9+TK45trs1zzcKNb4z+a+pVOCH93SfqFSRcd4BkNMMS4LmOzxvu+7MeI7CEkZ1N8EMA6DpdeVmw8Aww0hPGZwEZSAJpZ8q3Tqh7/t+eyIPH98yrXtzgJf6/nNENP9y6cfu/f62C5LQm6U7uXM1YpTFhu5sMPqLmn2tefq4W0tddorKwO8FXvSoXAzOBUgC6xXEP4WMDnw1SXqzohfOCIS9pFfdYrnz+8q5pmxeStoGSrbNWzNFJ+tIUjUVhtUWKCwP5XLCvaEpIxMQtPjjx8hKcj49FtPcyCs3A4h91Rfk7nAGlLW2FB7jp/OKXUavVNywqi/CP0EXKl96T/TQRgl1ocBMwpkbMtmI3iTNX+2B3P37pVkN9Dpssy2ygBhZYA4E4tORAYDemCIcT7BJ/1gDandnUWNegP6i3i0olwBb4OBkrjwr5FzgG+Fe1IUwh7Hrgq6xSyVqh9DePfFOeow9qfOUfEM9SYtdcJ0aFyvnQHQ25olh4QqFegNbSeYlCBH+I1JT/yXtwGWNlhApSQk5p9rUauEbZcUalJE2Lr46XfaREUclKGU3xH3HQdiRdiD5DGbSJ+j7Yfx7q5VoFfXfCQ43EwdeHsuqIpYQiiLs7U70PjIHkeFzFXeQzav5/bA9I6bVX0euzYsi8Q950pXgMtwt5AdmEC8l+m3IkQ+A0KlW98JK8tkwb5iO+N/O8TQjZIOX9uqoyWamQeiC820ONMzhtKE24k24WOKt7F+D+6xa5bxHvRWF1kkWs80YLCotHkvcexmNJYlaRcZ+4pY2ADWrKK7HMLBA4ZSfgBr4D0eFGDL8lyG3195BIT36CbqGAO/BAewRovLkaq9dnFoLAnM/p4c3fQDbXC0cpfmruUSlTLyp4A+VRW7Lnj67O0k3cwV6HmcZfkbQXxMY+b+HnI8zNUfagdjCUIbKA0473h9iKDQzKd6I1DDhD2q/QtrGu/IV5TVDfdvJ9BmLW5SuIfT/bR/O2OZKp4SzwtMo8LFLTY/mkxDSiZEJnJ+vuKB/AIS9uCND0Cuf/LaRKmJSYgnCD0S7Qw9aRe8NojYgFLklCSp4fXhfzfI1xHDb/RwoY2/P2VwKT9SI9FvpCqPc0t7VV5MjIiDo2G2Y3dGqNhpk7hIIN7n2Hzh8Njy7MLIt+khymbOTAnJPMSrirKq7gzKGEP9B+EqzQ9ku3A+U8XSXqorwnbqoHqH49THvDZr0HO87lAV1Eebynf0hBP3uZp1eiH5HAngHwjGDYkUZ8fWOGsMLMQ2s/RW6TvUWNRAe588/l9J6fmOGFgzZsmLDcNufZLUQscrw446XsIEyQEck9dcDLGinl1BXZNqJGDnhtITLdi8APdVA6/0RleV02hm1epb/3QcVJqtwCGuBU7MM/VeRpvHK/vvvmvKquRakW9Pre6lrSb7k/TKb6G4I/FTPBX7xQvhviF1gTrQKrJjb16RE8ncK3tpCYQ5a6DxJT8B1m16kP9hdZG0j2QhJ7uNfKcO2u6e6lUG4WGo4m0iX/5g4usGpGMqTh13xK+Su4IxCOwVnwFOhKeb7i7HGKsqQ5F+hgRpIlVOCqV28MCxwIa0TeKwCEcpc7zPpm9Cis8KCjDsACq2Hp/LVrMGA5baRvEt6O4b9Su81X6651jM3oktZf9OCnCMO8d93SvUa69GC03Y/JYx5BZcAPEvzFj/x8dkOyLwZGWs+qcUZXOOoF1VqizrkPulbXD9BlfWziSVv4nYYJF6ndkTWifD87vhtBX0wCxGw0zWb57cG7la1HsvgJcMYCOkoE6B31mxcMUvSM19RbsaZWnYpHG7YUCHQurPM/sMsT/XYQ2qP1yaYR0veiT4SdnCvLltb7+bJc6wrdYh+sZZMaeZkCQkfP5dSFG9k3EgRh6TRwPe6JW1/2zRv6Fpbgu4+3l0H4wdyAUZRiFR+BTa0pe/7OllYbV+hnblYCaVadtv5L/gpOzGGChztWwBg3w7ZDI8CxYP1AmjJ1Ak1sgVzKir7sGs5dIBMGLX2ScK3kND++zCp7U4zTy0RTSt65kfD9fbvkpmV+jf3TXkBFZtyY2FavEzCiVxnTPq6HlNj6SP7JVMZP+zOXcGxQb4Co76cu1adGp241UOruixnO1vubIYQKu9kMwoCuDoRpsJlE6H5v63FTcSRV9JfyGUuKBG1L1zvOBbSAd1w+CnvD3q37uADczYN/qfLUs9CAgJVOqTL6CDFMh0K8PaiH9FOqEHrtX1yB/YWp6AC9SgSkRmjeScsdi4MVUO0R4bgmAGPP0TfgXXaHITWf8S0H3tziI/Gr12gKX0Eotb3itI9/7yI/1H2Y9ZbpV0Ii4TMMOMRA+UUSXdlzWVSIq5O9JpKdOPtkTYUqGITzgPxBXCZlUmz7eL911osX8oR/kJ5vmIBGwHROBYlkl/SRcVvsHzypBthVilxyz+aCbVF3tLUn7+HGRQon2C/vrVzxl93uNxOgbOnikiXpZZ6Sa490S0ln9N76ooZR61um3tDMLJG7HIFafFt1FgNBZhDj8INH9xd59bb6V4dvS/buqYSV4PpGCYwZpE420pieRGF2XXjq/1a33CqgJJL9f1QxhoHsjkh2NWXK9+CvKOMdDyeA0eqwEM2vWRyNHl5/Tdm+WMPNBnvj3IEGmZO0OQCnsoM9JFnFh0OVgXFzXntBuP/Ig5HfMVH+KoesiliA6JrdR4s0w1wMP8/uyhcOenz3I6VbSkeVtFN4ajfelxJdYFky4kr0rm+6A7Aa/ZT+nzxb+aJYjbUAnOEVxgcaZoJH4xd4sChei9YSU0/SwztpGdtf7orEE2WsjU810mwwXkFt1nZwkFW2yeUNvO8v0oVddYtipR/9tV9AF4CnS7p1HYzZNzfqL92YMAgqnEiDFOw/iepH/5h6qTFfkMEtTG79JNuKRqChJ3l9Wvt8jfuKvsmbC9kxt7EjL7S0eGJVwm/rj7YIrur8pf6JrRJU9hG6f5pShjrH+UFDx/ppf+QqZqsP7MsZkK+F8tG4h0gx2foUtLOq/hg6fSihWTkdKj9bQF6l1yVErfPb0EvZ4EiIE01uIRgDE+CMIeAZb0BFPNMK3/q2gKB+njsAFeo8Lo1UjXxG8wtXAG+irw5Rqf1bD6FHJgEPeupI0+2nNg3kyWDnJHKaSS2VNswagL5vE0HM+utJD2IZRtbBo9oSASO53g4teRCvbx94E2EdpXQm/uOAvCdfcjvN3KBzjb6KEo2BhIMU7SSe1tCNoEHbBwK/U/T0JHok4JWx3E9+UWaOiayxqkuRTeP7Awfel943hcadC/50SoPlqos1+XUxSPdRcZZfCV3lUlb8kT2+dhbhI9tt/+PDpXQoeBk62MRhLYUV4WZt1TOybV/6BLgG3CAL34FXgs8socszEQT7z4IhSwJZJce0doLwJbQ9xVNhskshJZ08tdLoy4VNFQE/mG2c/sHaEVW1NTAgy7GXvlOTxisHf9bSFhK8MCs96cEyeKNTtAXmDm306QUOUuVeuXrViqzGKBSYJQAbr9WOmuHyIy30Tgu114R1eCHcoYD8hY14YmfkpkIp0Orl4LurmWQfqJnYZsoOA1HyxyGHyumNpiG8HAEYGuSjPoyY6X4UM4o/MC35HYvT7s6WiwhInEHmIDiiQBO+OMUjjdf7YtbNXs+XG0VKovsJj7qYuYo4kxIlKl2RV54sGsqT3Nt14p3IoLmL/Iak54xawn9F+GEjEdNcuk0knLaSJkJgq3IeL8YgttYQrBD/tUTAbnrewzoLAq9/V+3wJH8LaX0I9/2qeprtnys7Hp24edAlPFHKmH9qdWD2q00wuoxGgmEHzxKSzIKo3+7UhgyZgpOgKM2shoUQQ3e6xlLx6CupRhqXe5EjpKNhTi0J1DhHXFzILe6aSRE/eZgW3N5EVjVurGAhm9dq45LEofmR4e8JrjsCuRzAPe8btwDd3/0Gh+xQDrAdwqJdXq6J4i5UAUL83bDEY/DqlamGB52lrDSdNflSh7grzVm+47aJFFA7LqKwcxL48FC5uL6NYgn5M0uQrMuu8s3LT7tPGu/fMzcaeWognWOQmdEUdaS+2T4ZFkm7NgGLGXOyk3sp5TVljEHX7PlT9Uz87WATtU2O4L8N7uyzDA46j6k9gRbKtblOC+6f82fJOQSCddtryB7+8ThQJTugvuZof4PzqiYWnaoxnfAUDZ6EVbMjy6+eFpR6vh4GRODIupSfrv7stQP9vb+0tDhRb5vcE7YnlJSVZ4d8wcAvRCbtNFulA4Xg0uJw9fDsWsjuldUnuBB+QiH3OL0dSjZjl2fvQFoYFqQfcQ2ldmccEAzI3KpnGTTveMZAV0os0d4cjSdmSJ/6CmoBXfNpDeYiu5pVvUsGQwml3/LnEhcWmHZN3TiDYGN7yizV8601hwgAk+YC7KAzk9ulzZzzjJrMBlATuXzlzYQrdZnRmzeKJa60v/CGfxmAnHDqnDq/mfOkKSrCbss+YsT5ezDfQg+62tn+1hcDsrdXvUhEYE+PkoucOU6fhhfYOQdlVeOl85F2CtG9iPswq26uJ+6x9OPuBUzVvtHBfWkaPx3RgHDj4NddVqUoU2JBOOaW+OiRE4zGZ5i6+UEbq1uDgON6dWpRUOJgVceY7E909TPVZXfYspUTTE6sVLrVP7Rr5KrOdDAH9R9X7G6MoQM+ZGRH05vHNKuGGReQc0vwB4dU0QL/mz+PdJY1Px9ulwXRWnKGiF3umCNeFhsmL1SWNH6UqQs0lEiaTDc164h0MZk/ohpGpS20xgjxh5WjC6s9/6q1zXR4oDUxYsXvxHjs80z6sVX1OKbR9wUvcxMi843kdMMHuorqbGmyeYfk9jj9tozIUw4QuOH7Dl7IM38NEvx4l4+EHOJ4noL+qQlvOuxK/622MDjThnwp9SMyhEY3ftULfOac5RmB6dwYQE1IL2/7nZXwJc2sgmZyp0vx3FoltBLyx2HFtmqgEmqHwwJT1vUvN6+Is5tpx8XqoQd7UyoKJB38uNWHXfXYIM2TfkGp+k2uZbYNpp6+t/JI0iNAy2sIjjCdWZ9ACJdKzYxsxW3ootcEX8M9BA5OhKxZEBjDhCp4R/ey+C+LkVSUq5ANQKZj5/U/1z0y/cB/dxFFPsu4X8EyJsMyKKy/sQvCnaezQkwDi2dJdqaVQYV/mRQ0Xxtfu0AXCogqPT32N6V14z/v4v7Ij/Lbk7BMY+LKyfJ77yT8rrdyVDVLZMh+zc7Isz8R+wAAlKlEU6ExMCFiZye+15Q/kfbGsR+jBVho3z/nnSA3rLL/b4BhaemB2FFXrT1PB3wSmgHUv01GkdjWIx52yFiwhskfYvsUxZBtQ85iysTM+YKgD6BZyN8d9AtNz9Q6wjGllWYFvRVsoYBROPjuduFQ/N9CgvP4/ouAh0PmTGCHe67ZHxV9zt0Uv4A0do9mcGiTP8LOyyEiQ5ORJRQ43CRdiH1hA/1K0KH3ePStjn6uidH0/4C94dw3r7oqMEXa+8vTUiRK1I5DAhcHFzHfkDDdTjNk/ZwxIBpeY7fn2en1wR/IPyuA0nSr7EgYgWw8afjlwwXgq5c2BmFCcLbf9nNU+0vD/JXtnk7XzmI3E1eQLqRrmDflEdXNdCvQD1gwcYLGuRDGzE+t6MZOrimIm88CEzqjyVSHfXzQ2XmNLhB5FlBk3OnGv3FUS+kGSsrJaoU/sWVALtY1IvksixKNcc7oHgLrmZJ64k0Yvy5DOsbgwb6Srq0GzVCGhJQ98s9T5MI6eKrIeqWuT01zJWOfmwSV+NZd12PEYrGlZmOHV0Im5PfOFiCIQ/Uc1GkwuPB1cMDQE92yQ8MGjOT/1g5qLBrzW5nhnIHz0GefclCAm97oeXdcUsYRQeVx6pwPu4P0+VDS72HF1B31cgWvcu/iUVNwr27+cTQ1mo+S8j68PAQjF6bMik5u9uD8OhOt043YkDajhPUOFnfoeWSGxi9p2kckpFQrOZTKCbVhO6vLGFvxM8n+5HkTIVVIMpfK+f1PRg8ttuFGPmXhjKAYSWJzH5XTYCVF6LRxHQi+8tl2eX6hbAxFTqUWkb593kFobJimkAHIyq39takuS2fC6BLCABJh/I1QKyA1rALAW/Bfz1iGLithEZzFg9kmG3NUsqOCszBWBtYmyYZIQfNd+59Qz4Jau5y0xHSPzqNu9F7lhmnDPSkjsJWrjCsbcjfNLe4+nwQMvxg7wzYEfgZ56V32BqMaAEQsgib0z+vYQeQZj8uEi9064Lc0HXodJ1QMhCQDUYETJBQZbKMqIRglcoEePul0GTFOrryScjh5bJuQzmKW1QRs0/kmUSQKRozQjo/XFVycX1+7tSCUED2njAKYwWRG33ggD16JJNyi8IslYWJLUGbsF508k0ZiKJKcuNxTqdwgVWlQV97DfF/kbhK23WYsnmR0dBb9feUh+rcmZzVff9jilFcR7daU6FIZTe4kOZpsJ+31Oa4PSrXIXswwdaZNmUm46rx8qu+AMLriiAa3uY3qIBy+UoDIEYmdBCBqCO5RBDP3pF5ZxZPZVvTUetjtV6H/xbEPILkNw+ypRAXcTQHqFhxzzZi88RoO+mlnHskSqox7p3caPvBlfEeqVlHw8IBIIUlekw+tooNWrGPaQ90qtOZrlYcy1fQcZM1j2rzhjBAfHMof6UGisj4w7mAr1HVoDL0hQgoJ/aAKxkrIKdZdaMcn1ka/y1g+tJooJXQJRSxfIDWi9TkLrAQvFGoGs710JC7tzqOHILLa9bx7BPAfko/NTyFFxWZY+mCKbRIBl7NfuKb1MW6wiTq1sDMwMXtnkeyoj+di0qVdrQkPu38YJxZ17bZcKidnOFBJ/WufCccwl32k8751aLEajP0waeFfHchaAMRaC3lY9ya2voDs5he+lfMPef9UvYAr/jFwHUkinSNtLphxiDclQTd2szJtXXoeaortMn7B1XH4xACRm6KH2k+3W9+tW/1ThydSW4U0iYrg9+dhZOiWzBlRE/2Lz4y71gsqyWMZLH4WVBkXnwER0OfOKd1gK/wJ7aLB09fbSmKExLvySQ0pZx5ZV987nxHMMQS1MQorjmUrhfDtGNXQA7r9lcsQIycuaEuyLXbVV4vhgRimiaQrEfxzLBa4xU7vvE69A3ht5Vn3snYybNpO0Ahz5lL70HLCpwnD51UBgQkHa1PnZDg1HYmrYMwMzik6h6xoM2pd5tu0kqjHGXD9SkMSoWHlRxKK3QBiJiRZ9Tkv4ZW2M/GXI7oIxxDMktzJfm39ywSEI3XeONVXtQGVe1E8Lb+E54ZRXHh5uQWsPixs9DQiRWkIHiiTfr1Ly0XSrqD1o850cbGUDndRv33XMSonXVOMfP0siJucT1CtjPmWffJ3r4FqHkZ+tFMwlSGE6O9ShoeVN77A6wFPV/GYBNQZCvIJpqonG5VPz0nyPnhpb0p4TB9FlJkAiMtUPpEOoM4d0nPak3OBIloWf5TjcKRWOhAQojGwwJB65hry+WfNQgL8e1zxDduKGmFyHWRPyAQRjvQ1EH+GC1uCOOYf3smRjlqI0on3HwMexBGnv5fqtyBTW5b77P2lCZT6gm4jFvwNnl4nqjo70Vg/ezVckN6aVlnq4j8zIUk8CKJct2aIrKJtoB52KhEuytSa4rOshiRDF5UxbDenNIFT0eCRbw2rPykJK5eBwee8L61HEUvXcLLvZAUIPs5p9N1f0YfUi8lqGEfwI0VM0cwn+CDFVtTHiSoEskpyNxafi9D+nvgvTzGEThequBbJ9l4UIpK7zyE28WVGBeTZvnPD++xo6ZOpmAP52x9Yp4sstfqSBim1FeWIlLCnFA9SiEosPzCwI6ly2ZOhPC7Iy1i9OdqcXAx+TNEB6j1XF1AmdBzdJTZvNbuzCc11PZ64CLVu6+9vU2NWpsgRaYVp+UybQU7nzGkDNMIl5lgz2sugbUj0/1URNEUhAF6AfFEhh9n1f8arR6MRVHjHluj2BEhM91z8RgHk4g4RK9wicx7NiopAKqhpkxPoVJ7ZjsptoiuNoYToP+38DPkT0Lmhuldi7UptqCiflBVF0Ybt+yc6FFcsWjG4UvVW2VZVGl9sXDA7JG3Q/m0g+U5/OZj8mDEK9jqmwCqS0H7/+n7le2A8yP3QMYuJDB0Tlq96W377f0p8ILQmdLvDrHfyUr2dKPsbux7DconTX70vDNBY+rGLl/quBQz3sGgiZ1nzOftwOPqCfW4FPoo9wPnX8m7DTB1VkkA1knL3iXnTAZ+uGoI7yxtAmnRt/g6+buEc5jsSgQ4rbAM4Mn/adRy2Of+n2CxXSdUkgODVjX7O5xQpmyMQkrxvLAo3Kf+YvORrU5xvy8erMBTZD7UAI09T00XEr0+HAjG0AqG6cn4A17NEkcbNKA19Ig3N7GgClaDfl5Ycpk+NS0V9e47dMQ8ApBAtOZTURAcbXT37jFU9fCpWzpdDlGJFsu0vonfRvcx88FkVucoAO9yPs8mjG/zqzDyEaYaqrPrx+1/wRQkVO3a9T/snC48CuF8D6fagx+MFEQHVXr+a+z3Gk0dhORe3DXJGitidbvMNMYzZ7n8dzvB1+jUJ0Qd26obOojWTAGeQ7qsn59d8rVjPew0q/OxU6H46lhZUgmSNWhKWCxVukBCMvhSuHP99Y69a9f95dllq1uuPm6ZM/30jQwg/EPCJAFWJI5S9jkL1bcerNxS0tRWzniA3I9uw+rqg3bbEkzUzU8Ajyn12K2dq+A8RWSPF7YZ2Z6UDtlMQ0GHxZaSIYphW8urfQSVvkU16jStUbEpeRY4DcvZ+8hhrDmryTI1gAiDrL+Jk/+20W90+ZcpM42TRuK0Ti6ZYOJ2WvtukgQdZdE1K7pX+70UEFt46ABr3m8M25ruMxPl1xgs+WMBmVPOHgPe9x5SVFibNYK4o9g1PUIThcjuTvE/1UH7DNk3okfIuF3kW7Z2PmQtcSnhtWCdRR6Yq0TUWhJhCpjo5UA/k85kaNip4JKFbuMm6hTVeOUAQd09wCan8+moEpt6fPaMx6jeOXb5FF/gwqkEa9lfF/LLtoBg00gumNDLWnEAOtgyc8nuvCpbWiJzVAskScBjjtgFgvDbz8k5cw+QwVV2KKIpal5tjUXOBY6i8pLyzDbB732KB9djPo/zuRdZF1wYX6pZ76+AUG2q3Au/eTeV62k3pAWKyQWdMO3YRamKepSVgfRBTJAKS6F+Ju0pwVE3afdvi4ELsW8j3ysrnimodoKLedwjqzEU56skxrWd98dlBOHrH/XaW3q9u57ZYRVdv4Ccv/XvH7Lm//nWP1z4DJf8zdq+ibAizXhUp4v8Rpz3NGiEbvcB54/2ku0xNCdNAnronT6cW4RwjBSucm2XGR8j2Djc+uEnMlcWdFQ40hYeOHgS9jGpXg31oCBLIZ0ogk1Ftvwxqi0xUrTmKx9NWU09T/OWrZRxnIhsQv0+2a0Ftv34tOgHEKFfWisjqDumJB8LfZ5w3zqqdvkxBLl1yO5irJ9K5LT8Q2qwyHy+1oboRrZe0VwLcU90ytZmWLa6U+smYbRIhElvctrSCNh4raVlIDTD8pJJOJ87of3K4c7yPymIGt6EC9SBI/RxK1kiflcNzXpikfXoR09/2INyDcgCOw0X0Ctx1xW49CSpcYIhow+PLWKzmu0KGwMd/gJI2rJrvszqHSbSAWVVZR3ayyJcVWOiH+e1FdXEhB2+ttd+p9gyJT2uzRYjARA/gzBuT8VUjxqNchAvaWmDUFqSurzZq8osW5+4WLJmcTa435velUeijb4ExPQkUmPq7KxULEZWvTrOxsHDLD/bZtFit4jqlu8uLFLceabIUBaCpOEwZonh8YYnQ2c8E1BXFGhFpHMsV/iHrXRXO30lMPEM2bM1LRCLVdbD21zSGnRS+DpLUdVST2b771JkEMEvRXrvVA7h3dSii5mf0gZ90xDDMEOyDkJtZdv5SZF3U8m5Ivt6go2JUAHRpDj7Dv1sf3J/1vgR2Tt4+ZWeXodE6jx1dtQuOTWZ06xCK7qy+JcNCiTa0XfhSSe12fXerAIlqacZipmHxtBC+kIghd5QyFXaa4qSqIpP3GIu3aR6r9ye20SfB4arMRtRo5QXwpFFrxVCGimkXLxuJWFgEdM4gGrTY4/XZ0hG4XXVFxDXH1EMR31rA9jwPYudb6Wgnf35sOe39Bwm7fuE68pOEAVrKWnNH1uOBcDpbkmBtkmtuDSB13DUivcfNXMO+SmWQ2yoeRuhtF6r0hcYY3Iaqv8Kgs6HkIG0Z/hC/t5UPERAfBa9K6/SOXCcOOAspT1BFxull5onBBi2K5TBkMQUManQoriMrzSUBl+FWoVae833XqlQrgnj04Xw9kKY05CGRoU36opMuzGZka4INp9TD7mWSRdAGGXCev1411D8rHXaPuESfKyD/IjAnpeX6E83zDIh00XvCFbnTyfdLAtZos+en0tPC+PuM5PMqPmsYRSgTWSqhvIQ3RImWuNf32a6wv5UFoT74m5enWdWSWYiWLOC8QgIcl1ZaTiiPFRSZoJoVebYkD42JafONypyvbRErbO9WR6xk8L/5CAMil+TuYPHg/bxS2WP5ceRd6stqlK+Mjszbz15q4TXy2Rfra/jzmhz9Ag+GNqb1tKoT6QxUezmjh+1/siue6x44+KOArm3xh9MwG/1tj2A9gs82siv8WrsEfgV92fxfCvvNkENMQGNqVB8xlTakDIMG70OK9CXY6wRSe7pmFUKKLUbGpkH53+WV+ANI0iikLNesiw9HsorcfRWxH6OcKfULbKmPlqN6K0x0h0cqSc/IFaEbSZJMo5qX26CNHcBIvg7akoEQ+0fW8SQa+EChYc1RdNuj3IuBR/7kYYm7hy4I0j428UBkAFUf+kpXxK6+Tnz6DAWxCEP6jj8Xl8nCIEWB7VlEvb7YkruUjmtUa7yo+GgsuTd1rlOd7CsWt09w6WzDJ+Z0S1yqCuOKkoj/HcDE5Uvxn+HdFaf3In7K2ktF+vtox4EBPP7IJUEQRcgGJluI6MkcrXM050WUwYJEGfN0/9PERMGA19XSu/SdyUMmj//j7bA+myYji7GsJ3EbniwFJWpO8w3eYGnkYExLjnbyAIOegH5cQxdeIIf2zyCgoJqxIJKRZlVEnjoY4I+5i7tRgsqZFmP4z7qEz5TfF/E84Bmeu/fsgP+NyE85Y4bNMrdYZVj2uC7pAVWSsaMtc/9WznN18KACrKmFrkWg004GgDdnqWpuHW+4BDxX45u7ABXmN7nq36FmsxNRrinKYtjKCDFR2k6mqFOSgzr9nLcmX8H63p6r+kGmpUCFQ5oxOS6xXE1ZAQoEGpsC8ac3dlQ+YDmbg/MfRBQ6632ZQ0VbRT4zXatoXqWmEjJcbRAHriFZMLNVE4rdW1CMBKsY3VHLQPwzR3cGj3sRPcz2otpLebFEVZAd38hUN7Nv7MUFdjdxHEdO347+Jvyn7wuNpnTMgjLDI39/u2DVUWdGsN3ORRtHNjneozbt+RVnTowc8Uv7+sB2yKz0xI3la3kYCYz9zWYYlt4MgQe9qxMNx5K6Ehj1dWB/ExX1L1+rHOAAW2Zmdi9kK6tTnG3vFiOInBJTVPhA9tioTk7YfFKoxJXFZ1zbKkmkg130BTYlNU+gNt7kjcn5cOOxpvUxFF3LTlEcoi5eukrSll0bsaU8oZ0fycaHDLLhWQGZe2Kyr6bdSEIhMiMr34uaJ2NBKobfUVR+kIcamxMxr+CJbUlLg4FICEG4QAARbcBnsZqQr8AAAMAAATXX5LHwsMz0Wf+B9ZHADQaW6chXGTgJ68CjvquCoMnmXLW5EqdgD4cLzj5j2U4A+ML3TPM6hSLWvo2PF2GdgtauV1EwUqLc9uFw8J0rIkSVCnq9ycFigqzjNO+rTKRE/okmcgazm94VVP4ZuRjNXS5D7Zo4Xieif8pJ0hfqSHsVL5GVYcPj8het7oCtqaSGxwg7gH75wioXnX0wTZ0fkrnTkq8qq7B5q+qHFgpkSFJUgxEsj1amUDpIZsqeBFz98RoRTfdMEYr1LMn2RLempz+NrMxRb4FhwdtMmwLKSzcXI+u9WFCMbVNlJcImhikMyWvt/EHV4nnBsvxKe8oDss+/UlgKFBHMHr0HZ/FB/4e8Ih8Fp0k+3/6cqfjZuOHf0zHmPQnataCCve7dikD9F916yFOPUrMnLb4ZolCREHxgWtXfh8T0jlfjzYfZJ8zcWtJ9AaUGrB35Y57HaLdHvRDNOb2CnVimPS8qT2qolg5kBP1ZaksderFj/dlfNKMEexyUZwReYS1hdTDfsi5dDbH5sQfjSM8BTAKIC80GkMiCyJo4cdwfYJIi7Pu0DZQ3+BPDnS5aqruFBj0reB0vYngQGJwjcxDyTm5Nn1Ojlj56ACOTbZm12VlwLYWAF+ZII8n9aabRoCq/CYoYQMCSvELhqKRkzTqkc1Z21M5fGJTc01H5alyjfgOOVQq6xMQNE4yC3SO3Z0hxetZvMrOeADMN3uwviq9z7TjXDqtOmC1LN7xS058BcMNvAal4CkWrntpC+hTE6jPEzWtC5ANelruut0ChR+To8JDHIQZRWRvJ3huWFDQAXwu3MS/Iub12QXR46p+B0zuihwp6FbBZLJE1MNtac0XBRhsINKJsSZb0RxctUT6NpmwiTRQJJ9SjnnD+rxZJVieP4TJfThPY+GHlPQk+P28zmKIQYSXp5/q39KtuBK11ku0h+HILcSIxVFq8Tpa2d6BmfUggiH+EeEk4O7ikF2M308GWIPNCK+T2+WDwysHZjnU65Ob+TSnzj+bDf2d5RfrtCprk6xCW/g27iEUwlCXsXrkiP9Y9wG/wFdB5y/1LDrPN45geU/1WW1BQVM3+Bd9L9l4ZyEQSiofbK+M5cNDkS+PT6iYDNADmOGYQHQBCMH7XvF4LUuQXjmjR5Cmnv+fyznEgnraHK0/MrY+7MbPfMTB7W4Vy7JKkU7TItA7MBaYp59BguEtt3fTEBt9r7HEEbZ+BD2sO4Vu8aLfeR1208054kvzYRxUFz8XSDQtbVrZCVjUjALsH9r3VZ0yQdTVj5Sp/RGyhZDrZF/RxNf/kU3ye9zo0HqQj/q5t2rr9XYwYWddUffM84JpzqDpV6vxUL8z6tdgryq3YCwfHhIXhX1WiO97lXWjkfbsbCZZXrLeAfoCkBxXc6ioBhfeAtwztXGln+13pXuest0j2Kze46TcNPupCfvQGGT5FiO/aRsZaLO4fhGTAxWJLptJPDX289RFJ5ZygZYMkrazLZIGrTLxk+592pF2iIEvee1RRU0PQJLVRUS2RDs6xLTNr+Oj/0bJVKL10pWi19JVqVtq9d3y2fV43ccMUoQNoaebNq674ymFFHDkVE9pHTOBSD+NWLmoIwibZCWelbCEttCalEQsOyAYI6TXWgT1x5t8/mPJ1BRU4Ch4pYlRPWiP9HmrxYMeYF4rj3b8/Ztl3RCKqxw9u6vT+l1N7sVsYPocwtab2rnEfIG7boWi8wLri0wSSsQsNhtCUQXZ3UrvVALxWCPG56krHkwO/+Icfli44SSB+zTOvXiSBMRXvq3cFg6fp2Q9Wu9l3hlNnRgVe1flk7P1L7fh/vs2ElLQkNd/JOzeRQckQUIXC8GkiWhqdgk38rW5UGTOZVRHV0Gptm1//Mqx76ndpd/oyxYaNaNEzxKSG2PHB8r+WQ6ZqMKS1hu4HCJvq0Lj9C5tfAkMZagQ8+aT/hNqYtzv4tq6+pKWgAKKmivQAW0BEEonLyAEinTrqb79YXeUsFuGYqGACnGdbse1izeBZuSuFtp6kJqlMk4X0xvxLR4DQwQTwc+oJUzus+r7gyM1mXsh/IfxHXqEdjP9z3eT4CqwJfWb1NHpu6Gbxm+Y2bRXsnnuu6LJwBSA5mo/bn9atH0LplwO0PnJZpf/DNwjW4Y4SqEEG/k6pFpSP5xv4RsQyLygPBZfcuRZGJ42momMzmiv8ssjn/FUpkb4/XFsDDFzVyH9AeYTsRe1YATEQoqOqRUuf6z1VF7xBBUEDyj9A+TInfo2Wqpwva8M4waKeaJs/Cau3+cLzRE+uGsg267PoyaC6gndeLCWR+IYWAoTeNLvUh6CRKMPQJGaosUqNbP2r8b2wd8KnR+c5dU6e0tfykOUMpTeBNPDZYhi9BpVDp0B1jDamp8ejWQTZA6G97ty4Lp5tt1+nZyNrfigskoWE+wXNuH3bwJ0UGIuDH6Fh7etsrHZSyCEdeALa98692rXgDCRc8HNThpZBtz53u+ev9tEnVFIPYzTdhGhGeyyK26eipbRsqHF5wNw4IifGJ9wozuLqQ1xtvJkGExAMndpSVb2BxSGGvNWTq08dqzJHflx2xQLFj2q3zagDxubuE6FSEYsO22hsSqocxsSv0TfhB28dXOgkDJKNo2lVTQEEaCurC7Z/LC2LeaPfGlCRJhnczgsZdfO9UAFucZB1wssmQmO6MvMBxwpZZuLZ8cOvauYZPk6EGVAyj0yCpMZpR1QYTINAAZfTfxOtX6zyxBiFN8nZOO5DBSkxlQ5KboV28sY8RRz2/8tnVpwX09tJBOe+nYDGDLjpSZ3oLa+5DYNHSk0MQkBhRKWzHaRqgpuZMlwDejSEvM20vbkKH9w0GS6uyDtdTpnhyAewkzn3/n7cSLvh/+JQHHpZH1+Iq/AYH/9q1Sj3lnT1oMZGI08NIXeXkUSXLGCjw2uAblNzVBCJQiKT5viH7wv64qWfkWWTplZ9GKV2xE2X5cifMIYfr5PmXym1Ev+5FnBJYNd/FtLrbdGiesPhpFf8dPatXVGzH9gZPdVcqHsgYZWo7JvAh317qrpMRrdSVJkv/LpdRD0HjL6Ijx+dkQtOqGCYd0tNWwCt523A7LfEvlBD14TePwHzOLvfEMn2iGFtnikU6akgfZSZqVKa4lgLH71JWHvSPUDTl059/wadAK+DHvSOkisVgVGzIaNiCH8CjlrhaXYBZBjUbZKy4/HVg2pD7t7pB6F7QNEswe95dG+O4FmRa1mCjY58Ql8QVHGB4GYsZk1uCEyMjh/DU12LNEil6V6FvQ0kXXv8QSll7YDBothWmGjiLehjBE3UBwbGRPQ1jXzwFOg7XOOEx6z3OUuCq2fZ6WLxL4nJp6hcrXKUESgbg+iwb2C9stpFaYg8QV7cLQnBrC1dogacwE2CfFXRSp8XFpXEBPmeM44kpoUah1zLQDuAY5QnlMIAvooUEA4b/6XJwsy8s0xbAgL6u8TxmPOtteJeqAe3BeCpJg/IY4HwZr7fgDz37U4hKCxzvPDWtFUObwfliGLgRay700eROuulLD8AIUISdEeUr+LuDHav0wNmVEVk7fUpZ7nX+E3fx45sIk4se9/4LtEaJK8mPJT15mz0d7fbFF963e7d6Apyssjft4/XaCqU0Puj1pV2fYFAADu0h3NsZCUvRBS/DgMCirkhZucWXqz7h6vP8/yZZ+IW+Wu0dQBQt56uru05VxQprVMt0gcjpp4neOHvcPz0jNp8yVe2GNjJnnFTEeS2mnLSN4WPgO3/4vLFYInTyGVl9/BcoUpfP85ZubCGynSjaQdbbmFsbuH48vfvuWUo1HV7IjLZQQuvSkHMM+VpD9Ulyzoek5QxE0e7336Oz/VaVbL1lmkLPC9Bv9W5FBEO++G+cDlXaEcu4qFaOTdMRbiGDXKCre7zGj7D3VWVzeoF9NE0T3GEr6sfSmCjt2wGF+PuHqEcKRTHLOZlBMH0dsMzGkZ78rfOKUx3ImhpOav+iVsfw0IHFdxCX60zMJdLcjvtR6wPUt3XYBGjJDe0YJZcay/jSnFeT6fzocBAKXHRyZUe9bZ60xcsT06L1I+XMVm3WLaHPz8/yvI21Xm8nBjJdfAAw3/EMg+z5kdWZK3IJgoJfyuVp9X45j2OiC/yrYbspeLZHXAxpQ7VJR8mLNOvbFmkhUfYRuQqb7i6d0bjVu8xUB4OxeEG9zt+TqSUVzlWj/2+88bKUmn75mrB5J8ZKR7LJmo5oPMxYX7sDMcubjpBtiQig/WdeCvLvlhGLoGmxIC1HiZGfkhIB94Qg3+oMgv30+IxStyKQ5kdnLeaNSkzIH8rMeCeawtY+aR0E8pJU18giYSqklB9Xy33/08hnKlcg/sJt7nvz0hqrbgpS9YC9kl6jvlnKn8Jvf71i9d9E5yi6m5P4mp5L9LCC4QbAPXWIz02mDB0u0I+3RIWCEWYL6GHuOvCeGu99Nxe6s8BKhjz4Vox27MmLdTCWZe3qIrhHbIejaa0Ak32KFpLkO4PCqScttQoU13y6mXM5X1Q0pJ8eT1uOIsfhIgAuYFaXR/9v5lWdQfkO0r/6WOo0ZMCcvkk8ytw+pjNY0SipcW4W1VujHtSuRI5+9P2FvO/u/W74rLGZMLRQZHlFoKKuGKE4SCiAjirNAZPAMhMRqgu/o9ACSCaQf0nYtMb6xz8X+rHUiVSCO/omsDYwyFh18aD4HdVX6Pv4V2LvKNT2iMddjFKOUxtrQEMTr4me/Z9uD5HO+eGZodf2+QuvpJ4K2o1jwO+i2rC0WAaVma6ZKmjIw7+fwsgLjp5+9JT+KHz5o8K9La0IMqreFMaIh6qF+67LvOUAvuTJ90sP1RVFTJDZlHo7JQyxbU929GYZPo7/p0s32jvIHKOtPqz/vqC2pTLVk1tItYUUcgr5bahVaTYKPP0j9FMe4UGUmvPYXy9mU2pQqiC1XLiyp/89fbXt2/1KOtMpwSXA1XisRhrug2Yr+T4i7O8q6Cy9ok/JTmQJPF26w5nNuTYgd9ia0iXdN7d373ph3EFJHSh/WezjIkIJVeKKjQ4VwJa2IE95w5UK7K0yiBvVyvqrvocwC07DI4nobKDOkvTYnQQoVFd5y/EdCNse+T1VmolHs/09HN4Lklv9rfyCaJ86R7RV/pg74Ix0dgZkwWI71kdTpw8YeIEC642U9N34DAHU9H6KsIssI/Ay1kHspQN9pAMEpC5nyzT/AlHjHVneqt6vGtiLOQHaRt2jBgf06NsKFQzykJ4tTXnKyva35WdcYRHI1SJGudpECQXLTIqptE5H5jIadeiM3pIs5UxbYEI99uy0WMY0SwhrgoYrHfWmMW1uWZoLKGUfBLLG1OKvh37KzO/buLH3qrAgoHLk2WfpsmmUArY23sPPZdFUkr35pGSs/jNugyS4GC+VXD0VvYwuQ8X2EyxDOgLz2Fq7VVb2gYouuUDk1P8GZzYexUJafE4nbdv3oMOm2+1bt/DMeWlODQmGRfvg8RzwDppw5UqsPa4LHirsmHuUo4uKAiTI6GOetVsRfWGqw6wa+SxoxdvEmCkKwFZpmtiYY4aqzqz+Z3Cy7VOvDx6NOf/UgZ4bSlbGNfBQ5/E57XQAzfKGWN6coeJ0hsRCLzaYvmW+w3VAEqVzTiDyHyX68VEnWqzK7M7qsySA56dVjBWEEF9/5HI/jUacB8f54ZbTCOMbsEAFPA0CarIKqewic3SOCDOCUrAb+MCUee+mD6+pm1rS9X2v5WI2eKAH6KEpfUBWIXVcDvKwUevraw6nFWXbgAjane4Wedkb2YIAqLlwx5Khdti/vmazSNcClcXZ4JNSqLE06WagrBsoLbALBgfcAmPzlxEVifOYXzWGzQezrOgBbgdoEfPlLdjf6Ct4SjePRG2n2MKTeRrryfyxSkXc+uAQDnrUIOX2zGeLF5cyXdKYZREFGQBuP9PHbwsIIP3TtNT/OVfX8RXHijdkpkJSLjIx5bbct87KeT0l4exO9QPURxLzNuoOfdChGmVDm7RNjNDjmmc2tezMj7pymP9xgEttm62E4rT0l+l0oxZNZ3XXMw17fLN5XdJmNStoAczK0PjppvAxxSBb3Qt4E3bKceavTWj42TLf6NO8bB96YwXFaJ0tcCZJyuSBOY10jMrGwVAWipi5qNc2p6ihxr3IVvhQGh0ngBgha3JL4jZdRtdbCvu7N/udmYI37WmTMvFHpDMtBlG/pJ6cU5C6aPblXiu6V4Lul5dUHkG6fNm3+ea0EEG34nsBiPxJAud9jSxvg30ZT0l0W5JpxTY4i8CR8PqMM5BUr8Trgs0U+3j+65iHDYj6nX2EpkQZBGPTmsUhEc3pPF5xZKSz2P0/qPQJyF8oOVkHM6/nVKa2ECGxRyfHm7z6FtXr22w/+bfhh/pfg7yRhefEN4KJKDrwVrXGYmxNopT1UbNBNF6cONcUWil6BXCSzSx13Aygye3fQ4J0F6TDO3TgRlk2QoCVprDnYUvhnj/5RliB0JVdXZ8Z2jrA2GOW3ScnCHMI9meQ0jz/nQkNN1kAKvbePTzgXhpi1LDPbWgohT3v8lfjxCEeL8HFuLovmerrjPris5BFK+/frD87uiFmHukCEUJeAFo2YdsD4U5+5gYqavlT7u2j6FpZ28cBN8Vw1/ZNRSkmHFmnly8SBA3cTyu32x1RXmCYYSp9vV7r1V+JySuONQcKipCnAcsSWdEwdsJLRVb/if9ApSAfHDJR44zCtpx0Q/0kxM48brVz+VsK7gTHrzJTVyNgYjOEDUymfTP9HmvJze1j2Zyj15+xzC7cqpGW3C/62O+Y1td4R5yeyepIAH0BgK6TQOB2iKCQANWyYcX0TtGbRH0T8/5GFWZucmO/OHytExSJDXojr/e5UQf0Eshj+etDYAxGiLq6hCNDNqa3brK9+OGaAnM6z1yQvJ0obqJyvnacmTpOTGK2oQmn3NbqDODXE0Av9amufoHmeU2tLOBTxYytTeOEA5DwMMBBbLxvnf/+KZC9opYeDhSVKyRA3ie5MLtT/0ip6H2lpOLlUY6L+zDwaE2FrBddlZMFmRF+JHfppqu+S9iTS6u0L8J7wJOeWVvJWZi4hOAU7HKs4nS8JMhbrJOx4Ct/8hwXuhGuxN9OWxVqnBc4FwoV8NdtnY5FfTZgfWeEDyDpRp+IYkdqiI/7DK8p+Cb3EVQGgk+aZZpTY7kcX6jUhN+cFprX+7g3ZJPb3Ya8wjuOSoqFKSyrJUSH8txWgI3O5GGMzdwhLm0lfR8t0bScs7XKCnJ+8EOX6Km6rovPtsEdB9AcftpV3tQ+qd6Nin5RXZX8XEkdKdX2cqHCF/KMSoZnXcxQD3JbmOl/mb6slGccOB/GHKa5DtAYxzT+QC1V6t4WYAD3lTVrjySFOlsZf33Yd+GBKqAU9F01SUR0D742vgsSaJlB7UIfMWDMsWvGwDivHGTjO0WIduNLsXM+qSUG9uW39Cc7b6+51HF5kUW1Y70IWeaVCd5eUV/EDUQlOZmvqSabnQxqP+LAm3/JzTrxSB2UeDhPHaYDidxi/XY182ku1NsR3zWDBwbuzrV0vqzFjJFLOGMARV/9N6t6h299afHvCr4ImS+5ca3UNCT+jbiHZO0TSsiqhnTdB31dUDVuUfGv+fQT36v2qaC/AZm3sMWGbjUqzAUfdFxNNtZOOPVxzNn1nfCSqYNVvqTQtg6TkI1z5KxXvPNhBzr6svjTj9lv0PUyFdRVMboeMGACfiuxQ8IprWmCLH6xN0bQ0EZRdk9YWSUjrogWPeXI3/8a/lS24w6CCHbM0rZdB6nxZCjenciSQ2Q3ZTgrLuDs7csj3zCxB23KafIwRtOSmR78kIe4KYu5zbHZs90caDIwi18uuURAq6/x5dAQqQRhNij7s1J1OXiYBrGYFLoDNrLj7squTKoBR+h2CBLdXtu/POLbSrFnB170GeQXyUq725816kbksl/m0Wxfk9WE6K9CyZ6ABMz3QqgjcqUVErH/ORFxyN6i7+f+UgurlaZ0vFhNH4gbsO6LYSjnlyqykglB/8vFE+UGFFTSvqQSf2dNeizJ2SBGSLLYmieDRQdCIBpfqOh+MfybSXZ/yeCHiO4JE6ZsBSudWHnlnmYzxsItqgTWCt4Y9HqLubNMjnrYshdwHdy4lymHwr1oPwiPUZTOnOH23hEsRAwQgyP0PkauU27BfN4yaMfBaxkB6FTrMkzB4JidsQi8TtLooJgzF1jh31DehVwq1w1wqvvkTnKVJ82ZtBQ5nRxxE2PNDFefvxuMjVkIG1C6Kx6+NxwGUJyGd4vOUDSK0hvzNioZfg8oJShWVb0qg7gPkeA80kkZICIOw/F9Ccj53KOsiTiM/16LMRvRRRU5HMm0HsB2Ehe7qN4AFf1NVRxepL3ZpXLMTF8om/26m/WXT6y9z0CPkWbr865OOzNi4AyFOEc2f+W7t6l5AV2SbrQ5Psu4RhxZ0Wc4fqKq/UBBwmGlO64ozjWQYGXEuWHlt7s7/qJ91Q6zfV2LRvceJlE7V9d82BDTBa14KWwJ7oWzzhGRNidySTW7ChPplY4VgArc/uXmTkwpX3iINYiufTkL/Ha9tUuIhhG0IukkxWja2rRcFo7RiR1/rKv7yGN08BFyAA2o58ms7T6CdQqaqSClJ4EcDjgDWsiInlu/zT/ZamaYzENcfd9NM5c9L8epohWaJGHwIU9vmcjr38RoPndfdZD9+9c6F7zPaOKln4RthMqyb/Dp8jgYrGvbtjYBNNPeQQYUxi2Q9ggPwd4FNiZ2gOvlcwK/3nGxtJxjsNF0s6Rg12ltIMlPCEQ0aHcXiaxa50CHfxYDmADj5Gey4whyl0VqOXmZXhzJzN+gA3eqPWu6611ZkKuh1PZnLA629jpu7H9hv8kHnVeFCMs4wpOY+S9mWZy/qpTGoS5hwzxAO5bY7OzeWGQGJys/kCfFO0rShqDiNA0pv/m1hBYAswvj2UzgP4r7p6vQApKxyvubKNcGzD4Xyg10NrYJsnIpoqnBPD1Xd/hZSRNOXuW+ETshOAe08F/VX3aNhKhdx3cQlpFeIi72417Td7PHKqfEweicIqow1kxyNQzlTys6mlfZTeOwHkBdIxDvbsRZmf0wq/8Zf/+EquVKdYs7LoP8KcQsyjg/w3pyk+IzvFAoeJmZqCY0yUZ7gRaNwq4nHlvPGmRHgkhFM2hIJkSLuCKoGxDo04pNYNIOJijT+lU/DZv9HcY0GF9dWkySN+6uxtXde0KTTAd0M+yft3RwCj++IgWczaFwdt8hYgk6t50y386hWtMcHD+CFz0yU+A2xCG7Zdaxb26U3ziENZJAjArFE540CX9C27ZUFY0aAjRukfw4EF9Cqo/o0DYtJhE57jwTMaojz86ZFfdIcarm0Ly+WJeBaTAqMn7If353777QFMuQSBxmdCxE/R3QC1HM55aIPg6NDfdg0+1YHkIpGlunYxyPRnrG5hRXmJ2d1+dJGOFGO63fxTiC4KKaHhIfInaL2P/+BDgs6JdksH2H7vsUayXGblUbCwSIWwXwI8EPWaG+1dGvnPk/dOjexE89hCv4E2aktv7zIlWOEiG+xjOvNFWUf7dkp8EWtmWyaPuIqMiWF71f5qYfKZfn+jBu/dLSi9I2ccoh1wlL0RlRGgykBAsI/oIanRE0wm6UeXXlHwDK8BbqOOTtGFU+2Pgv8zfsxcpophSQYKtBGvEBi458C58nHJc0oAREVYDGnnm3kAYarTsGbyfwY9IiNIEjF9WGX1EOd0j3Zp8X1fKHR/XYIYVKN0kR7JYpFR5VqNDa1Zc6eIcYeWQr56T42dgzDdFpyELlQ0nQCzZF7LNgYwiZAB48MMaAIYe9DA3R/d/EBjIkW2a/d5PrEpw1iRzhfoaPiAwYIO+Her7sB53B/FzU6wqzrCpb37KIAJoGc2BgCkz+WGcRimcz+JRvM3wABZ9qaW9ujzdvwfTOxQHxWFOF3WY0ywRh+OUIjwGBQ14YjfRC6+mnCjh2INm/tgFBdjIbsjFDz6oynAns62rO4n3PaNL+/oIN5Q7KRrWJfWSP2iCTTx/AM1nEOHHrbyCKKEPKRaOENysVtAR2ujx5AmfUbrlHNrD6VktwLvLuOgBeEF0jx5HFOUxaRHd4nfxUCuOVyhHjS7zQK9DyR8OVXIRQA2R/1mvon4W5ccV9aktKTAW6Aiau8Z6/Xj5E+udA60GZtUYMNUdlrDUCl1OPPRW8/c2ZMOCHLdzKhFb0D8EeE2OMzp/lt3dOJyVOjpHKU+wAvtGtftlTMX6yuhCvnS2C62dExyGY+vmX76qwidabXdK9jU6PtLrJt5WupdYngk552xTynpUuEN+UayCThtBJZxBGmAHG5TwbGA8/2kFsVAm7+OeUGs8+JIAVqUuU30muuoC3z1nFJeonnDvdMik1LTwAe+2C7stbA0m+zpULuyx5M2NDuyQyze8gIm1JVrHvCFhh8pRW1uoS0NqEPrH4/+OLhPQgqAOMpvcBhiFQJZtknrrv3xDoqP3KYUx8iJIq/IKpQspqCPO3Uy9aKZ99fYGd7CRTtvf6PUp1RDtNOOLwYDy4oxUrK9yH68OK83xToa+X8tIT6xGG0Zd5boZyGpiaVmWVGIMSH/68SvacrFaduOJ6CkV1MifAjxbro7CBwYHNwDYHi1NYnan+A2gZHaPDy9NwyxSlXt8eJ/AhiiY/m0zYx0kRylTt6/E4P35gn5FFsYMeq8kMQAwxypuWkkUZWftCupS19rA+AdbgFQ8CX0knGZg+TSiBSIlwtuhRiDqeO+VaHh6vTwXCJQyMKASq9GlH66aM+AK6orov28u/cCwy8+jCyh7hZpRwbd7s/kvbv1cfNvXP5/oRv6lp0KqEH6scYb7ssJQZFRaLNI8ahU5hRb9+RsYKNiz3N8kCJArvt2fKwl9OBaYBV1bt+mY01d5hWf83KNPrFK4oXFWuLEsjxFtFjcMd5uOz7tSsGKh81VnlorjQlAX8iV8zGZax/WohbPQbh9FVWBV+QHyh/uAc0Sa1iDzZt0o5ZApCuN8jW6zXZCqM5vihvC+0FvD5sx1tXpQQg84jHJ3sZ/rlMulsZkujn0PJzz91C23v2fPZJLoQnQdcnoGUaEfahO54NFSEwCkz/xyziMr7pxH1bCZsvCoRE639AyWKIKim0xx85x5j5ZyXw1Q1lf4TwyiQDgyqQ/4R/Ig1vjhoD4pwLjtKNzaPcWTtmW9jWY50JwUPXd0gIxhMP/XlU+KC9/2Y/iJJzpOm3nG7BBfpaztFe33sargcsoIUtUTBtX6qXz+Ctwz8QZIeXqNf6RfevgIEtSlJ7IXt/E98Qch6vR+oBzI3bmH1SHZBeUx8v+PUxRsSXPr5rKc9HVBvNMR3za/8pYXzUYfpasfBmknIMR/vS5XxlKGCHAwFRcWndJ2PnFAvGS9SuhD1xEoPe0BfJTb2QH2jjunLDFvRF3PQJWTJw1+ac39ctd+Gj/3j0is8xILpKDOQRR4KB+L/4fjAMKiuPpA40PYzW4PFBJzxNYOCazVWAE8GSjjRMO8OK4z0wJ2mQURpxQegTMz39+ch+bgTXf8tXvIWJGKtc2LTSox2LLiO6ORQt9p0+gsvuvvx1r8wAjWnnqkWP4u7Zh+Mv3XBd0bP0P2j8N/SY23//1qWl8Fu/zWAc4p+fNLMovMXlAw7WSEaaM/eBuoJ1zUoXGmSsgXJbCPTs1ZhQhvgrAlXdKUvGKfK1Nf/ozmPgTOygXSSCLsV0E55FGmsEVh/F/QqydL8B/njVcwJg/TIACRkmfGg0qaZP4yLvt0m/TKlHeiovQEjEGYH9tNE3pyWs9twGowIBVz2uwHJsD7UNZGNEFdzJ2fCkE3UOibXLCdc8e1V8lLfLCflrtwTfuKSJPIcwZr1YkZQ0KxiSHI8CWUWdeu6KOqisdaAwYr7yd4AtcQILOLvGeWIvNH2NPtuPaqbG/lnKInRBSolkFxJEkbktr3qLDwHm/nHV5uYI3BedRFfA2vgR4GuLbH2Ur1hhC+TtYVJy2XdcfEvgMMA5dvIA2GlxWu3Qg63tQTWG4PBrC6P74FMijeUgeJKDBGRUzGfwKn0Bolx4/m1fm3Ro1HzKVpIRtPXShjTXq+8RxCWfgmkxUwADjQmjzaE0/Bl4/y8TkP6M3YPJmRr8L2w1Y5KttLQ/icjv60/rI/22cMAgygIb//9BbQmphV+J9g+BOwSZa12dM0Ha3O4a5kzjABMy8DpUmk7I68jqEhLcFvan39NAFKFADL9GgIHIcVXBokEhgEzwFcHWnUhpZD+jPSGMEtzpbAvQM1hL54dsAAB98E9OVLb7BunEsBtx1FFIHh41N8gro8T0laHeEm9S8XmIuGz29u4x/t6QJzdlw3S4kDAT9epdL077IWycaHKygaQ6ACqPgY78UImD/UFBkYZ/IXcFLeAyF40Rg4T9c+i9IDAt8trhtOq9OZ5vDHQU4D17nzFciBOXqmLesTEYIlYq+vLtxrOCEy1b6ws2ihvJYL+qPKufe0LIlhiwO6wVRfZLxjltlDdhH7m5OCzOzc+j2Fk/m4+Qu4kxz9IaUHYFeC63ViUG29RRtdoDXzsY7tHcGGYRLLZP12R0F8U4Mivj5rhBYivOU+3+Zy4KIuf25JZT7i0q7E/7dZf/D/30U0Neq7+Of2jM6JpbuCwgawRLuFUibg1Qd6TXG2+yJUQkvsQmrx+ee7kA+rfHD0gSPrBlUuuCOjdkUM8TmxMC/n+rNfR6p0EvqrmRWEVNpn6GJgxA2ya3xXQjKDcPALb75Bkivs8DYfbALOEoVQ1ON0R3RxPVNTJVL5iW3+h6fD8PkrP8vZMf0uT2/7ouYQnz9aJwc34pCCd/YYYKNx83+PwOOQ/eM6Q8dqX24vkPdx0aNQ3JkFINK1Qb6joGnwJY6B38NqGK+mX7laKF/EIvE2Gu+FlNBLtBNTVCAdBR3iAW3Yt7gUZEYNiWk9HwEkgXprDmQCr0m4OfICbZqwfv9FlVRa7ubX6ITOkR+EPj3vopLt/BycZKz/ZvBS6Su4NPRxvBVmZjOzGbIefB04MiswTdRZLfo9O8Y/lpU/Olyz+Jjqd6YGhK9McXCSRo7Kar4J+BOfiXSM4JR6W71TnLDxXs9PT00djo5iTrgHi3Ia4OujYgSccEnm89GJzwk65l52wJ20AK/iyIaHoh0Ema3daEbwt87Vk4hUPlNbLSfXHblXlP1lb62iK4iux+zsQ7A63/zhaCaZywtvmtP8UvzZvwgjSlkk6coeBsa/PSIn8wYS0rMdnNRvUTSSC7GBvfIWKlMgvnRxFoJsDDHjL0J5t9bLMfdhbcV3b9WETmXikRnFZPuvGh4BNb6jHMkYKgtlLbJYkyCdOHQOOgGRQRLxlGOXQpt+6cYFnPB/ieCka/zQidgsmUc8jSrNSge92wy8ds5vlfxO5lQCsfgyr7yZYu51O1Tr6GAH7bz04/04OyafYv26ZI/XKLEq5gU2KBPRmabT4KW8TVNSSWe46nkhFigkpnjgq+epDUHaO5mNQBcfu06W2Io0kN9ShBguhcHK82BfUtE6EraUjzhWy3LWdVV2E8Eb/8uK8AyDtQ7OSgHD9iUd/rbNXsGt85Q2Shg2jd28Fz8VTb5vW2SWDMALXDJvvIYwwe5+v5P1mJrzYaUqPDPijuEBvHnNu3oK9UZptKFM8lQsbRJY9nejQk1/mrO717RrN69RTD/lBqqcvPDUuB4MlxxIfaPgXD5oxFVVDn7ZoJaEfHl8fYRSAyZ80EHHPMPlPcMXH4lj3bw8etc+CqygrN/3yhaBzmOYj0dQAYSxNK+vqKbxNDURvomMqODFD8EnJJ7fbi3sfrgFYF3OzKaSzup9PnhEChBOCv6KztRz8DOX8wsNDH/sKbWSM4NJ9eVqQHTS/xaNk2lttNjf7K5deSms7R5/It+Yv5tcbsAcir5MBjfd+EQwmlMNWQ0UfIs7KA9jBc5BlucpW9DWV6KslslKYdb5Ve4faitXG/3y7N1o026UcGp88oZilWsYXnJ5UsHWDxquTa2VnsSwxD7Mv/mENEMXWkZr4C01r0pd9jU4P8tei/7ghgQREVUQIXKSFMA+wJ08X8d0xq+zQ93xXXH7zO6CFfdgpCM0MyRIpYJyNz9duwhRusb8cPyQsCbTqN6ABiUfwxYIxDXN9SkWG0FDtPGFbLyLS8hlDy/qaDnU6VDpIDtYsycBWDKnpEVfCNym5Plok1A1zficj5bnyJTUVKY5TGgBvYtYZdWMlK/7U9oDO6qwVKkh1FLPFaauHWXkYNwUlQU4t/se+lSONuE+cvFprxkr7oNf820nnkPBxpWT0K2WwJuj9hkfvXv5JPC8Yo7g7esHi8dMmzjkLyogDzWQXW5JxIvpC+lFDGSr5MJxaLFb3t4hwxAs7M/GTO6YB8HRLtP/AhmmK+v1UqR5sj3AWuYxyJz/zk9BWpN/7uumqPC1UOkPhjvK/F5FOtdNRPSDsZA+qSJZjbs4UlhMF7SsJMYzE+2/GEBAzyAnooPqVb2nLN/eueyzrTi6yBvS04RmUy2SSmrhxLDoUAXdpS0PhDWDELE2M2guANICYCZp1XT63n3xdp5NSlPWts97Z0OPA85gXvdNp/QAy0yARxQcylQgJ5grba0afYyQpoyYZNyg+KrDOH3W88fCSCoBcD0NowaTaCyaClUAwg9mQD7yBfqiqwdrt+xUL1EMdRr7wvfgwAhaD0Dt0i4riqA6r9BbpEX8zPfy/4lLgJBEdhw19nSKp06K/HQgMbOa4+o7FdVA5w/bfZMzsO45lh68WXiwnYqkijMzzv0xHOCpMIxG2uMHjDGac5njChtcR/kiNZ2ndgbk7MwTcFav6RRna8HgA43HdREsmH/oylxxh69byxb6sejvlRrmLXUPlKnjfw4obY0/elP4GE7qDId9nzUDnw3V871sU2O/IC8l6jaa/wx0qJCnExlKKCTBhZR0HoLKN0hIwGLc2UqwkLuiTP5682baQXrKKAgpRs+QoYiWPfOGStusCnrQN80gMgVwG3KkAEeKEuWmHIlKMggZBnxVaJ96ypdUC3KLkrbmyOeeXypYPFLz63Ad1tO1gmBn/Vtvw+8y/LRfsmAS3aoxR31lZfMHAlYJcQxwgX/ig+fQOZrhQzmnl0bPLSb9sVwVRUoWEu7jkkmKkTyzcSUDwRWNQeZ6MSEHbOTggRY+5GAMyCdUL8hpLjkvCZZSXPSGg6QVi89Z28b+ID0Oab1KzpqyGge6tw2w0O+er64mOQ969Zes3ZnMEd83dRyZAhQ4hYkoXzHLkQj/agTG818wOd/98S4ZQlbCrh90fb0dJRYU+78m/edQAiZWYtaCFBFBquUAiWoKMFxlZElpxMUw2TAdApJegJfGwHvvNkQRShZS+kcm3aqXfVT3fCN7vSis7uH94Jeye3KsvxwcmPR7+IwmCrcbiNHyMJj2+EnPnYPIxXzk2va0DM+p5IE4i6+NLYu13p335RAyiNOf8mUfEcHS+7U6gC5zXuv4D78za54AjAMdHY0e6JntL4+mXc+9xXOW5NAYA+uR4xn97vF+Da3wDP2OqAhCmCdnvAM6X/F4yIqk0ZuQdsCwARY64R/LRKdcMS99NCjWw718Oz96WEta5M8+l/0p8lOtdu9cLnjPME9u81ttZD0Av5u+h4MOra/tW2EkE7VH77Es2z6GQKLMIZFgsylonO2n9pZpVJ5oSudLiyW3b4gXLMBBieDS6NTMS8k1RcBGqMaqOSY78F9OsmpmYOZ1Gs9ungcc8SHu/02NLjbHGLW5L6Hv9X9FP+0nrLdZi++vnpGqNqmomSoEiZC4RToCtqI5kGrYM/8diX5XxH5VPDkSx5aPXPvTeke3AmmAq25bOU+QY0GKlrxb4fNRvMEyosUq3Z3ejc4axai6O2LUb7OUAlRVFtd+YuMjwAmNuPtCnnnPMLoydhouqTxLFYZU6DpDIlvHxRuS2ka/bOrkj7wTreYU5DaizlKl5b3Utdciayqsj2kOP2iSQXE39HJeiy8hkARhjCo74/Do1RAFSn2p6NHyAhfWt2g4E0mNxX9gORAtbN2Bx1EFOiOsctFYa951ZwHqTq5oeYT9rDcYHGIWJlQvKFW3fo6zSVyBZ6tDXg7Wk2ollSqfvTYg+3Gob+JreY5v9M8rrak7cS9TTXKFbKYGdzzfUtnLIcCD46vpmjlGIF0I5i76vFAEQuRx06CsvdWnJ5athUl7ST+TeyICdKSmGg8laGJMN6YXh+nBoULBEesbef0mwwIZmD9EoxKkCcOYnhxvRA4QXAL7/zMEvmfkhnSAfvnnysvOxh72Vq+a1vHsBG819lv2Nmpd56qVomSO93oYIkB3zln6yaRJEiVrI4SDNUkV0ulozNbeWArhpAxDmNL2fdfGsfP62pxbDEN/MENKKhSTKS1ztt0gzw0A5hsQOtuabvPFJLGIjrQZF3sg5H1f3f6lzlwfNfex1IIRohA3TiczSBnIPRC8/42C76p6CJcOA8HclGz7IVuGnNpPzKooIiWP29VL+WXhQhGkZxIH3iTnimK1QKmJB5s09/ai4g32IPcGIemuFmbJj/cSLjkiaRA9/fhR+gGmgL/8PEQ6cIQMhleVLKWf/e6WZ9X+nNF4gW39n4UF6hM8oIqRuYbTSITcGGrxFoUu1nJjLJaoCgksKeoO/owYrM/ia2GZ0ifyogPnwrMgmMauaCJE3/YUD6/KyirEdZAWcyf6tcu+N7UBkpXITIX5nMxUGlnCmPfGq5sX7Jbd3wjrXLN7PbjufvN5tSaQUv+/7QkeLqIDobJNQsBjX/cAtkP+2eNDgH8tckoVWxFt3k1kpch3I7bOAw0jzMNKTwqbvrkAr9SlAkCFek39rzjuBm4AFTjroDcHPnwUaoEyJrpGgfFL/KTTbGiXiss9NhRCKMnNaJKzOyHTQnZpP/lCuHkIPCQPIvkOoIprH0ODHb34CegwCbwNBtJw+Z6Or2i6UmccEKScbiT3Qn7loAaGt7cHAOwhs6Pu4n8f9AipoXmg4Jd6QsUZ+doeyofRoaQyLJNmOMc7z3n8lfeQd4nVwNJBRvLCjxpgFTxNt1tO2O249FJ84zk0yYSf7WLjvP7EjHK0O86KwR4ZpcB9Ep+DYvqdiaG7jggRvRrMmy+XhU8HK0uLZT8liJKmAeh6e6i5N10TsdUmhE7clw9AbIsyYFHRyNHZLFU+2zFdrqx+Fdv5YifHhocxbeQ5tIpHyDMQFFh2y0fZ595ddVGqXClvXMpbRWikEOVrtQjKsuRJ32d18t1N6MxqMbykP0Pm1cHCQu6upT8NfWwtpm1WtqVWg/YGUWhv5x6s3Xrx2fQLeR5Ar6opt4Cq9S2SbuMiDZL131VngbKvqbXkyqcC1r8fbEU0vT88iYzTcOxkuknWsDQu+Wh9cYY1bGOVhKTo2mCOE99q3svZx73xexuNpFAHGn6Akh1V0lqnp6XH7a2BOeBnEsQfru8RLw4N6C21OVDKurTNdB5tvORbZCJpuDvpdO6TH+q6wht0QxbZxfaJ+UhvvsXvaKUu1v0r7d9NGvTCx+O1xgHEiFf4KLG3CPdtROqiUlMIslVpSq5FBqEhSM8ejG6giBXZmu2dTBA0IQ58+1ER14SBSKPXBawotOpk8GyMT3R8Nhyp7Ch8nqT+76/XNDXV6KIxl/vwxEj3zzF4LozDAa8sQwnP4FOXppk0aS2ZlkjK2fsNDKQAY0/W0RBAZSR0EVZGwRVNm1YsM2Zaaw7IpYxbfIEdy3TlpXIpVuMUWspkym0fMt0Y43v06K1J9U25IEDnFtgSAKVOSPqmXdFGyBiuwfLXPoYSdjgMB2Vy+DEtFts8BgA08P7KMmC7BzroDamU9RsO6OG/q/UcBoyMRCRIvW58SvvayUCDSgEl9cxtwnjR2N32pwN6kwJl58Sw0Aj1YqgNjI1XuKQ8toe6X/CpG01qkUfUVpP7rFtBOOwV0NHaN/Hn1L438AWpcRgU6eby4S5GbuATzXJYbedNvzdaLgkQ+Z/GVEvOL37B/kivvFkHhh7RYWioIb4tKHRWxNdjcRmjW1/GSbNXx2cD+gnUfX7w3YHOXEUpTvyM3ZOH07jOGSy1TlLF6MVMydIA0WPs1peNZWHSCPOnp0+y4iNyq/oZ/b9ty5Zle7fx7k6PT4lPvs/772qGsgxlYV+ywDQMNR3d1sXgRORMDaHxWnMGQqEmXtUSh4ZM7nTzoNCV2KDx8yCOn69cl7FcwAAjF7mKZjr6YdtODxvmE3io3A8KlpUDNyOuByW+NoXmodvn9r/sk2+ANRMDwYYTJS1dQ3ZoS/3PtpCIZrzeno8mqvr/3VEHXH/eihW/WWM9eZWuYEVaVTYKW8v4tpkGRi3Y6O9JfFAs57X9HS12fpC4NBLO0x+t3+bEj3uO+UtZFaG3ydDZwJXT9BnsNX3lDT6gFWeuBszOmjoezOBuPR+NOHmjEXOuog3074PJzo1AFq5ablG4foedsx9plJWK4w6XNSw4jXkQG56RFiDRpDayf72sXpe7kSSYh3b7WQjAxz8pyNitQ3KHfIb+G3JGP2NcujPTFpRYiPwgG6Ltm3ISzDFaqLMz8vFeIfzLjvwk96aR/tIs+gNnuyqLmoiCKSpGu7FWSmd2VE217Y9B/U4H2rCZFtP4jCryei4pmMU3TFsW8E57AB07DMKQvzQAco8luMO5jQMmV9nU04t0zIsHdxWXGTC5oKa5YtzNyql9eRwKfF7LT9Jh2YQKNznXIddagscicEA3bEVfBVuB90kE6NEAmQxqni2dBIsP7uvXFMvB9lLUlTgB8jx+u8r0HEDyLdH/Z1zb0sV55bFvfy4wGedOaukmKW2cyd307/As4080TJesut/cBP3SF6skwvCUdlvvDHDXo0rytPB6r3B982Q1UBgxMWiQwfG8y5cDl5735zVJ0+Tev4sZYKT66kfBl7MN3NXf0KcbLH6JU5QSnIMz5tOJsezZikO0ZfWxMyYqYO4ZxrYE6DYyaPWtVUJV+apJy979qsHtzTe5pbTpRN95tzmOXQqJESBRBpma2RLX08+45bJgrTWeg7bqcwp7uBphJ12FaJkld6Wbn/zbrQG26catv+bA0PLQHMc0AoEgjJZb9SyVL3vPsRxtRUGj+N2PhbUuEcH9DJP+hYsWzoFULY8k0phGt99lvdkTZIPJMSQLYLPuygK3Pa9hKWy1yCJem/+Lqsw0BNWqDCOLmtC/Ky2A0xZPd3eZBs2ipcqG721Oq/zCvsrxyiBoacXSSy1TePEKU4oUjk+WzrqnfVI36beZk/XEb3zbyOaGAL9kf5hXpfE4n5CZ6S7RUYmIoKO35/WVyThfgirRbZsCe8kwlLt42oDl8NqqSP2rlhn2JIEkhKG5LwMD09FiFwBemIlBS5m71QUWsgAXOhgcyz0DhNsdgwl7ubuJj7bUVd6XXaSTR4muiaMIJJMAQyqhJaTKUkig67mPmJzcEzQ/gUFFTIX6uDR1HB2JhvQ1mlCY3jASdINQRMaCrkyClD/ydzPbM44v/piKHEmLAmdTcIZojxq96NTLHlDkcx00z+MKNfPkYOKt0Pu9SH9f5U2YDvvLV4cgGHbCl/POK2lg6zhCK5Q8evmofXhCyJ0z7AApiA998jAEvvY6LKREjyx2ZsCXeIoJq/jyHIuX7rKf4i6F/ERvMd0g0eiFTW67D9aL/myrD2R4qTahriNv0sgw+ojqFVSjff1QsOAATe5WV62uFo6BP+IOeSVqLfdg/mfl2CQW8+6Z8G2FuzLeEyoR59c2e9T2kXRMvpDhpAgKAZ/BuYNIZu+H3B/anlsPq/fq1/MX7s1NYDxAh9BH7nyLOpFuk+p8wWk3OLwxxAoXd1zlIaOaqNO9LWDFBhTFUoBVLQrA6Yp9XYZK0SKcXWRraoNXBIdJZ62XVA5otv6u/oqSXDox/fD1poBQd1Hk8Tz+jNJyNhaE7SNsigk6F4Wn/+kUb6OVgvPd97YQSC3aNDxYWcykIm4Da0N+EtDtVTHIk5UV3xR9p7CBm1bn8gcl+IeDqGcZE14rh2JCwGA/9W75YtUTiTfzlfJpu5jvXqi92kJGjYYI4zDq3UUQz5U+gPVgdv9i73TA50YtEc6TORMaEJ3JGv/uAF8hFgtlYYyu/ngXj2wMfldtGLkkdU2sEbI21MfGlwT2JwrzSXfi4WOQmPVgg3HWPLPobmSri1GxGpD+bCc5wKFbbE55BWXtG2F2As0rTn+6KcgvczbkpZVnyrGIMFdalVk8RTmwdQQwi4g2Q3FR1UPw+GUlqBFkrv6hWgMDvCCndRUurqXAWT7efj+FFSe9VSVTtnIcImxPDzTfpn8Mapk9DvEB2C9otqCIE8pPjphwRIh4dt52jy03wlqwQjjNd1z5NVdhC/zpigFkLqxQekZYLGLebCeAgiCfw8dElKa3jqEZ9VHKx2v9vAMN8LJxrSMlTVIpbD1LZveojOiqTgCDWupCY9Tt05fufLKx3QxlvQxegLwKaoSkakPzcQPDYbwCAlcuZ/fm93z1ALTSue63aTA9GZvUwc2ZCkZi35iR9WdB5KaCZ3uAJ3v5a77BmFWfTbtEC5FlbGECVQcxtgL9GDiPfn6jBI9pDiCNuytsKc3bSNL+3P40RhtFWTZ1mD1lcFaC79BsbfLPpQeGl3CGciHe644S+kIUhhsKOAoRe4oB5Ze6kgQcRIdVfKNa538DYaAQHRRVSLGi8sgbdIvdzJgn85AE1cTs+ebfpsmbYU13ZJR2CMvVayS1+B/pWZJAzByBI1XHljQxH9KYU/fRClInhH+hkBhv1+it2jNatQ08hDUViunZEOOGTjyTh3PqSEFpohL7orRbidMC9NxSiicVncfAP5H9pXgQZXtcxKORFjqqDPS8QpygRShwMk3Ms2KafyxStH/7l6yp3x3TCsJSP299vqQC/QH/uCdy9BB9yjNWwsQCu3ODWSfM/jl4c8eS2NRdDjSegh4UFCbUK+1iz14DCjVN6jYngR8TxxEjr4swnBmhFPbV97j+1FG5kBHCKSSLQK663DFVNTMOpWBeLwbzaUimQei6/Y+qn8WtsG9WxxAaK1/kYxRNU1t22ejeqJO5HZlIPwOU6wOoBGkbvVtnBAP3QBv+aJBSTp0Y7lVQHx1/bQ3aFc84zeVUwkheb+rLgEMOxQo1z7gqxidITHM7+RGAQoLbKhYlRylkjHPDSh0b+h0AM6xZdLgws8Pdxa9kYJTsfHPAYIRYmAmTZxW51NJCPDp6eK1WUkxS3siDSZtbcKBlWkVIs0gkUSH5uOszERs+IxVvjXivZU2k0LieqUcJ6oCcYSc1yyzkkT2QHy/6/ZIxh4FVEhGrjw6+nrFLqwKc/J93JtHqugbCoZrVwy4LX+jXzCNlG+zlJTM033SJAP+k4hjcx/2BfIglZ//9qvquSb2zFcSWj4pNGVhtqohvODGqwSNPmiqaq2UT+gYKxV/UdK55nLDyNpW7vjFvB6VT+0ETqSszoKNIwA0xwnXxsfMawBJrIyOVDPpaHSyRBFIAD4abGB7GwNWkwrLCGgRYCTek0kdP69iLWXmd3X8nE8EOeikHJNINGO8r1GB0uPR7I+8D4TVZNUhjFFYT3t6UitN97Gge3gkWMjoXNXL+SaRz1FCCdRwT1P/r9p0Gt+KLDRY8zI1Rc94/9OONt7HfWcmTJ9wCnUcUqkDjtDHEobnh71kKdugAEMkjZFCA9I5XupMnWwkQt6K73ppZPrcWlSEkKrEZDfTx3YJ8+X7qLKSdBYXIgp6udDOxJs2zBlOueEvCUBISwHV3VxHKfifFeMCXy1cD4YuWbqIwHWPr525dJgPyi7hklDwb02mwz40BejMwVKXnMQv64hTYspPPQrbSfkNS4C63Sdb4eE/+U8VSXLQVpjQ8HKh85/uWTJUAkoaATUmij6yVIh7Pjwh+oD37RxSBUeGpPeGJgO11OP84FqJkst1KB9Z4VT8lVzNHayNQQ5H8v2JgG0D46RQXznlZKa2AbQuixS/mpT55hDh9evkATZNbMSnVrtsyqo7AaER1Ts5dau/jmP7T4MXjZtQ960n0Z5Ppoil9O9ATqVax2uhpCsw0EJR6uTX+GxUN5eu7HSe9uVWuWKtyy6xFblW2BOHMd48WzS/5+uXxa/vaNQwoQAMOgp9sF560tmYLWYNUEvHNfETVrRsYIKNXmkqshw46CMXJ6ZJonlUQdMRySLlsfxoTvX6I6wOSZRl2eKjeLBnQrS2VtgxsyY1aTbuD7VwsTsoHFaJYMtKR5s4B34m1rwMFtyJnhcB0WvXaj43n2Uwb/6HtKPqCwsHKtYmutfAFTvIBvS06UOjFseyfoQik9J81j5a6CWvfuJ4hQoqDuLbGLwhma8tbFRzjeCSVOn07IDeTZmmUQYvd7IthhmiXsTCJ4l9L2hhFOB3ZPyJsvt7UVVuguCbZvhUbE4PTQqoThbPBSwc/wrd2zrB/t9sdP2pb9LPVfwLOCiP50DHW2txAY58NVpPsAfk7Iw1Mi/g9Gd5UJGmgIkkWp/3/wXl+h5nmSbQl9bhMt6p0BoBnZT3F9jHVsxOOOJ9RCP/8TmkgO2dL68Gm1yBtp7Tq6xxWc/JyxwLv9E+mIo7/5UFKkAVyPsftULr2P5ahU4fx3rmrmqM62f2meZxASxVWm914hdXuAkOy6LbZ1GP4LREWWdppzzIZDfGfMjkt0O/WDQNoTsc6K6S9U1utU/hFJzi3ltXOmWiN0YLt5zNXCzp+kQN0iuN8Hjf87FN3B/64B0/vIjD5T5leDHowaHnWqW5aBkNZX7E0qfVUbtN4JpVUjWEYdSGhqzJePDBKqmWhWHtTaIFn5+ZEuitrlxBY2HHuKIQ8zf8u82nWTwp+vB6FmzcJYlF5yBfo/Efe/TdHPRUgzPxfsuvIWR3N0GunRLnntv2n20VoyFWi56f//Hd+H+FzPH+UiIZN6MNaPs0Ff2OpGqbPyPrybl9JD4EEr7/JxOgUDCzrLqQsxBQhFf5C0549MolsrDWBtopTWNYEvSQl3PK2WsfVTFz4jUidf6OfJ6DNwuOsbvWyCJZarK8N0ylVboFDafzOkWsUz+AOrRhhURW2gjxD7zCW7pePmv1WsgKmUK25TOk0yhjQnJXjWY33nJfrCsh5DhyGsVudWr3rHJGWy0Cv+tA3K31mml9c8oNsT4AhHlvFxWRhHgFNz47fDgrOlKLYBZr6d0jgRnLIOm9Fiya8XI/RXBicqV72zrJdtu3NYKo8YZJrTlD0N3/QZWuZlV1AP1kQNGh6WROvbJRto4kw6h2dRly+VYYKu5ccrBxu8iSLhVF+QFnnLqxodqhWh1csQGoqvYQQywiEAcgc+qhsuSUgufGUG2lI3fDgsqWXEcUOMLHDDIXtthfoRiSOryeqV6DBvXFwFLPgUq/X+BJPoYSrsHFTV+VuCoj+aclU3PcTguPvE3+enAni4IywZwRdM5cEVA/768c5zPoxjjXcgyF+zLI9c3Kv0KoGgTFhZmt/VXqb9MXnpmSekcN2R1yDQejNFwJbOGfJ7Px8TPN2MW3BEPUpju8JbYsxrOc7uXNtraCVF3otjXGI4t204CWOoCVMmLn0NAczNREyXWn7BaBtVsBYelmvNnuaSqXSu8WqjSDxbZhUHZkSk8etbOh5Rikf5j7xjAcnSQlus8U2WQcY+Tq5t65NSFBL0Y0W+2DBW4imvk2+bfhysTNmOC1cfLzlJFa4UpfAr5sBTkHgGgCOs89hYTO7Nnua3dgAZyT94CWEUAAHpEAAEqYQZrISeEPJlMCG//+p4QAAAMAAAX20zP7hqjHpSBEyXkABoKbZCYuE5BMu6dZC1bS3S5qqIeMOLym48cbPk4v8uhjifXolWFaI0OO7f++rUksUTHn8jgBls3zBKaDu5nMYCGTkLyfgxvMG+onKDewtRSgH+DkGGPgGxAlunM/touBe/yvHt7R8glJSOfNOsEOlRPh+TFb0LSvFVJAXEXZraCwr9xygNnuEQJeE6iZFbG7ukgB+Y2RdUig9DA4XbNpxJJo/ujPWeg65l4HHjzUIFaB/jkMD3dENG/fj5zPHVxLx7Wa9cr+QU1Qd8nZdX7i/zl8PPn55nEpU4wLCDKbvsv19pTGSkjAHKVnJR1kMFF5+AqD2JuWx3QWrWo/z4XYVzx5CUG1L5hOwsWQGCC+INqi4Wky1ANzlzrN3Biu8rlCTPJzDjC31UpjfkxACDscaQ+EqW4ioAfK9MLkqUOCFk86rkgpONcanFOyVbC9tCoIWsBBfenp6GO4X+4zROP0TJovAjzvnnzlOX/a4LqAgG5O4UDZz1Jekje2N2Qzehb1o5xlMTU/uU5VK7Gaajo9IVd2kTkKheri0s+lxOvrXb0P/ArWzJnnPjw+oh5HRuovxXmS0+E+CSNGG2DH8qs/4z7EHP+m8Jwk0CzhDL3UIGa065NM6VMtTDfWkXzv28UW4YClllsA3VLbzvy/odwXL0o9p68xQHxrvxzeY6FH/7q6xCsYM/c5UZBk/C96S4OEvUKsD2ighqjEQHfSoyWCQOgdqZHF0w9VdxaQVFQkuo9WArHi1svh36/vH6iDPrD6JOvPuwaiMJbEmAd/8FuhuR9QIh5Eb/mVkSbv2NtZmHajeIsnTO/LOxySYRUn5u0umgQQpjtKGmQJ7RxAv8rZtuoty9lI65NEIfFI+HM61Sn27YUV44Ca4fEEjx/riFn71JV6GSfWaPMZt1OOa46W4o81P8HZCNwmaxbin1lUKDv4MeCk5SrblUotMkfI5brxSGINPFssW8t7a0bIP1SqNGpn2KivFVaUBurIk1p8WhUxXF//tGNLecQewX7CoXp0IJPcbrwhmvFteafbnhtQZWIj59m12zCfL4NMVxJ6G5Jh8ANezt5fv2Z2tXjTClsI6DqTDj86ZZvdpulOJrRyN9ugkuOtEYsoNspbKhD8EG/fe0Id7ld/FToGNStsBuh0WJrwhi9lsJbykZ3SEEufTW7xYfLIsxwRK7SiKJXnIxRRZ966Bm4EqM3onHa6MgkvF8eWhnauIztnW2GO7TGJ79uTzCK5RDjPRZg/emzVIjcHQ1llCclu0Nin2yh6DsWohgiTwvWN70xlgBGFFxQmUpKzS1oxt1qtoMHzyzONP3NXm7sduJ36GrNagnDxGLiPNMMCbh0/h9bNgRa39azTtuR8Z4N9CrL49hn7oRuFuan/zMzZR3w4O6dyBLcf4/p0CS9qFsA7c+5BexC54W+WqCqZxUhM+IOzngOInobr1VEdDcim/kEmeqqjY0c+hJyjWJo+FFuS2csnUrURGe4E68AAcEsq9GC6NfRHoCN4DIA0Q+hvxHycBo4QZ2cXLNe1O0KM0kIcIWXrjiCbwxF3TuZppcSl4KRlwjg37n3sjCAtDtYjEvWvaoNKktQq9T5n18FR+gQKaOO/IjLTtN/u6fPqdbqigrimm2N5vSxpkKJQj25yd+cr7KDrl2BZ+//MgOzWr+W2gYo7uZVQopdTMqKLt/0QLvHGT1Mqr0Qd7e955gWglzeSq3OCZnm6nJFdy/8sG4mlK/9RLchKKDwnMPjFbCNPANzA1aupJVyvN2T+SI8LXEwfsUusPX21mUwFZOsixCDs3m9XkUignInBqBE4XNQYExz2/Q4++I2n3PNk/D+ZqczwU/RJ6/s+c1cZKhDl75EkzPTb+fsHorBulmfiwUytvgtcNlYziesliqls0Jrei8RQu3A9nnwE82OaVkG+6qe8Z46fFZiuNZUarLNtDeS3EJJBgrAXv9M5Ksj8Pz+Xvs6W3hLBJDYhXS1pRVmAI3GXQsd6wHf2huRtKE2aA8kSwJXJPNLdBja/G5DBqylWBUcfMbO4gUoH5WhxrkmHyaN7Dl9WfsCN/lL4kIuThyxOJBcCx4cNq5byYN/WD00GXS8qwA3T18GFNVrSlpDbzA9+kbjVb94OTtSvVoCm+ozRYf6RdTIj2M+kMMEqBpKfT1fqWSjerDSnAumoCJCtP3Q9zNnDCOFaR1X1YFtBG1mmLQOksjGn1Z1HIod5SIY14xdxMk6pe860d7+8NA/n3zT/8uWB0zaTkogMTH4ApZTmLI6eOpA60pDAQZoUl+0LhcDTJrHsJO0Rib4ImSR9DhX4gHhqqHcfPhPLrsNqIOntaG71iZZ2hY3GxzclJahxosG4dzf8UhwsN0yUPNO30dy5iTS0bmFyUGJYbeZYEZFHVB/SGNNno2vjgloyaBbkvY8Li7FM40Lh8dKDYwC571RQbEpzKcphx5Ci6p/YPNjmdLyFRiGvMjIkB0+UDEml+o6XAJ23oMjTLoX7wZ04gz6fCn8CA5PZeId8zzZrAzM5rYT11PNwAysW6ICTr6h1sXnOXD66i+mtIaPMG2nudew63Ms/kuDM1m2VKbhEcsyHZnygpln7ct4/j8Nmt2tLGjWB/R6HjBxOk5mBjBrHRMTQV/zt2fEQ14CvnzrslrzXS2mPtI72zQRiAxZcdea09OBlnRfAjIZdZZtMoEXQvlGbhW5BTXytqrO3AFAmszxmlaljs7hfD6qjUfHTodO6Pwq9v6/HaHYmdwA0hGdA5STvGoJVe21it39l8BQ1SoT6jYNo8hJCipG7m3IbOEOdWAHJWAogH+ZVJRuqfMp5Ko5h6Zlb4y5ZkmMnZGuWJadrjIDIzf62PJhC1YE/eMolsT7/HgxNf3YefUuA8U+2vMKU2Bm9NSK4XdQm80ofycTylpg3RPjfx0wP/XiUhqnzZ/qhk6bkRmoVHa0wRBKDJAQ0Fi9iYSBBFztTplFOA3n1CO3QYaqkU/hn/LG2A8sjixvfTjnPWjpADOHhnK8iQELiwL1V67AkU7IENXHIc1UXI2HkpFty9u3fEg8RbQW5iXJhhWPdkTYr9q8vy4ZKI5glEvCs+nBuWV47z6/nXOsF2jOaYDPVuq7OaPA3EuW+/arPO+sS0XH/hQA3WGaXTuvbliywB1I4W4L2wIHa9z0L6vWtU7JWW1e6ylmX8bjPR90AhSqo8MewSa2uzqQmUkKBNI/O/wVik/lcUdwN8VZ43PEw/vXbwPEZbXn09t/KRgtWbJaLPP0lMJ6gwukA0safB4JNFXltLq4h54Z4o4nUjAcg61qn5kXz0ibQ60qsyFgg30sP7TAqbOJdN91ZS9rPXGhSttUiqG0MmhUWpCwkpD+Z4nr4OkvnmoKspZVYU6HtBUmTIT0wEnPHgJKVeuDXFKjgAOI3/LxkywzubJmEZwA3T8tExGHtfp5Xhzk0kGMRAuZbC/rEoD48RXpP517DlI0PShuW3vUQx00bYOTXRYfZBbtJ4Vm68RiZX/z3k0Cqd9o9FYh0Rdr1GRTLHis7wNHIda9FjrsWrmraOmUatYhq4acXdu/mFBvYoKwsdiK7b+94NY6BfN8Su7XGpApu1RUthkCkG36dLRygsOYJ/HdB8p7FrFJ6k+myjTTH/V571J8SZh25toMrKxDsDkzvibFKTRrNw/2l7RqwvHYrAAObQ0Bt/95nBs7RV1QPmsrwOXJMpAwmkVjjAdR/+yXxo1PmsmvoHB//HarDBUuGXJF80kN7zoyD03lWxNMs3CWhVHQD5IIuALUeKJtBcPNVkvOf26Ph/rp2HeR5obmOhmk0bZXEQkXCZYd4Pi9fdnCYnJofTwTSfaWq5tGCWX22JK/CDsvLiq2C5CCMAyHsOa8ojjVdlJTvbAEp/OOSYKXnxl4X8siDBDiGsT0jL6swKKlpu/T6qwEQrj4NuDIsuup1LiCHKinIRRRi4m0CFdNZ6eEV77+qKybFBQbjBETXkWZeTSIon8Vog38gJP1kBGkJFKRfcG7lN04QeAw6+mibQTHObE7U2W+oIEyCq7mQjW5Vtaw6u762PJz396yt0HReiN+EGTMqIjpH5wd5YabPP6ZkCldAwk/2CeIrasapKK2tZoKfmUpdE/qqznsVek5IDY/Hbz+WyCXWOAgBFhyPgGxE5sWZuZ1X/TVx2d+QI1qnCt82KDzMRu3NU2AqOSWvMFh3rFVk0/bdIngMO/xVRnMUt2AWA48p/Q1jKRGyRZLoA1nQFTM7TZ6xwS3ZyPjZA5OXrzbRqWZWr5CYkY94EfwEh4TJWAZsO31wJtZpEyQZbosHiXD5Iw5g9ZXOg477WkbD9gCrmxQWSwHAQ/lueJnR8v+1uct0RiUGg+Z3jsy8uJVYY4n+0kWtsqiFFhAKwKV3kp9wgsULfypkm1W81qDHt7r05rrJE7j7dXFJyG40pUleecLzSaXbgjt5IFk/tIW5S8pP4Amyl9d+Yt58aVK8iAb3swqvkzo8GAlpJcWdmELPBdfayIdvx07OJJHAAAAGl5kXJulCto9PCy5nHUIorwRDuud1Y5hciWLb1gN0CvfO2JDo8pkqS2e3Hk6JQSFBm4q2T/KZeCZRCp+uhtSXLsFNe7mK7vkz8N3A+Cz5G5WWcjEqjfKM/qwD6WFtjTbqgDk1ru0UfUuDpvDGRe0WnmJbbf/FZn/bAb+O9pY3C6QlA+hiDYl7bUpaJih0eR4KBUy8q01XrNswhKTXHdYaIjzeoGB9nPtxYWfKOAW+qw3qQqn5ufG/h3uda6qriGGqANVs8zJA6f7JAFHmef0HvLiwvAhEdLji3yGhb3ANh9IibDUsZIDEL81eOZRZfDt64Cost9Qz2U2l//OQ7qbXf9ArYj/S2lxB0AROMvvzeNDoaftUVUwKzj8nK0cJ51qaswOSAne+1QmUSdme6ES/66YwV/YZ0Y/BWZvacBqjYidm21EY7pJYfXsWpoWO7jK+PTFt5zr6bNdGWlH7AG47uNSF08nVikyDsmlBq/16VqXHbJRY6pjIFlSfj2ndrpWj0X2SXdO/oe2707VOqNfzzSALP5Xo+fBJelDKPH2e/yvic+UmyxNlsPV2AAONO6++KqSXAoJ3F75vPcqfYPGyZpSfS4GrBxdE14I+FBjhxMqp9H/OIEmt3sdSV87u1b+pZSCoy+Z+3u8zK7aIqxGW32L9zJAhqhgb9Zfy0p/bw0rjiC8rNmiWcwbqJ7rCz4gi9Mx5AZiISadEic8CG80tKJXDjgZEhEqiC1JT/9j8o2idrn+dOP7o73gSmV3L/bMVeqJEdZQPAAbNZkuNmKEQ8+BBFVhewUptOxBUEVxkk5kt5PpkYCXJKqYJiA0pLIkn4KBZOUqS/2HxwWmAaLWBJTIEX/okjhQLhOULyLJFoNZtwy0Gg0xzzKF4RQwJKnwPpTKDAIJs/mABjG1wbcnpEM+OMaYKJ5WfM37bLmR2/y/15P0log5h07Ll3isbxwLJKcUxcxnQLW39im9wY2pCp1gTDFEQp0cWTiCuVOGMA/+/Ilmks3asjZgQtxCpyPov2wm6nSIhRGtMZOa19k83/S9FbravcUSXeMhvog8qfpRGtJnHnh8QWPjYqWlWYUaoM1rHzYZV0FpzML77YDymeCxdrCawXtf/729ia4qhlHAzNtN4GnXVTSY5KvI15KQC7hYqPXo/xTe1GDHdRNMPxRROSQCus3vvcxN+YKIVwYHsv17OJB2B9yi8B1tMYvSvDqPjw1PbFX2/e87g9lZYkJ+S4yjtL2iqYVk5TmC0aGhubbhG1QGiZPlpeu8MSoKLt8d/Jzh+VmByB4VtsSyA/qoa2BRA9hqrGrJ6H9nkkAxngThC8gE5dspibgRd7lX96eLP9E0uAHWt0uWir0yDYYyb8DRsx06eT/aSf1whF9PvFuuhrNVBW66QHFSn1opQOi9OI7uUI0UlNwgMWqxtepif2a8N+3ICJjfSgBr64y7ne7NJyL/7gM6qcB1kosDQjd4EPYlfMK1y+fU+W3tILpqNB0KF5auQNuy3kR+tY9mw0wIqIcgOHApnCl78KHuG5qvzq1QhEx6ex/Y0t1aPHsGF7HLyhruimtHSumuA+hPdYBbMxpJJBDg8AAi9fDP67+h7khpBoZ5U1KhVKUw4J+qUQEgAulf1sPDcZ8jZYB/M4q9h5jQAKU43qcHZp963TeqeXWuaYMwEiCZTsGTgoftdQqwSDNLuG4sc/sMI2iY8zCPUHr5TWbnj63VaRP76rzpjp8eUed2L/5KCMpVkDtzSpa3nDtKJXmkrI3S1dpLDFBAdOEO8qluP1pj2h9diKIQFr6bruHGJIIAqeLNqFAZd0tMwvC1smWSyDZy+HJ1jqoQIQ8FKEnfmiyRRVrZPszz5BKzyshd5Lko6YVU8NBCwkDni//QqEPLqNe2M0k6RS9RhH3bgXg1dpgoc9GRRXkgKwXcn0dgIRuYVZMRN7E3mpUgNLTiXzGG6rWwfh04vLbFUO+0s2qZ+GErRTolG0CfzRpab04L7tbKivFP0HxkLoiSC1laQa4LTJRteYqyFsGiTf9OgJDmva36DNbFqDoMGOCyh87yTEMhCJ26aBThikLj/oCEb4e9qdXjdLMcacm64xKKmOtIO3PcpEsK5JBUouUO/EEgpTgy4MvptjWnsSlSKVwRGdKWcVtH3WQLoAfuWMdtdpFmZKFwqQY4P1R4ckw1Akmw+jYu5b3u9bxcT+wh+zF6IUf+UedUrVn6QfxrljkJZcUxKkprZaKVN9BaLfyqGBne51FwY1uwujcZcWCeZe3VyXuRHq45FeiUeBoVYE6bin2RNYkc+0CvQwoguHgPt2rl1usIvFwegCFvDFykxmzpIRahMvjLVKsCc9Jjkb5rUTk8lR/jTcbSl/5/MnZoaWep67WiE2e8k3FYw8p/nlfr1upFwot/t2U4S5LVCz0ESRtASzl9c1ckUMS10PLyKfzlFITJe25SGfKWKjEUoTlvELaFFIo+v6+n62RnyZ7EW8kT97uNPagsei4oUYcbFLfRoxpj0mwEpxNpa1AxyJ/RrXM7BYG8uMiBlnIkS76rDWYpRU+FoeBcI/ewH0ClaamBCXu6h59GzPmIelAfuXa7bWzwa2tGhIieeWkqqlBmLRPhZXn3/rwGTCRkTHY0X//K1TPpHkkyLGAZRilk0jUdDLZ+V+1GH4VlzNqDgto7evCfrqTdn3HS6s63SroU960Jyz9kHP7wb3smjV58t8eXXISt7/frDN0cVB2nRx9tRcmrl+zV+WoUVZTcGvNdCF6NGS9iLfwiim2waKQXnvavGTcB7HFvyPvlU5KW/E4mrtwiwiCtEpBosbRElex7GdXXzyKB4D45ynsuDNQwakNtvfkO7HxFEpqSi5f/A4BeDKQ6nuOmhXVi5z7b4YkMNhiQbw7Hq2htRMzp7KdvfoRFXXg29sT2oX8bOBCagWPZywWFXC6k3yGMlBtKg+ZtotcbfKU9OFnVh9FAv9aaCZqSKanp7iuSdCT9iyOqtL6zQbe3PKNyQxJMaz32yEZTZeetzfQa3Kiz3iCu8woX+hRBfypQ5LjQr7QL2G37TAMXFyapxbA+wxwhsQLtxbzobnjalLTsN7HUFRtBeO1c9HtgrzJ6L44++rjAoVtQg0C0nMEGxonscplGThz76Fq4kJ+XFJ3iSsklACLN9PnnGtforFUtXsU+cKVBooZpwA1ZGf/ufbgER02D96RcXycFQ7TjT0WUcu3cSpn2mzFbFikDb4oTXIF+mlBdjDmTaV/65Q0vXPYeCPdkHvJ/u9gcEBmHCzf/4lZQc9Tc+KhYsz9N6FoDkF4rSdvfyIC/YgPYpqYWxhBS6E+V2fFodud34G9EBHJ+1KRq3tZcmdNDPi4Poce14RlXUuhxIx3BWJVMzKi0TGTjFYZGF+F0DPWRr3o5uy12psH/5bMJoS5rM7IDDliUj5lxzktljfkflEGdYRuCHXTQz9NCiFx4gSmYtADwRfUCvPiiCMiBDRSeaC2r1n2nkTIyCzPxz3lmqfV0oZ8MkGuDYQ/O7REno3ux8s+3SHje3+cnFmioTeIAAWl1LEmxbDG4PLaYUkUMD9pALf5uI7DtT0n9SUfAXlHdCdGwi3m4TLVj//0PA7cs0VpLpDk2L0isXB37EhKPPCQibrv2b6TfPi7S+kMsezSKom6E2qTxvp9b+rr6kknWzHVuRVQAZRTHNX4vy4fTD5PI6ryfTkgC4vpWw60GBFUg/gU27mIuIOKargKiXGUXB/qRkNAwp6sZWpTNCixSWMD65bn0Em0pYLRBVD5T4y9ThRSr90KPDP1j6TQB46F7hQCD9ASv0CDHHTyclBaDR8zRLqWQ8IHY1lFAAHfxy1q1ifw578B/ne/tbxxSqc7FNQ2DIW5Vtmd8pmvumyxdro7na60HkQ6IQiOOUQOOM91pGDOvmowhjzwqXd8H0zhXjkcdFRJH/Q5jrN50p8oyEzUeUDOjhGhyLPqHnUwZ0rbDORDTg4kZGCTtQW+K3DQC8yEUhEthwB9BnIRD14n/LisdRw5Vcp+yshrQJw8//UcAUA3bWHem3t6LeFPSiASGlV9sK+dAcL1OCvncLJWpmAa2spY3gXWrQ8YS+/NRDlVdRoh0uC613eAfC8jRrG2mNAdRoZFXgnyh6PJQqLfU3n8zH0DJ4SY7i6UN+v8AiFBlHpAWrjtYQ83mkedYDG7LGv5Xx8SiXBEt+9dlZR5zHF+/vAQPVqrob+HPZeKf0ip8SOlnIlo0p1ga8ECSY0X5KycrzH6QJzl5zAawWvDC60LcnEipB2LPBQ3gI+82hijMJbLDORDaqHBSEFpT+D8wAmfuXcRXGkSaeE8/hyrRtosWsvtkxH83TBqkKTb/uFCxv3f6WeU6AsooW7FB9vcx/hxY51yjIhI7yYDv34TQYub4hTNJY8WkwUv6JRrBcuXCWRrKuOl4PMWFtiBeFEnbqGDcxLsmcC9Zufwkz/jNSwfSEd2d6Jagpk/oXFZFw4TVWFi6qlba3B1DBwPK0aih8PouLnSYVkEYFgQVi3x/R/U6BVXsWTgdJWm04pu4gdMeaNz5E+x8eHVHZ0YC0yNHcRiQmEGUXlhhcIV2u6QmCeRFEmt8RRAYBTtM5nMBQpFGbTZyiXyGofdSFd4OuqEatiBfDRdAHvZMVA6WOZ0rOsDQd/RvEUU/eG+51pxfCK6qEWhbIc7Lr0ZXGswmkFBlKXYBSAvanCZ6Tyf0ZUvLP+yLUOH78+shbMR8sXGhDx8D9MzQ4TklqgZIonCH/BjuEY8EwDLXYpHGFuwvvFmTPLZHOtxBLslXRGwQsx6upn6aUucVvtoJlsQcHhHURNxRByZL27qsEdD59K2tmvwF+qgBPObQGK1un9NuUb0qoHACa+w0qwVwYpMlu2jBfwTYux6+SEwv28y6ISIf8WwSBeSxCNJX0cYy/sHb/kSPCd88XN1NcFb40cjL/X/q7YflWTOghJ6u4ef7EPQcYcQM++nuT+slF6WzfTy0OkFbNSBr3n6WTEBNpOpXIhKtl2lPORP/TdqKgJsi3gQbVhVVwcWS9PnICtxSPKyCGxv/jAXJ5ZSwWyuXFNE1VS+8givgqIvbC3t294MCGRGM5rcAt4FSCsw/pqn8m0rnxFQUeoluU+hsLSPGvXGgczjTjvNv3PKY8+Per0x8PQ2G41CcsXhsZtKPK8VGcwqHBmSaEJ7crTnq+O/QXQZ5nC8CkWg5x96RW8v1xwO5B5RzyjwGNyFmG7uRXFO6zFiAuz0XozJWMtCyT2RiFkOT5EEyZI2fDC/wNtSdUVUDT0wjdJa6UHJ0vG4gDLj33TfKmZHcQ0qYrBkHBcOcpQEhKWwMzYMm2N/00/6Urk32QHNEUJfvv9JG87WZ5i/H91BfjTEgqdkhvPbu9f3Qm9bCjTRdwfQpXSkIxgrv/5JLGa4vd+Jb9vYS1ErAlxSj0mGbdApksBQJv8G/FGjNs979tfnEXYJsafQjHOTo0PTUrPWSOwXkunxBo1nfQQ4Jr2ygfYd1DwtLZFES+fxAmUEskwXIi6GlINj2dWkM1d3i+kXk7P5+KAwnpUaBWuQhMjWojJu6WaRES5BcKy+k1wQdC74bW6vBwM0XG6/QAlHZwxgh+tMyjWXAJd8hIuKAckQpU5ewgdNzzq0J1TNcyaqXqbEHS/L5v04k4SxEXTFnbNg0tI7EKsmVVo6b6pvplWtACANsT9261ud3K8yvItMTd72eB/NyfXTztqvjr1Nt4YKQ3jrexypMJRGSFuX2Fq/GgSCbhv0TJ7oG1XDxUNj33D0MvLntT6GKF1Z76gGVzcbpNKxO/SLYR2WYuJMCWPRwjKJ0aGOKaZvaKRY4RT3v2UsT55UOwmTerKXMliGLsvZinMMvmDvv/3bo4NxQk1XwJoW1ifMGuc5wY6OxhiQhfuIvXDTlKyJDAh2dc5yPgDaODm/cx2m0zPUp5bi+QIlY9d8T4hVkj9E8v/7JxafOBkw7ZjumVshFIStX8yxQuitjq/SApyvVzGnVXbbPxcKCZ5Slftidsy8byRYaoHE1TG8K8du7gq9tT1wzvDqL4jIaWYtx1tbRHMBJJBV5EKIgzzlz9WSh+/QrJuC58S5wJztglqHhiW+5K6n4YVNvwHbAWVK+cMs/NKGg/fxqzlxYTTIVed6q9euPi42HoCb+QzMMb4UyAunx2KujIxlX9MmxYLxZrv65UnlJGIiErZ+7ISLf1vo6P9JHilDICRRl3vUWKHTLWxn9KV+eyGWdFP92aKAzZjIRgZxqi6xenjNzdMaeZ6JvFt0pJHmxety2+5loaMovvcXkfRAz458e2CBwOyG7iUzCMo4tLJQ/TyDRIXeNrf8Zv4KR7tbT9ZYrIsLOiacrPEgFMtJ8W0hQACLgfPYQER7sEm0VklsV/Q/ga6wOqrElfmeNtLKVnTay7LsXomYaaI57fqwkI9ZfBGZ6eO8Anbviz8s6JT2bu3qMO4L8BkPFh0OIEIgGT15BNs6qsZKy3TBbppQzLMgpUA7L9rC09z6ghZI+vi+YMgQIPWd1DpGP0U3y32yJ67epKweCQYB40xg9kZlnC3KKFBp1qD0LBi9/QbTxjt0yrsHxY7mc7DTzKjxCqhbjbsOzYuJ+lt0nS1DRs8sVpoYnWQiwP1OIRCysFbfFOxU+caEgVMiEqfEjIav3VhWffdWDwLonruAJpZqNmeN+EYLT8xJf4/oz60PFLnmMFTSTKqApcUAnzmQ6dvgVqlxsAfpEyF6eQK0rIwMlH6pkJ3fU0Kg+Y1UAcuBRBznQfQ/K1I93KlmbE5Y1Iwn7Ve3ELF7kv6e2JRQmzDWYsVX3luji2hWiFNW2HqU49bHNKqUc92BlC+bVnzwhzR1j/VjMuivq3UN00aGLA7uJAgUZ3dHt5LF7XfpzywQ0enK3nnZEXr2FNVOvOp6BHqLAcORvE1gwrQT1yUwTuPbev6uC2YUfdPGOdsCRFbyxv/Q5pWWv4o9PeltHSEfNNl+QZhJUKXQwiLSI4nDYlVa5Iy85yT+05BAlJeVWNFNoLkY/QtUKc4eQ8dwAzXLQgBzboKladwR+Q0K/eH/N2pC+BgcMpWb2IZbh30BpeSMIHIZ+erEHQtUB7L8I7ZP8IkTh8qAWBIhtAJ2E/FdqY6F6O40ZnhYzUleCGb4AYmXvl5mees4kQxfJg/CvSaaTovR/xlryr3EYLbbKGKi5i0+Z+jErjGOqseDpPUpxpBkuZe86tdmjy89Wh/rJsxachhdeduTYamkmpAa+Xn76gCuM7BsUwcOuK/t8tKgm35s+FHcZ/4XJDJGak+FV559ZDFXbg48Kr51u487Z5SypLGZGXDyvQm1v2k9QxPHBtk5cbTujm0YlA0U6I3ZJiia5Q28AkhAcAPorWR7AvfWd2LLCm3TNtioZ54lq1hjqyjZQKbwWloxReulS2SNJxy8cNGZYvg4eekgoJ/bKyu6D6yPX8iPqQ+kWphcKKVZYpLW3GU0NcCaeCGVLEwYe4hSUGhH/lP3nqw2rD7Cmg8ohrEeddSvoHgAqtBA+g6UVzPFPzjAyxELZ4Api5/yoEzE9H0ABsLuE2G5Yf6ncxBmfjHod6RWy6u4SaYUQ9vXyqwPV2VPmkzwXKLGQtooXAmQTXl5l2TnhgYwSWO1RQUmuorXRSY3erRRVl6n6n7Ph+5dWlUviBoZo1ZKxsf7vG6f6pqtqhOC35GHiXsx5xmfe07zVgW+dICAlzTSwy0Ix/zDN6rK9I9JzYTsT/eydkyYnLcZWOM2y4kkODlrluYM0RrQ2OrVI/MeMuuWpuSn9kE9N68hY0AAHRCIBPgX5gfeZ4MwldqvXF2yBt//S6ixT/pNO7ZfaWL80dUlG8wfgxhDvsiAMBU0lIYa9ZVvP2QBsa+2qG+nXIW2B7lUJZ4rFrtZ1d4zLWOC5OQtcgxaowZ1QMoOBs1wHa6NNEJZwpi69Dn0QOO5cgQQN2ysrna8+oRDhDc67y8UjBqpGZzgH2/PU+C3NQB54jlHfl3mc5yOP4swV3qOHcugZBddzE3+JYysgFIuDuvjZHpTJxQDPWwRO6j2SEiPDdwzzJOPDs9MnxKuBxoSWWuckz3d3oMoNevtCaJ2F99zu8nt3dNtjxv18Nx4BgIUKGElic6m7Sy9mA2/1Tc+7ZuW4OqPAY56kcFbMu40jilFQ8lPp8aSxagkvKDQRJm5SIcQJC88UafGsPM4zTyalTff1BM51VjfoH64F5Q6YWKunQ6OdoZSiRVasULLVYF25N1YuQP1rXuwxBYWS6T5bzAVzILSeCIAWWk3e0I6hffgUHw/JmODlc+IPg8OETQct2XcBnG5LzY999A5Mm46w8SZwFsCFJ5DysHK/WlLw2wAfSfjQTB1GRBWmoCKd52JAGP1PIEIk7zInvUUXsBA0VsrEjb8GgUwbnnJpZ50cq8wxNheVUJEW3mwmwIZ/3Y+C2YAaBnkp7988eRIeCS2ZSKW/pkFvygmEo7pVJVhKe3YdCl0pA+ShoqEHm0kdQa57vuIAOoe53vHahpKV1JgI7xJ5Ear66eQSnoRfK2n0Tri7i7nu2mlLD9GTXMWJcqhwj3Os+HW+T7BXXRDWQhcKTFlZ+K5KzTQPfntVIM7jtdIs7igT/ARqr4uktXHbSz1MKhv86C+uvZhMeiVMmtLfOLfp9abnn9mWtgkRO7aMLgDfl0XakzMqTJp54foyHcPNh0NGBsi5v8bS1gJYS47TKKJb4WAp6bxir+NguUNeRr3ZtFyC97cOhGp+gZYQTX/vLo2Kh+zlbV8dJGtVaTFgfGt3H6j9SlGgBAJRhrwtGawly+yZWQTfHADP8lbihFBRksvULZt2SHwapk0yPj8TiWY+Vcf/AKaD7Se2jW+vAE9m6AZ+cQOfG7/JGVgmEEYPQnM7PfiIQGhx5lW3glmMBSnKXSuYH8kB17+oeDavGLUS2sIlCsGCAVo/kNdMpyN/0eKcYEvmSrWRX+D7ClqtTXbESFQeEozNdKIg7TWZAS3RhMxiZ7c6lAsFziY1x/dHM0bJJ1JoDw890hZDabYIJNF0nQSs9odgMlnTWu/DF8Eff2fAtxJ2Wd7g3ArOe9Ya33//BsJL2UG1rQI9gh5AVMWJeu1zd6pkuit+LTIOxFVcKyAXBqiw8oyfyMdpfnEifKIUIdhHppqJ8ZOSBkuf5h21CpkkGw80WXj4yv4qI0/t43TWUsX+a6aUNQ3zIOVdhaf0A29ktLndxrv8uuIdCR9JMe8lR2qURL7WbJTSf/E6ZL194yMGa3nQNXSviPdoIsnsNB8lzMF0mJ9cBBLknY6GBZRc49grf0UAX1gnW2u80xa0mCGqEswmSNlVhEwa2QORjH+ffKtbD29985090QGv+OcQyd1AVJ1mlobPbhv+2UbAbb6f3QNZOiGCyDB43+HAIPs13tFIZFJ9QO5Cdsq8o2cbTCCgM/sr6n5RTeUE6c5pjQt4qxaTuQG9dAi9SoAUZ4+AjAUofL0K10MKPdw1mcKINwhN5xxjGIcEgchdR8fsENIz9jTaO1yS7e6OMyc0tu3OmtYgbvi+BD89Qw4wQOh669pV30s9nhsbj/Sik4TyNGmwTOh6VKphl37RxDvmyTKTq+GAd4LIL8fabFQ8v1vJ7thIfwSNlwf46tp7DeH1p3V6Gnqa3qWlzDc3ONA4YXizySoYWAjorQCs/sKbFqqzS55Gzxl9zxop5lOt6ebmzEKw1pa0yuwIAoeWN8B0hZuliGpp6+ffkX+Fa0YegrIL/Vt2GmTqeoLXK4KwfPMjLNAxILXiDkrPDgLFgc5JXn/no2OuSXl5uqoVmxckk/NS9tOdKe+VhcVVXajMqZUuZQrWaihg5gkCZpPS7bAXvPCT34jNFdfZWMxCp6NR7lzrAme97AuhioKJ7puWIeZsFYFCayiSIivZs9tg69+9+nITjPR8Vh5zFbmcMKPX0pxPhrB2LAKWnMDnU05bYojZwvmMmxWbxJxc/yFYOXNynHZm098xvpe8AazWMBbb5LqpBhh0OWvReXv6jqdtlUBVHf1m69vVewn9ztUqUntpc5UO10sncr42gLnldRbz+jEYurXJeRgoUKLGZ5gCxDEsX+TpoQB6Y5UknFpdNruGlGHg8uxbauCSc+61t57iG6edlwtgpsEPbySvpIL7yHJRPwJbVzHLdFiIcdBK1kbHXHeKF9Msdfh95KDm0EifE2/daE7vsOPSwJK3eAhC4w1G5iZSISaGFlJYMOpmsOWe4XgxAB6MJsWDH77n8qtyXlZeLf45rV9dfgNkwM+M9o/iOawGGNf3G6lGyHgn183x4iY/kRYq27FeWmek3tdBouVnjjHC6toGpO6Fb8tFZEYEH9NobyLNFxOl9+NJRULj2/OOZxGwZy1KngTO/CT9YR/LAtW55I0dZT7gML2ue2kkpt8AsABjKgbJPIcxZo9NC6DHPEoz4qPBBDmKzpPFwSwMXdH5XZRbbKJC5GM2MLMdc9+YteSOiULDG7PN4cDdHCSyApQnXMB1UL5foXZ2zprosjT5phw17R0LxX5m+vrPMgD/3rPDlg8GxWcahxwEDwlgK4+F/GZvKHxDROMobMAcZtZOV1s6HQf0VEYvOm0vPmn43VBZMwQyS5hwuVWl+1APLVe4mrSIIxdC4OfISHBX9Tvu2lW/CItKNVJjsl/mQSSXE22dPeA++tmzn3sfDGjgu51fK5QZ0SRCu6em9RPq8Tx7/+AgDdd6ppOB0yDmXxNPx7hiOkpMvLC5V4hjCV2rKKWHn6ojngy5IU3mElP0Xx1jpsSNSoJOpHcj6Dgmwn8ekbO4kqWhusQ8NeYUjyi34qCOy3UcwX3TIWEE32tSdmpmdG66lw6EwQNrips19MttKI882fl+A6ACtsEnusUfwYdzskdPEWHmwbost7LSGzPY3/7U5qAw2bT68HwhSwboHbLIOT+PLXUoGtUmwQxI1M25e32Bri9TPPCzGRSsWCVbd+MNZptkV79bl94XvCUzxkEsWJAaZCcjD41i1jHv1tKqtiA1Dd24ewbC5LRkWsCcPy2EHCR6XyOhaOftHItnxYyhD1V0QoGw2t3nOhF375B/sBKtk/mNj5lSeb/+T0aUHCO7GiXt5S7EtPDVgSLBGV02bmXs368r0sfKGEcx9ZOS6IH/4BGp/Mr1ye9g4o6Nj81QkhW1hV8wDB85qsqXz2+22daWRaZKHOPDlUd44nW7y4gog3PhmX0wQU27TFaNErPEC/IEEjPdXjhUn+CPjyyuHGeCxUJQBY+vZ7nZE9VkIoDw4V8yvIMH5Z261mxm0sj7lllf4J2vxBen0qBzorZjxK0qsPkEd+PJgKHhR6cJ4VPpyRFVFJTOWxVk4wgWSzQBu1GpciRBlrMO4bH2bY/PobYabz097SS9nzMA9f/SR447sawvCRgrja+dQqX6FUA/BmPRRVT8RKPwDqReY0+QXanswADkiPLcq/qf5HTMLszqq42SEmSLaCI0vj75zRKR+8f35P7+3sS4vONTEQgbZ9YIisMzMYn92RP6i7fUqPfgcS4Z86QNu2uJTREck+TFwTYJFOwY+HLQc/m9bjxj1BwmMM+iUIa8ponTM2yh5M5HvKQq8HKOOsRW4Rqdf+sPqe1b0S4l1OBlyk+ek0Gm/ZbD+MHziWHtFfvAe4OUBGxpfD+01xRTVTqZxn2xz6wDwmu/+5cQyec0TE63MFvhtoewoxwbwHGcxmVuNV8aNU5/HBwy68O10Lep4MONcDYTK+GWS9TlOmNseKfrJ+t4Pt+7wHIkoArCr4qJ9icgz/jvLOkf9ASl1/3sKQF2XEglAjDtEcTxM8qeh4H99jOLVAebaYouRXMDSqLDJAQS6zeGGI/kTBxmFhwJtd9yR05Kdq/HF4kb7JqroWq6ZVr6DmVE8c6qeW6PSMmkFsTA5Be9WvS0x1VZLbuSfrdN3IzHNwIUiO3bainpJboqVklVvE0IFUMJSmuczRTxE86R3270CaQQnTpW1kcjjSQ7CQ1I9opbRZMyf43mT0Tgr2SwqerlYY3rvVogRzJTX20jL1gcOkoooBHnbWpwKFqZwt+6V7VcV6uf+0bNGV/7P/EX8hH5NUD/OXX+lVWlTnWZShj5HkQ7iq0+NEOhWC3RJ4oaclOvZ6XCVhKecwarqASTT3Edgx1nJdx/HGgxPDLTux0Eu03mEf+OYtflEzpocsjawCekoWir+8A3rF0yA3/VFJu4iQMGKZy44i2j9n7I3wlh0FvAvTyMoWBmjbBGpfsCk42o7/MfrDyrOAxMJcVgrNDdi1F2j88KH3VMgVJm35mzNGGKvz4BTRGY+qAbrSsgx3Mq6pKrSIknqBPdfKKvViba1irgfBdUZCxeOCDnjxh256VwnkD6jmYQH/zxI0QpbWPaoJ/Bm3DECrcxNloCRqLzRHKhO2vHNaYwamU+noPMQVMoyAq5nWMg03+ZD2QH4fE90Fg8DZhAt6/gwzxosqalHjbKpk/jQflg3mSBgHo07eUI5dr8ushGANrJOta2sq94d3PN/QJSFrjoyUCSYAMFy/U8ImARhbGJia40j3i6F18IRrqh1b6fGdXxT7OYYLWFwPg+Gz3K6/C0ai4rnW8nX/yEL8OCMH8rU5Vo0Y/hIsqov/bskZjUk00eUMt5VT2MW3E8TvS3wyD0flgKsG9ASlgVs90kYIEiHLKgcrraSONR2I3JxPHqtYdnhSBWjd8okf65rnKJ/Wm7nsj4jQvpZDLTFsaEbxW2OmhRocshNXeS8JUpx6VIjbNE+SM9Q24gwC9Z0BvRl5F0sJiVyAB5dXv6KqSjMEsix2BW2N0MZUWN4AXMJZ/ez4VdI8NjLwh/f+pqI3bauo6XAfa4fnRn6zILBAqJL/bZ49NzkVco3rqWsPcvy/1pfCIerhl3OvCsc6YkyipJuTAERY0R72mJKZCF/HwLWsHgBZomRWXL9AGmM5dOKyfcORtHKMO1y/ndLpnNUCHo2vj9O/TuzxOgjCECTOGQ/3xIUTYe8Yj0dSL5D6RqU2XQKP1rZSFORahbed/RPiGp3wOpBwzAuC04NYAVnmzKUakSnvV9+cU3Trj1f/1HIHMq7R1OMG0hF5PJH/scrNvbxw+r1g1ZNYH+H8cUiqxxrsiH60XUIAyjimUjW+HpwR3ZpDgrkicAQVwOMcb0GSoXsfoToRr/42QzdDvr8/+THUu6EQYdUss1d0HWHDG87s+5ROpOHDV8ywZ/Rgo1MO4zVAG713zkIlabkIAanbGBW5oZ8Ai1BA/8w4iQRQs/NWl3pPCM3hePG1XKCzWMgEAQTKVZEbJLR8PaiXlec5Hd3B5bNeNAo7Ild2qtQqIAlrQKGa+pIchgp/8kQdGQc1t0SPoA48sreuurQYvrpdxFMXneEvtkGdSceXja5RIm1sUw3M5hhoNhUvhWM3GGj2lR4fI3DOkMsmQ+Cpl8sUSEPl9qKbz8a2D30t2qSLgQ1GFWFGi9D//+XzhUAxOnMiKsyGByji+3hlRO4ZQSole67pl6wAPRZQM3DdvNb4vOwEGvbLbMhV8AgfSVCBuoWmHMI5j/1QstXPBE7fb1xv9548VfYIAvkSq86f2HghYZYcGLnxfyM3tjMuYwAMVp2rgewTDBhyzzQuUYrWjJCmgj4KNu0ROMOgndFdamEkpFntHBNXspFuR1TJNR1dlu3wSejEaD43ouCP2FJB9T2TfKCsP4TjwgJ2Y917jFDgFZqInCFipxT8QcfcOv5ynHJI6Rw5YDj7W83lCs00IpfCG3pZCGJD9BXAKPCPWcw2Jl6sDI1P3aE+FO0NPu1xzMD2DoYcr8gNjXKecQWgakG3yjnz8/o9P4M4VdTfwQD6qCczWE+mJrnsGCTUUg/83udE/AaeEmo63YjNwvK+CewS4WkMAFoOslUo+p9C9TIjaDm8o25ZvhPNgbQc7xc4wuHxThyJzlhWpGtW1OmuewfbLhZshwy2lk/fANPC1Mb2cSfIdNfYANS5h/nllcvA2JIXbgZRT46HlhzOv82+E1w+lBMnYtwYE6faNz9JsetaXzoYTC6MBtfCS11l2vJ77inqkAchtLAdseX/zza7iS994DTGgWMbpxF59Wg3q9iRaABPhY7Lb/VeQ+0MAIvB/T8eRsuKLTDUkEJ8CdFoQRpywk8O2xhRgzuCzbW9MzZogRMSSBXIBDgitRFrjkAel3shvDSp8H9bJPkm//0dmnetLFcQvnRMteIvcHwK/45vsywovXqIc2TZ4lGB5xMS3T/g5cC8j1MnyN1bfWyUelLby+P0YMmo7Wz0z4yo++tqOXIBh/3q9A6FgMXGzjiarlGs35d72v4EefKk1wr8NkidcUxYBOc2Llm5i9Yf2ibOkiVZM8HMwQw7+qicf/im7ldpcxJEICzJnq2+YIyBULNEOL0lLWPfoBA/dUMVPqN17N2zmwFnYcfFhJjDh7zOcnDjkAePvtpkmtsWuZFEbkkduVhYbYb4TUE2kwWQ4ulEV5vW3x2GYRjfpTdA/5S4insFHZXhDsQOJH/NbTLUH4Zk7+dkuBiKXgsgUKDH3h/gdlMorumAFp746AFcZVyshl1NoGBSg9JZpGbeTupSRqCfAylvROm1yXqtJZ6ErOb9TyixP4+UA4E/BFEV1EYESloueisv2M4RH1iN8bUVrszjkhnlarxYsXtq2w3S1KJNen1Goy9lb2cS+LqIGB5WUvHj+7vzKS01sHNC9MpDViBUXdzgCQuvASTilnoROGGV7qqM9TuW4XaHGwtj3nF36s80f8jhOV4BAHu0ebROd2v0/IYKlquJ7sGK0Mnu0l9jUEVdNfhAeU/PMoPxBXd/wrLrgbdjCygvAIwSONdcxHqzDNCW/fDJm1oyO+Dx10FeTqGhKg686TmCr5jSTh2ML0i4fCj1UIhKZrOllYSpSgOjcqCo46gijvNl+tS8fSfDPlJ5gp40e+GJWsLrkQ9lHzufOFapuOjQ/XgG5pMY0jptdA4KiZESgCJMT3pM2ZE0egorusu9LeOvRssxmEJzPaIs1nm6/u+tTaDd/Say3rH0HX2kZCN+T6vSjoALOhMKbMdXoYyo8zBKGzQqKCE1awqiClNUXRXdvVreBHP0SmQ0JeJujjDuGCSEApc8LbVvca3DaKiLpsWLXZPZfKCvR7FpXEDrrm1IDGws+WfvlCeoA26NqO0p4XhqfYahCI2d/UK+hFLe2AUJuKcO6zQA0Vmgd00qS0gzy2p2z2YTPyqguKh3BfDYTxnhhIJmwJPCOU4w/A721m+gVeFrGgkdNwU8upb8IkIz1Z7nGoeN0DhXGrhYoGecJRqHqNz1KJ9HVcrUmHPo8TMFtilFm8FmZte8VC1h3/Upydq/kjQQgQEtm/WoYmiZ2XtXsJ3Oq8HJKMrP6CSnDX+8QKPXzovQ/oLysusdcnMFos6hyqEQJTePXWyGt3jbDiopZxMu4kfWyVtLHuN5VGxZ6o7EUfL2rg9By3Z4V8AaMFpz7XUVYjLx95s2pveSwUL2IFK7XIGYzjL5tAWFoPyYYr1E5TeD9aihA956IN9Pii+j5+UJAvjB8BW9JryjjRLXb2OCgDGt9QA4nz/UE9EVVCvl/wbUmwDZjqWvGmlmfkXd15cGik9CABEF4isInjLJhgvZFSoAqiWqmkC4wb14tQqjhOAxoXTtoAFY0LzjE04hDV7/swf7VVZjDOxKVVSvipXeqtkucY1tvJKNo4CYwLCrMVQ8l+JcTfe6nigdeNzP28Y6p4czFc2itcQUy19dQjZ8TxssDm8XiCcVMKylg36Pt5ABVSEFjzkkXg7Nx/fGh/TbOZ2/x3hu42mMXSE29T1UQrdzdV2QxDfvm4h9jH+tMMLXxHzI5C5Mjo3Fk+z0QC993sCEZAyy+RtlSVSdgn3JO29fj7XtJu0isikTMmCiOi49UyQesXsChdHpbA7QuIPW/JTri/BoJ4RfGAuLIWyxcv19GujNhYYaFgpWYAwWJD55fIJuKBXRS8hpXRJzzCakKgNCOGg3GFSfEUg9f3Xg7rMXUglMqDQmnq7h8Ryq27tzE96zwh7iCzpolxZoYg1T5d+M0p0HciGFWz1+nm8+4hBvqhQoB+sJCsNztqiMuotBI9O2rOOg86BCMYjCfM1YDY6OUXMevEkRn6NtGQcdnYQaB7cIIV6UqKM/B5H1B2yBi3gL7WfPQFAGweIiESfTHwjMTIGwvEERJkcpREhIlVrR4rdVZZRJwZDcOUnnYqUmdoSHoMgf5C3jrlbq1ODj/H1BVWEBI/9Lpi/F4DBeB9Indr7ErQdy1Z/Pn+IudOKXMBB4hgnkcG4J1KSXRTxyTw9AHFxfNlSx2DefpPVEsL1f2/VZGWXfNs86BRQOJn5zk0jA1Tuc9G3kSIuXgQEZkTaCBKQFgRvmf1vqvTLGgIQT9koO8zygqoctYIckVSOP0yAT4g1XT+FwdOI9x4Eh3DihinmmU+2rdphdnoJwMERXZQF9/IPS73s49el93frPJ0kRU4dYnBBXjxQcupJLJvWLve3CuWD2YaRA3yJTUaCuLx2s1nUZg5tQtfwnNPsFxAuR7Ki2asgbEUPwlIwAPkD+wJg5XWwZbkh7gnJgfNuG+JK9jBtlKrPIjDSqLUWWw4bRrgKnJtc9X2aqK3U7x4RmZ1qZLE8bkxjRibUx4L4SEwOYPCmsU/5kjRFXVmKZ8+rdEA6+RPTdGyQ3stHf3//Za+6LyOAkiPI+yX8Vi9Rr5OLznXo48HEspxQBHG4FAXPBt3KbPFaLCXiEC/B7O0XisAsbeDDGJNZj1cQwEbz2XjwWg57nnouSzopO1xcbsp9A9sQF7eZhM1x/UOuJ8kYVMAf5SmBSoTEoFXMHAxNVDFT0fcWHnyofrSAult5Yrrut5wzaq00DtWSJxrabqz7/UXgkjymy8+T7cNRcbjzZJtjZhxTvREe/wPwRhQDDmAiuXmVlOHMG+O00RHLY0B40d5WphAaJMvBuX5HG+niuKlF/p64ReyJ1JBEGHi1lC66VfoaLB2c+FRYTVPXTuOW2btJ8d/RaVDRI5XupbeSd6Wn+Z7Mct8BevCUtm3QkowtlPrsc4y/WBojIWAwfHEl0KOisJUM8v61cdt+BypsrW12arkTgLkzs2/seQDqmdkPitgQLXtCH40Mbtf8V0ZBVnZsKEDtrXa9XxS+zc9CYG6X6miSTBb/t7KdEhJY0Gx/oEPenAFuHcBUjqi+De5adY3H0kgmHESFJ800r1HngD3EE8QJAD/itx9fBjaIb1dwabjkERKAxowJxpsYAmsDpGbKvPP0Eti0oTiWGMqVNqKss7K+lya8MYwbO/1nAecNo6dlZBjXhAz6vFFE6A53WQiJR5NFuV7bm/kPwzDs8Rnl39hPuTR5X7NJbNKhkL5cdV/9cCDFRqCX4+k0MdonspMS0Bnip/jdOg6zABwrNHeqlyBhrKXltbo7Qdpu+gkxnCWJHGnQ6eAxsJ1mt0/Gk1TbRuUNLXDqVO9k9Hxhi3F1SkPggLBc6pFnt7q9AfAemQxkJ+vHFOv52Mw/vusFYeMqxGXDHEUfq2WkVIT8rdvFoyVX1ree7AzO9bxJb3Ife8f8CBj4OoMeb6nsueSuZ8ehajQoBlMaur/m85IzbIxgg18B/B249Upcop59//g3J3VzpLKZhcmSQ45/l2bmjn1ZelbBs4AAFGnXRzU7vnFI8sIFHt09T/X72aaJvvGKCMZC8pEVcKFFmsQdePiXK674oZJTPpYMa5FgcoUxuMs/I7OpP5vgUDWccvEA6EoGiBu6eGy5brnD+37jc+4QhtGY33uWY6se/DNo4Gj8MC9pOjWQMAoOkz24SO6TGJ8+Y+6o9+CNaGJt3eLCi34H5XoGMnxK+nuxSrShKF9G3VOTsJnPAtLnr5WUJesBm3DNg5D70pLYRQta7UOvRUnAVU7TlP/M4O+kFo5ojB8S7XcxOXIs47r8N3ifrbYdv8PnL/VYF+q8HRCy+bC6hPX3+4CUTsXFRcVyjEtH99hu09QyBItHgwFTpIij161G/EhytkW5ozcJagaFNEimpyutl8+m0M16tCAGp0b+JxVm6W9PeTPizmWp6RSFM5PGRmoMQ7VVVLKRgPqYa6woxA6vq0+NJ7F0YrAQXK3ulBu9Y4BFeAr3HOCnoK+/oq2ZbUlOUvmDYFuvuEBPA7RQ/9AFcr0w8RyIqB3pSmm2HRKUbrfoSeXM6vGKWgyD9yd4kZwA82+pQDetNjZUhJm0a1vSiVxM6TOkTVkbsJgJZWs4jSJRXn6/qPrGHxzxXFNS05qRWPZpZgevqWWP56TOHRrYhUvmhFoE4jPd7c1CRoi7+d1Gdm7EO+JhCHayrAPs6RfZl+3PEknpGqF1FoSEH4lGQU4XWS398Dj9WpP08Axd/2TWBczsFyR3vFQ24nyEUfFxn7sY5oGdAzW4RoNds5AbSMvNuiwOb/fSm43kTxpGWWDDbGDSKj0KTa/IjJt+dPN/6ctNUY+REtLVo9C/9fdC7Yd2gI1McVf69FPnevLAlTO2uYvHR07pkSYXrU7Oc7LUdC7wBqDOCM3rO8IAPP2FY274zdPfzvAxmA/oSS4pJs7dK+S8Ib/AWZgq6qsE7LHJUNtBTVo/7e39DEdM0eiWoT3KC4LLxMU1JrWPitRExkX2aZXv1ty/cvmnaRzSveQtZe1Z2bvslthaLMFvMtCq2ujG/nBRKHiYzhQO/ORlOqhb0JblknnfIr73iugvursdMQXbtSvCv8LGZv3qw1XK3e6aYDr58w1yH4K/mbv3p2a1GQlRVr6ysCY6ZPbg+6gV/Di9eoA1cJV+UDdgU2VvbWZHSURJj2UpdJDLwbYwD2rIjqo1+pnjYnxPi2TDu59E0uWQD2lgNdBftLKB7b1HjU9p5Z7hKQ5virY9986slfdffA/WrGMomoCbqtgueo/1ObSPIa01GdM6UT7RvwFG0sEjKR1wlxQq+hOInxkFgqRWkoxy3seIVu7q+C4hBMiKvX+k5R9AiUd8kdsatut0oKBvZuvyjEV6fB2vbEZVB3wUwGTo8c0voJbtBgB9u0bOVkIwsDQpcHtBVKN9qWhgN6xMbiSjp+XSnl4pT3F5gNSlQ0iPvbTVE2PDOK5Z8w25E13N1qU+uAUpPDWCgVCUkyvjTRflTeilDrhJd02yuiYbOvTNKQ1gSs9rzbb1DhRA0HLQjzKU68AnREOAm1OJ5+riJwwulj5FysGNqERqCxrf5ZMZHHelZkOPwet63TkkDysMg6sa4wWlwhGKA+jTPJkOmy9mUNQFzCyq4eqYT084SUdOaLoGq7vlD+AUPUz+pIOJDP2BG3pQN+Ld+OP6Ql0CC9/q3/pvYVCCX7ZoRylL9/+utSfVxUe27P1ZPZoWu03KEk29fHv7QhnkxTSEstEocwmyEr9v9N1Fz/J/qT/fldu/SenOIJya6FMYvzzO8cTW4s2HkeRBX3Bmi1LYE/hPRQkDPGmuywiYNzaqRAdatGqXMPNKI0neO1lN5EzoAgLb8Uv9Z12YgOShD3jrrzf+1rlfJ7zc+G2j1IHBKfYN2hPvPxhPM2kP2l/AxYVjVRkCzqXPSYtsDhCF8ctB12H6Qi015z+911uXfa88phEJnpWPuDTeFagYx8IJur2UqksQnPUj4mehAUGgQr+s1GMYP8RdjtVKQvkF7N2vxLIUjL0xKj/bKdTsU2YKMDewAPoLqXNZv7au46h3rGrgBm6Aquf5jbZLj97zZia/hhLYYQ+Okl1kMFZM2mXg3sYIoDED5e1c5EjpoDM0b0HAEUQiXNkIcd9gM/f2LphigtNCWVW+spyCYIjSz5JAs0pORORrAiiOT1c4S5906jeWG2GChV0TGh6qgiRlSzCk+UPXTMaD0Pg8kq++75YXm6SVVzyPg1z6YumR3jg1IDS+84AOdMo/2JYKdU+G6b02nvTnpyGt/+xzBNeAOhs+RPcJZUID8xzSsjMvN9D5D35xu6l1wv2YCpf2WAws54rZ/sHAJdoOgjBF8ZCKtSm08Eecmuaqo/ijtYLgFOuYhtZP/RLEtBV03osLIF+/bhRB/oVaTiYjdSdsJzby95BT67R5ccvcx9YICupJtv5SF1/aCIjuslygHvUDgzcXMmdN0I7uBqe93tVqTGCtQQbPXw2RSKZIeUfRz4ECitLrUsUs8d3ZmJpzG5gf9Ajr1z4//knJ8/rFLtRCHcSpTVUuiQ4Et340+ogtjDXUSHzuVYlAYTHKvl2PL/FJJIDq9kz1yTLaCVlq8LSFSHZsENRkIgX8vAVBg6ZoyQREXkPosea2uN+06w2FWvA0iUnha754WXOeeCsjPC6zBJCD6ubixO47VoHgliZOyJSRAQs4XVcWdUD72QKj8mnPEd3zxGsdgKt65dxZUqJb/33dRmvu2r+fA4xqJdk55cjeKrkHKPNvWKc3oKLCdOTCJ/kNdu5C9voSQ//T+TSddJqV33Y138gKOKZCr2cMYBoxnqguS2AzQqqvcZCkuZ0omPd7DIhlsIjEacTpuFA/Mb1UoOhRIYKMFazWBs+hLY7zXC4I4rWE2rsrRj2VAO9hR+nzkUk8DsHMRSrVQK4sQM/ZY9dib/fnBb0PGUNKvwV5EJkbUcWzfcS7YfYoY39wQPA4kYmCSFwlbhL2V/2r7IR3ulODWhvGiyagtzqbmknJ6rnxDPUFjiUFhyTgeXVB8m7nBq59py8VhIt/jmp7L003iECj8VQxENuvojA/ENHH+jEVsGFGZxZw8rA/H6U5hJ+fDvB+o9YoQdECJnjMJyvtBx8kPY0I+jtjcQy9dVGTqzW7zx+wmjDNg59uAYS7eLnetAh/Nv9baME8xM52gu1vTnP07HHxt9cMdsdz1ukjMPLJEROX1b6R/1+W7xyorGxV/yQzmL6RaP/Go6Y/CAAAAwAGfAAATMpBmulJ4Q8mUwIb//6nhAAAAwAABfaiSzo8ABCo74d84vuMu3JOt+CzrLXM2JbkndIbg3tF1kTXlj5rvGOA00SCOk3G6zhXGPM6kmo/BzhLR58FgZ5ddY7TX37Y5FIBDeTZlAvOK2tmEW6rZNN1KL3Wh0JiO6gLk536JG138z4OuxDxTAscnNN4wDUVFPyrqlgisZe2VdgNf7d0UoOc+ejnv6uMBRDxxGXbkol2agKlZXElY8SXTLSA4rdeOOntPnhgJnTiMAEHwxhuoq/lrtJEpiG3VKd3WiqkWHsMICWt9ozx2/sPMmHs7RFHMLMRbctpY8DSI9TwvxVxA4Pj9tQus1iakUNU5q1V09hzPaP/ia5iHlWTN0KJIEdCpLrQoHbTC81Db0US8oWAat/nVbVHvq8Z+137g2VxNszeEovqHO+28FFFMCxjsYB1ckJipObWtZlzr0+q9ohEf6dK6sEgoszc8QEerWLLZT9qswU5tudoCiKgPicTWxs3JhUWrNSgHyF7tyKf5xlggJoNWRcdnrjkN8QiUukPE8yn4uITOQZMTqCiww3fO4R0f4t7mFyCJEWuaJm5+wR6tvhXi/Xvi1bhzx9F+eYZygLqTPZPojob8pKnCfsFONGwFt97WrjMn08BHj5htvUt8LFUTPat8stdoMLoP8JhISGWyDRsfzlvpCCc7ljRc536WNO6rLq4wrBR8fZnjRhRmACrTSZSGxzxk0DwQB6FLbOCCoTmWUH+SLg9ohexp54xI+AUVuLL53r/RPLXdTl5ghCKKcQ8PM9pBJ/XX3/uuSxI9SgPBMT9gzOPSwMftJCtVDnNsxsH8DKK6xxZMJFcophIzpTCgPQOVX/ds3chmXFHwLOeb5I/2d+otWmYn5Ro1y14kbFf3WQuG54Tdet5RrWCvw9ZQ5LeUTJxgQrfDagQJtV10JoVxQhkaW2KSyYK1wyAjIpcNg38pdOyITqDgCSmi9XJQAzPnCP1ab7WO9oHXVSp9T9wt5pPxqF6ETSK2ROOQZUC+AKrnaZjyblS9h1lcUHUIDzyX5htXqT0yzbDEWFdK/3j0krlziqRZ4feC6KIJLv4gDYSim1Bu9DmJX8oWCV/izfLYk2yYrOBP7MS7S6/62gn7KFMfg+auCCnDk9jjI6BujzQvhjWOM+LMeHnnz0v1o/zSk7p65lipIZWu61vnH0ogjLxhWXTq4b/RbihPpBuXgCvDuwKk+M1xRzNdIY0apjC0rvY6lvlBZwbLwEP0SgDK4v47YJIljqpcFFt1BPk3kKqM0ksfWhgA2k6KTz/KcFVrpvDRSrUH8rjL11a4moa+Sh23EU09PAcfzYwRTMclEmr35u4tG/aNkWPtbEpKAbhDVmJonTE9pg+KfRiAEFjjfGdA6qxwH232PV9oWgjOjHKtnEkJ/aBN5IClfYzmyqUwwVBEWJWxI2QplaZ+X43j14TvlXk7rVO5oY3b1r3l9pE0SfQUXz6P+xSxVuJQKNAnl9r8lmWVkpOWVG4OvOi0L/tSe4A6gn/VwC7EDKdd7ZuMyFnIoWCUbgZAfQGIJg2yoX1XDc/wT5H/v32AXT2twNCf6VxZ2gRiIZIwQ1487UuB8/N+l3J77G0Q6y5VOia7OyingfffbeBmNYN+eP2CmbLlVOlL8EwuenGK+aP8iEl2poNBe1K/5m+6Ei0+Sgj6NkgnpDQ38dqr0dDaIKHDPNE2rYIcxiqx9x0NJ7uKxJpDFrhNdoMr90NbRV7il8tkw9IEofIfTyXKE4cWlfjcn9RhIbDuccXWlYaJTkJWCLnkQULp/r/cclQB0jehnQOzp29GQGOVHVxTsWHQugB6dRRlfpdaN6PiM9SiWNdyAn86s0NeSRey4FQVrLuyCzJmyMgHXq+xbs2fbs7DPdpsB8Dm9tX8b7DUmth6iGQErqWpcMPaKr3SmTfL1OHe3bk8mdeREM9StGz/YNUiEMCq74mou9yCNld9IVhy0Lx0NIOFULn12VoKd7yEQy1X7amSNUPcjOJkJf0fhiRPZ/rRgtkQxXIDIl4tderCtZtHvfCZnzBV//W+r6kk5aijLj0X7c0m1zBoD7G0Tdw61cSN0Q9oyeyMSVKNDfXfnnSzFex/636NQz/zMhOp9xaaUG6et1RrwX9LvnrCBzlS3/i5Ua/mzsCPcuU1F1jt9RdzfUayVL7asAWfyWbcZUiGoVKirDDd1zKeznkTZZ9ZpxUJqm2rH1DrWNT/3V6S+muY3S/8/PCqz4i2tQfXS43ZwA2xcBOMO4S1s1cjZV02w4FOUFOcay/vCYbss+JXpfGzZRDQb0K3nM9NuRPW/F9zmLuGKCNO16u1pFE6px5r+P0TrvxUQoFzQ5lAYjBz0GbJyXe0vS+fiHZ493yYkaglBJbh3HZ6BzWUxw+0SmNT3ETq1mZJvj5mJdQ9jcgg34Tg8qQA9WiJOF0CF7jcfhAKm9pUcZCcL5llETY13CSGQeedRrEErlFEhHlqk6h39QNWHKNX5k5eIc5LbG9Xa7lj3fdXIoAyRNg+sm8iMzZtcQPg0rAzZZZHCEjRQsKyv6URoLYjq3GVxIJqK6BbCUyzBP0aXdRMaheh1EbkyxoS5c/f4a1OqGeN6QPjJwUSJ1WVRh8L+SGm3Ko/FxjXWetf+zRm1ETl/+a6gPKbUQ86wiNHBuJoJS5wWyH6uab4/E4VzUSrE7CGiWNb2Ny5QHimZbGOP3F8UWkV7GaMl3pTsbcrvh3H17kt5353Id+p3kitblNUY0Cdmc9pQZtwyu6+hWzc8cx6HlzOsaxq5GoKENR6TD/Y9eDC/gbhnfVwAf3dOQFYuc9eCYPqMlK7ehv11b7k3MNBtzMQL3I/54YZSUJQ2BSYFAjuFpLhkfFogl2TJliIYGd3/HKIlu9mcxKjKlDrtCQcF0NElhaHb+Flz//0ZYlt+eelyyQ6u0ECCniTAO+77imX3sA+5AAQE5vCBnKHplugWlLyYsnvWtRhzY8mvmJsRTt0KOtH36V/JOGkJRIZeyCu12fjPOAgbTkb0dYB5luqkLXr5Kf2V3CpBL1I22+6s3UMhIctJaF8XdeQtTU2RjWJHfHeYcXVkf6jvX/RO5rOtrbyeROkOb5lwGEHPwNTeEwlcOwrug3BR4Y/gXhdTj9JOdVxeD4yPHJLzFbz5YiaswqHhh/8LJJGD2lbY8cA8mdCBDPm6WIoxhSIWHTIHvCN2sTthVNTXIK7Cm9DQunBqLoh6G/3LrOuqo5xnTHmxzbhCJf1kTYY8zd6zlTI4s+jNR55U7/QCbUNLKsrdwYgSsTXMgO471fHlZLJRJqihPmBQqEZ318iQa2kznPAf7P1wQTW+2OAwuiiZZvoQ/4Yz5qF8CnnrKobi/L1DQHAqSmDfifDzmEIAC7PYVnqXCoXoBMUtLIYRzfaj4xYBfqq7NyaacyHZzdvCjYeFD3KdxTPnA3ZEVLyKWAdJYFZVu1NZjzBMcUuN9S6Esj94Wzi7EUSCx4ob8lh1WDI73wEs9pi9Y/y0xX55D/0YERkYnXxGY1R8jxOBwnsRMOAm016twgX96noX1nWb8ajiroeovaR2UzFBdfTNtdP+QUs7JvgE4CpL+Wo/9E4Y+uGtgWJ565QOGLuIom1WFO6Ani421UVqwbRhtJnJtFdzfJKFZyx4J8OYMofmJrhkCjAYDUxBfAcJACaaGItkC7GSt8uOw27+oRvTwvthBEoAh9g1+J9apCDcqGYvcel06T/9K9wRLCKAiOtKjoIIdMDOULp2aSMK9RTqQ7C/8l6yELQPuEJcR1izaqrUFS7er/N3dCH6U/O54M3xGyTubbsgyBXNbn7vo0UYdwhFEaScjyWDyBePSr8iWdi69doMS9DrxtptQTGcwhU+PBu1VsGIj+Jo2mQuLnRoc4TnWTDghZsg2Kkm+jOcczDrvndbWkn8iXAVFKYzMqm4s9hu/zF1wr5aW3rXYSeenZ3FoNzMC328H/tkbzipNv88G0PixLDFx/tmahcEHlS08O0EV//oOrzxjTbrd3DQ8/DjgBfZvKbPBiill5SqjQYnYvfT1uw81DdAk4umtnzOi0+9X04V3DdNKoxi7/ngLWBSqYa812sn+5xk9+YT2ZCNVFmr+fVQNyr47+rruhK9VdNrgvBQaKFTOW8FJDEiFtelBkOn53UgopqEel3azKswQ2Cxn+H4fTtixzFIN/Ev7kzi9AYaD8ld8TvFV+m++8s1ZhoPT/cq0CuQ7EntPej9gguXmZjwblLb7HAeo/W1qLnAmLh6lCTiA5MYm1sjeG8gHONsgvMz1DvRrtYQByeJ44Rvc6nYG5JaGfpoZOAc0Z7t2eb2zeflMHcZ910uTTmOHQYWXqCVx9m/tQmws0oBz2EBM5aaX42w3VOMpT3M2yUJZDNmj4LdVohcl1APSYOwqwtUjTmR3sE+e1MPJmBXdwpUN9WtWYjftH8HxDqQZid0j8vxoRS/a7sw1ztm0EYAfpiz3W9LMgv4hFxyx3MAjR0SBYgwB0jfqDx4+tzT8puxg9Sn0EB6eEix3EDlgBCqT95ISj5dsOh9o6UbN5MpaCACUust6MYQud9liAStAdyzKTUWXRUbBwT20zm7TBYyBnCW82sBHWes7kxPN28Or+mMoh5NYKjRWWp3xoKl72riWAzSLFkNPsi3pTDSzTRHAZUTFh89rnJwDeiu1tnnm6Ymkl1EnY06qjQMrslqgok3ol8rkS9wIDWCItxyrMFFD5CmBcdwOWAv4OH6NOPBP9t5uCA+3nbg6GtU7IOCRFNMtyGbAtOjAVGQdXFkfPE5xHRrvsb4M50UNSE+0urjRjAVWOzILj9ONaNGzzqoGiP6z+iKYf5TYdRORAfzlD/zikPakkoESw2XMuYG2bZ7yuKogPfV0PHaesF8BQhnvhC78D8nOs9MAP9fwx9OIj5spC6OpXhqk/N+gLXk9AX6ATIkiCv/BXRsetvmxU2waVj8WCcM67940zEpttJYL4/exzT/58A1P1EEnqIiJWZufOhtFKEaqS07ZGi/StLZQxGq5x2beS5FqQUAb8v6ncr2LDFHgCjXJ1XZsZHQmt8QR7Ztnbr7LBTBG6QUDzzvyDAKlLCZgg6BURTiRN++kfe6az/FmZ2O4o0RIyfS3//NhwIOqj2Yl/VQDaQMYQqwHUQTeYxiEUxZLTNZmdrr+oWNFnl2Ft82OVc0x7uWWzvjvEoJEEI2PSVZEud+zqFuYFFZYnYAi9/JBwdlutCPAHOnQhgAJU17F8Byj8hgamyZQPR7ysOr9/vupPgMEjjEYzzi8Zvt/OBLQzd4ZeFAOAHjq2rKmJDG3ixIQ7gxndxbGjnr4J1AAdeqZlIGVdnhXXH3Wmqf2wrQ0rh0Ba/JihW6BlepqwhyAfNVrsxlmOi4g9b7cEs7lkp52zCfX0zCkK0zFfUFQ9P9xu+kdtusWBN1hX92OM+BVYcdJgPn+uqgzevjxv8pG0+8C2zqXzZoRugiY1hfFALVS1Fog5LOwlc68mMoUTgp7OiD11+bXLdF6b0HvP7kepKtXJgotSGHUUZkXjFLh4DqHm1bGj/+nI7RvcvIJrBxVddjXxsp+kCReX7oh4BG4nL1SNRn1mAy7dr+FDBignfZWPixA16zzAGjBl+mo/Ye4NKuBz1Oh+8ah8w+BZPP2dU/pn8D7qw1ZeB/vZjO2Zk0evnaxZCPI5Mt6XVwFnDsHn8DH7KAUsnXXwgndy4EpiYmjvOzwV1zIXELtMheuNjiyHtQDqIBzjCcNUfDCQSwuGhoRDIpxMoIGvqB0xNFrv6v7FXau1ZmUMgLOZkiKdndtn2tJdZx36GIIAoxMdfh0DcE+ezxifw6eNv7XxIFbBBXdnqtx3gxXWl7v82M6yGUEYcXQIo4lXEWzQtWWyTJN6p/+dxQB29RTZ6+fsYA9TNGukv9k22ii5ZkEJx+yz12Ck+pa1q6c3M+WMuhTb2LSxD/u3souX+Us+51GxXpzhM61VSXruSnWjjC+bZTIqq4n25550BX05Q7YrmNOFBqwkYrnj7tgj74bma3SsCLZkUYa9EUidr3Q0xt55ouZZ8P1ilc+08gF+jBUFO4xcCJLl3OZHzxwjHKPFLrNE8+mwmxj9HFho/MijrVquhb61Y8a3tsvWZCwPKAI/t4DtFJYcCyh/tBUrRpFGz52B9fqp2tjGY35KptyT/vcpF2jlR2rbZqZS2Tg8BQ1jgcMATJbBJjSC6VkBzCTVEcvIkQ3/LJZargLSIJdIIZw6ExPdzI/cJrGWvF/N+Hn4cw7VZAeo17mriNaWy5kipjwKIMeHXvTrJVhBX2D8H6BNcYws05OXCupXgXDWCAKgBPRzXSw/XpTehee5v6pS1bjJevZsDgoNu5Hh/pMSlreDrwePKRW8Sw9ZXy0hCMyn1UCDqrMcPIQt7SjIrkQL3F6+HZpUG2UrTe+wrUCOPhgNqg8LzeB4DkTU406eutBjIkUcBDZbTu96+Ch1zdH5PCwU2435Jp3o7gJOXb+kJ6HdjwSyhPaGSQMHerJJBuQqoF0pFv+2V1wSpQ3Jt94oDNngvNi+LhB4/dm6aENNav02GQ7xrLkPgMeb3fC3cOBc/3vwugxVrba3Ei3ZS0AHPdbb+I3M/27luZWFlJ8bM1sUqXz/hyRQYHc9GI//8x84T0A+N1l4BkaHiGNmoT65xOfEZZu3lVQgFIuKH/v4xiU4nEc6BoXoXab5zugIChW3j3upDXX1OGr+E/qiZZq6zKSKtxVHjvyCnsII261gb2bCldHDsxoOHMf1taWiqRZpffNZwFvY+fDfOLgAhIoLBibdjiFMoCYs8iVNf/K5KkLk8F6RaVbrHVyk6bz0+ambsmeN5b4BumInoHTOYg5QJIq2oGxcsOLkIJ0JFP7LU3N2QUo6XjQ6EfHPaCjqjRnzxVSgKwwWXQ7NAr06sI7y7GokXzCPFNh4h0FgxaD8++Jgm6ncYROg4Ga6JHlgHZlHnckt5a9BN3J7VeG116h0HO9P3M4R92XxcQJNC99wwjkND+Ja4sywi2iY1QStMO1eijw3KJl8VzmGpbzvjpc4310QO/wf7OI7lJgJ35LOsCjWGnnY2fgd+1k9G2gi5ujzAIsJiqtONt4rBdDZbmO9EP4Arr9Myavafy2diRUZUUcyxRtJD2JqyoLr7S1aVGwY4taI4pzRHR2DsLfZBWSyJQ8D4C5DwWU0XHAwJUAFbvk6qMhVEUuQQE2VndnVR+5/Mw56FsTvgYq5jandYBEmvMCisR/b8ZB5xS7Sqhx3f7+eTtDD5KwIurtWJMx6mAzaSfV94Yloa8VgeQDhWJhuywRDW6C+vwC0PDOmUe7Bfpj114vige3gb45nvTmnzFvBqs6ugmTxeheWUTCR8ofEAjf52EJqs7zoUdIBK0ksoWMND+1Rff3MouydjW+gypj+u7PRgis6Nr81UpxtbLi5PdFvO8eBLiHeF25hJCW4FOsC9WrCNiRyHX/dwPgx7RpR5UOwCYhfhCqPRJBMv/16YhB27ApEfaVC6iUMr0miXHQ5hQo9LVyEVDTndrg3CuSVVMnDD9tCmOBpzoNLW6oVca5z403edEEcI0BxyUyarHw+PO7IFjae2TItJOBLGdrKolepUyc6dXACKjQBuFkPJtH6NzAtjlL8g57l1TbkV/1dIJEAfOu5KRE9jbMgYLA3LdbgvonWhIyXUMAjVGWHWfNIY8i2dNS5CAeJ6xVDRmaCbPvi55x1uMr82A+yvK3DWGIvLK+Lm7gQO4gcQ7q6d6vmAtnJ6ZtLa8LKfJ6WI4hcPhAZR5rAPP+IGXKOPZkTrpW/MtSQubE5dV28naYizrGsZMyvykSZL9I8GUSJdkLKpEEIlJ7y+0EG61+hQkmM1T2T3YkvIgpU0cNElavG8CeE9hY2skObJC+BOnWyFOlTsAkHLTBd5eJyOmiruND5S2H1eQp3MqoWGlEdIYH9ASUCJB8RSxax043GSWNT7Ber7Z7JrsMrqp4izaybMUaRflcG296l9cWOgmgjlbcK72PmL8UL3m95kjG3BYOAsz3lA7GFdJ5Sii6wJYq8goq/ZObfmgkapBzBDudKdg8gN77BZGx/Bj0bqNz5MxlFH7NRwTNozD6YOc3gEKdTklRp91UXVS+/SXmlOgH8CQib82+1ILSUq1qd4Ek5NwaYic1SCon4046hpjUmUaKUqSBY1zctShYP/o0EJQzWTc67PSyyhrV8fIKworyBV67g1P3O+d3bnStK7/ZeCXoLYvC4z2t6kwFegas2FyH4KYWNsBmWPLr8ez0aIoE4loEgJbnSF4oMMU0FnheX0zGkL7WDhMfYzgN8E9OnHLF14b8Z3+QVnch+yeCOxVljaWLyryHcNGS3JD5AAUFCRoVyd2cAUL+8qBknS0ABzd5Oofo/vw794/xPAzX+R8YoD7/jQFmHejYw1ayJR8pvuHHHT+cw3dl2kmhFbpyQjKvpPHTB7z8S/6+UlFAPuamWFyxC4WgExiqymzaCCVH29Lq9CXLXbm03ff19cbbPwGt9wOMKH4mP1kIOom3HRhmQmutVuhT5tgxenuuSwQP87+p26lBFK8jmw2eXvj55dVa8oLSFCb8IRdzjS8LTVlma7PnOa29ezphwzbeFL4ADw3g10g09SgQBI5rTZ/6/5PiNN9UJgmAcz0VJnnfb02/rMXvHPVlsbCuW3UHuwY63D0Q5AGF0sxErbBY07ym43DT1TDJbxCd0qzcH3ByyKBmzkVkrK8PWcY0HFlQV44RylyYFessUYAUbzBkD63qpE8WKTFigOF52JeRtBQsAQ+r3bPwkHTg3R1J8Z1A3MLdYDiSu0HJvAhw0lFTMOaaENjglZw9z4QPkTAeIegUA25MjezpdP2jdkY2bH85okGWyn+d/pBsyJ3Iyzdn2IDRPHkzbXzrzBd1LQRXkc4tvhqZ1kxs+FIoKjqo6XpKEpInsjY92JPdNSXQseWDj9521UotUcVoATxh0HbtLL43vDroranJMcoVMP9MgYHm9ph7amWe5FLFRgz2JaQEWM1c9Kyc6whvZE//JpvCZIp/HIU4US2Kczqw+cge8zTKWZK694makjuayjCUuDuvjFlh8brockEL7xLTp8zLAnns+asNw1+/GOx03xi0Q42GE/NHwFPVVRuMmCZyfHOB49TGO/R4J9xxP58GmNu/qqLnZrdVjzSju2z3Z9olaIOBjHNASXxDKaybqts502hzdjZsV/U3LW+tPXuzpmmWjm5jAH77BsFtheI5A4X/emLeTW6S/UUZk67r1hMrIB6ZFDh9bhb+Q9vWI3Xj29e+KFno2InliqAe5NzsLZcdhXPTFcHO1/gliF7lW7SAXVKQ6tLm3WG4SqOiPmGDyft7YJQ0ZV76UGab6jnGuoPre1rkcBdBsO6+UeFnYuCrZjcV17QU1VG9RkRwD//7RffI0a8awgwdZrB7BDkqPVdieO6BPO0vtMdb+PF9bbSSfqVMnk+PoMvWPxw2ust4LhfQo3vaEK4D/e3utGTWMH3bTX41UTqCDA3BQnoOPRZkQ7VebtPca56K81Vb5B9OlxZ/49xT9MV7+1JD1v93Dxwx54NZuCLmxgut9zYAlCSKMWxJLjurvahupgh9RWCsGZBF5YDyma4dwhGw627QiVCCIEdGMejWSMcsWcES9rfjOuICtG+ZsoV3Chnq0FyMnjU09g8wy2hNv4rcBBqqwxaDyO8B3CGzhaQk6nkxUKt304wHiwdd5PHIyPqOqxp/w6LC8O6IA4M3HiP+rhOc6kwfyuMJ0sQzL28p9VVPnObwiMWf5BFE5OkBB3OQmvY2LSO4g9VxpYhiS7s0N1VG9Q5u68Kfg9+dEI+xT2MShsVYF/Ap4dL1rYQOyjvjcZYz4XWIEvoRty2uX4+T12QeYnYcp4mQ78LP+sOiPT9pFUrDjlLpU7kKnZ5P27ic33QL+gKxBURSSxd+rvk6E1VFIHxVRtRJ529Od850svN/CkilVKauqT1ByawWDBoo/ezP9rAIy5GktgSEVnuT/T98utGIHaQypFy8AJBK4WX1M3ieTPoNqcYCZXuFda0GBDBezFM4MBAR3JSXM7SZFNWSpsULHnlYEATca1VXpS1XpmB5LdISfaxZ6HSdRDagcMtUOtXUvfg2zDS9pmVF3/6Fyo1iuhv8Xkn6o9f8icUcM7wZL7j0cDclYoE4LNM8VtzUhpFskjW2gZa+XAbryOEqSDAGQprdLXX6bPubAmWbOlAn/uOEI1yHvKC0eQ4jiop4+0G6X33IUHJ6RmOKfQP5QGRXkkq+kU5ebxYJeRGm3bnOS7EYrbcQRhpOC7rPdbv3ZG2HRU3i4b/t+VUW8GWiHCalbDcLnCYzGx5mTGtX7TsedScne0hQj03mIKNUVrGJI9/ZiqiiJhTngPf9UmPjYN76DesdengUjWBH7JhCwiG8zQb3k9YWDu4xUFO5/Uz7pmEjqFOYeb0OWizm7hFcpBN6pGWNSZkHUwUFpc1Yhpiyl3vbaoYczjs2AqEYvGiUleYVPRZcV2nKx1nYIK3LZg6QBaiMsueYesQPePRrTtFD+OvlopU9KXfrck0th0+WaKGzlsS9k52guGiLJ7Oh1WWYzUDsR0CI5KaQLeOo2hZeT3mFfaKDlv4c6r0o8Ih26b1xYy1liHktBLocsRE6iLgcYCH8Qg8pUKmJTO2HLNN/vJFb/qpxI49TdlgGscXIl4VSyuoRH8oxcNoZuqmKB7w8zwrChugRoe+UDSfDbpT6MrM/NSrEE9o2sMGbwhw3M7sZgBPyu4hzufY9RT9Q6xjHCsRzX7OzffteGJ+S8goDnDULyewpdZHIwYDw8dTT6jra6SUniLDODN3G7IkIu2R/n8RIIznI14IH7UiJtpPZtPBkNnkO9FbIMACBnUTzRLWMi70TRU0THe1aoCVUw4P4D3qV6Gri6W7lSbhXEp23M6p4p3dmT5d4B1iAPQm/VCs1ERNzYhGYJW/69ouJ4Tx02kgo/cRKGOV/s4URQsh3PcxI2vM4yFt+J0MM/Yf3wxJbsK5IsMMG1IgxPWumBuvJs/iUMCs+suNYtCKSBvCSv2shV0VUzMhOhnp59UfyLykGcWffR8g2h5124O+ze6lNS8ui1uiQXQt7Bqx+YHb21G90B91jzlr1EoRa2rrrDviD1qMWgwTusNyfJXxALiVdQhEtv4jjmJIxxnYqCaNkGFjR13G/1zqry+UWwXNUzMYNR596ao8s1ZCU/GdxeXNQubdIdnYe6Lcw9vWFwXckDOgpAAc4yl4I6bB9wF7nM/M/rDUx3Djo1TIaF1vLoTho03ZYihq6sF8kqjWPcfUg7wbxWsZU/v/Pf+BpjZJk6qf39kOXGBSSiGzzfrYX0RZsZXR7d7a9bsN0nGNDqBl6V9LbD0XQM/xzGqUO7ggSn62C43BfBx5p69aC+eVk0R1WZsaniJzRGyGwZ7oddJ/t3Eg1gXRRC+Pi6o3U1LRaBUegrHeMsYoRivFyph+xBqrxlM1DrjS31s7UuJToSLrmGRKv0YnOEgisMo54yddsNtn02FjpjI016eJ2+c3wmjIDWrz77QuGZQWJQ9YoN+iTPYKX3xnVV/ON6BC2zH/iEubqvxU9qDkMOeQQOIgfbGa59MHrumw1Pv3jZMKglWG8x6PnLrsl+rq36tVFgGGa+KSrXDj2UiC+rhen2Q+vyjAxkX4yiASMSjrFEdvfkayumlOvMp6z7kVDOtNpFHsus/QegLx+HiGnh/5TSXo4PvRFkeRtzItTbHEa4KzmTZDVIykuiF00wU+eikye1gmUHuD6gbZyAyZBl14RzBtu4dOfOg/Y4lKqqE2+0R6GtsjjBY97OW6HyE4kJjGHuds3xxok9/KcxRBYdDwvUlRoFiJosc8K6zDqtWckW4X9dOBy8fExP+Cq7LtFPwuL+eg+ikpzuVELv9Uzj5mSWFv5Kt0peyZUQKdRlvfZspwdhtjb1CVhn0NCxC7U7p0puwrJfXJSY4BQFzxuW7+M7TlJ0xnsFaqVDFdB0YYu/aT7S40w6mj/5ToeX/jgu1zfGfEqlxjOJ/Xumu0f/eD+7x+6DuWOuYlCsUINBcjjNQANSF3+aSGCLpply3baFhmuBgIPXAGJQSSTuDbXyvadUhskgklIQbPad4y+gkjqdEHrb0ehMN1C0tCmQ8K1kEjVVY1Z0Qjh1D62BjFrh8HDqJo1KtvbAGjd056oMjYNmuhm9Exl8SLQenik1i4gdqNxBuF9cARIITfz8CnM8O6UtRmszLMLJkQg7wcOM4dqchvNn0W0o+wxPe6tVGuNzoxSNx20OhWJmrwTx9nDAYtzHIOrR5vtlGTJvTThW+R+oe3KUdOYlE1Ypi+En8azZGP1ZskPZpmrt25mG+fQPbyWkVzCYAqI78XtXkyylJnOaPXgeO1S/u1uo/WMFg/9/k11xA2eKXbjq7w7R4tqLyWkdkzmJo6JhxKV08ShcsodmiYx4UGfEU6Lhff8TXgWPSVbV0Od/+aQTxPp7M2YpF2w2lhXNBVDm94ezORI97x7SIzwNOmopzDXbav2qoVfDpA5sIqiRSIKKYXE4wi1vpmaaY/+OGV3VA/nubwGWceZx8UDxs8wqtzKEAI7jCoZjoF6Zrcw+s5TDnf7dpqFbmLJltAjSeJBU2KPXPJmaVp2kP7XnkKAu6b1fIucDyq6rW/N/Rxt0f09h+cby9gg5M4wU0FoBnqrImnUrBCW5K338Bl4dQLw0r44ym0qQ4JFL0XhnqFWBIR+lbxSGZP49lUNG6norw20JTeTuyvBr6yGmXYGTCLSi48ck885Cpkuslor0Dx7RK+9ywVQ5MBNd/vZf9Z1rnz/LHiYpwe7K1BTYzjFECgMknYMOST6fXl0Be2ithvaEb2EYoL674jboDdg/YraOcCQsdmgslPGPwX6DqhSfQO2grDoepqAaQUGWZggBh11c6cXIBdExY+nFCh9ClrIaWHxJtbBlCcF2oR+mA1oSEWG45bPx70X6dzq/V5aGgiIymsGe0AG8iFArZ+kx1k8cgMpKJcdNzWfcwSdx5yn3EO8gGwjjs/Vi2HQbEturVDKalBwXPpm9N4TwZaByP7m1F2BAdNIBzHrB+4x7EjWBXNiPJn3as5haDZVQ2BgwuU6h0RQh0/sEnZgPpZYLTUQJeDBMO59yXWd2wsMUdy2VOzujF4eZV9nqrAYLfMlluiRso3vP1Cdvd374j8sjS05NE9NCY1l7WDNdToNym7EIss7yjKUgO19NpdV6I71iX3RReWkGgyvm4HLnoHi9soanaMHKtRZ4/K0Chvm/nWA3KvFfyZPawX4o5aw63zhbbs6e1k+UbWHNpqgAZWB4/hojnPlzrKkDCnYDiU/Hwt8I+E8WjtIba1xxhB2ZM+OsoHYnwA6CcsvHrKwnPdVTpdwE3CvTyT4sDWAwcGQd7FNKuTv4VxkFWUEYZcGvbXpta5+dZ9LcCenfqCD7ASlpB76wuqDqL7lwGcjuYKiL+hU/Rca0PqBR6D52Xidmd+MmuOjMx6LfW/GpfHgHYpzRofCKvSOeHPMuoPHvjnvsVy0AbhzcOrJYGMCUAWmbdlbfLUopeOgA5NyZNLRHU21REzR9yRxOZShy0d9FZIqbspRcIQcq30P7YpSY/d9mb/M30m4jfy6oPiLbb4pSJca/RGj11aRiFkVSoRtNp99IZ/TuFLPOlrwMdZ7iTP8oAJAkScq79sOP6YQkqOp7bkcF5+wFSMq2X7akw1hT3LFUbs0XIr2hW/CASAR5VEH90bM6vWlZ2hqK5+iZLjzqcGkYD6ZYNDH96f7yHfd3lVoeUkeLQMIY7CQudFfiG2wW/LJbOsRE8TZfOCL2DS+oYXAC7lIrpwREJ4d/AWCXMh6dEN/ZZ2I/AH+8ReY9do/iWr+FLfCckP+Jtxct5DA2ny1Dl3hMNPlBiCRH3ppTIyvivt+TKnVKh280DHSMNNR1XgkGSqQyQnJNAOG4hTjrQuz6vvBZxgwOdXtHR1Xt9BPm2hrzrCOq9IoYT9PESiwzRPdq71xIc1FG3q0Ey3Sw1PGqT7LdjOaRJw2q+LFRPmQ5qsiphsudqLyo8jLvggXIpqvleTX7rYLtXjiyNDUhw0bXaaUQTYlYwWwsxSDI061ubEixsOmmQbNCZX6E6Y7MciXTE21ROxBvqboJSBfdQRb5F6uXi5JK8b73L3NLCjKTN0Eat9nd7Cb2RM0hRPiL9zEBBaWmldb9HS4cISYdcUebULx8CguPaWY4Y/NP+kQt0Bq9UtPW+OwQOEMAAZjsC/dzqAllAp0KM3jSdQtGGeef2v7zMxe7dbKq/VS4uWsoDuT1NeHyb2qeNgQOH9YCjpWORqu7RSNWvj2ZPH7T7Wek3lYl3/3q7p6J45r5DzotOPKHxZV6wTY7BMu/AcUj6TMcgXZVlfuU6elHSfwrK7IIK4jt8/hSfu6Uv4aNVoc28WOCcZZBFNMKNflf48DfZ+XBSjJwzs0WfITe8yan4NjcyRgi7i6+XULzJmKkgQY+RYLqqroXFIFFqoPEMNfAG/Q8FAuWehH3CY8ertcc4Tg1ifudfp7F9+La6kBuQj71UlD0q/e0HDuqs0aqtOnMdKwpYm6FvKi4cnpHXNE8Y6zPw9TQ3xlvZoan87mNc0iBnTkP5xKEulYAS/zJXyBEm1ZY1PDLAjrbqZNses31qbyicIJTveBROax8FQnVJvPad+IKbiLN2pM4SzDMsktQgSO6jGQhnRUTaZ44i/3+vTzWwTbFHwNXGm7qvkwyvL5nMgJ1ot5zN/i0ypT850BB+h2uNeKRxTz92XOk+dLXUgkaeROCgvMYY8yQCNO/spDR+dj3CXRqHCfhax1v4vsVx/9Z1gIO1AnIZq+UtODxyNKaSKxx08W7MLuxq7Q6aDDX1Ul6lus1OPQ5uTJ4Hl4NeFbIJeuP2WxTN8XnhRm7OcCQjRiUTAeZBApBQERlxcu2qxrSJ7ZJ08t2m/6xMMvhDVydNavdrs+J7y1wOI9lpfaFSGZ8J56ca+gfA5BJfd1mJuSv+JyX5uP1WRBcOUD2rNV1GTa4scRmvq9YwyAj9JDSUrnb+dy7TGHLmmGmjxq7MF4WQYooh/uLj37TY+wcT9c6Gi1Gxj8s7j18HzFEs6rcOTfXKSgdmwq9XG331AbUGLAsy15iILQ8Qpa7EVrJinQ7Gah7JXwuk+lLc5iQ7/n94iSO3mMBSobinp1oaP/7xV84L0XsNFSG2h4J0v8EVcy1GB0MhxkbIDxejmEHDunuswA4JpDc81G/eGNr33tPuIZ807/S0EuYWseG8XcXx+QM1xiuCunMyUV9fxHVQW43qpoYfNiZGOjA1h4OQyPMS7sjX16/GxEBa6mZnsxznMrVU3cPD8SreA5DG9ShVPfWWrxItz1JRAkAnjtczm22VZvJRxWQP/7fCE4pJbWEE1klYEl3iGDCQd5lCcbaAWteGCivkT7XYD+nAPrah+UkVtDszVcieAXe/Gm9SAtuDtRs59BwzJJtMm6UvXbuRvSjYh0ip705cgAJivwSmUF2zYNJ7lvRNs1ux/4sYHY6SPDa9AUIbOxk6jzd/+/JAXk5nDuppcu3TUGj5Yo0Rt2BValcH7ICQQYTdlsFrmjhkO3CnRg/kot34GYhNQujBJBcAF3fDvVWXKIqJ+jGSzA3LKYd3WEfbawEXVKUQxA7EzGrURmCvA9jTTSTZg0p/CKA0T36v6jsTWn7t9Eb5/NY0M/vnR2RBmFjiaf+YNN6tfVoweI5Q5PMW20NBjh2DFM2gJHo1LbF6IZCDkH0QwI4X2+h/g7A2VQM52sSaE3H1BhV0ItqL1b1WNYEFgx3mgujBp7G7FitjiHY6ivSL/tkpiXio4NLbWv8vbk7OjHToh3Eyrv34Ojr8rVozOI1I0TxRJJEuYqLnn55QWkmriL67N1OdENm0fxWSxucAq5L9m3AsmjEvYtt7jkyMzDcqJZp7yOcD/rDTGZld478dZSxY7AfdLd9Tmm80mVT2hO8A9qow3nsEfv1zw8cN0DUw3BNzh+YWeVh06oLZtFIuhObTtbI5l0LJ5zFwfBDmM7G1qAWPtS4C5jCFWzAsMdTFZCxtCjGxdDBXudgq53xRp1eLcQxxI+ILEZ7r7tTP8lhAsjqTr8ZKMASY92d3nNDWQWE3k2geFcKwHmwEQnY16mCoxzoKOso/v3AGCiOXOkQaPFwgEg0H+7uaCcwxvewEb1tL1gaItbFRK5bhO94f91NvoPbz6Xp60PVMvY2cqDxlBJ7YMzm5J/EhPgcB7K4dTLGhIsvSxwgXdl9PTPFs5uPi1MpjBAocTpiSrhM1PBxTC7wPETLD99hZ29HN8l1lnNDLJ5z76RKd40JFGA+aNJhofeeAzxcp1Gy5eODVvk9D3noCwPRQXOcetM/78ewjsapWNnFtT9+TY7I0uzBZ1rRIylDTxLIEd3PFR175jgCtyfPAskxSgX88OuHehjTULmOoapdmUqGM/1av3xpwNgPL+y+wJAdzrCV3L0eugY97GaAOZ6P+GISqwFXEMKzyMWdpkEZX5dYYQE27ft4bI4i4hdG1054BMQhZjJACQ2HebxzhyJZqIOYcKVpDNrB4QamXOsGX9Ke3jFHbVvONOC3iMI/Wzx4vH/6WhQmHw9TXG0wG55RcWJR6/xYhk5LOpnK104PSSYoQys+og4J8IvmarEwq0caREbNpaN8frbxBgqhUN7cFMRyI2cJwRKTLsNxShXq8uzFi9vb2DBwv/dSnfU1bhoePyDn0urX/4A2BotKJWCvjANetqQykuzpMBsQepnueMI4J72cRIl10jfDoshmbvagRvbzamag1KzJn04rbxQPUGOL5LdnJ8SwfezMiB670Qa+3gLMNXiEzr5MXi4fD6mhCyITzPpTL213w+PFk6RxpqyWMDV2k/eTUrb4LJXZZtcFUku32rpHlZY6L3T3AEauhIp0Bsann6wWz48A9lSfQL6AM6wxjDUbHWUxaCguUEddnxqEOrdnIDc8sEcZdW1YXf4vS4qki5xE5QVXT2s8sPxxzlNkLQosAnIifAIqfP+Ahw7n82fOH6duMOz6kT0W8yU+mtrJ8Xt5RmVhk6JvSjfvFjy2hX+3Khba98PxBWwnWhwwYBHYmiX+/mLLPWxvF7szrTWfNnnAZvq57+FuLCr/o1zYljv7fMyTaGG2+dDeFFaxsYZ1pvRT2Ib7NC7JtldGWRoZLxcHP8Vbcsn48Z6B1W/T8cO6gwRGaV308+EhX4HJ+fSkBPpnA00EdyyiYS3ddwOw1zoyPslKCv0uNaXqXZjhv5LfhvDh1/yEMiUS/R6jHe7eXC6SyRZI7oyvL6tiq9wgZmr0JDrla5JmT9I2lwX9sKe8WYoZ9tYeVTjEyLhjDONSvdTPojFBPtKBvI6+RZnCqIEiITK0Yzbre/xnQKnYD86+c9KVfG9TT9CI4aak8M8tbzYAdOgXm85cZGz1obHkTC1NWho/e0gQ3OE0hDW5pz5/yEo/jCdkOknWd3IvNOc5GEuTE5/lRmfFFTmMa7XJbSjEHg5OGjzAvICftBG20RcAos2Ulq8akLD8w/aYXMVxIr6Wc6Qz9MYmxBKoSFs3M1jJ9zXVQgsfXOftSdW1iQTeW/td3mkkEV4pXOiFJIcERnBQg1vb83fOfKqj15NIsvPGIbYVl1CtpoeGxZ164TM5dx8m2bvUjGc/pQlqJYZQ32LwHHz6oH6CvXaZ4jmOrNIf5kVMBAVmOJQfRlqwWGxeNfDhNXekaxpTXAhmVKC5Fvb39WbR9YmfYRKIr5OzC0vzlLPWuqd/r3ZFP11Q4VqIgq1U+eAaTqzKxpfTcPFBZ4WuJLoiQe8pvOyyRuuGCV/8rwCwR8DqUbswy+AIL2tdtky5mr47cUIWyEE0QqEnRfvX96YG0suqxSummthxQTmHgP6BpbPebnwCVUPi0bPXMjEt1EiLY8YIB9kEBHnOi4uJ6SCIT74iIkV6x4ORFwpaCtrp365wUSCfUVaI1ZZa5X5aBl6zPUymeBvJ7zcEdRWc3UGbf0CpKtZFmKjKxH7N+lLN0Zt2DTLCQ0mHx9ZoeFMDOnkA0JpuWLTq9zh0DuVpcgriWD3RKTJRjsnNTR1sb693UFXhNsB6oBZRUblpjOXKC6HoNIid28BuwBgz7khviKji0yHYkzK+Gg3/HlikMyKUL0hgc3gYSJd9t4Jy92BUaAyC6f4Vni+IRi3Lzln1IrfrhFX32s3OawkGSCPrA+YSenZtVTDeQCAV5/RZX2ecsVX+Qjxy1Bf+REM+YD7n260/C2J7nlNStErKLQRUyl09nh6dZHgNjdvb7Iu6IPA+BmhmoJFm0h+R0tTmzbdBF56ozwcyip63cbdPWkti7X/F51ug+oSCQlF/1hmxGpAWohlaprp/S9f41HDlGAGdDLo5lKR9JIAKziMGabr/Il4U2lJCdo3PVJYq3Ukh+w8N03p+xsBNgycFR4r04EGmsEi8w0ZR8+BReJcvYTBpkyaJOXbJii3QvpskSSZ+jPL7/PEiCKSuDY8uKqWZk7ZiMcyF8FFS6uJJ3zMQ6mJRF2Ao9hMeYb6iE1bYuV8w17s4oEcIeUCwSK4xE2kSAdBLK+6YAwADRg5cgBfEOMyMrqEsZhpbxeZ5Rjw6adpLFW2TDDfM751CBnTZ+bd03zcTjvIcB9a9CbrVQm3YvcmBo72rcMBokX/7RHqVwDeSlKkAun5LAqUbNEyiqQc91dsIwlQp2zD9OmX/dE6LthHeaE4OpWG/pCIYaN7WS3GiUMP+3uasRfpU0WlLHq/iSkozFWiFk8OzJOW4UiQhlLe5Us/Lu4AQvW2C1+bF/ij/IZ5WEP7mIwY2ilfz9WaMUGop76/0bZQ7JazJ/QwelrxnVmp236gaNkTQJwaNCdzlYRNxHHnq34saIFHUaqlpIgp8q3TXWeVJK22PS2lWIQCeSho6f/DNgIRjvabdnMIIB5OfLliztxkgbKue6OUGtsB+fhikl3J/3X+eTOr+54BgomOwinrk/Tlw8X8IeC8eUbKaL7Y/ZIq608j1L7v7zp007NnxABVxoi9nJ2Sb2p1QEc8lF00VjRjvVKebBxR/J75wxR1SQ6JPwOXBaSYASi0M5c1g9hJPEJJ1auWUIMVxG+Z0mI/Isa9ObxQGDcXrz9ndS7qP73AxgUGP4hNi0hP/9xVe7+JdV5rHkL7v9iMYipfjKHz7zJNY4ZoW0y8O0mLuKSXk5Oi+XHg5Odiqvs0o1g4qKvO26lg5rUIOZ6MNY5X+Wr8nLvJPKBOHO5MsVTXuMJZZ/AVcU58kAXiipc4x+76w9el74U8o32hLMCdpA5t+EgoZa3PjeLtkV09lvtN1K7btrZbhEmf9AM+F21hiUn125fGEfpUJR6q4CcSvXj+TPUZ+BL0w7/2R44a06qikRLbtCIn/RBSJJ9e8BiFrzwUuhlmct4MX4UsY/79XWxTNUwWLKfhGgO7B9Yv9QxZl/Y3s/f76KHKRuEVM1L8acGuWYx0YR5G8pHgUgJ/7KV6nrvAWm1Kau0stfMKXXFtDqUMB78GX+8xAC4QlXBePBSXxr1JCMXUQwqCxJMxYymhb0ooenbg8YP2GKmfvlYyHalkdjWPocGtIX+9by1tej7OzjDrmjvWsTd+aM+LgIuI++bTfYBtErE29daIVxBD6GwGmx88+/RfLVtRX+8VyuN9v1/cQcmyvtToioD9ClEDGPWLJ5fG0erzh+Dyhe336hc8mHD0BgipwVbRWkH5MORZdJNQwvCzYVLHiqXdpbtFZ+s4+vjF3Ko2Qv2DLGFPTsyJfl4HvkHq0Szcuwja985jdf2DFY9DU+nYkobxgCKREbfEBfBAk/iUMDiR2nuIaOFs6PL3WCrSRuYwh3CXJlLw0UbbE0bHg+5jQChaolcKsmBKKLvfZSZuga2qfVLSxHM0GSl8dlkCHqv4zruQJVnYeaZPMJKnjvKaTA1rDjgoZBUsQkAdK2UFeD1EML1WIWlBHRSehfU8ozlybYn5TJAhOqTG4ufTgge7v+ogbDsyCnP5OKjUy0kA7SBrNfvDsZEb3yPLdseOfDlLjw8jS3Ta5pHTcz0m24/zwl5MLbzxGvxjsO5as2rFS/jBB8VecnBeWMzGWmRtmhhW7WJ3dVJg2hdR+721uvKP9432hHCWXGPeVPcwr+TlA78VE57m1Hu+L34353Yqd8bls4OqgtExscu+cJUIDyzuHMXGqllLlStOqNQrmb2pYHl0JCwj6AJszg03ZYU8NYfi6C0KXlE1RInwHaSd4Lth3d+TILiLmOiZdZQur3ew4qjynB3jXR43tfrxS0XczW0SiHL8glHWmKgEJrlu14xO6qayggGyq8Zpiy4VeZZ8bMGSn88mA1Z7ioxYlK46gYhlW3fcZLofRt4lw+Iti2vITqbLCl2qqB/omeUrSTZI9WptjUjwwfezc0ddt/GRQORQyX6s3iTDqwDURLNyMGTq/SbkRoGWNPq1hiOYuawyEVKTVyhO/Q/iLq8ZDh3lzA9TqdzLZQ7QY0bltcffIo1TmsOWkXnPZE/FXcUMEC5NKc0YvV19PmfPB5r8k1kTblJjw/haoD9QMOc2g6wWI/GmTW6YybTwRwL7dNmELwMTZZlD+zSxGChZE1w3GrfDR+itEpi/vCOS2US3fuYFpKqKc4hyvNzYNX2I/WK36VepfblnD+gn/xHKYMDE4QNW0rBO8YhLk6j01FoQLI8Ho3ef92bTFjWGvZm/TAXSP3s9HDjtdxKtToAfrxfJkgfrZmLARLzE1pXBuirzztWpjlATKPDZ2z3fqGfHP8rUOAtEzVhkgyuUPdUvl8XxT6NS2T4sxTQcOzTUxpGXkCMA8xV2ANREcj/4cdb1tmDt56dnTisblBW+BHpD7k1Ybt+iOgmKR8MADweFxwHGyo4oF7HsBIh2ul5di0d6SiZNVYfi3IXcPKSReHp6z+ZR36TW8D8bsNm1XbZz2DSdhlXfeS6sMeRdXcFsEPemtmtn6hBQG5DDA8ZBHd8x23McU87z57c8FdJhOEqk3cABHO1zZ7TxwyUorq4lIAeA7bs2ZOsg7qOeVd+QpGrerv1exgzlM7Y39cSWkMw/yDvElHx20tN3FCoNzHvYJTNHXF/6AYXoL6iNGFN7Op7BK9c255OAKQFJFJCpbr0HIqPb7Aipien0xJAIqawNsiZ5qVBA+Y9c57NwHKYugLqupidRpD/pAB52S9ds34kp+n/X8LwPPZmKgWU0v7mWIajiO5VKAVyZmHfsEMUu8TcF/0fXg/62Og7M+QtR4tgP2d2oReq0y5mRu5dzALSwP7tAjTxBS3N60tOgX89O6Z7eGcZiIwSg/61L4wpm3qzILam/pOhU+jZ0ZeRc6wJO4Ex5nPyyqMc9uNQUy+Vv6rC6RpWUgrBvlJZOoLYdlnczrvXh/wEVJEe106QdmmVtxC9FLaN8mv3wsTc47mQ2CXf4CuKFXIaaqH202xTa5q6HW9cbth23jdEyJjr4lstJux+S7zdogRlpcJap0x2/rwCMa+PNs/NvRac7ojGZBhSL91fsa0VHI1O52EYk3NiaGMISbUJs6f+rCE5BtDyg+8Vh9/5TAxstqFShX18K0Tg7W+NTXPUmBo9JGH+GgcqBcvGPwQO0FOMdGAfxjigeSD2M/7Zt4iMhwZTpkKAImxChg0L4URorcvG7hn+uTuh/xj6zXMAWbe9usfMG0+C09+PmTYKYea6RfBvEbHmQiPKRdwPImaQYjOm92mCgfAyDd3IQTQh+juNHoUqdaiM+DgRQWTrzoOO14ggUANlDEbS+ThStw5wQ2ruQa4UgkOAl6I1d6YKNcZehybmbGmS+CL3tUKoPdHvb7otu3v7c2yQkQNGwuTw49+hBFkzjd6AngW+VadELEfS58P8w43puKPsaeiyjGAsw3kuMJ51UXtQVv2z1ddefNv0hzPTPq804s3pJlMIPqKQMOXyKDA59Anf/KYfi2Wrf3n5wZq8q4ie/wE8AiUFmc+2hBQh/EBP9LgIFpR2p96t3dt+B5vd925KPeWOhfJ8DZKxL4JrMXI/rAYxQQ4Jq17PZJf2RjTgGdKJJpQDntPb3Z+pcCeIs+U/IjQFyjXW5lFCaxkD4LVEEZA3bJKVj/sJFoqJnvyBh2xrG1qF1Th2O4UiUZ5e8yrU5ibsirYaYcIxlhIa4TTM2emQlqzgYuatuZ5KFHba2wUYIIY342ybmGZz6bAqpKb5oWjvHH1nSUVmOlndaUlsKeWb5gPwuHM4I0lanfNXW3e/Oep2AJ8lRIuBxlPLx0/sZfM+akrNo1mnTiIYu1Jt3Rh5gD+vI2TIzK17+jf7Zz6Wk3TkxJGPtc7aaXHEbtK6nsZDXQQJ+sm3htOS4JtNMCqqhpGs9NyFjFltsUT2Sq1TDLjmLf/A3FbDmszuKVYqe3LzkveLoIh1xx5sqknixXS6QnLGLH145t6jaw6anQAy16AdsyYC4PAGNrJqTJkzd2wxGj0+4qFRe5C28p98ubu+baOsb+UZ5VZ8GgN4VT8dPDvSbSWtAWOizWuTNtQRWwcwBZ42ejTG9B3gwdm1vaOtvLXUMGTFaGutn4ZC9SwK9EKfYpy67P8U71SQNHGZZ8BNNrOnZL2cXI3eOcQ/xEGnxmaKn+dpBNERvPJPtjQBVXehibv+iCgoI3jxyOiRXzpjUcYZ5/FCL4oH4elcnzgbY++tMw+0UPOkHBpRnY3bCgpKXEMXeNHtPyhzeNMvJPamIGpu4gElVTlkMq9oUT+XPtU0LPQdxyslaZD23uLGhBANvnXhkceYkSDyN3l8nYZD+Z3tQQfm3B/Q4fJaUHlv5Nxfl/1C9S/PVJ9/hYbZdXV7HgPQYAAjQDPqQB0vr5xhFc7M9HwxfTqwG25ZgmWGfLyUu0Vg+LzHyayHwZwJn2Fsx8UsnIw5OIkrBRiYTyDqVasmrcsKwg9uRoSnHHYSuc+D+jttp/4OmlYKFjqczm0d8zssUrUUZRyH2StnymIJmnOgaFTW1CatmLsxOVliJMDWPNlEbEkyDlT1lyo8X+DXRz6j4kGcUN7WNvNAAZ+x7nAsnME1mjgYndHHdeQnLC5a78P5oqbS/7equLUSD5g0Gd35vyX/YH7Udz4ax5PmfZ27JOnnk7iKUJv6Mmkfu/ZaRdVGTSrsWZHT+jFJlQtzF7fHG0AZut0s1uciFAO1PviXyCLcDluvVjMcUJLbBUnTBynSLkhc2g0ilKyYqT/+snyixquhN0+xilIVRrn2lr6N5SfYQj6og8leQPUoR6RtpNrar3J2BOL1Rk/SNoY1KunUKrgixCDvP97MTSdn0IB+hkYmBpH/+fV3YQymteiRPU1t1MYVr2cJBlxKO4Go0AXohPmB2+u1+I7/f/weJVe+OSTMQSa/KZqfpi3hF2NHw3XUUaErclYuft/jn+VJB9Dgdb7WmAIIxE/bbrUcAO1XNIZs4X2HBKbt8SPBu8ykbFnjW4r8X9MOoIUzeSveFGE0uaNyvUq5EWg0EPFLNpUVIjKjckUj+51WNivf/gj2kH5/tm63R9qJhLcS6Kg8lbWUigJSlw8C8Y5AzppqfZRVMgnN973zvBP1Xvxg78u3/MuKCnzs/hm2fW7iucce8uU175CwsOsDcjicfvu20kmLxQZOJeNs4RuI7UDh1NX7sYX0f3mMN1EqxKQlb12f8SedOMesF3bvwHe0ctvtpXABVAKuZQw8AyHloMXfJYWlvFhLSof9yXsP5O9uhSSsAf1jDGE2wHyMH4gB2GALnoYYeGfrqfJ0PFTxsWiczQY18DrGCTd28Wa0nzI/mRpvMTCX2cexxi12AIE+OsPSBZp9u+f3oNkNDKeWRxVbUKH21q18bGfB6ihz+QfRxGP4qYqZ5muBS5tzY75pXzvPotaGFAXbc32GuLuar2k8DJ2QULcPG0lQ4wCEF4md7OAxe5/VwxW5FuU9HILiyMHrVbgW2m35H4yzHbjPFW2Ogc/SkEk5ch/WQSpVWGNJIXWQOHNHL0gPAFOsPlI/8YiK5RBjkNviqEUESYJSXqYutB0M2/iyMbowWGI4VPzD1zR8owXoTVlXmDlHL4Jc3tk15cqQmZ/fWQzZnChS5FOwWObUQFU3Rzz93EJCJPW3pcPIOI5KycONr2j+EwRDEwmecOnl+BTtSq74uAnrkkulW/9uNyahH8iLo8XVsgzKLkVpWcnciVTuJK0xkLEoMWQ3gsERqgJRBL8bRKvWwhnlEJfBWsmYwZQeF3o52EuhJpFC2g0WGGW4U+ZoAdDgw+j6r+OKcrShFSsVcHN5sDuCC6o1H71Oklo3bz1WO4NlQOiPXqBbUlPglbj9eonVAgBi5D/OGQzJfUyG062fnq/lzTxy87Tcw5/jyIw4txCPhlXm+lpqVJJXtWJZ+osI3HBn65OvCSqrAQnvRlN1XQFuLg8O2wOSAkosQW46CCEXBrvzu3plCZ7+Kvgg73fiXcxnIhrwSzBHEUQD3zLACsPYHz6aug/bRVaALp++xpxnpQINrNE9ULF0ZX7W8lA2BIPSZsVlTDc0YM1eazWkFvmDpGIt7qIaFo4UOC6/3wFEQaHgId1Akbp0UPG0ivqui/1Xy91YX2FfCoDn+9Vq9toXFf4np9Ykd2BAcegdhCNJhmKT1m2eZvGNQhbk9ZwhLKmJtaFsxoGdCGmdJg2EKEbSlHQrnqc/ifKs2mPHXGO8tKuacwBg7TSU5nOQUaqKOxZ5Do2xXELu6DWXg80RU000jnR+5hx7DPe5DZ/nnMBCqnm434vWOOoPfjNbEC/fE8gQg9763jXNP7lkaf+3plO4ej1ZssHRFOepK1rFvFvk9uFMu+XxAEgTEoBLBcZbWSYlgTOLlRahLGDciorvHOW3eo+RnTZeRjH7bqZYkr7j4Jq7exQRiuJKP33bA8KjoedkoeiHLMuR3xlspCwcRoVbRMbxOkFonm0tTr61AnjHZRChqm01edivPBTPRSBeGM7L7ALIZN1AFcN86aonkUxoDgHPLktA1THlRVqigU+PojNO9z8xeCjN1sU3//gd259ioVeN4ttiUkkvja4J0zptC3kU5ClOL7GkeA4k6krVYvvRlxXM2uGLlqTuuvnOIs4Uc6wCFZD2CM+llZMZZb2usLVdI6Hd/r7xRQlFGaJVZqNVHsTh4FwNo8+20GJfgJoI3VsdfkALmQ8JSXa2ZKtqIBdu+LYdMKrn8OIkFQB4kSao6xEm+ZpROvn4OoUqd/WTr+LdB0VyRGdrRXK6OaijZ3T3Y57zdT+5WX8c/X8yNMIE6eUcFh+iB2KZUjw6qpcWS08MEJhe1doRkp7J/kP+AtH4Mn5O0r4AfmBjCpkEPAwhiInh87tXngAmWy6QR0n0Tix6V0OClpnoevTlWG6/HE+wbKEapT8ehmQCIkAc0fmhDax4sVC6r2QJ2MKXecq0fY64wnuTw2lmh3iwGtKHZOEyHO/8Fyd/yZDINYIKT1qpzvGdPDMPocHOvOVMXliN1z6QF3w5drLnUgl6/trKeUsnvG3NtLYhv73H4KNd4vTS2RcglHSr01w+z8jDSH1ZBVS1kF/5CTnBHAADzQpJ0Vs8NMGJziTjKslcE+nhz3Rcb/oUnrD5od5bh7FtLXm5OCB3KWnaHI+bFiYScBQ34Zr9kgVS1+CoebBe1kQtu0KRUFN+VpKAeTjagFdmm4ekubQGRU7ImxuemZLPMs1VlmMd41QzXEL4uwzLno4UIJNhLk8tlyFe3auH47jGQnOk5ZFg9/gDAYZDRLf8zdRjojVKIA7QtiUKuYmhWS82YUdn6XxcLku80Fk7ZzKUh737LC5CwS/6GWMkgCGr2lTjgakAJOkr9YptjRUfb22dElv4cWMDJVSg/I+cz7OBeoVls4ghR5neFZmkc5hcNfXpjIT94R1u/jyO/ozIBxir3Yk8OVmYsM2An1ixgcxIXbuQV4OwMgQgsiZ/8+oEu96B178OIzrKTQ0btt98aq1wyzJgXCX4WO/gIyhekLIMw5Qh0A+PwgKNtMvlTMX0kDIJa62RInrTy9idoe1RLjAEfQpJTuvbLvl7TyeYFxnkzJaL9KOIDRLFdIrN37kH5JHYXc13xcnvQK54yp0SH1Z8HJjw8t0jf0oh/6E889tpXsvoHStueK4lA6IUd+wHdp3y7jer3iT1U7VTYqaijmFLH0i+Q3ruEnEgAAS1hBmwtJ4Q8mUwURPDf//qeEAAADAAAF9qSWQA3YNEDmsHbg0rI2ar/jvOfdJmgIdjyZjBkUPM02Ha0LAoF27NJTm9OAM/35nbv7DCa735CkoCQVmVS++OfipIi2zFxBoRIXsSI2qLzbO/ZgW2clC+UFttvovTXGfN/7b4eAM5+VjaO9c7NmBUIcnhQAYb7xHM5B8qrShwvtxDOm7i/n9EC3IUWginf4eyY7vu3UfALYJM8f7nzmJ7QM/uqm5I61xb0QkYis4uelag5grKMGzeqjkA86Zerb6/m+VEc6e8Fv2RcXNIZ/hzQvshfIJeh/Nr4QMDB1p5LlX1STQOE255oWMTOEEV0lc22uuXKbfpwJMl2th69SPtBw4+NopdkW0DcSXgeg8GL0M1V1Yh3/hIfTImDbhx5UBOMMz/IUr/tzVtcMG5TDIbiu6dwpyWBwlfYqbDf42VN0XhG3wF4knR0reBhdhZj4+HmywIQNIz+zPb7OSmPwuJ9GCSJ/RDf/c1Me7ZoOoe6G41JvNX5UPlwXION5LtNEogcNwwTk0B6eDAb1sb1PKSKz2I3N15jk/6N0q9LstnZQeq84s9IMv/3CvS1xLtXVQ35wJSkqF4M9ffFcXTUt8QsYtdT2EtcUFNOjj+zdL9B9v9jj5Zzb/LntzlsgFVvr96ePByD3472QBsC3Pp0HJ/TWBS2MYL2I/ntoAlclYTRhw8mop7g3EGb97mGGgdJ9JrTwXHHvDp4KViV1N4S7M/WRxNZY/mPBk8YJGyF38dPS/F3qnPEYbpGkmHKLh8oCZqbCpV8KdwhnTwX+n1dysFr2kUxMRoDiWZnUyRATLS+aoQ1p6HGgr/MiXI2ypU+/J8YLEankQ1QXk7S2OvynTipeLnTZt5ZavINczVy+rTgHhJA2E94hxAaVsx3NpoCft96ZlUZ4XBToIjMBL2pE3JCTnEBQmlRB+L5MFh6PUk+0XXjg6x13Awx84LDqCK3cTlVPFh147YShhVqPcGNxB65qLjiiWptFRPlyIadFF2/YiskokS0QZF/eiVNs4Y3G1i5R56Qlizyt4x5JXO9wA7KkVizC48k4NNFm2a1i9ZBI7aBhameZla4t8fAnxCpO6pSEaEN5K5bY+pQV+hg7J8L5vk1eFLNwl0TbhQp+M4Ixq8cd7ZW+5FrtuOx2CntZcvlpSF/VuVj9Lur3fPlXCnj9w/FZU9CRQFxYNUE/X8+0siXPMgYBvq77Z8OuKSuB85kgLbzN/2eXQvBlgzkrpG1ZnZ+7MV8ZEZfzNaQ+If6yRi2CMLqql9gs1O0IuCOKrbBJz2mU5uFhLbSkzwgJmAT9UmJqzkyhKP77KpNzAxU5dRginj1/e1QhNzHZ/tou7UogKL6s+UNFchv+XQ+FYY73gWRrrksCnUzV/Sbv8kV2Zat2cAsxAGi7w1nrT5JqZMAjZVNxhqMAwpGEahWRV/2bSHuMCGwLfxfQSF70HYN6Va8Gz3YkDCChMDu6qlROUXHILi3geZRXlTMIRbnU7c6sTV+EUzI271MSZ16VK9DN4Nm+jKm3rQFz8pWLy60NWRvuy78vmVlGQazRr3UUu7bvp+LcJsg3RSldaUfeu7yz9iv1HZYns0WujA2wScv9whdOgGcrQj7NFbV7UXXBwJZpdjvvvqClNyv8UifVJzgpIzj8e50RpyPqaA/zR5OqM+QVcseY3PQAu4Z3sAQ/ESzJG35kJ7EOF+JbdpskYZ36eQJuYYgX2d5N4qP9mFxc1u+76Mk0alxSSD6tddLBr0hcUgp8+6rh5pxlwRQJhaW0lHsRH8xABvhvjuO5f2f2zhrQemK6Mb7ucTvNneQgGdWKxz7CCQIx8uxkjiZPebMjG7W1c4pxRbjdmUvRrghFOG/kUuNDySsQtUKfYG7NmPVW0VcvLer9GMEZTJBWiaI1BK+QSAr0JGuouFAIWunywqy4Ydh6BUlBwsa0FN7IOh8xQ1X9HDn2qwpT/HF7XTDLTE7+R/U/cZJDIVjSC5r5H0fZ17KxjF+srEjsmwQJJChHWGRheQ1LP43kjxYrSo/TKZN1An197hS4c4V4Hz3OomSMkcyyEipJRKJiCeZnEQOq0SuSC8/6RXxVp+MDgX+JKz3iLWMzf89BbJnq/OWbB8d3FyaGXQuXhqZqgmZinuUzp6NiKzuFYncH1qLHUOwzFc+W5N316AyNXaRtAVqqooVFvbjiJg3QSDCWQcJN9NcIIFciseeswl3z6WW40vp1DyR3jvZ41ftqP2TW6bA+4adxaLr/5I9s4TJQY3a5NCgdRSjvqvyPPrFP9hTLMOFvmIQdaf1aJyc+wrDxmQzl0RXTR+dfRtfJQa7gSYxG+F+EAV9pVJM2x0aYtOouBYPgo9E0hH0t5ZJ1c12rPx2UBQ042u4eQm24cfZ/Y1fzfumsjIV6MEXXsBS+B8zL7HOGw/Br8h9pixMqTeEMZch4HJbN/40lNTKnngKhgfO7fl3TUDmAIIEuKeuA08pyxu07kPqLV6Z2lgbQtCgqxNFCVfKHSx46pA2BzEgIyUZa+qAFlTMyoG5Bs1wyDIQc8yarNEbgJ0Awo11EJf9x2HTRWdlJSBfA8EVcfsa+mPi8FGPn5nTDyz26CQkLFhw3jul+mMSyyzXxs/Iu/Lj+2fsdsIl1uG8go8M6woamFE0xrQduhigD24BlVp17mm2uKBRUKr7EkHqHUbg6yZMftdjoHLRaIdnOYtZx87Uu8IM9v0jqqL8/rgu9PpdXQmpcPT0J3WxUMl3eMIDnrIUbOqGy2tqbOFj3wRldPpjB4+/2fV5FRu+Vgx2ZD63dSeIU9SgJEhJj2DunvAzZqCfJZ6TELdD03bDcm+utAIkrpZ+V588S1E1B0xv1VERGEGrnj97r84fx3rhL1wjDJWSPYPaw4POkmPwj2F2CWBhU5KJzS2AEI8zYfUxLn84svYlCRknm+6f2n227Yu12JtZ+EW7nG6RFkfAvtn574LZobjLqr9RVzS6Ep5z4vTeuI5FYdshPtHPdLDkllYJFyy9+FteRlbnqeS6/dUPLxuCs4gRvi7SiQW8xGRZlJM5TuIwTbXO9IuBJA/p28NbzaA33O/RanySBkF+gQKGmpLC4uoL9Vetx5vqyKCBw5Q1r6pHLEIIlbXmozBChmnA1/9gBYBnTjPHtkMN9zGyJf5qKuJTsWVZubO7cm7bep1IKh4ETZ77rNF8RHpfWrBCkSPdebkkSZ2YwHfbvDrn1YnINo0vbn1iKmScDXxT9cH+ufG8x4LacuB+MSniN2EdCVQd7izWT4s2WUPmfpttamrsFr+9xaaCUVPVIyjsWqaLAQTeiO4W1QQOOxC3L5yJuAP8eOHfylUEISDd6rOQt/Lh51vauaBmho/lr8fO1nWO0+hRe2jtxuNud8lIqlqgV/L+Citanbl1puljht40x8fIOaz8yTy5uG6fEPlV8TuHznHFwWR24nKQnXBfWFeKPtwDL84O/jpvHyou2a0cB/F6s7Vv+u3p08NIOeHoNCRrQ1RZHNA7IwXTh0fkCM0mZut1okTIUAd5X6/Az/hQvUhlYIj83V9UBZEuc+H+xe2z9v0tsGnNzHRp85WZFOQXqpndpfyYVjT1Fr1SeHaoIyaEvfqz0l2m9K2cCQhxRaQA8B15vdxD4PlcGHbrrpRZJLhFl2sOHbQV87uyYJfXtGz3gblxWFBOyvrlxH9r4hcyCoah5FU68FFCCY7gCWhdOVYbztBSCWmYNR0GTG+rtGU/0Cu3jK1I6ZVPKoMq3t8Hbe9Wxt8/qsp7un2lb0hFp+fS9xS4axPiVujgQB5cjYjuApStkzGhPag2qhpAlBBNnqWpoou4Lodv26iS1vYouOQGRzHWAGYMiBLcfIpgTgbpS320IzbOUo2iPeqA+KeT10KpWGJ5XSvVtOu1wnMlFLdPKBApEED3Inf0ZKlYIPH0crOl8AUBAGyYU3AvF1Lg6vV5tBULJ0v18iRSPVZ8/qVk8pPOOPNiL5uMdFIgfG4UmE1LXmG7/j7rqApEOKV5bSSeOUhOEFDh7PDsjGwwdVb7tXzYezDbCEQvqUytB+gj/8XkJrqOpm14WNE6uPnJ41CpLda6ie0owBqhFISyUKNcV1cceWiXWe9HsxmLNt4us1t622DfpwS0CX7G1HfoJpm6qfN0rjhwnGYUI3Do/SKfk2IXN/Ly1VcaM1QXBxbKJTsOfywgnVwNRh6dLP1P3M0sCIVdXCYcmqg+WP8FwhVEjlPAT6pHypN+00J3twgQ/66iwwMlbO0Eqt/C2cLyaasAIyDkm9+prluFOmJ9lMBPpagcvwKGgv2jo26ENU7ulxAx3s4RKd9mprhISTt9zIymM7VdSO8pqkHxnReRHldgb/iampy6UwXjKOj3LEi2L4Xx4XYGyXBH+ebQ+yBMEX60Rw43RXv9FMS7FzddBRiv/sGDxpjT+LFGMr2Ap+/BAuEgoSNUwUkO4hcIeKq++mSzZ0z6yTZqJiY3NTH55vhalwuHCKB+VqkLHPdmWwwUnb8ABTgs6U+3a2Mmi6PzWvImsYPog4jmDNQEYVwyJlwRXjTQ3OnlqQo1alWf4sWYUJSTzMLWzEmKzByGEVaae0hkSFpRpgHKyom5vB7HLSJufrK6qgKaEbej9ME7TqhE8bGZYik0Ze/+wtownSLe+hUE0MaQazSecsivncVRIigAAAwN2tsQudL0cepak7gNOCl5ifN8cKvBNuuKhMSpWDn86BhB5bFJe4qR47rSFTiv7MdeHFW7/pppYTljKqpH5rM4zCh5DBZbJa7++tyaS3bVLfsZjy0e0bvfvb/EPRP1kvLkExZHKhRmjTXhwrdf8HAPpE+0/2dVtwvg0C4dmigj1A9iJeidhTyo80yuU9BRCNW8x3EHdfzX4LnEEsohg97fd7JyLxgsSMWdqZjSdfQadsItqVm8GDnX0ebSP9Dwno/K18oJrSSu7qyvl/7Di6W67y5MkD2mkhztPS8UYAggFHOgAUkNfAqIM3dyF6KyZYqnhHJ4iLCBqybOCxtX68bpdrah9WtWiXt1xUdc+haJkz3IN5oI3bOJyVjoscWdCAsd5M1vKT955kzSg2dJtQ43CexpSmOq7NScB+0gBxn2Wivq7IRjwdlwK8iZFrlSEn45hUvyRjO3xINkh5NP48S2GqfnWgC3PnZJNd3Dz8aHff/jtZq8Fo7jL9kWeRhLPCC0w8f+hl7kY8bFGc0ghtWpmxtoccmRU+fu4xLT4Xb1b1sLz6ovdjnVNSSCkbZfkyB03OuoTWPQaZlvpvasE79m59uuO9Oty470DfF5WU9RpYtbCjCfjuFBrKt/Y6jEo1YFRutcZQzqIX1C1jo5xQb6bnd/S++JdFTvC0ErjLJH85zR/MNGUxymJhzcqwb6uuThHRzPbWN3vqXyfietR2eRkoEjGG3WMzdPghcuWVmJyS+CKqg9H++XqArO8yNwT+rkiklWVL4dDTrW3gngYixJa50ikLlunPX1XfJTm6939NyIW+Uff1vcBwizJx61yaYbAINYrFrsvgWjAmm5A3wyI0ybg5Fh6DAMqKarkP/F/DjMGFhfiTXmO5V0tgACIDaxnHfPx7pVLjRhD316zpmPqPqtkhJVp619GBQTQuERlsxC256HF8/Ec3w7xd1r6FbsRwg0jWJcyF3r7ZhdB1gWrrFPdOJukh3W57LIZgVrpmfImBg7lIK6Yoe4szvILLhniH2AJx2nKFBDYJlrh68qKg1pxjx+rZygOlTGBWLrrEGcBZuZHbme1B56qGpOEhloWrJC372y3VHNDI7JE/e0E9ABkqtsLtvMro1e7eTkTSiQpaykandkS54w1xQp/TLT+yWOGxMsZSR5SO2e7QWVfIVBE8QCs5IgZrHzbZ/PkHolt0RLF7aI/vNLDZ/q0LS1RDW5zNOCXMllqqOHeDnv7MZFjhk+Fkr+WGLC32Upj6N6gF75jzPZHS676NUsVVv/9T/v6DQ4Dh7cvHYMLE/0Kl9CyD+wniaFsXVSn5Mxv/zbu1+YeM8GE/rbAuFAZzAvP4pvEOuSeNz6vU8YAm6TOCrSxt+VmTCz+chOGvwXN9Ormjpuhu/wZjkaeYMMAUj/vEJLzsbiP2sljnVxQwh778FVR3rkPzIL+CpxMDqQOBh0Gre3pUmFWQU2ba8t+NzNNqni2Ixz/t1znik+Xq9li8GdVyVKtrLpQPV0q0gUivrlcbaTtP41aXLN5M4hwGdxXSJmwAxlsQNLQh9v4dVBly8gTf5mO0VVGZ+Qzo8OI6WMLeOpiJkfGM43MPYVt/jF8KpluX9n9qlk5y43TzuSRZZ666Zastee50VQxmAAP1n3AeVVvhvVq/wzleIVVXBug7sBE3qmn0X/tc8UVJXX4JggM64aCH2OuROzL2ONW8/DJIYXVW7/uC044R4V6gufMKcGHJT5El0uDi0B/2pUtxx2F0ytjUlrV3SjqMtKz6t1Zlh6/hqsCzmU+fm1GOpkws/esDm2gJSGkBeoZevpN4Ru4piFP9eYrOU6ce9E2RHY/p2jwtaKTAXnrQVIimbntkSiFNLple2QJjqL1Y3wNFT5GqcgtGzOiydVCfcK3ZimKkjuH+JQcGLWRuT/HAhFYKyYat6kENnsikWvqHI0oKvj9dGNk5NpS8fV5PfMzrzfeB/tCiW6WBM1jwE7id3sKj1lnV+cLQpDczcPsiviB3LVri+TBS1lMt7wRNfINqaL9Lb9Sq+hgzcWzufipQvxwLCpjHO9BVZXcGS7xlyEMrq/9eF70vyRkfRyifzWfW8+zV+I5E1XoF3gKrPbTGS7GRbKGwHWyclmZPT8gbUcTM9I/OD5H6y3FDP2X7L984FsrYPBEyM4Jg0+nmOUSHsi7cNcZexJia8D7nzl6d3AlV/CdzTJynSbzD+mDsJyA/HeLl2JS5YAW49z2CnVAcyus5eB+EyFjFLabO+epdS8mSBXU7gGgeCa5sQR4DzFqSpJithObz1aMxbBCQXfpqkaIk9gBngakVlcxUVjUgM9NRJA1BeuvXSqOj3wt/DREWKThUZaex5ELUZNkz+wpZzGlJIjiKBuju0VW+Wh51DbsAQGU5h14gYtnhONOQrSsP1haHjsPW8CNqXM81iZCLr0ohaf1s4Ro4QKo3A17kfFMWsyF6aZhGVPSk5VozRg4ll3zAwD6wNuLeZAptNovHGafVk/EIlBd18KOtbWqvAjsKsP2oc0QWzasYQcxgfJf60PLqB+vqu8xhY8B4+Fps3Oz+qiYdKpr+xWr1OQ+YZUrp7VbM/pm/wOyBf5pOROvGiujGJkcwEfc56Pn+huxja7aQm3/o7KbGPq+zThikoi281cwZXcoKUyl7JOzAv8Xo6RWwE02KWrTw+WdPD6yfoUzcsJgJrPx3p0afDpXuj9UbvDCVNe6ucJppYQj4ROx7E7x6JgeJnrbNKxdjwQ3twztk3WRr/ccaiZgtS/zWZLdVGdFP752HrnaKI2fciI0XPooOSryscj4NhgZ7gSdsdTULfauKMh/IsRMd97yWr2Gt0lfHxnz/+gIHbxCcjJUnjOBAt7vBcQKl1ra1bxijQyWQ0XkPH8bhBX2AjDFQypmg/vwALMfOlYrFlj7qMMuV/n1qQ54937yuxylg9fr07vDW6+yKvpLfIV5ZCVJ/lx7T6A8MNTW0NbWu/xHTxUUPNdR2zS+6IRi4PfsiKTQJp6u34v5EBmFs/NvFFSXcKpbUNyusCizXmADs0BC0CXKmXcGYA7x2HzzpDdPfSm6qTlAYs1RpxWyRKmBOOd2BH/smLEcvFY32VIKYifTegd2yHVCbkoeh+WiHclPcDzLeFw20rOFfbY4c4wwqSiiXoCe/yrZCmME++ym1ujEsQ4FLH6+OOMX8JFsdS0MlGXZq3I7m5yzO2QACn5MhbO0Gdiq8FVpcBD1JE+ZecuOeqXt94qJ/ur8Xoq4AT0odBce61rZNWqm9N2ms154AKLPRlpEJQWHFYMcuNSVYNw44w1z7x89MNMFBam5YjcpUv+jfjUpSWwpjsO9N7PLFQpBppfb26Ia2aBtevbGBVwM2vJ7oybMDWclJP5tZ6E6Zx+m+CJ8vrnUC2c3D9f0+n0ojsFtqW9fVegncYzOh3nz6Q9wFBY+q6QCSSX678kOXoDrIjj2BUWBsFOG+FIKx0WjK4FV9N7eMtn4lI/LwWeWw+Hb0CGMdichEvI1f4S4plAEooM0vIHbX1n1oTHNvSUCOi1Mw0YuM6ivoVNJtWr1m3zM0goezt9tY3I/T//TgKVExdG9J0+NgISXBqzRA1mEJsvbbXwoBG8KdNvpvr/JGX1Klb22ih0WXi+yTmAxO2cq/n7SnPmIW5FffF+oJgNEFYhHyJTN8bMZinyzybqxAN3iKP9Mmq5sIRdAn3p9yx8BJuoTBHXPiyxOfPWZm7D7M4QkphqGwPL/4sRRDBFvHcQXUq2BhyoPr24AsAKxyjnl8vwCWsvS/tPrb7pqPkKuWLgsaff5XAooWf/FgtDuqH46rKtvRgfm/+2QewpY2mesjy+myNku//d+VLKanUhWS69QPDG+OIflyNQYuf22+HXPg917j3H0Z9jqkqaIHme0Vaua9vVbRcs/eVbumWf+o+DjsigmI+CW4hg1dUlHsqrOzvCIN6iQiJ4yZhdbbQEujK6qWO1dcihW0QIsvc+wMCELAYHQ7OfbdCvOHH4cGDMDTOKORNgaRakMcRr6fdotpxyMf3SPu7Avbsisjt8KWvDkp8yb0SMmdOovnjFxzvhUNYJPS4p/C02EHCajg7A2IVtYlXU+++ruG1UsHPzRVaWX6fHtuNl2yVpSDFZ+LiRjcusCgEgofVJPi0a6uk6Td4MUR0UmYkeAVvUf/gzlhesB2AmipS3pSdhVRBe6kTmqJpSrnewMm9v0LQ6BRjo2i7BGtgpMDnLmjxj/kmXi8gB14UCnUvzFJwyDy4M/bcySG0cE68FfD8lurxrANodTAv5ycQSK1BzuY/RvHhaxdbgM8u1uwM54k7XQTZKIuLFW1AmIS/vyvHOUjPtqaHqMESdVmoPFfP8KyZEQgtxBPN3/bv3pRzHXWkPFsH3sG7aVYOYtHxGn0MoSW/rzxmVFRNq8WdFC9ckg/zRoGNO67JFwbenNDXvZlimhG/9Gj8YlSGYa1ssFCcM/2NYx11Z+GXkxVjEj6/C7bVD7qUJ8SJqA1SCZ+rs8/7JAwTtjdmg8kxRV0d9gzZvfjzQGsbF8olAX8buNkXkHsLDyDBE7RaJk+S3/YjsY5wliPmyf3QrCuUAXr3eNl/89iOlrFOpqnRKI70MbkmP2RQSOgNuNmcxpiURXMbIexkYgHf7Qj/pZdM6HDcZrZLQbmjCnEyFZ/l7KtBoSVr42VG5eaCExFPzBdi9S1dQyrTskm4ZvlzsuesnS37TNIzTbs7PrpuORrP6gImCDUfMKhWMrKLjowh7Q6Lbi357nqaiu7Rv1ZLg7MFNsU4GzqmeHCiTLhDgvYQK/DQphLHiE0epwxzrzi/ZWo9jhEXSOrsfBsvLmwKF6jf2PJ+MqwZjSgyC2sGd4/ZtQj9lzGJEoS5ht8/B8p6wZ8Hq72cZQ4pjYKlCyTvv50FkFATVCX3ARo/4b5g9h6DuvZznwCg99D7We7quTl1ylBZ8krfyYAj39d3FZu0AqJQo39+bt+VlyEZdcqxEWlHNLKOmzq9OV29zscJOtS78ctRaw64O8pV5vxHMb6D139KXIW6VrlhHCml24sVrkYWwS0zkWX9b2IE4NJdeLLGYcCKJdznoBuVs3l8DY5f1ox6xh0wJqTVwEXEsayQHJN+z3NZgq/u+IMkDikdMqwW11DXR5sN81xsVvpEtUJG5s8cF9fjatkJm7b82W+yiuAGDBc7nW7zzKwTmuG7WLoGZC13GIqrzuuDhyLfJDz4E46jO6Iu0QDILZBYtULpMV8Z/I5K1TYskNsicNzTogXATJxNuKj8WwSyWFfa4SBOjsWFcLISlcmbKQjc7R1UsMaLebpNyvzwwK/RrfAy2lwEavVCVkSxzHIN9LBlx965eL3bMxItJkVgd1EpYzK8UBgiDgCC7NiJLGhGFwYI//NIK0gn3jWgBMfyS3b7y8H5PiXDXH3uho2PiSKsZnqf+rIOqRWlVH6xadwOYyjKGzDnNnL4deobDFIhboEloARAK0U71MLQk55yMQ7LN+mx1yJPOK65im3KDa3FEepAOxdxKqZKF/eEb5vAQK4jKtUbMx6cUi/Jh0IWKQU0jJ1wmmM33Jtcy/b5j3kWMiluNHSTHRIatsMcuPmi3lxvXFsvtzdo7b0QZPX5xH7ApZmX4xjoNbpSH+r0DlSuAQj17EAV+wXh5rDEiXKSQTmrmJnz5XtK+UlHppxaStlHeSqH5o6DKHa9YnW5+mffwAmjyKPdF1pN2WIKkIDz1+pO9P5qd5AIpt9x5kIQ+scF7ZH3/OZ7x9jpA4ZOUca6t/pZJXvVLUTjJ3l45OCE9ir36wrwewGt1LP/3ptTN3AdOtYY2O8Lg+vmK4s+6iTiFxSkXpb0YjYf9N+JPO4FJwEdI3oIC436qmAgfqMpYPootFjri8xPu6pHH3TCtF5mRDHZqFlX7ZwS9DZ52n8xXsAZsWLxCZOh9dqHa9mfOUw0Up3fKyrJNJSS5WxGomlda0YY9evsKIMkS/kOqdf3nPQWZpKsmnVn2crhhqXwA4YDhYEs+JG7Rr7sa7Ky4kBdRV6N72P8DujmQKTVMDaWSeyLWzB/mmiUvuecyG52MxP7sm764hxFdf0hD7CcspO9+dpJ2a9rnQKNBZ1Z+OdbZ1o84GkeViEWJ0GPDaKZZxUWNlcICn9bthrpfZVhr7ZHGrRCco5Yu50vDTXyyp+4KJLAFq8gVOyXJD998VFlvAMaKRrPs/CyBj9leTNrivDVshOEXGH7bs0uMZs4m99GFgYh4Ri3jucRUYeEKp43c8S5sSHbe3fT2TxSuTSFi+SCiBxKDrxG5Q/k9RSkEdgqh1Lad0thedRZPgms/3e4t4UKeUOhq/mZWzYGO+m/f/QTr3jfKemBHI/iypKr8pXcrFjbdeMjemaKFfBqzIEdp0mCHy0jlW73ELswws1UpaQHuJpaMmFd1P9xaPsNAZEwmap6EFrx4jd4sDIzRKPrthd+PW1z+Y0YmbgUdG5Sv11/got/jf1ueQBjVA2LBk/DGEMdZWN5VZKK2oSRhWw7jNJNGRc/j+bnICK77m8qx0tqSrDu3Ydc/KgCdgWd0WtO2nYWrlFSnReVBloZoa470GSnh+IbbhW4IUkSxX5uWC9UFK3Y7x1Pvx0yO0fBHYU1LVW0jf74EONsDnvmXx+mVHepb6DVqpTLkLtnbZFuhtDz8PFRC5FvtY99SwZoQlJBsnFB26XAji5tlJOJ/77x0wXBoXf9PXAL3qB8cdYWST4NKpUyElmTNqmh2hDH8wxTCOxgNNLW/v1KcFB93macjJBmku9HPcGhm17myFjxfExbuHL0emnaAGQgPeAO/VlDEs89Q7kJC8Y582z7vlTaWSgJXZyZ4/GfoZlOxVB/gpQ9YAirP3BC270a3DZaYEaC293v4oHca1isqCgWZr4VZmXYC1Nj+uJw6s9qi2s7IgDyHDmuOPTBusjA/iKhdKZGx5V2TDRXyN5/alO0ac9DErUPFk4pYdRoZdFKfJhKddOHJdSdptqRMEBVCRSQEgORdJ7ZAZ9CdYXFta+wetKJJxO+v88kjffLT28KSvrOLzj/hi0lsdsnhgVjHMi7WYQ+R1+aRQfyZiD3sZLXtdhPw9dPVNSh0Q6SNAu8kMKoTJn/NOShlViq9rQKChVxldU8fTTwZ8SfcEeFnzXZxa5/z6OVafZPB8QmmhOoISWaapG5s/TunlPosrAb7QfguK/isIiwB7XTyegPIVUh42Mm5GjpaJ7YYIoCTjb3631QUT37AW562IKyxgF9wBY8VEfSqZWM3C2BSTO2d19fWdlyKvRzfhXbwSbaQs2I9MFkqUwKNke1El8LflzicHhxjmhBlG+YeD8onkPy7doUG/xdVPEjgUUQ1D1sGh047nLJJ4wswDKojqsisq+6OIWokG44PourfkNDiUmCEtVEMoFvteOmxm0ldgeE3GUiLewcNas5rHdFW6asKkSJhuXggEjl/+f+LrIYcUurjnw9POcaZAA7pCL5kmir7vdOl3Ip4xNgLhlfHsSKe6/W29px7GLkESU2quGdOUplQPK90uuhylsH0ESiM7sxqQIJnFNFFJh9JK7dnQ/vZoJI1bZqf9ze1pF/ZWra8iWHtvjFgcCBWV2SErfjo40apPYX0vXkkWicYRq1Y7jkOG1JRlukhZWe1qk0l2o46FD6iH4yj3fWSbYfaSTeelkuhX4lIqfGO6TZhm+iyZa4dt5OBXo/KaYam8MLckXgsYff+0y1hM8xMPA8ZR/uFmo7xnVwJMU1ZJ0IErd4NiNJ04ZHCEOJHh2andOZXEnPf3zFc7P2z9hHavbH3aDzp0lEBfAYM+/Xmi5qy2Wgbw7ReW9skRKpRTGvDTBhTOLPD+8LCgL/Irw08yjN4Ebj+ecB/LBVoD/fiYFYMrEtt56tKXygbq95n4ssILK1xi6/MAqhnMzaLMht7JY2RsWU2DGm7xw6aM0oZMUm62jTFdZ5AuNSH5DreUwlMLRTNKOnOvAMCbiAnE8EnCRePYoDdu+hEzGM5rR0up9QGUPtYIdPWamVLrVA9CLEfxAvlm28XmEkL9/GkOX2lyOhuFV/vUDxx2GeWmAdSz5J6g/wZKprT7s9n84bjJiuAN4sKQsvvyM1vF9nLU4kcsP3ADvUrg1iv1CKmzIAAAwETnAzRGovRZyhHlw6AYzeCTDTRssSvGXdIya+0v8iKQJoVZGYbtFl5nNzuxKMxP2tgZ6Lr8c6mGk6mx0PY57cbUQZV70FvZR99/SBih5dgEOSqLoNMfBQa5Lj+di6hOa2JtP4gLuz2z4v9snvnI5HSykYF/eV/k/xIIqAAYVPo2HulAxOkFPjQPjgH2yYtEyRjbLamHCIZwVEcrJZONEZt6bTZSVoa2wXkSaslHFwC62vpkiEgzKhkXax7P9Fgez97tiKSqtdgNS3DxTrPrz8C+WVy+F2c8XZEx3CBAj/aTq2NlcCxWzyZ349F+V4gkoqhZnxMpcKBGWliiHlUy0/tAKj3NpETPa2PdO1ZxhwJVLn5EmpclTwUCtWM8tfrSEsCyjGrIDEz6ScXJEkqxcc8z3kyh167YXeq+OsOvieH3nDqJAJlokEb80MBJ2XW5g1JBAGCvGtVQkMh6WehzmLmamxzWToJL7FwNSw46IfIROPy9nmA/WYA/2LCgREDg6V9/ozb4dCW0ju807rLF7a0+AenvqO6e0n0ipKSyCueBUlgdEZxOv+S35Las9Pvbl0Vrhzm7R6abuHJLXwSNo0Cd36PiEOsUqPWvXJfqV6nYUKi6FcusWMs83gJRPjd5WmsKLp1VKP+i1mua2xsiYmDYcGPiUd4MC6ZB6Ek59GRmP+AzJo23SNrPzWP84deMTL0/f5zKETHQpozqF83XZkMRu2Yf40/iiVWqsArDm1HbD5yjNNNr8KBQ5OuPOV0tUXuXKuj2Tx1pN5FEPUsxGrAakrCGV8qDG5xYSEM5l828vpj0sNrnEDWajGxaoKueaiLy90zwf4UeN9u5nEA6JH32lZWYvKChKnrjhr710I9CARZjgsNdRwVX4p6agMC7GsuFYPgzrlUELx1ip6d+huBgXDJsNCHubRKLT1vte6Jy3wlVAO9wqG2JjtAzhB26RzMel+r9wSFYu6N898FWnsjbHTsD2CmHyzMRu09FVEjDY+CxyVFjJVFrVnMO26FXI66p8fl5UnTGc5aSGmZpKtZb8vDC9nv6G1GRTYWIWw2oT4FUagXLGjroWxygZKLUVBnyvo19qoDgjtShXD5B7kM+i93qBJmiA6FzZ7RpK4QHWMYHGWeXYDFMOlB00W9uNRURrKmKdV6XIdCSswbNxMVBUoSP5Q/0CkyoIkH3Fhx5qYGKRMxeBmT6axzpawQ1MnWb+pKHDeqUOWim9ZEegWOmgDHv5UxItRHS8xupleIPNdEsTcIxPcg1QyWbOrXSbuOzG3Hq3ci3QQQUSGgBs7kpvlzNXfK0evsylZvm9lA6LmvLdtjGElbZEtAWlpM1eRUGak5OQMlUUaGGNeBK7z1Sa9yF602LdbFIyIH5YGUuTS0KUcgfStWxMLsyDF0pMDCUq86l6sryx3igoUp4Oy7Iu9/5IMYnhlDaCF0wInn0JOuRV9+5gRSzhC3TsePYA5wDFbEycETSn3VOYlrpdvyo4Wg7F9DTmXREwzpc3yzEScte9kZ4tNLVTXYPI1zjTTiRd5TLi8KFGaaLoA7Y7TKcaWe66+l3ZrXrgzbUeAn0Q6RHExowifEbf3Sc6qwZKB/N+H+S0wpkaE089vt1Pi6Hq3Cimxol2CsMZFUngM5M7HcVPYVPxX6xpqlsZcU94QtWWweyoK+SoFV6mlm0yl3WumwbeWoIfnKaWvdmb9cW0gBtg+jVHuouBikpWsDARkU72mx69fzqh18O3AjaHCxnqCXnbdqUNkT2cJRNeujyxYkCXAjFk6pzdSOdbXvsvFRij6qb/6BvLt7PeDl/C0d1oHJ7Lj/pm/K2RoGXhpswv1jG4e0bXnMSus7uFG6movQbcMwWctdlGBADwg5HKCP+Sv+2/gTut29nbel8At4c6tR4Ett5AAcIAsw/n3laOxw8LISPfL4LE5FgURT3VOpICbzHGaq4lIECtwIdzek5waxfaxrwEENKV+GX8wECTlN/7TRqzGXbvNO2ww9v4GcieSKNLoef3aIntYSAUEAtBhOpY5pLiauyCjoCmtW6Jox6gVwpRpBXhW43zTdn7zGCwgVPUNEmSNA1ydU6A5EJF5JRDj8Blnc2Z+tdvd8MXMkWBtF6S1NrSwkh4njeC4EhQolVYpUT8QhjamPoydrdZTfgNS9pYIpKw5QUlTPmlsEtU7EAomMsw6UKicAaPff2mXAWnaqP4wRINwsZ0dh/IxNA0iqkC0RMR5d/jIVZuEO3OjsHgf+MnipdirrIhX1daTYdP36aFwwfdl8o/DvVnLuy4rKGJPV4XtfOr8cfNpIBVVxq0iVK6UF/4FaCE+jGWZtvJWiIezbs1eK3WoHcYfePcd9KZGVrt58RnnmJIp2+uNLqCjm1Bvj+cTD4SGCVz8jewx5dPAGooYXO7TwBHhmLvG4HDLzlLgxG7vxI2ZZBrIAYH1te0u5zT8MikXE2IjzMja7Krm34vcmumJ34rvjSwD9dgfZjp2id4+9ufPhEZuP1NTg4DPb9v+stf0mfi1hYHftosMKjDi1XpjnsHNb4K1QqxhepACZwGiPOww3U6MJZdsWpgdsMOYaD27LDIRlwcpE9bIETTHsRerF59m/JdzOHFxneHaKT8L4MkL+NkiA9ikB8Q6YQCSzz2D9W7ClVZ/tfeTnXCIlS/1vGG7Wpux504ZL2QPk6WGuedwxqwdpz0GSEwKEFZzBU1AvwdVgtfM8IDBKoNxGNa/EcoeHF6H0yMmfOOkq4ouaLGGR5H9mvvSPgCD4qvJjBFGf5JsOhWyOawhh8pXM/dI0rnpap1fU8BYtOgWwA5G9xUOxZ5R7VCpXs9dGP0I6/Ssmhn1Z7fx+MQVei/AzZ6jPHe4HB9VXQs8tcVq7fYBRWpo/SPievmwksDHidJd51uCyV9h9aQBUC1U0pQ/HLqqpLOjRCf+SWTNNGU6UzWh7LNAzz/o6Hp76swZUEmBEq+/K6pJaWCk2iDaD5dPElSMFmpLI0tdjzp8WahVjnS2iiGsreRRQONWhF0yXofDaC+YNywTVzeZCIyJwNHOCW0VdO4KAQLDcltgIsNe+J02GiGh1G677PczMPazVPTIZ5q6Trlke1NfCM1VnYDgTl5tRDsMuvmmlR11oKUBnK/Odi3xOumGzscVGnqzPKDM7ifkIfLtCE8i53pNi++nQtj96/kX1fNiuTZm/wl8oypjBkofkP7MBTTjijR/Hp+0ScnRGMtCi9vrO61+yV9dSoDWnPiNHpU1mSrOC0Pm80RdzgWpgH7mrR0JZ/OHrCTSUkTuiRZjdzr+Y+ym8mUiL5Ca36l+YxMzY+2S+BFTeNaB1WH9Q0UBnYMQSADatzbWW0GNhO2LWcoavuXzhSVNXhMRriYjfScXYplnVsVGKDFKE65v9DyO6sbWmsah7EBSvUacVFc0vjVwrIskFFCRafBC/UIGEjcMs0YxkD9MCtvFXTiirBmMCK64oaTwmlbawQhvnUPInbQk8BsdjD6sGrRYBdJ4k4qlvi7IFobyG5V1P3a4wKyQlCe80NMnfb4L0CrfBs6nqKxERjbHD5RqvyufUUwlocfVr3LALzT3QcRFCpufIvXxpuHxKU1Pg8/c7FzhPWqBi9oaaJ7KO+Yuvm0tIn221yaDffKXUSOdoCG65AfdLo4lcBinOFDP69n1C6Lo3WNwUgXS+Qlvj6cPy7xdYfTitZ3O/zG8272RVwSlXJfiIoF7oJnAF/cgmepEczJo1IvgxuOVmJuIXmBu+FdzXSOEmVS9lFRWbIzD0Iw90bFdZNh3ZsC20eF70rX2jCvuvPklgJHIQVb6DPiTi3H1+/84jlGhWoX+DeuKiOVjBMDE3X88y8WNWziGWPAbdvaHkP6y8XdaHMXHfDC81yHMpB2zG/kpWkEUDR55dON4AJHx5+YXREfWnZuDzysglvw9KzFKH8IZEiRN2yqo/pD77jbSRMmI4bV/ZgZQfIuAF8AxQ5sDkvz2JIKLmGvG8OpeAMBfuugqffThrBWZT7aiDxqol8g7RBelAPuHHiOrig22Z5OSnunhQBszb5SPTPtYbmYCBYdWl/V7XEDxOUAyQs2QMo4AABPuqOUoIraaCzgVGu5YL9czikuq5p1T3T8IxsKq+I+xPRkN/PwsKS1w7985L8lNpJpQalij5pScXJpFklkCxdL3+ITekGPkPZ9zZgGgsruI7Yhd1xgCSOAzk8QhL8SeaVbSj41HK1tDq8T4C+/cuYp3w2g0agKBK10kGDP2V5mgWyhxE43GgUpmZa9nKmCO9wxFnyzgx8XZVMWpIF1z+r/Rs+Wt42J657n7CZtEZmYG3hiRMxNwHO5dUodcP4CjSUm0PkXDuS6C2jr7Ltvr/6/+LWC7eFjT7KRabL+p5Ly/v1r2KVJ+clu4YxjcYxCyAY0/QY6RHch+ierFoz7nv94xZ+wZQJBAjK0dxzZOVbpr3xqMkON7WOsRWaKuXdF0zKbqxgHyTu9JmHluSfS1gV4zj5zo0GSiZml7e9CsFKcue77kNk8gDIfpK/0KFg+KKXWehjhLWCtPttEzb8yylzA8ZIzi0r///qizYzUeeexZ2fVq5fzPU+C0QcF57u1vCRTYjjDgAvsDzzPbHF6S4auY/rBf6KwZmNznBlVrSFQtxPI//9fuVcrYgffrKL7l/rTt6yfktIv/Eq+VySGg5oK0yvslyWX9TL0zFXCJk2yka2btuJ9awzAreBdmzE7bBrVuE/yFNJ7SdStRYqB9LBWViCib/QHrHGuxvNxHV/16vUSg4/1yfnaed1xWSwAFWdCfCfyNt0cuv1d9CsE8Dgv5uNH+gf3QXG5cy2Yg9Beuoc/iNiI1bzTLNoYXXfb7Y/dJRHhE9oAgbLJfq2+ReFlwW4Zxug+N43QU9LemRsLpOV9L18XZf6oOBCIeuAGUZ0g+dJkCrQn1P9+4KHxAxleSxRtgpSg7nnapOSPjNAa9Y6VmtN+Klp5pRSaLBthQSQQk/GkkmZA5XxDwJeoPDr38xQF3NQ6bogEdQz7uJcAsENVLH8WhjJ81zLIjtpro3xcD2cI7vpaZpMV76HcC0B0+ngKjBJmgsTyOFsLeXkE+st9otmfg3FFD/gZfjIwTqBbEv2pukTaNaxkraCkkXDQY2EzhlkARTbdDyAFey9ju7FsKl3nOvP1aPJP/9ZzVIPhO8R7MMYelKT0bYFz9xStA1RA77E7q8YRIZQVMD0E/OKFd3WUtQ7G7FVi+GtrQB75ehTxwO3bc3zRD6wZ/0L58q+ZTiKB6k3M9CM7uUvH1D4NaM+KOF3URqEtOvFvkmAjjBR0swAPsE2i3EOjD4p06VGNcq21a8ONmqvflwCD/2+7Mrru7mmlJwDB9IgNJeqoN/VVEr7EwhS01UmER+kelZdmL/6746p4/uKJzJNR5NIVRlqjxV3Ro0v+hsCFS4j/XAzxsEHKCrSwwaT4CS9imiLIXgFX0VS+xzQmmDFkyRosYtsQOCXCpft8YbW6CALA0xshfNhfU5FbnViZAgdBjudK3BV3E47mUKU2PgP57+D5KB+t9hnRhhvT4ARWSCh+fsh18DWUpokRRpt1Tw5tGTP9K9xv0NCQU4Lrih5kx1Rsdcw2mq/C+rwnNULNeyErlNrQFYgDhLpijdiWwxxPZI1zPXbgUdoycKiksq+CUMUEdpKFk9GaliXCybCFkDmwE2csL9sLJJhkT04yXHV5dr/HNThoIz8+2xHeIq25Rm+o3g3lCBfNbcwlbOdT8DW30vIrfGFEjWtx/RlfzxLjroZaBtTYPwNhRMZTO5ZYk9E0qLRcGe8Kz2Rk40dYFNLeP2Sfi5tcx0u51doQY+YSrLWO9zp7rfCUfzv/M0gvGOblzRFP/sNLu/Yggr88kJXrOfpl7zzCGrGidjRxfgRy9L8GKBjYuhp1pAf42wFSfbUba60tGamzY0Dvr9p3J3CyuZ0jHTqxWxAMfy5n1OyUV+g0snH11Cio82V/vTpyrnIoPAjYAZkFPAEbI/MrFcEwtgnNix8ecrnIyWFwGYAceMQq2mNm6VCSawKYZTRhPFSZh6Jc0AzpfEpzK4YHylcoZiwTuLGxNzk3ROOFpmD1JwXDiI3jIoJxX4jdx1MaI/qBTLA0/nleBGIJqK1YXV+7iq5Crer+lU/SzzTiC24Kw4qYEfkRLEXGoiQnJaRCIBsMv6psdIXp0LY2ZDhaPHJnQwyw70vHHUA2QUmUDJYf4/w8kFqebAyePDD3/1HOmo5bKPPV8O6To7yk0l8UsV1v+Q2fgVS7e82Ao4vqWuG9kdOCCFQsb3/BbAyopa6DocFlqB4XgKv1zcy/4Pj+NiaIF7cR9B/87703PB8kyCVh/zEEvc3z+dHbr2hKeKQqg3AK7+oD59J9rbanUrJnLkT3tfgF+/hQIa6J8YfAZ8I+t4jz+C/hyP/FXIUpqdTbNoVyW1I+b8miX1qKuFwfer4TWeJTgHiLZk7HR4cZklDKCi/dsuohjqLLWUbwIAE8K13v5umpf1ORJaWsJE54x9cWWm9ZqwOejddqmp9I+lhwKkf3c6V3uBqcDGSuNay/GqAImTxogZXCdOwSl1EXnOZhk3gNFDXTnVKvz3s238tCA173D/1w8jqFhctHSW4WzfOmeEt1FDWJ677ECkLl9pO92htsXf9Bgzt+qcFdlTlevw5ssZK+cy/YbORRZAclUzrWNjFCmTYvEogJYg+gMODdr7W19IuYuyJcLXv31RTqop/gTz5HNu+qOULj7Yz9kXxjdKqGfOmbRKQtR8B3XktKHlH3rWfFEC1Ysxk8zCRalrpjdUQPmf8VpIw95otPjotz+0Ea5XIu0p/tB7b/Tz4GK4kvO0uTMvNfLLR/2S8iZ/RvsyVC60At1SSCn4zsoG0fOaFvKe0ZjmvJlxUb89fwsnmsNk7+V4AdJc49kRW9/8+COb58kCt+ySGu3KbnNVmWQZ+mPkzBQbJWI6LSOdlEO4Ifd//O1kelJ/W8/o4VsHpaXA96zqSlUvTBDO6zDPDPlXmTG4qASeZ9Sb5+mjiwSKnz1Vhcr6kkfN1woH9KeHINcmNb+McP5HykJwdMtdtIFmJCRkFrT4WSY6zQjqKcjSSBZ91LJOgNbEp+JDFz7ztoeC323UXv9+4/79bTsi63tkIkqk7+9F5MrB95lWXmq4NvvKZteX3e9oTMpA/8ckxSlSGPzJWLY3PBui1VscK8NuoglTtgS8zVJCiDhvFeflSjRxS2MQiHewvcySGCyB0uudhiASMbELlF+NUvON2fUe7/GUkY+buvBbwaABf3hpuXlpb5De15KLz/9mr25FWRNmnW8exu0tVd01qihnmyF/+kTsAIyvtfgfeb0IURcJt6BAnWjGEb3IbD2Bp96i2dV6LSlZDO/J1TewLyddXwOsIYglGq8uT1nb2Eo067b6A8HO7ue5SG2K0vBTNjeIyKJtZRLn1083UZSrVjNYKP5d8wABmq08jS5VEbWlHXBaKP4pmgHpJjRxZng5MOwnQBH4EuZ/Rdg7++cn6RzY2OY+cQFYnEeREiLJNj3YAyo9T5FeWABYcNfBb5GBUZrnyyT/1wAKO0fQI2sHY0CHNPNJpz5F8+mRLszVb4R1soyYKyja0IXp6oeSJoHLKpBBG0prT3slO/WPsCEwCP2RjDxaLD5gK0VklGp5sjhl1n/Mv/6LCE7RTWMXtwM8e8BM8dkXWYfA6LlZsYgfQLUkjJmVJafnErHnZU5vktht/DG7Qk+EAQ6ic1yZvHfMreuebwtWJIq49zTlnLvr5gJjEj0qnbDYuutGNpiVccXb69uyYLdByHn+FvEyYHoDSGpy72OwYhSv26d0MQ1Ihf1E53SDXqsZrHZr5W3gjVqch7ZCuQ7uOnJVa05gJeGcBi/n+TzOV11tvKYNSh8LZT/uRAuWUdDRl4MAmLSf/xM6uyssfUNecooAA5Z2TjPtJjGgClIGI79RWhqnBkxFCZI9QfbGYDPgFKj7fqxsQEVrszy2tFLBRKmGdeMwjPr/mbHznpXWlgtviRI/SwkkcAWJLsckEnNZ1KvFsehogmaDs7xfuguoWRsAquAJNFFDcYwluZtV3BJXqaCY0dOk4sDHigkA3p3UOYKpYpDeUXpKe222lcN12R/ccs/OJi4PnIOugIwGn70KA96tsZH9Grhh5gNS2cLj36a61bdi+fM3pKEENlCFqGWTqotVfyZ+ZGJD1cO36JMfoM3W32xqD+4fHv7OwhJaTXYAtgXteMYyauLeFmmOt7eFArxoKPBpt6LdLMTwcUgtBRXknay3dnvInrqeKKBNdH6yvBJAw6iDINWb6nPYmmbisxPtLLMpN6KzD+bXD8kO1tDesJp2txmPIHseUhx26W+QypYx0HIMxeXmsvCAaIg0hwcgL3exEWLm6R+FJIIdDvuAWvZxUZIPZkUNd6U0AKwsklglWzBqwjwRlYrFlsKmCWWdRtt8GyD9qceZgWXIpWpAD8Rhb1q2W2Cg7s63tSl10l7roGWemcHn+ME/DNQ5w19LduoSsePamNHqMvJrrNelvbVC4gKdnC7lrdiFRuagR9RYtu86/RsiXsJc7tEb+H38lSh9ZQF/EM9XHA1I8PCvRt10HNFpbiPuYnNtX2UGzQM+7h67IqhITp8g8P7z5yyDfXw1ptvCQQjy1HUv0GquAQW9hQW5BbZmGN5bszzKZN9Zp1EdmTbcjaRHX211PTwMiaVnJ/KxDpZ4+bVfZzn7bKPOP6JIfEgiKFu2Fh3vDZ3+v4C11+qkBhpNomlcyVpdUu6boKORE1f5WebENco8bvU04ngAv4Gy8EPyhld1Tf3BCxCYTRDmZs8rh7sdcxwnzYwbdR/VNmNpMqmJT40GOU08TTl0AogEyaDettlSyuiKcrdUijJThODLSnT8aGSxms4a4b2U/qV9xgjeBeQqVlaL2NOpWM+Bex8YoobXX11jfQOFKWsyetqRKIxjaE//+O43jaOgIMAYGv88KH5pVyuGnQYHHnj84tRzjYcB+TnjRi0/93fwvFq+TfvGtpuq84xhmr1dgOeP1OnVnK86DTNPyXMsvx8PtT3q6Fcia6RGrEVWZnC2v6R/aaHQQ2sNNddEWVa4g04cI36QCQJ5vu3IoY/hIikUJu71i9hoeSTCO5OP3Au6D4SLMn0IBMxal/4n2Ut5g2BUHNfOodc+/V6hLQMX+X4CUHJ8Bppc6xmoBd3/iEWg3o6SaOgKA/1BOckZqrNh6gXY2BdtoAgyaa9jS+qWtfWXjk41fit5iAy97l12LqBV945SHOnK08tML/siqeSFheMWbugjsVt314mSPLhMnMqiMzx2FT1NF6LLe4jg2M4fTA2/YYqbFYTZT5FTgaBe+ybNa2VJbFAJbCy0pme1+9E7DCmVc8fP5RGXMMPW7N5tbgcBfRuhjkECGBXzi9weOLVaRIN7IdQEKFbMW7xuxl8sD74WWL71gTOEILNUBc8qV8URavRCtFL4RJ2p3XBBYwwUSUUocL4Bzk64n/d3CvquTuI+MZVqmitYQnsR6dEiSObCm3NJMEWhJ9T2zhfe+EkwPFIl2GCJVcqYbgQ9n/PxBVD3iLh+gJbDAxYkRooUrYgBXWXyPdpMxfvpfSYY9dcJKdc5KScTWViHWsdOnPu73pmLj5XyL+WKLFRrL2z6rj+YWnzXT57yKdGSze/7OUPQoVq0vJOyyY1fEDqtXmuKM4I2q8GLVMcqVD8/eqfZOBNCaZejvwSR4vZBxqDTO+izE0GbJs7/bXV9FHh9V3UUzpRe9/yptwpt0MmjFEvdiaQ1M1m3KE0CTr+U3nL5mPsJNMZj0Fs8UvN9ui/+qZLrpvYAwutTNDkk0i+/IhN/N84sirCltgXB3A4DuPO3dYiwOVpSap2t2X238OQl50CnF8ml9cPxwiVrMcRy4JFJTsyq25uesKj/MchL7B3mRaigXMNEsQhTGxBkSBuZzbsqp6z/ayOw+wMn3qoguRxJqp+bsp9+CiddhgfXVXCjJ1ZPuKZoAQrVqbugH9+FNTeQBaOwEjAjqx6+gCDlc0JekG3dq+Drb9XTh9775F93D7L8yC5bVHeE/Wm7C+ArgrbEJ3auBOcscxbYR3K1zSayJRlQziT2wnJ8nZXybtaHU1+/leE806klRbL2HiWFQJ3RfhDKr73NYFPu7nr1/h21yKv2VGvmuXx/VeEwQs4XAcipsyQ8CfyXC0sffT3xA25VDlWPHPyuDs7fHBSODfjHLkcy4r4DsBDZv45aqIjB1mFh3PgQtcqXQxS3mpHRlvHSJSFICj+UlBwN0CAqQa7hxFiPVxo/3RU/qrIZg9bveaxmfg60EkEXeaHW62qC0VdH97mA7XvIwVq45AD83/tQ51XBgXxscDMtGQrVPXFmb/+ln9YcFBYfUj4/6DTdAQNT9ht1WsPob1yE4Xo00m778LCUnlDgovJa2IbAin76sef+DQYc3HMqJN2krrPiVM80TJF//7Z8IV8BFDLKDjS1CyC6avvgDjKNkUrJOk/ovUVe9kfs42cw/F5in7MUp4eqg8rYLxHxmfGS+j7V5l0KdU3K5GSuocLeL8aMgH44VYY8D4AjkaULV9LlE4YZhC++DRJzewvEoMYR6LeHtB64O51QKewTrI7h1C2J5gS9ZHizzZ7YkICzE1uXzhKI6T0+rfxGJM/RNUA+LQ0u4cOoQfq91EeJTSlTOOYLG5KBu7daC8SQv1UYFFiZIiqAy9u3f0DY/GamznzmDGq832F+6YJbVgfUW3cO9+qm2hoZRz0XtQ7El05IIrTmwimOzCcbOTSJAXdS8CqSKAKhTqKqI5dNOJbvpeSKw1vDlC3MS0xDKo4ptvt9Xk+P6d2i36Jdv4k50ufupbwy+P8sdszmsm+1FooouJ4JOMXhaGzY2Lhav9OdxPB0KRvX7aGJ2Qf7lBtdx/oitwe1JDOzBGdTsSS85koFlT0gK8SkohNXW7QyN+vsC4Uk4aeQggBjOMFfRlLTeqCEPLuO/9xx3sXbQQYCYnTFo+/aY5Cx3+LyPiMsQaFU6j1fvbUVo/GqT88OTMq5V6ymDK0THA0fTI3c+Mdh/TGwBJjmLudetvC7HgctOXJ8QZ+2WPyUW7cPGNSEeN4H8cA4sFzW7Dts/fIZU2RVYxuk/WrXkpXGlJUtZOI9sUN2IOWGrS6gmbM9BmSn8wSQ/BWaNTfz1RRKI1mdps73aW966arCbfNhM177StOrCYALgxjgeHisHGWM8SeHPl0BW6DpqWTLX6tnutR2xOrP3MUNuYLhf5EOJdjTwu5YfFkfWBvlRbgkdf1YGGng+7S4PHwyfNq/3mU18Y7kGzzriFf9B8cwzlujBI3huvc7KezI1BcPMcBJTdgxgNvysW8RVpoP3VVDyPhUQ+XODmXyjROel00SM3MJ6rujMW5/+M/IGTwl6U2fe4T5f91o+A4+E4o0GzRkNGn+hbMtp4cif2lw978/Hd8EZYz0WssR9WaOpCBZB9jWfynL4nZwAlqEhK4rM45kq7x/bu1/eGwXfsIt+SqNUFUT/n6LTZcTXuli++chzo/F7juZlrrqX4J30nY3ddO2GvtYZqb0TQmxSxfZxOpDWYVSiGkkmFYj8fYcwNc5R90ZOr/d7+Vle7s6yeaN7tb9erlF3xmevtJ1PJYytCHr9OIhtSUzpO2rFLiv0/mgnFtyEMfDk5oSTtl2J+k4gAc7hM4siekC0hAZ8oFImydlZCr+wv2gvRv2zP0rhFwTnAXZhgPhgXdgXcnE+9r5p3JZhlspODBfR14inq+siGyFPExFaKSkhFJo31NSh2n5s9hc2nvpYc51UxPhbo7JftHqsOfVrgHf00kxIMt0KAl46aYRjmOloRCRnTx48INiOjKuZLPdeahbsoR9L99qWSIWxYYetsKvFlwZLxbkI3bccXlAmsfk0nWnXs9SHrzROLWHX/TwPIBpICiGyFd2HGMkFGmX1NeYQwUZmBNoDFk4hSfHouiRphC0tcuAeFQODOG3KPQSZy23c6e1vk6gtwCS/IpHcn4Ui2sWv256zkN7AAc/IkJ+AhEJxlqRy0YmIHyQgRzm0VjzDcr3qXDO5rHsCaYnaa3VDeZ7ZFth+4d+lfHwjJ9s9CJmoZlf40y6Q9s3UGrox9mGNYeQe6PnrQcfD3bTz6GzAuH3IP39p+3bTGomvwI7XbSJlwtvLd73K2Q/8wmzh5PCRXz6yaMQBDWFBcvDTOO9+rXlXCoo0ITwnKxaKP5RH+JcZxsvaEVzZxH4WRFtD+//99x12jVqljttd8Fa9n7prnDC6RNJ7nYc07S47kX0FOIqyLBQ7pqf+19AxDCYXyPRPd+ulEkRUYvJgS2EeuK/7ALbAnXzfCMxPSctTJLoZ5HydyvoSFy19ibQOVf5uDj49pUEoD4rH4PtCjluYleEhajTI2VvgbYM1iKo4wlafwx1bIogDa/HWbq7JmTbHZhOTdqLkj9Dtd66UQdqtMQLO0aZb+OFhX3cA1P9FwSe9K1LpunoNQgEBb5fwE3Yq0BH+XZDeVB6T7yDxDo54tAJ7a9yp/UgYyzWiMWPZpcLAiRPleG5OpDhgB+TmKwxpE2H+hWXybcWrac4dPyNasv8jjJHb4FhMIeKWmwKWp8O2Uce9Y9ZnQGd5CFfUZftorr93oUPciRSIbmI1Y6+DVQJS5jiFa0duVW30h7VYa4fjTGFl9xbmt4bwo2RIvtIu6C9htBFrNABa7iBWWG3bDlVLBEAJbMuqCJfnkWUNH1Dt7bswzCRfmg1X9FqysZk2P9FO6HAxg8KO+LqQWUssGtNYz20ILTpLyJj3Rk794nTUXMhlE/C8YCPokFAGyLFEC4vv50OUg+htel0SUULZVmMCxjjrLlfWddEEfRWH5urO45fTAABDsQGfKmpCvwAAAwAABNZCfe7moASogB4FFq+2E8oKmQ4FVzE02ZzNVld+Gw8DZH/8wYOhZngzG17FMXjW61Byt7Dt/JPn3lRD5n/+mnLu4MGlbTgHfZSX2nKvEMxNVwLbn7HpGSHhEAKcYWE0/bPvmAXGhBiN/nvH4wyjjnnbqO00l6C5UhowpcfBc4R0+4b/Tn0Irb2xf+/M3skNOo9JvqS1ElsfNIh5E3Vna7ZSlV1K3/DBD+y0GU263oBJmTfsNtd/sTGsd11OIRtixMwwoD7YozHGB0ty0kXNUgayghZMhs9vqTtgGiJo6gTGLT4x49VZLSP5t3emLDXNRfTMiRO0kHKjp+ocLCEyqX0ePHnyf/dbzdTaIAtwLD3w18Zm/o6wJ/r6Yq6pJJGc7KzwvJSG6jyZx9Cof4O459C6iIW1x5rozCC7jEb9luMm5c7FwMMmN7iGOOdkSDX9GCVLm+CFlXw9DFr7AYxYQT3Rg8zFqRcBlzIDwiqOUbCzMvSDFkiOU2+BB55DRmSkDfob14UW9T3UIf1qINF+TmuLXFSDDoCoNS/NagrEozIbf/UXtxl4xt3jAttOxOOf0fOmH+QzxjZJraW/dJgNu5Y2VHrFtKfjHphZgoaG24P7TsqtJTw7FncRQMDuOAbBd4UjlUShSeXmouK2mWG8Ed4H/HGUtCvK+G9cSQRY/HyIt6L+YZr9xyvjILeHsWrYzJAWeBzDW75QUQkXQvbxeMSgt7xWyy9iuWGp3/BzowZAMQHW66XlqzMBMIns0UWUd2heT9oxQAsXdMAp9NrMm5lgOLpHb/zbo6fDJPzAiIFPWGZILn+BeKb3t4fVlRfwDDWKijyObpYAdelH70mkRlhYJOXl8T/dfdaZWa/swzTQckYenA0asCJAFOAxRzJJWl7yUQOtp2d0ODEYunLCmFy1yKTQs8mxIwOebzVOKn7Xx9EklFZhMiJ3rlg6jPyGt7Lhud9b8Y5+/aBM0scwFliYsEUNu9IztOQypwVq6WvFhIwiJoqWLRGiUMHoNihGGCC2PQXEo/vvUVJ6qQhYWjyvQ+IRx6FmgZYKHxX947vDjMXr5vr8EV1YRcMKisHCUyluyhcBnTIOddW/hJvFvYFigXiXOxuXFEDkEoxecBQQotLVYu6GF6nUwnctTwyZRXdJDp4vOOoSegpfFXBUg7Mj8BEZkGFiymz6wgJwnxidUj3RdyKgWAGgSPQxRJZ4sc8QZ1vaJccM0vPJsBWMVKEvq814nOyyDuxlznZM4Zqgm+bx+Do2z5mUgOwc3zJievaSFdfyIjUP/B7rwl6o2sZnGSHDc1uYxlCRy9uhujmCeaYj/m6qLbwMeuPhZEs5yZFEk341ysEacSYgqPKAHlKYySZHsIuAIxL11JqVfSftwBomH5kYLbkjmbpb3PqWhNqbSS+mWd2url5EcEAOEq7kR7dlHj+s3/wMmIc/cy1HPthWCyD6W9wPMy5rtovHNJYstJ6bJ55heCekBzNRmakz5s3Z5J1tcXz6AQ4GQZHiwKuREHkcyO5/escLwMS1sj1x2yOWrZ/jsS0Vjv+QxNzzfuTvOGA8hqFAPtxucgpjzMNtDZA71kLyvFIrkyF1yR4uJqSLe6KTsNepOs+UxvQNuKWw0ueHOwIHsya2HA0eTbvTsw0nbsxRrn6eiHll0gyII4ZWDr+b4Za0/k5V5bkCKehEII/59QxYAK7wcR6c0Q/jA/KrXPmv2TLUfseZp0gboQrEDPMC04Wq/cBWG5qKA1/aRbtyi/jGwfR/kcFYfmQ4cTrDk9gwkclrWqO1P/aH6elAYRAQ1vp+CXelBxO4vXBPe7zsik9dNMem99mQcC1IxOumlue7f1JTjBjxxfVJrc8Z7pXy7K5S9WCIdHCRD3/sAOtxX3dq4AGKhAvUlptdD/hwAc5g0dDOpIRM/biubgQZjhdwyULXnxnRYyehUO6oAZE4RZ57DRfYs4UU9SVI40s0kb4EZYMbAYnUWe9XG58PSuCzvn10NdK7uTue7bf820Dh5hKEntYenbSaVs9MN4lldIXCSTXN6z+WRNee9LrH6bmb8RDlN0vhMmjKt9w3he3TU0s7d35wi+7vSX1RgeA2Q3gfYAjnANWEiyOD7v0txhfw1hE3+nM1r+ixHTZVIsfgnjQgQrhdujcI0pF3ngvgGNcDbOjQlV8CcLsXPc1HXgiMYCV7A52fVxnvuRE1ZcZFgYG/k/mVP4VtglQXW3wRTjWTb4DOQDbqYke8Cpu+lZi9eL3bT40sI2eWF1Mvq5EBhfHhqeVOnyJnkHrIgBoWJXzP/O4gyvi3vcJ9GCn/izW7tjbw8mJhJfna/mgBKtbMmijy9/UZW1VvVrO/P7PfererN2mbNuunhmi6GwMWwjJTsasX66z1+q9LMXpv/Py06f5B1lW/mKNTY2I7Zdwbuk+oq1c6VCLlnEDRl43TiN1bkBbItWSdJO0M0u5OvU23TrbsG280Rnte3cAMyXqWsa8huSG0J0OzbkaYxaqW5/Rg1vcUIugU34NFwuxi9pD6wm0cjMhfFCtad+15UZNTooA79bm3iVWUWixtFzt3F3CxRBsXvzJ7r8cNOUuHkonx1g28rbF5SBW5J+ewGZofJabB75QVH8Th1Fk63rVFAFkHdfC9MEYdpE+vP0S1pO9LYIigY9JgiI1IWy1nOMe0wpALFC4QcDkZZ/Wj8Eyc/gFd9E/ejMMNaaLxdTETzZ3Ql9tVedUotdJlPYCOKvCNOv3RQ8dUfuRHKA0Pjdb4HYL3hMCVTIOmqERjpj2gAxRs/cWd+6kD1lILjcQnAJPdypXUcW6HiaYi2iTbD4d3lakfWel9BY0zk0cS9bm1F0RRgB0K6lCHRNmZMMQgT44APQPwUBWWE0oFLi5HZV3U2bS4YxHxFVyWPo0rgWj1oX4dDV/xvoOV1TeJeHbgFO10gcIT6Plk0/tTUX6odRgtRF6W0lHgxs1W5200RbkEpxK6eu7OthJcG98e6ZuSDeZztFXZzKH4v3BzlrhCPkdEwh1rafTU+H5pPCR8aVCVYtfZX6lOs41FSkWSlOvfdPL0dppeSwuc6gd3HDWQgTI2Pj3Ro+4UaGMDxrVR+UaLmJ9fEkoekoZQ3lkwzJ/LulZXJRH6pxd8ZGnoUxQ29RtOUlIpYXVzI8UZkcSiVZJg79NyLnsjYJyzHOXakMK1KlFEFF0fCRkj+ZvoQ88MImZbAwM/xFl0dWpQXvnQ8U9V+/npWiGwL/rPJBaJ+Q0jtrboNqbcJPP7cU+90516S5W7ltaaJBHO0g5fUAYCk54SZycUx7/RUvYVDFVOt2EmDqOOFpTy5hZcuIP3ox6TJFsR3ipMMw29dHdGo4mDL4wHzWCRtpWSjQ1qwX9Rx8ynnHf88Nf2mJ0VuV72RXOmTAbMM55z9PfVpm51d0TNXqJ+3egnj9wbmzFlQuohGj15iCqddNygmbV1pmxAV3aBpEGhq60RD63nh7U1n1kkhUdM+9Anr+uhvMFZ9mk4KwnQfqHsU8Vws4ktylrJo8mwBP5Jiw0HJZpS5D1C1JiAKX6on4IiEC9ugPo+EXV9xUm4/Ypz0oURLd2Px+ekChKcNY198vFS5sm5K4f2bjERUSR011ORgOQsr2fKruXCP6ZDoAJsQCsD++awlx1JIlegyl+TDYwC7Rc8Lw5geRESloT9bmtNy9SthdLhzHLu4a+2LuiPOUN/K9J8X4YnlWuUpJgnS8KzYhxljEZoHKGG7TSdPUil+1k12s2b3t5YS5yNwt6qboMVragfjJ/rexgk+Q+2ARNhHkWsmvEipPaE4WoEru4KCe2PpNFTleu7O6+7EagzCbXEGKTqIy1znKDQe2R2C2h7RjFv704zx++oP+KFkHigXGxGeh/Ots7YWRmw+jRm0iHrqAXX+c7uEPYk8UMqtYii1vBXsmJkgIpSgIBa0rLmIg27cVnQ/kYfICuNKG6cXPds9e0zzHrbMNAzf+lTvOaNdoWwkw325KZ2zyaJzZjF6/ifKNyAf3NVV1lcNnrd59NXIBWLGEERnE7RoomS08Ixv/bH6rW6/1u5PIIJElo7wx5pAfKUNCsllbyydhrdtORQNNM6NO9esfLz5HRj4czWTQGk+9hOfaeWge+hsOPWgUbGNpRppWwZr3e6wcmDunQX1Hj4PZvbucLLMAxHSmERkrz7gBpoErzSy+AzYmwgzvGyKTwmc06NEgBIsBk+PZECD2uYJcR+9B1/mn0Z8sWgE3sjCenfonLSof57OcqodVreuz7iGmNg1lOwPxwEwnwJzjaae4BeDcLm/73H8ApYrskqgAxGOdyI2sCmBjZiRvZR4a9wNOZ7aczIzIqgfueagCpm0UjVb/1Aqxu4hAoUtGLRCp0gWfRo4ullAtIL8vvJ5Kpyndc2xBeSEHwwx9CQWUJ45rE+My9SPfkvePrbzI5DiCbBPrOdVm/7oXiB9j6k3nWiUkeWT7YtHhGlGBCZKmG+JycqF71u1cvNLx/450b2LXjzgwqH23lBQrO+oKpy0oWQ7gdX4EBfXYzcyPTcTvMaSy/i6PlJE6n322kC+YyPYUVXiDG6azrz3kE1gyu+AfsBjFRsfnKhOiTXzfnZ7tXBOMfdhcAtzotLgEc2H2B/Ywjt6gKgoo+uMsULDsmOix3V5De8iRaMYRZtUMGIm47R2Ai++0KQAOPuDaBSLqV1xtaR1+tcgNMjcXDQjxinixe574D5mjFJz1urggBnIuUM5dR0olmuyBhQsFRFhO9auMM0Ze2Od9Dk7EwjtiZFD/2Su8Dp5kxGmfLQXbAwmkCZIZ0XaVGhMwYvhSPybf8WG7kc4GcGA/z2vWOeWM/UPdcB4BXiJgSy+Hb4G3xkMJ4RylIyo9AHOLinmEWjqHIzQDenpjeKjKXbUcFdthSR7q3Qbnb4+/II/VCxrEbX619os2XKkHlT9P+pLorqbgHgOECpK7V+VUecnMDaeBwWKW6exZEjkavpYA7H7tkR1XelsKrmR/EZXsK8fPdvYEX2SkHv4JI4GppkAMAKcwR4atCWuvbWCjVqrShrIOXiW/8rsaFacZ/pBpOKPvTwgpt9QH/nu8GrzzxvLbiJyp36jlMCecwPsLU08ZEqbkloIgdrPOH73sHf7w7acEMvZuw9l0EdtCgikqAtN8iX0Vw/1sSt5EbZgeiYXvB0hoMJwe7LgN22Dh59CDqyPYKu1PkOdMjPKr2FTpwjwcL15kNUHgO+d6qkQEVWiZV9V0TkBgdx/wJqnfjg1YATLn/xFd3mX0AV0gy6nttENJZ2oE0CEdXE0eDQVwY1itKLt4JYqX6+OwWlpiJpQUrYZf+u8jbcq3N+CDuchebCaA+W4Z0H3ZRq45FcuXHrYqElUCD/cS+3QdjWqehqLqbtwTPgQw1u5MXGJrN7M1M/6eBkNNWIp8/bB3tq3zy+uvPiiMKCwAAOD3Khh4IDWc5WiIrP9T1rC71ZNKRgxE9f78TMVgWT8S701i7CsXHvFZRFujtqQnjPX/B9bBWhRW5rV1aBtqSwwO7Mk+XwmNsNC/MkErUvHV9fFGqNFCYzP477/freovXyQygs07lOfUpF1I38+FufU3vTYEuBPIOBM9ab7koaEDIV1k2sWYB07FpLBzUzDxk8GECbAsAwdhmB0bwF9ZJrv85Q+r5hsXW/Jzdi2bvej+EXTuok3rZ4A/3jlQIRH+f7ppeJJbWlpY+1Rt/nW2DIAu73nWjPKLT2TksloQk6HqE0XhIqjeLXt/F501uAXN7K1AayFk/mQFDnG9eLSTbF23xek3GtUGcjJfCUd89fWJsNH/vFV5t90FdCgYh/GufHQi/UTXqlxBM/Cg3pqzVB/XWW+1FzcO9Qq5RxT2bMgO8SuhQDaPDCngLMZlCQBrhHb+tY232eBscDB3aX+dV8dM1ddHMO7Qe4dnZlNTqx3Oc4aaIkBl3fpADVbN4jAsFxb8IvdmeygG9aSJScs5wKllBAGgnoS8MLone420xmnVkNtz3JNlabxo0X0A87ouAOPGgbr0mobdCKlLlX7j07tOkJa/a4eFI7Jovo2SgDf+VTRn+8XZPqnF8QS3BugeI3YDN8KNdHQT2WO/AqAMLB5u73thaUalDbPArwGAEBRtEf4/B7VpKWDVpLtvBEJ+SMV3X4liqIeYxHRM76NPolhMUV6VOB2WVDauLk32a6HD2EHMzcdbZGMGUrMX3EN+AMLabKxXZsjJQC+IRVuKbbP6WvpeAJqKZPbrOX8e/UdgX9Dsff6R1W4mV/gGY6Tt/Lc2nIcjvbokmO0rUVEJG412zgzweHMZxXs1Yajt/xmtY6myG88mZ0xjoTuQF/rV33WgIN2t8zzCFwAXLlbfUkjrlFHnHBmgZNwJADbWwh1EYRzbciKSJUOJ/L4nmBRfIIWPA1Q3vuBVGnQgqM+95mLZQ6wPnZp+Q8UA2eyi6UPZbr2Pw6flsKdP+f7B/vIcDIxBzomyL1j5RH96ja2fsNyJbzTTQlCjg8s/8wFYe+vRKbSNZd65abALDKAbcSqjU2TwpnFu4Fnlx+Eeaei3CgwJQ77gupticbGJrcEZlhH00tJeon3JZWSRNYjV3PHTt+pcNv9bfOscoFurfasAldr82XgaRmqgJgwO0563BsQSjlLK44uOB7OmWiHs+jPF+wB9jMxc3TAh1z5fRgFCz4otidRCKE47jftQaAeghv3Z29BL3TBlhqjMSjidlmxojRJnc/JasfDjbkrd459ZSBHnXsT4Sgg3CXSO6P2fZ/KCwL6TQLJ/til5v6a9FDBZ3PS72JDCxp3eJBYsHcHLDQWKbSj2rXQcZ/Fu160puwhz7C6Onfh7+m+qw87+L69p06jfp/21wpqufFZvtE1YEHlDSPv+td/L1uQOgsz6dP4+QufFDuXaKuKfjOF99BLRikKEguHcXVjzFIvb7cg2lv2uemtZ5q6S3dyT7+PGPBXGtm76Ns8+IW7Fdd8TsLfyqa/APTn5sAvHvkm4nb8HXIbM9U5DjXnFDrN3cN1uryDsC3lpTXAdygberw9t4GcM1/MlT9BTO98eedGN1NtuaYw2MOKt8BQ1hFzwGoq+ktYW+R/S8Bwwj16lWHbEKWAbOEiVQ74QtU32RbRsmQ7TTg8JXQPQJmZB+gvULXOTB3NDWvMVr0XKoQeYftlMmiiCo9X5BMbtrYX3dUDimULKTqB5jpvob939vAkEmDTVqWJFDKlBW0ARpvq0Yl+mNMPjBSblsKnz0qfc9lVOC5Zeo97ZaqJu4yo61J8ONzrYKaIJHBiDzqjkzvK6dcGPEYmCnqRT/n/kgzzXO/Fs5uCU87VarV7gVBkROs5N3N9ZffdxNShCtTQRtvpGCyPPlGsGwhGDcFqoXRVCuitFvkVhPMkh28TTH4M/0fNpSjpr7cl5WwXZ1d6CBGryOvdnR4zfGevydoRqwrghXYee51H0xixr7FxI56mQAC1UtgVHtt0ZEn0VNUBp8zVaDeW4zLFLi01RZA2ibv9dzCFQbEEcaovUWXatk7z8mG4QJuwClKr+Ok/KnXSk5IZKFeJXHB+or65BiuIyEQwPFrS0ZvKFh22R9pSid/CObsDxLC3fp+MqTRQCArI2vvGZKsE6oFWgrGjqiWbqclx0DPwO+JKHpfWx7RPGhT1wu5PMvjozJsN0ZWCZ3v71vEc0NydqvOFrkrPhov/nOOP2FW0UGFqizQO2VSDajfBJWr4LsWxQ61xCl0Sn+WO90WBsgro7JxcTUeiL4Pbaaq9/0horDZp6gQVx8xmTRT8lw6vlZgDEd8D1gNruvjBbnoQOcX76Z96P/oAFDqIFpE3nsUEJiys9SWmxlcNINptF3uWX2MicKKrv9yaqmV0eQ35q0trSoG90lgqmuqFayOS/eTkzJ0uGkb+aUt9EO8tUzmcLwnARPNS8YtQB8WK3hgRT4XV/TjLupfzr2pBYtcK4vCWN4QnKiVznFy13grUvx8gU298r7KpFYEyh6xjL7AASjBqUCOGd5/xgKpFEyKMyseDoiAMHkOfy/XAbJYJRIn/jw+934oFBBzfLQViZwPeIj6LEHCtXa+xCbATo8agzKAutyhL8X/r4hGgZNinejtRdJt3YRRnrKYObS1RRg4xU6TWEWdBoeeW0nYRlj4qQubATxm08wzjGADj4avfINL7dofgUkgwll6iht5dE2tK8js/ZXyvM3ntcfu64nKZrNozyeovg7IBXPCcCBIPpoobEM5bYWKwOyPWgMiUmgH3R6ojaHPTJSH0D2kZaTq12Zoyu2lgFANWJFfnnf62J5LUZY4jEahNHwtcSlFMG0RRz2Jz14ZPHFhscQfdB0Q/wny2Kh/C9y9GnVdb9eyKnWiqdWpXXAn4og41nDzeOeiQidZgJwdS2eu4z33MYxuluVH1Pn5Q8ixVrqteU5/LrPSqXqc+K+gCCdt7gfzr8RjdWBUS09e3Q9rpZFRuCEcKguXKaAhMawAq5j5wpX+mSiw25/WuknpQX9Bo6lWEhV6In5YPbo/hEcUcvmyYAdDpLE+UlA8MAd4JPTbfgCwWghnXa7DzLq5Fo+z57vtnXq32rtssLBpZ+zEGi2neoOPz2gicPoRZb9Ff9MZYFhLT7XP8sYSChk7pRLjzSYsI3pUH1He9m6OxFyZjJRVguAkaJPIsSEsM/tN0d/1NehrXIcLBIW9TcV+Ol3ouZPu5abDm5qllsT72D7CU3njKZdW939h/YlvvHmmIsnN2sn+iPGq9PkKRE7DCDZMXK8ODkpqOTmVVQH9ENBfZCAei5eepsYpq7SAT0ssU7j5bOpeRSsAfwMLzxo5AD6RZfdT3S35Ti4mt8FD3l5KJkY07pGMnrWMyX4PqJccSG1M8CylNVbF9AzlbBWRUQCBoqcv1ZeilpRZMPV+rV5IIY/U3iHJAm274bl0xuSzncFn72XTB74tAEk/G3iuoemEq0XAz+UWjv8XGgzWUj/OaTg+IfP5TU4p/CFgNhJAgf7k9oGJh29eb6XjmZ1bzUb3Xj7a56IGs+6M3AGv73vI8HxSGWjp3UTFHqDnX7z7a5q+YhhnEdjR6bEdYu5llXPOZHZb9ruTwN4ceGWwDaK8c78P+FlH0drKIQrecjQkVYyGlDUEJYwlDdVIWNlhh/Zg4R7Hl6rl9ydMe8U9OTzx9mAtegy4ukA+8dX3in8NMCjlECs869eiYfhNEQslXp/dMFFbPtwry9jbednI9s6AcUGAb8makcGQstsAfjqIBdOGBG8wvH3bvQk2R6y5Bih2E+PCucuXh7gWngQACT7+kEhyzumud/qGy2P9LcLdkfYzhnpHuWLYdmRqY02dZCIcf02FuuVqKQF6SwGXQti6oTfbAvAZQF3tBrbkf97VvieziEWwmG9G9twkJJ0TfziNUCq2gcDKk3oDHj6wOYqYcX4vYDyU6w1tVEbKzkYLnfSgUpHpqI8FwHCNBr2QDwUGHxuCMc0inlMFvxXD6eb83HZzIHnhIdptRzEJ3pA8zNvI4xnqWEM4CXWi2iiKV6/MTlSUj8tIxYoZ0eoAoMXpvFXZZW++YLEVs3vdCUDuW7W5U7lbGiHGfODAO+lzZgEmXvTowmpfSy3hABM5fmIOWXZ5Dqpy0HT4VdLh419NGXLGL2xScjelzWVWVDAhez+xWU6vQlHNRZAk0hOFJjcp5yJPmaC7tCpKx6IK4CI54G7tAHhyZAg/0Odt+c5s46pV3AZju2c4o0x1f4Cs8x3NejOHnaTvkIsamHloNrbT5coJofV5rbeB2myPsGkSydJXM/oYAPx4yMlFWhxO6Pz9c14r0He3DFcKAu903Edz2bSZRZHqIE+Bo8F0Uv6kOPaoHzuD8A6NbY0J8UE7WJNOkFLIDuIZKAOmniInc+abJAnn4pILR1aj/xc35snO2AsNtnkKOSm35sUa7WYXO9fQcG1nqDc45pGj/8hX+45QG88tX8rsxP2fjSNvsEdAkw67wG89jg0Yvav9PibwPw8npR0R8UjsowwqvMy/+2Cf/YBedOWlcjcMySnWeAtbv29zgjHx8TkFwQnC9S1aPYyEhVgOBOdavkUx9tiHcqZupUbDPStET57495KBYWVE03dELu9gqc+4bWq77DM+ZeIS/tcRB9IK4UU1lunKM4IVMB1WRvjRX+2nLKFF33eVx2MIWURgJkuDAH/0/IZKVWlyKG1ioIHPLb3cwXF2dvZlKbEOqICjYTI9cGSOxbwrxGXSouM3JRAscEYBh+KT3tfeFZGVVRierLwEMNZ4Rhb8foMf4VeXVF2i8Kw36/AO6nKz1bOzQEa3dByDKc/0m9zSksqpmfzGyO9ltrSKj9H+COJpvAcDp1YOXk1jvYmeL7972B/Mjm38QRIaG/tQ/gypen+ZUuLwmXovgoqrjnx++r+oOYE1Bt5tbN5WLBooT7p+B7nQ//+4U71xBswI3l1MLC0EL80xBiOENJConPO01E415fGp+ATAYA3xp/CXev1fVVoazXty4vXvOAdZ8UUUMsqwxjqnsmeE3NQMgxK087/ssntYslTBLaNHAhwVQ2ljvAjs+8vQAhFteUkxyT9umtQGf0wvf/1gl0j2q1Ig2L2ShpP/OvbBLeRpp6tXB6vDOOn97qLSFiMwc8OywMAFn+rjgVWqfnzDmwdr72p39SL3b9QaN9HkAwfDR9NAwhy3w3CjgwGJqneGSt1bI6uG/et4rDP+Y5mTaDEHaB0Obgq3PUdlMn6Au/AZNDcGnYQkJZFUmgnn9nqTl4zMyJN7cuTcffk/MpLwaq5/47yCQorK2eRkzIlc77jCuU6fdLOyFsLTbZLI9ZfnP/nrsWoX2Vu9wHT5hoWpvw/7IVHYFdOk/+kUUJesjqsnYerNLf8Sqt91GH6NB2rr4U8e7yNfGNhhiNj91f7dEAH+ZC9irm0CF8H4PaUVHZL+8/4x+2OOjRYKSmhoPKqncxOiSl+EB1AS33atHPgKmCcEMHxdKFDpY4y+5ln406gAARU0KuGz1GShI+ZVbCGBlEH+WZ2czf7SZ4FvBX7kQ98msF3F+NJX/tteTSOowWleSPO1PwvrKhN7n3nt5WVugozhyOyrkl23mseGyEDjsG53EbRUWvGXWLRuNrQ1lWDShj99csRqUdC3XemC/jl51jQdy0TJ3Hh+EXPvm8waE1BHOWAwHyGbfmFv7NphXYxcFGAWcaEPSBDKFxofIxPk/+Y3wRXiuGQCOS/nzS7LvX4ZzGNeREtC0pwtYEkiM7cCBYI/qcCnCMORN+meE09ZC3EXENZM7lxv0xukmXuDJ8jlAci1yGCEL7a5lta7gAA6IM4svioENuLfZ9bHXGiJn77+65ZqUjM+LfnPDDROe2QYT5xbV5wY5g8BnLvdx82v3/Hn8bSoHSvxSEBmXmJ8P30NemdZ4WWoq75sH+LvlbgsgO5dX7DdwIzYi5kDDBxN2+kL/nymlmIOdRxFp5ZN0oLGoShtC914R+zh+9Ft+QGkIAfraeARS+OscPvtGr/kbtwgmPrfgq9BPWKp3X+nr96ooxZh+wGjmtSn+g8QD7Oc06Wf2/LV+PlS2G7ZcKKXYLUA6D6dOQjPsNpQj42lzHis7boH3tCtLCtAKeNLF40gi9nH9s4rnXeEduE3Iuvh4pZ/EvSl2l2co6PWbBhUokK2deFCKyYPisHNa09AvX9/CMg1yV6FPitbNpqJDG4x4dSn2WG3s3d29AhJ1puTB81CrCzH3QYg/8v8QBd7BfismnD+ygZdQDbnPNpvLQFAFtM1RnAtQw+wbZeOjWl5gtjlGgZRY8Q8+hcgLs/7HyzBlVlAPFDc9g+mkHVjX1sS5Qz0dx44h/OcCQQwy4IdFjXTqRlBErRsdUw4Vs2KCAjjw8LxNSm+c33c5qrwgAE27siClOuVtgQKLvhCia4ZS10qRqIei1OLfyqquVkzYdakWAwieqQrACsp3d5L7OU/f3fNyHrGF99IoKpdDVQUNZzHGb/bvYCh1vyZNF7TO7SKUGd59TCb4FGPiYMcXlXgF8lSfDnFaJGNgVFyRTgTFGeU3jdAP73OEU0pIYkmATLAf8GCYYX9qVPlRZd89DhdJpxVK81b4V+h+DDgupIScAUNvXUMhqf4/eqf1vU98yHVFOwyiJladXdvUGU305fiVoRXxU+7nd/eZInABA0TjIuMDXQtbifrVQif8ueLJDMCQTjK2QYHd4H2vTx6C5av6J5uQeDysU1zF2z5SH+ubArECeQ0sWMqHJ0I2YTVhVhQ1RCDlhCGdLtzBiBXSuoYUflgZcTfns7NA//0shECx5oSsiVpk/RV1R+Uc6t5LlRNnzfVorLi/X9G93k/jfztcyDXN9EJ6nNT/8Jjc1IeawJ/j3pmHT192K4GdNYtLhbz3lOt8GojJsV+gVbrux1i2BTNTGFjjB95NcrInOlKeQx31KDpZ++rguuI7CxHMuQX8nxmRqddwHljGklPUsBtNr5kitjCJ1XzPudr7QtgCf8NBawruszR2ThXEg31DpAy/yLYGq4smdIgIGQWkjGT4F8bPOKxNJ8kH96n/W+ny6CyhSI+NvTvWt+DKlf8DnZKisnD3LWmJF6aJQ+BaXP5CB+YgfOoBvlUTphX5H0KE6qSmSUIz3jfkkG9fgJVBP1jRTKaY9bGk9i/uV061NtVrE/QwQOsGETDaFhzxPvj985r1fSyUMtfWstP4auvYvfAJ2UdzT9WmRMy37reAC+S9fjd1GTXbXgKnOyAuSla9U0Kn8Ja0gWqo8W/+aro+OT68BuUpVNsa/Rs9IsNF4/XPuLIZL08KCbwEgvdscAyvt5W2QNPv9oods49HKCjW94u9uieoTxSbu2sVDDWPR/2YbLlZdaaiCmnbk6yBoTBhFeSpgV+fL6YzpEa6XbMbNGDvmzBe8dT9GYcG8RGNEKwhoZ17kCuvdHCM6XAudta9w21DcH0PmMmKdYmynaJKL84A+smXb96ecRDbBQVLTR43W/hJ2oOwCMg6BmRkHacDMIUVhxc66ygAZvN/EItGVR4//8kdvMSBUPbDc76OxvuoBsGuXyT48+nIg9keE8vBfQcB7xNBdorlUzeTPlZ0lm+qY8QbOYhz8ju6T2Nm6xJ+sOzisknD2w9sxfkgK5OAAiL2mdUdbl60p49Eb7QeewzeyZgvdbrK3LVTSQWtVudfvyPAfFx2fqzAyGlJw6gmDwGJhsS4EKcW4muylhLwGQLH7y3w7JXqa5+WlI1SSgc9MjMDyC8aJdP0Da9eghAm0FLw3qKP010gyft2+Rx7QV7tK/9N3PsQIA/c/+wyVpI0g19HBEdQ9azZgfEt04weM5Fw7y7Xqrs0I1iYlbgD117IeyNO9BRG9aEswqf5GoQ36A1N68IX5DinSpPSTIAYyUASGr6Y3s2z0Uv9F0C2w2moIr+/xtyBSz/pGUnC7Qf3VUO/PFUpbozRLIY0VDPlPM3nVEpVwQZ5ZP521jN2T5849hWLj99yKKiuQDA+sd442vgWDnxtEEREzhuyzatdLVjA+BLcSsRPXS+ickIi9NbRV9b4rG36pgKXz7jBUWMAR4rJ2DpFEEXp1PXeZbcLX1HYLkIFNqhGdzbAh1wRh9WGeopHTYuIIA7yRcZEDHcGHBjB5ht0vNiP/RNsRPBPWG3E97Bm9FWLJvhw7wg6BgOVg7AvuXmfeqCnLiCA3qdDeH9LtMgDwR518Tpu66UfgizFXFfNF0Lh5aXfZjM9K1c32cIHkqoJFI+bIyraYI8rxjts9utBjrw0lvf5bsjCE6uOIKhUsPJX6w+wKtOdXSPczjM03p/n0c+2oPN1MsfIHUvHyfNuOgSPlzYZYPaS3U79XDR0L0YB8aZ/bg4+Wl+Wm06OBlpg0hyH2fWzu6OoWbGYCt/AhpMy/xBrL+c8imqLdQLOcttQi8rlgftWElOr5wA0BVVTSDQ8T4erL1c0rQoiVGPQX6FMZK5mflsAEDc2omWRNhIM/kPHYDkpYEvnOFEmDmBCMZwkf3GTjp/nkUPXCqPXGq2QqMyfbcXHDW5FiXXhngcZjdwKF33CtEjcQolhBEb6+5l6eV17nhyeDkOLndF7hTH9ySenbuvBaeV8m941rKtPjnQ9o9q6ahOnrV/FCEbK3lhlvvgwme7jJdk3MXRhPBzJFKTBDCtOf3QlhgoXNxkU+RFqJYRC4bzyl4CQVFoFozcl8SOlmo/ZMJLXpwz3u71l2FLL9miN+4utS54nyvwZP7nlM4TN4E8pzhpE1Q/U3z4tEu6HCXQx9sbzl4jeUohTuWmeFFEFbwooN2MLJpwfq8QShd32ljcMrvxq2iDlAlTPXBiXXagmwvzFEVDhWpRppB3Ap7+TkwUks3uVMaX+3LgmrrloEMO1QVR9QJecpS+QCCPsQHeqwsb7Hf6gyMtHn+o8QarhvTvsflAKPZhemkSHf2GHN9HokVVAPYo0jENZ6cHmsg1OTplZFG6PXPe2wgfSUi2Co2/EbNanm/D2ltIizsTG1FrP57UzEr3eCPVnS21pZU/JHh3s3Cfc3+mANC2IQ87SkM4ywlXH+udRtVDlv0m5G4NR8j8Bf+HRJKNL6TnJ94XwsPLxFTL+QSkmwD0VY4OqLShiQUhNIKZR7KeDLdYz/nQbMH9CNICfRN31Ze15y27jw2511G38BHFim7J5pVcvedkC1bN1xVYMIJMSGScProZfWIDHfhC5CeiRJMs4XOpcf0Q4HCNjIGxSZafIxU0zh6/oxRMScvjtb7yPhqSpnooKonTh5yplGiLjvAknZeUT61CMLoByUl6ADd0epIhUTKvIWCeAKWjNRhKusPhx+Ky5iMetnDTyV/tlzqTcioDxsbWwXpk4sddhByQ3Rtng15K0iryLg12jbfbL1cHxNTx6fru9aESCPNu62lUh41ynFVKWX+mlnoGXHNT0ES6P9T6iDDLlQqbtooX91G33KyN+2Pzg7HqHjQyypmD16j8RkxyEJiqDMivdrznvfUndhc0fapd25I959WwKl6dWTkALGRlX5Kfj17/zQAwYFKZ+kLkkqufhPJrYto9RGK1v5guNEIA5f5am/ltdZzcZWITV5kQWdSj157UO8TQQxePtghFoltXkF+m4Cv7tOCwCJv0HaR8fe+QM/a0eORApVV20Ff1TtVFC2S4ox9vybqMxjwA6W0H3jFoApThH7mV4Bguo0/p/Fm+5roo8pKUUaG0hP6ntV89JVoukKtKNMKgrv/mK1XIUzylvB40UBBrvsE+1RFucZr+fTvNG/tfpOwtgs4HpR5YPXIJJtsaZ8u/sbddfccjXFrjwUXihUVZxEJw5gbj8a4EhmpzR6focyre6zTAbxdDJtLPLXhUPVhNm4/L+4neKhREQ9bKPbaV0aT3HrXlPgRUCBFL3ZFXOCZhOOafptrT4GkO2JS2gQlGWHo5kJpR/VzrgoaeDYq3IMAlOBEPc7PRe3DuR10BV7wlV13TrG8ZzIZ03XVQO9b4APNbD40EeRdQ9lVIfVhFFnZ9af2n4aN4zCO9AX9kbw7Ld9XOCDH/h2V4y19UXLE5skmpXQZwuLecBmtDcN+ul5KniSAFazIs+haEBHDF8Adnc6SHxInlCn3bWmZQdMrzgaPI7VMTqXnM8ZovSViGjOI2TYuN0M0MV8XFePHQsGk6fQQdEbTRWalsInG9vTOrdRfnDYnEICbswXlubNUebuGBtKYV1IHO87klMkXq9p+LROFjdAFvXMtHMYR/Z/GlSSmRP8gsSsPULixpYGXPb+p0uhMmd7Mm2BP7OgArc6t3yz70SnYujy3WlXxsNJCl1nBVvj1TVKeSLT1PB7UglpDmdhEBotAurBI9hPV1SXoxZNsxPwrIJYbbg28jDT7UJnWKmagBGJ73sWIW1tWwr93FU0Mpfq/ngofh5UoG0GwAt0hCUd01avzQYEiriM99UG85eDU7ZU9/oJP+upuWDms+3LxQW/xdYFEyNjSPt+V4l8Yu/q+KjQmj1RxuxSRraUqvFWFN6KawAFAysZUPA395AELPeX5UmPUHBdXJCo8Z2Fht9Cm2pln2h/olCs+MHd0JHzGXy0gSe3ZCXQswQK5jLsDvUyMOHM9eOS7AMJ/H0Eo+/VwqahiEq5VSQKZ0sCyPUc+Ifyi3dr4TiZj5hJYEcpW3TfXCG+ClQvXmmVjMaK7HH428MmsieRZmj1HAKb2ED8CRqEcurZrp1W+RwQ9cnGh/eRAxVcL+U7tMR2ujH0yqBQNthblKAbiHwfBFCVc0hPeaGPZHebXOq2Ls32OTNQpJIdB1gebC4WEiGNzGm35mYU4eUWOhfp2z+ruuEZ7OHCM0cAEA1v1Muc4ZKYa5q5rVIXn51408M7CxMxrF8JdfY8r9W09Dl+WHQlKJ9Utmh3BaCq7l16QCgc/+ENMN2RzyMUuKiQD+Q/jQkrNBXgd+LQL9mGEYghJi+TjCL6t2JJq+nCBt0wdtXNRhyqU2EPJr28sqzMoMxyDGrMpmj3S7AjivNEUrzrkUi5i4JcYCQ2CoB9Tpgd1r1pDVymBAw5OQ3iSCTiy5hzPijSVBM6EhaTRI+nqahVlXtujwM7egV2/4K+UbkHs9N+k9NMPGnLc2PL40HwK5VqfMBDaKZT5LsOdvKFRNeIRDP/sB4tuSTXdMkb6eUks/i++TCwq1t8DHiK/5Npd0JhsAiqB/YtpqvIBOG7kjRhS0fpHmV7Sfr7GcXOUjpWjTh46u7P9+IUtnHq1zoiLAySIJ8y87Wk5F8jZTAD9yOUEP6Zzgh0hZe+Vx763U5JoDYcEwodPWDTYs8UQ3CnVPORA/VZ6AuvjU0c6+uQCD9pbXC0GmgpdDGVIvENI2V8A9eFtOP3yxsEcMpRhuYaSGBZjOIUKO58GYtT+JWEULVPLA3jFs0+zXypQvV0D368zOLrJsowojp+0pgX1ZjdAXSs6g51qZTmBgC9l1Wh9iaXRrO5brxyPtpEYbZCdxLF9tKUxdPHxnO0PapkoULLX+TGtVE74YZqFLQmm/eIiQXRSUx2GKIa5yY3BaG9gfX5eC67zwGqvhNVSC4robZuHC5t8a5VDlMHSYbNZeSS0HAWfJhqjEHRi8gHxOiBC9hi9w3Kh76oQ1G50jIvTXk1nGDpQ9Hs9Tw8c+LbkdjZ5xcQMsms/9/in/lHkXwZY40bnl/umx4DcKuh+GoKp2yf9b2mnRGwCXavgRwH2RMRHjJSYGl5UvXKZScHi6RfwYOA2ckGzWr933iPhO4GYAJnHcMcEJmtqbVe036G/NZ1xb7uy8AdHffWVQ8eutI7OyS+L1JuWwpq57B9q140TrPHGFJRSmM+HStXLUHUJd4bUrYyGKFi1iDt6i2+3utCD43sR1B2L7eqPJCVdfGXc0Gxr3t5AqGSBZK3Bpcx4YqlbFaQE/pEVPL5iZrli9WkFfV2gsxXPOwYxzkQsG9fSnxXfGGUAl6hlw9tfUoPBnoVW10Nmnir38ib+vHi2gD75gm/nAitCxjBW0M8CBd94wf6GSFTrC3iwbWn+DZVJV6KFt3NQPMlc8n2hRNYhfbB/4HrU1+o0qwim8Ht5uecOFgxzOWssHl+rgNI0Q/V53KdoxuaF2EaVIOoL8eWCd+0CKNW4D0oqd5HBnthp1bliID7iZ1RKyGFnWxu1bg5/Ww+w4fCsJUUW4NETF7MfZv+xMamVWNldwSetRJcQgWnHOECZxK6yG8gn3opfVejv1ael293HALduy3zRAfKbTu7EvbrM96meucXUjid1oqz0HWYL7G/auDEjJBu7o1T6LisDwdYNptdPv/L7P4sgn3AZ+tPdw67TwvRDHl1wsYdemwhpukBSJD7lF4wXhpHYiyp91GxasQ7WReI5hYw9kxPysRkHAyQUED8Ve9OmfTYuWYdDkrfImYpunaDXvNDmJdZhythyIqLn1byijd/T2Wl9OW0V5DRjdb8kQ+gY4CZdCCWR2FG1oQNUpwfdJhayCUUjhJ8kTmIIMqV8kRukJRLncn4xYevBABLd7i0OQMg9UCowS5pfWjTIz1TK/Nk2yRwf/fFszcIH75dhpUjeQ5FjC27hRIfgy2FCVDY69EgR/0EKNwtsTJlWKJFg03oS3RMkOcJ6B9dUX3guJNPoNCGQ5bqnu0BqJZVwOBC/E/QgVIaKTiNNDudIA/Js4wrPUA8EexStJvUwzdHHgoTnK+sy2KYwfdEl23n3Rg1BdwMhEJS+TkecN979BT7KACz/JIMDGdfjt+jvad9NkeHHnvrSkflWwr/W6N6zPLQ+BrhZj8vjAywJFJDV52a5fnWvIsbw8GExaAYF7sA6rnFuzpP2kXHY7RCDYWfWFxfBLLgv6GdDl3AOt9M4/27gHtR9Grv7yEdI/zcAZvLkkEFIS+sa/84qJO2dt8XaU+k5kK5ZQvOspEErn8ZDF6gLjTVktYx9Vrkk7Iy3Ociez8+NhSDdq16B0tSWPlipZRbxRQYIpExZso5D+SbrUXBt3yf3yKp+rfKkNOhUxmmbjM8usev2cXsgu51xYf7Os/qwGCor7dLRhpZngIhYz8ZEWaOx4eHeSRGpo58z6tFd23yxkWuJT76DgZMcokUL4Ozv2AXdbQfLf7V//8hoJmOdr6eRUvx1S3G3dqqlJSf2kMpvvXQ9uP5pqokucd5v+KwX0KruSNreRMUqvbWTcLltBo44g7noyzuyZM1ffEZMxdKhEKKEy2PFogrzUeuWNXcsFn1T8YjNfTDLXFh7RTCcMNYywBmbG/S8Chl3QtiXZccH77K6DEmv1mHdxIUobFzfikjFw5LPFjGLOkj9okyhtHG4rWjZlwPXupU5VuhzQJ0whD/o6RwrtIZnzsSJXpA0Kg32VAbMFDAgaQNFLnA1Js1EttcjI+apOYJWgooMwUlvYNG4xyBnlmluAoCwSWVlFaBkQCG5qooEDQX6KTioNX7oJ2e/GirAkHM51QAHU5G845nA97/XkRvQt98TB0w4PieEEcpzrqItBpRzOQGD+dYwQY1wL4jlT0bXiXMt+tk1jyodlCeLnuq1u42NTJlto+8SuHG23F9OVWv1PcJdx4i+bJ3NkfKLcKKDV6rdL+CsYWbFtQXzMyXg2R4oiFU7Ca2dEcLfkuqjvEFKgwLSfabb/8MTCHjbNQ7oOt39m7LzN4RUkPPThiaZ/+aTIpSO40/6xZOTY/aXzI4wS7JwLu7kvR6NWtTftJKVU+YGR8tOgOMj5ZTzTqkG8KoVpv9gRU/rl3lGHwP+imRQJ4SWYDrW/EKMN8hv/48fI/Lagv18t0hch4koDTSeO+hYvMb9eY2ovuSdkN/3aTzWyaK/dwT73SQRIaYSgJS8g21pOFFndjDerKXM3hrnz9J6pgk9Kdq5uGlNaffCbc6G+LUP1cGwVqI3qbFTQB2/tD4DGT5TPek3dukLyCFHJMTIEB1QKUInWUuGcOSthNoEhx9A2cumsy6LgWRV/u+niAjmn0acf+lt9Ovso5fv5xTSj8MXTc0LKO2HWFraKWBzIAM9flfFOELWowiseahjFRdu9E117OwV2YNqKLYIJkm5j+e+WDD6pNbyvbByy3S3Yc/vfmZmQPJkGXF9fxK+BT86xympYY7XhqVXHv2YD6q/XHohTiSqKTRWmXquEYNGXHUHCgnmld60j+Obtd6c1NIkB79yl60fXC84vpDMgJg+LPyNPSBhYe2WaG+4Q38eAGb18ukKw5okeHzRrkVbddsHEtmjPC4Xpnn9lCvSpamH2omLjG423afABF72cSUXNJaMmqnqtYXwMgOJQnjaTKAoL2B5QGvxkQ5o0XUfnbhCPfiT3VufdlEqKx6GboPhAwF0Frs9sOiMxKW9RanX1aKWpgUCDbVWWxPoY6V2CEqwAmtW92mKOEBONArk2ijWjstx4d8DQa1Ou7Hml3YcCZoL71p1Zj+aK2p1FEMW0OytdCe+DwSu7LajmsOb8cCz/KWW1bq/SKTPNXguncTYtFT5upGxxXCEb6QGjrf5JriPF8kz82iYNFTkyvN9y9rs5KKVWs7HMVfqSjftfSWnd4SeNylZ0bd3RJtmLSab5RfEc5NJbfJeDD99KkhjlcgNlV7SVFu0KKdHU3HvPRhVCXLUUb+PF3phGTgNrnwdQbgX8PnLPPrZmXwSnvN7+kgW5HXrLoyWTYq9ki05umCAvGas0vtZ5x20odDrzw2lLoHARCNu0uYbnL2DuWFMVvNCXXjMJ5/TNxcqwlIXIOtHXpdM44V6PA0UDB9noPCQq6qtaneBBtHS52rxG74AEq8apTvJL8YCGE+qpVP972GP5pn50H9xxD5yP1Wd+sQNCuG/HO6a4Zk+1LM8LvNB1g8lH6BpskzY4qs+B5Guc6Rj/pZ/OTluj7EeQTlBMgA57NV0bLH/VmgxZc8Qs+TrkzuENFRtsJEri+1XYslCcyW5okVEcSZqqoaff8PThag89Uz2CTy4fqqw1/1JJMB3lcpHKJVXRTbX/gtQBO1cRpLI89SArgGkHZyM1nV/MVAHjo4pqX6lkRAq5+3xCo2KoRQ58O5mRkQrcEpoYJFw9RkQUzm066VgnHvSfTQIDHHHoznIWeR58zuLRMI2CFIQBrusm8YgYyQKDNo+2FfZZ/gQDKX0BWF4bcn0SlOfZEvlCjX0721tG/lhBEv6flle5cG/jGCEi+KCrRGgVJjJfcn6lKqY/mZKHJkus30D3u0xcTp6att2OKmqru4yxkyr2e0ooKx+kec7HDC3+MfdntczwwmrKDXZAFEAx8h3/t4P//iIAICGnG+n2ptkAO1QPvWW994tGpLsR+Hxu7Y9s/OJriYQUGyZ9fY/bZ1d82Nt85yuHTeIiGIYDQu56n8ybRzIHjzi7qdKNXMv18ZIsuvSCTs2s1CMPM9vDPYLa2ICeqcQFVc2Qt0XKZcUhIqrIv7HJtQj+JIYhfSVBMMubCfAQbioVwQ3mTJOSDUXBIbwjgUamdE7Fz0bKMxuIft4p64+XXQmJYnuPEAqQPKMej+MHQidRTuUAhGoGNCZtH8knxVRwtC7myP8vNMu6OPMhpS7FXAixjC4qHN56uRQXj1raXGm8wTPhF2aAYITJgOFqigp02OgggGbgjJVzQLW6GFBw+5SIJNXnTS2wfRNnePZtFDEZtI4Ydinyroq2Hv5I2XMg5AvzqsxVR8ho1C2gfKe09RwzpKvOHSA4YX2sodwZkj3e3w/Iu5AvvvX7o1p4ojfPz+mazjxoJqiHJUcYKfdvvGa8LNbs+reSxMor2f1z3uJ7AUHbVdycUbaKGfo4wgWj4yPWFH+khjeIPC16Xno4x5RC3hAqnshQsMYrHZOKdet1FytIMIq0OMA3+4mIuQ32sTbuqTwal3KEEoOeLWEiUEbP3Bk2Z8BHh/98Y2egQpp1S8hWfWoTXkaGoTNIpIBe77l6YOssg7SHQdArU3kD5BNaKzNs9kQszbTEtEqrO8TzN4YbIknYgaN/OfQe862wD8fTnwktvyMlLftmt8rfRW6x3dlN6VLNjOcBX9s5n9qOZfsrsR0TfvhJTdhG1AkWUbm6OwTEbJT2Ubm/HeVa9lzG+Oi7dsn9KGb+ltjCImY1M1U6pwWqNmGAdN8wlmWJXbuiwi0pPsvYdkcu/s/vhuVKfW/a+DD/mXkcmP5ydCnfHPpGjFF8V99xyBtxa1fb78eSw/op0YErb/k0/Zd+MKgHwONLdAqxBr7kBTCTDmyIUiw2UeFhz/tXlVia9ICZ6uXVXyhc8XahcNO6JNoGywHLfG3u+CiYZDxeuzB9RHkzRSQcuWnk3Mg3ByGX9xae+0IJ+tm3QebZyL/zie3lub4SCjyqTy+d4XoP4Jz0J6D+57GFrFpGqhrI3cExjDifWzqUrkhfF0EJG4ItLnt3v7LvAkUMoqO/n4zF5s8IhpucJQkTRfdn0EDkzenteonFaBEMfVEYiGcvQXMgrE+ZvtPI/L+rMVS2n57U3ywCRMjUI7xH6YeFCPQpcHXAO3AQAM+F0F3Okhjnky8qC04xbDX+I17mTYEtRZpNcHuCWtvB0/8uq+DfSr2a+GLtl8eq1QrEb6v/YAaIiC0Mp/SGUGKxJt/8KcGN4tY2KlClZWgkkqH+moknBZ0c/1WtM7TM3z4H2PALiVRKBEgM2pBFWaMwHDZdwhIQ55sZCoF1nAPkBAOluDvdtAOV5y/OjVx1VqaFZ737fly3mfVe3w/+w9H0mMSyIfwmyZEYvJmiDGfCzPKtTyRYwoFJcijMhAT0oLRSYulm+wwVOzGYmw9qns4TPoVUx3Bz1YrezY6dWIx1FIemTuDXfsylT1r7kIhJmElig38j8ZC4K7S7a3KMUsk5bGeuwotub5dc7pHQZ5wbAV8QEErCejy9PorJ9ugNVvJ0SqcalE4NPeR3a4DsWXj2vsZDylYPp8BFd3Ri//pTCrr2Jc4fJCK4oAeZqVQq/cc8g9MkLH4pq25cyYQ5LQeTCTqLJ6qewx8ypAXDkY/anaaFkygW8+ZV+N8aaoLtdhqqXDUaPNysvmUVZDO5YJxo2D3/JQJLtyDiFoB4BUxCVtxu5M4gMrlrS5lqv7iaDTsnqLFrm9yhYff0/ajTI4cRYM0+aEKRKi5SJsSppUjOkeTXf/oh1V5grmXeDZ88YmdjFro5iQ4+sv2NzjaqhuHFEiixHOny1qmCoqfAcDYVfoCXbH66/rjI4TQKeV/IJjZGi4G0VJJCJQnCL1HtQNqnWJtiV32nv/cFFWb7eCKIbhpjjPQtzQfnz4Ch/CIFUFrTxNpO5mEzyQW6iEn/mVaQeBRD9y7HbtOsQHAPH72OxIerb0PgAHjAh5sgZWwX7bkw2tvKPy2+BzEtyBN5ahCu2ttJ436ClpW2s8zo5pZd9cxHTxKUB4BncWek/+WqNZTlTVNjnQw2i0VUQo2Aq8nXDfUSJjJXPWNmEEG/kwIim7Ktyw02mSbB1DVddOMs2UlW3jsog0YxmQmlB1AmynoHBPcLiJziH6AcWkavJYUQYeV26yJBYpdxJCmM/DD1iBLwJ6e2Datvi4dt3DHZs3JLpJSv+sOCkocO+OyDgtitJXaEzE2B5Uyd1ScHq8fK4y/bSfeK3UAGEhWk0n4dgJ0BX5LhRBw05YST1wL2vyXdP/KIYAAAAwAAVsAAAEzeQZssSeEPJlMCG//+p4QAAAMAAATbkHtgsS8AE7a8D2c59HMzm9oGfRGMxPM7WOP1b4t68QxK3S3yMwFYDNiRXgXfT1saOhEpuh2U6Qf0SztH3cXsm5L27g98MPDD+6eT2sWgjzm7wIdaBxHZjt/JyHL1KjfbqdzKGGjYgd+xabr5DdKQGxNP62/WRflddWBi1zx854LbjvTr3Wt/Eda0SpPtVk92/B0QkV2CKbsAtY6MxRUiH8Fb9eUGjBxHNDHkQ50VtBSk12a0IK/96eocj+wvK748TxU/YHTlrDdCFFwwunVVk/giTQZix6uPNGEnujeiDpZM+swB86ujnYL+yTSV+mXXNC0RGjbX6icE6OytcMA3u8mszJzSZHOaTyqEFpkqv6EMr0CmAM2jC26f1toNHSbdnKTB4A6P9wmlsqbPOR/gE6k37IZzS0tNfFeS2pTQzV8ajOXBbhjOL+g/982jUdGhhUFuaioN53PcGVEr/giRu0gbwwezHZPP27e+Q35fiIIVebChbn0weQCMFzHa1pt+ksgiAAufQESZQi+70cWQDTT2k3FRw2mwG5Gy/xa4mwizKkcFNRsSo2V5B+0YTW792tbNr0zOaN459EkQOuLyondr3YPOrJQ7/cf/m+vEh7lbQ5BYmf1jm4iETRRc24K59gAeFjMFYLcs2XiTzmznW5zd4XnBvd30+A3ZtGjnOKk2kRqg6jWlj6AAUeaLuWj/eUOjAqdRHyYhUX/Z2pKnWktUnNq+gSFMDqUOcG1RA7tF2leJEvOd2mSwLWpL2mChqjEcQfL6Cot1rXxxF0WdBcZsqw+8Tcp6UzwKahECRWtbGhm7u4UJiaufYvCOmBNlZDzO7vP/3bQXAy+HfGCt0nj/W39xvWBk5DwZGyVUjkQ6LsMpzQP6RN9jrdoASueBNaAeMlUEIfzElIJqAz0iiXaKcTHvVY3x4bAZUzyABOt3iAucLy3FwU4NtN/wWvv1ujSs2JM6/1FXjV/QHSh1DGWU9NteJ0moJuIw+nMNIPm8BUR8wrRo26foBHGqiYvq59cDe5T8aNQtidcV8n1iEFCsHteTNEhaKcupvTv4PP5rxTsKRmhBLuNtvey8ab8S4xAMms4MfBX6oBLjnN97d+ddWt45BxTeneeZW0PSYcK1p3963rfgaf97WRJkTIHJowWbWHamEWjBsCuejth2OxOLCkYLx17YWbjWaqZZ/RnVnhNudcud1p6GgKLkdiD4O+XbuNojJDk5DvoBPxc/TLcJmkv8u5rz8XpLj9MRu6UgN08B4ryMNfvv0itlchgW0QlMTh1DCIMn3zdAoA1tT44XAoF48vepiEjSf3GTWwa1glzbwE6EdKBXeUJhvjJQcgWfnuIUxNQfPegfAKVRH5D5Y54D+OvqqI5wVMmQ/jEIZAdBCtAy8XvNgd3gO2NrqP6VNUaoiGJY2A4t5yXa44GT8V2Qxordw/IsG1lDNmNufVSsvRwZCzCOimBvowY0g9rnz9SFmAFEiNEx3BL/K7ebC/tyE1TmaHVDZhCWGDmCvNHyNYYjX75pJZU7NJRl9eVtIYfM4tyflELZi1wboznfaOo1LPnbwHjF8Iq7MiRUi8wvv0rKPrTY4f5ju4NYXwDth3D19TklVE6Z/tgzx+jGfuF/589vx3uR1d/SSZSR6sAKPYl8a7c18Ykz52uJUhtnSgV2nNC4yRz96SPQ4cHnqBb8zjVm3lmttsV+a8klPXw8abbWM8VHSg1gIw6J2yOXnaMtLzp5/AvQ7BgfaAh9uEIu/R5Hp29MwQv7Bn2DPl+b5TE4M87BfdOKqXBcS0GRa1pv+vlj0KutATPfh6RV97d8JVoV/eGrRqi8aPoUG/EckneOEEuGlhNK96s9k6+cNnLGFSN1dDDf1nlfwGEZqBD+hOD6Zn6sFH0CvLj8IA8cNv2PsmAoLhT8oLbMoWZBkrjLhVqu0frvqgq9/kiKY5LE8oY9yHMOvlpWcbk4HGUevYVDFLcMxxicPBPkVQ3inyFRnCsdTnCx2It2YnMcdJ2Ui+8HB117XU0+qtEzsRalAPkZT6Nr9MLR7E0BxmC3z4e8YWBO2yJsM6954YsHeXbWD5csVOealmiADR9hvYzcMDcSdT1XwU0AlVO55PTSbUVNRBrdncbvCk7MetlDq9TvVOFKqQguv3eEzfHkci2OwDm9G1c7X6KvZjkywRs4W3Y4DlnI4DoikEzDyR3HiKodiIJ7MSEQ4AHPI6hLaVsfFTFK7rOjoZaozAxEOtWO8xC2qE1HoKEr+JVFNyCW6Z3o3YcwMMENgP/7ACK6zMIAhdBDskJGT82l9wcuHDI7u4fA14B8hvYuWXCLl2ZPLBh0JFPrpGnAMmV1VUOV7/ke5rs5KOROzgC2a4STdx3cTBHXrufSOXZf5YUlRDwLgIpIyJNklVyXo3/EBfO0IECFEqiwXVV5DrtjtbSKektEJd99YWnS/3GH5kLxXb6TciboUZemlI1vGtzfZ8Y4XSZerkF8BDpjxE9vvw0N9AUn+auRhLzsdEl2CfPN1/+ndnVU33UuhA+Xy3zuV7p/XusXTra8f7+F7xk2x4Fzx2xWninLtlIzSlRVVwn5P2aDqZ380whCxaaTXRyGSLuJonM/oCs/T99aWzGtGadG2D2Qgr/qfgnDpewVO01k5f9+dizrMSWq9uoOU4SzTt8yJ/1u2wbS3V0WrLReT+n/5sNEncU36DTydqRmRbR+HOtaWElyzjB2phxcJUeczLKuPyRESDWEn4PZKzFzn2H3AIJooBGcU0/bCGHFdX3lRfqsgLoyIdinJQlMSNxv1j3gwGJVH74ManNDf0e5Pn56q5sUJXzWMDK6RpIKI60/vYkhwE9kJ3ZZMmjzkhgfBNu+vHNLLMrbp0jqk4SbZ9O2HHySE5iiIM8EuQRj4niR5Ejz8zvOMmkcV4itbJOAV9ORzKa+vdk+yAX0xvcLp17X+ApjMcR2/CY2wgGyxFpT7re9AprI099MxT7KpiEKADgssWu/vcPdFevHCgDXJSfWjVyC8WeavFl0XcyCGguQvwdnSt9WHK63ODd7omtbXKcc+pOaSzuxk6cw2czaOoYAbeXk/9pXfQlB2GrJQ/fMVWUG2APVQV157G4VXBkPVMsW58voipbjz7OJjuMYpLsrBxOlLZNpbkHPB0zCq0qPyjHni7H24NWP89hcjuv+iLCDx5VYWAcSruyfWmq7SOsCaX3tY80xLfj3YtZBssIyE9PUpjG7+uVALc8yMlFVjeBUdCdfRczchjdeGyP0aQ8zXStjJkNxmX90DByn2Am/4993+QCaV8EUdBnbcN9YQYEnLLMUCDtKlOYUBymkPMUqpQvwShro41p7rYiCGgDXmJ8G+WqQPEhHQKduj8U1Vj6r6OL+HiVxDr0aXbCO2Nz2PBkU4KnVr1WzW0Q7BWM/wSysusJwYq5I12xyhUmWzeO1C1RqVRCS1fScifat4D3jDwzjOsvfvZ4u7ArqMvfB9S0vttmy6uHaF8LDLGSeqZ6AXofNQ4VxmYo9I1vVt3Z3dmiO6sO5Eyhj+0Of5I49f18YyJxg6qnSdzdhJgukKOFt7FUuoGskNyqMmNFKnrCX+VM9Y5/nhlkk6qwo5cmEDns61flUMkO7PGszeSkyNRmYRkOpZCDFX1v3pva5+djkTINAdIHtC5kA8MA2BefAbRs77Uo09wBXXyp1idtyBwFOeEl8kfLL8L4+siRj2CwnBq5UyUK0UPM5tyvOUZp9Rr6ZMIowfgkuVJoVAcCKd3VviYfPlh+EAk80WP1gLOWHaRzjYXOksr7BCJfudNADQaSQB+WjyHR1PkMPL8w/5Fz+9B7iWkCCD6q3tE02kIjNj1dluDMO7ajtfR/QdGVd5vGjvRvr6KrKL3YwXBVLVwB3XWZlfA5PMOV7/Bjki+Swcf7y22qFUdn2OpQtDF47oR3h/IwXj8yZUcGYMiIz5uET4pnJCJTaJNCr/LvFc81c+1CvX+QXdXDtZ86DnFyjmRBlxa24UKgVCavOhZjrHwYOWKQdiw3y5ARl5ypsOsCE1QAfJ00t1TTzBUDenFHcB60iZ1pkOLEMxiLoVCTYfavg9wMnBg98xqkOWN6DssngVo7EuO/DET5OPX4wnePEEeZDCibK2K0ItUZnHSKlbnqe9LpGsbo6KVGxlw3jqqkaCmiEx63ZZePd0yuzNUgvtrYcLrBGK3z/5vCUzwGCplVRF1MPC6aferwdJp67CDTbPwc2lE0mP8qyXnRYVS2o+WblbzXH5t/XzcV6NB/WB4aT5B6wQqadN6cOBe5zJSAcwu7UE5EgM7s60ajbPlXMruemOR/44PNfa+uybBJR59HHtOPTKsnGZVizhl3k4kXIyy/yix7QrcHyBEvMm1f51NYpKX2MIG+depP+H60j2m8eCsMsh/XxD7ue6QDD7YjWTXnrVG0AsVb43Y0eF9C9dWJSUVzcewBqRGvq2ytEEcLrguZYrsgYif2fChIN4lt/lhki3/KeQMS2wr7fDRvAtYV+tLplJgC1OY6ncqTL2QQLT7QiKqJ72tJoc8w4PNXLrAH6gU1MFx8XeCHXrKxdfRg6qpHYCiddBSJ2RYEZOrG6Sw3Q6ROXw1C6Golb0AAA5nDBVd96WLhHIAsV56HHcBLr/y/0Lp7NKw+iecZabggCnYsjUEij7TH+kDd5mPA5pWQXhY3hd5IMi1yMv8nmYNK5lX0rqPZo2UkONI51vAVIPvj74cQ6tcdSp1lX0f1p/j+zz7ZN1Ygvd4euw4fTdhUsaRhaJ4mTrAjiCfFdCppMTT14QBib41b8eLVAbin8v2e2HTjcFKD5JfOBxMUdlbP4MolHlYo5EKfroqbdm09iS55dfYwa6YNWcC6+OH2K+r1mhJuLjL5K9NLUaz7JhI6XXLPP77Ga3wY7UlirehG2dRf9Z+nIDBFDOoz8Lqv4hjd+BBihhB0659L1D01Ewr2dQu62xpPjCChtkFv/0hQjPjVOcPlE4/edDp+9d8tsvmBUScbu0EaIo/zS0feKtQ9AuxtSKk/j4RWvv1CXmTk2Pw3dhVmfhF3FfXgCmVGVHdSglgToWhnWZB8oBGJYZbfHRCrenBfjVqm8d5KRgZZV1o18tF/F1xd9uy2gZHuKJsa4FW1wu6rc0gXhzWXiY9gzNgz8smwOhzkwtRm0SbAUZ0hxWSWEKrwkZuHM5Ak4cu0CHL+tOkNxzC+Brzfhg2j/vCvphsgR8IatpAKjwc1L0aLOrQPjcncnGSVX1ZEv15BUYwWP28anVkvjjDuySLmyDK88D11eaFkmZYuWPd1xnlwzyibU+wxhcT5Iv1jz8MjEH58qupBJRW6imPiMXzczNrgGTl1TffTG0pElNpK7xxMiRDRwQj+WJ9mAAPkhUh3Q1QQuoL0iTGhy4Ya8qilkz+CUuc2nZ5oviCBCi7muS7YMyeoB1RLwSwa1G3AMg7YLTL2BQnnIVZo7nBf01VXbV+dvTFQiSFg4Q26UxgsfOgwQDf/ZselPCKcUL9b3o/cupSL/gwXIWYFr9RV5l2JK4mh4ONijXxSsN+5V3MRLaMQDRqutZg9XfG3XQgdNRjVviXziIWkFAHNL9u/jwFif67EDdnE4GlrvzrSSGlO+nxsVeRYe01QhErfKJ10bO834qZxgi/c7EGfxR8mRkZz2oD5aNgQF889is5ZZgVUvEQldfXQgScf58enG6EoBHGJSjhVbQrMdoxlqyDwDzIA58wXFv7xh/btP3JWKmY9cma3LQ1NWa7MkeoYtXzIKgBwuAMaOJK/88OQVMy7iS+aB0iYaucdGgfK8y9S0S/H7B79A/4B/TJDnhPPy3GtkbHFuGG268EdPHvl5FxwYqkSoMsFb+rgWDTnpVeUz+EySWYDK7e9AdyuXUF3VeJswtlNfhj/WlJEABKvscyS+M+I7kqAg6L//vi7+EHqf/A4wkrLYZGnddMes35HCH2QTuLYYEkoKloiDNAHqBl5GV4SVZxnVBzx9XFVlVdpmE0U7P9dThIQRxJZT4d1ZCpcI2HR1wQOaFnNKbJu03PJbhp0pyTHHSMxIZrUz2WAYF1CKoHt8F8VGALazd3/RoZoYNQuscjGIA4Sb463Zi5Y4mbaWSXeMZq2wod0shcH8o32LZSm/OPl6sSFbEBlx+fhISQ87GrKGniVryPDdhG864ahxdiuP95HkRJnqYP/PPMkZZ74ujIJBZafROCCz2Zu6DVDvD5tKa1BzfFaS8Q0ugeV4bX6tWRE4LwJX3OIOyOvYT9oCUdf1K9h0YfcF3dGuGWhSNmXqjPvcEn+kdXBbbFhR40684aZj15waLqJRXi25TnyX766M+wHw53L8Hp1n2ZHxVPdr0yIQd5AaWaJ7gvFlL5wHPMGI/ZyKiKY9CP5vH/V+nqR6QC2W1/8RMHBq4wFkRt+4LBGs0y91cvn5PcI5YI3KEIpmyH18qnCKyL+Ne9eooGWeK6dQJ31Ot8Z3F0GR5RtmbK14dThdvUe7uxfg7krscUBthR4b9fJbbJ5xTnFsRieWpTIqok5uJPL2wFBhCMLoYdBbWpAXAP3CObyt72sSz6PVZGMlFdv/BY200YmjKayXHFiNRYEVHPzlLcYp5Kw1mYerzS2j4DsGQzoYhM5bEqEOCohY84z88uueoSuFtgA5jjt0ToFMXiwesLctGJulz4F+d493ArNvYkxEdR1bo13i899bvYg1h+UAAWyQad1zxZUSI/eG70gJ5AUJ9Qzi2aOjGFYOtEBD7F781/OyJIBmV5jSTDEYAa7u3fD1+fBXeYlfjAVf2wZ8rvK2A50ymPEO+wddHquUuvWFWUZ/VWAVG2Y4HPtMwHS71ymXt+NMv2Rgg/CmumypGgr+h8qfTNTi8LMlXBmMpoEnCp4WRt79wTnw3Z5cTxu41lgLp85vA5dHMK72HvZZNcB12YBfusIHfiBBSRa+r+oHMfnZnWCTxXbB3J5YQM5k4Ep1pyj5/oLxAxRwEfJsKAii+NF9SFcw6N5dYb3jEya7lMBo4KDbd+yu/wpF1+dWoOp7JSprmokBpHIxFV+Y9akKz9X9X61xTx+yXJETEHMlt3lKGhnSNjLYOlyw1+Thm8WXZZiY1EYYBp+HHvc1Yb00x0rSF3X6+m3LdnkJDqvGWmNZQnK4WPBZCV0sivFENPcoPrimZ2INVAg5q1y+S8bOWS57rwo3CYzy6M+209ZQ/oe8OOu9PkgnN6pZ9aM/VLxr1pxPa5idovt9NXWoZyf5FHxEH4m9FQbxKVjm26CW4TgAAAMD85+EiNrZYwRtXwWECBsMk0HRFAd9MwtMoBNbyE/ZCaiDVQTDAgKKjUnOjd3PmRAbmYU9OE9uMKWe3mFQWH4TuY/v443GAIzMMCB6op6/ba0H12XywTKUdymEGuUIxf9JiBvgsyK1/QemI2G0MLpkyuHSbxyvVPnfEu7V2Qbje1mASvYU6Z9PKUW4A2lO3SjxPP4P1pWJtziGc8x/ufhDbSoP2B28aO6Tnba+NpZnd9sZDxYtuLaWoM3ZjDkWZ4o4KLA1nVLonK0Xs/53rmIE27C6KVlXNLOtXlFAWkOlqIAjePX+ELXIVrAKPGpK7Ar7t/SCEAUJ76CGMpr3G3kQRs4aPApnMFDNJFB2bbPuUfsonAKQn7L4RgYGBGoB5KU4joPtpIhlauIN/oeMoNtrpsc7+BkrLSGYICCjpPSuYjeQc1SvSuXDjHsb7MR7v8XjH9y0h28jHfIK7H5wZuMmkDJLq7v4YeC4AXpnd2u+Nxfeh8sygvdDm4KCzz7cvu+ZNWdH9en0NU5SavEhAnR1/96oyhF3sZf9t5gv8T2GRNqOsQoWF4m0eb3dyOjWz62aRskYFAdo3Dtq/XFOi5PQxPMTouGiPt7CLzpO8FoSAhOOEITF+PNnX+jH83LBc2+BKtnPc34rR8xJuV50eabMyNvdSWysCKE7UHz1wbce+19apPVEOwbDCR+N7o8lHjBT8zWTQ2wTpO+INEqxwhPY9xuwrBoTIzzoPCs7/eKMVQ25YKqfFRVKzGxO7IR9yqP5vCYzoIPLq3o6dSDmI5/1j6oRtmjEJ8K3iZhtu06wZfwCEf10qzm3BRsD09+osrn2pEx5Va/yiagdzt22yXwwDIJ57qAu//WG/myhGug0eFqg7yK8ccXLQ/O3Oa4GppBstf3VRRAPOQWbBFnRGPKvQ+JOcaxlJOWgjq3NkhtFlD3ITPsYgCQ9GBfmnzvaKWzdMS0Xgc107S+T7iDsg32Ga06u9ob1WgHZ8YMtgoB8rPge11/JAhzjJtQwgYCLAr2Qo/ZH2mN1a0o1kka2AwL0jKnU55oElmpB2SsL4QmOLqiaQ/QePp5qB1kYCoB8ReGqeh5oin/2rSzt8NEsucg10a7xh0/6BVIDhabtV/t2hqGzai+LzWKNCXJxe5jVKofibQSsxa+0DX9cJwYeufWCbjVyFWdlhbd/C7BMd5uNpvbNPkWhsTnZZUx8Of6IoWcw56ORKU5GTuKbXNjFOF6BQBEB+PHxjtyUo0PAK3iV8EJ89FlOXH0V2pTwu0ZqkYmIV5VzlJql1Xc1IW/PSipFViylP5RBFuiglJnqCvbU+tTDIaMrgHD5wpO2nOd5gBDihYYxzwBMVcOeAkbl76Pt3MZhP5X/vG65NlRtb8t/gL1ESOFFa1EOPW5VDM1NpoMHcSc2NDPm7fIy9GJ9iajIsSyUZljGLj8VR/QgRQUZWzcd6K2XCSYmyKdMRo9R2x8vXDqZrv7DT2IBz6VcVGi104gIHIDebkvMgGjBauuqEqzUeZWMDDIHrDVjR0qg9Bwn/SKq16GT6yzPypQj6fl6dHMp9JCNlQCnVHOpqNR1fCyjQbn1uVymBW3SMqSVmaCMTKdV6L3dNQ/XPR8NXNwBGB9MNB4+xnDxC8AYMpZuyG85B6wnjDPKD0rQrwHbcRe6hEJ35clVEWdRmurFkQiZc5McwMndq/QQvNEPuBz+LTKm9TmHn0b3+wrkLX8H99J1w5RAYep9ulFt+tdWFS5IS4p4f6jY81NcSNPoafIKCC7dCfRFGq8Qz6P3GTtsCRZft5+1tald0blMTsNqlRSvlmXSa1+RoaJSrA98YXA7nrrmD251ipXKAmCAHwOVGymuVmY772vvHaFf/K2cvCrqY6O6Fk99D4irjmuWQONaJE2WJqUWiARfKEvoE16ftGRZPSOP9S4yx6xEGble8f2bHy9WJoYfny79Un2/2NVph+VJcWNzTH4ckXhZ47kzcHwVb4L13XreJH0h0vW+W1hb/bjOCSjje/Ejy9rfg6hSltYcVgzEZeA2kVKH+HR4uGyRIlh42n6XWzlJDn824DAop51tjrpd1tTBRUdlivS5UlpgiLr+tzLEc+Q4BlYkPNxRoNKzcC1BxI+MUYj8d8WXvUDl5WKlI3ymka0wMKj9fWm3H4GOPVxdb3U22CahxZMgpGF2LeuT9LFCwFgC+EBOLIjXMBOdbbbwvwE8W6MA0hzQ63VHjCVjHlzPGY2XkcUMtz+3O0lpbIXIzt01uVmuoJ6GkOFjJW8O+7oDPSZrSmhiBolnMMLhXtT1M+8IjDHxBo9C+5zx4JgGLImcjEJaF2ONl49Zt6SQI7uaXPPmyjwotld7yPJJKAt2a2C736H8Ti+7jUHYsdGwEjcoioI9mI/x+uKTBYtlIrvKigFqsFmC543gbtpFQUeOwbq9hi+0D8PsvsCgBhUt9aCXcXkfTVyR6PUUQDeAstkxJXY0q99MgOsAqbuvO5roeah4VoAx2cyINHKgpDHrYagdIWfIfrGrZNgNJGPg3hiP5x9EDJJEZvyKLS11QXKREfeWbvWYGyVEr6A8pY5dgFSvyImRTE0I4P/njoYZ8KxSeZKCARlt2C/gfm9dLknEw6VuTPZLKE0i402kzvEhjHEhiKLG9JrKbyuT9UXY/fa9gBqc8Ijud1sgS0K5uSTaD435rxjQDVvvbTNqsRNUXcCJQJGxGYHhg6x1F0fTKss4ONmGJUvovuaqIqisvuKAYFgBg8VDFp3AknBwSAisfiIhLZD6xmWoDADfImXxlU/DV51fpDPkPrsZ9WxEChvRLuM3ZwI1k+5D8mFr5kR10ilINeAORzvmJYlPR6mIugwu0zH/7nSFj51rBSNztj/NWX+/0MO0fzAfe9epCJrxQ6zm8mSl1xV9rydss+Y06s9lLkgzlKCVEQgtlDYdfrZ06dVYsPS1G7JhoK087nE0jA08+o0z2t3orHiH4qJ7hGMx4I3FwBEh3PZZJL+xhgvp1G+nQexcxGEldMhN+n+yTSaElmDSzdaeNMHO+33aDy+/F1iC50vH7OhiASwuwjEOS0gGEiMZH7tAwRExz/3JfZcbUPEFIeR7N6IYv7aY/m52i08CB5y5Om+45RbinNhfyBn2AeeK9W/hG4yKluJ+Ai89snHiVgAvIWA7/M4GQMiziRX3RjHsMumVCTE9lylck6O79vl4+Ap+KYp1thvZQMl8Z0WvQ6IKdYDThEVdQkfa7tdsAZ6xUoZQOb9VXV7KVwOJZfILimPVOfFjD3LQZQt06vXT3EvvhkOdXfYLvaFDTZrIiisphln6xrc/hmY+gvdKy9/CWUAvfMjCckjMhYOLWjsfu9LMCxElaZTJoPu06siZMzIl2IfutzLpj/JFwgqlGJ/gFVVmCGD0OFcmCV1et+HMtfWwuux9Peskt4dKredxrAM8LJZexO50Fg/8n2pdiWmq24LCl1rNA3hrCFuvtgKhUNX4o3Dcl4xOccc3vfTnOJ4n4Io7Axuar1n857+hLHSj2s2IWCEad/3b1cIMQjS94eQKcTpeipObbStmDVf92P98R1sW6+krVxxRk1V1Mk/EnxLES9199/P6/4NGgS51en6AVuw2tNlFxvOTbJqxjA5Z1ABFqdEXPHgYu3oNTWOHO3V4LPydEVPesS+iDlpsd+WfeWxhdElcPFfPvwItd1clXdgro0yef40hKJI79hkeMtjHV4sud+vqZHUI/T9OR4oF5clJJBBgJ8keDxUF+OehZpkngQb+O7YEH/9CgbjqP1o53MKNcC1mdNFJrdOGWDUxgO4JDgW9/w5tzUCnlK25XZepqp61akqAb1LfrWbsdaKOeMSQs2Rzr/E88gpyJz6AT6a+v/wydie9/LwyHrkux4KIWjb5wym437Kw+Ugn1zMA8A/UyVeB6K15JksvN0IJmoaWWbxtkhRZjRL/YKZphjVD6VH8+0pv16yLGl0dkS3mHWMvu77FOWwooWv1oUEpKXfaWhRLSuKSb6jEUYLq9qLn/HjSxpYRPZpedwDxHkPJ7lHbeDHA8ELoZ8szQr1vhvOkv9m7W18yEluF6fKlKJPI7NOX3dAQ4YAvpKpgN+McXPT11wOMasfpBtfOoH8gd9NfBlohdHVzMZOAYWnpTIwvq8L1bkucaFKOfz9naglm2V8sJDWYRQVKlMDW3uLh36Ec7WR64lm9zQF7Kloy54MNRGb543CxoOxVyVilLvP/zvluw2sMBROF/3hbPxAuHgb++VfeNM3B9VA0addG1ND2ljzVFWvkGygKlwOErSraOtLXujVs042Bt4SIyGdvRxBmbM5GRB3pRyYjEFecZC5jr7Rug3n437kez/oebghG2m/0S+0xxqzQoCWYe4ZJXZnLcxnVeQ1TPh1dCp6NMyiIAUALpnbpweY1TxtCk1QvY5x0ggfwmwPnAwJzG8+3bcN1ENZ8r+U0NZ0vq2nkV/2c+4QurAZWqXcn7fSVzWZ+JzQEKfE4LKBtGZ0oh00ROZXBjHEjvapI2X98scVfWmQuTFXRXvF8pMjitZDAGEg8OVBXKCN/8UkXzfYIb9vghngaCAES9s01vCKKVY/+rjPCTAbRdJ8+JSoQIpmZ0bOcKx1n3OQPS67bjbyiNhykt1OmHDS3zG1DTDiQq6dZ7OUMEgKUodGptdvmwCY8Meoh83GjI4TMicX2xCdnEL/eOzm0JAneeLVjbgSCfEUo9JaVRs5aUoPZ9XLERnWcoUQvZmxJY8EWlT+bMnApIt3AKswlG5q45wdrOnnoBpN5y0/1cYSKbTtntUrpWfQZu3Dy0N3JaVfzvxLNONxBS82v2Da5PD3ft6lmjS7c4bOHx+WWeZHNOYMYmkYBBJoZk7a2a4jfJ6wyKhtvfoCP1P9voU60wB6KXf47uZT1BTqnN1dbTM72RnG4qxCEoniV10mesm6HTNx1a+g+eiRDxPooqnLTjOFbhtVj8Mo6qXRWBJxfdU5wHH32qpPO1mkdbaR9ejTPwVQ1j0aIX9+YckhbauntzUBEDyrF2A18H/o2odvTJ5DNYPKbtBV2kr8c5r3QP43c6BQLpIlH6k9I5Wjsza4UxSOiTB/c3WVORLjvhM83LRB+xOlBuSls+2xhxSfaoivXBXhqlFxmLKt6pBEz5DE9iqaIh9YvcM3AKWz4DfjovabWruCrSq9/UMfv2tglDa9MUgh6afJ0QT994bwdOllRWDnIKJt93YCF683O9oeCma7LkCsRByZM/SH0wT15bHN/vDsOp3xPfFUgjE1jbgLG9eZ8VLjOMePBhKy8aXyUp/3T903DOqxj0YCkqPHwSqeVtCpWcGo6T8HQPAdIQ90/sT/q+Fkk2KZ1ppg+Ii1eOpW6W1MCwMTK/S/wknOfCuTw2uQ5BZZTivO+plTZnW0NG2b/LzTVmX2pcTW9Uo6vuPQu65HMCU2TYh+ofAmdWxLpLhs+IbZ/JhFXtthDJks5MJ9+a2TaQqsgXOKZAAfMyauh/rt1srkt8Jk9FQVufc+wOlnVs+jzktrfy4jS+8OPkhL+vCppyDiN1I4i41f4sWVRK2Lf6dSDrv/acJPgIOTSuAi7KazMtxOv35sVt9xfheKDNdZVvAlaF5rpSQhywBns1DhDpKGjpAc6HnLF9GfzTPq14v0zKXPWkqRCz2AZmwab4j/3khUsyxGbUBZFa+q1R+BAQXLhd8rZoSwejGzbiIGYPB07kDdOc1zCdrVqVflLNuAh71xy7XoBC0oW+S6fd4pPSmRne9tMizHXzgKsUBsU4LU06ITdKpWo2iS4cyruCume4KBu96zx1wMds/TSDNaTmMYZZ7ljn30ctAJz3NW5MMJu0Sc70t4Qemk8XsPQ79Ql0vqhsHG4nlU9Hurc1j/94L7AP3RnFDqhc7eqH4+0M5CAwXNaRZi1UnddVKX2G8WHGqBihrK9MdWyc1NkMVeMh2LgueowawG2LXtxHQvQwMrs5kNkTI1qf6uecG4q11aReTF83jHAphnk6o9O3fUjjpTL7kAfGnnHJNc3O5H+89KnEuzj3vb4suRNYTdRCFQ/ZRD1VTS0lL/N6IuqlNZiLgybTJXkN/rMnFANrIeXRZ5zYhjqrbNgrsoGlicT24DxmhAxMnfmm5BJMsE+s881yQBVNcl3KH5YpGyJtSyWaVz5IZpBGJMbWdJwK6aVDebkE1HSYw02ifTU79WMJRjBA+IQxGUo3Jk/SPrIu3UqOckqyNhQ+cuZrn0tsI1347S0LDvlX+70YrNa+XNnIZIJ0P+g4clel5xL1krm2b6MKTvKp1hmx+zP6SiUWtLa2adNwuLAiC2UXxDZI0MCAXlDUb0FLhpI208FssmstEvsHYw2iYhXxtHvqZjCC50o2+emA8v/0Np+ItNIcOBPYc6kg6/fdwfom1hnSqZ7CFj1z1Cq7drzxz1isvb7nuBuckbo8VD84jAuZlL6ZlO3K3NVeOw9GsFktGa3dmptaV+hfT1itzKLOFmrMorY5TDePiDxytFvbIBkHoLCltji00uzLXh9SG24Q0pesctse+HH4ZLAGQTLPf4haxCCkr7wx6lqb4fdN3YgsKOltdEkyNvFzlvNvfO0c0B2zBXGgMDBFJZQdHUbAIY9Z27majfmVB86AopOJvolO4etNMtsu1Ne0RpRGO1nWtB60qJHwyTcJlIHsRxw+ZlBLqEq3F/1dupsT3pQ6xMCkw4MaOqHUjaITRJnTfDsZ0k5YXRjl7HQjrb0EW8X8Z1oA7HbaWCL+UQamOf6Dkk9+PPVRGFEJn7+K8DWmTaSxHQMzN2Rk+nxEbh5wcxAoZ238vkc+54oN7rEfv8KnHOpgloVIY4jA3rcBfOV0Bqfzbk1jXcw/IhONUaEnmUy+StT/825iNSUGwWc1AUk5PHt+ua7j4M1b8/ldoMhUzGNZyseX0l7SeDRNfP8sV/e1QxWGNplMP6wGCbupZngGdUWOAwNdnPFCfwir3SCb8fV7vYAAp6M359+XRuusk2Uwy5QKviTCk8wRWqcO2nxrCrYvpibiMqJtKTy/OhdIp8ICvPzwZ3/g0O0CqRjLVrvwUXGoIeW57Be+xzgKIFDFtfFTf3cf0gcDLBsVyQP+mzuC80hXNfzIAqGr/tHhPM38OjF74yenPHTJC2eD53qB5XAnjNpG1H178IhtdEyPWhy/+23nhHNOcV2AWpCduy9K5HVynRi7p4mR8hjz3/yRfAJqOzu4extn/eTVwqXeEsL0xMNh5PNb70rbbiryh+2Ar84OWrb2jrWnq75H1WlKuEYTThBcjPHwoi2nzfWIKBm/L3zu/Y5bxh0YTBm6NzKONa0QEPWis3crbHRMYgJwBX74HZ4SA+x18LHnAT667oODBp76WEU2gdaHM5u9V868GafofwBXybD3nU4OVOIBDqrw//lRTTpxDBPSLHaARYy4BsZCJiNuesepknqvEfFKRZERfzAsbKr7jH8kSU5/tT3ldA/fyZ/+EBDZTDg3efJjNcR48FzNkAhaIfek837D7ev77YSMoo9rHS2+bpIjtvWojJXZhz0BHL8pDfqgv2n2ymfgx4LmKEWnaUcWacQx9dCMN8S30vjbpufeY0SMwiGVPjJt1+uS2zigt9HvvqGp6mueyaciQyFQ8knntAgeFe070+FM3A3SIX27jm9lEBkxYZFcpI2kwuFFz+f5kQwwb8BC8czotDGJy9UZ8tSkK1wZpyFbgvNgmSvnyaErIbYFj97GPgNjj7xKEL2LWFe5Yes0x2n6cxOm4n0tSHZIYAhovAoMk5yg/EGfLTddAMXOF3KWTJsA587n8Q7ED6T7A8JkIdkb73I5RHj+c27dT580owr0h44ikqYKfCfJzHzQe6LeU7BkggB1ypLy7xtdbb2qLINdpcx01amFr1OG2FvcFT9OyTJhJVJy/C6blWGvpNk8KNF2KZS0OhbQ9B5+Iws6XebvZENOCO0W05OYd4YXvVnD5PK0i6zy5SMqjszwenehPRfWo781FaRc4WpkLO4bn/k5B1CC74XfDWup0dh9hcXYGPwfDtqV2UA3Aa9a6qOiYaLbdNZ++Vl6Ww9k8xH8e4my3JAhbwNL03WmwXZsNrIf5dl0g59AT8Xgky74l6Zirc6FMcm0je78BT4sHZjthXxgrwM8+7eDY4Ljg2SvahFe8g5w9v4x/bPItZDHNVf28PQ8EkSmTGxM4/PoCclKgExnPhn+9e+mHRmh95lxv6DGbEg6st7HulaxwLPJ7Fcvh6rS1Vgz86Y50SusVzWejo42IKKbNnwIeHaKi+sJJMV2bvT2/l43ZWtIiBkR8Sp1RS5/Gz9ph+Rzxh0hQCiQgkrRq+7c/xKsEQEMc1Jrkv3l0rbECtujkaJ7t1H1cN35a4+HvcyjzPXKo+REcx6m9QQK6WOdvjr5kmjEkuenkNH2ljWV+xjY8Mi9QSQicsB1Fq1ElG5v1GcGjv3b4lesv3v1idD93MhOjt8eQFcAC0EZEw10LVDBPiOk6FJxBD3ec9Iuvdy7aEvDpVvSlEAEQXv3Ja7KzHjNEeNLrlqnsRpKBGCqPvF+ouSzgSzNAQBF1ZZYG5WNQXQAScH81SyaOE8BqT0TF7tGPZtq+RSbITFRUw1PyE02bTi1nJh6/odA0vRqdQaTQLtAqp1zS7xU5PggqcShMU5q54h3DY/XAL7boQw+N2zILmT9vl7aCedyOf/NoSZ2iUgDhjOBZI75jKeeYyERTB5ajDjWyjXHK0BosCmnywKnxfaz3ItCxxsX03NPTTxlzrRWuydrzi4hxzRVeFum5Uuy7DmXb9j1t9qFLLsA+y8lXD66KXNlYb+G8Qfy4mXRh5seahjzp6Kuv6/rFLkYhrrQS44lWt1MeFaikkNSu2Qn1tFQec+LNeigBOJbGKzJA5HfV4yiN3Cqihrz2vtKLPSXwl49LUASRhmT8DG4XLUtSjRd8AuMRL2QM/09fcHZ417KTjjmjlIz9Owf52oj75hf4wWfE2U46P2/uajzZN7ozne/IVxdf6KPxpIPnEn2OSsWFQeRilGSUEqlttx6qSb6kJAerQdiO82f62ezJjd0iAZYcl5BWJc/OYr2UeCBZjw1EO7mjeNlr8tying2GftAv6wDBAzZ1h3CeHkrcRqgd3r35STNwPsbWEp0LKP25UmIVw77tcJoVFw4mUOLXKPCwwpou5UF4hvWNYdspKz+0dE+SQHlqZVRr7BDe2vjTMD3eWlFCrQsXosWGLk7vmLmPvw7HPjnoaC//+4BFgyScrcLM/FhnzXnfP8Y8yRE5gtzwq6Bl7elwCgc/m5cNJQwFNudZEN4lWK/Rvb+10tHZR8mn1snw71sU4WycsACT+f8VucfSOmJLm8g86kfZ3EXELmfRcS+fXlFUp4BfOuVPjYPM4k0W1ZC7Or5gh7ezbPAoMTAXo6Q3AVpKzo8mZ3swTyo98azYUlXeVVPVxUwTZAicfiV/X6pkrLENe8YjXls4qDdZHSRY5Yd+BrNGZJqEAWxPzxrRDptKMJdnOtW34MCDQGIq+0TI68wlWbm2zmG445YwGEG/dYAO2e8ZzjDG7Mx/ueBUpuOH+cMtqE4VJwP+fmsDsTWTo7uXFvb3npnYdbYMxv25AMqPGQGhkSrnL4HeiZC1rqaaspbPWobux0DdafLdu2Yx4dL9IZDgU4C6Mz0VdVC3VD27dIFCPZX2aNUW5str0R6YMMQ4U64FFM5vfudVI4W1t3+CdQuP9EtMpa5j+737YvoAv4LZqlkP4APCMY1bPwerDtSPRGbkXO3nvcEVlJuSTzbujYlfBQXToUFzJvwwnRFfR5WQIkv9hJbUW1585dO0J77VbvmuxfSJi23gER/mBzF7xxLpr6EvJ+VOF+89qsebRUmh0Qvy3j7gF1lskfC3vUANwSQGIlAF/zEAkVhMwUelXHlvfalS/UFkQCMjf87nz8YMTLhxsduhF/TKc+ETs05kaR/+DPIjBXplGBc8KCmLlzWFhk62qK58jCtiG5/GBmpB0PGO8Mp1u+qpMCxtgWqOfBCzeKvRSQONwxUmrcPTZA+t35cWDoROJvWIppBVUtSDSAY5wJfjmJK+y6zUoxzLXIz85XfyzIEe3VaqB0srYWShCoRLlUA9be9kGrETYvR8idOGt9lfXHIU8BlN99wf7V5Acc8TVKbv3M0TMAKR4T7u2UVJL++a403sidhz/7X2Cgw54SWP07Wz9DfmP9jEzwmPqrSsIT0XXa63MQi47TFwpiJJv941rnuVKGOmJC2Vb3fGd21LMUiHoFuJKkG4EnAE/JRAcyJWF5wWGXyOP3kMaApylek/77a7zP7UpLkG/qeliRVLrjR/qlU3eBqZTLZQVntjtyDOM0W/EYrM13VooWn0Phr9rjj3lQJmDAD+rGd/uYQjlwWBQXVPNRCOxQ9DfXPmMa8GC2M0j3Wx8Eu5sw1x+Kj8yYDGROYOl2X90vI+7N2hU3SY9qBykWNlA1ci5L4oWIrT2ULwhg5HUbytkNXwkQeDSPutOKWeUDZzRmRB2/YPlzMpeoetNpJP9yPwXldT+1jcOCa7Y53gPjMJkKG1vx34sDRQgdYsOZBnOtHs2nU2OhsGYe3mMUT5vgXaIWarE/MI1OB/xEDIEzowiNX7qpFvkJt1lzEgDQoAnPON34i9T8vtIrs7zZzRoNIL5oOcBbtSNcuSnnBNcoxCvBKfPfKQM2eeMkDK/8U5ShTmY7IyWAIT4R0ybe5nOBKAxz7l5A9PYqVUUmQYCW2KB7D82wVPAXukJ+v44CtAw/hyVbyOg330I1jjsQj/XPkTtj8Z36VPluUlXMvaC+qzuUs2CwManjsYBXeTYWc84RC77NgJgOTnTYEdEBR5Wh5dH6pWXim6O6Zgeog/X0KCcX6Pu4HVtIIIexcZ9+9Su/9kCoJKOjnBFk2wwd+jWBEVNuShKedSZUEpCKbyjY8aQIQdr0CannOqZ6A+bWFw2C46i7tY5i3NKvQn58I3LjLPBa54yT8P3lkkPp4yEz8SG75okokD+5vz2PvCKxBvQ0TzbL96O1z6BiRGwxXtqYmQeRSvph9v34bJRJJkjxj934MMBb99FPRI0MA2P+A2IQvhjuCkwmunhl0JgEdn30kYvgwcWcSjeE18v/Iv1dOYqjDnjXqoPfAWNasb4YxENWK3u5qthAGC80QSZ3O/nlUU2Avynd4fW4K0cI+S8kvrqKkkJ/rkDxZ7W7jw8HEIdBpO01dirVOnhFbFqZ2yi0k5jzZUv6MY3/WrtlQv/VyUl4trIQS+V/KLAAAAUOQelsJATl8807aEhuAnNu1Enx6KTJrffbpM4pQoAsyZrpV6Nl8P9cWLAoby1WNq4lUD6AF1hIM+r92EPx9QelAQifMu8tsg+DN78d37WFL1tnNwV7zYE6gSdT24yrGWk39nN3crc/pCi0mCGK3/DEX5E/dz4xcsyqk/NXKsYHuTI0o8rKjQSrkU6eWaTMMUcSVYzjLqVZPQYhVUElBKtYoQ/OVjW+gOXzHztcarzuChJujq3VPrX4pQAikquFGh2yp3wfjeRt/LHUYQnTIbEraCVEOTZh08zAsuvzirWyzK4ytts2NX2Zfbbbap5OEZov3kpyi+iwdnsketGKnBXQ2qIN3R5wHCmq047k0Dutgo0J8AE1gJf4uPwV97ePchjmAqfPiTqJU17OQRjzfrULwyHBYYE+jTYTEGfbUH4XVVwqG6l+aSdlSkXnRtaKKbmAblk0hIqgvaRYBefaup2WIcXi5U5ygHGCJbv3u+BiCDHfnPlcazcOfUwKiNb0ywQcdwTLZNPefuh7zAqLYMhiyu5voiL3mDYQJfRM2VL/zyug5J3Q5MxvmiokGTmKLcZRv+BW8u8HzhqIYW7Do3IEu+T0kEWnHwndFYc13zFc16cHX95BgLCC9Zf6NbVtXr8VIPHeKhzY7HJ2e5bi2e7vZEOhtynitO8mO76HHavDE7nf/lFclVR1xRFt0xacLlfrz673fy+rRqt0vsfYrnili68sJ8PbkCtRZtQObx5GVKjibxeP+kdvV2HcExBThHd+eT6n1D3VuGisfPSMmfhQYeHRvqJ0CVAQjY1ki8TdvSwUu9BR0Gdn+l27CNu1BRxUMWYEfWTgd5H3DlVqWgN6uzwWIQeXHQ1EaeQOce84EijCJm5ItkuPwsXz6VmqKdiNSGdIgS+in7kO8hpEYM6H92hCO04OEocuGoKzCMykWqOExstC+DmFu4UYy/hOLh0waie/nI6DUXwbwGFewbbVHlWKd3ZUSDGj1ODFshJ5xpuhrrsnstQZR49WwtGsXHhuhVFFh65w9Sh34Ct8fBXx1GMaGcBEfaANn3zMz/lx9d+hk4nEmYAVFA0M9h4/ZaG4MXkem3n/b3HI7+W76VJXy15lQKFZSxeQLpz/RDBc0lFxwTlmGmjAf20WX1OwyeTuoSa65nABo3zVaS5/v2qII7cF/f5P/bZ894N9amjQLixdjv0pAqwoT8hQGvwlNCauNoSBIobCR3Gcb3X2ukywO4Rx4tohGeoIMVM8YQAvFJDQCB74hGi5yJ+5vPCBxSfD94Mp/bmNsyOK7VByPqKq9AUdrBqifxWxYl1pSYrMEUcUC1IOHo46RbVuk0fJGSmZ6Bt/k5t89P748IYnTP+GeHGNJdk8ziaprKsAYPNfT4eJ6IF4Zfc6j1Gf7ZjO3Zh6itp5HJZE2twYyv8+P42p/52ZLjDctUY+332T9X9FWjG51AT1JX6PoNMlGW0KnkD2cUaB2YBU1dYuD50MSvo0Ot/f2tzrc+illDeEo9ZHfhlQZEQn1OxPXAtOLGeVdMi3z1CLTH5XFaTy6LuBo7xgMNGeSUTgXrQfGuDac17DZDRq9n1+azLCfUtfeJUhlVAeQkvxK9seYzs+S+qqIn45Ez4sN+MeVajVJDAGbBs828x8obwindf3Zg3WXrqNi1txlijXVXlGPCgV7ySTAanr3ARGtbz8wkwOO8xrgjMvGWaKz812LBihj7JM2jB5Q7j8X3ZRnLg+9xXAsdoIAFUUxpc06WqAcfmr6b53gouuLlODuXWxHqO3ArMwDdViA0EwPYPYwLcvhx13+cMqAIYefoWFsezCdBNZNfp9VKUDW3xvLt7t9gJtrAr5HEBv+3fxfReWQl6FM898nlDBJeCTWR2yJPw7WevjuxWvKy8XdeL53rpV1nsDxibjl0PkOMQ/ogcMuQKNpyFAyPZ3meyGZiVakyQEj5IDYA8ScSiZM/4T53ryLF4VcyzXPuC6OIa7xPrykN0cGHo/0tGLNnEm1fsNEoPwwCZ9v+58um+w44MO7dsHTfbWfMwN0brNDhJ7GADvQ7StENdwn5oRpQJAUvvAWEBP1f6pMCL7f26HVuhmQBgdosMNjIFq4nLrSJ8xwrkfUJr0LMF9+208h0m68hSiFEt4AVafBxt7eq+0U18wK+dLqud3EpBR5DpccqglXXcYHGRvKuUpa/QAV7bx3Hqv0aoofbHvr4+Dy6ZdiiVEKVWVVF9ugJv1HtZYdAuEbay+T0J0xvZnfmh9Jfkb7WfHOblqKJ2ndfBbiqCizw9gHe/Fd8JdDFUzahzceAlHa1SC7fc29znTtMDBtbE8Iac55uEvRYkyWkWErTb9zePBHzK5aO3DQsBxcVuZWZwUagV2aXaauIf9wQ7+Yayu9hd2oRjNMVyo+mZxo0zfM/1sq9FvGJjhWe7pyMSmS0AtumIXEmA3uLxJdrD5TdTyrnij8YqWax/p3Jgk1lasahahkt9cf1coHVHYQ5MVyvd8N9lEAW3JOn3HTyz60/Gf7Akj4R8G0P7O8Xyn48hq8coaddhcVFWf6evw6//6F9KL7qrJ/5jtuy+fIorZrNpTaZxNs9xIZC1/lOPe1F9npGtm1bFsqXAXFuVPCNXN2++lLUBxQS5Xsk3/uBZcCTOHCL9Df3jocE5QPL1paaCrvDirBEoqYPvkF16bjOMwyUgvEZHSwSRvrC2euctfpi4dKDZE6mDqsvQRbuP7XwxZ9lblXGIo9ga7Bnds+BJKvjZYnlIbiYQUF76T6QUYlXnHer8rD3dqCR1Cax2zMZx+CsOpRRGH67NrrYKP92+l9XwYAiLl0KZ/Csu0GIDUYTdn05mrl0hoBEyOhyFm9G50b7uu7bGgMR0pwH1IlS2N5sV5OfrbA491X5HZSgG0kkyGwBlGFHO5lqAAbSDh6Nk5oYnAlXhWifPdJFF4+EoKx3j43OdcsnTAwYgJSa06/iZ/U5gLUDg8lqgOoUrE8vMW0qJ5mfYcaMRmsRnrOKrkzCCWpWq/bnGG/AhDxPPtqh9Oks/lUr7CVfKXv4TxeZFH7BDN18zjr7S3uGZgVB5nudP2wsghKJLmJyLGrMn53zsHD4hXa3pMnnV+Fi8adH0W224iK//vc6qjZhQpBErIyIq5MVSoIif5vct0JFSfegDwsYInf8Y76J1hvA2GSiXNBJHIfen1xG/KfwNCYuRrMr7xeT0FtXjUS6kOQeQaJZhT1sFjMNt5vfN7mZjPg9MQjOGQPjWPm3qDVNNbp/XEWq4aihhWj8owYxsoekbY0pg+xftyYszh4zKR0V+YdHojDfHKZoM02WIPHRGe0pIb8z5b1rQEDX/zsrlVKdSA6xRLBysJ+JMc0ooULe6viVmSHDz4Z7dxrBMgQJezqX7TUa4AsVYgF0GGQ0hp623XL9+rl6q3v98+cSAiK/wD9ZeUUAzOnXKVYMNUP//o2AW3HKcT52+0CdyuQuyazjcNsCI+VmjFnXOKJkHNd7N9USdnbXeJwINo4n//hwL51kokFeOMehg+b99If/vc13CLGOzm/OEY9trCl/6/WGxHtvFuJP+MU9zeWTosyPbSgnpOQRTtUTJs9L2tNBSpwVqy7+qPdphomEEWJ9QPwULjrHSh2IE2LeLqx3Ec6B3wGoXc9yUqVPdzzeOK+kEZDf7iHbWNj4o3NKL2v2mtSb0FlxRLntYfi/5m1pZCdl6qRjrjHTRSOt7SCUNbMEBuwELKzd0rvI2p0UvmViFl+UdccNa+YAya9KZDgogoycvbVnZ3cTcefGQue2u9fs83X9mrsQoWVPUq7QjZrvafCRS+s3p4Qf+A7kp2pvid1qefiVsY+XWDicPnzRMybcP+asjqtBHuxRdzEYJTdbgaXMSyCWcyyg/2G8QfnVNgZmxFJ1HBFepcshjPYokkDh0RhxPvciQOUCnwpvnBH4TpaiMcd8kamRMNLkvODTeyd22O3jMae1ImX8mT3dX4xAv0CVJvDb5dHfmwZ53bkSqiVcbJV3H3Z3yDmQMwL+GbzNuqnTwCGpanVBfOVFv+/hUlZ1ZubtnkxfObzogjMy4IuDY/NaOQXRGm9nAf/8Kf/Hr/JwkdRFdPJMgQ3CHbJQPjrRwsc0jykKaZ+U/dczAPCxT+BXvrhTlOOwjpPtXYBcvnX13X9oiZIAqwGhvwC7mhcP3JepzrGBkRf/sV7rJ37PNFLoIK1Vv5i3W71MT4qjRdeju6x1b/K/12XldmgDIZh033LEAphLYzsOwMY/aYg1rKaW8oVUvfhczDrJHQd7fiH5C6uL59NrDDqNT4ZgEij2HsTIjz2bccqS5cvhMxUwpj0uCHGnDqBneO2vOidYu3UnFEYDX+tHAOiKE9Zu0/eLksLH0d00wbMsOEf4utoZxXSzkiQh/RFU9kF6jo2Q8TjrUoTsWKdqhbTnlZd093wQkie0FmBwtMaruRSNRqvALKCGRvRWKHsuZDaBm+ewgK7lO+BNMBPIVP3ZqFGBl384WGRhNcAdJKWZug1ZKdgqmDkWch8QTghlTAm8xqKrYRG3jxRx74gnTqzP6i3MHt+bmgiNsj+EQms5cVRK5/Ic5JEeEOKVfTx0MU2ZtR5lgloSdh4TDf/wI+p2FRG4ok70yfA2H52YM+2J2SI7cYDh6JKA8utQMUmjw+ULHScxWkP50G7QcWOSY4AbRHdcn1uGI5+r3HFNRcyqSsxy7eHZJ+PxXJWBSxrOv5XqsMTPp4BWjmXkw8QPEJPG9Fs63iYyT1ipR9AyRdKeh2UstlJKWUdZF3jwxVugR9Kk3DmbABqxUFCdYP5krySBHDbjROcXfyURTm4PXOf4zb+uVd+MvogLPArbARgJonvXSgKZxpWJPUABt3yaSlwb0eXhu+DMGjDvEpDvgkIBZUYS8OSJBIv//rVEW16SPY9iQLcqYoiVZXPuktoKo2xxJ4RuGyiFCVjN4acOvaYMW9q5cdIAjzY9VFCe10wLT8NMa2FMh2+K4yC4CDAUKjD0uNcICqVtwg/xSzjF8gmSfAismX5ZFy932wZ7eU9+JJyU6RSQEOekRUcAVD1Th3y8BtqCHkTJINwhANzwrVy2QP8jdXqoDenbu4lCXNGiGaDfGyNmPi8zBCtYAPavjBbHI1jfLan21L++dSXN+iZYIF5M5vvWOJnzFT76PsvL/Hu3KVDWh6tcCpVzzPfyR3oKFMyit7MD113fkWUTBkX3Z2Rfc7/W7mXSFFFB2fETZMTH2XlIVigEHXQLer4Y7yMxfiTNE63rqonm8jUXfFS4jOHBocdmq0bP2u5ptfURiSip2wq69iA9xLJBiaPBLhlPrg5+vnCfF1437tbDNpvhs+l9SUj+vxq7fUSC/AijrMSgpcbHbC6E1aPV4Z3peqqOC67g9h4Ym2PYWSkGuJSQ7xsvxsHHtgbn6p3VQ0FAEPQhHQjMHMMpCB5cYzuTvNF/DvdEEfgTZMVlR5ddQy0/bWB2SWe1sXf5s0DRbiXCg3lZ2jxFjJt/30aJZ8uJrkxzC5u1csv3VwK+yM+8ROjfhvfgAN0CPe5KKRW73LFHM/HCK4LcXW3q/LHdhTK1Ii9ZuiiZTr7ab6AbdKQIOfTnDd2kaEQsRpeS/4Zz+8PtfAoz9b+6c2S90sIE5aEmUZDFgYbaXKH34mnRr2bS+cLTMtBLqEFXnJ90tTGYo1R8kt6GetTFl7iMd8NSCXEw6/b2NTpGI6fiDw2tHHXey6CMp4Qp2OFEyjD/0msLQOShPhHW4YHTTovuMmPfXRS1azfGfMoWNjTmNeqJrI8/i2bQRv3Kj4fMxLYXxyijoyFgoUWH4G3j99KSKIlq3UE9I1S0kpR9zzfg5L/Q7EtwiApI6k+lIn8PND5pmS+OlrixCWOZfvo4YWrS5OnvIS+yDT1kpZnX2KCi1oJ7Bd3hEwlETdYBa4yG8i23cvhme7XfMLr0G/hMwI03HtdiryvFOmPfiSVywqY5FV3GqTsrRcNq6XNPEuuVl3+SU9kYdrjA4KubxGG4pN9ZXKNswn5bOnmddJMUMpZ1m0BHhSOPTUFMr1fv3EZ2mJ2hx6+PQF/IbkroE7vtOzvVRBIJuhOr3lpVIkf2qNyOBd1mZosx+p6HtUWwj4xiIjxUKaLjTJ/P7iLhTbgWl7yF26RkKha2dPV0mjrnqLHNRfpcacTATdKxYsDpmBidrmsJYN5jUY3axkAuOAAnx5BklHpzE6GgEQ7V/nDnuTNem58c42SA7QOj8BaSUtSIbeKM0r0OI9po4rzxq0C/Zck9AFa3HC/miELyFolelD+sCkR3M3UpqyB4MvBB0TrwD86r/Pd6TDfn4Uzk3LHtK/K/Bb0sBhvc3dhLRZkYWGk/G2Qay7B4esmlxo/Q2G/dRUAiAfB0kgSYIDmFgtTJxbZnSBk5NGPSCtfr7qSmI+auNF//jHBySzEeaiBV0pT+XuJzQbYnIz/jZt/nY/fFBmXFiuQij8hSXlhj7mLXm0BjTQsydZ/RqG8Q4RJx35tEuRbwzHcoo3ftRYxlQHtyRnTBuVUDdo/+uoCuzAf7ios5AHgJrDTHP0Kf5N0TJVf+AG8kj2i5sKxjfKpbyUW2aNjRhRA7yPmDQZahK2UaxL1DBsEO7TBQ4qMPa7+qNJh4bn5EVvw1IciTz68OiBPi2/y9sKxMPny7etJ0v/crZkCgIQ+w/E1Oq6TBo+30krN1WxyjvEaJuosZqihCEYTi+65QaTc81Xj9tStMNvSMmisEB9/zGlCRQ2Rytaa74in/YPtSFLjJCuXM0gGM1m3TOmhqKkG5D0I3XQLmRJWlgGibgivVgCqrkfUz0nsyilExYSv51f5wvS/x8sCSStEdC1p9qXzJRCOm3jRf+jMjhgaoG36mhRhde/CwRVbuXDZsuNAaEUZ5J4H8BAyujpoi2ZA3kOK6QVFI5OEyakHhynotMGlOTqkpoLTGp7/bG+ytUGbfWnF2PAWlIhXCyIQnWQxaMC/XQPQwxqJ03eQcBLm782bnx5IC2Q3G58V8e41THClouk4iuW0F+sae5oQU/wIiy3jVmc3dCil2YuEet90JWyVN8eTx5/582F8A//WlYeHBXvVX53gqgOlT8Ssam77zb8NNJFDXBHFCVKBykoABXYKslUu0Kg1TpyiO2C96mfcHMhhrmzT5Rmgz8y4nMBY9OYNWW2M0O0mPywyrL/WlqTEFSkfhuizfg7ItXJrvfXV8LkKOW22/phMstQnnKIDuzU9rkrfmY8keTB2EEnCUh9FK5W0PLSW6cQcmdTzNX6siHd6AziGl/T42o4pD9LNdU2bCnXlwcj7DRvJnGXLbK2GlDX3q9Gya+dWQFEbEbRYTgwc4YgZyv3IwrlwD8J04uEvbsLC5bAANTXaglIUdo4DsxoIgHpcvCO136MngzqndkWWbuBYjypEOFzHu+VlPDKSDB+N7iFsLI3U+P/6bpCNBOLr98TWsK07CXG7911t3ZB6CCGiUodEVcuoBU10gJvDbMf6fsx+dPtcyZoLs9DosmTG8US74+XuigQYE6a+JxGT6EYKzYYKqlXQf4+bVTDiAgXXbw2k4GxKoRrY1bY75HP6oLdJsA14QZFQZ21juko/DG1OWPRHNjnUwMgioQxYu/XEYZwRJejMVwYMH5X+JoVO8wtPAJ6TpnTQobh+dPgVwozgAAAAwAK+AAASZ5Bm05J4Q8mUwURPDf//qeEAAADAAAEtVzz8ABB6zi2wvYneHpa67Ep91PU5P3T5qZgtx163Jg6jcVmGW8KRLAkdQofHLl3g4PPVPzjevQmMN7pvNGqJ01lBOoNadTpWUoKT6sbcMQw+bJqd9lpLpn9XOukmtERtnLbJE39SBgszo/wVgBTA3nxUd9Pe9Wy/WyPE0cUSLO/12EIa2K+9OXNlIXa4miivtpW4inBTub5o7+8rCROqHB5gtCCWgTmMZUWX+uxHff8WtqSgZF0SMCXIvnZHwyLwqOP743EjzBTeW1NorHdtib6IKR5WOk5iJQoWtTyInpxK0EvglaWl0ZPHT+h8afFF3cHPgCiM1ZkcDvV6yeFEfdBgw56emba884dAmQqvtaqXExod5/nXQ3xw5oLPcgEk2dVAun/2peSEy5SEdNtSimBngytGWRAjLuU1+KxZ4tF3rdpl1hGITLRfPlb24kPHl3sgvbivR4AqkYrScpGPYNqt98YLl8PK1d9qCAN6It5my2hF1aZRoL+l4VA6X8BmJBqOlGtU0WXFkJ7/MWuTIXb1DmTIN3IIq/EU7x85w+ludW64z6aHBWwPm0eDC8+bIx7GdDmUHBcmruQgfEs64ihDHmrDjgEF3FNmwN0aCcs9D/LrQPAFuLNwjF544xh9b4pisNx246ooqbmk4u9vJGZSL8IvRHkPRD+MGZMw81Ufv5HI7BB5iyni8IFxzwhb1p4MA7JFO/UfvQ1f+ZGnYYmR0HiSF0JCewGY4Ok+Nw5LJTef0/YhoF7hhCTBLWlT4DieUGcyloPFbbs6lOg8GqwZ6HTkJ8n4YcrCTRlJOrDV+e/Dig6k7a7eanPg4DWPrbdICiIVxS3zILl0gXBq0fstcoW3OVAPhZZG9AAVpVcXLndpRa9UVqZ63zEYE2y2togPKiNHQOlInsLL7KGUd0P6CLZ/2izBCFy5LUCgQn7zRL4regO8ZbiBRAc0uiDiKU2V9iKFYvS1MxFiUN3Ktv4tFKtHjKWZo0wRHmaTTMlJLZ4ofB1cui+gMTPA9DaGKXBx2p1zmQhtgR6Va39Y1z+HPGD6/1HeSctHhgrA65A+1MAGQi/Z8flLdNPRF/Adu/1Xs98l0+bG9KI7CHVH3uQ5yJ5oLXl5l+LYYBSOpFUf8chcc1VG0Bw2KU66kPPT/Vp4uO3JyTmC+vhrSvogCFwQFR07TKDbuxFHQOa9Wfn2niZaa2UL3uITK8AKtH8qanvfwJnaNniQJQW2ZffIhh0ER9QjcJvve5UvtqtBBRYHC1aRqlDDH+ahiFCvbQ4B7/s/sAa4OWnMxIyI1MOeqOSWDdFx1/ZMJ24aLc4YYzWWGLVyDvvCJivQoUzwEv7M54TGGzJR7S8aQUtN4fH8xyqlH3fLao+GXL4s23ifWOxv5ubk3hoqvfGUP3C5tflWa7El2rcWkGIbu+PRMU3b3xDnh+6tT+iXZ44z4kBrSyfQrdAWpyZ/Y4dpo9IURz99SwUCDjS47d9XrQY+k/gGN0KLrJUf8imleubv5u1CCetoX60exUOJinLs/NfX0zx4YGCwpupMhV5t95aJt7zSJRS1eqvzrPTzIUpUf1W0N9yByO1pJuwXshViAAU75mqUwA71NLXP1JbgBUPbrOuPzpMZKBherQOR9H7EuCzEzeCvuwNulwf+hsqoMgWCt27hcT4YZBSfKIarZ3SkFR+w3VtarPt68+9S5FDs+A4bs3K8yQD6mfEQQPb3K3Hae8U3Z06BVW7K/0qElhmbVu3txpzy1Ut4EuqvepXFsJEpzcfmI4XvkHAwWSKaeFknS4D+Fbgm8I6JQVXMoAVHWK2nqC8AunEaeNtxZ0DvvAGtfdLNiqgn9A4l5G9vSXWsUBZfqRqmPGvhUooLc5a7N0ERzUFKdWvImt/BxgdhmhWaWW5lSqV7v6aQaqkzg3ad/dGyHE9ogS+jkQoV3XPy89p8cLJNoijjFAAxopDp9SAiVg755WKdNnYM9KjhtrTaKok7tXj1RNNvrP5wRdB+US7HHGyLQjPZqZlQYSmKuwjVAjlSTiGtxPW0U/gY2tcDmaSxjpO0sclXsa/DjUPyH//wAv1n7jT6bAi4W+uHZfo9JZO7MXpFtaiHhcV9xe1jKMoB4weJkdXRs0DtWmubpnN9yepcqQrbLqdTQCKISdQWUuB4TFCl5e3AkYDNSUAx9zlGSzC8ki5wuTCpUA3kZizOJpD4tMI6tXZrFbONhu0jn6g6tqoACJQH7qjlP6HrjPI2LkmPdxvHnOhbjD9f9O8QFNO+ruWb6pk5cR80gsWLPNH+9ywjxk7ul9H9QIsZYlTMax8lXyngoSCBSPdjhxIkClperRG5D8/Q/i0+lUB2FLzuONkloeTkRCq0UPrfCsDfdAijhngKN8lU7FtWjyanWvPx3TnyjCdC+IGFzzkjKF03uLX7hd6181nz/LRxuMB9ZC24zleTL11O/KC/hRj6dnqJsK5aAkgT1kSVTylq91J+DUPp5dW5XwbEJCwZkyO0LYzUfee3/fnutwM23sVux8RfiR0+SwhKkImeWPLE+YU+vcj2Vs79lyzVaWeqhtsAfwp39X1On8MG58eS5h9khpCjoGz4RIHxQiDrf9qd6guNUBoK4iu5JSYB47TUL1JEyLjxwIeR7/KA6Fvkqm2kBlS89YvrbNyziZqFEoRoeMh52i0fRGvC9MeFJZVZ9mNhYn89YxwxyuFtNbHrHZpQTDQXihZwk8J5jMsXjoJC5D2GtZhEuppFjyplNo7ZJGE9NQFu3oX7ijk6Ih3KkXYsXDPxKulwebcNzZ3LgTqyz/kb74V8iIkj6LklAFOsV4wk7B56h0fMmJznM8bH6/qG7PrIU3w+M0gx1XXKO1B+Gp1314IBQ2SULAyjKfawWtm55q4MOHVhqJJoSzydHn8uOB7XavSGpsyzH5yuIT2A5FI0MKY35R/9PXzLWxIQSwj5SMD+sGRCi/xJUQJaYR5dOnnKVEBZUrg0AGtviJhSM/dfzEmGgSYQHTW5hrnjWsR9nqAwWz12swBjPwnDqMxo82J3GCXNWFKjJ00wmR//nhRnnrPn5Th1oNjbqskf4oBbbT2kJft+ReblgkbFPladvTm/qUNJ8ALzRgedivPEAW9falGX05G2XC4CT59G9wO7C7n9TraufBwwwUIClW3IdnU28Giy3T94X2xV6kllRM3D86n5bt5wNZDdo9cjMo05VWXR5GP0Dr1Mykys9OLp50ZIbBNi4aqZPUuDR6btjsAhw58i/+JabcKSwpO1zH3DM0Qy+cOHn/xcYyuGMy7twufOAGT2h2kC7i/NjzS7jMvYEvKRFdKqoh7sDFatJ/RhV5rHSztx3AImS/05k3fiZrfZPLOqmgZkA3FPK9nQPzsXVNaDLCJw/es2aktkK4vbJHAFM6ycnSaLBPRLhIznvPaLIHUHKXE8v+wAHV8vx45KbPrjhpNyNEhjiZy6T6lFJqCXhXluxKXzn9ME9FwsGNYRbWs/SmnXE4gh4yHy6/HGd5J2PXV9B9LPkOSqLp5m22w8cuxBdb7hpIn4EnRy4NPJHZW0GeljErUheq4z9VQveSyaIiU3a+k+NuF5yLotLHcdRD13ceX5KbK+VWDxOnynW1g7RX5a4DVUlt1PWWUZ5ck7het8fnnkoNhNH3/hcV5d++TGt4N7MhMWy357GL07PUhBi3rJ2jI58OLvDTp1Y++WzDnOpFu9VRV/upEpBNspWjAwjtVYj4BFNs3JkRWnmzJwcVXnGSBWUcq88Koq/SHMlfovxuKuw5BfmNkKnlHgbnlhyKy0wX6Wp01nouQnHlGuq+Qs6xRLOKWQTjfzf77k0/Xk3BKl7KGuVNukH0yfkrKfruDnrTqt5PIEIscz/kUnvOjbZc1VFbTJbD7J7jYuupQs2mGTiIX3/llvwVPRQ7EbAvlBrIEei4NsELVgMYFz+T/780qncsbAVJ2XkMpQ2leUhrp8As/sq6iejwJ/gKAhWyyf2Z1Q7OyU9AyKxeeN0ClKss30EBpLblEMY9NeqP0HO7d3j5gYULRYrClwyadMny86xO+7e1bLJo8F16s985BEOARpMtVzlPhK8CCWeez4Kg/6CXvVomKgdZpUvbPPQnAqCk3YfLzGufTbLmhkYlo1YMNwLSzkEtekM9EMdwuRWIB4yJmW8yA9lf3eK5b4pxH4BfIZHt5mT2ZuDbPmsq7wsH9V1aZQrhfLR85Jbn5yv43HQH7Wdj6qE1mFydkOjWeQXXC9MpqhTwedf6WtYKCG4Zc+GsReL/3PHQDqSzH5e457QNOVNR8qN9DTsBcnbWhzK0EqTkl1xhhVsr3rPkpdsX1lpjbQ1lUPM6OpZrkTjcoTm0ipHP8+AXMDhky6v0WoyM2L1H+jHVJeLdzlfVzu7viCF49CmpLVLULVIz6ouHcsW/kFRtQ0iVWKjHazDSYO6V3/3NpwTRiJmG8z8vkL9VDIua78hzRa5QExefcZZU8p0cqNf+pcK78n7NpiENcC3Vx1vnc9XhX2zfYCh9Q4A32o1GZWwt2zqP/F6Ugfnt6Bl/OyEyvMnjN2cB1j6hIyD5pGMxl8B2zf1m9+LIED4GbXzb4UboJwM2xpnkZEjmE7ZvSN4p6BpIPh5tk9K5KDW3gkbhjp/hz4Dea+azHQFAuTUOOfCvXUpInPbqRk8TZngQsa1Rj6H/Z1Ek8r45TMFiBO9bfxg6IzaHEy+en3E+E4qynp+TCR6oqy7wV2L5YvwqQZKaRbBJYS8uFTuNrMkjfUoUecdDIMPi5N6Dk4Uasv3J9vcewOVNxR5ZvEkqBTEQvH80MfYVNGCX92FTi+GeGWXC/wrnFiNy/5/X5YhrikzQCSEDPm8FGbDRgD9xwORriOs2cjteMIx0Aq51CGItU358BPDWKP4Yb4Vs56sdu/03mXWs4ChqEEYEUGmZnRgQggU1qWzVt0myFZgftRuZDoF5feGqkM+wlxgxyjJ9qS7l8lOm//3mSiShrBRrcBV5Nn+nuuap9k0DsBkzy9Z0cU5rzy3pUKh+hK3iUSpq0HfVIeGiwj8gejsN/v97JKzpb6eSE7UrfC4StmmnxZd09W/xfAx9Pl/0XwSz7MfQ8hupFZfR+fpGouMM8R4kq6AB04LrGexcSy0i/VRFlFIB33Lv+VfJyJGEotjjZqMsgqUUuS8k0nRGdX5dMNU8sWLC3LPSHxCdFJjkmIat9OoKhcs8lBoVinWtyKbyFNCfeEboFCL/gDPb1I5Yn8HwFz+fJhA+ZeEsXsEeXvPVqd6grK0RvmJbVcpjEcHtwrzdF66CKWR26jr95osjztcyuVACdc6G6hLGvWiGYaNTx1ZTEpB1enixYQmu5HQYaSpZnG/2G0o7HwFiqC7oy8cVqua+TqEXlUuM0E1Py7vRSRRvCjvSztVFJ0HHX6GxAOFaJ0+jzihH1wuYRoeM9Tsm9nrBaBE8GW0PcdMBi5Ylt8pkIxZSZN2HndiS6YzUNrCsMaXvwNwJwAOb8qoOd2kSDgk9lRK9ArH2XQUOfyJKLOpJaRIWTED6eugK51BVDe1hWFYRHAW6TgBxqjBVhN/CTloSwiV5Xpk7R1ySWVQ8dp0RTJYKye/ya7zHrv/ifM+1GPgNc66WP0sBiM08H+GAPfWCCV9/e5V+SDXQ+XeBoBdFceYiY/6SWu4uhgxE8ApAm0wfBWmSO8fM98rDmgoStRXP4rU0xChiVmdXZ17Dz0AbRD38NToOawW8GiqLP3HSznKRi5E7XoiL+MJ9KrT4r4VhrkcZFlIUvP3JMZSV+7uwHgPLA2uk8UJSUQPd1gvyX60TXQzmg8E/s2v99KSo0YHzsjTcUiLC8YLzi4BAkMGRSO2CO32CctUZ4OXFHawL3TGK2nXamSC/vZ/vcruF8HNbiw+SZWX9JqjmP9SzIJOmfbVGhQT/xBJ6iwJNN6sS9KeTkLuP3FwRdTptbdrn2839Whak/xsyrOo5zFfOsEk8dQAlsEZbFp3YDgt/kJnTEE3zCfyo0ovEb360EFmFGIEAwVQoIHYPx4JEnYr+K41gk3uWH/ittXA9E9lT0AhbdhueA9ThoVOioqGJjfZPWyDjqda7PZI2Xq7hgZ00q615Lxnwo9fXAaD9T876waeoqw3+nKEEfSFh6xtKvYXHNtlOSA1cQux4BJLz5iIjh24kqfI680WUdQdke3ayvLADmlaCllKeqmzh/2MhpmqfyOkKzUWf86xm25H1uf30zzzlYXSAr4ffVVsVmG0t0cGOFBZAWZ4OWKgbFUz2ZGuo1LVL8IQJtNQ3QmSCDnLHY5833oK6wH3Sw/uEpddatDnSVB0pWr4DLKoioPmoQnkDbYPykKLuKIjoB2JEMstGg25DKgTDNW4CSFtNnnp0ptqhmmapGQRoyLUdrVIwP7OCmujUBSDpIPTfc0o3XpzcYagB7cHHmp/yYjLL59Ub0csvT7307TbxLwqYwP5WZXw04h9tfysXvFSdcXwf9zkXPgyzWDYCruV+RvccdZ6rbvYu752FZSV8etIuWxSJL2FJ5Fw5a0x07+BWcJEC+KzuQMeKk7Exd14H3ckD4EhKquRDp5snIL73f4ljCpGvjlqY5Pj19dK8KckmZopc9D8xpEnBXZg6Z0TqeI4QSZKBNMJMVuE6wrh0ZeOdq7IAV2ttcuhdN1cJBCpKTTvbm8vBwXRH6gUIHnE81hUWY3hX1gFKQNzlDHs6RKKGT99sqADWdrRN0MYmYSVrfpV8yvODuUnjoqItbiiYGiSVHKq1OEUlVAYcehw9USs7qwYBjAlOAfhVgWUubkvIBB5SJZvG6sN4Tm8x8OFX5FqjiGEiGfbZLZmmYKElHvNvLvdQCow5DeFR/SuPueJhQ+UqsQ7ZEomM+uPx56xZRoQfxAxbafLk6KzLtPT5dGSZ6I4wL4Bt0kAkvccrJaGF3rY0Qz0Wuc7SLHVEmv+Zd6ZCfRmzK9t6CNBfbDyCNjxEQqCdwkAghkXmpZnnrILjWtHI3vEyl4nL05N78SXcbqPGAv+FT0LCPU5z3SHg6mywk3p54NGWBU3eqFfO9hx8oqiEpJrYFZMh51v3guxWccVk/nz0WvS5ufqOnzkxebTh9Gefi+i1bSF1w4Ogog8JTt5R4r5oIFgrGkYZK4AjOGgddzWLT5f4RztCXbIh5iOXRrYYoxBMzKlb2dPQC7603FohUEYY35k/IAvkpjyKdkiWGJ8ONs+RqLzPBm/hwdFxiLIikP2xGjOUX05RlvkRr+5O/t1KMx02QK0Y2T+G4UBW1y8+gJl/uImVozS6FCHAx7sHDdFn7vfRGntgfvA1X6t1kKr9OaI2ssKwSjvnhTjTAFTFJkcQBgD1SjrNgueTxYSKOgDYEOTMCe7hTWnjV4Vh5jTRHDhYKnrvdXmMSbSWNmxEQWYIZmy/VFL6xGMvIJDOyOdCPbKreAyxUfNN9sYGrLsJngKq8yWBHPtjusHNEiEHLprCuL62L+52Q4pOwk62v/d66RfgZWbY1rEgtf6SI43mFZK5tCsmz2y4L/Jwh76eNb+gXpVs/IOIEjyjuXEvl7/mhYr6+dp3D/d+BChNvBqyZPy1he943NkXtMLii/btM2twx3IOti9+2uQJ4mjZnWxL1ZyHF/9+FwvWF77CLKqvt8LasRztbYVSaHUGTig1dCQl0Xf80LnIsNXHYkjFoVl7r03AVVtsA2DDVDQyWHKpI6RkE2biWk2unIwI4ey5ADIt12yukQJOZEzfDSM6tgKufPK+5N4OMponLEtX+SGdGTUIW2R/LLZRjeKicg+2tmUWOSM2mNGLzD697dUBQlJxmwllUsonRnEFzwmFWI3iVgIz6982zypzgUa2Gg/EyO9Av18S5BB54q9QfFGLHT7W2hgxGon8WF7HrwCadTLUGEIuPZ0A36UBze6tbLhdNOFMayIG0Fns9ycHAE09uuZak6/344T04o2P1QnSqT27+nzXnJ8/59X1ikGTsOX1myOuoR3CW3vPW2mil2WEfcGhyXzDwqP/BrFXDj9JI8HOO1JUv/M4rWTgVjwnunWPKObqmYEgMA59qO3I2AxFw9fidWNs9qrwKW/yDaxU4LvUAn8lEPtHK8OAmNmV+lTHB/a3gqxLA/V6HkVqOi2+Nnkl2Sj72nKVlp/bMCUwqTycOVsd82hGUEpYrJXZ+h0xl23xogT64lInSF4NQ32vXv9e9itxeKTYDHfCqdQ895yQ0Zg6DJpOQBe5astRVXpCZ7Rlqx/KeQDkzn9N7Px32eDHK1JNlHLR+pbqQYR13/vM5N5RCtBpLPk9wmbRJIoRbx8llmFR6BhUiN8MqCOHjyTVmFHRLW9TAOij2FggFYBxMRchdT14tbiYlabMgxOgn2bcPJw+nPbYX265HNtdT10lrtLCSQ2OI4krJKrdDKVr1RBeO4A2umpRI2IsvAf3TSchJ2jHeGtkEJVQFf3RPVYLdoFu93kG1DGd5BlQlyvxSvkMPKB1Yc7pZm1Lp9RsCdT/0FGj8ZicjHW7+6HsgjqO29cBOtUg5bMmq+l4RP9o6t/bnAtyi9SbGS3krClC3HYRXIJt+gtfU9XvQwj09Yy7dB25PN6a952RZtnHfW7QKEagXqIfiLanWfbujmbvhlAROpUE+7OJ9Pbv2Ik2tKFlaVEDC8VyoApCcouiPNVlfe/Q3E8ULtieAPs8lZMD1751DaQS7KWg043ppGv2UqskZhXVJW8eu9kehpnlMbarfQrav6S8PQL2/ErM95//kWOO9rK+/K+HW6XtHpAOEOyKg0ub8EuwEmNWrnBQKPjNAYzXKTSsXtJ3SukWTgiAywFCysLWcBxlMWRc1UxFsOVYxcqhNsDUPUbf6bDPFTghla5ZvbwdB36RUDSzLn6Z4kWAEyjJBljhHGG2oOU4qQkgXI5gGDrpmbMSdn2lfgJ/d2ERbl82132iEObwHbR/MPcJTFIwHsCfGc6bpknECQPkQ8dCdaq4v/6fzXOShg9G8iYTGPUjrVJN7Wu8HvPXJgS7K0w33dJ/FIAFEILqetljumvTrdXjFP+tQgK3RuXqTF/ViDKPFbklPCWOAM4Gp8VC4Wbo9O3seYnb//PtEWoDym22OCPNmVOITRkvwiikt5P0+dyuiQ99keR6xA1b3QR6S1XckQJUhNfHrnxGLYGNDw5kQiRW+yoFajWEONywRTK5oMRuxUtlX+wuxzBC46xUB1fwq1ac6afbyQIeMpMSdmIdvMvgAkAPl7FFDvrkaGdw3iHeyJAbRjqg+USmMJ+2gdOj8XNegfTxAI9mwdZqSB2IHwQAduRZc7sdCeG/9doRz+cMpzZobZljtGx13Xj3cxEcEmmRxsCQz5eXkGaRpJ1EIeCpLnsLIzrYIQv7WPCupPcTHfVQr5ILgJ6+eQSXGTg9r7dxRpzEQumu08F6c/MqM3LwS7/R/7gsb2ApjX95LHvcEWHjp6SQRihccB/VrEawnbupJGZP1bY6qFjyoxTxLQE5STQRgn541/99hn5eG8kV/sDgkKfsFfKjCmV96mFXLAmmy4DuEHp1Hz7fJZN4EOsyHkM2/DJGSm7uMrIrxyKDeMXIp1/Tct+5m6trJ2AhDrhpAqmrqQLL0YxUYil4Bimmh/RHdM3RFINTUhW1rdGWtENTdQlBXHsAhBWtgj/pQAjoVXBQ/eA8/6ZEp6Pfw0B66GzcEDblJfijGtIr7PjRExEodOWL5/FAR67AeuPmB+Db0EC5PqaXUBZHULNfX06irwiD0foqcs+2CYucx2GxdLv2JbfoaDPc1WzEr2rhWzsxxHHjXanqFWuRX36lt+PVIKRv5GAxP2Mmt6wDzNwVPNRjMfavhftqcDQsg04xLOkiUVQXUWQ0Tl87qUdEY/xDvKPLpZ1c7Z01TvTRx/Kw1Jm52SB+65Neq4QJX5EFXQSWZbSB9GruwPRr/12aL3TJNRAPTWoCLtv7UC1tlhNk3BCqYcWeW0fK5L0e6at0Rhz4h1AUpSJjHjXNYTZbQYdDgjb9ngetUf9Buq4rKYjRW2yS90aJgAYXYWQeXt3OvQrVXrydRy891AX5QPLtjj4I+njPpVtAoLXAfUc5AjP9O4dorOqLk7UXZtnJvZ4obDGUJmUzr+HCp4oxsmaRHXV1h5ZhnETkrQrdqfqDlXrn+m+/DErNIRsOcuez5lvtnuXvbk9zxh5UxhY2st7CGt3yKS9IujMBaPgmfZnwNrZEbERd38lx2Yyz0Q8TBAMiyNRGYUq+EUE1jHjWj7yiiDQ/BTVD3KRT6jOyU3i8Sm2BeBHR8Lxt6T3J+bEAQqgP37KjuzmnAWrTOAh6b6LHeVRjV4WPBJ9bwtFtZzgQxU4y8mmlH3mgVhORKYcMUkpNj+W2uZot0Hc7TvNjgUUnglVH02mHLhltBtE5WqPKzdxyIDBU7DpRTEx2kHFTuHD5F+gX7z0piuSl+dm78gr/oRqg0AYvt0e06LdFkKwasPNbnrag6IdWtETgPfZVWUYkM2135Cjz1CzH7h66a5uh/Sz8saDtgikaSbdny13ryPqYwPBhl/OuZvIZghdPTXHXdusr7FBIz5ikpS1mpS29QAu5+rUHCwdB8sGzRPkB+aTXBpgCct81lEshqY0M1w/u/uDm4QQ1k7dkZCgNg8TLuvaz/SujFiFuTrKreUMJ5kD+PkyzKiJo29STIKL/h0xsMzrb1WR+dbyOsttFDZ6L0q2qcPBEmik8kuzjDocpLuVwMs8FK3VwWGJORmGojYOkMQQb2CLjWa2QcDJMHIyam+MyacAI8L6wubmAWFa3ANJEQEm3Zdh9Q6w+hxoQH+ks7WgqfQI0ldKIQJVwZIy6uaAV9kaWWfp5q+UjXSXO8OQEgRGOij99wuZ4oCV61uKj6wqjVOm7czZrjhSBr5DkiitX+fXvU+kr3fNCLhWZuGSBys8KD2quaD8mNdPAZD21jX/bGRQN1qBpBwsWFZ596m2FT+CSlgeD7/LeVi1X97hBw1TY7X49vGPUHExcuX8bEq9gonofRAlgJkPKICa0T6HJo70lj+d6SwjkwdB00d+6rsnUqQCrZocAhfMRUJn9f5O9n9SLjUME3A6fJhs8OCgVikINBHWXMLPV5j3t3YZIPXHrRP8U3lJe697H31KvMr1XtXjTK1zc7xP/iw/1pAx0hsF6yH97GaGtyJHQYBi7IMyafqkOY51An327aRslbwG4J/BvoF+5xAg1xX9Dl0DbCcLCj9M6ZyYyZxOC3l34NaI057kFXpbjbKtyGCrKx7loPWtKXNDJSGd8EruSXVJ9ps3m1VPxH7WN0Ey3b8Ma6NPZaGO86mctM/fT/fOp1sUac/LSQdfpl1efIgpC38Orey9Crfb6t9khKQj0oy+gFtVwU4/Cy1C606bdjZuoz1qi7j11AXOPkxyplNST/V+vgbG2Uwrue5cio8HNXsV8G+0NAadw5OJNgWMXYJ0YiDKSnC7uOMTedFFQbJpfd81L5adCMH5e2qYMTdxbMfp/LX0ElYN82IKKKr6fBdq/3Lvm4HZDTi5fD2/J9z/6itKfs2kKicAJ3imdP732yjTxxzcy6NJ6G2FmB3NTP1KXKNFUhtMR1nRY/y2cUjcVN3wMP8G44IIyqK25R1nv+M2rMYDQ/GmFKve/chRH2mLV7by8kzCaQfHnm5rOFgBRF2EHn3RGmCn8Q/6MP+LNJGSS3GHApkrWpVMu1IRCYrn7D4HUi73h52L38IUeIzrLp7H+0I9PtpioBBCJmOUOHlvCqirYD8eKSN4lWQD7gnC2fQt5AglBI6zoluqRStYVs8P92NOd/AOKAma1IodxK6zr3/TEozhBFQJ/6fS5XiVPPyS8+EU3MCjyhK3iBygqVC6eREQxOphGbNZTHZ3/r1tsJSBQiXwnpTeF9A2NnjeSk5AhOHL2UMExtl5FPzDrd/9jEbh+pj+cFTDwbnbUV8nLct1RYQmrm07v80zd8bPqdKf8tXbba6UWWwyiOYx+KKbwz/txz7owj/9t4yZ/F+EDVA3VZDg5zT4JOvI+wsDGfYHcI0e9X60omHMZh3ssR60aeY7DBDmnUQPxX4l8Vgf5vGJN34A4t+AxLAt/vd8TpHWe+mt9kG09I2KhNHRTJdex+nTdR94woyF7ziHaWcZYVM8F3obW8reeRtF9i2P6hHd2gpubhcbdVw4PhtXfyklBGQ2eBFkeL+3C7mmum2gDAQbPcxrpbmpRAR4BISF2rXIt3XjH69fF1eFAwkzi3RbUKHgbfK7ylUhljxH659NCO/h/1Nb6+ckiRwzicgY0yMaRGYFaXBPwBSXzUa0FtKrnCqA30flpIUJsK2+PPHXv8/777F80UJFcimSFw5sbDHo33R3h9QP+FcNV4hw0H2pHqMoVseAjIi06W9r7Yhwn6GQw8/y2R3nh81y65LKlO1sROKm4DifmhO0BliTbQIXlZ/agVp0q9VcHAPtjrzFF4TngMG14fmu10ltwoXztSfuOdJsZJwR5YTOF2SV3sj7vBGtlCH1aNHOiwEtDvTzP/JljxH4BrSMC8oUZN/g/PEjrmfC+sZnGz1JnViAPV5aoGO+Ekn5ydZcP/TxGRmhvSNfWebU5Y97x64gwcjXrkzzq5XiCk9aoRLz/ics2lz6ksnoG0dzyfdzHlLn7OdbO5TH0eFmZf8mNJeQIfdByrnqHzrP5S5LiKxJyqJ171T7kb95q9EAfz8iblVMx3R61z4FBZaU4xI5wJrv6qonzFLoRzXrYzmpZmXBYgNUh9COCRc3fYxn2HHxvWO7omTMyDJF1HdNeRLeQKLRO/x8JOZlnKJWbx97bXfdjnlvl3UyTHCLyta4uVsRwgYcrxjP1dmLq21KmYmKQjbTWntOQkljxiLG3L/AA8f2t9oueG24RkYTFUhh+dc7r7R3RBhkXZOljEwoX6El4ekILOo6bQnpNKcHlS+XVxJvdwuZSoX6gFkEu1lNItuNefYUE/wU0YxUzMmEd/f+m79WtaIFuEyPozgViZ+BAkQIJK1GzOV79VufwlBUOdai+IgaLcwzHHHzTDv9MjaYnohJOaoINGKSll8V8sqgnUl+2XJJ8ZhLy+5VyrcO8ZEK3CUDVfhXPDGA1rNtDfU2SWXyVpG3daf3ZLkYcIq+XY1JnItoeZlFKLJZ1mWfo1plk0JrB77dDHxgdpVU3VsXWfmZ08D56JhdVZkjyK/zbwTRPluztD1tQutBASTFSlQFRom1Jt4fXP3oH//0efdKx3gZXBTsRyKO70QlamP9FvW7wAf+mBzBkhoHoHvj+NCPZ7Y0c9iI9dwhWJzQHN3Cy5d8Jw2HHV7iY4OimiiO9VGlTNBVA4bFAOs7OgnLKwdzgzij3/EQ89yoNVpNva8WB3Ww7E1aAV7Z4wwcSdZrBXfr3QOspjxpN6HQoqkklt1vSQ8swBFgdpAwEsbXNzxVxoSCvX5lWpKI/T3AAn4FK+BXaca3MVYwXwwhQBNGu0gO7xjuMzRTjw2nxAn0u/kCYOq+rOFmEWLrBXecUcYIao40eg055g0xp9n6F5EX029WaTeqXmimncLLP2VkIp5zc8PmH4K0hNDTG3ziD3XC3UHTPiIv50NQngziwkO2gFXHHyYHNuG/JpdPHbI+zgUsBTpsfdLAq5jz6YfjLjsztbh1H4ifumLiErB1o+Ys1LAJTDnzfxaAlojqOXiMy3rDrHJLORujW02g9tIvL8z4OOtbT/5h7CHJLGpFofYefe2zD/GN2YyN9U95IWwWVSe3jguURQ0tEGJoXD6/OJ1HbyVluNwmzCFrj48rfDEcbG3D/TyWYZp6QPm/a6Ns7T/lBC5/toozhAd23sCXy82IPM0vb34/PpwZPgtulMuqHlAXD8mZeHCIwWk4MWL6wmFND2M2mmGdJpraXvjNS7QqeJw/tjDw4fYMWEXmdj0bw+LxIhy+Zj7RHs3mKlw7VO5aTN/ZFlpSCFDPJ0JRdYCLX2WGXlp1AB3oSf8yn4/nptfHDjfzaRyyW8/KKWwlWtj3Lze6X63Xd1vhLNc61mu4AYctLRGjxYzbjF4TqZ1MNdJBxNOKRl4Wu93nlQesG4onDd2bPr1K/s1TWTfhNev5keq90z9QGlNXXkxUPusm4bDNxWnqCzE5TLTXwBI9hT9WGEO0DK/pLsJvxFgT1X4etUhnve0xL/RioIbSTo8wh7atN49jt5qHH46R+sI7uDRNLAjmN6bAMvREvNgvmaSKtSqUYcc74adLpW+6fH1bEMt1M86vCIOGnnDACxhg0XpuUqbbKePR90GPhAE2wsW6tGHZqUAjBKeJeHMvkX22Uyc5IsM6mgXT23cCNglvLAHaSFoKgjbs6S5Otn0+OyfymZq9BWnf8hFCoWFXyv2IxMp4QGpuc+lr+qsnIRSW+zerOB2d5YekhTb2OXUDiJG9CUajfVzaJZlCIqdY1kvuD1W71rf9jlRdx4KyBf3XimVY1YkEOaZ8qWMHqAFt3MtHU7Y0CMVBHaI/1wxeAgarJmeECLNsQH0U9E4T9Hcexaf+3U8kEOj2kjfVnNa9R80o2OWC74yiFkouAdDyO0w5teuFKjppVXNF7ErHhagVARevQ87/J2cBZWx4VNmPMlYAGf61oRKR1fnzqIK5vh0WAuM9EfTfiNJWxmTvR+NsfAgePhGlfj9PBo0c4EPtAG36x2EnyURiGRm5EMptZSn9ycN7RL9whOHkKeot1SJe8mayvOTkBOkrw2jI/eGIj9XiBk16P9nCfk2xXm1+lobbUZ1ureEE2t1kL1MtVBdH6d3ZY2cnfoXyLw5nyGLGLY5BDHKDfJG9eMZNJDlP0NGPolL8/NLUq9nkH4LWqB34wQJmm5LOvXm5IbYkA/tcYVndfQ3/sB8DK73mjdPvt7SqLieuZiYX3Zjxvxygb4hVZFJbFD5EbS7n0RTpR4IEFVMd1VVqMOHSvKnXyhPnrL2ojk8kECFp96FPqjc1RbO0/GIi9YQjD4mZVV1hyKWV0C+MrP9uDRJ6K1G8pKAaQRfiHWnBwXgWWIN904UMVlSBckIB3pXem5zJLV4ZOZ2Wz4dUT1MgEsVJK1AdnAf2wd82pWWnVCBAfDy8W6o7/FwJjKnX89RQlNX6I//Fhmiryw7HBEhFEqp8RCB3TqRPODL6Q2VPq7PwOt+UHJY9gSy0OTgvz3bnaKO3Po85DMj3ucEnXtTZO3QBrlOxriMGA86NEXMVVtv+xb0CHZb/0u0i89Wf5F6nf6zO8TkId/ATDPPwRW8VbxMS4dYsBQZD7/AXHchSj3gUiLPNT7HyQu3F+wxOnkl1adAQV+CuPNsdu1fNp0e+FpnnbXCkpBnSwrVO3S3sEw+KRt3O0s5THDLi1sEn52c8yGRCLVqsdDYxWvs5KS+PaIm9VQGdcYiWgPximx2IWLUCptP3ffaNlMFDA63ysuMpHNzrx0Tn3FmPOReVmtu8m9LTbUomewSz1pwaJhKGpT/Miby+n7DUhu0MW1ZD9K8710mWMUT06H5XSDE7tqLfrt4KV3J1x0Qh0OP4v30ZmFmnqLCnoZYVkQ7/SRi+94OFHyhKacYT2ReKITYjjbYbIvTCw01JtZbWTbxiQX7ySZwME+h8owA8McvY1KmXD8E92rf9fka9CwD6/I4csAITSg2iuhUo3fuiyQeuCUp4+NYyoeHGSRekDpeYDlDlWP83y6Rb2+YG5ZVENIqQyPoX/k9tzkLNLP2M+9CZqkIzOEP4yv/LfYPEFsBy7mrJgVTTHQSQa9uA0W3lFHs7qDlOdL0g075vRB/LxvuOPpNtTQq6mU6xbJdv5OE2MZ0YccTW9RCebGM5mEfAOfxn2/G0aDyrnUmQnJTIsr1cRRNRMKxPbu4dZQo4xeQBcJ3hZWrnyWzrBZj2mgUhmqJsLfDkF8aepyhhJfxA8RjAT3NN/fdyaRT6A5pAcGdudhBNQHSQj4kTXfPjIF570NNQnhLcWMSYA9rEoi5mPb5Y/TkC62Ul13+kr36xgxHqusTsLvAZhL7ZBadxuZVs5DQX2da82lTXM3u69Faidz43KXLwPQ3JIrz2d/VLMvHhOe7/mI2WMCMRF5PnBUHa5gs87RmqMDJmaniPLlJ8UaLD/rrpS2nocNin3KL+M1MWNMRs0xfiVZU8nTW6W4i8FfBI1s78flSk380vmH3q24Tj0VUZIOWpdT4NO33asZPjGeoYZJ6l7OPLbq3XXxmhya+YxuU90LlQaoXyzSaP4yRG2o92PtQfrW36jb2/Y4o7r3k+JCq43cvCAD/MWBuy1p8IzBT0x1QZi0hBb+2dthE0sajgjWkT8alfQLZeRldZ33wNDb/KaTPr3opm3Hx4SNA0XXQVWE7AZro2Zu5k9U6cqORHYjR37ZoQKlud5Sf89fsEYVNJ4Jw2f1Lw5IDwMEOT4HNNHpEGMecpJ9cgQy9I5wBWRlgB5swea91gA8x00Iw90EKmMHSS3NhbyVgAFnHU0t9I5USoIR972zYDJ/BOl2ZpUro3NuHhlIPtjzHbYDE8ajADYJAyms0uQVly86Zd6C74jV9/2uplUWcF9inEnuTqJNZRDbBeJpXQ35jjlv1czIhOsM+6vPY7rdq+eQlVs3kD0Z7GzV+BPsGL/lT8DtjT79SdrE85hQ4OHadFW3UzR2o46AYOXaHwGVpuGS6W7+zahNJy//KMGqnlBH+XyxbJOmGI+uIwMqGVhycWd6sOCeKWfg/3BKVvlm5rOWGCttYQFYkeK4t7PrBDPRYxVZKHSSwqKo7aOw3rTUQpA7VBEZVJEqVJj74R9chIBgaY60w+OMKwgquvob3qXuBfEhqGU/8sxsKvcoVYufY3PIXB3G0NIsv7Voh3R+5QuAXDAQBYusGb5Q/hosZc4hxBBDIVeHhTXtsL13HOOTgJerVIkI5D98sJD2pWQPV467SpgfyI612YCKcZGqXBHLywErVCiRAmBg372WaQ4OXpyAYa7PSqmXDCZTskevo/qV7maD5cMwfAV7zucvbaXc5S8gDtv82hy44SUfs4wkbyNsEwwU6dhEdD35YUi/zQYzZgRjJLUUsSawBkOZsgys2GH2msNizM9ywms/f8tAz8rw6f1jfvRpPkj57sIb4p/j1Rqnl2s699nRFzB4bkmEeKYEpaRfT5yl84Bnsa7OXSY0jKk+XpJmk18H5LSnRKeVTFwqyurHoyoubtqUBgrl0jeacX12G2S6v9fY1wJqLLXaeEQJx4DcGpc6g1X6qc9C/W8E71bPzn0HOJnqa0hiq5qztgctI7WhcgOXdZR6j5nBekayDHRjqj8QoT8VBql9sO3ud2IWubuZwwA28pSF3vo3Npw4/pJFgSW/DIGmCKGObp4XVHkFkJ97za4kvIYMxiaYpYVu3GD2unyVGTYijx5G2EbFM0JQJg5Ge97GC2D5w7cxx2gDnd/HchZZWobkQiNZo3H4fDk7Jzbxc19B7tCtCu9teG2hAiNPT+0NJe1bzoPwkq01i+1KKRltYRow3J7ugZPcDrHA63wOrxjmOpPZaZPVZl9kknb6a/4SNtivE1Vfqtiywu3aOeBH+71VeY79TLzO5qq4zN9G8ZKuYl0hJ0PVEeInRPlPlykWRGrkQm3CeYMdZ8yJwgzljRMa6D/BGnMfqndbG/UyFal355OTF4yfQFfF/PETuEpuw05h4mVdRIcC/KSLX/753U3xcW8e4h0zDHMdFzSQk2ZNZECblE3qBdqN4Cf0CU3cuOO5pIrqUZk+hvcdahSGISv8LM7wPpfkwRrmFkGVwAAAE3m6SQxzqBJJivaKo3GdMM6MWun7/ipjXIGm+S46VbIaSKS0yyGYa6GZ1PnsjX+41RGY8yRp0UBAGi2/071gkV92DZJzcManDxen+Uzcx5NH0et01OYuxfKkH2+dkKaIzNvfWLt66qi3yPUTNJpTiA59+ErJ5pOrbSPZ/Hks+QU1i9fpga1jbksIwvDGldDL5GjcDyTy5WQcKhoSmCvnNn1g7BmpPCm8tb5JHwXXR5n35aceMVg73hY6h1dUFBQJVVdD1nwJm78dK7TAhowBZVQp16niIQIoNtqra+K4xjt5dJaq253m4DAmoNIS+4qzd56F+LbthN1fZZPwxJ9MJkB6sN+OabUCZL8oz4ZY7DfNCCZA880VkiX9nqU39vs0rtw1nrakgK+GgH1uAzOo9hcZdarNDi2V7ujwRFWmVAkeWuGvpU5WJUaVsIBJWFZeqV7+ZjBcNka+dFnS6lJeIveuaqnbZ0phoyx6pj/OW5uSKlJLqDnJANqdPXHePk3yKIX5Jn+sO2zXP8z1XgC4QD/gIvfK4/3Si+9EWcyBGqj6bvSRejdu6+0t/8haiMoLvF1PyJdRFmRrZ9skBt5Tc+LyYWWwnnylitLp3IsBCjfForxqusVCWSkssPtTksVbcWSAi2regUyxDLM9Q1Ebn4x++k3g59LRFhinb/SbdyVRhF/uqWwn98UeaS08hVauID+KC3mn9d36QfWnh1E1SBfd7sApdQyqVK/j8Ea3nj9YcCIRbt5qJ0Mrl/9sP2u5faFE6GXM6jMJo82kI9NmngzJOh/yovj0jxzWmWuwfC26J0K9fvv/IARFxYXL7ge2KzbTh2JCY+VOVF/ZxtD9EZcGbuoi6M1z7ZopSJcBZ6dx+MoqNVYaCyphFqMLuM9repyF9MD4jsUnsFBwJgTBv+80y8UIPCaBMcRh/tlfPnkN84uJ7dFzoachMnTi/qtgwwTu78g91ey+o7QVR7MEOf8vDzuPgGcuQrIThWF6CUXcJXbrlr4B4dNGUJBTpRk3DeY2253sWeqY2AWi7VZ+/SfY02FmMMHjL7heL1uSJ/kC+Lc2ofA7gbiFKlmIvEws4vzowNXHSbsLl19IrV8+drcdJ0bmyU61cMqRKJOp87XfI/Juo6QglN7KVPxG7ter6hVkF3/dhsdkTDJdc6vXfCcpCvW9oFjmoPceoxIBpWAyA/c5/4oRYUOMmuBBJHTglxkF2DYeoW+MriNlqommsNoOmyGAUJGyW8+4wJkU4ENvn+TgSJEwtHnoS5QAXZG/m5KzLqeuTHX0EB8u2v6QW6F5MP7xs59GjkdzZVttyShodehWTOdhOMH5E5p3sMhxxuUxCuttO/pv9vO9U9SI9qBFNCnOBQhAQ9tLFLfCapYST5X/cKYERQMyDukM5EDNhFVaON7dhOF7+fRFewHQo5VHZiKKtukV+d/RhnFxu+dEYFY9oSH/67HVXAzzwW0zBalYKb8LIwJ5hbWVnvPpeR6PFHRHLHe0CqvRh1CuLuLI/dt1G5jmw2tXqXtp+75oTgjfNVXk+/AuTLEyGGh7b0fvKjxzWQnRnB5MovVq0hGpTG8z4RX+UV7QvTpoKzdyBzg88zEgMUQ2+HnzVFkAd/TjtICyVpUd9XeWHcUDbJc3/pv+8nelUxaRIW4xYgWLn/x0eJgwzrsdvRgYQFt+KVsgkUWId1MS1poRfPXw1N3AgcWZEYHt50z2rfvCoBua7DBeAGllZK9P9O3LFQNJUTljt8MCttRQLHWAD5XepVJMPIohPAHQmjTIdQEpFxQcsQQweFN6XW2V/i1ErC7flgYZZS2DniRHCgIeXypk6GXlWmN+2dpugRV1qw0lR7hvzlDvFoSS1fOF3b44bajkmmN95GID8+A8/fqLkGOUJ5a5IRdD901RjnRy+R8Z2ugO1/MyunYQhsNugjrmfDxuqu9yovsdu1whkQVqMz+bQ2mZunO+pWvuClMiHtYWI46R1fEK/2znXsM3wDZ1NswoB1E1OdBAWkyE/h4D7Qex+zwgzxZcxAgUq+pn4v2A+f4Tn1LFEg1xjtBbvTuAsoJieamYI598AkXKSyvokDcjpaa3j1xrfUW5yhd3p8wC5ayqfv1Gy5T4vORZeoQ1uK/D7i3Z8hVHDCFwDjcOklQTx90Y9oR/8rFNbO1dKefzKGgAKfyhrpWE8lCQXekMeBmJax+Um3K6JWglyAOktqXTeBgl5kjCoNwovEIKWB6IfVis2nnPgRJoxc5dA/5UAUIU8gG9lU82SmUxMxWi0h+TMY5XVWrwJWJmCcDF4yNOL/cMz9/hVFXFOdRnAx/qXXk4kxJp92wnGsmcrzo3EJlBtVhW6RZBhTLUPPu+edziW6kcob6eY5JJvmjD8H+LpXV4u0CufXWH3ygtu/dtnbSb7aI4I11bNt4v4WH93FqPikzQ0JbYnj43L1JVjwYea08oUrHYyZTwM6UjsjHzn3p/1yvQzRE0wKn/oCU80g1sXtVCxVXWxO4QZepB7gF0MAGJh3Y1gZBMQorN9nKOfv/+jMeUnWolsNsQorV4VcVb1BJzN/SxSgjrdF7IxhSvEoQ2erp0znOLxJbeptTZVcnUiiOfKT2y+OnGTFpCz6wNgXxXTgmhC8+U+WRN6/wMat+g/COb0h/jMcX/l5t0wDlnSVc3uRJEi3F15p0jg2T/7w/vci+CJVMoI8dCEwYNj6BWM9wv8Jr6VeOU+zUBi48j1P78Vl7Y8GGmOcMpZyyEP1FxvlRH5M4NocO0jgZ6F+c1zSWf379uXVb8F4UQBeGVfC/YxwimC4LqJlEZylWPfxaXMp2ANjJMzDjuA1UcA6fo6QTEIka+YZWS3zvUz8YAUv2QViFXhDVG+ZH6WBsZUXKdfoY3XRFDEOq4K4D/ZOGZYSHVJjQd+dgqJ/uYxeR81oqGOTPg/l48enzcs8KofHB0RKW+yyGQ5BCQ79P1atIH2J5oBSH4I1dQgiTfrF1wBC8qpmtzozWNoYcC+qoDu7jEGFzpE63N3jeMf2bDhWo3qV6U/1Ey/G7a1KwCysi2sq2s0qhX+TKt3p47edxQ2VQ94RubbJzR9nSSjng7/tsTJnfhoF2/w2ecaS/H8mkZO2Zv8AwJ+fS4g7oQyYAtpPXo0lLnLqAdgGTDBM55sstnX3F9QfEp4xTzXGuqQCqPdSFqHLhvXmUL/vLoP0tEWvtsYY7LkxFEyZZ3tzt/0qBKN3CyJFJDG/T0G+I7Tdq5r2IdCGhQY+DtJ8MnXOWrFvIDHjkpmQ7GY33Fdu+JZeiE5WcXFQY4ojj2d5o/v3RKCXNXfp8Zai9PukefIS4BrvBx/jpzw2uVKYBBm7DfUw5LvRiI1Irg1mFUaXQexOK2hYG5HS9/U8yCKBe+RC6iYJno77+370n8JLCSN0VQstXw9D3JyvMco1yk7D5warKIpWgzsHII1dmU3dqQXi8oJc14DCS2Cud+rTeUQMBGu+iO6kn2Z2mRuD+cW0Xf4x4h/GWr0hfGk+QSv9lx391YCK76ogfRJ7bwVGJ2jYox1ZsL87sJXoWo6ZqdvclTaxPWZl8tVg0AJNDceVLWIGAHviAQepmyRqTdvipMNy5v0f+t/lECjopZ/KLWLZSZIdUAcg9XVWHhbrxyS3k2h/rOZU0XabWS6LAFpuLDE87cIW+kZXoKVri7lkA0o9FRXHyLO9KJVtslszpFlBGJtzUEsqq/k7H09DlDXIRi26UkS0m0DNAUi6gyq/6ykjRM4vtWwRGZ1A5ZKSOfm8yXKiQ0rZ0HSGftHWPloBsGt+jzG5N7eEL51SPWssZ7qbCkDO9qm6y21pybWIZjrh61fAjXKujmZv9KyIgU0+WOj+9mknJSuK7udXPN3J5pU6vy72PCXlL72dRjw5jsXuiIMVAF8Zq1AS7mah2EASWIQOdVOraAcIHvaYCbrQLdI5Uo7mxem0JxNUZsWmgNisIZmwv+POToUu/N5UMY5TI7+eMiQjc+k1Qj4IF07pzB2PUm11g7ZYX8rPL53yjDOw+5JaW1hLDHucmYwJqhGpX5wGPREOu7Z6z39Tg0s0i0zRD+WbeU784tsb65ea89Ji5zP+qtCTYX6N0DrcxTZ8qj/jeF3/5Y/lpnSFw88bVuk8ZsQNIsZ52WO1XOof7m3j8vX2dFBzhzDZLfGRf10JYajP4wPvAZ7w2wdIdsdZT3ZoPtXAl7tht4nAhxfwKtsk7vOP7R24wzp8DmQL9/a24qrxjlLZDbD1yRjnLFCMiqyRX65z3VYVVJ5d+w+6eZvwJjf3o9GVEmaxXoqiOE1OcErHl3c9eSQAzLblcMoopC1LkvajdBejttxR3I242iEIhLOMbEabjT5OvqHQUnmNRuzlRNvPU7au7FNudobkOuYh1YN1hO7uVvzcz8eFIIu+IVdaxGoVh0rp+ygaeh1a83mYXBvrUzfpzSsoUY1VuH8c1yf7fOXZp6aLUTUjquaALZr+mkzCAa8GaF4zzItE227yuBHtPJLS/vaVK5qEpp2ryonPon3hmqFkW0zFavB+v7DBDphzY41rzD+qP2ec3XThe8w7c27oPY+NvDfTuI+Z4BiIQ7HwDJnxuVtMFI7AX7vn7fc6HKvA+a081+JZxA1xpUNAzTXEsCP/kfbTuIU3xGgEN9XYkL7OEK7I9BBEdSxhSym3hYUfaOxpcqFyaE46K/pkNt89/T3ceketERG+BrxSKfFl0HGESbP0HO4qlCzTgh5p3GyljAyeHqZdIrYEthnLP7f+NJzu//qU/ScHdf3mh1jMsZc2Po8vZqto8kGbGxdw+/7nu0qZ38ETtOQmWbQQJ0zWgmeNHbJU80rN4I3HwbveTStUCvquQxB6EgKAL6gFl4R5UySKxOnJ4X9dmBGsihSNCLimn8GwUuUSmaYbCZA3ZQq4XzthhtafwdC3FE7J7Ykk0FtKurR+yHvj3t6t2nVKCqYM0jdZBFPB10SaOdynWVDnbEKjHrK3/w2G+SOI7UuJjn5KdcG9jMS0fcpn0JX5sBbaHAc3WPHbSsh6X/3VgHPthHfl3Kd8T6KAep88bnfAuZqcRqgnAyvXIAF3Th8oG4lhN+rWIsZS0xKosltQxEuo+wyGZZJWiHskXwTEp8AYkoiAO5Zqn6EFvLTLOVGCfVaYA6HwI/2tem3b8yR6xPR78ZmD1nUw+dD3IBN1tep4LDtfYHtn+Uk0nQnkqvMQNbjO2vsL5joATHSKuMMXXv5MWE6u5dJMOocBvJHdRtM1gd1YlRTC7+TDXbptlbGQ3CWwGzbV34RfbwNClLxxyzhwOEEuL50yf7EwspZcEHz6qpOKNbO1lVQGHi6Gfm4Tha7me96XCKG+M2BS2qV76L9KehIf+QK0t1zRaIo3fE6i1MFexKg2wYKFkPp4uOFzi6Ez5IzzKV6ReQuxMRPJeKdH9L2GR43vPlfUy5XPjMJ6NpbqSdMkhceqmkDM5LTmFET6BP4QZshy1ov3Znbc01m1OhRn+/8AI5MmVVhDAxH1LEiDv5IH1dwwWAmkYkDcZIoCWDxQdR5MEkgnrg0QNzmiz+HDN/Qu1CYYwx6Ke/oAWcTM+JzAy/yYYBCUZ0TdKvJCCjg+N/Oli8/qWcyTuoLSr7f3TTRMwy7yx5/x0lf1zw6Vy5qTJaGQgEmdZ02hHaidFnV4Db26ikeaI0H9n8dSRVa83hKv0ING0is+2WhEog5XHVktK3VZRavp4uHoRPvkdQJSuI/U9hcBP49KgX7twamu2xey7SXsMCbA+39Modov4A+Q0+xEU4thvrd+ji+o6cSFB6HtlP3PUaA96Pb9m3TmRbW7BuBgymSzme2qB/7+fgcF9IAFN6Fv26a1KkeNQXgYQz3uPQ4ZZ91/+IsEZ1Upju1h6YMvkqqSDFFRMuoMinj0mwnagbW9Q/48sVSOzOZXAYoupZ3qZ4OAN95zJpBs1svrVrwya9OgSu5EwtHXPlLY6bZ7gnGqcasW9R94c0K8yiy/AHyC7ASnuOCYUOOyHHAKUlQyxYmBF3p5sVgeG6K8/0ra9HkxsLvpry0YBptqT2r0fKS36U5/cixcwNdRaTMsN85OULC5DWQ9gxYlNZMunVFanOHWeO+LFu7JpzdIsU28T8pm7pVGU5r5R9YNToqt3xH16/VsrfoaksRSCrxHlwruRaG2DtZKRe55MFtJYHO3fhG23dlGAlRhZrQwm04RyJku9R8h/2sViLvicBm/4VWAOPH1RdHEni3ml3Vxo3N4biL4iGDlzXz440h5Jht3KCcekh0xKUUxY3FL4t5Cfm61e2ZcqKP1miJLLXnTdjyHEKWJnI8IVcPB63/jcQz51uRkWmPa7+wcBIs75b0cRl3AogDXu+uoZAsnZBJPpFV+oDWh0RV3Xud1nFITd9mthABo1lfcF7naW/IUT1OtBokrtM3cCvMYyB8SnnBCXbucu+N69P//59swjMCk8vwQfzFZ4o+ZKwpdUSC1/RZiU4npsuJhzlue9grAnbvfam+sGQ3rWIfcnOLzpettudttIws0u8lLQPL9jEpYtTZOd+ftHf5nO78fixA4eBFirTTXyvo3edgjBIsAgNHmANm6kV6+BY3GVY9RmzhicrByHbjSXZB4O4RfDoWknGoqLbfvl1KhWzE7LvVYAfV8pdxz8H4OJc5tcZmkjCesCJ13F6yti2+DpRVZOlN3ZDLB5Roj0sykNRuNNGsWk1Hiy6xsnCUKK5ByjpUKkYz/Oo//Lg8hmoni6YRynxyz6fdhAR251eZaovDOtcGB9McrxhDvHS/7yf8azPZY2RQ+kyBu9EVwgvq7X7zSq/RrCTdrJZlEWeW04ok0SHhQ5ST5H/eLa7fOyd7W9h9uAwZlhSR8yc/Kt5rYfCP6D64yApQBucFE53qC0NDg9KYsGnxq3X2GQSihKBp759vJg074TmgobvtGmoa0EI+nRxi3mDoIKlytwgc4id56t7T7XCV1TuvvgBuRcwMm4I/O9fvaPE2KI1T7w5dERMZil0CTkRfJKETEHugTZEWuPI/tHD9xGg103G0qGQ1A2iXt8+KAAB9gZhUnNCOLMwACrM42QTz7gQqPuJCmDJa6BNOs5orLODXfsF+vb5xQQA5rIhyZOV2Xe04hTEgJOB3Oe2QNfqSehcHdk5ngGmqLfs/bCuYrGagIhIzaOcRWfnTNjSdtYfBax+8+SnenQ6jODWiyCIKZg5KaQIm4AGNICCO9KQWt8sRbzlmaGLo/BSQne6x9t9vCbDBMdNtDtINTeAV3VatOXKn7T27N+PA2MLHpLtkCpL0yPEWyt4WBFjJ+u2FOhmzxlFhz463D3AW1BIRJqtuCkY5ake070TgTdZxkFIP6PkcSdGVmwsQK4dnU8JcZ8AAESBAZ9takK/AAADAAADA+NeLPwwVh8qC8pGNy7QVs67MbICIuRgArnb0kdDvKLAaxoqPrdnzdv+ClIyffUrW4jvVTt9fUpFhd7ZGWfIpixdoh02MtaUW2VPHMx1jq5f5swtByG9a1ykuiztIZXei640RehvlKM98vbaBAtsEGldvJbZPGSWzWc0PMvB35Hir0jkGVXthvUPRPApvLw044H4hCSXsTRjhZbRqAMCGiOQkl0RsoUQY2cvnKXTQiTHIRmQTDP0tQAwIrHFBVMDuti5tA3Qv5Wy9LfI4HgNpsEJ8ror7zQu0AxFdq+YwM5rESsQtMmm0AOt4og1acMsrkJDUR3nFi7h5MgSrQBeO+ogawxrJ0noV3iMHTCShsQI4lvhTw3JIGVdXSxwGfircVWP04IxchDb4ec/bxcxVe8AX++glYtRwE1vP6L+QXDzHcdjRqKeC/SDQuy8h9Df23UMt+XnrD6kcCupN6NcYrIVCESSqMsMp1x/LanDIElgC+m2wxZTR3sOVtxamJccwJmv2kDROoH1MEO7ojOSILZicmQzWBKmnuOcxgNl95ODnDOL7XrgPpgafuU568lK/eJtNWgrIA0YiBaZGG8TFiot/jodCgbwtDG0Q6wTaa1l+3ZvB8vw3eRiXarYxkJgewJ65IieL97IkNDb9lvISJp+pk4MJ9lG/a6a8oiVWQjqzgguo9tH6CxCatPwjC+eIEg/did3My4of9yjWQNWYF1xr8m5RXoeSqYp0Jch7vAwqLgmQkUqyiU1uJ2GRYl0I9SNsJtkaqy9cDXPgBMffpsU5Q4U+7/MuvwN5kPhzTX+vKmQL6g3xblGnL2f976dP66FDfTTzRtFr4Z30V5P37cfdlDNjRz2I8kDakNLqrkGvMbCGWf5JnqS8E75LhAfGSADMyUcRyQR3Ms7TDL/gdPSLlf9UU4Fgc71McQ6hOMdzu1mY3yb4a4vqAjrG1TYNxnA9CChTxjFtMT7DpBokpWYBlfjtOMrHwEH9FG0YUJJaZIwZHSBfUUizqglYS9bkUbjducqKi/76xLSdr9/DFWb2QEkbSplmwzTKwDY5akYbRrXL1IpCLBzaPcvkCKYpQGJ1NJCuGSCQRzfZT/uS0vw/IRDHYPkdlbfo82oUN1wmdKAVazEGOPSgAz4xnyJxo5D0NeQmI3lAbZga+ZpeGgBCPzlmTtsfWXV6CHc0RE/0HQaJMSeIAZaB5SymmO4cJqJfVOCwO9jXbU+AfxcF6azi9TEznn9BWQWeEQ5Jp5xcXjd5z0f9F1QtxKblrhMBfAAmZXMyz8YwfigsyragamLurjHHORlfyenclf+uIOxPi71KmKpfI6pG3XeuuHuDV4mWie+mtbeOwXO2vgHM1YSdpOMo4USJzf6hTOaBsQ6AuMQepauAfM8S8kuHwRpoO/5/yMLX/9jMRWT2CFCVBiRTmGQQsHKpoFwZH4P1Ew0pX6ODmro20IfWs4SQwtCpYBp17Hqla+xFomeLw4dySq+B9mWRm4AbtlW0hwotvjMOC9nB9o8HawmgGjUhMx8dC37fyjGX0EPuovoFpNSSMEmmF1UOkWj9OEy0hxJoetThgisxFwb6mL4DaxzwdWxTZwGYQsbHj1Ovc4xa9I13dXZnhftw4bYI6v3l7JsGmjkFqcvhZ20FNALjjRnwO/mb0HCyTAq2pb0fEYrqDFvPgGU3M0cX/E3Hb0ol6dis1wZr72oG8tkTrI8L0Od9MQPpiBfKBN9rb7TnuhIa1gVNV9oAFOKzsG8/lEUMw6cUQ9SydsVBEBCQPOA4xU8jdYVHyzKKPkeMXrj1ts+x1m/D2qQft5U7zFyizDjWvVQZna4W1x0MmBFwuPDqwnpiojxmtQ8GlcggKQkNGE1EvRiBzSfRaVXWczNKXPXpXR0+WtbLST0FA1rc+KLDrcUZ5Id9hpncSPQy8SHMN1+tR9vw0tttd4MBujxEbZsq78dVwupt7XxT6gkWmtVRpH1cc/IZrdlae+/UfmfHPr5nnghzrbYzdqt0C9MyknnrCbb3f+Lr+Cgm+fMfPWbK7QBdD39IxV4e48AE6vBrJTTQzWWiSCugdUDsLx7ExkyPgWCo95fxGnFj+9hUv67wwlS7CkfbGAh2V9xpsQbhrLGqD2xhqyEiFQpH4L6STjIxOgPgoRcp8ktDQ4kc+XoRq/i2SOPI9XyyBgKKuLuhEJwjukisRxRB5SkZNymryGYXBMH6Wc5Y7QC0jEtrBlZjmTZHh9C8lo4Q8ijkFNNXddohVs5/iNAwHeMbNewN5cVSepJ/O3GG1EE55i5HeDbk4/cz0G0kcIoxFvhdYW2PVxDBoR4As8MveTBr2H1jyeaeh7AvfTX9y8wd+20/i2DPksKr/DWgYwApwtqKIHymElpwDPrpLZDR0R+6TPPePzzk4P+2ZxI4PF5PqMv++ysR437N0qGp9d4NAIgFgPhb5TII6ENWk9pLbMZ2KeRn1pDKMclCOSlnoDDcW176wta/cYsIGwMJxUMrDrcoTQY5OPGcn5fYfaz9eX/p1+ACFG0N+7hAx9n1nrgollvnI6TAZjOgzM9u5ADOW1gJ/UBrE4zvBbq+tAqOZzwBYJDUJZutF1Ju4qIX7kt53IUYagcHKm1/JspxxS4D48Cs72ucCqsNBdxTiZhdvil5GtpyGnpzG03AFrskeIEkXsN5eyTYtq5EJ0G3V/4cMGT9QtvFuDOPBd17AMm2nvkWDCy4h4qECO19/5OpgDpjKt+G3HJOXid/k2OxYMd9CTSF6yQG89ce2pXjsS3rCVheS+6QKaV4en086SRGos21xKyS8C6mnH19iRZn3Pdz1Jst/L143xhYpjZ2ET1gWlqerXNNYHn7yS/no+ApCM0UGv6xnlT3xshVdtq4uHol6M30nJeeobWOvfmUvPib1sJLeMSCNyJqnclC0v3ifxisSN2nMloAhYsLDmuYycEbmKqa371nXMRVjPg7QAg4o5EU+E31dwEBPYkKCzNsLT/XFU+al4luhHpz5QrZTzwX6of3LDDNqROXRI0CCMaSs4ETu6JFak3XOiKpAk02s0GIttFJlYb+v9YBurMIPH+jKg8A1aJSO7ybXbmrERqdTKclxSgfVai8Bc4OVLX1r8MV3lnHROFFR9NroU2qqgWis9UNdE7ty2opVSyYuNVAX/EXlXwiy+xg0ya6yiPbL/HwwZdK57sZLj11W/FaslKEvW35wc2EDU6oWhRkRRiZoAHH/nzLdbozNH5ssEd8tyzAJmMv1ugrl6pj7vuscRKPkDh8C1rclUGbKgJaR1aPvco58gmQ1T5W1Qe4AtHsPX/a5HiH9nj6DxAUs3XxSHEXNJTLGavP0UiTIz5FxXg3MOncgRhvwxddf51J5ZjT6F4iTCBiUDqimiTvMDhLdSRGTe83esfE9BwAtPbl7ily2kXT8Q2hF/7z7IwfUY2k41jyyI/sadhBbvA2WZ1DxMUwtQ4k9BkorjZfBGEzZKDLVCWT4wI9YzZNH9f1rPpqJCTbhWJMnqLD3octniEotpTjqCqpp74w8+RKdjExMFICuE2S7C+SvW0VppgaP1S/BVcbjOCKc3jjU1GaCTjIqrrlYZNAxN781jdWXA2fGfIwJGDyN6Yl87tiLwmttB1E5qhQLHm/QVpGTkjtbrezVZlomsM1QQlwowI7YrF2DgXOfu6eqHGLYLbjIg0Q1tMhtc8C92tjrkI7w6yWslNtBK4oCD3F17YMvkgpjSPPkETL7FjnP93EmhUoaNUx6eXVOdMjC0mgd8xrLFa4AvUI6XKpDfHWiBXgiq0hJ783LrxrU3X3842faPeP0OS6B+BhvDuracoFxie2D/MPx0o+83whKFedzT3W/tEYGUoN9NXfvHwl0h2b5JQMsTlK83PYCh0KR7uQ/hXUtXX3pcTiprSF51tEOveI+uolsbDC/mqJr1oH9EAdI0ENqjbkhjcupkuPZP+nK9rnA903X8p0Fk2WCeUvDZyh0NR67dD42TjjCEsDBrbdgx+J/NGXahljmpTC5xQ4qlCbxL3oZjD9yYnH6lMCjVtT0gEyLwW6D03UJoca8L1971qw25yyb0jGEhy0hb6FzcDzGvBF+W2X8JATnUjCucx3mQiFVXBFm5UxDmnIzbeu4Louu1uCC6aJmXUbUCbhz6IcMR3K3+NT3pgFWwub+c/MFIPneI9AKLQGpyqJI3zQDMGfgXboO+iuHZMRYFrQddM2LCOpRHh8HTxaBM5UK0YersRtEU2mT19bzf2cfs6KBswtcZnGPY9EYJrpgL/YEhhfi1GP9aAeDZ4j21pf7XQFwrjqc6pWCaLHiF7pZgncqNZ2hLbCZ1+j+0DAONksQGCv2LI8gA61QBTD/3OAC9smt9H8dUlXm+F/8xebMI8snbn1BuV/1k3ev5tefqZQQwBEgsCHZMyZXd+I1BEaPFuZ7ayxOgSITWCa1MjwdNWWsIRb5SfJbua+sP1r7AQ0GmVJUIHyBvkOQgVMWKOZQnlmOFyBj9FhXW0Bp8SSbAHVKN+3WF+ldDdC+UycInDvN7FzkItRMnpJWu0CtSU8S1VupsaJ8i4q3uy6tcW08QsaXcEEfNu+nAdKc8mrWkOAIeC/YvGnfGgiC7OL6Wo/czioWhv9VIhnV0i7ATzeUu37aroa53hoQv2tksHSAcCyKsjPhWHnSeZ+XHtbyJCa7lg/w8CeOnIFyyLrzqHGv95Myxp1xqLQaznTcLyKEbbWkMrVsrlBsOUBnmX+7K0LeTXCeQc7fAwvwHJxq0g4C0CPtV8x6Ix9lQBu1CcQ2oiQTHWdG3KVZUbx07gxptlcPpm78UoivAR3qjzBlsmFi3UQPEQrmY+rA0T8gPgA1UORy8SMTYewCqUDjQTc+QsYIzF/+kUYvnDOaTr1vdU+Y40zlioKzd20gwL9HCI17McIYXavoUsbv+lUxLzZUNFAiioGkKSml/S7bExaREi4fm1af0ASqWP4E4UvIZd0YaAjlWnHR5J4jCg+aqpepqc0y5slbEAJ/dvAaaXIHMsZ21vaRudLd//fyDUBRTBpzjyAzaSm9+ebpr/Cn9MOoN6erCgBuXMetX5J0aVjO1ozxheL01jwWLxDdMUomA1AUSjjiAORsro6L9dkSxQ1c3o6AwYSnXO90V4ci22X6suCtzcVVZoAVPnBNezPQxlTTLJAR+jhPCw4znVVjcZsoNSiPsBW9mJ4YDc7L9hKv/kYvTKBcI2QBaUEriBzhjKanENTSKJHd4SMhai9kMi71rjqk9ry4af0I3e35fx2Q/vKZTwXF6gmX/37w0AoZrwSdRRjoWULM+Gkv8ncGHTDhmwAwyHLhkdepD/7g6zNxl0nY7BytgjQ9wRsuMcGHiJBKL0AotuksrJ9zMf/JJPJAHo7Re42oTbpJlWpbFtwewZ0Pv0rcARWGKCwhR1s9p0N5WB520viPnCcLH7wQSFCIWGc1ImE6Udkr41lc8cd1fIX92CQc5r3egGqIrpTlIOMObxRrnKtV1LhbrbAF3XL0wBrBd99pt+llKDAaOCkBtVILXhB6J04HIuzc9RbsW2cDi/+vfKmkP6S+d16NjIZvXIuFv3lbD8BBq4Z5hIVfYKkqyIv5dX+oXSuavfL2O6g3wZqUh2fFk778j70if4LL1EZsXkP0W57yDVUPPCUZZqqVvJrr3X8AysJIj0Iy6JKIOqd6hNMmK3GZ+hgcOCTe6Oel5Iam0TRCHnpzxXJKhhOegUi1yZiyptHR5WPn5tQUMKGWbLS55KV6yF/gy++0IOv7/1y1hPXabfjGmC6nzYCcnUWp7MNmhgRTgwNKfWCf4mx9t9vcyb3vz4ZJjdAc0DQfY0TRf08Akc0Pit5yvpTUBt4TMB85xOdKV+Pl9JRdE+tON2mlyZsVosvOZazFSDzRzp51tsHQ10btE6Tj/mJN0pnxy/wcD07dXAJGWCd7Hr7aENb8StnM/viN605xYK0sfCcScgNJnQRfZt/tGex40Aw2tyslznkHb0PfqkPibI+PCarQtSXK1ygfR2IpJxFeUvsgdl9QIN60UOi7xoGgafouD54H//1pnmRB+Pp+5WzRboR7SQZq03p6Otj08+7gOM+dhYsyT5IU03wI/NuFow+IDjgUOhnqabfQHrvZQYEF4MiRhq0yxD6MGziMoegZrnU0T0jQio87GfM8dYhNwSFBNjrPwPj7WdaLKBC4yCJDwXCdUGPvJp2hd1XOp+HDYAzOOTaCAmDNR2LRlOOL6cLHLNTBq3kVv7FjxgarYHZ6b6c80v8IqYp9AZmBPjgTOmPcUGaC6CgBbM0hCBYD5udhw+5JPROJVY6Du3w55t0+m97+EHogfhZkCnn/p32IXrdtsppSQrC+v9A0HoUVfdJ+pYy/w+zcanC/afdcolvyruStfWJLTSP+uJ2wlFxG7dOf5WMteqP/qGX11AnKpi4Ky8Dky4mANsw7rsiATeppwMEJndWAFdxHVFXT/lT+bX+k/DcMA4Br+My1/4JtADxXQxvV8rSLQqScNBKxITBeBw8AeYm3+tg9raXPie98+SIoR60N0ysCj8tvrLE/z/2657V9NS1f/dOc29ZPLEx1IatUr1TRmtth/upJjoleGXGwvgs1v2RnWhB+cZTHsXydrhz9FmqTQ25R2ZtwkvJgSObrcdgEOe1+LZTJOC8fDvuaoNq+Vom2y2pH0FD8VT/brOqlJ/OGc969MyY9crfG5VXBWlKdKUBdO0ivQPpb1rRxVitIQx4qk3MoWOUKevLmS3a7v1/F9Xwu2G2B9mWzwvYajC819PBtFqpmTzrPC/U5rUZFrtX8t270OpcI88pJQI0sLQeS0jJTeGEDmx2EfjnK9jGrRUXZeN6HoaYOrHLnUhq8JZmXyg4XZxzmlIUpyr3Ez178d9S60WIHUlXoHCnDod0vOBYXIjDPEuzV9Ljjyggys4fNFmUPal84xp9qgVrir2m3eboykPYWtrvGuAkOZ73JSyemVO874eApTQcBGFQxnBARQ0gSXo8NsDpOzJ2RcYBT6GWXWtV9glZaZtH23BMkdsBw5NeCzX0Ax7fgLxqrrVgs67emVzVWzx2Q8lLc/k0Jsb/8s1TKKiIaiE64JSKkJVQjZo54sir4SHYTa1xUbvaiB71+Qdwzn0fzH5MJjRb8Emj+8qKHdoVv4tIDUhWElRaF7/vlHcFpCCfTcm4cg4DKyscyDwEyNjfKgekkx8nQpn1MfykzwDjPhOnSGI0wfH6rW6AzugEfELSxmoGCNZ5hLvlTJjiUK7W0YtvaIx3jHGMWfWVf7/+f3YxCMBU3Vsms8rQnELBog0OuAHRZHuI/SHu6jNMnSokx0iEhZ98rPlZfeCA9re8vEvpG5zvozutc7hHT1WE5Iks/5+vwNElaMVeZ4TQ4cFbOfWGE9y/WC1xxhi9H24iYi/9zQwzljAdJ0svfVnsbTKlN5me+xHxYZClwXfBR1cQJpMBzCKt2+sypTzVadcCiOYKKIoEUgzh3euB5x1RWHCtjrxN9fjTFxbs1fJm+bklhyOp7iq+sYJ8W8VTRtdGz6mvZE/yMRYq3YikhaFLiWokFe6Q9yVMdls7samJwZdbreRBf1E79IRjLiiDTSundy4sQ/7xCK4SQaAZRoynNVL7IoCjs4cI81Akn/z6WBfsW20krYhgCeVgTNrfAX0avY4B3XAatdP01PKj4k1GIQGN5QCFYkfo0ivLyvduYzNFwT6nAAiEFVy11CcwRt8+P68IWvFCt9fuDuX07U4sdcKIienA5Lh31UqdVb3AnITMk3xi9ln9O41ThTx4qaMjJB7eCb8anFBwpjnX6dRJIqssQ0unBQJaN8yKZRjGjsR+7EVyQ2KYmrq8rxHdZGxZsrJf0AMmJa0wUF/7O7d4klXQTQvf+E6HWEQkckgr1mbFXQERg9g2pZrcftNJMV1i0xILmi2IKFmfNZ61TUt7mXNHRg4EZP6NPe6dMqzOVaQtXwYLLEm1zjoLnHm737gAhaX5n4+InSUxvVBSfmLXvywhhWRSWP/MjPJEXte/oNqCb0BJs3WlM86KwjOp0izY0PJW5W6kpC9b4wpSpQbwesz+CAbmDSGcDp89sx2uLg3+tOxhLANYPzazO18OvPLp0Chfo8HQ6K9x0ljqgyhj2mGLjK6be4h2fiLzLbIgPVS9MwJRi/aMxFS8YMMWsY+Dip1CSKSG5wsk7Nkbs8nZHN6FAYnQwtwy4x5GVnJVMC9dpFvKcG404CC+u6np0FiMotDg/gi54EwYdTs9/3UonZQcMOUDiHwt14yMWjUO1Kkvwt6+s6FJsaCjc5/RhZ/iKiaOi5mehtTIKs+KHYWrh8zpi5qT7/6dBsqSNco+3ENne/8CF0nvhwwSlrc4WZlcoU1Ihm6oppL5EUZ4SAAXpHD4k93Yn/Tew+UDIpCvfsbIimzAEOTheYtUhH6YcEGosvaQeQKV72awKdg1nkUTLCTuliobiHDZWta0KG+8CxMl2bZz+HR/3rr+LlaXAhzbQr5v3J9/0R0oyGV2pFxRUwa6TLpcXCk94BYP2ZyNPbfK91vdYiscXinc6pVRFil0rIzyqQZAanzCJslpXAAfq6PjkiNbbS5/z/hT/UK8V9sd0Go5fNSDHbQPQklj28/IEr2RVPZJS3yRHupTMPJgnznFOA6KlQilaijITDrx8skSj1mwc0LbQTPsse3yAt+MZ8ZVxVo764QP2QWs5IIPcqHswoqaqTuW/esvo3XWueZ4jImT1GlXdU2Gse99j1yh6qD6CYUM9ZfBltvHfRj/KTZnTUEWq1XYMEVWtlnbRugtNyoQ9AfquvWumitvzlLh+W2FGrnEvES4CAIZ1WvYJDVDQOd9ThBDSyx7iMKXaJquofkbqiBtKvVQAQS0hxDcsnGyA8J3mMQocriMsCovLYCtIP/7zmtxKG1v46kV5aSH78r2R3jl3LW7ad2yFzElXA5GSnapHtBFBxhqLsY41ufhRlYOJYdmG7yBvXucWUoZmW7o64AGHsdHkt3setO0eJ+DzRAzQR1rPgqtsaZuggi+91Kclsp6yB7Giu1Gl4EmWSDqXKh7AYPJsaqiyaUB1nLYiAedE9jwRLS7IKEPoG0pEmMugm58XBpwdpGqJs1r2TFUx/+7mB1mwTPqHJRu9bQUIkL4XHEc1B5a7xqZfeWqto2HHe5Jb4rKEAGcHxwJVqMbOq9TeBNQkRyyRAj/DDleRItjY74dYIfk7Vz/IYSiFRMtKJjobAxYaGct/j7/O/linrjxFzVHX3T0Kf5P98gCFu7zXg19BN7cmNxK+u94DpyahRNv/EoDE1XDx2npychvgCaGYt2TCf0rvpIGBw2HwXlnuK8dBRA5DfkMj9shuIM1F5G7jYIOrudzvKU0c1U1LprBQi6KAJw3Qmd7DxuBxrXVR526/i0V/Z9Ng39YVfzvUlUn0DbhxtyRfBugTN5u8kaKXECMNH9+xF++lvmCq8cGfsMUkIkGIVC/zlgXoeI5N6VA0pm2L1Sw4Nb2wuMED2m1l9itZUKCkS7d0taikA1f6+LR9C2/DHnYRL9JeJCtPx8RN5WGAhwpwQb6qutrs7LGVzxCAuyOjme/+4gSUTLIPrtT2Ewyc2cER4By/pZ76k1t5/K2hqzY+8MDmWhuPGBcYvyUBFgGkXziTLsO+zZG1193lgwcGiW/TPv4QKwtTOUYz+z5HdBDYeqTa2JjCNqg3Dd9EBj8UJJGlX4pR2cVyN9NESTq7hM1WKcOt2d1gFR0I6R4OhFHs2NT7BNhB1+vq3wB9MorseMd03OaCaYXl9glYS/KFvct2my6JVlQ16ni4FVjjcxxF4luaiySXGbK7dlUNHOhWWOlLwbMBgjCVbXylykR+z1vvgWw9lI4GpuycEgdOtNXdEX4r+5tJUS+1ZMosPxEgAIJ7kPd1vpEHHwM/xqkRzjmwEpG7H+5bl274KjJ/B2104cAXlGA65xhbUYiL8BBUmpVkX+/L5ULFDPv0eh386sz2xuUSRicIlQ2JACe6JGS9xq7WKKZ0Oil4/bOH6WznAfBJwtmvAoYDm5tB3aAOq25ECnoQ47eUa+3pTGn9fx5BHWrngeOa5kAZWpkyIENhUJyWGWNUVlFa1cXyvzW5XgdEwcP87Qemm28V6bjuSh3Kbyo4q1+1nxFobMvZE7crExhGH6x0XPiDY6U+DoHtXeVYO5bWzNuGSADXJHpOu1u4UroXrGCBVOTjU8qm3nyeiB/Z1kdgzR/9yXKmwFY6K24CvCM6vVIyl5eU3dR3d4f+a2M8IlK5tl045CWuMJ9S9hQ3uknSE0bToz1T+R+0NFyyqOqHgQr0o18ToYUVfUV98ZpsfY/KQX3J/Y/zXE6p3kau4iIqVvIS3VjgK4A4I1UKUK39Kk8ssbidxZsD2LJZheWUm7wtiWTfXOBqTyBfwReAPfJUJ3DitB5SimkWe4KqmqxHWuDhhaK3EQgzqz2EIx6vCOb4X+NmTTQkwIOYR//01Iu8k6JNc9OhwS8CdAWRAseo9vhrjvPtRITz2FluFlpnCJJIkfnV/KafCBscGjDDhl1+9cVTcJ7RyaBOdJJl/zzI9TbAl2bC9GAtKgyNsujRCpw9VBaQbwCeBE3hr9Z5EF94hHBZJ+BePz2l/irsWFo1x617CodovBfempd/C2qeAiTVyzfYXLgsG80WqzOaFItYRkiVWPeT4b9fSFAIPJCxfiUW4r3mqGUCWZYmWFKD5mFa+UyyVCs8l0ZgUo8QXrj2fcUaNyQhf0Se+ceo6UIOGRf/ZGx8V6vs6hUVwj0sNXfjQ1atQqyn371F0q22giDfu5futcfKkGCpV1q3nLpAsSmfesD5TGKsbrMiCQZtSGsUnvGq45SR6mUBZL5mMqkSjJBFowJVurp6FR8G8RpQbJjr6GzDU9P8XLnCy9P1w5MQPsB+f1l/+NJd1Pig/LldT4e/tMbaSYAtzN5GLiEEu5GS71+mDvqdS79fb5tEmk9SIarwZ2dSQr5DGPDRl8cwcXg7zCKWJEwn8qGXie99kWg5aPq5LBzVzuFLgSzJFWMhfEQOm2l9zJO85FtjM1NGr2IZB4bdn9XvJakGZ3oK3ejipvXtjy975uwpVopyxrtbQAloL8FJjlir75Lazm//YH9iAGwtqZEalI9H8/hYxj7vLYjZZrG2rFpZDIioOiqDnf0zFSjuUrl/l4M3jYMaXnAFW1kz9Z2yNoUMO/ZDZ/nTrzZjY1wOTNwe03aqtbcV9MFDqtzpXVVzYOoKKRljq7b38/6LLJFA/zXNRU6cZjLUCDZwkmGa/vio7gmf1bN3rnv6Z6Kjvwef4D3//bGi4+OHoGfj+VWB+siFIpV6UEj4xlwR1ERpqUCrtFV88RyXLg2BIlxdhawM9ABt/flvZrNbZnM5ZqWCq/TDlsP/cOwT+l6j1+ZsuKbZEdsr5jXOGfhzjK30FJsQ7040AKyGm8Y07OmY4x3VPQtdxvs2LAn3qgUaEky4J4jCQR9uEYpB+dOS+qK9L9EfxqIrUhaieaDOr57Hz3M+JA/4w41irBpd3VsJ3CiSbAMo5tRotZkuSJjA8e1u9h2VF7c+5/VV/XUuijeCQSQRW+QWQEKCY2YtNGqBd4abXee80333G2ReOIU32n6JcVSB52mYwxXYLUeyD/pCHffX2DDpB57mS6qiSA9U3egfDtZl5JAEJcprnoCjk4N7UTLxiRvHRiDEaOWlenj3bjkLgwF/gnytU2NkOkKh5RrEw+7c6KkXAeKCwG+R0rxQJD7MJLRYALYdd0N6gS/l9EsiaD0ArWoWDpoTuUvW6QzExl9kuow70x+G5inBcMsiPADUfUeXz472zpElnum8Pcfj/KeyVBK8f36dSfKG+9461IT0lVAp2ZUPq0G3xWBPmqgtIc1msLZSINkfzs9LWi/j4hrMdpoR2dl2Z1t6WwvQEjtzAjw0y5IO+I7R/WwCXK+x35Ny5T2WXPq88BAST2PDfAz+7wN5UPGLCqt0vgmYV96fF5t/rR9NGgwtyJ+64+Z3flrzobAbAWHp2vC/LeT9j0szPdeDwssZMFDq+2XMajnifuWLlnoMCwF0pKmpGnB/lYUiLWJ+pQQU6iO8Zdz8ml7+3GdYL6A6xjU5j8updCDVjjarotEtSeYaHy0AML+HnKlOQltCvz/csZP1/TCDNWYaHw5GoGFWtEvWVg97AOzy91m5FBvxHB09zQy1TZ8PUlIjyyc+Kk07+EWfCaLKLxBfTk6Tz1TQfWjXH/DORaAZx3sBpIVQMh5DxMyiH1JPi1bzS+rNX/4Uy1DET/SJogMypScFeXwu0hUe9oSAuPDNj8+jjJB1RilVEQT25Q8L4GBm9F2b2yGJeUV/EgUVlAnWKF9V30yWxcBHzY3BQcy0jhH6yBgfvu53Z0R6S8QxeC8lOJ/FzRbGwGE4QRyk49D7EtkTgOJ7TLx1cjzMSaHt/du8GRx23d3E8T0bj480ji+aQKDANel/wVSVTxva2DtX/VNu8JBbEoSr/ob4rcUDphWKFmniXgB7vjZPgC7og4YYJew0LqGQO24VAyz7wU8U5OgIwsw0bLHYVi9jZ4b74gNrWYpApAwTh0PnK8Ju0oj57Wnwizj2wGPVBl+JktrevLbhk97bCjPhYDdhx7QMr4bFSbwJ22+iOaTUdGgnmsYZskf/DZ09cJo1uykX1GxBoUN4vgMCawAK6yMPIAuB6qpHLSJ4SQDMIgv3NOXX1OvYgqxdQWMv49bvDOJM8NI+1cdLBAABUPK70S+9X2boLW0VPdbjU0KMdXwa7fK7lQ/cG7Djr6PRvePFasRqXtIliNoJ7ZU6ZPXllKBYI1v87R17ALyJgvOcOfGLY9+m5ocidpxkm0cTHS21wo9+6Xub4Px/6RDL/6JM+6I/oc8AgPx7CrJeUp5UNdgnAk6T8HaGGUqPwULmrU7aoTjLTpojIHQGy4v4i6p5TgN+8EgxBfG7TYMlOMaPsdU1567GIpmfhQt/paNsNCep3iN+bBedJ2536zpJR5C2L3OUN+BLhbVJzQB5EDXi++sgHUAKjUVGVKEOgq4aBnkGZqOTE5wneo22rJ7kNAuGIXdm3KVJ73xqpa+4cfIIX9cIu9Y6cUcUDqHCkLybzZKVevjWFK8t5PsX2UNsEkJNRzVhrjdfq0g9aH2SkE7yr4CWs9kCz1LSL1irOMa6ashzEX+KQSd5eFHs3uss+gipGiWKUJn0UDE32LqC+g3THIvrGNLm5TEAKdZgb3zDdiseoTNz/StezylHSPfF8qv5x0p0tXahFu+1lL2nSaJi4Av2OjkN3Z+0cpf4RX+aG1CiseMTSXXyf//RWiKtKblBw14mbqtOi+ksjp0HvUUIeIKCpVidaY6Zfqu0hzXnscfN/ayyoJcpV+A5C/ZpIeg6hM7Y+BltpXTvNye6WeJ7qMxPPiXAPaKBlciYBJMCrdqwwbcufoCPF+nk49A/FW+ghI99zaWlMHlMHu479WPdkX/FGRv0JYQGFobcwqMDpwXI2gVXWKUmElJOdXIAyglQhrEu9FDkzY5+pB1g9NT4DY3eeh49zQqpfLvCL68bhWcrqUk9VkkuhVWpREkM6EDI1frjmPkupU03yorYq7zPaOHRahgZLtVotDKJXED6TF7cKSAufTv7Ioz/Z/oy+NJSSlQp+KksTrNyrSr0JhH+xlL7SSdEW1hc0w0BE8pXwj58ioZWqBpf4niMqN4KmohryvrKNSpf1Rge89qRWHbOnL5EjGXRFzTpI8QaTfLyHiKmCNeixDTHiwtyBq4J8VJBqOUHNYFyYnFOTYbkkA0hXP3IXII4pqVXMSL5SoC4SVMVktYhIokRsKS9YUJw0NHOoHs4CzHfrEDmmUnSsNre0vxsUj8mXAfwCwzKhNQ+pIiGZmDjaDKOMenNB7ANne3s8WnHruntqZSwJocOypDKikrNaziihJGVJ3owFxGEXxsuSXXaxi6RG32i341ki6M45uGmW20xCynbeSE3GTtcjpLSGgji2U5NOke9T+uZaBbZMba/9tj9YWe2QLAIKAr1CAX96fpMvm4+i/4ji3G5OdIgt+sK6phAYvRgrQBhwrmVUIPCwOvhtAVrvDd+GcpTbzGn4qKDvFYm07UnwGsWLybYVO6i5tVHtBPEx2JJWRn/OaNzuBTpeGkK8DzCqFVi79JgwaSnjWa1XkE2WRgY3VLLG9ueqzt1KyAhhO7SCAUkj1L/Zy+JYo2X4gga7YRAqn9L32Z+aG1vawTeYsjC/E9IqoTDLPT+vk3yEplPPXzvVbGcdmWowPKtc/W8bZov7LlY2yZD95sRNh7HXheCdUGEOz9DRt+l6etBDIxt0EmE4biYjNvZ08eFopqB2D+KjN7dVYUtAludqFDlovf/GKYviseQoZGhOUYPdAFFkBh47uNdZbKNnzWgvSOLYd50C61m1EhCGcTFuUZT6b7+X60sQwjCjTK7MI5NsT5vRMuwhEj6+NkNE/NJTUhJqz5Vn528fkMuxnLLSWGFiLC/SR7b6bHBDwguGMxL6pOsJMJR5suZe+tEK42NmHWlqnvn47nDIf3L7Yj7xcvs/M+jLwqs14+xmW3Yjmkc3teayL9BKh+Wn7Ga7XPG4vEOo3CMtvDxkA7GcJt6///9hY7KZe7RXp9eWW6MGD4+lPE2jN4n2PnFuy7Sz23tTusEpsxMxznnzjM1ewc63dhqYcUKTHg4Vyj/kDLealKUjoSM9YC2aUz9eiOMgZhP60PzGzWzDSTcwmYsoRQY1d0JMf//af5XByAf3UYjREsvWG6m3/IDyMy5CRk8ubJzkU24u6FdwdMlrOTSuQEumKiW9OsLgPCLP1lQiNU18z9Uxj1vx9ZoI78L+yNLud12QqF2sMW0gbgsoIbtt6ofjCQPo2XjedisHTxJC+bFF1uD8z45XYzx9aJDpv52Q4EpuB6EcVpvwc4VVNTsSqSXwbIZPpD+0x4mTSjcyGqFIps3F5YUd6Vjqi7MFguf4MAuFDokX3rtIGcagJ89Az2JGvoWtTg+INh6RGK1VW69EjDeAbU39LJgQaP4JbT3x4ChcqestQLg/fgnVnEo1TtGPkczGFRCGeEYeOpmbspR9z6YXFAz3xlw3xYxQx384PdJLnW/6iF0iQ4tJghMWX3I4ZYhJc8/rMz8AsBX1Lq4gnGafKCusG4Qw4QIH/G9vNJUXf0Xd44xCDmLMcL7vCIhK87yRYOFQIBR4vFWSWQU3/+XDyteUDeXZj9DkTXrAunervhIGbP2wYIMkjyrwkm/kHzmBbUMnW43BK1pLCJw9MzfDXhOJ+wu28Biwk1Uqvx3r0ze752OcF9WfljWuEjUhXQffIi2poDfW2h2o35CUbM82Jq7cKpYk44Lb3UoPckDssKY1tKhcs7K6ld3ulRa77PE5qKr5qR2KyVqszvnJznICHFeFCihYiF9183K2t3bjWxapBK6h4C07AFjegNhhfcJ8fAYntVk8VXLSh64LQxIjA4r9hHiTpeAgpxaazQcO7Mc/WxqLPMFu1Jk/D86o0o7/3OpdZar8gea9mFCFUMSKBlUU8wwxnp9PG607JMaITNTn6AZAhA5lhj+UFz+ETqnosOV4i9DPqd7FcJjKMl3llk/oJLEhVteZ7fddNHJQbo2HJ8ck6W8s2sHcPD1Kzrf50Cp5EvTsQmvS5ILz4Y5w6PwDK+8svRGY1ZDLfdh3CafSb+FOlLOK8lqEMJL9PGbeYy8seufN8b+GRKNOppeV0DhUcGZUNi9IGXDxN9WFBtXAaHOe9Q1c7DS8UVFf+WhPRyAfuXdYputUda0GiN99NsKAVKTue3L1/RT0Fa02/iAtPGxAsG6Zh2pi0UBBs7hea0oKKcACd+6yxyT0DBryhuqQUur/rfXvkEDmc06aMJPDceD2V07GQbAxT363VoAy7Zc0iAlwNNEcrjIZ8ERFVYNdHB0eB7BYiIU8ZPmsrOlp+WQMdNP4ubfU28W7ybAVwMX0vxnxu81YHVeEDuJPXV5LuiiE6VZnTv7ljeZ8KW5wisk6vpsvYAN43oZ0RRbg4ht2ZtRQm+Wxx6wYq8Rp5yJ27i9QMb8mmQR5rxX0giVbHgcoQ9Eiv8nxRhVo7nxVLNB9aYh3vSh8DlwUho8nxbMvfBAmPvyiA+CYS/U/cS+EC/t1WJ18Z4CY8hsKw+/LNoYe8F/30QBZQm9kygm0Lk0pDDCFaXqkD13teubQKZazAS/rtL2eFB8DowAjERdxp+RK4yH3QSMXMcrVq9ry47NoWtTvzVbiTF/MkxyrYM7vkL045b2z+OL13cVJKnmvO+U6u/Gsu4/Wbcd8uadIIvU8SCiTMi3n53+F6q2dc9Dd9YDSRTgOm2vmXoBfwvFpe+589/BTZxVZAtuBwoq04bQBQxCkM+7/GqHibqzqLWj+3pkRm1+oIbsCfZ8B8Ou7eoi8VyoErRHFx0mz1LgAH2HhxOvrL0onGqWe/hNqIu434j8z0ZuSq6KWTxf1LLnZOLwc5zJOZfDFzgt+qv4cMDEUyHYhroKnIIaeJJsCg1zSeFDiroPuX3cVw4ZORQnDY422+rNP7iaJ1+e1pjgaUul97QVD2eFZOYyHxA7+uSB9ftyff9s0FZNDSTrYtgI0EljBiVJVvWgO5lNcV4kKiF01Uxmq65pUYipfV294UeFdPSQCnhX3KcSOPMwNzu9vo/pEsNfuSqm2YEmQnTrfgy99qx+BCgT0ZyrhHHpfMCUh7pgtjgsZ3WtGkTUxl5cY/wr03FpvDEdHUUD+27W6H4MWd/iNiN/xvQHVwh0eaBDnmzS524TwWYRQu8/D3sa3yoi1J2t9uwp+y+E0fksbfp0h9M81zRC9pRLK4qb5IQMhjhpl/lUrX//g/aERBWTM5iFQuOy1oAwOHK2+FBetnefZc8+XBIzD9dtakomlEIbooOozVJh5EquKBtvl4JLUl0u1zorJh7hPJIeX2pnJnoBPiWNGZVqsxKCVy4rr7g1uylLiaEqUw36+8AUKaaUkJWHXqRDG6irV+rYylHtGFr5XX1TWZ3k4oINduBM2JDqmVLwxgH28dsBM5UDEJazPaPGhTK+rNd0K6Gn/+/305M4Pp4gWkmGvXHkO6mHMnKwxXLSAHgSbL6jmzbysTnETFm9uMeDWz+7g/+aLCnrKeizBJewMhbmLWgbXV2e7EeAmBjt/7/rdOaI0VPrvc4f8fhUzLJM9jWX/1IRpweH+1gTGBfQO21gnCbKCNA7rDzLCOAxK4hyqK4hMbtdJDJn2mTdAkiXLgwO3A8zUVYBEAxaP0sm9BeITgp9NIAdGVz6OdiE78uhXu9zF7OqiXwWtdPGdGs4/6tqweDJu+LqrZppBtzYUcYx5kk2M0U+vV9dyen6FuiLxVd8Grd7UnTLDaYVUpPxKop/057s6Ydl+HXR8ar1BzJwbSAXPCEdfUJv8562amE10EgXL0PxdHWnrRT7GFzSev9OCJa3WmZEsRPNssOpRIGJvhL67VR0XvSzzkFylFl4ELK0duha+aYkkkk5473aYOQPFW8A8E0mDejQPtqwzhY/z+vEtyGp5OSdqniWnH5c5eSvAcn8NXk05NyG05wtYbpN6neAMLxm5JahBkCNcJRvkojbaG+xjel3NCOFj8wWlTzzpF40q6h2tgkJp4cxTHCLa6s+cwWl7FmZ0gzmbdegn58/tIDknQb950hEaVkA3ckJJ+8mtkUv4ovDAEQnFFi0nNZZXweFiKLcinUo2cqsj2wHKutwAFJudH7IiS/HU7TJUHFbGvwI3yspZUHbiolXSQh13bhqYYFzLivrbEoj4zz1r8BnxdmbHdH5mlP1ALSLh1LKp5GeGbIyY057kE4sE8vbcPhJ4kAvzfI/kT/5Lzg0QdDEF91VA1m6vBxA2ZpgL5IMoTJOqEqC+wErzugF1mAB77TZXoHqIh/io/Cx3xENg45lBaOX7goxZzNRclpSRCK5tKVDCyj0o7Ies8s3z+uL51juHrhiOf4/TqKpojCTPnRvisI/hAJqBF9JFkQgsT7lF1Vjz0xCF8pgd5X2V0TPX7WVxAiltROsDliIvqB2B1oZNfmV6t2VAnD59CEmzKixIjDUtidM+39/3kw6oeKIwZOii+J2QH/qobge8xgC4qfRBjwpyOrd/I+38hYHcOklxOziBWZu2oYaOl1dDTrl4+CaQRdsYx+JNbUb+rwuvclS5Qw28+VpjIusMIbnsh+KLMIbpx8tZrAdtLhCpcgTQaw+OCwiMe9dXaQPfAKRHNfpLTvEdnPNhzzp6ZRiwprqLMlllExfdvbdKMGqC2LV/WYk6GR+3BkPzlVtt+M88ZDbXw13jZP0s1ruyXn4Qeqa3FP/JA+q5rTEUHREsKDfh5yiEu+DDt2TmpuLp6zxLbmXcsHd772s6H0Yj/nBYgw3Tm3dWrSXnVcOt3+1dc4Z7Rm2ubS7IuflC4gZ2zvOphP7OUyn4YtpPvgBl4Sc5RubXb7zW+JV6xQKtdv6/Z85cyBpdWgIIlLJs6Wg2rfcc82QIKobbwB9NGwkhgYi62BNB4+NBI2AHO5vo8qSV/735vFc8kJOhIXzXpoL+E/BeSzzeN10Gxnf7pXaad8QsFD0WicfeLdFhsdAXD4+APTRR63+x2/mOEIWMT852CaIW+eC5ODNwUOe66qomR81rY7z+N+faxgqL9vbCCY0oTVbqz2OZBoHo71OCTgPy5h5G3n5cGBsW2Z9X2a/Uya5F8DKag/kOlBD6Qtn6m9KvmpYz7P6k+qQ9dEuCroVWSqXIMa0YzIAgDIolXMfSwlC1/L3KJfvN4961Vh1P+wMhU+ZaJsHGnHmMHe/g+Gv+Q0gZptjtYksgKrvxJmQJJ6yn9Za07fjerZoZfCyQ9+TMlc78XELnPn/9+xS/pGBTT07adU2RaVcDAFpGCRxEGBoHKwoYYsairo5c/iwgQLvzAmlG3pRS6JJAF/+EkgAKDJChEaa065Qk+VR+6O90AM8OYljeGcxfamIPCB+0OHJegHzT4c54eZCwHk1OHHbnudbb3W+1id6ZbwWTIwqr9KxelLOLzvlfF6xrgUC34UGbRT2OGp4Q1fbYcD1qwbdHCXQgSGWMNzP/eyPL18M5lb6H3AVx+jcTW5d8kyZYGREpI4n6XXu0fken0EA02LIMJBUJS9wG1sgJkcZg0ORulr8J/f3JPTE1JpGvDqgtFjZ1AuzYBTync7v/gOiPCUiEr/TiDWyMiUTfj4MBT7Q1YeXsrnIMOHh1/gJmNxXtImq+q/8Y9iBXQb5hM8zp2PyKr+BcoSKPmV1RH0IbZWl9KB67Fbmhv+Etgb4wIqzDOtkb1Qh7FCx0DS0vmuUTIBS3tCAOabdkX8y7wGMF1TEbY2erpnI6N+3fhOAkKtW1mXVrzNGuwca2zjXA4lvfPZKDAcirXuHuP2eo/U5jRSviHlq9mV4QiGrq8WoVXJSu6uyGH2onfMIOdhcpy+bnlOpdLlvq1M24sTEELNlu9SI5Db62KTqLyDsSf8rjICDIcM1OmfseqtP0bOICYQjtYxNwtoVkoTK0PA0gsL49Wju+AMiyb2+n1iBVmhjpOs74kgdrejchxXlHrPsdqobiKK2bVnA/5bGFkyqYf54Jh6NQ2fCqKTvcvaMZWSqkgsQGsddzzDHFOL1w3T1MNmS2qF41q2LnBjRPoktoBny8eyuvkdS6mmIkJETdoXuGW1MZSjOOUNUU7UBrcnRgd9owB85Id1sEMQusKDvZXqonmu847O1rusq6Jw1V8I5uH1Dc9W+h/jilKndOxAPeF4LzcvhsleBGDh3ElV9aMXedwdNfgLh9XqhHGXFuDavEsr60qKNun18xj024BsShunjvvvaerLBuy8XvAsjKedmZZltUcn7sOd0V0SkEAZI4mGV5pto2KQGwACeQ35Ghdn5Rs+6QBW14haKyZqQ0ml4y8IPgdDQ4/YMM29Hu7Li7zr6jpRgwKEvhWxS4n8GOjpqdsokAVmloQEnYH8ITsB4gge+Nz5hCi1BLS43fch1jSNbur8QM9W8PFsfl90Ev6oa/MfTCXRfwGs7Y55Vawj82dpfmK6LPkRB4SxhuJrshmqABqk7Hw/QtShKUwUBIAPLwmaiB4z5RyoKtuL0+VHQDWEtoiqkoPwvl0817nfz5xdTumuMnQ/s51Mue8DqefV4lLao8r4HzzNaZpupZcO204B/ZJmpkVJZHvX0lb49qgfd8PX52h8LhziiVO4Hf17fB6aEK0CNfoxDqsXyhI7IGUgYpQdnVERD632/Jtdjbvl7bGf0gQnz5P9KujyaxgMjxzEmpms6O7H5hWEoqH6u9qHWw6b5NKKpwiAQw4U7zu/x/mEcxogbxfAIuD6NHmAc3afRf4OnnPS5pIOFzLzlLQwSQ3X7cPw33OlrKyOPrAus0EieCLJe4+QGYQKNhm3PRxZT520Z9xKbhoyAa2OtZLmT4d33+tNJrRVWwgqQnCMnIi5tNx1AKc9AT3/fLsHbmrdjRyKuapU6f8IYkG6FiNqVOxLuajvmvsP4xKb65E7xpN6epSmuGQQj0xLCwogvp1d30IIXdGOhjHbwWBug+CCX32YSgRUUN2X5unEYcbDBr/IhCA2o/XXyHKGSCi/YEoi2yGRPoL68ADUZSwwZggnD6bNhgr7DRXgvxlhVy7LbJ/mCKiT3wNtoVAO7V2NeufQCYvbUHLwlXsRdQvp+l3+bXu9TVWWMhAwmWeLgYf8QUXg4f6Ft0XFQ+c/hULKMoLJAbU+O7AsLxBro/gsWPNnr9hdGmEqBYQ9YOJt1nRIvOwJov1D9KhYzo3a/NhU2ylOfNx4Sh84Ml9BFvP/f0+mYNNXyxrUZGXRzZBCvlrVPp6U8ZaWftpkSbnfIG8YvaHZuLFtEp1nDePM/6HUQea1q7XZh6puj8aucIuzwrDhjxO76RKKtqdtYCHxt2MuFkKvMuahiynZcQ+1EKmSkt/NKT/ox3u68MMDS5Z0WoF6YP83p6uYXJJJg7v8PB2L0xU5+g++2U4+BOnPjGJSAEDTgXO+l7l4/Z+Wo+cUgYpSXs58tUgDecSH6BpC6BAEgphi5+JxYblHBwvVWZJlR/SPFigP5APNMfn/9N3pO2CXfXM4MAVzdFGXIe5INZQSitoDs7Rf1qDFcasbq+eJLOtRKxUpBRBj7GOh2Rw83HTZoJQIek8kYDlwN+GFOS0QElVlFGlC3e1NSBICEkslTdGtaHbx6Hht9dB6ItkUmv9EO75CFk9Y7pMLJq3AfdPqwVSPidZSWpBto0MqBECsUCwAEPZA9oawlZo0dBNOCUjW1ZtmXd8kNU1wcxxM/vHX/8BLpSoCHMACUp2kqqW6t25C8MpoU3fQlyua/L9idbr7XzwcpRfha8VeTktaoz1cnnXVGhmCH/BQPNtnAxE2+j56bny5TIklP5tp3fpqGARCR8DdeG44NEAd79eyPQsNQRoLF8bTm9WYSajQGPqj5xbsTa5cNifAtgNCbNHS5AkQriKs/rvqTPyAKFVeFN5wl0HT29S39xZC1kRgHR8nWnWD5BeuAEQ6XROhw18PTXvfvPxWvrD14XzgAFzGbnJ8HK3rn0J04VE0PUVO7Q8gM0QCKvWeYP+J0Vc1yI500OEBJRuezpNp75l1FFKq8ifRqQlCl64QIOCSCHhCMtEYT33iJa5j7uCyk7HvH3tsZm7wi1zWNMtjXi54GT3p7dHgUvMM4rFyuWy5Ih8R6gh45BY4hr/UJBuiu5Fo+D5Xp2k0s7Wv9HXbVcnTV9vUJJDH16SNEoCsduI5KXJyPAc3aEt4/K/zrRN0u862V8QBrCUIfhkEmqRd+/gg7ho5GIMiLHOGjSrwXXoCZ1w+2W5YT4H0q+beJVT8A2/6+NsM6iS/5MK/7LV1Qo2Cb0V/nn9GaFsHk1yG/yRD5PzuYOaDWOHlJSiSr1kU4+ssi2jeZ2FIodFP15D62rhWKVMLHT+FgJ02SJ+d1Rkx3F9MAodVSff6IpjO9abW7AclG4yf1xXPKHrnjeBFEGu8WjHPRd7winlHIxwqKiVsqNA5vPvmmc+lpstaAH/Eg2/fTTo2kpCL5F8h5BVVZOoxP6U6IaAMNZ4rGHHzTnCVFXYfb6R1BMkVIOFS5zfx1FdabNwosbE1vf61V8CiSJP2kAW+fhk/eQSk5PlgGgeFHfmSFQjWLcoLssN2kgpyBGC3Dn0BmmQo6XAGfVskrtOdAGpmdoGNL1edi7TslfBEX4qPn7LRvhXlY2H/Mbh50l0zit6Ye3DEIJymxeVCWh28yAMh6EtbDBsoaEzcDowVgCDwJSuwavS2835DniJEHl+TOQG4GGxc8VwuefyKMP6gO8awNEv+P6HiEQ4onilWTax3EfWzB9qwFS5HWh/PCordtdrYhD1xmKBE5KgCe6sDBael0dIvzySlP1vzppp6FfO92Oqi70RvfSFSyoykYjnst/Cx2iTyPFdTV1v91v/mWXB6jzMNJ9AAwaryhhukdgVKHyvnz3UCozJzS7K6o6bc+y1HgtuTP870+tKUroSit63KQK0MbhiO2m4pJqeI5RxwECa9Cs6ibJkk0Z7rQvI4b9F0/Wdsb+kFisTaZjLi5iluvG/RZ3FJSsF/5hMoCKKh0faC5vg/NwyitCDephgz1hiE/gywzolp+M0cs1adw2WuZTKGr4+tX1nxRQKgrOqjS92tFBh5eXwFxFo/C8AmSRUC1cf+h4wPQs1l2p/KvLoGb9kpnCwa/TgGPVBwRQPeHi9JsL2mszCcMObTrIy1CBKYxi6qYmdbEfvHfOLgYjBwOvrUlF4NX/l9BVI55jtNIYVD4aME6MhhZ9dwmnYU7a1+28hI/KdBiyTAOB4aBeek/te073RMYM2Db2NKfo0zUsybmEDhkwTS7CJwfI0agZYLd9/Y4IKAywGZSH0w0RpAX1oeMn/bOQBwsOJ89yy/aQCbj9/dvpNuSgfvTsnULUGBgZGCAexiAgqBrVtoP923QNRvypD6hLj9pBcNSFMfij2LTGYC3gDyNZLzp7bFRP1KeYw4uxaFRmPQ6l/UJStUIEwdkJ5Lojh7BbCmX1uAamPARUdMGm7eVTuZgtkKNF+VyQVpRrXBiuimSsEFt1eM/W+pB4hbFDgY27jBpXywIlQGga+YEDvjgKabLCLhvALeL1/qy0Y3ksO7AyadzjfTd7LqXE91M3FSd2tQncGPWJQs6LtWwJQvOnTIKtr0SOTzyXwQK2Bz8g5FNe5lwbpcoVLcsTmf7O+s6Kx6UTkVF9o2ASSmAF5n5Tyb8CZW6Tr16/A1c6O0PyAUcLO7ASxVhyMq4NC6Yd3AbJQiZIHSkfXVi0h1ZnpdsPTyGAgNtCJ+fytm6X1gNDtUI658rlmIQAAAwAA+YEAAEyXQZtvSeEPJlMCG//+p4QAAAMAAAX4K/pAAcbXl71YTZeyZf9vMN3njfBqkGrg4q9lequqvgddc9/L3Ds5CzZhFvQNt5gA2pPPAF813gkIIKD+664NFnpf2XaWdCwEeeKDbPuOgsmVxSqaIDKLL3nhwRTptq/VWdtYl8tMZ1t+jABr32e5NvakF9fvaDAkR0vIfGYgL9eiq2teO6sFFvkmUQOKfVouWDrdoBKMJq9VPFfFI0Hu17nbncPM8eWVySpab/hN6jrnsnCeD70weIYS+VHiDlg4I5qc2RrC8Mqnpodcih1B9vGIKUoIU4q0tiw+Q7pwIf0gEj1csHcTuiTB8rOSbj3h+ZFTFSUKIJkiHSrOo7au7IPI1DtSiEGN2OKniwZw+esHEKfvpdSrryTRobxD7a7bSUCZd8GcxmZwSqUgSbnPF9KyLdm8fZ/QoixJbkm/mQXBNMrZzxUih5gSAW63PpTGPmq0iHsMbX2/jH2MfA2eBWKfEpNczj4bkG2ctgxpiq9Fx7br1CIC8JAThcMIjRmqTci9Hq/trS558IURlqShRDHB49Wobut0zIrQPENSNttAQZTJOp4vQP6x5jZgDhwOMqHR4zxcM5L0X/rN0YsbUNDPvaAD7plc6VUtdZsjfZcU56IdtiYdxTqVBae2y72EALuACWtlV+4oJOKBRxPamc56/m96Okw6sTyI3j6bvozwhtBNLxKp7NF+3bPNU/HCuVUPae96iYHlH3HFQENZLa9YMj0LmFqgJNZfJAcHL7X8Q5+fC5zwhezdR38/yKA8qctUOGSy/rRYRuTVKj6qJZ5fw4LYfbI5ifJejChs6o9XjYifOsgpQoLlWxhaaUFee8zByO0rc7v4/VxQOA4u03kHPP2N53TJFSOBl5qg5xrpTj7LgpcQdx0Ow1O5IkKHaeTO5I5v4E+/lnPQ+F59ScxL8B6hfSWQ3vwjsyfR+/p/MFND06bhPgyFXYsbc3++UF+KmoA7qDuBRNK4Ay6fVp8pK9lPqdhIB2utnTnEWsre4JmaQniNp3POU5ajRsVBQ6RoOIjVTT2AdlPBPE6f6YMBvq2QG+EJSxehDrTUylvoievtk0wYHioT8IsJGRmUKSijfSSXFgF/5bP7TTy0Th0USUAt9gRGbxPknBQCNuVIIpk0NuxcboMAbtWURP047F7tN4r1aYHwszptxzLqAzv4Meh1XMy6iAgmMy5PsyJbhKCM4aHbOsAWUMVzoTMv1/s/vcLNPz+uFzYOWLwe99prB9N8P75Wwo7Jn9u7yztR0eRXc6gQqjAbcwhL3mDXbgrNpZzW68cledp7gYZjoPC9sRXsAATCJLvqXK7WbdwjMnRECiKhSUWAebG/iyG7+1UL8Wsa+wIlYqf8wfB3P+ClV+y5ldf5SHqtMnT91xFefyckAmr7ujnP7ic5VNN1XbSUfIybfN7Hc5GxGK1/BeJpgtvQqQmGr/BgzobrohEdLiVevXyPHnG1hMaflTmTLuoaY5zK4Dy45bOCei3WJlCv7z62VmRced16qOiMBUnQULxMduxb5fwb4I/0jsQhe+xVunwPDyWLzOpPlZY2/6ncIU+JuRgk8ogqqdRn4yMPlxu5O93Hu+oMdW3lPOxu1zAVRPHMHuWAW5FH+w365J00nFpq95TvmkZQugkAYBWXZMEf4QO8Hn5RyaMoPWxiAAJIhj/t704Q1KQ3ozZ4PiKcHn8BMPI/di568Z0TKp5Ua8hf3hx9fT39+EQMvguji2gp1i6U/okoCU+N+TCiNUX6bP9ICA7clbpcaPWGLsmVw9Ic5fgRYuifqeIty06vG00DfpaYY1Jmc23TcYnRDVCaGdjJpRyNoz2PXzucTPaQAjbB+78U6sSwnvB7v+hbFMcAqUm9UnxrIHfPR7dHUGLncOpX/fzzDuEFXJ13nrZOFrJ5G/0zGTB7ZDYrEThwD8maIB21CxZwyW1txU5kF2FrpiZSkm4DHnQdmh7nOtlGNzwOzaGiWzawfJ62QEcyHK4y3zITHlV+vDsnwBBKH6Rw0YWrQ9TAbJfBU0QaTdq//V6hMArIV0FbugLMxFbkIzVnqR34HXL7WdhqcOuwx/wqr2VVlnuvji2fQl6I/41D/vY4o3OG0zGlwavtuvSFi0AuW24eICDtJDk0+TJzVbF5Y8zYn0CuDmMLSi/SB2RFkuDSTyFv0BlVLGtyomx84/dfhE8qFwI4percdPF7ZI4ahecJt8VwDFpMTooujj0h/8YrEJ25a5GypjjQDqqL0TbGw/PDnBxa0OnhUGGAmz+/1zajnknqqvOAd+VTw3dYE9sGypixV39lECRV8ritlvJEsecnMlPAoRZI79xFrI4H2eoDbDjYwVj1+ggk+KRYmKnBUvE7c8vtj2ryVdDNJqQgvhdpEAYpKvIrVjgH+qJ00PVa6lp84QUAhpxzERMbT8yF6uHHClSmWk0UDSiBv57gHg4bWYmJEXXKAEeDxINnggjCFcNK7T9JwH9L1gyz/15Ze9fvSFJNO6eVZ14ANjK80mV4jTbD9uC+o7r1Mxv0ftk5AlPDWReWSPJMqbaBk7r49t738fqJrthWzknnVe1ZW5kC6iokmtEVLOTb/TKhjOpIjLfuDaTnUMTZT1np2o+kX0FmA0n8YzHAMOAJg4q90ZnUURaYI8J8LqRtzENB1tZb/9jTT1DmQOACP2cNllXKVjKes1AvkP9UGcSUcBe2n6dag+Q5mTgXJr9bFJdNToH6DVx7tKb0JCTswN5Tcip+RoLAqjYTqbvIKyzvqwQc9X5PSg0+kaeOZwXQCBAMIn81QNBUIhnBZhWz9Wz3vnTGCBPNM4vR80U9BeGPzbnnv62Uu3q+TBSnvKPEeFjCsfZ62XbkvGacvenfyYupGABgQqiI1epTcfrNarMrZIhP92TB1edNZP/0lbTqQ021tZCvYbxaJ4YSIYSM9dLidKV9Z7aXtkg/OXRYDi4+TFxPb3xz/vTk20SGzmh1uQlgkLyNoL6Y9BKXRWoBORbIljcvePLEepVlYCVGqg1C6WmJG1cfx7naVxhu4j9QAhZOz2DYucpEWq9pfDSlFqMvtJs58+oQx9bc/Z00pUbJHintpHq7EQg/pTsO46g+cfmMUIr0HD07wdBRt0voCFLW4WEpGwKz244JZbgFBDnsMaffJcYEYKL83JGw5vSyIUqRMRM++g/e6Ct9UtcaHVHnOTRy82pNKXyhmMn3WMq/WrOxnt6+TaAbXcrQlodm6JLvMWJgMpMd+haJrbf7WQFtK5kG8pqWucN+XnI+AANng94238yWJdEieZIr5IIB18omZi5MFe3oSkU6sKQ8JBoy0arD5wtke0CzUF7CMT/si8barOCgCXSeor8HkafA/XmXFrmdbxMFSRgQXenfovbcmONWRf8oxQrT4MsGVQpznHOhgjkwxnh1TkwrNJju69xc+uquCORJuPJQ8cPMyC/aef+rSJtQwJ0De8bVTc68wcncS+AxbM5cwzTXjGhDwvqdu6DWM4hNuC0Ozu2MJibcviaJAOj5MlBAXm4FtKUhR3dpIwrUuzCSLTXaD2YDBVvr0MlY/Jai6lmcoks6tBj6yJo3CVk7To/523B46MF43ug0dYEDH4yYxW3LaOjsansLiiwshSgP9jHi/F+Y5pxFbOjeMchuwEA7UU3KBn9QNg2VHBpsbtkcH0Ka9KCLnn2i5if2xqA27/k7rDC9sjMu2DEpe56yGRMQhMTiwPEvuZsOqGp2uqQnYuwH2j4AwDWoAHWvP1Y1VMDhRcyEZMAoL+6dR+qdNo3wEiqqXFbrivt8h23U6pXebl6C1m1R3/Xz+EVgvydMnWYTmwMwuWRVqOM0FuOzW2E5Ilju+IHXAhgLQeIaNNcS99p0Gz96+8V+udFvXlbTWNVuygtcHmul6QQ+SXaotSaoqHNiTUQ4WLUm8C5sPoOKHSC9xR44qpVZp3NX0F/GgOBucC9rnrQw1x5IB4nqKyyOXzoNPHAZZpbSIU9i5wd7V2PosXi0Q052p3n9YT6QmqfbRqo97SMqb8/X1kRq8BKYvmE5n0QeF+Vnvd4IAqsjJ0YWbjS+3wtsvp8tJjSgVgGNOV8VnugYxTkZ4Y6yh1YBBvZHPWuCldpuEfGGE19qdco0ppkWrqlHPD2jNnm8mYLAvXyM6LUZbrESBaR/8ZJZyd5SagrwVIbfBU7T5F3Gkh+lUjEqc5lOMImmw7WBVmtPDQee8BTULSEmJAE9N49ZFaYtrzlO16fhQqhCUAJLG9fANq/Id5VEmxpCAANX5vy8zsgdO5T+Svy6tAGLu1ZpZK2g3IEYfBvH2K4P0xDMYO04rTU0zTZ0idbtfvuNS9HuJIEMM+2mCrdlym7hdjIBcHFfUGHVZSxBlBkoCjPOLsqX9bT1l9/hT8ydlhUPJnxUCkmse9IrVRLkT97omOI4XM2KnNuQ/lb2A9EgZycudBVCguw1JKweQeIdouyYyXOvNU8eda+/g0+1lLRM5E8qLwuB5MCJW+pMZjvC7Urty8zyGp3VfDLXZ0Okl/44KXQY9EMfcBAil5uR1nSba4skYnDkZvyn5qKxCHFdNUuIbpUTf+dTp/10BBr8CLfKU6JakNHHOwt525FwLNtvynjztbRL6xVg2r8KTcFcQwzYAt5SBZRQSeT7HgGTANqCZ/qZxEU+tMUTPJdQOGmiWan1B+lYKTwt7YKgUrmPWlUwbUllxakKkB7qPAQgsUpC3/AMq6j6/guWO2NEIEqIZQuyi7ElMCzEOhaBnuJB7s1gwhVD3YHCWQ5PE067t/ZUPDb17X1mJySbsdVGY/G/9A74twsuMagirDKpbqk1+A/XJBZAJkQa/nqWci+a922z+Nyvkus9y3LLn3XFcjYgSFPaUblj6JeLEP7Zz4BQaLgglsj3qh1BObHPQn/wnjqkcjpnIzlitVkxlzlXPX/+49bj9TVU+vTYnetanqBRbZLMkLcNZwtLG4NK2sLJAO9f7PNOtLeJj+PNW/0OiIiEGCY48MtxJum1eUjEOgaym9Gub5k6Um2/S9yfuS5HT4bAOoVcQW1C8uYB3VHHofYO+KXA9BKSiTTXFnn0ZvQs6xBF+SQBaHbotz1TWeT8FKMDYQIdJu1GqxgLoxFcJSjKQJ0QsBtV5TSbSc/nTZPlxb4TS4iST+okSwcOnOQPb9SPQqH1V3y/e5cyrejA5grYVdtvafG/+XpwSnVFA4dqFKI0QuDOUk+WE9aBVCNoC4Xfo5G/9w6t8KgyjVUtwVqy8c8ISyd7HADAbPgrbm1+Ik6794x8OlaU1GFAHAnZc6H1m+JEtN0fQIZKsvjy551m8Kc2Cfr+8uF7VTMkUlt1FRMZaGZfcNA9+MiGmJ2bs4m3idoIZm2OkX5C3vugt44I0o71LTDlns9WduECkOcuCmNGybhZeflvrp/G4qQkk6DWl/Ry1WV3/Q6Ggf8vrXM0UkT08GoPH8g2Li5Sa+vkbhuYmVdWL7735maR8hCaMDS7GAi6125nRLjm8vdz/PNfNlPLWeMr1bNEG2J5Bu9B5VHKjb+KVqJvuaVLWnFCnjvyH4n//GDh+2m44zwlMOMe1csg9yyToshfmkg0/5+AEbm+FkQAMLhoOxlQy9XOx/Y8H2+A0GrTPZfZe87Y3cc4ceT4UI8zEbfddmPNywGMtqWhfcB9jIk/sHXCPH/J2EqLcEDD8C143j732dGoNLnZDXAXyBOQSsTzXX9cyMX/FfPalTFsEC9ZjCeOxboHQIGtpIuteTbui/zn1YUP8A8yaj2zG3Xo+AU6hiUvUxbB/Qh0znoZbJCeI65rZrTtE8Kra3UfaVfuLcz9cXk7zZqNV24ytuoDrWI79BkAtMU4BM1qsxd5wHTe+V9VCYo8FTe0ehxH+OLoy28nB0Kg3iZXfY2TpKicBDDBbrO8xDT6G3ofBDXbmLZMVNC8Pw7/Yavlt5rOxlviBNlzym/WRKLzAbuPmya+D3vZ/ZKv/L3Pxj6a21vEck1p9I5XMI5ZQ0zuGjFCcgDKg+iJK91KDKV8ejG+wRqC2UQcdVLdIcXUKYFQZcGySMZvaqOPiBIY9zCXCng2pdCD89jeEkSkMvqEzZ8NVGlBWVja/3+p+N7J0ndYQ/2pFL2VXWl4iB5FquSVCJwhvtWpBO9wdE2bOYNObkNOeAymwNivJ7r4MQYFFYuWdqXiwgYj/AcOZJsaFNdEA/WvdAM12Tk+nmw1aO0EyU+R2EKaR3GeNO6c6jdCL8v+30tSO70gwExOO4vcxsEamk70YN07FWtknRuNu2OmL3UuGIKBaNBVUfLL7+l/DKrZ+ch703S6GZiDNeC61b1dqisx171bQerYEKICzepjuqmbSBdiERGop7zgrhCMiFUuuyZlJvsQ60jr0Wno07cPF09OhfVKbFk1PxCoqtioUp/P4SWehOkKiHd1+jHtKNVGLqsn4lwM50yQwaPzyQe44JB60TWI8HKxpE1ayx2F8OaeZq2s67JGDZllm9YxIOs8PnhU+uZHrx4xf4QFzVzsy0fE+mp23MdREfnehV1aKMCmAhVghSYWlF08wfMB/21nnTrvhOv1cYlxZzz0wYgvSzF3RcnGzDzhL70jJ3M6zFrmrn/P34C0X/jQxQc5xuOxGglXXcByF+MC32e3PmZmzPnP4HeNSh9o585RcSIFJZjUkP3JFShPEaF2wxQ5/PuQCNxhdMjomAAIVA2Jj9awDAJ5zZjbGePS/YzGo6ofNjlvZrG7Pup5UyiMIfTHNMMa6XEDNCpEMjWRBttsRwV8e/Zyoj4Q2RnlTx2EUzHccLfsumwMCvvuu4v3N2qgt2hEwAaDq3wg25QDwTb6grDS0pvN4WHuQ1DYh0u6wWFpV9uYsxnNixpACJGCOiB0sGQiMh7XUnofbNqNwDn3DBnqidYG72HLhv+iUis4LMWrhYUTLdyxA8bj2F/5Vs5eXot0U0k89eA0zTdg7Y908daU8Jjurf5/SczAymnfpwpiNXrgLfMlq15/ATXrZaLzL1AcbzqOAuSFHRzswvY/PA53GV8VH2TqVNYnzVi2UR6v3pFkoKdwAc5AGplbR3JNaRhIo3g3gOXZIU3AzPvz7mf4yyCIx7da9c69I1MLBW+Zo2CO1KVTCrdfrwaFM68W+52MdoDS696EEwDZe4SThIw9pAUMiQ0O8PzMDTmGe1fekevk6D15Mgvl/A8USCwndt1cnEKJ4z/ks+vJU6lnMDXfj2mRfCI2WWOYPuAlkatVYXuCHhcCdkHxMEW1uMxBcIB2jMzWo1iJ4DsA0oc6oVP49wYjnMs/RAAxSGJa8VxRjOfELCpRALURCun6TfsTb/CzkKSn0McbWgDcdG+H46lKo272m8NlU83IoUB35dFSHGk1+qFR4ITTo0kfVwBakPq9+sI8MhWYtCGYh2vxtzZ3JMxEvUdwomRUZGBsFFO1gYZxRb4G2nZhRJFsnH59BJx7uzbFIZkOm7QBgMPz/DBfEv7QPT+9PTIZG0vNiVMZsOQ505aXhd8a089Coqs65+oJooTnWTjlknLAk3R8bO7Xfkp08BON/uMJYVLFonchrVVguA41z7uwlt3h7Iw+U6o+aEU0uPUmtviI0o43mg1psA59kuMZRobwLrs0twbFh4ArOX0FiEUjyttgnaILRnCBPVRKyd+dPCBPUygqdJ2W+yiG02ULmYfEao1f04gzfnBoVHatC/TDdbROhayCKyh7rCPS4l8nbWSIJN9gJjCQ2Y089CLpLlgcG+C6ryVAL9e6gj7oOgo4xUq5wJFZid/EJX56iBHGV1PchUCgB10R9ggnm1U7azynSZi4ld4jLQdmFFaW9HV3sWh3zUfDGQniDNQ4xmINqW5LIZ2+9hrgHiLFHzegZuK3nQu3WsID+TdJa11S3Ne/Whj4mXsGQl/3tPntCS8/cdr4a9TRxgemydR8+EtqO0oQvCNiywnz2HJBefuDBEDIZAxnT01avk1kVP7YWUY/FYIugJDE1l99uBMrP8fEqAqlsgDlL+vK75bBrlWbboUvIUjfvg9WadHwbjgI5xUPDDwczayWDEKOuf/w+JjD4+9Ze0dj5tVZhkSClIS3BUt2ZUbv6N/jSv36sNXtlNS8B+ED6oi8jRKpFg3IE7d5xAlF2WKzjaPeRBDWcDWbUWUUoC4/QAH7TeQOX6EFCWg8jWFRW6tgYRbauur8ojb2Cc1rSiTlvOxpaoFgNwS0DKTXKLnmJvR1kKgh2R2fOdB7jLLjqUfL51QGV3rR/UTSdpMAUC1sqlPEFJd3jYHFHs+T4kRq9zUMqT8lXo8ArsY8WlXZbxbKLdh/2eq9xWAmQHMOP7cMWbaBKqZkTZpEQZmB8dn04rXKMyemp3ppIfzuH0OO9mBXgcpwipZNG3sehh7uoEcbgiRXAYNP9fJZUEj7/HNk5AuR/YHxNsc1klWBPuMheOlV31DQnbfhqzRSde9hxUJIal83OOKLpPCD9bwEH5CxAfdG4/j5mCnnLR27t1p6YR8ZfUkwuKxvaITk52sYL5W2HzZtrK9kmsWRnGGCUWLhrI3jF0WCnLX1tqNNJI58kBaHLwkiOhhBR2uNX+cPoBx/CJkh/7WxZlYKG3eNmDhbPR8UmnqilavLop0vFjWp/gZmWky1E3DubML5m+pvBAHXaSVZdwoBl4+rTbvhcQs1p5xQ4LotHL8PQooDUDU3FrMMIO5PRqsXOdbfVD8+/THCkNeI7wVKR3S9vsg3WqFP8Ir+nz9YCm3Nbqe1+Ck4GQqaKnIIAwRiJ+e+qZZnr0STwwf1M4pCnK7PsD1W1F5RfPefJJs8cv6+Cg18VJ3Peqa8YkfYvHinS0R49zCnyZh1C/YaqDl6puElVlCAVq7LCQ4wDEHkqDLyAoQHH4YiSn3Nax1ztH2Ve6t6zuERveELm/Hu73Q7cZ3UkSqthw1AKGuWzYRofcU9/Q01qgRDAVZvAefvO5wVMoKF0YykZfjSj1xOn0c+gMX7/G3rPFDATlxjrL8jUHNzbc1KlDF7VyPn1CefE4V5PGF0sdT169O39gCqAlH7pdTFTBkbOCr9X3Usxe9cnxAGrAivxGYW3lsNT2FDwOrg4IzDqRCsmVo/Yl0jKZxS8wR0Fs/ecFVOLwZsN22pX0T0DzeNnGa8MG4JvGuigXS6oIsa67TEciMAK8/POapd0YA0Nn59BYOc4LpdrwYNsqoQdEej3vPv6SXeXzIcHILuTcsCEitiunDaShMwSWk5Cznb4B60mgokbdfx29L9feKmrNhQTtrYzG5p66r+89h6Q17Uywx4WEGYaaOqigsDWLYyNmtqxjLq0X9jpqsxRuypsyc1jYlTogwM3O20Z+iFHqnZC2f2p6Z6Qr92xpxVVQ2ltxxB/jRRS9PUCoVXHcfFlYiPb7HZkJmXlzcwmNE+vN0daj340GvRACpOifQGgfz5IKi7X3ELF5tOPw6lH99onjlfG3iJCA26wEbK08r/qvu6eGOe5/6FLaPddaeN4Iks1K4Y0sLoOQd2K4PeqQa7LsVNHU+EhgMBKMcVIRIoxoIlP8fLTI9RmZskK71Xq/tPO0VBLgScROtGT2WwNIky6HwSQVLz0xusg3R8e0esWQE9Wu8LCt6i8BiEz3PAQlrJzP8DtuBRHSYQFBp/sUl8QdKtqUZolHvqsWL7Dv0EK9HiBt6KX8gxcK1YcdZDWYIs22wIdrjDan08fzCHRkofXFU6ENUp5AmtWbESFf3V80HyjUF6huXNeNBDOLm9KqDr91rarz6c1qz/eM3WiTsMybzqz4yCj+fJpzZs0HuONsRTQVCg/afAJLYuUbN+fyhaLqtVoOdSFAj5Z3xiYL9htaM7SybYOL4W2V7XjKEqQmh7XHpwUNtidiP+G+jUAw1umM1Ibi3hGGZJCIJXnPuV2oOZy8mClPtWle8aFO+Jv76E71l03x3SRx5wBM+gPjmEFyxipRUD48waWicOvHFCmUP8fSR3g2LdWe4aojWIdEw30+Ef1N5rYh7fu5Lpr8yPcK/9amVbOMt0EDjqK4CGxQRpnP7kfRmVkXWHeXpVu/UEsIGj38jvCszBuVnfgnbGT/+f0Md1lfXVeWMrSkDX+Ayz32Veq4xwYzok42Dr0CLpQxR3ejwomXv90nruWG2qhKuzgq9g4vSoTPuI0kpA8DBe1M+EBiWTAVjw7tFHJJb7pxE9a7+cz0EnFq+u7xlzE6ARA2ayqdC3T8KiYvrH+YNPQRLeCTFe9UQ20+FnlW9bSaZ8UnOdBTGYlFzxKJqMQNt0Uhloygtgmmj3hL/57x/tCekyV1MPH1ViSRTngjtcef92G5xG+E5OoRwOX6jWxW9+cwXV0X4Qri0omOUjIliQ64HcNYeXxVaBYfSnfWBPGzKp1kiJl9D6K9Yg2s6Bfe3s+D7thtTA1TeqV5VJgLvr4aHE3hJLDH9RCytYWQBAmyLrRQo6B2J5FHB0yX+aYUC9PuOLfev83Uh6KGOC1YasyEc0lE0jmsKKFNH+eG2tM+Cf6r6LkJPNnRLm8lRiaDhR2ThmXKG0++VRn8sXfAtvBR8kOeHa8U0a8SZWYExNnpw0HGA6RtU3EtmfIIwsWM0PxiqAAVxqFZ/WBwMpNXQFoDr0D0WUfEPI2oBnR5Z69JBNwYMH84wqDir0wOX9GaROXe3XuVfUzVG71ov7XtQMIlx2uE6CaLop5HPn6g+M1CMbTKV6vUxzucIW6RPUfb7xGStpi52wtozQzhage/RRTEt9HoSFeY/bp3k/AOA9JLcNKD2cTNN2SRkFc0bXYQcqloeXK4KpoTFCEqHPP43RcbjE6sseLw2BqPjNn3tHTK5eNhmCmnUk/J/rYeVk4a8C7ujj0TE9iOEnyXdZBBI13BfVot7ip9deinCTV6BKmGULnasPzdtyaViEzbNVygK1Lg+Uv+Uqp035AFOeu1Lq9oB5Q7K14u/UDZznffXYpwq+nMNujRydJDau0sXrSFgD9p8TA3eXC3VLqSKJRtFU3/JYsybxLQZw/S3tpxUYqcy+wqnjPnAJwx+xNylwUgfQd+OrgqnvJetOBAyKSPckHE1VzsLm0FTDQCr2HDYcGvpVoYZS7mhU2vl5JEfrklSYpSjt7PMCn0+LWfjAu6a5FOUHAxW27WpXhjSkcI8IqAp12IKs42PJBfsmAEtgjEEfrL/sR9kXdPp49u8eDjz/+wsKcQbeHC/rZwnw8dGHz0i8BG9KneIBnC42YSyMEgk4gth/KCE5AmtWl39HCeLTWxoD7cQm/ThYyb21xnm4OnigjCSwVD9sIajmfwBcFqOKlzxKoAJ/s/ZJdIyFItyG5AQZ26MfR4dIf7IwYe3IjVBOXtIb9V89ZV9hHSuzWd+OY3MKKPg1xWhyDhL/zIKjuX5jhIW7VYosAoUxL/i+RiIAwDxvx2Asz8tzoUtW0ZbY06qXF+b2QTySbeTGKLPBlW3Owv/fv+n+rFTI0NkvCyaJ7pT+P5LJ+vpIib1aQSL9LP8BxTj6r63dHAKz6NvfE+Ci7m8rU1GSZ08gFjK3PPQd7ic4OzQ/3n1meewx2dDk5CcpEeSi2cGCQ31Sz7CIn8+Xyq8zePESFgo4QA2MNNdmZRd9G5/0uDgg/LSljt3DcVuQS018eG5fHD0TRQfwjAUHCWZsYDuStwHzFxXPsaI9UjQM3nAOtO8mEJCSemoz6GMTeAShhuyp9wCR15EtT1f3uFv3L/5A6wKPu127PBsKIe3CDpu+VLm8eiywdNCnW+JULKEndgxnzpAL0bf63YAw3PnEeGuke71hjAb/roE9HIm3fj3emi5fh7S+AP65XjhHvahLZbmRU++8niVXiD7lshoN4KnR5mhhJ46+jEfzEz7TtOEyDm9PNwoYvcjbb27Ww2OV16lb4BTop4dFf7T0fQk3GzZqmxKDyYQ4M/BLAt7ZBfR83sX/s/0PGIYFq0/broSKTbnbrQc6PTOnMeszw/oiHoouRb1xwbbwpSaJCqwiQgovIshZDzW//0uD7dttUDHapL7tv3X/+L/cP0Gz5D88ImylEIp5KsTTycxiWtFXrlR7hBuvlA0RUT1e/CkY9GciOnkavM6fxTeonUp4TzSWJ5FlNmdn80Xpix0TaxtIs0nL/gT7UNbM5TtWV0qHJY4PtVLXV/tlTevWTRRL3IFb83LQ5RyqlVGIYpjt9p/Fk0T6DIdGdHt2QqlC9v0AretrFqjJhMRQVzoc/Xtc0m8hADaqMOIdZ/OaVWmxc608kqvGbl6fCx3G9mwFSPjDjhwT9Yi39j1Rf0justLlgDgVgcCnq2pLTRZWwMp9mgh1W28iDPgJ72ENIWuES5oKSOF/jc+KRwuqO4BVjigvOc9kbTinqCUpbwALtH/iS99Zn+o5OWroAlXnaxUbvJQD3YTOEJMC7Ih1EcPP78k0NNiwrF3AM8lPNTwBoqmzRHRfQGchpIPPR/smMS5zp9TdkVR2jSSFXNkwtLSzHUv8Vx9Mx4lxHRWuwhlPeeEjuV1cW2mIa430jDbt+jfVRkQyxd1YX+ietv2oEyDcjLorsN+4VHoT4IlEKbUv2XFk9SCeH6ecYtOqL17Z4if//HVDNuCKVaxogOwNgpJryzg9RGagBxfy/HVrEEu4uguirBZ94aJ6IKvTT9ItdONejEOOpbY2VZ9rjjCxNnraloUJLjnL+9Kw8TM5ZdctaQ89GpHgTuj1oKACD0Z7Y+wM1QHmw6Mnn3khAQrewI7TQe0EH1gwH4heTzIuD9WE4hH/2rfRoFzM4RopLKdVL1OOvao883cpe4h/JW73kak6KHsIkoII7VzSt+eLm2wGHVADhc7PSNL6tFVQt+aXWJFMefXDKifa+s3CfTmNCYCTLeJvriXwA5/PrTwL6815my65G0Ab3C0xH+j9NYtk2sad8QO+65Q66wvm+XeIyoSmFDL4UCLRPorj/xUioBoP/dqvUUhW1FOBgUyvX8pchvbuYhcg4/8XtG2G3rELuCzdqmnX3NXrzHsvuDJ4smc4mvZ+5U+fJ2RDD6/GSj1fQCNrbRRYpn+Oyiq2Kmp6Irye9ygMEeBH/22MDp2vc6AaY6zdl1RRlogibX6yZLdUdT4PjRU3RC4VQJMSBtvVk4cPQCEKtz6RzIZtvyI2E7wvVXB3cHV0Z+y11J/V+EYCxk7q0urxdeFX/2dZ6ZW9wxzgc4HusTcgWpP9UndMD3LYZv9uLwa43cGy+kRNQIIN4j9yFmQYCWIQN3uaMspKvyEi4UJ2aaOJSJuCY7G6ZV3y6YCR5E5lKpDij63auhucwD8UqTDKsjEduk1/l5KAAALOpp3/InqG0rWqZTZLNHADYI/suBCPpmHNvb+xRcxdTNZz/2MW3dzMUdIs0OdT0zcPaeSicTIw1pXmnw7p6RlYNPlMrozYbG7kRZDncu1+zO/iz25L0hgEbvyyub+o/BvAE4BACutkTh3QLSpUtxVvaiLkxDVzPxG0ysrBPDL6bSGtI2Ew4/AM65nmzQCrIyMAzu3fBw+50Yjfk1KK1lpCryWTtCvQ7anvPCQOsWJS+1pXFz+gvIr8iQ2Sz2DLh3h7f0PvaQO05VF/O5bwlIfXIqsxZ973YeVKehfxRdRsIX0TQ8VZmh/dFjBTn30ybBLmJKW/O3uktTPMCMXBmqGLE5WTEiujsGcKwR/fw3bQnKTQ/ruVfApHEreKZu4UtdKxmII6Xpw/VET80s0FiN7hO3OL2n9a9kEHzqS7+7oQFdsRLbj7s4siP1Au6jOFzAhFGohy9XHREh4OZrPs7eMc0PGStJgVxDtAdVi15kDIUPGpc0jqlt9sliaNZM5FIOc2Kde37JCNa2O+XK0NAEkxjN73DSRgpfXcKo2gPDedhXUMzDoc275n43meIbfTQfDXaHJpZz08hT8EWLgOoZARA/Z3PrHtjaVXNILjUIlZsFeUljB7/09FvaysovcUVhKopRege5PBAofOqVAMouGP2Y+qxqW/iZkTLZGV1Q5ZoN1ZFvv4o19z3VSEdMQqmiwNzAGBPcHJsH9gHpgPPbDx+5jIVOVPw6EjbvGmlSQskTFoNE3BQytBezm7mvihAm5quzJp+snqfZVmUshydA3oc7L0pdSKNNQlrr60sXTdU+wmBNS7vozH300mYiADET3jJ9NMmZusje3jp0TO2KWCiH1i936G6XIPibIds5i6aweq3VLas3ja7dSxeVHNw87VGROO+VfRvr++s/QHDBiTvd8FciSzhV9rnvlLI01cDBrdUk51r3gFJYRhuoI18pn0Xd/YoPYYD9AS+FSozEQmIlvWzwGAsrBQHmprmwr2KtLwR9LFoXdOJ44fTbiijs1Q13m5/WCf2ua7K8mZv9MiaYRntnS3QE2+832BgDIKJkpGLgB2QFfLP81IsVkg29OzJZclYAHOrcgdX7UC5fSmXTgwhTaLNAjbUKhE23dFQJztsvDf6PhMMyzhrmJYjcrPV8FCl2ubNi1mYT+heki1qiend3y6CHZZML+j84eQEa4B4nNXkazQdAIKiAA3mTNJdODjGXLGvrD/FW2juUf6Wfh22t/H21m0vfeW+SXDvV8oexBwJ9xzD5xjh9lqO362Qkvn9QGdAA3YJkBD9Vtwu3TjfRErncG/WD3TKxeBkiWOPsjfnax6NF3UOR+V4Fm1gamQdMuD9HSjW1uGbkvR/rqskVwz4vHwNwAie34YNxRKZlBon31k/7welsvGi71gsmsDQ+UEWEjRQ6QEUJ/2I88F5BAyGPebR9ItU8SCV0TWTYrBi84iDwxqUmoVdLRUYxjXdDC3Dy2lSNMTacMUyuTaArogg4khnAANPETeOUu9uEizPrhE0hVyPACbThm1WBQz36ybmiIR246ejFTjH4FqaxeXsYEHn0cwv5E1KnxvNtnLFc3XXdRljJ5ky10hme4xoJR4h2Wn7nTiY4Z/0SBTebVLBMycjtB9S+yBplrZAIoHsYYkCZE6RGqOwTFNyRBZKU1drGDqNLpfd1tJL26/LTI2gBawOsxBBWIQTvoic2SO8uhptu9ZqHlQQxGx8lrK1Fu/Nio5+heWLx/u//RtNyK0XtvHqvcufvRb6UXSpjjENJlHwHivL38XgEmLOYYQ4h0e0ooO8vJmKc8p5JI1Ej7k+kdNxeXu1kfPiCkH6NyAE3RYshGXECk/CY/YvuQ3GmCpkI+bkI1c31pLLndAl0OxGMGiTmH+sB0cVBV7IbkAPmENIiN+K+SnIOnm8vX3x/sxseDInERCz8IysJG7mtUBFGwNtixcwu5zmO6urLxOjVPzQKj8PNVhjXu1NzvR+II1VCaCj9wi/bP6Mg74lPgNMK32f/ix9zRUMM/jPoIDFEOOzpkmOuEKBoaylARRlDf16tVqh+ZelS6p2mR8Hi5MqL7w5hYd9xfS/7JoVn7W4hlS5v2YhxJi8F/kEPPa5GVl5iYoo/sKEjHCsnqDRUimwaoGExbTxyX013A73WeCKK26EEBZv9DHGAZqIL99J7zoSKZv6LZ5cYkm/V8sqz46SUuZAuVxPBQfGUNNF+UDdr2wbRsujgl0AjWxFcVEY2nGetiIZWYFq3CVhNkfNxy29YvP/SIEAY7xgZiFVqI3FcyaKolacAfy2AIxbiUnvrymvzYgC8D6EQ+WZBDBjY4O1SOag57wdDkF+DfxFZQTE3AvVaxEoBvB0oGi//QVcax+FtKEX7zmVexEE38Aa3HcGgypPlKBLtKq6sYjeeQBYdzAel6EzHtY5P1r5dhbR0SYOdTNdhdg2MDrkZBORwyyvHwp499v1LyTtCFf85w36OvqhTSG6nkmaUVzPudadfaetoC54wReM9+4nr3ruXUUB2e8KVBfv94cfxhW8XGoB8m2e3p2w3e2ggwyxLy6FHbNwpgwvF6z6zkChc2hIB7uwAUuOO26j64ZlF6Zyiur2szIqvbb2Cgt8mCJ2ivbsbYjy8eaWiZCVcZQdfJMOavhSBtA/CT57UAlBnANO6PXUseiIOwETxCQEuhQww0MugndMAOd6RNoZ8WeH6iQ966zFv7SBwYa6Gqr+jPN74Xu0aE7OjNB+V+Hr+byaf7tE3APPhbMN/D52Q2++C3lPf1xt5xbZSV3Se0BVq8BG1wAf+HwGjjQMS4giDCK8A+xqQpPW1W1YQxgJboWZzXneEO4/ncq5GOpIOJociK5nzhn2leN8cQG9ykllcY1BRHSrsG7Hih/YWXVdfIylna0JgHa+x76ZI9FkaC8+iHOJO9wv6iHABT1WlYFmmhfSuB00lvEU4mRIjMLc0eub/50ZVhp8jqc28sestv3DdH+TGFEdC2GhiM0iEbcVzrIhYxLiiiH7vH5vrvQsrKgLiE4KbQuzZCLJbjc0fHPIczjTQRCYvygK2b3cdLHz176kqY7PpXZLnJKbR3uBSaCbkNa4ouBLdNuDeOpuGP7SB+7rHhCGCtPbAMG2SrFqlbKR3iSX/stcPvEq2CPiVJxpTBADvUb+cQIbyh3TtZs2G0w0LaY2o6Rm/vNoBd4XVxw51pF8L7HizOz0rOZbLoG+WmO7BWj4Oaw0Yq1HtOQW6VLx43aiGA+qPzS/3e7/995QX0DDSQVG5letXfoPepv3I+6gxEFfHiJX1hX2MHpXLB+k4z5HUYwcAjfwQPrJ2yFtnRqaQGc7QfguSVe9kZMVVDVLXsu/VeDlN+xn7bFGA/ZSJrQB+q9I9UqDf6oP4k7S6TWZlkEK07z1kXmsEYNG+wLm4pNCXksofv7+wOXdNhp9EExKxN4o5RlTO6reBy1YFrwj/r4qtoZVw3HitGMaL6M7nPLFdW1Xy/vf0RO7GsND4j4oFfaO7P9i5oTxBifG4PvM9LNlPMiy6G5E7GYWSCX2iNCjvuXcvifSyZpQVYWX/oG5ISAFFx408cc11LQ5LM9rRFAXHNDM3Et1nuicURFDu2qjL/TKxVjSiWZXk52fm7cAckVylMIP9LhPYrDMJ3tQTtAVahVoOHsq60jMOZWb3AEvyyfwbZscIilseMmeCQXoASblikKCLSgqoh2m2dos5iL3BPalf+3RqM+68RIUoMgzQqqdnsTQg7y+0t8NKN1K83M0n+ZZEYUdU4v7vO4BCRtZ7f9UOhz6eNaXvUTT55ZkLoalrmQdsn12WIZEeJFZgdwjyblZslLo6sLfePk8Qf1kQYARsct6Vi6aCEj+njCqrYfekpel9oN5rFGhoCYH1pLpwLUv4hnWwy7zffJKuhBFwTmSU/uIOisQzJXHvtLrhR3GaU/DMR+9hvxJggGBcdiXg04eiaJz1NfddQDHSmmCC2NoZ7NiYjP0Ffkw9YYqXkdLzzz3UxRd3WF0XJcKVRLHEAVdTugaM9Y+ftX0AAWFueqZVgBr8vN1T4J+0SQ9LwaTkd3PQ+S2ZLtrUBVOZSh1OTiaL+W8XlbOdN9hh3cH9FPTRM7oOLuLkjpu4L7YzpkZhu25/HUBtnaXfq0xzg/Aqju7gDWreXagDVxOtXYTTahRwbNtm6w76lh7va6Ep2mDrSEIQeE0KN9+Xv0ZrVAhwsBe1TaSLzcXot9xUVe5JrE0aQofKaQIJ6RobuDUFYiM/xZbXaXfK+aVCabc89sekz20Li9cqCB7viKefYCdYogYpFlPmRFm6lkoEGGHbKR5vvR3YQCa7Rfi3PeMe2wyj+hsRkrabQfGx6OyIiFeXOOhQIfd89RLTqlHLd5JKWBrwFZkr7JIpDRYLCGIS9k65QtF+Isnn+tuttFOPd7O/F5Fhk8+RZpme0xxPLxmrNpSEhWVDrtM8IifMpXAbq7o96FnegU5XB9tDf2oqxidctuPHSIq3h0539RQJCZn+bHJpK6tC/n91Wc7jrgqGMWqmItJh69L9kovATT0DiPPbOW09P0uMzaoToNI/REM3c2vGB4rvItAJ6WcB890SY7yT7pxS/3coMtYqc/XiEIXd89b2LX3a3HKwuO4dCnZ/C0bPJTReXSqsg7lr3K58WqkjV9enHfTpE67zai5B2tLFhEsls/6uKxCZMNHOhGXELkEhlRnfajT0QLlc2bDtQecWhj5SgG8f3psATV4xUJcM3PkDOqplTKBnQ2S1d7ewZ3hICedWtGhFW+jZQDBADcu6R656+MVKTk+nPFHqJnw28pkYVB663L+/OK+uzkAgvJ4E0NvGTMyJkEsguTPecjfYVi2gWJ9KZ+DDIxEBp9UdZ8MvbcQlcgJrveu0rfRsPkurshH9Pe+VM8IyAMPGH2zMZEAQ0TAA8tuc4G51ebJT7IUFqH+Ra4LBBfb+H6Xk4BZ3AKaOtdE8Tq0zx3HYWynqtpPl3Y2t9vE4Aj5hW+p+KhVFuLhHkPK3DwEBAW6vDvcHjPwgGxmlf60BdAHXlzPRJLMEciRyqAfAik/Quiqxs9p/M8u4Qmtx+aHAfEo/G+2q+pKeemk9n/TZcb9HW793Sa5up3sqC4qdLaHReTHQONOZg91RASkZ9+mFfKVXXkMF6vHJQORRDRkVblCdlZuSkib85dijokf8NXdJGkhssHP83pb/eAr8ODlGHQWWbDDzrhp+OiHwfD0TeSWXv/KLD0pOe6pmntp+cmLvht8XBUxmFw1xzueNB7tmb6gyI8nqXiJ6ti9rRkQZi9LlDt3Sjk8to7gYsQk12Ew3Q5It94IVA/8Plsahvwd/21hCjb2Ruu4BXFnvjyri8EH+cO0HPpeqPWOQAegAbo25fq11dbSBy9+MXlnd4Ew1N+seTvV4S8eGDlTToaBuOt/NS/H0DHttRo+PeKOv98XM08bCusZraHAJ+fZmkEfcxsCoCwhJxVYXeDGKCxibugQi66i/GwpoEApwSLd5QPt91Atu3+iFqdTI9a7RGNuyztb0Y9OUyD30OgUSdoySC0agItYVEJmi031xK2/oRxaelki2M49g6PnhvBy1lhCfny+isU7TooBFYmKkdObpNNxFa6/cXq0qRhYe6BJ4BCjEkJpaJwLfgDooRv7wSGJ6bLFtJTuf/b3B/PH+lJ46VUZ+6mvpejcnKe56cPfwwhYBbkizYeGdHrRldMAUJ3nDI9btcecATb2II6c9zwr2ZSN3HMHjvyMkGPCNsNOBj8g1vMI71RsFz9F0ez+AJNTPi88WLRSNDx5QIRTzSJsjbm91wF+V0rra9mzAo3HoEgnoBQ0lOPGADlhZ/9go6NKnErQzUr8Dd9x5/WWLNgPiF/yNT9eW7yOCBElkEMbhfdggWnMx03JQzLMK15ZLXeVE8fHqv6yT6nko6C5Zr/ENCddwmoprHX5Sv9keuYLS686hnf5bVeb7CUL2W9k7gY/kw5ypCM2xBCG+aYN67kczTD8lQXlmGnT5gbEcnp4lVFv3DiZI/zHx+JTj1yeSKurCfT11E7mvWaOHRG2gPH2X+1t+t1fhLTY0pDcupUzr5+VOgpNM7bOmTYumDCQcEpDhyyL7PCVqUs71v08jiWtgvEdzl14Eo3fxk9ASbKKH580YKi89c093Ji+nYhi6fp6jj58LYcBSKgHpU7GoEY4iPKhPjEjU7R8Sc/kFhKm4gf3Ny/Snds4HsqTZaPJ0m4HHKjThEXPToH6EqWiNm3fUp7IakiljHo8PcILbeybonACBmPOqecS1k0z6bYsRpVWpJ+doJa686uONz9NrILDIl+EkxPSg1/aH4Lhfx7C613tp2tfhkRehZ1RUMeQu4ZAqefTTYdsSR3MrlV8yaUgsGh/+fI5lquiSVmu0+jDrLiR0wqKUu188c+G63i0BzrLPXoynxCH0t3LZ2cV7qTrGGES7pOwXWiNaXuwaN7sGNS/q07jSM4706GIbYw6URJCqSPQk1vKD+Rw4gOdTsLqt4dyctICV9+aUCzjQyYRc8fXwQqxqfwk/gGJfakiojWbk3Kp2IMMMNN5OdMduF7FywPziu3bJExhvZw+syo0H4SXnYayiLxkiduAfqvdrKt9T7CnV2Ij1r13yjiXHJarVlT5t0kb2lCcsLu5aqj3mI4zv5BCUmX2QXDvpjjMkh0Yrlc6VrDZyn6fKCiMQBazYSV7/adJaVKIhfKnbr8wv33YqHATHSVbAhSclx2NL9v0kjCO2QFG1eNVIeVpvaFfo4ksB4Mo037b5DfnSCX9SSbETHijmH+s0A+irUm5dwBMS/WKzWahNAiQ3Ukgo0z/RjN17u70eVV2wb4RQ50NmJBZZF3e8gOwz13t7HPUXZbr0i7WLZPzHa79J1FDh88mL42iYdBpWt2oYXNX5g4m8Ku7Lhrf9MZrYE+zbbhR9w+es9I2OvtcSwcxgIixUhFpt52cBw40PONdKnMgdDg6HVKor17al/6M5LEtVvqnuwl2KNKZ3IetlW9pVNBfYcJ6cutMan+yGdhhz/sUQ/ATcqlnhulp7XsrSeDVlurTG3x+6ZJGjBSnjR7cTIXgPldOsr4WOcW2/eCWFnpTSnDla+KAxGLwopFM4WRfn8IG+3lzibxM/rqpKhbTuUUKLFEydEOhYNQJHL6P7Ho1Hx7FuPT+Rdan/1IFPwrvnbLA9DG4Xz4kQtFj3SSqJNN2DNDk+8h6IRWKSBzicu5CWACsvE0LFhMfF+V+881aCpwkDXLqYb38wPNTPNHIqMASKoFYdFv473DDRuRIjySvI32KmMSQk7KRjBErQ8XeGzJCHUBHg+5dA9mednkNszCmZPaSR312V6RYN26K/gx+dGoiQWRx09/X9fmWxzB7PT6PnoXcErFserd7vfTXbEAFZUi8TtzSDvbvArDt+7wulJ7Z+q9x956BSSghr54FEUHaii4PMcNHeHxMDtRLBfOi0X6InIkPuCQPoj5m1V+aV9vpdCmS3k1ccIKiOcTr/Z1sglMx0OxkgpmEyhPFAs/FzaLAPZRDZKBlh9l5UpcqUgk2U6/mJRfW2yduSv+h4i3UGVuQabw3YcxB58+GF7OPdqFXvlbc/SBu8zIb2+UwDchWIccX5OpTGf7AMljGPk2QiaGpaaO0B3esNIPW1AQgh+tm48Qb4MDAupisO6ptoAL2wsQDv+j/WLf0/NX66yGfRVskogvAcF6Rtf0CJ9cdmpXNMSjlu/1fWAojcuQ02AxtlghJlPkN3uwodiyqe3n5r8r4cH5iF/hPx4DwZhNoUU4Z9sj8gI+ClQQ7Md7cssHB4l3S2ke5xRnjZHBqCd7cXWcvzPgumyjyVTuQ6XXjc8e3waSPpQHVzYr7jxC70s+s0xB543Ip906Q8Uli0kCXMJChbX7GTgeG02jmyrYZl4r+rlJvFY7kw/ZI3t5WEFIfYUtghDduSxcCCtv3Or3uZTb3V50+gLWMAfl1EGjV4ipf5T7U3lavKw4jQoBZpDkIllgWV2DylE546Cm1+CG7DMHL1aenI1EDQrsUifo/RRiWuSpCFPQ029nbeMrhVjRbDimmWn2okjL0id2aESchSn3kdplnDWu06ePVMIWjRQ9EInyGJQAN6v8sBhFkUb6HfrRc7XG+v7AzaQSgXBiI7loQ0HdtUoU0RdcQnJ2pv14VuoxmZHTp06SlQX34EOUkgblofMHmRQYcSmOQldRjQxHALpZtB3SNERrRvPaECc4b73EMZev+iip5A1hNLW8QZFEIed2wrKXVVHHzZiXDfypaDBrbNsKP9cibnKT2MtEOYXptZOuLuvhBMuUAY8AVyRGAyLX8S5H5/477/uOoj7S184n1R+1NYQs+dqtMtyx1HKF3KR1uoEaXaJJiz21hoDsxZCinCL4BEoo7QJZmyQ26DH9SmFGYFA8FfOKT1e9ADXJsG4vNkMp9LEh77xJliuOC9cDYqOQqOPMx4AA3BTD96VVY+CC5a0m4tfqUwCfBkv3jdzAq9YzMZZJFp46a4y8Qd+yxy5VKPq9/NUBJrjZDAtM8V+5RnsdpgelnbhtamS4kUaHpWwRyZ1abagFEEvZZJ19z6GQRtw2bjSkfYlkglLN/XQ+V/ciUYVCjEU6uV1JSs2UzkKRXM3teM4t7atoiOpBJ+eX/LT+fZkk2Sq60H2St8e53CVPq5P3etsbimEZq0bMVimaNczjAL6QIX7htWqvdlsQG/54hUhCLQJ6lKKnXv/jk/k9WuiqWIB+Ub2rURZeDRnmCOONYhJbogBz7qx7MTr3/KIR9cbLNOLz9t5bcKc2cibidSzQmHJWmjf+BS/BgNoLOiH/RQ0daR3uHFg0TkuCtqAUyASoPf0KeI+33VLO27FdWid3Hxb7lT1YT84HzEyhYhy9sa8TD4wAccxVDMohxHDdI9J8Wpv8f4pR7qNpMROhOQj4TgVwFxzh0zebuh8FARgzIZZ528MOOTL2pjaCcGMNohaFRHU0acoQnFhtVAaZNHS7cmvYvdyfKN6nczUdy1hiqcxGecC4kmCLRCs4loeW5vDt05cquh2UB5gpz+mLUAvyI0gMGAeGhbHlwVLy8Kb1O+HIF+LRtxvF1ai9tQr7tNE3tQDJwnE3EWxn1pGzoXCakzzfgdzUoqu0amDBTOjenGU2KMu9Ooa+dbznwRo3gjAxdPBhq14+JMD1csKSNyMVfYlI4fkAO2h7iATNpsjIh9ucLHNAyfp+2AhNMWKsKkRRYAWLxaohZHIzNjcTHL6mMoyz7TwWK8NiKqdQ0lWIAnq2cnhEWpC4UzMGsuZhAjAUoSZRJValKk7VZJVQ9mLvNZG1HRf+avIP57alirjmj2Ff3FxgrIVZTZ8wro9T4ook42MrnZCKYQ4IoyrGBM93ezajortVKNzg8TjlrGXin4TN7bEo7YTiO1YfB9xtxM6fWA2ikVcQvZSSAfgeI52pGmSuHRPqeX222q0VKSGGlJlyxwuteneZFK2zWgBm9OJDVpkioxJi+DHk4PvhcJDMxYIViT3RPBeYGOKza7zXN8ssfw1zeyQubV77BjGMTSUl3wE4ZRwV2NwAMSVqinGU2DK5y82koSGHsQAObK7WhEovkLpFT5kQtoRbL+/N5g5tpm5h6V212H1DofW1F623OEFY0n1j7dfB6g6Z0qgjjzrtPL5bOswBYuaOEl16XmKLlhpB0ZQFbUf0fjwjhujoGGO14rtr2WWOwEUqeyoxfA8xYr7um9vewXQtRNqIV6cEgikda113SDw9sXZ3yIGoqbLUlP51/rOYoz7kcY3Jpl7F5SSspnfH5tPwp/vK5lyLgh/s7OoiHOv5cJRYHqYWDxFa35jL0K2uMrstCs0jtSgH8ncf2NO49avH2i4znRDh2wyCvz1W48BjpqtNfyg6BLpq2QgdJ7DiQUY6ksGSrmDfdpxpThnOVPDJFKWmx5Xf8p0GidbE4VgQ1pavU9/0KtB9H26uQ1BK8eWy+z6RRVDNUG8wbnirs+MVnLB4BEjlKKNdE/2dwd/SRY8mjK96DREX88DICJ58h0M5NXPYqfIoyeKbbdzWQEMFqwqBu/sYSxyM75ge3fNdU8kDWIC4Z9ZmWwPC8AAbAKgiqzfy8dv9vqnPEMb7Mk7JZOutuhGVWAYzemLQ5AZVSY+vBGJH3qfsNQXzqdbKfrChOM4ZHy332dAmf/v+MyT/kw6DpZrJJUXWX0Rz1Qmvi5mIO13mT9GcDuDZTrfedKgP3YIxfdPC9MKzIx7yjdULumeYynW5klvU+ET9QgGqHd95Kbf9o9nOnx4DXPiAeZLRkxjiAV94nOQQp7a7mppSAQKqKN12dVeKUXkf8leRRo6ubexDNOQFt+zEkjbpzwZeaILkwQPd2Jgqb3KrQ93EuJSUCEXxLuw6YQ/sJo0pHvuCytk6/hk/vioRaxv3sigHgJygxmaTgkoQ1P1wtP8h3yoQm4PiPbQbjk3SC8FrqXTHJFuHn7y81v6WVzz6mmoeJfuEwRatRD44u9k93vSu7MRugtJ2T19gvyhLyqDRGfQzxjqmUsllGISzarifS2ffGWE75sApmPp48LjqsXv2Sn8RHV4KXsrZ8l0iWh2exBDemajDyL0eta+3jTbRuPii1rqMZzCcvxXewF62ZbZJeTV309jlZlwsACPCECX5MxzukSP2KEIUpNjjXjzZghEJDum9PrUX71NKNZ5YQrTc9foTkpVd1b4Y79V6fFsEIOV37tgR2E3xq5mcQ4yNUM9NWipjfdoPWWntUqpcTOtg6gSVlAqzOUldaohPDzI8DIeLmwFIsSxYxhTeQ0ecbrNOKsS/iq8jhJCKOfeYVULk95WE7RlKUeF3czGm8IglUG0xPDEYswwRN2O/p100CrJ+WFttGe6xFMSRRLeIpm8swyUvefBux9MHgHxBf6yP5Erg0QR6LOiK8aQnzkck9ow/nlNnxZrT9xd6kbvErBxQqNo73sE9w09yL7sbzuUNlBYcFSXcyVU9xHwrVJs8wZyEdY2KiUQwaXLidJnoO4lOAoq9os66XnpvxKuC2PfOWqr9LyFmYbzixvvRZ2Lz75bVxcrN7PcfbJxlRsgdUeEdXMqgU89HWJVuKPZbuGDeKMxYOBT0Ov3nlFLDWhxcaHLA0mZldJJT+SyLBGWNIHtmSWM2TQIkumPvaUgSvBERpx6XLsSDLfln6kGzYs+3hcFlb//ATJ7DDf2jh4R7PHDIKf/Qb5qU8YCBPyX/za45Unb2OkCIDB0/HjY04jX25sEvT5jDLm5/p2emCpIn9nngfjyuRN4OSHGLKHufNC9xPSe2tAv+2DGhihK8xa8gu1xyanb6ed7f+Wt7QNrgNJRX4Vp7OuaoyZzmntpjgAwDU3Rgdn2EHPH5jM06mqLv2k8DdA9PV3h4iEwuQmJcbgszz17tfs+jotDcW2ROSHA4KichP+fEdS7ZmhyTYZWe0AjycDvRsv/xvc1ytgzzP/uof5CB8vRKppZKCdU+WabQhs3yzdIm/XzeYYUqP3RlJ0RjVgZS/7Q8t+c9fn79PTGHaAnB6r4ws5bkWdfmg53Kxyq09z+WgnDsDo1/OQ3wvBFnDF9/EAp1LVWYoJMu6fp5Z1jcVcK/Hnsxqi7F062UPSS6zOtyFjjd/DB4OE3zFb/yR9J0x3EbMe66lKy6t9//97RZ076j/FO1JaTeyjcNRs0U167mj7iXtTNZOF5phNz7lCpu9cxja3RR6uYxGrxXiVLgAcgPn4IR1HtcXJTZJRmKCsTiKFTGtgbQv+xaCabclnr6521Chvv8mMdmOIPEoBmthBZvql+fKw0S3XzKV2NsVwPew3YYnMd9UXDAwgsV7HbYoh6bRrqeDOX/oGXBHGbOg4h75MBbDZCsdo0uSA4gixIlS1eq1+waNgar/ZvZNvpc/phNyOcRm5AcZBhn1CroHIwhx0wjgsGf8Asv6/lv068dT9wxcNy2nwdtytL/x8GyYwDZLaI2Jd3qzpVpH+yiw3LbTarodUdjLwBLU5E11PZ82aodMZYeQpI+IDd5A2V1QRjSrzkiZzYpe0Br0bBpWwj0UKQGSgVhu/tpe48eZQqeONWZzsn2CxmDqS+nzY3RyHhQ3LXpRk5YLNBt6p+KsgRTecw2elZ858cxvREDg9RXxzP3WGqtbzkRXDxofi6+Gq3iRNlLSELYb0x0pvW0Y/Fk3c2d9UU81sEPKrynL6l3LOfLaKfO7dhfQiBVk0auj9SSuvw7l5bzDCCAb27R//xI5aOggWlY6CzGSzpdrsNJjMdMKPPA8cIDTw2MOymufoH1Zn51E+4+eJMti2fRdlDhkCdTGFWuItfmN24vRPHV0ipTgFseRk40MKb7QJ1OHbocou83g2u73Bq+NRkc7GngZuV4hhQhOmequZDw0I5XV9bl/J8PuSnw2nGoCIopqXmXs1DPW2ldSfM97NdIBdObqO+2tsdUFzeibFRArTb6lXB2SbaxTBeP1Q8NWqCjXibUhnNxwLBfMGwUQ+BQ20rsGzYBuTqt7glFdMXFQCMnP7uI8+ToG/zAJYZhtR+xz/YMMLuj/AzO2OWEXmNhu/Os9NFEjEiKWYQ6ElKagKpCY6sUzF8Xk9G21zJ9S9meC9kPLe+3BMprTPIHnl4/M7WTSkwpF9rKnPmqSlJuRYlibSCipmMEgh9KnSvieg8+zAgh4rtRx0vPjwJ7C9zskoM2rakQxysTr9Uygr/ZNhGOSYKkPEwRm9moVkd/NdEG4XEAtJGfPH/HnuZ6CsSQx3HQNi9Jtj9GTcu1iG9rxFjT3GQjQEnU58yfZi8y3r+pujM6MNLwITk4TkaXc+G3dFesi83D+Pw9e6SPz89qK7wAAAMAAY8AAEmGQZuRSeEPJlMFETw3//6nhAAAAwAABRrZSQBW4tx9DGajP8gL3NmuyavQZyHc8J45f0tg1nn4n7mpRWaqvBeudrPqKHO2lQP1UGF/tbedGcqN1/Sa2GGVRbEfANctcd5wGycVWNzM/xWfYH/NRjE/A6KKWivoZU1Ry4TvnMeMQ/4PnIBN6sCTwKISTxr5/NZDkwAqELbMMO9OtU9skd6JbFPd96EvqyrFZOUwY/ct5v2y0MeigOLN1M1mbux12zZN4SynkYAyDoNbXXp05va5Tezw2kuqNEhtQppoDjSV8Aj7RjRsoKJiVrS1fKStLnFj6Of9ClEN6qN7kP1eFFSJK2qEAaRJ4Czcd6LF3MvSWsl9zegkdWyf6RaovcXgAv/BhlcqGP0DxoZJrH/c1PayFR4woYBBIHDVOBsi/Io40o8YMqz4pw8f7YDlhRgjlgtK2LzM6De3OQkAShvxInjbnNNCcbG8D0TvCIQ8LakRHN7OpYJqhyBqu5nLNhSiUJg34nn/YNTomdZTNAcQQyjnNOAAucxVUyHB3X1MFDrzxk5zdKYo5n2SbhfNeObMl9DS3XCyveoCYwjVYsWjFtWDVFUzaUP9vjR8JDmjWSwmaup9Cqc7WToGl9lspEPIIFFOtqqCm/sCMz3nqOVoHSy5M3q56n2HUheg7yCgkYEBtnj6Q8HBlTc8YeCQS3eIyXyHHBPfrnRXpb3cUXTV7HvfRBqD/NgZo1zzw1gLcUC2BPno8Ue+u8onZGuABqTUuQqbBY4fK+l5uf92VlClR9cKaNo2SsrH3IZure2UIxXJwzOIIv4189qBks6+R+NO5obRiqbLisiiVs5HhtDzdNkGCqvbRfQ2lLUd4bkpbMQY0ygvW1BxzcM9aDOA867d0drhoVqk47JMVTU9Zau7xDs17lx6mg6qgtuYj4lMIvYArh06OhiDtL6nVfaJin0ldPu1pSzTkN2M1/MA9IU4svFt0Z2CzqZUfH3JvR+isFFwOcMlyJr6C03ua6/plGPZqTHLrlQP2PDk95W9KsJ8LoTyVjOJMR1KBf9LQLiOVjbtfR0Wx6Rkwk3pgM6i97XSJLsZGwFsq+csRYh1w9F5yQO/HjOZhTqzOn9VESoMWGQuNaF4IZSmaAMO93bKEn4S+i3X8uZK+go+BCQrtLYbbh99/BCaKp9GyHrbcR1s+DIbTxTpozNv89B6VgM87A+QnN++RNs4U1SlXvzNNqQUpfa0Dwe3nphaiZQP0j1Mcw6cNH0OJNWT69kaelpiHptnH2XmKkA+YXhTGp93MQkUV/bL9aChHWzFgVjQ5tl3ApOcyFpyvrbDYEVJtLv4aZ8MUaUkHXcCHLDTYah93P4jIQpOxvMrewlU8LE10QzCs7WXb1yiheaIb0x+jSbqBwHH3ZBPLOUqcQFkSuSyX4PlKlsNwRepv+ObxfLx+l42LbwZM+BVMZWl74Un0be3ON7tnPJnViqw9Y5ibYLUY+83gEdbdYzZhyoyhKzN0zxJY8fRPtAYIr1XOQYtjK9OGRRRDrHfS81VdpcnmsrP2ymPZ2rCqjLUfO4QCaTwxY5owOjqMn8NRkxaJr2Qk8ZQguJ1qUjFW4SmHfshYldB8o9HkRb2jJKuIrHbaVrDrAZWov4zpbriY6xFTtqdNBukpUEDYzbltVCaNnaYHHjb66ucHADhWob7e6NWYV5rUUgsaLPESYbypPHhaLZS2BM95jknPIz/UKVqZdhQxqg9DZSngOnbBNYtlascudezPJ0hnWTO4BkVld9rfoZRpqRYKrm8pyzz66zS38m+ApZh4iuhqEMylf9LcWB8umTkU7FTRVYqUWIlHl0fpA7ywzgeiiPcd0MweuP4/UrxpK5jAoabwa1LrdWCNDQ4D4i860IdetCDLOhrUUPg2E+o8PPG9l+7qie/dU5vBhtu71DxdVHATUc2KJsgdX6jNfOPcpka8/2uZGU9YwkVGixbNQ8qNLJzlMW4HjqqsDTPRjP/xM6jOdDhdzGXRRDaEF74PF4jT5FdqamhN8w3YY/X09Qup/huLFnWVwB8a1pLJC1JHPyFGbrE2FG4mg73QA2jkn//+Uc57osU75FkKDReGxB08TcZtvoP/hxwGhfQAyM/nW6neQU0ULnPI78eo9c2sYeLgvs9fM7V0paF6I51+pz1qFr8LQPU3fWDv6pMC/Usn0mk552C8fQ4tyN8BFpnPSS0kpDJu+Ko5TOLI/4Mod+iIcSlQ6kbwXRHHBsgsrxiKb/ne6zgMSQDWoDX5zuDyhcXrMI/5hAGMA5kgNhSgHgvBc75643iXhdbTnXIqTOnPdvgqBHfTf/PY45LfZhKFSEBoviNH1o0Es4lUHBWQSce4NhBSV5EQI9RY2iK4Mpd8gkROElboaHqtOB/Uu1H7SzP2FLhZUv2Om+jq+LTkrbjdoBvttQV2Ni/xiFLPPYMr/z+f6EuCM3DJMyO2kk2PEz/2/pg477H3WNzax4PJv3OLyf11nF5x1fCf1H0BSiPTbPfgXWxWpfVEEmCCfQ2OSPysYvPGmy/U9a2EwcVWsWF63P1zE5REcbkIf/kQs/wvGgXldLNn6wykIFT+EUbuw+RlXxH+O6lUpJz7gW9Fw/pI8dqHpEkeA0QZqBHeePnAn1YMpDKL2ZrD5cdbuH/6QqPO5jwyF85NnRWvtDQMQPvJ9yA3910ZN7mFFURCk09zGeFrFH/Y7dpbnxnkeu+3/3hUM6jUPCH/33wKkGm6xPs6mC2ZRxLGaBr8mAcrM0+ZvndXyuV2LKOBOiHEc8CvKzDUzaIEy5yvensnEhKgMistQnwD7s11J//evKQeFemfzVFDqIZ/oimhwVyAM2Xv1Nsw8RFk0corjWuhYqzCgpohH+d2q6KG16IBMVl2SA4z3/XH7QyTPeqtflVXEgeI5VIn29fTzkD1wmbZc4+KTen6JCTW6Kt/eo33KEA9zY+nJylRrphRp2dgiTwrkPclgcDuD80GxUgu+ATVLSbjmqYPpobZaRb/6vANZs2eaQI3+Xby2PEIrOFwgcJlBoYsRQ9xVaVhv5KDWBpqM5vMpFtAfn8qvLrgEocAFASjXKdqF+24gTajlh1mojDZA9nUjzN6WrhH0qPax7WTpOd9sjt/bFkQqrEO288i41ROlfb7vhYhx0PcejQ+BWEltyGHyapuu9oZfwoXi77MjWSjGM/WpEpXvMerp7EwhcbKnpQnSC9d0mPZErly+VHmh0dPA6mQ4FU69V+a7nHrkYGGOFS8y+8r+kWfHYjbnSwH5+2gfC7zxJUDfO/kX6gYzqKu8GSZv1WaR+lTNZEiiK3sfhL6NyxRqk+SL0bWAEfYDylH1JG/fj0VZ4DwpE5Fwis2LFkkugwpTy3VgtXplG3htDujJ9NehSTMOjhklbd85lCCXYDnDGsMSeNmebXwvHsMLFFkO8NgoxUr9K3Ca/h7kquDJ86YYfA1dq/dLPgD+An1RNqC1tFKTYHRo/OWKzXaYugdboc23aXHAxnZNHftf4aPpRDxIOGnWK7c7eMblcldxJLxXC+lgSiYIPXSvkQnWu0Ofso6kVcDCgD+CidhcuwHYt9ygU9c0DlEDuOezfsH/7P748nGs/VfXxWTvMGfxhUiStDNPCKU0PSsg3ElbpkFFfnosFC7mNUn6wwVTWJtZVNHVoqzniAOzA1WoiofsK5sQLaO7R8cG5McJ6EElDyVUDGrpse/my3xjGk3A15h882GQbZOc9NzuedoTpcrPkwMW54oDUGIcocZ4zvCGnJk2t5TMmfVZzngE2bE0SXwP+z07lbtHe+EObekPOXz+ZtP0EjtvK/8B4X4+lnl2Qy0jY4QRkUKFiy1PzEHEUyjuv1eWCoQheNbAg5ZKrxbKa/UUe56bhiCo0TaFakwPFCzIUdASRV5jwJQdEsZ2rU3hiGUmXnobf7eLt3jYXHsqCT1vhPV9ycBInGPCRLuMbATjroyxg1GFA5wwCX+J1MLaOa6Xy3eupbEajBP7XgrtIsLr1CbVjOPhijdzIO3eXH8dcl4pxJKR+J2suHOrxyQKbXORRA1lUAnftI8uJTMAs9mCfbjGbeQdsb9ADHCf2MeMPxypuG4Vc7A+J8+7lsw4kaLyzJFRSHu3MPimXsom3g+x5iG8Bfo5PvfH2/8KMNGVABOCreDR6BSSMrgSU9szaBPDJbawQok4VghN4sHDO8loGQREmtrdLJ78NNp/MMAi2CitfI4tiVPFmdR8LTHb+JJtmiBQIVY4E41aHLc5DBFTA8X8UOix4bbAkNR2SPoh0FH1iw2ltQiC4qVdtW9HCsicYcr/lr+WyVSJipWwu8/luFku0bStEN6tjiQrBRb4IB+zVu6jPXnU9TXTrLleKECd86JijoJM5r86O1puL/VyQXNmk0aYe2/gILvy3wzVki+4juOdqhKQ+h0TRZU8ACsWYHdzZ7H8PnV9WPZIBCoZU9QIIdoFi2QdccDFcZI0LScHub8w4DiOj65VuomKh7TCRnDX0v6nMtTKrJDfh/2A6TnAK0IwT2IwLk6mAJMyHir6STIeeVh0vFX1fC+NuKoQmWUp44/E1VIjD0nOE187ep6HLfe1WTxsmLg1RxLM4lLnQEiX9s5WWi/l43QQCmJj7hIggYbAlBDsfrjSa1hZbWQ1KBpApdFe56wT3ULadqVp2kvVbMiuYVZKR7yDGWNhjpAhb3SidPPg90FUdMROU/C69e4dgzo0NNu+NfvAPkydwRZVLpWs0ot7IDKRaFkTGg1M1P2OjIU3AsFwGw8abF2jFrGiX587EqoXUfXTTmo8RLushfqeMrP3UcFMCoZyCZzS/pcyBAdml6iNDVJnRBXEzlpRBcKAPjzv8AVBr89lKbP+U8jCS8oH/x7bYol0su8i3xUrWIuV+M3x0ZQCquF5XwG/24HtGMgqaRTKTorREZvI94MuNlimAw8rpI/q1o+/hhS29y7Ymro17ce3z/b4HUTjAKqRQS/6sxfzx/v14X/toa+v4AMOIrS63cMnN9zU7HF+v9onkdazZerPd6SYx2CdLGV3ZMgLtK3oDBlppZ76NIl2vzmSUopgMGW20vAuRFIRfW08DHv3DgJTIWYaOhHmMHMJIvb1jDHyVa+IknIIkpprWb1QMuBRROS/P9wpgfzqP1YmzBvArPm+35AGdkjFJp2zJdtjrzt4/+kKPFzOz1Ef1BIvtCL2psGpELTu7ggoXBhiOO+3QrWb5ncKOXWWdBcKz1561jKZv24ICbA53JttQBBaxDkiaiieJv2HSlBAmnNiKWj2g67mmCKzrUB+nRK22BSUxGPyLC00Qoe4SOgqOUaFld9swPEYw3oIK7xZSwyqIWUJ+UnqBedouFTjyngIQUho4Rneoqflb+dWQDyyH1mzqXz1j1ANywLs+1/UK3SZYF/y3kFG6XOtk7/8Lr9AHwXpr2G2vHTQv4oJa6AWvRZRcT+jNmiPoA3zJCFYtgwaAOkr8frOQF3DhKrS7C0DRJAL+y3qkKuVykh8QWrUm5Gq/xwEWs5bz4FFZErFWrNRXw1+YE2DTfaspGo3OEmL1bANbWJYLID0bMu2zNjCJQe9qk14Jeeoy6a7lZg41Ve5tF+mQHFj/KVHPEU0GRtS1JV19Z91ug2CFjKStgYLE3qQyTAENGz9GHGmeWDP5fTfsWk2Y+rLjUu63Z2+FTCKQf8ZqW+gLj6KYMKxC3SKOpz0a/988/1Aa2WSE7a6z6mAl9cvrbyC5Y9XnpC41pzZsFZykyITqxR9ZS0uWiYJT+72sJzZsLXj+Mq4le8LfMSk+DrNI+k19S/OVgjWBfvgaoI8qxxf+d/MWIjfUI6Xf6T+NnN6sxFYI42t2yO21uAUwVUFcKpr1Z+cWcn92ySmBQ5qfqd7g7SnFS1or7owkb+n2/AlEIRCmYXiUaojTZdrmcqPEGj5SLOcn8wZN+/1lhRC0IHPhZon1qAJjwRECGkEfmPgJsFF2O3O3UB7MpfFaoXo4AtTe6rmGEnIB3fGmdXkfI83keihWcUsk0koDBjM0yUUikckeKmInIzNZRhw1ZyXAQyAS8jl8N7vJJJFj7aAum8uvdARXaBumro14uEC+2ZAi5zd+Iy+uA6mTPXxr/GrF7DcnIE5LdGIjGBLmpPICxO+jNqis9mSZvqL70KyoDB0UfxUkogfQuMHAvaAZtKdSVo9G4NDcH2cMhbaoj5M2f9MM050jWyLzwLyIG4ju3eRdZ7r/WBlBTsh70mGBBH+x9I9H9W5VgTQZ42p1cfYr2U/UEIDJyRFSqNcsQVRoDjpalXMZj5lBTCoqVANIXxFUjdR3hPc6km9LEQwCQMhRhMoNsczQg2fwQ1/6BJ1qq1YeMM9l4JovJ2vpl/OSve5GoQyyM0MLlUlaShzYk596pInV4Qrtuqhbamb5Td8vXS8FaVDJ8EoX1bCT27nQkaqqnf0bbKqlOxzJK26VU1RpWAGP5jn3cidACFYXzN1buGrqCV57C2ulfxQZcshn7oogeo0KB0jWZS7vuboM//6RmoQco+sGhKzUf7OWn9heL1tKGSsIvBfFZAotPKCBvIyqUtK4I3hPBcEx2ollfBgAX4eiqijRCGy6s1FG8IUThRixpj4mA27m6vakkM2FqpXFsAYMs33dSL4OJmxVlx1eFtSrhM86PmqLSLoWQT0jmzgyGbGfsa+5Mqzm46JeC7NRm68BZ0sAhHBbN62AUhq/KmJVchrg0Hk8opxB0TlMbdzj8keca3EtFgGMM1kAEsvpyhPLkXSTZs5oHlI3NvfP+Lcc5yPzDnIMdUmwbKBCy0T5hzP1XalwCxmTSKfLdbJa8UYAbq/3y/NDD9/3lWR4jA5AbCfOoq7c79Pckg+R44KNtxq5kSs0HXF17hxn3aayNq1WS77tWY75xA6WvOAQsqaVRKoKPRMozRkb6xLQeopSVpUwqsJ2Ha32N/68Gn2xUFF5a3D8vbVa0UCtNhksyF8hKFeqrsf4Pdur/QuFbBtKG9Qzsoq+pRMvmH3vKLiipm34Nd4sAXc8dvB4NgfY/ydQ5RrEcJVL7nOGlZtRCpyf98CZT685G2pl3/HnupzrEJX7XkG2ZIA+0b6hHl3znR8nVHhU7JFsaysvqI/hQ0iB7gqaD0OJeGAure2eUdbXV9libte59//6U794bKyg+k+erJp8QATLwg3fobj19RuzwA6cEbiEP7LNh8R2vS1U4x7f/wyUWQtR0sdWhrDZxfYOul546o0h5JEMJ8oyhvoEk6wQqF821oimXvWc2bKvuGlqrWj1pUTDHcYXKkTfNva/1DZ4CL9dv3lLgi/Tc3pMwUa2+Uw/UFSMegl3ibYXbDD0ppjQQM1A67pQHGA2LDKFR7sASWFm1AX+n070IEg3Zlxkt2pr1CDO3UU2MVtGXz20pH3NjV2iYk3fkJKiNVOTGlpo+zgGY/7cPZrIdIbHYJvHf36bZPQbGz0q+fKIPQ2FXbUXe6pklkAyZXy4/9NfWRbW8aUPnQfcwwTiJhUCDfYkOdCY63EF2d2bGjh94g74cQRPV+sUizixhPdoVr4x298HalOhjbfnifbvi8hSXOr9ljUopT4gzu+GgInM69qHVIWKIMI9G5TrrUZrrHXnIMti2lrQ6tSFen5lV9xxu0idDqqqoQKASCtb/hA0lhqqMoudg6kTywIHGdl9YWOz//vKMNMlpA0SZFIQ8O9sBFaNySeHlQFAkGf2KQIqcHEQarItinlGHIB3dfqZg52oX67i6luuq38EhF8NNk5o8QOGzH5F7DXHtWSWA2Nz5d09FYbMKPntadF/REdCml6NFD0Fid0l5RZF17eVbooyauhswS2Cf30EtfIWWJYVGlcOd/t9sxrY+izRmqoGxJnlCill/5b8nXhwnubvs9wUguBtzSlj8Vb19L3LDYunPLe2bQLJQzdjzUjwnF2sYCFv/FvkwCV9kYPiO1pjBjotLdQmklmjSipI0qnTm1Ttyv/m2tLNhTbyjHKSQt7y6zFEE22UnLyTKmgd1ryirqq+pdqr0Z6k8z4fDvY1EKkkF8bMeDzBIMJgglxNMntSHMPtoBgG/RWxHAUlwa2Dm924DpsAAbGmu3v49jTqdUsKEoAVx9OP2KKR4RLmtcDH0FfneQNZHFOKytn3xJVVPIQTY+Bo9BsBOXYraE3g3qaJjw17lc3rPx8iXq6RUTFzYiFvDOohFOmYPHwceI9jZCsTYPBGWjXEXvpbGCx6SxQBd9703SqvT738XdXSrXcEANDsF1SYcb/KaaZ7+RNquZPFw6ErPCIRcOm8la/K3SfA04IHjuJQYTs3j6YbWEXzdoFOQBXjOTJCgsKG8zkH1PnLjOCtg0wHQIcv+wicjZvhEmTwsgLdZY95+AVZZIYdD/zfl7+lfvVRwRAA0V5R6G0eoM+vjwY60nUawSlfT5kCcT0BiCIE/nM7XoBWY1zxKhCEltebswMYbtmPWFRgihghE0ItzvRfTqSl+ZAWu1nzNwhKZlOTKlpcoLTLhgyVeZ7YDIvN61SCS03EZ24B6+B1Raa39OhW1/nIayZOtQySdikWQl9fwNR0qLnAz0sU3Ci98nLQKJ1UootdSS21SpQw/5us6fo9ijKVPLsRJ5jmPYiEvtixYtBfh1gVWlBiRUabVHhs3AYzVeTYNP1MaFToPM4EdH8OmKCFUcMDEbL0rKuSMcGvyAnsXX4m6qOAXQKGu54S8+f3MR2867/GGBCrBz0QjRImRWraiOAsJfzne8vHXSXvSZdb3sWeorM8B/Cv3KZ1BLv7SizZSdJsNH+tLkpi+yD+1bINXrTkkfRr9A7lfbl/n2uHM3WWR6zNgQ2lnU//2xkqczp8GFSZlwQ1Dee9Nt9CKNTHAd9s87l98suUKigQJxDNs8rw2XmudeFnGXSH6clMolhSw4AeGgU7jyUYtUfP1NzZDuKVTdGZMLIiN3+qMkb1XNAlSQvM6iKEHITcaTupUGXLIJgTRnGxkb/M2zn0SzXnJJdeU+x+S2UlRPx7xR7yksAvgZFglLp3VLtwN7yPbTaWvfcumrXr4GO1PpG6AmvMVNeuKqKjG8FwwzgHnrTO7GbPVYpQAWZUJDJbsNj4lbiy3pvHIM0Sg8SUS4dvoH45oat4f6nZh+ezsXMHGHQLuASkXwcsQk+UAA5lKTZj8gnzQjOpSDfAvq5WbzPzNFk11h01ORP8EoZDvywF2jWUCo1DVRkIECuKNwMpqX5QRuEUQ2HYFflXpLXLK8J2w0MbGgZdul9+9NAltABl+0LKNxFgou2qo/FW3YNnAITJ+usPkVRucH8XkqgBam45xo7f3jX7h45R5FFWA1WdihYy4FCYJulMY/Rlrm0NmzSi14WfSonOaswAxppkSCAM2/i4Kj577f/JkqGxQFIgp0VkqcUV9qqbVpSdzQQCKxZOjcKnTSmKIwXf5Nfc2+PHq19fTgZ1Lw0SvOcBt2gMbz2vlixwRR5FuWT5tB7husDb4/KtyNG/22mHmRrS6MDasFxV7FdJbKlDtl6qzvuZkx650uoXcDOOUoMRbDyT3fpumvz7Pq3hmKPgu9Bi7hEGPCeNnKI8hj1NMHc8j2ZzWcxJDSzFH4K+6IXlUFDdryyP3bUENIKWWydPS4odABxInoHOVOj0q/UncF4Rd3V0gRnEmlwnZXi/HA8gePTELCKub5r3e/WHgBOsolsAHLZugtVH/DIE7t2RdaAs7jtatIRAFfOLGGrkPe5rFBgB1xt1j7fnKg8MwmDCfQEIs9tztdm302KgEUymbs0nbYpIbezvZ4dcmYDucYQMErc/uOKhrGMIq3/mLYSPpvZd50W1FKTxCVxKMWCpRIMM++m73PMDr2ij8qqdHf5Kj+bAMY8lvj8FVTmTNnp/uILraCq8kzu4HTIBm0ab6Qoo16+YZEl4CIjf8JgXY7GGL96WDYmoa6V//V3LBibbj8fhLG+5+1hbaUzdtr+YUf0137X0NAoYZHBmlntT4tnXEHiBp/NZO26Q+p69lkzlbK20/AIh8Y6+28Fuip3zJYGYAXUSY42GEmQNkYwPRchGz0OMr07Rr+8KSRuPlevitcSUxfDmH2hLJxIJrhRgkSIvbePLjXkVFXCYAJm70eL6TcpldQYogrGHhvqmj5EM36c6RWo2pfnkl9RB58R5BK3l0svBH4kvaJUc7ruL+nNgzOEGPRkwyUMJlb/TdLkJPhL8tWq7m2itILo6Kvzn28YSv4yPczmjbViJEWbR6EeT4ucUVALGeWKYHZVjcsmtnH+ztwkpdi90HBjPPbYkv25CvZTwWsKbqfp7nJ4MJpHzt1QNwUZKcnGUL9mErSyH73Cxo+KoYRKf6ZNOEIK3QJI73dPbmdkrSDZ0IN8pWLLU9GdQ3IAj6HkMC3aMB3k9k8GF20Z+c1w4kk249+MhqjXsyVrqTh0Qv2Ek6uJjHhIkThIk4pVzJxD+XqpnT0HLqbR9Hs8v5q6p3YQZyY52piAI1ce+WdaNK0DlLm6jv8+a25wAa0xm+aqNR3p0ZJVuVRZdKsyV1kf7w3gfccLz6JVkIuo9KZQ5D96pnapMznHBHa30GemIfuaUNjH2tR1K4pxh/77tEaSWZQ0Mdppi85aZgV1F/ywYgxLLxcOIHXXOTO5nOZ+vCmrf4c1FHZaqMdmczDEjOYDU2SPIy9xC4fQYaUDmXGMaXLVVy0x+BOzGyWK2KBUvqH7SAIR6KMOu2ucZGv34N/6q5u8HiQCuMmHVZwNUnc3tRx/UrOYxft4abVePOgMCX3XYgoJqBZky0Osq1cqp1LG2+MveXijHip/h91WHrapV/57n1H6bHxnT9pTBn+/GZ5cSmSk3BrliU0TIqaCgX/hvaSYodkA2LzDup7vPLgcTHgsxLByw3byo06if0W7DxCgydbit4jgMT254p6LZJd/e02AfZIQPXMuLBz1WD+ZCSQtLvfYRkKvNJfQfCQMWU2ogYC0SXf+6mx/kpj2UXT3KD9yg3TgAuxGNzIacZbLrACseasC+llYUPJKR8De6VdHQRvbkqHrCIqUI19FwSqzUAt1fXXFzusR4QyQwM7f5iGopmtwN0SiEkjQYL2VZeZRD9K++my7NSO0LU7QbmAxQjuCQ2ntGg7ALc6wwOvOH3oOhWuRGYu1M7uy83TywWgRkK7BM1GtlF73mQy9Tr5qssP+RxQq9WX4S9agOgPTkTek7o371p56AYJ+cZX+hIjA4A0R/JL5lgnbNf92CjmdTUOaJNl5WpiVEFTtyA6BAKob6+QCd59rY544F1QWs9qVKf/CjiMYlb2HKOSwLmqIhqYgparS+CDafVhbl1eBdrGoxmmwljbPM6veBRFz+pEq4JftDRa37GMbb881wHjQE1F2kXUlydbIzmPZukUvILrY3gnjtm6mIlCQIQ2T0Ntjcbd8ropLcuu8cQ4WG5yXvoW5mJicvSroIATv1Lq10r0RgyZFJQS+ewf1AV8VOj9UgqQ9umrBYZRimouzMLGV56p57H7b4U0iigqDloxMyRq7AZk2GHqTJ3tTU8EQ6zm6wWSw9GaDU9d0SoVtPH/FketQV9gTpPVO7bfFY0WLN7FDHJGoCHTAZgMeSznlaslBHsTicu6jzOkQfLTzAiC2rbOiDiJGD1vravuV4Be48fIkCKhi9gagvIw8Oplx60TEoukYMIoL6ar4iGxR1YknoeAUKbEhUgsaK/byov7oQLZ621gdGX8SWFGLU1TJxOrgIbodWf+C40rcjxgHBUSDN41muHgONbcpSi1CF9ZLgNq979L5YIq3gBvfZOyt6CybfiwLJY9Z3RP66S+SxbgZXq3RoWy1Pa0rZsafs91MZ1vbjwy3kzQkqWXgyRsNsZiyJbc7nYanejpqf9KRIsi31EyB2oG11LZVrox/b9dclQ6Ncrs2iaAmbO83YCQhMnhp+M8iJrRej/na1E4eYobxj+xyyD7/I1pN5hKZJKZdf5lnph3Gr6zFgzsb7eb1LW0/5VOF5A1eEwsJeQt2Ur875Ovm+90I2JO+0SX4bT1G4sPdC5bCURn8GNwFIPdsl/wFVDryo8isan6oCrkyC7dq6WAcjP2ahrZdLlE/pCJQsU/f5tLiv72D6a4qhHxwdgSTNX77AhYe2swDZWEhHzkPgNoRa9mvcj47DRjIGVu7EIlSwZOldUBG01DyzXTo1jb0MlDAAVoAFivzl4AFrCA/DwQVNTgdjLJsteal1axGuOuo8218bKdblhBz4fbWRhPTF9qbPoZ405saXPizb875tHXc7017vmhPvv8bt/HV4mvTC/zEyaqWU9nt7ZRQk44NveVmXvuIXiOynpv3HvNZZC4F7isBMJWkX/icSeZblIRVZNGAxa01gBYyFw7mHvzNdFQ+q3NYBl9qieJKsFmVQrtH9HUO8QKw3P+nodNs+Q/H56wdJzdbVoo8JlXn/vPOqX44sfGryUrf421vCsx2Vw79/UUXCOQfRGZCX8knmSJFVR45pustPJXNVxo9Ecsdc0oQvY2gGTiiCYVJ8hjMlUuiG7Z0TQr86z7i/cC1/03j8TohCaZkvY2BOkzLieZieUYVnnInDqWTK7g+gVxGeZ61F0+UFv4zUuLJX+ylvNp7SJDh66c7j3GAf1ZkG2GC1o+Rko43IQ/QhFE6SO28/6RCRZX2uxE824M4h3OY0Quozs5PgH+WeHIXPYw27DNU0A2dbVLRMVsYVox86T2CK75VUStXPOb8EKDT6d3FFlXYXR9U0gZsALzSzLXhRj4GqP0F76T7nmk2fxKHcEwFDMoRvvlXFfxSyjUxVkskD5pbHTjcouk4+d36VWkaRq/9kdUmxuqb0qyYJT+XG+/vTNyp+XPnyTpHjRBCnRA09bNTVcybR2Unv6OLe+Xg+XlIG9WE1Ub84OwyKwwECjuSTd2bq6GxUHlM6q9CArQIyd8CFZDSpCjZM6xtW43Pc2jTw9VfgnexmZKlNkNpJKXwV8DVMOR38n6Bckr8BXbwUMRgKbtIejYD+0Xr5xC4i228SYGHCsqPFvsZLknG8zxGBKxdf/eBVPVmKKrbriu2TiLjHUsejhZPDTTypHPRYbg/AIOtMK5Sm6xWN2rS7oiF1adgJigNbn/aH3r4fj2xcaza5KHJ9gQ2dEY4HML1Or5gzB2GFr5qzSloBkju5jBDqzISulAvtN3iwp2xbd1+qQPwuPBjRY57gWkupfSpiMcGomNjPqzLj4u3Bx56gx4gAIfCT45j/fIoizQX4ivGF1+cnFPEpjSm8UZLMCm+jN141QfdLFZsuaHSeXBzfHxznmUhlUmCU/p2mJyNtUd0rjpMVOLLI3vgKS4MzaukEm96ewOTZgpKzf9SE160mxnZG7x87srdl2ErfaWI1xdhFOlItVTEsLmP401bZ/WqMG38cuIYM/wduH/qrgBbQ3utXJDHTdsXD7lzNXY5ePFuVWb8Ef5uk41cqDGzsylbwtEmriyvQfFqo+XBn6IAuEnmSHx3Q0NZVCcY8rgvB+YWpyshXewfDVFpu7At7LCoBGR9fo7QEwDi/nhlJvT7wXJbL8tUHQFlgkJk2HYBNa32kcwSaAptwXdInio3QuPFr0//UTnJwPRUdDpFvEg6WsnPPe/1cTlW4IGydiYAOxUAxBWpEVmpKzeLNIDwzfVDCHmbYcMKk8EYBFqtA2GtjBBjtH4tznKPnjs4psIJYbCv7AEUQxjBg6mvpaO+BucUczNOfS6U7REQuzZN02EV8rtVTZ5Q/rj6LovU0ZqhKxw77jsoE0wxToClXddIiVWNhoRkWct/MRkTlUg0QcYIum2OedfDdC6Cq2MunR8wsf9DP0OuT4Cm5NcaQOj3RYGegU6/A7lNylVNUcEz/Ansgg+LFVw4XRUmK8yeKQklcttNNCh2VyhIW2Fy9Ae2pAZYgSmbXGXUo7xj2ypfLGZ4UpQTusU8b0qv+FjFbAplSqC3/45gX1bNdk3j6uLWXHmoFU0JA1PP50ljghdTH8ubZr32y4ShLNbKtJqVmUD62y3PTtrHkaX25fepB93VF1uYnKMuwhMva/EcCQBRNJokp+9KWnKQIADwdD3HgSxPNyxAHujkW6uOMd85GgYqjUPeVwkAFJyMKtiFPIHZ2OKGXNDksYtu16G9YZ/8mQhyaUq40QFi/bd9KjjD6UwySiC/c0utxaveUb2aBXj0ElpvoJrnXzt8rUfu0FaNUcwmLGlvxQIXjggS/9wNpAneWq1cvgZ22fxQFCGy0UNHBwOu72M4I74iXNmxJce0fXx3F06F1idEuOUZSkr3d7+mcng3+ZzBe3luqYB29DdsPwu9htVtK6CzwfX03wjimjxJWoibs4bwzHYRf4QP0zm9uWQEMQWtxtWeEBjTWjZ9nz7+DBb3hqo/sdMyrLqf0lE0TAnCOoS5i/7drI65EA3unJLLJ/lTLYwRlTtJ3LrGRUksR8b1p71m4EVCQC7riJ75ELuPTEZ7dkATnGF3/qn/gZApNrFpuCjZv3U2XssWm023chgbETAXD18HsPCvjIlnq19+ryeZq5LD9b5vtq/H3OiSeOmmVOeGBBftaVym7+aKV0g3uERJdJHHHdVC1BDWAMcJQUrvqrjEeVGAFeelvvHx1SoXZT/k87JK7CCO/2YtJFpSZcCf/L0CRoequzqC2BkPcUaCp/95KoelNFMvSfOiK5mWLQ5tdmYZt/++n1B+mVKUW444TfXOqxkc1B1Kmc72T9gMngeYfASdy+L8/yajGi3kba5u3EOdzxS7AXPIkka8I5XoYeI7eebSLJtOT9MKayI6u1NrnJnZvg3+D0TCrSuRLp3XMkjmJ7pdpPebfsvZLrE6SSeeB+Fyr20uxv7YUw7ZmTQOUAM8488/F4NVAoW7yyaUUC2TnKlTRQ+/9+oEYUCs6pmbNNXwrZx5ziTlX6Py67k0KxD31sW19J/srjo2S3r+UJbQrLINkXrTBTAGb2H3baBkwaBokqmmlN+781lgG6nlVBd+k05usUT6ajT17lPXEA9YGaEu6U0gLAiSlANGuXPxEtAGDc4aEUKsOcvrWeP7GAy+vSqvUKqUtlu7WSvMVMbp/qEqBlRSAB2UO/urcpA5WQgsKDRu7nyAfoPVYchc+9MzntzzvDWYE0ztvVJ9MkZZY+G/zlMV5+9AMGU4SCVLxJEkbAuN0Ad6IpHSBnoXZuW9qyWFTE6NYuWxOxI3QWHffNiEOZssABbJOGE37Hj4SkwhJginckaQccafa5AOgP5D95clFfGIVzV4hPBkHRao59b2NcJskD2U8kwck4Jrb1q33EvHmAy571Zn96i+iCp5RrqltrSeLtjDLY+gJvvzUHT63WcxFW/vIxeyVArSxnGJ760Wvt53AIhfaN9h7l87OUQrxuFe/BYGY1CYU7VRP3D7Fq2T9XGMhhv6obMxbqvak8w5pfKRgxH+CSLnQj2lQrdNk3wmQt8rJgPh0swoPVwahBTCR4mhO4ukaHU6k2KfdYESfcA9Fr4tjqNMLtA7G63gmh5KLjR6R/X62Ouh0Yp2zRArjBLr7QYMI203jBliBaDLsbxlnhgXZdtXs/vQ0qn+qm/y6FM4wPmzqWHoRZaAWtfN45mleYRXJpMXC0+zcjR/jZl90cYcr/of6a7dQTMr7//ncjMukxXxxkP7xJaVEK2buVoY3To1QcIsSSqnsM6LI8K7gM7GdKYEjY373YRxj0j1Ho5YIIVQaKD5o0yzHdGiwCwXLatkFbf1EereFJofSpOeDfteOrukOWv1USa2c29Ife76zbn5mO+UVZKYuscRPaniyMtzWplPlcvnbFMzQ2+wX+BebqciceDTjCcqZcnZZ+13E9jbdScPe1RRutcNVXbJ5RU+nLoxE52p8Dto6uRIC+IdFI1hrsEuBx/x1uxQuMipugXA0WsyMblcYj1whzeheSvq9t2TN+OUFokXmYk1jXCGZi5YKXHXZoJ+XOou1maPMzChic5ppVljJIma+8wd4D1ay6TBXLztNA7Qty5XhlrKNlHd6q3WjY+zpQCCDNAO/FG3vfza0J1CTGo/LLHkSCv9d07uQKxZ8IXSbYiG5TQoV7RLE0gWhevXaojNDfhHWiiwMxmIsQpCsHl4jiGwq8ZhIt81DF+q1k6r+NXzkbBkltjEHcBD7p+vmK4z6xTLJ5/sRTBMgVoc/6Zs1cgdu7TjDB5b+BfGf0PypZKM+/6ad6hsSdNiXrJEbcPE9WxFuXi83QXUu8j7nlYGd6hs8tmLZ4dAPtoyMu2UuLv5Ztxz6Tg+/e+WLPSSpgJgjdbpo1jR+5DO863mJ6kx+RnJVlYkZX8DEuZopBu5O/kNE0OZZf0ADYv3VYGpuxltl65+McKp6ZJWlB9XaKoX0A/f8HqeNBe9llf0/elI+TBr0mZT/6gfi1maHfvGOi5DM4gHYqz5mMOUarNE+b7JfeMfwvq7f+Cbwh5Q/8Wmk/bqaabmUucEOD9go2w9uUfZvCOVw1rMIUFNCu8PTL0Je3TcRBRO86jD2lS1b84cfQfEaqRPvN31WMqPQ7guepgcrT5l38wsoRkYgaJzU7VIZrLABWRd3B4CqE7pabV+U8SSwzwrwOgtjVZMPavk1fiU+vW63LocKvBDPSbaMfkynATgni7G1qexXevbASNyYXRnNUQvHNSLBbwcxQfZw4xPLkJumli2CUPkLkntmff3PIzuduHulROuZwSdaCBGHAVgrbpO8G8eAr/tu7uoZWhAL15htdKMhjh80Kt/hROwxqxav0T/0xJNzyFbh6fNJFJeRR6M7rRZOmsEeI3UN6Gi5H8OZDqxGzn5Z5/b8dIH00VpbEGua4NGvNw0ah1xAgZk1qGi92LgWFBl3HFFc6x4c5ANw/FeL6OkBH0d9g7Op44qkMjTx6TOz+bVBN7nPa3luZ+kZOSK1CbHUq4o/AdzfKYPz8D/gh+PbWkMbr6bSgG2RkfW9S/U7QqewYNLEeqsl10jY5jLKlolCVZLFBAh9cxGJYyM73z1jey82naVUu9xXfxAbxGp1mOcd4L6hYewjtEWI3DlPlxyxmnMqzwT8pq6ULrBM6MBcxKFPh5bC9uzmz9kzWV1Oz+z8/Q88K7esygXwQmdHDVYr98f6xkIN8vuakJngnp6sfYEeLI/4k680T5kgqGlRelTYmOJ2GBTsm2uhd4D9PmZb69kqvBMMC1TjALERF16gNglMLGrxiVx2wuZfcZ/yE7PrDhDIik8b7nwxsqP7TNOY/3loGxd7NNm0bj0/9R+TDQKK5Pq2fz7O74IcetDQvUfulDBayv8oGSONYhvs98m969SvKmdsW2TNNzF53pVATPU49ttX4AxbwtfGQX6HTV12T84jw3f9SP7i6txC1t3NoauqTO/2QABpesY1w6No9bqaYTyIyrHOrGFdznazs4Wtw+iKeXyzIk8qTA/MJokNBKYkZUq3cc9XSJThEh9AETcwzHjW9cY8h/JAc2WXK1nClz7DSixKzcDIiaZaGRCPw4nTh9gNowXCY3/DOwE5w36yxBnyNmoNaqBHvjPR4yaBaRWl5MONWvtJN83VPrJskC+CL9Uy2EFNzYQSVu7ViQCR6VFlL8UxH4H/54be+3Ang0nxO+VYAEBNFGhQSHitIgt4J6kTbqrVaekrsfyPlRSVHBedqeUbewAA7RfTVHXdcrEFfLCo5LXUW9gXbngpdm2YEupk3ZyVSxkf6fE0vl0QvePg3e7o63Q/L561+dfT3Xr8DdnuBvckiNzCFBjNZuEyM4WSFUblzfxoZAswjzQr1+cKnKVdtvmy3KjY6jKvVUYRPLHwUdh0z9oOVWGeh0XEfVldu3HmiUcBHgp1/aiaI1Bja2GbvEJFcu8RdJM7u5gFCnDAo0FxCFfJzUZfU6EWURVLeW52MdItEPLZvlEI5la7qlrQSxJUUmCpxLXPg8qXl5eRpthMzVzIWmSNqGwm4uRCG0YL0ZxzaUdwvV2LKLnLNFdLLhh0Zy0boj5+1IxgMfGZP8ZcCjkyzmc9Eyp3aitGWzU7xnFRc36wb76hK1uukJ6txFsTA0/1lt8HSZUqeQN1Tenla2wg8aB27PiO4UdvUiO+bzQCyzekk6l52vYANksvPMp/0qZjjvVxdJalStgJ0oLAAAGklVFAKIibaG+BGeIY/c638qDnu84V85qxyqoeJnzzLL5nFe5iTXOz687RivDbGV1CDF1WelWGVdoiaOuMknXNEIDL5xPuOM/04GEkGXvfrrMNOXIH8ndtkMQzFg816mFi6NRsHltQ4mS0bkBFqchugi9/vyHmVRcN3LnnYbmhvq3TeUT7eD/Heq8g8zFIuggqytslqHfeOUAWWgItQUG+7Q40vLRoBs7hFIjo1HVmMPQYsRNotcWrbGSXD9a6fdn3OD0VXAtNEprjxJ5YzQ/u920Bu2y4zJy73kuSTIyw7ZL+ds0Dh7vu0LflsV4BDmn4iKijQPpIbbcOAJpEos17PEDln+TUmhHRkhSBDcQkBFNpyVIQbWUawJ22mlCdCEvd9ApOQumf2ZrpKc0c7n3cxSXalIVa/ypjReQKJEqZ8c9/IDm6TLFMrUr0CFKlY9jq6JWxN1M0uddUtxO26YjzubNTWf/OaUgKY+z3px1IDe0CTtswNuloCppwy37zTnlgY3Nt8hcUizo9GKKY6cmHEyS0opovlWW5jV272dBdJDJOZE8pNgWEufr8NBVGLYcZoQKkzWdN1LNRQqpyJhUiEffjDGbl8q6xlyBX3tQ24aPxfw9YW/fMKkeeUVMgo11UKVcyoXCNF9PAVdo9WpAV1wWaC0g50t3fgJWYUz4d128GOK/mhSWtrBbWKb4QSy7Tv1eedMaJppafYKVOfYoXZEGjxJSpjT1cXct/Ie6GZ52DvDpofnRLVLsp5jeGqu/+2EhrzkP9C11fOvrXchSUsJkDr9J8Wirvq2xb8J/vbFXOkaXuruIoR00/1yOjt21tsYaKq8n5vA2pRZGZRVLD3zqgdEI54Iq08aSR9AHWRA8hhsPlQT68Ua+MswFAAx18a3adNtSZ0Sj9Ssar5IcmFq40Kd5+al+elS4WFdHpI43hpGprlP2vQYMiK2iHxKN5ljHIIO+0K8wgrM52F5OXaB7G0hBkb5MOTYSVN15jHGDL+rOW575L5+8prCq9RLHKyyFAKUWV3Qv8AdXhxUUXQh1EKWVJ8ayoPDHoeQm40rlU3cMRYaXKOwVYtrDvAcDmq9pKd27UXh5pQXV9gm0mEGhRfubSHGgaAr97imze3eARbgSr7cqHIbjyUg9vK2aqQLZFS5Y6QOY/WGYnLXlalZi/NAPneR9PdD1Bjc8AN27WRUbj5+lmsZVMLGetwd3PfIkWMpQUrRaMrnIdIImx3NBggqU8Qmm4guciGXaqRXJeU4iYCIx7i4G7KYw+ZUUX8Ojb87SGWaNkZkHsW+pw0kAjx61LvHxnh7CIIx05xML1hK+SCEy3KgjvLxQj+N8e1qPLFXX91mmQeDLtoJU2Z4RBeYBMmll1hgPm6fE8zjICSJuqdEV/ujhnOURRL+jydXe1xobovCZU8tQ+aBYucfkNvuJsn1fF9vVrrtX+FQXGX60UGUooG5R3r5FLOGvhwoT+KdZKPJLLkbuEYvh+1XZrovuQRgWp8TP8QEeOwDkxG3vHf+ZwH79KcLmb3s1cUu+l5TtvX43P3f2eNg4fNuGc9dnyPf+y/21vphCUa+WPX3bL2lAsf6Ci49YDM3nhqw3FBlz6j3uoQiY34sBsy1+XFOZbOTFrdq+C3s5Bt4dPYtQEovFy4THRBO2btonwsd+6UFZRIcwrmWIRIztWhm0dFCaiDI/Ul7sLb3l20kh2iRq7rccmJ+JoJhIPVxyfTIIVnEDYT33phv+A/W+65LG+S6u4Fh3SMMjVokSS+fdI7O8DP2ELxwXkfvQOJTK67Tb3ccNiow55EfNEw+JGo/xQCuD4mfWo8Hm5h55lhOdW8XuUf8Xs8gKNjCZaFCStWVPf30D9iYfza2bo7UomGDsUxlCV8QLk05NC/0Irvo5oPTS9RasKnJwCeJhrl8Q0+GlD2vBsFGwM6fJ14llnv7ARI6rPJj+hn0uXebGVKM9zKOKDoHO4SneFalvpuJPf8jEbWBA1Qp+Eudw81H74+DgyeOj30LXARMt/CPPusPj7dJqrgU2DLdUsNJEXx2oyqChULNEkxNAuIy1XCu7cS4pZVY9tEPndGC60UZu76hzLjRwKzPaoI4PJClaS0I5S7bJ4KjmZLjVTbJU7IsQvyudNbpyfdSvghoj2sTYIBwRcu3JRD4IVhpNRBs+qT73uOyYbB1S4Gsf0c8b7YGh78Pnwe1805WWqIe3cdaxqanTfkPIeFIbthM45jjDel5yZCkksXeH2x/gXAi+rgz3zrv7lGa6fikmruv8i0E1J7c/D7jbwTQm4sHKzhN4B2JTWQXSK9mNKlmpcy7MU3AskvC6N5Bm3+N62MlVbCWOHRpvVkUgZz7NXGnih0ctzu+c9qmhBxH3ZeECq4COYxiPL+ZX+jA0JxuVvKBfo5nVTUwNuBFeaYDy7jQcFa0N7aODBv1faQHzF0gzqO2a7+0jsTRhjO2gWWcZ2Go9ictpbX/qrbBfUTyZauCPS0e12tkcFyqRCQZ47oRVPVQ4rdNs5NnRSJxt91W73pH0Vi/lGe7HZDh/0a9gWP7yPP2mkOp9Q2D2ZY7fwR1Se4DlrwHHlBulvbt8wMyfDYbRjm9kW1hcdJdBeZaHosBqZh6qCyQySsAimCnIT3RrH5pPfoDP/h1tvk+6bQ6hyvH5J9YPzymneF1sG7RozmUE78Z6yj6Jm4W6D+ZOT7OPqk2zNmoSlWTCISY8jY6LhiF18Lf0cfh9Cwfk1iZPvTfRaZghYiW1OFBl+l4OBPYIiWw5DRRnOISZAbKj2Z4ZW7AFKPBeJBB5nByZmWbifLh3ouKzwDI/uTACra68N+LeVO4yf51Quf2p9yIHS8p0LkjhjNYVmSPV86baIKmSk23spWPat1WVaLGaHtGClEuWkU/EFqnHoRVPmGYp+whrF62rLq33yKDDjU3wohXKBaTkpmc5VqgjDYr2mUHI2LYnD/cVfNFkXsLHzph7250euC+0N9ef7k3OW8547cyo/Ara0LKzQWwh2IXMMHZEgbpT86eQSztrD8ScJ+G9PulzXpZDLa9bviVitYkkiJXsd8FBLqi8MMcJ91Ma6vN2kZuBJ++kykZIK8B5wiU04l3wIqw5M9jObM9NIn0flxsXZAVDBRZh3HLlqvjgJ1v8l+g7UBzUZbk2uhqny/7Kan9HXRP3U92fedHTe5hfol7bkOEDuPIBVKsCz5ORUl7FwmRDmFBL/hus3grdehmxjSqa3sdO4cc90xrwQ7nFgJn2f1VdzMUpwWcaNfEI+yIF8v2WoTxgh9L5G7oPyKrZaSVVk03d4tWf7g/nQ8GhOoudISrZf56hFprJ/OX99ElIThC7bYTio2SPojKcH8FetrJ8BYHOJL/mxIt0pkTJPTWklrirLkq/17vyartj0rdRn3pEECVv9xTBoOxZoJuHzhmZtbuwNXtzssUMgoMuCBDEM9kGVBxNwG9zRRC/J2a4JYzqI4xTFyOZzKED1e3BoD+EBkTPVpJfApMrvlAXyFCDOyfpKM8fmCenGaA5ypWqgPxE4DiYcC1r9GPy4Omewbg49m8dGKt2tfTYodZ2LK078Nly+rZaQPSp7K0HM8b1v7MfwMISPudlfr7vu84oKyYrKNb2nqw9m8Uldthd03OfbXmfghEg8gyYLxo+kBy0mwhrjQHi4ctXPXfdbjZ/0y32uBufgGmVVGcSfnoLEW87FMVCDCP9KEAEGF5syYkfbWc3+PmX8N00vyV2ZspJNIzcWjZqOdhMzNs4QMsh1c4xKXBWCDrNV57zo+ZhYOB4AiiEMlQ8t6rTZuB9B/UGeOySQyIMSDWBSeIkQe8nj1lO8I26Q73a5GVIQVdbz/gT8zuDzP353Su8f7NcrgqHhdEuSPfmLF5vrY/vfM5nN2qqve4kZyJiTDkUEZnPMOATestQ53PhBLpci4/B2hplkQqTg20pwfOPB9SG0hZdivTutUc1aUOezHdSAyf3ec5QAOBWCkn0kdXvEwQ9kAwBVuZyitai4fqNunItDbVDceUJEJNZgGlM6Ez5Qst+KYeLb6XSYFN/Btug7npLxUoLV0h+sJSajiiEYVb5NTrBuy72TR55PTDQJSXYbBYyJImdCmRYFUkgHOawRyrB/12IDi9WwtscY9zEEaVZGrcdrXmdw/41lFCCIq+b5psQMX77T8VI1k1Y/W6ESooBTDVe0VKYgK4y4hm3vmgBGVU6nMyOowsF5o8OC3CxCKXsoAx/U7hPMjHiGlpVgaAejySPtavA/8eQ11+QM2Zd/zyeFvBteOCjIQ5D8L8ao3NwM04+Y4tkXftcHj+elZufwK8Is7pbmI39zEtk/U12GmGfPfuJ1s6YfSUp/24c9/jQTqBJ+xdUMsrp9os7ckhq8d1L5iNGtFQ8HlDrs9ex6yg+zsr/aNG76UJNgIxHSgkwXscrG0CyvYbEjfN0EjJxarkehzrnY/iJKsJE8XmUTJQcaZah+iR36J++y6XP7k/P3Ohihs0xinrfJM+njoW82NsEyjIMwXBicGn0npED1XT1xixWJrxMFKKNuAwMRXq9z4j1cutyCGZvOEQWZSg2C5P0RVkgNFaBpwl65BGqUV/v2g3VaNIvT15kCiIeVdRkzlipp0Fw7wZq1Uj8aze0F1y1dYUvwwmVBWikc7pHc2451z1wSsTY99bhYoc3sstVR2sWseQXrw9im0UzzRF6zSZAnJTUMV0XrbqFw6gXOXHi3X/H1ewaX3xfCNb1qB5j1sM8Hut4UqVaRQa+dTUHyQBuY4aLI65xDQCM4zBeRkesmfU/Zu33AZBLdQScPYvWrDZr2pKHb36WSHK2g0gg7YFYRQWFLMfg0D1iJQm3FiIgDQ955YQYmInVq0r2WVlVT3tzUlkJjyoeThv1Qh+p5QbGcK2Wc2MoyLRfWEl8zZJYZVzOpW/evxGfzmo71ldH4ph9pgedG+kcKkrTUZDbiux3ekQMcSZC99DC1xeSjzG8R4PiYCf1i05ZKNwZdE/ghx1n/3n3piNyDvGnJAbY3g1ReBvJojkGKo7o4zAgsXKHU1ALk9qCOMzDH/ize5WDq+YHVv45Ke93vLm5wtEebAfIMrOZLdMBrYz4tbvnBPXFrmFct6/ON1DT5z/z3YWCxJ/rNZbj+Xq9yfKa8RDD34+O9wmsW+OLDrpLH1Ici3fCpLe0GncfGPVLUZBgdKZ3+BOuTXj0MtDhrD+oAWoGtRuvTwXLT8qckCEPJFKad4P0rPscoUgtpajItYY4YNG67MI0dwhGtB7B6ICMecDGwY7qj3wdGEE/pWYlyWIlIXcarom2WWdIAUJBkFftgawyUDyWSBWddSM6H6TPU5K/DClysSsZUlb53bsz602giYPAycr0n2nabtS/mZPmoxSGD/A+TlAKKvOpnVLkSByfiOagS+1oOPVWntiVwH1Wyw0kRM1rRhpMhEdMX39lbovRvgn2zSunZIyZoVFCLqqMeeZ4C+CmMcfm6PdTUJm1b2aTJqKsE9IQDwzvAI2yAzomzl1RI9glM7LdqQ1Mog5LiRH80d/jKzaN5oV957WRcYSilLiPtWU7CPkEBds8nSVImI7d25I555TNtj8hLXm1Fwmut0kKFWP6B4UEvmOZNfjRK3hNNOIDH9UPQeawPmqnHAYVSJsGSfEyvNgQuEVVx/p14Y9CDuaJ1IvJECNW7yzlV5vkaL01ksAxFcQxORSqLAGDoI8NiefzRLRBBUyrO1ZS4XXCAhlgwOEuUWIIDXuInbv3K4KAUMLbAcNJdgMrvltUbVopBiCEqbUt0QJKndG/sPt/VzlkUW5kmbHzA9PfO3/KpRahweEASBlIRxy+a7RtKZR4QX9N7j8+3O2MHD/UhF3F0zFVCmpDfFAf/1cwg/6E1U46WizXK7wzcTRrQiUwee/b7kvaRNGlSEwt5kqRZ9cQgVbfYneuT9y/9FRpqyMHbO6VTyAYq3N5ScFl/E7xI8oJLHcKp/SXMnuGkesIZWUo4gIVA4DnivSMrJ78rfBzHwWGfZBAWysz1yWH1mpRL+IhhZjTUZmq13azYzxzjjY1/k0y7M4WKtuw6yC5lZtuI0BIU1lzyJUFvpjjYtcID20hB2DTLQfABz4vl+ArEqUKvzmgXLt77mOoDCd2DqOUZdeQfk1wJlxSQk38Sx6xfP8mvhTzCzjjcXWsvYFDIstOk5PIQyjhxHEFOLA/VVwoMYz5Gg2225HxIJvIwLjP+L9gtZZN9LjPLBE0svfHO5lEEwTf4gNgngxwahPB5kVIVb9zbJPujWzgRAo/z+rpNdYnDAGYuy8JtQY5JX51luUZ7/MqpQtXnASO1kc9qA0ugGNQPDGfP4+reLn/ooqCfj3hQl3X+HaL8D93Q5l9TreTNe6SUChcVc6ID01gDr2AcezFydfV/2LfJClzZ97gze4RkY14ADuO7vtI4/DBhxSOIlfdH+E6kzeZGj7FJ/CNZT1gExzJ+I6FgLLAU7pMMEtTl1tGLAxSeXXm4+vmfiBKjlLW2vfNqshI9t5c3tZQ34s8XNV8oasUNBXhlfL1rlCIglJcSKtTAS2zGtCgxyu8/sqX1eSTohzD4CAlSLfDP7qPfBbvPQRLv+Eyke3VIb44XE+AUIznhSFQL1WykrqJKajA1SEoj4eZho7Zi6l8Vp34kPvsM65oZ1Chk8GC5xbzJK3bbMF0fc2rTrA2CKjlRCp8Z1pQ03WN1gXfwUbZQ9ejMMEkM9sqqdpqh1MXJcCUZ8PGpJcQ28wwBax4Z8VCwhNFNLPWkfw9I7C3DY6iPq5jANPGGBBwjCg+045+T3gORUOnqRIVhcUlXSLp/mRR7IVFhvH9JdPgkXvXwrgyR2UrVet03h4SilpYhjcC9MZ0M4pg9RIJFPk1ueMfjXbF/1YmgIzt6zZBpY/1Rtb+bvD6TWIQa0Cm2ZmP1e2mAWidIQbMXAG4Me01xekimtDalokOlSJzyzhf35MPKc2OBZf4CpJge4SuVkHwMpzaDcHy3w9cpHAABGZQGfsGpCvwAAAwAABNgyn4mTh2HqYbvc8ZwDtuCjpMfA+uJABHGW0VPzlWp7rDP0tKvyZwS8+kRXlAqGymTPPB85tMBFSety+WZOjZ9s7YhE7z+/IffypJn3DLNHDrgCzxDT0hiT+8vps85Jpbr+nAVllZWLIVxB1zCIVB2jfeHLJBvixYUOFP+SOIAQYdOcdR7OJc+wM89xjI1F+ZuD+p2XMQyiA5hv4MspBrYPd/zOcZ5FfMqpogDZQaRZcoyK+EBWsZy+9rv/oJHrmalHqzMDy2ZxHusPh53tFNPXY6VyQ1fWK0a9vpQ9PvbaeP/LqyAC1B0GZNMSpB+JaKdgN4KSJz6tSft1am/3dor8ulCkcGAKNgI/NlDlSW5bY0R1ePmk1s40BVs/dPGjfdI97PVJkrE2ZWJWmF5fjML+bd05VtvRWxgG6IdtDbAcyWtTBzCsAR2/hLctbtfJiyfM4FbHYXMSvaqKVDZX2WlAKd21cIfWm3OCUJBRVsGGCD/0y3VT+nidTVvqXTmUNrGkZxmwoyb3oJsap6e45j9QzaXJVtEoFz0XCn5Hur3b/QsDObzgSUSuXfh2teW4I+t73sPXRI7DRLlV9I8Mey46F/EdujzTa8QUN+sgEH7X3x2vaXaaSMEuLrbr2kjN9bRb9mxfiV5eH3FPIZVgT2WAKxN18b+bB6sBjnm/b94WTzCPyPrqxq4k+ATV/gvY6z35SdXTaOx1FskY3ZjlLoLorGUfSaEIWhYPpTor/IGYdOffSzqvDWfuMESN8UFDBaf1L3HLW+0vAugNgINbWaucqCxRpiIz32gh+l/j62udE5WRXBfRppoaN3OQgSqy9FNr9KZwdxzTbSV65fJb+MTAJTyjAaQgkZGvBb2kwu62zlr4PDe3KKHg5mS8GFPKCl4CD/BMbZAuIjdKqASzInyBLeM0JuJdZ9MilIsZGgLGj94Lz6DX1uhO6b+Iz9K5sshXVfF/nRQaFzdbuEGGZmPtW2I6dEEv/DqUMSdSDtPnE26TtbDvLY14m86ASzDl3oRlyRXAfw51+cu7c3Ijbdo1fKBdn/fNd2w9xM22JXOCJ30Le8myqKLS7l699m2Llo8OsjJCTtjPLVJpUuOV0rG4TnhLitZQn62twfOGjANr0jzSAPYFVP/CdTMS4dULtyAwqW/RN3yB2ezGM8W03N9j9SfklqBwf1VdsVtt+oDsxs/p7VL/domo9HjppAOKOa/MVQdGyB8cKXOn83LD9cz/Mc6ELY9nYbR5RwlYmOC83UplXCKux5lKIFyIBQYn0MSEo8JWwqssOCAVTg8g+Kc9Vr6T8T1gy/LltyVIdxRtM9St+dWRz5HlmOPwyk2ic3ravzz1PdQ2B0+RCtm4JhHGdqBpD8IBcl4WbU89DlCxI+fvNxfwp7ddWx9Ve8ktch1cIHP1ATrxFoNqOlQMun67iLHBhu2VvgdU7tlqxL7hWsnzY0FuNOxlspHq/aV8UcX7l2PDMkADPAF5zOBqn4rdqgPEHN/LOrRYHn7WJ3VuW7YRmchL/3LeIpgKmwJGEf9kqByJ9nkX+XZb3z2+wlCIBnIieuGpYsv3q4/mKPYvwP+KKlFkKDp9eHoJB2b8vZ0S2nx+aIdFXdBsEiQDud4KWozmTsuoMtr9XGUHPnZ7HCz7jYspV9aVSxHvxYOWO9XIjks//48xIt9pWTjB4UxiUFybyDcXjKrSjbPMIIwT7nnCNUTXqygv9RucVkLapJaVShw4PCsDGPxFqvY8bA6ua6opmEQJseKM8FLt7VJVkbUTVEgDefLwJCS4febb8ylp8lUUD/b8AUQq8gHvUhGIlaBbRyhQD8mkwFTPzBRDqSjU4Y50Pq+BMTLvjFwR/MGHCi493cBOxuj4mGD/V7KD9NUEKsI+245Hq+NWGgvCx8wOGRxbItnSBnU4BWNXPEMV9BTIGFnQVA198B4yUfeIr0Oo6jfk4SAJIStMJzWx35+uLV6nJ1HrlrhGfk5ElKThAdooO9HV77hb7X9GLAGo/5RXsHjjhW+iteqObcTCpcf2smSPFtmIjXkevCS9CmdADg3ltUhNYuOJWg5EIwPbOWeMQchKm/yNzznxYhBkuvNiuZWH1t6uzOMMpFtwmUyVFlirTHFGcu5Qv24C8LSbEHvBYF0QPk1karPSpJs67K5e4dr6ll2sejOhionbl+XHFToeqbL8hCHsGIbbJ7d9X9Lg5DI6XusPk1nZhnR/9SG+e9RiUjrkCXs/4FrHSo1CM17TdIpEZ3sglczlpaPaehTXfc6O8ftt6loyikdyZIGQJ6N9Yt6+DiZ5FDXBbRS8D20WFjDZze/sv/r3ZSc8oDHdXu4plJErdiPQK5dZLEeXfvfb8h8giOrHwXvpgVcOWifUDcz8Ilj0nl/S5XSJ5J3kP/73sYn/ecCeNYM1EJaeLV1apASSqTuX/EK53gg2a1chL7U3cHZ4SiMQCe4Xb5j1Fa2zi/qwhhuA7pE54DOhfSfdtnWMpDNQD71BdHFVPduNRZTnQb+cZ0jiOrgWpID5sNRty3NamIlKozeh3GNqi0H2iKOURNhGoqD5CB2kzI/LfXm6Inn3ZV0h+qg6CCbcCKeBVDwXruAj3uNZPggZmLT4AK/e5aUTrTjmNjPvUX5Pfhj6ctOwsGUhMHTb9D7pu92lQIomQ/PYScPPOxhPS2FFuwUYnIJfhD9J/5ElTftOpT3IJit9AJYMKj0459f4GAYTa2nBdH4w6NG4KPECC3pvEU2hmGsgGgIzvYqvYbP875u1CvyRhTZj+d6ItU4oL6VOShV5d4Ijb9uSFKmlQCx+7GTdViWPFpVYFgbC74/4SPxYFLsj86xNmXzcpDCZYhqlu2uwgSjcIfS0WH32D4wEvwubJZPneYRu+opX9WV9jaXCI0Sk4a6X/yrX3ECiLS9cvqUROSU8TGHVD5vyBO9i1K4kyP9JQk3bYBAq7/MzVPEE94UICGoExdzLDMVAfyUqOyMwj9om2u5kYjiPXDHSouTKa+gmIolsoz43DltrDaT/ZOYcLZSnJl0/Gmx/zKVh4R0+9gv5NgmZoFf+W5sVwVV5Mh5fjwaL1EO9QopNg/jaTMCRaApTEuwETT3xAZxzONoMtXGP1Mm4UCRLHhBE/x87yKRS4BDy0j4KyWqVs3Q/ECktrmSJFgFpywYRlggrfpzHcQ5SgFy3ueShloW6l94EKTuujowJ4K1BrrTpN9GiuuzEuVGnEQS0wiSjukQ95PWKeOYGxo1aG+5U3ekZO8B0v57VIbf6ICCMMRWPCzpbE9CGBMRRnUJ5gc3E5P82ifRlo4MWehnkuLuvbFGpRaSQuzgRk7mF/yloi6CRrqPqy7TrVsBwHO8CwelXfHUAVVMR8b1ipyYYGhy8SC9zg+wQtfc8J45apR9P9aIiptlRzH4q0FokRaqz62OY6phJsTDgMGrfn5na0XgCl8ISVgoDsAuJfuPDus/fZlIQJGSCgKYqHCpxw8PGzOcJANnTUa9dA9XYBK4R02CyDmZN3x2+9bKfu+bkW6tyLcIatR33HDU0pxa67fwgujbz1/5SCL/OIlfxF9cCzTXKF6aTzrjZGNmoPIhgfRsI8Tb6pd7/Slb7kQMC4D1IFN9AByFxMu1TDGvcZG1ydJugmvUofPngNvwlQHd9K58Yb9DhtWjYicmIGbxCUNkfW8at1x2daKzWj8Hnz8xLu3ofd+tUMkUmuuGtlFIgX2zfSwXUpWl+8xrAC8Dl+XfBFnI3Ocy0TV/Hix7vK3tR07E0L9cwF0IiRp8cwOBdWWC29xiEckmkYg2UbxqiSK77VoG9oEImbsFdTc1ldD05iTdj4sDNQz49vZ8LqFEJ0XUMC8wwd9+RmPxPYryejU5St6Ubd9ot36X51VZMHL68HpQuHvXXMyODhdcYcR+fQgicpbUcDsXLfRWFMhq4lxkyTwpzMhIzQbeZr1AE8EjhXfVgbsMQ5mCSsCebBmJVcHgTUsqmz/oLdQsJRiCzJY2EMgx8cgianF5I/49TgQtv0Hwd5i/3cC4GrMoOmNrAQNgT4GmOaFEZW5L+6yWWiK93KpY9NrprXdwj4tDMcl272e8st9sn3VY7mSszsS8nYQrZ1H9M+Kl5R0W/N+Wc5gFvAtSlb0kNAVCBajptCSDoGzIEENUCJlvysWZdIroPicLAkU0h1OVWn9UQenQRgPnUL+OZaO4Sd5ErEcfB3DBVO8l8RFynaDsh3KkRuavmHvMs5ZhP0JaWJcllRj9U3662wKBvPIO6bIr4g3/m6PKAtREBXb/B7XY8oinNWvwPnL7ksaIzJaLAjUk83qtTuQS2Eo/q6Yxus6VNG01WPOSQtdN6NQIMUKzbd257rCGP8Ki5cC87A0uqHjtttqqNk+Sp6EwrVD3F72krXwTT3MawKSd4/UpuHmM0M3Uiv7Ir4kV55/hCGqECitT4osO1i4nV9nddhMi/f3xSb02ajrprW8A8FHY589+l810U2oaBFJUc1F6uu22xGOW/uhcpeeO7Mj0mRa2w2cktO9yiV3mFk6k53CtADuLGO52imuRVj2a329PhxheoELqjcWQKo77GDAa3nXAoQ5h0zwWkc2DHRNenhKaZH0TWAqArdYFODMsmBuzhmsu6esNXdOseYnTXNhS1IOsNv3H0hBaVmcDBf//MVVE4XWX2xLpOZu+qxxFPGTBRBTs+bIs9dR1YY9enrCPe6rl/0eTrcEjjIucAGhZvtuvzNPdSHS4IhRRxhxg6GcnYdPnvJhfJsoFxgyaVUmVpzTk9Z8+vdsbld5Mol1SauAdMKufM7x3QYYW71csTPGCbuIVjiGZ2n5hVmVSoJjcpD4pc/ROfC1eJlNfPIuRIFQSNS2MMOUzSUo82/opkrRuO9xWwK/PEBpRoYE7z2e5vtKZmWBsdxc0W9SqG9yda6MSGBz1Ar9oDUL0Qp6X/kWAnz+I0hgzEjFbW6R0N+3uYWOnMKkb3nWKQfgacbOxJVkS8YoAfhpxx0VNnke9IpGVaUEEmggN6zXX8exp7v9Vl2PR039USLnUg8+Qxk4g0MM7lb3Qa+pZjsmYYwlDoYdsS2UpZCxbb8Zmlv58/gKE/rhfNl/k7WtjPk9I2UQsV0aGnQAv753BbLX1rguXWQtbHTVeRntj5E6UHreS8ZzwK2R1hrtdEZF0lgL2Zgq/lFZg1l1q5YqPcwTvGdsO+If3/FortarLHm0Owp2dsFTGffXD7F/XyY3G7/7u0K79f2wbK16GvHDxX56RyjtadASqvD0rmrPO4mbRMbhMBBhVYXAFRuXA4P5O+rsWMfVGWU87011Oi/cLQ4A5vJ9Lh36XF9PLQETd4w6HJMXZeNG4Jx17jZfSQwyueshcmB1haQIzwR3XOWdUuj303Ng34lqC0fJGiRgFt0Nh0hDquDUwz9YVntIJU0Ap1Jzy91zobl1jBUUa09MEdF+p2prBm046cyt8rULw6eWRL0ouBdb9EVK720S1F2jkpLxpANONDuGHtiI44JNsATOOSPwozWpLZX76yWsZPKYuQbsh9jNqz/JVjyQc4xtI4CdtvOgXEo+TsyhMIANPEZJRParZ89EtyQQx+sdhCEUmEJzcLbE10F1uhKQ12HxxtQUsuiSpl9Z8AdHgANgpBep3yDr86PaGShyooe2vu2qybHRsoXvbIPLhWJ5AOXvOKPb1wikvDHBlmxcwLJnKEYnGZgJ/3CZvv34L+Szxg90jmLFPrCRmLSFmfFDu70iIT8ovZZSznmd5sTUXk5m9GQghs3Oek3gBRpgRQqUGLHAIKS4+kGYMrvGjQXbQ029DdYf9+XlfjJl7m1b03TRayVCunvkSwHD//AA5za7iFy/evMHDgq//LU2wVYqtbOgEVSmxGhe7vyMSOx+FCmi4Zxu4UGb2quq3HP2dgV2g3dEqAOHoACGP3t0I5x5DVtjeIcKeXdqg7lxrqfegqIeGgjllLsdRgf+dv7q/QEXHf919FJ4K+J4c0etRLsRiBH2I/n2sfBE0MF1YBBUNhnMIudOwt6mivjBCqzfBEdoOtaRc+gPCu64sLLdgJppYgI1bDxQPjEHJngQJr6vVYNtJeWZAlxukjVqgtCR7rPzC/v6LLAOHmZfcSRVEuOE3cpm1P/nGn+7FEeghLrcKtoy34qbWLYprgAADWcXZUOK9SUyxZ3aqfnGNdn81SH4AsczHOsMVY2TUMg/CPkvPYwCI7eDLLg5Swg1TCQTV32mFNZ6hn79hdFIOipCme4CEv2+Rq4G4FnIWho2CVF8sQaUaPySzXgUoBp3DrJJSA5b3PJ0qSSTxPdaNxwEQYDLQLiTVKCNPaWV+pHyl0s4bZbkob8RMyHujd6V0LHcNUpArXEGxYxTuRQUm3sqQHHR24Y7OzGXfYRePKiBgQoEtr4blajTTXIC0lGspuo2nzN37mve3a2+cB6ksoe+xKCS8M3T6oL9BXpF+v3hT6obwFhbyU+enAtijJFKhXsnKfKAEAWlDbQK/1s1SbN+HnBl16e4PGJGEsTX05niDHgkz5XL7CU1nX60Bu7Nm6CPPQpiftATr4Y8S2SbRJ45Sn3jGDF4gr+kHpe22KXRC9QZTUAFKWSm4SJweGoMwTv/qTZDGFzKg6CVT7Zfkt+uqqsUekgNBq65p+Io67gfpihksCdXs1mdpAkUdFZ91uc+dt6mfSt2kF1FPFGIxHYFRPmnY5T/25SD/cQBDk1IHiCmeqolOp26kV/0Ve3/qPpfV2jSplRBy8tESE/dIy0ndYkSVHHwlcacTzBQQ6R68eCnlvuzYj37WQgqxZjpvZL9SfHcRVC6k0GFhLZuUI3c9Zx1WSCGhpufJ/3pyaWLRB7ovs//fq+XON5IHnEuSxG1FvLEJstgXS0p6OUQ01/lQy5OM5gx58lqjWZT6YOyDXd8zrMlmuDljLslfNHRKGPsCFwKuInNPuD/nGtCcJF8bF3JfKS78eHM/f6Y45tn7p8ESVtkLOx7vWZEaKKEf2xLAlhUr00ErtljzaSXtY/04Ze4gtxInGTnW2Rv+MvuaX/UyDFwmi+jvkxtwZKVZdPznvAG+HUokxkJ0+pur6usK02IRHStsG0W8c1ftCs3acXWkHhaXJkad8yEyOXL1WDKPaGjzsh1NS5E7T8ZG1k1B+6owSYfLuJYjON3TCr1uwNPga9FTJG/hLOrfQ92jTwCVD16mG9EvMe44iNG9VDrlVoJ+UZOhpuFKrp9xCzOhOQFEu4mbRRq9Id4Y3F7RLgjSD6DNHyc3//YlKvQPUSRjXm0jyJVF9Q6anlOiuCZsl6AFZw3W9BKCVjzw2rRXQnPwvB2kZBICfwEjVuY07U12JNdH5yoTWGIi3xyV3UhLQNn8f5PCi0CRI/WrYBHTP3dtqA6LX7G15lGPQs4/HeprA4zLPvRREFwWB2CRaF1r8YvuUArcSZFwx6ox5TNyQTtIs/2kNtzQgN0+qxObtpsUodoAlvCySsZtX9nO2n6ecNRv6DgoDE/H5mq3WuLPSFnwOyXsVG0CDmQiuF7EkIVuWpRZYocMfgvAlIVDzh2r1vKWDDK0Au9/pBOeQ4W0/g/KxmqzbmZjbtAED9cw9ctynwGRH/H7h7tqFFOjUpkNeE+kMfiadOSog7J0kiMUftqL2OhLD2a7ZKvMMCwQ0ZsV2o06k/RKwp928oxFNtYq2z5lor0jHDQuZ0bB19r+VFTWBkVXJmb9/tlnsVadIx7J1nV7S0cNPYszQAtf96kY8/hYFuXoTvme7H4nk7zKC0+IoXvEO8f0k3jm9J0/WeA4NQFtC93onJ5NL05X+nJAmNvnjxCPKksZJOHHXKgeHcT/c2P4iKAzTDRN5wwU9dk0jeSdxQMutPOQPUaaHvX3JWylos+CZu91yOsibZIuvV4jbnsNzWC3NJNEIYmM/CD4F0MEo5E7SgkpxFK6G6cfeMxesqexVrZi/47gnZp1fqmcJ5U/QaN4oum3rjmr6c0Lvb4Xgq1vYdCQZuPA3sMv9XGcvFKETlsyX8cxh05WAhWpz1GhuUyOkI7c4vlBS9N66dtPXJCl9scBY71yAvBajYMThSY/1N/b0j3wk2NGc3FGu6tnhzrvX+zGloACHIR8oWDgXlBQCyghM8mFRu/JcUWtcf9gz9Aqec4uaIryIKEQfbwrbLVp7Ys/W8Tc28CMyL//OvogSPg3u/pt/I0/WL/HTYrkNR/lu6O7NY4on7p7QXrceQspQpfuiV3dTi+NktwXptRp4pTFN2Q7FpAjwjELIc0LopnVinwT4fFu6arT2BtKtZNhD7wVUMxkc1Ka0XBph94/Odc4XPHLEAhxZSdGfoW9PQ/jOcP8VuXnI4z5tQSbpOUdKsjNWtxt9IDZuhKNRPhXLxauRvNjDH+yxRDJxvhCntBS3JnKqOIiLxT/SfCx2rBicXqSFBXPZVwmGrXBOGAY/nEiUhJQG0GP7B5OKXhCqrz1KeYl/SkaUq9XB9vm00HiTN9svCQI7yERjXeSRbUqAMshQYtrLt+0UEK4aCENa9DvnZdHEmNiHr5WYdSObXx0bgvfL5q7ywBj0TNZYVNmCI6EFKKOATc3yX/NSJw5GDCxep0+yu+VhHh4hEZ7OdROyZY+nyGMaA+51VeBhDzZUCjz+C2I4YKMUjHXCHRM18jswDgdGmcf4qXwiI2RYGAaELunV9YoG2/dmre2VucGermLG+nCz4Lp+S9rmdSWSQdCknKNsb5CqNagj7Hsh23vjsxUTsg7w7d5t2oaXlNTtedDeFRBbrZZw87UAK5kPrDNGoSVYeJ0jCXtQmDaJXS5AhHeINN4FSeUM/BlxPWL0yJvVTX0/ilJmynsJSzqCE2O4bDG1j1nv4mFdkiSc27n5Yj0SklUMhvZRuiFKPIwZq1ocnzDFs3iQz56LA0pyeBTQCYY9/PUqmkYNgmpmJCZD0nJf8+gc4vjatsS2pMp19CkOr3bVb28D4Ca6U7ak7pAwC3mF1M6GWpkkecAhSnGmd5AHiRJC8178J2fEQnnwYpRCaRd4PHdKLn44+rzQbsFciaSqY7OSO3mVC1KBXtetOByABdXh4n46FcxJi34vEVG8G3TPxnpJis20+mKUubQerasWrm1gGE3WpzzciMLtKNERsovoow7+T+5DBxSshFs4e7DzI6pfFol487pCiFSy/DYKkz1QZVcR1mtURkQpm2X+q81qztm7ecIaBMDdGLQwtUiHsJ35Tfw5rf2XIV5ktfVt3R2z2LYc0IJyRYr76lJlAsZf91rHeNodWdjwOZLBojbLyyUM3x7zsTD8y8NUzjWd5bU16RxvM2rRNKAcwsvxTg9aBd6+jf/GskBOmh4lbvgJRIbXUlR4EO1HJGSWLpst1v6ScVsRvw7PrFDs7A3LE56vxicBZdQwnUpdXYGWj4yzyM+HR95PbHWRcr1S1FN1zYfcUwxQBVwNLIOn8J+QC3evg9YsnQezCbpT9LB6AU89hJH6Ph+g9pEQ8U/c8yM4EZIj1ZYFw66K22nAsS++bWMbo51C36yhYQsllBUtq/rQHgw+1yWZaq8pmamKBB05zuvZfn8wc/HEaOasL5LcdB16pygL2ciWNX0IoiLgnUZepZ2Un0TOazSLhKlA6+tw4Ag28AV/HlL8pbz45C7SKYbwWmNrR4zfpFVxonqO/J45QDcroJCjipJG9+5FSigXl5pO/+G4A+dRtwBckUbGN+Sn1i3yv7Bjjf93OfVxvJL8+VznyqDYDm+3EswoYrGwMTMFvj8t88q3usWBjycBvOO6BoR6Lt0j2s2tQN/0YDoQ4iGmweI4beVVNK08tqpb57xcEevosOvl18ttJC+Bp6BN3XjZNTnhTG59BX0a3Zxxf1QcTGhXWfPAaRxL4ALvOLVsCWu/2wkROhTgC87yykPCPa5NCz4guFtXgqp/X6M9b4E2ZN6tvjMzuh6PBiNc0saKB3HsGYfk1dBZz0yNlgJkMwM5OBcnpzgTchyvxhWKwPzwtZ8bc++kTA6WnisMDPhVitH+F+m7ogGxQ+ybPkCpUIsG/7MvTyXCdAOd2JYwSP2LurJE9zF0nKjFATnS5kCy9O5yd3+gUpk5tNTaC2zbRZlBDNoAvwqjXMqTNYfwSgS1tFmwLDW4Yb4CH6j/HWAIVvRJbKU1vWJC47LuvQ2KIkoJroH0X22LKPG8T7ujEqyt1gLIA4sGFFTKZpIQ99lltB3UpFlesPzrqnzPT+zl7sgNChZhQlU40ieNJF84S7XSMTFgWBDNXFmloyv5eEDrKx3B/MF+0Iv+GV2ruI1sLG4h9nkG323/Y0CSGOcU7wGBrd12NAhg7nRWWlGPw+jvlADzT+uFm3qQ7sSIwEwcul66/DqtN7YYGS+V2KRA5ABqHRiXGWSeePWh8BxklyGSS5RT1rRHWzBY3tBtAnmTQF528xulEoFR77XmRk8b9fG3f8UKDED8Ewfgd8x9ymANSdG6VzvhSU4our4Az+eSX0aTK42e9/Pb6gjI9t20/b7em+cgdJOhyWxhogJ5U9OZSrUJ+lB4LapXrfgA4YMi2APhn4Otb0tt6tj20ID0077wq6HTe6JVD64by1hQaoOp5N999sbXyGDx829uxKPmbrkeZJmHkyyEU5ctTvnVSRweanW/tKLPg2Qb/rgGNget6PmdR7iR01TDDrCE6h8Ow+i9XyhiWEGMHkBzBATzAMysTBT0FVo0ecR+qntehowIimQBnrH1PU4jBw9GdeFK8E2nmEmWtqi8QjFMowI9+OHjXCXdr8wWgBOnUQERS+VManC7mDl0mS9SrbixsldAeV63zqlopyZNl0XW/v+B1JGaLExQ/pwIbufvXDEU1msW8R30hf+dYjHZpX9x2ei89ACvpoq73e8ZSk3rhQaUk/rgW3hpVoMDwi9qxZfLcE97solvKnNbJUNSqhBbQ69MHMcDF52+ZTMwZsKmvlEXoJ0F3iK7ze1nFMXbMdPPrNkSMIM7M06TYzPqHyhPmS2I/hIHB5GYYunojzqP5a21e1uT8bWeVZktD7y13o33RfhGCyekU74uM++1lme5h2y82w/6viyr0MjsVpGpM1eIBzfok0WfTD0kwlFTq0Y6YWlsAxtPHaqwRPsKLRmlyEFeaNQF//bnObVJfEdvLozFZsfF0nPVbt47DRSq1qKmbIHhQWOLXzUnlf7UwMj6wx3MhHkRqBmAnnU6nT3ISLL18mjmlwqgC3Gs9JYol7bwDunD3NrMu2KOlVR6P9ehkpqnLUrXcpaM5UlU/QnT1dDa3Wy1xmdmTuonrko6HZplKbvJRWNJtukJYUwPAst/GPN2Q8IivF7HNvpjVsLQbZqlj9gFycVsvPsXN1iyCfrKMXFHgSeHvHy8Rvv1F1L5mKq1JR2s1OPnYz3zanO9gGImIRmrpcIAUmqOEIm0kKhFXHjNEl4VaNcDKcq70brEz4sM3o3vt2mhVDVtpdMC1y4xpx8ECWdR7X03g7bmcjesi0i0l3dvpYMy9QEKFk97TotRufQbpMtLaMyR6YpYDeNXni75qLP7NG/58z+HOmZdzodv7z2VFODf2lik2Xc2A2nv97bV29AKkSoyIJU7rhb2NOj2TuS9CFpdtqictTDnxxODCbIUxu9xG3iNQgj3ArV+FWcl/y243z15b2Gu8zrneWqn82jd/gEnrG2wrN8PA8X1ozOUtMbYqqqiuOyAreSFNtEUCkfgJZPJqawMRzz6/ipp1keRhXWmVLsWZ1UqervNdKLSlzaKeSvscLXxgIuVPVmlXBz6tKoXZYJ/jkCLdp0lzzei1pAOaY5q3JDPPtK0rtgToG5VC7QEOK6H3LTbi2qRuWFRUK9oScj/P6x7HxiC6Yz2T+gpeJ/Cb8j5SEJYufgWzqhZt0J0J6mywiQgmHPByMtgSy5FOTgLCOWJ+v9pyaakUSj0G0wqgWqseNBEC2N3kqy4J4yPSXnL27lH1cIx5RNlRyYWZkvuvp10ge2giCAeBYcE7Hk9gKz2u+Vi54IcSYWeNncPcDh3jqLfX/Thbt6qGiqLSineWE0nRPEP8JJ5KTyIlWcZp1P/pvp0dffeUe+cPPEn0unKvsdrvlHQ2U5v4Mq4GsIwi8gtCVZ8DPbRkb2zTORybtqbP/yy/SoO/iuE0hJrmJxbndWDmN58DKw2oJabUkTni5ghKabHgpO7O9v1KWIk7pxk+8/66Voi27sZ8ACQlI8eizHBoURYZTXIUFgQzn2qKuaY+MESh9+bUtWH+3jFyxx1HoUkbbVppOPmvs7BsQIVzo2QZpQagQAfJtExmaIKyd5c56B5+PQrVAJCB/kXdzchU3+w7234qw/96XbvUvuVZ3PQmXuUkwbPbL1OxWybI1cVzC4P1OMj70cS6aPu4pgn1uZ1Ms9JCfpp0SpOaZO5gafdfRoL6BE/AmY9FQgGTKsb4SctFt4TGqtbN++WBLW//yU7nMq59SoNqGtBL83hZmGSEAhba+oq3IqknKe3J278kgk8kbjLevoXTTdZR/Ibv1H7GdiVt9xj/9Fhci4HsEjStOoUNteUl5ShMJ1tg+v9vz3H2fmNGPQvBCG6tcImdsWd/e5peMLjq9UTZAelEOguIzGAmNnzmwbXJnDQ8EwesdFebe3siSZIKi3eroMhvl0+TeABexgDSPw5CKAnklG0FRN+pkvpUiNwB1/YgDjvuOzrQywJo4t182KA9eHNn1EkFscl7ZpAn/p6OtBnYlXoJUpe6wpYOrLoXwuyq3QGYcV50TtM+fSuw+S9PPPE7hWBCkxWxDUrCN5NVbcsvF7MbiGCdDa8OPWgxz8mwiDKds3Ge3dIjyVe1rnWTMpNlIxjZNXrGQ34vwZ69FKXdzEQPfQAl7iKVdX5M1gITW/Mc+Cjc79EdnsfVkvkvdQrmPtoyLykG9vFyyCv+3C887Ul1DtaRdPJwW7mdJkS7YsfgkmrpHz6TV3MbbCWyeMftDu5nSFYDKoX8rvcHgK24WhRIelq9G0tHrX456K0a+C/TEDem+ogVBzahQHqD18w/I5vzdAC0gc8oZiCQhhALnB0ZMzu1GPuxst1WQAkO2odhtky7DCA/2zUx8ZNm3w2nMGNQGJpNi81jm6J3yfTbbNwo4xoelQeRfM0Wxhl705hf85ti5+lj8ayjttJEOyGGMGDWMcf0Sc8rdxKsS8YbNZQyotvlXpuTF5zr2ctZwLhbtL2SpbMYpSpPRKeDrnPni42rAOK7mqBQK/1/SW+lW8xF6yxx0De+eMddz6+nJWMkZ/YRk/lxPfqkGfpUOSJ+UJHvqrpVZwaaX1XiFkGn+xHF15z8pIFpJupno8nbYtMKOIpEx2NZkkqNKpt6Ta4hhQKcakSOx4viCHHQqQqHruU3pgHAx0oIJ8hE/e1Ldn4mg8bsIqlhfzCcAvrGGUw8qGc1EHU0XQYF5Dn7crudjKd5d9jsiXiVx+GVmlozwnWUV3uhWKWElZHHd/RCIaABzmCf1Xuesl/mzvNM87vc/yEcK850s/Ymrp+Kgi9DAOGnIFwEnIK5AJxfu9TuOz4rZHSC3Cl7FDnf3eftyuGtpqnOO8cmawjvcVOFMr26B5ejAEfP7r8Bo8d3QF3K/r7Hy5nJQsnp59GxCNN9fMw1yWVWBlud5+WEw49DnpbHdpuuzDvNZ6id8Njsy7NCsd7A/3Yg4QJujDIOyoxgNbEOWczxdfIln+/zyLvbKr5FoRJi8kNDJOeTaqGMjjhQg3SB1fv6DpgG1VH5lhgxoBGYHMr1d/N7HKyyvcIUVNCcDebgPAmtwqj6PHNR3KIAnZ/cDeRVkdWE8tCGUtIx3SS4ZlaAP2WAiR9e6knY5jJsmY1IWlvcXfpMIByiIfCHiAA6Skibyq1QHX4huNMo1jQhoh4kkvFIklSjpPhyQsfublrKML9ABB0IJvN+y8umkbqDuRxbjaxU8EW0T9yECWhry7BnHLXsLxIugBTPnpvnKtnjzobI1mmKEy4cP38L9D7B2eNVvAWyE+BHNwxPcF+pU/RlflbVIX2EgCDUgJu+tdxVxX7TtQBYwcDh4vULm8WSo/Z4g98yfzQlYlQ0tKVVTgmSODz0rwnFI/4F26w4QhKeyeVQ0f294lRSWIX79gmM/m/NwmVW6B9pnocHrOHfzY9qWZXoRKfsQvZlK2MKzHr9sD48k1SAO6nDTokBlQyJ//gK6wVo7GgQgpyr0QT/LS5Klf/i0W2uMmegRTHkaoyoyI7xLSF+K2Omjr3t/rABqkjruPlZvv7jN8PfJqLSPFpzJbHwE3etUEDpD02TFH6hGUxceiW7VBX4uDWSm2Qkjfkpo4DTClhUlUSVSHF7Rh5YdZfhZKfZ70B9R4rl8aIsNyXhYanIKc5gB1mV2C41ejq1BMDjvvrKtMzaKZIdrVSzgEkpjiHnhyl6XEoGmxK2eA/qYA/5fZZwuQ6DL4Q7+6L1iUCJv25Kp9onWelp13QkmYoKbsXOWfRKuKRQjv4M8wr6XUtR/KF1SPKrKswEN3LA5WxMpYhY+AMy3N5z6eVJqsApsEFZ7hSLBbvcgHrAXFwaqMHs3o4RiNIZBGlvIEoKqz6YB4d9HR2YmPH8UfkZk3N4tvPJAgz5ykixq3vi2nRxyYVmhXq70IiAcdwLxzkX8Q/8QvL1+hdRVAlrToQdb2re/H3qDHDoWA5rPtNf2lLl0hugjZAyaTex2NjxhQ6qc/mabC8xA8gLHlUvZqZo9nqdeXBdkrZprPU3hPyTekzmZzibhfb6H/1m5RiqKKYI/RyVtAbDBs4OqANH1iNCaOrcTv4NQr7qK1vpX+h88Gu4jZf3FaPHu96QxOetLhqC7TBHrU3ELm1rR48RbjjC+N1V37Pjr0VlPf3rfh7suZQle3V7l40MaBwFFqvlHjmFeeMofjIi260oYKDERKBj6hIlvuXSqYXuJ7oVWybhNmQtS/fksegkRGXuJUzUw/VtvA/+MxNFuS0d72TGGvMHTz9hiD1VyloBOEE9SF7XHFKK55MPRNOB/OZWPONSeTRk98/A6oNCtM9pUOsqtPxo/sQHTNXYQFqxhT/2VTycDCLN/useQ72ExjqSJJmPSyiIdXYFYZ8LMr6oYcaOSH02u7P7DBU3rLv2QeWR1X9U/PMUDqB9+8Ea4c8iB+zd9wbPiJt/pPDqT5IMMs+9vQyXIoh5qMgJFB7urJJReMkxO9EjG9YEx6TbO1ZYDugKz9sekpK/giOLFTroJLab4rKrUU7oczNrz2ijpgPU5G8z6Vl5jLI0bhl+VDdBDN5mvexxM9gc7Fr0dYrSWvltyDVVFDal5XWCNpXWlKZyuI7kThCcTVzhI2ckP8uaw5DWeYIwwBpvG1TH+TSg8ITN+T4jOtTwvvjLUcSKxV8XSNhqxZ4a9M8ueiOtX7EEQxId2OJgbgmYw5hr9G1GaWiijAMq6mIt3BLAPlDH0pL43Qi9dgT2oXdy6rOGxZunC1ryvoG3+wUW2yI9UzFBoP4su85Wjqx0heKZ3ubDtvKwrySdiUrBBgixP6YdcEEfKXVvs4ry2o1RYE0pQZ3Qh36XJcKO5qE4MyZ7wD9yFoVIBmlrbBjWUMqzLpCUVFfmIttgVOIeTCNDglwGwnNSNFlbClfSnWe2HCGPCsh7qjo7K4QerLAY50abzIVqwQQLpJuoMoDD84ssmHNumMqTUHNjC/ze5mSa8RzDNQaRdF24iRQj7+2P51XJilADHaVOQ2jgGSKu5RC1SlD8qaaMiEXISwpdy8lNqYrSbNAEKv36qdPNjLH1Sj0EU+TmmQl35bkEy5LLgn2lHR85qSq31ceyXhNqv2r+9Ydi7e+X8WFbV9kJPugWGIEntfaA78gRp+s2gB7BPsnn82jGwWBpGnx3vrW2si4EVR5uL6FQcolwBQtsXiye5TEFqvMtSCvWB4ceH2o2O3ug4QEXAN9q5LvXw8uXItwsSufMsHGGUwXrOPbfN7G8SCb/1u2dW+Ts+kMsAHuB6I2BXmEw5VYU4sEmO8+k/0Xx+gxxzAeNYVYLlaj181YymjYvv67t85QusMPYxJEAgB3s7aVFBfn2yz5I3VFtqIL5Gggr0vLhs1ngZ+qQMtrnMuTjb/oK9+pcGUNQy0YxsqJJqWWRODfaOe20XBst65C4kLutetNGseXsvuaOhSrjTjrhItx4EnWgAHFdwcnVjZvE4nxefg760E8GIO24AhvBhf//BpM083QwqOqljoL43nh3fpg73xJ/NbBlQ0grjnZFQshpQa1Gn+pUWQa99mgpuExIv2YfOWvdix+YXJ24FcvSXq75uDQLXKXrNnbpdHdFyeTPmU7xwPx46BsE0sYY5bMgd/JzWayKaWbIhtxsx5F0gQYPnZr9OUvbe/PNRmXuLUfyp+e+tptvxS7OL2nAzG/HtFNXeZtlYrX1bvmytVBRM44lUfHijF51sZdCIzq+U9doNhfuRtEKLtPZ1hxD9QJWy48LDdZnKogvfzgQInpzG+3603+0dbiyJip8zuJHrxdGN3IT3tKwWLnyaQ4WLvtkyr00Qo1W1akxaQvB/eZqg2q9sTrDHa7+xrFgeBXzWU5ug85ctVkucb7n7V5LX9BSAOIW/PWcY6bj9p7En45MTr+gNrhNFH5/R+Zad44z12n1xXzpJlJTwDJ3O2nGEDvGhcmly1HGm/b7fcnGLluq/lFN5c+VeYq7kntElZ7M+BYsAb7TO+tvL8wQXTRKI5vyZ+h9XJr1K8AgoKTlr562cN7YlrKixIMy8CWIX6fCOIVMPVBZM4/2MkWCjkHzH/AyDvL6AQKzcf4APA80wNwDpwbyPkGk7ZRTCGBreeKjswz1Zc7yUPv4F3ghMX4UNmbBTl5LSbPRY/xioM2/4HhjTJley/OFV9wviVgsPUklMlOM+63aScf9zYzqKD4omEp5uvZ4gSnBME00D9UpaCVmWPY270amslLD2nO70/GoEgtGZSbZ1XQkXyYi8jFgSFGS1IvzTHrUOVwS7URx5s2ICXqNUJedQHldp/ganmxHrwAyP5rNfufxvLd1x0m0yhLGRtt5Yb69mcEz263KVCi/pVJVc3COluCyR7nEnUNqlUTqVsRdGybRiRqNVtA59jWiJ0M0MNCGxjoCltk6EzRIdpfmX8Gx0+7GE4NBen5D1hgRtKJ2xT73PKOgEz0s9aPjeUvtckxhlppgbT0jC9HDJDwwgFHWkTX7ToLFXomDaX+N4VqYRkP3cDx/DAr0RKODREkqbtSNrwW2qbPGGnIIC2+DRRtv/1bOJXyAh+BEHX+gg41AvlZo0h3KBMn2x7GhROjR+eTqQ35OBkNj/Ib3KUIbxRgJl3CvGPfey2JDFRfJwX2dt0XZeyBjQvACM7V9H/Qz+v5m/jjVVWZmdyGr99LEDs2HThOTuc0ywv3gBQGh8HvVEPwXGN3RW5prQCYCadWJS3NwzKRvgnlzcNl/AYJp9aXwXKDTeIsvMHADbI/uN6oCVPldu23A4fnTK2Xh+bLeCMW+QBlawoEk6E5nRg1irOXRFwze8CcE4SW4G6RlRE7gwgbAAUphSIEHM5Bdf788bFN2DO23IW+BUFTxMtCgJ4BDGweTxkDwQB8iwqKeTIrx0MORGqKI9McHNq/kvmt6WVxc390Pd+XljNgfwwayyHntkPHygMYHl5CkThKcDY/AbmQLnWkYdhHCcoCUz4Wo+n+LbQzB9s5muWP7D3GBFPwjDsZ2vx4WEZRmkuOOnNEeWumtCtOea4jxWBRHeHBDnmLouU0w/uzhCqJTzWJLh8S9ZC5r05D8K8TYc/Se91sF7izhgvdWQAF5Bcer/PBq4mgf63G4EiSvyVVEmfOv5QGga8as9h/R1xOxPyfOxsSZeg6Fv+TV0Q/xt/RrIaaYBeG579Cr1GpHYouYZ/ZMoOMfCTODwOGvnyf9Lv0y6x08MyC6GqKb3rbrFlDBOv2eGHeFCvVwndbz3hGsdtQmkf0MmaJT8lJSN97iu1i2Q81/XnSPQeGyBo0J+yo/66FzmZDx+AhDKnS/8tKMbY5CViIE80mAl8k4SyJOKTDMxc3b0ZQgnXMmZZntTiwkQ5XRs77+tHjz3k8bww8+nRS0BM+63ikEAYRKt1IybTp4nWbIuLvt86cd3Hi/h/rhLhms6Sb83xuYfJhhGZ8RbsLlbCHd4Myrwl4LvyTpXuxLmoOSsKFpvc+hTz4EsXwmlOWgL+gdfAeK6+hBDlhkdi8VXu/aoZ5XOWdm3oI4wR68/Hid6rpHIZBUlnLRyHPHgustX7fSEXH2XdPCIvSExonTBKR/Via29wrDj3hzI1CL6glEYb1n4vv7IYHYjstOsKNhBm/a6O+Per+zVanXQB7lP7ZMHnfIcs+6GYmT2k2zXMangoDGsUZxz9nPHMboR3jyo8Ie8Yx2xXKUS6NVzUel87OnRrQ3p2kNPLa41R7rEGTl69aLaetGn/oibr5gaEBRa1LwRAn3bVoPa9uJz8TdGxLuT0Gee86dMS55JLCqr71j3PYw+uZeYx0ETfH5eOIXMx+BByJDTNpwFquhw6TZt+7Wt7DKxdhuqfOcVdFKPBgTBj2s70nT3QulcIChFynyNtcOJN+R1HB8EqFG3hZFQHm/xwXXATaOfEgQPdUpl7nvY85y92RtfMmoG877nCC583TTlmbRpzHdm/WR4Bseh2iys7OUxfhG3pDjA4aHdWsLh/nPmttjIkPihEpjCMS7bTTV1Y41aaDCWJswpSrd4D4IyT9vXPPoRBTjyEZ3IUbwdm3l+yA4rTHgokAanxbwFtVDTKk2lBfxZFtrYBY+C94zG2hl+cxviHIBDFyw21EcqI3j94v9XEtyCytIL/deWVSM4l4mwDPGQ6lqTvFmW2eLG1zXSQees5w6xjY/jD7CIn23fk4W+zMyjMuZ3HB8NvzB0sUzEwEPYt/TlBkRXdg9yuXsJP9jhLj6lkg1KfCAboIPY8cRLQk7ZrsaWVXpube+SpmuqL/VvfSql7NHZuUU4zwmWH+S9pLN68fqPR0bgRRnBVqp9R5JmoICaqr+jikZ8H3sIkhla2/sLv4aBEXVg4zYOKqjuOMqebNeyu1e4pePIrS05aocygBR1fv13c7ssMqoYdEsLkf61W5IuK/okrMyUk+tU6QJ/spQofDSMTw4BghkRbxIV00hp/0JNbvt74amJS/U5PpUoMBn8Qb8LuEWhCapG76iNuiLevzKLJLKj79ByNx/Cl5fsgo0/6W+stIT8nV522SVR4hBpjPiqSlGG1wlP/x9tjtn1Egr6hh6RaVtMWqc3PrmwcN1DRua8bMi83dE6J8JPAAa8hw8ao+YOJkVHMyN4qiZx/4GH3Sm5dS0hM25mr/WuIMRTB8YnRQWzL+Vc9WA+qlOPbudSJvhHvxbROD5KlNCQu1cl8bwewGgnIX1xhkuV00IXysIArcq7ar6ikgZKWU2EKBa4fEUv6wZRIaQNrTK3Fde4So/PjoFnrZr+1wTtGD6c9QJafEBdyqrmZ0TPbfu5Uw65eDg4MnFYiYDrBdAf4rLV5l8wViES7et1si1daMV1II7Ne4Wyc3zBt4VzyEL3M4NUXtO/VvfGPWbJjEjW57jccjf0lwfO5qTQAKTKZOvL38BSNI3j8rqGgk4mbsJjzIyEeduf7nD5KC1NWpnc/oBU2jZsC/Cb9bSYnr8jjmriBjSkyMnsg8h4/xQMvwaxmh71oSTfMvfwltcyFCXkgKpdZKD1tVxQJY7iBNbEXz8Knq+XddKFyjckxAy/jfQCeR0fUF9Ln6lXBMZSBoUQxnKXZrn8kB44wtur9jCn3hkj845Ts9dt26cxMBdqyrmvPnSwYA+gRCo6jhUAsfCGowXzQ/yAv9vVYOd5+8eq52DV4+pJgmbxof74NnOi0WHIz1JxcDqfuNhG0K+bzoxZfhyGe7Xb5disJzEHqwhZ4CpvPxc83/dZn0DlbMJ+jT5AF8CkBF0IcSWPFWF3yl32z5Z/8AzUXU/cPjXTqdeoFmTnXKUfJdfyod2tcnbrXXWzEYpGX/XVEpJO87WuufJsJKHG4G8J/JugboiEffHA6ZSzVTQxBeC47CTj0JibGKpZdrHWfbImBDcP0XR+FjW8A4SSoJc/P1srPrcY0XcBv11ht5aG0rLm8RCDoGxWVKb+YCtb/MesYsmPAd4rtowMjtBxhPE8f50rjO1GGbXMrJONwBPV3XnhhXkA6rQ8hjmRjdKZnQYYUPE9oEyA74CL2s9YRQTK1pZPxOoVUQYEJB5UWnFc4ec87A/FBlJAIcX7MAFK5tMuqks4EByyK0xART60wJFVUu1PRQ4px5dC9FyhKdrUm3P2UHKP/Ca0nHXenr6n3PyUd0En7gmokVG57Z81PFUB0AiVvr8UplvK/pWjmebL0aXtV2OIcY+z5OlDCgGpVtbHVC48nbGICtLHI9j9lYTiLi2Ic76pIQGzDcX/ANVMp/apV8n1Y2drdUS8HvxchS7hlrJ60VkNj9YVqPhaf0cyaoIbWsryAhk3/YuI6TqNJzWH77Ev4hu0i+K2S/sYBCQpHcWlSuMFxgyM5xSIR/00sk19swVVNxzhW1N6cnW9ePhBsq00cqPaA4y6J6ieRzKDDM6/0VIKhsgy6kTSILuyLOtDGft5VQEQlixio21stPHd+WUInbVxmjLWtEgpuUKM5fG76CYv08hS1Eyt4qxwF4QcIvxnms34Cz15IqVDFLByqlxYJSLVl3ejop7a3Hww8f/Pz5vPihCyNTFOw5IadKfpoKc4nWRXV3tSwHNY7ECPPp66Cd8GcoMJ4nxtX+4ZwNJrvdvmexL/AnksmieNcSzN5EAdCHUZLQGc+ohkeZx0eEvU/HwdWeXD7v5IMx+9q4Pegdnk4FUH+pvRZ5UjtXDXiqJKYTH3vZG42rsqBitAVPzc7vi1petJmjaFr6Uz75F3fgtJxVn95/ecK9CJDguE5PPXHzkFbBnPZmZS9y+pp8IJxtGdqqFciNbWBxoVNF8EgpLtGT9ayFh3cfobjcdq0oGe87UiGgI78XNKCd1GObrYx2l2f3G6HHBS4oSNdjmXtseSi1MiHeNWvlXh7uazIrM1yjoYTNbz96GpzTQFkU8bMjcg51W9u8UD2bj+jLFsg5Fb2iVZXrVQWmaJ28vmBZ2Ivdgv8BmzGijt66fUKDJXtwmQMwgLNYX2If2SYy/31Rz/nT4aCqbrnqcbw3k3sxfWbVUlO9UQBYwhbI6uTbLa8Gi2nqnr1HMyl23piQWnjhTzZwXSpZE80LD8HjznfqMFwS/iYCHXvI0Iyp8mKoG5BBOlwaROt+ulOrGqQW3AitJ6zb70LJ85FsW02kU01bSMZdtpBOkLqRNiB0rXmNG3gRY+whnyWHsiZIVJOgiKq11pIWjOI9h0j/B3CyplTpaSnLOk3Nl1cRq3LRLT4CiA8xIq9sPyQdKV5OkstE4aO9xnzOBloVnA2gP4z73uEj9iLcpp+dB9PStd/gt9K6Ayp+g/kl+b9Vd/FOKjo4jo0zW3cUQITM72TagkSgDRjlm2KoVA41/IlKTDDWVjM4m1YhgAQfJk8pFo30XSAJh+P/uDJ9xTzK7b0D+eV1AWGPXPSPWd6QbO3v75qPl3d5/31iBv9MMUbNfX7lkCt13IUXmHeIc+hVoG/ovblkx5cA4l8yGkavZtcofqtZHciySA0m6ynXCsWJ8Z9K5Yf//Zapzupp+irHYA1xJ4JHgMRq+bmjuvvdrCg2jSzlFpXngB90hzFvIVdvPguRBHxkjycNONIXInNoZ27/WcLpkFSphhTHwnS1ZNv0xOSsUVfTF8/3K/51kGktKf998iUkvxBvszXXaOKIL45Ujt7PY8g7zzJOI2MbQebT+dUEUR7uQ82s8RoIq53CU7an08DC7l0Veirj5Iq+RD9Gm4yKew+p4RaS8b0APTsEyTkrI3WhqzUB6kUsKUqvQUcBQ3nXrGLtgXsWbTxXF3AtSxf/+EqS9fFX6QyXJIqZ3KnHsjVYckO6RB7yUasblR6UOYUNiKZsjkHWY8TBsW1FEcB6urOnt9Cs0pR1xWiNep8B/ZhNfYMb+ooi6QcwUX0rC9H3FQ6XEoBO0kxwT7V2zT8sg1ThlSefk1W7HuTz1sk/CHgOXgZ/2Pq6bv6dNQZHWd4/xk6739UZ8SoZHw1yWcDaChMx2eS0gBalvQ2QBfAC0c4cLsRRwrWH5YaAYHCvItIgNgYNFzOtDHcfhG0ktdHA+0nVH2UfYGX9sFS/t1YpWB4x4LK5LGtnEVr7owY2Y7B3v8Toi6OS3+1o/wOr2PzdreKLOZnujGc8qkGcxTyBuGtXBEtjiHjkqNLCgMNwAufMn9YC62MyVQOSAnAPA3bCuVUkx105cJ8AOHzxjdly1KiSu+lIFTusotewDaT6rTENL5FR3++DunoX4dFclSln0R6PpWTmmu3ooHK8n3ViPfrH8E0S8/FATGPtK7PpByD+0jAMR8apLkl8yVK2bR3CcDOirapWOF1z26XPx5bt/rHNgfmrXgXCfYwQSvdQl8LnWlMtSgzdk0vuUG48CwkzES2NBo5xMSGbMju5gC3GEtcciRSdxnxAIfPRmsnwNoqy+p3a7Qd6IlRxvb3vS7hPeBUKitWNztoSU2v3ohDiszDyVJMcSwUYZyZFdDKF8ufhOsOqVJmkKfOm/U5E4pKo2AsuAIFE6reVuuHOsU8kqZCcSy5C0FdScXAp9h+JL4beabIr+p5Ijf0MDeCx8Lw0C0FGFHKEC0XbHmMXjT9pPBZqfhjXIe+dYftVxrFDA9GuB46lZ/nVfQbnDpfGWUvmKFfo/YAyfNfxe64PkksGmuQrBvEFBNNqbAi0w0bqy5B9GF4Kn1F6ZA4HrMdCmVuloAnum7MfFDcllB/o46D8na+hqNh9rzPCDqoMZCh3wisVaGTbMsJY4+kDzPFoFhxA/NVhtVebFJ5qzT3L0FArlWFu4RKZeWRHd9WaOUA/UqIVU8zZuNI+YVIgRRxptENBiuR8MsdnzlkGMWrHMyFiN75AcClfwEm83DYuQknkRUVFlYq6OSzBcS+1Vg4H2k5AJNl3YmmgLYZCYLCUL1yNgIJh2DCF9SqmAorrakmIm3/EGXyiUrj3CpUvBGzQyhmcW4EpPSYuvEcY7r+0kt/quYHt8dVQ//yguDMdMiLLAWTLCOOqUKbuDzyhPjbhEes2Uv4cmad2gHAgMaRx8ibYe7pKR83BceBbs+YYtTQEegMSU05PJp9L6WbUL5NEmqz0tRoUVX7SjXq4eCQgkC2y6eqxMjfLrf+d4poaHrsD0Sj9Bnqqf9eExM9YCiJnYgOUznvHJA15odDh14nJIRkNrkpCsvAxK8TzofCWzxW/hJznxu5Lan2pPYWyWCyoGNZOSO7xwzfIPfLM8vT3wtgwgE31FVqHbk3/hj5CkaHMW9CnonGr2+FAVU/gUNEdttK+CD+//UXnPCSd9kVDjJ6ULarhBw5/myX55KfPBWeBzvfGKkSoZlONH/1bJtTF66uwk98nznzzST6o8oReU8ImoBn8KWNMYVgBFtBysmx+aTEAmbEanzH/UHUbAgXGfJ7prNmG9lUtV3t6tKP2uc+D306L6LyMg2RrxPUEAa7y6aQ2GajpADMmujOw5GI9I1YFaxRkEzOwtOKvGamZ1wj1RQi3zIaq61NT7PKMjly7tm176DhtN3tIzIGrboyG72zkV7sOgsVotInuesepK7UyZzNnLn+q/xZZQRXLAfQVOTVnNYoZZekLS25OOOTARvnQzGB19l5BgYdtn5h79xb1GjAotEtuYyn0Q/DK3B/J0RhlawLOxwKuGgkxjs8IzrAoucIxW70AZsLACfPpbOpkI2rjnRtuJehuO9C55xmV2/SVCB52oPbBWt5xQm2tBENHq5lePH7LHlsK1yn3NBLB99n19wSNKLAXjbzdG5fUBVYalLIOSDlFpnTf/AKihlaTvwGyOc0gO268fbvsoEVmoHDCOiUqYZNCP7cB0X8l4m2rK5R0FLKBenIDLxGNk9bSSGHj1jyWnlzI5gEC8YnabOvQcUkL4nJ5Q1YWKAAAAwAAAwBlQAAASo9Bm7JJ4Q8mUwIb//6nhAAAAwAABc98fgAGva8bbOUwtz79+wY9fAabE0mrV4Ah7/w5euCrYZV4xwD46RpueJGNDBaimqrN8yWuqEUbjdVNZph1w7XQ71L2/BvVtGNyqmWgF3VGgZ6raIanZF7KJakWxQGOJbtjiEw/5/cywrQc1YaMcy1XJyUbUI4AoHIp//hNOevCE72E5n7OnhaBCgMRHnEOXYQaidWSt+OsEJ+uOsQcN3KYkSVwa8OY6bDBoAfY5dAnXCn8ldOaKw153Cmi4gP/uCwLiA0uoIueeeu10sht2iXMaLToToRXNwlFQ4P/zDCYJjPSbyBPoPqV9In4X/X5LC3JikMGfThIe12NQFXCLhu0p5iHPr19oUmCoHJ2sfu48vUIN9PYZJEjMySg5lhJ+5Kkt63b9FrrugiIbr12Q3EVFRXZ2sjAP5QREOCoJr1i22P+N0o3S1LlvaZ6DKO9UXItKQ7S8oLzfTLBQj1i8rE8CqxvVyGcC+7bk6tPLx8cIOijz5gOW6V0onwS0Sj5R61m7mXxg7KbGh10+2ezhPVnNFwAYtY61h7Ub+pY4GQFv5wmuX83zt72XpArtyy1f00aDiqYCqGLbs/TVxEf/wrTf4i8QCYE256FzkO1XrcQBYK39QEqkTT5i8YTI4SC1bu2V/PQXNCcUZpL8AS1gX+FXLkRTALwTrKoDwjzBn533sGW3Pok2wjJjNtRk8Ln6BRj7V6p7GfLx/6hQ1y2kbQBbMWkeaescE2HlGrGTSn5dSmvmT1HvsBI3z5eBiG/7K5rM9czFDtljDf64GTC/5WViQRf9TKEFWuDa2W2jE+MOISuEqdqB4CX4QFjYdAaKiYZ0TB5WDHNPvHCaClBJIJimTIl/uCWbXPhvSNv6f8jAjVbLJKMIYp04VcyYaFwN5Zm8ZJI1+GDVy22CQWTHU4d7oG7TiOSnH9ueGwSpnce84j9yS6IRtKXFUjZwPHF70WtyzA5hKSQPFOizwIaD5q6CTOyBE0TVFcLpTM+wtwxt73ACpOlhhCvxn7ruiDrfXOWDOAq8Xy6PsdPaSpCkq1NUYXvCUVv33nXDKERhw9QDDtj1QWQreGuSZyu54iNQYsgS1grJaB7K7muEPvjBSxQiU+Xai2colSilvkhu2e4Yc4POFAcIrGKokux6e0sruibt6urMFducEKtfGgwNVMAGxbvGrzej4HeJ5Q4bMT3tUPk21y+YflmypWC58/TcYtuLNWLT6U+tyfQa+RlMGA6ZRF+GjimtZjZZXEAsqgGiSORJUAClhPS83sO9BCBpW2tCi5z0RSLdyd58CfFtw6/Enye3EnYhBNcRehKxxd9O15Xmm0a1hTtu9V7OmwUsb2EkMyLsXEm2NmPNkKUEukcO+mc7a/S1ZU0y10uPjLVvJs/PyDkU9UmvDtQPyb4D+a7ko99rvG692t+X4mVvzeQ93ZBUXN+lmlq/XbU0GxspK3E6CTlwmNL7CDqiQpaHuiTe4C92vItFlSrGgtVJJ5Twxv69O6EHBeHYEYPhEai9GcXmPxPWBjZNP9Inl3ggNcukAS6v/cpmGgh2c0oh93vmQANJKaLXybtWHQ32eiYUUB8vk+jzIztPSJQAoejtt2NzihVgl0ZrhowlfEsfFwXanbJPey/Molm+N3dlSLto4cVqwnTpewLB4GfNM7V9CJOCW/ZLIFUGKJOheRGwiLEb0GAfdXKiaxn/CMcAWtc4SH4BglH9SqZXk5jFet6KOvhXVdXQjCALgOawzupO8ighhBD6duK6n1iod7NUn2Ks1rN+nSQjHmglK2SrZjyncDyGAGWjrYZsVbgoy/evP7BHWVD3qZOTjrQUUlRzOJkNubgvSbhoxpCIns+DzE1oI4RLx80rQhQ13R4snIEM4O4Em+BRGq6KoRws/SijJz2KEYT1ESMdychjrBJMK3iNiKP+b/llID+VuICtag0HA7t4zh05fnR3ZAaYYiGWkvCNGf38yAWBUA9v7L5DKqCGnUQh1Y3jfw7qJ7G9kmDLHjCC5BaUvu2QbZ5Jau0hFnM1YB2DI8uK+NAeIkrhqekFp/lMc1jr4AoKQArdVdl/DAvq2cbGtXNQKsIy7hQv9BReIoPaZc/sb/fG/2gc7JRSDMqRA1mvI2LS7yS4Yn68qEel07mKjwaF+lVbq1tHezTK+3b9j86/HITstLMlbLBmf+GeclQRJyjeGaUjDFdXp78jWaugFYR94bQzfLv2ZUwPjSDqrgn0sn8/+zXf4YeeLgOWS7mnOod0bpmZc1V0X119oUNp2GAyvCLr8sbVT+D+XlsIb9bVM/LT6pG5lWxFuw09PEP8WxoJcNhE17yRF+oqsdVlqClMjyt9mB8JyzKcoi2vXfXZgkb0mNuAMtnQDeV4mV+vg4DmHBqaaoTRhCc+avixpdJ0gwX9gMaPSbmSd2/NujD7AD6tMK8dTGALAKGxLOjI2p9S3RlBp0JTFJ36lM5yqxT30esC/LLazgFj7EbKpBNUqK6DGsSYQuWLMQkcAJGE3yEwx+1IHOZuCNOUpCuJPXv368nwpn0o6D1/m0GAcOszxR438HXf3lAmTUlz/WTH15g5TBuOCVP/U6cuBF6V/c0WxNFvBxJZY1jLYN0nEPocBRX/sosc7bxiewMjw0iMqe7Y6bFIYRXs+foZI8OGShCuU7UQfui+YXmmYbQh+kr2Dl9+XiGIa1iRiUlFuJMRjTltuKc0+9Oz4pqQYSAAPFqY+Arp6fCRKADIOoecUBERsmpjiclsLi0b/wK7kLh82Pvl0hET/nIQAYf2lv90IqgafB/0+aFgY74BCf2fsRcBrbhUF/5zwgj9ILUzu6n0EsHws99//HaliZe7wh17VlmHGbWbLwEGMOH7L71WHL6D8PTHBm72M3Lpc6bqQMLt20tpeKMXK5/eO2iASDWThJE0A5m6T3w23b9xaZ86eD23fM8xS1ffavXaF4Y+rQ5hneRqKtZVn7cbK/OXanhHwtZsvFh24OUT3BLUmCB7fvI1t99QjGUqz6m4Z4/UNCL5uRX4OncssAy5wEOpMd1Mgi3l9JgsEtRVb7PxanD0Me6kVtfAN82z3j6aZgzFDANfNTcPZCh8s1siannTjOG4Oo9az22SxmY0TcZbzikPyDF0EF0/h8GHzOoT0vOOldAwGlfjIGFgdtYIuG4SvfzcPuJ4KHu7hyFCXh5IR1D9OmuBzJhVDGJk6f6yBOg+ksGPc4k7aZYWT934Cu4/d/FTmm5oyJe3Q1EA4pAsE9Pl+okwI3MAehc4zMKxFJ/Vp1nfqMnqFBCPV1mAp+QGr+9CRvXF7EjKGQtMOFe1CNN4hKtbEwGFKoTWAz7Beg8ghbeGlorzYvfF8d7OapHrdJpRz6bifW97ZiIVR08juSc4q9xHRVLyyRXOBmxoJlFnz5g3Rfngbfl3XGCqNGr1bCHur1Lar2pUcytKpNTzhxLhSUXEN3GF0KQeLD3prg9NgmnxTVHdestSMXOir0ttGOaxt9Ilasc4VX/NCHQq3Al+rOxVw1ephZYvIJX7iDtn8qY6DTcB1cL2z7QSZHHHI6MsC05++NjppM3M8KaI+Xq41WI96KYzg6VxXGv779K1pzeExQwf+AIY+72KAPQlPWmRjms/++ez6BsvG5gJETu576V+eTvT1gyDQLWct2+FU/SamqkZ7CUSfReGZhuocysTpNx8wKqGue2GojXUjinHGoZm2gpzT+8lZxqkDx0N+2YnqFBqbazygXRODlFWafgErCaVakXjgulHWOuFzTMycmKdOtLmipGsSgKh8nzDQSaouxGwN/wJlzGBzFoffjclRequj5C3caumdUgt548MjcAaTT6C0o1aYU35vcXTbbr0XjG5oUt6NewO3buvCJeGxtfgqZyjXzfjaGBalKRzT6/8u5lrYwsbe0hwilKAfcUvs++a5hkHmwNKcIz8i99PV+oIt23pw2CESrR7Q7w1Z9tD/iLoSb63FKAwmPXtllOnA39ePVPZ7Z9QuYGjMCmcR7wD+Hnqj9kbm+3BUSOr7WWmjwFbl0doMVWpLS5YMaTj0NizRmG0CfeyLjAwKsO6agVoeJFrGfrsDobYsEF/8x1ffWCx+9luRgJe1DH/7zVCOyxLaZWTt4QqXsC467T9KWvUFqZQ+zESY9UD+gdwlZHfYBu4BJoUjEyS1kMjJc8Wo+wXVpxOc36XKCnqimwfFwzhrqFMK111SoJ8/FNqJKbxeJo0yJhkRHvxlF5m0C/tFx2pVW+qTn1KfSrcRInLI0T9abLqOxlxccJwwQcGljfefiJ9zYw1K3krKL76Eq3bTPMsBHQxmZ//uv7JUFhyehtvyEd0XI9kqjeZwOh6aASHLypy0E2XFPs25czW16gxt49lcXdYLP27s/Fzly5GWGi9fpH9gAcA1aOV9nwRdSxPMh4Lr/HwZhP/h5Z/LQT7MA+caxL/onxNFZomv2Y4749k5hkl+d5akF4Y2CExONUgIq6UWFRsUPG1j+Yf7NybyU28CnLvIAtTpQbMy1UXjIMYTSBP3RTA82WSAG/oQYXk0zGnHCAEfc713ZS+2md5uoB0EdooQuasUVcnINtq9a028R5nUT2dDwNoA27tJo6AxkTN6MqtHazFAa6IF+nzqoXSm1Z+/P6P0fw6o3swn3su/c8KlQ1Jd/9DyP3RbqDeVdMDqF13YOGKADOvTn+zdHWqwYVAlK+DbIM2CyqsFqHB+iP8cwoi6qd2PCDuDTM1Oi2BH1wmh0cKVHOLpJw5fYy8wfRq2CO4aagj8DsBPmAg/4jSndx7JpnjEu2KkPRHwwenhnhJg2lkBpxJ3FOs061/J71zEx5OH9xCJHQmFQChQqNwz1nObAGLgNxySgv2SHe3NFpAVj0kagqMc4h8rD8VlXznNLpq9v+YoQMwGiAZXrA3kdZihW7F8HJ9tvse6nSqFB/eGbLqlj3TyTckSWad31+L0B9XUQSmT7snYyO7M7LayOA9jGtniDn/8RhuT6X9N+m0ESXCRLaEmZbxq22D94cnfEp/AcCr1/OZ+oGvfotcjc+xNvduuCYd5LRrgSmPkv3Id10PtUPdcTnapnylQaBiS9oiyE4nSF3AJ3NQZ//GZttr/x+GhrvyYuc2U/E7E/0ojxhla9W1O5uy/KgAhJgLidF3AhomPYFEqLx/nhMFSyb0wHjOvZz7mkhhmDQCNXZSGp9FGBb3MVIONGrVx6zGKSCRWUauc2ruQiLC6L14HA1jrXwD90f9OcmYkg8sDlBBWLImEPrZSk2eUTJnzGQ4bYG/Fh/r52Hh4KoR6jw4EypkUvGih+wHlpSDzacgjpmz5hX71nZ56hmTjLJ3zXnqzOEKSJD3lyG0+BiLFH1ZA55omip7QO9q0zi1nC8fzLTSEc9AKOcRLojtVy73Oh0n0cbyXKrW3j96JpNOqgh5uWefaZIY+B1tbkWMahcr0qp0f7+fMcMCPLWA2M3m5enXKKCZB0M8lRnhP8K3aauBnuWTwS2ATii5LBSiQrK2hLqHSc1yfFBVeHEc/yWaVq5oJizEUxbA6x9Z+pZl10XLJ5CdhIRFfRVj/KFXrtRVe8L0CGxXDJBtDZixSxRoVWSrYSjk3AezUm0G0+sI9bFzxn8TuJqfEuct2XClxwm+X5XZ/9iNIBH8+clzv8w/SswDxv0RUZ8Dvn6CrQQBHcpa0qzpjaOh59VMvuenoDY7GgzDeiTnWtBBeYWN1lQYy/AH4S0Bxj68eZEG1lkSpRr4EcFJIh3eRBOHzIiPp7zq4KU5FrwakiSc9VJ2mQB8gyOi2gEL7ONP2nvX7WnC2ocEd1yGbjJ0Aq8r3AZMCHVYrAWec86fyLvHTN6yuG0Qz7mw6a2MdfDmASDM11vUea/FITlVF8csQSKOBb8PWOVgF+Kb1L1GryYSnGa75LjW1HF8CdjGXBzOjapQ60/WL1Cp/2qcFKNC+qJUUJQ5Z1VJdd+rxHrLANGJFH3PlbeUq/9FaDJU3/beSZyuhx3zNJR6+9XrI1xJQnBnIX4+33GjBGw0B/5fr0J4/TpeZT+mf6zBXt7Dchz8Qh5+9DplZIYGV9r8F966/vmfCgcFsWUSAsLz6w1Pdm6hrPEDkdR2XWsTaMpz5UiUSB03l3aqbTm1qE/Q5rdn8aq9d0YiuYH6hmyXYcvo9rsoNKAYhXcglQPwdJS/lGM8wgYnwVFWZDZhVwZr09PSOHqBRvakxZPS/DdLS+37GbWiVCGO1o5hX7B3quONYjYjJDIOOfHtsuEdv0EGuS83+/AGSeYVQXd2toDPJHoCg6DVR3IUDTmGrgfBcx1RtumnrSad3UsUy8MRzV9ePIt5/4UM5WdFd9m0seg/ybRXG4iIq+oRnASmVxRa3ndGqBrQ6Lsw7rnyyGaD2ooDvNa2i3/BlPpkFeAJ/zRxjint4/jR9L5d9+8qsBLipk1kn4WO9ihNe3zMm55tkL8lAcmtokFqcogh+m1kLq8gkYiJZO9eSNh1oYKzrNENXZYuLT1GyrUKtbHgz3c0lnxSvOvSgX2tZ4cReQ7nllP9c/SQ+FsOMOA9o0sD1Js8meJzXnYRfl8CHHDF7Xc71/lowpjjmrjclCpqvt+tFDcUPHGv8hnVW6vgbObmELop84MpCg5W7AcoHrlXJwi71qQkAdXS84z9rFPxJ2M3suvDU/MaIye/8RJI7nDCFaQwNSSsyXIGjZaZdnqbNDi4INo183Ze6as8J8VZNmbjr3XPezu1+q4pRlfe8Bmlx2MvyrwEa/voSkr6ckdbHKeeOJSXIzzXTvpLCwPbI57GNg5LbfTzhVQrbIAMEaQL2F362rArGG3zCsKusjclsJVMMC7gdwKXArP28DCYWMPksKCnt6izcemmvM+w07s79cLtLO+IgaI0eYUU0VMhk0R7xSoqVP/CI/pj0pKHvBVyP0Qbv+EIqabpHdzbQPK2nt8pxqa35ob06uajh3jfBy44wz+Iy63KlCVLttSaUrVq8XNvLor6Hti4YsW71ztrHLVE3YYSFfxErK+h0n/f72iM8Sp+gXysYcUoGr3o/fNtnPZqgAtZDR45YwrGWL12aj5MmNKDqYVXAjy82qKagM5SEbbMAYMoeZNKOGGtdzd0KicrPFMeW+RLoEYIVg+fUlQTPvNp/cAE+c2cqUb3i0xVrkR5VFjIemioQPvk6mAF4z+O1Q2ZxTAO50+JADmvA83onN7gKabEf1cx6mO7yFuHOm5RlIoaK05VGtzrv9a8wud8y2eDKz6Q41lY5Ljx74SabdKJdhGVz6p3RFGO4WfpaQRcl05fuXjWOrcrzEZZ6l5IarhPuEABTsHaqm9zBfLAQCI44ufNiSVP5JSAVwJvwQ1uDPwhJo4tyNEviTxYmxnZFfPclrlRkBGgOtMoDSBn2Hqb3Zpekz++QAVBuJpy0233SxFCXrSdosuKVvaG3n1UkPMrhxneIsFfmCMnmlQl/9lM7kM79vYDtndaJbPl3iYrO5NrE03ExNGUXbSnuRobUsgNd//G+p0NCNZ/+mPY/CRXttyl8uY4iSUCHwbdhkW7Unc21pwVyjesrhkBkOQeKb/NEPYRq0QOT6PdVnXZxis4jyYsT7nRYE4r9bSSDQD5lDV1KDedGSk2Nrj+VVv42rqAvRQwamOvFJj8kbfl+SlWigqdaBAEJekOQCI4ShxyFbXQSFvJadOeiR1uxIWUR9Iq0xA2a2BwrcGRgcObFmbBf0EhCQD5HMVLo+SHpJnUWV1Qs3ZZ/5ekHGQUyrCHJNm7iSCqH4S2KnAZbWiis1QW1ZSfT659XXApPVTX4Xia7W10xxS2+TyV+hZ4SPGwUfsR4Z7ZB8goZW9+WB6YyqTNEpX2XStlv1aFbRR0/27r8cAPQ2ytAZDT8x+PYRWaizD7LZoPmJRDpg077/Jd32Ok1CIK9IiONOTbcN3vl0YiRiQ+L+5XHmhCeSEXUH1m4b4BS8udbXsK0WaMKAWP79LwRFmhArueyHA+1AaMV5RnOK5/RtyUrCRAaMqfpegtNivlaPIyIXifLXC0QCetf25+IENJ73Rrt6AwKWhWWm3K4OUAkDDj8sQcFsYhD7T5LrP4UiMRTrl0W4WjDh6WB/S4TW2HfzcIJXtD+XCaEAEfJdYvMdhQMrQZ/ywnufXuhGXaGftpewtMmIia7Lh09XI/cRsGfBiC+QafnwS4OxnSP9VDQJt9LV2ngQCVdOLE1+hhTQ4FF+aAttoiy4IofLvlUfrfs7bFvxA7NQbMo6SHU57lpJxr00m1bQQlOGBCbvpBIGJ8zthJww9V1pkmrhPbezJFuEH3s8gno+oACR77Xksj0i5DOrQI2gM8z860FmygjNLz/j0qirYKqYrnGoDkaqPREvUtg8ltxBlp0IzUyWJsNEofnPrldpmYPTQLjz9WfdIpIWDLpf1YORrBxuJ5HSx+p6g3vJZZjZryXqQ83gqpctG/9LNE5CjuyPIvc80++fBiY5rn4vclY29MZ3BiI9ZBv3eiBYfevh2H+pymFdpImJZruZRDiK8waBfNZNbukLgpi6FzkNkKoepjs4q5KyC5VijTVjQToxjAJXSwf/tUxGu+PZFV2tR8QptQ5D09i5xk/lx+WKnxsJBbFTPUAn/TbeLjHrpNxFTc7v2Pvltvuw8R/FtHLQJCt3tZmm4CwPCIkJOEKYplHlusujWwDsIeYGKI0D9c47qdM7w4kGg7UUS8WWn7op33hG3V4FK8li/4XesmUiB75tRoX6DxS//kEuvHCJCDSFxYGlMyhiMJnLSEAe0oO30RiWLlmcAr7k79p09sue8oDumxYOLCoppwNKNOj1uOWDWylYbc1pOalqaXJGrjO+H9b3pBGhVMgYT/hOm4BApVKZJ4R/a4Lqryx2u9vPqXr1Iw9IrNvwIkWK+bTCPuIFjaLoSMxU63gKzk8jR3hyLkf3hR4GUzxa2KGsEEdNt1yIpRuUNOcvdaNM4yIH08l3pr2DQ3/7CY/FtZBcXT2pqleC2wIk9RwscrGYPB1O8O9qZJ12gzqkgsI7WanbQJCjM45r3CgkRPFiOBvSypV9DALfbP5QyCwMk3qeOUiiP/dpxOX/jCZrx7g0T2cwPZL6n9k/O0mhitFtCwLvS7DmGDNmp5flKMEpE1HBLaEJ+5oD5no053o3ITkohdPzk4q86/Ure33N0yK2gRCPJHO64Kg6XjXuF2QK4OiN/+NyX2QPvxk8mZ/9CCdxqe05VQoyIGFTs+DvtAGTswo3HpuyAF+uw0RAOexP9I5/F/vQICXaNu+YTeoZu9btqicKm5yrSLcnUrdL2ycVqn/P5R7ZnLmfbedNfrykIHKm/xRiOHwn72zxm4qGMX42cYFSy2FXe0lE16XCY7WDM0jsOeuVRA5P8mJ0RHf+NV1XsEQ3/HrZ4scuSXgX2R9uumOQivOorHQRTG1cG4sAUMaglbY1U6Y7NE8Rz+aAnBhqC3+5W/VCAwZsIKHZXX9V8U6om+hfJCSjV3tmKUmXpo9WfqUtg1dUS09C6AMXC74uAOOm+HEWMXSQr4dD1+TQd7G3QVsjBEiIl4sIkBU1CbTCSndteVwRy/1GRi2lv2udkXpfG5f39kRgu5xLOjuF5/r/z7J1I9flyhnkNujdGwuzrZ+pkUmmmrXQVPi9eV7bdbKNcwz8h4Bq9xV+eIWJYZygvNjlS4L6G9SSP8rQMakOmDzrzpURWOuaI0Ik4JW4/f7wDZB85rYuVD5vrLi2blP9/ThjbbvcDOu6Gi9QX5+f9EbG1+HUWOdz8wYx1kdUFfDpHOR6ByKeDMPslWhRM9Tei2z2WcOmcoQeoSA6Widl1dctIPfvBPtIR/1tFsfYKM/b9m9Q4yZwiitGRTPyAVDVOaKinGjYSKWY22l7A5zyzPfMn9LiQVA7y4lAZiYGjOG3/7j1jo+J0VrEzCy8WbM8cxL2DDNTbeWFuBzjDZVuShzuiCaI5qu7Q/a6uiZfn+AZ33ZOyLNk8XBMG3jL/LbEfN0OkU26air67ZllPWPOR2KmtbFceHKB+i3WUNUA/cRo+2rfozxwLUByUBEASU/UW0qRXccHBpb92xZ/a44Bk+mlGs4RK/6qGhNLpFl+7oRtpjobdgq64PwPoJF2iR6GZb3+6Blp7AiQz3vLIhper2/uynx3HCxWWN+YeIQDUnBK1bD8r525+Jm4gvlkkqKLGvqBs982/dIeuUYnXEqYsaBBrTc2moybeEIzc0Z7OFCGoWpgpqLXHhWZHlr62a6LcAhHYC++N3emllNVW7vHV7AmM9Uhk9yWZPQSRamxVONYNAz+tj9YW+/yC2pJ1hNMXWGIm2OwdjXXbTRgRBxrqioB/CQ2e8sgX6k86NooaFLVrNJExzJrZk4I6j9LQ+ai6FpD/zignHcXUpUv70t6NEXS4c4CQltJTwkOAsD+PaUYnYUO1o5JGYpLtV8qyHmpyOx9looenmfpSo0TEoRvGQv9DpIE7WK0Li0rhQllM9P/q7SaGSDxqYyglMdEb+nOoeOIbrgCSwbXNPttZWMt2alhV4dxNw8bRXy1Q2OlQDWWXkRDAhhOer2ZgxyAkKy5chfX7B0Y12KI0m+sjZk5Jtl8POlIga00Lp+NVkElXyCmV9+74baYruIhTkBWFui4nF0mL0pQTGn1/eC91xnZmj2sqdmSuBjOx+UaXZq5tFHR1TiBwiz6m3RNJCXqpQ6HsF1jDGRwezFAykPzw6ORgLJsUTW9ifzBPHKGmA363DfR6a9UIySNgN9iXPl036QF+FDeaBE8uT75IyFFjvQm9U556Kkg/EoFFy91OOUod5TMhJr7ZRNpzShdYE63LAMJI0VN/WxVqoLy01iKCQ7JHRGPJbQjt+w4YRG9Smf9z+k1rB+sserveXZiYa9yQbHy+Fx22WFlEQPAUOkI/0JNcEbF0hQO8dQ3tCZ+GTuqHL0TTbkGIwpRN4Jf5N1lNux701zGNAE9hMNB1TGfBr5T/HHGZZMeYz7sFpcUaUvGwmMFeFfE2QdBMexjKTB5oi1skI9/jWNpI8QRMAWlZ/bHDopduciYvHMqiBtNbH7Losi/ZK1RaZgleFlh1trRnIEc4jGaif2qjgphjE0rxwk45kvvg15sJSI68cpnSnQqSzNGG4vMAC3Urmb00tj/AD9frGs80j4ulJnZ6OFFw8By8CNbS0wJnc6w1xCl07Seqas0eEMXBfaqdGr4svv47MEp0Xkb/wyfxkNlUo1vpl1cOGErtAww8LOJEnGbOZV9wIO6tNotPUqhoL44SmtMmnMBHKtnZ6IjMRPIwrXfQXGXxF0hUNNt9++IDC6iKhr+SDdAfUymsTEuaeNsrWzV9zTvRxntgGajC5MngbDGzduqeTiQ/0A2RCaayWIX+GtE1CodqTgV2lnp89B1tfW5T4kJcmjiFGpf2gkOk1tAETY7SIH0vKBib5rE4ytTrlhKN/CXuTAYhnsevmn9y+XMzR0Amh6x9tl2KmkjDf6ULoODBexJ+X32LUrzzzE1jXU9MpRSc+i1VXrzILlV08+lQz47l9iDR5M5SAgiFiOBTynfmS0hZn6JmlxQOQNAIuWqgaAr55/rkgauY5+m2zQ/FE0iSGfbXI+GptbwOAtor8mQourw1wITBH5iQmf8yX11Twif+t4JAE5sSSiBe9AyE8M5uAxMgNwfnJkLU8spUaKhQS+Ws358mobLyJ3W9TwFGgoUINCXD4ylch2mo+R/UOw7xrtrsW2igC8Crwc31GlsWKUtXlDefevm1EBDEXBSrwHwxsQkT1VTEQLFVpPMF/uOBJn1jJAoHvgpG+sA8G9D7Brej/uufn+T6WGPz3mPUedmaYOGXK9TzPvJzxEHowNMh/zuViSE7Kx3M41YkcJTx02xPgYtUiJeuYWgsSXFjedtpEQv95plgq5zgzmO3pPqDO7iJLesauJ2eZKl4+12eQa6RvaoMmsOWSidTDuPef//5qC57Z4rVYiCY+4HaLaaEE57P8GWJdYbjfQdQs3crnSUddv2i0ZwmUw2iCjWum5pTA00obkKzxxzkxAOdwgJMKmDg8tU+F4eHNmaURrmQ2kW4oAmA7h/HTJVVOrphrgq9aGqxXkIzf2D/6tZZqag5AKbrJw8hsFuPOWj/ZPKux7ve3eOTSOxOQWrRdi3Ezsk5C0UR3Z2aw/DjY5pXmI1N1f1Hx8DTKXWcFLdSt6LceCRGaz2oF7dLC4SeGY0xNPCnj0cppkV8rH9oAvNT/cwEX5pxXe+pfrFvDTns9+IwYfXk0KxrYi18qu1u5Sl8u0zWh1aEW8U27HbIkkqi8S4gmNECca0zdLy/8w6HCPYHpuNJCYszg8MPOMGEUAuBMsG9PbTLCTB4mk8zXPN9zmusIjiT4s2uA3v1nJXyyn+1YnVt05pl/6D1fdQb7zVbTytpvpR7xSBF/Qtjlw94zc9YSPQyTIsIHwL/jCzVN4FGy1JJ+a0oyq9cIPknZAZ55xdT4wktkn1HFgKe4jP//ARbEqGoSrJOSC4ov78CDI3qkTRxaYypdO9l62iABWIUE36bHrvrPwTxhtlwbgYAnbjOiBEjeEfJBnM69XJC3pzMIxm3mUSLzr2mNmOfkDe8HRAlbLmcdobJ4SSHwlAuhavbQFbwI/5plyXPI602oMQJg2hPLE//s/6wb4F2kbREfmdWC+XpXNj9RQKRrwhx2zg1QzBKR9YWtsDl810DQsLHfiVMTtMVfXcUZXaeEO5S9HBZ+0NhZVYDRijpapLJ04ih3vIj3TQ7rO0xdQmDZ+oaoPND3ZdubEA8/SIIwP2hFX3SJQklt9Vp/RSJqU3O8qfYmiTXF0a3Ao+gzkf42xKH/L3jFcB5yIRF9VCOkNKs6FycVLfMrRpZwD6Ne/Iv8yKZZQ6vjTa23JRZ4J5+XJca99VywtSAY1y+2T0LbCVTN0Tv7z3G4b/WxZ9qxwncecsorv+9iu2uILADjwevjYSjcGrzBuHhmySqH7HrezW0DTAXQ2DGc8OqCieKRQLmgSFLXa9f4qm5Xrd0b04bCWvDFD/TkuOEI6Y1m5zvALDCX9SLgfAobJtoFqQCiUFaWDpc3CDbVYDJRhiq84RKMuG4ISvzY9btvlVQDovME9Tz/25hGgue2xv3WN2lnLddZ2MdgtYKD5Ip8SQ+KrZ9pRvxiCZeq1RvbCmJ1u+4/VqHWadhr+lnkh892wRR5cjlswEtV3+cipPPs6Yt62GTZBJ4hkTSvS8Ramc46MMVnQmVHjegonWO7dpj5wfOHgXk2Yc7z6pYY6r4F+7WnQag2f2le5dgki5PCJImL+QJjL2Q+iSoUbuMAhBrwg8rbPJu6Cxj1tYTteTGMDhPZ6RTVTAqanWaEPL4WKRhskybQbPFdPNMf9H8lNI/JAH7TkRdV4oc0x3RJBuj+bK7TpFpP6zohEJB+cvRWd0gsM2x4Loe9x7B2+IfUtIro8Ed5m96hCW/DI5RngO2M114igHL0jsMZuSH40E1IXBSmORGkPuKHIoMCnfwEqJc9Gm66zIViQuJ1dTErRJEGz3ARwOOyfCNbwsMjtD3Yl2r4Vh1Dh835peC+mU1ScAC456IQs0z2CU0lVL+8+81FgF8zq/wTRAbPxaYlhXtgBAw4xGSalTBLNztIXTSuvc6AdAS0C6/jUF30Tww7e/ZnCol1vw4WL99O+l186jvzg7t1u9/ZpPOD2LjJIsJ/kBhcVzUoV0BiNEWT7XAzPVo0iHJ+C2qiqbYeDRVSIXIsYWk1gvE5N/74ZzFbIAFZcRTWtT8UmWvB61p3ZxU2ShI/N3OLYACkOvdJC3+SOEPa5b3GgFd2AsVEL9vXaW4ElVcWSvKxEems1VKOfF4Xn/r0oxA1YrWfEYdYTYyw5CHPsTliVO5RmwcSU58SO57zFlTbwJ2XZ9hcD1+89EtHVcMqcuoWBNZ7wHi/0c9dkUyNIo3RIe4ZNmdabgqUVFDPlse2oJRoD5EgpV5sq+6XA1PXkOkDGLQc6GbC6HyvnhGqqnbQkg4KiSGbqI7O3MmSAbaCtw1WJD+w0LzV8Pn5HLMbBm6JwOmYK1V0qVYtQ4BApLaKjYqaB/7mw3CkEwEEj32gBs3cdZAimsi0mSmWRJkAkPqh+uQZekLTDDUDnOvjFTsGxaPTgFF4QBjRa2oceXXbK+Qe1LR9EeA+d1zjqF/bF/i+4rueirF/y5CE/elXX6kOtCDf5aL6AkQ3+xAYpiyTcERn+Tjbbk6c7d5QZYcvK7j9Vz8wloFyxyzy0v3rY/xOjX8tRkz3IxeQRM9g7sxf/UNHSP6YVJ+LSV+3t81C0NmNKQsLfS+dnjxbco6si/aoDCj7tfxPlv6KkkME5g07UAmGgYIYJrDNwS3mcQiR1NuE6vgvRROb048SdrR7zpMTVn3xzeDYdzQO2rrUKA7d6aeleMCJnFH0rz6ochnJw+QqYnANsQ1PO27mbCIOC497t8CMSr3y1ts33cDxtfbmSH2exytuomrGTpFwUpNOiaYwSNVukLB1bhY/k+i4rTn1N6DDh75Xi/+QwTKfns7pjesGzobaRKtkMEeAj6KFOecBLGqYJFbCfLKXYYp2P8i0SlP3gUsqYbthSMmXRS8GbMytVrtEjieaAAAsCHxPZeXXibfpAmmDlDF7ne4GJO/TLcL5AIc20GDKeoe+a9GEcz2jKbKBnVyCAc6Vab0HTCPpEErmhWDWtDMvQQs15VyGhUlfUwjYg314caWBFXXfQARGG+t/LtCIZZFmAmVyKeitb9KEdoeu5IFFfHeuqNF6qrKW6YPCZtJUkXAdoSloAThWdkmOqlyOF14Isrm0x6i80hwFKWCaQ8JMXo3Tzd9UzN4rNj8O+027bSVdZdU6ntdEiqbbtLELNkFO7JV4+sai9i5KaUedFSWpEUzLItLRI/h95h3ZWWzwAlVr2Vm67rwUO1CQMyiCAmMXNf5KPG0n8nrm9fJ3S0AnMsWayRZuXH/W0AoI9mJalt5jflWV9nw2iHIIDsGWqb7qreHbzxJR27TzTub1JevONZD/MAAYzV6c0RJLbkpmrXAit9VXn8DEECsbMbzWzcMaQiLJMWrsxx/NnY2dZ8Uvrl6kFaA8tFfXQz5gg5evb+2dzo2vprYPCS5OwT3h5v4c6mcdgTR3FWojvuCCgUFIT7SYISoV7346oCJnYEFz6SeGDcfBL2vQ5khhHCu/2ivcBQEMGuYWs1u0OzaQaUpXi2hQC5JLoAAiPsqw2f688VbRCpA7CE/EhuNxAL5Ny0l0gf3UenVDbLPaB8fvUDjR/b+rMA+0OJHcIE2U5aot9mq6E/o7YjFit1FBBzJz8go9lD4D2uOAsbv8OxU/Ek9ctt5yT0IXRHQoAUGA4FKv5wIaap3A1CvwNzv0+PxqMCzqYJJ9mKSRhoF52p0Fx6KGHnr/xT63BWt9960MvP6BZx/9FpwYVa9Ab3r12ct/n2uDT7U5aJ+hDuFfBcP4eT7pToWlOnRZ5qIUxy6iq2Q6ZMSLCSATImlU5w3rv3bgM67wQQ6bHyPHw2Ic3UHQ41NvbZTQI/C0rq5JHwTVt3p6nfvMQUn9/fO9gWcVQoVvS2926zowuQTuwzRV7kBftvaTqIKPsTWuAcKAmRDxRefODC3SvxbqDKYdXnEBXTxy3eDllo1vbIVJEvl/QSS0OVVGBNVe2s2R4Ftc81Aw/FKX6m+wNBcibbd62s5nJqYd4h2pdHt2kYX5lCwaIv1tafzzfELCv9dn3z9rVBjKiytmWbvMJUuzfplCwjnImGPdZbD6y+iP2FSi709KzFh6as6YlHecKLGAfG9lg/bSjWeKzt3rg5K3fhTJ8HMuyVBgPJqYb1+KJ2m6xC7QgHEzKD4YvuJu1Dn8JSCjQS8AvtjFxunFMoUEE84jFcejZrItEOjFcYlT85flB36q0G4rYct5uTszqWZfYTib8n0VBgPzvd0pgkImM0DAQ0NlOUVSv1Yfe2GdP4+MLHCP7TxDjuaWEmvotyFBB9ObzyH8VyAZBpCFc0A8J9zcap3f6SGgmea+l1bKlH2ZlFKEMP00kK8lNSKPphaZsFgIMDWXRxR4ASIwOr9e80RO5ND4yMp8Z9RzwLNvA64BtiQzgGezoAzTrxm8heY1s87rl/vBnPTOtY1qzLuuYKC4GBtPnlt+RMkuUIyu+0ZZLfxYG1TIDP82RSg8K0Oi77OEGTmccSp8fpCsSFHaahPb87OinAHo2vM6pVXxfSbazWzZ6PiXTiL++OuWRoLnj7dfgiOrriapeiQD669XxpnfmNWDlKNLrF5gdPR63U4C3geq9sxWUaz8sZPtyJnFjja8zUZNj/+NaHmp0FoVA/nFVwXKfj+PbsfLejubSS712ALRn4TM9jOnP/cHXAP4ER2GiDBGMoWtOmG6zwMrlQeumPFwQPiMVsdiTfS7RPT8HlzGTIkOxTmscaxcCIb7jecBX1U7ZAWm9MAgD3z+Qm9Nfdu+UokUMP7epk2wfvetorUg+cwl78a9klkogAIOHf6CcuBHPOuHY7SbeJxA1L6cxN7ouD1DEQ7CHQG9lh3GyJR9VtjukgAJ8AOIgNFupifZhhB07U7ca3gY+sxwdF9lPBGCYmOuRHfQCQVFFEVrEUJcvXNxAIB89AydemG/7Kk7CFZc1nfvaDXFkj8gzzKYKn14+yFLLlqrBUEHXide4ml+q3S/mrJL4L+qTDMRA1EQe4pNA0t3U0uYiRT7bMWUFJFZwnlLYP0AiCzO9vQjZnUwHPm+qJWui9HV5z7G3j0ce2cTqdoby1j6jCfT4NSPU97LAav40LmUbkH7Gog9L+4xNV9h7laavP63wA/X8przU1Hj5EfvieoQEYkOR8etHdOsl48qol5qGmxWfz5zLGyxeFzuMF+Fpc4SORKoZQ2/fCN5cRwB0j6lyNvVgHn4s/HRmg7MRHG33jvdj/q8VRn0Pca0h5UWRXdz8H29DrIhVP0t+MqooDX/piGnEbhDP3uGDBLAy8GskbQ67bGdWNlvb7qQzUR9STPZLY9qyZNfOQlSC03rBq6I5xw4gL/vfVsrsbnLPuKGiRFuBtNTE7v4fRkzGkzauPx2jXev9ak57FQIv6oHvoiBev/OUrLNMzWx3dgntbjDaCM9oT69e9x05dTvRmsWMmQXtNmbRsOk2Egii26uSuFOPh3nRD9BG6iLo9mZ5SHtHWbTpOyKVxovYaKg3Dj4Fj8O+3EKCAatus8Abnp07WfMYgvwt3YwU+J1g2+WdMdpXcaO0KlhIWWFruaejf9Rnp6ZkPXkKWQ97GnCwVyiAq3qyzaqOIr39QwGC82uQUDG7GToFTFd2Uyg208N5gKN69wSSoJ5hhS5EP0FhY3HULi4p2cm0ig928GN5pWWFguzFw3zZhz1yMRQU9zTI9HErKMP+aSCoFHWHEDhZ0BwIHw7pvflodJIXJEdYONlPJr4sqGC0plFJ264X3Wz0J/FL8jAaMFfC1YcKKbTkPXRiy6+UWSppeyNAb6rI0VnUxJrWDDWkiSA45bvW8f4epJJaf79h1W2y+mRdkGnxXU+gVQDUIa6Db23AtvOU1MxpYAUh/+9qoIxh0tmR1IwxOO1YN9GW/hLobPhJUtgeoyzVyGbuq/rrba6iL60YAah84x1gCWIqPjhL6d0Lo/vynOfLL2jiYKFwc7cmOsjuipOOfCOV3TtDtoWfRI7lVVY6r1c1nB3PVOWTEgbnJO5tB4O/U8rBGV9roaZr8AVYZ1vyL/wE01NPWi/MueCGSGVx3NhXCWKTYFDw7U7r5sbTRVn+AeZW/yWOO9+6JMMUR7/vdeAdlFuPnNYRcRDLlBFUFwngXF+b4mWh9oCP38WHqy7syZjVXKg0l8oOIXTMZAXIiWwwCGf4Ye+AlITAmbQmWHYCQ8aEg142qRnDTTKQDJ7EJHWTLUkzn9PXJAGOdNL1YyT6ybgoiluGPwDkiySyb14xljUEu9DEgya+WTndWyFGm3iRy/XF9gkfrx9np6WYHX7scamcPBFTAK683aO+v6FonicrmkrBq29WiEohcmuZuS0zqWjTPpMlKq1RWZBtXrXarL1wBLa2mlmsgEgvsRiA5K9uQMlA5GhvSwJ2x5aIpQ7YnLz+XVHl1VpDY6jy+IHeiIC2CFFfmyjyzLa7nRPnyvcgSEmItqFCiLpEys5ILfVP3yVPppV7mkin0Fnm0h+yc+sot9XQhhNi7S83s0Txbvq1PVAOmHT92bgj3GlNjT1+KdrHr1LjFdorhKixVAR5/qvPBK0y9h+Q0NzNUGtIXIDaodS2681rB1IHOXw0Uw4hSKYfhbsMHgjTgt6LP4mk7hdyO+4nkKPnlS5D6yYWfdrSYuiqiVVEFpYjUfoETNa8lYB02r5AeIyhSjoXExqp3j2qlq1HpSdHIp/MQJph6zUsT2goQn8oI+9c6qltpO1dXoh30Kf7222gRpyZia5vMVDWXj+4+PltJW5Xtov8pzLz0BqYUzkrxmOho3tG1A+vE2u4d4Ft42T7Qrvpo/6A5+zOm1fY2LpSI3uZW0B24/Dn7Wk58Tvoqb16wnMP/EGeJOYyhZh6p3NSoEt7kLeeM/4Nv8Cxh6E7G3QGScgBhYrpYGQTTh+/mRNdliQ53ZQyfkU2IWpBbnEdpJ//HOtfHLstgAZNw7EJn2U9qkahEoIpVNFMPYy3HPOT5uUp0CqbxUamOsPJXqxSov7Jqhr12rbfuKgA+k5/mY3fE1tlJtrpQCi3ADhmuh2rg3oBu+AFVJIzNJNU30y+YtBFhD5Sf/HmCgz4fcfraRYnQU10wp2giPbGQ1tjR2rBN/qmC+ATB82opKB1yj5fLtFmw0srPdtfsCltHXpuuXkhTvX4W6pnDTFUMBIbhCEifObnXgp31hAjYbXmJBIClnpLnWAS6IWUo5710XSudE6qheTPpcqVVZv57CgCAfw2i3MZx68w9oTHnNZl39mK5CNd5cujxXsMe4uC1Gd2lPIh1/ZWaPdSI1M2T3LyMNwkpytayW6on5myPh3RJGI7dTr5JVypDUSvG3v1B81nLBoTfanFaIGIgEyQSIUadEWQ1HUJNojcjDUdh80r51vpiEsOXBPg/FdgjijD9aZO6IOYRi9AAO4sA+xSJ83M7Amu9U2AXaLdD5VlpPG8hQeFQRHi9qMvbVKW8qRxlaZOTaHIjD7M3MtftcOhMIKxCNNgFJbhxcr8Ms9rX4U0x82vWHelmXUxzYGzroEITkPW3HkWXnhLdhSwD9fpkr6oYs5b6A3wF//bZkn1/cbRjW/J8PzoDyaRS5PgiWpBBgoPs4qTKIQgngcVt3C8tijsEYfU4jsa5dEKXrwmRfOwsyHNQmOR7otSQaymaK77uIy4aOTtoMCjREXMUhkyAN4JKlnuRTS0DnbnawDjFz8LTN9O5GLFMFTEjS04uMT6rlUDKy4eYoopB0D81BYiXA09tDfQ0Hw01LqcdRP0asZRdvNToFAGoScmuUSVGAjko3kjHbZec1985pesutlbU7m3cpDGI9RM9I2j8yL1fLYRTOkF0P9xaDeMF91qsIEa2AWCeahzfsCxCX8OlaQXzY6SCfoJ+l31A8aFi+Ki11rIboJeikRbqhB7Kaf3WOpkhPfVaTI1DBtb3JM+waxmxq93atmMQLH22cXgX3JqDkNQeVHkifDFShHR7cyFYcsbq6Ah1SXuG/uw4+yR8JtQtkyYXgSG28JPXuKV3MCPTBgV+vYi3Y2fHUXvRFSshYCNB08Qep62YkgJyrSw+y3zJ5XVeNKV7C3ahGzgHmWVOXlI349pGoaq5LgYr8v4v/6JN8XdYb92Y14dy+uatxf6ztQ43P4HYyw2oDVoBZJR8khPwf0XuH8T/TbEvBXpr1X79cFUT6aMqZoHmMezw+M1iyTr9j+ZZGfuOFMoZ2ZcprMNxCWi+U9XoswBs+ZTNhiyOQTR0sLDoP2IMgB+AfDNlXRLIhkxWbmmZbGI+lu3Ci7SWNSxHqCCt1rWuXtZNsA3QSIpLgwzMPgEoacmaoMZFsWPYJMdbUMN2NWAAtgT+cGL/Sdb7P7UrQxBv5P7DlceYVLgxsSPxmlZ9jlAfAc/chq41lFoiTow22JsENRFK+uE9bvo/5dtekucP5mRdWduxUbFwKVEw0peraKRI4EWWXALlzNVixDepMoyiVuraLKMxs5ID9mxoxqT0qZ2wcN3ha0HHP/IKqVLcWVRsCFfG8ti0tul9CTuDTIZIHgYVZwNhIOXtN2nq9Ik7nNKJA7GUrxWKIxIu9FbymGDOiVasbi22t847fmCTmzhzvzfaSt108047nkhg6iX2rSzI5LZYOZtHTLsHWy2b0tLuXTbWCVsnCadoy1hliny97DopXkNgH+qhdZisi85tMVkBB3J3EyljhEc4+S+6dFU2CAVkR1A5JTwC5JJeS3eTWpdW8hJbo3/NFq5RQsFxDIKyMwNZBa/TF82f3s7wN8o5ucHURvr/mcTRc5DGW4uL90zQaan9nGW+7Xol7rqckaO6S6UvYEOy96Gh0DBxhASCJ2Lf3ZBmQAsh7fjzW0MJctHo0aNT8TuEdu5ged0v0eu4FChJ9REDrwwHPyBPhG+W2yIiIm2Du9RUisBiF6B7NDoMNNR0iYAJ2bI9Bbj2avHUl4xeaNuFZMmb8LjUXISp6WelseZZcrAhu6I9MupJXUvS8dgR3fAskmuR0GBiKkFVOG4kw/y2swSlDLJlGbxtStKLgB92eGFKlC1cA//kAqw1VcIYONAVcaHhl5X5xuqoNyAozRCwwCLxVj7WWvpa/38nPIaUvxUIVuUKSVCwhebIIAiXUi/3vld6W5M52a2TGYvKilCofBe36NFFUsZ47+ynyh+57b9PUu6lqai6UnjiF3lJTSOlAcMFGbqd/fC4qGn8H0YUC0CioqsBlHyGSEAOdgu928oOECo2hf1W63cSleTlA2n0+ZSUYglFpFKJXuGCivUSHsqWc/PI1Ykfar+ukWoRTvKe0El/nt80Gz9WpJibeyld/HCeygjIXoHT4WoIAuFOA0qIPfpIzfolIk1b2/DI5A/uD7+XoCUKR+RYnzDqKkbpntLNW682esffjO+zbOTc0fuoDVqj48O6N0+2Mm9nZDM8Tb5QxIWBqdLFg/0n5m/lqgAVyuvCn5waMm9G7igxpBY0BlK5PM+bbyPtrERZbaV8MaqMTgdho+Ojzvyzt7SSbt2BUPTbIEDPWsNV420ZmUfrK+fbwvzybOvzir1yVtxxMTyFHRSEci9XmY5sn1jrVM5XpLZTLyFOn7nPWIVdGSnRtRT4qLxVn5Yul30NNECHttNEMEr3r3eL3F+ZQUEBsd/5BbXXiwPMjhtbaGJzZVU2PT4ehwfG/Y3LrLHv88DZtcx1DhrsRx47ul84f0eSAHaQGrYsHkU2DyNrZptGJ+PFbcAjnrFngjPbgOSdlnlzhjapA9ENrEGNyi/OaGn9I9kTY4phTfH2agbrPEATQl6nM6h3TatOSomGXHXvKJVRl4oIeHgL3hd8yLJ5eEzrf1X3gutWDsQcwvTFiiOCUwcqlK/HgGvXr/XLHN/zy6TNTccq2VSNM4pm5Gas7TtaX6ARjG28RG70mWshzxGayFRnrDZYBH1yADDhn7xzlIBGP12Yf7ok6sEj1xXLtohqGUQxjl1jXk74FK7bxpIqFjMGEZYi/YiYDRiERbNpMqfNFq3qByPO61eyxPPeRMTk++6m3ytHBcnlglYFw43pNykUJ71ebw5BOEXvREMgCWjdAz1hWzu34D8eGH41MVADpfH1cGhiwAgoa6iL1RpLDMQwAV/nkH9SYgpTX3+ridBrxl3B50oIthcU6MQej4EVxfocZwqyfNIQ6fv3MXZYKtIQB6fK11BM75fisKmmr2uA1x+hQ8vGWJYj/aRrzUshrGr2Npj5MAbnBMmi1blfIGHsLvfW9S4Uv2nG2/r+7h+W2U7z/KOG7YW0GYdU8b2qYYvNK2Ss1uVy5QnOuOZVWt12bh1Luk0BV8hT9RFkwxRJ6BvqXD3mFGlf7K4OBizHb7X9kgDed1gVZ7V0c42bKRq7tUa8Aw1Ugj9qkshpcN/JIJ2xVMTQAZ6Ig6Rp6+3lQrmRHhGFD+j3E739kAupsiuRsA8mvhLynHcJiHqjDRCLHBaF+Sspwb/CsEyFtZ3Mbx2d5+zlf98heqf0WswgL3f2BGzalY2QUEEN9DvZeVEC0rLIpltl0x33XqFfzf353uu3T6k6r282hS7FzxRsZOzJ6fr1Dz8HoJYDbMyGgFJs/T1cz2fFOWu79qIJoXRx6adCqwxVQ835GFGJHid0rLADo9ul+nse/XCG2UEbxtWVVNenb2Lv2B/J4mrXqcAgYSP9IhDy/eLALJ/9jvWCT3v5w95D2HMnH5eCXi6bwgKPh4CbgDldewiJmqXgGGTQoiY4egCfO709xY3+EZm9T3qbp88bSWd0dZrmqY9n+BGhVL/jc9YnqHzjWObBAkZaIfe5zjbWVQdcpF14VR4yVY6NAaG8/Avl3nFs1XEJfNyraPVH2emHf+SwKBF29dZl9eZvixi6VM7DPh2z0C7Jc5B1XEGmV94yH3TXm4mnbNRJoJukzcCiP4jT5+PSsj+xTyS/zHzB5BNHHkGNjsF1KI6NugsuOq5q0jQS4jhbp6kWogjxFdINJCWKQyq8MfvFETNJWnArP2IjkaKdlShp19MHSWKzXzduszTVBqdp5gUJ0oe21FL83cgueIq0a7hPuDoFioG5zvZMisKBc8yvgYjjwxk7zc8wTUo1RsTMx/51NP6Rlvm+qqoOJ9EBr+BBxuAiumnbJbMISHDALTwMMwzGWTIshRFKtwY5XuYKNPbMkh5AktagtRkT7KRHr+Ze5vlhCA9qrvBHpsEuAPvvIWAF7vXJjdJ0r/FJJKAa4UI/jB2LclyjbW20D0ApGa4N0kEmy4gWiE896s9n/6Q67Pi9B+MZhwj9Lm5Y7205tfY6rh8CWiZ3A7X+yiqGyqB/uyABWc6IDZ77vmxes6P45WzbOyGgx7xtqg16/SqEkUze0QMv4LttYr/4tYnflU9E+WNj11eRue77TXXdocASl18H5g8skSbPo6EG1efe6XusqkvKfc4RFFdvEgUe2PCbYAmPjFKEDi0cosRc3weP9AGNtBkRfOn6ce4rzLE2bO6CVP6p7tPDEeNSi0Tp6rQHm5h+ViMGhYm8zeuTBKBqYi/TuauXQUimiOnsaC8XW2tPehJzXGuyciLxHN4Pc64RoTF6+8zk4w6pon+jgyQdnGz3CtkxyOO7YQK54Vw/BDA8+GVffX8WoLeuudzEBDNMtM6HsqlOY38Q9Q+1EwQcSWQ1wgXw1a1cv6cmI5xVNJVbr4sx/XgJVF2wawTPYo1Q+Q79iFZA4muoa40qteMPlI3QlosZ1LeltNfH3HiiZPSlj/bPJs2UxYyqz5Y4Km4X2zppWydeudSWHdQZnMOpZ52l5v2Fphr7iiYATVyI9tXB+Rm96dowx5I5v7CnX+m6gErabIFOUkJtIoyKWVs1y6H1fqXoa58ETaz9C/ChcV+rqFYOMh2a3ROuf73Nco7pkYCKdiRdW/WCb+Q6LXGISM9pmVn9+itwIiuuf+ucPziJnyTLhRBOdt9FN0BYqysJYH9WbgQKaWVLaIXkGoRdDIldl7i7nFWVPuZPk+b6NO6C4amKWAppho0rzSzL27RI9UmDnKINmc6XK4Fswn08L0U56FJmLbUc+69lct+jHsockO5iBDQg0xFXZ9LOw00j638sfi/bIFNLtD2hI5mmj6BoQVOYxm22T3Ady+tVdsrATB66nYkv80sD7Za0As6FZ3988Txtu7/NaDPiQPkmCI7U1lxP5MkezF1n8u7v9nzVI6PqQNNIDvrN94UKV81VyjuEhsKtkeKuyOnJYiw8TXNExj7ZD213p7hT6Qg+NvRM8K+y2hOnvmF5molhzqJ4k2bjLh78i2ibrNf7oDp2nNtyuoQwybR+VjW7kc0G1K5WS1q+NjTKyjYRW9B6IhzgMKp4SVnZ14Z6PdICZ3qDfrQwc9AXiZznbVcnSjwTNPCHeJHRUwejTynSyMQ22nMfMnuxSiYI1dD7eQhT1ZHWKR5TSQajskm/l1nfuBxGAd8wK5jJgyAdRm2gLAANYk9fq5y+P1GRsIfDiOdhfoUX2XlX5sur6bz6GQ02E/CeCw3kmQ9r0/eXhU8Y+Gq4xwOA/dBHQ0IWO7E23Ub10S9wESuajjDyyYqQIKytwgRAoavUuI1awpu4d0cPnPL6xBc9OSeHpTSGAFAssdmQoyr/692CgFp2iEXtHTpYp9nxDBmTwInzRW9APgVzn6el44CTFHIdSkkoSjuR9/EDSwpysPppCl2yBW9qddrVKAR3AIv1kQDZ6S8G7jSghQF9bDnd0phQhlxloy5vg5LkuHUeqdaShDwJ8WsM1VI2/tlhCbXtmgnRYVi8X/ChbnuOzm0zyKJp/rLniBxp1UL/lDpyQvHAxILeXxrQ5w9FAfIqQS4jrSQxpYY+hcjsQrC8PTAEOcHze/GHzGmF/jMnZe18fzNwr2MwlkCS8bSY/tqnOrMKt+deb7Ot/rO2Gf3cUCcBZ25lSAcJ/KZxY/Z+JBo5CJDdqelbtiDKYOqqfzmfaH7oYRMdC8B3oZt5cQ7FcoSb/YqulJ0SC1Gz+dzzVS+nnuSOCB2patpNbRMpyjQo5H9IBwh6eRtHv/KCe3QNbvporKogUSlIscagrN9k+XZMgJBo4jk8JSupntOmgaJEF26Xy2xFofnYteXw+GE6/AlN0fNowaadC3uXCXVuXwDJhH5eS3VlgWnOhIzsSmZJrT5EiSlQEwhDUtDvPCLm+74zcxSNoCCA0vqXC/w6zNjNgKWJdmMpN8aXcnuc6k92jDWa1WBq21ls18dGRMMw1fxrlqbal5UHEj77BFE+Nt80FKsQYNODYo+SwjPTKLROhS/GyAHp2GGtjDCNb5+Jpekky7yw7nQdvtSfrQwc+5+pK4wnKkdH4k/OHL61Z2fi3A/sK6x6DK+uafmTBIo1IMyQt1h94Zp+ZNRryVvIOF80Et8LFBZJhEqc7jEICC+6BF4xlxwNLmEvX2QMtCw+ViIKpoylRj+A9u/GYdYbTyhfrzazzjm2lBMWAfu2SX/SvQ8tpAGJ1pj4xVP+qdDrID8DyUsgGJAblQdodUst5sg+5GKqe9CWtMtgJTKDPFDqSYf0abfxG5hQbT1Y7+x/YYIfsJUyqlpLT+8W1ZV9/ap7J9FKsZW/zq1ZiHBZUaFEZWypqYBfEmCS5v3EcXdRwPBjLqBjBgqfPq0xartHgUyQLQxY7952ACw+zQIR/mmfJreqGKBdeFzv5mwJF68qiTHdKRybMww9nP2LUFynOOfn1R5oFxveV4ar+ViawV7jZb05lVyIUd6R1tY8h05vvU5I7cQVG+nH0WC6I1C9K0be9iLGwnzFG3IRi31KrArAAAAMAAA+ZAABJpkGb00nhDyZTAhv//qeEAAADAAAF9WHZAC3pQs8hE92L92s/myqmsGHVUofLBC4HEdwk2//eVtdf5aXlPyR8N3t+tM3V+ykh6VuyBWZxpIS/U98QTdYglOdOg0078aVZlR/quo45weoa9Pu+7geRlL41kb2H+MA2dbHQ25WJSJ4/ipe3JlHsSF1BJEShFIkCpaRAanxvpacvmdtzloGAFGWhLdvz/fX+DTT8k62aC7e8IoT5WFZY1cq3J17JuA/yw3r73OESyrcIlKP67B8VYCX89iKiWTcxZ/sZR/ujbn7DpGIbI/IfvOIRAWupkMm0HUNYcHzaugcibj3/E5a+Ua6qFg53xgQBAKJPVvFXRTTbKSr+6rXEsy9ZWCVReY3Jl53K5ngjiPU6CTIUay1QCsxUJ4CilaM1EswEWv0FlgJvQzwJiVVZTijm3hC4xfqhev0ORGG/KUrOQsgD4/bMBYzERzOsmLdaQ22t5uY8LgnIhCS8W4GMp+1LGlKBQxNJ7V6VME0PlPg7nPAU3IqpuL0oXnEtFQbiJTmaewD0jWbWzEBPExOHao1WcjrKCsVdMBdf/qiJop0T9JS9I9p+4PDUiewY/HHJvQivV6Zuq/KckZq7X9x/QXiSyahWlP0dv+Q6jCybIdD6QnklKkIQG0DZTekeSwvy8RCxeaqLxJ+T/+kRHtKZcXy/kXygqskFoMfTGP0IIloz+CheUN8CFqtjRURIKMkkCRZkQFnyT42C+k210ZdeLjB/vC4XNrwK4s/iMkQ3PjTK1ueQ6Tmrb6fYl4YqBnua50O/4JGPuXJVDhlb0+OUZCoziisKqyTCatBLAEhbns+xr14TWPM16+xYscaqmCvyrTrQD5oEhcI+KwIAX9a2TTHCVkj2dj+BJ4DsbRHQgHyT9H3fzYHG1aOmB/S75ujX/LPjevrq3LgAbrGKv4by96+P8z5qdYsS9GGccUgwgvFLboduWq8fPxt+VYX2mdCJJBpakI7IjLL0JxiEsmyaC95LTIfpo3AkHPhM1f9O40XZAmQkx7ygI+Y+6sSH4HbyFYFms5nMOpZ3vhR2L9djHcTYxCj9O4EXQ8luxhI+W/3aWPegAI0m7nK8jPoYAyXXdD0k9M3pqBmC2r9d6PQznT9c1+QDV0I/8GYAIW7ELDSeUpgzvix8E5Gc3o0FB0S0LvQjWyE7qGlix/eIk5CTT5InVcPjpyuX24kMpwJqLQrRbHCQV504Hv7xvgvrzY6O0i7MS2DtdSb7Z4pzbjdDOIrufIIoF8wU8YQRdbDUMRc78R1wFXknpTZ5diQelDCsEdciU21U2Le97cdWTrgmklbyECeM8qZTqbFuE+6J8tmQFN+ZY2cEqHwJqT9cm++cW4HcpYTgxhPK1M2wr3CVGdol+li0+rV7+4fKl+v2Vc/n5rQeJHlv7x2lguNWdgJcQ8MuuqsBaA6UkvBD59miIRET4hA6aClHgR7AdbRC1E0beyVh/GiGkrOuXRd0Ahh1mBn4tlNZZ67SgvXxVDIPSX8QGKylBoBofqX2fpLIP/U00vuroUxQ1vN5omd1zk+B/bRrXsNu/s4SePGD3ayuezdqgfNKF40ROI+mdpulOA05llbhat4OtXyVrrA+xtNWDX4yTH66umow7iQ6vNeNebNoV7ErSj55wG3dJmKCT2jO5U1Fv9+37VniAq2LnzWTYJfLaDaCgpOFFuIptKuiRVSKlJH/atouvGgLAu7J5Psnauu4mzS+926mIJhEcwCrYkhFEUgoYGPnsx0YR1OWKgbel6bVh83ZBKMP9VHw3xuPwGRMtX9aTfnEoy3clPHqPqkM7kg/IEFqQ+4IYspD464fclx6Wv52P18E7p6DOsqFH+L7zRUu08u6HtJ7l9oBTkC7X5hw4YT1u2g9WF9dX1NYkIQv0if4w1QJWers4cq73SEF+5S39Vc/+FTh1z2S/D9EuQmUjUTxfwVecfYIbJRXBQqgTRBjRxXbmfqpvKv0K1wLVroK+4ZvvRaizeYhwB6O/Pi358Jw5FiAca+9L5oJqARtcrH9ijj1ML7DtO2ILDfD8+3U+I+0/lCDhdJ/SW80U7BvgfMEl7U81W3qdnfmyi0WQayaJtcWDDHjgfAHr2VU/svnd8eZ/L0Prv9Pr4tBs6kc0JyJ3XcWScMeqFSdjZFUiy569F5yz9EdOnX7rFEtN52wRie5JH8Une2EIXrk0L/D2+I0itit/jicOBD7o/7fU6G9uBRrsEbEG4gW9hroZ95RcOk1ABmoxrfFu55siUKvuzJcjvRxymojRVe9JCotlViYwMstaVJhd+ZrQQcYx/1M/WR6CMbD/qybZ2e3ge50HboJx7ukuUwa7zTyTouv98rtW6a6PFdiizR9ZpBdwLO2rrU171K2yUjTAM7+mPGkBZ7Hy00Ey+aTLthf/jEbL+pLXrvAs7Zb0bvyCdPXENLAGvt0vFdjmkyAgtYaMyryAJrE+Taf8fcSB5XJ1QJXyCYSPne53xy8EOIJdS22Z+u+2QcQYq5vQLQC1CG29TZ07Wa8gZq3M845WkHWB0zZhkiwM50Nyzzsg+aHO3byCo2kZ9x6aDUyBn6xqu2E2RGlWrJspsDr7RFjiVEkanTMEFoVe3ZsMRrfoTBwbSj6I72ORmfW1tv3X26UZ9/ppBMpFdV0DipzqHkLp1DhiNovNVmGB78/UU+mw8tuRaIijOgM1UG/uWY5Zoef8Kx5KSKxBkMPF24HPbJg8aIxXX0q0p8e2ErABYBSCLp/SsAyJbj61bFYbtFIGCfXqxO6uyl1zibXOacAVZ4kzxswSu10/IfeyTa+aQAKSJA7DGKX+WWr2SKPxlc5Kzo12LBIWi2QGDFIuGtz6imykA6jJkrFSIi00Ua4a7D39x3h71UN0fmmdqsKi17235AxfmJFgcxhZUmMt4Wkb0lEEyNsFlEBv5vW8l2SOrt74OaKIJLo7MvZNSgYcGmADXS+1WPqZSRMi3iddyUxdg+z/K8vZ165d/hEWJybMMfkIYePZLbUfFWhOOeoN+sZr/epF23YwmXIR46bIOouP17MhBnGxRwsUAK/steyymL2v5ZjAGTxDBLGe4tYtKS+JhA+Zzbk5mzuV1+FB1nyUaDT5kmPierOtRu3ThCdudeg/Y0P5b16FH9Zo7u+V6GJ6DDxSqN/FFdA1GJwe6xTiThm1pT5R/rx7oSR2R6eqZ8cWV+Ijal+j1OlLASuRLimPm7TyzYogr3kK9T3Bd3aAwXoFgXujY2/gCw6pB8Z6+jTpqfMWDl+ZSPgAI9lrWdixV7IERlUJVqAXm1kYzj0LoYSDBM9+8KyyUfnmxb7NBgV4SAVb6J1bFOFDfTfl0seXJUch24Rgpi32BeaZt8pr+tzpVNkVI1N5yALTv6DHFC0I9ze/S20ljS+MSC7fZPPoXRGL/bVcw1aLQXm5+fuB0Xi8v+gJBLY52ObyzGZQUiW3X1Yh99/7CGVG8480EZFclZd9Mc+NdYv5imvSfFYZmzQDBDEPB/D9uUhJRPqzACv0DZ+4H+NyT1WOrD4+gJMwoGCcfkL5eYUcGVjRSSigsMZE9ZhVAZXUeZBea4Zsg0w2ndokmYKX1M5igHCDx0KWSYr/FT2bdYOdmKdEv+b6HHpHWTEUMxNWMuSgt1CU8VCbIzgscf1ENvgQnlRW1mtwUXXUfSoo85QJWYhsrfSP3H1oCUSOXoJyVJpRerfCC/AlkEKDIhAKotTKUL0iBV/VYoAoitj5FCekTdlUtrOJ//+64h6X5d/sIOR0z/rTGHbiLASA6NswgPs+GhUga2z1fThmy4rzzGthLqimeAn4ZjG4D49KfPgAeRW5NDZid5hWOVJ59RKwc5N0msJOgdrdCVNzs/z3jLR/cHrAe3lOsq169h3HXLDMbnJF+GVUsX5OQXxqU/NxrqJqaDwzZoo0An9d71fgd8aM2jhsZwHJX8Ri+HUEs7tfuXUsE8IstJXqivkAtlaEi4wmuSm7B2FyH+QwJM50HPFptQFP/8b3Qi0fNTiUoUXmnwcBDjwy4bGq2GW+XTqKVidKKjCwi62eag6r8VWwgnZR6eF8/p4VZdd7vJ4Wtk0vm8tQ08QGUG27L+OkmJyi5bKj8QVEa3sEHqWRSU+CpZK/NbovZ6jUP0xuoauE7y+0C2Rw3ZdB1Ia9PCY1+fvgrx0Opz60RT89Vy1Da8A+FUx2k74lvMXJyVFT7mp4f5j33R5yOuQkoLX3/54GJNXk47OrgIWVLFYPGyBfo250j2O0y1zsR7hNT/1mS3xhFgJzg5PurS+gvKMuC5wFoCRFv70bnamxH8Ci00GBOZg8VFUVyEv7pVk5V/AKJTl687kj5RV3NHdYsXal8F5xHy5fgOEhQmoxsPxwoODzc5JDPl535NXS8n07gUXOVK3OiT/9DSXkne2gAEQdMyTQbscV7k/6pyEGVWFbVsN6RTulp25OoUB5P3Gagjlks0vUPzK0UTuHN27Hs/RkdfjoEYRZqe3JSmvzuRCxZ/WtF5RZvLTXR4agWFNCb1XVnFUbUBfbvor/D8V0BlCp2udMRYNf4+9K9M99nKRjI1VoFL8dD+K6y/Qa/UUqfK4LpLmTt+w21JbSkcOIuuZH7wKJ5iz2y9+n8bkITbF0fOevcKWJS4j1xOszttpZqJL+nPJXgnxaivoiPmG6WdWDw7kLkX8eSQrqZgeOg44CrMfZyJQ+TZuTqFyCJoEMgoDrwl10xUDX3djImejAqgPgDzk88YCx3eJCtt0+m7VysU3V4FtOvRQ12DJ4vIK51rWs5129OD4z3jlxx2wVkS1exersQ55R1c4vufr4WU0OU5FraDDVz2yYEDJRvvMSlkveRf7weFxaesCTFsqDKo+5AquXhxaSuY70Hq00zBMM3MIq/Rfnxpe6xz//A6sKBthrMC4wO8Jve2QTof+vMNfpd/AU2YlhXKlTXEM6hv/Ba5kQ80Lp5ieUhGfzviJc+b6Azjhy71uVzGKiM4A5rgtSzlPdepDtUsQ5RWLg5YC42rBCLV7ZgfFV3ZCDY6bnjXUunOjnmhn/XJI3WIXf/9ctsxr+M3PMa/zmT4PcVqPpeIhpurLPsKbf9Fui3u9FqUg3w8JtfHyXycZnQugYmsyXcC2j9Fvns0+5LrPSAC7X25gu8ID8s0/9ZBfSRTWNx2j75UmmZJGUrPlOewpTxo0NHJe/Pqu0joo0eUtu+v/Rq6pd0nDXiVlLs1Wo/Tzm51+jv5qZ9V7iy9ywGuli6HAACq8Fu2SOdrPqhUxkoKhgn0GKUy7Wh6KBaoHM1x5/NGEJ/eH6ZQ7ELJLV5/6I4V8TJZkcB5tJmnQ5UBm15OExplnQqXg21bjcBMtTYdpwgRbSAW9FzDL3Fbl2l5U6WbtYYGh1Cy3ozbkx7D/6eHuC4iFmQ7VIN64SW/Cau1hqxrZXx0MKMEchWBRLk6MBcJgIL1x+D5vt+TFRSqijxYEemfdAoIr+g9T0KkdEGIoJqncUuL/y3NYh2rI2GsUMP1ERW7jo7x/BQN66DLsKSfEf/FSYw66tfn9pHiciMoYykVAHOrPQg1tfHBNnL5/oqdYoc6tAs2JUuaanfjNroon/AHWGIGxUAjJaBttghFxt234ntrTRdaUWjOALrV6K/+nsdO3QmjOoJS4wXb8uoUhLHQn2QbYi6Gu2IvrqFbflHz96gCYff9sM877qrn7b35tSSaIBGmU4shLu6NjifPoQ8VXxzLx4Ml52dTkNskm0F7zwaqce33qjwRCoR1KFW8s9SaCv/wofvOj2N1SWtwAU1VDrS6cRdp3Xtg4Pg2AepuCWZt97MSBrj+CgpfHjn+23ObT6p1HvERKKbktopjxb5hJ4Bkl4FYrBfCxxt3n1VK9Rgt0oXEc3chCHHMHk5ErYjEPmIKN7YrXyFhYqZcGjJu8ErQxV5WeMRxhjKDWfzQCrJlZzS+aGlCprkAUBg82fSDUNtQCWWPRjB4L/gL2aPZD1bmhJEcrPPbUWZ6toHVEel2QXZy5Touv3HyWxPSush1r+PHATrIfekqTZpr79ew5GivXU5w5/c7HrVJQCNb4jVNqs8pbSUXxK66xz7Ga+QiwRfGtPwcyXUYDfkcYDh+Wy8ENwUvs65FScfMUcAdDQRD4AZFavQ2TTf3Aa8BJTqmDGT8LfTvrv8uTUS4F8G4XCfeI22QCLxqD6fX8S8ZsvR4V2l6hjFj3GE5tWUJgeR1E7tgMHZX/hfntTLpyPDCUd3/8iRgjQLeMEX92iGRv3F1X2SB7PHgP3G6Qxf2/fnxhmVbPlTG+gLgyWOoPNBVcbaRjbSUgqnBwDydxvS8MsWCxPnlTt9557ssu3OkRIzYAxiO/8ajnJAk/yR7lpkUprcXIXgdecQS6CgtXCfrmnZavHhZKil/Wg26ic5gZem1TIBcWBuvL4iSd81JJ1WQn/HcP1KRwbW41y4SkM1RdiFB0INyez01fS8TQtDs7p4DVCn4ccraI7x9npNSj0ns51FLdTnKs8oS7c74X8TZKQFDczvzYNPvgMtbELNoR75J9NS+YsmwVcYTWagzuFaTTNsV3qU3ccsw4k4kOLPN74JwZHgAZnYOcgW3E+19W8gGOVwlTK6bYlTMy+0w1/LAlTIgm2LJzkoRDfweV5wWlRyzn0zRpLnf5E7Adb9js+gxhP4w1tOJo9n8TSJ2HA1b8dItuuy61dHH+oJZQXiAxKsTb8dicp0EgKeYjw5CBEkKcmWnkyC3T50Ya+Qa7CTm64BR/dB9808kEalBJfQirbdZaD10Ld5+WXalmSAyhvUbbfsg+LXjotpdkvkhiunw2DAOHt/ejlCXPXX/dpS4f2GUsdxitvdDTjKhE4LkULaY8vmxB5Xv0HRYcrim1Bmj1mS+50twXbmwXWXBnCf1Z11D2VmNXW3m8xpfisvZ/pSAqaYiDi61p6gABU4T2E6i8W/61cGQQmJG5ANvvPUaBh/Z+t30uAXRtEG6jYg5vElU89wuFSRLpi/sMb8+/c3S1JcQmkaG0k4Vn8Xs3VX6kow1lUX0Yw+ZjL/Gkl+cWCdNKCYIUqk+IiQmcHml8g7dHMHAREHPr83k4UrqB8F+qLLRE1uectVuphOElI8Q+ZTzkdlvOAvnhv1Nx4/gjKWWdAKyzYoO+a/xLUFaK4DEuBNzX+ZV2PUJ7i6UG9Z+1C1Z3vQVD8MZAo2wDdfLns/CtHaVC8kAHzOx78aed9GAPCR0yiF1l0J79pcbOif/86qeFw4fdDFKlGyIFYy91nd2WxJjSzmDs3dBmEPcwqAqDy8ey51KApp7LSjlZVG+CB9tyvKID9V8lzgBu50+PLBelezVYjCzHBNif37TLdQbz6XO5fqu4pAADc/L5QVJMwClTMCvRdoKPl5zzaQEPCZGzuE/N36Mw56w5oGEruzAbhWctHeG5ip7Vx4SmnRdPIJN1jO714tWdCMIB4UKSC4Z8PwIruZ1Vw+F8hM2PszRbQV1A7rmIRHjCEt6C8IUeTp849PSXrfkTpEAIePng8wa7UhimcjcRG+8RR8mMcVk7AEQRtXk7n8nTRuufl9BTXbYvhUQFN/vUhuTT3MgepxqcE7/orulQE9n7zdTJZHQuqmna103epqas1e/0sBXbeHJUn0Bnl1dJQDzc8+pq+AFKR8fixyOuikgcHH/Y5VR5BQxbMnJ+dcEOutlMOJU8Cc/c2C0yLnrNePhpgXfN6bclGRdj0jebM9jSw5e/S9mHUOxAuXMkWKEPC4CaMMak+EbYefOvpot/ECPcGXqZMETTJBFE6qgnNmC5nhZvepxBWNtfxuNjd3/6TDScWC7b4IACJsQ0cz21NQ3Ynfa0aPEWIKcaDKk5ylt6x4FDViy787242iqhTM0xD7AwtuGxxYgtaq/4gNwmlVWdTttx5ACw+9j3xxyCGS2O2z0WtMFcmEf3RO3gKgPeE8GngtJQF1aTnbID4uhYghraGQXQVUsd+iS/ImldTQeNs9lf8cwgqEnRDIDcz/uqARNXT7125bMhtIunvfizFZw5f3K+m0bl/QlSHCl0O6DkkY9ON5/tLEFLWZsl+epjG2zK9+qFtAMVBg1gPK0zrAEC629UCtfenUfrkJdQBX0brERRIxZDGARnAa1jmHahtOQrJYbt9JCvcDpj1B7l8N72Y0B+fIbijM3pF3mNBQyIIrnuC2OYXMTDIgwwXEBSgmWyxrF2wdVjYJOV5lxR4q0Lw7IE2OMXHPHcIKLqRenWR60Hk6peG0YdVng2c64+oNGA2gPZesrYFVIuAWwSJyYb46YaRW5XkktlkvOnH9+CRfBkO7PJ6o4SxGYP2z41zBtx33PcJklLzYz1AtMMsvfAzFTmDnFcOJ7I4WXxJgAaoez2jj0Yolz0Z/i0GFtezpobgaW/FibLRW/g+4tG3cSMHkxhFTXnvkAEHH3QM01JdlPeKe7BoIhuNg3YeoP22TE+ovh23fChpz/+x1WwhQoVUfJzatkxCb+15hOqbq6VSDzgZJuc4pND8bRjWpCZJ66IBxiPfWSYNS6rk6xu0s9vBXGaRQGOEpABKnMkRRNoEhSzq47GSeELTJ6/CiXnLM7PCiZaROUWhSXU3UhdReqi08eSfYbOUwZMOWaSNVT+pr4tAVVLE7KtgHV+1tN5zt+6qktGY0P47RiJsPfkbI65DRwBZ6B37eAoDcF4oYXsm7hVhENMhIu8lqYTZeCLvQ6+VyRmTGWne1fDBGtLwp32gajE3Crt1Oj3ALRjwWw9RfcxC/fgbqevqUq7U7NCW7niBiK5PMzSw0/G9hqm4UdAg2PFm8tzK9q/KzfxjfIlM0aHisBSvhAg9GtP3m1zJVu8stggpDIQ1hT8GFMWSNVum4SoIiirEY9XuZLQmcqEwHBNhZB+9dJXmNpn+aoM0suZGbDjKWJb4+lzKVBqrkZ5hx1001LXjPjmT24I5VChfc0wwDXNoJUxFCpHzrvfQb2BiKqzATQVw7lRxk8z+zMCtTCT6RUjT6W5GgzB+HGICBUBo2mgd5iAqy+4+cTBNuBXO6eb8O3F5fdwayqs0QS0RXgXgdmnMPMK2BaVbjEVYlAP/pYMeR9kobQKZouNnNJuVPzKcnBeFom+6t1t3cVnWzQnnAi6DfuFqwZFOVManybuVT/xpwyF62AEf7ZFLdqRJzeURKB6wo+Ka4jeAsNNBo7SMZP8KJzI2NtXuZK3i/56mOWSavTSGDyXqnYzghji+gcJH55mwsE3gMEq3IukGmjUNllkeNJWN+rq21NwdORTMYiswci/OASn/KJ3Z6UaTR3vGe/u0r5ThIwRsN+1rE+cdMXxw8S1X9V2mBBW1WOLWc5YQylqgnzX/H4eO4or0aWrFiRQ2zEo/dzoEmlzQcJ+NHciABPmQ7G3PJZBpLJ3VjKAvJC64MYOLuP+UavdFOjR16u4PhBUsYBIYqlUwbxMtGjWENhq+9asIKnJi731BHoFkp2UsSqcZnjYHirQjhuNCR4aCSt4D9e0ZV56SZfkShMJVa27wzt6Zj+Qx9fZsogQk/Udkmzv6UMOC9f7Q9Jt15kcO94iUymuZ3iUV/3P9mvT2mGPt4eu940nmq883wYiXG4K0h/gmSYLyhsvuFKvGmRRLPTTijD10dZ4UoRB5Nv2BIuyPrc9WCuykoOT4ghHUXfZSE0ie4OELbEqxLBZ/CdgyzsWdCNKwTYnw3ucLYS27N0o0a8MnZsodQsflc3r9UI7GS5lt6Wjz4yBu2AJRe33sZb3zDnct8uAmvmQJ2BtivpDCnUPm1zwOIuglFwQ7qIoiTRsedgSPF8Aq7idy58ByPI1F1VEr4QlvGaDIm/bTRrBSqcZ6QEQdxXUushF6KFzmQB8wgIoM8hWafHE1hKrYqHcpcpylyaoqPZDIETB+kNAVRvSq/GoVv+b3QLNNnI76/iscWOzo6tibExhKOiLgHjQ0edhokZldW2X+3tAHyHk9hZd44CGhzUMGcyQGWpYuqjkbEn6Ux2Oduuxe1U4yaRrL+xL/k139dmZdWS6+jUteGnGa5Fvc3H12DXgK8Vz29cxa/X8zDTT3Pa8iDiBjn/reQwvEO8fP0eowOqoNnyLQnXdyyIkdhK6t3hwX3nqNrKwNbxb8Zl04iwXxHXUPZdxL67i8Zb7yB4h1gfm6dVL2AYz73Efrf7Ip6coG1A16cWnIwo+UlpP3wL6QJQ/ucSDZaQHJvSeaOqiO6LCSudp/ANS2Txalf00YjnbPt8U2k9XlcoCIXDp/fN8dW9iZqcuVAkveO/tU8VKxMvRWgZ1HNDMPnyziFuBvFsnomIiqQAIduh8jpZKZCcmH0iom29nqmjBrkl6rcdTBlE97lsVyAZ3NKGxds8cmEVAf9i/9h6AO32CGEOUSRegeLw7k2PophvbtRdU2lZ2tXO02r/h+Ltd0JUrYVL1YfBXi17xtGVhqNBoHtnzH7KvHsLliEjU2ziVBMQXTrQAK1M90BM+S+hjRX79QhojD4wVOVPw6rQAkGBbfnUbLt5qC77yRStXKuKHSXqLZC8gXw9+7ZnAAC2vxYX4SC40Xsu0hGnu0DM/6Q01CAmlDjA7wXQjIPQJzzIAhGXwVBnFmOAn3R9B2KSL+szqZd6jSXMjSPcIfatcBXMyicUiHgA0pcI/pnKbMfhqbf1xfrPSPvAooERHFsylVy/I5wlOxmQhy8EyNQ0X1o3+awQSfSQ3w0xNKWvpdo5dVSAEwin42tzYvreV4DRywbWeFxwlTu6bmTziQVLdFZShIE6yDU4lXknkXaDzmkfIksKh2+CEKye/Jwj4IT1yLAH9xM4Z33j7Umj0HHGanPrkj5C0ZEazBUJGOSmQdT8LBLu6UyVw9um9XztzbTV9fdk+3xQbLT7oZzuYzlLcVnrtW8rJWyshuqg+uNYwKz4Idd8M9c3bU0hH++jfCle1tWQageEU7bfb8y9zpJBX5ApwPYm9olskqkIN32x7zy+oBwtev6HLaYAv2v8w/a7hHAAATwWZNtkxf1H0M3rIfkCuYVHi0HUgeSd+BujyJjiv1Ot4639C7R2GmEIxRyH3pBnt9SVUOhEVZbilQ/FGQqeyKvEQSCzB0+RiysmQyHKV12HmkDJF8CFwQyHd5KR2rq08AZVX6lT6cHwM+T5ZMyF/RLfj1+SK0YahCyKgRPGsajZZOPpaSTYe+phpS2Fk82Q5xru3VnZyj9GBQ+ccVbMmvfr390D6KuSTyWW1zPCV+VGynNujVZUfpigWYeOsACAxCpj7+0ZeHJGz+ugpI2yhkx4Dp5K17lTL8YY8mt+hR1nxdZ2ADbrl7i09kjwFiWOh+73+hoMI14iuAdbbN+oCoYCXeaXsFsZvrHuUitktve/uOutw0TCdm7Jn9andH7wmAbFyMwfW1MN3pti50J4rr/Qf/bInEtAVn/FRPm9GaBqG9w5hBZ8dom7JnmJCzgOXPE+A2prxo6+cvWQna0BwFiniga/MgzSNrT0fk88Xvlcblx+H5IXQmMn3pnUe2qIBCMwtxBtPBIId0qN4SA/B8Fct+tLU5ARrfz4PJt/90Hju+Ie1cK1VH+f0/zC4J5KVXkfGBlFuAepbqNxkG1Hs/7DwgvbdbxzauLkXJcQozBi6adzjT0eqAw4Nvi4TW/uOnQ8FV0hhdqkghWYx4HVPg7bHwSExBxwil3Ifui73PlvQiLLJBha1g7rpLvO5x+eayN/3d4ZBE3hPqc8Sx1Y2oAcxWwPz5RgCwR1vN8XBFItM0BWuQmEH/agIEwmcy8dq9RtbTC9YfQ/qQe0+KE++aZpWubiTPYi9yve2uSrntBYDKeT9SyL7s9BccqMRADRrvzcJTXw6GzbbA/1tKQvSb+UrZYoGT7y/AdpJLri+yi4aUFECO6u9kGTAGB36vPprQJ38O1hOyVmxaObWHGh6s5uZJgDCuYlt1viY885lfrzDbgufE8Y/REp20EE7GRWj74vIdoOwTU61xLlC9BocCORhZQE2LIwPAP8MzvpsweJ02313uvYo3QPBuN8aXfBiVcVLKJjO8wyHkGlYEdEE/PIcmzHdhcUO6ycLAJhdEz59hUQGdre9TFyW6cPzRetOOUNdlZeReJiDxawysO1X2HF3tfIcL7BcYWI/nnE2Haso90O1eQLWuvaYX6lMKm+fBfx0gBiAi3JRjV71hLyEoV105JG1OCEGgIdNtMxnbbadq7DdJP+6Jyj8VMGc0mNieO431fej3KKd+9XhNB5jhg1x1yQRV+ysfX8t/GefoUGBnzNd1SbY+hF4ufS5hz6K4xR7MIYJmkglLKjV4Ze6N//7XQukg/PuJIKQJGC80o0AKRiTsIDaQuwfPgLFfoSKaoL/iwbYc0HS3+UNztp7hsR9FPEYZV5+JEc34IQY8pHzz6FHwK6AohYTd581uYhrh6mqjx3MOGd7bwXgXxQCYLwuJxkqAn3kDSiLnbXvmNnrSERCeWQDJ+w7d/4TuDj+lfkH6zqMlmnJ2B0HjYGTAhrCCMZXA0latKbjpyb7I2kMIbD420i/DACoO1Mdmew4lWDI1yj5OKx2IIvOai+esCsXb5ZPp/FbmmThapvgo2S50UL3QWNAMc65sakSyMEuKc2MbF+3YBCQ4mYwaVsl9gl4b7Sc1vI5MgyLeeRRbnx8DvwggmjuSeK8QC7dGUtM6Jrmxyc5PkrASjhdDMmc12Qmjxlw7Fh6r++rnxS2MxZyBEiXjS6aHs8G6oqeR359eYpaVPWJy3W+kxWWPh/0tmrk09+T+EVv9O3yg2k332kTHoGJ8Hh9z15Lg9XxBHW0QY2CHStICeXWYBI8LNnQsNtZ9WACZcBsAJV4yoacxU/EaZd4R4xikxmKmEsCBMpOWGGKp9lZDLToLho7/I0MTijaDnOX4OHwxf4RwjoChXYqChhxfjqo4h6LjjWQV3i618HlZVKxnID0HBTgh/KLFJE3dC7Q1JEIqnXAEhH6IpL9uUn1Zc9LwAhkNK7XzYTYfWyI0Cma4tbRTMgpUG4zkIrzB2qFr1PHUa7I8EDvlvM4ywoYy2s1+XTdfz+8QT9fJZ5aGlmzynaPKrVTXcaOliIhhMDfZ4e6tsaiyTcsDHLRbgr8x4rXIEhvaQ9GYMRg5b3F/8fOVYffdQQKoyqWYXgv8jp09PguTTutDGTSG6zQYHBP1ZF0WE0JLkutfuPHl3gGohKG7Xv777eNCdZj/v173goPxbtF2t9yrDl2qfizMr+BRbzoAEVXER2L+lLJOFL9QnKIBg7g2XdJbpBQnZBUgNhVK7O1gg5TazVowM87su8P1FwkJIUIDguTEJmVWzpnZKAEJRgIg6ljnwM+7i9V0dJzyZhDgcFYNDA7iwrYY+6b+H5GQ0oR7eGFlblTz1YwErrIcL54ngEGoafwcmmMD1fy5nXDmf1A3Kd6dkbvH8hT/bfY8Ex1xuG3W4f7tKNY7z/VCpZ3J+SBakXsIewAeVRyEUcbxIdqH+mH2h4tlWNq+ub8i1kQfz1p4N3fTconFzIagmr3DLkjBpHP1dPJsdCtdvVSERiMb2aALg4Fm8/G1y3MZsFfePpVGrUVRCmGHevd9YgqN/tXN3l2DwrAGE0c7knHYReryNxBs3hhMKg26E7TXqcgKf8J8Fouh3lVnJ1b1uxQiGxX+MeQAH1VaKpvnHwXQu4P44Hll7W2JxFhqcNZZ9V3iwOT8tGfwaaE0bvUUY+4i+TIAIovNurhTgHnJffan7wd6vefXc6qITCU2KDD7yzTBrvRiehex7NgQvvxbTA+MjFuQg09+6OmlZcMOAKgdBumGXejgoIoygqP6OargTHQ+JSsPj9Oupzp53OVaca/FjolMA/9oQRGPekmDgdqWxpfcyee3b8F6CrF3d9Ri7/gJ/JPOtT6JqanwMPJyIEH+2F/17VvULrpTU3SBuZjfu4xfeF3wNXX3D3080wZ0daGOQEpE27pfmUy0g23FJotVQN85Kz+jIL15sWNI15zTdYQ07eKNOFdmNEiGNB+fvpZwsr45ueYpyDZ37wgen/5Seb+vLjLfChd9gon0qwpx0lIC5LGigAEnOuJwrLXidq3p8hqNV3PpwnP3clrEzH0eiZmxUj4yhyksV7sXJXO7qE3asL86vMwAuW0nWChpAje0eWmgOKMQTlqgNmNnOBj8Fn8bE9PpcmPiYdE3SYgnL6JxOa+hIjZqNRxzWHSpn0HOAg9tOLV3vllmYwbhPx+yFrGBKXP2zgxGw+wsMZoJbgUhr/hNcYhBbFhO+bScBBZ/oLkH1Rh9HbZvgI/MZkJtfXse4anfvLOrz8O2WsFjvlQltUlfyO6AIww2HHXoRjOMp9xxWG5udNiEMI7kpUienYLyfWLqEP76fRbmAYxFXPni+s74nrVvd4+/7kk0SnsdzVne4LN9hwLbN0mdcsI+I+hBkOWt1DrYxaDhDeCkyFeEN9BIeErfx9xDhuk7YDPUG7+9Z6kIGVaiY1Ft4RYHDKq8z2+5Mf6cr1dW7l/SzkMCPDgiJeGH3tHV5mjZbpwsUFCTrjSAZ7gn2IumYIQKzf5LpCz77sjRMnL0/o5JgO3jPB17pe5i1eptyDZtmOGn0dp3Fq1LRcYQksB0S5ONhMseQqkkdfKIVhmaQKgkMFC27Q0iAIGwmdFLz789I0jPN9z1s70feY62LcGbZeW9N9ywXze1uveMuVzBCSiJpTgzat37kWVyGB+MS6jZsrusO0u96+2awkcBS2pAdIYOeK16YoxuM6zaJzlaqO01ZyBdIkpun3ilmLBhpBbO7wRGe6jPhWFiYy7JupuzafydcliOpPD38LKFxEkdBQ4NkuFRkBhX8zG49yv+NtznhNmHrhWmeThjUHkYvWJgmomgH/9esoCp+CDmCiDeB/2nU+BlE+8YP1RqzuensHZyX3pQZ2RYwdT5IzB/2OZdLZcZ6IccDvk6O4t/4CwRbsAr3SERFKghIVPXoLoMyjNYxV+oro6C/48bUQ/nI7PwdscpdD9+OLe5TB4DNOW+++9fowhgifi1+TtQcQd6b6W6JbD/nq17Q5zgaZh5A35HlK3t1RRzrJhnzNMGg1KoFo7vN/6fEzLLFIVQnuWp85RNGDO6FYwme2m+vVdS5tyRH3Y2U2Ar/UvjrzKyEFaSib7LRCnnfPBRs+/rnqyg20VREFr6XtteLDrXfo9jEMHKtJUkE8Uaarlw5V+54foGVPtRSZO+EspKpsZr7WwRs8Eq9aFq7iDtQr3MAYvAT21yjrVmGnBF891DAEb6f8W6imWsSW0q1vTO7Dm3x1dg4A6Dw7Ip+3TJIOrk0WI9s6cl6BSukIc2RQc5GZ5dRB0vfFTMz81PQG5spTwNiNqB2kzwEdA3+8BJvtZSOzin1iAan7VjffaLzLxiKFOUDKFEsvqjo4AWDcs89/K0Moiz+eOkQv4nnXnZsS0MJ6hhNOCG0PI3wD/aP9fgWvcUBwNr+X35HenLDvZGun36glGoyH1n9MQkDkDMXMP7WkerluEZbEZ9rpEsjHmt2MWIGvecTQxvhpR6fCV897wsZkaLzuNeitM6RTgFUSgtsYCyW+RP1stqenxSF4GLzi2WI1yenvRwFWTSkNs3XXvVxsrup2dKE620qmaQUmDZbkdrA6gCk/VXzfHcVCXZ691dRRBgvyBwvtZz6PT3TRcs7VKRa3B1+5QMnPGMAtXLJZ5+ObYgShRalhlre4f1W82JOx0BJAN0FleTiL2uMMeJ+w4yOcZr9WADJb2ymSfRXf4I8pcuIBKN8FDy3D2ofioeu7vvXl+MWQ5Gv/3kyCxtA7dekyxohXWaFCgwk+5YVAUSsDi0/g4nL4yDCPM4J5x0cXEyx0P3wCSkNwNe6P2ndi1pmgsmPHPaP08IhisWO56GdvjbSOdqSWxrQEJHccM31ZpJjYrWhs0dpJJVX+SmTf0bjZxzCW311jESDewyUn84Fta6tTgUFuxbTwJr8GyRXLnueGQzfe+CZfGJdzll9+kM62kB5FxdEFBIyiUeurubh8yoqAfyhwQaxOiBN4ZycioNbu4X5FMOBPklVJIuGztsOVcH/W92bReOHcovHdarYp70Vq+MR5HvXL8p6S/cmEoPM1ZJN+FlzT9SC1nh9O1MThQrnpXLwbejqOiWuzPRHaDRp/17+dbddCr5JZC7gkSbfVmc0Y3uMzzeVzfMGq5NgcPKFcZ4/Hq6EkusmE5V2b1xPNMpSLdpcLhGLKeCP0jdUVy4/07a+ma0D2dwocmWJLQQpo+tnDbxENPQYTQVsovnrLw3AcGVpZlgv5ZX2DD92aNoWRlOSzZCGzjsY4V2Ai1Ptph0ZOqlvbh8NmAuKIUNg7YrbELZHGOA9vEfaPmXIqtEH3+2zVo22cFZpO4Q8kB31pxN3IGHhsvuRBHo0xAI6T4JnnJfCgnEr3kTg7QBHl85mxcDTHomXY7SzeL3yZGplHZdzo+4q7l+l8GWvayHsHo/mKlHB3jBE1QwZ4rgA0AmBcH8hINx3QV9VMqPT2SkmPKRcIUarHX8Jzo4dtd3liPEM3mERpPm4w2jahwVezdRJ5dVFJfZhYoPl8nKFNTqhsUUgVuhtcCZ/zhu9LC4JkDDhhgHNgTC449LtTc0XX8bG2yi7tMrB4gK8pC2TURQJP9D5qMP1SXfwf3LQRh+j037yXY5JaOOduFS8TQOFMCJOsM9UMdEaKSeVTOo3X6OPfIwwAW5VLjG661kpB8vAT5ey+qSFIUourYzEsBeQa7pFLsNh/83MNE9yCxSsL1Mlndmki9YsbvcrF76tWDX1Rdl8Obz/u79f5uGy/JvNkCSDKdLf6qbubZTCkuBQFpWmAiM0Hu0fDmf9pgz5w9rTpT/esBMvMQRobvBn0VQ9lL5CrllFpQHBv7xxZ+Q52ZK23yDuTyPulGiEqkwFTvc2oWW7XkQXe2eQ/nIwWSInWPbAqVVF9qxz6Vv95ebKVcdiEwEb6PBj+IHd0QtNV1bxeLzCdlLdV5rWpD8VlOQ0v7tgW9QERbm6Z+L8uqH1IgcZGgzH4nik6Ir24SUgcZKNUufZdhHpuooreIvINlUswZZFT4WijL6qtpvPTJJLjxdVPc+eIx7TMIE2rcq8HpKu9R7z7upyWl7+aJ7luNUDkWT94hPl/bcO5vlRDR95v5QzU1fhQ75qypBDq+bIYx+lRS4zrwRvH8QPaK+Xsk7kVgzzYY17NxSAvjSOsIsNSmcuFdi6fy6bGn2Lw+BqdoT5AZT1r7w02rGTFcxQxyvvF1vMYgRwSDo3wO/YbMyB8qHhw2CBZwlaoB5yL+xresHlYt7f7f58UzCGrpp2xTv2isGSmUreQFcNdaJxJ2G8OnNtK3tAozxOcpkNHmDC9Q9maipxIEfV/AAsxv2J4t/dtlHJSCUyxquPeFuBsprxcwJjhidZeiPbh5RnQrLhaww5Gki+6DApyHq/4T4bszqD3ZoUPAEAouCgDX9rvm8Ba8RA4pYh2cXXdZ1Zz72fio6fxN22TEvwOn4jOBme2kDOsgbWQM5AAsrSLz/LW8llOwmXmsMLv2z20AVcZFN1f6W8o3EqV7kE8KOdpcEORsYRErWpe+2iFyGQ26W2C2W5I4Yg0Ex5hrenUwHZxcL7M5ckbVnVRIK0ICZtE9z6colYxRZccd2QNgGJQJL54eYA4/3xeWqtx+BgeQYpkZ+VZcBRdibxDVlp3uMu9lNpdRLm6BiRCcemmYhIoVsnUogDoFM6JvMJ/FFZlgYLq6Ks96HDqzSy0rrr72hFRSNAA40V9f/+B2Ijfj3cWcgvNXl4EHdFnrWRbu8A3nApKbyaMm+Dezu13PmM7w828j7XlGO+H8wlAgGkbYJlCsqL9ICVZ7sTNxngEFJ3p47AeEdpLgK35Md8oeq1dnvYZXDh53Op7Uu+7pvYfDHCoqGsFXYlcRNMpnnbXUMqmnIuSe74KnU4FWe3bDR644szpjkv2+iAmzj9yS8hgYKF3WFYYhQGbidEQUtWaavzBK1yo0tu0sy13WGOmR0+n7kDDGe2P7gM5wMtl1WGaApma6f6tMeZbMXZnphemQP+/GqJ9Oy0tPgzLyaBZb0Cml39z31DtXNj3nUArMpyfH0mt2eW+oJ45b6n3J497NZUlApzWy9sGuinNl7X3xHMSiKDxRuwYW0unw6S4y1PInfRFUVuB3AearHXLsEnriC8uzyBypmAsxDJeqRmTUVlWwWVE8fX0sng5lPQFG/SerLHFKKoyseXA0of6vL9TVCmPQTVb1TznDXU+l92L/N2yFJr5QkC20MRxffqGGrU+xw6gEhvumlrtw9r8yevxLohdNCxcpvqwnO5D/Wc6CXyDVeiFEeA3RfeascW7+D2/TL9UM/YBZM3FaoTFVB69S+fIKBV7JqhfpnwI61nJ1w22r6U7Bd34JcEi0QiWdvvFK3Dc8cG+ICRo47k5QX1nJdtHlMRpgwIdoXtgmuUZpWUxxBv4UmO8JCQLupX/EJ1S9lO3QoCI5YgB7UhG2AdTbgQ7F+T+gAaYE7sgtd8nbinnM4beylArCocwRSpRhrtvpcb9AqVs8wSaItruUtrpx0okMi5ohVbtUrZuKF4kWbcB43F8VihaRuAm1GTiEXYrzAqJsDLPBxOnJKYnD25jDSwy1jzpwnUt5v+9sbMc3eKtr4rjjiVVa1ipwdrfnsOobKi6ZXQAcnIQW3nSiIywW1/5IhBB8lPZEULjyqxp4lwuMGmGvgIlhSiSZ2Ji4RY34IVvstrOxsmTfRMyChE61uMaYuMO53DNTjhKa8ZJTluvt/3qXQ6b/oap3maGZX+ma8Pi5mSqf9rX/E5W109MFE7PrgflXI5rU96zv67KyyQs5gMvw3EPX24PR76H0JyzklJ8AMcOGY/dWjeEaVJFs0HU6XjFrzwPGgegIYUFY4MxH0v4nbfwABeyWvXmAj8tUk4Kre6kvHGOcPVL967JEgpF+hIhHZVcnO0cRdB+vGZAFOcP9oxilrU5RL6QvLRH+Vo8bcEzWgJdRvLnbLQSKsnFMCVkmG/QIRNoMGjr8Hx+Q8tMZtmnDxQFpsEuiTm2G80TMbcAD5wpAqcxiiSnFYaBPGakI2OW5t7lLAcHpudunr0QQFyTypTsGJ7BfD9tdzuDmp1ixwHCIT8b4Q45Zvx6Adk03aw+vs39B5AnRUPaTcX7xnyqXC493fcZXsakALTmZDZHPNGr2eDKFcwGvd9B8fFlvmXOVD3RPrkKrmE65v1QGIb9vSzILKy3XQCvZyIQeuZTPjAoL+McPrHDnWyoBYfdmovokrmKwLgHAmWy0WkCEdNnvI0SQrys8TcTcKftgk0HaIx5Lzt5XcFb0NH2njfKqtTjgIL6cktkc3/lvj1Be1989JCPwwhOXNrTfs5UySHSRtFM1HmFgKEji1jbUZCgCSRQ6hLkFbzlzIxvDClV03cuqjhPFmxXKpwI8sgoPaHowrmOsQU0PuUKPXaS6W2NULTRJHOMms4i7uBr/RWpuH2r5d4gzxD/7T75abytQ/CUQ5RfczKEc6MCeLAMyug46rDvA/9uBANktsUt4Rs0pKMxw8+211bV7waxFv79IRYFV9PeVSOQw50l0bjd4TJ0Ukluaq76QuYTDo0sY7WTV/+yol5Qs4Hq4NjWYZuLXJwh2JnVe307yhUArP/3qy9xNddLoVuUWd0BN3aGhU20T7ztRnpkXDg91wIzsIJM779SBkiiRR9VNxEi+KDTG/s/xctRn4yAws3R3AjNFk5LSgdSBSuv64EGxeyNSjWhMA7/BlZ+JS2rCxZFKVGJgp/AgLm0HBatG32BazxLoKa2LuACHJQS3PX6DhD9LluOqgHy1L+ABdJUwrL8Py/Kmes+NLo2GhuaZ//be9l93bjzQQlVorA+SP03FZedQNiOMyrdlTOnwtYhf9v8bNJGZhsKC6ONYOk2ZY4bW7vkCos040HDPVj6dQVxnanTeKcJJG91fd6yRK7HWVF+rOoZwN3Rryefj3J89mFhP1VtBpas8MQje/eQZwAP07084CVevWT60YSsSjWW9nMkpqemPgBd3+gsJMlXtsOlwfl99IUJGV8q/V1WjUlcJ/boxBN8cAV+pp+NN0S79Rz945Dyi1QQsL6eHtyDiiyJoahIl+p+N3mY8FU2U4HFM9hP5/eOnTATx9czCvyLQ8TW9n8unMEnN+4olvrzo3Eao205HT8rdVI2+lpaYtkzchahhuSrUhpQuRa5F8wzLARfnfymllBBn+alFiGhWiiqrmBTts7semwZOl2i1Lvg363zAAWM+h8R09Z2n/iHzpxX2grLq2h2teLeOckJGiyMUx5N0h3UcjgM1of5RXC6FfyIaJdyYuDEhr52fCGsZfOEBLDwx9B1udM/f+UJdCHZ+B1ytklaN0XBQyG/d2Q7q8Z7BH//SWBXN3gqPlPRp85WAdfa8DSQawV7hZonMvFSaJi8/yZ0+quk9WNL90parJxVIeSIXJu65hZ6JmZlLbYokXlNYws4LBrUlQeQDLYEWq+QNJ4yTZkGdKJEYiUK/2vbfSh8R0XaGOF8o5Ww1lp0k9CkUkEBUD3iXGtIiKsrEf8ti1SaESgfX6pwLlRGlWu9stz2RaneINiHxisqJKKdb7KIAVqesco9K9pI1T/VlzSt7mock7Dl8qe0Wu+C1Qx9SVclG/Fqtrwkbhw5hVUOI/VaYikmlARW+IgeCGFM2/OaE1Xh426nAl0hX3c8D3VyXAGXJT9CEGDUjYSR1uExZzakDWLPdLC8NjiGklqzlGiPotLTWmhWyjBKrtFWbT9N/ok0IXACNutJg1hNFmYGrTFm7afLV6yorwESuK+MUlM+aFBftkU/WfKqkSzwtm37ufd8ntrsWRs00qlq7+/oVsjPr9ll4/gFaAyN1imXjYbZlWdXRUInQUXM0hQ7OYTPZ1coNhdxmnv9EhHVwwUsAlkwN4ZqFH8cpX6YUxlZPz76Mit7dHh2P3F4kH+c+zdU7q6F2798qre6APW4JwdulUPNL9ZFNOWQuJq79X0JTfDQ+GVhh0PNZ+SS+GkvbksGfY2YKAGvq6YRmovJa4yS7TzAtJW8B59N7SNV2h3VhXhFndTKSmRS20yxAySjgM2k1U0uWPINZCa8WXRwQu+7loqgr1Qa1Za5zf/pX2fupwFIAszK3J2ftNMq1SNi+flbymkYidIjcc8dxLxz5Sb7VxljM5NHns2JvcCCmWd6lCUrQqOh04l0ccL2Nb+Ikd7Jy3PeTbo6SW27+PTsaPqkR4C4tS1mStHJhT+Pp2HQ9WMvMKsxgDKmC8uajVebYwHz8s+XQe2HbKsaoTz7vfIcgHi25WFjN63ZIDXkIs1y2kpugdooDvWGV/2otwMTFBNDsLhQ6v3KeMtSMf0QFnhBVtOvR97FSiV3tUDUNHbhyceIb4jMkNyw8eQXm7TJKIGP8bzwIqogsCTtH//1DLcoXiPC/5lY3DNrGpNMaMGWROyVjcjvw1k4q9f+hlK50yVPznZPXY+mbKN1UlPNyYjYgp4Lj/5ibvZ+rKR8yJcGhDWAkmyjozpCkjxTyKLEGctvyBZff5V2Nxnjv70QzQ77FXs1ky2tqoNfWvQtXPmt3Q5Wd0TXIipZIZc452/wk5Q0PmX2Bco0JjmwCvy8v2T73bbtd4dy4JvMx/H5uxShtw43F6N/2jdLD1ZuY+OnMHITC6Nt6wGumW0Ppd3lN9SP94Nz96fhkIEa600CQQha71lruYqSD1ImNKay6OtbG2T+YBiHS/oeKkHqz9l9hJJZYYO0634dBrKOR28etnDxPmAbF2uosIZKIcPvwTDfqB1fbcrJqYyE11tq2V+ntIv98fCwSjpYWEJrIOug71+sytPOIbrfpfz8S8P4if/kcWXJP7PC+n67PyM3lZxWcE5hvNPcSZbzWyqiY+PwPDcY0sJED3xqJD9xNX0XUDsQebCiYUTnQPfudKA2tvlA8I1G6Zbcy7U9Q5WiMQ4Q7JM1dqGEsbJegpvhX11R3y7HWVEA2ev0UI77Akl5sD9K9e+zaaPY+zXZHsd26MAPcdCPr8Thfh9CWUY7v7SLm5b+eWTeV4PBzVgaLjTS9iXQwCepQ3ZzoqA/Q0KrNDaXN06JuEbZZ6gG++aHTKUg6e3xw6lexRhWcMmbT0wHLu01yxE44OXqNd4sOrjTKPqyertplaM3eH1GdpyiAM0wm6/4aHpO3jEe9lhaOL06eMF994XUAzhpU9lEi+HYnhzAyY6p5wHiGrHuMpzuzi+Wl2bcfk4TY3GvEhxW/yOjZBTtn3pWkIy5B0GF591egAOOYm6VKQSM3hmiSsIi8hIqSZuNv4wtD70JzY703KkuTBxTirQNr9EM/Fc9EpYZXHKu6QHstIHHQHZWkG7wjLdThheIwZoFshlabVGlJsFQLywG4D/SgMJa5AatXSbjRjwkfcOq0E5b1jfiBSQOhsV879B2Yumo69Ty0IogH8z69XiRlLWeWh7JSWaf6WMhl+g0yPuCEr5ebbIkE9eecEt8UcLEj2PKekQmJzpFNG2hy6WHgg+cav9ubp5i+wa0cH6ytGas1NcjBa2XPqAu9tYCrzQY93QsMMFWWURDOFkUwC2Vaaj97ksqef2rVB6sF+wASLkanIIbYegb5H2uH0ubfpPCPnVGi5UZzOeP8gTGRVA+NSbTQjB1fLkPOBslE2+YM0JwOzL/MRUuGu2oZ0swZ5CGFK6Id2goDonh5DBcyl5AcVnU3pA2TMD94nHPFNnkbsIjP8um2doMg2nAvirP66cskOUhT4KPdHIBAaJa1DcFBxpoWhWk35r9kG5A55OUJq6kLIGYdjW5hCpLPfaWq6l6OdRpDafkBIbS8EW+jga+CWxQmD+pbmgvAAhNFHvpJiBrYV1EE34eBaZA+Kwmr7iEQZcruQnRENoR4VtLJfATKiuD8e1RDBlQ811howSB/29kam3UGm/liJL8bxUaA0S5jMC5NXpRTAMRi8/drkVPWdary3700PP1hafFwH1dNK3Vta84FuM6B6yW6Z+QVD/D3odYag7TY+h9dNfSq8LrzYoHh51ygckbhh6C4a+P/JqxlFHpFcfKZvaL5CyRb+iA/i3HpnYh45iB+Vs8cMbHBfOiaXB5gDKcLICxxMPWqq1AcQxhXyI0gi4cXHIuZS1Ex02Zq3lwJ+jhtuLzz4O+qB4KHSrl+/FS5bIxdiu2G+v7okGPMycX/rW8859mkDYlzGhcqHO16fKPAUn0mgDuvpKWe9O4vFvVPRsk4LdP9xVu44fCBseoWCNra4+qle4b50fNy5Dm5qTv4qAkdKkrUtmQMtdbdbSyu5h30PGSwZowUtCFiwpM/RiJYR8oY3UdyxT3ysOgCxeZgUBoz4NUi+ECePxlC4M4GecuO8wqZ330v/e4Tca1Ey1LShzlMQaCkazBbHwXYFCaVuW0j9dsuFf5+y8KhC/NtTVKMwFNoRrcj0siPZ6UYhLCmqXTblVbWu0G6Iqp2SUNJagTQ7vASxqeH4jB25ucL4flBgg9oiCCUfFltXgKWXmXobyyN6yvPrqRBslu6QTxUsY9pzpCGGP6WSr6nEui90CRZAhnBfblZLYAeKEL77r3pFV5vxyjvsdVktGZ5oRUCFmCJy/+MYuunzGG4RwI6Vc5SyDeLRy7s/3yTEtcBSJchxueyRRpsS/D/ReziA1RJ1PvP08OsMM5+eeRjxsphiTkzl79ugSxAkm4Anwp6Df1I82zclZgQoYO+SxWB1hdeq7gOCrtr8nTffJhcp9MFSodgsEDyOqdXbdUPR5ZBkeydKLkKTysH0DOgzOpNWQkN/MKy3R7C5pV+DZ/GOeN7yb69MKrfUgP9uce11sDYIKZy724zSI7C2bJM5zC8vm+SQBBBAiH90pk374D3W8KvXw91m9FtblvnVpVZangnpP+VevmCM6Y2Umc7PlkagHTq5EgNr+dTNccohLctOZ1aBXav0MEfnMFpkvcT/zslqQUEbAnJS3ky7+YEdj+xWZsN9IfAYr0yYKGj7i5+OIUAhVu8j459A10yMxCRgFz0N97qh+tQLrT8YhHsF0L1+gf+c/sM/JLACuee/XKijxaihNEEmU5Z18Pmo3TPfNnz05StQ6uqiupMOMGVK8qVPoygxKSga9FE3iETf70PstvhPuXsQWb3XEIeqDP9bfREfyVGaGS7RdAE7ADMi0Fxga4C8ZSyuKVfzlqnfgqB9ibUPJYeD9gfUlf//5uvkyYaqqL4Sdv8qDCldOvOYB9DqpUp34ytYZZg0Vjn0JnLrds2k2XaelQl+F5Le66uHmxLK4DCvuuh/mkkZXc1nj78n/VbONbqDTQe7+R4+NMHZGnL1vdwQog1IfRvzUo/+0fM/TfC/v0tuZSQma65Yin8lpubxR4eV/jwep4jXHCa2Z/5sYSXDHgXhJZsN0+WijEE6CvmYjgnRdHJG+uqtnaUW6pvqpKan/U5x8ZYehWsaOBTBi5WY1LolBztbja9gBjIkOTMvUVmh/9SBNKN+7ceH2QOKAh915dg7KPZ6rWqXbWLnA85SF7p/JwEnOvhIq2S3BLDtqmm4UDmZnlyVzI9SZznWSShRa1jGzQMqCUqDHH+Mxb6gm9TH26rjrxyNdHl8imdL4ZXlBmV5ZB6BKSbLwVx3n+lzm5ZfpzkXhJd9eDN2x6lECN7fbzt869IMZmiaIzNCKYDyIDJblLdm2+al0dR0N2Kt4bk4BnAM++6LXLgABYVxx13ZZXFx0uCN1/wyR7PyicnRGmcvOHJL4V59ECErpGN2BKvYk/kUQ439qJ3vzmrZBPbuNOQG51obuaIAe0V/yr24HTv767U/cmArqTCpzk/WMcGsvtWG2/t0U9ZEsz2rmm4SJfGdulnFWpT7qtBxWM2In/JLtpb6YfS0nAYX76ieAxZmhbGsUGmGEMF6o4QiHWFHNcyyxNnWE6ijDqYcE9IFlYKW4YwVkjzX3KvJMzHVebDV7X68sVn22Vii5pZfgBZTcqNgjbuJvc+th3DVeIiQqiNtMaM7l8mlU3xm7Fd4753rS3O28zbbckXbn751grVrRv7sUvom/8jtUXGepzzEh7Ixu7oPZuIsQqXhpEtrQNLO92JQ/W1XOFJHfbVk/Rcu/nowfLtvkJPImfHgcaUVXid/XHRs6qRPdEtLIljDQdU/yO2ozgAAAMAAFBAAABL60Gb9EnhDyZTAhv//qeEAAADAAAF9fSpwAmbXrp0dJ78Gje5dqLz7a+gFRtztJG4X2CIMglc0r/57wLVU1+OBR/UToT4+j/N3B12++DdI1jKdI47CkEGHnkNPZHhuIBzWvEbcb8qWx9Rv3F0tozbRKVPutTi8QrBc+Q3m6P9UWxG1u/5fXxALjIqXTMM7WdnQy/KOoH2WfqItptV9q81BBMosd+5KDxs24iitdHe//yXx6OHEcmWuls4Qc7HtLdARW0SdfVv/DtrV08NJuXoTMkiQFy3zpOdfr5FDvDTLN3BSCnY7Z5rxI7MXosAeHu/BrGOtDfYIxg4KTxMHxpKrjp7CVIXxUgZiO53nt0EKjZGbOkd0A3pSVzj08n1CC9fNLYFOZDDY5Wozusp14SBkamypl6JU3RbDgZvYx3bE0Olrga99ArUz4h4pDScZo3CwAJ2bM3zALQs8tIL5rOgCsni1O5GMVFy/WYcwun9MADu2wUeSwqNzkTikBe4vArCR/68+f7454fbE/A9W5pX9ipThiGTUSLT1fyhk5PMEyT+7zMsJxnJDKIBuHAIwleyiqy/Hqp7EqvSCiwyUCce3KaysCjfaDMqoi/yLjx6+yqIUpcepnGcRtUbInuwxDlDKo5YeGkgn+r62zGtBR9nqvnA59kRMG6a0XdL3Dsq1N8mALjDkkSCD+ky1HcSpMQkBHvHsHN4K49df3Wv5SwNMe0du5Tf9/vx7CY1hEYDOO1mB52zME15glwjoSvPVjyayRAJNbWBIPN673O4O3fph3qb07iEqq78WVK01K3foRQae7sOB4bF398lkwkoLunWPjQKHcOsRC42yo6l3BfrZdxosmZ26NvxUEe5trRwfbei3lOBLNM0FFqQZlfvEyTWeTRhXaOWIXxg49tJxWUcr/Gnbu4NeqmgEp6jXV58nr7WTutKPeiiIsACc3RE8Pkv14ziNswP3FVraHtUu8mx38HJP+yqUUFz+YKTnVrKR45c4pd7xb9v85JjUitJXQI+uAG4rUvn4kyqgWdEfx3Z+kFZrn9acTviVpiQuf3l1uiPEzt3cJNsQQJ6A6xAgvDiQUkQR3qIqCnU+Z3M5LvOFuSUvkHD/HDW4QYo+EFWgtrA1yjEk6qnHrbui+tza1sEQUT/rFaoFdkR2hlqaS6LCvAocjv5xDjcy44HdUYtHXVodJbHNiLqkeGP7jktAWUyepvHE3SNp03VnTRQXhmW+FmfPMhEaVlociv30P/g82BS3lhtPasmi1HpmWkwL1MU6rxmorxOSQLONVU503aJv21B3rSN3u/SzlpxmIpkfdzeEjyheApxtZA4g9QBQzWoCxkRFxM8wpPYUfBF0irEDu2jCtjBQcoblj6wBmpsd9CreKgn/XhY1PTfCzs6uOPphQhYBuOEoeIfe/Gjyz1mDm9DJr/T7CvqfQ/w+LLhN3bWaOp/D8zmyNcnFoYulcluCpWNZ3kKfmN52LY/7vUpQMptRfYKwq4T73XlO1EucRQ/vJ6RoMyEdyZ86Mgf/JzG3jC5iaLcBRoJl73LLwgQWMvmGAiB0MYm/21H1nTZqb+/mhnH39MhZHPKkx7rw89Wm9Lk7ooRcbINz1YXHaU3lETdPD3KAimxTzhforwHhi3cuykAZc9cf1x8J9EbD1ZQiEptJyUNqgNtqbBmtm8xxCS1SAmY/w5LdHmAAby21WftfeZDtF5CKpEOCcnGtZ/lgL3mN2Jqr6pPZ9LWx+7fap6egA8gNn9a1unPwZE8uiX8KPVh/Ly6MRZoT8cXbI0PGJnfqOD96ngQ7bGDWQPKnH3VG23W8cT/96BqpKgPHtpT3YA+cCJrFJPVllZeliptWqAZzOMIcIhy39NgepIayHinqtLFoBpuPIyCPgMT2uc1hqwqAXFjP5ho6R9UV0++fjvtrlJW6Mo56HO9uQzawn8ifHKclk3aJ1HJoah6UAWb4qjU1GWbVO5NFUlJ6sePbAJX7vY41694LGtb/fpfLJjfp6qP0qp+rXHjLXBLY/MbE3jxMg/ugX2tewNP31n6oopzU6lT55sJQKACaX1eIW2KVGK8O94jkU1iT3dPwBaxx33o9xZ+2ojFwJEy6TshiE+Ts0HJuz0lxF75Z+UqEQOg+uXaQJl5Nl9Rj4X3QRHmVAPo51Wrw5X0pm0kh/b6d+DT91kHVwkV8zw1JcRr9eqnhzaSoOJSrPL+Mfz8nGyFfBMTE7ZySsi6OmKwa11FcyuCPfoWF9+GzgFxaa0ZIxUUROHbMEb8Ibox/+fDNDyU/nfwIH+0lKTPHynfMcXrlzhSmEmq9PjTIuJGG858tla0P/L+evmhxDH8PrvqJUVUJzJwF2uRr5YyZ5iRNUVnWGoAxvAzI7BqItect3YIM0DShZAuokkE01ueWveVcTyylQtmc0JYB2dzoJVwn4INnaQxzL+P5wxDsUPj1f7ot8PWHLz9v5pioHcFRvqr/hULuDycBmSY6prC3ZWI5HG6Y5nZ2n0MBDwMD8qVSwcNccDTKx1zYh79wMeNMPio1EcP5YuxV/HQxOFIoy5Rz1exH9mR4BfPH1X68RfKRA0Nh2dJ+DRPaPtCmUoC28owvMVfm5cqSFmuAgFZYjxiIH3F3RImMKkCGy+tPG5hcjm4f5RIfkD4R0dm9SdLYFPEjiO/ck4OlD8Wi8q65bMvzUVoJnTzLWR2fk3vyeG4oBSlUj/nFdnVW0HOD5x1447GY0NoHy+pLPb7zE45bkVb2Pim0aZhci1F+ZqhYNGx52+3UTAr/ER0Kus6Mzpr4kkcFeswR8cJ1/eGvnexeKBk6OI11tHgZrgRES3XFdEdvcNaBos+oCb/7sfi6CqjsbgG0G4rekrMfD7B2Rmc3vClX/jUH+eNXdNGHRdvVUKFrToXxZocASCjMbzhkwP7IK/1Ed+owA6g3FOb1fLD4v3TC4K7/81q3ux0nTBLf2Rmmh7xDNFQtTCufMdjwSFGTycH36vyLSX6BI949KE4tJc/kDxhQI1Zx9dLtmqltjAyr5iQkdyqjFjv9q0Q1S/Xv7PZPUwP45RT7IvHrpy2/yimhXO17kSpm1uWnMgJyX2DI2+HkIxYWbziJUI30+l6X9c9WkyzdgA7ZQ9FHOOlGgd8Iy3WxTprceF/lea8iR0b6vQ0QZZjT/XvSL+KS1rAIECVfnazqQ/nKOSWvODRKcLHthJjNzWmBP4ZKLNJj/PkDl94t5D90QSS6v9hCc9YBeCT8Tcvl0OQrnXV1GBsca71m9/2kyzwPv2XUWuAsOCayHpv0VqRvk4hN6K7+215TrBgkl+3qVWCPgryi8tkFUTHDDap0829+KgiDG9pHNkunyT9s3o2RKROjULp4McpvaRz+zucMGwHBXBGerIoUiskXA5+zc0bEyEc1Ke+kDbZxaqbU9mUUIkzT4MmLZVoHHm1qy37QXGKnjxwAqgGGAuDbQVDi5uYGf+r2dfjUOm4Y+R+ZGFUXpzGTge2jQZaF+wvcdV8n/I5NmwNKbSFCRH4z91RUgge8oemGchkb3+yaM/TEFqatJ4wV9VjfMmCnz3OTgb+ouk6SwBrUsMzMkJV7YUDTPVgxz8vecC98NL0TBmmfJq+CSKq8uApyw3tj8G+fdoYoBZST92kwkcgtmFr3hFKDKpFZGmI7KzUunDaUyde9ignCWOSPwju3KDJhEIUWKg9ll+XU/jZ0HYjXVYBpQUX7EE0/+1Y96JxTtQgX/tO0IxYGmMfY2I1u80/0mi6IBx/IKFP4pYKRtNuhEvhYk9UG1pJGESb+2jUd9VRnSh8JAwqx0xG5uYfhlUETqMNUjXC7doR6ZmrXuvmoZAbmWh6gBJh1QhXx95EvMqJM4/iJ0sRDrMfigeiAVuu24om4WDn3Ozu9r220d5Pu1IAOLjIFnebFA8c9L4WsJ66ICtq4z2VRe9whGOiw9aVzCR0sUzlFrfOqIp+eH5fl0JXRiUAxVzJYyu1meblVO8AAdcTZ7Pi0YcsDys/Q80U3XTUYHgjzuAPhgXt0Y8hWdcQT+k9OXJltR8aVVt/0l/PsJAQjWBP2LN9Buo1Uq5gVweFEalxKX49dQrI+6xq38y2eFURWjLPrBBUbyP720IPqZbUJ3HPw0fyXvUbAhFA81jHa+ua5zjFdoT1TNTscIGK+gJQA18OGH82qcCL7ivShjJF+ZlPIDHd+MQ+VvOS/lZAXZnovfIxp8uf8x48JluNKoXRaDqSpy1Sek7AE3gvBv5N+ZZLykZw9Oae14ypryuMJA8mvLeOwC7CpaVr6La2AndK4fGAdc+0PUoaUHn/gtUw5HMs8sHJd6FGaKEn1lc7yjFxxByrzDwmMvDKm2dSs/MxXab34k5IN9TAZvCmj+t8fecT3qMqxAL/xgNaGQlwArCfbaV40zQbLcpbYT5t1YB2ltyJBFq0pkLZFpw+y8DSFrVHk60yTM8gtrQDI1VcPmCnhs1eS0jxnutkLblSjHYw3KN27GeRonfi5/iI5syrrGEcpp52zdkTi6LlPIta9rxVbe9Qt76miEmHyR/ZLMnkQZnVrWEAqxEfL6AYDrkhEbZ6OT8ctISSp05r23W3Eg2MW12P7FW9yTCytr9rY+EA5Wbs5QWJtBWkQhCpFcZuJ1A+eNkMppJ34uhlFu30a1KZgfYb1xNGMEMRT5swq6Xbn4NO6GIeRf+cM2TWx0qnRu2dMsrQPcCBpi86J45/JWhga9UV/J7ufEZN92qJLAgI7pQ8GbX5J5z6ozkZ1uU4Z5ExFaQ9BpG8lzxIc5fchucLvbiWntZryNNLerVCd4ADIJEujURFjThLvAAytr3yql0LHej2+VGXyCqOFUt106+zFYx22BFqiICjid91n1dZSLiPQzA/nsaVOS/RVoq+ZIxEX91HFGO0/7VuScsXMFTAw5kGmU2hne2VpLXsKoYvXHRvbYiRpCJY2NMrauwqjKvJAWwPGUtCqtbVw/VDO3Pnfo6Bq7EmpYA/4o5A4X6GyEf5tfFJ6twB4QsptBTPc4mwJEHaIUF/gLT1CiwtpYg8BakqsWbpcom6M/7CCkNvmCykNoI15Iq2BtroJfMSvYYqabl2rRYD//1KZxlW/k3f5x3HbWIS+EsNN2AJwmD7xeKurCMLDwat/ZPdAUYk544B/KNBox5KuqrAHbVps6BpTQi9gfFpH37OuEwHyczwER/yc3YsEpvpgK52AKKjmAARl/EuF6tAfekx3uZlQPKa/8n2Djt4gKCbIO2o2BFbGGUH4urXPA/tLs1QKfGNeG2wQuzziORgUFR13kHx5Mh8eKdfIkDZderjh/kI1LsnF7sbEyjo8eY1oFZHrPql4ryHxGCv3pTn3BENt58uKjbz+m9Fcx29pjpxbMKtJp58xijMt2qJFa02SMvJPYrtNjfmigxsm7+UvTWy5JCPo68AFa8LK5hlDxj+2ClKC04jNlGDtt0/XvPXrdIER61KH0TA+2QGx4A10qgXg9m/vHcF8TRtb91/TMSuxmoR0pevS76kShcAeAcR7iiznptP4yJ2lV5cxkuHnkXjZEvwMz90/ND/UJ1RRBn+SrKHgz0hPYuaZjwlj8mznnjJcoSpxWrbDP/L45aAQiZy+DixFvNO6csV9FvKsGYczNbIXtKIjC7dvWPKyo19mUHlG/9QeIimDcrj177cFryeI+Df5y9Ka6GLLnpYO7Pp3aHfcVCTLZkVIfhO4UUWAYwX5YWPuN65ucsIyHLeQ3lg2DGSsPgkXFXPBXa45ct3J1oi4XYxXi56NPJUsQzVvDIdcnqFOmIZs+6JdMJ4O29TKHDzG6zDmAMUMDm+M+yMEft646cW3FEgO9oDT3kw1DyBLs8Uqz0xi0QHIj1MCs0GGEBwwB4bVl+1x9n+H3uLPgDnTj5BUmQ+PaQb7oexvrG3mBP9HC1K7RKmNPTFUFD+qci2lQi32CldBfufoK3Z48IXQM95KWLHDD0Vw/yONKFB5vHw7ax0/lFPYfMLamdQ6xLvL5TEehQ4ma5/LNysYwKGsvGs47qwA0Xo/xgDLJvFu8v1VD8K3aB27vdfaDCGWq0MzhFYYTh5YHHsfwIr/shAa+qHHvoqMjODQLnOOiT3whav7fnwpZYODadrM5tIFRq8PbxqMhs2CQS/9f4uOrD7SRUKizm+ZTrHdyFxd1BziQhpxCE3BcM0/FSwC9D9fSY28ittgwejNLROtlHaFB0Ul8x4SYh5rEzICTXigNobOrMMBoBi8nhwincPvLxiO4X2k/mVN9svmgtPHOWOjd76N7BvQ8N2qLZg9R19fGSCNUObmWnXazj8DCXE+kqwojcmpP1pA2Eh/PrxYn+tXErkj9oZ698B9ed6Qh+CbXcpwCbMbf1gTaDlwpEtZ1qHRtdNDfRDfSvEterEFOmqgjd4qRkvIXNlwyvzADQM9IsTSor/2p0TgljIkLqtbUwcl9oio+L55qEygACVoSqZF39EptXhKayyJqq7MyvBhFzMLWZnAPsCPdp38tumbRfOLLrmixfiqGePB6ZmUlSiLdL9NDhWQUBi1qz8J7xI0j5mAAsHN14YRC7iFnuyyN6wyZtQCSZmy/Zj67n5UMCLzReWl98uEdVLLgi92NFvyKHIMkSYODeRhfFVGLukwg9gQQ4Xxu7PkiCQB8d0ApThwR/7ip+q/JfVAX+hYVxydTrPoL60XpkouIXAxghEPaw+WKbzcicab8qS1PGTHo7CF3PfWz1Xmgf0w0N34vzqZd5bge/7SyZPKytN4U8yRSMD1hR/2iSskJdn/JbXOKkaG4tmt2Pao6gjqSQq5WvzvaDuQRzL60MSC9LP4dPlEWvFa81YhwB+BnFqBfGYfkIIZHhyfCZYNSETvLuS9Leb6y7udzn651iRr/vzAJ27gD8vpcFdv4FFLDMy78RbP3DGNi+j4Kd9ij7quPniYuvHl4wYEjb8t9vsaoL7H0vK8nLm6BYjRFAwSW13q8DcEsTDqOb6d82TbfYoXHvq9iBuRtpHOJ9ldfbt3Wi3u13VQ7lZjofxDTJC1j61n/SbT4Js1lB9NNPE6U/B4Yv//oW9wBWPAEhqQ3MuaEco9mSexGvIFEfeuvu2VpJY8b0bAPUU5fjq1J1PPrEpPfvehbdY8g9253CjbvAJDcdVcRcYXk83udE3fvKp/FpMoAakQvaTi7OVT3hzA25EjJQnlgm6ShPvCv4Kw/BeARuzutpuHb3Psd07IpBwGV1TcTYmCP59tv5TrNbQf4i4LVB7MJCXgiUZoEkVrrd6/LZkAJaD/j9maqOaKaQBzeg+DqWsQ4QT/2Mc8WxLPOIl7EMHjSkNvZdAe5p4cre+M86Ll8gnNiD4ufDrlw+dIsZlVddM4m3NCwlaic6Dv+aHM6PVlwrDSSfeuKcgVl+jhh5b7AhilQwIHYxQqY10YrHhgPdMYO52l+FNq3qBJpS5VgjodUJPPi6Ha/lib50UDQGMBuc12D4AQcBl6LJqJzpvrKFBr8H6tsn42bq2YDcf1+plCVajSdd/c7T9po7dBAwvNQcazYjuP0usMj+53NCcIkzG31Q23jj8E8rjL+8NKvNPMSiWyxPpDZiqI2vKpH2UFkzBlyq2rVlOMNCB45/xCqmcsbIHAm+y447e5AWsWpnhssb3/SU4AnYxMSeYAyEOYGChm2MBWMlsJTssPs2HLgaoBE72GMcb/0UUgWZzrwEwK/L1gx4d8sXe1Wkg906McZVJ3sJmBoq6wIUTYxWDgNqATyHSloCNDhEPP9jMORxYDkmYgnIL6fYC+sddViST1Arpfh9gThznJ2SJQlrbcPWKtx1K+Lr8fY+nruYikObZqn7Ze0uCpvWoG5GxpZv/GBORH4ELCTkZsmi2tfk8fnpCI+E0woyrN/1aZSJPeme0t5+Ei3uO4ZTefmaPvCuyShMAkhGydZT/UlCmxIvMrlmF1H7GUCmhfDHZ4bB3Ax5BpCRAP5wJWfNRrjJODgBlurzfSX3pdIaE56d8TPlSJxNjB6pM/Ksp3+13LfpjbJhdwc/rbdJ5rleCJJQ6Xl5qRkDmuQib2h6swbNXhwGUfvqLIdqdp5fG2U6si05wf5e41iwbjoplzYUJtr+8YCCddiCKYEVo/sTc5tw5x2ypQM+xmx+JgXY2Lz2D1OMiD3iP7PVKC/CU7EDG+uoVj5gmhAsvhaN2YNpqE9iQHxGQR8OGoMPdXF55RGgTFY9k4LYTNyWbfzANodpTgvKKRguVOVhbx7BsUE615y1t8uSym1AKpssbi8jGeNzaon/Ok1hwwL5RoL+On4sUXndwV69GKwnljTvfVfydtVUZQjchBpUwd2f4SyIBoGyJmkS1PjRoV3PPoOCndP9MVr+0o0jOniQsmofUM0FWW9WQDHzECX7qioV4elyZYrU+cEDnhIKAQwuCICDIOUKbLDgwbGpB6j8xHiDdTNhKOna9YWAz46mnU3B6mdeZzAXXIPUjEZH+IL8KUWC9pthATlNmy4Wm//BQsnzTWMpq7H3URfClezmSSMn/V13UnZK0lHXpV5DfP12DhILP7xdR3hS+Ns9KBc83qMKYsLzXQ8udBjN97yPVHcc47EFx1vXuvRJ6LLt6Cn4gj0RwgVRS3hg2thD/9XP35cYnYHSIpkfBx74K5FT7XI/16ipfv8plUdXzE1zMR5CyP6s/L/csUgztXOjfTErkmWvHCQz2O0kVBkdxyR36xUGXhw2eK0XZCh7WTH0AhC7yIuiNkf7hMFKaPiLVW7e1gBNKabwT2TWDSHBTeUZdRWFpSKeXNUe7Tg/H1eoMonBFMBhpxtHtrVypja7O3TmrXnuplp+7QawYUKTgAe4HH85gKiPlZhJRuVcKvnQxpFk5c329Q4Kt86caE6WRfbiEcHqHVPgytoaTd7yOfPgKGJGkqFX39ThCvPCzGT2kDfYkhROHX/gUidONjzXnoyfVwRA9VMI6HTZqVqB9clNbPHvaPPNHc1cEi302aWjIQnomIYxtgJQ6KdTQtJmer4S7qlGbhCS1bX8nh2wSYqyBNqQ+SNVMFtIaUFZudJMSjbpoED8nJ20uYOnEigkzbyWvdhIowiz2CffZLX/H7oWkvieVPUSX0Ai+vWBo8O2oANSxHIwtu9rYtjHNW08NdO4rRtH+BQ0dBdDw7seuAXlPgOwBlr+Tp75x5cYYasIiiWi7/+xZ3domOIPKjxvUU7lJQdrO7r00FNeW/Ghnhmpyss96VqouQXe7v7+HffptJwcDPAyW2NmUON/J5IChNCY5EeD8e07xplv02LxIQkIf/EAkjT2iUJ71cHw/pUJGhMnEDGh91K5hTSZXKSqrxf79hsMNs82JgMhYHcfUWgQSir/6Qmws8scEiDew0wfetD1nWQFvJtMLMoyrgXzrO3awsKNvNT87fuQWZC6/myJ5TbzItQ8smlI8+JUXCYGTQ2wKPnZ5RB9xVHcTtkYqM+9A7E3UQs6K/ptgufIkyX+h8/4yRBAGGgl3HBV2l4ACOLR1tl2S7lbwoG1gIloG1repJi8ZWZkJBnRxD6aHuXGftGHAA81xdASTEdJiO4BkIRSLUGUTO4EXAlmQ2vDga6ywD0zoGuTLwAxfaaaBf0wNmk3KGZNnA6DUoFPH266PlJOe+w4xTUcysF/I889we5p/lSLE6oALWWf/8AnWnIAnx9wsiJPHSqG4ZZZvDHr+wd4ndJ8ZNUl73Hj4UwpUJZzuZ9nMAIrX7kB6+AKV8ujhzBNz0igs8F/IDbSkpYpZFnTJ9IjaoTuNLkGFlO8dVtMGwIpK/L+JwcGU3Hjd2zVDBUVRs04YtIZO9qL49XkqpIGI4RlzHMNoFS2/B1JYM7rOEzxCqn1gth3MUUgx8pQMdaVFIoKqt0RmdMmd4jjeDZ6xTuFOY7lBhwDE5cELf+JJdYvuDKa75iFh4W1sHqldIgTqVNo4zTQEjLKR3BC1Fhk5Xr/Pg59sbEj2WEvnbOFjPVzXWadtZfRW5KILB8v71b5Za+Vt7KI/RJWiqX0pGenrPb36MDG/CP7wTRZHLDHMFYooBzt3sqvwU0g4jNOkI8/fldS8kilVuqMQHFOjoXYY/ZaMpRC5baDD8aPWcsMepNDcAWNOBVEU8Aze4mJaihkYR50Ow3cu3dyih7euskDerISmxZQTv57l/D+Hm2g+CFpu3Elaap9XEVLyqvCKX2QFXn4Ps3JfIpu8/EX8z13ytjBbpE5Pkael8UUiySt8hweWSQTCZcYRf1B748qKSD5+k0QegzvT0pflW3T+6ZgckHYx/VOV/DDnIVtJde5clpfvDsBAcxZfzVDlpUmrY5rTKqXCqGZH+G4RbhM06Y0GS5YA30/Z8ZAn8d9+kVaROe+Ly0sPqpWgOzgo6ZcFgtTQRmtmQ7JQDergwnbaV6PIQJIvvZI/kpuv0kId4VfAX6qVSWwA+xSpyAN9IxfXr4BF6wJAxfBbicXtlkqorIIjED5RfTRpQSLpm9H4LGzTvamzZIyywlpD+uGIcYgYCtUnlGoqwa3CzlMCLP1rVheKZqn2xKr1eoAMmLiBKjBjN1m8KK/G46Vdeg9wCjf0RI2xOTfVknLrnFwG9GzLbrx06B+xrOfgHSGaujSUlFs6diiOmLKpbTnycDYHNOtVohqjAIPCS13dIjmykLsXhDQWroG5g0k1sgHTWLke3dQLmkqorjN9R8Ob99VaG1MtM+hW+jVMa0KTBMbEQ+UoI0b7uqAmbrgVqWn5FFyzJ5eZEceHHd/bBQ7pbNV5feQ2X5DbWsIFIyqpfw2Wg6dbYAVOv4KuS7fpzYNHpJhho1LcpFDAx5HcQEX8CQQ/C1GrcwqbgqzEXUhsDi3vwIGH81wwYUnHUeDN0AkjnZgTPo4vB58nxbDh2ggRWzMpKQOAtRrTX62UDfa49PPbDONWDM6fraYPIx/cOtDTApGPfsteR/scBgjaiZVynkiajZYUqzB3jhd/C3ok4OnOL5VxCrXwNwG5G1pKzGVOLcz67DReCvhyxeZK/ipLsCqxG9nMLFLtW7B1YK01h5w3IxSwrBtmTBW7Y1hMQvx2h7Ntf3iqd8KhU/KrMsS4rBAlT3tdvakP5xck6bgYo0/wAEkfvuz3REEoNzPoNhu0cOZ/ROToq2FmxxD/pCikW6TFx01L+n+TVfzj5T2S3ys1R9M6bmsCqDFxYJOAXb+vllW8+/kQDmrDoWUrz0YsvKyGsgHJ/mIXonpj2mVzv1Yf33ZCgYFDb9aQCdYn7KljsiW5MYAXymjWnFDuohcz5BNaPF6OYsns+3zQypN5WgeULNG207wS6AKQpRHyK+KWUmDK8PTxP6FHStWR0oa9rX0RaEyVjHwdACaiSTH8rtLaOYPgcl9uVDDZF3HY53nR0kp6lmIgSXMB6oC5KaCcS9XbtaCv18n39l2HVNhH2e71QkTpkfiNDHs6/Vi+7hFnxmhcReIhs7TeWwn2Eer6xLN9dGQeUIMI+6TCB43XBkf8iFlFa3EZwPYIsKddnXii+Fnt8AiNCL0QBOTh+kYsfmp0xQtd7yHNX+HGWHGrn+tOix+GqMU3tBBLsUtXgasa4t6J4j/yhNzpWaUECN9UzVJo5zt1jFFp2bx9LIISNQ6S86+0r4Z1Nkv+tgUoJ1eMnhUOY17BEFnrMzb86FkcjvxTKvPESzgRX147nB3w5cOLngSSe/rbHJHfDGcypaVgidi0D4kPT28OCiiZVcQUsVfT+3ZC9iNS4NJhAyGRax2MHusz3blV3sK3r3fKjOu3W6IojGjZcjcH2YbsgHD4J+yWj0EKxbOhF0XecEE4QlQoWm30c59CFZhVDsYc/KSby06dSDGFARCEBjbm321+qtqAQ5T3wJYLYHN9dLN9KHuaK562fP84V7KpwRY6zoNDjn003FLwNQseSp+rIR4JGqhYarVCgIHzP+rdivVkt3+ts+8Vpr7sX26jHXNCZsOBvewTwwnTS0mml0Qmu4yenXWoN+x9zcBSFj2HeTdpUsXp/VzecdHkBTIMg1I8lHxjEyA+XPah7vTnqszQEdefc6K5y/PougNSdGLmhkGMpD9aAWUe6tx+YhldsZ9tmwb3THVZE7+YUXlaIadF4d6HyXtsDhJXEIxnwAIvSVWz8zoU/PdUVKflpyg+8uV22EZDl/j/z8066ZmfZXp/zX12EAjYVYxXlBw5vfr/ysVle8ZPHRdQeeRZK09N0yC4xWOY5/VnGZkR0TuO7D2h3wXjeR6HHzD5dks7lMNUTZmfHeC2psyLfTh6gCMMNqa0jmA/j0m4bhodYFiT/SaymoHGUi0dy36afTGfRMWrN+9Za3cBLztDup9BUo7Vv+mCS1B80tfGitFTaw2Bh7exkPVnb3j2Er2Rxsz90f4Z2JYOml9bXBFmnrZrWeXFYfKHGJRtae78RfQSSfSNo8sMhcS1yMFXAX3OrbrDDb36uR3WJ8GurGQ+AIbc09040EiCXXNM+Zd8Pu3qxxqJtEbZiCCXOuDBoRo9y0YT2YR3BXOeZn7aiFmBMvXD/JrCDJlJUJ9jZI/GdcK3ClC5tEEsPC7w+GU/PuggkgeFvCkC1iDpaWrU7gXpPPWkNhgVXL/r2A6GA/1Qt706pMyWDlmQz1pdNbYZE1ADtK+KvYR0zQ6rAIqDKXlq7rt5Lf63yg9LppsS9F+DB3g77SaapvHsR1kidQhufTlL2hUAOb3m4fvAvz7gi1pamSSkGIJ8prG2czp9RNBSQrJSx4AIvsG8vVtDzWaiOrF4H6J00Jgo6DcRmEB8EN12HxAh6yGzG9sgxTJrEWbhBCj/GCWbd3pqFFz3O/MkuCOxa6+TAVn7UQ+rKzG3YCXYTSvXMGfr98ETTOOB77f3/hgwAzGOIqg1yERXl64nZoWaucGlSXON7aK38xaKgNwTgPeMzpa5//2OdJjhDV5vvsYc/R/h8l/p3oZoyl1amoMO6K0WepL2gUnwoq3xSGjR3RJOKNzJvGp4u3y//zoYN/6Lj34pgOFbpxS3HDCbcl2Ke+oGBPV3zZp5PgnPwOem2Bhl23h8jYX3+kaINRsyqs9UHMhHIiFXRaSIaACzZK/Vh5+wohlrqYVXl1fRvoVnrC7T1MvlT3mDlNXrEvFv0O1AvlKOf+dlMUtwQE5098O38ES4iN2G3kA8HRogo1j4IiJNa0+2Rw9zjizTkjzJXyKxhHr4dXKPmilItf1f8twDnGIt52sxu2xFh5fKQZpT39e30lO5smo5qh62SNOP1Ihcf6OcaqABFXwZlahWPCieb87W6jKrD3fFBuhs0jm8eLwb9EdwM8v8jEcaLsqSTDrPp7ApI4NNBuih3e+XxnAABF+pe1WZ72VQ2sLQjN0wSHWl0254Sx3PZfTRJMijxv6pDpQjSRej6dU9KnPh7Nk1hAVvh6klFZhRXeS3XW//n5CEa/ZIGOGpOWFt+mKNUrOkWtCm/XtEtV3BBd9iF+AH4o/LUvp1m6zuPhiEwDbZ20U3H7HQThu04saGl8fwlBSvezp2FMs25axMu4KL+wHhJ6OOqli1gm/cQRuZdVB6nNTsKONjiCBTx9Pi0x+SdDSEbO/SLCNjL7hN7nxYaG6CcKJe54y+ISeF8eHWaUsV7bHuthx4h2VYjYNtUShecZoKFd11+gVr3z7gKjwJOb0RXmu0oGgdgJVlJ4LB25DGc2vM3Yv6SdsoVctLWlG3wPrGxfYrARhqdNbcyhdnAKe+kYfoFopoiuksl+YcENBm+wor1assVtzAVzE/1q7AlBuLR6vIepIPK9omQLzWLOVJhsZKoncaX66aeHz3e5z8VYhYX17hUq+JTu/MiM7Ev5HrmSPwT8J1niYtwConNQHEF3szg6LBloxKQcgjYA+eEW1sw2FD6D0gLmLK06Ou1rjQ/c22nHHbQvfvuml02xffRBeTIk9tZdMv1/xeZCtMlkrVfDMK4uFVDwuJXhw9KyG6zIk7XewxK3r5yypGje5dmFWCzmuJPgLfvwX3yUuSh+goXkf/zY1Ibwai8oWs+1Y9ubPLzc0s88YAKun8SG/cR6YDR67hv/7f7GnD4JiX9eE9DidnUfDhCbcL2wvlol1yX+jk7LoaYnzdDTf1Hgo82aiYrhUZU8CasKY6S38Zooyc02FH9LKDts+47Kw48+5W4BnODzeOrjSbBRyHirYVGrUgnX6AFKPwbi8TpskcZs67yMYAwsiLE74WRHVEahiXw58drDt97ko1Guh/sFEbn26D9EhtPlUbjj+zV+6gT/3VVK5adtutIGkrAOTQzentR3Y1469hzfy7rT5WHcSN7V1FMBxgTva4hWas6qn7Z4P/S3/6Zo/GGTNDBCvQ2jVKhFGu0R0+F5h3vD6X0ZjnD50s9z4M2My2EpkcSX3d++uGHtDswvQ8VH/NkLxvT2I30NLVPjw1dcWsZU/t+JDFrUEahccaYJfUp376RPb8Vot04Px6BNcCrGLwp8J8SKKOK0fsJJPVDtdyP5BiASygE56hA/7FltF7ClxsLEUVF0kjavEwVv/NV7kDaE9RJrkhq6sb0joNp7WwP+Rz7JSwvwCGscS/mn7JDGrkJADAQ7lBcrstka0vcoAB1CQn69pxE6q4POevyqhy9aD+ukIu/vljBln3frftr0lNSqF3g8K1yQoIEkNwBqNDOEJpi2lUvFLpbDyRB4EcdNGeu+qs17BeS1dKt+KDKPdBnTSFojW2vLAdfDuwXd1qRzs3mcGsPme3davEUohDGVWpyHmoRcHLTtabLYgKH59uJdq3iDaEZQDbx1bzTPD7o3bM5eInusqxZ93R7nm6N2/mu2zW8HfgyHQ+f/l/iteHoSN4LC/MO5mZbmr8/1XCGcLUeYPm9olqi0DG6woZrTa0le9EsU4AACWgXj0Z4xUA2ISbzH878S0HJsF6jrC/icrnElDkbDaFfAbrxyykZ5yU8ogozHfYmFlcuhp5E8Y4BtIKMd5HbESsQrOFltcqk3MtZg9wA6msWGQe+wFfNNiiVJeH2Z4qAaPxs+YOFn+dg8lsfPiABb5z5whB7JpNqK5jTA6n9hvNjWddMCP6ufibAB5SE1dzriK1pwj6lXxQRyw8/GNjWn7YOYD8mA46b31ohtx9zgTTqaZIB0dLDpCpbz90N9+ulEMrYLR/zMAqJRzNU505zXOAzMojl+e81FfSDhuqUbtylCYa5LfrWWKF/cwLY55CY/MouAwVcGp10P2jzc5AT1u2eXgl29yk37zUNsCpg7JGXng3ku3ET5hvD4cyVL0xROXr4aaX4Zbfg22LTNPMvSl8LH1SdXntqB/H2YqJn8l7hN++9w3IhhZULt6W2BqLuvEZtr0wY/ylXM3+PWZ7DiXVWZn0sAYojHxlVS7MmAhkXna4ZpVb7RxsXMw4lIEL+LZE76CYkucWuwxlQhshxRq9FqKZroYqp8ahRts/oo1/dmbZOJzioFnTQ0C3bLAXIPI+QdVqB4bmMshArBfM0Wp6zFfuhfoS/eoy19tpAXUUL0HwAN59+omVhCEUOduLPl5J3wmAiNaSbqGy+pR8sAcD+C1slb/umuDtRs8fWDZxISs7XJcYw9jnXp+TTlar/zBaQlzC/tULcYtQqf5hHP7tt7zCJ6twuO6bvqZVBMN9yIYWXjZ4nfXhpKhoNCzbw2eNqSUoz/T9lVagHawBIPX9if9rsn7Iu8lQ9C2yj7+ckbrBUcbyv6efwblonGChBf3j6Dk6o7MYrsHqbJSKUQFxyxvCtrgInVPiKljNxw1vorJxtyNwF73eTVHQy+jK7OFWLaKkYu9VP1pIY6fLiWWVZB6MwW1IvUyZw2Dfkt07P+d9Y0FmJV/+6nov8z7PV4gMgVE7Oh8CdgapxztJAJG5T8Xldx9PmDM/3DLJpurD1YS/WNfnHMDsjhHEd1qwHLkNo3T5JChTEiPa7jgD1l2v0jLXDYkwpF7DalfoT496IbZNGNgKHa24ZAWhyC9eM1rapVSD4GMdaMHAmFKfmw7jwgOm+767oy3BXG6YxSTTcyPwYODwobQqlygCTkqcK/dpkmR4LWCoBoWBSJ2qC4znVAEL6+30jO7wMT860ohL8OMwjwKpsTr6UWGhcvstDGIHb/+NlHUjUgYEMKfB3zCNGiJdM/MjK4J9wMAm6CtuyBRbKNAnBqKzNQoEzxKMyVAdzNCly5N4lc2EfX+FADhmj3LBSGflVIRqSCt/SJz9NrA+chXHMOoKJzWIPBdkAs95F47shgNS2zPmJEaOldSduSBJlJnyv1xd+o9ZZ4Q64xWQkyfcDQ1uaC7uxnnThrcQG3Jo2jLE11aPdKOZh/IoOJvmLzLtjRZR66+AgfNXckCS+hO9QEvuegLcwjYXQ60veVaSMlovNYzVzeKPWTDh1el1cIGIVWM1004qdeI18G+x/AqrReDZsunqHchU++Ws/4huw39CbrioaK6mgCx2uT5YW1NKi9W4ohW7ZQV7hxlewKD9siAGm13FAbb8h/9Tcm/841fBzEWaxjAw8SRvUl7S4ieYMJTC7q9ZlltwiriIPlkUX9iJhSKc/d/dWhhgvXMwWO0iqthjhdF6FcZ+vayS6ukdQNu5ndZBR+lcDesX/cGcngM7TJTm3tkBR6ygTRA9hoTgCK3b5wrCrThK6WNxo2qdwVPp2afOwe4fhwiNIdv3/vbFu9f8BcJbl3Ce/u3wkGh58cYQq8ir6KooZWklBQ/pH0oPasm2TzUheyZrGxv9QS3/kPqf6qQdMNt4zjMHjqIl8syzM9go22YKGq7FMUYJpKKTeegh98rQawAavnXQmATnGF6cpSt+IzbHwNejMdQs3PVyGAYMW8OYKZnEsg26xt8NMQVl+ZlSrTJ+Gq9Cp5no6lfUmHZ5Ec01fAOkZDH/DXbwXO6n/A5shbnP8EF8AQxrs5U1u9jXL6xvVEQE/e/6uiYF33EqGkQnAi20l+z5meDJ90ygnOOfmRpTDhztNljWkxzD6JgjfBAHWxhmL2xKyd89Kw3IaMrvIQj1Rfh2RySFn+3i1tAADnMfqGVRZx8vlP33dVOIjvE/T+YpUCNuAQP17kHkaZtsBzMcHC3eFVREC1JTvYsEBehGapTGP5t2Tp+DWc4GrtL0pWMWQq/cBvE/yFymXtDFWQbnKg8KTRNPRG6EvLDwww93QbOAAvAjIMXT5DAqRbK5UbQDl5FRGHOG+JkBwOS+keBqOLgMvgqZYg7NDN1o2oiwwLVP5GGeKThFPsaO0vuLv79OMqFJsuMZH6eLm/4WXcuobk0UMID/prsYv2vJwuRVnBE7ZrHmjOvF3CZxOkg4MME8CFu+JJGHzI8GNNoSSqRzyoserlIJF3DQCdpBBteEdW9Xk96GYE5L8jpKCAVgd0Dvp5UzYrrUAvB+B5TKQYgP5Z3BrIQAAAMAavL7h6thWxb6nqm/MzNnews4p7sqnpsXOLZxB89jrhStMr2XGHgWh+OxzYHgHVXLyALiY7IDCfg2W9SucKFo5ezZIa14S8phSxgTJZeFzwHFFRyxVSf2TnMtQaa4yj1+dDU6/civCfiQddJ3Utn7jWpCv97GvHNeDMfZfsuf1cCa6sBT7iQowgJNYa2cC3zJZpGeySdtfP8S19Lu9yY5BHw8dpchz750XtTWWXZgjrV1e6PUtxrhFkx/9aJ9iTjqSOdKchd1qHOIR5cboYMDQZhroHCrNCYYZHz7hf58jmE8oxKuTX6HHELs/fB/LEpse+3D97J9sSiUx5CXXVIUIoHtsqrLClhJk6rfhdEZo2kwaQp4FysCfZfq6pcMGYtBTc+F1a6m+3tK0hgKjJfZ1m5lWu+AAqBJaTXdBPbdahUGym+J2F0QVYX5dbCIEyPN5opbz9XITFeI3H25T1OjlSrtvGq9kFgysvVh3Zq9CDjycFjeJcxCfX2h2lYjRagWepPY+Hj/dbXYlyOhHiB9dPYLA5MvxiVGDg6IoAtD+H+345FI8WT0IdCv6yHSBS8z0AciJ9ZtvFR8/XeOhyzHaVz4D5C37IF8qWSWkuJ5r0w5SdxUAfgnpTWrUjjzlrPJ/3cANTOVaJNPU6/O2TLTV958Ob3IFxj4GlAJLKqqL0NvtIjqtvXeT1EseV1Q+Zg/i+KgsKUTZW/8WZlvDgZX0ls0AnZn/M/nFGc55d7xTbhNBK3FtJDDtGsFisLY00o+YUPsvf1rYJjHojhnLcQlnkjg31m8tedEYamLkbMaSqm/u4yz9hwoD6ugGPOfNVVQOuSIHok5Mpf7JX0jiM4W/2ZbdsRwqTD4XP8gUerM1qINfhOtS/3wQWi2cFT1l3IBkfpQuVuhmNRVcs7KcquFRflLVQtvb7vSzseJVoxduvWWWMHdmzEdijC4pv03F7chFG5Ge7bu5CT/QgyTkgSZ1hwVCtraDDrnD/amfjW/R0L98c/oZRkV/sR18KEgGIp+k0HcxE8KK2HgGGGNbju8Wzvdej/Um9KFXCWfe0BMisZuahNnSng8fNFRwKrTwfvPZK6pG/9QAQAhXW0L4kJsjauoelEFlyWEy/WRojlfJYsdBp4mXddXDlASM58YsJfWXyWSBZU2854irK3cXiCnicxXGPtuekXRxIRXV2Jqp+BjaUqeVe4D8lbeswOuo5vLWonrRHV7SNzJ31MROJBkttHGy8kI67kV/qxeBUQf1ltI95IW7kO+v24Ew86/asbXLTDho1WD+E3gm16ZiMNZT641yaab/g9zPhGDJlUgdjkZv4PBh7N5zniVerqznm2J2OxwbNgJ/gX32DuzNrRuzi1Uf+81vDuEtkv8Eq8KM380vjgZIq13z+5p5U7zocNMN9IP+Z0AJ35F/J02SkDqHe1nmu1/2gOT6HrhkwhnULtI3eedPX/bKxMdg1M5ltVwbCq0SiMLJ7/OF0OjfSf+Jqh1YYvtakgAcChCdEQQcYd5Blj2y3lCh3s6ecUAA07bRAE0HGEJIST8jGsIq//oP8clbtm6mS508RH3KKfVvXAICe2g9ceKRGIEcXLVdCZMQoeFQ7RNkQ9WJvVfJMMViS/ccJhT+DEGS08BzMyhs4usiCiB7TlyfK7qER5AdPtE+QZiNSaC9iHokpQUWnVwfV6sB+SKdjdkFItU9y6SQXWXSF6688aie3rEmb+1960CHynHxjY4JsJzCdVsHUVRfPzJuLx9YkiE5Wdsu5twAzQql31M53blcDdjfcWYZxfNUhiwI6MdKX/PyKlLkv5DahzO45jJ1Fp8qvS9Sj91nLLs1WVOZxxvDP9d47XUEkXJd7SGY9K6kLORtTj8nRv3wDV8B4T+6bkq0ZDN1qYKZ62HILnlASl1zxz+T4heQs2K62ufl8Vsy4OEf8jBcg0x4enGXDWd1qPsDkrAuGQsZPF93Ikham86ygv5/x59yNnxcDYOCCHYuRYZHucx7cIhALU/dXy0AVY8o4r/DT4RjhMrhwNrN258Ywppxio9bgFInCRnUK2AAFvSDlrMxZ6TtDnZT0V8A6bjxSDZIxu7qKm9J4pYcjLAQFOXG9xMc+iED8wfBPPQAVa40W8LgYlS+kYFsuDRLMChp3iF96WzDeoVru4ge4OQ0wE6Evc1idKYA2zAFxnU3TaaE/wumk9iDQtcaxQL5bZG7xiA6la3PnuxnNNzI53KtZW+xPJ9NTcqrkTMgQOieYEOX0RfouE3YGl2BBUDpbRuFfnPh7SeqDCnvTS/OyqLDLLk1mZXY5m7Vq/4+LT93DckL71XPIWD/5+pGfUNRJBcvZJyicsKY4nHOOrvqdmcxW8RAr2L8WX1cPW5lxF8PdF9ilG7RAQq6uyZ0ZJCGbMwzg22FjUT4uOoGaJ6mT29ZM6v//UlQTVOG8Wa2bo9bIKIC3DPZYpy8QG14PS34h9A8hTD690kQGGV1x4eYJ5BAuitWN8A923/hPWxC9l0WG9ZU9f95H7mNEVqgeNkMBbB0Vpbojyj6P/9XRroyfLvAocK5QBsiBv+mWvHHQ0VUcWmZdJiqtmhruA08p0YM5+kLc6SFxY2f+vtXYdFD8/Mhz+HkrLtpQHS99mqLfj/aMfWpSRalOa/USgJIIe7n9Ugi3cf4fuR3OndQeG3ID97f1CdFHSkhpoilkWyg2w7IuyuKf9SF6w5BS0m0OD6hZZg2//VMRSK7IIgudr7vAT56eh3AJvSLTaQ5F6T9TBwF1skWgWInHY1xEAY9FmtJnZsuIkSYivPkg1rl2EOuaGpjVXJNukqY7WLDtBdZ9bG8zrBsg+48wwaWzFB2XmLq5G/4j6x/6uaiGSCfw/0CxdfzG8Nt5pELQoh0HLqWbfrArGHu0XaoiGlZ38AzfCd/0sP0kNxHzzq4TP+7YFAi/X0rpg/W1gpPci2G+owisxScMqa1GXaXkIvaJ/8CkNT8oO4kFYxneLIBRtVGsBBuIJMkmupYRcaF7VO/x+jLtCuAKpioxjkOwNdc5jAdbfZ2pk+rt54vuoROAvU5PWvR5nvPqdhj+aaOv+xAGuoc4a6FkInI+Ur88vw8NerHGdSfyEFT8UlTrQCa1tLiJc3BNfTzM48zHmfVXmDTLYImdGDBrTJioGSWEDKBBijjBkmRKbCy3jDjfawWhLE5FtAEdukOXjrcpuwkZ3EGDdvTeLh+eEuRys5wdBGKqMbPMMb8lLoWGqz3Ya2gozgznCWn6WzT/bxl06vy0dd780KbQuxyUCpIFGaOIGwaQjl8y2I21akp4Kd6J2HoELYsyevVC1KBjtFs/R985yvlBXyPt6/1Ixz6qtpEV/Ufk3KRoi6zyQqsSGM1tWb+iTONMwQnzqVzJtzeIOxvtCp2FrM8k+FAGJowzPJ7As8svxWI4U2aWVxcHsdCrwH/2Hc3XfGq8J0tb44WKBVPsx+AwPbePmE1hCoaZQI8IoM2h5bKGmBFfhv9qV1T4zKd40N8LQUAcQw36T13OGJnz3k0azQRFU9nU7HPQ/FKCq8d838Dr8Boh/Zpg+yAL048TauQPjQ5k9aePbKoCCfdhuUoKwmgHJ8odVepU54UzsGHLWL07JbgQcL42cYMvWTz4nlOJB+pb9Xcta99Kcm+qlnbi3b+yWsR/WDHX+WtpliqgOXptkslbITL1f35uk+3q97+6yF185hyHzul5JjB24h1aaYd1Uy774RwCIbFIG0SmCecPXV4GtP548cmkQ+AJmodbbGNnHu6+QzFXZUaDsm1cHJWy1ZLyTXyRdLzyn856BenhDUXXEpvsiOtOVusAAd8WBnP5H/neEx3fYy+fq+Yt3NUZcup3QyvaOVAzEQZ8RUUvXaP6CaI5+P7/wf7PUa9I9N2BHQcYEvP3aNCGz09TD2N7QZNDLHgo5hBlD6gnAkMRpdHETD8YxI1p62Q560BBRChcIyfQuoV7euZFU+O5IMwdeYZ+iVwhTZW/vsqq1rGFkj7VhJanYnPq4HS2vbfVZB8UmzPlUFjQeVsx3UgHR1GqCEDIl7COT+dOBTkBZHQ/9fCWuosTXSsRC8tt2VTb2DhLCRlqSK0HFz/skqgla6fQTAXfY8bUgHwOOh9ouMzJ8L6G95G55QZSTgULWftbfpnjfXkwx+ZItLQY0FnctYz9b4pQcKvDkLE8RtgfTE1Xg6N8hf8LpezO6qYgR79PGyF4197AhV68goZtwbk8hkaFVEJductBaZaSgkgLCohCobhn5XbkvFzMYqA+4vjEq2HteB3sgFG37rDyWd62+f+N9/Yut0hLzhyjj6PGJIunqTWG9cQpqBDXaYspXZ2TBR7AGT/UVelCDpu7aVrQjOjLo5QI1XtewcsKlKgJZibuW6QSh9RgFbF481vDtCeX30s38XTuwERiNSrp0Orsi52kfDnv2mKZnroEMzm39RUx1pvDUxmmRkhD6C9kFAnBcw/j8eb5si+UrXlNjFZJFcRz68Z2n4X7c2UWn68hUt4MUyE4Kovg3qOKAg90F6K1XfMJkC8wn9q1GCfY01/UNs0UNxC9zJcRu/hhL7lR+lh8gx3Bqxl/M2Dy5J4bZOQahOS39cBoor9G5quvn3oC7Qv9mX98T8U7Q4yEAXg3JYHA4sjDPKwLg+KgpwjMkjbIhzYvLxzkWdGrph8LPuRkjWS9YhSDlEq5vFVdxJmBmnfHk3buhpkS/6WH3gMhtrLnUPxU3F3Sk8a/9GF7OOs3uNyWMpu1BkrLi4kmBw2q0/9bP9KODpEf96qZAHxHUTxNPl7wVPDvr9VptXxRU3ZUBMC2FkbC8EQcTfx25phLEHxHzspmm9bDCo22VpucewBwoiyCT8Rh2vZyhXz0nh4Mk5r2Y8AVOqRmIqBJV1+U05CGttHo7RB+RHROnQ869VbeqSNB2KZeXIRTT98M7jSvqVf/QAFvtvO3wVwj+kdmxdtpuY8XbipznZzPSxR1xJfgWwHDxdQoUpDA0KIZPTu8C6DOTQBQXInq0nVzily3AQQEPSo2Ycd1Qm4bjLMNPVmZUNbOBIK+S7XKu1/dWt6iDFPz1Kt/1Eb/jIOHQhdbKFzV8uSHw4HtS0gjvPngknNaDeFT/peVwJBV2mANcRiQxYjHiJsK2KkZYMRwgdy91LQUpJIXVKfyYIiNNt88BfW3hiju4M/aUzMyly2qt1gzW3BBGGbbYx07a7yajnyUFt/PTRTA+LEBzWb5+oyMGCN8cM/rif+OWAULf/lWAl8CnW7XVikNr/wgnkwpJOq5kxH4Gc0ISzfZVyzOZSVB3k0TJuErtbC+zaarFGwPFzokgeqoi6Br9PWhLAJ6hLRTfBBvw63qn2N/uYJaLCpkpEOiFrQ6u916BOtiR0/scIhnkUJXRlCWhJ37z1ApseDyEb8kY7468NDok/ptKvKzxRXjxBHxkCazYynzRDOWNJcxU8u0vurFM1EzPUYGEQGXHRNzdXaaZUIwXWgaJDAA2dT38mHBn7siDzkk+gyEGfHHC26F3Sm+roz2wV7mLTRiIeGX0ggUJ9+6pPvKOdA3Gj8dIGBN8QX80fnUCnx6KH3Lko8qzB7EU4h+uhM4p20k48oUgx/Izlih9N8Tki/DhC6D2xPuXY6T+R3/jSnUvkNf4DR83VH3z9RVnh9LMVfMoldXqoaIz3LnW+1eW5I3B9MWcNYOMz5zbiYWLqYMmULx2S6Pvza4UFma6tefYTbYxaI2mHXdGubfsD0pw/0AK6RvMEQf3ge0Zz+KYf4vuKXwD0DLbVoA0GCoHo8qTm72CwafR5ayx7FSAz3AhNt71M3zTinmIuAoxuqcLwela0Xnl2UKn5ihnc77OcjNruF3TWrMxOck1KhrbH32OyB1x/Sy/Qujx3m0fCXDn1gwul6i93CYqjsapGCaiDiIbi8ITJOWxvLIM3cwo3FUVMwrknMvRjByYtWFYTiyg6OQy4RXIeUrR9qMQ2ZrBgPh26GHRLOSW2OtrdGGt5rEzHhaLLKcBV+0WUzQ7SHMSi5/agwPmYR8MyY60hzRbMT4UrWOJaUKYFNE3Z5hcEqrI3fPl9/pugcfX+N5HsYYub2p5yN/NLtai451GR6mD1/nLDYQ4ckg/faP6yVgJjk8YacU4zk7vDweFH01hFoSMDsoehfII8T2MFEEJ6lwxjSBaq2AkQa1rHnHqqL27qplO7BfFoaETMJvBSyZtiqZleUZ/GbUtDlRwJ9+F5TqmpSFe36YZ2276x2zQYe14+CSN66oIqNC+nhYuB7ovTt9B7HYnQ7iw/lFnWYK5X5PIHs731tgQMuipkgk+WqMqmUQY0vJ7AonqJKMb9pu+YrjMuYz9jJwYZVMQn7ZHZ1SB/vw/zzF0ULgBApIjD5UuHpaL291G72baBnp+oDUCeOS3zlrISO4eiq9EknSjEKku2BSOWZsi3BaoyZ+2cDpnJFjRMXO0oPkI+maG9yHdTq47MkpmuE3xiZGolFIN9gsd2bOQ0/TI8bR/2Sra5SE7CssR/JogWkh2TC0pEWvhmJ6lplrulGvcuK3IYjLhABSKVyI15ToBFHTycxIpKi/fdfV+384G59f64KOnpztQo15ymGTx6i13pxqGNgRBJ2rV7afkQL0GFNUdE2inWMFKaLakl+HkBJz/Pd7tFkujcFSbGEMXS94UibVd1jCOIQKZIPXCWAYJxBu03VpbmN0IQALG9lh7lYzbRWTwRqK3ZpyFUkgTP4C+AsMdbW9RtnwNyae40810rf46BIEteLtguCbDoYrlHbG0Kx18g7FGTv3HULQUUiYOfpVm7mYhA0GSbM1ueieO6mAUt1AHrtWCXGHOwr9y5rpvp8Bfu4TktHedBwgbLdfPalzCR1m7CVoXqt6GoOSxnaoGs4J+oEu6hUGDLLdHBhYre8BQndw12vJfOGGHblB2TlcsyZFAAxfXsBxNsIsHWSfe4Tv8B6HyMJeYzu2XIz3MEaHA2awu3UGigtowEnDgLUuw+4xqqDvZKtQ/+wjHkfQLiAV3RudtetE33lZqSsuBSCpukypURYGbwNObFaUHmd8k2I5ZUMN+zXPyR00pyvbTm+4LYgfvZBgmB0lqr8FJ55uJ5QBAQl6TtcVpVbwR6qAAcrLxtrOqlmGkZu73GW9Yq9fJSQXxPstxSWwdifIKkXQecQj7tetnYVDvgPqkvNgM6u/vBZm1TKzP9wtucrYSY15/xLBj7N2oQ6tb/fwdyjCRpQs6x1WU4+4Sn/aAl9h0Gf+SWw2qSHTaQ9MWPZIHzSTnTEABuCbrny4cHEc4TYnMS6z2nQXphcXJqKQlkiHAjXKo5/pgNnKE6hGMSQ3GmxCydRxAnDpkZ/B69IeDofXx5h2OWdWkP+Lk4+akhj1QnaWJ//rOE+EGLfvg22VEbML+0uHSKEQEwxGE1p8JnEgs4zo+Na87vQZj4HNbhHZlnQ2mUh9Or8k78e+2ahH+5kBYauhjPj1gE5ScMT4h5kKiCNWoWWd1vHb46HgXRfLZvYJmINge3LdtcX7rBypvNIT/9tUynSLpv05sWx+qZhAAxwn57QuCPxIEjY5z0amITmQXU7jW+VQ6YmbFWYos1X3a4PJ0nFLU/Fme65ygXQ6H63YBw6yNj/L+Lx9F7l/p5oBGEXEcjldFXDFOWPi+wi/BpmoN8leIUclXthhLtn2k7Kg7WZSlsbIH05HuZgGXvVl1nAnA6HtBMXoRXJfPix67/M2UcQpVG4jck/hffRKA6rOMoScpNgJUsy1O63OOVmyGIU+81a4vL7ISTKr50CQpcpCi+MyqXiNEV0hHCgztCinkHQtOhOSVN4sVoVxa4Xr4MvHnZ0WAlVwjfVL9XbZp6KA2UbJvTMcd2IbCgNXLUDnjYrf5jJAU29ZdH0XKYGycW9vZRNfT66/Vz7hW+kUSAjFCft9NUEzGnAuyD0QRHlk4QSgqIEB3q5vVzMFvp7IpEo3vvzgwkgkwLDR5PAs2YsRAAHLyHeA1czjL0eSJguRY0lNwOecbjPNxcLw9nHkZ11j/wReSXDCU2Vi19FNCTRWgAtBaLd+rpGUJfqpFKSMgDztmq376eGuFneLAR8EtmFX2cHnB9P2/vK2u2PCTDtCXtjHhlrMdvzGX0QHGgglABj6DwFAqtcYywdM6IAJhoYJmqnVks81lTvsdMMmbBsg7vkIX7r286Fh/KgGmfyUlhvIQkHIzCA2DoXDY093h7y6puj6rI9XYxl96BE2+Po5rZOI7Aw4poMKHdR9ZWUGx6vl9zfRX6JMF/ruWc8XYJ2bC/LZoQ0B6RGVUez4pdfzmvLrQhchWhEGH9QYWJr6rhaYLqWwJQXDc3rKS28mksDcK9a7IlZDgz4Kmbc91Dp6qBeSlLo2lsAlyYOEOOC635N+hxUq0f1WAyeMFKGdwEeaZgzN4p74kpZ5XNFMdBxxQfXTOBGqhkklIvo+5h3oEWnkhp8yUs6hSdSO/XOkLgH7w8Qn/aZ1Cbk8E4vUWgx6LDGk3Z2WTNRzm2yieDVRQyxxjzMaB8hKuNg3ZojqgpmDAT6G2Mwi/t7EBuVd9AjUm60qBD9LncUfAAAEnHQZoWSeEPJlMFETw3//6nhAAAAwAABfcEKwAEW/P8qba6m33VZMWwduQxYPejnTlKMfbtOX26P8nCUX0xqZdV37cmfqS0f5t0eHEfJjlSbaCmIfohqoTvC4EmZyqDAN+20Pe3BArCMMSqAHSuP9+XxW1ToXavtwyi77IrNaUooPAUPH48WFu0SlQNm/ZNjybVe+x70nty5ifSNyk1IJYv/0CMPzENk0gmrH64lyH6f8TEBYTEzR2vtSgdVjPgvjdppfgVvHMZm80JKmt0zNp8B1e5O7vep6TAUQ/xMCwfLogMLnK8jqeHAREhoS4GRVXKy4jiJsd+a4RsVfVBPso930McmcrZpPhXF6jClAoS9ZinFy69LUFblSIiBhcw+i8rImJyoBXgKI4kU0DTl0aHit+H7WGj3jBHZWwfMizxAHTgID8Ik6KWbVxc2hufNlrDzgBH+KdJWYozkDluOswizz2ydDC6NpFeuU+xXkHrLCaM+QScnla6LYjNEQAtyk3LDZze5+Fu6h/ztuo73drq/UVAmpLy/XSCmmj2Uhy0N0Tc1/vLmvBRAhtAOwkmtu0OIxznz03g1HrOkHGp37B81SAEHvXGrq0XhAvvUpp8dTCZKjJzSgmH7va+iAAfgLfTbe29OsBlF9+a/zn+Br7bSNaNL9P0l1qHLLyLDBpKFR04fFBRfIZBhcaxbVs5UjU1iL98f1baMy31IjAJtyUAAjSwE3/wi08Uo6YFMe3xC5SZeZ5tLOKiE35jZK+IzQR3SBk8yW6eJBm48yQ1sRFiBf5yyRWFwivVURIadYp/qqeZFAydkkkCpDBuVrsJpSdLBEC2WOy+p17cl8FcPABFehvVW9655DGeWsUx5gm+xjMc24gEyTQrUsSawQZEu76UGWrL4tUcHznfbBBj3t/JXhbkqezxMCp2Rme9a9OB7LmyZDvxbbgZlJQttykydA1XT85A06zthh5cdn2asihphKvjGLyHvmqGziROeTSz9f19JS2ZzDuH/EytmLs0qnbQ5i/p8GEEc66sBzX5qpNMXehsQGL4PUJgRb3SOYmMvt/+z/x1NR+5thL0moPIvcFkA7pkvddlj2Xy4maCfPYK9SCgdLxBo7/Cu4fqdm/ZWF5zVrATuEYivoHVgDA1FX5DzrdmGLYYPES7D2cUEQ3hYfLVV8fB6AQMMC5sEKY8cXK03N+uJaIYKlBoicI2brlONUp/gOItfO2Zs56mRzqTYtrJKnpeb1ndVyQO39vrxoz4JBx4O4lTfTYO3QEtVvA26ZRCpRPA+IWaOxvocL46lcVd75RmsE6s5cgZvQvCGYS3qEuMQkTd2U56YgdB33IGluyOHw9f7faETbuzuvGX+YLFgJSSoYlKdOMUMZRWLqJjZ3wJNjETbB0hLd23sY/gzQKnKnROtdbkaMWtB+zzRml84B2qRjyoNQwLxPIzIRzUpKC0Xe6VaQ0AFHpPgzhjoZ2yMxBhdyN5pNxkegHVaiMiF+Rh3SYMy89yajbq0jqZfzFJUMOUQdhZjQOOMLxwWYDQok9qjylc26QPSI2T786/8UpkPt71sf8NWURgoDXxO4d7iYiRjAccKCh9QH9qoKA+m5Wj5xoKOwhTsfw9q0r8skmqfnVnooVVMLmSelQfNF6meIew3VZgPlcKWxpT1pzo4Nc3Y3MW8NYQIAOI7UzUnAJhY7A31msBDFaWvGoPXoz4z9CvlwbUEkLSgOKHg5HzjzUfozwj/oPMIpH3iZHHdSzByjJfYk5QDrvRqNGfN+Bjuv/PbZQSEduZX0Wm62NXFuCNqbJCkk5ZOPAknKCpyHH27whZNJsX54uykdTb5M5WInZv1OAux/TjoAYoJc94FEvsJGlNt+Zk2KY1rN1gaD6z9hF4nHlGY+DwukdbJ0Hk4HV3g9+OnCeMb+8afrJwoG95KDo5SuoPqx4fgaJPhyZt4jkeEUCAVkSEaExPYF4jsIsC/mK2W27CSLNUDSYX9QggZAXFfW9vT+H4o7lHXs7D5q9Gr/RLaSc6YVxEbRCg4D0rKs9PSE+zBspxhrN2dabgFEzn3QEfUYXsceJ7ra+QVhuZ3lSk2M0+2KDZeoqGm9w0g7f2avpmqOHptSJje83alYTnsQCHkTNpgsc96GmGMnQP4ZR7wOjk3qN2kNRUmy40j57UZTNhpX1hxNdkJ0cQuf4R9ZRao4yBblrcXEGAEEqArh5sHbTdfwb5T17gxCTkWs/pW1DpsIuohx12+RaWoZclR0FiTr+mCI3ktuPdqr0Jsb9zCYGK6MCvcVUY/DRb8DLqUUQVIiqAz47LGaBck7A8v6K9REbVShP8krFQPK7brGdpMSYWY3lM76+vwM/sy9huqhE1T6DNECNi4bVo8h1Jc96cDV35AmZjWCtncBRvfljiD82jL5oklLhED/I/mq0n8y0D6iQEQK/3Py7OnVdEbflH7kGGTxGhjinyFy2/DQ6Tmr9GBKLTVYZCUzQ2YQzZ68u/H6oFk/fGiRRhIqpcUBuWNmXw4Aw1vBai67vy0/4db87XM0lilupctG9CnIWwxxNdASxlXboe0Wa99VQ57y/paG9EMSGJMPH4Sn3EAAupJtZmt8cuRGleKkh95S/ONWIurzNEyMqwYptCQl/NSTVPr9HVOBuiHn4tIQ7zfIUqFFHRzCagpP012tJ3dVzr5nhz2WwayL4ILDdkKrEpPEuhYJraOBiPW6+TDB/TQYxU4fXQ+1yQ2w7Lrbn3myu5k0LukNXfnt3L/UiIxYKhbqEmo4pbvGLf/4etKYmZgGFDavkOhFr9a+1ciNU+fO/EdFaxpnVFFIhrBYqpggwYY0y7+Y8EUCPHLR1XdQllYbDVa+RIGryN6rY5MkY6gyICx9epPCrasXAfKiLgy5Ojj/8PFkfoTlVQJGN5n9/s+OWIxeUg7GhE3Z/kdYT2otntrQHP4JrWonDGd/feLw5YMQxydzRw9MPOq+nkm49u1YVQeDSEz6g/9XBDRhwTe3Vd80NqbG3VNu4QNnvcQwLKJJAJtvc9LYN5nR9vsCghzigyBo4baimbDAHyPtRK6HGya0meYIoshdrTfHoFfzxDeI9+hRXL01S3i9z+DIjFrWLVzI+esm30DYuhF+TxWDhpu8a56S6HWFO3VrHMMY+QdWicvCS/3sQ7qP7tzUEiHCYPutvmxRKYPa3xzQdGcXESR5/yb18WYU5eDCWd+htbWZ5Q8eAO3THQUy0vHzmJ7pXeXnpYJ7vYIP5ow+V5bD/IYGEQ8/NnELHbRQxe7tzQxdQ1L8AfRYDMV24lU6ndtiJbfGFwzt9n6pWrC63JlDVn5lMmlHCX11c7WZnElYcm/KvUnl4uaNGG8Msue+QxA8OhrvdfwKai9nM6glLeGUdY3/myavtvCZW3Edup5fxFA0xLLkPtoMIgkYaF0QltO4JyUb9gBI2imsoH+l1CDq4MOXTarpWiDa3anWkWmVMNEnqdUjFvVBGUh6Lpc9L/UyJYeRHszPKfhj7bSxbJrOVHst41rYvstAvA5MYh626J9rGpRhft4wMdisXjbNrm+8aR7/pfrBePrOCganYSpa5wNMeHFaB22AfMTu1DXHf+G4WZ49WHvneL+rIpCrq8YRhUrUnA81T1UT6OQ9l4xC+YoihwAVnAUndiiOe9xi5wYdJVHv1lCxOdMav3VMNLbtu+mdbKWgC0cz6WJHgxRyUtXx3dx+LXMOoE2TjwGZ7c0IlKnUVcU/AHaeP3XEj/wAnB+ne9T57xaNlezFRolJql1QftZsIkmgBWfzbBmiFXJ8EDoGTk062wxwGhm4mSJrY/2AtKi7Pqay+HZyzbvcTzUxol/N/L8lIpfq+1zhEG5F84HD71RSNOMFtVmwjnXqIpDSdSfAvhQHshtKkYnyJHZ9Ny4Ke+YYUZSOO1zcddzmL7gfJvH5RvaDDEQx2k2bvcZR8upR2SMMiRkzicvHojjrs7Odyycol0aMlczFezsdgvhQMDPELXB6+XtIJBry/0Dno/DNRYBHME30yJLzxCuVqU1TPBmHxrNbfAh3FzxEBQ7gv9sbs4G+M+gFN4CSYLuL6ecQU9rc3vfiRuHBxB+muKORHJHGhCp5H6vS5xbPy4dukzp26VRkpoY0fS2ASHobKNIP40ZxorDRTsP2U3BNIVVRQM5N98HcyyJQNJGavootWdEWQWFZ/0toos+S+mcn1vAAADAhaSwC7jBbghcF+iWqYWWwnXBuPhKNkmWdpdodeqtoAstCJnfRKiO3tmrIVFp9OktGC9C50jVSQlIyfbATMxiLkoSsXsaQk/ZJDc2J/H7WmO+Wlw7oixXSpZ4H4HTV+72nLD0Rg7lAA35ST0f+sagLecL4ZkwXf9I3t+6pDoGNUKI/REKiLStjJ/aY/NydqRrics0s8steGHlKEuQVJlPzufqgmeMykWgUOBDAlEmN1S0xKDfJTVOdok63zh9nbxIGWObEoln7ZmbjmgUd2Vlyehfq/Y4BjEA4C38PxwVEm6n7O64+9SQdOIbuS74E3RbMma8SJrLU35HepECWZBTCOf0byuOcS/AsU5Hj53CID+FoJR8Pf8SXKqj3PzH6X+S5rCXhRwyGBPvcTIzOGoLyEb+8rGgLJvqdnzoS+9AauZ3j98DGN7UR//l/6OVaUO/bTmKs6c7ckwRQ3IPZAJEjG1CkozBcSkVLWhZzHx36/us6KuRkQd6Z3tG3WXh4LdMaZkP/xGYNf+vqlRKox7SVcX/tVdzN5NzgxId6AfJLARe2DbiShc89ZDQD9xXIunBrEKgJD5YslA5A88zKfdaXgJ8HSPLNaKAveDl4XXHqLoTISVOwarySGfPudOkwG+1K+5TKSZjRavzDRTZ7LOu9uduegiXVb8DN5JIj1JfPJF46JzbFlNe6+UdFyZ53LGEC0EFtlXJ+z1P6clklwVSt6wRiEHNJJHoPZLAzlYNQkawNJWm2UW6v6wzeCNuCJwhiGZqGJxhbD49X1lVnV8MYAVtR4OHgjryDQQbpQ0nPrRP4WKLCFZEKUiqY4JHvebwN+MaGekiarE3y9qZ5cezccTaqMry6D8lPJHAy6PU43u0Djj/ke5GH6BIBSgDfzJxQpwoxhFiV0tg4HmupowffoOmuplppW9cKnydUWox6z+L9ALWzf1jxWg8DdzWFRvGCdZTmzBc6xHDxccWtdDIpFHntydfSLWmhJNlVQhYAVUMOuRK9puY9beqvss1EVBF+O6Hdb6tA1jZGXyB383hiyPHNRhyCVk/3VrbRVzpGmat08ua6kEn66XTjYCRLKjVGgWIhrZdXqiLDDcO/TBzl27JuwnxS3XTED7J4UiXL6zt3Bo4VdvHe9KLhBTr2jT7VmsUNhcLJpCp4HNoQAtRRg7GhamFctO4p+6GOgrz+6GK+W8HNHVbnOVJ47Tu+/Mi42lHPCOOgSbNAbTbm/48TNlVLp5caRYCjgCJ/sDJzLQN99jn/VCSMyinMQz5a5qsaYzeOaZRXwnvAyXjWJpOBbl1Ozb97XeXfa9WnhN6f4XLv73534SrDrZHo4NgMdgFSVkd0b4cIq/EOEKFVjdbP3FO4FRgg0f7BrfYDUWrkavQ3x1MCJi8bD2b4qvSdBFJ+fxbyTu6xVfhPUXfh8vPpjUrPB9vvu0B5MK6I1QwwxoRNtoXtwrVEHw2c3YScmuALkeb+VMn5BtsHFl9wHKaSuc7qtpOoEWD2IzwGI3YAKE0shnMqn4ifVpPSM4Vnp0zsFTRqttwZR8QpAmtqldqsqHyrHOk2YOmKtYP4dTParF3vqYEUMpEL6wpWMT0Uj7YDuxf7DWSsNLfX+hM80Yaydlxw5Fxq3vxW5xu+hexNhr0/RBu55muD5yEoQrWYdH7/+7gNQPiqhYIcfIJe8Q1ponQG4vA/voTxlRd3eVIANPawTnVVC/+a5LChKLRWuUT15VXtn9bC8XIvc4oO+Vo0C9CL+MAudSVt++Eoyhzlv1bQwhTri5T9Kz4u4OpIzSlCUm09EXAZNo1olD58on/E5/hmgYA7ycxFjjPO87mmW5xgMqSwreeGC2tokT+Jqa5yzAKTJnk/BuBTSmjKo3BH4s6nbg2gz6/E+OsjZse8hGH+cE8TJvS+adSeSnIGe9a+4BRKfHSbL9JP3yjBIo3UhV2+z3b3UKCoDEpm5i+R36wWiUbMAN4BJN0KKxeQr0RQaILD0ELiq/JX/1vs7cn9HFkXIUs0WdlITAfJvySmEWplCv0HEKGbK7CJTjDNNQrz4ab0sqwrzwWhKlA0pzozj/pLBTlLdHmEJW2Iivq6GoToBApGLAZq8i85TFtkILe0hbQM6XdDdbA2uzb4EkerAxC2J1RRJSQA8HTXte+/TNgBvRNSCoVzAawap0Og1c5TOnqacP7nQXaTqFI6VwKkBJO4BM1caarIIMQEIY/Js1pk5sTYdFNFVu9lExnSKLgM9ITTDAFTKNHa//AsmFsDPE670+btiBdvRekkwn2Ebid/WtWCOnowTOsr1CCpt807WptuiLBVV8EfU6B+q1iFVnWiBXgBOQnkKhzM/NfdfQbrB2T+TA4DQ7+AwjbjOqW75uD6ubC6Xvwn7yVcdM4AefBmpnsESIHK3mOV3CRADmYM6OqKh8IwVvPg3fPhKXdUU2pP+OCEHqktzPFJoUK8ZYuzF4QkRtoyMacTA0Rk6kjrNF0plpLJ+z3p/U2z5NmyietWuxBqvZ2xWnQmfTrjnk1d25CGsGaKcpLpjtUZN/5OCvAswJxfQf5XGVuC9RmvfHBMg19VnSV/6BPphEMoX5A6plpWjlCWaVqfIBgPLQAyyEKdRscU0zmPIFrcjPsGtpOYEIk2CS9SE+/BSD1BlYiav71jm2Pymr0RAgSLOEGj/64pnR8uA+YGBsoFGPHlda8/rxOup3CzOOb9KrO1vOgqDGQz+Jcoq/t6B29KbCxz/1rsISGba+PvSZHCg8USy/yMlhyXYDOe0a0CNEfzDmIaSwcRCl0eT4RVuobRS55km+YtlJmjlyjaVitMTwXrERh2X25tQmp4efc1gk8qKNYdxtLck3ducg3Wsk7bJpqjPeb83T7yDCTjU5b32D1p/ak3QdNSpeI+AqUduT9qFSIILYDy4QbUxJ5l1AWWr+SAHlLFWnkK4OV+okNtFF5arBG0UuJPY5lboS2Wfib0W2SGQZHZ485nMQZLftVbLcgMJsrT0se87Y5SadwQOO8s2TqAF9ulOOSXEkZp1cQmBnWHtZunBAfhoYpZI+QlZZxTRVOGlRNWUCrBeBKGyM02ruYV81MT4/SPLVpP/22BZCR4mhjYdgSGNYmeYguhDWmKhSRp4BWO0vWj+7g2P4l7L1ls97Xx3uqU8eXEHcS2P/OX//3glcVF9zaxCMEWCxnk5m6j6/1ADubQVhGVHMWN0xoPvxe9+s1pcm8Wx1LUzKkA3Yy7hkzx9sRAQ8oQXLCJshHP6YymjYzzDio7HYKVf8nOz7lbFqbCFS12UUViW5rkBASAQxumCFYAAYEVapcl1B7UGjcTL6WV42O7T+UyNUqr3cRR5aP4LKp4Vftg6YEGq7XzYg5pY19k3fuVNdc07uAuGKvihy8eL50XBgrDhJ2Zn2LiQIHgmB2buoVlG1hlRp2qTfsofdUG5YIWWGUOvOO/O/K6HAPchP84XUu0KJJ3Mf2fM+lHMJisq+kJn/3DEL6QX1Y8D7uuzxlC+v+n3FxQsqyHHu0E9YNpUiwmruaVmve0LyWzDqFVyfEpAu1lqABWmUfKrtWq9oylnNK1wyziRRlsS4Rjhr4oFkbPd/7TJSRx/ExdzCEUxU/41mWkKPDb6K3mdApF7cE3kj/uaai2bxiTwvx5DbxLky7de728uONB09jZuyLYXGfidKsz3d1XbVfq4kz+nKtBlYt6Cl6CyJm5eD8ldrkc4key875Mx+g0au4OSaFivmAharbNVDXuHiSLwzJsnq8HxTLAiksyOBeLhQf7mKSHaGxbHEZzjhUIDcuQYEEOUC7HOMk4cN96nNC01Jnv45KdcL7GwrSNwuWtCoG7IW55bcgboIDcFfUbl6F9Gs2eufOVGvMPyqXL1sOvOFru32da1E/QpJb4N9DR64i2kioBlNAxz8SNWG1VI4Edo15D8tRK7I3WccJHqjSyQQ8QRfS6mmoEHzoNA31VdM29mTTsntJJdVh4jf5Xu4E5CIf1Q+hvN2gYUASLejQwnau9gLzJnh3dvF0tSoXFSyBeSSfNZykPsdgnoWPccKoLsqU0sYd0udmZudAdP0Mutfw9PasDgrKSWIYiK9Guu1n7YP7xDyHwPkHzp76T1IHgOCcaytPFyz8Wo6yI+ufT6wrKND421LzJWWYmn1dm79LyOyXDqqxnTrGx8o8DDQE+K4IJ6Zw+WZ2cV/BW1oH10//KiYNd9GlkMpCd1yBhxNjBR0rgaQWPjFJsd4iaXmMuCUoZtd1GdVfxR1TW686xKu2zLgIEozC+gv5LBc1Rv/9x8AwVqKfdPebsubYfJBEJMWr38zadd4rJMIADbi7iXAxrKLv2QA/JY8KAy5BVDPc6y6TKyBFeMfVVr34iIK9yw6C89zbT6vdg0pYcOWpiAklyVXLNqGlFHA2jWxI/DxTxHPOWvhUi95i52JC9TII8lLlNIiCbueKDZh879A29RQZa2i/as79Wmx02/2cfIqj2oYp03PcODG3D6ktyy+2O8eF2GWaBxSkuGq/x6tsjN4D2wYUSm8OmUxiy3KhePagU6MH4aaEViFD/Bs8t+MzM6AAC3dzzL27sBDPye21Nbxz8pIP07fNR/oGukGMf6G+jSCteZ1X4+Rr2Np5Gl4U8nExJsOxEUsA8DogcYgyR4btOIdZ+ycn3Wam598Z3gv2nIyv/7YwgtGken7ySFhK3oLUU56mn45wXf3ajeYqSGJBjWtNbTVuGL9BHkicRtWtCbmXUBSAnrscDQa9SHWV3CZj6gkw4xuYegaFr1ZFMQiPoAN+Igkaxuiz1EjTBs/DW/+1b87LGcuoJGBN56SLFvMcIJYJ1oY4L5uQhf18jK0RR4El8XE0JpQQz/ir5ObEzv4SiEzWazKVCjyhBRED7+/txWIokf765K53w4vFwbqcr6J4Po0oLL4Ly700D+eQKatIDrL3RWz6NACR68qJNU+rEXzAiQ2VSNbQpBOkr0Fd+rK222ZhfgtaB+uhqdnSMtg32SgEZmX2vQ0m51UKFoGGW5m8IsadEqQm+YSlZyX6V9C+RSHa+YOql4cN9WZSW4DVJjlt1HfnpqhZ50xltdQOptYgtxGIbWPViYpbr8eiS7tHIjcR91ApFW88HauxMzg/IZXzRAyfAc3mG4bUp6MpOj8GdCW7wJxLw4aHoRalRmw496NjOe22z81n28mvDA597EZZHeY6ITbfrQdk6k/G/PXNqykCTebWe8jcsrPUARXmaQJSPlA5+lfaBLvy0CYqe7QmroOu1YSt5huLALShcT3OYtjV6h3qn0JZBn7dT9kCmWmWQfU9otoUJ7HzHkxAqsVqGXz4tMZbV4UEe1MmimPFYFDHo2defUx/XWyW5Gx5OrvVQHe8NbGnb8FQkTF7S/3KjGvCp008XeYKvCghZxmcvTT8WofVsiNUsPESZJs8olDL854hpbW6DV5stjnLL7HzroTungA7MwALZtH3VjOWkylr8Ft+Yh+v5LF1rS6eRvLNvYLi2efVvHVRCl2dsdILMuckd+BCjlI2NahFQdIo5LgGnmd1AGyrVH9rnzyd3OKVy5rvhWoMOJBlkIt7G/Tk/C+1/bhHJHN+V5RJPVvDOIlRi6Sospj0i17tW737de9SoTHDgvU1BEYHu7TKTerFK5UZ9r744UU9UFNzLmTExsFXaNka8I7J4hJHhOh/C5WCnDS7IsleAMbZh0kpkhffyzwqyeqkcL9n2eYYxIc2emTSiy97vnemgyJZPvw4V1LPzT4x645iqBFphZs1dRtlWfkm2EDKDNF+YqulgrZhnbget03QyMu8qj/oMGBbT7Eth00WpSxRjVeBlczJvrVeF+XLelvzKaniVTW9JEdswLBLhB+QbbQtwALuHeQ6tCOM7qV3ZmswCQ8OcdpI0zwF0kgMqQ8R9fhnlZB6WbVOkJIc2CnkUCzDSAwTPOvJRCd4ZbdK1zoUjAexGGWGJpbNDx5PAAjPDokayEETZrmoUfKb0IsX04BHA7TCmj/rfizIeAGwYVmXQV8u5db9GJwk+jmJE9Zdj1LCkkvB/8h4BM0qUgGKxDeNO0Ozt9HjeLhpTIu1oGKt1jRaH81OulHXD6MUZEe2Y5wkfzR3UE/senEf0KnZhUyEWUIxiOetg5RKAR74oNOOZcgdKUgeSThumux96xq+SO1+Io2Wezp5OlHAFjviUr1mugRWaSD5uScFD3fYr4Oc7sK/0XG3Z6wNqZW8nDKLbJwoLg0bWC5sohSwk3SuGCsZqa2qbvnb4c+tWamiaq74f20b619D4lhFVK4CsRyXIZoF1DACMBj/3LAAEyRPRkrq+ZysfVeuT3AJQOgKlAMP8bN7rK1KwsADQ82ulrTMjwsA/JhHOVKPPGB0T0nKYUtKQ77zW5jkWRGf0T2qHzUApaArZr03tIJOZ25vmecMxEguyQdZ6b4/0BzJ0S/GBMyV8B3CuihirojBhx3rNPp3HWDiitLYPJnVlvTi+UGhyp8ViVNFv34GMAA1Mh5sN9K5E8NadnO5QJRoEZyafowMDcYJr+5HtqS3pZyb9tPPt0EmAi+p1QXXkgIrCslVcn85O6vJNQ0LTdux7lp8jooV7qxisZFN3f0fa41on6zuBYwN/82aIqiEV6wrAXiMBwWO7l0O2Apr6RVrjJf1JhpL4E3rHIzs6umhhq5Xjh9uoGai1Bsy4xSJKGXjS5KpShblf/1GKwQPTDHatT4Q3XWQZFPdutwM/keAWe92wWKK9IJsgiBMR8m1G54SIj/pj9jyvr/RxFquuls/zxTPbjf/Rks6KbeQLSMlj9+SrrwsSPjzVqX5PEqmgOEt4LdXz//y/1u0vN/V/34Mz+u9SU7QzGDX8G1mCCbeCucUZkp1huTZeXN/e0ATSfpqUmwIFE/Vegh/ISXekY7fIqukoHQ4p7a/DsGtDOHJ6ai/ti27GH+n93ghuWf8r8BTglW/wJtb0mRtm1YFdeMR21qcQZejOyr5jqTvBjYGGdebYHFeWZmB5w8u9H1Qk/hg0P5/9BjTgm1iI/qfIDcEwOAuyNz30s+nTUi5FYRkO/cyPGmc4iL4QKBxngY+oOfdYe2n/8NgLexZqu/lYMytlepxATqT4UvWYn/4DCw9kE83YuyqGEFXKrEajdHhH689ck279Q1vtL4XVl7a/n3sKrCMuTYQyZP6T6vdmnV6u1lKpR/oiu+dtRKBk8QdkTJNcGyTnafSpmmJPiS4FfpDnh+/zPX0/3aqH+7keqlUUWvaGlj6pyIktHhPzN56DrpUvZ0e6JDfDvVgjmOpmseRSKBz4L+qoQCOHLCmimCPREslUlr///8M9NdhbrcAWQ471HiOqlPHkHxBbSsu8/wzyG+UZVp5sLW3TFVtrBa4qgVUtw+ibshb2BE61a2do9EUZZTZYNpnglUE5aG/Q//gm7CcYlYHIs0XisdXxhYndZouXGj7TPmN9Fk6dcB5MaARFwnkZOni1i8BqeMZ0x6A/bDWuIZrkM875O0EaJUdJMWMTM5eiF5J/qrnB/PIl85GbEH5UBmss8ai8g0Ja7KH3hTdceraMWMTG4xXWxC0AbGcNKkmVsTvFXhc/P2ynhU6WXxdaI4xGr2QHQ5k5AcXHMGuAR6T3Zbpyjuc1IoNaAU5Tn0Cl9ILUF/juzb0ZwTHBzn6t98npO01ghVSqb1qXc/GHkXCbGz3b0Kv1PoFZOzWKu3LvYivojEIEb30YAvX671cYll9YtqD8CIUEiSi4gMJ3eRvPSAybMU/KFqy+CMeNZ2Fn6BanqtTkP8r+TINexPib6n7maNeFQs8R5kInRr65ha9w/wwaeil9YzbcbWnrrc1KnTuZfINjwhjvNmDLweEYA/adaDG51dIsezkFtePfHgzLnkxbhxMrE3fxWz2YJvpTFfINXFMD4Eqt3wHvroeIag4blXyaf9xadVwAafCKlubdnPiS1JeUNJCH5tNDt9bimbRgVwUIsDvarhIEwJEDGzbg9tTE7wTZr0Dsgvf3FHhjL5iBwz5QwlekH6sD4z8mZVFNUpbRiCV/6WmiThgv3EfTy0B917tkP6WblnuMwDGAg1+QhVOmm9Q+M04mKE5kekkgTYkRTJqKS9aYUWvd1jujqZI8T51SSEGGyN8aODmW4gFvvt16vFks9ULg82gJVOiCom5t+/2FxerFpjEn07XzK9H1I4JKZzhAGvj0M5YVkHn8DUvYvK9Ic4KfyDme4WuQTJcLqzVP68Vte2Y2fR8WB6r2s5/9YSQOWACEzNCPgFdXEgkwvRIF8Zy3WV6MGJhovuIL2LNBjfeZ6oGIK7mZK7DE48InDh/Q8BrFH/aDtKYCBdTRAyHTjZCjk1p/OuguqxkMFjBkA33xRxjTYILZUon3s0RjmiE3hBVk87oLlrJGaPYxs1dzIBi+6fTsqZCQsYXARNXzw5+WMy7S+ZSyVuUE97KwvKPsbse1LyT/NFA1mIzd1heKDRegIVgFqwI2cAjHD9mG0LGymK5dJOrkk0vRKUfXQ0BYxB6jlzfgihRFyxX4y9lFoFszWNMHLf6y+lwDXcQYWk6wXcHOnlfKKmTmkWFbamRScrC40z8DbeO0eT+o/gMw5CN2h6afOpLWSD3Y/ru+2kADBYOyJxSN7fK9FeQ4bWZEmQ0mw8LuGiQi8AtEm/o0ztHn6usdaAHCYQYFcvcRM/Q5V8b7fKH2EaA0EhTc90eBaZ4sZ9492eIR84ykZNGkIsY9PW/WW1Nq/OR2p8bZU93h1oG4TEKkIBBW40I9YD1zMk75kRh5vx7l58Pl+vuLv5+PeAiqRavxNAt/mzZB9j+zHAYJq2OV70FMUxruUYAKy75/9T9+jRPUbEVkS1aoTUyopKgioDw8paBN6WmW/HygU7h6SktJ0FmTugbMgu8A9LpItU9ajJqiCnhVDp3z2/3I3abWZo0RE3R3huROQBmsyq13ziZajhY4fmvskFbprvseW0F52cJW/3R5mdmjWB+BIOGNtLb81okwzr+qL44iV6VOCKpbZFNd/d7EVY8Qw5FpYj3QccjO0QIlrHguqoMnNaiwLnjzxjFKN7Z5iTPJieAlGrkLwD+gtgWu6kLEzlJd+IKYqttTOcxf8Vwr0aVGeYiAPJWwjQnBWe5XPEsUb5/aAVBHf68Eny0K1h9c18N5ztvigtgYbLVFRvoZzA8Opa6T/h3pjLaJejTsLYL0aO6dvXGKAhOd83+daSIvAgU6zQRs7WKfLG1Js+GXDaEdPOCtUiC2XCyTJ5hMy4ouHejuESV5DIs4watz+obGJBVoF8eX8dxeDcgoKaMggQWDnu2omePhAYHRr5C1lMtspShA6rhAocjxh0bh/2MTyKns0bWAuu00NPRK/ZeZ/L9UkTBdSdTo3kaHDT1BzqXx15PXhyrbJLFZQk4wteTxiN6awsxBGp5T75DQa/V1Zjijii1J8+3FVoL/Gv9X57TAdJ+I/Qkz1rRidUhychIIyLuOr7ZkslE0KWgA7W5lec/WU2DeYO4Q5Q1ldU2PQEXr72Xo5uWrqfV2WiQMFFRKryHinUzlkebBHgYoPKyGok7N8oQxRUmdgsTpCNAbvn5oFO2qG4Pic4nwEsztUDeKSbFxysCQiTjeiAxORldKwTdknhxxum/0ymo+XRuiCNGUzh2hpMfRoO4Ra5On+roSi/AQ8gynOpxvQlEXrgQcmNNgPb7bReuXyGMbggzLGPy13GXr3xa/ymYatKaDLVWE9ijEdbPOSNLdk+di21vWwPYzezSAdKYD33iqbfJqmrsUkonQjwWCb2/AmXIuSiQ32oDP+TEbM1eFDvrrm15jH4B8chhKhWQAN4Uzo73hHYmUbmww2UgK4FoyTavypbQx9T1b5mk0xRG2di1oke2BB+GkuWafzEZmRhiABXMSZBXmx3ikU/JfMBD9B7kWQaKV49RF7GSqTS05+hLdK5qCDGiahr9XHpfAjrSnwR6368fPUOffGzdxGMIpXpDbG6oAFQUmx+PamNA6ZNIzXT1KV4/t/g2pHzFAKmBoBqxjDRp4OPOpbyvmkXbCpUX2qs15b/FU7WjNELQ/T6D/DrChundnkAPJwCfm5jIBQVdHCvJbea1V1kEPIU6qyKNuMOsqd2BlsYAIM6/nwSSdZGuMz0HCF2DFkOLg/NM/XkbUesiO1dGWmF7MjgkEqrT3SqDeRWHoJYT1Ia1cfiinSlJ3CJKCjNH7YRjaSYMwM5h/C4MPtI/af1De/9vmaCQtQiMGNpiKFckyCmy3ezI85id9cFezWschg3zeOy5QMFetbC3TFCBmnXMLgtXp+4SN+S2b6+5h4kS886SL5azcski1VZ6/VsV5v9ooiTTG79H1Y9rxAK+GZY8r73pTO8dHWlrd6c0nX8QO2m3LI+Kl8fqayjUqeyyGeHDMAlkivEEpoq0a1oFeGRGKCb1pATlsEY/BAwbTwSzbACWBt/8/OonLkgB/DR1eRJX5RuW2gdBkTceRjVGykq4CFgWOxiBbOd9gmGDnoKovxPKic2ZPelNWyJ4n8f/3Stu0yL8RFNA16VLkbTGn853JH+SCEVyCboKo0FdctlxLw4iK8upIQOwnePcWIuWQJybVhtqVCkTLYiTvfRDCkF4vxV9HZ1pP4Ya2jtFAZ4uNkp7Yr+2b7CG572UKxUwnYLVrb7qCmVv88UzTMfcTjDi94cP1/2CtHdQL34uxNM7+hPAiCsEZ9Kcsv5ULnwOy6LZgGIuBjML8aNRgjFlZkHM1+yc+Dmo4RIMKHbU0hKNw73LA+QiifDBhIs07lpjN4iUTI00ujJWmGUj2Hd1ygodKd2i8BANILlU73j2uGtFX3mSUqQ4DCuuqcLX0fuaug6jMVc8JHz1WSk2CnuLUjgipoaGgYV+/mNtqIWVZna379p56MwmfpL7a0Dn8jHjZJNMPB/DojRpZkEV3dlvPjCHti3cq8MVJJTBZKc+roQydImUHLIwE0EodHfG6MJiUxq2sWGd1uyqlshXpiHuF6Nf+Qacuf56QGG8ilv/9oFY2Vn9icooqgXMwA1WC92jZN7K7tRl5FVYnfqJjOhemq+435e+vBqWh1Qgm/Zj6gooAVvmUPcNN7Z0QLPGrQUFO4vR5KNLMq01d5FRddTMKPiyPjgoantA220gLCoBC/2PhKuYVnekluhky+BHvzpVwlq56MhQ9R6Bj7ATP6N+m4NU1CBR7FP9ZlNshpTJp52SC+hPJHY6wP62wBZDKZNN8TQXyhBnrdWDScka2tgdFjYy76n5B0l3h4/EDg7mkiHjEhRGuB3xf+/OA3JCX++e7ykeZNjkoAOFu40yzBUhku3bLWdYMKvFmu2XgmQ82jZjx/ihYtFpp5CdzRtaliiQLj+7dCHUxK0jsOHT+0TwifuFDqIkvMwcKVZkUYcoqZPXhbfy3L9QzDT4HXjQA3BebhomMfbPdLalZJNvmvkPKfuRGMZY97SlufvyavydzNlg8ZQ3ZXZiPR71VAV7VCN5XD9uGlXmZ6qBlHk//iHl/UkZ2Q1usmuNqzQcrFm7NQDGJY3d04yrQWifwhirRrgBJuvQRkE8cZzP2kdeN4hJIPiApXgA+uwZKHo+oeBUkQPlNmiNurCdMYlQ2uVLRqIpFB/ojPS+zQSNakXjnQMGvDLSEFs1cpwf2mAml17aEQb+SYKnLDB658qyvKB0pxPdbViCQp4R02DWtZ8pkU4yYSuQ9rLfX7q5XYTGAZNrNQQ9GuACBROx9Ok6GJUJHe8HwlRlOUetB8wyTEB8LhA0N/ElzHsktaWxRQfGE3owWbfP+T2GW9Nw2LIonM/84tuQ48wz3dBbhgq9Y8A2lo3uYmZ4VCJk+zk8HF5K8ivJigek9QYOGtTH5FcbWXtWPIFvs30/Pb6xoCY6/QPmBYfq9yBL6lBsgeFmXc0o4+gaBruQbfXeOjhe06tr8Bd4wdsrqIXRy1W7Uo8rneJp1xu8DI2qm9aRTxX2wkWVtnMzwypp71OSWtA8WvFfNrbQ1tD+NAZALoHCXDkkwlt7EOwjmo73o8s0bnPOQGXh/SHrtR8xy3JxiJ+nqr2cPcbXoX7KxBWLQ5z9GllppQCE46WN65K5qnffsymxBv8SSAP/5+K6p7DIKFufYbSabH54ewRhx/n9H+8tVdFQIjoFeqvbKVbN+8Px14nUJ/AnKiIlixdeDW4pJb24ByoXyJ1GAnuhNdfaEPmtjlG6bAyJKb1tYMkZgltOOG74fxWwvLkRRnKTh41jEqR+Ue6iPidiDoatCDtFwblLcNO2aZyqeBjJIPt/EL79OtUyZ9OFNspvrnj/3gKyBunflqnXxPViRXc6RU6tdInlpMnoaBTAqXhInXP1l9Lr+eNJq++a26lDo+tP1tzTZEVObx2ezJnWiyFM/d/NY9I1wY0LQf/tPOifdbO6zFjWcBAWWOwyDyzkgt0z3znjFFCAdQ+OY0ym6NjMUkoAZe9o3vpAesA9rmc/+1r1f/KaZHUkMd+iP7K3j6UY1gsySrARc+aSRLhVQVSIUijJj+KkuM1WJyVW7+TuQvnmXKwiy2DPknXKUYFlJQxIGa6Q0Tkba6eAukvln77Xtx8uwSl9l7wC74O6NwmB0SHbPZagQMzSZplOqpYEFnAOU2YEiulodpBjjMjQL5MsF3usPFYHHVlBGJ6Tsck1zx/1DPU1U15ETFQP4CCmA4aQ7PT4AG9fg/RDcqGKx5pDHsi6UyYtUVwVX9Mlw60o0E/fu+Yjvhzj1OwTDzJpJ7evxS5uZNfhZGsOBpzblHAK8q3GFUGpfcHOiBLNAXufYwTURC/+DWWsSP8zxoTFgoEsyt/zc7iwZUrvH5s1k4v8jH7cQLRqEzggmLRl5cDy8RVebOmfQbb+w37nuk55KL0ac0XZfg3mnzmkSGDo7WnjqTcnsYauH82janSAslJMIfwGMUooCfGNbG9OkfFgud6dUXinDjOhJFsEXQBkJmEyOmOtXH3oz6TxdAoWWK9eF2VE9F128g4PVTkqP+S5sETN7ATyXCW7BC+0zt5Jv0+rBvgE8Cc4lfei3cqVS3jxxjt/BODsZMqIpJJEMA99ymh+F+CGyP6J4DaQzQu42GvMC04QBtOCGvoDwYiITJStNGMPH8L3jJ+32SChZAJ4u1A7C0n8iWXMqjGzXsfQ+lA+gV+T4rnOL86TWphbXgNy8odUXrn5ZnNWOLo1cYsESHX4ztln5U/akgx2wHV4VueYPxMUiCXL2a8W9btXlwMil1HsMhKx/SmdAGsCRv9ARmQQJEbNtcnbjG97x+lilfCrCAJqDls1UhpalL02msPw5xocYVjGkKe5EVretLYQEwcqmk610j6CIi9GHs4sUC9DZ9etULzQJJDGsApxH+kZ+vYcM+apk9Yikmn2NRGND37DRVC7+tT3acRnA1tovQzwNwr76UN55QB4wGuuP92+C5soqD/wdhzWrnehfpYwJ3cowwwWEzJZ/uIeIDBAnpPOYKEhCvMFiiWmHVWHO/607HdD7d3ihj8ZI6lUP0GZY0yKZi/l24+G1LRMHlY6JN7hvnR4JvMgVIRE3fvRwrUFGk7Fob6ZNptvp10s054ln64DjOTvHV2AOtLTI7n+WWxnHncioO6DoG9CU/GYZd1unIU8VqfjLqhcqsaIID+UTEsqHudNP1xoH54q60g9T8lwcq8Hw+8qzfOUPedcEfYfO9oiO5n1cjFWPWBgeGCfyEylAe9GjtJsi2JkeXzBUTHTzqH2elvkpJ2jD1+Li8qux1F+PRF6j3gl8LyKZZZ68zS6pWZZ81wSs+0/4sCNmd2b1GUpr5hwKb2WemosVDdLhrZ2I3r1TXJekTrS4yZM7Of7xumfBH05nIv7/ibP8bZJFpr7e70Fk2GufJhGkNQOSvDHwWjuubpLJYflmSNfxXD5/2Z6wiReRTvzROxRegmo2chtUpAIblYFkFXW+Weoqkj1EmURo5Hp6hvqCQjL6oS8YwrI4X2svlXXcSRNfkJIinZF6ihQOhol8pn4LTPSg9lErfW1/skm7GtRvkZKRIFR0vxZOmwRFqAmz429xZSaofQgDlZXE1ZPKwuo96nz2oSwp8ItS+LhXwdUmZ66FccOnmiJsM4jQ6ZW9K4ZrgJ+p9SYbcrlmhCHcDkXfEtLZYtYdOJJn4dkVaGIPjeYUa/7HuN9CgWjJHcTvsftR5Ip/37QHd3Db3QY55xeVtaFlL5txLgsBg620q/TIYdzcbmWDkmldf1gJA74vPy6Zv2GXKhp72GsqhjbHWTbd7ygbNo4LxttmL/FPTD8IJ5Quf/6BCr+sTGVthYYqDQH3lsI2lZMzytuSPnZVEm9zevN473yudI0EUWE82JQ8np10dzrpbEc3EEhebew7j7QyLpDRAHMfE+loQUBlAWf+a5AW/X+E0DxCX/Q8b3ZYJbNdEvGsnMncLKyVTi4Pzy+NclGWgsLAyA9v1o4PDslPSCo/Z3ZDvdbksmu2E7FRDEOl0rAlL3yKI6OVZs7RHFYFyiYmrUegoCrfXqWWHWHfCYzyjMgGwEwvtAWbspiJ+Yt6nLFwm24Lh/tzqPhmyd87IsAblu+S0TsQS9lwdnXGDufG65Ybv9XZAE4QzpGTC93XlnD3Pp7BVKQyK++tbkHkI0O01wZo3nIDXcJyhDN9e0buPYM21X1qBGdnAmMJsTKL/kcDtyOwG/HW8JAw3GrKEcfVsG8ab/vMY/Nil/EQvtE9H3FPGRJht1n9OUNVwdTHaZ11VW9fC0GP/v8L7uWb6Wswq0qANKdAPPtxhUgudY9FGNTVc4qDM+l6y0aTkw4iqnepU9nhCYOmUHA+GZEbmT1YyDOrRqbf/cUO2KkK/3dkWIqjOjsZoZ0W0OcuZ9cfrEWQtltNXDMcEcwB6bqxv8mPAmWkEaWOUzB53X+/IpLp6a6ixKmwRfnRgKD5tsuy51hXnCtNqIUx8OM4yoX5WBaDCzrHSXCgZpO6CIRYr8Sqoo9ZmKgFu6BM1JiR7niFfafRDx/UjX4L0S471mI86/Uzf/SyEqkq5ZStqcDjhpxKYH+nNoGEC+UOc7ewV1+WnRxDwJ2LMHeyPpm2ZpYbyEx0WH8ArW75v7L/F/UzdC2U955+wAjheKRp+x/6LRYpQN3zObLsQeNyIMfcJ9mvq1xNX/Y4TZXleFJ9Uy86Opg8V0b+8tkTtREkrZpPFqPgo7Q1+9b9IVphrDtZdXFJy/PDNYd2kpMMlHP1ktnlagEJi2q7F/B9jdEwsGMw3YVtZRHbAkctw53uNf0ZykgPIIzQNEz5wI4pMiFkHtFYYmiDIGo/fHHinmfTG32jgHDuByOCP+7OMr1AA8cq+EETT8fjPMfVXqg/cl4ti+boqe+vRW3oF06/MuGDEd9Sk/pS97zaZusNdrqmYFPhyJz3CjTwmKp0iE1DNfQmiRNr241yuWBGpEfMhpXq8cZCIWzMnypFJj4t8fk5r7aznGdWSjctv3y0mlChba5+KFEen2edIr2i6YtturbL02S9TtKBUPr1XpaLTPU3+bt8ynC3HnMwOolgIN5VFKFP4xaAhe0AIVCo23rxxbNZ891f5wkbDKHRSzkF73QHsG0XD0M+ha8zj6+XedfHjyfX63KsdCctaZBZtLuYq8+/hbKNOGwxK3C7H79OOg3zowQv6JrGz/cNBLQQWQq2PCTlCaAU1E/PKnG/6nHAjeH7EpuYm14dmZrmVYRacu5O1Ajm8By7jyncaVZHr9sbgc+CD9UiIYiL/6th8Znz5lKAIG2zwh7+1TBz5vtgYF5gg/bIlSQCm4HbDcEwMidhUTICSVxyIjqlJ2Xc0crhjneRZn/zSOJ2rUTV1SGPaA/nI3QbLHSsR5bEfRSCDrkI7PM7Ew0F36sbPx+mZE1jOks5NTVEcJT8FybESbMH3NpVC0f5IFCHp3bx8XgQZyncf/9eWBCMu0MArxhC/mow0vpA5cVh3qgJkrUVDjHWJvdRmstLH3mUsY3jYVkQs8GELIvMo90ruADiLTZnG08CsHcWsFmr6IYvxFOihlW+iI9gO6gR789l3AV2H9esxFmv9kFWk559A55zHW/ot70GctzMnrahvQ61X4R/CBRFZSk/hBsOBtvdQFXwhKICkufOBi3sqp/i2safdaoLe0iR4/H4+np2FHaM5rebnEL0fNnb2HF/SJOwFLbo0drugoneg5tB0t2yBdwcKpEQ4fWslV9hNC1sZ2HAF7R/YoWLhIPRkideFgRdGNdDO4WWUxZeUfIqE6erDUBvfFRUqKhau05YURVUVuqGe+GJPHEoj3nHyEd+e94S2860fpW0SupvHy95tS3CSqyQAibBEV+ePE/shGM5ZZ+SuAHDTwZNrl2loGzhNpdmOFkzhTtC+NyvmWZE6C0sgNfhBsyUuaH4rkUIR/m7Zo7rXxOSz22zoyPzEo6jjfF1kr91ierMPJQsAOL+G4h8Tz/3k2nh9HTiBWr40nXUJ9ajAbR7UI31VDnuACS6eo00iHvyLU1uhWargvILfvu7RLCmvkbyU8sP8oWduaetYaN2ZmDA222YF5QTCvilF4+jTnnDTSwPhCq/vJ5L0mFi64/sdc4IBxVXqzu6Trw4+dvU+4hfvbVqFhYS7G83jI+fOhtmLEbgSXanPBZ0jod+bZsVzTrYh2cluilueR0Ev4jYlhNylOIJARdHmhmkdXp5yi420hB8VZwntK1gIy2gmIJMTF0cZ8oY2AV6SntqD5fiAM6Y9xpu7JLnLqNvpomYOaTQByzjYcOFiGGkQ6CFbd1FVET/ivDJxztqnCrhV7vw5/ZMyaB3ZGoxtSGp02eBYnW4ofYouQTdsQmk0eLZqpyGGF7zbzm1ra/SOaVi8Rvp+A18qe67s3WXUBGyNRVITzEOsNvI09yzwzMncTyAFmIhoqhzcoExKTOycTMBTdKDLCt6sO5DyaRUE4Rwwapdl0gbI2+9XqW/wchhfC1ohMJ98WMPMMXzYL7ry6zLXt0++MW0krmjFGNFsQJgYUnwOZBoGFu/17XQDoKk3hPuyu+kaXX3ST4dddCG4xjgR7lDsh2xqJJb/e5ACG7oP0ekGUZkMQgiQV8/UgC8Twu/TNs6Brjp/R4d4p9SswFgmAP5Zba8Z4Q/IH+Mqcw0UK/9ALGvSRzufRJyc6wC3wSh8MXD7799E/7tYl25hQRtp6n2M8lnji05CPPnZQHiLtPwasmZINzcOzIr1VQLSiXas1jvZB3EW9RCIcSxj8F6nIpQoGu/0KlD7QNX7yoQ5sr9qAMVxhvCDj9zssjPV8DWbRkmq50AJtRKsaflbaNktAkMT/ThxWDUidqXV+9t9ufvTkTYgiEBzy7lrEyQghrLiSPJYZmNkRWbesMUCuee9rwJ6SeTPuK3id/M414OFzRh2raXAxrJlHqehTabnEroFYGqF9fslgUHcRJ9tBxWHHGc27kWmrVWCcA9oLSfpKq3LvT1vBFjJKjzx983WQPw7TWWkL/Is18XytFjJvquU5bjptR2cHIoMp3MdJLjB2yxxgTJv+nV7tmL4qfzKXnfKVR2aGnxQqL4w2eo7YzFgyJ9Jk5ssrEgnPT3lerOnXSI6aub0Z/iovGf43Z7C6nEWkwjQ3V3mdwCF3+bDZArsBpm2raU7ER0b8l1ioNRJs+jFvOtpgluZDAYRfesmGoqX9GRbHz/ipGrhmlgXkGmYvumPJtN7SSttHvKBFtfyOGSx/kkv61YfSFtDpVVX4y+ZdpLVt3wJ64//fwGg9e6OyRc/tzqFyJe2UuJziZLLINJbz1XH9GjMsGfLk/xeQGA8CizKmA4jXyrRbWydf6ShTIpG1B+VhwYgeTz6KH//9TZiQW3xXvzujK4rqcHor5CHjJ0keI2/SLL/IvFjOubeH3Bn6O05uy7sYrOdxsER1AJDG5ZteDGMNSrqxjGM2Atg9AHUAinmqYcjZZJne30m0G4BJOsmwezS27FexPeD0TvN1nvqf9e61iej0anl+bWUbvO5EHT0vqLfXdkaas3jNMksucByM3xh759+GXf70YDxxJD1SvzPqUVPbmvzMnYRn0SN1qO6bQ4fzVMeWbgLKLdApqkaVuaUH985vtvsQtP1FQEIBi7jRasZddkPJpqynfGxH5tMZCh9HUMXux1YkFRZQuHe9OWRVXD2s+uGPp0EnNuFIBHqmfXU9fDax1BjLXl0nbKXq4JiP0XivkCSgwsWaQD0ghFQ+0QPEA5+YwVetk+MVLB0zEZSBhvwLQRd1tEIL3bPgHU8w9O6qbKUdJ9M5bo9MKj0x/7m7JUX8EO8uweBwAFqhSM+U+MrJhETf731I+xMT/D7e8vZ0uKP+smPzQZ/n8eqG8KL8m5uCwKsYTibx7NHC5FOSYX8Co4H5RugDEEPy0vWj95bOq5/gNULFa5n4ALjngTBRMbBHWcwknu39eCgPO4ilFmbiK/KaWN7fJ8q5njsmfHySbGgltDOk1llgwQ7Pu0/mv7RANSx//GxF1vsvZLUboaAkOIN6Lx2kIHtRVKTjWB3bwCDo+3TO5trRzHzZ5tKba18pR3csa+wCJoWEaZqB+h25JMlBY90Aix8qVQ7bQ2c6JR/NQdQ3ho6zPpKUKlKNgni3zkAZcETqv0yVFCG4h5yRza41BifhpXiSCyRUVbTqSkO8p9E6yZlyx2gQnyDgR0jb8kAio37f8PvfG2FMefG9/V0y6PkzvWH/t6vhqjT9kMslc2lfsJsUaEfywXjUajOsgmippv8ZIZVSZXNrqbwYjL+HjUbC2oq1ShH7NdGsumV6Zo4onFJUXIuY0lAf63quQlgXyJJR+iqGUzBPokN2PDB34xUCvfnjCjHUoTfU8kpzIqwdZQIuk2TnY5uAmLmVKTH/EJnOykvohaiXzmvwrksJK7ds/y83wttgttgE9DI2Zd9A5rLnvPmxTjEM1tfsbyKgpJ+tVQBD8sc8q6M1u62zGey13JrD1NYQLP5xoe7pLxtA3snB+MMlr1EN/nVjzs45j0zBQyu6+9Te+SF6wghCb/whx0pipHy3DR/2WQAoH6lwyad90lpsl+QK4uH6QRVZKXTuotfFK27bTNUwLxCAvAl08fkjbIDENSMp7VZOz4X9sYjnyV6bnIAhQ7Yl8jvryAEKi7kBN8CPTk6OxYykKiZS9CxhWdhdjWp0GTQXnDWwVQIZgxkZK5t9n6xTOoGAAwQhqRJTmbtAKQ5IFE8eGk67UeMiGF+3ISdHTcEKDP496vmUZdJA2TpYCXHXuzzQxmnzEyqM8G6IhFc2baMmxnTF2oTtkinT++whhcSGxqaLIa3DF6lMdWWGPrFQ7QYlspaL1/bSR/5KAOG+MnyAM49yv3AYEgjfG8viMcp4GLhlYf/guCL8nkGxo/5b/qGDp3/ibPkamv1BCkTg2Ev3ejDPSIlJVZPk2HqaR4w3137OWLS2To0eTe9uYAfcacqiilxrZQ88glOW0+KgZ6QEV7kcAPvb+p29tsAOC/lNfNevDK2GXN5a3lVQSnXRbJkVE8LtdnvrZw+PoqkRAyvJzcOTYpWvVipL42szdzO6cBi0mCDZyQhGrja82bNUT3VmzUybwJLZoGoOyVsXIBd5lVF+CRSUGgSe3jGtmvp5AyzPuCHcRhKePrkNtkRdk6O6Y5CieHcTYti6o3e/gjAhWivnXXXfQ5UttxgJWnKHJUpXHpDeVaWzMORSDgWNIrYhNSA7WbTPB6aH6zQubueamQUuvDz+HzpNGAlA/1xk/vl3ydiHTWXK13BMKhbG6clejHK8+hYGVx+syubwd/p59J070sq4nThivvRpiAresIYmK8axdj+JlKLuDNtu33flaGqGVMMeLPkSGkHFDSMTn/GtEtlO+gsJHTWwACWq1T1TbfwBKXEKi3nTQ80bLklGmI5vyF/niaZ/KYpOYd7D4W/IL1J8BKGnYBNKhBFyMaABCnbmU9hkxmoSzWPhpipWRYRNXx/ftHoft1M4r65GubaZv39YtUdbjvBxLCVvSCKi+Sp7IaKNYh6VjQBOnFkhsFWBBOmiiudT+yxov5rhv0/D2snUZVa8Us0ASW1lW1LdzQg/9EvdbvZboGAa8xkDyanmVFP/7vGo3EGvuTIvwElgwsYvwVdTBOi92MqVBPwuXKnvJqosnR8fzVVHsFg9MdZif4feX6Uy19ogoiWJ3ukMk/yeejyfZ6QpgPqOzFsFxNF1C/ykPE6nLHC8rBLBv3S1su+iDxM7AGpfVAtwmg+mQsRdzc7kZXVRt6gkOPMifj/cUD9HEz5hMZyQOCpzmr8aZXpqiBrTQBhyemzpcSGi8qpnKQicyhNZbobh73fJl/HxD8i4Tp2cquuag081Gz07Xgfu6PfvBZeJkvOk+DDXRKJG5rOVGwRWVxsgy1kKr9vbeG4V5XjIIodxYY9ZyH91j0lzK+BsCXc4X4s/UerWTl27dcoseOSQ6gQY2iTQbpHPN7074IGaVyF90ocpb5RVtKjdDmZ1efUhV3d2FE9DChBDEkyG0WSgBedPj7F5gTiwvBq5cURihrl8hzHSym7o+hqg2ns98aPlmnmWDW6r+SK9HB+KhyCQO+kK6OMSuDS0kCqddoQRhU74Z/oAB4WPXZkKL/mrO5x1+ZNGMxnQ06WASbkan0+Yqt0OX8mDCJyzfwHodWfcgyl5IvaTdTkMjJg3n6F5rzDOrVt9cPrgzdpuFAPb/zxp8XtvxO0akaAa7U2v2xh3xisFYa2m0jkPiHvplrRRxDwirdaEH4YN8TidNwuom/ACU/xZHeRNIT+6dvlkUTZ52cS37+eOpmWMyhOmbL6oP6dd3726MIDskkoaVv4Le1hdK7MdHQrsN/E+PRmBBv9cO6po0Q68vDfJ0ut/x/Eu7vZE8mOvggQoQvlSau0mheKi3e/4EmNzz46e5ACagJPQmtFStuWfxCoZ4VSFNCK6x6TivY1rvwxKodfnpx1VSVV8fU/rYVeATePgB4jJ8DiGpB73QG37XO+5d0HoVi6V03s4y4ssBkXQJwvYsF5jkQAAAwAACmkAAERQAZ41akK/AAADAAADAS2v7vm/cmGpKgBbboVJnvGc0fEPrUILRGu8C6eFgqIhruIKqHiIRSZAOgk0i/DpdqjOHGS0yFmXn/jPcvEHgR4TEUro5/8LGa2CB49CpBBX2QtkVw3zWn2cQD6J/Ta+dkp6/JQ5/78DoT3uJbibCPpSf64Acq/K3Rvac+1mu18Pq+n0jydGG7cd+h4BXXYRN/hSSiD6ObQWAghGgGaL5nQydnQZdEpf47cTpur4JZlBQPBZL50d/XZJT48i8n5YHpWu2FgP1ZN1TFAOHfoHCzQEOiqtk0ZC234c8JnpOtsamREaAUwWLA6vhX9OXlXhlh059oGfln5yb3ginWnAD5Abm6EqAzhmsZyYSQfqyU7w3Ym2Eyp9k5eQ1vIvhL1ALc0BIWI4RI7XXrQDvvBCkzDhNhuSd1RGh2u1Xz/wtUtbQOgidmmvaKfp+/BwdbHaddCdD9b12Ct4YhUwFZLSInivyKwTYrhMgiugmpEI2Mq1vSmhuEZW4bEP1dTM9KH9jO9XdLs2Z8HEixO34wwVOipR6zWs5P0yHcP11PiCW3frKHY02lnLuoEKQ8MjdZ1MzS+n77e3T5gtmwdUTqjjTMjYkOP9PyJ72luVCjaRLptfC9Lot4iNhOmilV3TPb40SkSlxsXduvlmXneTUVbrB9JtGPPsA+v/IlglLIrsc8IbfZkZ6maYFFpgSQjx41XWk53fXp/ka9r5WYsITJTXDT9pLf1k/XnrpfMBi4Jy0v3CJN+bCyHP0v2+IOJJmopvpcA5iDtH81bXBjeCOsXBpbDm/n853gZUcn4+HxqWisB/jYu/owfo2brtinuAluAygpQXE2+l7U4i7nRpDzbakVNWnWnZq7ZszkdfZX9UUSmDm+e80kfNK1KXOOQm00Iy1yr31Q2Gu9Zu125/ddFtpJX/CSPwWDVehdMNtDlfh3t/3vwnH+4tdIMIPTVmeU66SFYfj69jTDOUZFgXJkoor4kaGnDR+xC8ScCsTFbnmqWw5RWmzLbERsONZ7JomJd+a84j6lFNM9LcDOhoQh7VKfdL3zLhPSjp//xhaSyrxtmw5RRRpn0BHUz+rvgsx11KuPQtxrXjwSG4yVEMfS84N07c2GEt9CSNUBrQP/X4Lj6UKc+WU+x8jitlQCtJvp7ys0rhq7RXOTdiuHPc/ofmwemo6Z/rgdspQ3Z/mJA+4Dz2B3mE+SmD21sXEGsNP9CwR40+NdUYSiXfSH5Rtdi7Q/lWSD2TECQo2+/69N2ggOxrdO8imP2bS8P0HnuCttxg2/1aAwWi4DSKPpUSXF8V9YBTeIJT/J1qCGGBRTsmVzwIded4fPwyoh+HDG327pc5vHOdXjF9j1952p4WqPP5LdVX1/hyI9hE2psucafeH9NNJs1yVbo2MB0j56Dq/C9HzZt8qGRUZI6DmmRO5oGVlJUDk1OeLbQlyW/lILFu+fjzLFWBllyRMiLGjQL3FKZw4Ev48/ukrwRe8zXuQTU1cWQ17lId/UT1B8Gh+Y7dMlcfk+HiAFY0cXXfXmlw/PxFFIQ0LuMuQs8n+WayebMSpm2RO87QJ+zUX66NNbKk26fspiAQNkmbloztxUtHUMS04rT+j4MFIaFeKxC64MTUq6psEaWRZh29GhjfQqGRmpGrL7ZcqPooS8EpgbGCND/qhhKdV0ltZ1fuPdZ/Yy8ihwJHP8GVbWhy88grUfNneDVHkgi6LJyHibFWysvuNJ1cKVO9yJ/8ld3GV9QEyxYiezXrTus79rqOtNJ89+QdGj+JeNcMDc5caUQ+NUxQdkIK+pJMqslt3I+EktYcCiL3z1Tl5WTMjeMCJaT6MvwzNl9zR1MzNw1S70DHW+5EzLlkAdKrwk0/nbY2TNQcrO2lCOD5RCmEHZuh0PoAyUJSKNVYcHht/VkaM5ltrREdiSYqzZnnU6PDnWgrFPbWyMGZChWXuO7gyxSK9pTrZMmEQozkI24EPvgPAKRcuCC04LbF22qf7vCgYlIQNwKp0wkKBVFoTmt9sX3izehQuFaFXPFpRpYOH7Xdq8idyj77dyEWcbgIwyAIpDG3A9ORKaHMMggrLc+HRype3XK7BzaN/Cfm0mUyBmY94jQVrwRc5zE4nvJ+Vmmh+g2UIZRWTKiydVxQc0HGYbrysCMS4gJVnvZBjvj0W6P/rFTvr1bp60LOGdAnjcYaZnHRr/nrq5klF41Ppl+5gbHMOfxbun6Jizn7Ndbqdy0kj1+qNMLgncD2eELepoLi+GgDXSrPSX1xv5KbwBpUXN1VZefeF17lvWPYpWPo+96HXL+1tEIZgCwT3EtJHFz3RpQFULvy8fHby7pcE4VYkoU79fgWDwDxaDJPohRanUJHpn31rBZyyQGOdrvvw83iwkbWuZwyp/aB5mpQt9nF5kZPI6gc2VxsV4FoI/HHHLIhv25iy9zjmfncJhkNVcd2k42I/ppIOyc/zzEUecvGxSQVSvQ/usW5TjfHGv8ife5t7RelxrvgzumRaMA40Is6m8QMIJFTHSK4GkXt/O4FKtxfHkoWhG7K5l0iL92sQRJQzIz6bIfaCg8zZmqM7CmYKBA15vfVUGVqS2hRwgpeey8NJYSgXYF0SiwTx3Hy7QWB861QK/sKeINC7rV0eOIWRWTGhCLEN2HJ/ebnBkJ/6oV90Czrs/V/W463d+JqYY/oRjEr5UOAd3Iz8v/X5IU3sZbOBNMp36krKtMDosVKWZ+8Xnz9r9feWyfYVWnD7qlHNaEFFMskclPIEzRAwnF0pBi9kCxIxxkeNC/cBWV2uuGT3QwWOkCid8rsOSxLVl6rkLc8CZdhKRmXyqBH7KmaTPKqQFLbC2b/++LEyJyeUYX9ptgEvkxTUF5VRDQY1RYCNiwWL73s+T0ZslmXOiRAbgC3iPRrwmX5Bz8A0JgmSVTAPrIuBJ6pw3ofH/5ruM7Mngsmt4IuAFKMK6Od3X9nDyaORBWQ7EkvH+rvZvq6FBeqT+hg6QdrNgpGrdqNstd2k/YJ6h5Q4kcu1AIVVbQxnw1aR68y0s2unfsAr4Zvp0C5gK0aEQpgy4dm828eDj8drdtEhbO5fj6Mdb4P8nYBHJmEhXHGIpVDxx4CXgJF5VpyxK+ZftfP5e/qzjD4Q5pIrXOaT+Z4QeboqYI1Bc3s/9KZLcqsv11xwb3YKTZlvRB5NQJtmMyvfNWIKDoVynsAfaskriuU0FdSLdHIr8bPTtQkG9GO1hWZoFC2BGMBGiGDuXvL5+Ulo2xxoHWOx5m3dsDRCxpcrSrwZaiXoTO2/B9so284CdB8v4umFQ86HJdBT6u2MiRY6Ka4DvW/aI9ke11u07Da6aUaNOXFvPuN/vX40hDmY43GPmP2wV+deHoWQ3rLrMsF7+ilSMYSVhjF8V0RYTDHEcUDTfsbeUe3ufZOk9xeoAR/f0y+iH+jmx+320w2WmFhLyFXVwjhxK48CXCi7w8taG18+SIIzPnYtV0aWZJTxI82+bKJ11NWG7zbOLWV8E1JecTPuPfZUQZ6FC7BqnCkb8RwC+iExuufO3CpGn2wbhKWSrv0U/kZ+YAl1uVSs8OpLtcA6Kjsz4zlqg/gnFZok2/rplRBDApUR+C0KD4sWvFh7ENPB1ChycLE7veHZ2/LpKSno/v2dwkW34FzBxWuMgt/R/hoE0PvyRe8ieWyk8PK88/fR7aRaFserKmuYniSQYz1hnU5LhnTWdaFa2wthzIli8r+0JoUOJtowxQF/vsOfIfGCSfZJKKOjEwp38sP7BgIIU7jkFlNk8UcEsspM7KAC+hnMb9AmSROKNhCRApY7Htjn0nBbCGvQE6ynu7b/CoExICHQfQj6OSqm5OL6+M+kzglT/ftGTkBlGe52M387Mm0BvB4uFH8+hHutJfhXChKvlejfGQKYxQpEOKRSJKkOHf1jHOGlDqouDAJNJFRxRN6o1xNVA+XMb7oQUiafBoVsJI7mYa3BlfG2AUcSwB1Q4HMbJ58FZf4bYzqorxekj9nIpCsEzUm8Oyc055CYjvQcugIJOSQ5QEx2jKaipcgjSeT8yhd8mNP+pNaJpduDk0+TKFh6rO+jZGVrB4f23hJYAlphEHjgviPGnpY7SNBpPebBwDYqZwu/rtESlriUzOFQlwqD8lHYlkvDqL+C/y2g2xY4dqjCyK+XG6dWTrxpBelzwm6z90pGgzOD21/v22FQTstvyphtuk4Ri4TmI0iK4VdNeUqV7zbwaQuuScPJ1VGdQzHoxhUAKtqQImY9ZL8eR/qswrlGWvJFnyU4U/0Jfn2Jq/NHyycKOxLUszY7m8Gc1aBUr4MUMlLqQSZ4thlFT0axPFmKablQ+nSsTga21BUbTeczQ7X9kVb2bSBv4lAzaFKY3mWxVZHoNSMtdl4/wpIyZhv28MOaz0UzhI1agPzVeBwfvN7DLO8tgDcObzRXNdiMBK/EF5drqsWWmD+ydIf34Be1AIEaDNkQ9O8LAfPJaCwQ68g4nY746qApieg1IX2csP49BBXS6x4yyhX9fuhMZoWH9bt/KX4co5HFFmuC2liXMlVloR+5nfQQhSteMjgeqPra5AQkSPCcsjUZEb1QD2bwGgJr45aLLMyuryVvE/A/m6JZjJAtcVjRMmVlzJvv7kFwji/QKO+nN4aRG7AeRWMmitmohvqyR3beLYWSEoppzyOQWGxWpQDSt5CsDc9lHsFaiabM/UECCZKVtQDDzFt6DunPm0yTAjCc5S0nMst3GECs//9V7Mt7X8HzhJlSNrb8KlmVW6nMADyfwFtcpxB4jiuycMJGz+WB62+ADyAq67yjIH9RoqdIGvldXg1lH4lDiknbGxH7ejzx+8rQW59MoYNVBSg9gzKkgLyBIe9XIePtyx7NRhqhtTirQGz1m92d+2ZownUDzpSM5ZWPsZPbjJH/XNmo9kwOAjLdLewmncfPb36Bl26hCv49t1Uy1flMSLxtBo3MMEda+TX5OVkDmtLxgc7OCAmXLxB3UbjV7EG8+zwGg2enYAHxKeqMfczqh8cqquZqXTKsskDyzkXXykoYW+thYZVm9Qe9iXyfANajaWh61ch4JRRjIn/PcCkiZOdqRVn8VJX+Moen0O1yGrstkroqGwQDGFOVNmbCAeGp6y6QoBlPfC3fiLdlK1yASnZ/d3YD3e9jkk1WZjKG+yEQ+ts36DNGJlWoAhqtNIm6YunaY7MqvRzGLyAcANOQGdiRgQRHscbpiOl8fKiRyud5CrfxHAbJJ+IHEFIct1WvXygNA/EuUtycO129wrZ9WrkgS8fiHGfJiGcf3J7bHxOcIqkO+WElLdh6/tYHkndKiUF5LrB3vyFL5uS2oNLQ+wmw8Nd8ji0J9FtWSdHJzVh2ycLJzy60QTqrzTihTBRGHVlzksdlWl5BdTsktiyucXxftphNonQmNxKIDGehqHpjze6lajwEv8Fx5X8huzGVGDfo5rBH5TLvdsX2pQ7AQLsTyddW0Q2TrAdS938PPJVy1VLAlSVeXnbq1FGz8ZL6/kfVO/b7dquStSDShVaHYs8JbAfRpx22qM70kgFsrGnevcsUsK9+T+fQe3pkK9RzUpu6zEY7HRbXHeUq03Uk5EyTum2NxN1frX9fsVX0VdBuJoXsIzuKra1FT4mgdz5wMgUxrj3ShCyjFpRvfHjSpAe0uGEGtWL67hOuxaQ1Z9gx/MpAt6Irk7K8mdncRMXOadZibPFrbGtikbnIg8NEgnVSk3MyEheLdHVqO5uHGEB5BHQ3owX5btIqpON00E9DQrMraILH3u2zRX97zR0G9OWbvSF91G+5mIv1ym/3KL+v3UAQn9jawLi+vkWRrfnnFC+vf5fpBuJzJuAsBZBAD2c87p+edpQCkYhYcUMMaWeYgXuV9SH7PSsiDvc5tbr9NbC4WOGd8uZrW1+lFQLiZBJfiwhTPjp/T1gmmCpwc5bF0xCR4va5WhF+eE978u4DthJPFSHaOK3EuwjBYcKf8Wc4KcKcOjj424A/3USFAjL+hCrCNPVqDr9suRf7dQ4Vc0uGFx2bKk/nOKb12GOHNfCv8nc/6VDLBgGM+loTisOVaAlIivQRJ+hDdEUHXySIPdpfSOE5KIUDcNEQuXbJi9c0zpnSXtnkwvxJX12AoGNkgIYks0p4Afy2uRJB0n8WBPYKtnWWRzUZjMs+SGd6HJVaSPW/E5OOjODWAVATq+QPq6GO7jqUJYfJpOKdMyy9AMFZJ/Zaf/SZMNyI/we1mMlSUwweN39S6PRJ2bYrXLEXepNs+F/i7fh6cuff8Kh+KhWtY3i9mM7VpPUecL/9SAdJeD7T19UdvlZcEgtNswfP2bv4IZc8YRZlQaqqKRVYi0efXUNtc6n99foaFWf3I0uCECYSVL1IYy/kcrJBaROSZ3WWFJyjKd7Ii0azS+XgGKRlU6PsBjGcSg9tSbh1d+2nYkdbGdYlnq2VTtGOIm7AdV2iXxRqNgKFvG3ZXnOvfUtWMNzadPqz+eRkWfSycKm2mwOkBxXdnYqR4vJ/DhBO8RD3u/vXyPSSWU0axqA4OagehB+UaibASqOy2Zjc3BSw1Cha0Pdlw7N0JCs6ADCI9FFgpohGx6QB9UzfsvyWXOH5y+mMMz1KGaVNgrqjizmTFSv21RfA8kPZCn2sAd1SzivsxnssA2kGfeYQpC6wK/6F7AkZ8esGeQoqLwZTEpOgWBbAqU0TmVCkfp9Sk2Ev6Hr9LUL/qy52ly5tp9wteB+zt6/H4z6veRZClMorSavzLpvYOy0A/Lq77XpGFA8JbBUiCPJrg9XMXz8/s0L4ds8nEjIa5GfWg4PhINM9kPz9snsBdxO8RHbzA9gBgfngaZkmjWjFqMDW5cBJN04/1kHtxj0lDVZRsNUenIPnYGbu4o8gkqHojvsHqgKuknNQHbg0Q1j7144Yzki2tfNsxA2fHu3J6ZrRJhJgBbI/GOt3qiKhJLOKQ2itp8q7/U+lrCWMG5GJZxjMT2FZLiyN78OhFL47tm/SOwDqzkqbyYNvK3XonwH8p4SM+a0I/Lngwj12VzA+9DsxlFd+lX66OK6sCuuFAWypNM9mP+js8XRhwR2tJLKurgx100iTZffJr+hHPsg2Iz7I8hQOomszCDTSjSYByo7c9UAP9bv7dPjtwg+V2SGOyYCabwaKYowaeHABHSu1q+mJeGIyTGZmAZK2fsGyMdykBAilemxId/HgW6leoOu872BJ5dJlCUfyuvb6kNkieagpLrQbaRQeM3oJJB/LEydLTUNkVIyqYjnLSm6LKYUP9GBQzrWlWB3vYaqPYY8yw0ewgQkypiJg1RT7pbK4DQC9aOQ94vy2vGHNv6dLAnOlwzahCB5CFN4Dxmx6se8GypHjrl1P4lVddHaXUMyRp+dOCfp4TFlTqz2bsMb/VI/LDf4v5hypLX0y07AFEuAEWaq9IcpsTKQ2ddwQnmAuKhorUkU3qbdy70j3VqaeUTfVj2pHnos8y19lXuHvG/33D/JnEUVRerRq8ShHr2MqyZ4v6PfZnLC+PVZeNgXJeFESmYwvtc2+tO7+lAMaiECJk7+u1rFtJAQnZjkTLylL2dTUWz1aEjlBlsACkckb/wjd1kDZsLDacdTh0VFATtfReNHVzNCQBE8SjtdkMxf/n5sdcFVkBGzQWiO1GHPdsxCtH2ERdBpfF/cG0XopGZehFxPdE+B0HwMf+h4wvYzuGNt3bvCWL/2bAuBnmX3Atl4n8mL5zGyh5xTR8w7VXBhc4gQt+3QKdt39cKt5dDZ4Z/dSSityf142tGEi7nzbY4DxVmEZGrUDll2yB1KM4ymKycjACVpnvlQFnW2bc6cmgTM5gH2L9aUvUWkouBaYYdYowO0jeDYb8OcQUfFmrcT6XCaAF1LACu0rLDve1DE08SAez6aF82r2ZLSP6PD+eab+9WYeIBeGGlQmy2c8FF1uQDJMGrYvMNrpLtHa8xeCrky9xpSu9kkH1VNcpTVm4gwcSwsHpRAB/d7EZBLxaGt+UfdefXHzmdjk9ECKosadpmmPxsjhFyNHCoMrIbTFBUVl0aqeYQiNH/JrBnSsLKWob3mksmnX/wmrtLIAo5Pq/Tasia9F7TelZJn7HoKdb+0Rzk5r+9w2C17TbIeGAGpTzcVKCaT1CdGeoiUDNgI/RfOxjJWPsut1/5XWkPIhOgkTcawP97gqNHUj+JyOTPZyAAVZhgoVTeiFqe9BVnXMEnFszvStt0ce5Yof8O8euHONjL06Iixux0xJxr1klm60hG4q61+7fU31CQtdUzm6bqws3fZ4cRzhmHTYUAbRosfQybO4Is54CofyLJw/7xYMng4IdTErI7/ObmcxOlN4K34OBNThXX45/5gtOZJfS5SlhAWmbAKd3KyJOh1uwjk43JxisOVEL46ecubxUSUXL8HBoQtsNljCMizNfnCad83LFS2uYp43n10pUFpxxgRbNqd2f5IFtbzRpyM9mIhV6NBwrkad8djBgC9Nrc0M7CSld932+teL2gx34+2r9bHt23/H/7OibMdjDyrhHsOhLzepXgkRFpTyMJXJlnoXJBtt5Ji7aJtDc1Kw72Cem5iGCOHadNqE6+Geoy5NDNL0yfAY/cREEvS6P3VbQkPDjiuk8vWoMKKoWMVIeq2daNuLBPOlXC1b+pUI5aVnsSxGc43VjhQvahQ68G0UUGMjHx6JVNRpKManyyeQjTSdYtipj8R8gkFAE2KvjeF2uUhcQv8j281dZ4QlOcakeIWWdbZmdJVhzM8C2f/OnJ1+RMZOafM7jemZ6yKQjCy5kPF24bzpQLPtN6lmxGdFwy0Rv6w1VqkHYKPsjKuVnfz0pgYhfqJ/TBoFQVRSmb4a7NK5SUZlAUAEEmP2dBLJ94sAOMcg/wUEKS1qFGLavh1iy2zbvT+VnQtFS43ntznAPFNnL0TqDR5v0ges95MCl60u2sk32WQ5ArsI2n4Qww4mvxRR5WjhUCobM9SEs/b55Ci9CFfhUNooMEqxnAsJyP1fXaLNcjZXsUaqnXTxdXDMQrBv8/NwUGPdAZVycFYfHlWViH4ipm6kA8cQLHNaFz3SqOS9KbwNJitQJsdmGbUFGNwo5MD8dd5IYS4+tu6Lr5U4EbhwIYTaqzEb3y1PLDkFGV/utf0jl6Xaq0/WPiNewNUaEXpJD3HEc1cJVJaX8jFIdFbuVZEpT2LuxDjka7DMNgBDXvWaCLZL8wxw7GFLWA7U3HEBOmYFPmsahNA+ZcllkzcSVCBsjOfp5ia0n1yu0Gk8zT8XAIY72MWhk+X8JcWP+ggePEl5knWXQ9eF3RJuCIDpj0kYMohMT0KgjAnGE4HZUqycVV1oUKUArZCQjR9/OTSQe2YMaCd2ITNfNT5HpKEIUVQxh4ujp7e/0T6bSWCoOnA9W72jKMIDIPEnRGkXHgPPGDbvUVOSYawaFNNsCEcJclxHkzzSuBh7jxboHgU/Yqefi5vhFjwQ6eBtRmxv4oTnwRwLOUIVdH8lesM20S5CO6s6BbTSQl289WFOqBSD5Z3vUbQAlt/6M4MMXH6W45FBQ/x0E6DjzqjUPdb8SQVPAZ54FH2m+pNEhet0ytuDg1dYgY31kuWwVBvGPtPGgG9R1BVgxZ/l+Bv+tblx273a1VztZdtBAW8dxxOl8cLaEeSFJ5DPEpH8rD6tXk1zWCDowNeJf5kuwOof8TZMrWnNLkEu6HOa2WGHiHJJNaZrQU+wWBnt1UoFM0S7b3MZOPvzoyK5AzhuyO1SlVozrTEUs35JCBO58+iLK34P9t1nY8HZGTpoEgugrObozt4pGaX+Rqr7fLgrFen3MtHmyBBgFpdoQR5/wZu3IM+C3aAp4iMmWAf/UEindE9bdD8Jkx8qpH5LHVQUtoTCUbiIvCw5xjwtTTEO7UO9qCiu0ynXYMU1J0VrG4JHOqFhQC1LmXmLQAdKaFhqJFESWkbaimH3kz8xQCUbYe2Bf5pfo2tVQ9ximZgRqra+Wg4Nk/t6QC/eZj2QxX9/1tqFjw5DErz8v1P0IQoQJ2cvI8goAyWtUujOFzS46tafy1mkb8vreanpkU/VNq5z5rDMmumaWaVYD5I6aVmi2H/1TVDOgWFquy5NUbvwtr3ltYs7oFQEFFhYGbaUaMh1QsVTPk8g2VwxEiRcoNdG4rWj22DxubITHIUdFGqbvScWaS8hty/OcBrEnzfp6dgwfEbryTMrKRc3K5mRxgQp/QeOgp50oe9ZYtnKsk0kpe7YDa83enmIiz7LBpwnm4ZOvJshM6EXviNWTGCFcYwt3GKTQqUQwoS3OfiagrXipDeCYnIBpfGh6voTp5U7cFulbAOQTQ3iEH8Tcc3lZs8dmrJoHaw1DNL20ULk35LCFE5o7iByGNaNOPBAa1z1LyMobJK2dY41EaG7FixGthotimiKUpk5qmxu6DGG6y5I5UAng6XHFluFnzaPcmc6anaCzfcJvQ96UqlkI9F6L/8aodFGT3/yCOvJptwB0UvZlz9WykZRHU/Q0S2EarGp8MW4anHtspRzeSDehzW8tv3k5NnWwo+z3nKiMdijrrxYsBQNh+7swltErKvrPY1OzfJjqv1WHrnSCMlBL9zqXEThPm1Oxtm+MI82r72/2/9mTYmQli8j4152/qaZwejUO1AibSe9mr9OjZ5lyHdG8ICPeWyRAG5FanAF0/Or3L4AtKphguZNDCgKi5n0j+K7idb3w+f8Tzf72ptUrvryOpFqwcaUVNvaAFrQIX+MNKE28J37LdynAD0t/MA4xR2xOYf6T/44f4h4ACr4YcMQmclUCTh2iXQy0TUEBOdxo62DhC7Ce8aZ/5l39q2dczgAgiOcWfig90CU4y3jXSAimv8oQuHakdiUMv1Ic3mYLoMRf1yJ0CACvlufaC5TVIJfkl17VLLJWAiBUX2mPAuCq3KBMC2K9utAZhgfs4rcUq4AfXeWNzoZ0z+c+QKs8mYJJF6THIOWrsmUEMgyElD2QN8XknYPlZCb11xI1LhCgd8IP5X3ay4nCJh4q69YXfTqS1bGY4j0/il8+JKoADJZ4LrCLUIRfAxbGBLRodY3mGoZZjg+ZQnw8E1J1X5atzN1DEsHVDOdXeEFH87Z0nZgRqeaw0vfo1owygXPZreTOHhPNapfDZb9ZWqE5wky2RVTfbr86IWKCpmc4KcBgtJqZPsqm4ewPAWGJBJq7LXWFVT3bzDpLB0+aF87EjL/ZZ+GDo11uMlHSosq5mcE3SnqA4CCFtIV9BvEFMlXcyz0E864TIj3oXgtnaQLc0FMFxqaDKCwr7qyVEHyO+3YhQ8uHFYLt9cQchFWGbHSAT16bRuYW3nuRpbIJ7a55y6ITZV68nc9TAbDAwzko6CPZCME2MfMEVGeq1TliGqonRUwbkxlqCBAke3BypcOJn4KuW3kXdJg3LA/kVAWW5djTfMmwzb0iQd08Y3423mnalfXYyKgeIA1F+w1siOPl5BODB8U+ri9yE/6fBSk8PHxIYQazb99/xaYyFiJew1nuj9aS4dHVtlJJp/WHHpmid2+RoLWvtUZ+RlOZeOj5jGzg8Kbdg8aNPyJBEiUkh4ibMCMnze/Udm87Eg64ubIbIvyTMSxkCv90JrPZGjxO0JZc4hrwPVoQ7yP+uBvxfNu5yWurkSEsfQbxY1G9XYvpyxX8VlDUOa+KF16bBuZb74iTGNuDSk/wHPLt12T6GOxDtVozWht+0x6LyoY4OE1NT+TpskIaLsHWdxMmthKeH+G1+VwZcmgbFhnqgBIoHbGegsgd0DhzHqATBOtHPVs63iaex2VeI7ZrDqYPnfpNl3cTM/b06+g+vI+ozFbzJn/5YnykBfK94bLspzvdF3Nv9gjh7xTtfZjzvxruYb6dDpZTUtqqUMCZyQoT7TkMA5akaDGNJW7ImRuywoyZvDnKJXhfsdUucLSzVFvaqf3azZd2XZPMj/QuSmyrqBp8GMkYwzvCUGjT3NPU79eDbClfWHAECLWg1XiE04eEKilvc6l3K+ZdGSLJxeMjcXgbkXNXdX3O5v+IaDQVl3O9awZZsF8z4T8f4y/PvCJ8SXr3lzgzWEhK/Nr4QS9Q5S1PlbbHaQZXK6IPTvPCWqaYQZcWzyAfR7xcAOWx8m71emRBxS3I92vNtrz0kevUCXQ2k5Q1CQkcEcGefvKqbPwfwVV+wTTGdABYinvz0Bb1Z0IbSkvC4l4cHkZnO6q2pxSQNjrdaNPAOBh3JwAg5T/FeH7kOtDhf4xBau0MmItnpmHxVjsJyObLTGwQ7MoAvU0JG87RFsMrsKyOPe+sLq3963iDqGS09emeg+8atZT/kpL3aO4z6ekWdTNMt0PMtVJcAUbIDu76zVO78fLmcMuAr7voKYW0hxcylQXPlZcibGjsB062SJLOwBbNB6ZYohMw48zDmHqecbfagm1JqQSzlIxpMyrv8no8/g0HJK/Z9KcQvh9igkY3vDgN00G+tc2nzh975wsSc7nAGu9HdH3bhL0ytCjGiTfrsuVHnf2utrO8f/Lf4OKAmWzc3ZP8732wvrNjGVK9JfFtFjC0V3z5jYPvJ+ZQ6sZlBqbQYufQEngAvki3BE2lNrYaFj/ZRSAUq7d6ylTdhgeZInGB30o4qBnfTkdWjICbPVw5Fjrmc1A7rFV3ZZ6XJg/TMyj8q5K6yd1pdzTUaeBLZOby1HlmDBwytJV7yvAFR5ZzfmMLIqcGw4orVNRjmld8DTTq/uCH3BRGSODCFLWDv+dae/Q6PX7xm6a4Mof+RTBuYUSE+duWRppfFrZzgKJ0jxFj3NXvHzEnv+5qwyhp5af84xu7GZOFoi+5EkpyuoIgCyz/vd4Sn96lMtY7y5kpVcjxMUv0ef1V4SHg4CC14tefLr7T2orR98SVD2l5WyLF9LhBXHKW6jvLcY6QdII2fNOX9z292eGC/U5U7eGtMIf6R3qDe6GQPFOz7+jtqhGzFKjUek8/Jlq3Xe5kY2zHsZEuPnZx5dZwabH6YtPmZT52e+J/bJfReRd/plX/siWMxHl23Z5tEKOGIW1aOhziob7waZ0OcHz54IkV/GTmBG06Ne/S2pyMswZdp03mWw59reg/ULAM1PDEkB1w/ij985It559RrN5yvK8cnFwk5gCxHGIevPPIK73s82qOuaEIcn0/CByhJwaKU/RfN53EsRKNBpTFs6VJhcvXv8uEtKyW5TMDUDFJwxsGV1opN2Ba5B0ZRhvucgOf+6W5HrpCLS+CyhvKpAa7cNokm8XoEN/zcc1ktQIw2iGR5MtrAXQBrzILKfG/I2lsPvZBm1tiSu1/OH+HeFThZo4aaEgjp911Q7rS/1zdvhhI2yV6+rjVD4GboSDUlGSXeOGW3PbgAvzyky5JJXFQ1JPHK+VmRMc7oi9Hk4fgXcg66WzETCP/7KJK7+OXIeBXJ8pBDFwzRraReDq/MzknMXXnxtd3hnVr8ldnffk/gnUxAI4yuou+7DI3JHfTMYeBp2VyQmLOCvdiHGlClBQq9K3MI1kDixzL0olS04MX/pw8e8HxMjT/xuZZGeJAUbVnCNXBoUdW3dlunkdnaCkRahFQn6bsVKwnt7C4271yw2ncXxstB1pQ5OOaOJRZf/+WzRio7+uShU6SMNnju6qZJA7RWuZEZi0ASKcwLvRe1MTg2qKiqeuMRX4L0xJXEUangr2AxIo+IMp7fg5vcCB0UOimLxo+/PDuKEFGcV1qLplW/ICL2QjeOAuDq7HFM1OuN3gikSRpcqhYS9GPD+6REl0ayScIovqBy7khGdiLdada1CvzOGx7roNRs69UKaQEY7WD2GZB/TtSfp5qBqnr74z54X7LVvw7z5EG62k/eu3/ClhQqZwRTSTIaHM77hCj7L7r/W33lgDox2GW9cUkJ7tZrhCVSZCWjv4ZL4LZk3B6jNr5M/FtnUQ6kaXg7GStiaveautoVxKJhAcTrNjT8tMRSa5EUTP/zdCvBetUDNa0Nb2dn6EfbqA2vgAAGnCFAlvTjL8Y80gwgl7GV2eB5HPrkpX2zl2QE6r0EBnbHRnjsQC81jje63s0A4BKU/iCH8vXMLEhC6B808fDi+oNpsB6NIoav5b5ToYyV/srV0bHpcbgdih1RHhFhD6AZzT20HPNyEubzgH8o4pAOovXexFBdbFckh7g0vKP9ZI0l3dPeimbOQWHLUaK9YJiakSg96+P6dKZprsND8/sJVy0KJclPLa9z+skjvj6VwODRkvKwFN0WLYjtdZQKyWEht3cQ/fN72qGkZVSr1q7uX3k98Ieu3rsJ9Wy1uwZgNlVw4Ow+uvLd7usSEfAm2mFeVcedk9q61t3PBkQ0YLgASWll+0OljMszun1KwZ0L6Y+RZGK+/SuW/FciZm/LfPHlAC5ow6qtm8Xosuu5EoW8yPu0E89GfnLrLLVLM1fTGDD7SDFGfJWJ/6qoj1fWYVX1YEsMTtxiXFHHcgFaL1DR2SIA0bAtrorrlzz3UYh0rd+yHBAnZQmJIbTVHOzWWF8OMbTtVcVfvYLbXyNq/RV49guU24m1VcPuGOksrA7Ima2Tf6/xeTQcKvkCzA5zBJSlup7lLEVvjLWXqiQlTDhLhSpCp0WWyYDGgZAwkJObU7kUVylajJrWMYGJgmkyWR6FnjX/FnZswFYo1CP3ob2BQ3jVkD2OPKOPDsoPxSueSSjr97yqr14fqINuJ8csGzOm4BBrfR42ZIcSK7Xtn6jbWNIh3M7pjCTsAWRljTb4s3ifJX18iTSoz4kQmNvo1YbdDvVPQNXYLG+TfcKSm2RtZ+E9FsnrKq+04QHi+l3F+kJVI+4tkeMJ02qtZZqSnRwSXAvZwceFMU5JNvsFHLnVvBaRFQZPRuG0hacdou47qgeaB1vJ3R+KcB2ciz6J71PaPLmvfp/f+4VdiVFSD00VIeeegoqhxvG2QbR0t2qb3nxXIWFPM6Ewv3rSvzRlcPpVvvxbz87P/vB5kmpuQUMs5/OSyAfezXG/KxMlKA6IDaAA3dtaJCgXISeUC/NnmD0Xba/dXzOViK0Amtr1pEfGTxjBnPaXlFmFTCwIh6iQAOm1PN07aLgJX6Y71HpBgPlTFXt95Smze148H23qQ6SWrbdCgHW0SxyK64D6iTAU3kXMsUXkKoAIjxdrVOBrLFqi213cT41RZSVR4ZiQHDXV+psR/8ihpUwtRjjLdnPqi6MZiYf4cqVWN1EyDeww9GPPurfF6WAC8VTnm13pGRRT8FiWCfuihipYL3FxthEH7X979wxuM3ofuTWRE574Y1UXbzgA7BSg27GVOsFnTvUXyZPa6iIL1M9l5bz9qfKTyVJgYFdhelG1yedXU5Ufsy3MluYaik9p2nRr6xDTvExs1kHjRBM/45cXMLpyRZw5nkPxBf8AivXITrAsJXUFWQjHaw0UWQ7jbb4xNbXQ0E7wIgDmqhklpOQuUnqUE2QlBhouVFk+1XG31Am3Px8QUr5jzWne7HzGBd9mSs7IeJaPP8kD2cATQlNQyu4FEVXWKnRpUs2wHiSMJDI/v/l2DTDDVxHAr9K5x1MJhPruwzUAvCQ66DEoVna2dCQY3CfYALWf1LJe8U3jIn3VvKObIBx4h3fzNhUIb/nEcWGwOR1uPCo9dLnpwtoLm9MhAZNeeDRrO1RyXRJGLfgwiyEvbRKm9N5alg7yn17MkW4ugTjP+gqWiQ29QrnPFdC1zTRWLdtnGsUMvbrKMkhsXEqwu9gHbDz7Ywx+8lMGyZ69InpQ/UsMTwz+Qr5M8y4nSC9B+6cD+w2ipipkKr9VRttBuzlSRErI0LXWrn2uvU8DxpR5r3pucL5/TpZEyb4KCqLoP7mfG/KH34bslLgefmaAXxPWDrm3xWQdwjjXMiCYeUqPUhY4a/RfPQvpT2VzJnjzGZbEYMaiiPv4GJhAWCF+Ep6yi20H9s9p4kQxuzhaO7VpXNZtUUwiXxV9pJ45svzkw9Z3NwiYeeZhRXdLcpIvIeI5myKrm0zZvMumom7aCqKTKdx9iNipsAZ/jMbbrE/WauEFEH5MFgTZTCbobCGM+jcbQGyVC04olM/HEMHm0ANODIa2mLNEaUbP7hEt3cFV0kPG8+e2QqFhJArprak50PJRHpnUpm7uIBLaHWSe6j5N/9OSkBXZbxA1uItrk9X8fSU8vA5EFmoT7MOnkIpNQkiB87Dv5JHnx+xR+ILzNbxAg/0XeQ67bd/PgbItt/6fzKWVyQ9YSLLn9X5u/o6+v+B+UjiUmDhYvkvACdJln8/vdUgbWqQAYFY89GHCRa9m41rgn8P8inK3x6UAyo/l4+Tr1fdKrn9aByTJuahlpPtLsDOL4FWmKkt8NW+DJ/8SsYwo+CdxSPEGZOxZV+doyL6qJZfisPF6IbwBISweLbklSF//7PjIxRSPWXiHsORQAzrylAEutGg+HjcGWgu0ATAihypaaK3RhhR6kvKC1PqdXd6qnVs6VLy3Rlt7s3D2hWlhCyO9fJhmis3fKlsabsAJaI6PsT9oAiTiAhWCJfhMDRfEn52is22vqoE+hOIlwFEh1b7KjPzML7zZkSbmoW0IzihmDjiOd8dao+QRNm1NRAtbSi2+FgHHqLHQDkaK/jv0jHPjSszBgcByPvqMwvUvtaSg0ekaxEifRMITy7V0xvh3aMBc5h7IVUoiBLTVaAhTyEG/rPKKBjzgCNfEtqB/Yiq5AbPVus9rXsWcLpsKpOPHaCVqyQpii+FbgDw6zixwzuTDcd2ycxLkuXglpHY1bxInJ8EHlkVl2xCYXi+C23mmcsUA/ySEEzSutWe/WXQIlxPm8q3lQ7MWeYZUVxczLoa6BRmYFmYnaELlbjx8t7I82xsX7jUebpxuZ6RvoP0CtemcK1eCnSQKGzpAAGFxR3+KbgkxBLKilaiLwEAFr04hDavnmp8Khp/rkwxa+nQK8g+DKBQq9E9S0XBMe1RK7/NnYCzOfqR63Z25PZqaY/fZCYoJd7RXf8EdfOHaAeKIyrCo9oKPaynDhmF8fQ+7SCBi30HzlugfVRX1/dwtPryTOT6HRZccmi5PDNs8dAwL//79NfCZs6D6xNc0yp7fGYjZXBxlQve0nG1XaMWSOeXOM+RD0kz4t284MiImYywRB3PMgx+ZX6EXb5k46VfoaNa+xK0CO59jBDq6U2j8ydf5/Xto36w11Vp9+wtBP3bBcO7zgtezY/FqwPxhVkeIzJSMaPRgbU8S9ymrajmoL56yrB9X4/IzYhnZiuhZsU+GU3jRTQZbAhct3Ns1z/b9NGKUXCTspvcq2ATrfl/xvTa+pzdiNFDRw7Xrcr9q77Oa1+EJPMQIIRmQYIdzx7pvOJW9lf7Kx32ZpTfTSoRowsbZrMon7LaHm7loLNVLo5JDH1F1teUGfhExAgeEogZEsPdAerJQPi8SKw5VN41CzeVs4SRtfdBi/02hamqIDe26a2dF7viV3Lk3t3bRxZ60idDaqTgBtOhygKVb2s3MHeO05AAywKTrwr2XsfhXGYopaJ2OrYgb3r4jc4wGzWOH88OPomSXF3MgfSwOrmPnovKeXy9uJOD9tXBot+08JOUZPLnKdsnWD06XlP/x9FBPkfGuHsP9ddJsb+cpObXqW2ZSO9AWY95DiaV7t9rwXh+zzPUdUyVKpJRNgathPRJLcTeU81VmoGLGz4M8YLoW746yH0ZZUqTK52jA3QGuIZYpkTeeuOf+PLZIJ9+9c3Ma2x28xHMUf0IZ7rvLWSFx1w1jLWVVf3lN9k7OZZ+V1J0piESxF7aZSLPVVzBiJkSlfAvzsKVRptNi9QP4VSzQznRSrhmR14W7GfWa12WcU+PBvZ/nIoI1GBL9cV+Kj37crcu5pIO07+t47kpPa+yoAeMMt/hxCkdl8o726t11Lfy6lwpwUiM1slG2OGaLAzlVce5rm+wUS9mhPRDaDNhKEKImQGPO9CRP3D4n3/SyA5frfY1KrTX80wcRurIn7cFiXed299ayS89wWbPEhufrKJrWsSZO6JAOgaWfO+1PwK8ZYXhLnDikO+PK6ay284F1qVIp5ag7YbBilSV+1SqZdjFH9efNe8Q4PTSn/Ai/J98U2YLpIlQsx5MUK4lsekwKo0IbPrfE6RoYi256wV/MQoV15ufCn0yGIgaLdWtsPTFpWBHCjaFSEYfsso2CjmowSxHqo6SgQPXeuse+xbRNvg2pjvvZkW8cUzqCdZqcaDS6LpC+QVK2n1hCjNQZYKAV6Ytlhf8i5b9Lwl+vPvjrEN90ZYSnj67nncqS7uDQE0XCxOUhqg9yZ3+MPxK7Rk3sl37+Aes23UMEWAn7NJ2Pc4uoX9zvX9EamGVtIIIExXNRNdrjlRHgjEELZsaINfg2qaUFaFVhuohnPLtTitJ82VzFI2nXR0j95aQmixTMorTfLweJ5o8HB4Il9T2OzzBNeecyfEPVYfmTQfCEPDCw0j/fkjKxVK7NoA2d6C6sFwMBI/oJ74xfB4w/j625YHhTh8vxLTmKr+V+c0JTRezBfto+irx8ttRXLlhotRtcQCnSTUo+9WycJE+lxiaP+yImVG4hXM3juEFoRctOJ7OCrZcfQZW5lpoliUa+L9vEqE5dqc16q+WHsYjE2Bvlhk9dKbS/jBbduROPlgC5Z7QRqUcgB+EBABg7Ei64ekIFkeZ1iDKF6aBrFzQqLaSDK+x9mndpU23ZQcHlkiDBZfKb05bY+8xb/iR/QeC9kGJe23qHkk+hhCeC0/n6wwdizOHPJTgsBiBRXiWXB1gkym82/NocO10ilg/yYpQ3RHjsmKpTnhvkvpWPvoUVU50fDBAGnb6UNeRe6qQRt8/flJzxPFs86aoEfLPBhlZVKAAD7qh2JFQ8gEqtkfLk27vDXeDB5WEP9UEKMmKOaD3Aze8u6aZNAyfVgfNddRg6hc22QA+XzYVV63bpxEsq2triOBw09sqScM89nx0MLAnn3yGJOP3ctDeb64fGAmmWf8krXAYiirtO4ohdor5544ORRrB0BrAm+6m1GNTzDqbai/HD1ROv/TBohQd6VqiXbfY/k2M5RPJEAs1QTFAF7wGYIFf6Qaq+riqmHbNkds7t40Tjvxiel20jbQSiE1EcMvq+m2gnFyA6q4gANfmW2l/i5plMjgx7wx7dZVh4vL7/izl69gF9evHg24SS5cBeTrCYcKtcwXa2lrm7fJvquvIAFaQsZ5r4SfKeycB4Axs/1pBKmcWyTiNVd17oXpvcxeqG04J02pYpvCzplZ/eWziMeewJczYxk9yzSJQrSJ3OhqhmstNlEHe1d5HbCNd3djOqTHDhredfctu4hlXFEzPl8+7WgMpRiD3mgk/WptFC9byJsxgKajnDyYXsDjPctY0vic7DjSW21Xk8OPXYYarufsQk3KlK1g+yFedr4FWDxrgQrSa2WRY25XGb9oakTCSnoTg3gcfYnG0OmZpf2/XuKqnPXY9AR0sUmM2DrzhANw8Oj+vDIi1kCpL7AEYZxpuCTLld6C1XzWhYhaQkMGNhVivY6ahTwqs56czdEmUkAqhdAyy5sO58pNCOhdIYLDmUALq1oRkObr5lTD9x2qX8NEwAIzHrLYYzeDm57/htlL+omtwOfLnFfXX0+os7Yr50dl2i+bKSWkkJrerWK649zCB3W1mWBt57BGeNt7qUTcFvtBdsifqxii7dsACBzuTvcW4LXEhY0decJsdZWsf1F5JFpW4K6JlE5SdxJYMvc/cWtK6qCLYsdfXtdbta9JStraU7438wYicVWzoBP0A0Ept28S4CLLctw/PzrR20X2Exg+w9x48RVi1JXol23UfuWa/O5pdGbX8oZigWJU5UNy+w2x7i8TbfAi0QTmfZ0nifMj0+ToeL/k9FMo9OgYBuiXKHMxIb/Stu0fBb5CIielNzi0Q0O81VfcNMiSSykWTfeCA1ATIRwrjRUDKWBXHHMzT1+gVqDnIDwL3qymUCYH7D47OgnA4CxSbQNlhdwABe/g5oUHuZl0JMMleYjzR231es5q2Dh9+mDwn5DMpIUvEjDEZOP0haBi1GqCEHL9AjTCxM0tudPfABvK7FDlBFptdzM1ku4a8qtpOLMuEulW+G0v5vdLzFVjQRUZZ9fImBqG5wlng8eR4OPsOVjO8t91ob0kBP3gYgRBQFRw/1zulPdThJfHvsUAtWaxhXIrWnaWKit2t2V1esuosKH60SBs+V5JL8CLWOimv9OC5GUwCyEtuIq7R1stARkwgkgEfXYtfhhWOaC24a1zlsa8Sqx/P411nwBBR/6qKbFq38ff92SL/8jv6Tv4i0SA5Q9vEpl88dQbuIo5Vu4MiJEYGWxnLN5KaQXSAih25u6puVREeMBEYFlxWNJs8IyLMwliuOPWgyoKW6ocUcBAUOfMa83113jR/2yTXHbEfo5n9JgJlDYRpbzK4FsUaUAUIEtB9pAgn8QNU3bwUFOESZjedb73vmsilUaBtWc1byDmYhldD7N+3tOiAQRk6R5noAAqXabLzbMbh//P313M3/ry2rbBhl3z+p3+y30j9Udut5ONEkc26QnbrRLuAVBx1UUu0D6WddfQlJDChsm5IE/oEnk07S8xDFSQ2+qfs9MhVMQC31/abLJ6GEopIbTY+TGl3XlmZEicafxkPKCKaMHI4U6/ueiC6isHMmLSTVt4cOn1oU6p0QEL+cNdtsu94ydp92G7Yqj97sKRRIuDSULZBhAE+r6U8LxImO+3wWeB2oC6Q41tDlqJmXuwwJkCNpaWm3MKW6lFccQnGkhUsWsU1iHK94NEIVzjoHmzRiRYwkPhp202a7sYKkcigE9+XooJFL34n+b8dfoEZiCdfMa4xP+SZg5/ODnvY+xFoluSojnA955y5NXrx8fQqnE1Z0ZBUCC5tdETOFVFKMvWZY+VZ9R7KAwvss30sxJVHEBBsXggC4ZcJgAP4ZWk9FbaLmKYAG61SRrWkk514rY5RZYDeazG9dkF+I5c8btKcPmBYL1hhGU4k3GkzUQeiggF+6tjIT4jw1q4dgBbpSjX0MDpRW/vkdtJTUmoglds7gbQTiZQkU5cDGAE5ynDHxzpzISEXLquUaRZE3P3Y1yWQ7uAlFIXsWoaGCOlm8mrp3xy6i8Q5AVPjW46d58xUa0tv7jFsHyi8KAAX6CPyITeLctn2U/eFIQY1zhTm5NOMNhSd/9jQfNuk6zfpUtPFootn/uSwLt9q0/LS+uucFIfHW6n0t+t5tNDgCLLQ1R1qvtNftIOH1QTE8Y9OqH2Vn5A0Ptz2Jz53oUVP1tCXB/RbJrXURu3CXvaISbp08THt0uaKmNbaJkiZftduyyuMqbBPOxfxRrRhXfX+db1szLgidAT+Vdz2QgyWW3R3OzXnAs+bbWl0F8V92zOgImg22gUWGJFH1DC5bYw3x98Pf+gn/VuC79VXGDI8EZ/yw/GLM3jUHXS6mEvpWVP/2GEkhmFIpPNvDmDdc+oRl7k4dSieAmBQRUyaq/sRtUaDo5DaCGLexfpl6VV61vyDnaXX+HdP+NEXEFUHDvt6TV1+ntRX+Il+5yMS1y1gxxcl6tjaHYbWhjZRTycD1wTXtPuNhxkokWNxehvcyxY8Pyws7wHXiUWPXkIZuhVILGQuow6bQMwI6RuFSHTpnE1JkrWJa39kytXOq5mGZMJP6KczP+h7Pu/wbE/tMhKhbbkwJmDRIyIXaLBPCKwlUPUDKPmoBPG729sIvCNGYMr0jyi3za+WiHP/rPJZK1p6+pVlkfL1n/kKtMdOP/1eJu3CRPahF4vWKmuBlLMBfEXFvn2G7WV/f/FXiWldrQnzzLxyACGtURNWdu0TUoE3ijdPN7TZXCYddZgP84Ld1Jqydz1m7TKSQY6tiPsh38QL0mN5L4+7QvpJuM2WPQjex+fnSp03Uc5YxNsn8KKt5FlNNmr0qAM9am8nXPWCJsDlM3L7gan85Rptn98gW5PQsAKH6uO8LGjSyY34sCaaRJwW1KhMWAP+7OaiUUZlP7R6l44gccztnPAS3EEUZ/6g5fwe6C3YCueL0/FqxEmi4F2P4tsmPBptNF2hNbQxL0uRZ2dDahpKUwKzvQ4yqQY9IUCCz0aWW/ZPy3n+iyKkU7FvKva/sc5wdDlO1WWyfa6f+Ze7ULgpXy/Mbwrb5G0TwbfrW4tqsERSaV9kNmkjH4vr7tQEXOoB+0CoTtzIsWhjSVbSDaQxhtEARvobhAEnceWTBwMHNFIdcVY3ohKcFrl/oelEKCCAxgJd+0oDY90HQ6gEFShHR44nk/53fGaQD6unr0r5K3Iu1wXFqcNZHzJB8sKhxDR5XpNaXRmofL9szebzzqyaCviAx8wrlW1gXwjD0Cqf2YwB9WbPRAzXk0vCI2dSHF766Tw/jtQBhcRrD1AGkqS4xXw8PFbtaRrB+0SkUvCC6HbC0JK7Q+8D8pf2/tT8RdlRNNCtACWsf6cfG5zaDypDhoiZPTfRn95z5TI7BDnlrGtmhL6lQmIvxQDsmdpBG6HuLQtA/7ZNa4DZUov6dBlxKZelTDa3wO8yXj3wOEikxwpMWqfYnaoZiQc5wFdKSMxzq7NvoPPpA9yxlJBxF///EqqlXvN+W2ct5WXCzFQBCKfkOyQUZyWjqx5VtFVj6OLC7s2f6GeJlkd6/Z91PGyp8VDgVBeWOwqTTqb+/VSqkd881lETT9toUOqrPJsClByf9aw69pfKI0fUdnNLMJ9cbxxvh1iWHQG6EBkflpwl/YwdDk7z6k+Uep0urAUufGF3QHDYzL8VsjMx8rqOV1IW4pCInDleP7lOH4Dww+Jk+ZCxEkM9p+zh8UHkaNZblkL04htPfbsI7u3ciNDJOeb8akseONoG6ipg2PFq2EshADYyzNN9fa2o8/iIgSk/MwmuJYTeJhcqmu/KGL0f5IY7qK274Q9ra1z6UJkDwISKR8L0dixQrDTd/gsBkLkRBLNmy2hVAxMFK1eqBXz5dvbHfjOssM45QUKs1v6QH6kjqe84sK0tgMXSo0ZGOFJrFu/Bd07P6ffWLuSMd4LQwvlSRs0RhrKUO8MooaqIy4Uq3FiMKVOz5s+n2q/smR7T0NGxjIq6n0uFXTWr2tcX3q+7ZBQlXf/pLzV+d0HWWIpu+HVO2qCztJCmh/wMgXez8EFRt9A15x0whE8glq0Gw0z/yf6YGXZ2grrVXtpNDkZ7ZaHOz8gA3UkY9TP+tpWrK0t/or4KPENHFoVH05jE7WdMzoENQgHZ8nTdhfqeQnDI0bgu2EHcIb6FIrKcxrRbLWKDUF6uk+6StAk5qDyDKBjwNYDl/5V9YDQvZfg6P24fUuXal19ZWqLoQLVg+SkxyVleSkFmhPFk6Tl5wV2jER/IK1WAAAAwADAgAATDpBmjdJ4Q8mUwIb//6nhAAAAwAABLVB5sT+hKz2rqrNAFMJnIpc1VEPDW3HhrgJRax1m5K5xk6Xd4XEpfv+F1CSdU5EVa1WgMg7TIs73Gkb+VKw816HXXPoCCaF8ZysT2Af0foEWTBBVZ7y2WACD0X3b9ARrQG5OIvabqegk9U5BBygjFU/5JA+zf5q8HBV2IW/ZInKy4qu3+ZrOy1dQd1wSW/8WAIS/Q9IbQWFPXwZb69TRDwQXokeCn+xwjbsAd/x14dklkpu/Zb5bIo0mVOd02ZbGBhG0Kf0uwnxP4fzuV/FgeQv3z1ueTusuZBkAdtpLxPyQ2Mq2VhRZodpaMv01dyIn/l0HhBS6kSrYRTvkyEIA/uwRPJ34bzdq6F6QGR3ful1x+zh7ECeerLUQ7an5b8ccoXPxeHnaZswkYwrlt0diX+0C7pOXnFXURkh5tnjt5Fb00pRb+yRXR5jw41SMXVGmexVLx5fu+/gdAAxfimV423zJjmk9caK27xCy51FX9uVYk8XrLckVT2VrbKgRPkxUDlqPJ+Fibb/piuJvG626XVC//duW1gpYngk6OECgZt6kx+s1OTz0XKUjONSsGpUwy7MvRqU4FmyjBiv6YMiJg0fkKsMuvEP1K6UeSuvlvirS4oY4gL90lYQmeAMs+NNIg39A21qgWk8zhsdtchEl3DbZQs6t5CCzVTVQNftU3tEl/2UHcKjN/dCQY9SqBbyDMMiRWzHuf5ngLsroYun2z3AdE6TB4uRkfezwravHgG9Dl5i5W4Yo5juP1+FmFXAixji7Od1TKdrRI99BfyneTY8CSJ8obb4bQSN45sgHUb3k89WY3djOZzAzFnYjSty4Djig+Bfsc65A4IjkIeUFPqlh4nay5a4pWoXKfulLy7wH5qaDy8Xwr7ugG3WAEYvlrbctrkPtYBaTmeuCtIymEexsk2CTW25ZSsq/NlP3apG5QzxdOhlK+t8P0nUoECWZaRmcT1GR+X6rjWdxFbx9bUs3h8ce6kL/iw3i5d+2qr2YXw9uFsFE7Ek9YiTKDuucNejHxfIKHhARZ3P5wWvyEk77hrJjg5GQneOJnEK1ZJNV9cIi5hwe8ubsfr7fOe208ZwRWPXbee4ZissJeD/Ifhzg+DTm+VxtUvc8PaXOoMEp5mHypan4LP3J6bcJGwW54+DVcRVDEEygZhrNvBqeZYP1y4pZnEaU0EghM3Ns/Z/YqRuduJopd9Bt8uJXRZQsj2QA9BIfb7Ykzi3sLYcieP3E3DAWrP6kabJygqPwV3QGEdyt4rkZ+LhE53+GJFmzyVTqKgUabrEiRWMK/517B8rWxKd1PnayI4HdskHxv9XRS9wUyixHovsaWuP/JBdWOjdzPqRozTykLhZzfWZxlEZfb5ALM28ZZT2IrQuX1dwoeNNlxc9xVZs4IHpP7McKDX5cUlo3a/MLzct4fsCfM64mhfjRSEeyYA5fzEcbKeYNXXcMD+rkZOvz5MwNtEQQVPzR3OwwgntANwzQg2JMueJjTjdUEYnqODYy0+Q42GCecF01Ljs/qoIyZm79PP98E2fFQFA5MYdE598gkXzjA2FrZhROxyqG6lbwhJu/2Swr+Q3FQr5783W9lh4tuR8ym4k+rley5He660Ye4UTwQWPCWGqs1yRjGSyqbgxATXKJbH5fe+p6RDp/I098BX36Gr4sifIl7lVIafglS5Fl50F0UnMHMeahWhuKT0raSpB2FqI/4Qqyn/ubvKvs+Eev2o8G9Z4FsvI3R4u5KHclGZL/Q5bU7j0i3OZawvKf2t/xrkpZ6McY+qYhD6nueGyF4RMvXGiaAaakTkE+9tSzeWGroHx4q35zyw1RWL3l2O8CMOGtK8ycVWHp0nwIised1/Hp7obyHM38v3e/AnHd69iBBaA3x0d0lTJNoVacaedcTbBCOk2/IwGM/8O+JwzEGIy5gdTheXONpfNGE3gu0kpt0XgT9RxRW1dNOa3/5ZSOFanpW+WtkDC0jxvHM7wIXn+e8hrBUiDx+bTG9Hpm7zvy8hY1jYq/DjcrzfREMKnpIgtRnIFcVErZ1v52s5HrKhsLkzsObPViU0oKPy7cN5irkdE+W0gn59fWch6v3140N8SlyOXvRXGnFebALf4j7dNZOejSpxuLeXy1sYogSn1Sjxgd/3CNMF7D963gFEr+rQG5Aki0N3Rwcof5UlsAWDMkdaBpWa0oZM6lvzxjaccpRZyKXXwAQx6BmvUZ1Lcm/YkY4Ozvg/QSA4EJT6dEMIpgPrDcKV80uJMfKwvssHXPWKLXuMuHTFB2XjSefXKLt+efaw4UlyRvZEqrLr9jPYpHyPaDfiud32zD+PhAO74XKWfe3QLFMGoQy14yz/X2hmagkZoNSfR4jLj73IsBgMCibhNjQrCAJ/tJQk+Kprl1eVx4Qo35YLpq4ngYVW5gSv/Id/tbpHPlzwNvUmSmT5uljpNLQiBsNzTlJjkkKIeUGyWWZxRECkwne35ImeaFMbeeela8Sz9FQw6VDNcFLps78/e1a7scqKgFbhFboVoIyg8+ZnyTtUS6Xhl0Bswq6JdT24X7rRgFa28mHkFWqCN/Tw3MM5Zhw9QgjHADELZE50ZomAzcMhjdB3l65eaKmViKPtSCWd7RnK2wV2H3PITGNXtHdoQeVe0LoxiADtzhvQANDQLGKgcvxIvW9R2ShphEU5N5olkwwZuKQjdMmodsn2+BP+dFY8JKszjX7NX5N58V0ZtDptSLR3UcrDtNI/2lcah59VK9iwhafiCJ0WEDrObH7odKhsPTozKcYYYbPxIEaj5YoAtW0tOMlIhlCSWKz8eyzk2S07xxWFmO5y/bl5tsYO/5lSS5Smm7VbgG1HLjAJjhbZ+k1aoAsqzqkTh32uD2Ctz1HhYIhe4GKuJa1AdDWXduKTU2a+A2skUMjhGMvaPQ0P7dUwczlI+Eht1zF/aM40CptckOUk0S3JBYXefH7kWidZErJ/TCIUNoSAq/FCmXquFvPTxcKeoIKbSbUHI8OJeaQ8j7zLTcCf5/v+5cJd8iZ0jeBJK45tLICWRHau92KUlX7lIuL083uBEqjEgE7M8/Vo/FxEPX66Wx8tsyV1zB0m/E6tVcMWm0MlpRIlvR7xsDVJXia9ya2/cacg/5ulyQWCIr8j2BxNRaoYo2yzjLIek1Hoo8gTEitrzJjldbXaVvJIVJIsDKi9rfKxatCfiBUUpGppXCAhFjBi5I0CKK9fNByuNz9J/3fS4qt50hopYjOW6i4DGKRHkAwB/mGEtJwFKYYFBhCVo1j5Ylf1IpOZ1mqOv285gSNZoV+GKiNYjH4ZP7wukDn6n3300dkWZK0GCbUXc1CXuZpNxCrLoetn1TD40vW0daTciukIATJRNQiPlT2/e6J7zqTogMr8Z/8ukmy1GejDl8lrXjZJPgymRXD90P5LJZatc6v4Fh06ZODTe9vh4p6KWYH0NO/gmrqBRXKeInF1pknQASpDIghokhqvgqISH4tb80w66y1ig+6DwvzQ0OG8sSlAoieNpXPyvdHBH5B6D6pV/TWp15nLGqQAqKmb2Uqo1ixqzn8dt4VVhqeCyZYLGqujK9WMwzxV/ovB80HkFZfoODwg1yDTRdJqz4iPYDrsvrm2KDQPD8IZhdVhRAvQG/hRqvdfsm4cMUvCGmTMU3rq7BOm1FazeXTLwtWE7IZ0hYXKpzZqqr15pitjQdtzFHpd00CZkOFSJ9ri1K8ITugN5BOHvWmsRH2VrZHMGWnR3fIoKoktS6eTlSeoXekZxa3Do54VVGYuFL3Y4JJXLYmDCvQVW8wValXa3P5ke76czz8HNydfwII2PIpfLEjQ7EKlxB1CRFZmbKEnfwsrYKA265YrpWzDyFFsCNOSrSk09wm/pA8R5LPSZejmRx1Ds/0H8veNQO78bJ8fsajnPcNgLKM6Vw/2FqJrJcLEO1XXN3kUbm6Y8syQIpqp4o+xSB4icLrQoxataEymQjKCJtSJOkf+sw8228iaV4Oi/RSJIUkzokCnVVGzw0WLIZgjovzLqX1CGArVSPUrXLsKKHF2GMc/rridrj0jbP38LHRs58lA+euhjlCDlZtHzbS45vUQzK9xl+psJT70U4OqKGcePNZvLhF83K2PShiSQgcei6neAvS0XrDuXWvYAcy69vaDHx8++il7yG0IoqFAGXRt3qYZwOZCHTxfMVmoHQC4hcgy0GdU4Mg/FSn25PzNSFzGZlr9DdaAa/0oMFmQGomPXgmzPcQQOyI1E8ArIofdvG/Rhe2asowpSN0eThFajDAAfoEFblsnWAagvOQIUx7fU091OulXBF2snnbfvamZD39csU7qJ74EdFL8Nn5GUy5u9gxLy9ij5lG8Xosum3TCDd1WJHJ9LBrKogd4pU5kebAxi7TwtnB9xx5xMFnBsr7wkM/VnO6QwUrXyLXq1Dr5BLSjdALgm98VJd5l/jqETJHOoDMvFgO+Nx0jHMPzfZOkY9hIGVglYymkKN3Ap3wNTkGp9oVPmc3t4oHAc8p4U9ZKhRGcbKyr0ViJMtLR9buxj77BO+TqZ6fwNiI5jjIAjVsQd3RnThcLcA6UscseKnhQBw9UVpw68j7j9/vOCYo37NYZhScIpUTX3ZU8rgmXEdKNS9/9rpHTah6uJu4N04lmf29yRr/+FAgyrGeOoSHazNWOgZnMJR7kANcQBXnZ2NLSYiRGglJI+H4UYf95ICmWMynVCxSlMFVmKXcgSmP21if00UzgJyE7dXQEoyu0eGffl2vJj89T6BYx+FGEOqNKlt4OLZvPAMh40VpeKEk7J1Afhcu0EQFF7CsJr3nQJUbXiTQ4aYDW2V3QMDLynJMuzVifeizrYhcHhvTcOc+qYx4mxpA4ykCwYwA4TfSdhSkFrIirytXbpzLZ8SM+HU7/w25jIM25t58qYGLaECzPJTK8u7ZF4dMgFf32tgWtbDe42px2d/6iZxbGSMECgyt/BseYp10vgdGg5UlCv7l564yORxiGKnrfvdmTLynr3gn0k/NPMFblL0fOxTyKdlowmoOueja8eCqiPp7dK++QflLnjMRKvXElG2MSE5lGmOBha9/uQkdiVBF66sq5CDdPJ0O4RHj5FKqngrqq7uqAB5qxPQGWixGfFwmBpx4JUTHAZ5wFRiKMpgPbxzXMl86t7+77H7I5SWU7s3RDQJsmE5gZwiPkCK9jNxO7wv/oGp4G54TbjMoj7R2wwiCaJCvkni2NW7keaqwS8qpF/pnf5QCxEb/7+phrOVyyyfLGQjjtrfT4TG2Du9HxalxViRi7aANOv27pFRVMctBBVnfpN/ZMcLlSnqf6ms2S13z20AZclVqh+XInjY+3eJufrvNQa8mb0CBHD5ERBxEYYYYnLzcgMYuji4VKMnxsSmBLEBCAswgOVrDtvk+viLOM7b4HOCTsg0yjAllnnKvin+puKi/peQpSPj8YXX34Xcw5mW2YcvoY5PTibdDWNfiFX+CwHyzAgAqgBsX4KrajihYteGEnF3MkwPp1jSTmrmvqr0KWCXJ0NfsrV4eK+KqKvk3AqlD5SuPFL7W9qXsBZDoB+mulNG4cV0swdg8sNvel4K5z3W0xMXxEDF/y6sU/6qfqBtLIPk2CuBSQuQfg+rGXdiZCNUZ8xTgaNWxLLQKhha3G1odsR//QhHyKJh5FIYILWRZJgyvSfOX576sAmqvKRZHD9x5kBazz8hoDgFGiil41e1mvYdIGDs8ZK0UMAlKAa25O78LGNhduRXr88BSAFiBEXECqdQIz1szLeYDtpm5ZIzPEwsX0YX3TQ2Q4ZMKrZ241p6kBCM/3mNEOTTGyrrceF+PdaWOTLqP6XbAkzphn3rrKPc5bMW3C6bEMaPg1VDavysHxZ27z/OEc+rmIYjdFQM+HfwDWTAu+oJ4YcDw2gqVwkvm7u7NwrNV0MkstEFBj1r2d0dbMzIwE5+aoStZ37/7qqIsoaC6JiikzBvJ8BH8zWDrEFROuQLsS89VAXoAY4iVI2t/MgCl6eYkzezI/xidNg73NykF+B0O5rhGwRix+ZdhtxwUAWY8UK7eg8HCVMUXiYv3ybvJObtr/XbfJ4vmMf3ha+8epAFBAr+osBjYaIZceyxlRT9CY7v3hqEbNiaytEDzPRDro1UoWIyLtduKVBac0ZnAPqrEpw8F4sxr0kM3qe+778i4zBStZtuagH2+OwD+6F7BTD5FnGbHxq2BgjgKkhAhhPz0OFuLsc7pEBev6WIxSdSCxVAlS3b2/fa9IuLVgVpfGWdxHYhfJJORuiqduHonWR6kXHVj1oevf7fc1WGBpdIMevSADAHiXfYnnzdj7KTeylJc8sb8FpWBS37c6hGiU4LNa55ZZlZfHedmy2Se5Nb8BcfCU+Fphpx6OG3r4rzVxzbapn/6LV34/hEei7eDUFrCm58YpK8klcYy4h7+ZW8IrV4eud9Y9gvwjOe+mMJN/iTbAeC8CEeMCKwGFUYdSLOl4yg9VAFgEYC+qFfGrlXvOGgEMNknu8zSNQa4QtouQJd70txNRGi7lkUVF6qU+RIuCe8sZi8f7hYIOAT/bk4MD4xdHB/HI5EGtIdv30t7Pu7ZkC2OkGRYgoh7aJhdKWLalKGCPBLZA9pStHhgYeO90Bh54N/7lR9r8SXeGRW0JJ4yfYQpSMCmXD8VNTK291mq0tgCIELHyNUUoYK1GPaYKTLEbZYmZwWJvBF7VJF68e9EdB8NuAVvLvjSf93cW1PBgpK89tTZiqzguo1dLSOCQgleepyO0kGPf1E1Ma17k29X03i0VbW93xjUzsSsiCC8Ce+u0pz6Zva/I3Ztb0UeIqnRmZ9Q8i3FKb4U9gLzBsmvtw/tiqGOCXMijK3PWnY1lon12nWaSjIrMbmqU58cGk7i8Gal0ZKQvehQ6Q9YQT2u5ACLe7peqiXBwMZLv9EAuFa0SgbpXZO8RRTfjWv67ewynL3g8L44yWkpo8UqocHVOkdDHBI4MsF/oniATcSQeVx7+HY8C40ccUnQy3QP25Pq/CvXCAmgcBB7RiAHD0wkMNAM1UbpdqNzuF+H3DK8rckpkNY3uFobeZaxcoEZ0B3mC56gdv3eB+VxvnNn9BNXJjSjvn12NcuGRIVElkizVQVKUe+7qPF+rEbp8mi8V9Hs3rqYdn4g0C2qsWCOIdN0NMgUSgEfkZkHg8uj8t9jEzrYXp6ecC6tkOgJTTA3J7Ocx4baMDkpYfOvCJLJHg3NVsAjdS/CwxCbnsour1hBLK8RTE16S2Sexh7B0zjkCaqStEu0c8Qp4DxkvgGk+ob7cluluY4GJh/pamKnyi8mvxxK+A/SLZ1GiecDbqN02qlBhFuRxYm3GelOy6qhF5XoVwsjiGke4HaFimiTWvQ443D2aZaikbj2ZpAxkBGntDGr766hpF3V7/CRAbgUa9d8cxBxDI3950EKo7nK62V7GeKdi7FxOe+CraAEIdiv3wMY1P9zyjFsO7eYi1WNwh7QaDc4FneAkrffL2V4e9dWp4q5siKS10AEVICjODlLXm5GwnhiWrgrY2JsrODaSMCm36g5Bhohpl7ob0XPbzrk4x9E+6Le4cCBO4CpTKaw3hE4UedsI17oyeYyGDsW0QLK1z6QLSC/+0/1o8G0QaUsiJxpmirfAW3PWerqOH2H7ICCGJHJAtR2q3/4bOvsAY7xEFMlUN9Ow+EkqLrGvWZOHwiwcB4+P1nVskxYNAqxxAM5An/XqncMRSJiS7xb+BGCv0dDTLgmW9q9x9bG4McEaAhWJpDu3eSQhEz/rbbnZb1Htq2IF3R2cxu6UI6k3L+s2mEFtzFfrLxH7KxZyk0NVbWOCWqVoPFXXsyKhTNahQ2UNzUPQfntMdav6amCo7vIuSU98iPROlKv42ogLcPlhjqI1AdgRJN5Fl9gg8Yw2Nf7NBcB6NPZkjKzhVZIZ2Nu2XzIcytRl8eclRGKDHSqsWxyLr8pBgrvXzZQ1KMdyVQzLirHJgsnYHcrY3RT3FoR1zVYAd98EAcY8G9M3Vf9cKZV29bs3rOgH0xIniGYY3ZwJntX46fUTyz8u1BDcQ892g5esblzG2X5KN0UuGYscZXe4mkyE+TX7Rm/+NfHXxUhTQX86wPhL+r6ZqQiWT+vffU2nAQsmX891BScCpBJFPgF7LoUyMk5UC3iup5UyjV4CxKPg42CRGc1qqbXVl5NxDoXSCD70hTjNvztI3p7AM7Y3HBOTGdDXJ6uE8lrjhcAqPwEkHQb1VT8RTp8z4dQShH/r5pKJSPdLs6J0flmv7NR/UJ3S4KBdnFbk9aAdgy6/396208bAXCMUio+3e2VLqV4KNfGcv7Gc1FNT28/QGCAzubXujhA88++ZIDsycj3AuAhs+K6r23cbk6nI7ewop0er4ysgRlXC7FfUouJYD0VHbZL15w7ZlxGqFahf8OD7NyrjXRcLc08m2gxRHN1L02sTYtMRX//aTWtsRXZPYGSMkJceo89OesKxlDP3vf4Bp9KCU0CTN9iJrB8wIyUNFo4ipx703eAH5Q4L58lHnTC5qA99PlIT7IDn9YVpIx+Wux+emDPxda+falvn3ffHzNgVrRoPN+Su0yi935mQJh9TTZV3iUYPj07kMVRbajtQujEx8Q1sYGw2w719SwxGN2U37kDVUbhkaczMYFhtZlVWYCNxLQzy76yWs8yvOcsfw94d6dxd0txqec8A6KlAph1S14lFom5PXn+u6YkGwGyHN4rGCjLeXSic9VmQcfhdW60WQEZsQduxYs5VY1OIeAVureE5ZF4TXPUQIyr969dUzckucREN4kudQkEznzRcEXVo2Yq4x9o8PW5eulLUy7EVOhEtpnfNUTfJ0YiX5dmUseTbBWuxFpLxr1mKYKW7ANbAlzE6evme2bMMJ2sW1Ev3JDS5jPo90lu5rNehRGSTkkzb8d0iDQBVpvfwmmxMzwBQ8YdretKHPRkbeoEfBD90NU65xkOX1Vtby/f70Oi64M9V0AidxXhoPBcVQGZiBQOfrDuPifl4yijhMLEx49Bf1ux/pxEy9kjvuBBSug4kPwiO/+KpiVO4dlnBUiMYJo1H88N1/w6TX8EXddS/bMTzeJOcCvP7obwscwOdhEWk6OHqM9jsWRJIOoI1/PnDmlUX/Gf0Hs75FwJ6/heMBL19pUFZ4WlqH/a9ch4fDYUW4ZDIwmuGVxR3vjJwc7uw2K5hePbOdge/au9GIEY8EUa+4ghiN1dgIRLtq0NT2Oyp0HysfIpKQlhVQXAHdK+fwox9XLzaM2aTPwH3e0lhZl1SXu2SMh5Hep6r+JuAoLdaYgHE3CZdRKavmC5DmNY6UXFxux8x5gUol2oA68R9+gmy66u12dzLXVgvbbilga1/MOn3isaFozCI1u7Qg+scMBW6Z0SnONC4Zz9o+kOKcaFhQYQWdytsPUjehSAFJUJC9SZCNurxrMYNkH1tlvCd+Gl6JevDE42fpeWYUpfnCATlDhBc207+qP9ZB+Eej1HNpp0XJv+TBE2M+NoqIKRI66udKR4blnLe0veh7NpMzD2UV7nQML4gXWeAH4WJLVi+8gLndY4AAy5IMyFd1RbOA3k9gnN5Wjo4+JlKBBiokqsbnlbrv8eUGBt0/EReYeuJvQO6JudYhyqJetBIKyeAlufBNJiLy/U0yr2MlVZJ9E0wiqS3DMB+cvQIJp6iWZ0kAQAEdrKxtWn3Jkv2XHSrak7xkCQGbncH/LvkXTi2C6T168Um1GNf+ayOwRia0zhR+9/KPJcX0haFQ7v8wnLNlw01ZZUFQUbNWCkeYQVfH67d5tclaSzUrx29tC0xZJo3Q1x1PwCEdcCLYgRZtFTr9leJBOlJZadyd2gFFxfG+t4RTfb+LK8dj8OaG42uXiUdURlRzsFjMVTGotxciMHkZGMXXyTHvoMfVNugNu3wezPnkTL55CIeE9yXIW7v5nbJ+Q4VrmFmQ6f0Yx0l+IxWJXUPd5ozoIaFMG9RkAdkOH+40kj8E+1leatGT4TUekfGVWyOEa6jUfrW5PNnOv1AhSP+q+ogM3qxX/483YU1cYR9hzXaQoIJ9l0lYWr5WX2wE7vCeV3FwlVFdihdsj3fpaiT1VOqrqjVtfoworemaESnJ6tbE+jvgh/bMgPbhd6/t6HGWuFxer7H4DgyRY8hN94ZqY2dRAgKT7jVmPuNs/47FyomafGYJ79i06gwF6RxZRNcJOaULVZ4izRPiCQX9M7V/T3EZ+MH+pX4RKyjiUg5xzPt2Y2MBKonIGTfeXElhYmLW1CF93bRrqy9JeHQdsaIiZ0t/ye4BYrECcwaMnfBV6Q7snVFWBxGwJ6xCE5r3Hpf8gm64uoOx+9i9+ncKTVNlas94QkrCsWks1hFAOYDTAa4paAB9rEO6ay8kF+nyblKMRr+wDdQwNxs0yFUaTT8YbesRISrZWcfxQvOPazi1Q31NmYymOWkDKew1XanMAq+O9XKwfqCu/IMFqH6E5LpOKK8dka6sPlURFPfNI2p2yg8BSOKU3CF1f4jhBfJ3CGkz45+rYb0HPyr8bVWLDMiAgUgedBON5ECjanoBSuxlGWLxUeYM+T0iSF79xzD26RiVVwlMKsZPeWVI9heHu5bGNE9bD+kI+ZJEBnom9rfZVye+/vW/xoWcwZsg8VkHXcBkEzJYTHngyVwGn0LJkR1PTBulpIiaAg9r/q1Zbi5+ffDlsUFDOSiCxG8db8p0ak29xbvWTg/pUI99X7jiVQp/A9Cr5/5Im556mj/Z8xh7NlBq76B4a6a3f2DH0LzSgN88kGLKw38KJyneqOHwYeJAHo6ec4Tl70ipSgiRmDalQXeozIXulMpfgeR2P0t6H0LGN1No4b2NEhtWB9u7Me49RHlt9vjEpQcNU5pZ+6Q0fMtB3W+QtHwQe8lP2yBHc/q7nMkcsE10ihvv2gCr46WLJrF1zwF4T5XtgzY7mwAOtZU4FmErUJae+LXZErOS76uoVIpVqEoDztUXrtYDjLw6CmaWMMRPVZaOHMe/0qZjW6yQeykBAouw23ck/Q9bV9UifOzbT53TGBLO/Shnu1qJpUzQ9FjAjobAQW0Lzt/lpfPU6DoXXxEWAcSJsdckFq7hkBzR8rc8uJKHAlh9mef/aEXlZaB3YQzGAvaBKoDNzxC84VKipj2OyAy1+Hhv7SOLpP3zS22B2Zic7V5w1/S1gOfjdMZHQeICPovx+hvgq99LRjJK06CcE0Um+FAMH24NEvwfh0h42+Uzjw5QLvqUtJhMVNxh030c2y+I60is/nWfS+nysWrwZnRUMKZqhKwjxQ9jE3F/oarwtdFRxcpfNzCvvAz+nVy9Z6bcxoXYtTcLPmDbeftf1EOWLtGSZLA7PQ4gY2z+W+PTplf7ip0daQqiRcziLv2YPvAeW3XUqIcp/By2FQ6SmePXwCdSRRca5rsCRIM2+U1HyMPfTh1cq1Y9WQvw+0B4IXbpWzQhLJQ9N+YlTnDb7vUxW4yViFVwE5f33p/86M2OPpoZzRZpk/jZoiudnl13K2OwgS842vBugXmONDE2wdZAUzfmz8eWLqT/fuqrsrgB3+foS5DUv0c95iEWCsdkjjI2rUGJRiHoEmh/n9VCYURomgG4PVPGtUjuw++PNI18HhWw+Fn3mC2etPO5UxLZRk6Z4IxxylclAmxAIXD8iv34XvtSv2JRMCeJvg0clmA2u/dKnDPTBmQL1qM6aIHK/5JAEYAj0k1uMWkdUjNQR3i2h2JyoMwo1iHQTK+EpVoTiBXWPRJ/7czMCElOsi98TnkEv7bWaLph23sBBEcPNs6AKF+LzLBG1UiXLaI166bJfS5KwgQuDOg3riJfj6ATS7vgMaFxIkiq6dnIkEr/b/f+lfX6S/Yc5Cc2YJUnzUKJTKk1jsb3HxSLZiN5JVTKg8ZQ34v7ypM0xbwqsgEPi6bxRQZU9HO23I9kMEdNxDfK7dDWt+37tj311ps3L/jI+X14Z/FLoxKX6yOKAOQH1p55ItpA/EEeToFlhxAXVyTCU79eCtTVUqrUmuQJR29rqhJs38yhGMZ2Qd7WUDj25bkLr9vQkho6W1zoj6cjq1yz7xPlE9k704b9YVFrlXULVui9skynmTPGTv+ckzS3q7T9/orMNpioFNx9Cox0X+xmZIu/XR7XdjjxkLhU2frgsARd/fwAAAMBERe+5Ofyp5afVWNVqm9DUO1JGHnfJUcFgrsXa1XE490igQGt/K+/TIgmnrH8yqyqAfCb5MDAYXq3yo3K7u3JBShodVN51uZZ1RiUIg0mcDI2r5i+iIavvkuDc/PbNL7E+VSARTKfbZjAHgC5xPxTROvxm0VhjHTNFyfG4XFGq34sJfvBk5cyjgRYbkePUGtUXMXC3WouMHP0n8/WSpJsXq/Fg9vW7No6lBT8RfaG112eiUX/Qqqh9rrQrd5P1OMD4MBCP+0yn4RZttxyIQcB5p2fwZlqf3LkoA6b0htxOBE+YklHnVuQmsasQC2AMNFWBrlcxg2bbMv5UWIxD/hAkT98H/hkWOHrfV/bbINf7VrdibUgsVE86hCUv93egpsHBBwxA4NNDpYdx3Xg0rx+NYtnZrtm5wg+1IkVb746O14QUEB2VrgNlagAK9qdj4QqmNMZBTkFPocMjx+fXfEtNvJPALBDcaFH+WDkBwgfUXHry+LOzHHFRxy7fDu/I2bbSTCJeViCfT2hc4XvWn2Y4XFkH5QMntv2rwxKwPe1O5Ly3+xwmY0q3D27dJzLR84VuxOKRlJXU6MP51eWqOPaCL2DVmkEssfqeJ8t4FX+oyqox/P0qp206cKQoW5bpPwNTAvSFXKtTadb8IQ+NQgVHO3qCM2HrnWaRSbqty89UOaSv5Wr920KgJ6Bn0g/azsHWRbb0HNZ/4J/b9WOjbILiTU+vqYUYg3TmCCZz62ONRRbQqvfv1y7F/SinqQxgJ854iFV8CeF3rgKh5I6PZgfH3HdkEvEl4h6QaVpwjaaRgFu5JKZ0uQ9PKPdk/Qn6DFV6FckfIZt2YNJxJ0Efa9wmzhOwR8MzoVawZWhtWWyvzgm8J1VgFbIKzUREGhqddSb2iflHM4J8pRrP0RuhpRLP9un5Z0ded8uTeIs8v/a0n/YKVdsih4pz6Qo+c++g1DJFPF9o16ZnnsPnnAteIFl247IJ1ItcYYcpZM80bV7bNvCDcrPrmraTrPAqe1RJ3SSpFYjWpWtKRMWX849FmuzsbVdzIRmvOPCOrZJiQ/zW8T9CF6JJbvkNmQ2Rog1jZ1VJRMfzpwubkCeDe+yaqlALVBCi9zmfaVSlqvGHT6NBcoZgWrq18Qln74CXBHtqGr1v9W9l81YMtD3ZgFWkN3a/+XUHiuteYkgQdqL+RwANopfUXF++WUDVY66zN7zPyCzMVxhFoiL7fkAUkV0rRiBKcxECvYyfNADNLPNEqyp6kvb+Qan+71NozKAjElGBV5HTOzB6ebcA4OfpyC7aZe6YpVMEDCB/7VAE78kfBkW9GYUnL5bqdGYV5XwwqN0m//monJLMjeVUmHS4ufYOCyucb1aba7iuVTC8oyoivb3puGWjjCuF7ZMFJkJ2h1GT2LoREiYuwqfE5UNH5MBA1Yy5L61d71tRmxEPTWyFuKGFAqzv92hqw/RA0iraZPhdk1QRzr44yeR5gGVUNtARCBbfiYzOxHs4WpauE+N/yt1US/ye6XRUh4iKxmUXNoogPIUvT9gWnZPfozSSIS68JR/YBNtxT8wJJY/ejmxwx7XQPcYt95mYny1OR3a//Hb8QWBi3RyKIuZ/md+83oG5lxZMLYUYnyAhbYiZVovlbLJmwFUaS1Dt77F1letUeyuG70GR1Po1ajPHeCD6dsVVvZDxvzaUyps3knew0asUICNzYfrNnA2mveizEoHqg8TZXMGpW4mv6EEsXFI6qlSMgLlQ+e5Ywt+QBRdEhW14jKHa1fIFUUY8RB2lO1F8Fzxnarv/Op5jdsH+yLJhp8eeMXOohBO55Um1iEf10we7M3Vqbb9CQCWRWuX8XBNvyPYjo/vTI1hjpmgKk8YKulvEzF/w6HKvK/BVLn+GKVVPzg44QzhvfJjhzosVDIPIaSL2FqjZ01wBOJcXBTQ8sjxLq4bQu475HJ16qzmXZUNmeABiHQeJHqEsnLxuUFkDsqFs7yeAasTkup2lr5pvZvfiNQuaQW4wpn7JPt3j2qyr/hAr46cPSV5ah7rsDY1W3Q5Bb9lBixJJpR8xCVUJXWfueEYeveIChPsNRIxQdD7qnsb9l6z9Qi0NhaEIpvb5N69Zwa9/eOGV3ThxnIv6UPYt55U0MOXZQoe8scgvbUxw4yWhOEa5qsfxtw1tSdMc6511RNb8J5QuaxX0RsH9dSUpHIvnkULPK8BJcindGxUnAsY3rnA3hVfn7MoAE3jRyimk5GdA6OhLuvCmVu/dIlCDPdr3ab++xmN92SSafRNikNI+WhooU3rZH9r+QYUfI+VewRBLdgd55ZZqAMb0p/uHQQ3X1mkQV0d9yjExmk5jH5WPcnayD6M6gPBRpv5uq+1ZTcFMB/raZONdMqJ70w6qzZ/dKgDvmjgvBMnk/kQdu8gd6FE569JdDHb8X0iZG9x6HbPcBMj3w42Huw2T9bmlVnZWdF2hqzSG8uFlZRFNlQJKkXQzQkptM1f57xw2O4+3dJQ1BrAw8cSuXAcEV4ga9xb5dXlYjrKhCnPobhptK0/QK1DZjhB4bZtQI8Y9Or21F9GeNRQr+NAiTzVN+bnXQYVhKGhuUJOc9znN5Gi3VbUsydGi9GhC0s1xubpg5rCyUnb1osjc1/b+SkXL/GwNYBqttrjhSmT4dN7bD+woJ59Y8HchIyORyx6FGd/yuT/wbhiRKVq1tupiF1ZUKcUvNLn24dXyRbxyve+Vj8p1M2xHIy9+ipbAW5dDdeCS0xvcaz03sAjJR8ewwx+tOk5mEVuFVe+kK+3UGIC8uKWAIPKBc3nbb6Ji9Yl4JQ1jtyNmP8wKGlN4MpHi65xvusCH2J+toNXzLua8eCKtq0KKgJsRe+ZX0syLcsCN2g/iKscKwJ8wR9BkMdaqyJPXWwrrDkO3/iMBj/mtf1yAG7Q0FsHYml/THglCUN4xLpAWrfVjwAAtocF3NhejJQOyQX+yHIEh2DJysPnfSZ0PeB9Nb9HkTLfl8cfrpUIPUrNTaMAXMDN/dIdcA0s6478jZ2xo3yGSoLIXI5vix5YGvxQIxnoBdZosYqgqMHcXykMwoGaFl1UyZtdKtpJXG2QpHcG4J1aYmVEkSbs6BvMM0cCL7EKhs7q+nJfK5Y62pt7X6jpELXTBGVt6SKUnMSg1fOnSZ/OF2mXHMueBtl16qTUflBPIt/JgFeVdDZ9iH/M5FAS17TAcjqxOPgdGkFeHCR1MtDFPWTxcjX7jiAnNqY0lei7AJffx85Wo7pfod043+rZefzsqHPrWn6egYgxPgkJd8HQFdnBwaOo4yE7gF/PqtSVgYM9mMF5lcSDAkVLuJNn6jTTmu33NKsT8RTjK3dqTSU28don6b576HV/maCK+CT25hhZAwMxT3U8TFMsGuIbPaq//uI74DNPOUGREUaMxIzyYiWphrlbo/KLJV75O5MEtuQVE8w8GBaTavAKG6s/szZ/HaHjuyw35FxPdL8pBMj2p/KZzpou+owYtABnn8DxkT05ZfhpDgNkSXuhLfEghynI8wuRmtvxXjIZACPt0WSy7VMsgf6J0zJq3q3IOXf/VZnQv3s9L/k3TTsEUNTCXydA9MPH0QUxM4pVAD94PHP7d5otd8HJ17jsEGDqJKZmiS3a5Mjtn48s0GLylB4GsgjnxQf5n+nNf3noXBcw563V2NsHlCiDA/qZI1OchabTlHqqA9NTFFx5ajMChDq7Dm/M6VfptE96LB9ejro6JxzhLmKR74B7w2hHbv1iuJHMhU1nNHSLbbYEi63Feo/at5vZYNSJcrdnnvu4753JwuVpAM8pqC94OqSsdffgNZzBp1BBJ4xp1sgcZiykhdbs0H4GhgFYriBH+JwLjQVaHUEXvkqE/TMX6S884aZVo3D+JjGytIeDZiWwvI7+7HI3CBtVDPooZVsn88rpHgp8/riDLSKy1l+SUEd9LhsrQ+K84DMFhmMCIR+2iCwaOBIVe6m8Niad1fGrWoh2GiyRwZuK0m1RYUgzzdVerLfIbHUWBjQIKgWqGejzA+H08dmqpuCTabE5UI3H4V/p+uSW5ikm72icPxNFEWVs3vtUrc4MojaHRL82tmfgddVJaKToxyJfAIpk6z/1LXDP/HGPm/d0BUMhcGv7nlS+HAtEEAQ7Y9hHyCcHwEpIAixgs/0ZiYL31ES0FnL5OZ1pB/1ZJkPxaKacB+CDp1RW23mUYMpUh86kj5k6fFpz6uzb4kxBjnyQcVKwLuN94DOVYf9+rGohS+CLYufY/2SGQpHl9JV2WeQPyZo2hnRSvJfbWVSwvSV20WlzjILwDdyphz8oEyYwK3CMdcz/cCh3QT9qAqIvnWxuziuEAnkoDg0d32AUUrQBATGE0IGsOoNlozP5lgm46xb8ccLbHKGwbUmo1dvQDODZp16I36Umb/wm3Scwe1xqEplCnNYTo4qg1hrEEzH0DMR6GE6Lrd5ULfeuqicaOzUal3sWhkjNO4fqbbwC0yPKJBpnpfddJj1eNFM4PEPAqCuh/5EspEbY3gkKW6wUHD2CEjFiGEbFRr4eMK+36jZmsRq5vLzQdVBP6AAK8J9y5/QYV19l3r/X5uxiC5QOdbz4FyKNPczZU88HDg0fEdgY1tD5MYXFtkoggw2Vtq1qXqA3UXHtynS5/spW2CJpARfW8GLHCDDVh7ZqqgFeMq9eFzlCnbBxr02pCzRlrmv/+gGHpq0lCGUMgZSyM1G45qDarbAxbTuLmNpNnR33k3oK3KpH7+wiVo8o7/LvTC6/xD/meH8Wn/ntIiMgDZzFFN1GXnBoVj7JAiUskP8t2oOf8K1Nsdcq/K+xN7O6qESGiA4sGKq93QS37rqWjzEL63U7TEqwUCN/RREhUQzWQBjUOj3egXlpynuzHy8/szFz2Y2T2AeewVTAmnf1haXFOjlpvGb2+KNjmNHY7CvW25OhSKAIl6zFpWHWH1PkmCv9bGd2eE/Zo32cCIDpwkbWbM599tssG7RNJHKe5QXtBD1RCa3u0PfOfMfQ4lIgguwb/dSQGb6PgdKPKcYUzbdt4J9yRMkMhnvKbILy/dFA1V+F8GizgZnSHV27HW8fPD4JXVjNiucy+e43NybtU0h1YxvZWOWjMazr86v/hQ7xaeYMMTEvF2lifHZb6ZilM3YaXJMlBA5COlIR+stSlcPnf1XerceZ6jEQ9Qm3Py0NnkA6i6Yw/3TtvXHWwRXUWqjGzjHRYuUtGDklXkDz50cwwR2Pp7cokKBC/CsmCHMsKZ0SUk8bXl9ptIPpWjqo6UhrsSPahI4GZppzrsNiX7hYwlh80PUuGa8YTa5yYb1phWO5fCYIGCVqQcOs/QFqIgfRxHJoDe/XNr0uCxN+ZpjPGhfGIKILHVksfFn6HAm6KyRlXrIq94Qrt56YfH3d+1K0fjZXa3z1RZDqahk7HPF5HqWZh5qIUNdb52vLYinuCLWWpDdOgiXxDuismBOHV5h+idjhOs5Xhv5UOU0cXeTzoMpWynVs3EalOfqMtwOWyutDnTwvMQ1tPbQl/jtc1dRUN2awaSdavRZLlprVOP6/9kUcdBrP6Kd00rQVYVu+JHYnhDSe+rjopUqF4mKGz7cMGDoN38A9xhZs1cnmqp98XZKXyxrHX33EvSf4M+5oEe+M7pnzslMZ0zUtDx1f5kaEk4ZlK1rDerI7psEFxhhX5x+r68sUkrSusB+LbGipRhGLNM3WnQNy69zl8Ho8RRXxzS+5rQ4JjldbDUn89VFzHzdkBtg3N4A8MlUcNYAcWwt8Xnj+NU5DlECyejm0NrAaH87Bq7/0K2Q/pRPDMk7FzjpAxqmwkui8bR4XU4KTU3M5xQCPFFpiiCxkuN3ZKCuOxoa28VJuCYx9J9rb5iKBawgbYL7M3Tl60/wsuUe4OB9q+pbN8THKgTXN2sINHZL0PMPRQBompUiPNSB44Rk3dqk/0o2IigZhuHxO5qoJBdiA3UlsoGM6tFpSDKggtu4bwiz1a9GQMLN1AFyb5boiM5JargcorU0zPG4G2syHsphUMbVYNhPzRMweckRXg1NzuKD1f33GgdTTFpS0q02dZbt1J0JAamfkbRTWxTNcVHWBsoFfmfBcAyU7T3x7yV8afLkctbwBmAND/kYBLdFumuZTSt8nN0UbpAMddyadr9kyvYXZj/CnWRyDhJCs8HnlaxXPrl2ib+5ilHIuCinC8mKeeSz0y77GOQ2+IPfpU0Tnva5kUpp2cMhOuoY1UDORHekiIOtVDaOqJ1fhiCqt92be3fzFoHsGZkn88Xdd5Bi+Q431ypwnpih0SuFl0VlSZebQpq9PkZgiiBW+HKXj9DMqtezONOLARv885ynPnARlPziNGR2GmK7G6k+fm673Ew7ijPcudCXUtzI7qw4EtHrMDRrmiyC04tCybnlFIngEtyPqDnLqZXfRXHcnRJAxFGKb+sI37tKptPgM1K8YQk+0x7cszRipJDr1P9coKOshBspUloXiZHlCqAIgUTHt4cXxYP4HAplD7Vu0ueOo/Veiju1clGq6fLrbS3QifJNRmSbDKVGKKd3w3LXq3++8QLDpTJqxQUGUKccy46hxX7C9WRxYxqgL7r3rfVySgjl+mhQSkXbtglNSgMAidP7dkRTRXXH2Jpk+ZO4m1hQmMO54iL/MgexHA6rVoqxSftLLDayEZrIzCeyfywh7crJMnAbSnILr5siJZI8WKgltd10XMFzWwKK+1jc7ZocHidmyLCUFh99WqYq0RPpsmvPmwztTED1nsaSkih0gK2GKDi8Y1Zep/3Ja/oYtBoN5v4fi5eg/Z5HuwvnCCD44EIXlFR6+CAQfQMWv+hxEXw3uskLT+fH8cl80AfkGbnsfk2dACcnnG94nvwt88HTB+xvGd3HNRNIbvLaF9op+8ruiKx+tIxjEpVW0yWIQK27cUFeGyv//hSlc+pkqTRxWWfipGoR3UrVR+mjL9ig5j8FMejyoZsVbssvwL83LK7wNhC99k3kYV6IoTIGSE0tE1eKwwCStye7z2rm4EqJAqmk2K3QhEcUx2Op72tV+Yi7EeuuddkUaONakctNkx9KBGaTh2d51yKZc4e2kj8fgejizm/Oo3VYymDvS36fpIApbtnQD25Ecl2uPnlB/9ge0V2atp5dIxmDYj0Go+uKqFSOzeinNR8sPWfZ39etgWpxAV7lC+c8J4o0YSDK8xTV8P0Vq/Uyemk7JB2BDfXRgVppOUDGMc9NgkwUPZ3M/V+BhEsr1IF0Lov48qVI2fTdMsk2Qv/tyeHT/ayoeS8dxJLDCoyq5aq+oVHX6ttrYRimKwxhBPC6AtpfNvO63yUvS6fTr4PvQtp4HAOh5MmRWU/0y08DGCY8w2x69pF/+xvzQ0NF1/fhKBvnGN7b29DLWtHOmMJNd2gTwfMSX5fP1wM65QnZYNjdY3aeAg8LF2Il63FgVXUaLDN1YlzMn/xUYcOKQm0jwpIbLMUQSRBPV6pWQ5o58nK504ZKZjSbDC28uOzuFGHscZoPpj7aVjVJDCu9qSdlitdhHhxvO9HJ8xdOpOd0iNAC21u9Lc9CO1bowRoqZeN+I9+rxbkHny0cA1MpWE9WfwTVaxNpqor22BOCJX+BDXt5HekzqWm1Kx6m19xwxluPdFDDeqsGydesKi+rnQuhl62vm71vbKhUK+Torm9YiyQnmjxuhmm1zkWZVI9H92Hdlh2yBffkVXAH4c4plJaor/fV9++GbZmRmE9fF+ELnaSCxx7kQrtkeUp5uI2Q0iHemaxNL18NPyV91GMb3nknNHhTcis1Wf+E3vTESqrjdxqnPE+r4Rg8ofQ4XZAHyPedbOhPQ+t004Lhatynr+WUCg6qio4/5utmBI7PdV5679loHOwgGQI4NOKg34jchtOCA7NY2x6H2/bAkqOl1jLiTjrsET61qW8sDF6KRtRYcdFsAOCJs8mZkW53dGp4ZpvXejqc6vyPdSLSKpd++TK/WgY1fV3ooKYLJRrmxZcD8M3Q2xsihT7EVjDNfv5k8kxpfoz0LZVKXryM5+CkYS0fPG3CNBsRWeRd2vIre7bYNkTdJaLWGBlrjG7zsOzSyRys6hb16kT7zYPHzPs6yj3uGqjigXj3a1OuePJ+juwe3y5hG/YI3lgVZsGT9eZV38X6dY4+pvtES7YRKxAlkMd4W70oY7kk8Eb56Xr6QBMvetECrxO6DWPlB/RTzqHvXBBHnsKxXGpataDd6J/yiL3+NSGalb2ppZ7TOe3HU2sBlUjG/43MHgPoG13aN78k6sY3p18to6xnYMr4UtzyovPIr0lKgl8HzIoJs6LGVepbvpSLBSDdkWfpL/P9ht1aQlgo6jjml91KJqV2TdwF+rGJCQ+r7f1lEGq6ZaaPfdBqPIBDhPLSj/QXEy9jwdomImQJ+ShoIs4zU8CmxvarqR3bD0t9H9bGTQvhMDxmfUFzH5kjDP2YX14XmgnZfq81uLdD4Jx6Q8upHvoHP6gQx4E/IpnNzk/qMqbqtPGGv16bhAUK2Xt430xhexKzxrTZDYyvjg09mILKCaaxgrHFYHmjIyM5w+cxD4qrVSV0uo9oVwZWp9fauWuV2rNRArNHoMYJ7jCuYJGU1nrztqRKdn1sJ/BrRlxGbdobuld07NqiKNUSFVWa9C6Crst3vzduruXYG1kJTO0vSF3AuPt+pGacLEsL9sXfmxTw8BDEBTj93SrEBSVcoos0Fccp/K/V82xkK4WHC9Li6u9/XOBptT+PxlvjkH3ambOM4UiqJdLOdTLMpDLnH3l6RLrNVnrF/GeTIWPEgh6IrZqnX4EShZPdvM3eM642I19jzEfBw/c3rmy8gXKFy43+q2cJDPWovXceWvp/X/tInNuZ5xgS2i+B2DoOYGGoyUglEJV1OxjlI6k44irHryP0lWqJwydB+2EmNxU9HqQLpG6aDw93wZxLgmqd1mMQBvP9Q3PF/5jf1QFdhmHsaDnGWCezSZ1w68DAisUgf/fJQYkF151RZKp7qmlJoN4PyQtPFxK8LhupVMYQZz2MGPDQpoimQ45fv9PC1P6VuBDZ8cSZJCBZp+xjYkDyE0EWPuZcwT0PuCLB0O5wagqChSh/h6wN/j8c8hn7920Vv24at4uNmDum0NGWQ08gWiP0fenphM1si6yIT4DyI6eGs8wpY8epNPPzuPWsqOvWCl9EYyPWJ+NRtl4bjCe4i88yUHu6Y06s7E2mA9aHnKfei+ZSMnS7Y5hFDOUeRJkvl11I5Urpu/B7GWkwwYioqe4+bkliYsR4mPXJ+5RnNZYSb3a25MAefnOqZ8tY5A5nKU2Uo7JA7DWsSdkKmy2k6dO68kZ3h4wO46J4NUob/ifliFOW/IPf7z1Uu+kDU7v7bI6tsWlGybVq8maa0xW1j9mUhA8fKPO7Sc//7hSoSDX1vdst4PYKrJ3/AK7FzU4Q3vqX1KZMDtaeNt4zOcB46CBntsqsWdvvvspsiqVcPR+hbE7GGefNo5sjUqmjwmAjMrw593grFi9+N4VTs/u0nUL9kNETbhjRDGpYe/bINh7FnsfDuLHRo4WGV72cLvps40cEGfKrI+h3qnp919yfNPr5Be7EwUxXmimUwP9zXKiRBGmGbAmeDa+JkGrL+LXV5RBB7e61eMuZTcj93hoKOeyRbyLh9zzpMhATk6jDNaNK5/tr7EqXNlhMRfKANbtTT0WuZiizuGH0P72soojFBv8VHxWo8mfaWo9MCIXAclBk8WyHfyZ0gm3y9Oo7BHJv0EqBhqK17sHBSFrUCyxvtclppdjghVem2NC9pCB9otR0E7KhyMRgI9n2cHXgfTYOGwaVCIgMBf3uTj/yZQYX8zwuUdXe9c9hDcV8r0D9iv+Y3jD85iDtFCQXJb0Uqz6c8j21exBbpBOtWfogjjHCI9KmmlmrZSkozsk2Uxqe2VB2lgQNxQSBlJW2MuaoEd2mYcCNCoglRKNCST5+A9La8hksHNvB6ypmgWL4j5pje4ahajv0gjthWdLt4JK2bayRjPbmxIDeWq5ivRGIaj/bXXQFu1w1YXY2ilNZ7S0SqkzMX/9hvXks7ss7P1KJAGtzwIX45nIUG/DtaRcEm0xfrGft4/cZvjvxdPH3P4104l+cNS30z+YFoa3/iJRsWyzeA3VUaBY3QjMUztwb3cur6PLScl6L6F0357ahWVHduzKyJoUB/5a0M5raIz1yM7RP1xvS8moZHnxZZx6U3FWZcJbHwIgFhUkuyump8No/8bbW3eLgNaq1nNWx/ElQiJK461M6+GLd24tQDikCmu+lPx8w2rPvn2AS2EeODnWIFfczVrdEeZzuzV4W5ZpA65DeyZOBF9YpGWkypQnjNBPas0r1zbRksKlugRaeDBIjdHLkLmOpEpYNJixFZQf1wGDOB44DKF1X73OASfeTALubc/wrE/ybAwvecR8BfLr+qoA5xSuZSOPIh/c/cBppc7elDNBpYx8KDERUIHOFDnhNz3VY2jP0mE+PeXJc6yWUSUask1jyhE5kbzhYTWtAwte93urI5I08eM7b1nPP7Nt83VIDFqObeUPJTiK8XrHx15zSdAUQ6UeLRxeeglAEVHOWdHS+doK57bN6GSqd84cydG7O7EPfUJpvjMQPUo82CpSIbn4uaWWpZ8P2+L/Ck/4D6BTjlqiH+11gA2wGGxL4AXSHwGY/ZgFjSsKkJSMxjwUT3jBR0tG3B4pyy/jhcf/nCcz2RpaCibwgiQR+2hl8usTVIaMMnICRa9MoCmZc1Zv/Hu/y7drIQqs00fsiH8d7nv7hc/4OpkNptDWaUdVZDMohxNHxquqsh2yTh5q9viLms33XL3jXVbEPO/ZQDdXhyiNjH6Kv0vOjEwwtYyUWY7Weii0KsGMrDZUqiNY8tt2na9kXESZNU/a/USbXoQBX9ynaRI44jmKIwd+uwqp4gR4G68OSnn1kDb6VwpUg3Ne838Vk6k0WZQgNnXwycE7T4xDZcMOwBALMaH1bBrAIpfWZqpG7QL/1I89+oV6Y1RoucD3kS/COitvzX/7RKX71OwI1t5Jtse8krl4QvV80gw/X/VnSE1QeJc6vNh8EzGCI559nf5Q0niZbtNeAckC8hkeYM7mpjNpDfqj0wo6oRqY///2p8puS7V4QBqE8bDB+bCC3c+rLIK7uuvaWBH91ss9Qo6jAiAh6ZDLfXQbKD4kMfLcfaoymNijZn+Hc+iJMRG93qLeuFJ2Kos+304aviDn2SRBGayzZyPo4KzMnmTj1xOTrKSzFOA/gOPNXKhB5K7t5EKZc2Sr5NOuOtL/MUbP7deOX6ySgpHEEtGFMdQSPF69eMB70Ji5VPPyCmJk7a/zcsugwqAQcZAg+mGL/dYWmwe3SabGgUMMFgwMCfpEBO1IhoKMXjWWq5+XtzUw9d51IlVbOCvp4/2ysHZ9+nI94f3081pn+/6oQcVe9HE8nqvJnedcHXah5zV3MILSO5nnhbkhka0GuR1AiQgh6maJJLjF7M2ffJoO+ZVT1YbULZj2nAKKrPBnMKomLVlZ5yB3uilF0rv9td5uYbW73nIltyxj/DlX81bI7kCuQ0hpLmEgyiKEzv+sK2pFYesMjVBFqai6qnmGe6gyIRxNdS0N7cgBKURxVYwg/8P3uqqT2ZDr7TIN1B8itUcsku69Pcmof6AjKdn+UEq7T78q1wd/Z9MPT8BC4yuSngizulA3wPOf7QM3DYgAYNWfeedA2aAz04htwhaJohr+ipEHUsU8sOSBfNieDQm0iEQfzo+81Wziw6hnTMkqT2tDtjUS8Jdg0spiN/ZPfeyELwxKbY9XoeDaJCRMnv24hIgu5xhpMW0B6wGpd73I7G3myabqJDVw44cYrnhdjAbOzPJbQegW6Rtg+lydBa5qK/SxAt1GB1QiTA4o9shlpbef97wc3ssCHBJjYHdsKO41c2OdDf/9oYNQY+QyGOFGq1Lb5o8k8UJFgkXT388TTUt9nz+9jChLoNPKlU639R4hH59pWrlDD4FUZA1BFCVmWYGKv7DLfb3Vj8lP04aEh8rrSbpnUGqoFIYP9VqRtDh3yQ1cDugU3T8QpynMY5MHGm/hafxo/Zl+Vcr409OO1f/WWC2Je5IE/GxkIE9QNrCBK5/s6UGFvUcYaELtzVbCyvy5O7+lD/NU5rHQC0hi7JNrSTrfb2zX4LOsdbvRoJBQyYkd/P6UHgyxDV48zg0JTc5Jd+LL02fwAJtHOzYdHj7jJ2o1076vcaYPkIe2hEhZf8HWGOonrs3GS/jF88uyWqjFZ/rpgeizEmLij3srExkdnEQgWrgTkbmLnowPtOjRAZ7uxUSY6zr7xg2IEdMTBKQldoj+T0Z03EOAMBqs71GYlA4I28zCEu/1Kl6Q1XItR2CY8TjnYka/q7JUvYfHBge3qiiGZOOhaAR0srUQTNAHAwjyKFCdCPVvg0dbi5PKVbdVIiGohzbm0iCM171a9NXtjM9q98zRlDhmJjEDfjkXo0yEPFiHg9vBrMGANztQebPmKejVoObY1HAgg+DOg+sbVyh5Cnttea0ryZ0vYg+ogk7U1VwduDGG5vopxE2Aav3HgCp27vHCreC7SQBGqwBZivjaq2gOsXZCJbvq/OVfn37jqmU1pylCkSWwsa0vxqeQ2YfJcg10AR9NOFxVnbfU3r4JSWMJB4r/6sJwcjvxNOOFKu9FTmATFJPDpjLOBl/d8Ppt4azRrJL3V2MizNqFRM4MdQalL2jpnqtjVTiD+TQdLAtsni05Di7dwHqE9CY3c3uFiHLkb7RNHFX+MeuIFQvjoz3O20axftfNAKwNgzHYWPQJ6aJYVsTG+PbMcwq2Pky8wJ7P39ECBh0glo32ZZsa2lcA+SfZ5syIrl6nvmIHLhmNOfWtORwDBJucidDpCWuuksta6CkTFIz7iIzNfj1nPuM4u9jHXFItxSkaVJsMDAVDEu92mah9H1i5lS0qi6q2i/t/NUKcki2JqiP8YrzQoQlqelh5916Yx9jenOYRX99rFnuN02Rjk2GNl+mqn2JWE2E4XnLNe50yOpaMKa+Gn65N+SL5fFRARu0aNlxKaAGulsuzmOJrA9aLJSk3kLbBk3tyYRCuNLIkMAemBRDyCeCRm6hLO/w8OILRPzmE02H6linkGka+DsELsQ0JV9fneu3aVcHzEvG2J4JGpDf5bNbL8bD1XVE5qYzDGihM3rwwluivE5WVYx9b2VNRIuKjoIas0s8qEEMRV/+qtb78Bd5w0MtZuvdRF1SWrWzDK74rQpFUwUQZm0BQXQZlL5BVh/j47cvzOKF7rWuMcsKR/GH7V7CRWBzAIv7L6Q43DVGWE4c5CrfLm1FDkJhCQQMXblLqr5dQsLJtaBqqdVqxnN19aHcL5r+1BBZ8WJ6hk0se/PYnXay/Gv65MQl9IZvAGZDgMdUEfUe8q+yX2KZJTpdDMuFCRr+Xp8LY1D9D43fijWzCWUt7X8zWc6ulF8pBLq9Zuq3FUXu8sQ+fxtI6WqscZyiDmrGXF/stL8TDZnFnExoP77tQIQcTQa9j1vyJ0ZKX7DrDRTvctPCzTuITKKNTsLdnx1uMGK5BQr+3K1jr2eKhLUmMf/HuPRiBopEHQNqjDeZfLoUNmnOaoo92Ia5BhXgFcn9i0yxHIMlPYvpkgQ4xqBUSmYlrr9+7oxN9ec3+8KZAs529Oy9ss2H8jY3cpHxG92TV7/kYy7W9EQpyMSHWcaTl3FAca7VJ2B4/sqZ4XAwPs6jBNs9dGcYT+9U6Ao7IIVemzRpKXMibNjXRW2N8Eg2dEkZHUBEWpEvR5TjtbyAO5W45Gr1Idtk/S+5EzCmGD78zk9TrrWNhyT8Iae5cyoJYZibDABptXoAACVgQAASFxBmllJ4Q8mUwURPDf//qeEAAADAAAF9WHZADdgvREhE9Y19x1Qe4g2X4nDpvkRibHbxoa+qCYBsIpnQ51o87mhHUkkC6uztpqoUqj5pKlQylXwYolPWX+QqFSD4Lbw9cBcau4ds8ixPYVpAt0+A1usxmokbJ8pBXqZcy7TLKLNP+7anvGU/ZfTYABohFESh7hgIOuoS7BOgB9g6D1lm2c06UI3TnhFyVhM6Dx7vjFg8go7fwgpApQlIqvkRQGXTSviV4PyWbB2Z96gXnLE8OXcseorDnC3aFTfcmedIa5oH7n4Gj2AZGZXCokTHA2Irm9FMRuTvWhXDYwAeJj+4QEF0BmK5YP50MjCxbSVbC3JTnY+ASm3s4r1+dTm0ez0w9AOEMFz5TYM7hVJEVgadpflRKkb5U3qLjKgbCKw9CvfFTvZK2NFNRlYS/utNKRfwgmOaySlNY1gagklEMBFz6/oLE2G83/GeByg+TdgampoTFSl98rhVF0nLwZJtFclBwo7mHntKsB4kHemsS4ZUv7XBBMbmqTcSmSoThlac2AeGGKRfubvDOceBX5FllvYTEky+orw6nVSm2jIfQulHGSSX4/Rl1A+ykOfMnYQAGvsCxDBmRA3qnj9dRh4ZBgUJdnFyGAt85HGkLQL0tHYujkvSj7bClF1VvKldhPbYVjmLYSroyBtXFqeb4KKt5/+jm5Cl9sHcvQpNLXShg+aV+FRhf4+yJHsb6lbbOUwwj21/EoLidXhi6AQZ+0zjUy5Q6c6xE771Ux3q4qr1Q7bx4JB2E4ZAsZFCfFWY/37URK6ofDntv0KaXIkXedxrtKYQq+ZDgQ6pJjh4R7OM/q2HKyZvWqWRhNXrtyUIOayFfNy6Q2BemgUelAUUjKk2eg2YjHRIJ4fAIpP7PCD0DgY17ya1h/9gtETyqh/du7F8cHp6AvKgbEk5ZVMDkMqNgCoKa6gsuRENFEfMvGYMA6LhcQukkGwpfqdHby/ZeYcL+jTB+MjPTOi9npgbhEWNB87aTu9YOZfd/YDQ7rZYzBMTp7kyoLFQsQxqLEBjlo6B4DdQnnUL3W6VB98WrkmfZXI0/V4nnXZvn4NUrCOo2jmsYZTy6Nw7hIhugMNZH9P2PsjMuYXGlnmUm/vVQn+7DbJ8tYL5cws2843JuccZcVom3qxyTogi/dByvhgiuL8UdY4APX7om/rbmc5qw3CqZGWY+qmcDZgROduP0QJVNZzIiPiFey6HkAlvDZnDukDJ/fusbHw0wvsB7HaNahYUYNNE16LCZvmBfv4j7emkVeflu+ldzu+45yha5eNnZKG/k7z7gPXyL8xICdf7q8tYm58rcjH3CCQkU2ycUWLP10bu4RAln8oAsBWaVbkByXNPDlm+p8NZTgoA0FWcBc9YaSWm256sIJBcRHgHbsCJt+bPXkuIdsDeLnLzQ8mYXvXXEns67Ew6PIj5SmqSzlTqlwYmeq+6XZHIYcnhZm3hZEZUoQAKykF8ij8hYEs2O1eMS1Mdpfiu5tC8cr/FDZMGYMDIDDzSU85L04kDQucYjODBpXl6DMPkTUD4zQi2/2W0IkRRbYeMSUBtqiEsqYpsw1lFNBI2b9QVK21bhw5JeYygNwiySH7AKvz+nTZQKGEZUo+OETQwHhf4R3vtPkAaMuLLHM1fXjNU3azTGnAILnoVs7uda+mnNo82sXapsbqO10AJe6QHj3pQsQ3ZTe7xN6FaKlOpH4JGjzt1qzyR/Pevekh/K5yMVbD0sA7BU1iN1RVYsmEyh426eAE35tm2L9h/Qq6Pf7h9jrJYOHFgtYtfH2UmmEkixnnhi721QJ6vCU6wm0r1q2HykMJ5lLTY3b4wub6vYvXvy7SaBEAdX9fMpCSlyJeeXQC5CDQFyJeS4A6Jz6Gj4FsXyvI5cRjseZz0wQ3UQGg+7IEZLKgKqZeN7h+mk1X2EXhxL+WDWn8CujklnzAEZ9tZUnDOkR+prQN6wOR5xcMzcvZ+bQ++9CG38WgGIFU/WNYxbvB5njmkqT33/HM9XV7pCtrQAhr7V3iyHUYqr9vO2EgMogHdiut7ecs+TUrowepU92DmuWNztY639o0hsnjJI9mC7IexRBwtV7HH0L65dyq07nc/WVAzr/R9hVBhF0XXB4MVncxgK921JfajnoL4xXi5Tw/IiteCBJacQORQ2mmGYeLwc00ZA/Br8rLJNI3jdf0b11F5OnxOeV5UZ/Mjag/FfbkqgmzKubE1swUCqs5fxkwtA8JOJpaqc1mw94mUQU3fNh9uqmHUp9yyG8XG89fl09CYxAOKDAmyQW3GkGa/C3RX/r0WNpA9KFV9TdgULLdNIlhKNZbOJevgA9l9CzCSD7KkLJuZnRBSQbm4wXdqpnaSgDVYQyeJuHS+mifLoZCMP0zHdg0ZcTmaO37TmhgwwHiK6VEJl0YCH6xLAbJa1GGn/CiH4AvyHgLGJzLfiZ4uWuq/Kkz5Bse1mhGLob4DPpY1QF6Z6s0sWGxDYwuXxj6CMtOJoX61nG7a9sfNug+DjGjKXPo0MFO99CabTbxYWmoL1omruPoQTwR5r+72lrAIsYAPSOcsrkj5TgyfBDPqMciyzZpqNbI6TZEc4ZQDFDFOlWEahod4oRRlPsjQUKMA3QiOKKaA1zDNfLjHiTB5jdt0I/KT1SbQuZEyVNBRml0u/1hov8YdxqzKLmlvfOdopguVT98frxEOK0N+I6U2F6QlawrdMHKxAni/aIbXyb1sey2tu8vBs5EpPUwOZVyM94u3urmNblAJglG4IEhP/WMN1qFXcUJVkk69HACbJ8pbQeYIrUcbP7XajDMWKTt/UKEutrRH8olrHlhswS9mszcsFZgkrRCQjub1vFDh8krJHlgHKSs0PvNRM28e6drBmN/Ry1iugla2wV9USfAFSuI3trXh7ubL2pVuqGRl9uKEyj47IRfsNiruJjvLmi9hm+gbXfCQwcI9viv6L2I5r8JoVMgL8XNT4mEM2AKbkfULB03oewG+q+ieNTGCAf8CxiZ3UEyOunuq56CfMeBpMXfKcAWsZGzQHPvmVmwIblKAabn4H0iBOeWjaDolKhLJOtZdTvTwU829Ou7E7eaJ1YGlqnVbYzpJwg5zLL1SWSEQcF8KoIjlRFXd7ZJ0xWdxJyND08CWL1GXXHhKn3Jiq8YArx1xmeteNMlPxazC7Y6B71bqhyz0rLKyKELVrw4YBulzxcDf7nLZV1X6AAJPHb2ZJ+6fZm8mQBfZUsl0rB8oPXhu8soCYBkbWxI6/PM7pI52hpoR56rkr9sbZMCk5vOEA5LJDJLUgSEPlrIcCmrSwUIxiGCiaOyc3kvjA97e4EPe4D0gztIcXeNgBpQZ6+y965yVI/Oq/Oj8pKkfR9fkCM3DSlQmKqK03eckD3LTd2EWa99ueZqeMCIE8mcdLkRSQY84qLJjNXadlqeLrxiWOp+M5EhjfT7xu+vdEetNUQQkvoiH3MFYYiVeGxntBh0/acEbDhpTnNdqyPtC9gRlda6e0vCfAh0WvhbtBGSU2ZzO6FsW8f6/nT2ZZbxnx4X170mSgIJXMXw/RAa6bhG74wob1ehj5XvXjnYh8KzLTNQ5PnHHusaR3dM7HGDdpV/2n+Ya7+TipsUpIrB4Pr2Lqg+/Gem36qm+gS7s16DQM8Uxj6MOcyq+CnTCGGo63mZ/GTooKVTrax/sg9W6IH3QQFWHH4vy8XrNrh+W6ThZfx/k39srfUfn3b/L/MpXXB4jPSnAeJNJiRvbV/KmsW02eg9TN0KbbVBRRnJtOORGKYHn1OIS7b98DZ7moh8rC3+lCwQw7nhr2mQ2TBYqD30HUdx8NhIfsCOt/F+/E9H6E2Qtalz+WaTmdGsxYzkviEjpjubLLZ57pq+Uoyu0sP6Stu4ArNJ5DYLQN2vqM6zU00UuRsQ44t5MNueBzhRQH1lFkeDWOd9nNDt8aJgJ7/9x6JTW5KNg9pu+nBelqYnyw+ceMjA1+FwgamF16IIl9dRHzhNhUM2Uh5ATHbgG1YdvwR8tfUdXtcRZng300AnKT3Jdg9umrkXK2HKy5fTGeeloTDqWryt8DNGNV9q+/3hEEPr4eMqxQWsNmWkVVIcSyH5dr4bl0mWsIIwYG/FdZhCjxDOgzz035iJHHPkjxMgeGenJQdRw3H7MHJfFPCi+EwZ1qjenFYMvlnusrAdneASW3GpwKrzm5KfnrMrp9iJ5ZRHJIQYcFYWlFydaN2DCxsO0HQL2lOxQ5TcUZ/urW5+OXghHeJdYo9B4OBwH99vhyCJtZVlvUAM22H+gOFQkyMBJzYj5AyvQVa0hHfThM5Mp8d8TaiRYqfP44rYnbXv0pJ88tygG41zSPLE7VddKm4407cHFF/RH5LkScbJEa2IZrxLVY/cavNhBIoKUEhTgCTzkWeeddaE1/r6gJA2SbnbTF+Kao0yMj16oZ7NxyhGv8YDhKovTXHJLlIDG2wPt7NYr9CC/n2Zofty5LwoLgwAHUcFzPxTYnsROJcXEPOqSp78/oKJghtDatLkhnP21i/a5ZRNemGnyz0OhR0HbHa9y//5dO+uOd9tslL6YHb8rwtLKBdphqxtMlX43jIzqPrEekEhQpQ0h1/m+bPR6iiaQwmALT4C86/6wqeXMElM7AhVsVA/FD/OwUUuMAeDv/doBTnstcsyM49oornxbPTFmngeOzntmi5dOKtIf//gLWdFFw/NbIhKpD+k2BBWX6OZn/7YVpWYzKQO3Py9TnHoD4H0Ne4+XBWO/m43zco0VJazuFDJvlexjYfAbef/uu0PjlnR3Dn3tPdM5rXnJLAPGjJ1CJEykgRSUu6JvCEIpS6ZzcV1Ljy+QDFHebqoEk6ljvj7XrcJs7O6DVpTn56ngBmMx+Qtc7dQSCbArm2t//+vl4M6KHIyZ6kPJu31EPmUby/M9b0lceieIrkFqMUNj+B4OfLn9CU96//SJZ1DPCtYVl8GN1Y1Miu3oiCOK1Zyu5/avT1eVlp18Psq/hA+p++KvXgtsUmS3KMPB2qWLJAoTZy6A0a+zRhmEYJrF0IF3JV5o5fPMEANilANMPDZLKKSe7tXF6kp98yXhF4VV2asm2/6S98XhGTo8lwyOqbUo+pVOMeYj2FtLA2bJpso41yC7LhSMYy4NTEapMmpWta1vqoZ9WPBt/lPgjjrkvVE7swK1H/w6hBzn5O5K1s5CwBxm6wEpfLB0fhkNS1nHpULdmRYwiqxs64snOgUxlf5FIkuDyDlSU+9Dqic9nTqJylv2B6Q6ur/dqrwxmOlK02xArFEAfwvpMd/y33teo21NTrkvVpr0DomM1TVllF1qWhyghGErxod/nQoyrGMp+D3o389V6TYTbQ69tab9KHH+42GdFuNFExuGRHnb+qYeTGNywQ5hzBeFFVYj9Jz8ICn86KpoQ+pV4zxl6hapsR/pmyFNsCmTQEjqzRlmedso+Z+TGAOEzlwPnV1vl4O/pCgdv29niNq1BxsCIdNM6LcLVGdC2NPyBDfSeTdry9z30hrqlO27Tb0UYfqfc9fVQCo4UIoaUc/RDvcf9PFj/6xbWkzU4yD0nt+cx6lqM8q0L6PY7cFLMuCZfdBN0EZ4X/PMCZ9Rxqa+pc3uPBkdSq15cSoygBEGIYdsHAEdfSN+xwrRj0Or7WC2AoOLkS6tQzdDhYR1bJq8ndr22U/Cf7tYjWIA0NCAkK0XYvwvV0yr0ZK7Op/Avyc7oyNfoa0mCXsMzfTgk/7RAKcdSJpQbCHqAq9X9mgxlvRTm+dJEs9mPy0g3/zx+2yjZfuhYl5CjyGtGHztc2wu6XnqjPZI2ZH/TO/qpdeYFgHn6mYeT015nLmImmiIWr+XCBXoQwa0Blh37qtMUrLfsutUPafLPMeXGxiRJIWeeTqq7/azm4ZjgU+sQg0vUA5b3xmv1oEefirvZr+aaAbyknWpdMqHT0auu62c9GyzTikB8zmm5OBisOiS3mYVJI8mn0HVl16+ix0tAkU11wXQHm8EPiWE8D4nvRglJEqHu48ECmZmVgp1zvLSUduOwjltAZFX+ktUClpaRIf6Xzaw4TxwyLERLuixwNG8SHDV1pkuPzy3EpoLVA57J+GOEZRK0mjAO6P6oPj6ytfooYr7RrtRDxw4scaNOD052TEgSyjlf1fpPg6lDCl9N58T0MLTgZaWRiE9FZZ+uHsSic3p8IRfcOiEvB6y8G5ByAoeqr4zZJFWpcNNkvQ5G5W9IwrMYcMYrBmPAI/z88ZpDB9/qZRYGoDesaFqHQ0yPA3ZsCCn/t+YMfto3TsYnIsN0kdc1fG5DQxFqdvYelrU9czcZXdsf8Mkz5a/L9oMnbMLvmIAy9ny22K1+nEPafWGPXOqFE+6d2UKbNniwkJPx4KuP5mwMjtmJu6tRD9dtxNascHvsycN1mbFaPzM4kfMjHuy22Q3jznVxGmgAvjQHicZjS/8IP/DKMVKK7dWOd/xkcMuo439f8rfYx1W0Oka+r9+hrLZpdo3AVN9563iiXE616jF0qwwEWS3vmJ5gIgEAMBW/ZU5h+IopPtW/tax/H13IUMx8mh24bnKHuujMJZIUTDbdbQUjae7qHeXjXIkCKj6uJa36ZDFIt6p8qddoGnyn1Cl/yp5xIbiBC7PYESzHSR2vnPwQaFyyDyrD56q+OkEQbGCYMdZ5YcvDWpQXiXvBb/L47ic6VG5wOKfey2EdLUH5gRSwKv/6Zf7S7/VvApW8MsVUHY+yzvLk0tZ9DwUwcOEfP5+H8xIwMX4TNqIuKWodXlkPd0QNIP3NduMdNyu0dGJT72jA/g1og7hpGaxYIxmISguYZl8qBdjjIHfzdrDUvMpF2bORhTCa1xfVahn3v0fGglP/96csr1dkTyAlHsZefRthrg06cnpfyYmFXxwDDj+wxrI1DjkEhPsLk1rizN9aeBg4wHAa+13t0S57ioF6+9rJhk66jGdORkYCrfI60OJ2kx6LrSRaD1DM0wELUhQe8AlBAc+Kmsc2khf+6X+mTxlLyxhooSSJ+QgcHhiwnYDlJ4jlo8ooNslMzlovjMnPnZZ4scaBDzw/jvVbRecvV9gCE81tZjxe/GpF1BnHH98+8k2CKxXYZf2oXj7dStUZ0+2v7tXKDeDtOLpXUYINNhuNNNHvVgbJ5I8BAYJOtC+UF4gqBHDRJCdaHNFPRLj/K4qLfohaHSydKv51knC+Dk2wvrzCG/MwhNC+mBnC6/6jsXTx/CYFj/+xTFJErC+e+YWIGryycopMlqqw6x31FrAR2ZiWY+PQO7yAKPrIzbm+oAVfPMcfIxG04x0QdbCa+0f6U7mpo0u02cbgNBlIXcc8P/CdRdIpx8eLgvDvs1sZ8fCs99NwEgiKPCKejdXOcv7yTvPRMERl9EEo4cBGenxcZPBz2l4ZA8j/+mFDIYEfVYe4ilab/pcJKCrxewA244LO64gD1Vy0V4dZNZUA7aNz+OTZVKE0+u+EVikY8wwaidqVZVh02WTio8PJgk03M2H+MupE264pNEjiF6Ebq3xajCeEE6qCntxiWgABARlkNWKVVHeQIE58P/Ig/ggqIJtegeLJqMsZCZnXuyjdM0P9CaZugMPBfDK7mJiXamr2oCpDrUL3hm57Oi2Q/GVbR3jAVYOPra5XtbFV4bz928bLostS9JbMyv6OWvIFhyVofcDK1rxVGmDRKEF1JWo6rHpzGyTLqdE68wTMvIDYrmOmGFzV2YzcaOm0Y8YZLPtoXkezfMczUHudewHWBNPNXJbxaUJAcOn5Gqr8lkYjhT356MDcndiIpgPHKxc0iasr+KYytw+iBPdzrItwtOmOW6bzlPl+YmRGBwn1lsN0ZYjSrIZ1YPxPQDum5xRBJ3R6ATHjy0Vl02xqGEwChmiZQb614PAc6OFAYDl/Rnh5jD323YLtwiAV9Sib/z8Tns/unpHbeEV3+yGnaZ8S0sz4bn+yRWqwDr49XaKC/e83OT7xq3ISuOkynoV9S+eFYjwT5ijEkMCLqMT5TX4xcQWNhej2gw94KOjeUJVIGYTVwkLD+uYkk5ojJ94u+chaLYK155YjpK8zgz2T6ppGlfgXke9/bYQtQVxipgPTKPPn0k7us5wqEfReNa1HXWnelaF+Mysgwb3Yobee0LA/41Mm+MG5j12ayX41K19p5/rLUTH3sGIv0udZo/UWu7ZnZFWPHu7l/XmEMsf7rK15Q6Ou3+YwuRxq+/T6z3XcoM13ojrxjnZELpL704h7B+ntKsAohLzTVpHV0ivkiQZriPz0o4fwMyF0QwKDcWL3yD7IalZ3kD56CCZriIiXWeq2rMFz4cH0Hjgv5Hu/B5s//8iQDfwMKvmjdPkZK4k82cACOQDRt+FzQNCFXLG6DuPN5ztWeYs4zeKj6H0xlv8qI/FtrNB/Mh9ieTLYe72kLMVcs99PdS5a59jmZ+As34BBsKp9N5MxKyMFl3t7v5f1noErjGLh2TvxpBrwGC0gGVlRZolvd9Pps8g5yWecjsqO3Xn920S8gwNYq3eMaorgUdLsXWc1U2Jl30YlLaJcjI02fQ1MoJwtNVUrbdEF3Qd2kdl0+Pydsm7WaXollRVO5eP1Pt4DG+WbNXPGI1S2q49n+ZsA/QfFGIYQOd+La8VgD/QwQk1R4xobOuSof9rQl1aZb8XKBO5jRWzH8ZsiOAA09wkbnTs7vkm1p5f3cQPHom2XVSfOGZAEOTUZULuA6zyZjEb8vRxx7AOBh2H1gf0erhU7+bVQ/379P5EUq+CqwLjdQTD1rMyo/TGoSedDAUC4tW6S83TpxnZqJnTqbKLn6jlhZI+rGEGBV6jgwnwa/dcoC+x4OgmahHsgxmXfnNgITjsa/7sJq2xKWOAaRoEzgEF7z9JPwMzSWjtCEUxFD0f4TGtSfi7jhzdwuCErdOQ15SvRXMunYVgbgaOZ5egguSiH25Y1uqlUvrLOmMb8O9mFOBG45oJSt0oE1pbtPRcMPzyXP0NxG13EhkrJIcksk1vCmcNeB5O1q1V0aSRycGOwt6wBELC8gY3ILQ+VS+nnSJRL5jRnKldTf1KCdaa2CtvQy5rKZsyKFP6wnKjpy90Ah084TsXuq2+lW6yoN94gkLy/M5F9Rl/72oblcyNtdGNF6ti0QKm9gidcH9N/f8gtxY/HNeQ5TU1dN422AtaguXTL/m9bA4IVtGHtereTaO1uJQ8Pz+MPY2IbgKyvELvBmJLDJ3Cd9cgdidA6s4eZ20WgRy1Hhh53LoZ4M1fpUusYyOnZ1seKOfmn1sXM98M3LssCjqx1NPkuKdFIlt6Ab32ff/C0BFaW8qxSrrx8baKHfUUvQsocUZZGIc0KT+9faWcyQp7OVblPXPZVRFZiJJiICoHb3ZFW7AB9XxEujJkkFkondB8zhXkBlfPbk97K3RCLLBKerk/1J3m+fnOzkwQ//dLku8GlxvcfkngxZPYMqUxp3yFNEuBSt2+U+BNwsgddVon8b8Mgt53Eytm2mQBYI7KM+Ju7vzSKRUhajlxc72HZWMZ3RwfZBA9X5ZJaKE0zBNSFuGdrIiIHjsn9H4NIIU9EGfubIn8AHaPclGl4STrOvbapKNt1pv6j/+NJ2KXEwgiyiQGZ3rxL8CiHQvb3VXwMi6Th1HPzNTKkp4X8p4aEGOWyiW/Sv+atRhfkq2LExNoJlI7UGt3N4xrKFe9IHACu4OKbJaZeWgvaZ0II3PGLZuYg5gCzZmYJ54uNxT8qd9LdIrcfF94I2e/DY8jyqw6ALlu3Vs+3uqdYzHtM1WuH1ewIR2WLGhMnPA4t2xNLclfZJxedkgKmY74mmmdHB07pO2SaSnFrdCBtVnYgMpCeIvNfsJhNfPac32uI7mxWlXXcxRstuhnUwp6wy2wV2R0gcJB0CHWcTtlL1V6dQFWdeziMRPoMjuoaDBSKfLvhi0WMHFRu1srSNepEygenYAkoi92M2lE0ZYpdqWSvKSczvMM5V33dWQ8tRveJqE2hRj7KOnzYLlG+7nWhGkV2LjeZs0LbKhkHzGyQ9iwy2dZRHNDzdmNcI20ZbQCdXv4wI8SCHKbaVJjeX9tB45yZIZF/EsVvPWvzsek5lLAImpUC1jfVwhyRWjg81M9T07e7qAKHTr5rJTQ+cADEG56u/3GZsUQNukL539+FRFx3lyNAVQGjOfTc2Q1kd+Zecal8l7kid2jTl0dPoddapwk8AHHCUivEi4pjdI/hNtSdBqTXuzu4rYEmnGFYUxA4TGE3DF/H587StsU+fDYO+Z4M9vtTLxA3ti9AQE8SXS+MjnMoBKwsLQgMUnyg9BIKV1acu7RUjhwHSgHnLfjHgagtAEuRt3LeUTvHCnL4N9i3taKtnsdawvT8VvKuQPxm+Rj1d2HDqKI7Q0O5HOA2IA5ZJcy6LHh1VT97LpjNL8/W2sJB8LpbGJkkShzc0aY4q1p35sPxtw+Abilgfv2sOoYcal49/tSGRrorifGoVgEjBGn2PRen05IyyGdzmwdrPHkDu9Z+ejUrsDVTwsu1Tdqr5G8PCaXX36fhNGhJMYpTkdyalpE+XzGPYUJqP/WK7h5ZqnEyo3oO8rIznD/M0Ox1O+mznPz3su3GmepzyYcJ7yF+8QNasbSeoS1KcAHyc5yNXQ3Zw8yu4O/l4E3UE88ejYLYiVRHII+j+hU9aQ8UTn7aJ4fsxsXc3TUje1UymC1CM60c85WaGY+Ceb/5G3WAJgc6IbRJttfXAhrdTOzQ7jsRlSITZl2JiksvHpUHXcAIVpHJc4xAqQK+fL44EUII6IabEN1JP2WCV++Wc5odM6hwC2AeijLMBLgEuIsGAArj7RH6nElywHNBmzq2hvPZ+s7Qn0IDaa4F8Ha2ZeIPvmEYflLfIWDltKVvh5Nnrj17ZpsIyctol0x5/wzwJ9Meepe/Nrt6yGJJkYkZ5u7/7SKQ0mG2ua0UAsEcZ97ytjRm7tyz5OXbFg+fRLd2eSfFDqmyW6vtAiMUpZBlsEfkRx/brI/X6HueATGGzKwjwBbWEY8ZuxeIh5JP/43aOZ566mBBGABDHgv1r54nm2dpG9X5t2lyJpsDFyLVLqGR+YFHGKKlqjquKl2iGnHXC0eo25ZoSttv97KOhrw3flCY6V64x9ukfwdj7FItNLrssxZLDy2jtpSdAUGBCIzj7YRaFS+ib9MA5TCaQC1tdG3SzesKCQIogfNh6upV7+YMD7HpggZieG5kIMlKP6qE26vH/1IgFfix2MAJiqAkBqk9Zrjxr4EGWHlcHLR9t+Vf3tl5PzzA3XLbUZLQB3qvqZeFDhMhx+/TucQL2ZnqYAu+aqrDpI3ZnQGnZ7XOmgeMY4aYWv/gNvsJgoA2CnaiPnDjKcqMQr0EYG4/Xl6brMd19CKNLlgG1+cv8QXyfVAm7GpKmo28x9b9NcFfKz4JPdGQynz8CWSBSeHsEHC9flAjPkkfgm9K7e5dLdUXvvhdn9Emz1oFIKcC97QpAD1U42bVOC7Dq4RPPTVGjpEQTIEViiVjq/pcqgB9zfAKSs3GFw6QKY9sJYLwQULXtGF5xIiJpE70BZsgMjFEjcNdr3N+mhjwbukynbeSAe9e27Jv4ks/3tQV/uFAXT20ZRuwyD5Gkzkage8NrMlfyyAlWC4MVWkqgGorRKbirhPulMi00ND+QfZCWNB9wcHxkLOuk+SMck9GKtijg1b9ihyhPVkl5NJLZgDlCjylXsLiZas0yX/doL9RPtmr1qXg+slwRF+/naS8MpT11iJSigpoqDuSL2GqXqNfsZJmI0Rv7RS1XB985ww/S6JmlxuX+SV8Nzr1mcbKQH5K9OXiNYHNb1a5hEub8b9NQOStBZTqou8uiq3xC0w4nlxiWbEAj8bl0s7dYTBd15Mx/q0C5H60EWkgjcle2POazEtnYPTKfLVBMHDBHilNUIyxQiLuwvKQ424Hn7N4Idy43nOJZy7p69ErXb7g0xQ+BhS90FKimx4v9iW/aM1LBQMGL/HKrcXJNu2epvY1uIkLomjVHYN3gjf+bAwdbdAw083Se9ZjpvMRMwUx0Wzim5imD9uxi61fGpuucx5cY774KudwXHNOuY7GpZsBHxhnplHaY2CRXfsT+DYxJdtAsts/eu4N0RmrFnr5ZlYFx2G0tGk4pkd/SAyGqpwzUWALp2H1j/0TNIZpHytDOlLYCHMKGDCZzaVVkdd3Q8Auc4qiYX3WFO+jpu/uKmAyDoZcVagZTvwGBnRj3MO5PVh32rS14HCDqUZ59v1Ts3bko3RXPT4D0/mj/WVeisIXjhJQp+KGJH7qC3fPJILKjb1/2/eJQRE9BUcwUi6TyYmjFf5FhlbaeJzmduOhUIuGxIaqi6snNZ0EDnZqLpbz7Pi+tWGi14tp5ss5lm6Mo3RQDTWWEzxR6gOexxCXS8dPlQIzh0mOwayCTMSw0rxbUqUPIBhkI7MipA+eQ0KEQu6vwVFg0WEx5gD6T9MyPH5egKQbw3WA2IexOm9HGwHT3fOPY5SjTPdZzFhzoFM1GydvIW2GdYbCtHJOuhDD0cX5lA3iz/y27Ej1Urt/OBtbTAIcTA2tEV3JnlyL8K99Lln8KEPsJyrchMQZJhykbQ7b5AGbEhYnFxURd8Z1T94xEnwaLDTaQ8/9cmRer2crT3N6et1Bw5pGZ6heBWv0fYUppR5H9fcIKOA/HUKYyLk4oEBztWHelHLVf7zDWfgxhQhluPJIm9CHbLp6OnnBb4Y2iVxypPa6P3xmFpkJjTxAAcJL3ZjqeS5T7L5AjzrrDbA2lphyf0qqA6e0wPNo9GtU43lnx9No5c/t7YSr5MTv57qZGGjGHtr0LydjnIOYCfuvof5qprJy2Z7ZRkqbw3KRDafxNGp714GDX/fkix/73PfQ0hJvB/lqIjTJ0S35vFLeKuizHc0UwQjkJX6Zk0qzVketDDFu8p2cLpRgYMibd5lEra5wSl11OLeLtFqXilmOpMauY0iWQOS8e9Pt9tKa99l0AJ5/L0PP+ZMgRnbst1nos5zmd7H0KFdPH+4sRIfmFVvWQQuXOcsapabjy8aRC0urTglOpiEeXt0d4nmv0JCEE2TMddUCPy3O0R9EcbzZCibVQ9BKbdLiYh8unRbNI1odGhTgGw20MlFPafds4l9QcxLbhpikqrJHmbYjoZ1JWM93EzhS3f/h/c0TUOhnjj2TT4lPqo9BtLH8N9fSYUuhhtyUsgBFzNYelJ5EELWJXHUg9jGV3ydzcKUJLlU/il4XAM8/pRO3Kecc1uWPoMomjz8x9BBpPUsu4fvBdVifPQhRbKOhle22iOljr5sl1ihuDgcAJ4RGFrjbNvQDMFkgzowUeNpxC2el21GjEOT6PpObp+gUSo/sF1Y1thUhy11qxqgxi3UhThwAzDC5dNKz7/gA5zlXKQh3GGIe7CAO3ZI/EDqE0b13n9lRidPMO2U+L6E+A+y7ys2lVDu9e+klZV2r30riNgMoSHA9EZaE5PSGP38CzLzYVsAbOm58Fmoyf9eb9cRi++26euxVjxqx6fera9aPjV6ecAzOgdTgrbnnhMPb3lMuL95tZUUQnMvfcXfZbDSMxkHV+Ge3IGWNa1qg680JSlwBCuN31kVhl1o1fwDUlWQJej6h7GirbNtOXX1si32ZmTVJi5cNC3C7Nu0E4uhLSw2a+iWUtBhA+fWgGtZJqn9yfSePHuy83lYPP+4CSQlVzm9e1vaex5bKTVgEe9WyWTL9VW5aV783MZUHSOcrF9aJ5bGkDfks/JpWmBgFdpACE+UZHP95h1ho1f6JWkDmjqclddqQ6u5HYimddOf/JIaxTTXrebCuegca2IzN7PI5RGUP3jV7kRzM2KAwwEMGVt0NNLt4xeuEuTMbR63Z6S9s/i5DONrGG3gsXb6BR3BwccT34+/173VieMUdxzO/vWgOCL8onhxD3K23mT0kBVFsdtAdAo4cJ0PcfNzw2HsbGPlW/KuiQMT4FeN7kJvj3R2NRT5UK95zyuVt0Bk9agmPy3JWwMVLS8tJ9g/mjQLFOhU/LuOsZojYxMCXjMotIaHQ+u84S6y4Py7YrfG/mznoEj3lr+/06ZZo7XbLO3w80hC5wOKq0KaRITTkdCQKeYZ4fNVlGqYxEMRzyb0jBA5iyP+Zs3SV1CPF3lhKsGOjOGbxIy4LzSpar8zusRMRkMuS/yGvsebP8bBVNky9tQIOLUqB8DuanRFOReL+d/EdcQ/6Vvbp+KYYpWGL3gLkS139zaPDSK4U0LkAwW+2O1vLyGyvMQsnb6825Zc5UD90tDjBIM9LSqOLxvbGFXfsquxOq0rboZzZzEXMXuD+eh6YSitOD1lcXCu+jjOwYbYzKzzhLoqKJiPi7bDQvNtkr6o7PEHt9S97mLH8XBOZXD+0c3fb+eK3goLTyS+UKxN2ARcJXnU1FjewqaWwUv+wVj4TdQPUTRQpBQxtoDRv+lDyOso+XV9gHQ4SlfQ6/fv9gakUzBkbOg+1nimIBK8YieQW1aBTEUe5lCYlvK4K6V5DWYKxhqMGAO1G3npTxCDHJbEos6NCHcupbL/qw4M4hTYgK4fcBytij6Xucbp1n9UpME9zFzIDxCXhB4iFstuhJt/Q/5yAY6yupFzeZMFy2oKgdKkPV1BmrQNc2CMqSmMf6fVzFO2tAUR4R398ppiGZs6yq1oktZN3JNbgxVWewADRyo8PmqDwH2vprYTtFoRy4VlwlaOj/oE97FtP0Dx1PUqPfMQmt45Q5rGISENykWvl6x5aFAOWWmIdjn9x4JPjBmJE0DFIVtt5RvgjsSjZbstNTvaEEaNalBb903gRDn47meALafafqL0bEe9tl8/GAaD7kbfUpFI4hJVF6HG5L2okzAW0RqzLbcAERxO8b1x+NC6EvfxLbueJyXOEcn7e1l1FVGtjHjiO8tj4WXBMgwZZ3FW9Y+RyCuZtZmuFm3FzD2HVFXBqHgQByMuLXEt4Gkxl/MVAJ+rLrZUH2fXnW2RE0/DQBu2BCsS7J8vtz1U72apqpk4AgsuMvbb6/Iwr8vd9leldJPs2acJKyRDZLVe8opOlWOxYQJO8fbGIYGjCY3C+1O+vs957aLlGZSQCeBljQMCjAKt15qMH411ApWQgJFC7q5sQy5S2whSzMWRLtnpqveogHIqJt5BdBoZSX7alzcxZa9/CpnHW2qY1knPPVgBRIaG3pkmROsFPkGTXvcnEksVm2PsDyS4N2timQucTganLf4vQ3IhMzWFnxKrY19yGbFr7FzXaUH2MJlHnEZCRHb19tGjg+5qF9/K30c8kPvbGtmQmdoGc++VwOOIjo3ihB0+nhBjn/j6ju/C64yYik7Z8Z1PFD8nfT2nYDG8ysgVtikChxyFOlGr8nv8BwEa5P5d9PrT20eSmQ6paAbJthuhhTs10DubqVMmJ2W2XqMp+9UwWIycxzC4nA2U5uS1RMGUAhSjalf7kQSCF6npCimPet6Hs0pb4kmsH5N9zD0uPQjwIU5aEU6x4blmvP32MHG2R1q72gC/UaFalhUMJqUQ+lAvHYAY/JoV0c2fRUP8Is3jwy+5K3v9fQkgY9K/Uv60A1kSBCs9b+nYDdtANooegWXhaBCq2We6XxpZxYSi1rY0SdLvZysIS0TZcIDeU2AC1k8lh4lzBsfZFmUa5OMfJGj/YqiaGhPYk3JLt40zH0zpHQrLvOh2ovBQo1YGO44NyY0QEpmqD9nyqqUiOwmheBcepyBzVibDJ5PRU/c/SGaw6ay8Fhy20bqDAJHkH0pxJ7XbQA8DMu0KzldXQ0EL98xLU9YD5Vc4iukG+6oNaj55YDiisNIW5+AwubJ3z8VEH2VZcKjC8Z1Agq2hrvNnJFLJjwoHvyZjM+A2rArdmdLjjsPKRHIOdApQh+ripo14NsxYavQMGpgfzyl00Ts0bbhw0+d1pwFpKDSDvE5iNh/AsjicqqvaIvx3gY6An0b2feC642BLhx1he7ZqgHeEYH/IJZcrtXLXCvVAiq11//p5dWJgWozAYw13xawPn604xIOT2XUJnqh8670wKKCpIUu8MIyKCJf/5UCjkVbYFC2dQMVfqefnyTv3Vsi8EyvTfcXug+bHkDJEdEIHvIeAwrLoVSAf0n0VVp58BSRZUnDUdCZiIXl5znDGmhErK3PxT6RWaJ+X2Dn3ZJIFy+hRehS2uIyUkSXoYRs7Gj/usPghveHpkOxFeJoKBiycCYYK6S38Q3j+DKhgtgskOg+TJYrk/hC1l/PTzsyuj9f5oeX0KznzQJ27AwNmGPTNLg22wDzPDIzNCo4ZiztsfUXSJcy/0teyTe7tZwUrSvQ3MYW9QsbGSBRz6V4cPtewOQd6+nReELsuVrQ38yxDwNb2IYeSgaAaARCeAOXK7+txgtP8FrFiG1VTjXUchiaynTPTk81NOT3vN32GtSOCZFap0ZAM4OAl/gKTD6C44zv0PvvzRbbK9Fev2mwWOxm1JapmN2KruqNNOy2yZ7/+5ZuYEiw8wHtHomcWoPl1V+fdlmdm9xuRrUi3pt0maZnMiqKom1Gc6isE2ySOMoJxZ7H8tdKO0NKXu4G+P1/cO15LPakZ+D5VY6w7eeKcoRKZPBq5HhQIt7e/im9PcfWSak1jTdVk/zarsU/vmclJDuQIbEglAc6AZig8iyU6zGtSQ+SgBQorvHC8wW9PFTiimsd6apDgpXKgS5U4YvjgQzLBoXDn0fbM74tKnCrnRdlgSX/5NejzVodcd6CiP7uRKsgGpPIpc88xSzvJ12lz7IlBWI06bP5pIUnr7Dz+TWkoKulQvwbIXUBS7iVGeI52vQb1W+jqYo7JF4tTduE2IbA76tdMhxHFMDKhLTbycJqf2Oor2FKeGUT0J3mBeNvbNfjcb1xb6t3OeLyn0wmj4LihkQHy5NklUvPQJDGVga87zDbcJb7Wom8f/9GIsp1gjyOL3cZ2LXqLGGZ9hiLj3RkzsXYwGOQC9FyxOO/J6DLJXgtGVZCMYdRFdA/RPklqnX8i1AFNkg3LIkHPz2DTxl9qYwu7Cy2Sh/1tKCPXA/kyp0k9okAaPTz4OqHRZrmmBKVCKcAkiI4f5wUshKyOTxAVZeOinxceZY5EXSN6pF3YjIggclOjN/9BIGOg5bjXha27fs4Wb7arLN9dWx4tzARZg5yWXbSuMFW33ASSOKSxTsYM2Ry7NvZ81gZ5KRmkE4aYz6QrCHvnQXEKA+TVXQCUBgNVGNaZuVGUU9mmrNjkYwx9nukvLjCZIB7xaVmyt8ZNRVy+rMAB/E6+IJz3QwRcg6vbXW1JJPI7tv3HGdDBg1tXAbsZpc/vlKwczC1pnmX6khgLjTHd7FTqYY7UvRj7KUDr7BXgu9OR/4h1z2ZkTO5Vl6L3MxOI4pc63ytI6VGsYv2wPI+k7od1K1jZMw577w+y+WP6TxPtCNKrCUFA4/+RZx1xn4P0kzAxX64069q0hVmFg+J64DbNzqB2mdreL+i7OljwnCEC62ZGj1FXiVGVW/3xGb02oV7S1ZuNX16nFYR+FSX4GRVe4P6q9DzcSXvAlj4SuXHiAmialUVPPNHqByUm9mwb3ehic9ehzw64y8FZW523DMnzQeZGBIW5QIltv9SLxUSeanWXPtyPp64m6/meV3gfqIc8B5nL1iI95DkeoxJUC2ApuTef8OsxmAZlMXeaoLOqAulAyX7GbKgXlHQE+tXDdd7d6O5VVQpJ/IMUOLq48Y/6bM0W4pcXF/7+OOQHaAwF7XaLpYbH7XwMd2+r+R/GFwx4FyUpsE28h/ELIe6cYQBS69l0y7PgbKUWq1EAcrNQYK4mFMjAnVP0vsc/g3ZqibMCKG4V/zd/ERx65816rGpDY2JtfXA+Y7sfCd8YGw2NU9sqgnvGZ7xfpz12hsDkyy2kK87LQ0qjtzOjwCfR+KIcA094ivmjsaCJFCl82HP9usZ3M6KqXJESXky3muQJApd+VC6/QdmeNZDHOzxOdLeH+61KL1icbrC/Ou6zHpd7f/esn7knix0CcF4RQdXY0+mqrICAfyWkfOkYMAtZPbJoHPd6PJf3sfWrOFG9Hg9Emh0gDGuB3Yiy38igTrY8aW8oRnlEWaR3KlKtaN485iPXqNyqGD99d3Nta0D64Mr4JHSapWnYywMmSU+pVOVF1X+1DA9s6KFiu8KqoV/Qb2Ab2lBuQ9pklwX05OGAEh0sQK3tALep6mLSlgywAa5PX9V0kTfLHmEbE0tiWMKl2sfZScfrvz0YWG8/vm4ChxkKgPN0KbYD7sKh+rlCWdhnBwjld/BpkxsKceTE8BjilPNL4LigdsfUnVITtqIna1Rz/vIdbt+D+C+nUtlaxYJvBWlg+Ywgq2rLBK6f4UWHWZ9nRd16W6yYhemJzyLsWWgxAujfLmfus4evJDEePyVzlUf3J2owlocD52DyTI9eEO+IkO+W3lZzD0VvQIQ9G7ovxaKHch6N5WXmxXFF11Vrui3d6f2EroJ20OQMB4FDvqorHRQQ+eh4/u12rNw5+l++koQUykeLGxnMGU3NiXUZGOJw6/zJ+vMu9keMn35q+zapKXlQHj3qvuPbd9q96eCM+bVLfe9vY0cWAbNsw6UDfb9Ggma7PMr3iFzcGDYg4W5ormQoFc9BWc4yvY+3jQBtrl+RfruH/paw5AC6a3pXHWdLzP7LspWyY6jM0DAS/PhCXbw4EO5TKIjrfZQteYhV6zw9aHmf3ks6/Q8d/AQdsyR1c+PYmwBWRXbYlQMpKVML1ebPZip5M7xBjWJtoSlFsyFMuzJowgH90/sRyp+u/w56eeW9X2uDa3QafVUVYgcMODQQeQ0xxplUoEXRgvLluxfjILl3mfg/1Ctfc8NM9kdXqaxF0fSSS3EO7hmcsnQyWz4TRXyQp1t82fGxCITSs7MZ/wZ0qRxkB1xzC5+DpUyUfTZGp/AKercPEr779bUi+XNzvPu9zv4oNytiFqieSQVLwunag5cKaF9H0d7oPQILTBtSs5N9lZ7tNqlhTL+jRD0vIH8WJKuPaXVwjZM7tMC5g+UrutVNaSbnfZff9FZHSEvXtusO/oPN79cqS/ycCifDdW5X+iieQgiQct6XQm+lGO75tICT8XEvx/kpaSPqjkIW9D8+MJAix3DNbP9FPZJKODnhPwErsggR/qbpPRjwwt5krlSydaR+Bigd/8vNigmBVMfF/FHfu5S9QcWMQMA9aD9vJivt2lcli2AFidR/FLhzcqc2ONaw8c+TIJPr1TE+j/ZUK4ycn+6EPSXtGNeuoFnxbThuwR3sriS9lhptEPzSVGGgCaVWhXS0jqJySv8V+RCVKKQL+yPz8nSzFz8nD0uP2vbn9Is5p02ctVKT7PQRG9Z11YIgPax4ft/ok0NekxSHgiVAXm6jvb66OVqyBzFRHAtioOXwXqXU4mejeszR3RkeIdJUtjtS3Ownc+Hr8S4yv8Ez1BCdX36La7uXSOxW6buCSYpQjEtBYMYdkUfa4GbDDvo/fzPYpdg1sHnuYiKMsicr82QkjCu8Bt7pjaBHnaZtJti+JXvG9etLWlOCfpXTyQzN9APcIfsjPOVl3I3Mkb5Wd3TcYm4gwel/CWAHhdqnlS1SlsuH42ezCqj4k8YDC+XpVRNWY/DEV5YYnFQL0vFsCobTMzHcP8Bcm+5kmoEdTCVPJj8SVg/ZxvIwctE1Q0UWjaqq2Cg9hxsOdzm6tidEM31Pn0j0wTx4+yjvPDhNF9ulIXQwqDY5q71NxFEC7kmVtyZFSfQ72MGxmlEqt7CkTztW51yv60vyerJrwvWd5CjQulkZof0Qhc61rSrukw41BaS1kU689K/RWlOQCf6mk+SkPez7JEErb09v1aok/3Fyomn3ZHBSiDn/6fEEuSSVPh5pQQ+iFKKROdNLkC0oT3m9kaBBiMroKH7QLxLSzDragSViQSUK6kJ3QYpaYt6vT+dRbu6PT/NSAdknVAjKp/mZuhxg/1TH0MfSNIKEk+aSmob2GY89k7S3UbXWHDKowe39tcG96BBQ+7Fwq4qD0mZ5wiH65Vyzu1x9G1xbV5RMzptVVoMa8syM9SvJ10sroiTOWVQ2Iex9bl5tAB58qjTBrwpCl3tMiDSS+qyFe3dPQPo6Of7MAZWTZjjL+/S3azwkrzkSa3IToMAx54rd5STxtbygEIbfpAb77Y7/Az7uGpwgY0CNLy8JjWb6vyJWJVKJN9a0DuF7YvmJOleKSQ3eByeWDsg559NPIgjrh9siBJLX+zoJ9flf4U120K96Wcgz6jMKGvhdGgQ3NULSQVKvSRC/4B/MzgR4s5ZCM7Io3Qb5v9ot72+MEacEAvCem1t1LwHg7G2Fm99xWOaEEhUF0jL259f77hvGstqbQ1HeyMCt3SpGNby7cTujbXMXVrUvqUPb8f3cux0P0aOtw8DGSmxF6bDafwnpWuZzA4K8pheaFQUlBhjTAZBK8eqWRScnNiAhMCqkhyNTWRNL90wq+bLpBTofyIi3M515gjQ/ezurGJkFIvq+ajnn1jGzf8DZM+/GL+ZM8TexTz5pAh79B9z52Nc+hrQIht71WxjzPfhxQG/GH8MShBBvw1Meoen/d/OPvJyv5QodoxbKeAVKKof489eYXM+10hn7dDUmI9p/MRKqC19V7d0i09rbZCK9NwzV70Z6ZtQ8HK2a1sffRQxq5hrucNkIBEH9G7p4KIg4e+5BbokcJTPh+DMDyVJCUywfGRCatEE1EV8if+kN5u677ZWjSQaH5P89e2O8DlDRE3lAHlBvKy9z571YoPs80bwXXRoYHZQo8ni0ZYsZSV902H6EOgNVXgLiicBB359J0SkooraGI7lnESJT8d5gsaYVjKKMXTQO44/6RDc5WzDWaWUN7l0dsRlaKuyDoUezDna9OcEq6t0gEjwFHmJJzbCIwbyw7qRhqKJISJ4gxaHM34lX9hn48CWwhXQsQNMJ86VF5meluD9rgxJiUHVjkLUe2hZfGXKbb7pfIc9UUX/B+23NdLeJrNWqEeoMHdYfs70ENfAjdvrfX+vyBEScbJPMaPPIrsqBpzTkYT3R15NRxR7jXwdYh/pSYhLIEnsYD7cXcwRXKxJW4XuzL+bYsowLk0XNeNkawB0hJUCMj+P0+yXUrUVhZJrk/F52LdUbjYjZKFUp/NKNSdF1WJBP8NHZDaGHfSgLZOCqjsj0LOi2T12IwMu8QSZxU7aGubfXz3wsUkrgBwjjH0FQHCUInkqO2fxvg8sAENQFKmJlcHtnKN99GqxP/gEmmsYh3lO+HJyh8L8hnDBzuswyQdVznKVbhLlRVhBkJJnXYYEfWHezD/oYKRwztGGgxigpgbsqKAPGwSuM6E8RZdGZi8IjSeNGJ37tc2HgHSiyb+UQpnZJ/cRtq4LE5ibwjXuA2ewunlFD77+guy76bpQMvnDcvRRnFX1PwL1C1RUoKriO+3Q+Db8MhK9LaYtRw3108S8r6F9jbbH90KPIonPRFt3pyMuc1flO8bmM6oRBP8WVCyo7MiVz2Rj1oDhLvJOD5G7X1acS+1Dq2ydB+LVpfmxMBL31RaET9c9eQlJXPW9/ZpZAhIAzBN7NTZwd55RZe46zyKxNIhDfOmI4alDwFy3BnZ41UbxXlKNxlXtFL+SGChNIvkBaTbyhyum079NGj9Zri0lu/F0P7zDocAQJV0ogFYnIeEcyvdFJq/5Q5LtOpheP1XCHneYM44NY0aFph67ds9WqTYd74oFORt/LV5omYF9K8zu241QKW3WoWqc/Si/NH0hWCJCRaR1KNXWpkBfKP4Z7tFSJoABtx/Ms+FOOXgbuu2fSqvdsKGx3j4GKrpChEaC13Ywf1RPuxGBY4N4dWWCIQxPON4are/om09TWQShSvRBuODfLlhqOZJj5bT9qX6PhLdzif5l2AnO974cby8xmplk6tIhEj/vaKAj9XHuP3f8UtYhuQ5/fGY8LvHKwcbMtsIop56zzeHQ3sps2UFhfjIZRntuIION7Ltv3+OfhRp/aOvuZnCD1H28PXSu4oCsuUUgxpK2m2KPT5H2jbVNo2e5rj3yuVdkQgH/58X//zTwHsyAx+W8R/DiKIVGw/JPGBikdalEkvPjI6oTLW5y4/k1m62hqxrYUWTBMZ9JbY7uWS6fkjBUvQJQpIHwfLQ0ZegqJgmebVjWwm6NLDvSSQvdabyesfoQfYUW4ZO4EXhQoLLGBnJgH+Gnjc6IM88w76CpU3tZ7JgYdaidasOicm4slDkoGDp4uw/9n26poXIFNPrPAOJShyG1NSgTy+CEV901y/mXjSaJ9+bASrw4/UCA5ab3eO7ixOU1OVN14DfW35sagjPEaT5qgxmINxw6LYOY5SvAE5alBkiR4F7m4+xuRVOnIVzYt/hJBpOagha1Dgj430r1bb2zI3WrJCidjholnONLuQPX3efKvPj8qdjwQVHCgmRgOj5oi1qPa/LrtkSsbEDQg4ng/YejH7cVFV7MiTDRtYejntxuRxoOVP/7IsQ0X6cXY+3QuxS6mGiGl4U5OmoQ+cr7zYWqydyPZ0uT+SuXksQOyZdvRdtoyoaveyzwDf0NV5edCczNX6o9F/9MsJYQdToWkBkR/Y7EfhcXXibcfLjgeJu/fSRAC9sIasqRCRRgmzGTRqnqAqNDBJyeed+x7Wfo0/+/GUPIu0YE7TAYKf7cjxzGJSlpAJdyxt+/QDb7eiZ6d8gT3eO8qDBAUxGNB377Mh7e+Vds717WZW26e7owFtwTZUa6Pe+ylCZ8CmxW+BbZuIrKohogjpSmPpnRVASMpPLKNCz7dlACa4OVlDeC7n+01s2HVln3JPTSL1t3fW7ypVHSX7bpyfqEY/Jm9JTdeEVDVusQvSOR2gR1ZWjMoQ5CmGhDD11AOT5jL477+kt2eZDezXj2Dwi061cQhAJNKXr2LXzfZLiSTC3SlS3+at6AZEVQBFlN4YCfcOngRftYphgbljRH3uUrIFrcPV/vLc6MOdbfdMIFdJCVMp5p2GBRgPWQTnXNJc6JbBem4wdRE5qOdeLMTK5h7qofAiFScA4JUAUKA9cS8VF4cXn1BQxhzPCZaXNS6wyfltYfbooiJ66qhqRqmTOFw+q32KlLfAQjgglSfmPsHofYd68uqxdZlofspYqVl0y82XOnDcM6UjjOvf6wgfOai4kJ+tbNTUa49Fe8Ch/urILxQHgII49vEi/sO4Pz/sHH+BYcwje7eNCCMMAAnKRJxpd++ldMr4jlFokqAk4tDBFN7UdxHCfSMvGh0ZXjdb/NjmK1mv73OR6nZVUnDwzwdd9+2MI0HZl9MzBpZIYvHBvV9Qh80sWSsusMKNAp2Lo55xdK4jz7ascKMJEgmoRwr+seo0hFHJ2/Xm2njT678tUKgC8b5fZIdDClnrgCAIH0G0KcPDppy8E4PILUUMnNgi7l5Ts+kIhjQg3ca/42aRkIoSjCFmipXFrIp6VqQyu4HvkM26dpjeD2F1/xFPbBbFTGIqFSquCQ22lp+I7FtId9cc06ZJY1/jsyDcDZa18mn49gbKwvXjv9+V/V64aEpHPiY2FMiqFc5fnRjDtKCKWMbeiPaPPN0Dsc2rcg9/KyZsFJ1LnxTpC7owlukwBpGEhVwz7dSV9Tgqx9bEBVzne3ulYOyWew7DDsRora3FxrqoSOJnEWwc6RFxL6frCyXwuDkSbhgAVjGMmzcIeux7GpzkAfhu+Rohu29QpFQofgzsMHSIcaCIMQg18xTVuOMqQhafALDa3vBCkdtI5bZ7nbYvFT9XqMMZ801Mn2OoyMjBxL19EEkm0mOQTZlZgpq9C5C5SFqPq5AD5UWR23+DsE64utIGqNqs//v4vuncGaoblzhXG8KkCwuls/W7Qwe65VnGIbXOI3hVj7czWOSWfhqjYkg5iq5Ek5MlUDGMGCtk+oiubEJJYBEYpgalpNCqf5bvoBoUlmukdS2r4hAcZDx5tF80hK7tOmmjjSKuB1IXKPEi1aqkr1pHpmI4GEjRfzCFIfwFqiKHqS2F1/QcKas5u01TyUzlMpyTNhZV5MWqwRiCkA6yW2akXO5PtMDDAaR2TlcZ0jZdLcjPoNP7CfMZ2C6oREtufwExuFp5tu+EIdcvKTYusYNXTVWhWHvAFfPJlOO2c/3xDb4AqV27R/ftRxo4H5LyhxrsWbAlp0x40ArbTzt/kpNpIEbjWm+GGms4VbuNv6meIZCTpPQdhMFPM0WVsyYQ+eicvsGjzx2zfC4qdxgWjN/5Xsdi6Llij/0T1aW1O4HWk+D4B3N8hgS3LdNGxToJJD+ZUUgEQOQ6uwouHYgSs2id8dwHUHt6utgdnHbsLtBK63sjd90d6MqsAb9jOX1bj3p3IIiEyEU5A4gsxPu99LbXmK8QTZ9BFZ6ptz/djD1FpbUZ2bzNCofs+8ldc7dj//jIbuIYAi9Tayt8kvRYDAM1UsdSNOxqEqG61H3aTtbFu+PfXjT/a/LmimY+rFWjdcW0n3dghW1Fxpb3dOf7IBWbCe0sb6che0qR9nbZZTD2I4gORQey5VDj3/jPwF0+xUdjGaP4klSLwT2icRI/DYzUtH3ck42+zxhwN1AUBUOZgvtp6euLYz5VA3RiIi5eGQ+UCVI7TiLJUo0ZRO44ME2Kbq3jqHUU4w/lG1eZFC4El9/klF0RYOyiBCBlw+/0EEjPOAf1eM3bEkGhU+LTLjpSzCVm3O2gdBy8eztgIpak7QWBXu8X00oFJuAAADAAArYQAARZ0BnnhqQr8AAAMAAATVVaOcsq6TiwADWGuTviYd92In9uvbm2HJahHmjjtFKFt8rKrZgwssMzU4SPL1P+jbWzSzDJhpxU3oglsDeFZa3dupaGaM3JmVFOAYYaGj4NoQuoM4j5IXAOeuiEzJK5TGeqMS9ntALQq+XU4eTp/6dPUTj1RBOipjiXP+Eqccwdo4ySkKYLmw7DA7K3336eBQrQVWkgwhYMAuj6DzPTDl1kt3v3fKP9WWUWJbpQI02as+8lxeHggo15VXEMmCC659FyBOqgK7jXQ5xLs1L5V7RB0JmyqlJuPyLmI6t6CGA+BZ91/+ncSlQ5YBUllsKuWZrQxpHa+Is7gBlPN3MvTfi9rxboksGacKvqcuywL7eEYrAd55RMgcaStSgc05JwfdqlhODAmpDSG0QoJDipwhMA6trqJ7o8pV2EpQ0adq+COCqncD5s5SMuF9iPBuUXC0Z2sja0JtBI+hsEtPkpZSypGhvYb2xfhB6BTdLiO1Ko6RnyGmlcK9iJsXaNB0Z79J7TXjyhZ1hAYrc3VAx8wf8qDbZgjprlo/p5FuBzDu+QvkTaFS9/MyTm9liur8ei+ntQDRvpkiucpZsO2YL0HrJF7dj0Xpw63jhry90ZlMAaTq5YTDf41dpTEDArwtKqVlMi/keTsndWaJBBiA8IH0lKihALrytw50R+2oQPImCan/omQ0ig+aR54z9IwwSiOHwiim5gSYyfWOdPhjLHLpScPgvNuiZ6aOVSxpH2rAUjvyA2csFl6T48SyUb7rAcTqpUMnHEzzsUFf5C50fsORdGgQqURPyBSmu0sYId2AgIIplvyMelmMt9xeM+qZQlXs1DTYpgypADpVDxRDW9T5zm0SOoUYX0/DtBr32KOy+LQ8xyOfs9HtD4rAnVNucX8kl/5YNK8ishLEDMA1GsUd8Xc/umWAx99qiQjf379SabbmdDq3IV/4MTuqc2dGqr08xqgSQN7ZB8ZvO74coIugDiRU8ru7xls9o0hfZ71lZ8ePJ9amW/gPvq+0bebHOZiaR+8a3Alqv6NNTRWR4TTKp4wFtJA0/+PmIRJwbdjP6CI8/9LX3k8OLTFXzX08r6WgZIFX3YE5BZL9eWpIuYHCV3ORww4hgtgVP/NkYtbW+3Mm9dPgyaP1UG2K3ZGWwDnlD9Eboq6i4iUudUUpj+iUWNyaPi0DLgJjYvwGBrblkwgAtjF3fd0X9rpTvqYIf9P6pIGWDplSN+ibb4YTHhSduc2nsM7xYRs3zXtSMF54oXF+lrQR5ZQZT12Vxxdr455qGtUDI6c0BpRFKDRFAFfNiu0Rw99HbMfgJY8na8pyQKpQsaQu4pwpWX38mcbgotlDSC3wPStxv3Espcayv+Os8zfxJkD8APIHTrOj068evb3guDMpra9xqgWnY/aDBFrJFZTrz6gvzxUV5l+6RgfeLiSQSrz7Oj3hfssa9g9ncxbkVmYc7iNI8hkXpI1AASgpN6tqzfXAt5DdcuujKpgxrERwZv/qORDo7MB05fK8FP2xWrh4vB6QuWYiseCMmX1mAjfmjBE4dUEkoMzTzTynWxBoZO9ACdLcu2dxhRBtE37DLkd/n46j/8GmqYuAKuNTxF/6vgrExlQjIEm6vTGQIN4q/BmkaQ8nQvbP9tsr6YwXfBTFrK/eAgxDnNhzfFzDUd7LCjS+iwXdLuR+lJ0/fADW9hWlxgLoVAPOHlwliM7YzUkHbfTStnFvpP1FLCwLWToxBQ3CepeSkHF9t1AV+pXZaeDZtJDT1buJETa0dT+WmSy3U4nIAhxlfzAZcLATmKajnkdsI5kJ0k7Q2r6k0RR6C2AmgEghvREXV2PsE4ltowhcwdB/lGfGllAhnHQqOxt1u1FqKlhyuTEE+FNBOwDOqcuhKKLcV+uCnf186yyE5besqBdo2J4jOGDIoUBqr8DLFsVNmWdonZEiNDYZbCx6j8nQNOBZGzDNRlrQlO5HGRl+tEqf1z/2qX5+dSocYn7Hk4h3blfcIrTqALwR9LDWsrrCP9SCtc8bmx3VNVHUNjKSM8rEzvJf+2PehJyEGvE/ZlVJo5ozEpPPiuCkTcuvG2tDrMWMCkAu/Wo9NN0vt10pkR+QC/9Re+vfrslP2W4Aa84d1176n/mB1hs68TPOftSivNj/rrOCXRflUXTSMuqsLNFvEtv2NPpy/Ass8AyfUqKTTL7orooH5TNaoUaUxIZCT6TZ19q68PZ0z7PX87XQqmnc8w4A15XwmHMKVvnEVmGNHu+R0BrMl7nKdfFLZuEpWvHr9YYkP8qWgbAvTnHcuk9YPoF0TQenRUHo5/U97+CRg0tTMi1eTL09lMCBhfUb63lhB3Lss3wOcQVQz3iQ5AsgJpgNgX2O6j6kpfwn4ZP+cIlNOqrpmBM2EURPhJF7AD88OgEX60cglM1U/QKKMOEJQCijVFSq1305ZWPduBd6W3i/8WGMI2PMsgD8HOR1h8z9x9hxDbnKd/uej2Ae40FM8AT5IfAl+RMEOAdMqzanqUNg1qFGwS+Ul6BUOlcLVCWdMX/vLUTe3XjyYANgxYIEygitHPdzEPsGX8cIrQ2qE48ADxMRkwcnj1qXCJRQfFUGbyYA4h++6/1rP31Z7VKiuxjW5absuW7+MUbDC4JJCgR3d2f7i7Uu2mnGcoH1oBVnDA1Y5Sz/2WRiQJ3QMyphouEqo3JYCl/2VuC69ecADfneQdSBUbEFiwtEqugXDbTUdcllZkBXmhq7uOdHt47DOFSlEJhqHKQCi30lE0+m8aRQ3dPJ8ujD1NCH1ZKPC9bgySoIiwcmpKgxmO4ZiDflLbbyfyrSJq0Jqsvqw9doNdOyClwEdV1yV/P6OWa0cuTlFGvmW/oOVlBbvxDBFKf2Z6+K2qtoxIr+/BfOkOJ8m3ZC5lTKauAOBSXaUwBelHlPst+aTSDT92E2gXPmf0bzwOjPGxrTn4m9E+spoMg+DGdmqLhQuGt2t55uek3OBkyjVoMUxrS4Cr9Gg1VnxLgUqmgQDp5X8dwZ++/C3UMzjRDVzoIx49wYdZfQV5jSfZfOQjzsQBd++ZSn2e4RiIonv7tuZ8qCfFnM1NsPHa9us5tO0MWw+Ia/h8J2VHFPO0zVRU5D7cYQsad6/wh5l4TsatcfUovdBxJJIkxaomgaVYKZOhUIuczyqYxNdPAH+K7Xi1i0YQaSzoZj7gfwfHHcMbCjYjkUbgIgKf820cA1Nsfn5bhRFoZdrzguAmfJQOECnmguTU5Kh4r8V0BGXPECOkm0aH9pIoA+2EPwHHNdsD4qi5FLQIDZ7MULC4SA2ChCeWP1eMdDygPvLi2RDHvOI7+3HVwSI1D1EDAn34zR5FtxMnUF3Q0kmYjzjjB3hze8VUTmy9ghNuA+M2aQWwH3VGc6PD7Kh2YJnIN/kKuj0aNLF2G5qXL5sZmwWDPo9wM/jf2bAd9Ymv8KE+HKDivpXCwqTvkw7QaAP3fn22lJLLH54BCZCyHyuT3g9Av6FwDSg1HC1bZ0A+PKB2fhNl/l5zU3AQSYgB3VZxZBTI1oV8L3N8/g/XdqJJyhfaIj7VI4+XQ34TjZh7Y/8wS5CXLyD+tohg6NpTh79jdSvdpxuZDExWt49FZM+7PSht7x2OCXASH0ZzTrCxbfqznoH0gXMVPH5MaUxKggkQTBgYq5w4DzKucaLG+2w/JhnQ2+y+i1zC8ioNiIpTYxBso5h2ZZOH+nwv7gU1a7bRDlcA4NOMsa4H3HkhrLaEciV5t59ExB1DkfCJzXf4oNCNQxIsxxfecwrY+sqIkzoUQPgbdR/7q6R17au7/B8l3qYTDwFUiuTbRO957bh5mfeCF/sl7Uxqms8V6k9PO926FRKt84gLKyA1KxR3VGjOiHbJcQ6ySsKvniAIxCgLbV+/a0XrX2W/EbhiHFVUaHOS4tGybnf7aC3tGj5H5d3qnHNzznmHFRh1PSAriRrw0mkRL09f43Z6vJVq/Cp4P+7xOztoVxjalHOkwSCEljyuj6WevkvTyPsx526pLW1VvcyDsJvzu3Ot4TpWNkebyk/vHdL/Y/p3WkTWSz/Dsa1DqjturIH3a9UPuVHgjNG4Tmc0faryqi8edszOndFRJfhmUmbUCM7lPbLHBg1TFh/Ek190Dc+uecvS+DewTMY7n9X4g/MY2WSEG5+a/QiP6vkhxK3OdyicJcvDrWN2+lXkTFQzK7nJQLB18h1IrFOAxC8jBZsPHcOJFQFC0oVT8KVxFk/9wPq9OjDRfYf/aYm4/h/qamPM8s7KBsRlWfq5iYI7UOM78+HbpUxm1EYF2AVQ3/LpI+wPjwxl652wqWGO6fyCVjjnILtFAHK5FcXf2Qkbb7JM7h/LI5J8kqad/zYOoEqe0Slx8Pi2RIsJXKGV60/oTO+MXYXhwq50Z2qfTcWouxwyvuDH19N0mVASdR43jS/A0XKc60ygkNoNV7hsfYRvyi9ipnR6df1AyqJSLVXf1IU3XFX3PwAT52xI5QL76XgVBcoV9OM4HsouGsU1tBIIWmcViko2TsBGuy99+s/zCMAR56SZos4xA1GgnS8mkWLuYhFEwq2RAryj2e6JVwGJRSka0lZMWfLGAfXUFvAR6QmpJIYj894S4j5JR9x0//s3w/Wr5siiTiIM6MP/n/iJUdColIrkUjiQOlRnmcoozpExgBqGpM1y3HIhRKDSdu/N69FRw674Czgp5EQ9HuZVDtPvQiP+zV2z3UVVLIKQqoiVO0nXV1fC+qL5maYk4Ivl2+LPVJbWg/YB7NN2jLbdHu7SgRhnhn/WqzCSqKtS+Y53PfUDGfJDcn5TxiofqRIC8llsJIR2R+VjrJZM8DRAEC3yNL3KYZQLvY+7bwFzsIhlCus4Q6eDSTwGWT+8P9gGpgVh73IX+cfO0wFIWC7C/HSSw3LghUM77HDuJxUl3OHVhuJzn/XFM9D+VBVORaJAzCkije9nM5l2Mz49zehy/dZm7+9hkL8lhpEWsZjNqBfWRYYxkpi/VroosHXz3GnMf575Jr6gmqc3xmCH6I+WPl8cEXLTh9E3hAvwLXh852BPChXuZcaQolika8I5dQ8hjuv6NPS9jR2UjQhaPNG49KXULlHbimfAmbXcbSv0WiB96n6wKhaolKoYSBmHX1t7t9tFU6Dkf2eqszYwCiubaidjg5LyH2PbIn6LIeqO96PeNimm4crHQt4/FhX1Coy+tcgjXBZDvl64IhVluVI+GcRYhjYa8Hm/8XJlAAUKFiaKPCxWwGuY4cNOV1lJNvuiNur/T2J46Joaopx+OYFcefJowbFnxzuWVdD0tOrI2cr4Ye6RPCt5JypxLg6y0nX+doHJx1QTnf02BKs4AI6xjUIJpAlwfEetKC+2A5rYZ4IGScRsArfKq6uzkxDTSd0ZIMxpJ9scHNOIJrCa+AAl3NCY9S2ho+iRtnUGP1oW17uf9Zx39a14eXav8OjwxkqAVGSuIoab5q7o59IJUkVPGHiN24dHHZFafeZ6Ni7G8dtOQ8w/YfgcFF9T6QCzo6uoPIG3B550/bkQ+250h9PEfBlfJRwhKqdGIr1E6ZZWHby8zmyE3n89jfJsj9F9FEVSg9+MtoOy/Ldop1psUNvLsVR13UE9dqLyVjznVgzf0JqYZZnMLyGh4C+OUsp9EQj5q50WInyWkjAas26H4RrZKWc8pXedYX/Ib8sSQf0IewYYme2DfahKUmf4ivGE0vZ2gF2d3KOC5m16T1iqKXa1G5gl37lORpShFoecrnjAtNhxUcKJcHj+v4bet/JkMeK+ZjqpUzYJtBW/aW+KKBMe/qFRvTj3JRNdd61HDjUk73ZuoMwQxZd1BlR5aBOK+g2MrwYyADz8DQLPJo9P1R1e1LgHAcac8eVT5bLyJMn1o/gw/QkHdOaF3pcK71V0ln96OVbTrtV0dgNGGpfZPJUyFAUy0S20y6JPU8ZOTV48Obq7vVPN8LdRaPylsNBo0FT/Jl//yG/DAQHu5WAcn06nhvUD5EAJ47QumA4q40byIevBXjkIh6CRW0dQ6QnTrF2o37sXGUQTYDiWXzM32lWqBSBbcG+3Q861MAxbdI9YvLEH59YMA/CHyOxWFv//GMCSLOVCBY03dFy+jxZd0EnmHEnd2txdZ9lP41WwBnI8tvmYKix9WMbVtgNFAkRihBSlVzv2s++U30aVSD7Dr5P2a/wrX958lMgEE4Oa9sUwlQ7NUfe0gqOvlxv2v07VZCUIMQE5n74rZrMD5bqEdqrNbEz/3SKvnW6UyZC/mKKRe1Sj37h8G3G+AEZY7txztGIci3F9/yzUwqAzn8bKBlO1jvbXkq7mVDxr9hGSQPhmXBhS97nk+QL+6EaWYX5tQ5ea4y0Yn+6I38b5T3Oed6ndGdhC8zAmUj40XZAbSbHYTl1/kKbNJBVdhzE9nDqdPt4QQGIu5G3a1sZtHoPn4kgMNibhy+hqK0CBgyl9rvt1guOJ0I4eN+lddNnmLnodKTkwJoY20WWbXMMlKY2t9/p8vxAAVGYm8QepfIMotx3wS1IQWPNm5/VSb363PzZralVBrIP+cKNjVqUGkna0xCoSzn26d6jiLr8iBwDpPAgz3OkZeCWMLRCmyzSHPQuDefNFqJxQzArCkTny6/VJV+nQZqK5lw+P0VfrH5E49G5MfOHwdehrIU/iST8r8mUjopZKotJCQAjPMr5tbwh8PX46ChuktvQ2er+Ph9+EEFCscSRxhzUNi0e+yqjQo9AnguWyfMjKDoQTUxbShKi/d3fqknUrH80E+LxMpHFbyqP/X9BdV1ZGG6sHOVHqDTJ9JRl5MOvccseXZwx4/12UN2SZJQ6d1LQobTru+GC1O1wkgdbZe3jwq9g/aBicLVR/DyagFcWSdZKjfiL8rdoLy56ApeIYYyacELh6OafDEE/1FCLrITWcZL8uGOjFKg/+h0bUEnkinuEDdCGbAJ2gm7kZgCkv/DTsFV5cfxT8G9dMMa3A568z4xVDqd6mKlhQ6///t/uT27mMw75u32pHZIciWD8xXUoB35D3+xV3/1FYNgMOYvP/BJieGGHFTVUmuZ4BSDCDW+dl8VKBRjqEpeUc6N5MmduBC9l/QqFf2knpXrgev7137svS6Ncy1XUI2soSFQqxPmEs6Iboarp8oDR+lN9F3A1HeVHRK7SsBukVf67H9P1e1vE50Wyz6ECEJqUco4OkKLU2Zbh8VatFitpqzNQM+jHH1/nYsLEADVi/yCBsCOyupddj7qBVnMgKnTPj+XICI5SWA4jvcSH4DG1zf8UggiZ9BHQy+u7dWwtTV93mi74WvSmrtEwZSwDsgmxnxzUjX6SVJ54ge7Jn/ULBnhol56esLUUYTHE9D4w1yuWjXpUEob1/ReAdOUqcECysCYT+PqAn90EwWftZfuZMW1YwXdfrBrZyga/cne3hPKvp8zyEgsr539MSzqKCHXYhd0U2/Ni0e6t049EJrNVb49D0oK+uFXNhm5Axz90Zy/x1nErTodCLHzo0MADfTuv2cl1mB0i14Aijpl/caHL34DqUEElG7pYntysYoI/vq9o0aKBCww91IE7cdNvEp9G7r7BiASWDo2v3rPgRWAMyrGgumxf1JT3yiEZC5AII8Cm5ZSJOV4CJOGnqB9F7fG0I3fRkSj0vha9ilmF3PcUtmthbr/f8J9Pwpmilgo2AxRj2QVxID+bd8gTY5n6qVswOaMj5vKPdWvkUE50JtOoPV7fiN6MSQbk1uXfYqORHgQh/utxG/7fWA4a3TOqVHOaAKaT0Qi82tazAs5d+y3zRzmjUzTAfkgyT5ntviFngI3pZgKGVHJrAWarXQVawCXtTixRDsblBuI3ihsqZpwfHZF4dqWB9C11ycCdOD0Pd6IZKQDqACwLImhTCYLB10VaWk9AeHfqLRH/jsNFAE4gDTPP0ZjC8l5k0vzK5eniDKWxxYNR+c8k5HE+Tz/vfk2i1AZXN7fbb2wdexlUu1O8xPTZw6gtaoGjpXENiZ4fGCsrYa0CBbPfWFYUNW9Oi7lplrMqtLfL2KGiDgItNOsj+0hdbWAvQHfLPL0TX+2Kkl8HDMT9MrDyX6tjlP6cHPOS7tPgtXBs/35YB7L18nWp81Ks2StqzPZEi2o5VtCb/Q69JteQ0e9rzgO3C9QvRiEGSLLlSzYjpiRqY0flmytNIJLaOsV9vIhtSaIycVNBU7FBfs+D6Bf+wWS/bctZWLgNsWyOLJ3eDaBaU+WPDYWemNGzmYyCAo7JEnM7zG5LMlME3QFo+kUVNRTmifPU6Z3MThwkTAI/Wmb74T7Nrbpip7F+jgcnQ3w/IRdeJjePqNTY6HCqRLlHzzWqu4rQHf/lGRzCZA3bWy71ajwFF51U7koaTvJJEPDdYf3z50rC5SExE5QOENNM2i0cxx6O7vb4Gehk1MFGi15LkxmEEXpl1vkmYUsz/j3hGKMzcMr4OVUNlstsd1fSz6p75VR/b+4f27ph0bOCbr4IjAqHBLnovnN+2HpebhGKVMqWBhhnm6w6r8RIszCQRHhYm8QlBrXSgs0/TboABjGMzDayerBFAA77D3wsGLb+f3RgR49LvjshF/fZrezYe3Re9B7ybPN7Ejqi8gj4n6XAOxlZvIqy00AAAMAW9TQWe7YQKhLw1Flt0MbQLU+8KXX4rtvFnPMcumhYSxeCiG043UgXwwgoVu40Vqy3EetM6zz6rMyZavYZXoE6XUG/fHTRiQbigVpQz33gMm1Y6Ks2NMM4v52rqj2ahwxFKvrUQel0RAbOi6Kwi5lAON3xkNyWxFYLrKilOTu7Es3BKPs72y4V5/DBgWVWZro+ZV83nJW7H8Hb6ubrDr14K2F2xUfwLW+GZUufCsBEJpackOCoiyNcxlbFNNmRQfK1Yaoqqhz8xxEzpLTEdrAfHThQ7vMcqMBxmDmapsUKLtW7WCye7opMFgeLaCuPCouhFNZFRTSf+NC1RcF5vD0CvDfLn5pzif4Jg+j0498/SpcEQPwpxFprM4vxw+6olNWPcvjuhhq3IkUTdkS+5uvlGj0KetH7r2FZ4dJCR2gdBhlxgEo7be7OzFX1GM+PHbIGG7vcIoDjXrlM0GRZVK2G6RHZwuasdblGZYpGHSS8dkMq5bb4NSccROgcwnSkr9o0UOTN4Hx02/wFtmSHkKLA20Rc1nUMdFglk6hBxoirKJ4UMsp0OEIIvRhCHX8aLPg7DRnqHVNnC8/8xF4xvucAgLdTUMGzsM9Wsvix0zr4SygSSIIYtm7WhxBbx2ZTlozCGfv0ed7eoZF7hAUUXDRQ6v+ZnWXGE3QzqwbXf5X8WDyp/GcDfwIa+B0DSbpNykkQ/wYdu7Vg4e0oEF0W/3RRI7ueX9yvY88uunJL5vCZga395pLXrWhhXlfjbeH0//MWLPu/XM8hVt5IgOgPCYJv4/THTUEsKume7OuY670vcEyoyoBs7IJ4A3y+BjCPEDJEeD3PZDE/9b8nKNJRCoQ8eMmogR0Ulu1OB+18Tw8Jl0bOaKO4+PWrWfBOId9HpWBxu6p3hykqEyv1jyjH7gn56eAbiixsvKpTkOH+9WrELKIF8NFNDo+7jUAc0/p0qZJsLgGAX3XJ+WSo9Pvp2raVG30tgaIY3V3phQqsac7ipE1SoEqRbG3XhPE2if/zav2cJtfmV3/TVdm0KQWpmAIJCNrVUC3+oUB2y76fuwUovJHbZWrPS4/StgC09hCUK37hS8AVk1bbQGC5Y5hDMiGGv5o3yDGeeEuUX24c6/ILdT3YjNVDazB+gxdhWkMKb0xDaFn7GZ5rvFffHopXVMoX6RzDLyP1A145ECXAB8+EkJjzHUPzx7syAeuXdLAqcNu5HkH5wcbAjQglZd/VvElNUyDbIRbtU7gaVq7ufYuJ7Z1JmwtMG6vE+lNnlU+vnFPKq/Wnv4jCQ9d9yJZhvmHXfExEZciwQMJpUN1yXqDUkAF7T3LT0VAopjeoF/Yzmx0dqgs8eBV9TVBoU9N4r/L1auOdYnNMO7J80LRWem3DbxbObpdLZiqbjoqZKGGX/o8ZWu5FoFcDN8azDZ7L+cmmALW5h4jdbO+CO+bchYHI8/0B5T0uMQ+7ahbU5ww2/EzXzEtyG+mdrZzJTb9gS/7rQJgCU2YPIJ5lcnRK6yIvSkqlxO22HudRcZDGOh2XHWfRemKWvF/2ZEm+2eDdMj6nmgrL7UrrvMSamh3Jim29KyEaBbuPk0khoQsiDELt7yrznYfr/sz3veFhmvtxu9PnIwHIy1q6opInk0Ue8Bq819ORtp74IxjwPTs2u3YDF8XK9r4lI2VAnUmgj5mZeMIsvuf4Z+z+7zz4SCXj2MKse6kBKDErlqHDxUT/2mX3SuEKWoKd0scsMdM0EV3Vr73TzY4nBlx5BLKxuBDIqLzE83rCeB1/1g7vGTV+3Ym8nHWeftjZmF1cFFgQKl9EueCeLU3VyXhVKkq63GqGEwma/m41WR2uXXBH1xzZuZnklUx5gkTH/2ZMnVLQang25RbHetaGQ2IJhLmm77n5hh19WTHBZvf1kzXgYDoHtlxNp3Cn6ZjZiD4lWzt0YlGAdqav41vL6+k/ieWYtAXK21g4HOF5B1KowDjAZ7FaovrdhsurvPQ/B4pAdQtz2M3vB/1Njk2HkL8bE7X6fz6JFQDF733RRE8FY9a/vp0Pf8+SxB7AtGlPD+j5ff6mVr9BTeVQESBlaDoYL6bzBZQLUe9EE2O2k/G4gxiBcWQ4vRqhES8NVdQw3TwUbYDoLSzNYOGuv/8NmNnPELzdgX9kH5/yJYu5R4A2x26U6ofJE1jKmcoiGIMBMeyHzaZENya1S/LJLbkTk8NsMZVtA0Ekxy3bv0UIYWBTIM3GMP8FJgP0VL5NO9uAPHxLOJ1+trBhggJ06sjLQicrUpdZCsrNiXXU/y35NRBnQ/ZMprcJZnJYj1OgNtxohTd1NsD6kTU45w0KTvImAJOCGqdO3f/3TPUOZk9aiwZY5hLuTNoUweeVNm1WCXuO7BdSwMUN+DeK9QRQpyfkKf/Oa8EavJaxt28r+1PrD7KW5RlEZSyu+wlLsdcgDxQjqh933LS8spw0YlpKn/NWAQwYHzfSVH1NKrFtRTjLO5gDunJdzVuLEgPpgJ0jiZVcpCq00zCH5GgaiB7Td2zZzL+tI2ODI07ld0sPKYiiLz8oen2mkKwdpl4fj8bX/za9WqPBUa2f0ziDfX4FPbKRpCC+T2X8u53+M591E3e+NWRnWVVqp5sEW6N5gQAjK7zpLNew9EVblSIqe4Y4JiTShrClE/TOms7udXwQwxxwDV9g3VC/1VnR1DIdw3JIRClIM+Y5YOFWGT4uC0SFC/4O03nSgCmHuSX/Jx3hKc48TOFuKXxbBh9XQ7Yqp0HgjuFqKBEajC5feU2ieOIJDgqWhL5VWjCeep8v/grUzDlqOGO2aekbbEWGJkSwD9d8eZLjcfe4esNq7xb0Ru/nkAOmmXpEbtLjwJ8JEwTrvzLo7AKB9ZkZ1uXBC1k2gNmtXQ5NVP5Ox4rNcuI9rech85A7oReJie9E4aZ2dJwfX1Xqt4r2KGLq5PBTual7UNM6h+w94C5SAFwcl0yldi9/qhXq9z0GQNOG9hrqsOzQFYxyTHER9p2BVtpq4pMrZxVffTaJ8HHcvEAQmzLe8UV0Sr7cObk+h/XhKNxM+x/Qeot2+9LWxZdvRLm5MEu1sxNFpWxjdesyLMApsjk4JWATtOBwAs8MPE3oDuo1IYFsEIn99NaAAoUhA7ocicjWyMzNhx0/n2KTZB9YYDjTNabibMpwZV3zZMqKSSf3xGnyMytpnIAEYCyH8Ih5XwtzFoLFXwC6pDkcpCaqe/R8uA63EW8I+aYtQdec5d+PeG4lOOiDXMPXrHSWpqm9lmKwin7YytsmYabA+niECwaT3CAGB7UojWvpYANOh2sXGSA+7LgnDv1gAGR7np2b26uO3s/20eisAJzh3EIL8N1sGCLdNDdumeDebww3Kv+BR7ddv2Dwctle92M/wr/twVxz1w7QqrKxuI9TkFXunEi+hUGjC6PrDMxsN9j4dE/ps614XrSITEso/b9wM8rI4YCZi6ZFG9o23QDGxwRZHxOMWb83XvA1yBhPmT+w0fKuBTCOQQ7RL1f7tAuiakCf5SRIwfe6jQpdhPGZCJlR/h3sMEcjQZO+cZwYUIEBh6RfasgVK/OYPAhDA+4R1hWjL22qoceoyKgCmVSPjsQK6D8ziH0x7GA3ef2MxSIr6vtu4CgQgWut8A5uHMGbwhvSoEXFcG2YLxrtbukxvlTtti0c6AosGvs5ZQBHFl8dX7SSdT/hvYpabr9mML9KuzuA2FAYHCnXPuAz5TV9YdDmM45S6qq8rqpeQKEHH4jHSajK209tTgc0nraTXcMji763WLPTqLQNwB4IUkh03Om4Uh/mbC0Z8fGh324PyOAPY/T3xkB2Kpg/0W75mCeNBEdoxKdE0ER4/iPXHNcEZ8zll70OzUrH2zGQAprhq1PtMW9VlMYrJbwl5Jq2teQmXeC2/gGqS/ID/4tHhAjzGTLiup4LfwyVyGtWHri8q4pQHujZpvXO9Vfu3Jmh5f3Zo32NMwLX6d68lhkmGEy5IqkERPkWGjF8QOQa4i0bcj+na/ggz3jrHvaN0o+M1ajpoEESdbTSHJtB443ke/mZ6KNhmY6XK6if5H65d3Ik7zOPHvnxcATsN0r5oQUAV/XvzE2wl2wiYJldMi5AP6yRDxyYZmEHqvgVOqNbdlAJJIHJwzHB/7bxYUHvXAm5i7haURap7xH+Eoe5INh+FofHwu7KI8MAlGujOyk6syWBRjXPwd+IiaidrNpch4F0Gpy5p7G5/8mujye2wJmKU/2f31zz7LykSps2XqMffsEjy4M8luHDv3aJmcaq2GeKh4C8CMVzhBKaH5PuwBZa7OyPsdWKP9uEjMiHYpRQL5HaKnPL8pSrUoTw9boZETtY8RcOSQSkzdsMU38rhgltthxFpax4aGQSh6EVEBpHI80x74atJqr5NYz9ltibuen5tCXXY36cRc67xsj3C6AKylOyMnRkQNtH+LlKv92dtN/v8KsrGPqeMUEm7WCSOWnLBYZtXBpwQrvgBifSJn1s+2CmiuHYUPAcv95UJSJIO/Var0mTJP0FdBVJXu4JyroCgVOppJbnrjaJKFtmrjV0vlx3J/sMMdNiNUKEjO02iLwhTNVkQTfpE1HUiFo2RDqUeaFO6256pf7D1PXKTNGKwwNOqBfg1hiUH3bbaWSEMFSAFTwtPUIHl6OkzvS/RAGb3NPAvQ23/gM0AeAh3yV7FRjHLXHco3klMlc9b98ou/d1Z4MC9fLbxCSg+ukY2ZTolTnjNTkRBRmTJq0WMS0BlZJcGh8J6ilx0UlU64F7CswQe6CgAlshhGZpXw90Ed1x/599qN9g/tnqapvywJTgnHdpmbniPz6FV6PqqL74PSbMxbb56Xp1scxmmufBuE1l3ef/xrt5I4iE8oQAvW+MqpkEcTOegNtxl1mNWOEMFaTkjSpkXFhS3W3QxpBJc4P/9b/DGq3TsiWE4YuA95RNh40CTaRlznYYbYOaXM6211qbFGeuWa5LGvJFVIH6LDCX2sQbvYQlCCP7Pey5USThYArcaFHSJrKEMwxjloasTbfOArwyhUFSP4JpjpGuk+DhRcP/qi+g9qEPNlmRmRdyiVmruCG6CjTbI/RxGNy25YCgDNso/8n2v7lFTnYGaXYw68QvkxN9HkQm/dRSWokXAzv7XoUheGoX24tYhkiAm0uov+nDIxhugxbToEnjQb/g4L5YBtIKIlrlDH32Fv9XnUgKt7NTN0ERx9yRVXepPXsx5UbWElLYLKlAcTgyvrPTOznVFJGdk0xiwP5eykbzQJrMS4kH9W0nIc7/xjn/mSEIJ2Wir3+hG5KjtQJz0yhoVDAuLY7aDuGv7QbJlhF+MrwonemwzGUSA/Xp0WXsVAjxiOmebof5fBSzutw74zhN8VT/Yz5z0+yKFzUQoC+ZV8DsG48SudUEspRzd3GMuNFfivQ/5UyZQ8f2iZQrrDxj6kCeLXtA8mc159jarOpHtA29fZDKit0x1bZ1B/xCuLMJ+xeKBgYaEbLuRB/XO8d5ynnkAlB2F8piQlrtHHmblMWbOdUtwtqD5nEFuxBG5Fkrm/d//HITOeH4FMcMe3/V+AmJSXUsC9GjIPjyRVt6iHue+2+rBGaLDp05BL90G+UP4D+tg2v7Q96D/TbPq6O3Tvvumsva0baQCEVI5HSKgQYnasv9RXxifEcPG+1J9wUUqw49BaGmB9EU4L6UxdGqH7zX4zTg1jOCStOmZ8vWKVds+WI+n+vhmDL7Y6EFsJQat5jjDZ2w+9Wy96Havat9m/Z7RyTn2vSnwNyti91snVXrS6mqKEwLP0l6CAXosRQ+s1Ovz9lDAUonZ7PvSTpP8slbVbtlfusMlYq32AX3sMexzzGVZxywtbd2O1aBHTT0Qbd60D5ygYbcDT7AvcLkdZccaMMwHPrK9Rd/Qy9DwiDVjofjIDRupVMezm55B15MUlvrksH2yhk49kN9ej0LZaNxvqGSzdg8iOaQxz1+Pnm6DS7t5ujjEVV3KiBT1SO4L7ZeqlTAvV7qZ0OzxuN5LS/15JXhahSfnYeK8DJsubvNOxv1SdPwhU19VVDYV+DxaZpwPu9xeyCdPKxDVsAHIsTat74Z2i0BRowpHnyMTUMj+TviryKoibI1/OuvfM1Nkdx4rBRl+UmMQtClMSIfEHLCAargk+Oy/B3MyOnJj9UdoTMfJ0s9/OmxcQMoHt8idjjuUJO7xxY+hHX4wa3sRpfyevuHVc6oyIkhTfjx1Ffn5sbeh2EBI5rzLErxFkooktQs1zjsAspAF3x1GAO5vl4uuMWlKnDyRe8/C5S7+LI3JFKzMLfDFJOnmLad8cwwipQipLm7ULIed+LmUtMSvFbpJflkmLWFG0wcq4DrznVWv12nVltidzHURGhWltsDm67eg4UU7UNX7ugHa0amQvVVxhhacW7i39h7IfNvmDXD0YTVTl1P/E9gBYBv653ftfTB2U7hEGKK5Q0SQOlFs9vk643NG6Ql3zxX2RGwsusS1tQtYtt4ksfY/033AM7aQ5XY7I0aEdQDrjeFJnaMl8Lycb1m4oRDlw7hWy1l9g9G/qwaxOQfAiHdZY2lC5JWLa5QcZNvbPyPp+pPbUfHvXWz+tjoCGYC+t5SmjMbSMmx6Em/+yN1f0P1tImAI278SQUGngjWcGypyVRNLrkVXkXVZIOSBG66YVISQUQjNdR7G6b8EZ3CnoEKkrzc+ygP3Oz5jDkzl2qXKVIW1Eesn+vv8MnDxqOUOXHPmGzg1uiyetGzV9rUyemAY1STYpS72yLNgAD9QVDHaGF5zYgLBxy5c42Tg/3Afb97GLF8ztHa+vG4+Mtej6JxhKAVyr5l8SfDNfer1YMp4xnTk8RJ0TR/yIcllTBxk6KQnn/8WWEoz1oS35/Q81q7c2s1OQzMa4VH4uzwYKZRDo7FkN/ck1WSxN8aUHiOs3B6/J8yj0shZ3J6q2DWhVtbOCzHoDfgWP9cPTGgoRK+FwLnrnCMim0rfjkxspVSv8vRFWWO1R1AekS8EuEQ21LggY2Z1yd8YEoHW8rR/giSe3AZrBjQy38Bd4VE2tGdUmrwGqpDcVWxhgG77sGYvDb8eq12AS+BCVy1p5c/RB4Dti1XNTug2mnwCCAFbCM/j/obcUhhPUo9xJRXc037ausdDEyBgiJdMKF9KcOitCRgTDZ0SNPae67HgPKBvHFM9SQIgFjjLLWjgtlUKF4rZ3ZkiJGiGiD/9EjuXGrkBkJtm1/Qp4xMXfa3oCKEUQYoCt6kPgu+uoM25wrO//Ec9iBZBnzDg1zsGVrAYtC1Xl2jqG33GjRvzFoQWKrJRSpsJ68BMavBI421jPHDCWLuGQ6e1h+06zcLXZpZHhdvAufZ+TWp+XMcTKuWb8QrVaEPcD6j41Ydl1QEApdJ4f7C9jKagDT07RerRAkfOzy6Bo+ngxSQ0OWdmOFW4fEsc6Kf2Ll3/6dQVnSdEf/Iii3TGcerg0lI824l6G/+ETlORrw6VUuyevKeVs2vcVlYTQkIqebzUJBiJiHvPmACxv9NgWmV1xfyx76u4j3xoKxM5LHCfkj5QSEKsvgNQ46BdnlsW9yjuuIDAbad1rmjluAWInxDIE+FNavYp3Ak4Edq/FgaNB50FgIj2gpyAvAi/vPw/3QkFJAiHqNnWqNg50tVm61vNvYP88sLjlLkjuqKgI10GKVS6q5MR71h2wGNsCpNIsUtoLIrEAzfGhjKBKnWr/3OpQayx848Jcm8pC0j/U5f6dAFsYLWwsmQrnC6F2445y+UaTHVTpD3HdPTNXwfJkh+ooQfErftJ+V7tBUigUgtuqMweJyo99D2dF3nfXEsD6ch747tlHkvbFuNDmMqJQfeJly14j9aG3AVXKccm2QbIEgeU8f/qdoIwQBNZjRzPsV7aJq88smg3KtkRLOrEUgnadh/B6+fAO+NLFx4NQmdK7fF4vNKvjDmF/W/YG0ViwJIwBs3axXJFVo4MmzQRqCJ2sEjkcKCCEXDjCx0dk54dod0jHPUgFwvaVzJAFRDjZ+hrz70wDd39NF0GsuWEbZ1hIhjXVuBEDcOQRjio61uX81pcZZx1RI5d+QUqexUl46Nnj8yp5h5TMAnE0yOdMvr/8DaYb8IFkbQ+MTj27MYie9E/ld6iJBd77KRauRVGuqZ7mqAAmrxK86yNq0cpuBibILM4XetfoR9Le0BLe3VkNTkNVzFDARp+/+Mb/l6i9TymInN/dQgpf1Bthv/98D4l4BOjtm1vloKpG3ec7NrioXbKbdDCZ4dFGiDPiaV2exGzVQzT3xbWMS9t3M1yAhNwJJkj3jbvZqlXkNF+gq0LFvHaL/9deKnlv+8CmdTxU75k93DY7ZYE3NesglBu4SriiKU7FGHFlJIWkLcc/DwCeOSlTZx+imxNYPYI9tx1G09RZszmwvaJSi/0I7h4QznU8xKkxvogMI1lgGjAzTukgraVimXJSJboCbVMIzprMqVJ044qge9Cls11OeDaZuUPNdnXNAiFdiaQr4gTnEAk0Zx9Fs0lB8qA7iiETsDGczZCoeRx9ZSfo39u6nHW2J6t0UxMf+rkcpl4Vqyr1LNlzbAfRbAv87bEzDZbUG6W+eXoPz0Zhxk1PxAkzPCs31PIDNCgnrtLEPKvbcxWN2Mdrx6Tncq00/qa1inYKQZkb6oL6xcblccz2BSgZdVW1EAbDKwpzvwBlLiNJZtLqgtW8Yv3gLxRLjb3t3iuS8JtNfJPF/CB8TDkkh/1y27lvaN/D5m2JIGNxiPxd3745HgzCKCYtZFfkqPT0GSO1KBhgL1NWP765ELE/JK3CW0z3YXsbJ16xXHm82gTXdCaHVkp+6uL/34rkvAGOdg+1X5L8y0WO7B15sgEFkzrjYwuK9vgloDITOKoDkNCBc+ruAWvuFJtdO0MDvvgnZCJR5vYafH2QiqUpRvcH+WexHGvGA2+jtMitOm600ENJj8CxTg6rFswrDUVNGlZmA7761p/p35GaZ9pF8xEvdIlfd5Hou7YLiH5B+iT+MbzeNV9ZuVCIxzNYbzQ6+EBGGBym7AsGeN5fdqRe3+ObNuuLUlLWPkYdrpeMWK3A6OTmYbDxcXN1Ue0MS+i9JwoIpCpjE6yJZm+34lptxb52HGmHknBKW378xDJIGIOEPo0IL5uY0m/s4+Np9YvjlvNo74+Vzi7L83qF2UBz9cz6kTDGfLIilndfGUSieK6cdPwgVVYI6rl98sGwbO2SVi61m9Z7DBdOP3ZZkbvwnwyBpuIPrH9wmYy/U25N6us1Av0+ydE82xlRKaV5aYjhh3w5lflHSM1VKsqKwzNWPXor66x9itlZB0mezsEnWl1iljxDucPhul1q2wPGiBCX2XC3LNGm1C2asdFRg1mPNy3mFrAtT5Qwh9tOXYQ/3cZtCzzWINTgkCRRLba74Jdq5PEyN+Ntu7owZsUO6ir722sVQDNMSlDsPXtDU42iITwpfLKedLLvZ4wO3Y1uJA9xxmOLkXiCMYk1bNYABfqh211ksUdWVK2geDfKwr+oMMwbVTl3iWrc7dhjYzxEP00jNBJu4O7UkSFuNbCd6ctCkzVkMQMpSLaV/CydHhyRL8sJn0JieyiHWxbKL1l/FAVrCoQc67NNGq7hnyzz1h3PrNrLdGRhCe7WRf1fuR/hTDgvqDGMC1kPyPSgSzjlQCgeaS6sIydobC+zAR8gy8tLtPaAyWCyNgy/KK1mbO60ml4WDYe+mw4hkA72LrUXDEDL3QcvWxa65WjDEAyymljCqpKPwjNhVUIxVbprUUYaeD/R0aA5jWL3XAvW7HZ2xbn30q9uZY5VcAQSXdfKq336BetXodhE+JmJHyvxOBBk6EiUYdOsfebx81/LWVnf8Eu+bbF8FI1c9IdaGXvuvO7pjPo1ehO67gBz2KpnXGNCAV0vXYRGitqkGJK5CHMLvweZuJKm1A8kb3+ou/k85gDOZef9ktpa6sETy9uurVEfM3b0zEv0nLH+8n7GpnjTpFUuQWVU/98dy5wvPeQN38vjVSv4/a66WvRC6JXO8dAAl/HPn+Nw7ztxSlwRumoxxTuIF90Xi9oi0qqXOyTveE/OjkY2ekZDbkYDYhP5VImIi///ky9f7BC2qqpu4diSSzhEh2uEdbrX6d92gALfAP7+oMKiX0hgtZtXPcsyRBl2V3Cb8fjgJWZVNOvaiV3bGGtxne3mj/1AGPk48kwczwSwC07e0i1RQ+G+VEXiPZffjtVNB0qR73VpSJ2lfyUnuZVuxRtWVM+kBdc//DSYjZBpcXpNnZaWHfwDPkY/vk2Dl4xzgqShw3uRPuxt4S+8BhHY1cbzTibJT24de4YcOg95kbGId56ZY4XENsa5Ur79nUSl9Ke4lSX7zBbsoi6EWYqjrX+iNoK0PVq46XLGtKSVvUHUV6CetexQFDSkADvI/oYgCt2MLyAL8zbZ7LU91auL8dXElHHbKV/PylcCVvPmGXSBEI6ofklyTZl+aLl7jY1fvNl8K0U0FdFqGY/niEXywU95Zel/8PS6ImqgznX++6NuqXw8EDHJ6diQ8ezfDN8Y0E/NIrpYBFprP2BlNWzj7lgman+Npq10LLMzDMUVYb+zZE0ugdd5i42jusuheuAsJqhGcYr7uwKYH793VtzzBSd7Sg4tBtxQS2IdLNlWodZ2Qyu9GHFqUhQvj7mz0Vl0Ea8wnq9cLwEqghGPJH0Na93pt8XLrkNCaR6hl43oe92/feBW18KWBWqFrnr99ZZR7JP9bb5mlin+ui39TBav7CB3ifKNQUpJ9V6Wd+otPcMAZbgWXluGwL+aiE1oNkHnfsnS4TLBodU33gDF9p2jokXRJNtWhzxtwjSCc/Sf/4K1Vu2SvyVAdlSCoPfN4gPEUOTlw1+fEk4Fbm6ZX9Li42bH9gqCG44RXkVZTyZxNaR2Z+Dz5I1rvdcjRGdwtDDrQbD2UOwA7RdDPcDME8FN4Aihm0udobKEiMNyOkbMMhDVpX4LmPMt68e70zBMUoYuRqNpQxrcIKn6GIBvwBYu1AXwhlxVNYNBhEAFCjDzLQWN9ANfZdA2F+vH3zJPbmCTt93lQQNsMbeuueDnAXbs4vddZ+CeUh/6U5qpf594++Ec0vFxzXJoq22EHmZC1H62d7T7mmO2gStS4CQq9y1buYlASH/OqMb1zRO/VRTnncI2Msf1BBoAcIKV3AIdAZO7Sgewl2sFl5S13BEuVbZrj7usg9QJ2eWixVcJ1QAtn5R1fxIaDfOkIuaGYk//27zQwAgRT5f4EQSAY5wwA61jldxiHe2q3fkJereOcH95nBWoCCjGUP0APYgUM0IEtMianzZIW1x3Se9lMKR3ELzYeB8zVvRR2NfUWOto2YsQbFI9z2VFIIsPvCrYJoNmclLz9aTaQyEq+JPfYgfa7FbQVX39GNdtmYdYKqlToShne2h6BmG8ioprkjlDtDbgtxLWa2B6lyonhctbnYSqW2WLLFQ8TAEcuy5EfyScSh+hqlS8mJSNvB9WjKbH301bQnhsWt9wu5XucciSLgriGSqm2pBSbSgIIcM3rM2rRBdtHk6nASN69W9+1eRG1BdL+aY7OkToJ0/paA7AxpP3dYyPV8ISKE+RRTC8HyDWY/wcaLT0KhJm5twaay+WhEPG9686LgwVHMjPZ5Fo2POgVFIO3bHlvZl0vDtqfpKx0JgocjRM+oBppU5bY+4ognhAeP7sE7KxIKV8OS6YtYvht/xLGJLMuWnzMmcviawWRG1jbNhu5WgqGFGHkq7+y/h+t9Lr185R25BBPwdNNoWfQ/qBTvKYM/V5+XoemB0DH/GzLw88bgn2mDLM3kNziDeMzYY5FxPvNMt9usgmCUbPhc5JpldjSzSM4Vwyc6ASOHGtfFyqwyg/BXGm/jJaLSWRcOoBcnKof0/yIOxHdRbtUYltd6BKp71PQkrkBCUmB7bIZJB04O51x+WobKzT0lmnF960V74STU4g++zgoTI7oXQpl5AaS7XBpXwL7tWjk01MPriKyVQdYoekWE7uAGx7HAH26dxysOHs+PVRqpCnQPTorjl0rJHuKqWKWIspv8PC8m/AswtH3RW1FxnAoOon5RKl3cE77f9z8PLeZnKsb2gzzlfk/Euw1KtuQOBHoVh1R+XIwsjkj3WZb7KbaoMmE+lPcXXhPEZqJ25VCloGgqK05/jo/o6ZpG7QY3nWKvoES4YkrfFS+0nqwifS7Q+0+DCb1VBAwCP6uxQG6lf9uDDYbF4x6uZ3FM3vKpgkF8x8BXerJ9EBiA+xLYrFglY+pFnRdbdI6EZV/8gFLDPDigOJ1e6pZNlJDIIUyPwDGhYl2U5+fagsFb3Mzj6uquSuWz7kxJBVLM6GSrea2rlAv1RYaGbjxAZzOSgP/PnXwqQsnASqmoV/2TBk35ZvG35TwD0A80kmGjl7xrrCRjwUqs6dkhFwpAJBFX3kx4F88kC8hR6hJSuEb/XB1f8eEtDHDKxU49rO7gr9ZRy4vNnaPWgSxgxVShtBwFAskomhLqfnMwuAd2xBwDbUpAAGAIVYh7AtDtIBffdUjNJiE7jWsHLC1teNOdqEvpK+0xgko7m89J1LVL9ZzZABj7XuknmNv9S+D6+irj/1v1mTPI7VwovuziZPz0zjy7zKQimbfVqziYz1CRIS72BmMe1dljYYWCxqD0VHiHF4c3pzmPwDVBmJyO7QVgr7plc0mHLEo8DXCGYG7QrNHxiqCNnGXn/YnPhtUZKIi6f/ngEJU36x3E57ughjnm340IMAWiaDjz9enLcCTpVDOtgDbQTtM4fbyxN1rJtjU0yoveLCMbqJjvK17TXLKUAScTTABf9U1GGWkHIveGKZ+rzFjYszRgtY0bJCpAcj2aw7zLnPSq6WL6CWIrlh5oQQfClx2HcePB8GMXZVPWsgQtS3FTUawsOceG3keJv7cQ6UeSRRGVf8B9INl5bcsrb7LfxW5lzT819B2oAaZVebk0fgBj9j1whbtktFT8J43dXKxFXIRCykRYYloM99H2McvLdplOAut4Ys0tQBpIKdoPq18q3YFuXRqFfsmhJHMeM5k/VGu+QeZWqox5MGL4uB40qlyGuqGN7xnmIOT9wnbUuivORQE5m7CpnIkflFTvngDpJY8ZQfZ7EWIkcaIDLqODce4v61N1WaMtmlc8C7wiGIjfudP7mMxVsE3B09g3y0jPJoNObsp0APJ24Qt0YePOtuiVYWd3cuVv3vcDC5E/i3xh1eDPrIjR0P8Bod8QKjh7Bgn24ACbVQ8gKK4IFdCvilXD+60U/1pGubyxg9jIwkolU1a2tma0M9XTDa8IWG7+fJnOUI32wYPyCP3CusZaEGkPRpCHQ4YkTxE2lp6kKTFy826XBMD8C7E8vl9dOsljGK6gI+LaMwERBF/GQosIeAHyV0phdllld8rpu5efOuvqeYXYAnbGaXla8xw9uD+TnzD+P/UOsZ2ClmT0bh7IgPAyVAzQ2sVTcz6xtZffqX8UH9soNH3ZL8hexxvJSbHvucaBPBde5WCtEut1Ht8g8XWTT1Pt4FfOWdADa5ykrXuRyZsoZ7xwUKKK3s5zBo7v5oaWLXu++h4J8ZEXQgTpqUegfCvBvwQLS8Wo5Z8C9fj16zm1qOSiZwniTLQfeETtqdQAAEpF2yq7fCgmpHmUALkG6+/IyzKxG92/M8RbwRIyxt/hVGbp1g/OLibtvnJ2+AjOVh5+O8hvjp49y2YxyZG9wdM4TTen02noY5QA7QLAP1kGEGTFYusIjnqkwKhJcoDB5NKW5MGkJm0axxzUgMgYhYcEjWQUcdwuVRFvA9bLT3OMIh+8L6MHAFqzVvVV6MeJCDMlot2I5boIAKl6zwWr4+ZG0OoXITcxRJWXqYAlBcWgqoE4jtKUDrAwao8/RcTDbA2UpY7OPWM/Vd5R6oEgJiRDSzPO5HTT7JXI7OIuRNJViYE+MQ04DpZuEVAGrZCPQhX6VJT8sI81ASAUHObTcALdGVn4BxFyd23U9QrUUlv5uHaiV1kaDzPWbjrGqt1xbgUX5+pXMnvKSkh4kqBGz63Z4ZVfVOFW+xbmYXPIRbDeO5zHDicJhRM0ZXxB1ndxG+gOeBcDMXElcfPQivOIxIMuKlOrkdUo7hzWjVlxXfcAEuodoJmOZzRSXVU/Xyhu/NcNrBRrjMadRt95sPPs/FL0sac7ZOjO8nS0Ec1FRKV018AV9yJqW3tzM9zDYIBf+5ue5sr83Q8vspi6sfStgGPkb0XD5hw45T2x2pn/pMW3zSXrgAyWXGjkBsLMcVZ06Aqi3cA5XjZmUZk9xwtFnSNumToFoB8Gcc2Ud1reVjNP1ht7OtMjOR66HVRf0qUOaQ0JhPhnzFe8HXFWSXq9/qFPqeSzzCTLCXF3Vx7T7NJv8q+QSmBPzyByCLYPRUZEd1ysBZxau4t7Gl86iC8RO492CFHp+WcvtzsCI09PfUB6tVngt08WVAeY3YZnQj7FR7QViXiq9t4fwxJcyVIq4y7gcUAipz69Xkg3UTEptR63W+djKmlJZRLKUoIgEXiMbV5nxzyRRth29m1Vh9fvUPDa2vbjh24SCRYWq1KnULPAWxct5sjaPmqQjP9vHNCkgDKyxcwLhhfyac4mZx4xtvmzAsKxVOU1xFdj4GVpqPR60UyYH6msyuuaIL3J5Q8yLSKkeKuZlyVGc+8a0PmwgRCeygmw8Mui1llC433RUnhA831eRDPoaKYlShknUFGNH1gYewJY8AnQLhPS5277iUHAyJcFO5NE3wjtAp90N6PoVH1Q6cA2eyHrot3SMtigtEubwATNVXuMsdhuF5ybLMNTz0bHbHb1G78Bcp1LFO54BN8GZjhZWu+WvCcp8ZaDzS+qZmUn8T0SkS7cf6ya0vvSexJ2aPMtSz77AtJZWhStUHnFOL4DGU57uBs7+jNFIzoUyNk3nlpC/RTq2797bwdOukDBwDfUChBCsAq58TzU7fVqbLN2kSDmHvTq2eonHK50UMzf2u4MOsMZf7ORpTLkNgmSa94MrkHGh090ajjTPZHORgF9CpJi9nT1AmPkx9fa/J8IIFCFKu0GzhcmJ9IaxqzZGPV1TNJSMUAsKnujSAT4WzxeEF0V3RwBS7TSbJB5CM8r5LwjV2WXYx+wArIrZvOUHgdE9La0Qr128AAAAMAAC7gAABNhEGaeknhDyZTAhv//qeEAAADAAAF9tMz9TT/sSs9tklv8vMAN3eTjtWcsfZRuPyRLDOnFuroEAYUO1PFC95kwCM7K/OCv5hHMksrnAOeD1/F+YhsF+jXUejUlkAYIPmzc3TeDjFRBrrydW+Ae1sKfEpwA45OO7rm46MlhgdTrKDL78+uAMoNIv0TYGoQ0QPg4Q2U8lD5lu4NNBV1fBwSewLf9ej5PrFlvtu4IH7+HUqE8ITNxQRBO3fzfzFxnRuBsmap8fjtG1EJuWPZXiIJpuUW6If/PUCjosocx9+WzcAO3G1dPToYa8Wzwc1Cmmpnlcp9Oqm1ua9iKKMKtw6/qjzquSnHjHwToBWe7ihPRL2ezAmsDo2BkuOsgPAaxx5ew9xp8RSOZMld35aqyKV2wJ6N/MHRlYFDakj2Lz1mD74byUgEiFAsP2aWYnWHoNugeykpoDe0+J99GuoPYvKJeCnawoIpDqd/FINqYpbQW6rTNaN6oY4QRcw6ZawRb+3k/DyStOF7PwqWQ7jGQz95hVh1ULhoorTyz42nV1IV4HBq7mbgF4se5qIDH7ftbwztAHph8y54UZ4D/jK7ZEzAETr/X2wn6owD9f8EEGGI2B2s/fNhD1XsKSXfkJ1bgm9gug7qqplXeqdxEUnXNevyDpMM0ht658XQhhSSQKLapCV+MXBeZEzEaWU599HAYPNv8H923FyO45g6+gsjcx2rxqBuUPdeaNCpq6/3v+rXfL8R9oO6+KF/eh8bTx1ywmd26MjLa0fJ/6vQ0roOfJ2ZTUeOQkFI+JgaIFFjveUIa2CfK5ZCdZ4SxMnG7zpPyEqFxdqOIa+1vC90FRiTC7FDrdG7lVU3sVPCirzpYiwEXGkDBZCLueac1j/d7Un/0VS8ZLclUPwCo9qiBqoFmN3ohARe/mC/2rfua6FH2HfdZ08wr92rzinHYJkRDtmZa5S5ZJuNtxLxMvrl1lB5T9mPH0TBXbG5yXLhVOW5/CTptprhpAFAG/c9ygpS2/HDsYWHOXC62V+UIoqlyvFEQgyr0UbK/9dpyv2L9hurexxr1QRHxtuedW61QNrRDlyuFwXSbVVhwjbie4njYoch9Axui00etdyeYk3ovRcgdFuKkgNMI5Hyc48WM3t9rFK+F+SPnShKyHyYquoUgzqFbB2soPl8NSx0ibNb6U6uMfzn34whTft2aLYlJUwfdSljqTiJsQ0CiZAuAWSLSUVdPdjNPPEAUYVSL3t2bLHlzxweemd7j230cGrsEEwaeV+4/vNTEzXqi2u+NV1coeB+gasSmpJ42By1cYVwaJ4LH69XF5/XCS4+PnCiv0SnTIdHnp8Az7Dn0pJzHhI22jckYjFuFzI+i3cxPFHGXv8geji5V/UPRp7Dwoh5Xm2QWkPFEachL6xgRgakA3B7F8Qg5fBdbUpFT4OQUCtRjl0RCOGHY6F98zecjbeuFmLa8+Gcwiha11lSppNM+e341fV93pPpKVokbG5OqBqanB6eZOUi1mO/2y4EzGrYbh7+bIDoyTtdW0oFDB+xSA9VVUnnWX2EtTaw7v+kHRUkXiHoyYCQHrHBtLyf0Zqn3zQsw8z052nFaVY/ADgK7PjvIDh/mmPgXMgO+z7/g/8wYv3y16Sd3Uoq8u2/O5yJ/3WEMLAoxEhtZlP9MtRNQEoaeKYE/O1bmm9u6BrXls1ccu1G9NB3OLqf3uoKd4AbBeLY2Qadv1E0vr4Un1bEC54BnTVbbkGcq6uuLJVzjoTJhrcMz3oJz7H6fikqRmtbOjyOEvUqgXFLQXR7ZX80p1uPEp+hDluwcYCFm+m8DdDwDSwMIQxe/C45KZTZ879oe4ZwSIzknm3cLoCv8arjBmmMFk25fHDaxzaTtyuejYRfPckpXqLg7nLVr71B8CwoUXWyOEvo71iGj+VxxqBEA2Mh1KhxlKNT9XU8WuFxpQ/ja87FDTzN4gF0JfEvuh+XiGycCT30nQwOSx3nKrA8qYRjrnSP44FGXOSiEWQmGBOypY9aTfgvcnQAhCpDt9oe7pnXIxfcmQOVpI5u6HbOZlHKrdrd6TpUEC5ZAhwIxhLuUi9V9k9j8eazfbYDiAxex4DiQpMhI6/6Eolmqzo4JODawDZbmRFPB3azW8nnOCZgIbe+TpFBIDwm7ZtZ20Y72A9fcdnpTJiQ+yMmzVkP/RuGJGpGQIVfcgpWyr7ui5P6OF/45loIvrwYKjHRM5FPZDtrbPUqE+xu4hM1ZE0om4MGtYs+p3Q3B4aGUzvEeBEFYU8pKc+s/ChA6VWJ2sGRIalEWBW3pp5Xd3CRJtEE1JUjRFyMsXXpJGEVxGdU0L1/Bn6H5+wb0QyEHUpEPVmWOa6bOTBOPSJ4NPwY+YOPUFCL1lvT5dY8+lPOosiw/ws0Ie7wDIZl9o8DlEYDtE/Dl8DhLbBaAQXmdGK2iGIO5ASiXuZdHQCKQ93Y1qKmlaTyxkgHEob++htQYqSEAJwd95tuDibFBuSdMDce73/Zku2G6ynuwhrYdeoQDPqRsjY2Ne1Pyttiu2vd2zKBVyDV1kxuEpijokuHjpazVigKRyFCOr0jvu0inKz8rsDXlfrAUuIkTuOA5Pd3lnKgUdzzDICnzt8tUZyjOYzpCTwXlt0Aj4Eaya0XRLcYU34Yc+jZ1fcEMd9LHxkB616h34mk0aq6CqrX+R3zlpxoAOIWeoxCc9E8Bv101ccBfvZaLq2s++587gSzZg4Va0Mi1ZEO9r+yXJMtDtDvjrmduU1EuXLIagxJyoswzkgHCCiLDbfzjwA+1xOLrLAySLCbyuLYdxI4y0wjXJFpjddrlB+UpsCKZKnVyxiQQ7L/b8mOUzgDZ1xT+5Mo/gXlfJCpOTDTD24ySaXHPUR2IP/rffOEU+WGcM2iymjFLhhiNaFTsNJD2hDljoc43kS8NAwxMQekSqFwKbURaJDQvaflCKcjMsnp0pkEZslMqph4NqEy0cyLgoOlNdm44dPLDiQ3FCXnoHcs5QBslLs8y1kH7JJXedzwTLAy0RW/xqFRxbMBFX22LIg1s7hk/icVdWAJXXOzYyFlPs065lUzoI3wB1/oiWW8C1hyKArRQ4MW/ViRWw5sC2qrgKbMua4dmOj7KJ/0SV5kTozBC4SEgRkVptwzti4d4WJmjnhwncZAqKGoKKyYS3wfXcFzEXyxXr4Pscz4HzDXXvKeeSlTJqOAxgcocrCPSqYY/dvDHAn3GBppvzQQxHIqdg3mqriRJX18J6+ZGsx5UzxqIABWjWkY9yrApjRU0gpIXvG95crRwcnBbVIB8PprNy3rutUO826jwGvv4t+uc6nyHiNlyXCNr8Q5IwmEwiNXa/opCE6mufnPcyHbWR3Aw2UUblFfhzjngGNCbQ5utRKKmnT/N8LBME7jxEdNq664qd0tG5V9JuT7DZ7gJa5eaKJlIcMz9hvW53F7RonO4Z0FcFS2QWpXAfkqZz8Ql3U9iA9bpaoTJD98FjxpnCgic167eHcPsDQtcuPdznfa6dSAalUBsLfFulg5jgjlOmXAaHCuhOsOfq7pcL1YBeAaDKdAKHmoxgzB2/iiGPvJEouF4bFuQkIO6iVpSE3zSWZ7iBhO2jFTRaSksvkA00wSFqW6XA4P8dSwVDp73kJh92Dsh5X4n0CpLChg0UuehMiKi1n/5eqUH10FOKFsTwcrx2HX9Fn8dK7hhgIARwhDE9in0VVipY0jOrx/R+Z2O7pd/Ef15vLROSa8urStF9anZsOYU2pgzhENaaTZoabP3WNSayMbtkdGiCRxu47Wv40FRKITgHZOxgtFClcAxYlV1QiqBoM+syx0xjxw9YXznkTCuuN3An9jwNxXG1QyLry3DFm/+x7Ck6zaFBZvkKU68EiCyssLCfnJQm49svLPX42jdwk3zp8717Pl3Y7+0dG3BSQ/DR1ipHUnYL6ci4acsoylVYS/YixRZoImMeby53FjGA+htrjpaTsWUMdFncWWnaPIbIRfum7TkYRMWMVykQBfVqRN4daUKsOJNGjmaUC8Wvov1IDgaeySmse/XxCXfQRq45Dw7v4FFfclFyAfUC9QWTNqUiZ8HhTCbJX4lmOeV7YdUPKbzwbh/XD9Ws5SDL6j62u/O6PWlpw/t4oky0dUuVLvJFheyHvv9AV80pv6NuMqpaaOxDO9h+OYygfaf+FUtTatweiKQL58MVY8Ia+Kb4cr3qiLKses/upu86vI4tDbR5sNzSAEXBSv1JlhxEQT37KUZMIaMV6SG3ATxhrGSsfZOD5HAqxFH/w0TFP7yNBYLjpgJp/MSmwze1wgtDG97dw41bF5m7Ez6CCB8+EnJk3g8mbVF3vXDNmT+8gW4lcAsXRajyMBUVyoMDs/4omMLpSJ3VHpIJpuod/iqcpBKuCEK6bFrNKGhr6syKC7lnNgK4U6oJtV7Az8wef9zuxD4uDXK79QtYuB13lM/dfKcB1jdyH7eLpP/4f//XMbj2MmuGLkFpITxgY87JzsECOovOTezmB6MP88rCfI75qVTh296kBm8Dlve6k8FHLnAsARXFVWz0/txLCXqwj1ldP6CFmC53851c5fpBaFS/SVufbx3VuM2w8/QfjBTmlwlKqJoJfBqreWH/mq8vBvLLNZpTfisT3NBe3NxiyZBtgZrChv64+6KY6BOdaYNBDMelRpNMv0otS5pPAVXKZuB3K0X9t2JAVab2EhLtDi2N1oMflHm9KNJw3s8tux+AWdRN4xbgcKc3JEa7pFkM6Dmz5KyXXinAAyTc2mHBoFJQY4oYt/PTqv+qbpgyywPlC5B1NsTohYsnuttsu+n6zqMJEJXg+A0QNgfNrTzsl4A6l9a1uG6eyrGQWN6zC2f9Rk8bg2p7WCf6coD/sg5uOehwf/kiSBEx8YkRMwyJVTvditngPcIuWdEsRuQpssirFOE1OqAbYA1LvxYVMo13L1OKwuKzZfrTwbuVAsc3utKDmSmEDwldMB5jXKPFtkBl+b52PELb7uYgH5VTAkQYdbSXwZQxTIeT2dSzlqJrXr+P6I1V4W7t23xaZfie4Pq0x3ylMkRspfwWh06Z2T4KBsguVO38TvIwVw/l1G7avXk6efT7EgMjeXwalI7/MnZn+H9WQGyyOise/WqUnkIqdd2wER2BwRliVBVtIbhtP4CALTf7rNiAKbAadZGSGNNQTGFu8yqvuaa6sOyP8jX98g5DrofNE5JK0n2oE45W6/eaxs6GwT7nv65kFB9CXHkJRPhajeGPQMJdCQIXQNGAu9FcbpLj0HSucLY1AMA+9kb/IfcNo5DS7FNhKCmyjnahZ9uuhP69y1ht1v8JRyaB5xsmR+x1SQUR025wEiWhPpI37bZ9sgagxNq8dNF6STg0606IijE0S9bTirqiJ3olYCJHd3sKPag/ZeZ3W4zu2JqnfjF/hfv8I9DqISWL465ipEwfFG68tg9qN6p9vfzsI8O3rto8gCAwjV9mjOytVBPfjLVPTHkWgbe7qiTLNpKOxglk0zpcF4Itrt1TMs7lUpsdfPqYKY+kOwvMbGb5yZWdpPnzTNvj+DmC4VZCS4TIoFc7zu2jUPWipHdf/idRBiRRXl7VvY3X3NiCJr6ZQct7M97Ekg+RCQbn3vmWcecdmmbmbBPiGl2XEVIV4HU0FrbaqXLRkaonwih3wLhw5WDfUsQtALIYkLoCRyFd0iOV9fSlChZY8JLoQPZg0IGiAe3uPISPOtkGTWof7u0+yj5ereKU7kK5doec04XOAfyHFelRVbVlhvUrezV9ZFxTuAocBv03EFd8wO/Y8gukFBFjngRJZI+TFrEpJmYYVgZv6ud5G/UcMLhGn71kYD+KJQgGPUerPqgvmVbOHZsDLcEEBC3Cn0xg26Nv5bRe4EaxHqYraXRhjIOnS+FeVpjWxTyOR9Pb/rlDD7XJk2SMKHXv5JtAf8hSxN05LnEPr/4BmHzGaV6WGjRtBnjVRHjKVLMWtgtpCc/lnmy+th6vT7Dib6l6MwFUwreoYjpAFbLlXzAeCZr3MqG233Lz+3HnDxmiiggLdxjYjDYckiOjCEcYQ1XF+TGzo8/sSdtCGB2htU4eNmWO6UTMuhGfPDhhttuByDUhQIQcOJhm0gfkXdBqK4xv7v81g6rLJ/NNM2NkSXWfhOsHuFOALEgC2nPWn2bk0dnrqf7J775LuFdOcj33rkt+Hg+SzpwaNNJtbn8Pl4JIM8b3l5d0sQgfFJTGGyXnk5ah/4Ku6DjLVBW0MY+ec2Ni9Us/gmg9M1excwXtLsfa6hzQn/LRe5u0e+7FNkshfsvLM5/x/RBDyT9fBPP5TRzgITPMs4o4ZqWwqAXm4ZryLTdZueJIwzq5hFxRTSlKWHIEn72wI8F6IuN89nzowSoNVy4kmqllmdXxQM6gYKQTR/PFV3ctFgVRkq038AVx0OkRh/tC8Y/bj2xUg9DaVhYgar0N9JnWiq5XVo0411/vv7RPZ3D4HEE9s+oUeSLOPhcW1llWvFNcd3hZLLPcu52ixi+FwCQC4VcbitrUvHk6LZLCQPo93C+M4oIDI4l2V9EJdUMCqM00WAg+xBWFaBRVs5gSq5BYL4J/yBq7HFIU3mR5rpC3Zs2BxiQXtHRimpjnJHaLOEdhcaRB7paX1Xc04XxQ43Dv56ciRGyTPxlTcrFfsWhk54lY/O35O224KDbQwd28kgXXGs1AwdwQFn9VXEpnpbXnJo+RhoXdZlCuDDY7pS+qZU6upAXTrMn6NGWftiU9dEYoa22vyloKzSad66n5YAJKch7VKdKTFn8YRGO014BTvrwugQI1zZ6MfyQYVgaBqL4RIbQE9DppYzkxMyEAXyClg2PqX7dG0eC/onO5dKgmSyQZ99AD8IlZl2xcXc8mTDQl0APovb9Oe/x24n+3P8fhlgTE9b8M28jkvRFNa4LmWfvWFzduS/W0NhmjkBaWCwFLh4GTbI5gLyOVCrdkfEi47U/oSaDPxyPWHky5rVqTNS7Y4EU5eYcFPF6e+Lvq9r7r1bq+c4kP/d5OCIO8FDp5WL5T9dhzeVGKjmDFC4elzD2aj7o/Xn12rV07ntJGny4F9OTqfwxdwG2BXZgpf+rglhyrHOrWIxjDA6ABAewZrvbYG3EzQGs823CYR5K/nMBemplvbqyWs0E8lhX+eM3dUkrcH4ykk7PjoWTz0mdxoV6Pa4vt42A6HHV92TlrqQPOE1gdRfE9dZ5hwmm88AmFHR9HtrSK4cdosgZnUtEm2anbO2Tf29ERkcV9MweLg2hTV+1Wv6c4OSJIECC5DmqFAiISFiI/q97T0S390cTRmMMnM1etSyGKIvdISPJAlfkHRwxiMK3mkyo1YkhqhqyimEELNTcR7VcuBiqVlEbyJhizmL1IUUP0TrmxL79XSSw6xeh0ENU7JcXwu27g+Rnfz54EDdB8bVq9xHW4+QN9XURFR9SQwveSJBIovQ48D6dkASnB1Ss/FFqVMOh+/bJIsXyYrnfA8lYcCG5G9jo/VsojXOcWKjsEfT5bCGejAB25SmiG4rImb3rIJU4qk1xvNreWFg0SDILvEFOJrWMpWfZzySuVJYnx48XD2ZkWkRXCgF/x4SwLHNaWnfe6B9yzej3Te28VV6uYUieHxObLKChxNjBnXdsrM4nbEsklbgz2W36orA6zXHWweJP9yPMFkn7Okq8V4bRkxOGu09JnYxaDiA+XaGF0QNNxoSAdKN+7Ap60FoKp4NjdPMr2OAXRFTidrsic0fmPTn6odSjtcRokW9u07Q2PywKLqcGr4jt7iCxvmJKdaU11Gr30w75Ku8Et7FAi2jcZyKlkDL4UOedQEGNuluvY6mC537p1bibSYPBN22xLQ0gtI0y0gAxXeGarDea1h8izKfYOTSsvvscI7kEQDOGeXp7PQvWipvTe8N97wFKovxe66jEN2aU1dJZmAN7uYIORKTkWu8e0JksSjczCEhXHPgLZdmGFNebbexj9vd14Gki2Q2BAuUdRtATj3nkt07up5cRYWtVuyvidagWY5qUDJd7xbkw8tt0L5fkwL/9tNzeo84XJuuBiRweyp5BgKGmukdbQ/f/ae9aKfXSBPqs7bqo8+cpvXF3psxG5L25Mf89CmZ/2ri/fCvFxL7Cq/HzfmSKYbHNpoWnja8c1/PmqaIGG/GQ13v+fSi2JQV7IgFzLwnGFhZA1dp0GX1FjzJbigtwIQQVK28sMq03TV5uLMbfE9k/7LqX74SfW8X5pXWq5j91yuPollMoDMBrceT3EU8LSgoNvqhD6lZK0mRWzflzBjyUhrqICBlYLFuNYVj8Kf+Tfi348rgpERAX7eNZy0QJ20uvUh6GXyDZ0oozekyp98agsHu5fTOQ3ShCWy7ZGxK8eiIpnjdHfxGtYOrNZSz5Rj/7OaUcqB0rIIQ4yeaTMWRzdbTL8Q+yCmprVzR5uMOcaloAlI2TULo8DJjrDfUoYcykzeJYxwg5LI5l7nfW7J1kCmP9Er1l6kFGz0lkMskxwHe9wpbi8PDD5zczpF8hhdTdnVaI4Mb/hJDqM1Hgrr+yIygcCXL5Vk4uQ8sZV3BrbQa59cS3odCeDNqzEfIrTzBlJZUHuTxVYzLpmNA+iqOBexvg264xNuEtidOOztNVtudVzMhWhVLEiG1EL4eLQe5q45wLBMsyWS1aVDKLnPvSRgq3tjwhhZaXNpq1lP5EDG0hvTqtkUr8Qgfttxxbg+Jc0yoEUF1OQYaAzfMvaYrIMo+6odBEHQs7T7cHpSSOjOYLA6Q5yqbgvlEq7HbIIsUrJhstdeb4m2ZIGb1HhtnbVg7VC3tNJfbGVBoaBBeFdKbSMCDkEaiJyG+jEdl7H26/0oEzD9UXw6DGcvQ2STbyTCJBXT4Lv8/p1Ly/z4cBHyNWxxBykJhYW3i4YW9Sed4OGN/DXZWM77jAmv9g0aVE2LVDNpWm/BrV9yZIjMntpndZTaQnh7DsM5GBV4KAfGw+5CGvbw57WMwMs2Hto6AhsQhQ881Z2rBw6OW8hEWe5NRiQPjnRsxaXIciEVJPQjIyG8gM//n654irXOTFqVKMacOK3bsi0XC7FgLV74YWs70Gq+0MyndNkIr63rnuc5IZoyEZquuy43TdNLvPqr83h5OSyK2t8Em3oTtVEqa8cpyvrGvxWzH540CS63FP+OddJHLSzgpqkjhoLoPcv3fvaREjLnSDApWVzEH+QNBBo7iO11woP0oTEu9DmshifRGeds4XKW+LeQ8lB6/aFtG/6AC2j84lTTmZ7wKFT3EXGPHIQo3aL+hThgNl/maYovdx/B4WjIRnlby1Q5GM8pkNYB9GjfKmkiwSRHrCvyp+BLobvcdzPjNCG9a1aiNA2aIHaZhyt9kwMAoQbDwg3LnmxeNO5voHfWxfUthiFNNPd3zQRzOs3FUGlG3iyxy1WbFgH3fvU7Pe+WVoBaaGuzHbWKgqNcPAANf3qbB2sH8TGrPCZjRyyJ6FCLHqoHfx8RFTZXQBo6fsC1s/L/5hnDzl2B6J6z2moLEwfSTdXQo6rfCuouPzM9nNN8DYXCmcya4IxKufZSvIQKPs3y9cMXm2bj3hrKsJYeh6OyJvEPR0AQBpEq58hLjPk9NKBXxYikcMPZ1f+w7jWXiaz0OIFeQv4uL35grw8DEgJQ0hv8fQ4WyJb3lqIrycOyqok2brfToYBI1DIVj7MiPuJhGYCQDSySW5aIt/4hQi2nEW7N8H/3+Q6hK9M4Iq4q1RsRXvOTx5RyFWJo2VKQb0VIPIkENaOnhmPDH6T4xoowgKSfkzM0Et72XSHVc0cj92cLmJZ28xiQZMTvmkqbwDQnMrn/q6MbHzgg/mD8AMXLPLnHxrkXW0dF+VEIJbTXUbD0K7CYwVAsxOqLB7x5punVzXS/cYrOYK27HDvEP7phb+SutFPlrffXy4enPNlTplkgfQ5ifxqJ8j+uVt4F4z6AGi6+8dpqkh9XDTeQRe7Jf0MO+wAdPss6D2FqvFPgdrG+lZHyDOV631u3zE851eNai4hizS97JgLLWScwtXK0tn8yuNe6bdEun7/X/453FqX6Ty6Ely1SLmWjxU+zTa9MVyNfNrdP+Nq+5iQF6P2AQ5KzzYO7DsDSzgjrCHFRBwgBVvzCSeeoYWmH2kpOZoLLqp8NKCXqLn8i6d+wMARjjnDUo3akX0zGbEfw79qQscgOdUwbUnBmCk3H5sz8HbSYGWyJTQN0kgT1u8lfQLxgdjPZ2CMR7ms2xcgwVIO6SqqTnNM2GcBhjuCCBRX7ajdZJ0LguMMg7D/AWKdfFhe8ayZiygJNXkXDL/OM1JW/Xmnt21nvrdlhlrlpeY/5Mb9cPUjTHBIyr5+HVJxeAsocUzaddz0GzdeyPxFDwqZfgplpIZOYMRXxVZAJRUTUpPSXXjn71oqYOYxDsf4n3P2U9PukNYrn+MYwyvMrkSWK5TdNQwnzSgzIUXHRdi8RH389B+9qYpCjehik6f9EOfbDxRQQ9eU3t9BYWtLsn5APr5pkqrherqOGYT9wYCKmcAUTuTiFy3/iyIroSSY9cwLs6upYfGYVeQovTxMqi0r5EnVnqkNjk/3wQBXlM//vAAl6WyTNSG11nFVbtnZrIC+TjFTUApNF+I4otW+L5Bi7yRY1g+KoXf5e6qMLSlJnNvo7mHqW8e01sOQo3CStHe+4YqtbKZ23Yk+fFQdgYtYcpS5A815gzyW1W5X1c1ngFiEr46OTYJiYg47vWrhQY2pGPL/NfaDePixdJlK4MyAGcpTfaSiVDXd+KHeQG4b6DiMQ16kVg+9FlamwysSe98MBc6R4iX3EizKAAAD0i0fVJJwM64u6HNb7l9eE8XvQkmAjyEpFjexQ/MdmGgjdI3iXgbwa2wgOZBfVxXRsh/Iu6QxThjqYwN4gwtaLGOOaAOE1fPKtuY5+7f6fYOlSvnzMglQCvVavGREP8iC+7KWkO0FK+4LcDo/t1+mKgNeOxTe0XIeNDRBJmTl/TlSjpcdd3nceUQjaxhmEtm/AzO3VnbpLjHMx/Z9h9KclcbnfPU7U4yDgeXqhQGtur9MGHEbi7dAQLrPwMek8P0IpABfYLKtDLfXkDm0o8K/ejuTwJNnM9QdJ/vXvfLrM2xu9QVZbGbMNJjgfzsLjcnCWl2aTXkpP/bDhIReF7AydhBB39OI00XX1SfxxYGC8BCWm1wi0Gh2k95gF6LNg7Z/Ali2Wp/O/OsgAEI2Ja0RIqadGx4n+XzljRnu8cfV49mXtZvJkRsb1gmVdf3vlyvDnj7Tf4Ayon4vnpWRgz1ONH4OGA0MhVuoW0COWTQCZg9qiw1uxA0S8pnpGTPt2UEn15wWiJApiWIQnqN3f1v9fFHfHr7UQXKu9vSG3zqmr5aD9VLTMAozd/yxPNUDFJNdKJw5aFCoPOhucRYrZvARSSgss9MxvDZw3RxhIrCFrJzkgAvFvcDvmaxWGm4H+WZIHksaYJQXmnO0ZtluXklI819tEYYlsG2hq1YZiY6Ffvpc1SfRbPtd2mZg/TpKor1BrjQHmKMx7mcESZws3RyYtdt6FqlvsG0PcErwxMn8Jd8rWbS7SfFdgftAPdCplibLMVMrjZ7JW1+hT78MF1Qj5BiWAeEyP7d3HGKGj5VHPWt0KUNevvlkbhPvd3GT0+IyMU2z4FueMWOkay+FBhj29keJ9SBIhrJ2WDy7z8UKJWPer72RlywU4AuVdc5pmg36gZuzqno6mu4BEWDdn4fz9Sx1qvvWMraNw8TMyc2DUfcZ6M9l+ifGOLZ2JryTNb/tMNNObcf0XWXMCeMCBD4diHRK47Mq9l56WNpBBHAPeKCDmMYUs8iZeboib9GqfQLwsgeQnLBNElspRnIOSh9N6UtipAgThlPu068KG3MYqRvo35MyxmMgQW+pkNwdOJMbxmAsMbFTA4gGZHnJGFjK/ojCDmCU4wcOjX4ryUXenFms1ZWVqQfT9LEsNL+//LctjNts0biknD8nFuu473M+GwrS1ynPIsPtoN4wZvGbEVhRFMJi9c7yIk+LM9zU6SbEHaNt6VBkadF5Oemf88x0LJFv/r9TOkHX17Jn6vewHutqlOW7uVOzKZ5z2F/HRMw17SBttOocZpY+6xv3GJe7HHAj9c3ydjDX4FTUnuZy0JC4AJPj1D9EOQXJFSpdJX96rHbxsAiVZHLr+k9hq0jq0oaIVR0abQwRRuOYbC+Gy9tmgz1W9ujP81vnAMOkVpd14AJuHYddYM1apX7Nrx0sfmpbxS5QIirhuA184YPHWNeEZYqKqLC5eKOCIIaE9I+1nspvsJpbnONTJUNoTIRuCDdXc6eVAvncBgDuChZPhKEbnWqdys/26uoWbkU+ubJqwC9fCOsyU5E4vl7ArtyQsK8ulqZmbfd2moeDVnA2iYzdopJIdo/a0ZXfNL0G9NdBzM6u9lFjiriVyvJMsAiY1SVF707l29BLaWf4shkEsy+WvtE/XUelHOQpeO5BDGOCSGYDsPkD3MUESnzvkgiBIMiyoCFURVYhjKH0Z2x7R5M7kkc6lJocRY/fLVLaNEUTVSfcp8Y5WufT9W5TdBa7n/bQ4L3TODjWDku9ZuMAXJ1m3Xc6BpUD1MJZAdy9jmE5jixGEMjB/aaH4kWZ3yxMJnD0sb4yfMdjsWn44egDrF6LvBiBh4CUnpD6OzgOEXelksKtiPO9q6AwoDoAUmjBsIErbNfubtSI3kbPRz+ihGlPAdiFqXFG/8LX6Ovmw2Hbel8fXNiuEC6MSI6yX7cZtSBBqRJfdmjHU49LZ0UKL0T417Yu0N2bDXL9xu7k2UkHW0A213KrZxKQ4zhN+4oL33xtjrTqT12GSU/AUsne5oc4FD3Qr0lDTQEVAhIuaDxmpE+ZSiE/y6wQTPFE///gEe5SZuqOf2QFPp+FH+X8kvR9hGZSgeL1VKTZ2SSu7mO/SuJ3t1Z6/f0Cq+fDbXO/AO3mutNxh3j8Cd99O13XDJFvGigL5rA2CnpA4eVWxdu2fTaeZbD+HEML2GSLLhqb7ToiSLmGZMVGQrHZxHWS0pD999eoV3izlJilHQlLULP1c8GTofBmQlNgga/P8dykUheb/Z3R7yIhppRV+qKqvmrw/eRFJYQbH61sOBF+b04hLNACq8o616n9TLyAfcl7iwb0LYtmbxIBLf7thELKD9ynSqNwSLyi7psiXDwqI6iISPxK2Te2lTrff3IwrXlErViSVyfBURi7L5Z+wPvS1qpWPyQuzssaYSHv3eN7IjpEAmrfn60SP/6jVEFWttPtPLf6c76cs7H0vMXXyNNH4pf9C15U/ZFZ2b+/PUeC6M6Glc9jt2KtrTo1bdXrKNWgVrBpMC4osjfPmNeYk14juligyMrB4uAgatTmYQkD6D44hx+KMcI2fBvwIdNx3vqv9XbIBg/L2soW1BiS/Qvir489Vs/sJ8AABAZxLGzti8+Xweug3lCzobx6pyuAn2iPWWwnQZTlmysSbFroevfBx5d20z+c1edAsCdsAA2V1zyfzkBuCk2J4KopyotNzoa3fe9r4fFgfFYfWmPo+aAHLsRPVJZ9H4+VbPSy8eBW5dO61Gi7DBOqiiw3JgBjCM9SETOih+TZrVwRFE2Naus2Zk0zynOCqPZS0YRxHdeqag+8j3SWAo1KXd+eChqOgT6XQBXTt5kKX0+0cImZE2rHgY0Z2AbmgN4Jut0r9aKPuoP+ZbLBpGPvncP1qHiMxzeuAODhXWiNPHup19TV6B16j2mcwZ+/wM5Ailh8Vry/1by2dwdhCixAtZmvaMPc9Vr3vd7ACbt4HxQZur30+1E0qK04PFwN736lVOJ7S9R+Osf5z13pRdWLDApV3P8HbLc+1jTmj0K4gfEuHUF2TfIejciWvbTGFVJk/Re807RSwIPUun6vI+QfqSzmUVV5Hsj+OW10DNF0E3Kb3QwfEkjkelHt5woDEI0sLJxBIGHDkvyaGhFNAhG5DsyVPH/QHDzwSXjhY6ZUVmGAZMi9YuNa0qsEvPB5yu2Oq46Rjx1IqhMF9XFtfAldoMH2ifOnxYqER1W7K+BQSTLzTnjTOgduvvmbsN9ewb1YlXmVOW1oHJHk3kTQjSX49ktUTLPHNG5IH6qVg40Vfhlz6pjVb6rLmu34nAojMLI44mzAq586fkmJBJlL4M3GUsmLI8t0u5MuGBCT7gc2aHeSqLKXyhFs3vkbJ13hf4SngbkVuOikLTiWEIxq8IfdxjRhBH5tGr48P/tT7u82e5bCcUXatgRkKOggpaBrVdBo1CSdbavd10agpgAMIAE/pnHoslJTUfcA1x0dQyFNNejH0k9Wt+47AxmBpp+Sr0gfDTXnYIq7NMNfdL+G6KQD/FHE9oEQAnxgRLKBkCo3UUQ4O8VFaeEViWBGFqmsjbjkG/oXV2TSbgtpmD8MyRIyrqdRT6Kq8IfxIjvbjLJ4jCBxVTX7JU3+Yxk3J4cbFh2OuNt98SY2QsdD+xhrAq0qqWtWCkQdpHksc57M6mdQ7nprnakON3YAPESrHJPZpLFFtfUimJNH6GEVcJxsmzh/Fpd8faF3BdLMlsdLl9QBwyxIl/4c6PSNwAZ67EmFZDD9TrV0flesvQZQkDDmMnlZDp3FLUjyKFSKE1+NZ+KCsASS4DOlpWR9cq7vO79la48m/E/HPjZuwYa8k61hRt6CnBfpG5Eds0HYEWjOn47iavh7f/9LkYUHAugUKvR0j4/YygUdITfDmdtwVpcuiAF5KssFZxWzSt5y4AiZxXtyiHjZuv9cQiCzOHNngckSRFxQTqNsJuoCMCQpiBmtPwjL3N9kTJ5trHWNvX+MEPBATHux8aD0wtoUsmKE+ijnNMZwmhtNxNUWZwd4eGcvW4Uex01yzsYRRmoJKS37ndGN3eH063DhbRnLe8w8OKPY3TFdCH4DEeF9v24F6wLDEWvH1vx/tiWiZO12H2SDAlis4/K29ub1w4oJVkfxu52dXj60Ha6vlQQ5yszAk5jZtbCMgmDi2w5swLQtwlK0xMRyhJ6XRQpco+wBSDkIw4SVJXfFihfCMT09fp/YOuW8cVPTGazXwR4Q2uqgycVNbVLS8y193MltO5prtz3SbVVspeuYJofvshJpwHdo53eWoULpNdFZmxfxm+Uhc/fYvRq8aE+NCy5VX4hJgjCkcYLLuZsLTqdaY2eXhkfFXdFHQQGtMgjZaWGiBRi/loAjxjqRnmePv2/hNvXyJdWbMHU1Rq8xm1LcTrq/bHNHk9dgQFR7/5illTCaMewLwf6m0c+9W0VwB18im5TTfThXkf1crOAp8lKsGjjAX1B8lxTvu6q5fXKeofFvUtUSsGO1ww3RxtfX9npk3mtwTirPnoV3ufBjtueZRa0M1Vmd5vxe1NekOGLrxxh96snW7qyLBBN9BvVsGKVP9AgLrLxvh2fN4s/S8E2o9I0AAoMd0ps/mi2XMqZ2lW4BsiisR8DYOzswBTaePkU9ybXt/23CbqiNjAToM+6JF7gK0ldCW0gsy4m6rhntKQGuOwpbXa4jEU/wKUNXdyeiuP/u4Q0DkioL/H+i/kRBRttDpoQDftPUUmNT806Vu11sHIaO9sbtj+mZTeE3KEFGBcCBRm7rbzZGzk5C1XS7iEN1HRd5zelfFBv9kwihkH6QA2S7IeZtWTWxlg/soSbL3RRGlfiwbMT0U5IksAzF4MvQn/5ibq1VDutbRv3jZgOoUjUzjW30KGZVW0UN5vMQYWCGIy1syZAe1JGTN4ca66ZEg69vtKpmcIzZ/o6RpRA0tizz71GkSM28UEO0WfgqHqE2xbuOYRFfqNmR/tGQaDr+47lRpXE6dFkVNb6HcxlLXBoELgnjT+ri9HnMav8+PsxHJdIbYHbojxBf+pIJqRuBBs2Elup3M2Y1V9s/XDR80btAJDbb5rJVm4AYLVQFg/mNFhxAGV9RaBZTgXSG8O8jnLK5cvIh98YhBNNLEchE2aJVt1lXHu9WANV8BF71pgPxVgireE7ZlJxTTwAF/nsXM/ilOqX0jDW0fqyovHpwAzmi4SargW0g4Qf3R5hdnIV/Bk2t6ptEtATdGJVlCumnVujQYwJwAS0SjPFDnBNMS26MR4BFfRw++jCnw4tNoJHzjmjA5Otx7dy8c65mPsABrVmiNeM+5BBmeFo5JAHs7uu1RLBOo1hn0n/lXVYoe4zfvVTO14C+PrJCJL26+muGaFRg1eR9RDNQPT8rKkDMIxnkjMbHIo4QkWYVhguBYRzVMwTypMf3zW0jmG+JUuFX7WOxYAqxBU48Bmbp1IDkFEU+2HWhFP1QQzPZq1ctn3J76WhmuJRYP092gMI0MaMnFQFIYOT/ia4bFTgE9jo6WSZ2dHyq9xyLyBLm91CardndRKsrGHDffUJoRQmU7M7wy6+TRux6QSz+2bl3JvuNrdd0/riXGSvtPPqnr8vJJcW2wRK+WYNRyPsiHEX1zJauEXP72WpT0Xibxz0kDkOzTPypfNvW1uh1gW3idWB0gIVIgtj6RXMe91nq3lZT3JWGe9MKewQ+sUvHFfRdavdwIHnGvbuu3gwd27MXw7suDYqU+fOW1Xyd/gb3rGX6PJkxfnrsTgwaa1Rp20Cig1bkhrmE+TObQ1h9XAqhicxXX7wEmANwPliF/elT6zd+opC5PIMnmX8eV44zsaaHpzOO1kDe68c/fFni/SgqryuJoU/UxvadgI40eRaZdLken4i2kjEWUOLRJD66FBXTTt45qYkg/lpVF2uKM7vyZvHKK+Q5PqQc7YFMQsav3vrXAgxI/JIOMQEEZeUMPTsMIopWub7Tk6d5QqgZ6wDxtrWxVV05twZYTFrKZ6nr/GhgVTlrEYOmEA7mrMNB4jdeExUvceCI/D1ClXHXJ/m0i2nyh6okH30IYvOhVXvgbM9YD548zwn9TTiSDGd/kJiq4PxtWBFmknbnyEpiVLuimOOgcgllSBo7kv/h5qkwXTzD/BPLe+tIpT6ZACMenCdW7TMtWBumrWAkBdkbuqaChUx8uzyXEqTIw5hhZziRheGJ6kV1Qi68P+tWBJjt7OwzW7kTnfKvk3XUn1e2ipZwdWUNX+6YTmS7UvashFu/KAPkUbl8RiPvUSt7ctf4DN7laM6pnwH/ZD5z2+HFJlcHkWtYXe8vsmMMwxiLmM+uPsc3FFcFQHWikPeZIzJf834uMZKCBCNEKeb8kBuwbat35aTzd6obOOf5lxEfuhgCFWPNcKspAqEz4zkCpvtK19fUkT27kLmuKSEhDFvHSL4/2h38fV2R/5BMXi/dIu8a960QyGyek+8h1Wmt+w6aQ/CcVoEBIMWKgRl/R9hl1g8GQmZWcciuc/rIiMHLA5Exs0hLG2pIhiICmgUBSvui4QAHYs0jHGhjoBangGHtRUN0t1AY6A/7m5HAAA0YSk8BDSHvNb9qudq3UF58e6o3UYPm1lurzS7vjwuvm+Nj1q7h4J/ZD9qx0iblWiaKp9oEwnQ8FW88ZtG/iKuIjBbWPAl9fzItENNjhbMJ/CnFAYNp5wkTE5CRwYXGiJlWTT9fKMWL1bqIaUwamm3shVN69wYChb90AaD87nxe52o9lo1YaBqyFC1TRZcZPQkb7v/MoSILgJok353cgq/6Dj/ciN+SFvFhzSCX3j7HUu9D5bFJ3mvH4tMz7UtsrLgZ7YDgwuYtHgIcdOZU0bYEID7ua17c9Orh7Qv5X2VAgIiYEMJ2QaTRzN+N6tppb2oY/Z+C7WUikGSsAXUI+FHpOLaFxZP7R808RGnRhNszWlB/ZCFDmmFZiMMhIDCDsUKQahUBuWIHE+S4Ha05tgVImUYDWTe9dzcc0extUTUqQiRCegqtf7flsB/KLslPQn9/yuLRZP9tatN/OU/DH/Ex6brOhaaCprZeMMV+3Txe4brKwJmhoJWOKVfLRhdKs98HtW3WaHNZMJx51faINUyPr+Qtf6F2kvb+huwyYruCx/+4gfE67Gvc1VSv6YkTGfOo4IatNu3f/xCFcaEd4kFTLKndnwA3a7c+Qt8krdKkViaWZHldJgbIGRQKJ8wya+j+XBZ5qlTHmVyLU/iLUwLLJiu7WFqnAeEFxLVDXfFY8Pk5qX2THEpwJb6+zb1nmBcizCOQXULa7TfkfOJcEaLCplrr78w4iCHzwV4F0zOYh+Qm0arkyHppl5UlYVhy6Mf8W8B138qR51EJao5LGNYa2A57Qdb22S6Ob/tzQZ6O//P3z0C5qpYLPcsFnD6myVqwmrRclcmTn8n4r2duNX6xQBMdO1FWf11955NePd2/JXJKzUHy09zUwr7fps5M/B8XJhqyFFBu2iUwjpqZ74k14oKteCbN1sIuUIdTpduMR9ePhYOk0iY98O+me1Hd5kRLzj9WXeAB3lY+BlxEWnPcOhUecX8hrsDr0wiQkh5l3tlBk6hc5cxJoD03uPiwqiXk4M6qNoO1vqhVEB6g6B5v+Slq/XVx1zsjMnSFXV1OrMz1flLFB7+dRyvTFOAlqQFjdkbPVvTAiaXkX2Jeim3qvgzMigYdFRfh0GcGTsaR6AjWrhQf1NWmjY59TzTSV8Y3UAz8xOecNFjTfYN13NedqFopVe1a2rk2Kd71hYvzvT1Hbfw8S0sPoq0u1bJle+9R7R0eNM+KcM5AqHWqupogP996+uKY8UNTJojBhtuYofnMr51QFu6HTs4sUl+UJII9TT/a330shFaNX+XNVIyc4OnuxQa8WslIkzASrLIHMiTcmDu2t+Zl5UH1U0qqq0O8Qtg7XkX3QlZj0QjRGO9FsHwp51d3mxZELe21etKKtrLNVWlznIL7yu1O8+iJHiuNrB/zqtG78vQI4vcA7vOJ9iE+47wL+kS9wV60KhGJt1rT4xzOdzAR/vCPAUe8RvvG4OVoCye4MDXP2CzA4RAYWtNH7aejOTu7KeYBu4YodthcE+JLMIJUGBiAAjMtM0lBwlgvmBXhCQ+Gab1ba5yqOsm/8YpNkuLtLUXpNXxgwsxzGTHEhgj5A/3aC0bhySCiA7HF5bvuzYqSEhxE12Mv0THoofTVPL++P0bostzo0aUyIJZldEDUdjSe9ouwi2iCyWBCEZ+0KqD0gHXt8Irk9Dzcho7pQ9MFYlXR02uyGt3RsiclS5Kl033I0W8lPkpgCzO9K0i8icgy5NjKLJAoERGscDW+Hm2zpw2IHzAmCa+olaeVa08Z5Pw+5/6we3P8Z+1cBA5FCHPna7v7qPtvNq3Q0TWMBzEZ/W7Pf/z0k8WOQBQ8XwCloxjol+YlVd6Aoj+cjKgnq/oP+ZdMdUORjz7/6PnFBSRtuYAaYVWXptlLtJPiJ8Wih7Bt6dUrOsnHXYq0K0giy86kd28zhx//gSzhZd9G5WGoXuZZmpaBK6+zIj9IfPDQKGhZPfqwtJCS9TGLPMv/jw//HRINT/oRNZRJiOtuInhAsSuWMqSSJRIgwvD9pwFiux/v1frn6hapdLmW6p0Frji6wM1NlhYSr3f7whb1qfk6Y/jAl952eVX1DFp163sopc06K7Il3+PWdh4BIaas1hcmMadEucRKgX/+HhL5sOiB0SGoz420A9kqoE6Z3IIzfmanI/utASee9s9CXwAZFlZUn9bkGxm4MUU4v/vGJkSNK4piMoQ8DTwsUDFAFYtkxh6YgB5H8pEib1Fhp2kka2pxtHJVv0jHnlf+pD+L92INxj03szLLf6Bz1DaF9su1bTilWLbmCIGmLM1aqcDH6f8/irYZIKH/T3Rf5kdEvGwnf6QAeOW+292R7qkUdCekdayr01qv1wEkTft2CsFrmqkzmVjBzNycNdKLrrqxGzE6JE4bto0Q78FOrGYRF93nSS7q/9fH4+fwLUiEl4gf+WzDRCSd0wjCq549qAPVYAz1GBCsQ1p8N2erlgZAeBPWnHYAkwpCjqUmDUs06s//azoFfeoPTPNlhKy/GZpbpG13KXe7MOTyiMo5mWcjUYbamj/f6uUVPMhYKfijHzyqzvfKDfk8VdvunIK9DuY3c8d4FHuIbco0J+UoMqfCnpE3lEbExwYpuVQD2OtkDkyZ8Xmbjd4uoRvgmr/LtswEb3Ol2Da391aip30eoFgrAor3qzr5mDK1MzbtKgwBujFeozHS7rxUyR3uh6nkhf7YnarkrQhFLSo/9XQv99rE95AdYaYsCj9EUSaBmX06UCuRfkMwW8DPLdpJg4UtvJNKQ1gLvq+zveItSnRzQBR7vyFFG9f6WGrWYmW2Ap2QH9Qs03CMsC1d1Af7EVmwVj5ZuvX9MNIgapncEGSJWZfS6aHRe/LSQK94WZxhgiutYtUKn5hds2J9lwOD+J+LbLehkagZOgkhaW3fGpK4tV7HOMwsIwxDpizcQTcm3U6kmkVcnTzhSnR2NYASAFsLlELBoG+BgORM93nnBpp9mVBCawSYfa2vvLgBnlKEnFhj/EWtOgrqseCx58bS/yt/dj3bJFzPr0JG3Ij/dlCoc2WlJW1HpRxHLixPuARO9EkbJBGR4WLPc+7YtE5tYOlZs54howOzZujggFdiPBAHGrOffFVVvJ1dBci/V+WXuJGQEDgiv2jI8OY6KFQk0m8RfpPJOalmCzudJVWLujKZNRPF5pkQ7CV8Bx+t7yUVdhRn8uTbu0gY6nSKzHyVO+3eKbT2los2LuYCSO+JC2G9YNw+chFDr1W+r14ZZ2TJho9qOVl1x1exZzIY5d6EpCif8y7JN3aL7KtL0W7+Q8n4GazxV1Pvv0dpzFl/zCBT7QmCbl1tyu2gKZgH3ezki755oGD/HyJBQjEE9fam6S34HTkjxo5iT0T2wkTpg/kCYfgdl+YOLgfBJWKYMzF4G2jzCqGZ/ijgp+6gKyqwF9g0TgLrdZevtFjmBrVNC37U2eej1mi5kzT22A/+fdySTP5GGp6iky1e9344ROO782Nc0PdjOeBIaWTpP4rMy1MbakdH0ElXFJBGeUY2pWHDg/2iJPhwk9yqbE9TcttlFevvz+rktQSA8f8zP2DRH8Np124LfW4h7yfOpMa+eqyycoIOqVcvkAfXtd4gME0ZHyjlyXJZlfeueAjJM7Efco5NN5ivHaolJJW10nqJqhUa95pRbTJSlJN2a0l8j5OCw90u0EYYLcT+oP8f6ouIa6w49d4/efeJDaAcdtCafFIuND1KaFLJqZWAiCwzotfFSD3OTnoDRxaC/90aGt/ZwPY42ZDl4NCRag2Sy4+UlzfDk3jz14ovtekSXDSqr+up5k7d4sIKBXv8oi+oqybBPAHAP3wbtFI9KAq7pKn3qYy+L5r09P/62Ci+KO9Z51mr+rayQuZhCPinBt+KmP50WGwCCsoKR/xZtpD9Yep/W8vOncCMau+7w9YCBUqjuZFAIs33bRcMe8YMtDTQ8CGr0p1QX+Dsh1sRGJNAfWcdFvZIoOuVWZ3LCBtqW0cOeHGaWp3cug1MwhA1PKlmRCMZUgbVObKe3hQ5brhcIg8DeyiSsmookpSoz153mT9+Qy0ojTQTUIKLgylLOAQtQnsrxobB2LGiPm0aCb6zNpZQa58nEYqhbcwF2LnLwcuMQKV4KQV7L5wHY9mAGApD+fbhaGgAAWj39+5N9jdas57JupQYEFXXcuPAmdIIWf5aNBzYE4coHzCeUkl8oOIIvFy4FhBqr0Bps5Ycj7msfhmlUuxRPQf7phDptXYKyWgEmgrEXXsE2mLyXv95hiwKtXhgqCaOyPjhaF2lkDwWdK9OOkVdTC2sdWjgKCXwUrU27Vy62knKDxVMMRzYRl9awiQGk/7G3pkbEGKmCMJyRVww1IR28e0HBOHgp0Xo1x6M32YRs1WmoNqgBfR7G4pj9qyaIJnTafIuqs/MIAshZl6+I8wMgoZ/+ppdmxYF1qWTWv15qbVHWldX8vp2VC10qN8MAX6WEYwun6nNSAMRQBY5i3UOfvDvZUDeur+rG21ylI1G3uw9Pxeeg4avMkDMd2Ip1Hp2QIl7WiXB+b+6EPq1dmavqp6+vxkiicnQZHl9nE2V7RBY4uYSPFRn0R3vwuEiCAmVUsBWSdPSvpd4bt6bPozU1EOX02z46vd+GNHRmrMsa1JaZb36xde9vl0m+FuBABMAAG4CqFzOSfOaxw+qjf2WqufS2QoURIMUx5TBU6MlkMZDX5Zp9QGEJ+0TyDF/TYx9MLk+uVaB/7pZMg0LHeqOyQTpf5rLgUzvokAWdgUO3DcB9LLkWj3HLhLS4dlx/n7vKT90l001OJ3DaLl4mZ84B4+crfnLPx9UiwKsrY1OiJcmAVCR+EY4bTKJO6YtfP1lFIoI98ywPL4ip+KCjpx3VxrcGRDB/oQBXeUOlmS30zIQfKYzfJZMdnwLLOpIbzwsWFu3rSEanuiokg+YdKIiwp1oecxFWq63hi3DQxCVKxgNlYWppIvvNVqOX6h7o6Lxyiqi+fcn+skMRcVXwBV0G2xu/68LD39q9ABgpG4JC9W9yZWWBjIjl2JMYwHXRlNEkPk8zNtElAPZVIrXP7rLsoasm7GynpqLwMhSKzISqFb+scPzAzCoxc2obXlAMb62mlOJdRs0zQCu193wxLx68AdsaJmuNmx/EaoflV2ZTxoFe9QMRAI/OLvTkeSAUcf5ei4FF+f2LMZAnrTJsCSxJ3iEX/wqEmHFEoZVQFXHS6izUUhvjPoft5kvYxdzc9bymHK2/b8WtZ5R2MkG1k+PXsReMpHA82uu6C5AsulZ4leFBHHH6NlwPtdKwwjPfPQOgnpJY8ifRvmK9jRFGLu79+sXfxabs3MhPA7sqycp2D70opsz6wo9V72PxJjoPinHuntc/Ip/lRiDHn779+gFEy97WkbExGXE+GbEQER83KVnh/PE8bu2ieUard2t/Rv28eljYEdXwBd+FE5g2D9TxK9N1L0+IU0Eo7q6WWp4eJXQL697v41ihnh3gDqTznONTWK4i54K0fv0muyPKuDx4eBIR4eTUE9kBxaRfGBQVZZotuQFEfIbYDSrtwxBpDl4AiNSXx1XZbd9D4lTUtFKoyRcOp5fZOpD6GrybrBomu9wnh1oP54mQC3sLdf8VSv/v5JPkewU2TQw4EFb8/E7WsxDHjLm690sYtagyWOsubDNJhLE0L7kvN/O+PTmDwTkodFjtmCJUTwLuRatHsWeJepkdxQdaxxXx0HX/bmDp2UAC0eIUhdsp+I2A36/7vS8t6qRe0bmKvKSC6FH+diNA2pTFkMtwybuG7y1saZvWTOfnFL6Z+/t5wj3bNHkJhV0PhGKoZPbZFC6DhjgtslOg11eCykAyu4UeHR8DaBmzdPd7xOnxjMeWTGiA+9yq2b1pr9Ifl4iE602fWSZmDfq66jZZdAkb6nNN4qM2Z1BRWyvpG+XJCHMt/ePXosSuL5KSHKDo4QZtUro33ExkgLxzb+HiSDch2vhq3eNNacHfcimGbgUH6hsPKWnLETtRIRl3caOnB8RDW/9mK/ZwDYdBHI0d9c5RnjYUO0CpFVfhcirsvttx6LFMuGjfAVg9TAvdQCzIc/u41M+Ijc0TUfaYbjoNYmFrJbi+08hfFkqRvJjaujh/OX81YezBMX1o+Qgm2n/ay5VpVHC0Xi4Eu6503APiKV9bQ5GvBfeCDN0OTXSpdbzPsCSNJtUXpkAuPotOweH/xrMGG2h+FDUqq7xiEg0sOZ1UaLdiZ/1HaA/o9M1UJBWQztHBHQX/GFa5/a+YMXVr6eJ0oe54iFsWfP1j9h9ZVBAiL4INaRF5aIOvun3wb9VE9D5UXVr+xZBzqPtfeWGirJW07dP6b4E+czYIGUKHv2d0mpyz+9gfbxNq0xBfu9xUkDoGSJmIf41J0rf5vNXG/NW0FJdojXUNBaEoQvrrnegbcZKLhRH2du9ortuVgCozVZntWx1fB2iTuxx9VoR2KHh5uBAHfggd78yM+vR6vTjm7tkGNimwQNqW4VyLjveWilYGL+rPsjr2W95uCyDcJZ+hKJwaoYvYLn0dK3lbgZbjBEywU0JDSNvZBQ4qnM7P5d+ir9WvyNpoBl0o1+0SlLMOwIVMpLrdPzWhnE00MluzDi5tMIW3WmckGiRraJNlL2s5fuiAc2ykONM1dXULfb6HpLMa+mfdhRP//ACWjRCkrbnb+pRXrX/YhH5Zgbgs2fnGj63jsjHdC10e353gv+8oQIW9L1L3Ebx8m6ZDYRzxrsgTg3bkKWmUUrEubbCGI8myDA7hl7VKQod1v1dCBDRuaSjos3erJfO+OaezlZTb5BnZcT87NOdYebMFfzGwYezQlbYPz0wDAhBpH8JeYxFP1zzRX06yGFvXnHM4pVf9550+qwaC1tkE1/86K5+YHutOOkVxPhzXRJH2ZOIu9ZjU1IXT6SAMl7ODAnrLU7+9VetSt1qf4BEotDf6lEoUZn7WuV/VaTBqLsxZtBg4ppuX1ShPJ6oD/a8CzzyEn911EVzyeIOSURhFq73SILB8oHeCCSOUUsWUqWzZF7B1Urynz7t/PM4DkRlAzOoNiYvbDjcSd/qW1VL96ArTbSmYMV7Txub+LtuHlZ1BqbWHbbn6PPWcobjIH6SzLYqHcqhqlTfkgmAVudSzGI6ZPhs4mnO1FE+oskM8F07mtSXhK/PGQTqyG58HDZ+Myf2Pb0934K1y3g/NO/pQ1KhsLZPX69etSvGknpY3LEiawxI1TuJ4rgUfnFhCUqYLhARaoTA9j3eunmsBmzaI9x9y/pA5KXnVskasuQmUvQwzx4HlMGXiGdGK3xlsB6JYxMJoHTadYMlSmK2shJchn0oOW9LmvGcTgDEulbm9L6IBu4Vk7/G79CNKRPwey3U1SMN8aY3F4g9JBU6rW6R6AVevt/HuvEsp+aYVDcCkGi0khR3UuxYzYT6rV16nRbqe8LOxav6oA6wBsfdSB9ysezg4XONNqXH86iNPN+c0bCDFzc35ajcs5Y/8aacqPzpaV+PPnFDrPn3ZawYsaWuoYWbxHqkEjunwl8HHxpWjdG4M7aEyI5x3fDz3nSEObRJ9FGDfusPr8+xutowRKnwQZxmw4MHb10O2nre8s3njERzcD/L6tI745DfEnoRk5i8LBng0GmkTCsrYPjvP6agkhSHUpJgBdXsXj745YniGXmcYU+DZ0T73krE9QqNWKopPYG/9KiNrVZXdIzN1/gQizDUT2XtKD0lmazS5TQnxNp6RAUzq2RvhZE/D2k94H3rke8Rb3k/mkXepjRYQGXg26gjxVzrWbSeUH/8QkiYL4PRWAUZaf+ewizrHXNsBTECHAD5aoQAqweKpKjSr18ls51HnEdjNhU8AQlukF30IgUiWSIS6eqiLDvJxbZ42S/fgaevSZDHWAb6eeAhPlL4UDYBjGS6FDVZVaGYL96FuyqZL4063/wH+QtKNrO3Tk5nhBgAIil1DeAt+i6dMLAEera1IhL4o4O0IRUCuTdHpW255GaailB8dLPBVRX0C7ztFfuYUrynk7CaBGARz2grEvjdbHdGYfhzBSh/gmtOzyzozNXO7l1nlGdIOJMX7JPfb+c4T19plmyiJDQUXZk0xRf/+Xcicr9AXd2nq7vzeJfbgodaXeT1/OlHFQtEnhdbpH071BlFpEY10KeAdbu3oA68AS0lv8La//ESvLylTzQNMWGC/ZtHLlu7olOIj4BdPRT//B2zQ/J/1lWIrvVaQoMy5R2ADx0P3sG828klUADl4U6tAI2Yk/DfIvLVn2KsruFDEX369t/teDJBRXyrgg24ZSOYv1BvHDXBAhdh8ic4ppOVlBmCOpjfWDM6es+j5Jy+dv0QB9UcZoIv9nvodwB0AOvRIbk/BT6EJOh8L68SoRCSkM9OaA6mA7//v57/0hKJ1gazusnSip1NoExtksb6qMGGUgPCFhp1xaTJh94AVGNhnIFuOWeJ6Hq2dYZ1xb12DO2xK7Y3UUq9G1kzoTB6uzpiQw6fryssm8CD4yhbJrFOD9o5yneB27PGoFqfl1q23GKbU8KDG3WvVLhtXHj/WRFIhWXfPRlQXX29N/kBRyiEvZ/Z/ifD8WGGbZ+kM8ow0r6+6+qHfEu1K8ZPeDeNGZLxcBuM9XG5h1x2c9zGeTZ28BKYvcfZPT4Vg+GEtMTwugSFoyuBhSxMxNhL1M5NUM+aY84BxtjuNTPgMlmjoG4LoiTP9vjHMg75SYOu/LHnLWYUNBl/aEJ7U7pHHVmz6ra1qlCEZCs8TMskGqsSzaa+XSpg9XB9h0AS23p2OnhTSF9asH+yvTIjzaCNAeGfFNuGZS6/5vcAIkAjl53TOpyGXTWyEshBxXGWhhL6B3JG5DB2eI8KTs6Bzm2xDVRG/r2Tsen6XK5VsjtA3BdFz+RRdssX6GQEK6UsteEZenpL850x26r1owpXtWPPXgF69QA0NiiqsPzF0HDp8y5/RffNOhpEpiAAWT0f56g84c9WccGdp/5OgLS8l/e7Ige+F5J5iyGgwLedaNhxQbkO27lsLlgyIoeFwkuZF6PzEaD7JRS5rHstxoCbeknCb/B46ET63IjDKhAABHFkGanEnhDyZTBRE8N//+p4QAAAMAAAXQFCae0oLwH4ABNd5YRcmULbL2RczlZLT1gkV1pSekwQHnsOIG5lnTSajN1w5ADspr1kTOMlHFtmNF94x+Md4GEuyjqRue6rdvBTgQ+PBFocmM9I7klcioknJk1J2UbC16aZkaAt0azrOHGvAv+Tmg0LoBJduv2r39qOQJ5vDd/jmBhmIl99NCBFtDL3C3oVfuZbman109wY43i0NEQWb5A8+vJj5afWiyVldqBX4jghFvHb4JDuvEdrzVug1A0gjBCqUJxdKR1XTBtHSgckyBhaDqn6zrIAnkBocXVumXe5+4Scrxy7m4LcSmMQ9UqKHv3NdRYFq/Fw4ZstfvJFl88U+wReh50QWvcguh0Ml2keOhG6rzmPjPPwM7EfeRUL06lyBKlqpSMHORkDSpHudhEvKCAH+V+/ZF8MoaT9CABRPocL60qFNW8YevqppAT5BJ2Qc7R+ZAhDmIG6qEucmxXv1j3lESz9N3D0NumPV6INzCTSiEXpskj6DqMDfdQnm4l0+GvMEt1EqxKcJkt6j07RmZ8dXOqMBfx9NRWF5EnNw6n0bZg3qLXXdgij4ZQw/x8A1r1EqoIqP7h3KbviTT7Y1KVZRIEQwDmI1hqvZA+JfT4lIcbhqVmT76G2T88VvT0F7WdH9H2T37XdVItgXqWmtBSiSc6xq1XNshqVoQUaP1Ct8pugb4R0B1EU9bMjiLf2ZGp6ccuZWlEueYH16TGnr/ADD+YWOtdryIkPEfwPeca34Gk32PQP7msYuVLAsNbtgs68UQbl1gKxyvmIbtTw+vNBoKPuHEm94R8Hz5R9GoyJCi/l7/e9k3JVBJsU2Ckto4RZxwEgKbQmlvpqluj++b77DNRvQKmQ7v8QHwfa6PSmgyFVxenX2I+/PThvLoyqj8RghFlSvGlbSTkUh+2Te0Md6eI2Lqsjb8iX2VM67Yuk247lCK11dT4q2WIcpV/FNg2P6vf9/MI6DAcos3l52AI4igIsSvzL2QjYTbUgZywp3kacxxFFvs4daT8VlyHGpxyHhF2H2G/BTlD8E/LhAk7WNsapry+kj7UNjMIcQLiP+JUUtV7qJJo3tBe+1xYrJCdbKu9hG6YSPxxZCyYjexQaMgXLOp0FasDGQF/sKO8crWa0aoj732hfiUR5mJc8exVfeY1tXZQgKrN6URe60RseQWoEBh1lBlms97hDIfsXWctHAFKcQPkkQh8m8ALcieIwvTU+WMMLKVd1A50v5890wYnl6ILKKnFNzykWLEpLcm/AlQZFUGwzncA77U/nDDBL0m1R0nQ5dF6g0TOYepyasDglDhgxWqseyHh6fs6V3Is+79KZIwUAMn0RMLJmFdNVanzQxG595hp1SulTukYDA0ea0yPmnxxPYyE0jiNs2DafUPSLG+6TQB852eKEH2MdVdMvM2Lt9xZb7tmNB1c14FwPXgIx1qZNpMwClzR2H6dvGreR1I1v73eWz8Qt2wqCXCHohA63Y3u7lCZ9UXNIpiikcjmQJJi4A7RnExourzv6bU2yf1tVvPcQSO+t9lUiMx43N/D0AfgThvhtAd75Xyl+e25TjFqzxV/AYQuihAGgA6QlNonIjMiYs3Fkel3emkOYJElTyacw+pQxB0Q29tXGe2AWZoEkJ0VvwkfHQxwhDesLBpLr/GJkptPlg3nnM/zLa0HZeHE9lXdQjeR/fsnCiXU8FLE9q81oORfJo/Jg1SSB257d4DbwHBMYGVA4ySm5AWs03VNVKpWFtVDsFMgNRZHaP+8gVS4biGcOX6rFpDECt5cfyy7XvCcSoFG8KhUJo/9QiJNtA4hBVqbfVDOmEi1O3pk/dTYAfYCPNKg1QJ67CmwZTur2apKXQL+jhJ5uME2v/a+Kf2mYS4+/EA8wBHpd41kmWqJ0wzJRZ1e7L4FBmCfoFXmgxx3d+Wx+tZ7vGM5i6hSDGzVLrpV/bSoADhxd1DKBfVXEU56E0fYP5N/WPLUL0c/R/8laq79RgVczfg5AkqF57ysFwsNUdP0tXYiCqovloXACZ4qGCd6vePeYEPhhvbpH9KTc6jbzXJTYj0yGKUdthX7ophqA/SMqoPxk2Jkhi4qZge+X3o7rftMtsu3mPLEMEgLKzglZvmAXdOD//5WS8pgyTh8xbTQ3vEbHX/C0ZlPSbATwFDJC3MTfBgf7b7IYjqX+8jRItgrT8YtEMfgGY6QGundxO1O+Z3sfemXQFr2SZGmda1xJyhA8+G3EqAdoO5d99NpZZ/SlHx+GSrz0lYH1QV3jY4u4Ae6TkAtTcVwYqVpNHu9VIYuQYX0aMJ9HFBJZGDKW7+8v5rJ7/QrjwYE6e4FSO6//5SsYjTK7b3/TcAfTi3czpX/CAiSTqn85hmMHCYy9Bl7sVUrTaDqDJaEsA2c451t6pFtsOXze0CEv6oSexiUlvnRjvdM0GexDsS1dIT6aWPrUBy9leyHiglRki9F/FPW+68eDFDnuo3mTJ5GWAPyA3IJG3ZmYjJRNdifP8rtHt54QsYIElCjqe7jg+lUCiBOvDMysN380GkzveiK0nOzvuUvsHJ+Grbt0EnZVMMJylvGzULcubSuYaWO6YjOtf0er+EwU1fNM6gpY05ABZvSaHOylOpjUG79gwPp7gc5QBNyuBoFZoTT7IFfyuWEEeKM+1qGtzk8pYp7xdDkgLb2Woei8fc6oe2BjDMblGuiTVIYTai+SWq9+nsB0gTU0XrjGHQgbHioLypt1vrzhwz4CnTvi/PdU+5A82Z1Poa0tMl4Nh47zqlHIHjbg808SbVFK2WxBSM6E0kfhiwge+TiQRDJNTYVDSZ0cKRrj7+Q3IJmNTtaP2SZGd4752lL9I4ttcjGzGfC7ru5TJ6OMdZB66eQJQR2ylWdz8i/xe+lgd7Ne5H/knVHAEVFUxZIVfpD/uWyt8g2T4IBwSw5ZxykHp5jlbZ1b8KVaIGpn6qz/MCJbltGIyf4NlbREJGYpCD2qpFTaQcuDzDlF1+xkPEePxtLykOMbeY1ox069rvA4FuruyW+CDCkJ+WqKeVpDQFR3QfXORo9PYMYVscal1DlIlKStC8ehVv+WcG+2OhedyW0T9Y3cTxDYfnWfJdADPoYhnU4YbgCxYMxL3fi2LK2EgAGwkcBrvzOjLWyNu6WSDqF8JnqPj4dI8kUICRazf9S/WiAltTXZwkq9LR6bejgtBAi8lldHyX6PtxI+6RAEqwMvLYxU8oDu+ccmNItTZLrFn9Jua8a5JFrbDNZ2t2+1czD4Fym0T+jQ9LuZ5Uclyn6NYkN4rPGXh40+Qe9P4ONTa4Vyn81SQxFE4D4B3T47z0r+pTD5WT/iI3RnUtRqSry+D2B7yLR6yX+YiFkyw3LDtvENBeYdi17sZ/vW7TmkRdrmvnp10ZTRCkEHO07cOlBCKzIAiAvyXYdyHM+81yFJKleKh8dTVKSdXASR6QCqnSCvlCV+IlVu8DaP+H3BtQqOvcYFzoWPWZMIF7GVNgYS04um62REET/bzqrIa9vpJre/+Q1wwdzKki3SbugZq+acD2BL65iwLIZh6OAHQDpwW5k9pT4QBhL7+Narjrcrj1hRHPB13t9DQIxML/RYmSLDMWJHbe3h2z8dlXQHU/K6Xsr8Xw6XtsxGoOumu6KHgHC9griXC8/0yvB/cbPVcGbs+daUyZ+px42MhPzheZL0HGKGIgW5hrBRJvTW0tRoa15fi7bNWAS1pcqVHiMIm6XQ6RRHMusPcacIpo8IzXYzpBG1d3IMZ0k7nK6FUWrsPwjsg4tMfXcstzv5lCNPN72/b7Vml+H6XZPJvfUf4v3plwqKmA9DGcMHhlqTPhP2CV5YWopoquTROqCwwRHpa24/wd3Mt1Fbj8OhCOgcX7xJ48KWqEa79jhfNGJ93RnQ62N2EE3f95qjw+CEwW50MpCLVXSFrmW6OCsWOsFkW0bRbIeUBhV/IC5zh/vSdoI0qX2lQSVwtcSZ6NYY7U56ebpYDLIxzAHXQGL+b6vBrM1E5ebaWKKzsh7OtUumKVhY4HJKDODh7c6ApydppZNHXApa35IvsKephIRuoYmKRLaq7h8t5LMqG3cDlXn5RwLzlf/+jJi31Zhu0n8Zljr3hO/1JXGvbcFfWUATxFk7qm8DaHizWSWC9dwPOoCNj1nQ5YP46ecafp6yUkg3mrnpIQDVZp9YmaM28jRLtLkgE+oACndCHBB8YDa33Rl1Ph5UsC/kSbbxmzGHVWw6vO1FjBJ8p2xecnAmJV2tvTOqIqAHH9iDj1GymRd5QCnseNKF/5hapMHbb2UR3Wz6j0oyGPZKbBFCNf+LNWd4VCPiAHmxAiTuWhrqnhCBGu9h4N7W5N3E97Rag9DAkQdvGikBoeH5kbIcKlyeU8M9yDv/uB+rSxMHSzSAbSslm4GhvhuI2J/qh6/Wyaw8yh76pliv5qeXdqfxKBgZ0F7OIOBIM/7/HBp3DwGH/MN3cIapanH5qfimntMuN6xO81r2mNXLnqpyf8LgD818cCMay9lZ1SJ7s+moktroVKPz+rM4ATQTnTu/IE1Qt2BbGKBrpyGKdyh9TJftySmyPv5sFko5cELnmSrmKz3swH7TXmX7KmPuYSyVkOjlimXs3gQIDGEnMNmWtqMkziYlSi5djQslodAMwahQLCdzMQll+Gwaee5IfzYtCPA8dzXgjg++9GrNJp6oyDIz5n31/QaEYroqi/DZE3lZNQUik9yxDjwHx/JwG8znrITi4P8qd7s01D0UosK64D7Zyp/XCpcTR0ZRbYbexksvZ8bbNTQu3AG/V6ptoCZKK4ooqvlwr+tGwqF+PmNmtQAiDHdUBvMlKzVVdvwTUC9tJUsYSzi3LiXLby8iLEoWJpUWU5NaPa7jY3RiiNIGBN1tcpZeqeytiXFgdJ67iCikyMZU9C9ti4ylcFv1OV/KupXXUAfmDB6+w1AYVoB+zfDzM+Y2IYCMLV8lPHOdUjNJ4w5dvF+1Lc8FM9og2tU1+rxe+5Kg/YWR6rR2ASfBrVUme/gPuJtNAddtdVBrLo9StYQpQq4J0xPu6zZGhUeVPGFD3mJMs83ZJ9RmTuK2bM58tIdeBpnCwmVaG27UITIFi7kT0hoTLKBOmbh1PZ6MjVKQLR2Y3uNgQxCKPlJXGtRM/djxYFRBeXWpKQGo0BB9YgtjLw5PfmwmFq4ZdQMknahFOMcSHH6Eb12wlQ4dTo2F07cjUCT5suf33lWmXe3KgK/lH2fS3TNhnsfMSQxrnXyLuEdbz/q4gD8p67/VKyaCcd7Y3B1JuDFQrh9PLndjZqDtLze1at8JK9M/IjRPSmQz8hVTBeLs6wkVSXIpQ4XsNFPFAH7YhFZ8fyYc9sLirG787yYojZ6cfA6ieD3TjUjzGJBa01Ye0J4CTQPWym8NuSU0qq3UFq7B5PjvYCGD4X7De+PyzGjuRS5c2qCs8EYVFDIzAHU3gX1RANSYMDpRt/CmJmVXdjVyYSNydMunnYv5ZDXmRPIVAc6uzMt1i/SAmTRYPDkhMQQeXUvhhco5z2KBhsIoX16N761bizPxekSOuRw0mmSqPKo+wzBLxpVS4QBD77t1+r1TuXXXRDnW82HFf6/uZBDfoSkuOfL/Ks45nhB5U2O5F8618Zc9NYNW5CbbaIxHdZgz/8aR1MG/5Iycl06umsERSIXEBewanIcDFIIthLdyK6m6Wheo7uiSlOSpNKZHyCmjVK4VafPHmZNC5PjRh5V5vXz1C70ig51ta5vPe+qqABVVpJhMN2DPdnPXgL9A69l6ZHWqYkuvpQTkOWtgxKuq2kAVxFc7WMF7I+fpnVKD/piMg4b3z9rUYnIE5wfYSiaGnATWxqz5JpyZfKuhG5oZ9iigUHACD7Nu8mLqgHeCkWvXQAAbrbk87aRXJK8hwfviiTBEKD7INRFIUqsZCkwLmEmDB+JNLcf/CYVLy1fEjIy0BHFyU8rzb9PvOV+5zI8yfwUNEvnZy3k04MGGkiL1wK3K2zdk1gyCv4i2bZ+sT48F5bZ3lG6fCwZRB+uM9afI71sZClWA4BftOcGdaUpXfQyugIwllcz7rYSyX+fH/+2NkygTDi5SeyWnyXisg5h2dVA45dhQLES4kDuej4GCnnljr5Fy/qi24dBDUkelRPMqFkdq4Po+cTN8zSwe79BIuaj+nsCxwTkgkK1+HD3bo66nSYVx+1zcXWOmzckp/ChUUlNDDx8JNeXAjfzuWiAWG1RszQ9yu6Cra6sX7tl9VXYeh7Cn3H2hwS9I4y21EHaCHLfD9BP+ED9MwFoxdvwtFFG4B66v/rAhMEoccPtyN1ZU9m0ww1lMtSAnwHLtXR0rNkW503KjBlL+aSV5EnkDp5dZ7SHbSg8rym34Gkrg5rwb1/8UM9H5u8IqsA66JwTibbkX6d37w25qtgsPtBNRe9rqpzdaHNyO5Hbk1Vp1QMi+oaTvGoFpVdlIqCH+qWLJ0nN53lk1IX0wUKXi3XPq/O04gHQsCFJ82DnsLaIBqRAyeH550jrjxNbmEs1RNEx7swbdVAa6Z+o0/wiaMtxODXhVBGUorjYKvb4/5fskJrrY29dE4jRSZIgTs7rYV0fmQKeP5rSevs2DYfT/ccf+KNfSqJrbYrRndRXsfoKLda5lTWDM2t67LVzR5A4IRil/CTRN4nvGVzq2rySagTGxgfQARgqJAX0Q/IQ4rfApY/ALZU2xKyLN6EDxicKYdc41XVlsWA3y/uTPcKFkl7piH5B4col8ggttUbC1kUgUf261bxvRCPWxuGaeGUKid3cJ5Cuzq8qhnIjob+V12/J7VuxKg7WL1JLk9TPMJ9C0h/kqp2El+TbGNnO0GudUDh5SeYmL+qW0MmwZ1CMv2RxtGvAMxiw7zooIF/afMYAkoXvlXJQl8poMrsB/DVuFeZ4LKQL42/mD/aR/cnZ/PybpRm/WnKqh4xD58vPyFrelh/jH44Vx7arFYQPXW8Rw1tZ5lFoYWy1+3VOPkqV6VIYwG+NzAv9JihleA40HZoFU9MQaGkkB7XeHT7CGP1slIsdLDOesSUyuXBOcF9awBRqhq8cjB8KlFp8r3cY9r7GHBJurdaJfo+YIvbnLCpZeTjopZVjK4zvDO/PBV8Vg5OYKhxgPtUFTmPq8Wgq1eBhosNQukr7W3SbFg6s//suv+DbgVohTrsRaD9JxAuCQXVs2ia9jjm0Lt/pajV78o8G8922wNJ3+kqWuaRuKCpEmOG7ccf3/ntBQZqN+zUinz53v0ByOjK9o4vwHPOO62nAw+/5eOZbGQpq2xtlFv/VF/9Qc/cHUAMBsT5n415KG9LjTV+RU4eYErQxCz/QhxCFvby5ihLgqcXb7CaIuWT5XsYAgAnTTmwreJg0Eycvx7+DZ+rEQ/MMDSMKK0cfNihckFHbqxIXS3GFlco0cq2uiLci5rY6XMBkszz93Chwwi4umiTEAr/KA8d6uyCRWJP+cmGToF3PbGBJj/S67M3KzUnxYwRJt5ftXfN/kzk2jnKPVAuD4n+ZhCpZMS8XtrvmRIrikj94SyeuS+8ZW6yy5uhDA4RxZATp+R/iPV33OElkr0NeiwDvFuSLYILRd9F1/sWMkXYWevn8zxjGgIRyYbAWccUzO8zsw+lRNGi9BD1FHNIWXKhTjzzsMJzFkIX7L3ye8VVTruLa45Dzfq1P2YOgDUaE44SeToejC7LogJZBaa8atEhTKloZmorr15vXwJm4aGgWrfNt4zU4an6ODh9Eg9Q2y69eeMQwRZWBhj2JQjxbfuo8ULCMNjw7KfD4r4utz9FTgCKzHldF63h5r1IRb7bw19B1nzCZXQ6FlgUnTgEmgfRyEyz4WhlHeSqd9cHSNT7gKIRfln3NBlLureolBfl/Bs5cTnziN3x2p3Id65Yr0YwOagBVB/NJP+ZDNdoygtjosHdPzDIZqDgFpMsYaaCSrjRa5yC5X57uHpcVxyUmMndOa9VPKqos4Hu5MaotBd9Pclr+3mVPhWaC2wZAHhTpogWyY2vG7ghlP9ifd0G/7TSlDzuKPbcIy2MyzXeXb97zOQJcfj7UtyFwYOQ5vcd7CnoLY6QSxwXuJS9rZ3LfZPqpe+FIVqgHJi1hKQpXrxVq4IDxBcfbBAuzh/ZYG3xNPWm7+mrVCFccnrjanuki66A/lgtjDT504lNqkua+uyHw4AxWOK7ey++nGY66kRdjdDqNATS9MsUFg7tQ6qtnujl1TlNmnDopBzy3/lqwiXh+0wAi48fIznwTbOU5QIzXjJHAczopYH4cNKxdJ6ZLvzrF3sPVAAbspsBgW0dIFiM7c2lNzPZJNQ5xan81/EeIC7Nx75Nl5gXY5Opk1HgBVMPdOFVa1G5xnuv8XfrhepnIbqhvjIk+nigRPK6UKUQ7YUsmw0eSSNXZdYVWiFt3DzWZCD95UQGti0j8ghX29VmkCd6DNOxrY4ZAxMsLE/8qAcShhHxU9umJwSXDqxxtT1nk53Z7T1RUM8snTI/iwYIOZdelcXqRBSoTzs8M79B7Tvo93wCxQx3y9bLYtcidc4D7mv1HX5GhW7EgsFsxlh1k5ljZQLxXEjitrPJa3MEvD18iEeZXDmy5s99GJTryevAcbFeeINW/Tod9pMeNGjzuTizTtX3+qJiPNrVGnJrJLgC2Zusi0CYxB3GqpZLBfup0mvv8xcTQuumbNiscM9PpEVgqGvwEBngs88B7rIjW63oC+xQ/Uwn9tAEr93BZrCh69a81ooF4nDfAF541h/Mvq/cQ1Zv3r6q+VMGoyAJBueZ07N4DwKJnzFzaa5dWEvAQck8O08hu8Ddjp1513lrqHllD0tuZTkTyZB8hYC+OccfI++Xd8jXRTbYdk7T+8TEla6CByUlDPuxPBrY35mlRlp/0D0xEqMrVnnpH05dTe+yqrxbd/U9AEKsJIKqThy3b9wnmkO949N/qeYs/w1gYnMUJ/JnAj4f2CPtrmzA+Oz8j15NlFPWzaIg3Unj4kINAn+5k53+8xgS4yDmk7mD0k2dwh31dIurnEBMQfsUSCMx79g/SFWeMqQjH4F/Vn7oNy/h9MZv8wCbN7sklzntNB1Uss+2m5RyQGba0pHVluEaXZe/RMmptdf72pNcQj5kyMA9fbSrCUmbbMcsllgI1SfGcO4N6WdtoA35ymEbwAQTer8K5vgnMAPL3XG5c2CGGQypLO52g6Iz8XUzXRV/ekfgFaIp5Je1kG22LcgLB45PAj0G2tNAtgmwv1NrRNggrmA1FbXNv+8XYURvdFgpy+9zcjqocWOp1iPrLMASNCwd6dEe/rb0cJSHoxFSnNM1OAYVYRy6SJimtCoiMME2gyrvWkX0/VKnUEGZ2s5K/DbGPiWPrPWeld//cLH9QVIVFYh5nEkJDneFtXv1PTZTlzhIxOKUj+vTXev9fe8TG8x7Mzs+e/gJ7JRQhvpQddl9cjbR8d67bBXOuDK8el3vEIH1sZr42ap9yPK5guGMH1/VizqT82CzQ4gUymXEKPUIbcvzmp2FRSa81s8hB9ZgMFg3ZCsBHJaYun3K9PFhDb+zz9CIIWsTz8fv44ktm+wlT+hanRqkbvuHM/aVf32jwVvDxLrbfVh/g69BQY5k3/1ODtjbPBo0ItQgOgmCK0Obygq0krgJe9Z8XFqdDb2cp3J3XmUuvl8zBpyYN30NP8WBTDi14D2u2KoB0hmgaISw3OkTKp96wzM7WJV0AFOSSahujVe9g9dmrMl+KQGTHFNDk/GpA73tsI9Rl3YP/M8wjIPME2szfav82pRCNLsuH3+UaSL6vV6k5dJ620G1Egf7fa+n+diwoCL7sxgbmCQUJsG0frz0iFgqJDG2dxQ+SHXTET0kvCl3AeSXBGIdgyHjNGf/qoU2WkIDhfQuIvC7fF/P/DqXXgKcJgzO5/5Xt/bQ+lJFbNriCSjWVKSQaUxeBjeLfMwVhYKQkG5TO4oiQBngxJQ2n/Cx1SfhWdfAuXdK31e5yO5B2JrZBazKqFS2Oe4qALiq6dGjsTh0Ar9ZyQFX/qYL7tgW2HUSpOsCwuvZWw2/enC4VPhlvqwvaJw4F5YmQ+9b9COKT63hMIeK3UDMEq2+RVCnHVmsXD++1S+MIDyvnVdrhjAB9FZKj5ToY9YpCXiEeXEJy9zHLibWfDL6TPyM4yRkJBnCPI3d+6y+/p/R5/YX/gPuOAs78+3mAT4IXmGSQuhpbKA0xI/R8HfcyheCTxBFdjHWGFaV3c4BFhdw/yoz0F8Nq7XSIsitR3mcnHf9YnrnCNI4eN8fx0GvG4CEVs+z3II30/Edux3Tl+dWSuUn60+jt4hfJWA4PmAr3C4IoAERarm61W7Qqj66Z/lrHMx939UUiabgoyjluj2nr5rUtUTOZ7+XibDQq2ZI6tdUVsof2ttHUampqu7GMDqhWrsL+YXYmNYP+XJXZhOawUpzhcn17r9Dv9Ewr+yk+G3zN6pvUFGmeMVqAuq/wEEmGZE/QFvQejealprVdEz0sOi2RrKuyiP86E6y5TReTzavHk0lsO4Uy1EkmXbTtjl5a1AU18iBoo+c3P+pdq00l/zo6Ds+2nhZ5POXnm6ockoSET/YpL5/+NGb329iTWqrHCSIFLiASAc/eIEleZAy7abdAY467LKT/jQozAfhebzoJqT1cfkyV6THqwCdQ9Bwh45Dzvv229LNdlXg94ika50sYSGqy8TJmEX/wGg/CiW1VUkD+ZB5QREejdvMKbpWTGEYWiYuUfjl9ZPEPgbf8QvRHscw7BAnZiGIesRn77B5kBF2gg0PlH62zNJ2uu23QfYquH8ypWP/cLn3jigkFeGSmZUYny1dkNy3jokVviAFXmLemPKWv1e5jSdK1KKQ/5rkm5/erHS0VZXc0xNGWKPMFXjiYSTAIc5EMah+6QXJln5cZ01KYzPMvll/u9KsIPWpL//JwHmIcyQ77pXmRk2aURECAECCumESazO/F5TKZB+KPNYT3NwvrKUvweBgVHkKkyufmfrX9U0bBzATP98QE8ROrETGZ4iEQMVPIg4V/41hpbbgeIhXMv95FgCpTcogu2h6fL7YISNLSwQCGMsDRvTfeVJ83YcwhDzsvBlz0nPj6rRJzXBsJEwTZnrlBgxQJmvUbrok6SlZqFnmVTvzr2IJ50PzpsaJzyWDBgz4zw+7XVAfexhFFIeeW4nwxnsiKHKHfNKMqx7vHx2m/1fgwIXfGCvGuhaS6q9zkd2B5v1oAB0agmft1k+ALnnEtp/2+2zQCCwOroUQ1nFYkB/lCtkTVM0Y+/OxR9LV/JM/stm3++8Z89zppfR+u8Gx6LRq7XfGbgzk7us5OfcpJnTwTTU2lYsXXk2Q/20CklmW8ZkB7YfUwI/zRRJg+sG9Wks5G/l4yO4VBE3vnc9wIlqeABonmrvjqPjvf6Bl2GC9MSuOx7oIe26M9S/+ebTNlij3XtkL+wgZsbdy240nzS+uINugW3yKAU/yqrM4j/uNSSPOIyKWrW2blMEcMSIul6nbgqp2WxvxWqiGPNFe+yFNk4WwKZrTTZKvmEoLza+EZBLe79X4HUChqFavnxP9je6JLf6qSYuYdQhZPYYQXg1n1wNcr96mX9jAwEIO8TpiT9NUDyFhXEsXaGv5CFvhC9n8//tEqhmvjJhsAuVzOKa+4smKP//+LQRnI3/+OVUf5vJxK8zMFYjUPpYZAVkaXZl3co6vg5ew8znzRdU5prqwngg9oq8O0VuRYRlQ5/emRey+ACbRKRmhJbEtToLrT59E3rtmCkVmZJqQjIKJVwNZHrbgzPKfG8IDBPiCh9qBnVv7XTF5Oe8bPmg/tHaJ6IcG+z2ZfBPENIib1YHiybthOyhiaIFsvMCKBF/iNjmsqjqWCkgKY/lYNzzRIn7NDazbYupRIritjuiTslPV5dev/aeGSCvNtuMmymDvjx6qKeCK8WY7yZxqKDDVn4fzgLVA10Ma7wVcgJFfcq4TgOahk6VIfJtYJtmlSgR4QmVaQkiRDbYfDSMakB9Oz8I0SGnhchhQCcpViLEpWotqlkXtRkbXaVSpN/b5iip9IEJ8DZxfxH1op971qJ2ZGmeiNrqUQ5PiTrk61KRcWZbuN6Mt28SX+SW27Z48jYfG7ZjGs7Tk07qiiTKG7KAzW796A8I9dFf5C+uYhNp7Cc6v1AcjpP8DTh/teRW5q1ijoDV1GrvHvZOT/IVYdinZqgMrpBf9hfeF5o8yJ3W3EUONYbxb58TsWud7AGm7dWzBWKa0bWMEXLzanbL4Y7ZROwY+QxBGEG7rkRDXM+JcwJ7wmEhpuKA75off80KFP4vPyV9RWV7gR9ykjnpCFwlpFHwi4rr5qt5tf2waAOtN0NVOXrfPf2I1te3aJMwWrOkI+8JkQUC//qSl1OOd6tzxPj1samnYszf8eYNC1LSaD+uOKvkVDtNKeHnG3MMNLr2OVCB9jwCciNbD3CUSu+pqM9pByZKtZHH1suoxDeufx7orTSgLpQMbRILFK6+feDRxdc4wCWBWesXdePmacT7VZV7pQaZnjftXmFfIIfb4fWk6TV2eQ/x9JCkHLIiJYmtm3okfg16KjM5S5MJ9jUXVxt6XyQehvvlkWfIU6d04u0TyAPqy+ixP7lX44ma84akfIaOqM5E2SwdCRtmL0QO5yfiIhim+q8yNt/nhOyFS7UKeR80UBc8gdGpqBkNedPsU8+lPjlFC+eA0tN2tFw1BZeDLJhfujZyt8fq7FjFJW7Lz90H3adtSWFngvgvufrAKi9LbEdWyI0tIKsNKHivlA6J7gml7D0rv2UAHeGtI3Hs7JxMGjge48dUf3CHpPc95AwFDqdXSwjo1RzY1TNzlEuJfF/G8hKQ32wKtWutofscs9tJTmXM/IDm8NU+GEL/hnF4Lox1DYXfp0lM2T7ANuAjRCRU07BmyT/o7ztnDt4w0Ag31u1w3dVUYafLpWVShCZeRmtu7JU5TqaU3ui/4G/ph12v0IzgRNbv3zAXdQnQzPDTTW46qgZ8MEDnL9P3aTpT8KOtLPCynBRGjHuNeBpeLSyy8E5kK1zN224K+gAd5R70EWDHhd0U7woiSq+O2hD6UobQZk2aivC1ItgADG84EuIxlvq2Vm4yYr3E6H4LTiRtGkZpYkMDLI8quaENLENf+R3lNyuoTbqi/9k8SRP8mViJocaMcckTLSU2127oX/lkhas2Hw22xPiP/k+bRt8JawUohBhHPg9/e0VUScWp4aiNXRx8fz3bfERnYea447gYSjjXJ1HiHDQJj+3GGOsE8UZLZRxl7x702Zv6zQ2siKCKLCYMMDMlTzzO2jRc+gj6TWjNw/QoPmnA7NmWKejyiz7bGyxFmFsEcB/mmZ3xYrZ+CWDFWI7f7s0/1h36mZvOMhbIsrAvyeNYS09t2TFsSbisQXgxDX+Feek11ZMsLIZs6CwS4myGRrFqyLve4Psuj8CNuCtoUtfCeE1ZD5uuVA94rWA372e1RyCErewvszs2UDH3Z5NKiF3117XWg3tuE3y1HApgN6C5jgkVmx7cN66wRYpy/vagPp2oZ7ZQCWLNpYPrEEJDyuxgb91Clfz/FPEGtcEO6SDPwcNCgmK1+6YqERorTsPwU73sHJHrzcfyzhpKk+56seOAO3sQBcbmwInWd88kz+PXOGmcYnZ0rY+j6UQ/irCoyJaPMxkKDFjztoElkf82QgXXXiAUGhIz6U5CjBnQ5tJ7S3zXxFlBeNlfJH+bs0ylBgkSn+AVlMyY1v6PcmHy32jx7jtKldCcvQPUSM25i328FbXvc7AclE+lkeBy2wE5+DayhUGqDn20Z4Wl0HqWnlx4i2fzpN/sK21xYpqDBe/6/jZgiUIyC5jOt/xCeK/HqI+lKuTLwnATyyHgwY/7Kqu2iVBNlpLvh53LNpS5Qtqrc+xFIrXA+fTihxTHA8YzFhRj46KaAJimiJQ/Y4vP9XaqGWa3zYWTZet7ME776zLylGQL5FnpmXhtC2yZ0s4Foqi6H3NEHWOqfmu/9Q/lRI7WJrsgXmSmUszWyO8mDFUkc1TLjUcHB+pAGiGmGRjyuEM1qO2qIZIg90IJnOSee5BjSyRrtrDePhrxhSA1Rb4VdHFTaVGDoy8HjWtgMGB39zo/l93DOLsKAUCJVXqlYq046P7cQrdO5goeu5URO4LbugUBIc3iBZb3PDUxjh0lGWlDsiqa4s1dcblJYEDkcLb5Itr4Ci8C/APrt2RJDuiWlKZDZXv7LWy7KDw48TfYKRJb2Ize68KeRuT0TZu480VWIlmNJf9Z2ZpjiLCC+OUoeTX+cFdo39PmO9Xs8fow8jg8qhXrwuguiiTcaqhpfZXGZECqFb9VfpOaTUTf8X4XQaIScL1cOKn0CAfAhLnPwyEyvOQjj3FzK3LbaEhSkGUvxC2+ZlP9LHTLCDgesri7desrAOkSPeTbwGxTE406lr6YSlgwbyZsRfvtpJA5nqEYAEZqE900nJOVBVjnglQrNJvyatEZsH2UlPuNwidatsoKknj6KNTm2o9z2cbmJ6HuozYvf2etK59bfoGCIua6UwjKgBPOtHTcP9g5Bd1vmrpAdSz4X2cBtKJwgfxVGpSyz5Eu9xonGxIU6yvaIEha1BHICO1u/a8kmv/tuQ4Xm5UY4K/GvFF0DzDzbHMLBjxhdTY7Kg9Dx1XOlKWwmnXCYAVGon/Rgbci08hYjd2CuFVH6dS7Vq93Xk3aMOR6Fp4CI5aNOQ/t6649HF2VUgMFxxEELXNDzY6dch4DCFQcb5hXLU93Pro7R77mrHMBB9pqWo+4koXKUl+n34/u9e1kOobsbMf0JqpGkq5cuyZ3hO7/tjTmH1QBz2mk5OXogLyAj/smK/kz9L+GuTGEfxySL1jj+6+viKeOUF8v94mLmWHG7sJoLiaYMKmHKAXQ9IBtHjLM9OxGr0/H66d21+S6CHrTr60ltWfrI/hdwvVt/fqH0VtpqJYzkpeiksxOCuMIDW+3DTHH6DnuC74AnhKnGykXGviufAeb+q5WmPPyZ4MEYwgkKDnIj74Od6z/2sCN6pqq7gJW8tJxFsRjKj74Mzb3I3ozz8/gqrsUaW4F8L5ZCjPcjVrGsMSjGuPqyAaXQd7wyTRy+4oiiJJ2o3OVLWeD4pA8T1qv90mQLPBqqBUbvNHiYp7wouKvZirE/BgB75jMgEN0XHdnhTefSehjpYC/7M2ez/opNjieyj16Pjjtw2IRkn4pbPHy036+S7xL+Hn3+iUZmLC0lXNYx5hGUSgZnNKgMERWQNEPEH6rxlwm/Z4/rbLa+BuOVukMRHIWzq9XMlfylpmllKFHj6+gvzTgQ2rchLL55FQhLlsaO/eY0sKzeF+/n0jB3siDAGkS6cPQUuS5h5ff0f0GuyhIw8Xu4RDnxGTlKdvbWvlPo3OsJRTZqIOykvlluHIZ7eY22rnDPhe1MIVZ+NkYRJUVyJUrBXLnOOW/rOLQrw1HYxm2uUwjjrsYOPTTmTUcTHNicTIRYlQc9vYOotkkrhHr0vJEaX01BaC3D2S542G6pBqe5LpOv14O8Kffqj1csF4R0qgAsFFzPfQalS42G9ljX4u84lYV+iUx52eGIsRk7Ha6HOoqNkM9ch/o3SPJSrb0BBPSpvaeZIdxnQO1ZqkNYYMD77k1PjkK7xg+KP1zDrl/Hz76ItfTxC2MwpSDcvztrMLthGby5N4uUSb7W/qBZQsEIPbGnfv81MXOSgsEUl5gnqg4dGeHmSKvuBppqFKmHyq1KEGziWmENVyEkzFg+wVR777kUN4ReebOTCUnDddqjzZo/qQsl5t10Z2Euba2Q6+e0IffMX9Oj2qXRlEp72cFBj5CBD6FnghRwcq0Ha7GQaQMHPoS4A2IuopTzwjACbMF7wEttww0lQIfb/zoVh+QQbdE19I+j4gqOQCmQBSMh6u3rZ6eRRB5Wmjmy8tuw8L8rT4QcLO6BnCcXLJgc2kEzNqgIv8XFrv8KRNZZtwTfZSOKS0yIYi7uSXREOjDohcwUJD0Bkpz+X83bU5UAvr4bVjYV9zoEqSztegbWtmJKdPbWU8fUDGBZxvxW0g6LIIMXWve3Z9tlZ7n3siG098Dki5fz4I4Edgi5vui2dJmpdexwNrWQLH0AhovRr46rjltwcC/+8X7IOJ+UbFugtNM2hM0UPZkbao7s2FUdjvFcT6O8dpJ30Ev25oi0RQtyNrCFvotZojiBKWIABtCz+qCcctPoqtoaKNrK48IjA0cN6BuHlJFJwbAWFKA4iBwYLxdf4T20Uay5qv6/tSf8WKoAFGmFaxLUJZtqMbLqAK9wEDEnExVGcXRjkiTXZDjIIVILk6drjSm682Bn2jH2462FwQDfCq++jgfmdooOrEgn+XvuvZCzF2ooRScbqPk/RvBSiYCd9OiezbDSpy7hPsKiGzRwQBdQ4/7MaqvBCsmA2EmpiO4gQo6dm3tDHVyPFAoap6E31fyAPNZKswFkzpGAX7wWm9wK+grWOkf1+mX1XecBxvd/Fbexl59VVXmYqhQGfpZT21h5Pa7GWTy9bzc46t+h4kpHJB7j4MD+qzvsx+8Fq+OpiLw008H5+xfy/e0vt5p9ENJwvhm4P31jJ6Kkk7QdQBf7mUrMVkJWiNg5LRXTUL30CzmGhcVvWBuU1iXdhkFrmDLkcQlydgGtQsOlbrJeioVqoB65PClbEvEWlS4i+6d/R2J6HvygemcLms1sjUHV8Fp5VK8ayS6Q9ZRpvc2iZBlXcrX1mxJXTns9e6zjzope6pCaLpkVoXyRD2GIql3haWmqw8ZqbzGlq5pbp++K09I8N3GzMIkBrPCoBCph/vJVint80c2h57+TSwKBv645iw6Xe4intSj5cBnaxMWhFwdlHCwl4NZmzmAZWLVOsFu30do7mXkWwIdUFGRFDzLXo1At5vLXgKp0BMkdt7tfR9a2ZQt+ao4XPnXwtY+fIjN7QVf0kKg3y3t/mJgZEdm8iUf4Yu5m3zq04u6GTj1wEoR4GFi7IreGhi9aZlLG9cGuZpkdPXqoz97J/VIArukyI4Qyve1AvPwfV+7vocHcwxHQSoec0LvqteB8l1b7f8EB2eYKBaCMAotn+X7Mdgu2Acjg842w/MbtCW472GmnHmOi1zZxbwtTeAd9qbJ02LJ8A2aP/wdjaf3p8LZTuZUvHpOe+6W91sUaTcLS66Vshyfato8c8SO74ucEG4cHgyA8jhfBg9AcUCtj7SYaM16WkysP6L3ftFCvmc6JZfmupZ+ODJ0V3lemjtQwut1eBpMMi3hdEg87wU8Rt5xN7YPFJTUwzOh0mT9Q3r0MjTlUac7oEculmcvxHCjqNHBmME4FHOM1mBoNiY5jt+OV43SB5HqWl5A3d8hKohOSGJy30ltlc1cPmBQw5RBpapFcmieLMrLa6P1P882vZze64hADS1M33OKZYd+Zy2INyvLkn4Y7k8A0T2CPznFRdREKoeTZjxVsNXHwQ55k8ikfMDc0WPf8yhxhSIVg3sHVPPjdBp/5NUXbEbLXGTgBdAabiIm3uSf/3dWJ8sUHdZvJsbTdAoXs47eAH0OeVcvriMQ9Nb1BzAeUmtf5Z0bh2IGrY5O5mNAvtwYIsw0AL5JNMzWi9e2xA7uBiS8S4XtADdQQZBXAlQvblMs7s3/TXnq/Dl6KFZD5330RzrfJTmwzxvlyq+mbjNXj9MxBYTATKhzCSJsDEJDFZsJ7gnsdv4w+cWdBsG6IzfFJj+jLwABJJqEjfNeSB+vQlGJaZyFdXqSYwKfOU3wZneIZ0+Kf49BXAowI80DifIkD3EIeQpig9YddowCwuDMwYJticM+iAEv3YMhD3THT5N9dajVw4RbdOX/8C1G7eB6ASBxhlN+jNLac3w1kbAtCWg2UyzE+LlFnh0tqxYjnmeFUndlVkVsBHu4k7EJrNyye33ysofJPxurAWbn9N/pRLsEhkyLelqxLdzaIYEZOdOeIy2ShLRPVJ9GtwobiP5+IOhLs/Dzmj090yYm7D6DlMB/Vgc+V/GhTjlWW3ZG6yFG71bAP8+OGEMZWu9JhMOfsZB1+6T2jwSC3njsZbFL90HFO5Op1X4/2E4znYYNGZ9gXlv1f8cjL8gPZZT2e2iewwaFipwWfoQ0wBZUat9XrWGGEs6Vyn/mNIQ2dsV6Zz6ISa5uZ3p+iaxScLVBLWGLWsyU3Iu07ZVzrOOOv0/BpRPytUTMOpmRs7hh5xUNm+GZaevYmot+cf9g6VDtUpzFg0RqT5jJGn9//v4C1s+1K99sz5Vi4yiuQZdS6Hw9rc2GpM0ugjCcL5vC2YjpAuloA0zqHeJgryaBXuM32gXQcyAj+w6LSQ76+z5+q528HTgiX67xuoWL36KeN6CYjdDvxtbk7J/80zRJ/DCypWHSRR1PVsdUC8Zl2J+6PoKGk3CupKM2zIYQfL6MVSwPLKmvRyybhcTTpHn1DgJo4CF9XsIB3if/Azpp9A2SRzSOcVMfZA1XQVUh27TpwSY3Pwg/CTE4pETQRU/rZn/OE/OvWm9RX/+PTxpaGYW+1oeAcupcBsH2tvFK6pyKOqRPlyYRSlQ5dcENUQ5FexckFVnVO6mqr9icYvgt5sZXHc6I2Fr81AbwV8EBsqZJe7hJsRl7vkt9CLlvlWGxdcTPbCmrgYZguXKfVj4RSSotJInLu5cwJrUFqwChr1BRq5SEjydzKKHZsTfOXPEbsdRif8VpegfH8QK727oAHjZmgLLmveeHnqNw8bvfdDemei8QscPTASmC5tR52ZELdIwIlCBBP9fsZtVM2Tt8e9l8vrnrvfNF/MJbPJwk3YT9hdvHsk1IUJZWTr8wmg7cazeodgVWVfO/GxRt3XlkjyI0Md3ZGT/7aZ5pewjg5jlitv2h+rZuGbVEpdU069gam7PLGlfTN1Wq9lLO8qA8Lgd7ikje7Uyl6wBPh5w3Uk6FB/e6RNt/5iTCFrm9oZeEhWvPjUfgQMNK/RHAZ/0EdEQc9XM/ASux5D5XU5QWShyAg9TcKTte8KO4EkjtCUEU/ichv3oUa25JjamwRzACJc4TCOpwbHZ08O0fVnp4f7k8PyaUQpYXszOJ+opGVjZQqY9yOeh0bkoTiCGdVhUMpDFdIQByGz0NSopOyv8XNakx7zqJaefgH8TM1dVFyTbyBOhipuL6KBZhFMsICopEl5J7GsXtVFndzMFbSn6GukS2/zU0LVgxa/imS+sfgZ5vv46JC26dg9fKr81AfOEmM8sbgo/ODicJcXmPw2flQ6EHI8To4s2dHH0SsoDD5sT5RT5bRpbnNTlcie7U3ke5TRiDJz6Uo4PEit2qNMAgz1lCURihvwWIo+78p9jFlxW7XQNk0rZF986islQ2i6EdYWQuLnHpLB9sL35TfyizTo3/1VfrxyYt+m8Dw3U/tGB1m0OidTN7d3SgV0heXeRCwUIz3J+8D115pZNiUDDczXof6e0AWCTK4aaMdmzasYp9zLZHKw8kkt1gGfm6caGzPVZo0eD2shdoL1MLvCj2d1L0K/xCxgWY7qw4gQBv8s9dXeFIBKXICfR+2WoonTZwM6HclIF35a2TLZ14j/o7vtGNRha99jg1V7WvUuDGwRZODMDZNK4hcHkO1dOzmir5nozd7HKPqsqE0/ynqB44w2lhGircnKGHAM5rCISzYMaC7jidiq2ccvMibh1KnQVIva0mBo7jDgaA4TUc77VSHr3uPPZFeW1lslPMhhQj0LHccXG/2AAuR58lgHBVdeDQPW9iEsi2e+em4rfJpGgQsmYkD5CtpuNXbeKpjDANLQW5BdI7oGcvSxgTS30dGeRRApsRazqBdQ/U40kyvmqAeHVzfjjTY/TnrkEbP+FkvghON1C0A4Sc8Tbl0GtLotmLItt3JCsJ8B53Y4ioEYK8kG4412/K3oG5SJCjaXXCCZjA4naKRjWIdNWC4C0isFmfnk1s//OcticJaYlKqwYkyDuCn+BgyNRO0SS5PQtn+zXolAPJx1Our+6JTfA+CTDOOgahc5vLWCOPU4ASHzPaCR36ixbU5eg7DiLBxw3UzGdu+0pTeLB5fIuI9Ff4Di5nHVkxoh5BXsBHfMkCHRP1oUnInVQfRq5okY0B/PJtJ/MYPY+fYMnA93MtR+Fxsor3iEWqFcPjhOrkuY/WPWB0uPJmd6+4G5n6jDcIBfL90DD8+dPJ+lq+n70Nx/FzZBWk4kP9oSzwSgcdaDzfihGoFbqJNO+/dSYXx1qBCUXmUhLZQtNKkiA0l69D7V3egPo+AP/Xyx8ocUyj8JwJS7+mVWKZttaRXx+dW95wYejR2XSyckEOJy9swKmwzn/+eMkSVBV//x34Bj566OSflnCLpIoqiaSEz4JAwsSjeBDF7oQAe8/LPGoI4n/j5ZjljqxCni+JDv/wNHExSykO6S9uvOg2v8l2Jakka/tatqzTw7hnQZXHVUHk2DbKtXn9xWZYQQVlwWYhUTdJbloPtcUSlgauxe4wvaBOXLxAG6+Eq+1bD15ZyioOGBQsGPdAqARgMB5ZgbWXFEZfpkyDYWH5+xPQPppnoG6y/n+wSCryzTdRTcTeX6m/vqilIS0ZOuPWoHxd2coAQpIQ15lnzwfSMfbpbVdnuxpsImtM7SJprYfyiT0yowX/9N1hR38an8Zq0f1axtpxTup+/qFztuNyhNO+fdeK5srwCIY/wpnVYqVhAvwOExC6jM9OgZJ7/E8Lhx89YJgcYQ0ge5/ELp5NVd9kZcyQbzUV4LuF7IpG78FllQPLbOgbrggyI55FI76j/5W/FlhOw2HZJExay9+4UP41utby7JUkiyEuVJgYw6l2KigdWLlZ7fx2L3tEcI6jRXvRI/21EMHbqvUprZddHzuZ61Qm+W5TCvlDOdeMaiwftmCQ/rKa9QpWiOHLcYUzKps+ezi5o/NYLrTobYw8ZdPgIxsBsHmLqPbHCAtsv03o714ugt/Gaf8+i+lC6fCNWTRbnkfdCSpCgj4tXrbPAvvf+NYAKYvYT2T6V2WouH1KCs129gjcux2vM7tu47HTIRSX/LZkQ0Ji+EzdJ5ELDAIXvhuOOZl5o+/8UERH+VzUJhaeZh+ss019JwhlZNZ2HAkKWZqDQ/OeryY3VdZ7PKNDXtxzGPh34theBP8aXfEGP7MwhXQbbnS9QBuHeCzk0lU4Nc91QyBc+mQnEVT+RKzLCInLikMZ1lwQMeIDAL+Utk16881nLJ3rjU0y/piXTC0CDJfBzPY0RuhU3+VkJmoE/IrMlL03ufUQclMdBp/eMl8mUnh6JzGCp2XIyTX7UnJg2LweXJ1RVvlixVN0RvMm0Pc+VggLW81WwcRqcKhiFH2Mdi1z2xUH3jmrXnOI4VZrcjUevOci1vMVWYM0kwekhf2wMkziqcsoyP8FM2FJOFVbEj/DZDOjKKWu8UPbEsMgXNNC9EkHvGYagruc8MJmtkxdiEjXF4AzP3A7cgorsd9C81yQfJjAt4Do15807DxcBr4PLZ+z+xf17+7jGYgrXyiOM4jwSQwbT3p87yCGtPHKFq/+c87RVtxpkixMwSHwZX/XrjMewGzJhOOWUT6nwTr/q/P4PU/e4a6tniV5OR08PXQDP4BT4bAlReRd3d07vF4NS154GKWBZ9ezpF5IRpCFFN+ZUQ55yvOIbuOdanT8vQ8olBpNnvQQt/vH2Lh+wtRGK0wxl8kmqv7eTr4XniyfWHzjRW7tBRqPuLk4dSLb+ZTFpImxQozHbJNk7b1mj7DDxLgJLAnQy16hOfCMOLDmZ0D7kPvGcu1bQ7pzljoiPGLW+uBVjOKJztQ0o+qxeN1I2CAdLEWg0983rMd5cNT+an6XZjFuHPiQfbpfyzp4maRPeiXzXSMPz6+kZKMKWbZL+VLnuVhsYDcORJcp0xlCz0Yr3um2KZMT5KsEo2ed2wHKRiQv296CfM5gQXD9Hi5d9VBdu85oP+olr0gtGRSe/idx1+kRw9eJb4OTTY02mRggbZfXUxyWbYaTdES5WzIdlbqxd8b/3ftQ7+ZW2VpEEjbyR30oDxJQJ2wluxecxrttWqhQiVZFjgBmO8FkYjSyLrykRrXUqv+wq9mI2WG1zOxM+8Mja1GFd0MGzDZA+VYTw4GE+QcnSqvX4sHBnKdVty557H4iK4LwYj+JHVU5STFOEO7Y/gaY9ovJau3PVu4IDujv3GQ+944WW8tmMOMqMideleXuJsoVKfTzoHmy+e8M4xpDxKze246j1Jd64xxkSp5pxSjCRin/7FPHZYJTuxnOUWhczf8Wv5Ehq8ShtZS3yf8LvmvWVZJ0sAJR9dPDd2aahf0y5SckKyHsEtqgJZMa9+o+EN9TJRHzQWgAJMngZxH3b+ZDAIqMd1fwvkwwBmQktmzRLtHygiq1VOx2tCfWgQDaPxKTdS+yIayU18rNTFXw2OH+llk882fohlI6vF1JAeDtQmcE3BRMGBVdrtxxi1Js5cwYNc11zuD4wneTrKGWPtUdv8/EEUsnzvaf5k1CimhtCNuA0gJOgn8NPX0ELrqSsss0hmrkfOdi1jluPnVdZtUys3QDhhZgRwZ5cYCmJsTGA3s3kCNs47L0uxFSpDnXDcpDRkwG1HdsdZcfpPaII0McHeojTdPmABv1MXu2HjLGWdiPCSfpbP5r4WrEgx1iDovtTB3r8TBbRg2+jHVENgydZdgWG6ewEkyHVwOFD5dMqP/scNl7vwcv0U//uF3ixZ8w76NH92Ww+NC7Bf95+TcQFUYNNO26q6FTANK1dbUHrVF+sEG5RavgHoPP9DqxpTZJxRiu87wcwLATQGvqMHwhigP3R8w+ptOG1+5qVL25mblosS18h0mqYXLxzn2h2plGgOkg+ud0Hfh/JYLgJY/Au0Ox7uQCKH4jJ1/5YOzTq5+rDznSOi9fCckaQlgV9jCskaKkHUCSiMiPHYZPf8ccHTjSZ0b6r5F7tRtYqzUj+MndsCnrTBPaz9cMpIX6F1M4AATmwoBVgF7IiOCGnW2Fs51J+Wgx5ALCxz/SCFkHfiMD/2MbeheI7+8z3nIYzSrivR0IrM4cO4TBmMjzXZo0orGvG9Q238aSqaEgIJMfTVGOPBSawp8d7NQlYnTwmWtkMQO+qtwaCPZ5nhRNIqFmDCs35+/d7eUR7TgKxt8giPfNGg7qm+mSUqIg7yVtkkQKERxULIz8oDvBeJUNnauB7rcAxqKTLHLt86luiBJLYDfWQXn43Ub9sZz5KTnNyIqRe2TkZfE3PP2zUxKALHj6QC9SiKQxbh9Iyr05zHedgpfaumSDXCJ8CGlu94jWuZITXMckxhWjxgyxp138x9ooj09esxPdQeRV/x4pDIkzMBBuD6JwSp8J9o1NvYCLkL4KurHh1mXjpD8xgLabN2wDuNXFjTmxU62YicTLDP/GgNjZjWNeZGXQv7TLudVvuz8gh2q6j9p+h3myFRSDBnWmPQNp9ho44jUIoREQTO/X4jWsWPl3THkiYDWSjN5O79hcvA8ADwpCx4jewWC8CODOWpq/3SUnWLs4vTGmoZG4vT34O9fVhh+4goyvR8gGzFwkKSpXJ+BOGXzL3yen2dcQU7YviZcmwAVinyP50j+WWFkiKvxhPA5GVE91TgYum/QoA/z4Kwgm86QaxEzSmdrQZJVcxkHoJuRZ7aYngNfAv6cZ8d1lECBqsPHhQ02UP0D+vK/zX/eVgQWW2OUkDLEqS1Npy/zaR6KJ8X1ls2g8TouzdVGEBwKFLqDSnfiS+mcVNWmuo+HjHMlOJkFWXSwn1Ajx+HqaTZCqRihNUINtLPH8oewixDK+vcWCmKnD85NhhcyAi15WtEktSMv4sFVVFqETCydqOzYmLzZIvJTsY3eFcES9F7bnJo1o/KqD3Amth2Jx3XLZaCyo8Ymc3IhTnC3LZdZdCJbZcpf0vRo7OQi9bARw3wfiVcrfcVsYkDTIiBN+6tiEhqV0+plVmm6Cc9AjL6WdfyM+scmK76YzlcG25tBdmL1Sa85sXT6iNAh2s6U5byTcMMgsLGrkg+HCWYJGAfOFK1z5TEL9mr6ZMFZzgHcWKDL8SB8fK/wrQKL/RAD6JYmGBeRoVVqHGHuDuySBbKF3ywHwuSzSuRBbiU/1iQjdvYLU4HOm3fWSVPScv1NVlZdN83RsCVu9++XWpwlVu/Bed6U1t13+DscDpURCn/0N/i2jsmclz98X1E+xrlOFgNztSgbWh//bLtCzgpFEiP9ucwcPr2PIJJN9tc+NAivkABoEvpEiZ5auUatZprWdGrMDq4KQl24yEoinxTgAARaEBnrtqQr8AAAMAAATYEL6B16YzWu6j4gBoqzL+tZL9MLSNntwe0aeTU4J7X4Poyo3NwGeXAhjNBQ8kYrLcEDKqCkkXw31qMbiUanmWZ/m9H+78XWVABDTwXbmFYq6apZa1T9cAL/ldPX3zkTtvJ2XbDXJCQed1pYYEY3uGPGEYSB7fFAe03IAyLu0LCiP86LzUdFA3RAiGeXCA1/XVeb0karo64ZJ63wRfirXhw2ZguWYNs3eXJPqHe/unhdVOL6xc/irFtM/WSdsRcovS3vGytQTSyB1/jgJKcu7P+o/JHHscQigZICP6FmgwN3e9wfLbd/jCkVLsEw1wcKbRgcvIGIA7zmzbWX3P6epyQirMxFe1MuytNE+mkR94s13GoMjAlEowtWAV3c4lTZNgsPEUzPUx5yyxKVbBakGMkZPin1U+QdsXtc6E2Sbwntt2ORjKEntAOryZrz3FD+ker4rIZxPhjAEHx7fE511lcO/WNUrav4vhicxJZvA+B/+iPrGc8g0F//nyGwrUsUDYAaltiaPiIkAhuY6hWv/RFfwROhZGjA6F4JfTS/VMATN2mRNP3HdFDV98clh7yqjxiSfeMQ2GOScCV7TiXNI3PQoJNXUTShqHe13P3JNnt3c8MweeYyKUgCh5K1EL8C5rtGUdlFARwx+asskYiyvbHEdBkZOyKwlxoxcsjlQ6jmvmAI2JiGXYGpdoHcNd6g1kwiawIQpTo4ehWWy+71uBLC6WGeU7xNJcgrtPDGs3OMCn8X8xCJZoBrIveZwz5OiIpWDj6tEncN4ZebbT56gyH3Q5z/lNVgAqG/i6tsuK9MmB4VhTATUK7rl6Pn+WT7aZ1q75Gn5uOekR8kOR/j8qlkQLhbQrrIhLJ8l+Fojb7XYTA5nhZMxtkO6g7Au3nPGY2mudauh8ZoIqe5KkpZJS3Lyk9NNRL1KWvdPqvBKaQN5lFWo5l2pUBsbq+pvIqcx+G4eCllgFIUkYr6aq5/nQPMABOl81PDtySYPkNl5a1EIMvQPPaYRh3n62kSGQxTXPchi1FvjEDg1VnNrQ4RW//AX/3+ecZHrrdL3K+r8e1jzOdJzdXndnLJnmvQUi7g/jSNkxasOsGKDl3rzKtZ8gDyzTEDgNl+SmfcQdudDn2FoPZ5jk3X/OCFCS2UxdFkuxVycKA1lmZYpXwZoyRNdQDJidrI7if+jfKCHUhTZwSRjzbukFvTuDgyUpTv9pgTHBkO/mKy33cLcdjXO5nc3yLBd+vZqAZjhFaI2TfDracleB+amf+11rgL2NFcEBfHageVy9aWFHHHn3PZIj/8VqYTAZZ2Kjb5DQBhvNFKCwsq7xmDr4DmC3J81eyY71zhQ2BQVZ5mlJ6WoItEEtgk/wTKBVgX2vvDEZGKwjWlBGuno3m1193yNEL/595OinaCopH9cGTGzXbkqy1Haoopmofx/aYNd7ImqKGtVrwvNne3fomtKBMmkJAbSIQvl4hMrlQJKfJcymiZU3zMBxoZYxTVpwK7GjVn5obzKn77gxVjRuENzHst6aE3Bvq7Ekmtxv1Zz7H+aI4dIY0fmdoq6D/g/KWk4LHM/UofjXD+FFd+V2X6yaTnjy0gan0vfCxskZduQCHVev6PSMT3NEJspgimMY8G4HJzIY7P+KZPloE07zRfFJ8lkmyqvfUMJJ/v9xxqAi1pb54o/6c3Pl0RA1eZ/ZUVxUpc40QFxU/F0w9Uugt8CR+9oNqTxex+YmNVMPsbWPLHACFArxRzsEE69cGhm9sXr6b1H9wOFUvy3MJRfdbLvndXyQJRlw/Zm/fn/tM+EOpd8VNLmKg3QtyRE5JzYpckkNmLwAgxWLDl9bCrifD2r4y5XyB/cqDeJcsjHXnt6+wYcZ0LZg3mUiBmgPncx+J5QsQe+9tmxd9f/MGbEBhtQPgwAryxsNzwKP/2BVi6mwktM0UGxSorvJiu8sNXbwITIw2YUlhlc9rJahnz5JkXAKZnydgaoNGwAnmHLYABnV4LK+Z1fjkZg/y9uASylI8bNTRjVQp108ODGtECXOrZrCnb/HOZzm5la3EfwAFTwaUZtASD6ntcWACqJaVyR0qe43fBJ+2DzCu7zixqILuQlYB5ZbMkpnBPPFjfOh/9Q3hyaL8r68Iq5o1NJLctStMAKIhM9ncM4mjZhDZz1fpG0+0P5fF75Kl+27hDWwWR6Ax6Yqqvz8UWHKPD7J0sFo420yO7oMHLS+phqQw3YhupS3Hht1Gbido1RHzo9GCch2iTcwV3x1K0dL3oaZbFWehl3ciPVHx/NTmevWCpa6JW6tH74Q6nFFRRM+qbiw3iqFJb/lLAMo+2I3DjdSv5AMef9KymDhSazbX8HxO+/UdUKcFOsaz82DHY0z+VWwoQJQVKZ+jwQbgZX400aP3Di+VjjKoyd6PGgZxTH69ep76MdHlrsaXqNmR1fq27e+SJtTIo0fItyEKeiwK+laxkkKQt10AsDREpo0b5BK0QsUHRWAe2lMVwOitMG7Sz5XRBfstzfodB9LYC1ed7F6tOW5czS3ZPlhN8ZW1jJdhcA4PmJwenVHLC4dmYWilyAep+TnUi3lZs30QLd2Fz1ekRkbMNs2jRvEfk7/ElxywzWs6d+cm6Kc4sI+ASDZkeIyCywkV+GR5W8ChlpyvXIo4HQlY4d2x7S/woX+PvElTqcolEVLVnTQdoDlk275gGV9XcXH8J9ADTQiSqUMdqLFrOljToSiJMA3H73UzEdYjH8Xba91fw539SDo2wCfJdYW8AXuh1Xlpx4rXNnJhOUHWbg6TWU1aJzqQrV7mlNPj7DOGwpf7mNLVBDLcRJLEUSUYcNEpwXml7T8mM0WTAc7lfPS++FdPXxpNOZhGCAQF7/asosKD9eEJqXfZAWCuKsWGZOoRFN072boKvUj6Ozvb/W6DvfrRUzpefC5JlA4w49hda0KCgaXUs0FPZpk1VEcDyH/V2SsjSsX33foUxmvoeIrtOD+zVw4Qeaf/DuP3+JxrszkTjJ0lu+smcR9/Mo0CLX25kyn5WpSS7Ofj/JZZ2yuAqK+qkA7eDZvytg3/TdJpHVUhBzkL4I4BPR/L34zqnp2I3+jsOQqvtz+5n8BylSbHJPEzqybwfHn6vs12+c+qsvy1oB2B+JqGXrUU2dx/TsLr7i9PA4F1joP8pmEp89qr961fp12YDzuZI9FTtwdlEpg/S8ejWwBiUbCLxVeAuBj1NGLWTp56TVfhNZwFDQkTAsiiAacFqXsNVSTRXo0FTqNgTl5Y5SjmuWc1d0bvTGAgeQdKn69DPXJUalBXRqQpTYZRIGq01Vht5JhaYdUjnK/Ysn0goN3Nh7qYP2X5OxvIljCLsEAHikdSKkdfMjatP4T1cigTznTAE9+3kc6ad7UQ5kceIGEDKck63erDaKAaM9cKkc5o5bjkrG1MPje30lznWRwujg/IsILVNCeoEHSNxJCgnFrOClGhuClUSOBw59a2bmmU4fDAXDx6vsJM08EScLw6YtbtfZYmOgxoPmxOhT1Xitio8cNcP/hxgfWcZgqJgIYMK1Rzl9YGZvr1euE8U83tPWC8Zpc66C9M63vEZkIgbwcZW2XzUWxonrgCjMUxgcLxeZbkhE+Rra1xIzxsGK5w4VJGiOAD/RnTeGOKeMGnRgAVRfPkuKAMt10iNP+tneRU2w2EDw3UAhmMcT/rzOvuGIH4gRCcvTnLENLPJDGNPQEu3sFdZHnZIRbxxYugVeD7OimtBwF0tnUyzOJtDg4TZ3usFi3+o+qFHa+BDIltAt0JmS8jv/09FfcMBqFKhin5ZILxXlnMQcorG+RaIOfiL/LrtXTH7dIGEZoE28d0k1YohmkN6YS0b9i83wj5C1tAd7GBVcetEwIDTbyoofkx7p8zBYUVfipf3Z/kL30Xj9I9aRu9h0GQ1bOPQsFjBkG70Ulf7ybEIWz5MbVdL8bPzaROskG6zFTGmEVo4iwIFijJ6cstHzSyArisItl6tzdu7y3KSmdkIcyHGBYjh06+SNonKREV/T6Z4udlb/mgRw8v5K/DTNv64H251J2os9nOwKz6LnwMe51l+NdwLzqVu4iR1iPECQjjwPwTkNkDR+GRRADDPC0gDzKqDrRK8CfQF8PTJENtAi+ZB2PMdrsrjL8uvWpM2XEVuL+mpb7l2zFhDZDz1Hah3nYDARoL8pYbQ6YUraoXYtDjKs8Y/Ck7AlSQbHbx7Vr5YWRDohRzSoSGWhHxYBksc+rTmjxfUmpmhS1MpNOcDqqG0PwVUiTmNVFUHsZhjLWQ+Z6WkwkJ1XUbfDcRIOxCpyJNX7gAIbsF86TjJpTn4d8kjUGtaXPSFDZeiwfkXTHw6jrYc1qLAUxssHFUAyCrLgEh7ejmaxpB1JTW4a4OFDKR/VkwK/PM+GDY//vUyJ/FHNoEHRwsxu9GkV/Mxyh+kes9XVtorX3MYPRpZYFA/yVw1P0Pd/FG035wSGBUumUYifonG6CoLBwRpzuH5wqJR8Ea7hGGbf/uUE2OZS4wCU0q6ENxs70T3bIvrnsdBTnVzoaxYFKd27mot/Hea8sHq/hKclz4GfiSRflIKQM55/AbMi4OOPM9uoIa0eN3vGCwsjHLX7dICkcgl0ed/56qVahK+CiXJaAnbpCaQZzvTHxRt5YGLPs0H/Ru8Lin3Nw25+BxUNipR/Av/mJcLKX8d/TsqaqBHXswD2Bya5ZK9G4xnR3nVsrFg0ZGZaSBGqFoFTqt7fxxwiNRprE50ZaPM7Nv8fpZBaYvTgpD/JHdRYaKjOZTBErGp4EPzN2HSiDAvS/TsB0EXXp1k/M8pFdoDjF5UoGx+2jDanmlq8F7PkJdPg2juRf0raXq2ALdmy7w3QyDuQOXvHbndREs3xM5JGp/PkICxLQBUVmRXv1/PWIE+hkXPaWn/SwtzgRUpmpo+GsamXtSEOFrLMa8DOk/TZtbO4zzXgtIokn3KEkCfTZe/IioD9jb2WnoS1vXc4qet7zVbk/pagNck/tSnVb//IY6id88T+NaEu5UfC5kk9EnA15xdtoU7GBUKc59TExZFI1SdhpunmCTTKqwJcwtsAv9q4Dvvk7UANIxd+lEtC6lBcELZs40oHAUKlOBm238PltqOCxf3sgD+V1gHIlSovkWxEJmk2hhKPT5wfkx1WbELmKyLnjzTwKTqU72WNUvjq/xXF13DfaJSgd77wWIJs4SqSnQnUdZo+gX1OMobbvF+rcT7I/AM7Rhuw/1YMFP52DaXbY4+14aWJW1P/n1BAJ1e5bnUKPtHkfZyjta80CTAMJizQ/JUdVGCdiG3nK/cvhpmgOvNrUcLO3mviHbEjTfvhJcxbB/dGPrrI5Y/Z88QTd1vzpulzkwrzWbV9LekVaefOILm/WtfnCvfgb/MOhFtkUWkyRP8YMTwjqg05JnRpYgd2v13tX2inZtnTMZ3QVZuqSzZkd4NMugI1YG8BgETIeuBERBXaBamYiwN8tuUaR0wXuItWJk4oFnXJ2pFGps9V+7xyBie8NYAIILUY7C58tBjUHNv1MLhxoZyFWrV3ngiWh07GY0O0XFsA6etylDhRbT/GqIbApr9GpUQcQWeTxxdeZoWFdAb030c9PDUig5b6898qM2jyG2U6luH9/t5PLDFhSdDb/V+WjLInPaEgeDO5fc+U5UYR92WDhvwVtIMacV1UkuTE/tdv/gLMYngd4J9Wd8qLwh//jbHIcJh94swsT+oGqQME4favu+ehByDwqHeDv742CWE2NYzRut7lWPoLmuzT4BNYBn8PaMHybtyGvxv5koBjjPmlbJGOse2CPo1zcuY2bS7W4xF0H9yW7DqmjBGaspfgYLL3nUJzIgtQ94lhX0vUY8WfdleiSQaZOJLznKJEeqfFM4SG7Up/t/f5sm5P1C6iWEUyaZsEch5fi6iGtScB1dKcdehWxYqDzHJGTdmbo4Lc2d7CfqmDV6VMV6jlKmpbywXfy+aCGdw7+FE+YhbD99ur4ravnm+Kh8I1WZtQY0J20q7tn7Nc0yPxriSymJMSH/ZGrBlVfQbQW/10+RWVFW9MHZZc9Z7Tc3iwgZaVBbST4hJ04jXhXtdI/f1HvQ2y6GUVk6y/VevPGApBcH9KCMg6L/fPBo2u+zPkWOdfmWb0SmO2Qi3TJCGpg9/IpYhyCu2DfjDcEsWG258juQ7I+BXckd/DT9X0X4e3Iy9TyRRKKXWBMf9lCICwwYHWFYbp/fVL5C69ul4WdvOf7Fc9lT33SA1kSN/9sOab6Auj1ILjvuuuTK1RfiOLYeDFZOzHDpSSG6raTcZ3dux7h9LyOd4ALfMugX4222sDnXb1dt79Qfs07ztez9lirJj2qBOgUfycI/j/yjnVL/be5N1OsgwB12mAtEYgL9/mSbRG9B+DTD6vNL/ssT7JlXSLFTADo+xGwVd6k5CvMfEVoKeI6whKJzczUtwrQ4Z8ertJ7uJTnSWawT37V+J366xH15TgB6Jxpi+iXABIUxvjdE3JB49rUqEA+Fc7NtLP9yT5tyEohsHzjryn7beklDBUw52A+JCtraOMkjvV+lMqLxKFBHoUXSqbSmSML3gvRFBx5PIzpovkx+UR8zljX+v6XOHBZGJx9L26VELc0iOUVXEpeIlZ/7pcIfR+HZYfH85jrbd/7/ufD5/7g5C/byxpKwnr7hiEKZ3KCdvnRK6OfXrB6GhyfWp/8LrFQEoqXgSnbrXatx16yC3+soYX56oY361NbSaBUkqlSfScieMk4OnOgVjFsUvUWVjc3JMTZ76wziBKcN/a5uGXsfYuUbyggwDC+/r+tHQiAviwNobCHbPuAMXFkvTHBlIji5rsSLuZHceDw20j1NNqwn/RHvUieMSt4BMCnjVMKtlKbIIJUPCSIez1SWtkx2aWKG8hDUFKga5Meto61vUpLbog9ILefE19oWvvJRIUEhul7qZVaIZgbcaAi1sQLu5gDdurngHN31HMjBILuwjoGTMu55VRP3SH+eLfCmMlc0hGGrXHHMHf7b+w2KJFEvQQ6TDdPw6lFJpmXO+AN3TgIIYw6qRxXn1M++63mOD46iazBkoD+FwE2NthHWH4HxNeZ4YuoAwjvuV+hXz//my0Aa4XUuerBtturLQfotWW0t7HmeZzcKafOj3vgZbDoEIMiQVzdaZjd8Q7NJlANbW+mm6SK239lh4JWsSoOr7HiBeUcA28+gv7wBPqAq21rk+3ucutJQgmGML6Ob+J3UkuQ1lS9PS04lEzgI+uZOCZj/T/xRCp0Us2kUyrUaIpofnOaUDVGAQXo+/45vzz187uqEi73/pPLeL076RIjI2BABVfEXwUqXSwiSq5+Z+oCh9HuMKN8mFG7OtDbstzzsiQUbCIfs/miqFBUgIlF2XAUQMMcLRBkcxE1bNlJ5iLftTimq4XRfow+l6Asv48Zo9kANSg2GI5NQwOKFvoAw6zaSQXHFL6qDuhnjJJvTRkDmgGeHF/NC/65+4WQUQjbzeqrQv+TOgAAGIk+xWloj7nbsdoXgWDDfC1E6PteuZkFPoZmBGM2KZy0uh2W3zRlqytiz0tW1zMwOfJ6RTaR/omCxsrPMQUkGdKE6kXG/T3qRl+t5841Zy8tNVrvg65T3aur7GJRZzY0x2TnnuRZge+3i2WkDnj6sQ/TB6/I6tsjmUvm0Cl1CfxkVuR1C2xdFzb7egXAuCepRvGdLR3JxgET3k+RTsfSzw1Ni1g19v0wyojDwRw8CdotnCL8aQVTlFDr4qymMvdFp1MHnPlfBAfpFVZM0JvqPdV1uIBzJLARavsnw8MQilh06st4k9/nOUJuG6KP0GaZHxPgLoFtaNFt0+a621KvXbt7d5vIPXalZFK48ii5PSyGx+r0oXBpiBrHP0PyLI+p6byI4XBkBoPxFQ9VA84aGIlGCv58d42ye4HDFXDSldek1iNKjc6t2ZPkamF1M3888io72+w+baEGkEI9NWG6AQ2s5qB+K0I8Ph1pbkJvKd2HUObYg0VpB5Ubd+AutIocGuj1zA4lbAPMx24CvBL2rUGrLWSVjNgbxEtS/JsA35HWWmmNQrt/ew7vii3ZHJ7X6fFWB5rx0i90fGrchgEl5O6Lj+vFCi5HOPx+jTmHs3PrYXk4fkQbCK1jU+oqvxpzUE3bjumJcOMg8/BvSZEsBtnb/LQaL2pA0INbAla7dEcQEd4hDij/RYaKnBYczrriUnyu4tviT/h0ozhTsZXIo4jXINu1iF0gPvtHq9tDtMOixuK/Ti7fklYjp9Y32aAmsKbIs4SQ9LXLv7zd8KagSvA+Ax7dzmAjf/hIkco8gEd4H79qxof+PLGWUGmel/Aa1ew2mu+o1bDkdQoEBqPMk+K5Wa62FRbauvFyUb2EmPPwUxrEXQoHwlnC5MCsYKMGWfcRZrBCGAPBTXXv+15Vz/I8+Ed/DQqNg7DH2yDBtR9C6Q3gzXwucr/NUKfFA76ZTsx0g4nG0QO0XffKJZ6w0ibAlJBBMX0z5yW+uNSs5com99GPCxRH3/tkId7c+ViA428g6rXuH9ZoVmqbPnVuLPfhIHgSNBvZFBks6V+EXvb06fwFHGy6UbHIkKoYNADdO8TWpKIYnJS/6SZhejaJNsci67NQmOdCxV4u3cWHwR+B32eh49kXuzH25sWc1W1rw3DhEaGzJGrJmzNzWDFU03fSTQfGOEU43iOQ1/HhmMxHJ8FpEzwo3F9EGrC8jDCelhAkpKZFFIIkmjuvfh/o4x29LobTUH/OGjNn0P6TfKjQXwL2dIcka3/BFIL2mYfuq54tvp9X3hpqqjLRkLnQco0D+iVD9lzh7QqVHtW+N6dB0tAZrUCc681DxVbNS/9U7vjT/2mjq7Bizc0JI373GlRYOmsHIRaGXf2vtMuwPEKmHQJv//CmSzO2GBBWZpxAa4NeQujXx/wAfXk9G/hX5Dh3+8ZuHYA9bEqOZKfzz6buprpI0bdycLEOI3t2ye8YW2ffK5Xc0yd+PE33czyi2Ggx3yPFLYnhsabF/M0gEqgKYpZdJlz/lZJWaJcrGTKQxHnRjPopFKx6qaTOa83mFh3hAlxCA1NFtIJIbkL3FFg4UbYM4Jyx4kQB3ctMQ2lkohDhGMwyKbrFGI1uzdl1xSXgFbLrzJVsGzaY8nHkpBW6QKBvFp8402xY4wyLi/8aNCWZ1nzr96K3UPxKx6jE9gSNv0+AN2hONKig/Y/G/lJdk9NeHittsJic551HRhN3n1T5x8QQL8gtgIPuFJvoZuDPOyRgXlDwPoV1qw8+r9gQ3WcIqxLvoB7OSPyWTaa1iEEoQvuzfYcuVaksPCNW3381xeckYIMToile55HEFrmU8ALLLDJvZydiZiVOlIErUgPukuSfSSRPRWOQ67U7Y7cfCNbwhUY1lqtv/dYwGesfvPgpP3PVgrLbMkid/oowqJjNm8gwYNYu8rJk9mslCUd7B0hBwRRYHsJ5UmDYXoB0k/ProbXoNXbeswS+conb/Y15AHOe6EvmPW/6k3GH9l22NyBsPq/kZzmeADsPIlRxy9BLw38MXnF1h1NWD6meJlxR4lIysJAMeNpifgvuLLkOrSgKxQ6Y1GsHbLcXepclRTjjD+a9V9PeqiN+PpvK0pXS0C4LXkrGOkEuJwe4QJj5ch344xRfm4r6uPdZHgYZzc/cElhXTcuE5jaEF5up4zeW0fhya09teEsVNXyrPY3oNutalBidc1MhQtJY3K8lh7SLfl+Nt9rwmy466+OqL8cGI7pCBPIAMNmUgm1Ej03wu0mAV+779PIDJlWZ8Cckul7WIbFxsmLId674FlcqxpWS3meOPKh+yzQVKiwS2yHBuqdCCEKkaj2qriO6P0YU/gm/Ov3LYOi60yNmu9b3X4keCSl4nj2U7iK8xv/YnHpF8jp6A8zVD3b1LlmCAAXoB0m5wpaJ5T1PwHC3+4QD6OSS4eaRzdaDQ8ggn43R42LypWCv8+uc8G/CJaMBJV6elH/cpQwpXjYx1MVtZJSFDoTZl1LiaviF2E1DtoiRP4vej1cq2eGIJuqqhdgrF8F976rLpi7CKEWY0e4c9/Vi0OY1iYYKNPYlL3G65F4uvE9atKj3eJ3qqXW2HM/ISylNvtQdpEaSSyn3noyzra6rOYWBj7xpeYwoWc1lsTwegO/R0TtDVcpLKBQNvtPxjODmxu0w2WDo7L6w/CYpiq5YrUUGrB4YbHRe/0Vz2MgPiPwKnIzuLSie8lB31zwmY+yXVpCxcNeHvtAVLnakNYr/G5CQt6bvyfsZcoOIEG/Y2SLtC+6buFoIymgkr+YnvQSFpaxHT7+Uz9ZJssQL+4T/pvPlw4dOZ5s+pbrS3+f+3Ur/eS7/mAQAV20qBSLWjkEyFblzi7pz0tRt8K0TFfMKaRIWgJYHks+/ONG9hh2yqBIfdv+yqjL57TDq3OHBU3tSgZP5U/14Yr3Y+xeUkvqVzwUjSPdhI+vYTG6W6o+DvS9RLTtLNU+LTPNg2kEpAmryeJBo7ayF6QV+4IaHpGfa0IKUVWrvXyZCwZ0HS9dqHckFIdgQh+dtNJG5m2ocuJO3B7qxe+RAVTr5ovrtyigqOs8FTyYlAH8huE8TI6IFlgQGzaaAHpswq3Zg9rdWgfhiHjXEPFnZzzYlzrx5QycKWEpPqkK710m/GtVUCje5bQ9tC72IlOw4XD7v0nyPmTuh84GJIPsySGsfZmFD1e40Tg8AnsbE9i9suhE7/WG4UkFBXHcb5rKtXHzlQwRba8UmXdlpA7K/V0+cmpGLkSjrn+8nX9vjJn63qDQxMXVZdZ7hskto2AonpA53UHsNSNrp6F2NGkbD9XPBUVGDuaGH6F4CQx5Q7aa829hngcRkuOS2bahyUMidy9pmwIX4sFWiFMkpIlnoaZ/K8xwQp6sg0k4pJHsOJwDoEFZpmV4NwfGi0s2A0fY+v59y29yxEGP1n7JcpnBVcXB4zAvTwX0lxdbSo4ieCXysUOI+di5R7bxlinlXasTYy8RnSPkw371FjComWZTFy7PBDmW7tkFzRUBHPS2XGVbWxJBKO/ugYc3MVgN1r1AJfUihcUfWhycLW0UWvJDa2WidQap3Un6E0PRfuQBuW/v1g0l05kzW9l0N56FTrGSWsTLEKcjDT/x1vl2WFjCOujXSQdgqfa5dyg7h6ndY1GZdnjT9kbr/swFaAMcmgOmrW7dzzgRPdgJa3yKEmMx4ZxsyHpka3o57DKH2fNpDO4bMNsiNHTSzJ6NDt+3J7A102iGcI//7ZoaxHCffKWLolsz2pfm7XlAFIgXPeXSs6SvLrycuFnlbIhX6dTSwP8XJpFbxtj5SYRQPWQyd4KHJH4m4VRdTOkRvc8QBvQF6qYxqzzZfsqTxm8ZTrka2Ak5nghOBGQPct8ufogIWv/ttp4Lpo3CXFrL6vf9lNQIXx7MnSNNVxWCBhTwHFRo/DWtkYsXleWL0mkfW+bC6Rz/dYo9C4S1u4HRPc8bPm5afm5aGm0AfN9v7JLP9NwJoxZwlQwoOs4rwrDU2+HwfgaPA9S8QiEuwaQ0hgZwG3GusHtWD2j6GC/YFH1phLqQkBf8RJMQHyx+HQOMPIEjXEYBHBjKmH5wr0rIGK/WPtvLT9r0NnczUsoNVHrk/zCwT8zalHsCqlRR1nvGMnCubynCOadyv92FxT+X8n5NPbcytbkA3cy4mFBBHCV4llBWuozBFpktv6U0/RCD8sFrDKSxCdrmNK8RYrEbKru+tvrK9gdSJfkqLZngRC0DX+l+U7xUSwgcUvkF3kuamcNMOrM4HQsPKaOjmTbkqXhZlxSYeRMOLWwW2wmKfyfKcVIIX0mu3mWNd269qxuYgo9rdrqgJdfNke2w4tUTrxYD4RMN0dLoZg8wHwVY8V/H7xrGOob8PMLntlV9lebohTNt76X4pfZYZnkXBo+nFVFRBAvz30ods/+dEXFSPbv78zEcEZEdbh2p6EsF+wU9AbulxTqFOzhsfX2Vy+utNz3QzkqR4mZCl5PyCxL8Davu0K9HRQiv+e44aaZx9H0QOTLLntBjM+Qg8kzG9rR5od0pnO1nS56TLwHQUbkvzn6D7nE3EU7pcG3eWLjgH+9y3mDNzCkRx/9UcDhFaMYxWn13YbikfxLxQAVNyQ2xOuHKvKcsxbe97EmvAYlg8ner+Wu0LnOd/b9aaDYCMct+R9MoUrl143Qnw8OIUe9oTsFEAGQl51qbtHWhFwNNFD54nSXS1uR1W//SpdtlGbkDmy5zkdMqJUJOt6EngDpjjZYEP3VTN0SYJrXJbuxNFcXfIqk9ewa6zIM5EQ8XBPv2zwyZ6tW0KFnLjPhAOy13hH8NCGnZejW5GhesN4nn3cLLCv0qdFOdHYZ7/WdlyRSb4+Rj3Xf6NoQQao3WebcIoCTXRDhpEBbNK1P9NgvpaGIhjNArhO12GxUuQubpJtpeat0zS6Dt0ybI28K1mr06NXOJC58oI0cfy4AB1qqmaEnBe0ANhdI2rBO1Y/IxVAp1jZS/S7SR5jc3OsH5Ir11YWtuqKC0cCCpMssoJNUG4CIW81Tctre/umXRHiNB9kX387fMtTNZYjazqm11UHU2T/yd9hiMIdZzvcZ1X5LPWqUvcOmCywDH1KuNwn7JHD/xV/HGxFDvVpHgqAEcyqu4uVCrpHG5fb4ABdLfXLpM3w+B552E5gXMicvNmEGhokDpsZzOLlpva9bdrmcdzIZeXyBSt5yS4H/CQSD5xu2NJzHDChQe2KP65/E7QtNwcgZG8b3/ihVbuoBAvhdj5zdPFCCVbxNc33YhzsE/l9eaid50ron8bVelvx5XSMHwMPmlfYJeNAbFfrr/Ha82/VO3nXH24/efddp20Zbzs2Yzp9Hl1FYDFR6+7pEk7uWNgrFxZDlli2CtOoLa+QSpMBPoo4tH4TyouIrjAS2LnwwoxMnfSRViBUyiFeVqK83YzsVR1SiLLes0chUcWc6rOgmY7Lh3pKF/bTe9KBeGybw4xOmuMCxMgPFV84qskve6S6jHaqoziuacppm/melnyhnrOgZrQFP2egBGiQkfvxPgXzv6arSSLiWVDO2NOHlJHFtzWvam3a7BJSHNP7aH9QR6JSxIUuliVeOGiCrq39rGHt6jPfzpynGZ83XIhoXJKMl0Sux6ANrK6cVdNYNN988K28qqpzYkmEHrLXMnmZ5yF0wohgtKeYDVcJxZyz/XSEdsLl9bmPq/9cKzbMK1DqMy11e5f72lSEEAmKMhCW/bsa6At84xNmFIWud005XxIxqM0CWhHiLXKBtTzrxMlMSTtiwZevsT/yGo+Tzhs1+9a1l69wsYqKKrKkgpK5slgurcgRDQUnHckbL6MCIRFL7Pwzh4l6QYulwCRTQPjcug7nQ3nKScvv/ledw+lHPFNJiyu5XqCMvXlNfubMZhtZxktCI6XMlulo6tGRRfA5g4XYOq3L2qtfbXz2QGs6J/a0dEKhEts8M9UuY7QEdwBhYOYQXAlV8xsNdiw3AXf+0PdyDBnN0jQYCPTKkGPKCP1+ytCaR6YDw57vy0pt7B2GoMPLWfKyN7a4MwraDH0/AAB/OTJ/A/zUQtF/kTBsVSMdCk+xD4bMFECBA1sj/PfZOMgw4xYgrmx17WXyZbVa/EjuvmXouCaE7tpaMrNVhPzdYFCouUUgczUJyY0xudCraFanp5hNfwzPpk0SBEH898SQ3syGZr81xhHAJ2ZvXdnYBT/KvtS67oqTiuuC+iy2xXnHXxCIDkexKW7ECFz5tleSJbdWUE1KIk998/NlCKTqbG1SRiDcebzoIa5n/xOS/9WvBgvqPLMH94oua6QXAKt5W5prdGIEIRsc5wF443ZnO+VPZv+6+JuAl48LDzZCqRogI3bA2p896ye8D0FfUW2vE3Nzmy7fVJYMU518PzgHoR2ksJL4gWO8obJ3lU9JmC/2lq3qd6Yu24Q8OrEQliJCCs1FTbBHn9sbEaDxGSvaS7cINNH+KM2M3XgiL0BCMjb1YLpfJ9jCttlIlsymNzqpohrf8Y9ibV0b4Q3oGm72sd54NZ3o15CngmusCube25Rds85UJPceYmJ6TdVmmBhBtu9wdF6STv/eyXYxG4etUfc15IiLRUj2/Nx7OyUM9MwsySP4Wi9f8ERRGQMIIrzdfX6C6CAS7z/BBLWb9HZzPn1H5D8bVnV8Fh+ZegF/0+Y+Hf55eOmo5G5oGLD83ls0ZrunpgedhuoU6KNOKJqixKyV+k5MXIi4aFPpzpvHNqzlxReFWndvL0WfK9/PAJ4bJJPQzZWbqFpN0w74euGMOdlOrT5Eu1w2at9wy8+JaoXn36YZKqIhrzpC0z6OVPzwykWialydiWgmoQPToeBw1xehrVNmXpjfEp5Ko4WnJnxaIaMVMEDbeQGxc0BUsm4UHiBXtjoyKX84yPoaTaqiXwPHqKB2641ywfd6qzcd/amRO0Z6sp5xNntoa0390qjxCi8eE+cQCScSwce2EyaATnN4NPfwZZETWxnnATjrIWC7WAxt6k42D1gHgEly+70xEgRiKqfRqvIaehWEm89YkQh+YF2LxBg02gzLroyC7zkYWUxZBgV91wBdh6bnJdoxo8tfIjrtIub4DMsu2Iibr/hA/XCwTjZVMpOx7PavsQG3FUhYq3GrWPKmwYHXiO6sjUkcLc9QGC2ZmxGsXUgqRxBOJ1iiKgiTXK1sAHQea3LZnSaIdetWOrJ7QSrkaQ9miZ2vUY7XkFr3S+AMgZOgbiWXQ9ovxjNTUKkUl2ZMjb3BK5lgXR5Cg1pxeAjh5t6JS+lWJfMDsik3ZTwBnQl+T91i7Fr0C16fWJPDm97y+DfJfuWUIXM8lnfdlYLx7eFJNtS2d2U+Fdxp1YrPPvcvC3GWNh4KIOV9kuivPmuby4viPdPG+lsZ417Pq9TH9VpNeFfN3709oLy35nyzKN99McB9/vE+HpczuoCom54XPCpOL3D7cs6AZgzQizXm3bd8hSFB7Jzndb5iAwd4MnBFJKqU55DGwbjLbxkU3umMz/4a10vjca4Y5ShCSPZVcjuGEG2Cs+5k+4G5NEt6ZMR+pMzT0KhOIUF3qPu2rKO7RL3gDUbQp15ysjaxpH7bIVjj4nGagdN8NMJ9O8pRFzGz7LqQLZyM8jWnVUNcbpPhfjoveYyU4GqCVg6dOyXxmbfGzUT3+XjD0oF/k5NkDo45KBovkCg2XVnTZQQvPcNdp3T3Bn3Ip3aEggUEtK3r2yi0oLOwJvVkt408HRng6yAafaAJ627i5SzXen9fsgP4Au/RiIIG/GWjqMmu8rGNbhfzV4fCL2S7N1BUMzM6HyeMh09+dCDwjLfll9aWtQ9n5Mo8zf8uwD0BKjJfy9visVltxz9KsZ4pQa8rsPlrgEFRqyxm1eeqVBPTNY7jvhlNpExXAUMvSNAT9Br5DKynhpX7xztSmHO1CNu81rUwXnpLBipc3UtyDF/9kZRikhBwbRD+q6q1sPkA/BFbGNF+yI32p3wTJcTHr7QOMkrauLh0JEDjZ8GyyIiy80eh/v/k8gjzlzrx4kdWWdQoteFDta2pFPCDIPAUqowtdu34WrlKUUlBdRYAtVtINOcIxvqw5yHFjVjtmktjpAHrmeXEDQegq2jvi1bOcIoWQlDp/5mz+r9fbh+UM8TsqkkmSpoksdVHWwmWtkJEHme5mjwVwhVkfVKlYC3N7W2vsrmAWruDMKDAKxlG/3NixpOoP6cDL6wbxxy494k514Hh60XfCSHuzkmXKemmIC0BQzMsZ1pZbCh/ju2Ukq/KsBI5HDEak0T6pQXtelXyqE/qQf/E3eInq3/2G9h6XXY35gS3DW4a7Qv4cPSEaH9TPV28vtYyXgW8f4DTl3ekfdlpXC5aj48KQxWX30y9uv4ZR8ufumQjoGl0BdxQAfgKSDAe4fTj6Yl51hji+iNeU6KgcrsLJahxSp4mlZwP/UqtQoccstnx1j8kblcZ6Wh+UpYRROEM6DfkfgRZ4B2K+uN9esInGLSmhmrT6r89mTXpl+v334QOZbJ4VIfkoG5bjIJWNuk5lDymzjegN7KrpN2IzI/PkoowfaRHuC1PnotHE8CkEMDSOxFNVEYbjIYh46IW05olMzkA0xoLP/3k1Q2+IC0MI83Ii0I+o8xYBWpRfhNvfbIXPcK/UW1cXOQcM22wLt+O1fHZCJdrsSWwjHBkuZjJ2IZ5vTVkP8Em+c6s9KW5+/ONoGM87TZtX9sKb2tj/hSIu6GD8974d8qBhX4RilvCOqsW/R47zXMYhYdvycbmnofEeX/UusDtcbr86r19ZW4pW7AIMh6EKbj6rOLyNevlBCpbet8WPJ+gAMv47RCJjlQ0bnwkr2bUX6ScYbNZlZpHtXDeNprFUBr92fW8DR2W4mNWfNGVQRZIJcLO17dP9SL8hgMt5Dy671RDTddLpZN3TcyZC7uUzS71MzQP4269ilZSzx1AQLD2nH3+OsTfZVBRn6z4euG0UnN+oss3mPP6xu+0U5zovHy52npFei4gfg2nOBBiMnajn6COJchJOqACm8Z60MdrXm8EhDBtse8wdQgSeDn6tbH4s3fNakjKU/6ZvHQ1WrAGikof8VuTaS2aXsnJR3N7DU6EsK0ibTkSxq9xEn9cuED8StY+Ap4ym5S8r2bOgPYJM3966alOPzmLsnZS63UHkel+HqG1fHzW8kebmr/DjCkwe+hAAWoAw4yX7uatUlnT9ZJGvDwhC+uD3KTqzHwviCX3Q4SvLSOATgmKGRz0XjR7ORHiDcEYe4/u4JhzgtZGLmoV894Lt2DmUv3mQjv1ILb3LqXG1IWoLeZMMKyZO/lna7nZ653A+4I48OXTSP0AF8C4qJGxFzELJY29il4XCckIlkSit9kkCWL80Cal4sqVdu6N1uInUI926lQGBrRW/mNzP5H7g+NiRMTTWaNSxYFUAWq6/LGOn+RJ9iA6ctiP5GkGx1g9n85ECTU9PTWV76nwkj30CO+8aj3uNPllR9/wR4YJxBhgx+mQ2DYaZLqK2oVFrmvVBWgozXeDgoInyvDPyABRt8vCyBkXI1SW9uKwKC1ckP0iTwh2luK/tBxtS+eRnR9zjxNy8bOWU4OJe1aCNca90NHqgpecCkR1BLLUOeWJYaxZgPa8gxg5nVvWGs78ec2Fou0cayZiZ2QgrUxsO2ml/NqveUtcXUNPNuTZLFsFUy/20XQ2FI0TGtpOEaeqAFaOuFtxK3CaJrXra2PC7t7JBs6ozPhhNP1u9VdT+902+BDIFdcuu5M0saxzhr7hcSyfPfzDSDi+F7eDZbvR5p0PX0grSYWu4F7p/CzTbWXV6FV7j0hVpZFyj4nkXfNV6mhbnQcHwFJ4YmpKjYXkphfpSy8eXmHWbeX2vvk4GQHoIDyCr13pBi0IQ+Jmnmot/IAPaff220Su9NT4KqdP/sgMzVvJNJzOiHmbi0ExiL+imD3A/o8xBnnWiSzJzEo8IHXWi9ESOnzfzsm15yFvilMkOiEDJF6mpTgnjwsmhx5UhhDjb8yMZ1rbh1sSQ8ODGQZpiUC3oVVV8bzfq+LR/pqcEM7xD1tYI13EXHpTlaKa/Mer/0SpoPFNbn+YcaU9xH4KqdAf0W865KY+buWIjAQLNGc7gyAyW/JAP4muv10SLQ2k5+KK48wp0vsYkqfdIoDFk8pxeXpRkLZxzADIHho4T2F9ys2lmnoRBiPw0MnsVGJd3UjQ6UD6BIYUXbgssCq8Gk0+mxYmvWx8CBxbGltcRVCiCb4vLxKWhI7LoEsrZDtdbSQT8jSda/hONWDoW2Eeg6LOFzzNcnGVGI3tZ/WcI6RD98AD371LVsVd8B5pLQLRcTL9uNd107++XiqWYQhaE/jZfRvT+nAkkHDcioopGy+uJUBLGyGxB/V1N/iJCCO8Pje7DptwSReLGJCaY4ya/FB7P/k3bDaJ3MdV46ruLTysbcyFwnRlXA9w9cFjxkycOGv5fkWgUWnuxj/rr8dwVcjvx8qnUN8HKPYimds273j9Gah6w3rIBttUn5gryk0RsuTPlR83MwDzHWWgqF5Iw0hjbJauuYVyVYKts6Yhk3/Y518BFwZ1/OBaNghdpJwwMObegHlsZ3e6+zRDH2Ct6o4CCLl9kDg+oq7RmnNVfZm6tO7xxQx/krM2pLG9jtM5Z12/T5NIDJZhOENJ3KH/qZbIu5IR8esduHVWlqeCzG8vqh+/UyfE1O+maX+VVcmG/DLUfBfZEDxElyccEuMEsNWY71p1nUvp+znowgdFalFIwF8RR4N0DwU1UFq5uOa7WE8EjIQmFU07QYs4notqHLIGbfTsKDhxphnzbxIJqeZWRzrTasKBYtQP7BL1ZwkR1wmd3SqEDd0FJeiCThQmwKOHkvMwxp5LlwYjnPg2rvHn3f8Er0jV7IBOScIbPB7R9EoOyBdMqBtzyJyaK30oxArC0L1e7tZqfnA/1tyGon0iLIA1RJ00wRzowaRX0ifMjU3j37s6zMqb9CtWA20qJV3rEAQOLprLzm2iRvnunQPg7Og+ZXPWvV0H6P2t8GOMNv/3Vx8eCYgbHShIq9gAeAvfr2MD3HkNbF77/hB5JJd8iXbDP2gtuNxERMAhU5ZwtMpDoaR+iQWGXSRoLjHqvwSA8gWQRxb7MzV8wNOS+QL0Txs2ojTLli0fTVcrq7/wLmacGYfWdL7JnmlQPZzdY/x3Fk7N7VooUICXuV22/yjcqFFEw9hC2z0RuOPVmwSSRwODxZC/YxeGoJw0tgWFgt/yhYdIeqchYGVbMkApt8xZCsPniiRmTd/TjwCC3XUXDBApGEZ6QdQmF5rAiv/R4K4Z3S5uSOJ84IUO1xb+jLF9g2XfI1tHtk8Iy1aQNlfq2Swevs6JDUPC9xpS4K2KeTYfcMv72syVfFjAhjiVJDgjVxwj+1Hryr4JxThxd8c27FOE8kxS5nrLSmr7fRZjLOMyehJWh9ba3EV0+MV01ddeaDqQR8Tii+FqFwZ6wjsdVTZT5aRDlrdRKM55K2mREaqM/tBVb0GXNvLFwoHJ16OI5xMSaW43YSsPy6x9Gt539l/iWzKJHk9VkS8oE8JaDb/GQdeNHY9s3J34Fk956i+NqfumrC/teBa09S4vHUwMkLKB1uYFAQzIw3ZiJ+kk6t5rubJDBVlH1IgDy5cL5VRoXmhhdnhHHPozq2AiZlw7rqWI0ErHDdbY20cKExFKrbRMzG2/HVmuWWm4eCrCkAQZQ4++oWhgOsNmxAqlwxZHCSupvF+pD6zMAnETGIZGzuS4kMFtj246b4lzDPzfw1ncjOjrWjmldCmy/ueWdA9/q09HVsO/CiQxlxLUSTeMfwzHJ34EBZKMgZFbMQVxnf9EW/qxUkE856S8bM8G/Zij+IZcsEzm7knFa4AZJ8vpqdyXgwf0PMJr208086/0iHkNTCMoFws3+BpVY0EqQAViJxNY8sUyn/qYGuFqxIjz9wn/c6NpsAIOxbnKF/Goygpaskjx/Sdr8sXmk0cmLA+yRfoZ2lM4fc+oAu0y46BLITL8xXR/eFBg9/7a5IZCNb5Z8eE/drDFzvZ3QNj0GlsdnoEzloCBOBh9VPYf6RRVgsNLiqvk/1drZUJVoR3iCjsEfHh//0hO83wUCCYbhmV8H6GhyABEqA7NgiCuUhHF8BA7k+dGtT2o68h6BnrXPj53FkmOUvnqCP+jVtNiranXlkc6xtEUPeyGkTUfZU1DVCfy9i8YeNqYLwx2O5X05k/dDWwKoaUj98h2/rf51zrn7IXRZcg+ov8mhR6mrzMLW3L9KYtDT3Irj3ethi/z5vSq9X4c4dOJ3ruS6w+CDG21DEE2iNqAjPHOgeuM3bexLtZKGf/vIuOcIHd+Rw4U8DJIyzeSJqIoNbVNvTUz/ej5eVIrz5S2bp56Ru8tpJTHhme65elbqD4U+l3TiWwlF+Pi27vnSE6PC4YntcYbtfPMEwX1ZFB8cTG1cBq/wENX0ZaEJ+E+pXVjOjgbuagwN7nj5YlBSPu9Xk59MPxnrs3528qwmjwK16UWEplbzdPlaOVelmFhDRfNjDyDU1+8hCDzoIKRgnIU3ojqXeV2qlJQ7wOM/S8PdTzE5HzgOgvKxSkxL30nXEKplGI25eQl9Fw8Du9qU761KKB+9qmsmwxCB2BQY6XWZlsosQM3yhbYR22IpMXoZ+ZuLlN7crr8ySY+VU87p/68Es0+Fh2bIL5GnPbDrolbeGwP+RYyVZQ1OEus3MMa7+Y2bAFTEnkxfYjtB+b9BL8awpHxb3gFsaUSsztzqMcobFuJUZB8UK4qDMK44FhSAN2d+uiBSGEkYNZOz1ol3XvPZD0pF79La2E6WzYbYJXFkwjKqArGEJe9QGKpk+iBHHYawu88dSjt1I/03C2YYSQCASCku8G8uVyQ+lk6+pUn7qd0zAA4vlP5Xcjd7thrwrdASjxI/9EMLGJr1LHBvBnf16zsx+VyTi/3PzZZsF0Iz5I4GWoI6W/STyniLsDiQbeaFysxwyr5xywL0b4Wy2GHIIdC9nPLYcG16uj/ZNyN6DThicG+zmx4yRnIe43VxlrdhQ4p5tUFw/tT0b6aS2KY/zdge23SS4nsJu2J92DLAZOsDE0IyUxLHzr5+AEUwGoT2G/XR8JqpY0qTZ9kgoq+48cNa7f19jmWQJ2vukUSgFtOl2lt/jccq65ZrqIDTJB4B5urp4U9pikw0xnz/XOCxpC7BDzB663VVeY4TU7eK3tZ51B8sKXzC4IUKu/iM12BK4SgoWlnCUpPScB3JZ1TNJmHrS3bF1bxAkniNRJ/RH5X6R3dq2J06mxdY+Jxhu0ezMNMxCJ6dxZZmMgMjtnl2c6XUk0FM511eg0NKhYkowI1Tsn/oROxP9vRzfV3nft+1zmx5CIlGJX1xUolyFSmwD9IdGDnptCPUw2hFsCQ3CWBH9goE0dWE3t+9rK4q44+pJNu1vnUGqsW75QzgfNuBZ2PYAR5iF1wQmnFwX03X/T4CXdRxb+9WirNpJCc7OvjDaLqGuzkaZBkm8qJ/p+z94iYAlDKAchkB33i0WOQitu3vLHpCXWqcKWR3hzUyi8pjS/GNdauhMslsYN+5asxZ8X2FWOcpx6lPW3gUpUgJYZ89HNNDuVln6UYJZE3kKdLRDgdF1Jtmc5ZUt9C6/lSxAx9PBjWNMStzKmJL8FE8jc5kLuf3lG/qxbKk3dNbZGmPGS3m6nypKm06yHgB9KKlIiGA0mn9Hg12i3Pp6+1BwCsHtnkFTC3+fpM9My92Bct7CdWizulgCSrEcxl2y9GwDczdUfBhK09oO1ruMImt+9otL9h6aOgcU0CKL+F5lXQurt554ExHCAICsgQQPEoTMgnGSMiLS1Jyln0+OBPcapWHI2GuuILv3mIFTk4KTJ3X97/Uf8zocRbODCL4+9/2UGHfMWV1ur3ArXzRodYq6/Pw3QLFHL0FNuA5M8+HyGxVK0OMIFwnONjik+JfliA35Swk5MrZ4UwlekCJ3VQprBXLuvYx0IuIg0d7xWc3AHa616PgGuZ/yE2kri/1XeG1B6Na8Sctq/Yd6uws7nVdAa0OrYU4/fftCLofEg5E98EFUz/MehNFLgx+SQdMF3gnh/dqC0xCL5plwPm0h5YFtn9h4t0d1OZsIxoGdrqvXI582mqOBmAxkOpTbnP3F627saigzWEPTg0AEEsFjRfPVIto1tmBE2M3VP/E2Z87iS1pyv3zLuQgnNZ7rFtE+yPBDXC6tOHoabcorHeNUXzv9PTvRCRWTD91vNDpsASjJtBYAaq0GvW01cUWPB8hkwcvx5hHf0Dpz4lVEy6nUoTikO/Z3IAIEcnr9qvpmq71YD6kWDZ9eRheNOPl36dBxj7Nrd8eF/mLr/eb4Xrl5wXERNI73G5wQOeqAE2/bu7cdj4ORZU0pHWSym8p/1PbPBpud2CrXujJRBmQqXR6uZExTacsUJHGeKVta/6N50sXpr9f39uqlN7cj3G4JdtejeVrgUxGGPOS4gIrZLETp58wc0zmjAKNYq1eIYpw7NFC9R9fWjfZBL+TZtMY1NZE7RTedchrRjVb3FOIQP4TgIFl85HRFZZxX5e2DDyTJe+kDMa0U2cAs7txJU21zQXhLkUIQq8H/XKn+SHALzYk6l72y2CLjy/H2QljozX70R1aQjQWUe49scAE8MKT/A2O0ahIFqVQMMKmBtV6uQHQK2Kcv7p5sU5LaB1DLHinFx816A+ang5wHSsRYOCYkSAJg7Xs/zrMGUpJFJBefuZpTqNq/Eyxpg1RHpuXYPpSUJrhIDMa79+Z3IiCk/WZrpBhzqrexhKlXy0VifSeTyBtGmnEc/F8ePNCAbtg/u4ge78QVa7B7NP5cDg9FQdLGhsYMDPuVUNEyAClN3UQbqLzaYauyazmPKbaXvT+dRlT3/qJ9QN1SW1qSVHhINTwjm35d3aRyLvq+bytjpAghw/QUGELatcUMeproFvYrccyQJ211jN8Q8uNP3ccyXkDGV7T6YBgGjE/xzl9SeB/iTl2dlj+S8/zq2yP1GsJfKHyVKbFff/XOGm4NvjIY7OlrT6M13AKGVaM+Wdt6PQ+B6sTCfY3N/EvoxEhs4+zemiJbE/owsX5B8SW2n2YC28tS9VLkM8flnrBH26OZKxhVa4yQQv3LFrxEjIm02NUS4sMaFvpiZKFTyZLP2DK8lGN85kqIjpcPR1WlyB6HmJ7+kbYe+oELLUpqiwaVVnfJeucFi08lHv5obc9i/g5unEh7xZ0+1UyAW5w6lMPTs+tT3lp54NdHATdiTJS3C3JnOKui36iG6intA2AmFpyWv+9sOeCKXScD0/J00wnVteAdakhvPMGKC6M3p52Ie59wq9YoflQ5YCYAH4I1Q1DB6Mu6Xq9ucMgyaHuNnMgGfyIWIKyw3V6TvkYUDtonmnPxh4RfNt9CM0RRDXzAabSd6BKEzPZSmR+/mfx/Yjx8lJ43sdYqz11MDRVjTHuL+YIx2EclGizBiXoxkW1cr/DHzeOmLFYH/lB5KrmW+ZVB7ulg9QU4TCYOpjIZ/Uu+1W6CV+fIEXKw3DtCvXtQax08+mrFRbMnKf10Bj1IL3EtHdo6/A9yd2DM4fIA+z9JQXO4+srk7gIyqwcjRUsv4ma+erOzBf5dibrrwmFWwqsmJxkRFnCkEZ5ylE2765y0aCbPvKymDAjt3M5MIBE/75hloL0zkIPZW7BqRhpbaRLPKvWtRSmzizxWuU1ErGTNRK4xqPy8wEwuDmpdDiQCcA5qRlFyyuCHvC+lOgxWSkfiSDkXNLQ1OxJ6/bvhloLSCskWXfQAMJGXho+LNgpR/aF1GjrdtGYMDONIhMc2i5a6gqckOsWvJCFtoRqdhg62ISciWKT9/fFe9YN4BaMLqAz7Bq9V0VkWZqfmbyCWx4I3sgDPNmz8rZz4o6D9i5POj9ZkcjzurjrCxkjkFowc8SzIjjbhn/NeTrsm7/Y3SwswKt1Qwha6+J8KHtzEc+mLWznMMpavd1qIKoG21Abmc7dKMtOCwYtilfdF8OWHl7g+N20aks5jH0IJ3Lwz9IjRLx/7sP3kL7LucNm2vAVv3HKb5s1Hf7VTLdCJ+Yw4GxYGUxvJ25vBlJYY4QvDCjxtYXxfzE1Z6KD0reV+7Q12ye/Hf6ltSMLdLtOYPfk8VkoVsXsDiK7vXq542FX9NefHxBITbwWyS4SoN24b/iVmUHO1y9zNeY+x1PQ5OQOAafhD1bi5ymTQaRuQtVtMjMbtVN4Ve0Mtth7Cbdjzt60S+WHUUiCqAAAADAAAsoQAASUdBmr1J4Q8mUwIb//6nhAAAAwAABfb+kyIAWo1lE6Ok3hozz2nOwUt9xP1kA9lnsKvCKuId/BeOqePN/ZoXxmKWT5Jm2Fkv/Y2HjeaQ80tG2+nuKxT6q7vwyabCfBiTn+J9rDn7ynRzTtXynLGB/cHQSeZy9Ync27Mh33RX9apufAkYb8t2EgQitbdKW7xGBflgruoCNDwo0hYcSsMAZ5cyD9q58OVVrLqLczdYNAJqY4nYKVyBci6UxuZUUenbkgK+bpb6aNxVN/tV/Ib3vbkvSDJTaBe9K9bN/Iu7quiuv0OF+u9i15gCcwkSCSbsIFiN282LmNosU33vGMeOUR9tRoIzTQdAastw560JEPudtF23YZOU+45a9BHvHTX4xyFBVHmxLbQaqXANziblUjN9P6s9GczFLYRLryoDuvxYW/sJkLxZpoRTqXxx5V5Q3KGrgO5mu5unAL9nODKNlxb8jiRMkXuYVpGu4d6iIuUXIKNaZl8iLPX/Ml9GqGn9sjqNm1LUqtAyxcE5olE8XdhY5FWv0fOBrSoFFGL7JXvBOsJaYynCRTOD4/NKm8yi20KdMfV6PodKoJVMCd7y2FN1EWLbt99rRM/NepLaJWGW2dE6Xhj9q1zoA/3fSZ6iKygKdSncPAcW6Rp9+owoWII1XsWoBmnONgj2PliLXdEaPhcsm3ECLubU7sDUbsvXYunFMhumBipIsHpAi/kEXIdzbzKHGQZEkJNmb9KW+jI9H8BkJU6G9Qydx4Fvvo9KNWaJOjmS8hso/maowaiFS6WxF4eQJ7fYsJAdqcQTtodJS5C2Bjnfkf/zRKGblRWJt0vcPrTdQ8J4TVqQj9IW1xN/hpFgUdCeuYDMfmlk7ePdEMCQ8FkSNlKpSv4Y/w9ty/7wPgRnvbBCw6yLHYBIPzSH1HN4z+/h6j1XXNsw0eeR9AgcFi+Ib12v2XWUEETgnJ13Cka6ms/9ii6qKk72yT9MyRZHiCzWYLH7uP9dVSC2DGe5q18EOqNM8XLGLAKzslR6tLh0prOhceoYzQABArGgP3XbCkB4mabsaFFx36IT2EHlNmugtcarp5Opgeqcvpf+dY98CmAu90tPYDhNY9oSrfK+lLC86S8IxBAFVWFiwAgPvqveaDSoFazmgz0oPDyZWixDdGSg6/3A5d72Vp5gcEXzUFFIE7i2XuOgwth/ix9vaEGjjzn/AK/0rLDb006D5xjlWwMs7Ib+yUuE4gp9oUH9tjbuDcyijA5VxHTn9xKvRkw+w+VQnJH6MQpe3DpiYcjQdHxtWDFfgv40vSza9WKJYe59j+QniMdKcWMbqohdf7DAW8L4GWeGsOH0lc9mLiJctck+rhXHC8O8+NEy2PEnnWVO7rhl+xZmT3SWoudZYazTnos8XmygYUPRrUGcVmPK/KlG7MAue7bJiUPNhZ6qjjvdoi6H5tWeVVO8x47LUCPT7GkOT5I0zF5sCEaB3VuoR1yzp9etd1HsTlHVPYR0Scp4787L/YrL+lIjmH6zDhmKVPO96XLbgl96+23FxLRQ/fUifD8VDQQZV/RBMIhPEOWymtno3/0B3JnKuGtBOV0mCZkLdOdfm6GOnmdBfwNcyinEYmNliZYVw6T5MI0JT6LcRyx2gpuvxoWMutuk7EnPdrgXPwQgOZ9oTa208nNaQ0MkpvFlYMmHqOa7sV6NCJGacVjG0kkSBQ7vnZ326PiG6cZieFfFkhT8bgz/rcjcBC+ah61AdyK+MjCghaO/V8BdqwUgG+ECrzlXj1SifnkVPfn22K9DLgQFm4ccWhD0Y/Va6Wv94rYpuPw5DSflphDMT4DuJj4sHIj+4yXYoq5Uooap2b/jsUl4oajCaH+FG34tQX1u5A2Yh9FjrhKtB6LN6RrRgxPMSEiAVw/EtXRPrIP1MkJrIlkWuUZG6f+d27fQUwy2/fvRdocGaTks8iSa1e5GY/bkAuf/FiUIrRfrsU2YzlMPLdKN+tYiBcxtEzvN6qj3nK2o2UlAGOZtNjxo01C5SIKGt/N+Im5BXITCYNQpMnzwmaUaYfTvg08C3eT6b+RXnoI3f5NUq+4SEq6JbrSOOlT8Q+uo9Ixmc8wu0fo+PaqjrqtPYjo3PFksl1os1iOL2WeO5rbxPGdBrzWRbMuhd8TkUmw1bdm38D+yZofnbhVoAZPCVXmezhENRoUbDea9J7+CNGZdfeOcsfs+2Bng0nfChVL6kNZOzK909E0zS7oKFGccpV1P45vNeHeMj7/0awtspq8HNA8cAERSC3A6mV1Eiwcuv58LhXuth2QruGs6FC4tIdGLvW8HhNG5TQOygRFcS/9+p0829MHspLGfFGxIQCuDryjoXkX1zstVz6vodrHF5i9E2BiPDYmvB3Y0mmBizvVtRwmuOXybDSz4r+8yOez3ptyN4R3Sw0+UElQRlqvyujAuhr02jbx/zAuob2hn0bp6vMetykn6Vsi/TcylxtEl5xiUwosey8bWOsUB/E+AepfZrieB6zRB3zXEhDcYJB6V9eiDHRDq7bIzDNFchPl88W2pSheR5Ouwzcb998fS76QDJKYX9ShBnLS3PXgMVG7dKykqp7OTb6WsXMZNOtl5VwZEAC7PQj0GG32Ug6r9JJ8buC5cxY8loZVBylmzjUH8ITLAQjkr++9gcwB4YWV9DVtq+UNNspy34CQRWc/W2QuqK+pfM2EI37NPFBHLZnrK7pN3O3L1Vs4nPczAvJJLxyk2gsR9eSdJqF5gFeGe25RKEnILzcJ9C9+eJ24GephmHp+iwoHe6NmmBZuSNsyKRcLRboVdshFFeZLRYOeZzl1Iopz5DJUXkf+q9+8AtmBmdQ1ErCj44XKmUFEIU5OIHUYuoCKv+IdOwkeYO/VY980WjzlI8foIFjbz96q9nF9ScDAGvl4OfPDVSHLe2WYkD/ak10dVRddJPUmqRHZs4XuJK+lDc/JvVVvkRIF71KxozVwdi6wxPbX1JNpZibhVMkKdsjrwFNoZENfbkUKS7HeUiO9c/OzqJsd9BtvvX7NNQfXQWB/MoPKIo/l+EuKXGA0ZdEzMFQq3p9Yplp+ljJNzjsmXRZXV63tjnnlKHzfNSyCzUTbL8OrMP00pEBaCo869Ze88Nn72EtX92mVkQkzRimXK4CMDjchibNAK7eFpwmYojJPKcQJfDxFp49aCE9dbVGE5EHlLA7AA0c4xD2gTO6RcDK5vxkz+Y8y5dcOrDmECvNgaIArDX991bFNvPWbbwy9elHkrByaOjEVSeo08M3sqfcQ/2ddAWiSZN4DncZak9Zpg3+OIksph9FVVhdyfb+tboL4Vk/pPn4DAhYOBbEFleIYqoS2SexZhzrhyg5xvQDgFdWEKvOA8+LiOATwFPL1zieiGp88mvqTNmE3zOEdBuCg8V6J3WqDaaQPPF7LyvT9l7WP2z41jbWPA+F9+NkoYwJDVB34Wi2Lr9C6X7eC88XQyDjQ8bcE4uK2WcN6gOrnPHT9xm1ErG/cnSZ0j8IMgwAUmVPtIEBM9o01rXUwK5qQJn6ggiAI7KPLxp09m3YrNDXGrr8qc3pyZNtXGwDj/tTFib/RmvrbVDWfR+M6iHFDWYtPYS1t+jGd3rcyHhmh/jjy/p3CA41N0pPPPT7R8t5xPPr/ZENEFaY/MqcFsqwS6wxJtPbQNaizOS4WSMn4TmtCZmA3kkCw1Xe7nFT5WDrxVRhH8GCKTGRrdjW5oD5RY7JdU3o27RsiEHnA6slq1GZOnc/LNYQ1WsM9/uJ/JIvU9kKuQsFwwMfXnKKT0orO0w9rtNPSiNOnq5oWmBpy3aaphSGz6N6yT9DMWEeo4DUFyjRCxKt06s0Abr8xgn0Tnc0QNRrXWEovYpRwu4udIafhWEUsM2qHAZwEgNJ346we+fDJqpLcHJemuhy1JaUBhiPbSApAC1S8RWp1QTdMFA1ln1DcaaAxCVvqrmv+USom6EJRjBU9gdXN7aoL3jkXD8g8BR5gkuBBipSFfApq97c3ZJecDKTzNGLPNGXAywfG0j2PkVMY93XCHyI3hk70SpM9/pSSFzhHQ/6pv91NA6WqOYbJuz7C0RoeTPISBxRQQcZZFoh0GeXoBmaX9NQzfNTcwE9vL4u4/ijGlpDPXl8nEHtEY7hpCva5Y7mc2T0d1ioVlb6C3Ka2II2YikY9b1pxw4e7PTV2tMJu9skIPS3b5cycbvwATpdl03eyY+ji8xnVFB91TfCwYPb1HhRG0sdkEQ9Ip1m3DcsaK7BMTU+A191ljuajNKdpqwwh7uXyE7k7H70pf3UrpLEYd0p0AC6LQoDV9wa2r1NkoW7xBIh123tkJSPqkDrnygasU78gbGU8Be0eeFfcANGXZara6o+yQv98JXNSbE+NuKy/gnoJLel9JpdYzrve291KuKF5zq4t+JtIl8oU0Nqv0Jc5Z8/vgspNn2oEKVoN3DcZD+laCCZvjWCbZRffPArOeW3VqS6bR3uLVIgARCBi6zWOFCeb7cN+4j3+rpfxWhgcsACMm9qUoMcJzQkXCSu9dp3H4obRHUcGO3Zc1eINpCVE9AWEKvbvU76TVtCvCP99vL/no6rwoDotLkz9CxoNE3zjqagcRgw+YDVuQ7Hte7Z3CJiP/+BtkoAUBTMuF1uco0qI0doWvth04lU8+inCLhrXwenHoMdw02QUJRSujNeXSi/UYnfFYwEGXj4mmT71W1CiKgS1nzDqBOqey8hEUia+OkKaTYx7IYiS2tS8PjJ7QbnsWx5gDTqAozC35uDaSJ412r5EagOSjGyqxdiRaX9aCjjZWEV8nrKWe8QDAfiz+U8GL9EVjPMRjbx7/TkwDppSQD0gHd47ANW6w2cwkSX5HKqZeXmcWbSqhMI9k8GBveeM5HOlRrX/n9os8NgYlfHXxDKW54gk6WLrWmDGBR4ApsBWHakvn4AWNp+75i+JyO5+uE4FPO5OpzK8+TPj9Q0D8ULOd/1kWyo3ygkh1HbVylmFCmxyLYDrluDsXxEUeeAbLFRPvPlvhl3vpoAycnOqpoVhoh0HHNzrYEaS1HaqdiQkDlZfbdiHXDi5MTkORCCARtkZN0aIEl59vVqEY5OLQ642VjjA4AoQL0edIWNMuz+Y7gZHFjSYcYbIKApXteySiDfkh/kE6Ba4xaoUDjlaDayXv7CQ2xFmCLFjuDvJCVuzDvCAiiBN/XWaloS+7Mil6LriD0rUMGFGyoHNplXB5A6zxRuU4X3DjoIJOZvKKSMQ15kayxaUTDIfIPyE78sC2+w22A6I2cg2IeeYMJQ0DxUAzGH2+cpeKbj2I9Smq19m6YOFkUanlbZqxw3BlARXA4pvUw3CvoGyPvpH5qKSkJWauulZhte96Lu+LjoumBbpqdzs6rbYakUctxTWlIF+VkCgKmQzTk2/G0byz7LGq8OMG5Z5ACtGctFwgP1rnIH71heL1liJUQ4FcDQ+SrHmLwGNsw/mGwlpqk4rFumGGOA/t8MO1ekSSoU6cCNYik+osMTMn9LxMgw2THoWqIqD1f096OIee0rfnsJOpHaLLWbipmEpGcR3wc9kyGrVZdHQRgvff9cRLDahcgiJsRGUweokyZ44SonIG/RIbCXRCUr4Jb7c0mjvGZlbDzuOPZPo3tA58b7nDh+Hqs/aMkeAFfoG4q++NJk3LlnH+gk48OP9JKu0p+ak5emx8QRERI/A3d4HJQGHEwY8EhFbCAMEsFb643IGx25OsFOVJbLU9EPMmrQz873B4Kbp9cnCj38cJCmL3Wns8PIRrxE3VzkfUKtEuZ41Ns3HaTRqFkni1tChqr4Y5hJrJvZDLp+nntOijVQ8LwD3tOLIfT82cBybdencW5Dd6kd++qI+iczHLxAn1e8qVGf5rIEGgKPchjLi16SWtagF1Ifd3zL4lo6IQ6ITFb2ucsQHqk/KBq9DuK/NVlU5omCWCw4pHpZU8/VxmUBTLP3rfnn+cuONGPhJQ0K6CpP/NfBAeZh7TeQGk/MN5BnQcrh9o0lh8Ca1EI/tPLWqzfSukv53XzeDk0oukqfuZdkB+n1+mCrIC9RA9rvY+NMXKhvqQMeQL/huzFXgyZG+w0r0wrZZ/BAWYa2oNbDJJWslpkO/7GOmT+6E9mP6O6UBIpBQbIO2ChBqQaf/fbhcbSzGa4Jwpb5u0AEMT5C/bKcKcdD8Mc5JxQskZWU3IZkCBDEhfKbBQiZtZW0v4/Zxf8w1ZqBae9Qwwj5sVYgyge89Z5M70BFAAFqg2LybgmGIVwbItbjZ6VOA53dbqTkOt7Zd7lmk6ASDuViG7f9cyMzUfafqsWKkhMuyTT0ej8peQRU+JXr0R7CudlO/B1VH54CLe/OS/EePqnuGTXvHVc/bPCJ7308BrLUcgWjz9jzDgt6BI20cRM+o6n41WodXQ9U9ImXQy2eOPfLCvCzbawzDAULWMXIGkFlC070sWKRNQ4aqfs48kub3bTCuix6gHf+hxGgQODFxQPH+B6fkgeSybkJArptUqftEHn0hnDoOn34glwPPmnx/Yw/2zHLQMculVExg4OkhvK6xJz91TL2nDO3PxD+BFeTCkZyYfK8BpkDvwcn+RFqyYpCs3xyz8WtDcBomPFUzCy9tWCLEt+GQ/04gycnfktkBxx10b1swCASu71pY2VNmBDGQrz0ZCOL1zR97fJ/r1bXbF0tGn8R1OqOckUc8hB6VPyMHBLcpw5OXOxBPQYaDMBNyj/5ibNnP2veqEb2q429PXMzG/Cvpl1GhyBvWBZBOJRFzGovIsaCU8xz2Yc4zeThVeT+afLrBdSF3MzjtMkXZob78gON/QuHCl0iIt40ausad78OuAPFJaYwB08X+EoW9IKhaGlfNUhOfa1dEsxx21cXF6IAFM5H7Ss1aUCRdM6W2Ow63yyldZz/+q/F1MNawwGaMzAHk92sPKk2kYW2S+5hqa3KqmHwj3pfJaqgzzPsKs9GUQoeeoQkb86IAdOGcVE1zCGpz87Q/lM5cBtXAd04sb0G7SVKmQ8Zjw4xvpEHeo+tJiorNNtDMaJ1rS5WJK+/b1OvR1xrRSVT9n2S7YxxLTTVQ+fQg2cNOpw0zfMn4HUyneE5DDUOyGWsnsgxz83bxcdOyJDxvux/uWah3TAUv51GyBBNAeGToW9U7S6AnSEnpQYYayd5/V5PHW5Tbd98XJXsGIWuWm3EFta5jA3R6btlj00hyJhN4hSitzqciHm2gVkswUavBd/zYWE0cLfSj1ulbPUnKroLQkkMezU+8DpMiWRjvTiToW492Fwl3sJcIwQzMLDhm4ptp5LAeS41wIusZfFubcJ132LpuOD3XL1BA1zXkDHtzc9nWiAo3GYATKa8q4R/yKyBgY3r7wadYWnmM7IjUo4mBDBF3TtLFfpvLLAfUWtxhF4wMX95/+ql72QJTVF01F7mUdpWcMp/vMhWf46sCo7pokdcE+IhZ9+bht3F0M1XxjmhXFrDBttFiDKSmQSPoA2+BaRlPO56PcU6X/HcAWFhtbojIPW9mlPLTms1ezvi/8IbK2b/o1eiGT94zFkG2roH8x1PuaVrzt0o7Kvl5RVS9zrxZ6nDVJCby6HP5ciiQ98ppavsYnDL3oZhLkFY3//uuVrOEOdnYnFjlYF8VI3L/BxJ43OrFFsYoZUygmoZsrHC9a4+BloZAhCqzGbqVpkQMZU/c4SZAOdwCHaNw62NoCKzZFY5/0ekpQeQTi7nJ9ljxzcf6XtM5eRdsxlUGZXihgAAqrA1NVV5ppKogJlIXXF1vhumnyJTj0n+PioLHZjDYB44DVa1eUaPyfqMtT96fS9nxFHkwltRh0DTqhHycqpJxye3MGTgh+QoljR3rgk3cibrG8QZQEnwWKJdPLEi/KpwwRDkebqnAiNApLmFQH20DXLKi66g+cYpBfblMk54t+LE15kid1LC6PAawV4VNmAeHl07u3mNjMOQ6cLwm6MUWwH2I9FmN5P15O0bZwAV1x6eQ6yYofcm7tJ9LFm/hnHx9SMJj67HC8PCkZ9oFJAwsRstX5/WyVJj8kDoT1H9uuG0rMKngVlW8zWzIMWNi4mPUAPY0/xCPZq54OSwG+kl8/OjjMZd1x6ZIUUNjsPqedp14obadP6Ni7gKSzVPDLSAb6zmNQssv94etftgJs+VUII1PYnpJivNOZUCdiSAi0GPG+d5rRMV2kl5C1+6quBPk6huB5lNfd7/iuU1QDMER4/N6k298ho/FRmtisNyS+wa6vS95cAx5zLvbGCdLhArBBtHHr7hxmfICPcqo2WNRJjfBRQbQ68eg5Ucqjiu9Edo0oicFNKlskXjrZT0poAT+TNCyYhfbIsesykqXclWRfh0tq4AFlBG4K+R+eUbsszxP9KbfkxgCJmVCFFzT17hGKzjmLqi2EvtW9T0OXpXcNdCrEgrAJzN8DS+EaL+Kf7SpPfGsGtA2cX23hT5qfKIWoVqeMLrPjmdwiiN1qEhte+hYwATGGlj9OLzzHEYZI/PpJgA8YxlXP9tCq2ZTaOXXgiBrvC81aeWeiYLaJ6Na+LieNJDxVGgjBTEciohAanDwUJbMBuKPBHnDJ5Io9dfuG3fXU2HCR6Qw+9gVUwTw59JkemsY3WK5Gn2Rqg9RWGtP/czk8m9hPdUHdGYqBal388TyUlYMvosM7BSd1XbeJl3/oQB0aaJ6EfK/a1vMN5ypocD+1df5mvgeysQalhvawY752aRGtc4cL+an4EqwQ5QTnXB0nMZepJlebshEXotBgD2/P7kROLx1RdUtszlcdRJP3ZJjUKrvpLRc/qEq9+PY5PGIv/Y2X6DzyoJAVXvliPlRvu3ttJllMmeOWZHeITSeWiP20dhgR3e0dGn6QqpK1gof70RI6RyY4RKXUAhzqOxN3dm3I+ka2bjR6aUm9Ia3oSqN/3yzEQI7UyQFeW/aTwHz4lYvMKER5r1fAujWO4Z3wZlbORH6kgHUfaKzP0yRaRPgX4P9H15PngqeN9+meMFV3y5vRb137sjigVInPvMpTu5L5Um7dAlfUiuu1wuWWSh49mzRNjpglNYesRxVHmAP9J+Yt6Uq1GryETmdzC+creI5AMIwyz4Ypg483czB+b65YAAkWBqhXZlPSSZLqfn8IFa1Xs+T00cNbHzFpWbAxhkfNq3JRv37R9I8+m+d7JAOyGvtP3xIYwQB9iot1FLgDMB91vp4NxiW3Nf4pie5zRZzHd7XamP2KJAkdrBdyWkU5GQKF9UPqy0BF8CDwR60Z+JSEASkOtAjBoBe7PiM5w0Bv1xaNPjw49p8Di0g6iF1zOxqTEeuiM3myTij8lNOWg0nKqlxGTq9uk9CuMKRkn4xR64xkh0rXRISaBzMM8hPc6IBNe1k5r0S0Zaw7eGmFaXtUPXKIL7DEjTtZaN4qbU+MCRG+oeXNnkDqoMm2RvPTEm8ppFag1cuXgCZ7NI4JQ+PXKXNh83owjHjM+StT1GeycFo5MlasjXKyz/EO0n6C6otWMC8SMoswmNqIOzod+CK87gtTVM6baYEM3YqtgKnCqnbuciSSF93NurvUqLVuFgnxtK8yBTbfKSXBpYVpL1UE0JTpYE5mXU3UXbyyrtOZFrtrySg0P3nkRKDwufpzupwNzcflsr+kPYkSERDdej1dKPZkFFYGHE8jJ3Mo4eKsGvS5aF/QN/+ajQfuYoI4u/7GP9E78NWwuZzT+kAExrJu9R4FZFZaNqgsRtsIXwLgfr9M+qI0P+33n9mPb/ltBE1Dus8kgRcCReNrWOgL1e0u00F3rx/eWlaqBS0ZR7WJO1TEPFTlaRp2Ih62+Zt4BYHBP9SppbB34WbW1VD7lupcYm/xjkItgF5JsfBMG/nKZZZ+x/+mpYl9x+p+f3qTu/TrXimZC8RwQsXCJSIKI7fb0NwAc7rnfLCCWWNcxIYBGmaP/jE6Ch+52jBkxmPgSPTrlURcidpXwPw3U/GQdlWMvN1iy4B+Z9ONK+PpPpH4vGanNfjq3DkHndBnML6F2NaSX1QSDn1vYP9W8+mu2h3lcJ5rCLbSjs2Mmd35ENtLTReCW/+CaK+1hgcX4m0cSPELQkA7TyJnG/3KpXLUzvI2ff/1OkM4GOddU7MS9osHLIkCbstIWcyK7sy0H+ZaPaPhlU+KqqxasNkPR6Ee4Kkljbtjo1TJp28t2XzOAvmJTGD1p2otxjQroH+l83YwLZxxn2iqJkP+LojlLg01WTtlXKClZ0VLsC+W5FHIWicamB5ARZz5U4i0nFKNjUjdCr+fjdPYslKAuoFa744GB92C2th+8Fwk2R3bctTF+e/fPidpPs3GOVHEQ53Mh+Vh9WRObnTvQeGBqAsg9rNIzb34OqSC/cwYT9QdJk5E68xNwEPU5idVYZVKuwzbKK0Ji/ljYSGuaBR6feqJ9rd1r6WQeFCFAH3gQunPEirTDgbc4jwpa3dk13ykmab0t6Cd53Ylyr3a9ou8Q5uFfqetji6Ot2jSMW1Kau002LR7aWH6vOcrE77avG4d84QyJjKUglyth9IPNZen+jxoPtTmhy5CqkzqhFioSqa2vuRUzZ06voSw71hx4A/7gbF6KAn+Eg/6scAK4LxN/mdbPrK56SJnr+EjcYtoJEAp3rNLGBiDSEqf+XnuS8Q55utZXw2cbZKx3gHPD/gdK3khHbx09BxtDGzMVepgDprUlExevM+QnauT7tEHlr85RUvXSIUZRnNSJFbcbJ46Uacy7V7ilaScYgWo0OwF6wy71BbKjNUSTbrAfosabJOLC2E4dIi9C0grpLfuOvMU1HPwNWvl/UcLMcil8xl4HjriWWZvSZhJE1RdrlcYvEpTXBnd7sq8O1o5/+HjcTgFrFD80dsWbDiC24gDUWSSznaWHryfZXcCZRw23nsdFLOLdJgLW0ckgH05VjxAjo79OzDNob0QZakaymCu7c4bIKXFr91EdRptRVilRWKikXM4Et3zYuQWgBSOysM2wqdng0cRhGJSakCcyS72oDJel9dJ04dSYkcm/Au+cUJ7nCqoET/rZNR0VPu01VM1JBBokcLugTQMVpnhReW8liosNeOenZyiNe86EAP5QFR5a4eLA1PF3AXj+xghzIjSiV6msx6+ppszKVarckcD+JGWPvQjkP4Qp5q3YS+oh+dlvPwl0TnbNWrU+h7AmAVNzUuQhg6VV0KQFwMYk1vGFHDDDgHB1KiCpijhFo5ahWHN6TIj3cipv5i01AriP4ZAo3YH2OmtMkhl5YgnZ/vcuUL0Fnrb5HNgMls8epR6oSTgNrYsZszVrEApXdAqlWO2mYQszPQLJuky57Zwna6v2fWYCoZWE9P230vpR+5YULC+6g7zO+XApIeKK7CX+dzx2D/AGayfWphq+gRQFR24HUphwNfPfdc2Tmsxz85I2NOn+NBHC4z+naGUMmA4SUXwcYyenIxMZZzG9DVq7SXB4nRneZ0nzfvY0g5uOJwi4p2v/OTmvrDT3vaABultmmcgmUCRCt31keW+MljHn/CT2w7FdWeorHQIV2uMMZsKVtsr4gBXg6X7V6coGbarjUM7GVchIZS6GLbRQj9ssCb8zS3GgQq13m0yfuhel594UzvWL9JEBdHDF+uQBfJoBbW5aqRdWY2FnQP/FY4ryGrL8LxUqfSbx4c2BtMZspA3x4yH5GP1eIAE1QQ57vZc2i//DeuaIACFJrzNBEsGGM2TTGHolJKAKXpG9Y43PnLB9f78pIXbRkSWAuxeULrTwDKYl9EWHT7HSajmQ9zcKgDdCR4SL7QdAKOTPjEA8Mm8eSXshsBIlU4AoY22OqRe+q4Ml9Q8CLH/ux+109VNmTrur1dm30ICxMA4fpbnqCeV5T8QChxehPwIFxlGAMdqZdLx2/YO4PWcpgKrOGEhBfPVPSY+yhAC/4oSJSj0gJSGqeAn8W9mPt12OWuasFUuxGsRL1ci8Z0fNauQAZJ6xSb0j7bAEqCllUD8Kq7ue1MaNtMlpASN+EkMjU7zvNw3KbbY1LIK8DGN+PchgRobIqzNSMiLBfcwyJbze8G+eY5sEb9Bnv3ZIiGRPkRhm3wiPqbxEUjkokod2JT8+AFaheR721Fgo18grp08CnJBWgwu3dk2MBsyE99HVLJBq0SUSZZDFxBMukEyWaT8koqk5qWbJZOZtcA8cvioxplVy8cSZZGLBCNXb5S5y9PqpmopUhluN+JGNOx6zhPiDuXs8dcHnb3Df7yx7avj4Nm/3R3+r1qccuUAwt7V/onFXS3DGNLDymAsB03q2cVNqutKw75y6tKf2o/PmAIarAAyqG4Nmvy1juP8Ly+p+qE09MNFvpnKTgGP2B52385MYeOUySdvv49AmTGflv/hwQuH2pwDiQbCpdsYvRoEW/EK0FDQuYYVdBo/fa741FIsjSZ9gAgfa6iCHEk/ZnLbgiCl4MBB7CihljmYEeZNz7jC8qXVmvYDXfP1WS4RpTp80YBYWjRJUUtxf0HjW8S6tC8F/axht9poYkQHNY33NgP5BNogUxsvuWBy75OEZsm7y/TQWXXY8tCTkrcbvy2Yh0PxlkzSYhr8pCRxoqh6RUoFZVuDm4R/Ccb3ZE/EUKRWnsN/0WCdFpme0dic7ddi/W3YgnKIZY7TzEuDylOJjOQGqHajq9NfPN3oQXDKbXoBYvZrp5IlytDSC1id1mmKnYYHZD9Y29RrJ7sfMRkyLrsAuG1Glj1HXOSfFzHAc4JH1tSPbbU4SmFyHk1My15AcaisZaZ21c5b3PjcifNES4iITh4eX+fFF4EeztxW6O/Cd8rwe8RL/zysGRELE/iDoteMs9sZPha/dBKmowwBS4Zy42WULz5krq7uqyUdOZWK0n2DHFCXbXZuE8Dc147/9sOvHRctAYEMLugoMFlimdKbmC44nHFp/r3ONtEyCt7QNu8i88nOnBeb80WD105C3vmrIwHxfhHP64kUq62X2ZG71TfYWtvuekchMOfA784kZToDDfjHQTtYFr4Jaw4da/BrCblsCrz4EJ6qfmbzuzu76MWxkwKgHLCzfzQnUGPdDkhycDgMOxILQPcHnhnousBns/YkmOntGSnUQ+oY8BztCrrMCnkv66ROiV6kRMKcV8P8neaDRPdcTqgKW121iZwL8TVg0nWBmwsybT+I49OTsSIkwnSuU54hIf+g4ZDYhsuhZvsD3mLU+PlKNEGxXer0OQiNojFP5vNZklh+irPmcHtv5fNh8P4C5EG3XU8+qTrqdejWWwIX7NuQ6yO8vFm/1LReqJeYolcR/ig9GouVD0VxUKG9HQTrzKeSJdJ1tAAc/D0LgTz5DnylIU4gTUzKaBaYpdgzAh4rk2/Q5IeC7pryNE6TxA89QuXE4Eh2D7N9XyFvd9zWJBR5Fq2BdwI+IvhrfSIrBYGG2xVyzVEBPu6YiOE/X4P1fNMZ53GvMMsnMK/WYOM3xVn4DisvP/ZaaEPvegRvq1MFIGB9QqVAwNDNVI9KLFcvMr7Pq8hqhklsJjz7nAVRklDN4fa+UEulQuR/02S7fPbhzPvTIHVJKZl3mmt+kR92zA9aKbPcGtwLdLLoctRNDTHtqkfXuHUuQj2XZ05JbCCfaa2/ZQU+SRVit7iZF5LdRD+ONekTCMkW+KBXLkHb8edHIb+6VpZtVw8e/mkXu2f9uSzhVrMCB7hkA60RoNYvEv4KljsmkQoaC4SSOVBhviTgMUGLfxgmuFANF2jSPFOpJ2wH4MO+cYB8LxhGPwJsTmOW6dH/pegC/Gt0sBWvRmKlJDlPjZwPRpRW7Mym3v1VaWK+jJWJ47EBJ84Zaz9hB9Y5qjQuJKLorI6//kjUZ4zShu+2FFOvwSKI8Wl5qyag2NRdg7tnX0dnGrq5N+cDQrQmb1ukD+/+0DIZSl8rOYUNMUNHTi14brsYmsowvdH1drqWDJRqW5LSgC+62yXFbtf1GNKY8NcHBJL7MaKxPprxIljZ3hqNGa2ejiF/o2dN7HbGpCYPouUkhEyDb4LshvjLhT7Wpr51LWMEHSEuZSDNOWNQ/qgRGoDcaztdyJVWDull6wp4Z8FbhZna2RNdAbRI+zESBZTQwKlQX9/R+YQj/5Cx//tOUjkwP2hiDi2KIh+FZAGM7i0a5loK/+fEKD9B4bgdsqg1SRbQsKFlIxBqtwA5d5/3qHTOKLLAPx7+++PGgh8b6uYyZaVSCxeIJWDiuwVlJBOzfGZXxS88znz8G6ZNtXP/1NdEwUxTe+bHUYbUWwvjvPgRVyBz5pjsRs6i+bbeTA/3rPF7tb/zp+WCH8TiwqFshYwOVLrpDzPCHHSUbqi8ASlTbrfqHcHgSwOrM1wLXY76gg8KzMJTlk+lbiPCb6tBmheCmjz9CYvxOOT2DirufVu2X/6/l4CiGcDfvhBHPxknfhElkXbnMG4z1WTfBqJ19owQ8kZNToSCNEuj4WouJlzF4/7HLiYe3L2r5dJVMm1OtwIaWsFgWZszgYOAo20v2DsiVH1a/IiodLFWD/BuIPlZ3mzxeOixvvIDKSHwv1kx3tlMNev6CWDKmnbcZwhVz0Zt5XYDidrBj32I6ThTsstOv/Q/1EQSsa0sg9nBxfLRsi0JwcpcM02vVAlUErxS+GsYcSFFfPZKX34Hyw/9F+ZWmfy8wFrc6AOsFKNMBPtV53ZaHWMyUIGgDHar1NYZ66Rcjcb6SvHxlvigyDqJskwOk6IWQH8Yo8/XDBcKlu/C9ocorDK1CgMkbb3ov0POHsldYKgRspNs5YV4eNXXsCpvMI6Jz891PWKAuQ4RkgiOFnFM1qwsVLnvD4q553gs6RATzyf82bbA4J69Dfbt98SzuiNQ2E3zddJMEgHiqEC1YtIPWlN9dQpHOhEW9xhEVJJ2k90Inj333pU0cF9ZSs3gWvD4+sAc5eToyHyDWerYjSwKkBIj6uBJBGlRbppN0cTKK/DbYsNv3D0NSLrIB7505XA5Cy23fk5zS+4+IcgNtW+8MpxWLJVgW2Y8KM1dYtcbVKK0fzFRm/Li7fHJbmKN+WL47jyJMXYoBp1pIrjz/8bE/F8gNxLQOkIC9h93yQVMFgSk8byOYe+pAwBbr0yUfhKlrGZanSEkHDBXwuxl7HzrhgB3udmK3Cd9dO7K287iURo56D7O4NXB1OTfJWzJf3KpdboI+dhvG9A8pYq13B8dfIEj0V0aMG7KQvNlaXpg6TQg4TDRg4BHp9Up69XTrNpsQHIO6ydJ8751j9XR9iB6T/2wr9JT/yoHrbWwMs49c3W6CBkbCO0yI5OaZ1OcslalLcjD1Bgk8RQUFIbMTrCz2/b+L/EGFxoAx2FowNzZeWdBUYe0nUwq8svNX+WqX+2KEZnySk3peQZuncbx5K/QK/2KRISwXoIh3I0IV1xlHOv4sujF1Tgt8dnJOalqxib4HttmldLOGUiknNqaj0lM436TNRqsmZ5teX1n6fD6IhL0/B27oK8Ej7PnSmQtFpduNZlhp04w1sDD0RhNFpBNkZAYB5HMVo635cUPLN7jR/JadE4Sa5Bc5bpNTbMMR3A8IkOpNd6gnAlTXjc6wGsAPkxKiYWYm3rd8H7ZfNTC3Akhun78VRCAphypH8tsX75x2CG3nrHAQCXYJevEHpp9lKfYy4d4JuOmsZBUlyvcStxsNL2+NVn4yXS24WDNWP4PCwMQrty+odRDakgQOGx4qd6qD0CSfGbzVIYvfiodHYa6gVB0xX/VargHKXM6tQyF5RaY6lzOXRnw47JeNl+pysadrUHy0M1aSBKk4kXaPKaX1tTnjDBA4Ba+caAmzl83pnqhXTD8KXGVfKoX6wrv5UN/QKWnPkteAIuhPHCrJrmKfjGI45PGe7jdhrNEvzdxN79luTSLLZMdhBfgNd38c1H61zKHwPilMdY/1D72XuKXWJrr3/Ee7Ej/gQ3/R++9LRRISbh/3DvINZ2iprXmfHwkSJMQ7qI/uzsSv4Dq5/2SWDh1clNuxJVuV1rNKTCxzZqHSJv3BuSvWGJKhEiF48vDFs0WMD3Nws3+5lj0WEpqyZ7IamZc/+kDdDRPOWkhquOGGx8u7VJZw0kkalihTrqRv8aN1+//PMwzEUpnRoZhHEbwf2P8HobqGl/gVQLThz1FeSXhTcsHGhOwLyQzJPnhXsy3+A0B2eSRjteVfzAqSPDrw/s/3TDZ7A9HGC7OnBjMt8iHCfYRi1iEQP4RgAq2JuxL3KD5Q1zmCnfy/Y7Q+DalB/JRDJM6SzWvjzNPLY5jHeIy4Hqh1/rYZY6h/79K/NW45wcXogQZoOJT2KywnyvIzByuqjE5F9lZxtJ529eHZMeNnF0AMbLcV7c3U1H4BJABupc7wDCSPxmR3Q9XgBMPD/AHDBO8WHNFtmGgwvnkrxXpkeBVC0CM5jhvuUkU5isxJMmQLRSfgqCvHsGSfaBwbNJDAZlYaRc5X1BwRRER1yukKiekyBYIxEmhQLLb6WZGgG1tGsY2mAgm+DE68jnBIPRSyp4wkcSyTgHlRHtIPDvEsIHpKfI2wR1LUvOfERgcebVQgTLIILsPsvmQOItM83gFeIUnp6lnNLoMvCdmcxB4s2OsPesxebN1d73BeBL+fprrPmBvQrVpKaWJOdGjsOnqnXab63FRnRUzklRG2P146wqmMhHBJzPUSRR9sDK0v9zkZ5wrh0Ur9mjUYak5RIt2mmY9+JvzS2OXgiYOv29QKoSQhIYTbu6qxAImrzj5hpzO3Hza97sa4X+FJ1CY5CFXZzAfJCcXp8r6WY0D22557byGyirs4fK4fEr+lEty6EJ2vzu9FgGRBzZAtPuQQfHPY6zwx5M/ygiie2dcJEAnRZBDHjI4XK3VI9SNnfoaQE8BVYwq8ChL0EV6ZLVlsCIUwz+dppvssqTCxtMyPktQm5JVDxpclOc4uh1skIFCXCwTvoIG+AUvdtbFX9n+0HxeMO3vAvSGmmOJSn2Er0nKh5lb/t5MTg/p5S5IN6MOWvsddct6OyQe2s6XDnXoLkiwOAzeK1XvZh/Hw2nY66+niGjuDGP8XQicJQJD6PsmlcUhd7N+hnzihJrNn93UYh7gCa/5elRlgTbo+2seh8XuXpHLWHSSxKqsOWUzQ8Kh2q+8GLXy1evRAcHstfH8cyRfeeWpRD0kiraAPNN6gfMhlejxxJ9qJTx4zYM6hvU8eXt+7gLTRWhaV/v2qU9ok8fPF3OB+hdjHo9YiEFmEgCrqAdAx1FlsFWlgOfVTMQdcUDlnXuRc5bOeL/r1GaxmrYdwBxz2jyrVzrJwHdABxT59bM71Ge/Sn0ohi+A6vTmcVYcJQVeDC1sbIDTjj8NAkZ7nNnbe3SPfuk0WDi8IAtXWovvhF3svrRl3WXnHisAYugSuWDhG3oQaV1OX25ykame/17aGoZowKi96zGqU+C5GD5Kb3QbFmyWdZjg9imOkQ1GYUAWRPw4trXl6UtdLoDxQdDF3/QBtloYh/xDr8u5owvTpJDIFEU3NmSp8TJwQ7LrWpqjVX/3zbUrGbL013wDuq0i/1Gwbw4xqNP7xRqWQXMb3Fl8YL5ya1h7al85pMC8NVuXcJcgAc1poQJ5ZJ1tnGalkjFSE2WJVZRj/FVJK6Mj/gDeTGVpcim855R4hLGAkMFmBjG6gJYwt14W6zYiCUgBmn3h/rMruTzg7KHB0wWzXNLrdPlHKtSI17suAzc15zeuw8Be9CfL2ksdodYYZenfCZOD9CHpsxF9hutTSocvpLSWJYkDCIs3hfJA4rbkqt7VrJLEKNPojK0oZ53HSwbMgtt/vOBaCLVqInyJ78LSze6qDggeVZ9H/2UT6B6nf7Jt2SGkep3zL8iHLBviChO62c/7DiE9eCby834NaPITZ/r/fZAGOA2iSDsWCnuBq+Opdka3wpOlqF9JB/MrWQgPf3Pso8iEqdbvQr7KuFP291Dsd1ZgJVA7mMixj4+tfI2VjnRZn665/+x+PWdXMnPyepc6HPuirdqxyYtQ6ej0+cs5F3JDbXZGNvirNFjndKycsiKUmcpu9oGWFDtmh2L2mxzN/J3yiJHIrUE5S/20cvwbbnTWAJ339pzzbrdvAoEP07MXmjTiA2cdYHarrre70ZeCm/yKy2UOsT8SHaY4T6D6HjxHsRB1nIsb/eJsgSPN1t80+KEynJ2Ccf2Awke37XFrbj/8RJCTeIkI2GTmtay+briJ+J6o+lyX0KdmbnGSmv6HCfqCXKfdPLBfKCP/dYhaVTEijp5zkG7LNJ5FOIQ575tAKkC8FdUPlF9sLLhYvQQzzwTYqa/1d/Z6oqjw/C18BhDpY5uh6LWaXtw72K9Y+f85mJWFJOXyz05xqS4NIPxmhNrU3TgdPTUTaGsYmvij5Exqv//kn1MjDk0Vj8/DQnGPXTWpX2nFa2YaI4kxqXdB5kBys8JP9pkPTdmX69SOuFjooPcB2XDyKSjAPzPoDyARLx8LL01ryJf3O+fQbKoKpanTxBrqQBcKrz61Gk1S0nYZ2nE5eVnYNZ3cS6SewvsNL9TvPU0UZw8E2ZvP+HmBFOh+KZX49LDvY/lV3SKTwFFrwDOYdzDIE/pxVlKQWfVvUkw2HiKEAqcoSMrEJ0/ewyZg9XGw7S41YBPmYZunF8uYmhRpUWxvjpDUlFY9eXFAu46b1VymKmni61J9LKHmxwH/pfaRCGVfI/knW4Z1p3TEHzV1mTzWqhC21L/akgKCz1w1eeVLoarHg8IqBqgVeoTHcPmeyNyafU/EHdED1cuH/KoxZCsBqVBOB1VAeRO0DaWfdOsom+t2SUGtLu9PyigdzV3wf6Cv/lUDNTgqF7NBNXfmSzvBYmPgmI+MXFypGm+YFOYR2I/mXsfxHwRr7w9mTWwVaCkFjtQ/kFh3f2YCWTcT8VLcVA2EL0P6lVGGI4cJkvx0kFf4NrlyR8/5LqnWbqUIBJEzCINtUegH3yMlZQQKJHcfcXWPqVwFs+cOIG0KyrPa9eFUBKMkzP0ck7vZMS+jCNrxCC8buYE3yTPSgslUjsn/wcbzpAQ46/j5Y4skC95Btg3QU9S1D1MhRXdt10nhSYRDYT7LDCpaBonbRtbLJN8DvkW+fRuS+yZ/Y7NvKjWrs1IvkqydqbFG2IbunjZRWveArJMkcr+oAFKoRbU/kAvS/VCenbNdJFyJ9r6HxlgIBBf9rhCLh15sKN7pTBTs2AdX+lC1b4H5t0QUl9UyJJ+1Q7j/XZfIdjm4WpxradEwdyMLytdSoS8z6JXJjPmyNwXZ46E8QFqs1pvHvVl10es0FSS9Iaaxf68U/qp5Sa0eAGBe69jc6Mbz+26BF8mr4hgQ2v/zNLCO0glyeZw77HVFAlM0AxzQtE1GEJJ0GMbYWSWn+uljP4oFGuz1vW5UkJhm2ulnvNGSzZU9F2DR6xZ2PFZaoiAge1sWiEFgnsSox+y5YtwZHJfioM68CbTMQcW832RiMz3s9BwnSjBiJuRDjmEkttA7wviJYLdiZw28H62wi80WoNP63gAECKkxTbY5N2kMJlP8Br4iakEsYJ+IC+9q4/BB3A3NhcQVZs8jJ7L63Tp+91AHhsuouoNbG4e5qOgcC+ANaUcRhAgYGZvTApCb0I/cylzZKKVGlWibUQvmQrL1G9OKtrf+9wK99K1lTg0IU/2z72evS4JUsOqb8trxnDgmWw5FDZZoAtkaovdamrGrssg7UXXCmjWJhflqmkjNidQtmjLHKO3MmHXLA4qBpzQ6xWYgu6LM06B2HkDv4pNck78HaHABm1TbaBCWoOOasnGw7Zut0SwgDt8LCI4MfbtEFFPcN/vnvgwku2vEWtfn8jiZb1oVwEg1Z4Cpco4SPRdZQ3mklK4u/7TYN82FTYh2YejaAmT8vuBYq4ei+ZUCtEU1DDdvr3T7EMAHbnKYuAz7Sb2GiPYquEi6Q+XeEe94RuHzXcCnM7a7h5xxobKap1t6/EX9/nwB7XmONT6gHw3VTPwtyn08pSjg/h2zrorSxLM6D42oyzMb934KMBajs2Cjr4E9Tz6LkcEHGn2x1MNaRzeSxIJYmGP+SRlYKdez9Dy8bxV5CwIaq8XT5nZsBHtPFtd1jsRAr1my8Pk4XsXJv8FlrOb2JDZj+bQyjyUR2SX+NH+/r+9FdPZGO/g/+epTp3gc7vraWBGb42ES+m02pBJLNB8pZB57VMES9J7otyUQIXlAGQTep/ijqIPQ9WhBrrasmOKtnOHYlhM7d6+AfHZwgjxLpDcjLkRGWfgk+++6AHyW/i7ILSjeYRAuifxZFpxtxkITcbGkywoKsa4e2nKoP5zBQu1bOpeXCgjlVgCZLoQZ0XLmZV/BsDJXAn98LTs71Brz78i1OSZJZQz9ZVU0OpSh04WKdCCp5VhhqKPTdnNQt5vmJH3iTdD54xwRxrupsYttu1AO5fTVpS6rE4TPDn+tnIXf8AywygrBYE9YX4kO0mLOZd4ZsFqfLOsmtjwiRLdKKCslLbHVtglml4PS9SqFd5b/LETfPkkm7qGRB+XYHd+nmTZC+lwVjGCipDOqcNvbh7ev4FQtRl+ZEeA8ovBfoeOze19cnmbVK8K/Ge1akNkHZ2+nl6lgDXqGL0UeEXvVw/Z9Udvkv7AJOWcDi1OgzKrsxgk36xcNOeQc12mLo1RPDs/pV5wuUxW6sxpoSDXS/W8YJQbA/JhBNqjy+S0HgXWZb74IvylslEg5kTAM4Ns+s4aFnHL9gpsV5mPVXpR3SUROlQcSV0MLezUSB2Q9AtLUuntA2+CYfyaYfOcypbmqTYOQyW1D7TKYf61FWpbkGAj97FDtiayaImyWfH1WBXDsAWJh47hT0OVuWjb6ahDPsHTdXoLd8YrbWNILS2Q6yJIwYLS8LOYN6WqSuWqhDjuueA3mBQwPxolrN91/kRMKPmk8/BBGXJZSMVYVhcC/tmjLBznWBh4zL+4u1WOWDQO8hZCv35dOGbZSSemujx1gs9s9wJSFKhrDW6SXVaX123HL/w0R+xg/S9wDNbhdaA0R5sxUer/L5NCfIE7S+EdasCS4k0SCfyCQ/I82CJGQyd2uDPCQvWUCUEXxjCzjhM2ozTpkRpdahQCkUsMCOUw+kVHpgIJL3ttA5F6a+J8ILBJmYUueqFVcBCRzfJIGRci2ufnRMJ0CB+6AtQAeRWPdCVPmrxUPOvYWO/7PUJE8RdqNZx0s08nFT1jurK82ZMNibzM3ii1m6IcQWMei2NrHAYpPs5/Unu/7o1s4Wqq+gcJvKP4jZq/DJqK7nxMyQUirfUsp7SsN6KT0XzLGVcUUPB/Igob7XypNb/nNm3pTJktDYe0AgM7dQhy51DgKLjMWdY+w9SNgJ5Zt1qRe/oMS0ZVo0WGy3TcuRdIC5+PG0sG3XApjyLuAjredQDY1NssqD7pddoiF21aJlWfninr06ZQ+ykn9zv0lHt+y+QXQRycmYfLNzvm5Gmg6w3zivk3dybnsinL+hN32rlMDDo7cKKO54ZRI0GzGEHU/Pvs2j+c4lO1cYfOXzfD6LASfFyvVaPlhWZv+avc7qWG0kptssqxSH6qpPhSuMeQY0IHPP/gYo77QduByCouGzDMYrYTwhZ4556AZ+FfIzORyUjbMTp8R/wtLRSHHJl8NPq2vn2LUP/nRAF59fh9YOyvUk4lHTXl1XS0s8F7LLdMI5M8BpyoKIIYygo0htJDYDd/X7fO7LI2QFqOCx7pwPucn4jBPhQ3p/TAijHkDf7GM73S8aZJwkDx+aY11yIOlSCxNce3lfOu341o9ZsN6qZpX5KYrixQRBh3kt80bCN/trklVImnrrUzphfDO7uCk7rmZfbMNrxJMr3GWLh5DH7xv/Or7tjvVkfQzBMFekv1kLSCUkPgpuIrjPliqg+0snBG3Hax+Oj1dWH/AEK/8YUyThyg0lOfSq8j26TZW7TID71kAOd4Lyr1VFn7czC1+/WDp0tXVxtflJArXuaVoHTJjb8IWDef06ig1YC+FGQxaU1okxoQKyIYvU0pP4PvxAB3TdL+gJTxo0xor9mVxz8rqaeAeNM2xbjnilx8VM+vbyFCTQwK99eMx+xMYY8/rWKNLulnjvaSAmY5yL8y/umiUtIF++4/eMcEUPAf1PA7KdD7WL2VdwhW4LHvoSWwV5+lA/Ty8OWgE9icPRCI+qwSr2j8YSPV2IxU/aIFOx2xw8H+AUHnG2R5V1fhVFTYnIYfnEEb3juFynzlS8DP2l4lkCkiyh7IfGP3q4QfUEY2+c8XV1F5BPuiALpg84CdsJJaA2qHP4QqjgdBvGQL+ZHWlhMlDM4LB5gjIBy/GmevKk9I5RS7vzaMk0VZ72h76k8RK550l7P/vKtgLRsczuahfp9K5wxIIdxcHb+rWIQXgmZSbRqqBqDrZ8HlDFFD3tFjPjWex4GJUZJxhvfmmiHR+f/xvzCQRicmu6Tkr8rXoNN21lvY3dyYZw9dt4BM/FgmFFoFxAO8/Zvk2EVy5/N7TU09ft3neGUMm83HsLizm3uZT4VaoT9JZDaMqMRwo/uuVwTMLbJRbza5lssm+Ih2hkc1JcYo9ed+0N+biBbVeuTFYOAHQw98Opc7AKc1rH2UN+tgUhdvkbjFdFUrPfYTJvE9jRhfjVmYQuAxLY0Yvmfo+MK8wWZGuNPlC3WCfgHOAgp4TbYha4GYhSsqN6gooZGvg4AuCp4N1l1v+7XdvutR0VFF8yHSvsYltZzYQlCylcjhHF+45pAdRw4Mvi3bprKXOpSvEm/TinZ732gTvzFbPq2yPpb+hGloZCjya0ZDtDlw8FaDw41OnjiCHvaJVlXh9r16zYPtsQF7bblOyi6HJ29BAudtcW9TroaH/InFFa/Z1t6ltMJ4Il5MrN/RE/fKWKLaU2+5BCbOJ13iktCuPf+wkyEKM5IL4t5hPbBAuxyL0ehSI+HZzQQNex8hxvXdKLHqm1FGC0CVjHslXBU21pLbKVn/C+AbYnwkLtwi0t8t1NrQMuphURfJrTd96HmoROCTlix+koZclUhbJEHDxVSJ6vh4MkorIMbJXxH9sQPNsPydeJMBtBHIYyL4eecab+IcKA4jcXmUlnqILeu/4Wr5D8IggdmPxK/HbnEi7kzEREzhCCOK9ScJo2u91kOzR3dsXUQlA1R7oEn3gAH9/EZ0o6Y/idAIkGCwHUsdDZ3GOcxiQ/9gMOIrmX5wJNyxur2/vYrwMnPGHH/m6f80wDQ9XpudMQvkz+GMxj1IsWeVhC58016w5gaNnm4xJqYLq8krJlmif4TLs2CGQQvPd3zfy5lsilvDG3zhRE+UZdDvptxlGlqYtFRFv5kJjVDNLConKKCCr1cfOJFmHPr74rwenAxDOGbn5l+X5Ga11QuVsqpvJtquDubMcUNAhLut80oi8Rt9NIATke9P3TZnOiulWo4WfRYLx8mDw81rCf/YYooAVJC+Mwbc6NbzTU2D+TuJey4pBHRXZVxjSLhsvwUteIScj/TaP1SAbNmm10HRKJDcLTkpRgL9x/YnJij4OJa3+vT5ge4lPx867+6TB6qVTxdZy7/k3S/DV8b/FgMtMZZZLOIuqd04Vd9GkaWba4YwPB8avsfJmFuPYNKy/yAIxO7rX8LOstBxzEeXpsiuP4plmppgfo4meLBGAibABj2kzw/X+5f1MoDW9+T9ZFz76sQ2FKioqaROVwL3Cennxi0q4A+ThAGcDGXG1L6B0Tvk/I8jg32Gh24/ZsMFErQVr7VPcT8y1MKbXU8ZdUn51G0HVhGQBQg4+4o2g48MmXQN+hhW1IOOt+jxz3uzkbyZWpDA9pNIUZjWtrVXKKzFMW6OnLZ4eadnKJKmVzf3NfjPGgQA/jkkkeUGtSVc4tUB/g3txju0NUeCOb3smXCyy0j1k593+lr9fZB9NDzs1ihIy4yIZdKyYKy21EjtrdqfweJWsOOYxf27ICfY2hOlt5z5m5r28TvyFHdY6uUPt3LPXDnjqj+9dawD5oL+BJMj6fT5+tzQSSUTA6EQZvSnAfsKLAncUh/dGz4MJ0PT4K4Bw71niRdUbXwpho9FGQNGRArW1TpM9/qPqrZLbsJT+KkIvN1OeW/GSQ0z8y8J3pfXLUAFhi4aGGXlyWi9pctyxRiqzo++dDHbNtvDz5g5eeYq7O/Ucw/OERkTKIRR2oKmWzdDTaBkv2lLTxEkRqMHGdUkXXXmjm0rKGm3oORJgb14Yl7qvGf0ew8IEGuokWakQf4ip0mPW+6b2YAdqYcLHSzvP4u5Apb/JWIviuuiadaYzc1CL3BtPgGnVneVui3m9NGj81kcp6IaMTR+cX9+xXTenual/yOKr2No1GIfHYU5EQOxF/ydlf7y8JpxJ/Upf06cxrRsRNuABy2gIldYtTdRLAg1/eJCTWzQh/iJw/ESyAhleQYa18DKf+w2Mmt2ysmFylekaPDqg5igP1yoS9UAB9BYOWoWXSxeA3qRnTOZtHwY17aqp6DKx7IBrVFYxVeQkV+qjZm3/Izj0wnuOAcdB1ux38s9nhz4iz0m90TgSd1p/ircwYa9DwraF/qtXXbyOnF6D92fPIj2IXXPe3o+yZ5rga8QnwSvHNx24a1SD6vH0llDe++MHtwDrQcvrgMO/9nzW2w0tieRMWYSaZizSwO+f9LwA3Z9MGWhfPaGtR6zb15Rry09ym68VshLSK8UGuQEYHbqh7WoPCTjrDWVN0Ws3TjfDgPkhR2XqicyLQZJpNFKLXCh+NZzx61RHbJGhxPOWcHfqOVxAOVXBu9x5U+a9Jbift5WqXV1xldqQUgVqSKd1stu7n7QkcDkHYcVEQYEB/I5yBMP/QXu58chftlwYvzsdOhsCeO5/ogzWIOb50YeRAF3HYDI6Q+bCOihIA1uvlu9N3ESDD92KZzs5oOIH+CmuEgYNkS4ZDksEp3XCd5f8uKlrYoIUaDxDHMowQVSMxOP8za3axXM16P/kv3Y1UqafeekTutHvrnOBwImAXPVKtPpYbaAGplW8n2PPgFw1WXqasbO8RdiePQgl2i2IepQOY+gJaU+W+uAhgMjnNa31Hl7pH0KnLXL7pQ3Wv+tPnQ7otASU/yMTUAAAAwAAcsEAAEriQZreSeEPJlMCG//+p4QAAAMAAAX2o78ABCrhUXz1K4dNwm3s8ayMkNZaJj7MV+rGk0UJGLF6RrIy6QfZw1oV5KYzT9aH6w0ueCuasr/oEedbU+GHrW5ivmqidVhEH//2/eWwAdlGeVcBPv2y5C7VBHNld3hHA81lWBNW/oiDVgb70n7q5y3+N5eonsGglTEhX7Yh4c/CuQuEc6tMuHdgpJp75RjtfNdhs+m4o18cn1KkNmlAA4JPqm62bVzwlGNFR45x2QkGGLpIwXqIRpq2SJMOmL63Ng4PuoWJPVBGWuoaOndmT/p80w3hQejOMchCBLUfxnYtzkIJzKOLzmWGC8wREyZ6MDY/Mfi/2BtHGe4eqdLX2XZr4wY/H4iryVHo2x/bd5rL+YTtV8PzQ4ZARPKbPotIjUFkQitpgnoc4YZ/LDVOFgUvirSxk0NWkZiNPERbfEqH21OrSHnBhqlzktlD28Bks0MgYh6pEWcjL4mh2woTY2tIQJrF+ndtBKMnatRfwnbJ5FzMwzyvE/i8irl1RO08d1NWFAqykD8B/ZC+UiW+dkq7G1v0AMEXwCe0vbFW/sHrrgQE/oCP+xrcFpUjjxLwTge9mBeNchQz70ei9uDSMTGSowaVXMsSXD+dRkoaFGS6bD/xpx9GjGUGpDI6LhPJnGIuLuCj7vZLa49ksDLSdv07R42uMjUPcuURHqFpObMjJrGdtgmBsvoVGH+CMBZ6QtEjDT1052N6/TEPFWyq1G3aBYN6Hr5ftVOb9OsKs2rvMKV45M/TCp6dqvXzduyWCTzkA2UZ5KAFlFwIYO1Pr/4/hWETXmGRKrpiMAGWTDLfLMJW3KZh/to6jyQDmhRlTQaUBE01gZLILqI+8Sl/zRbIEunm8G6lYOvOAwMcnRpKMz3THI+JCLl571UwWfkQgduT3O22uBAG6p6XOjiIfPF455BTj3FrOhQkdry0/dN3u6cyE6gIegKACiJ8eB1IGxucBgS2/RMuzrPzGpAb1bk4hViTpchBcysPoGFyICLk/6y7qTO5J2U6zdJmskNdWPvbb69LkyAojNM5W+HtBz+m+BHGZBmOOuwTjQbclGl4utyYWfP8RJRCUQCa8T2PDL2KIxdYJ/jhmouIoeBPZ5RDxiP8vSuRsDdrFTz0qKhyTGZempBawJgSEGO7Uyl2N6mP0GqN3tWrGGjpUtj1HlXmeoL/TaiqOZFxqD4sFUq0aSOkq4vdK+Z6B9y8t8TzBO1nQpuQGPFphSLVWiW9OvczgDvdmpB5f3kesaScKVl/7gT5MQgxBG5+O8F5ovywJ5TPmXS7AjgU84eIWNzhm5mZvh7h14cQZf6nwomI4hSHBRr8hMx6on731/JHBoVKBBZ/5IIDzv8ZuMlz1NF1YcMRFD6K7iDWEApu+X20O2IXjF571Gk1i8zRIn9oujMxK58r6y2abYOYChtXueAh7ZoYGhdOmMZiTyM5ZeLJmeffIv1zYz7uJCDPdmA8RsnGxiWnBpfYPCcLu0xY52OUJlqSaA1SMJ/LEJP0fWNVcKf8btdgTpHFzMazkKhUfOXvpFkS2PqDKg6QrgjID/EMDnJPyK+nCKJhs+NsC0TXjTrQ09V/EDJsg8zGaWJlOq0bO2wN+uMHwXosZVpY0fbb1ffW8HjqQm3qbvziLH3ZviuLGW1eaX+jKQJNpWddY8Gu7C2o4hwH2IN8Q+QtoFyYmTUuR6bV9RpdeemXH0iUGQXNGdZ9G1vN/JyQf7Y1Wxr/p7yTcqfJOMOLWyNxoHt8S4PD9mEaNGnMM6uFlCHHt0Oys2TASsTnrFzp2YH+goNhWCj+I0sb37WnO7nPXNSpHh0GMwBegi9EcIRtSLziNT6l6RCQbeFMpgPMOj1TVkeRXFtxxzx2KgmnBtCgpAQn/9RT4p3aqG0Xa41FZMKEeFxJ/rOi7Zuonx60Z6WUu5N220YrWNUxFQre/LnCGv1wOa0WRqjEdf0MirjaA32ioc3GDk3/cSEWmNrSL3+JQaFfAw65NfAlwhC0+ZbU5/F9uoyHdCdvgVxJNVlpPpVBrbeaLfaeg5EF+GOeUC55iAmM224pFxgkBrxfa3dU8MdsY34gn69DGke7PpqovtSKLqrcWH9y8EwTNxc2K3jDqkwbohbfHYoixNVnRYLcuaoKtOB3QW7T/Ncq+0zE0zPLw/KzrQcHoMLV3FBRuw0q8bGI2CCwosoDho9lfa6Dxvk42ELF1d2k44XUE+9ZcXhYWauaAyPdH1jd3HdwW0AY61xNVV7t963piz4IGwFxJFUNMIHCIqyfuNoqzJVWNQlztH1vem1oKPqKsNXW/nshqcdSoSCSRerQi2kGewgQA7SBSkhL3Z9PFIhWBPuUuHJ/DKgvf0SrjqM8ag3HCm2zBoWxFjWd4HRO+0Im4pRfhpL8g4pdtAZccLuf5RK1Bww3BswYgoPeTpgP7tyMwAfp1GNaG1kQeWhsGRUqywmXLjF0J1VfMAvTsI20VkGVxLM2SdvXI+/m5rUg5aHPX/wbb0iJ6tcIdjYjujhoAkYuNBfvYEYqtidg11wj6KeNpSkEaV0UZtn8UCMYOXLWtaND2qcB+GWRFpP2txIbTt/v7oeVmVXhT318JlToqVZyzfRDvenFU1ut6SLbAYDQjYqDQKQkSppxCOEZvCDH1WLFoCerGI9EHpL/hKRZWWqKXVXrNHUTxtN+LEWSslZ0XbjXeMhcRj9WXYtASCiESSVul8/PePbzr1Q8fPx1eksAlFD0qmOoNBoHdQiWntWQva3JVO+6w9v5pf5RC9pngz9Ro94DIP3Ai//IhTY4WV17zMqJr/FgUNhLpOeLvEoF8L1k5MCxLdkqec8WVDizSMZ5vLNS5rGr1o3HNlf0Ut+0rawyral0tBYN7opxX4ooLf182k04DpPcse4jHDls6enDp47107etB8Io/Vrc/Sfi8HcVAA7H2PdsFfocBypzTWeuSdZziJ+ADNerCSj3l8dRgWYhdd+I94R3bCyHGzZ6x8ppnSCpW91q+1FZYV4a3w+/mY/wU0AixGOUYyj81bFiuImkVTg0vlDdNs6MqG12LdVK8Rmjn2XGn4a7AbLMKnRUGfxrUzpmahAqDToCXGxNKRIQklWFlV1KHjAmW74XgHB2BFvjcTRUnA69S+dlppL5W6JsfsvxBNAWfXyKNtwZmgDJY237+P2KcLz0uwz70w0HWoPrLs4+hZkKbldGafemZfqaZkcr12BgMGFAkZehO9CqxjYO4bB5nPfBXrNCCGoy0q32Y93yRwlNZvekb9WBY5stlojNK0LfaT+HQvuZZ/YZnBjury7oDK6TrjtamnRqGibUyWC5tH1GOwK1/a9oAfy/6DFotMR8NvXyk9xM6N1CX2/aLX2P2b3H5s5Guuso9seOs5Kg8iuWxwrIXHPWQDQfw9xQiLgvdcsRPl6ptoLgz2b364CWAabj9UBs09lPebmj8TwP2pCsvMZrcKSkQJRhgVbYKYryLs+q2U+48aKH53GjPvSCR4CeZwICP5Nbxos04Fntk41TzoyyyaEqIjTklBvptn9DjDlka0TuVuSzKIzmS2L1fDNzn+TuTNrX382Gefgy6OYwaGa4RsGv2pDRoM+SnfOpqOru0wTg39TLyF3kaiP/9lXybb4ZHKG4z4Y3oyEjSP1H3hBvXFBmFgjiOyvCepzDUwfbW9hE9OGP4s9lrV0PYh5K9OFZBXuT6JT6y1B8TGAUR6OQno3EnsYCa/amMj/kEAVenxwiIUsMxYXMXJrMT+rNfHp13h3Z4XEOFVlHvhbYzXdMXOwXygEgRhVGi3KrcHw9UemeQpOAZIR+7JdCieW+Zulf9mZsZGxFbgYZ/8vY+kz+fc4POp/lWlH/JsQh6LB91mCyMcv5vdqsDQXH7Mvt13HIeuiOqicCaT2iVnvMpPhnV1VRvGGP36MVfzxtjce+LlKq3Iz6Kn6K997nmTxzTZsXKDc56bbsZ7WwvYcaxLoPjRUBcR3neKotSPx5pxnBIxVpAf0NaVcZoE2q3gN1kK9EKKU0NIh7hng3K4WlMUEcudL/x9uMy8mM36spaI39TGd38ccSNw7nNii/7I5e3k1P8BPugZ0H/2QMbWsaoBn6l0LtX1FC/J0ZUCMPf2TtK5tArsEU0VltCG3pt5YHknGHYjyQSHUHW3GFbyT/8+BRRO6LOtz2VGqXr8vjwaYMqQlCZ/m9dYvistGA3GGe6RMKnPwGhlW9+378NIYaYojc5Nmv7IO4BR8XAgbRs4pHn8vQekFIEf8ByNIHHCf0Rq02i4+kBp/nBRAkX+fznjeH1UFiZCdgh3H+uXNzKlJN4T3PECFFBMJVs1V8kWAKrjDpUq2atfzMv3iOABjZpuArq2Jol/vaTINhVmMFpUv0ZiWy7fVkjAVgCyqaWlnZ8qJLr6Kcm8ttDh0F6SkEcSRDfs4Db0VBkQO+zTB2RVBI4/mAGMg7TEHHql+qh1JcBhj9UMaVjFQS+t5kJX2f3q6g0w0lZvnx2dcroqKPidd74oQE7ExWDmZoLgh+eL906K2mcwdUsVl0E4upbwmcxFihy0mtpcekL1z0dJeQBpHXdnXfgwbxLtm4kduS6OchJR5JS18QEllyjNqTt89RPHOJ3pnoJI1x9D2JoV2Sfeo97uVbkrQyKUxwZi48LSpEf9hhlMAxUYLVSpVymT+o+ecQK0xJAIEUQWwj+9zzUiqA51v4Y+FPy0su9wjD/caBXLYX6x1Wdw/HFTxWgZRGKVtb/YDvr+bsDlshbrOFbI1/25SmV7yIkOHAwix5r+lcfE27mzDxV4n0AcrnqJdTYTEDVDuAQPlRzXGywD72icPlYbjJ0suEnWHLc0xM4AfxvZ3vjVUYcjCjmxWj2RK1u4Ry0BeFOeqZWn6lBMLFOXdDVgjQeG4yxQdPpidUxrkr7zRD/T5n4O+MSmkWza5gw9xI0gYdcVe/2+bO4ADsjaB+uM6rurhi79zWp/2KiMkHei6XBNgb57E67vt6Kd01BJ8pri3q3KLRbEZ8Di6r2G1RuRLS3t5Omv34/wq7O+Dbs3hB7jJHdrI9x0fwKP6fpwZyzX+X+yqdiMSsoJ1mhM8qUlXr8hNyw50eaZLE13833trGMiWwXwqmiSNSZ2NkC3rFSUH3P3j+7+kL5SzZJEelgEDo4UbXghZUXxJxA6FlVtDcClFb+PC7EA4vFEIAkwVrKRh1BWDOlh/aw0ZU3qXlp8OO2KW8rpOU4ubB1ggb+OjuI9yfPxm53M5w7+eqpj+kwn55QzR9GkeC5NbIPOaesLDbt0dFSmXT5Qo9vomCPNJO7EYjv3JtyX+3Q41+h6GJj71REgXO+2ikVqH5D1EDPvQtJR4CrSX1kgAIySZ+9ApBlP9UB3aft+RJrSWsFK4jvN++lhaz4uBOvhhdyGSyxAQs99Mh9RGpNCUiOyHp6N2cgKTEw0cPgnNfHqzg3Ose+RVEtehAtRrgG/WL2ddbNc57okigt1uu0i65ZlSxq54fu1+/WhX6gpElDHb+6DD8nahugun0N6psFBRFakRSgmazd/Feq8uBFR3VtQI4/Xv9hSdgVwip6SPTAMKjMQPWLXlxjCO0JMt395C2H5+Y+DkGyD9mG1Wm49iIrggUokXh/jtG0mZZHxoijIM8l6Ztgtr5c+grJ8ZHm2TYqcGspX5GTwa1rXexS466hFnrUXvSHugCiNgluXB6bZQQ7ZXfJXVJJJ23noy40MdT5EJo5Z1wRkbhTP6Qp7XYki5v8+5o8+z7Byk8pDmMdIN1tYcglQ/xOSLjzso4CxOfUTuEFFTsxsJZbzU4/Xhg1MmFpOmB7Le6KG6fEc5Pl9Elpkixh3I6v5FpOFGqslVZwpjHOby0Upwd9InlN9Hu4nqPtpuIRaq/SwDXdWBA8Odq9DHiqM8UBkk3URigN5hSKdNbrKHAK4w1pf1nEwgMs4b9IcGOAUH1j7fV+oInOiiHfVg3aGZHeqR1+B/L66r9LnWWWhNX0+cNHpVAJbSpgXi7Tb8g7KjwG4dySfWpo2vlOoUjCb0Px+qH9lcVXdKe3juigNdvkhhoFH80eZW/B24p8CVeK9WR4OuDX4JxNBCbB1KdDMXZ9nkrnydtTceLmQY19oL2IXhELqog01MkGPe6UhTmE0LfIcYCgdK6PCzm0S3Ua4X+5RLfOilXx+NzuowSAQTzmxqEGrfNlXf+UNvZcEXhKaGRKPsvq1em6tneFwUQjLI2RH1JPNIdKaX81oiDIGoGpltQ0VkSsr0GRRNfBCBOq/f0piAwecV/VfTZn3LlS76MaErQYR5lypBjdyeuNs66Gj1i+m8n3151uXshavwTCPiAnyYP50GKyTXyUwXCH9m9+kIB/RIIlt3qpgwgceDpe6PjUUpGP+aTDETmb7+fuTytvwkkiLBrUpY0oroD+KMhpQi30m3SV9IOhalfB73dLYYyoTH/QufGTu2gGdudf5nF4rpBsoadq+BfLv71dWkK3odOj0Mo3WcwgyHMUGfiCzrjigMzXt7y65E3aSDummBDFVi0hbC6Bm1HqAiVx9dOE1JZHowxzRFOpul5RNx3T4CR5Wng8Q4ArJiCd75KBSxYXtM4WsXx5gbIOEDDGan7ynJwR/qAH1Qm3r1mzrUPyi3JPd9h3cD5NrfoMPJLRjkSvuGpfxMRtzomtcyFGIphJDWQMOIcGp3GEoRq5E4oGBgRo+9BpoKWAnZQSnWpU/BC8d4wD0mnlG5wnhrNIFdzDG3nDD1sK0V8bieYQ6+5W0eOaK+K1Lciu/QXNJXReg9wNayIxAwYC2PqjPofGNt8bZ9J/F3q77IRxFgpXmybPDaCW6SB63zIbzzz5kSlkzB64L97LdNYEJArC+mbkJ2MjoRVc6RMlm1DkrX6ZsKd5HeKQLSVer+NDea2eGeP8XHdK9rqyWgjQjuh/Y8g1gdb9Khl2qi9SGhPSWUmrSEIuo4fHlTowbBDz7hln+MmezzUmH1/63nqlOjo5na4uacQob20sBha+S38Lnedg/BxazrInzFJZ0LiNKiy0gZDXq5ri4ZHX6iM2EY48c6bENXMksz/qNDGlawJJO6M9cLNepjQXPei1/IxpWXL39WirFfSWU2IJrYyjNONx8IWA9X6NVbskbp6YE/raSril/LqE6WY04W8abVje0vNduSq/VVZUoraeoGGcwsKtbAtHpx+JMr3pz/QbI9za/ZxfLqs7bHL7Svl1E02DHKzftRxgeC5RXxIdDkAhWZ/8MrktCH5GrWrsS/uCbDMvAVI8R/xOlRMhfVOrW67ulpYZkb3ESJ5fge7PnaMOu6sqWCRnKBhVhVcu82y/8MYYllW4d04BYRzHdK2jLqolkNuPQW3V+0RuxNVix2rtti7zXAfcJl5sGLEp3JD6UPO5dl/d5dRyNT6QOujSw9iJIByblFb6Gq8kWL9bOjCBgSwdMgbZ3Y5R3/uwWnTwfesej5XjBcwTfiPghlBFdA2tp+Ls0O3p3e5FatOmWyuP+qn57kUWAp9s/4ne5Z2XkUu5UoFF3UJE/UVwPYTLmCFl7pAnYMjHhi7VwE8iAo+KYXYP8bltp++ipKOFsAEodaDswnEd+Fb9JvDCLjiV7KrVqGJmP3l1l292rb9ArbaZjlWTk5TOpwYe4TGBjJkAOWjcAX+cIw9u5DKXCkbBJo/yHeOjKa4xg+zYzG2zEH+PsBIKyqHoBL3/zGGvsf6e560EDjSoCcNTQCJQcMvKH9JzNnLQa7+SqSwHxGCUHux95ACyk+I5UOa8JOaWh5v7WTwBfrqgePkDet9jrAd0p7OstdSqsGlZ1/WusS3gOIskUT9QBMsOOYzuy0xTtLsyiV9JMMfDeRCGIakYLw//iEqeX+0+HemtPzxww6NUWO9+tSfgLAUbY/n95CccQ0X37mxhwGULxKntjtsKlNF0zFhrSAA7ldZQq8htU/z8lSI1T7VjoJ0o+Nn04YUZA1gMxAyIcCPRr3zNbX3ObOrZLFNP10gsBYp6SCAwPYsDPyikt1GajqusU0EpOLFwjTJrnjFW3ugJ6eu8xJsfBaugx5aoHxpgS9jjGI/fUBnV8KHibAjdSziuxhbj+MsonIrWPWQltuUKw+Qv69lWDGEQ1XpCgrXQazmt7DQCAS8Xpujto/decJEwiaDlvUSdJkeKapJCap2xOHZ+jaGYVCA+JU7zzcohQM4Vqg5J7csH4/E9F3Tb1fYlUXhmClXYrmI2gCwp/Vgn3phryiJKRRnz2TcZUb7ixeNUTTVEsfZBEyJzEwX/vjPaJykOsIvtETfRQp+3AqQgcTQwenSyLiIr6Mls+nIwRAtvguG/1Y8B4dYHENuULnLLaeFK4HlcBB3/6fP5hDXb7HtNfNp1wslcVhaIShvQXxkBti3GR2Sqghw8Ev17rFnbhuMxZsFAVZfw0mPnvleT+HqjUQYz6DXdJ8JzsUKAgxWflqIJy1Bl4XaSmIvIWE3MNAAYvpiRsfA9r7xCmWxXh5tJ5e+8mFzBDhsKQYnNV5yIXcqp4PvFVeZo6ug86AR9XhHgTEKPG8mAIe0KvmCGqI7I2rX66uwi6kDu/nC3S5YHbsZqrIGYYC+9KHanD5PSZ2FVVx9vmyOGJJCSh9JvmP2uE3plnZ7M9xwWaUuISg6+VNMXHgG2VaT13If6vGSkCSKhIMiCVGeCMJHtleJfzddUOsKCSSrYP3joP9lmClQho+56tOjeoGqdcB6SCmOjp9LW1/SFu+w8LLdclLrOvpnLRueo7FvH1qARYkCWmArK47ytnfZMgFnQP7KAJ9PEF8iM+eGdyBMCUWFA3kSkF2CVP4zFScTLdxtpns6ylh6f0Vw1wmZ+RQnFCNo7oK+mO1rfheqeuaVK8mrK6FLAydv5twSkYnKZ+bPbuDDcihVB1q67dI/iAhOhckoMMF+5NmkDRe/cQ86X3VQdbn+9RcUf6sH4F+pRD0FnBQ18eXrCEyRMbl+GR0410Ez0GunbW8ScXV4Fn3pOedVMwIPM1z/4c0Oth4YUTCzb71BXl9JZPmPeOpjThH+RO9p2N2nyroeR4Xg5OTvOScoBhA8q+kvTMf75OSrqcz5GMHxUTo3wP8T6h7ydwSAEN1IebyPE8STyud9EcDzZ3h+lYxYtMsoi44VMe6dGi0M5e7DEX9kY19jt5JKhSbrjQ/MDiDFMn9ZSc4QkTt93psJwIkM55i2RAm7JpbGvTu4+e8rpTP4rHt5l4KdNZ9L1wgQRy8m6YFCvP0Xz6au5UELFeCVVpp37zNU0MgHoPijoSfJBSY6BfBB0dvBLR0o8xwFQ9L3GszxJNYMaHklJHYz0IPUFRw+smaDExMSkQcx/t0tzfs00UvK7E3iOYZtaGpohjGgfGOKJHcN4O1zN6QgAA8JkrcWUDTMkzyljGULGF0UrjPobr7aLNuumqi9svOuKQbrWRzi9kBTyjfeRPzpMrVEBU7I45Sgq96hpMFKfSw+DgeVWEssVCEuiubIg4MqSfe+wQAu36HacKcbbmOy+lXI3lyIBW2e5UTRXcxP0nnvd04sAkUyHH6oWJKay5hUs3ICd6Pf9vT/dpl97u7bgn8N/gaxDJfU3a5HOVEvzoQ+vb2z75B73JB9+UsBxAIUgTexy2b5a1qcHZ1nKNV/21Zg2EaMNqTYT8jIJM0BS1qDWvw66+r6zLgvGuFBB73CsKMUfH1lc+y032SOgIJxuc/dyu5Ao9/s46Uuf6HvLxddITQKwMXAL90r7SV7FAkkjNrsJPcvxpjAyyXCJW/iK6SghhC/XzhDWOYQTHUppk4LIiRwy8ixU06rWWOnWjVqJkNAU50cCGNESEWt6ncEundDFYYcwEjspp5RyAUlnMepDO3z5QVuQ47o9zkD9NoYFNOECxLjR8hHHYQgeK+jKborp16/OLwpuRC1xFNrIemJa5sTfQCOuqHhv4RMFHRwJwLcPsF++CXl2UGfioUvKzhYRpPeVf2Riyp+J9SUJIvmWLF9STgp1Z9Me58nBPEoRd5sdBTXLjL4Vs6fR1qdEheM5/KoOTTE4Db7KfwZx/iKHoJ9avcenrLKWptutVzoP4mvtBwtWAZmEH7MGAJBslUYKOYCkf53YaPUbREF8Pq9Mv9Mx9VmEf6RDdF686WZSOoiMwDxN2Ma2SSSBAHgdEbYGAr/KVkDedk8LZg0mWgVzEZwPgh01Qc0hDIB5J8vscMXum8Esf6AgL8QoGP9zqaiYluRW3U8oMIZB9DqnN5h8NpICv7yxmv8Cguc/O1mFmxA5p1Qdd/+dJzoPO6bb7KxknrVnbk47amCWGVyIDkcrvWfobZjr7u6iDmO/iX/QloxWC6TGIF2pwnuhz+A3O6O8uezMe4Yb2MB5J6L7CjMTj7j/91avI9NzhS3j8EJgJL52D4FRJNvNC7VJDm+c7fIjcjOBkXT/ThSAcd0PCuaYMHoTJkHBfMk8KWgPpc7JF7qe4TreQKcxe7JPWQtszdJOoGou3nbgTmPfdY70EdfRMkz+BNvS3KTECC7OwjQnaJMg/Pt5Pp/mVVdZgurnh+PyhXHYndf0VZoY2KArAqHGi9FLz5IvUJv/W1S7R71SR6WsDKXQ3hgzKU1dDcSALIdhhcsnHVXRBC5mQXEzX0lAzSJYkWEijNMX88twx2ad1uhKFJYep6BIwCXh7GxPvo3Pbuww1vcI/hkiBOIGHpK8a7SvqJdJLZ8eYXwhTKJanobtPzdRWrrPoOIQZeqNgtGzyURCRSyLTv1Xm+3c+WFNbYD7w+qWjzEegqw6jr/hLlpjRVr6g0yKT/EtvptEReLMtxKioU4PnyNNMONJ49FydroZun5Oj9o57Y4RczvargUh/uM3ky1Ql2EJrA9fO6P+/h6xNqOeqwcCd6azyxalrHqjrs7NVyJPPruVk3hJ23M+7+OwJ4FK7fV8PNjJmGIbE+169jOO7uOinFKwyFxAZ3r0wdZkKmONx2qJU7iUey3gXTRg9U30rogu6KwcRBbklNfdWyd1gohNufxG+X72hvGN853/xGBxQn0fBFCUrHk+XgxtOlwSrYSbiHwlgRC+/l0M8lptv4erg/WCbQHLeMjGjpRIuSK4+0zwdJ9xojufLQI/8H4JDYnJvJZSGIzbzxwf43jCLNvBj14Td7MD4NXcL+0865WaUVfWApmuMT000pCx8NlzjARVCN48fxQjv33Th3R7S7faD3a49pom6nmLkanCo3w0QAAAwBUy7dmWe3zK4cF/rSB6rW6FtUoHFcLU7tAD08721TblLI35Nwf+XkrvrigZtc7oc4MJFBju7yN+S1F7bFT+MDzeSyHOh5Chhiw9HLR61u/p6sFvisM+sYBuxcNZ76WwwrkgH6LqPdKK8/BKepAi+7/4bulJUdqzjexXuV1IQsG96XE+gwJdnZU5u78HymuRM3UqXXik0AtgEljaMMbqGCWEprS9xd9C5mIJoTFAmISwvQZYy1D0IKdBDgDyU2SgQKMQD1Jht10L2abFHBcCpaWmwkcqF2WDd4wYzkMdrHJvBHRBIy8EOE8MF5xBD9Z21MhBwG0Ygdpto/13+bhmuOE1YzeA3ERYCVm0PpdHUb2RBYr+JQukiYuo01GyCV0GO022BOavrXdJnd9kCW3Xb1ySoiS/1uN6fdpOU01Bg67+WBmunPgxhYa6j9B3JftLCzdUZw6BsoDG20c0lj7KJgbvoF7fqmL94gx2afBPM99oxoQGzsRsLx6qfCeiKouu5Fh5oXxqYVQzpUkgoNZNr1OiRTLXuBAXuSV2jJhyQeRqKoZc/Gb+lsIfBZv/NuKv0nuZw4oq4ghRHiwZpQXYFKdw/eeqfqEXhYt2uY95J0BH5XOXDRad8KetGAyUN2NUXlxPk9/ZQZdYon0qzZa1ldql8pwl8MkOfcPbEEjSMNbuXC49gOmSeVZIpH2y3QG+2+CkjlgsbzKj7YaZf3/cazB4LzdRJRpWgTYF+OVbLsnXcM+S8X/4Cu2XBXZxl1j7wfS4y6zGyOMYqn55bR2iiGm8YNOjkwbGXZcvYmRGMKW1qvMo7jfLoFgAlAG0Nnm31mmnUj/oM9ZoLcE+PqQSXq/95OVBfkJzfKDw/7zWdFc1pa8Qva7z6rGRFwhcOu7ESR18wK38Wt7w+5B86VIHP9tPfGbKz7HIAVNgjlF73mkytDsvPVfAzyHSRG0Jb0oLQHlv5Gge9HxoncYx49/oXf5+6kDl+Q58d0KqwRqlqRb04yMoyZintfBijYttS4XgggBPwiSQgLTIXV6PQm2DJDFZLwciIMWP1wZvuu3fs0AJsdSUr+k6C+GYq4bi+RKP6DQQ4jsij9122jDzoZ4uBXge5HvPZPm2KUDgE0UwiY1K881RMWmox+DMa2HdaKTipsiET7sMAnX4NxLHuIvTr9NHvwbLVnWscHtrAjSIaRhl+tpReLb+2wbWsYL0S8ZxiTKWIwlrSzGvV/QOGouVhruCnM7xqgiSLSDFfvyhXbk104PlTn4v1M5fffD8w9JXGZnb4Er3zT7uW4PGlCs2n8CKzokMZa2Eh5qwoiB4YQh0CP2d8nGRiiBsKR9saLny3d9vBsvmdXtrr8uUEEZmMGYc95f9TEfk+oDmysmeFagGQECbIiMiaz6+0FVszDjpHeXlno6yZQW4hEB+hIquwfXcevi62fdovLEj6/Ohd1fBSJXAVGgrik6a0q4tPUxS2Rqj6iutijettFF2xTPrOgUtidkQL1Y+/0rZ0/xqY7B4/rVOs4dqno9Pf8+l+0zap2kCbgsEL20ZcjLWxOcaDcx/yB04mX66DEau91h8QyA/xyekQZUaGXEosWnSqAYf9qZIZI9/pOS++XwDrwBmfSMCaZOLqrRnubsL2Cz8JJZWRM2762IVZrcXE1b3vglergrBvhsAFaRh6aR/DeeqRPFg7GpqGEPNA/3MwTWEDWWmscLXJ6eI+9Qg5mqB+fUaO2rZbL2nr9kkCGWoo1izdXJ22Qba7Oo5yKG6N3UBlT1H18XhT9U4KDMcn2zM6Y+ijEXuhBLzwDW65M0OYk8H0S8qmJmZ4nodm91F8uRDmqGGmhLt6SI6EpQBADPHvPXrwiqRePg9PuBxRkO3ze3erj3VKxXDksEbDby8C/hoOPJuWlo24bnlC7MY68jpkN5hYOjzG1gc2DzDOY+EvD/H53+kGF9mBOmUkEln5KQxne/CKnW5Ib6AMvJynw3PmFgV51J36tlVDsAwJ6TQOONBQOjCAHjh5vJDPP5YL3bxBaz2tVRmjB/dHWNxjXV7A+fjqqBChiRoakWX0FyJev+lLclVftaZyjcdG8wNsql30OxjEZap+YODLTUEaxfW55ZfMJDyJOrB0MoIYof6syVTfIy56dJk/FRKOhjnLrhGW01W2sJvR9j0KK65zo1uKEO1p2Qutmg7mi/hLDXyLlBFP6pLIn0gRi57mFUWiERRW5BTocEbI9keej8GeDE6DuzXp8iURMHgJ7CC/Tz4meEiIdUYL2TrIsr6GmkuNgrf0xbxWLi4kNDen0+3AQdRnYJFdMBgJJvXIJ1yJIaSMxWiPt7DhEbWZcWqiqBnH7p/ajAdErJv1ZbKDXL6x2HD4+srta683bXBh/po7k+5jfkmvKEjevDlL1CB+Gv9MSGDSTIdPKALYLyPybyv69xR/80gxMHsH+6WM76WTUYVyrgLQ4WEZkcL4EOyO48pBRgruGB1nrD23PZnDuP/7sMGKqJ/WACtpmPDTFN23TrmyCU2x7UD2w0UA/lboPSmC+Tz8tCv3hkf8SYMVSZly+dyhCJMIt7mjrJMlC6TBZTHLqS0EIoM9VJAEgbOdk+k+P0rq4B1V187IL/p/rhvBGfwrlNQczMjH9DwK9ezxDL+aYjywUvez8S901CHEgIPJylQiobWHYvwIRym1QlX2ROVDW7ZesT4HOUm3vc9XVaOaEQceeMOltNAnPCD3OZkN8ZwoSRbdrtMHFVhcngaoL6EA2xAb80h6K322atF/G1XyH3TH0vMQIzUevFI3DF3dUoUWB5c858Z8bSWn/7NxPWp0+mLoqY2AqpfSx7AKAKWpcnF+x1t7aAlFG47a75P40ezoHkrvg+9FH5VTzqSMVxf+9hVQNYtq6g/SuGL6WNbBReTZXJ8vnvJ8LL5OUayOOuTOR8n4vZ5Y5yMkbEeeAib/SthegpgUHS5jBQsxeIrUNwfQMoRPYm4qsrWtV+8I70jNi4tRCnRVVIwS1q72ase16+xtA3FiQWPVGFp3ms9cyN4a2Z3U3cQV4I15vUAMO6r3zrumopXIftTwmcMom0EK+LnG+m85RiYClkityRMaRDywS3+oPk7J76rwL/nSL2SFMuoPxNZAxZ6v+l1T0C3Tt5HOdnzPf4NrYcAT0prMql2OucRSL5MBTs0Fi+1epNBN72S/1GZRxwDGbH7gAgN9qUFOEgJEiu4Mibq0rz9qW4zYgzUIMaGog5mknfV1plES4N9yUoydkPlEVh5dmDDW5B91CXOMYVsocVe100GQtZB0vyF2HHBE76WQ8wOOeh665wMm4PL21I0pmFNPe+Hum5xR7hIZbTYRQYs+P6665v5OMek4vFXh1/P0d8NJVq6WGy2tGj7Or1dVudnGe7gtQaG5N174dkbNRaO8eaPK6csuUZUkOJ0nPEcLMMb+fpLutCbCrUWRm+qtbWjoc7n+5Y5GAFiKhsVxlbaSfOVDMf542+z4II7nTdj3MwTJXpJJo0nJ7v2GsQmsHuwsQGRLd9MHSXtNP6qy8YXLoNaA2WjMizR1qpdGbJX6hBommwEnH/jL5XRMKyKrAfciVTxRVy49UqPOZI9cbddsHL7AwaaQrvdynHG6ckzJrZSHt9R/cDX0PPIgd2e1UiZTO+i4CoLKRPCBLXBoAjR0NVj31dhWc+vhdR3O7K3WX93HBXDuIWUFp9vV0dce/zFihzGZeB+bglV/iqwz9uONY16iv2S4YshO1aGdx3pByYkpSRETJIAXyFGbkeDFv2WLY4WkPET8vZnJCovvWb7S1Eu+ArqzhcZGJKelWejZg6e0Yfj2U6/2RLwclMSOlT5DVyDr9PxActt0uiQiF3kzFs97VdAek8bVzXQ3rSi9BoYTE/ZA4l/0Z622n2+Z8S0VxjLUg30sL3aOjbwWPFV3iZg8W1HHHnkzjZkiP/dInaTypGqgOEyqnpV8V23vnPPvMwcSVk3WhTKFO3Sbw8O+fdEW107tYBqo+MPrLh+4GfbcJD4NKW5plfdSJgCcvMsalTS2Wd+MZv/pY1cpoyDQ+ReDQqy8+PgSXta0NQB4+oImlL7ZpXX/DaBVa52+pizylMWXPW+7eTRdK2+FvJpsakDv3wScZDOKo61M/rzA1SndrSWe41NBq3LwV8v8mjYUpxNflP7ryX01k62OEvYH5grSg3M0wsBE7zqYOzzREKGozqpGHpDsFGToLQIWlFykJ1ty13CbNnRw4snx2/pdeo9UGRkNjh5qk/JTDzcs1iccW6k8ez+HwyKDdagVQbZIwhe1sgRaO5MlpSJwuVVJk+1eK4mT3zyYE2H43+UJ2F1h4wwsSoN+4878ppUlWQEQIb3Eczju7JzxW1hahycEp2EvPAEIHfzlz1eJytbWyXWGSd/mdbd+M6lvMtd/w9AEEkPokHf7Quptv/yqb3ar2RsJJEi7vhnkBbhzBbisI0QQwgkk1hi+WTnho6oY2kDkUKmIe82Orm6nW/xHqsf5s/433NMmlC/jfFP4P8v3dJV0EMFJrEw2zkOkqK6STmg3/WSgOAFZTiUYGUpwAc789bLUyYZY1SWLMHZmcUFIOXQU9C259auyHTb0w+8C2TQX2CC/xOaRRot4f4GYJLd//Rd6TAt/ph7PT8NMKv4GIwlbRPOjfuNYMe1cOBZ/cxMay9hKxUNb3JE1q9vmjLNM9vpJvI//+xkWYdCs+wv91z96PX4yskEfupatoI6r9hPXZL+XlXDFX3efleJCAo5o7MumY5k2qpHHgk9n2q70+7ffcPrRPIfKCqTOD5wcs/EZGdqNx9So2/QLsjjqhmvSFoZoASG2gi9hzgMH04w0wEIRiFsOTd7E0ROeUM2HizaIzC39cjI4hR0vQSEQRRwMEV/uv6PAycj+ZZMuOgvfYTa5bm+IteyePUjAy28oqPpoy7HdFmNj3J348+R3/eH+SF710+3BNyQuDPIsfGABuUCb3JR1mHIwEN7SqtqnwN2mrWOCYq4s5g9UVoMU4OozWhtcryWXaHLXupypsNwfIzXpt8SLdjhGjpeVaEnHGOdH+7W4PFSf+AZMyRpC0jqYbIfY7z31biFHL823yCWKj8+Hg7J27yn6TI17aTAqGGjJenvqG/gkcAFCkFMZIYoI9Tzc4FdXSY0A0BMhSGxkAWCBhJUgunm2b3H5zaJABc6uQV7zjh8Cl75O3sglVyOHez6ydsaNUIeoSahAH6mdLgjlpkMeGsl1TiUD8SiopdDE+/ywjol2wjP2aC1c8gOcXiO4V8kec+qcgTZ2Y2QHhWW7aXB1waYyq7p3aTBT9QbHnxJjb7TUDRy7BkUvWm5B5j5n0eboz2DOdJwwkiFaj+2nf4lOP+JcH5Lyw4jHP6XyurqZOBR3TIia9hZYj2e9l71k5W6bat4+sCoRz3f/W0ZPWiu8oHQHCYj1/k1RmcUxJT9VrCzCsivMEzVBfx/JbYGqoTlIf+LGghhdz57kQ08Xou7a57Q8G6Yx/HNwwABaP7fdbgGKJh4g1478YqOH8XWW7pnOfnVzPQhWcWURYu1nqsAEIrpLrODTrWU8RG3gDmAGzTcUNWOKfj4zjnrtPu8IhggJlktY4CKoqYxp4/pMwjcm/EWVTbvN8bg/c7xCLTQ7mfxLwBGa/XxpJ6Wkvtt5BWHPr3i+aNR9mvOjfO5F7KhDgISGi/av8XWozvc/5Mr6BH+TpbCYBdTItZUYVkR6+qWGqw9Cu/t+yguz8y0/phwKUx35tlsgkZZ1gJ/8emF5pYlQBm/6LTh3hh9ubKQVHt8QPB3fzjwFq/jH6NrXLMzQdASfpwZqqPr8QOSju5NwnHitxYOPgBenNpisR5xZ/wDaIn6N5Ux4vlcSWBQfquzWtjIanMySb3KsiJ/GGaq/YKtAJ7/crkQkt060KeSmbwbfawlB6zLucRiDH7WElpOVxI50/7lRw9TyMRkrKoBVI+/5/+1QVTgMctpA7e7GLKefXFNg1joGbWGzYcf9sHcvXRdqGYiXNSd+WcjUqE3AdPxArhjT/z5dR7f339mYthsDLZGXEL9zfop0xVwuDDYedEqAuuECh+4KNGgcw/LNE/+VdrNlzJhFaP/ALSpbcEPlwOBmn6LjzGR+xqUOW9oFGIiBAJTSS4vZJrhd6G2PVX3B9TkqiX4lpKZke1ln4mW9BbzKfim/GOWMMjCTNGYPUlwGGT3a56Q8uPztCgoxRi7/kGR/WF0GZJx1xBixYRxrybB21B1/tqHfOjIgX6YXCbud5gwRw7F5ODNn1a/Y6rRUs2eMN//MV4RAFtrUAsKtr/vypeSs+Vqe7vlI2WYdq3G4en6ixhU4n3nIP5G0f1BtFEtj9qNIzkI2j26ClafQcy8caVxGVNWLlqumKXzcPP1gsWlaCuLdydLWldMRtLuiMinEI26HhxacEnDBBoXZj0i8dVXt1DUjZBF5fvPMqu1aucWXZma8D/r5vTIUaSUL/JB67xscJyis9NPB1f9H2uzM221/mz7l77ILXJL/LJ2TEcSca2NQk3ftwuMggpKvoY88idJf3fKvUvHH1gvf7ESwSgaDZJWAP4SV8T6oX2Wha0xoNxkhGJ/1KzBnE2XIe0l1QpVuxGLLu8JFnxfXDfwjd5F/CKyZwCB18iVMnKwwHVcPrLQX+As4TJvf5Yb6g8joZcEew7GdpSqKkmxOVSfJf73txC0t4Z/0XaienB6cbhhIhSmnfupxN3boCyyOeApQAQmo454vB2kxK/fErEnviHnxgr61Ip70G/ZU+wOC6WL1ZgIH0ZPJj02ejCl4psTYMHEiDgEPX7XPuoJ8Snz03Fhwz0qJ2LBEOqEnEXJx0yu/jL9NUPsVqpf05lDOvKZhNLAxSkfE6qcgZrWoZH1/EiJ2dqLm5QDY1XhKxwVHHzm9Cvu1lk/uDrHR/df+Aq31/nt5cWaUsO3O8LqTrXNDd1BG7Ty/SmFBzM0Fz+hbycuXOVwG1ON9ARlGkkpzVHmlFyjTet2Lqg8qckooX1R004COvhGGEi4MGEEVzxYO1i5g5uxjuIUdFlzbVtAEB4NyE3sLYhPjM2mdHXCw39h+GVFaMO5N1Sa7SlAWVcyhDK3bPQE6wsrpy6oA6w3/rPydQatfdAu7MXp9qyB7zcgGly7Zz4pp9XZGTYM9jLauaAuuxmVrrPEh/ruXWZpi2gV+3cPx9X5fFsD+WEVatIWk5ioS+11MDUen1nJHhKGrirOyBEJREfhZXMmvPs8CGimjJYJKBPXRZZVkQ9RCMvLcVTrhXHEfttnQwKfcCieR6sOTFcEPvig+w2wP3zBdMYQRu0CgrzPCsGJylNBD30mA+Q4GrucMX7yHTF31eIvhizzkn4F+Ma3YMlOIQPzCz8iGU2Yy9YDA4WuAIDMfHCCfydoDRSz/I8NJU140YJQjOQD4gCGqPoPdL8KkmoXta+uOlABdyf7dbd2XOTzph2SYRkk27r1m30lx2NUTi/cbXhVwNAD1skCI8uHfXawH2TwZp/U6l7jYe/L3dDQTALKpcaZhNd6Q8irmVp9nPKrgo78WmKurmcLIk/E9waP5gb5j3vRX1dItTl1UWr1dcfWoZf4+xOUbVg40dCrOE5K9F3RUYz9669eDywdmCH4FQLpfVt347vCxBpRd2or9KRgpeVCKEkuHEPwsVstntKXBaX9O+NL4d1UurzmoiJ0lHsBsRqU5mRQRcEGKhG8HBS7fjSWYFha3zytcSLT7ubYc7L9dcUDun/4asSDIOwf03zLzQy7rkAVqyvnTgI9HC9W8nN+Yo5s2TGZnQlQE+QTBjbiJpX6bNLiEafVmTFPOjwNkZZcWy291PF/na93JRsbEoQpA6j26Z2HBuavwsVDGQ1kPtrxQt0OcymGpbRT4z4k+//JuItbTxwI8I/J6RryU4IFnk3g9i0xpa5t1m5coNYnLwNawwZDfJ4noJ2RXUb7UL2U5Gem5EOm7UPltNINLqkgimkkzYnPGOf7esosbfTeJ1RWtTbVc33IFe3TGQMVMskcSGpzdj93wFu6depKLDibkvNSKYeAWmwstW8t3sjC6D1bA7/0yfA/6ouI6VFQzttxcL1EmLgSinjcrUCZwLRitAL+OW6Bekbe/gy1JbamAsAamxPyN6k+e9SOnweTw+x2RCUNbZRBqWJFk5ig5UGeONJ060tGjBveThLDVGuF0YHyRuCvmyoFDboF3v4TDHBzu2bN5tfwxKJVfJCerku5ko29Gn/gOk5agwQcAjCPfUgm591MNi2/Hn6AFx18dTRr6ty+/rBsQtg3CJ3LsC1zCWZS9vxpqVYKV3F7szONjiId7Eg7aGAFfDSOy58LHNbckFU0etOjvsvXJ1YuGe6iknW730Ka/rZ2apLrriBJKHAqDwMpE0CI0I9FKitbXLbVRQC7VESO3Dxd9JpYLk0UMmK9p8m8YKb8RtlfmJciIBouy12N+18bGHF9SGqb17hpIpzwdZbI9rJOOUuTLbM0gNMYYc7fDg+bun1uuFlIkKztgd3dpGfSdDx4KYQlJQ5cs20vKiTLK+KSUTw6HKYXuiSV3K9psU1PUucvxtOeJ4Wl3dJGQlL8i/j5s3W1lNcliwo2oAn++AqXxWzqTrAo34TRmFLsa/jPbbwKluvXuPKH6VoVLtcIStKQwT5TAj5NYwCyO3ZnEFU7EHZj9EAuE0LvHqqirr5W7wKsI1OKNVSxIAuswAFM2D63RiUKf3HuOx/kef5RIQWzGR/im3dBXAVfvj9f8yDqxyd/Ga9LrO8VV4dd9P3v9WQqt0I6ngaXs1yqx/z06kNwjNLEwW/e9YWeQ91l+r8EgpueUDKV5/9i++WJQrhLwrSmdWUF1y+k84gs+DFRazFwnuiGSivP/xj8ee9AdrL68kNIwFV70cnTunqruzhT3lhRLbJGJ6jTLa0AP6VEsCgCAlyuQDChy+lxDi+TwSB74Ofq4CvQGTfB67teOfXjSS0KuPnpALFmOeln7ZYexSBtrDSS/R0lV/TvXuHcJo+2FOpm1/t7nsCvAHLColOGdRfcMyg/RC6xUq1Y65vFX5HK954aDdOmc1tAr+8MFB2GdH5oqvq0svx+bJ51HR9vJhA3KcYXt9TejROwXnsZxtlg1u/VMRdjT0HziOw0hCcSxzeK/ttFDDW47yKF4MBy7vlbjIyPS0kwd//lVLnmZfZkr+OD0Z2eoH/ftcC2lzfP6RarktRrQvsW7DQVpMk7GrG38SWwOGHiDumL43IC8kMbGXdIssOcptfbVKqUatJe6xuIAK9G78ZcGGwW1GOwufw0gY/Yb9ZYt1eRvFX5bx23vIaK2mCR9hRjHXciG5w7XRvL4OU3mvfFYDeRG7FQbCtofSTxps9l1uk2cz2/j/MPR7apHG8C1PkAFUXqPaPdNcOjihDTW0sNr+GmsgY+lhecDO6Lj0W7g3bIWQUZS85msDSoFP0YfhUtkkB18LwyWqWhfphF8tIgJbknrkjs5bqvRKNAwsvhWxg/sJIwCK626x8Ec3d41SO5zf3fazNC1QwMbo001fGD4AUpJJ21h2VzVazm5QAMNzKYrs2SsiB+o8mCRHQGaymGNTTouc3Dw2KZ9y/rfQVSUhKaSYSQtnSHajjPzIyhxyOkPG8tr43Xd0s4JQxvVocjutS45v/8htFTNUaPK3WLNRh7aClGd4YtuiRmetiXOAEcwiLVo3qbkghiZwSFRgMkPaTACI0aEFyTG38FQxPXgh2Rn/Wfwq+uMSHo/MFLEWfxsn5oDHx6E2sBRkK7wDl5A2wO+9QKo3csMZI4wwv0dPc11jgud2I3dB0TpDIAVgnTk2mdboZYUzTkOsMECVnje1CeaQFPhlH5GD5/g2DUXn8axP936OfdXWMEEEkLvPKDw8YQs5YAMlh09zMhwHxKard5rmBiUGdSMdWd46qIWI2KdRLeYxiQ7u/E2rJjgrO0LUGMn7gbPQCV+VwhQqQy7vnHim6pQxyWv0MW5rCbncKcG4YyCoqq19wyKBiSNEhn3c+p5jOP7WRPcQZsEvjuAXxdjGWakxnLAeY031YsQ84i5B7xYAUJREAkP3dsKgpIf85N8bhjyLrr7hNAy/wWzPJdFnYqpdZCv6JK/7eFfC0BA8BIxaZGAp1mDS+BWCPC/IUTyQ1vojiHHhG3uen+YSTErF60nYgUDBHCqZzCvKhOGfJOcTsNoYElRnz57YEYL1xNmFSU/ujVBvSXQDKKv+zKGe/dyjKArJidM+bNZydqR857W6kNcFid2l/woU8pCgwM6ufIbEqlaZ6GhDIus+GvDBUPDVvH7E3nuqkLL+X4Zpxm68duo0SXM+pJ6hCB4clnToW/69PjB6hai/03n6I7UXwE3dFCQUAkIwYhHPCh6YEVPaFF1BuKqnluaoPETG33Ur6q/ERo/c1pw0i1dG02AYdORTd052oEfY7BeKYQWgFrn3O2t8eIcvHElSAzKr7ApsFs5l/RGaTmrhbZYI59PNVhF6og8uGg+ikwJDjBoxCpwXEgEs4lkLZJ9Jmh0YfT0RRM21yo1iFEbl4IYX1dZ6b2KsVF4XrM6LWUad2Q4JrzzvX7rUQLKHcKn2TU8QbHjUf4gDCxHQnctyuBW9EHU3jTXnLTYIK526DgU5GynLzFJajAnMwP6DIy1TVSB+1uyRvm1eCsZS9uUc5y8nSOd++Hh08TcrlE+cc+u4+Awpi5o48InVEIa47lEXn7PT0zq6Vy6ojf8Jt1BW1oy62Bt289CxTuNrZkq1nUvQDqwa8Q3ynlxIHDr207iaVnvPsyu72IUVrZTkVigKE85EmDTKOvy9abt98mgBLKRmy/2oqfgj+jDjecjLq9W9VBsjTv48RSyA977XQHy+etJATZBYQ6h7WMh45EpeqzM9+k/EhuBGrOd1i22nHIq59XKLJ9gDm0VM46N04PUG9J7bzgkMMZBWLCfy2rmnpduIB/k44YVavbL0YsmHsXPALZGbXqMBjzgAzbrlBe5Fbm0kGeSFVcMHQQTeHGlskJdsui3KeSpPON/+aK27zBis3D3eFzLUy4Oykm2k+IvHvh5GKBYhWMoOihQRujMOao1xTgUCmXF8bQhQ0dqJY93Ro7Ys+0Bcle620tjBLQFb0wyKAzv/mt2Mb6XJpx0+4G6DFWQVyCSnWk8lqjlofxEcZG9/PdyCnRShOgWEolpQtYE97z4sqqpsYcHBxY5OumbeKpYELU5sDrQPWc9zxBqejoSA9SA9XH49AidJf5Px9RqgwM/v4AOSEM69UANROT1Xq34Qwf5HP+xvTohwcLn6v0LkMAp/E4Z7OfrXrkLuQKKzAYgnsTJzYW41/m+m36TNEnDN0wkv6636lO9xTg+FAeTNT4bVZFhcLNC1fkFAQ1Y6Q9+/JPV3Ph78RiaPQcFnoZJbHlZOMOPUWGcdVqECB3Acv8CQvAelKI84mI9qXTsg9WadQysttPbiHsJ6WdkUNqqMn3LI9+DLZHKrxXdHrVusqhp/B4XxKPqLlqJOPJ02VFKfE3QoE2MYTGUbLGBTUgoGe+jmUFuyUSubnfJFJK1d71AmpaF7Pj0R7wa8Rg0L9zu1dTxdVIYhW8uaa0pokdv2KSefN/OBNIwlK8d0505IAFjD547hRiGjEd3cJgmDqaLkO6cFPTnBceag0w56WVu8rDIxZlIoggoQ8y4Q5orUzvVbLbRCGrvncGL1g+AtyPx+DJDp5F/kE0k79CBkaYXMTYxqVqEUbKE2YMuw5UmWCQDNtlBCQGxW4fWWEL10mjSPpA8zJyhx2dF3xwO1uxNE0sJ9QRBl+iyW0TnY4YG1wPGfrMXNIdCQ++8xugmuFJESkrYaohssZ6qkQi/xWLRztMT8WyYA5QXFFVuQNprOwH12osBIjcHiE1QjiZEf3qmKHwRDCvQlS4nLsoRDWbNoFejiYZ8qptNXb8y9rvPrnhWPeZqiPSWfnVLe75Z5ipp2wf2EpbGsJM3umeRSaQKjMDS/bXEzgzqjtPuhmLX9geseTECTt3u9MdbJC33v7XVdpqLB7MiAnb0Kmp7Az/crrRybf0OpiEF++PC1qT23Q17lor0lurvOXKbDCdJFQVN8a6t9Tann46cXGnCkDDiVPS4Shv41aDZxtCawNV2cujSz9TYZt1DcDTt/l6yltkjXvsLkEEAx7WFpHnGsMgyJeDd2lv7F28ESVtTONlgR0V3DDoekS4bq07rilUzB+VXhdGRq/R05pbzuPbDjF6tfDx2Vs2TSIbx/dSSfLv2yNfVrBPXh9savs64mU5YL4Xfmno0Z9plNFCxiizlkWbEhPwVPiw+H7aoM7G5/WAHDt4OMHWNzw45gR9HcuRHm4Ot++db5RLl7OmGVl00jnN1GuEanMkvZU67+EiGDTcwNooDT9TnMWzNimovvzFFlRtHKiHyE0r9P0To7bQE5kGF3n1VgOV83mzq19PmqmeHU0vbnyL0hvRn6VN56odwkoNBMSfcSrpVnOm6djBmE33G/jLw/wkaxewNhbva6Ocb+HhqiZ9F2glBXS3aoe0qSRQXZnoKlurh8zvODYfOg9FCYJYdKP3WUgrMNuI7HI3VDNqY80Ez+HKyRvTzsx3sNVT/cc5qM4PILnu1p6xnX8PKyXGrdWwYoDpPZGb8W8Le7EHl4/YzO6LacrEUxdtV9bK4ngd6AcwU3a1G9ZDEten/FoA3fcot1mMiNkq2d679mCfkx08/lBCdBW3rQryLYZ+jPMRFd5CBYMojDBfmNdYj3h+JCnV1aqvKrx+crEwAqO08JKoZVsLN+MS+uWjg/nuqnbPPDWG4BL/siV2tzeOXCefkKTAfaMTUrzp/qcizKkjdnnITCiG5nVhCToS2y8tuwuJUNFnE/iibr42R98daDXc3CIEsNr8NDLYTUEQjR/eE/HRhIm4G2nxLA8vmdoFW0cnOFpEBQcQIP4w0BZ5eVXAq4BsLK6dGfGba13cvnkk9G5BeaUD/JH8Ce71KKjMEJ8fZSvDr1E2IqQI2R+mZ5FQOBipC+vCx5CdIcaMvPr2hmeB9Vw0w/+oEW+G3VDbZpRyqbmjrGmgLSfjQrlD6lL2fpkFgaOalXh0u1AI4voJzm+hkP5i0HRQHPedrleQ31amB2wEjkl+wihd6c5BM+SQCVbbosdzsYIt/9715d2euAaZk3Ymb579IJrcVC4QklgquoLloUTevfB4BGJ8vE2Ikm1JFPfBgmpqoP+1N4D63926PTSWCbu/yAWL2o76+pAFjHxzousDcjvpxX2LmJ49XllejUYdNBSik3fjQurYUfAfwMtKw/tzm1nsqlzFP8i80LRc6y2pubcmWWoxVS4UgXwWukKriR414jFJMgJCCfc+t3/5woHqs8YRCu93dzgKBgnrdzMlApW+4/X3YHHkM7fY/bR3QbawBFg5XCKLZvDl/YxIDexIOleUrdkg73xQV7G2OyHhIqig9J2UepPahGjdHVD61nmPEPlnGEf8gYe3up6+8WcU2Pxd/mVUSIdE9086p9mdrrjwFrLvP9eOfCh0gBELruBGm80mLOex6DDog+hpXb0fmfqSqMqYs5VsNpPMJNlb3M3H8SdRVi/HMMw8q64U/ymK8BqFZ61I9BQV4WQAO4M4FmIeTcR9z3oslOs158k2NqKJjds1QUccouFRSjco94b6gtQgr/WqIYV2+VfbIQxMDPZPDnZecQZgEyMxxuFyYHIJvMhuuw97TII0QjN7YjoWRpkdOkUPh8DOfny5eixjiwm6C5GsCBLpyX9YVesGYzQWSrzqdbMMqd3mzpqL8F1PTxzua9CCySTFO6yC26k8nTJFoRp+DH+gcc8n66OoFeaI2LBDfmCO6/bCRAtp9WfphHzfpnJjU3E6jwEFTkRsNt5L2B34WkWH23kB6h8gVejM/pMX390FHkkoDQU2rqMDBrRGY61w2+h4WBu5wZ2N/Ezzii31X7nBG+4fqp2BnuVGmP917nrbJ1tlkd1umzz74DuE3g2fIIRIIjdbtAHYtcCI0kAzyTU8UnK/IgMr+1FDBUGoarqeT7Yw4v04ccDo95A9DjVIbotoK/6KWgBZ3ogHf67b6DycQfrfZIUcsKVRrBsdO3iJw6DSXDRbIKF5JtW3beMBaGuR3/qWP99psuMdW0PmxHvO7W2dpCOnLXo5FqKVSl2spC1VK6yI8F/WVaHTj4uxoK58keqSJjPOdA2fHwkSU4egb8Rn2dcAuYuJB93RweRrLqimoRIe2cxf6m7tnrVr49iLlYJgiFqV1gun/3DbgXpt3fnTdIWvvqoj540MqQNV2WirJqdighV094E6OjBEM7ocLQWI6jBGE8q9UQIXlBSGfmog+z25AbcEQtPYGgRS675fQV8AAADAAErAABJ/kGa/0nhDyZTAhv//qeEAAADAAAF9tMz/Ap59sF/3wAZdr00+oQAnT0wQTkUCiYdok1JzvOYOQ8w22AWuuYMsd1f+ACHRk2zdq1kG5O976mB5T02c8gXldhtB3/jvXVO/2hpRaN4KUb0X7A0e6v6GFzuQB4BZnziIcv0Ab74i9qyZ308Krq3G4RWHr3WYTEvw7OIONfYaRsuu2h9t2Bch2xXgw5QSXm1D6x84U2IWi5AOk/LSsYY0ppuX9Ife5C+Fq1ppGH8gbDyK3vWeez8vtxsO7oIgSVA9TiSw0SvJ5ZHiGZsSmeNqX8Wmi2QR6cjqrEgupkX+friudqs6S/LOfw/trMZkQ11d3fXvK2hfGJNErzXCz2s3Ew4Lq0Xo0g+JDIOk6sTAs2eMEu/bTsjtOkQVWP+lFv2OGj0wIeb0dRlZ0okRbXZwSp0pRkV0r3jsVJCcyM19vO4V4NHmZGkuE1vLPluiUxHfbtiYhdiJxDlbagEEgyNh51HT4PVRctZ3C68bC4ExfDqmmzgWFR2SObQPeGArfcW8PogxB6eMhGsk2++X50z03A0Hws0OJdxxVKS03Ra1WZtjS/zaYoxBxILsNOHqBitinvDkbQHxzB7NOXjzEkSd+fcm4gLSO5anpfE8DH83B7L2PHcxddVy7XWU3aGJcdZ9eo5ZIiNFVV37eWXLzxSml+TqBWD4l7FmGBLl1DICq+I/ljokMa+TLIIG++KaLP5rRjQSuNn+7tK6pXpzqjn5qYzt6eHnmZZpcAbqn+CT3ivOeeVQfBkO/paat1LnvHeL2e3zBm8ywejqxU8iJCtBqS/nLuxRt0INnjEdcP5+pWcEqXqroADhuRqiiTtxGvSF6lGpGAjLM9DabWKIIZvyzfHofE8LbiyudSDJpxALLzPxOQiG6yh6PjG8NO2WI+gXeBe5oXuQMzQqqv21aXSqbQlU9mF3/qz3I1HlsG2FdYq8Dw6y8g3BUB6tuPXndR1C9XYJLs46qh8P4uNdO1/QjM1mjzeD+bSHHat2MFi3a8YRBHyYnc+/DBuR4z1KC9fj6DDLenMg+Zux3Bii73P5rf+RO/bggV2vk8u3uYAKnSFyhETZrOGEBklB+EKliXNifmTZDBY0GZf5hAMBFqT3W+ZsvYAgvJM8fyvjr2g2yZcrxqqqkIEUyRtAzpLX5EhhY/PG4aaJKbNXXpcqNv6Qlbm2HpLxih67ctCaKv6TLDiKCrYRvVWoZ+ksnjsA2QXfTImQFBCMv50B+1akRtT5/kNRiijBVqb9RIKwhYhDbHOPwRUNuVoNhEi4TEo9OlDUrq+yRCdsVwi4SCaFpZVu+BhJziijXaQk3ZwZd7LQ20cbGgZTni5xFp3ueuLEmxRC5b8WqmMSGD4DHkEkL1cgCB9iCn14GJNVxD68WD1tm1tchxxJS8THWuat0IziGr90BYHnN449EI8liZV2i6HZz6whHlrsJjgKYAOd7Z2Tdae4NkJ6A7rPmHZvy/FyO86AWLkdezKPQxDhB+HhX7cQ5TY1xwY8lQ9LZ+azoALdkZVkAp9Uk1V3YDlgRGuL1do2Tju81000VA6a/XqBm9jp4AJUjhK9Yfni/550eY5y0HQcWpk6NXJnwzjNOBnTPoPuxCGeSi+s8DcPcHt8fCZUSbsS9IDRkrK1rgnrKsPNb3+dBqfr7I3FAjP0g5CXnm62Km+g0BKyUF/wHU3N0oiTGcpBbhgJamAG0t+qccmcdbJoRworq44EWjQ6LEzM9fF2yCMOw92ETLtTnfxBzACkqv+tUxj9ZzinD5wRw3OJuxCvYgpiiviCjlMHVM9umj7pdxafZp9Mtqp8VgjMtBpMaU+NKw/DyWPx6qc/QkX1wylhTT/6WUwKruya+MBq6woKy1vYbEOl3c2/wYCSDj51GTloBhqRu80jHuyQr4FY2Wr1Txh4tsLrQv68XHrtSAiaJb2gLCUW5ZujUCtt7s/l0XobFrz4apTxQJ3EwN/DGi+XiIlS/TGS0tpO+tw/ITIMxVAzl75+pQFh/Xsm6NAxxqHrqP6z25MsM3ZgY8pucxQiDzrZszJ9cJVy7ogA34mO1SW3EGQTSVRXnwUICl/GMUZrr0bGwIcacPGBZkopTXYzEzti3rfaZ2tKuExoLVkVKM5Ur6t2ug8SPIFy3yVa4dHpeSZkm6XI86SjW/oIMZK0uALMRDw3MOFIcaOgoDI5hVkiFDciUkYemcekPiZEyE3tuc+eXifFVRmGDjY2nbnKX1jaPyZIzpxzC47C+Q8bxUzXpI1sJEsrPXUSfW7x4bdIkt9YKYmlO+kRrxhyFLqcw0N8tnO7VOlGr+uA9WMkydVSpnP2E3abl/FVdULEGU4j5yJKQA0K3KQGIE0ytTnr+DPL1I0zN9zmgEheCeKT2/iertDk7xUmDNsiSNF0S/a+JdcbNgP2wVUP+KBCtrim4+ryDtJ9CRXKK9mUX6Kb5jx8EOgr9QM1Atra+264SsbOPIlURT6p4BK/uRBTxUUsKH3MsQdqIRzE1yjj3CSSec4y8R9JTPuhTmd31/fgKbu5UcFliNsVm6x2ghCHssMXSC2qoinI36jqMNN2hN+X8hPRQxZE1l7z/LfgBS27czVNKU2VT6oa3BsmybtbGqEoA9y0X+cWbv39QfF/5U9ZBm+vtiMVqzDCrHqOLiP8ZlXCqEH4YKvMfwG3mASQkuDdkmM9Jxlsw1zgoPDy5GxFhPAxUMm/EnWM5f4tHXfO2MJQi74mbp30o3wA5NoXbIwj8IEMsZc39Wpt+pXbf4hug9MyrEwR1OreHHzpi70D9b3K5vl9MvVJPj1rY+CggyJySGfKvkUvQkAZbn+8OBwUYAOHarSGecaBPI45am/3sV2zBfUxJzUx0UxgOjg0car5xRICPwinLWskx3WvMxomN5tPqIRM9c5dNynoDpDWqxcGLRADm/TKjiNA0H3iQSfDmdXLmc74KMCyR8MW5ru38Lpz5Lqv4FozHj/1HqkN2LpxwizoKoxgwy0J+tIURCfhoOdmNvGq08XjbZIrt+3MXHCMwtSUbvFfuFQsu5IORMdRQ5NXdCk09xz7dJLMQkQ7AFABJzZm3RZ76W6i65VotSj2LgWgASe3ldkkIc5+UvHPuaRJPnF3blBfxXymLa+uUb1Y4RwcnJlAFY68Q2hvJmb221rWo5xL59ToNL63rDDlFEGRkYn3DmZd7aPv+BA5D5nMd7VbfX6Ke0dxtqs9CoC8CwFOsGovU2O0oZGGW30pySE14w3kNHT8s5KOpbGNSrd6VX7GxGY2icIYDi5n3peamZBjrt9mgd7VzcnuQ6kjBtUCoFBM8djxaYcDw+p7dBWhslRt6tYPydNbst/tjc8jzkTmjrO16L9YR93V+AukhEfuhXG4LplzfePXNG4hOS9yASk38sW4GLIpzQBlpckOFn6gsXHPId5+/qkeqHrmodTvH6CkzpOGBT8UsYMopbI5PelUp1C2bH0K7JzyoKa789fZlv2cB6AJV/lQDkSR+KzsqCMcdteYfIzlibU43ZIk1p6cZaOugDmrmolE+mUU7xjfsQNLSVgTsyNpH/C11VxMCpC0liSAoOsh5ozqxKrRrYpKPRWr+89mgmpsq9ANVzXC7lB9iFRVUJG31NDl05JsbQ1zO7Bvnyt1J3wEH4o5/aX+osX9A2RHezn0FUfWI3t4ZbS9Mifg5IBA9hkuJRDCOq+/QcOUDvtOupyQi50nVAReKSP2QmYFjb/W41mUYZLVJhK3FtjgmAGgbH3yF7CvhbV4fIWuzRdhVHlNKPLjqxIwglqAkvrNz80r86ZZRGPEAexnYvSheB4mLGXz2+kzYLGqUGMqLjVivjIS2z2go3YJIDKdx7vXDI+E72hEvTFN2GNHriUNWoX4R71/QTM7cPxwbifLMe/nFYQ5/2mvbwtHaxQOUfH+enaWA8M4kfYNYtWe/qpBVm+ZCTSEvOWRF4U2AP4sgbt/cvEtvk5uH6U94CdfBSxHG7/Cx3KpbAmdCNrWk2rLgYZx3SF6z/AEj9pLVgJsPpfXMCFBzzD/8ly0GqlSKj3qHH6Ap5WflJfvJGRvxY940B9ANyMs+lvLX6pJMUM0Y0Z3sL7VZpNfs3QTR+elLKdl8AI3qMngZACmPU3RUfwFLv+NodIaWSMdUKGsvZuJkznKtxp/ltev8urN/m5eI2LxcExtnAScEgBrQpK2qrhYWLGSuueVExcV30J5B0JQ3Qe92O/JIs7Yuq/onj7HikWLDefsWPaVZtcKnCi8FBeNIdOhxyW+oLxsy6LScaLKJhMondTnLYkDRVYfGBVW2iQz0V2GR4pvik7QGda+W7xxP/GB1moOzD/ih2ZM0yTiNKKK7tuJTSEDVYa/bAV5jJjk8XivJrsYHqutVcWCLkV+K1rKPYFx6fLpcwpqtabKaesswWJNSNKVbgW7QI58jkZpTdTDds9WMeWVjkvJevB/eSZ+YHQL/9nS9fd4s4MSEdo9vXZul81wj7h0/+jJyx8B4EmLYCNNboVYfLmDnvg2nY5JnXzBjbLLYKiZPooLKvGYtWUsiDPR4WAGj17ygXWgb2YwiIQgIKqqO3Je3huHmnWBAYB2Aa/8p1uCzbXTd6NCV2k5yj5zydkvQWV8jsBDR3+x9iTzl95Wdo7hdY66n52wggiv2xIwx6eK9mfxgR5zDDigpvQAkouxA51g8W/CkHkDAqwAA3kZqymjNKHLbBb9yMZ25/s5az4rSR7oJyGVnWAggQ6K4RcoC7nI09JOT/puB+v7zEBNRtjE63Q7FIGLbAK7ZG4ibZXVqYI2IQkE2hnIPo/0pSMhPJ5Ss8LodQ8Roj+dQGwfitSaquaoWJLXhhnC1L4g7/GlYlN8hEbH8gtvhfJnHeFCMDEQVPqjXQxIJ9YRfnxN5sYl246pyOswxokwWmUfuyjB63iei/RWs7tQJg1hmF/0OmmGe/hQZbLSmU+txwnXLXm70WCWdl3CeRKTmB89LlxtpyeZIZlWO5/zFg7oPj2y3F+S3Q3M+lnAoAlelHpTAf12Vt1xBV0U562gnLVJmKSOtpe0QB6/ShRx0NCN/WvV24aROOmXFhEWlMQ+x8iTkW7sBMTm6eQOB92Db+z8n7kTBtLGawwl+95W9JZyIV8V2W/3zqAebUU0kObwQejtZnprATHJcX5/Td8fzWI4MAXnOGwOaXnkwieAnoZ+8acoXiGmDCi1wNu5k9elEpqwaVvkeQkB2GoKWhQez1n/BOkg8QSkcGUn4oumKPeATgv/3inGMIFSude17Es28RYCAk0g9pGX80MqXDvUkAH+AeXnjAN506QXxB2pcZTdHcqVStpzIRtKRvKkRNRCDOBlMAmzqiCLj70qvWKbxqyzmSpexCH8H37qn1p+MVEs1blxSRhUWYgvCXuhAsbHJB0tnZLu1t+ukrVNI2DOaNM1ZfKUHZR1GB0CCn7LvE0nG8QWqKDHfrwHnbElZr8e7hauidi+4/akmt1sAHlCwzmn4an85r0h43bps0eOEgVf/tGai6HiXwIFMRhIB5ayRdO+11PV2lgQgn4asrRcahx+o3nO3zppBrOk02NKBxrIiSMQX7IkdFiIVaoMnRMVEwFdpsvyizTsBLGcQUR1G/cLszI9v+BrJ2vcrNNPe9YJbWIAUyfEvEd6CB152w2M5/Ld/fHRaFnnj2lmjqu5OCn3mYU0IQtjycDlU9mvWveyNvsRtxiMHW4PiTlJcbb+wig9zNyCmt1fHw2Ot5bFAmKalu8a8gHE0EuAZg5cRcsdO/xG6xBxGRPk1E4GUVpb/eQqMqlswqCtStC1V9xJrVmrU4dNLE2W2sfl8z5KULCOx0uOhuRp+WwJ9Dxqf5phcSPrV8YE4Wot/T9PkkAqLkaks14D8m/MSoaAzVwR1C5gKvFJjZ7EKZWtxV3BSyVMvBT8ZM2OowHce712pZuIPgcHcxhKVLbLc9JX7h37AnnzraZF/B3N2bGoVSspg352ew2LViUz3WpFy2Ev9dhUEE01+n2KBrT/iK6TAw6cNVS3q/Yo4xUqDQs6lJZbuXgsI6sRcNVmNSdH1UCJgXz2lXk2cIokfCgHz5lUc1elqiuRWDmdti3V7BKkL4vd6cTtZdLfHHtJvw0Y8fRV9wGW4+ZudOlthxvbKnD6/sp0p3KVAlJRQEthln066kioaFEhiRsa2tYkRwmiebxvFRG7gocrrjyisFFB6WNsArslXcFBYT0iXjct9+A7y+JAw41xIM3DS3m/2O3Bg/nViMjVnSc42aIxctJnkCyaleRv29vIwfk7x2BmLt/JxIvMHEmEGDTVADhtVj8GDVdUjwfWkksG2VkD2X2DxF0n50TDe6FcX8JR7wggTQjATrUPAhzcIaAqUWFYRehYBtDlFvCUF/UtPEinXswM5Yg5vNbPIeQi691Pt9YNRpuaqAlMzoDy5Ze6wl3h9MVrCkzHSsLJHKOzpAwLrVEhoM8QQzf0+vJ3PVplqnJkvdZavcyYC1S5AHFG274E7KaJWcMO6g3g0ib65Cx7numdxf8+py+H06E5IpChFNGf0wTVFFwKVRnh6PSdLtAALrC0TIemxBRH52WQTeZs9/cvMpy2MxDXpgivT9l+U7uO4Hn5fHw5PE6YmXtMndvnhmpi9Iu/kTqzKpmlPICrIGHSkqx5SSZnrwc24jDqY8IgjAg/xcmUERreYrcV1DyEfLP9EcQW1fHvyCyGXBBeAMjYFHyhO3bXhc9dLUS9pzj6xC8aI4YQ7CINC9ACZwhFkqj3WWRATLvR+A0vOjthD7Bh91NOLvAP56NKF7MJ4gUzYVGCXNukXI6zYGhn1fKzx5jHKtpLY1FMg2O35YtREcYy8FLFxyVs+nKBk6uAcDozzVzvw+I9xbL/k1Eo1tLqpzwfdTKaXvqJ/9bbjzCa0idhpk3p7L7qgllSWUN+R6VEce3GLFhkY2Gf6qty1ZBjqAUbll3J/vUsrVB6ZQ6uM3q6hKjrjUTbRGxY42qaGVX/trKdoii8uuDuNkL4AiUV03jvrMp/h83kymrMuCQFcgdVyug5TNfRfW0gMqBGiu+eU32tQcwVoPljeEjWrook4kW89IP+Vg8FZ/GrTmQqdHqvQovH+7/hdFGyxviHRKuQ/WO38fiUP0WJZxYt0ORHXGSYD3grXtfp76D1gIvBQbT+p/f2dMVyIGiAdJwbka3vz7wz3TiW8w9sR3jkjRMyR390dbgcLP0eVC4yQhQ5tD2nudIrqRXv1BArbYFrneVzSDaCjsECXAZZ982tE5oFv5fUnv1xXjOZLpspmaU58sTHMi8K4k19kqbeEXa5ymYWBudYOQvuxg6TPFjDbAkOjsqyVT+md0f9Z+ik8Z8+yxZznvzq4fIfTGnC9RXSyysRTqrRcJQGBk2ah56hGGxCNJHcXFiHblysPtb/aE0OxB8s6OaHKgFqcx3BbMUu6qC3epuknQcJHUCXdXZbMGOvutEP3ukIq/Y9mv/iqyCkl3XP5aA9RbrvRbvViVfMnWm8UIH4J+d6JJ6W9XW/jwSoOwATjeHQZzBcni1/tKOVsGiku4zvoxT92QGvuDbZbVE+NzMw7UZcHcSnBZr2vOcyNUf9nmATj7oARoei2hOA/lHbKNBe+ycFVWnjCQIL22U/SD5gCI6iyhCfk00d5dfV2cJmDIyJCTY1gb9Fa4TEeABgRoWsLJuWAxE6I2x/sHbvXTAISlVTC6KSNHQ0tLNyNKgL1AtVTRhrdmB0CEBHsFme6+Rn2SPhxrleFoEE6DF8Pano1eoP6bDhz092P/J6CbZkBS7a+llyAv3mLPS6C3rtzPIOylIR5otBcm6SLx/f/KcCwrpeynSmdbeqz7DQd/qdBxaJUoaAeqY1/JSrqsVKkLLMLz3JcHjIg1Cu82tU8yeFm+C7aiYjCp4tEkbdT4S9Ut+y9UkmplivBhOksEepbgJgzOhb3WR7BdhOtEVoTlGFLP9iCsQ0SbUGOPLpu0ozPmiP/NFfSg6p/mJuDxFyk8SH8V0FFnVGIzY9stYoQMHSfct0Ihup6sUc2VczdXyES/E1yAGbjFKe7NEn+ECZzfCGasX4ghUIZFaz9i3W3qmLKZz+lqlcP307yglSQyrS9G8LSmVo6/2KvJhNORylK8vjdP5KY2Q9hBm3vaotqjb7xeweBfrEHNuIFT/Z6t+JGv6v3wV1zZLlSKAcJSCNjQVLK9yoKdGUE4wAxAO3V5Er4uFRbutJ9QEJknIlltrjSMqTpzA5zmdagC6C3l8iQWKG0dhQqCP93HHjP6gn1Ey37ddIsZKsNhH83+A6avv+wizHP4U3FvJYN/9yXxW7TZhY8ZVtxTAOB1ZgGz2PY0AeIKeaB+bMAVVxKzckXsJBFeUawwijjBOzwHR2buwdcWrzw42ZOW7LijaziVMYcKFGo7vIFpj80p+at5RBhmfDOEBXlrvS1c1AtuxEjHAWR7hrbIYratxb/L0COzt+Tjy0Bd1tefv0/aRrfH7t8WiWjrqq4yEQqLdGBNlVCTLOzH74jpCImxIhMrBWDCVzmV90YV5Wb8HngtMOW10D5sn/+Zq8yqyAPLAJeVNGof+NS/FYOrhzBWYsPYnhGmeCAnAQjJ9UD5mvbJhKr5rqqxAzyXWsupRZa0V6WRCejjLUKbms3rydJv7Hiz/2vl/5gdMKwstuprR6/AW1Dt0GC66rwoJMMQKw9IMXf385lt6QW3KNdQiBMcro2nu0fuWRtlQXHVNYNWruDwq1wEG8LtsBYcnMY0HH8oLYSa7lPBor8+aeknuPUhEoNJJt5sWaG3EJdu6brj2TEe6dnh1RJ9gqAyn7/dq7cD6lXLsGbPWllXObK5uc71qmTTzHw2LEM1cDufuWAv3f7DEa3wnjAghyz5J5wLi1k0FNlZiMd3nRNJvDocRql+b9vEipvBfnBbh6JHP0VYMsKWuOj3m00zwov0Ws3oKQkQwDzrOsdxYKgfzJLL1eilS5Ia6kH6vGir1DfiKzC9YuWKw1keFZGgWNlbU+jRXWAl+ShG07DP4rWIGP/oGYicKWYUrgsoahQdzyMJERMjoQhPsddMW7OzixiJdk/xzqAC7Vkh3ihqfn8kS3doYQR4mEWXjQ7Fg0ZXMPv5giH5UieWDtvp80YMvYvkl/w8x71A+i659gpUdWOvllwUWdslfk8BQKz8tJXM5HXxh6BIDMQlUgprWAseedagrHTAUyZUTNPFeCvjdMKz5lmganHvoX0hD1/3nBmd2SkaGMHTWqe4xJEdJBDTiccKJ6MCuDcMr1OGIdVZUrnaAJqdk36sokMq3y4/y8wBSxuqHXFGdFYk9DEPxB/qN6riEdae7xl6/nP0VSlZwRIhMiTdqjb0+cU+DThT9QJqUl26wT8mYr0Bii6KsWw08uujpUxe0zDFJwE2GNxIK0gpZqrCMWoMt9EU+Vl5qDDT0YKvP1MpFPrhH3xm2yEeBub6Xk1SgD8bvmSBSjlOSK4zzl1tc8HwIXfMD03EpWrnFxyHdj+rxkgnW+ojkkz0neiXWWRf6Gr6gTwqyUsSUmlecKogGQ+8AQFUSIa530YGayDjq5YMKHq6l145SStmi8WBfU9E76pH4wrSX52z7x9gAEuyxi7mbS/A03RpXr+tRbZTRJmwrdM7QCVczCV4AUYOSqXKfmrBETHdiHUwOMldMIZuEojXitu13WERLECRVEMoU6RZstvJAfEojrrnoBgftWBiWJJQjO56dO2b4GXdYttB7UMliMvijb7cRf0krgAsqQOySFwwLhCu0N0EJV01wGGIExEVLwNK+jTuxY2tEkEEFUBYq9K3gd/C43MFHYXK6RVjQMFpCmcNpDDKHpcgd1cMFOLrNsmvljLwfbtMUZ/zafmVAezVAxK002GqdzBxs7LKKvNAY4jMCZT8aNDkJpChmjIs8h8fXVmxW+QXEkbYsfZ7SqfcUbp8OfN51JrHm/UiF+m3qo/iU5gmdtvc6UjLxCNH4zSQ+Ry0CY4uY0GV36Flpp6JvMRLCvf+HEF+lsgiXL3Ek1AigNzJ9K4HA4pHwFXRGNOmzxHqrExCyRHn/6lxMQjE/wrNDyxEN1yM6WbXgKBzZpej0siyonnIj9nO5GR77adBgR0VWY6yWODiBiw6TWpZXdCXNc8Y0Ha9tajqfXsVOnRc/EdZRxqLiQZtrekTgvTDu6X0HcsI2GsIIWHaAojK1QdeVbdDJ8+iZrgGNO+0gbiuvmQMOLF6Lr8HwDUtOJikNfQDb/+/443ElALVPSrUi1pg9ugwgZHBx3JUaRi5J9P0NawXpBENaB7qdjLwu4O9lKpfr+RpRNQFR7CIuDX/hQu+fjeyPMVscGr/v+jKfW0vO6uSxiEVW3XnB+YoEeYq18wVaEmbPO24qzr9yMw5QTwTkgE1Ns051KGybgEOE3UOmhHmAtj4bW+8uQxc/DHEx665THoveByZFLdEYwc6ga/+dFfI+V1K1FWUbs2RCwZZPlNg3L/oULwmealBdkGjWOAVNMDkidb14yndzPZ7FE1TU4fm4c5uo/FCLGY/XBk8uE606Y6bqfOp7IxOI1wLs+xbL2vZ1ttoCKU8g2Ab8wXD+kMXtIlaFNoDYqekToQ/Hcw+ccdrS/JawjJfPd9V8a13gH2WfayAUahaQczTywVD0+LZ7J0y7xknzSQyQ0QrXmF3c50NA+0LCb9RBzqOrYF6ovPSQ6dgkpqbvBk3RZP82ST5g0/fMRq2RNtvA75/6T3NmwCLa2tb5JXit7Wdkn3L+pD4l9P3CrgH8+ZSyNa9bcZypDe3fnx6LWARmBrb2lKpUxKW5B6PUG6ZT3RfseLXidXpgbqAUVACVBO4tIBJtlomx4G+kVh99ZwHbm2W32qIVFhYlMx+LzZ9qvWsqriA2NyE1ov2cn+yzqzBQv2K6G1p74qH7/Xt6kLYJN2MuU2iS3wnbXQ2FugWJ4hZ8sF8m8Y7AJeulaVPVLPezw7IDVPK95LQRHU85veRaT42oRksL2v2ShbqUq8NRKFRcHV7mKbOxnvGvAS9JcO8Xmhc27geHHkpTfusOGeF3VuVygVZU8W56WKrVkD715+vRbwRv1qLGMWFFmRI2QItEdBgRo59IdTAxI2+MXTxlfkWQuw0s2uShmHhT6v5syG439VlAM9kkCUgWE90KKsnPLh2Pes1mR1eYARD+axJ5pkRmwN+BxXpQVICiMwst1zUpezrwDwMfg22fKg22eNyKDxpwtvaaMsps8cvXVHfXwqMqrursdRUVQoU5C2sJQGNiNuxHsF5hvzWm5VTiVgqDUkQkBtbmqCcDqyQgtqR0OE/kmohHkIhI9Ub6Vw6qmp6yIBmSgb+ITggGOBwFaj9zHvxakksx73+y6pDw/zPfNXAhxe2sd0Wa+bl3qDmkkYwvoyVYUCyofu4A/GinYSyRl6tXi7e4u+Oiv9jTmJB76g5EQJ4N2stpLc1YNClsT8ZPtXO3H+XlJNBYbBCSyv3woKdFwcJa2O2u4UQdZz1zjU2RJPsrZjRqM+4eYXkigrwm8KUolGEP9psFBlGDXlIhO0W/jybbRn8MXyzT9WPccUUhJTM2ZsakAKjARLudzlxGwAGG43fX9H6U0zfbJrS5xPNBwotH3pQWLnHq6vAjr9AyBWaUxlNeIAEK7bBL5NNuf2rO/YXlU0y3nJr049d7xgyglnPKbguGj84U8sDGnv/fyID3MoOeFjiDGKKpp990aEnxvm/B4Pv2/PdSYJhcBgrJrCvFN8FaFWJ7NHc6VaknCiZABbm3AYG9a5Av7y15SJ4WX7yAY6WJhGDBMVAZ0BdszMh3U7HAxhnut1vPCIKeCesCOxgCHRB9Llx6l61RYnly6MR+9vy1E/dFdJq4QeWzoNc6Gbovr9GSVRrw+RhutyijGCDXryboejHSjEstDmlgFV9C2VWrxM3HKysUkbx/vLd3ct0TjbpzPCjZdG38bq0na4lvZrWZQDEZ4mhyjfhV8TyTtFqwzf/q1XaymQyL0If8yGLJb+k9Abf74z3NxrfgyH0bxFtCj/pjVa7y7xVgAefxliuYHSr2vu7Qrc21djKkmDmdMnhezWgV69clFgWlYoS2NfqCDzZlAnc8YwhkY8ilxS+0QuMc0Gj+nqyV9pyiGMcUUkm30eXID7IR7eiULaB9BDVI1boSzMGAgfinY8AV5vpY8nMuiijgibNf9mdmnHSPOoRiUTGuvO8ReVO8XWUeaXaBfdMz1+1ccjP7PzooTJ3Al8euIfP8LgAn3Pb5J+t+M5RWhwpqddCV5dwcae9Af70ZM82ZjU0eZo/eBcZqBe+3WQ94OwJ7iIu53kX5XmPXYulK5QSCTbeWA7Iy39zrBPltWimVK7gQrAvUIU2ZZ/zd+Z3whWHWz8bboaVay/Zl3J4DC90vBLK2qHwAATpo2F99YplILN2+gh+X5G90KM/+DYQTPeWxXPNAcaTw4Pqo6eCq0XL1NFj8eUeasTzTZDhP8nBTcJ+h4+PeFhUhZ+HITezyiPpeNjepzT2eInCa1YLG8DT85YMPQau68AIMATynbtI1lfDOah5UgGC1AinXFMImzIOIkPLF+LTh0Ftq1u8yzh6RkuaQpKpYvuf+wyQKlVG0TcMpxkrhH0jFmQIuZ2mrUyZoBbCJGZdms064SMXH3lKcR/j+VIoSEd3tYZH/tdaFs0XQeziLPtrgeI+oabS92VlRzjEeioc+YhGSQerh07m7lY+W/9WoYeW1zemWnFczgvbLauv/Ibq8ctZr036PrrThlqxJveb0ASzcYyLUebmxIOat/rZIWcW16Y4o66zSW9Dlh9n556uBlrZB0salQADB2qzY84QxMwn8zGwQ9T3d+0RLy7DXLB85ehaAML1yBnP85gsbrdZjoRVBedq8PCW703YXQwD5NAqFk1/cXTCltokn0767YvgsO6fIanQqK9oltoG2UqeA4KEE29NJ0h+wj8udy0OsYcGZlC2Ov9dTely5ECwRs8GUtmb/ybk7KNCyDBkfPhn7N5bNBMaoLAKuOME7IYe3SkEGQSG0En/Cm/OYSS4gdpQJqrLBVwocfNnQyt9lrQbzzA+NOg9U+EjadsovRXA+L6/QTjU4JkCmWzScia+lqnQT5CkwH4I0+Lq2UmA2xjvLD/AVJtHVD74jqTBt1jKfNK8yTLGJ9uptHopxQ6HYtv/SoPsAmPhFBZBwkcYF6wnn4QoDVYMCcryNzEmoHyP9UVp5NeBrXRfGtix11JP18CiL1R/VAUJCSi0ZRUF6RPWmM1KiKu+bFH+z2L0E2ck7HrF21gtuZ1713oWclx6FDdOrNe/477VJwB+JDxDCXMJoWtMAPPr+Waw/QjyV8gv6nCtYo/7Yvwlb8a04iY06xMAh7FRss5/69rfYSFDq32GUy0IdrNWgbydNwbfMpUh/2/mUoiWMsGHaCMlvE+U2buDbFErpiAPwnBo5seswt3H10AOiVCWYlInz2wGAc8AZh9bWYrMIIWcYXPI/3Zcnjg0usa/ALPICcfASal9+kphQqC0iWxQFuEjdvW2oTDo0xwnVzpqN9R7trfjyhGAQtvUS9ob7wReYlg8Vef6JlxGRWZus0hcyAbRfcMZ6VfPjuruiM7o7ala8/nx6w97h8ya0Z5thcMfpmMfDx/5R94BVFh86gQh+xoTZ0bt1c3b0RVDSKdNT2TNGSNQTQc2+o3fBe79f5mZn3onCemH9J5a96rxBiCgDq3bm1/bhI1nDZGuz+UAcSFvfg+toe9uwQzQVvSESEtKZGERZ3VlbHgkCyut+u7xschRKKGK0Q/PI+o61wJnxtWLNDZP+trQ3YBnnT89eJb47d6cDOVGH4HVi9Xy8/3+iL2gJwCivIU8h1X2/ZdqFVLZOVcXcewRMGrv98GWF1kcyLmnzB6mxJIYVTI0lcEUG9hmgnKAdZmz5H0Aejk8T8zObsUtzZNiAzFluK6u993lRdRvatKwG+ZWIBPLtYSbyIKaD7jbhltztzGZmEy8muYpyZKrfP2i01WoJU39LoueonzmIPK84v/zQxzsNNmThOxcqzfY26yWK5N9OM6UoFZTohHsJpBTo7WctMD1SW+35oNFmAUpcLYqnj55bCo+FsKLQ5yrDI1Lsj1X3/x14EG604YZExjazGy3wcavpKApIVjwCojFjF4JOcr1mVGtQGXdXEr4V37HeWScZBDU1pGo0Q4IF92d+FyIImxI53IjYoLOqxJw1kZIQL/91rZfwWDN29Tq5bdz3IgdVzX2yaGw9w7J84B/5UOHB6npsQA8A6o89nVKszbkVa7tJBAWNjLpFVLLz+d2r2juAabv4P2mHBknrnyu7ydmIOaCqyuJ9RJUakwm7ZCMWsdWrU3svcfnH9GjRl8IWr9p/K+h3g83b+qHsLmNed/oRb2yhVp7MTP6YMZcBhKgOSCoJkiTCmgrjOSfbAAtxRYh4Mn8cVwRH35LKpIA4JtZPbWO2194aTVqrQn0jZ5sKtUvz4LtTCcdmtfNZOSHt2mBSqHgMem6Vr19np9iHRReXZw+y7Ls3Hh9P3UF86Ft5Zy68sAQv7RbuynON0sf8eZbdZTPBBEhbhZjWkgfpzWmxizVNoCncpjVrTzKhz/giaK1fgjcpBAjanB3l89aPYqpu5tb3ai3GnZ8F6LFxsVvmnErXNd9lSGX+mBWo7nirb3Qx9SLjKE+MaehHKJj4tpnEBjsVltKarZ+Vd7fwJ86hWF2OJUio9Z9XZqpKGcyWNRPGvlt5M4+7T9002Tdag69AVbfYjmVVH4diocgD0GIpOQiFB10B5CKaeuYPq+UqEv72wD4ltbct4QQwdiSIOJvtANEXJe4/v4f7uaSEBdz05yWGQ8P8lq60aH8WohqKcR60ch+yphBTM17KqFc3Rboj74yZQHyEch6DesCres743UPGbkB5F64TQ+u/kvCMCDHwrKVcVxkPebge4Y10IMmXwlK+gF2kyW8EIOjD9HCPB2PG7/HR4J7c9LOiocIpX/U7bBmdvRXAT70xgyOyIkyR7gps9c+j4kyXiY+PcxMLzGrK5id8EzWbVvO8ZY7dBpS8hkAiVboXOZ1mo1au6vrJtGpfjvQMKERsNAyNzZp6JVwoRWaZHX3SCuA4/mpC1mKMv2V6U3k32e1kacjep1SkMTnecy41mKkf7VcHrKu35OOGVVzMaXpcP/B3BK9bqdJnTiBJGD5cdAlKYTxr0cMy/oqZ9zsnfkcVzNgVtZuF3stYWIQGO41xqS4GiiQ6GOjXaVYIQtp0uLhYSBa+TS3qSIs3Mm1T5INi0VF3Pq6//RIRg79UGPj34cBXYbxmr/1npGJCKqrVk0Q0Z7lMslJsCOLQAxNLOkJXViecIoTQCWehlNw46zjE2J7IiSQrS9PNlRqily7mou0iRf2MuhLwwve6L9fx+MGl4iw7/Zyuw+X54AX9qlvs0dSVCV4wADRJB3do6KYGiHinO1yBXr26Y1myhjfycfp1/GcBgjWsi3ftpCK3h2IFB7InVAbT9t+71/Cw/VDyE30T28+gluquvHm2eYcNaEQChTELvDcA3Z/P6fyKYUxqw9GzAhaoZbjrC29hUnldRmE5RMx3bwJGONOmLxfvBFUca1h/9CDmFXXwsyRCHFJlf3B+XLvWlFMZY7LOJ/T4IwkAoPw0xZpS4eGFU03rvtWyVCZMyvSaBrN6+/rOOdCO7/daSSZws9Ml2M/5rPjNRGpqWsHmy1n2UqA2MDmzjmBKe5HQLs5Uk0i+p7gkuyv48H2hCrm/SvhRgRU4DjfrtiPEl8Veiw15HQzn0s/GWF/FipG39C2RXRqm8DK03KaSDCJAn9TMcVmiZBEkUAJ/WclFgcqlikWjLa+ZxmnnjIkdfeLvjqYVl51l0Zkgtux7WbmiuglSfdb7WQHWtaQkG9Ic7ZYNMmXjvwdeoTHSuzX7tu5W978QWTehTQJjZEmau8I1LvHZljLljqXH9ph4HYZ3WAF1/AdB5fSKMaHBZx0/zkQ6KHsLOI4WiZjJ78X3c8SYaX5EItYN9xY1vzRETDvl4yXDgJOCwkuqiCOZ0PQR7+HUwi/qh/hmgX5y85vuzpTCP7quGPRmLV7YM2ggx9McVNiE3I1Iwg91Gv5xp6p3DIjNf1w6O0x93pwN8XSSZJuYGVAfGsMfPEwSRpXDGH5Dy07yIOYOwBAfL36KxA4bw00VKLfwu8meMEiXu1rtvnKTlARqlkSBTAhGXeShxYHaocpQsiIJewM4Z7kEPf3QmpcEbn0bRe7PxGJbW4OEHYmF6sRIUkRipiS0cUZ4Em2TjDz59MlDf3h/hII7uF/9lOI1CoUgljTbSFjbD7j5awroBdmi6yjlip2+C5IAXK1ap5tf+eEio504UtYOBqWoJ0aPyfs+KXWAxAYUIxrP+CITJN8R8T80RzB9Bh15189TJ1nhNooDkkWkUp1Zfa5ix347nmJF2brAI8jEGq/KUnWY3cnX+guoDAuH2tJmtAW2o+8EKC40e1CPd1rT6uSZjucDrBkY9oFxx6u5xraMloFeahUeO/U/5kk+B+JOP+uD6aGYiOkV/50OsF3DNA768ckBj1QqGNTpUUSMPh5OFzuHGUO043qy+NwhMcDCM5JJifQD9g5z1QYlKJDTWiVcXpzaMKxApVPSLBJM6U4KTkKyFeikmRC7bEgflwJsVjV4Kpof/QUnsVmSBJ7a8Unvtw/1tNPJ6wkX3XbBm+gjoy07EzndswZXBtNEKTgiCvgDR1aisTf+0+eRkR0XthmcKc1QR0npzv7v/ktW/qdTG71c1SBrIZGIcE2M+ET34SRLvXFCmYCEf8LZY57lLzL9t01UEmNX4btKkj4EjgOeyQE8lKVhBF74PhpDUL6b8doiCWfE9ES9Dt+MU0qbCtB1wwbaCCj3LCRcrX5h0yhb9Cf8ScWDLSUEN1833dLwhTvHwDYCwIFF0HL5ZHyxai4wpPwWQwPQN1p1d6Rbw1iG9HZjUC0onUKI/XNX1OJsISXDPaJWSbqZimnjPxbcSunvJ6KwH813AYh756SQXI5Ir2pIqH4iS1D6aP1w7O1PRMsfPNF+2LdtdFpODfDn1sNW24WsPhDgPSjYgFYUgk7mO2WE3kA0Fp5ZjWf7imE/AS7yIKfsa+liqdbPK3yz0c5M/d/IlUI6kgLTfeiSKnBNvYoh9+o/DInQ9ZY22UoUvz58kEtcnnfQSU9qkDQfw1HTgom7xGUToIDeD6wYExEKixKnHsTtQhM1OGXyQRYpGq4SHVP0f4+B7mL9vYysLoMsnfjeng+DiZQqqkdryc6D5Mw+CXiD9a6xIo+G5yd/EqqLndxPA2zmrVx/H1HRkvz57lh0ODBtNPE+OKJHbQdj76KmfTjCHLyqlaFZiPYF+hSIrmFvUq6/svUcq+c/FWGpO0vUZW6zMnXV/CrQOxg/5ZLFL+mhvKSw7+XJGLWTL1zxcny0JTTYc4g0Jca5NjVkM16kffTWu+Sh/sjdrEyZcwBZ7K/TiiU6DOb4JroydgexpSIfMkM98d2Gv6HvJoODpqlEFHLAnmsBysZL+xQT2ONmGDyeBX/tNnJ9COm+BSX/iUJhZjBOAwMp2gI884FAmputCI6xyZSORmVnaRJP8fSst5iYQj88mRQEMBW8WPzW5zg3BvyxHqbkAlMJ55Tzbm562txFLnsiTST0ZoYRsrqRcEflVCWrDiiOnX63HLvf/W31EIGMxsD8CWvNjhJnISPrN/S9mnkFr1qaBS3kJORIzHe7qbY2CbPd48FJHTon2Q9rWg6ff4TGeTm8SYeJTakKneLjl4s4KjIMIvONJNVJhHpdpbGMpkD6jRtI1xv+Y+ZqUIQqQPPcu1mV+On8fZ9QxmIUSVVh4+3afOw0vd/HhY3Juv/5C5yX2KQUOl8F5jbTTxjY/6n59+mgeiH0udHk4CHphXPP4jBDWqEm8ihUIu4gVvYgVfnSvg8/ohXQF81xLgGtIXmU4XHE4kkTZkQEaDhqtv1ZO6baucHYlVuYwUhNrXVJIgMR7Jw7b5Y+upYGW1fbb8xH23d/AI05gHw4gB4NyixQVc7exXH4U3iEeVduAggk0S6brqBwJ2P0ltDtBz7azJ1hd8tc6ZWlgLxsWBEBa5u6y/34XDZQLq/ZeYYzj36L6qyOaVDS5ubJ4RkQlw+fu1k+/tWezugxWDYntRk1Sspv0iT5uBCGsXcyouowan6OhA5VO2UgKH2uI9VHW957mxkB7NBz0yykcHY2mrg/wZ65JvRQ3cYvKBwzl7Lx+Fp2yLkxFAjkpESp0+FNGwycZibKJ+cvVACUuD4OSCRXRqS/tvd2VTd2LG8ciRistiD2R7TYshLKirOlPMEpSmV5R1p4XxvkuqydjxWxdI6dgbI/wFXgaQokxkJB5ZxUNde/6JuI8bMqJKns9dHkpWvtUQTWXMoYUcRbgEAQS0Sg3cKaH7CSxJJvWYu0wo9wmLN9tD55LK5ytGVCvgxIk2yoigiK5TssFITYjF5OA/bt24xEyLShRTBgo9V3DFkBGJABeVTPQcG5C0g4TkRaYefd7JBdvXvCFzTzCTsAUNAF9oFi1vC5nekMumFBOJFOann9dlN+jtkzJUGnBuJWIPsi7RM/+NdftgBNW94hzxoP1fuCi5FiXSTNkg2pOVVcxDf/e+aO27d5vTy8eNDYip0htb5aYXTZ2kDpeBOevMc726Z4WKg/Vg1n3XIuO3p/GzyVdFS8TdAVYq3m/YaFd7wtFQ8o62de2O7Z0o+4R70f7AYLaT2l8DnkEaPS5VQLmQUIVNew2pM4b6jfeX+pVprTVKKNY5XxjCl4xYszT/9HU/ntliQ9pQaW+ZebO1s8WG/1Yz2RPVChe2Ifu6cE7zXP7KXNnPjuiAoK6rJ0WKEQhgs6/pOTAab5EodgeXD8QTAUtJGXh5I8V4njmtPgWzVP67DMxwdhS9mbFcBBmBT4Gqppc7E9clk3Z9HDeHlG7LPtgRNKd861j2sDGeIIDrK199Rlgvgth7CaBaKZax/PkDinmMkn3nKszCrQ0FdF1at2Y1Esrfgj7vSJUrCwSSNAMs1xuBpvOls61pINRQf3hwh8OX/0+zoZRm7iSnhU0Kv/pq+9OP2SjuJ+cepzXE1VOO1rHzT6z/+5ifE3CRUVwR0fbfLR/bQ+ZeFljUm8YWJ5zRWQtS3EED4a6wyAUVot5nE0mstXHFBqoaiZK08WU0ab8+ylgSYOWdTd6YQfotM4IZmxQ1ycJKNgudqZm6EuKJsTbip1bxKjLXFsYsXm8f6VmiOfMHQBVAZ5ebJP5YlBZUWflTIVu5krq9ob0afWgn99cn61PHSefgaQMOFPY7efsIXTf63uMAFOEhHlgBMXeRKagEtSj+3/ID6ZIifmhodSlvIstkzj5Nk52a8G+nUyAvKcNrFpkq9foaEQ3Hp9ZYoFDS0F1mehDOWFXLSuopPwqEThBy7nJys488h4N7/pJUO1mny2EIm8NyfRPJdwJRDuVezn/Zrc6lhdqhlWYBibWDm1vMi8nSwUzX3V42cC3lm1Wfc9K1SvJvhmTHNDY6/C+kpmDhhC1D9ne7/vo2R2fVqBp5Oh29rCn928YJnWF97Xew7mvmFt7/V2BkBLolUr6Zge4JWPEMwHnvCkM6zmfChJagPn7bwoNefHYrHtfxMAojNFRk4rYkD8wRHWY0JspGR3zQGdQTNOJAZVsotUrBU82aqAmrScFY6tw2UQgmayK6wRGJBmz4FiMYKJ4mKPaDBlVqprnPWHBLpa2ChsVKXc/Feb0l5XwlVsGfbR94X6wGI1KzRErbWRh0UmpkiWPh/t1nQMvZCi935JrY3cn5cbrVa6fwsnpYCSO1lSpxzgcgxjzL5YzUfvTolrz6rNvc8IatqNWjIOeo/wIJ0ncvMjU9j5jKGoE81pK0NBPE+ubTd3ohM4fNnC+NAyHOq5RiLEziVk899gSXzistA2Wx3oXzUoIQZZnuSq8XuQglKo1oxViPRc7pSzJvh7kW30IMx08zRMKI9EupwljPZzxMyrENl5Hz2pgMKDu0VI31MPIAdNZwKm6pfJAsh+9htSJBIYsZr9Wly3eDrQnyPxtIPsKJ1Ulz5IRYbObNo7pk+ZruXLFlrsuyd1xYBEkqV8+hyPlJs5tLsWmhZQO7TEqK1XB9VT9vrR+UGcT4nZAhClOASdHbXy7WeEyhmSZjC1+4xVNGmxi4+CQRqmydZaZ2ZmVpH61TKqbOpcgJ7gHr17VxxjZA1RLlaLyUjPTdPq+tF31JOz52k0xQmpItY/BK4thW9WZ1iYhDU93jPjmfQip8kfPVydbgvMErDrT4STBzsTLVvsI6/4VOJsQPWEnM4nUiwRAHx4JSybFZN568Zfleso+pt4BsR8xnbx8y1fsUq2MNAq3lnKN+RM69m57MQvhtn9zMwzLaL+hcYRmFp43pQ4oqBK03/k1Og4nD3El2KPnx5UwG4UAwDpMjf5gCPAo//7O/ZLtQHOmacY2Cr+xmM17LD9sAWcX0bx6G8vgTH9SPpQydB4gikqYUn1FMBsLEF+eNIfVStdHwC8DLnC3gSDeyzvY9iN39KXU523oNKugFPqQOlij1UW6tsGu5K2tEbKJtsZ7IQ3Ik1n3HQNdXCkGTMkHX1+oMGjoaMdh8EaAxLtXaenWyPhpEJkEvqZl7TLmDaZ1S5IgLhcfO5/mCh4s28h5VMnAJPCjTdXbKBmB0bA3EtmE9oAcQkbHsIpDDi/Dxm/rg9gzNDLTNQx2VoHlx7XD9/C5Py8V0Dp/PSYttKloZTz/yVqLd+r0H7ilMOM2Zr5U4fze2szhD9AZ+TTX9RRBvct7JJwmiHjaz0QmBCVGpwGE1+rgvS+BCdD5eOm7vJGCRR7tyu2k4ao/4/SuJW6jDJjxGqZTxPpPedCAUIUoujdDRJTQvzkzHMPt4/Es5i96Fz9A0AuZucQ44fc5sKKB18sGvHwcvScCy9XwnuBvBbLIjnWvPPe/ZS+f8VIsQMf6i4wKVzaNujeJZK4k+WTW9htHxHxANaiUGvKDdmQfUi0TMY0oV6bdCknPtXTHPLF7bbgF6rgNSDFMEpCnaKz4LOdHNo5rtkGpojrvWEFRy+ep+RETgTmxRKzsvxuCsteNrbEePMSHfAlbtGweeU7qzLfuWRNJuzTwoyPDW+9koU3jTECY5/7f3D8N/a0K7eYdOXHMfk46IOZ9o5zpXE4JrUKWIqLN6vN+IbyDlYXwPrWrW4lnDGKsF039kXKMuUleyIp0cfJVIq45oJmLSA16En3B37IiF1oT5YT39lXEquD+ybPMJzYXfghlaLNRTj6zeEpAZNkTHmn0oHQGFM37kQm9VbPm7un4RYRcEDEI5kMWeMD4TxEza9PU/UqEFVFTWFxHHb1de4fac9T/5LJCU2NH4NJ0MVX9BYDeEpXCVGqWCizNX+5NrQdRhfPA4AMxeRHs4fZUk7TcQKdxiGB4R0TWaURbyImdRYLOKXhiVU0d6SwTm0ALRS/f6HDMmuIHu6vWla+z/tXp2KI7OLV5X0ShtuuZupWD3hYLPk6OuwLGmZeP3VqX1mKcl5IIbu+zeM5inP9mo2TdZRV3TeHpX0xKny020nOJBcq+0SnyBQb+MSfaLUeC41sKTQdY7Ear0ov9t0kL6tl5FWyRvMIpmn3+eZESgxE7+lNsQX4j1TXMCOLh6hEPfjMtG2TOdUBIQj/1+aCsGX2t9LYePSzQlo7Zw7vqQODb/bWRPtYaXTW0gwDiDCIi3QDg0HnyOV8UmleSj+Jo+3mSpCIOyqdbLllxoiBt9VuAJT0or/Q6YLY33xqydrOYPAfxM+4DnVRhMxqJ527imt+swyqPdX4LiZU/QACJdj+9/pOKN0pqUlLBmd3U5ZzweExO6pIsL4pSo/Q8vvM9/NYls+ngvdk8ushuSIyeSdmvsgn+CoFyRH/MlOaD18WXvriyRDLXxwndVJfgS7VPOhgbERsWa77ylkdj59UfPeRf+5OwTLnoJ+w/J/FWclA4uVyYv+gPDN6/hEIrS0OEN28DKAeLuOq+Ux6SBp3z+XHF7aSkFCBxe02oBXYR70+jpo5Wx4cftXthP4JBf9k51RVdC5N51vVXrh0EK5TN9RK+TwsHbMCTMGPW9b1g3eOSd0AXF2dvkjLdTplM4c5aqcP/cpUQBZU85g59v5paBFCTn8isIoZ4FppO0UL861/gJfpDkssFMFwiusZRo1m5IIKLjSXQiJbPrg/C+g0QU9V58Giy2Kpr0897Tpo7acjUQ+tV30W/o1hPTmjvsQU2frR1JUa5u96NKTEPCkghCK/GvbWzSCkAWko+g/ICqefp53gkJU/EErGulhXPXVLPA4Z8Ckjxk5AiFihVklX2fOEnS/wmT77zDw5Me/UhYEteAoBxK1kh1GouAXzE+JARSkuzyGN2N9rgyeRvRH5MLD4k0hPL70QUILFi/B2q8Z0PvhwJonZbwApG2zlgl44GXxxza4Ntvnrf6WKXOrR5OB7vbQW7xeCSEk/eg4mPKJh5AqIftsc4xDfqVRLYHt8zd6JKcKtxQst6ngn/m/HmdFWKIWQm/4yGUOCNHI5CNwex57U005KbGhOEpvXan28yivz8lH2+75FRNjZmnawbmkzzv3kQMuDeRd08AQrPKMFFl3AIVIg7X0qiji5wv18jxwU27Nfg5xVFyJPgvMa84WWgjs9ZtiPzKW3rpUqZk8IK4h4avMrKh5DABRZHrgSMY3zyv2yniNtk/p3RrGewU/w8vGLjy6WBAOh+kfKPFzivci763VXc+faf9VBbak4iMw5C7J2dR8ugt5PKQSyR/4mC9IMS1hxHdN8/KsBZnjSAYeRln6YNZ2yGUdMvTgpvomqh8Oy15RiLOfNWVofhXCt6wfM4x9BeUFd5nrxcrRw97kt+pmSsjw66N00GOvdQVIEDnj5raAAYzjbI/nnVToLY/hjTb1WjwNBCu+Plz0EPhTLx7KBZlbfFmG4fPiSuykf6tSpfBQKRs6xlNBDvS2llWc5ojalLm6xozv8CoyAYtXKBtpC+p37e9Se1lkwyQtcqQXF7wkDeHeNtAxMzqahgW3XnNDVJIv5zd2kbL0kmqwXZ6fD62Cw5gHITWQAwfGvpPtpBLjHwH7fcYObZZUTha/g3+wCztoBe9QuztWOMfT1QXtXTk6N+OXnqxzYHm3qFiOj+9SlySGaPF+zIbnMSp7XE9GBOsiv+KYAnj4IHGCFjxowQJfMlaZFuaz/SKEPPZW4I84bvrLsIAuzARKB6Totn2XgC1DQP6RZ0LgONG7qAeNpV0ewlm3Gh8b6USAqTrGLQqWhDbX5BQPoKdZCHbU42oqgDvGkdDZttENECAfJvQJyEwqaxtzbKHhr1xU0vGnkTaZWryKRo/RABZYjjSnFq1/WkFaQON+DH477JthKvzALOCENQ8ffv7V7FPvJgVoqKl05e6z1l3JAKoJ57XWT22ZeLL4cG84yN862/fsCO6KCGSpBNm1bZz9lwbSWQVxhKi+kz4zSqWoNB3Q21wOC1MDLQXiwgDgUIDRVdt86Osd8mGIPIPZFoqXnWjTQrq8SD/13tohl0MMG1qH6yQIJTK6l/9dRrl9rB+HQ4nV8VbKYzTTbciH1hbnDO0n3RrQwigW8F6OzhLHfk0EzvWD+9bLaEbguSL5D/3XqNaG7pEF5s2CJFSy3XScwR0iKLFIBCrtCZBiXMAm7Cl2UdOZfzHkXKmXQ+cqbpID/CNLk6NZCy0i47Pdk6fQpzS2NcJda4JgZpcHIrfGRYdkftoJTXN4Qry+BD5D/YiR7GnlWUz1Xk4cSXVv0hXua9qDIi467CtTm+VVmS2gP94iXYX/8CLPl0vVGORX8X79IuVKBTKMSO/2Q+Dftx3w5bcthN+Ithr+BjHEFFx407hhej9cCq7UtlWI4+uG3ZkOdf4Tb0Th12MSryIkgBx9PIgJ5orro6Vw86gczrHw5A/CpFn9ONwPoXLWAHowPUa9UYueUZdGVOvHLNdJmidHZBk6jfKElJob57iAcPa1JYegrVM70652fPFdWr48pl0aMc8YvWSnOeSinqmcGjWYYSemUzpEIMIBmd2BP6zhVS213BVLi5+IGBlMQX0oEUZn99bkEnQR25UfUre+n/7KhqBCyFZ/DwtczXyrUZR5GuOuIKERykjfADxWiJaQcOXz+D8iwbRhGx+XNnwi8HlkXg1uhpc9AqfJT+miSVNAKyW8wTSAoTkmcz+bQ6CS2q9D8Mc8NOIVpDH3o1XAOv/8JARNLLUJf8ru2Rlj7vq3v9s3agBzQhr/pSBRZYlQ0U/CPiuSEGDU3d3oNXoMP151pblKa9bGXNAygy0iiMePjGWVyE5KZl31Bs2TpHDPkybmzpN/ssjVGcWcVNAKiC4keLrfOnOuLwfOLVlGvtyCEY6KQPDT+2q3nDJgvn7XiKmETZkUDaRqeUhcUBp3xoN8o2D93gkHoCPkgviQH3fZd6nE5/NADBAjiHvxcdEW1uQ0B7td0qKxDYC3P66beFAi/D/8vkwKL+f0VOjn/li3Fn+Y+1+ePtEb8AFcWzfx5NSVaABNSpnjdwqqgPNPQ/WVrN9KEPxeNTdJ/HDcTM1KK5tnaUkz3pFYAk9AxdA9EmXBcPY/a3Pq6mU2pxtnUQy4zpMZWnsLqz4JczeCh+9RiA/GV2uJrzEoF0oacVYYJnwrAoUt2ZXjhtdjFaEi4KUAFl9HhKmpVYSvKUmBQ1PgVFP/1Y0E6ysYQ/9P5wsxepygqiYt15mNSbd2Vz0q3fyg5Mx6kdgWABKw2fL8x+XQCj2QQ7foBgpwXSzWVzVwXkORjOKM4wcabMmnGW9udZ1D0Aw/lqb/wbAfsoANUW4HReDbMW4l1RD/1bZLDnfVwv9+jA4vhTFB+vsS9bWhjSrQ5IQHP58CwSYlCJPD7UL9TzBerUBVfaPVFX3N2b2eObn197A3EhqLLL74h6FXedaHAn8ybGa9W0V2Dvxp7cvYxUAy4GTw26/Joz7NnOVJ/+QA3aSnBsb3OirLnlDGQPRM7vvQPxtxujEy0qtduqan++cDJl3DsBGIGHjC7uTGUE4eApKYX8enG+tRvQGsWyOQqcKw9MRd6HAGR99hgCUp47uM8Q1kDUhOqJuASGi9j04wTeZ78osoXo2qH/MYwXl8s72hpC9FbA7SnD9Tnv+999y4I2HI8vfCFbJo/WD92RJTY1dhsgwy6BSn1W5xvhYbCDKeAa0Ybo8/2NM6UCcP0FxMSryzHzBe3AhUHCEgLR0gpyweK2gAASbZBmwBJ4Q8mUwIb//6nhAAAAwAABfY4/ADjyhZ5CJ6txvD5CXEsh7U35WbltnSBHBjcVYRP+C8sFrreu2bOJUlh1RBUvHebRZKKVdpPlAgun659725aYhIk2u+C2TH3/jMie9OAW2notZEWcfAjmhDV3BZkbOcVdyFT/pMvShZVm8AAJdIQEFt3PMgoeWymtOTYpDl0uM12u0kkMoXh0QZUPxOjzI40QZQbxEcgOZ0rHCK2QMvN7BkFJhaHynILgpy/+CBdkk4yKHj4hGC2LaQ6nL4H5JWoife9XQWofbIhNY+IlwLgIlvPpDb3kWTJt5cVivs6Am+KQR4BcpvmkMPtEJcmovyb8k2ThJnoNSMgxeR9OB8hWXCAWnhnUBZYWlqmXCpEDiR27kcC/5aFGF48TGYnbo+uILbZ+a9aADZJ8Z5mhXc+YZPzLQdp10LTvw3ag1BlBvQ1Xb1bRl+u/EQeuPRuRs97eNU8LgvgKQDCg1Liz89lMF0GVYc2mLh/zUrapMHgWW4568UoRkHfmBltQ+eESx1qtNP2xF8OoiUFav8YBQCFTnj39gImmyxSz7Zb63Anp3OTwHyyCCF+SUlCr03o8ZIOWgdQseOchM5XztjyORArXgLG2IaACLRSVu9eU81Kbx/1Ab58Xy+JJpz+FucxXMW86IMC58bSBX2OC5K3rjxN2ZErlx7rkM6Ylu0Z/wXrvN3X2l0joNXgVdETf0bkgpcSwy0I2WrAQzJmA5HMyPcAgQmiI6I9FCLAhCRYHzF+O9MmDpOyCv0k6CTsNtnIZs/EBPm2hKw0BvjDrlwIFUGpUXnskawzqvzJY1p4LDQ0QiifTfFwqkmR/xj/2A6goV0sMnsnPKUOX/TvghJqqYFADwePkDTMMjWkXrV8TkPTxu7Mlzn5mxRi51LAK/jLJFPbLx2wWRFsi6bk0yGJOdLnYYecdsK2BKey87qDOMd+KF+76X7z/EQoiDA0K9Et/fb/6+8v0HwZRHzxA45eu3M1zY6PU8Nwu5n0IfIu4dze31OmSkGULPT/67FlDljHYxtFAEfDy+ks5Zag/+nAf77FmMAABUVy4cjydb0NAuY15QYS37Y8fFXvbgJmupD8BKAaRxZzNTkqbMMUxXalV+oMx1z+yJ28ARbqTOk/UjzRW31KBc/JGO0X5SCKnMevtB4SNDZxzbvr3VzxfevobYwMv/C9+1yaYuKxdLhAjC6kjR6BGsBC74a5+9vv63CIhY8GbKqxwZ5HOxNe6v4pCcM4pXPHBlpSst9xxGMyDsNNYWVg7vCIpBzRhhxGZVDZ7/qjHxICv2d/xzC7cdzfWkyzM+rJS9AKHS/JVUmvGpTChXp3L8FTqMCz9KgF59A59x7VhpqsFqzNnD94rezvNmhcGxZpq3dXowdtMNUt1oPotR4ChWN2oY2JgXb6oSpyRNX86unhtYGsEVozy0pgPWqq7G5pkhNWU3iUnAswc6xn5O7Lx6NbQ/ocF0xhJxhEOXmKTOaQqoZIUac4uw7RbJY9uzw2E4JOGkSK1tUBrwho7r3lZIA8F1TdxRwqOLk2aNNg2mqN3Lmj5c3UGW6GI7cpfnqZYeWLLdfvNJoAMKMRwYvIYRD4wb1KQuGqWbb08m1Us1alfJgJ6QmzZdsw0eL4Z5GkSYqULYsCUGLgOx2hZ2UpxJis0kvRAAqHTFePgJ/9rJA+00koJ//QTwEFOwj+/tlE90Y1ejCwwdoNuMwCAZM9id/cxFEXV2mXuWnGrDdvTrGUYqvaVXNwttjTKkS2ahCznBnFcwxxbZfQld4usiuGB2Cdnn96GPsG6FGCzhnPOb8mlIus9HVhgc6SlTf9UmYdtBA/tf0W2/ucn7iv2IlAhP1i0N/nz77do5F8sPpbhDA5xA9/53zcQ2GHgSeNm1WGerpuMh4sz/CPzmKbvHYJ7IZnzwBAQ4hs4WmOWXKIIchSyBI0oKqtApn6WkqJ056GzPyahWg62hbJrJLj+Cf8W8aEHOxrQ0m2OYx5+1BuIKXRDKWyAGr8dm3O4of+efXXZX6BJr826oenwuO2i/yL+rh50jIU3eJPMu5msiuIetfqaDpJGVRCCyOs5c+ExUTwiuxNUKre1zstOR3TYkXQ6FAdGzI0tP7cMrCr9IAmCqtrWjdnHw824VHEfzG17bRDjVt3pOtJUOj/k/EDWKzz5uao8CCh9rWErqifY9aIOOnSUsDvakhbnJFuZ6OTZ/UY0QLwzYatbbrptOUdV9cQZgOgbm4iTqNEYHcp/LHteIrKIxg3TZnTtEbuwwYhgtCXCmQep/uFxNiVArvTCG+Vl02EUYC/VYEgqZaj/xKk6KldEDtgCUwK0zt9AB7a00YwkS+ZxDq6sgzY3eM4z7AbudSYqFe80ikXcyedBwF0+sQASmrH6gl20wdgP0d53Py/VZTO54GRFvbaDX0hUXyVVn+pJs/TGpVcuPNj8Zw5ThhdIPS5bWCFTKt+PK5FnESScj3i/0f9mxXhqoSuYHTYVGBI3f0mnDw/c4VZsVoK1ZZaeBUCB2yDbcF6624PByJ5VHoqkG9eQI9Az5a4B1SzypiQl37eLAeWP3ujdZmHnoAdmVGvOplsjOf99S5MGYOWI3ZjSZzB8sBnf7xVvJ19A+XBQgnhO6dDA7vnAYc5jrSwhdtBDHsd7aC0Nj098ZmBTF7nwOHxK9hm5sUKedjHWrTw2n0OQ3yhjL6Z04Lsb0dh0kz3X7y/OiR+5wRi0ZeVHcKTw+JUqx8iLGeY3r5vTm520zMAYbzeA2ZPQ4ovn9MnxUbFsEYr/Mj5BuvO4ylQxEvfWgEA/lbeu8Jy8zGn3P5iL/j2st4WsAdApGdMc97n/AxRm/ENsFXchQTQmiQPsX/vEoIHFkA7HWfvo8ivvuA+5rXtUwfsf6aHih/nDyumuptSpWvjqOq+H/9ZuDCmwuxrVzTvrQqh9zLeGAsvDCfK2aJQZQhqG8u9AAWygekIW7BXNJtFy6tOkqiUKVVda9ma149JZZ8sq3huSY4IdhrUDdTiqqK774UgmmrXSsacDOQu6D+AlmjD/sqp7fI+vNjtGX/gS2HaZN+odKZgzrvpGwTLh7ni053+HjKAattC5+BvFNsGbNoJFDwCF7GOqSiqJkP8AXBraeR3FhOhF10sM1YcZdvD76NOcuR09zSVHJxrwBcaRBQghFY7Ge8m7LXNG2oX1Ph0cofGfWF3nX8X1ZhkwXTQaocjYlIsrxS7lF+9GRqCs7nM4tT7zGqglQN3BRLTY3Xl6Oo3WZG0PSgxoot9z31hQrp5lXRysO0jCpnaKIctRjeyBpWGqGLj6JSLJGz316hrzLSjGKUZKZQNbW4BzS0KsdE8bkuXnKhr1P2qL5CvPhBM/Db+tJBXXf+uWq8XLez0trw7fs42ZfGy882LQSEX/KyEtboeZdLelznd/6bsv3Yfy8nFtsoHs11pmfaaDh92yRfiZ2WqsaVm4AA1cEVdk9y4to72I2oHqxUEYC/h42M+KPwhzY5Vd8YbfA0nX3smICIjo15FcltkmcT6i5/6/4zvhOTIetxVF7+qTK8jheckKhN7FlciOPQ+LZkWFj29aQBfvXJ6eL0ASvc8N+cxjlSlvqvtf50a1784BdZqeHqbJkQc0CcrH7IqQriNc7WJ/KWO5166whrcjwAVFTgS41vIZJm0ssSH3/lgC7LSD6Q9aObLLqLWno8YxkPuVe4JyIukhzW1aeeUH/xrqJeHGVKS85WSx9+sRK3geVGs2SkQp/0deedjD843zzA7XdEqcj5l3rmipkUdUSPGau8cVifyYQNS0RLJcc/TsLBrkhmKVotH8o3xZLwWn9Fx+8tprWn9swwLydjU5SdGg124yaxBoYKUBHWfMrplbLuaDqe43h9twaxIdqREFxGG0ov0RbXXqlL5e5IZl/T356smSyVVRTVSz9kyNdoUCGWF3LMLXk5T1x1fg1qhUvWcd+9gxJGM40gCpiV/HwWWOnhknfPhH4Bbldra2BcLUaJeVi4BryG8GsVOdBxOCoHy3cFbOPPNts2cQaT15f7RN7yJAsRxOcCgQfw/tte/NEfS6t3M15SFl9z6HNclboY5lr3EgQ4oAbcfWKiowMLAT/dOtBE1gYfD6HdlMNd5fMnuCXd2KI/eig3iah/zmlv4z+aZM17RV2pZsSc8+powQvIvS5lEPEuTurw/SjeuKMvCm3J+cFoGt8Wm91Fgze+PW6AOOMXwKy9uuArwXAKCkqtuqZQliqrHvxJO8xPXXZ5V4198xl1e8G0jdW7+1Kggzwb8i+5Nc3WNXL/ofmxjDSLysqsc+z3tgtI1g0rEYqm7bcFHyDwI0h1opqBp3oFWxA7vUGdOl/TxjB74wnewQyGFnbfsz8jArv9kHrqbEdMA+VIttTTuBGaMriTMsWPQm3CcX9dofdj2+5YKeULXw1gjaJmFNF6wfZyWXf3/gQ8VUzFMZRhiumZG6MGxJSTES/6IsPy0EMT+l2tG46Kw32UzMSSnFFDyCCHS6jI7hXbBdKtoPFYrxqAREjNHsVI3VHvBBXnAsut68YDD6+RF7muiKO+MGCChWNxgzU1El61jhboC3PR5Lawz98M9QE6fI0y8lf3WwQoJ+h4HEzvusoIlomstRzNEPeudVNHIM4HeanZKre3GAfaP1pgtWpuEsZVtMtQqTtVgXsVCrsqt6R0lxFlYVM6omnPcLVuuZZOZnqOpiQLtp2/TbfQ8kRDKntUOBhqmJg0f2UTOCYgsWZIpvC2SHbfDIW5oB0b/fz5jEIMdreD6wFQdeA+dOaxUC5RFAabfIpBjDzCxA/QN90goyywVkJupcicyYHDm/4QdzIykbIFVyfxFuWQnD9BY2fa+zMZiJMp7LESgF/WbsL/XkGUQKni1bg7SAjplThbeuUqMge4bRjDojdolbSzmpGSbgAjcOLhs+nKxCp1vXhONCO9jDv8ybDSV9IIR8HqG0Xxm+uDTNm/BGVv2gicuzlhl0cCHYxhY2fsym/rs4ZmNPNqwUE0baDfkzw8lWtRSS5ZRskDRIemWSIzLTQtZHJ0uRVEgC8jnMmUzAwd3VIhe4XFzsAFDPuQkFSWMhxW8UHWW01O/VwPxse52ZAE2lT6LTLOynjZ6woxqoOpkegGg+LE0A2pk3CgzgUzIjxN+DVAk5lPUYo1JzVBUUfX9fSI6o1UhIhdVs9112ULMQwqUYvktPYfbymocZyI5C/O2+z0OjDkB2tTElLyyguMWBsoWOzg4RIJNDu56AaLAqNORlwJfzSCsxC4wTQQi9mQUnqOQPFGACo3LG1Ct+o+OEqR7OcwNAc5VYvYGxvgqyTezRSVm694BJbYGtWXGmNLfZLbrczDW3aNuE65Vq4MZ6EwJUITRzaqO4QfGP5X145fJjPRHHt0vDkMifdJLcjNHgdEYDM2aA9UGW6vGiMZGc/hsF5Pb78fDTjuKGfZwgysJ7dlr6AfIGaopTSluNTypQfajQa0Etzx8xpa2X+fgfKaygKOZB4iK1sjBNTAJaAUKXyJNH4LL9835Tq+DUq+O/VL0bKIzVXSEOF0KwvTN3plTvhuNhR38icjX7/fOVUXtAv4N/pv0Fc4/Mtl+iiEGLX2S9Q1Zctd0CjOrOhLb4emv+mqFR9yDluw4dZgddK9Nhw7YchjvgKpbDc/9gFcIJp3fOKZAkx+W223CuQCyDwFEgtzoSHyhNbnjuF4+k8N3qOhTxZ+k88pu/8L0+3sz56vzFfzzgWPJ5J8tlfsPsfaBbBoPJe3iYnxRFQDS683IDNqUiynLQ1frCAZRv/Fs7HV2G1VYfwE/9/v3rO+vBSH9l6QowxKy5v8avzAsFO+hcOW2N+4w4//af8SabTZB6cna5b1Wo4Yh6wrCQ96TlRuduF/FqE64dcuwXTw/uAlS5b2mK+qn+xbiboX0n0gAAxuXgxJz4T3dfZUxLg50L1Nnuq5tDiGC2Gjn3xu+iYS9bXB23LPdX8ZvBI+OjhJfiobJ268/99IIAZLm/inkeXFaw4xI4GoKEJkcMFPFQXjh4UYHL694ox9UpSfhqZlYI/o14PeUmCBuK10yBu2UBJSYJNjWQ/5mlH2s3QHAI2aKR1aQZ47aCcPrbUVmeP4tEnZIBY5N3azb2BIBT7Mie4HV7dfMjqa9tgr4xux3mtlXVXxXughJheHq/8uIYeBzR12o87qzjH6v9uX0KS6/mweGyHR/9R95FM6r6S5CQZSIE9sqZKvqAAnVPa776UPcKO1skavqAPIJQn4l+b6ilMlL6eKEc4QNIQBXt7yudS+mn01i8nTqaSyHZApVggVPusig1o7JG3+ReUghS9rVLkqZtivwujHR6R9bzb6sMuWZq0AB0TrfX2EhRMetq0i33lzd9u5iQXBtBPWgl2DF1ze6RhCHQFQ0lXMSjnjwL58Sked7vsS0MSpZ5NI31JlyEMrGf+nex+vRe/44noIOWoRwhAfxtN6Bmut/8TSnzLu+8lrfXdZ5vX0f6sWC9nkOCBfdHDzi6OM5ADrIJumMjBtmei7EGCtpKuOmFCJ3fzo6gMO9Xz9T7rkpvqpB7e+Vn6Fy63UHenH3P5zkZnQbpLKEoz+N1PvUzauIUPFTSPDo4k7o7c/eY5DLPssBqStiYGwUf2daBtfu4J5+aKfJUrDRh2ZI88eMYfue2LtS6G0vbM0a0CSrgUBHWjntBuT3VTHGWiooE1pSASBn+EU339K65dPavpQ1bG6SkTwwnKCofBu54dJZY02dCDlAVtMHSXDL/q+emeyEBum/EGBfTJdCmyk2vobA5UBcIQWA9c9RgxuZEHHRsAK10medXSd4J+GHV3IqOBuVAg3Nf9ZKttqrU58BJv8AfOsB0sBssejP0pjC/4PWSfM/izw1fF8BKA10MNiqo55GnBGVfCtn+LYy5C+hn0iFRKYUToby8IesiqbNUU2JYCdJHOT2gXKdk0Qa98QFU+4QR+oCf0W9cARG51L5WtYgfgzuAzeR6HuynstVtcg9RMVgsjXfCWpWS2SwgeAGt4xM+JE7dD9KWHm4qfS3I1ZHZgs2cO5hcSUfzfVZZYoIrqxPOZJGHDhSQDmyzJFcRSNnYY1/478WSkqlB3wo2IQWyRHCdl5waJUh+wLWwk1zdyPS1PT/b5wD+Mx9kYIDmzN13ahe3kN4fm4AK6IjM96CKBia6inOw7E6Vj1m2pIiVxnnckLELPrclvdSj8CEIb7K1ZzB4M9HdT6TkI1onYGfLdufBxtZLatiPDvoHPJIbnyzXx2jtN3Vx9SR6V/87foIjQzZw/pPmHhiTDZJDdhtNCmU58k+NcWlLWqgpU9qkoBSEiCjCWoexIhs04yBtfufVjRY2//kAf6zI0EEDTM0RHghD5Xq7abD4ehlOl7gKcvNBafLPsx2bhM0tPX+HR0VmE9OrWaII11pvT1Q4sQM6LrIDJJ1I+iO0JK5Wd9QEGmCjpP9y9voad/GDgz5e8PUirM1O1VKcHd75gMuOG7WF0bdk1wMc2yxJ7GyjZJ/E8FrnsWaWHJ8NEg0fcxZEdcm7ONt1j9F0B/z3JXGhcnCPuXTEa6/uP2qzOFqZxOBdR7dU6Kv884cFx/mCLXFzQID1i7/yQZUd2HOC4i2JltF8mBIk5ZCD/i4s3p76lnSM4YLTQ048muoKgAIRJqG2vrKcjta8TQZY7WT/R2PpxHszg9VHRG1bCCPQNIPxIvtbbSNcwbonlyUfPu3vPfUoYB29vuh1yZmZSPOsBdCoCKNM4ofku9uEwzCFecY8Jv35xxvwiDsjhln/spkigrCSQwfhzPmFx5Y972TiooJyLU394/IcXw9PkzNfPllrYr/NTHUqCTULFWnxXdjtagewq4pLQ82PCRMGoncyjJ1HOcw8wdJ5DxKmMil5f4ME6WMLT4EbzjMX09JZ+cB3/BGRfHIMS/1DreEOCRg1IqwUoYY8MoNH7FYuf/KGGAlFhFWxCvz2N66oqwBQJi0GI4+KlINimg9vhGsFvOhRdQAr/BQGHTMcYeTA7xqJSShvSFtYqCf0Ga53BHdc6TVmVjSEESGC2QMOO/K1sAfjwLvd4B0GbYMATdAgmBxNm4UXyHoy/KFVG/IAVF/Z3o7clUp68nkM2UqzGmOGYAf1CAh2H8WLOU5VPcbmaVuMQnwNDx6tVY8iG7WQdNcaEwtXfQylUi8/wJNX4rp6w2TvMkkmWjdh1zJoSg60Vn/nBlTcmJh6PPpGxSQydhncItlrnlf+mEwxPChTIGzs9M25NE+o2nRH8HrAo3iNYiPwlwPrK3ThvlTUiG6kUdH73L3vg3ZEYcw8HZu7cyRskz06ypqAGioFW7zEPgTjZQA0ZuwfS/pc4mP6EGTOaWfUrQPtGaPwoX/ySHv1lLdvG1uJshrTJlzj4kbly31vTsj1LGO0MmFVBAipVUAJ+xFzmeBGG/tfHB7LW3QPkZlK3IAi/7rndhriPJEIn5lZx23igbtz0chySEQ+hp5E/bHlpCLOnYzDFtQrpkJR0LXFkRKuiX4HtHQUpKDVg8Ux12Appkjz0TA3iGsl34yqT967GiC9fUfo1tz4JCpZ1PKeYAOkn5MFXuVtrElrLFlK6dOJVBok27b+RvapB6VHygz1nYBpTVJ1U9rKFQYUSfoOUblgY2rKNfHzinb6QpwGfGRuB9HLB+c+JmOhVtNdok3A0SK0hRqRX4NvFLPaziomv8qLBU0qwARzrMs8PzCWQZiFiWeVrZo57/7hI4EaJGk/XNfU5tOdPS8exhDUaN4+AsO6B+tcjYB3vEq+YWRjfZIIIKU1De5MJeNS7Zpn2uuZvwaXc2hMc58fCve9k4Ei8tbf2hr7Ob/dcfRX462xGsxZsZ1CSgs+yp07qj7PqNlgjFU9EZBvNBXKxFaLDoBxmOQi3aI3MmJCHGNfcjH8QY7P+bBnII8ORSFikPNoKfEa2/G9YE8cDiNk4baGQ7eYbHx3SzZo5AM2ZsyuzjB7y+7BMahhCBlL1CfsiarOXRyxSteYKMd17tKW5y9RjbaFv58heiCzI86rYEETPc9GmegZvmXi+VG4xl548i4DcAfGoAcf9ZO25G03UNbO39IIrhBe+xxzIMcajMN1wvUIR7VetYcAPr1Jp65U0y4r1cmMGXoGX5rsypfDowal/FiRtpdw+W1HfI9uSB3QVcnIzA4XgeuCWbWi7hqZKf/DyMk1NZx0YSRDkex4JBHLP7+gXyI6J+BALLaIXP9Fc6Okw3wn4zMYu6PyP/tjRTvLzqd5WEhaLZW5lF75iUT9+KdNdIb+qMpcrJS7g9Kj6om5r1jOddS9HjG1SPaLxkllAhLmtsUld0XRcM1FgRiMZriUnEHoj5wsWeqyzG3VxyALvrj2lapdLTvruQ3WPuIqiQq4iqMAlE+AfxQJndq/7vEfwy8unM8Yk0zWUddCjkQnSysVAYEtxncyZJsi06BJNohw7bZz5k6f5jcpC6so+iBOcerF+A8klHRC2+UR6L9mRNZZH/XVSbwXHtYJT1xej4Qa4lKIbN6wm7LGUQJJst2aaNud8Ioouoi2X6jaoLBpRMf/+2R33xAPYL80unaxT1VNFiEJNv/a/rLqah8FvvWo6ib/26cfDUivBtoxv2f1d+r+N+pTI0EonSEcP/A3HL/uNiY1i91+b7mf7ZWrjlE2wQ6W0HP2iapzbnT56DYw6DAx9sLJdd8z+WDRItMsxvg3vKeEbSPsKUlEWsOkmvhsfssMOudtn2g1W5Ay151Rsb5PZUk1TYpFLzGycPqY1uEq9OqDbNqfdhv7N9W6d4HsptTYleL+6ymE4UwJEzS8nhUcOwL6HOhbEAWPekAlPzRrIst8h7md1p6nd04blRxvRODkPnPl+RLdyVo+0MUyhhRpLuTy0LYfyjyKu/DdyEkBl9FLxlgmnb7Po7eZadP9eP+r6YFfej8kGVaK+ZUjpBuJE9ig1tRezGI9X/o1FIbhMAFbeKwMdTZIatTd/zPO1mx8ben29UQb1SkAnSL8rz7dkiN795XUbLd1KS9u4NnrNGhW62z7DZz4yFYIpT8ssXQjcsik153j/mA0wuGk7gpfvxodOXMfARoiORix6ok0XOrAS+7fRlMAd74xKa7QnwUitnWQOXbsFWn11Fmf4D8B2BMnEo9QuUmqQXLNbz2ifQwPv9AMAenRDhzBgxQD8a54TipTzcH9DhTw3gebXSkiegGuA4rzxDKls14InfEQNIaPv1S3YAiVAr74TUMeRc/+92nwC9qSyY9GxLKAKe6HBh/+A2YY135BQnVQ+zMuFUbp/gI4iY4O9WOvoJxU8Qf4HporuWhpvtxTTPkgZI/DHlwszjfQTBubmPTVDKcCS9c8X7p9hAhdvyzuh+L/qLcMRaozgtVbJ0AfJu54jCOy15m/PA80rXBeUsnJ+kHH+INLSzFid1yk+AqlaQeo76sRG8u8bU6goflVQPtN/+kUs8fOaO61RcFHtf0D8T9BnChkM76NGqi15D/MHSBYid8QZ6fVZnGPnUVTSx7jqGmFUT0iMrVMqJnle1qEqh/Rff8B2si0BmwvlLkxcb4ChfaGwMT6Pj1edlHCj1tTAgRkm6eF4GLFwzBrRI3dWZtLSmIvL6cfiVk8lgr7qYYr86fkf2p1Y4MkgHlHpQnfV7Fz1rvjNIaZrDYbSqrbCbzEjR8RizwtXjlfMQGsteEJ2mvAuTj/YAuY7a/jfXOxJMTkpbzvZQRFbeZEO/mUmdTfCjRgtFpPKo8goEnxjq8iuIi+Y3xP7WP47sweyBvYmQdo2vnMDSS/8RGlyv76TRUDITkJvCxZTjV0w5jqt1wGAeQFUK2qylhSVUH4OtvrKecDg5GHVjkCZbc0v2XYyAYSaL28c5QI/UH9b9CBlGCx5f8/nCg8VzwhUNLwxv3z1wLDVokJvWeFsAnFB5lIBrPX79O5TyETKbXGodcqGHenNpgrcH1am86JLkDRP5arBncrIMIq04ibDqz6DOcI38ZfujV5PFNu8Td38jXcTcI0bQQTo/MHlyhiW7lR0DOd1ntF0USkZxUQlcXzAr5ymraoZSmUOlZGpR88cM6mJcyxJ8GKeAZz/Qd0W/ClqB1FZitcmwyegyeJHzy5wqJLTUaNbm0VpZEnwGAW7NHgMqa7iAAeZEwCWF/duNS0it40K2Rer1If30f+o7iTcyxWHyav8zO9oZZT2ADdY2ztjlyBQtrpe5fk2bwVcBpWXP8AZw+EXtEvWeGAO+tpZtp0qbHL5b+gAsQNBnf/Ln3bPETLTY3Dulo1lOY68KJfIiVpr9s70vkwAK865+fnKHv8Lu/NrCF28LLUGDbWZPh3L6MG0Ce9OExJej26VeiQEJkMeMJP/TehbEDkkslwIsVIm4fyZDgSCLL2Ye+teXgOtM/RNNQivzQ13Ycx/EJxKLP532arMrNGtXxfW+ca/Fut+hzygq3Q3Hd+CKl92pd4Ptnbj43ts9ZnWVP/O1kn+QcmdUwMnimEBBxCiq5+cK/XCf9xUcMOy0BZ6yQ6VkTtBN+azI4VIPi7k2udjIqHkLjF2TZO8YlqS3c8/00Y/copPQ/6jfkO9HBBLPaO0b8IBTLoyB2Z+RnqImVV/1ycXswv3031iNlZR/YgGwy9DRZ4WlZt1B9gdhYCdX+hFT4DLldSicIAD/VvBquKJCDZOAydNA7XYp6qwRpZL7PLF80WXv6XBOwf00+xqhQsyJakHhqJUsGouqi+LwAgWaFpZS8NcvPr6hNxHKlygEiVCBjJ/ZQ0gDucBEH7ZByHTIHz4O4US+hLH7iZAxrYnkmfuve49Wc4wuka3K72MfL5qDT2VA725oW/nCe7fr2iBB5c2mBUBz92uH+lbyGkAj6wET+tYFdP93kfTvGpNb1ZdeFp7B/IdSc+4uXLj4a80ylTHjNIqERtoKjICJPhJZ16yRRGxoKo+ZYSl6Jh+708TK+sDerCce7EroZsmR3HP7uzKpfUW3Khq/YdbVZGHfj22VlXZt81+2S5W8Okgb7anhu+AHgX+e68sp+7mwcEBD0gyA5ABFj17msKZdK0Lgy7WOULPoJxoTW3861j36oKXA3fcoTGc/eHZFves2FsZg1ZQb/+4WLPv9jbMNMcFVf0mZF3l2KHNuUBaJbQxwTNIIDUp7hjlVRABxIqZ+tluifhPAacNd15kd4T0jnjTh3xp4RT/mnFHVLd6GIIIUP72O4+JrGs5vV/yeNcxW74mwwHshL49nE/EcrbC9YaKQsiarEKix6dO/7DA+iQf4a72n+eQPn+KPjiXa6Q+vbM+vhR8amanNfXAyq3D3fG24S6/AZro0H3DiVm8PFK29M/Dw7J90y6Et3sss60gtD4fnv2cpZS2k1ftEF/AVDHUzQGZp4ucIk7uytzVT5eOS5cyg3r87wtyPmCmQJcP++6CmzaxT7AEXPYeltP+k3gUuSoDJauHZ8l5+0RVF+sk+oGgTxKz5CvvVKoPovUD5YjmlPjT4kV9/XX4yrJEIy+LAq7upqOLlrC9ZYOJ0dvoUXX+TIn0I+nnFKJrgOY2aw1yW/ZdJc4YT0TJnpo/4sBuIf5W77Ga784JviiF5pdzAKFa7VbdtHHA5YE8H/+RgcIrUvKt/e7oZpsbGWi+uBa4zyfQWfmxwCgqXOTnZ9KwEftj0DOPi34wgrrw+7iWUc2XHd8hG6Z+pc7mJjWdi1ibh9GEXuIlq6fOFy6YAwCycjwiwJMrnBHpUvyNHwgUguoLtWxcyKInIrf1G4WsoU9IN2LswdmLn8hHfBQ0e3YdBJaJ2vgOkaX1dTTDiCK8+bqkRffgh0lWb8StHg60tu+02sJQSGmzi9ia/Xxq3SY3QnVdZDkHZGdFk6K+RpNR2JaxlyrOWwPOvoUQHjtxkjv1MTXGdpaIgXeviW8IHCWvdQcktLTJgPlxOSV4kcCDpXBP1+ZQT6XtY9SvUoiPeGlBwS5DW3krxSolGa6HzZgSxdXoFAYzYAxCqmcLf9AIejRpww1yV/U0L+5TbWcOP+Cv6J0Vl0gDlTIAR5UHD9g5mlYmWrsVqngoKNw250WfVMClkbAOlN4UShry2g18cNp3EERHseC45AZkaW0/29sAQovMcvE6pORSHqgV/JRT7prH5LLfBGlcmfdKeD2OVc/YCIlMFPCaKoeO+10zWSTK4F9Q2EFJhdLa9HJrKXJCh0Jlom9h/3V7sCtLTONWobroCC4NARhmbaF+6Akh+y1Was2Zlj08UYF9pAbi5Lr2xbbUvb9cDBDAWn1FVJeMwYcvoXEpGYZtfd7TX1P76V7CR1T5ybPHHSSi5Z66Qdjefi+AMkLwXEEN+wFfpk8AIj03+Ojh/8UhiS22P6k1bjh0ipj+QrsypCPLoPZr8E2Txe6sOz2KazHsEYibrjoYn2XundfNOjr2vR3zoR5jScFDN2udNRO36kdi9OetO9JCIR1pRf9FSY9PAjYP1GRCi576tj/wiqHfwk29+Nj/17UlOUBIqbchX2atxjQbYncr/t3QyW6l/QLzAyG14TE997ryDQ7YodpqUfUrAdoPHptPQMXLkSKnEqR2/nRjx7wayxeE8pP4gJr2d26s+oQfTg3Ha8C4rPm1cKzff3YxKTm8BFRs1JnOmIqLxQn15WZ+4XDhKZb+CvE/OCK232JQBB//uaaBaMWuavKrJO8xvncGxppM2nPLzVLGtC3BmhYP5AoeQ4FlYCoe1TJHi3cBGLpErdYuKhpn32TmZgvvqeAXbsdfmduR4ApgANrJUexqw4tseW9+6AspQBVJu2Et87pR7St9beHbW2VkZv6hrmbdXsyHBY/HmE8iQ6RCGYTiP04D2m99AnFGdDiAD1F9z9n3FCUzp6+sVWikj/8iB08mn+rMYsbkVBUUnhNr3YK9tl9WQdjr9ihehBrKgzRjO90GZOP3Z2V1zBfI5tm9X/ZoafjQYxx47s0K2zhUr21b6prbezn6FMXi4lJYwF2FsPJad4UGSxVAJBpgMx2QyboJhZwc/B1TGgWzBtWgQ9xrKkfdj3El4LvHQ1MlWXWLwErJYf7offOn4q4/vbYF3B58mU6Z3+F3stDTVGIA7rrPYoRcFuLkY4QFlzT37nZL9kQ+oZpvDfFxi3ZZ/ZXpkOd6oD6cDb9v3oOx61AZ/AoixHLpE7EYkafyTh1DTwdCLXM/whmCS8tIX3p1j3NbVPkbU7iOrWiUSRnQcgzERBqErdQwT11pxQV5W3UgQ4eMjFFvMx44y5qvacgcWgtIT11HOBeSzgARoAct5Y4Wgb48aALQ3Mw3ScC3+H3sAYNtTzBStRfgNoBTAsK9VLP/GTDozlAGOC8Sv5dMCBK/fRkihDrD/m9ROi9z7+Rhz4ZMP08K4JulP/m8VSBqFYRMU7l4Nz+BS1o2joxfcClzlW8p4yg83TbbZgr3F+JZFQ5lNXAivPAvgiVek6v2A6XwDw3rT1t4DOLc0Sy5tktkUu9on5Cy6QibaHKfw1qFzUR7FaKNHqNuWhvkQF6HhUAdPa5g+fPkuSpEJMeh0xX2KEo0W3GKkfTTGi+w91bMPdiMxeHBhevbl82V/RpVkaapz3NGD7t956Qr+nMflCI/ic+hGThCxTju3n2BuMJQm3uiK8Ks1BODHaRKI9D9IFkdiV3cvayJt4mKB9StUGUSTUjCA72AgN1ZVIJYAG5ALhjCpB8MdgXAJ6oZfQWpTKxakNUVDnNQGlx8XJ9OEZxi2x3Sk2iix3EYjabPVSiCNqDCWjq/HDiHS96rVzv8q4wBQ8qR9rRAZPJ4fmZUCQvchqNIxLHxg8t8fbElJFHKPHbz75P/74OgHc1Az5G/T5H1tSmDK3WglDq0AlMioLSW+rKkhpAnysb5ViUWWyyqvSTVbWyAcKYj7U3/0cAWd8QNO8qxoQ1gi2DYMo/X0Wl2tjd9Iq6dCSk2k3lphLWZCXhpusftraHZVAQOQAhDOWkeqOGNeH3TMJK0POT6A1Yx7Szi9+v+YuIs1HACvpYnmtNvEYseVZn/owkZQ1qJQp2lqrbFEcQFrTQGRd72kcolbQwDS5o1DWw0C8LiUI/CjmlTHmfLMmplq+iBLnZiLdhWJ/eWC5JBPlF0ZXA+5Q83oRqZ6Dc1EDYJ6+C4VdBwckKkCFQztb2wagvBrqTzQfmWcPI56iC9hDBQeD7Cz7y4zF8/vUCcR6ly+mTHZ9NvBs9BiRkTY56Fb3m+8uWsO6woD90YOBXGYWqQrF7qHTOXJF3vYbvV4vZsAXQD6hDDz/88UaDDqawf4mf/HmEnb5ixfSiqsbionCHzb4sEbq32E5+KexGQJ6WV95DZhA+pl+/E2nbirZMg3Q2klFMI0qvZXLI2lvCgkxM2rTO8PHwFP9mbcOM5EO1MO57W6m16Lp4buBxtGM4MG5caIUZunI7ofgJmxcIJEIJq8ukqReAZ9/+U1go/CwZdgKex4IpKhCRZCdD9XnUr/awXY7dOOlzAIgTFyYoghSJEVYFxzgP3TDZi6wwlBcIfJMxbcLNjMm00MAoXG6Nvuou9i0wsFLLXqJhMDdhntIr5Xma9HQ9ZGJr9JRsC0BDHSzkEUBW4SvJwmI9KF0f2znc2Sd5F9pfAMTlXpATJEW0B+ILYGYEGuWrcQj9COAU9eEUc3/hIaUxtRKruWoTlLOy9pwDk8G3tO3zJU4KiIJ8zItn426ui74Ec79ggM0fFJ4QAMWPKxhfsUoQNl0CKc5a0JJozqzf16KUD8m6c/o+kAL76rCfAQbwF5EQOyl/mquaHGkKos4BPubeVelOHMU4iuuwqfz5vjnVNkheRlX+VX5X5jrgkTp2U13u+J3caYUo8PReEJGutGFw88qnwSdlUAQjOXEDd7IQDmHWTGle5i7JeojPPMy+Hycvldb1G+I6LoJMBff9eXCim+6FNnj64AqFpYcBf58HXOOlLCYcqzQOxleO0HQfpArFhaujrhTg3qGnKxH3Cpna2E+AcNSal1PuXEddEUjZQpqVzEVNDwSOfGoGE9dHe3p2+vlOmGA/7HPbRnYGO85N3CbVHBemn/tYjvXhm0djRTvBGYpjsSLmwX4KULLzCuOK5LJDeNltUf7O+DVAki+LH3Ke8CPbxcmIQYov1n+AdsjZsexnvV+1/MQJxvu+zRFIUfCDwGYESN1hj6SbwKjTL733mkzYHTS5NvAhMSWe5LgApDqns+3zb4fUEZvsOuuVtSZO6HuhGsNhq7jFdT8cCr4Rr9jfm3gUbcuSbxZLami7YY8R+UnzjDp8trYcfvR3YQZFqi3F6uwyKYWLi8EXGqHbfZCIwYhAg0LNOiefwsFJw401tM6nlXJ7ksTYOiZ6JBg1hy6ZPxOAMYLR7nY+gIdgBc5/sy0bhpPabwY7T7jEVuH2s2XQRag1/YiruTfcqZW7538C1a/Z/+JlGRdpWzZAnpyhluSKzZzQjgJJ/nMN4qZnCdtLa36eq2+Ll52j4+kTt/DLArzUB9oySTrHxYAn33CL5XqIHmpmxQ38LpxAWHAJZV5X8AOfgJokS2FoPpENCffbbbJNuVUGFOKURn2V4JqmGl3kTJzM7hOeV7Nqk2QoMrqumf1crPv/SNwNa4dHpKj6Fj3WYHv7tlXaVJqcBY7cfOry8QNo2sB/eWKcjK/zH+46babXPxj3FX7h4oO9P658/Oar2GAQpD6a+9Na6Wn+9nqbUeDd+l7da1CWTZcaC7YRCRkwaeC7z3360sUgwldlP/w3pu/PdszHPlqIqcim/sL1ue6EkmZScwpT6eLIMutVwMRDaPYdk/h9F3gV4hpzGliHhkGf7iNnYsD9k0kHjy4BxnjU8Wo1YSk9tPD3Ow/k3VSaHqU+ICpVnKV0CBucmt1nJUq+gmOG64pNbTle7tac6/I9KLOZdacTc1VRmz6PMCprvlsDSumdPpo+U2BbVjeN8n4Y0Jszubhd+qigfpIXbkqoc7O3fuKIZkYUi1cBcn+V5t19a/D4KEZQ3EzmqJfYf4PlLcFoLTMKuW8w1wF8uniVUh6MuPIHuDmilUk43w6jLOhaktBISbNNYEfkZP76NBLYHFpM7nvElsYtmXcujy99LmAUcwkq050VyISY8UWMehv/hwHKvwKf2fc+7oYvcSZqpGnoKnCpC1j/nA1PPDgBfJvpGizuEK9DiBrrX+YwYbUVNrTaRnHEVLQjdOUasByYu8q25ZMzYeV4oFacdsuaevtQynRBl3S56QnJEZiO5xmN+07AxE7bKcHWpSDo/ZTLYHSwVyOwajfYXnnPU0d9yu9Jj5LTkrEPJx0I+DzxSfn5htVuz0US2MAToJfJJRNrGLoTb6nnYf8aqsGnROwxIypLCv/q/C3gnl99vekjOYEqub5+IdWI/hsNZDyzwK2fvCo+jBtcwAaijFdyZjUqCJuWyqlBX3nxdKN0RGYhX+bsMjJlEGmBVIN7TBEHRCLRGVV8CjMeZNeePjIKFt2cbkt0ldhyskwJte/3fZfTYYA8y1DVfBqvpkpKY4mCofxjJBxbdWrP63+64QszeX8Am6CFSwr5/JNpNFKMUzVH1r3R/hhf9g2Ps6FrwOgT1Snz0hMbQFckoadRsr21tJRdNHfP2FUKNaqFcOowg+mkiWDd1odNGJRYteajEu1mYWBUWVpLOe1siJGAF1+1lD0EEkXj1/cutO9eZodpMK5SDkgAfDfcDDgZr7cW2UNFwdxEdSvks2pjoEt+aVVqUG2NPEoZZvK07+t01Izk3eL+FTurCUJk8RlFkIdFYifdulOzCu+b33GAxYU0Hfh67R0afe31vJs46x/Jr85ngDN+10RqX+UtHpmPLQB7TlrArdYOM1TqGkZJsJc9lK//mrMCapJ+ij3eca8n53TGILClKyJbcOD8ot8nZsMlgcoZKGihqA3H3rrrgcyr4vwaefgX1PfGYiBSxS/r5CBzEJuU8a4dyEsfUsBbK+P0cczx38QFOUiAnIIWfcNW+NUTbs0B6oP+059/afXgA/VPzla3hrUR6t5Ca9nlpInzJfiKLenXHCcp6YpHQyYkgYiUJoQEorQV4Vi2PdPB0DR9PY/+AiqEDm0OVG8W30iCovCTKNk5fJWLoSXvJq4U8RIdhyMCOhTHzkhZqSMEReH7MPNfZBbEsHM7sxjJiigknot9hzuaZhU1aPfUB7eH7Gg/Cte6qgS6w7exSjWUngiI41m+CSfvNmWQYjM0ElAfcTnhOVvRHB/hzzH1OOGzICMPwcdSFrCO7/Kjqth2NEQSX2fUPwkYSsAwxArP+5jMQ9BhR+Yhs+Z5vcS3ChoF8HDrxmTUI+OEZybHaNrlgbLddYm12vINmeAKmcoYwVTuCwsUQ+E5hUpEIgajqtf9hzh8RxqGA1qkBqSkKZ8f+1vur4d/peayFnRyNDcrBkPmclojgKdIIvtaNQZZbXhj4nqyeYFdBBaYpYv1laprfid60yVZCpFDgZ1MrXKF+XZW2Es8q2LrhAsInnHtdGNGWDq6MPSZ4XJeeh9RZjDrIqZJE3pjFEqfDUoksi+KwcAyzlKgY0o3ULzcFcDYNjjTialrErajH9yFd5sqcbPQ2L/AE0P8dCE65ddraLhQaQMPj3eemYqgi95md+nuYzctYGeldsnrnXGIsvDWwctFxUn+hrwMXEjSP6L/n9rIfuxB4e+R2UorScCpZC2ldHMV7oJmk1dPZGy+I1T98Ovi0IFTCCfXKVlqCs27Np1ma1zKhE1hweDBllO5RMiEjsY0zwSa8HkXmUCKtr8RMg+Dgkp2JU8ImCUJ1VFl6DvqL8UDgwmLoniEZsWWRy3LF7QfFXjpBlt6ToYQgMMCGWaVPqxK6+rs30TSIYI2YmpXDsRB2mnat6DYndnM7yq5aOeyRxJxxF+uPJ0YqTti/oCj2zkslIDY5eh/+rlmyWIJSg7LbG+APilFusJdbb2A0AHXw7ce31GvaAKJDDZqbcCCp1jCssNksNs6RB7G3nFJfXCFL7hj/P3zBe763GLqPsG8Vu/Nl/6QjJuaOH4jsC/HnvgR8ENvIU6YwQKJoD1Otz9BWjFUvzNTfH7NXhoASIaE+rxGRVsimRQJzH8mOjjn24n54SXUcmbFldfyAdmoIQGjnXVaslucw06J4VkXqMsRTNz1EUenFA8JgaEhcj7q13EnThdqj729AWahtM6Wf0JkZdEkUq1pdLMzZ8iZEPBm/wamcao9YwSPOLqC6Ylgf//QM0OpSqhaE9ODEq8D/wOeSo2QDKlrVkbE39tSaU+smyzYv51h7Cvon10ID9uO7qIn8vPz/K1i5tJI5OZmnVFSwj7sdLVzpoHEVA9qBU3rg9h8A9Du9n9Lgcjy5bKxwhkD4KStf4tB/+pummTcra5AAm4qlNd3kRAUqFow5q4Gq/OfR4xciABpTH/bQElPQV1XSknwrvawqsRITnTgeCxp4xoHepSdNUN0L7YH0zJZb1JqOS3E5i1cURNILdc54n0nXkcNpefqRyenlbVpQxkik56pkS82cI2TzUjU6jySE6N3dgKmPZfaRLzDyOLZTAGKv5MCDQUkEnkkp5Ye44sqj2l85ZJTxR/vSsqc38kCP5S6x75B47rWuQXJcyf+74T7XM4WeHBoTtkAPXvvEtl8Vod1tRHAdxpoECB6MGMN/nxBzBmRm+2BLYU29EUyL/AQzokdEpNEO1Qnja3gPNy7yXFBbALGF4VHCKOUvNDE6PKVpqOgEjU0gJs7wAF80I5ySzWq8+HQ6L8iDTgfGzftbNB+dXbElwy+uZLX5nc0g8bbIbIz1HJJmDZTA/qoHEYoAI351yFuRAgl9hEIu0YcY85LmrZ6/xVO6INY6Id1Xd91YajV3hGvpi4EzsO3NYXuT5YvuWjKdHcCow8YlmqdMrOkeQUBs0uEIt8VH1N9N1Iaxh9b3ncGdRK+IOs3wVByxgglD6GUnpk4YhUWeguj9oBN62dsNCfCmwQ+6gwruDegi0HqoMYIiamjBsoy3dIA4aRQTymxx0+7rmh/TXLmDx8UBLb30OoLA2FFl51morXAIsZ2OiqmkTp52nljZB35iFmdCSC80/7auF+i2bEIfr9pkEiRHSKu50X38dn0hcMKxvCous/P+Z99W8k9nK1cgwngWymdxlT4P51laQX102fu3HlNCirww7nrJnlZu9zg9dagsdNZw1m6+7Hlgyb+aibydCLuEfz6iPF1NZm3qnx+yoGxGZMtPjMwnC1yfOGyX+9Xe001MtDXrf+eZbcRABi04/imRfcvCrddIRsQT708YsnCiC/AbR83byzcHCzB7GZS58AHyS82COHIWeRc83Y14hiVdFJVkbT1nolsf2JZlr19gIUWsgVtKx4g81csOlKKekvWAfha56KvnSkLCNGlyZsUBg11Q0nsb1UdkPNmKVUszMkVaoDYk4JvKSfPUAn4K6txBHa+KqkJONNF9s0wyZj5hxfUIzjntvCBQ4Hpx66XVcTkJr+z4M5wn2MCZRhn80qtR+deA8aDhozBGfjlc4y8MdxIb+Vyl/aTYu3kIb6gmw3q8pvPnbX10j6FWMmKWCikQf6r+HyqXH9Y7PthHN7cStGX7EQsgwlkIgdHql2yieWp5BndM9z1uWzVR1WBsRa9+/VmJL645XVavS6ULwRzGcI6XTlraH4zPl2HKmEhxqVDo/3J5UgkSpLI8uMJNRQAHkGvKeOs3puKMBIV8qNm5AylVGSknar3Qa7aGBojvE75eLJW9rFyhMG5eNyy+ZXTqlsD+rTbPV9kaZAVPCloLdbpGCor97e1RsCL5FwI4lXGOcY8MONNgmwm2mT2SlNeG/rxWAtVHkW+2W0S2ZPaAl34MPKd085XLPR7f4Ce8dtXgSnowDoaSjdGec5W4okG4IdlHjgyNn86TULLYErJ7dKg33KHybDjxqGwvPokQqVjCf1yN6dgT7g7RjeAXVDGanV5iXm2TS3sR4RVsBfeqxT/B/lKlkP/AqVbD0E7h25+afpPElrc4fjGq2spevPL6RAHIH26ZKlHoeT4F5cDLfm5k2gA5Ui4rHB1wbzhvuMRnq4+cU8ZT/8orD5MvR7a3mY8cLphDlGtVBaw89MNwvoxpIZY6wW3i+R7CJ8GTWm632St1t+beRJfUtro2RbmnqAu2n/4bDSJOg9mgj7ScsSU4Nrv7fvka5JTP1hrwsJmYX+yvIPq4dT2DknB47PaVDLqAxYClkNGl5dXWCWw9FWdP4GiDh5wXd2Kl9bJ/FXiOC0+QzxyMBwKmgQdzloEETx6/TdiIP8vjrkXLMoSMcg68Ix7PELDtzHAw7S0T0jbtEOsdOIh7Ng738TjKQ1o1giz9q5+eK5mtuF24DQyJYNFX5U3Km41/KL5T7Qpgg8folS2neem34OwuUBeGebNuLoYl0tRb6QB4coMvsNc6CImekG0GkJCXxz9wotvdDvdXvAU6OgweEW7w29tvfikJApnLrL+NBQc74DQvVvq6P5gii7aRxK9rV7DeNZvuDhTn64GRLu+ANjdRls+LWb0N3BnrhgyE5mm1lTukO1i36yG9xOm9oLg8Rjp+f9g/AyC7Mgden59XZ32zgso11rNMYr18hXwJD7UlHXNJZYn+wfM3cjqZZgAxE8JNhXFdJxN0IdqID2UEOYtmTyeljtSrqHhRfFQg6luH4EDv5yniXC/F7Z2fkCp136+WkVKtSmjI0qHuxVi069v4CYhMNG9SpTeKQm9EQ2e5a4f80/sY9fEa39uh7Y3NM/s4QewCe9nYQwmutw9M9EVYa9GM6Av/EDQlapxrzq5DxeDivMAIOr2pRoeZ9Pw6M9dvSAe1vJfuji/QbHQp0rls4fAmsA8gWHH8AYR11RJD2qCiTQf7U2NPR4a9ZB0UnZp4PwiGp8uPAx9Tx9QOLJiszmBPPw2sM4JQaWy4ZRmfPmn8tLd3zLZjajMIqvSJyME1XAOfe4Rw8ayucsH1TJoDR7PHVBE302WFu1OK8YBIuL6bXZjz2jGjpW9WUqcpt83S2hRVczuJLSj6eXSC5dswBch7qQZcsdtw6hx2TEOptr6YkuHaTr34vz0+cuVCNTHxHN/tes2Cnowpi7GcZtBoqBnMsHTDatQF3t5bjlLs6Aa3xA9FXDJOMGZfiaxp2TqGNDtUX5QFJnP+iqhXwjKugbsnZ88efysGEaaPFUuWp+KDyh1niPYmEQbcc3tMO8t4+wY8Bbu+uhm6YdLblMZfcvtuJchzwtxg/M8YpItTpiPY/4c6/Y9+gOe6XaOpGM3tLerEEKv0kjz4eIQJgs2mCm4tQ/4X/UkpFzAglc7e/MDCc6pZt7kT0jt9+3cK7as6M3Qi5WA288RCxNRgPkBZegbA7JyPJvIBQn1szmWeaJEiP5qwR/3hMSQ2w7ByXF1qVWwHG+bwRysLJFNivrSb5JKq2U3wb5r4HbXSnTcL6jzOgg0eBwP8MbzDej2KIuk9a+n8vUosAG9IYiiINLyxuS0BaAWC1SwzBceHQzcjLlCdEPG+ruH3CKnn/uRFJVs2Q5NAGh9aRyidHJ25wx38z420F6lN43uTf4D/nHiXe2b+5LkfNcXdg6msTkEJJOU5V1IicXY5JGL8i7daSH4QebM0nx5jxMEtFN+A0CrDV3cKfC/aYMVi2HzLEN9ygHF5CHEsvZaQZ1h6eq1k/+E89tBZ2PiEzxqCENLTjLE4rY0bmR9QOX6aznnGhrvi0u7iLirrJbPEbzRSzT/qfWJT260IlcqtBqch+Uy9BT0aQ2ew6efAtT9KiqnLQnTMV10btYC++tnFtCzRl/dcu78ko3YTchkCcUm/VnDakimILJ84FEyN30rnHdp1hGVp1MIP8iFmpWWOBColrLx/OGiFiIgXWlFj7czpX3Lr2/ICUyv4JbagX5H5Bjn6PQ8OMdVRLRMP92LJR58dd4XimMJDdWuivKDPEBK5IWazM6MK4zpqd2+dUACEU1fapGiDkxHoDyO+HKBQmo9L2l7DSdGsynZo1osP1D87T24hMeISPK8ssl2ZVR/86za7AOXdRcHFEMA7LTfVx1RXsZzaEKqgTGn7OrToH8UQnDSMlgxu1dhqFLryCb8QtLpEtwdUs7fkzGwowReLXs/C6cwkrlHu52Q74EEE25CHSvldV6PzPrjYG4A8iapO0mulU80boxaBf1DzHoIb1ZDsXNfp2dWp1C/608HmqhcV/HTpjlZtnSJJzQMAPS1GVghxRpPD6OHY9MJykmKZlpj67+fuljPtvRkcFM52BUEnuuVArpKbHykvuZyP1P4PNqLTODNALtEMyStGDO3KarA+rTg9Pcw3UUUutXufRv/jbOJ6rI+WZJC0/XqEM9sPaG+EIwg2GP43/n49cFa1fHX3Cfs8ehkIYQXFlEoYdKQ1sTuKzye0Qt+LrV2bmnqIQ7NwMZbMxarfXXCvoOtgNY6Ist6+m8GUTaNEorkMv/1DFx5AbC7XSXwJcGEgGPc/ead+CmLKN1sjLSPU1oOFIm/vWZHWzySjIkuI01QXfhV7jtxL6QqJjqcu6uZsy/DbVPCxXOY+2ibqEJa+5PPfpChpNvPSK8/W7cyep8dLYzg8nMrOXSBZXOELxVHBv2nV4dEkMmd6XTpRO8fgOd48LHhl2teoXkgdqh7xcUEfYDCnWgFgnNxkiI8BZ5UG/xpZuULX/XCERu5c3Sudh0Upi58JskGhSIUvVYZ/kDAECG6m0HnDNtFYt3hj9uF0didmB+Jo3QJNHmt1MSLJsQ4RE/1/ilG4pMQfS+XII+AGjrF3o/1TbeNIObZfJcBrYqBustZA1p3VXYvuKDzqOmwUK5myWL7DHx932f3ZAYgkr3j/aVM7XzaUwNLisyd7HynVUqRXR+v/qQqgy7AysswHSiON2Q1AdsWsGhP8+DYoPPewjwiTj/8uQk7KDLr1+7pTQsbTCVr0119pVdblnZCFZbYzKCDkdCf5HLge/cvxG83sErRGcblS07Xxz6tdhROVs7T+zQ5DPN2apBePtkqJVg9PiGkbezS2MTbG4h5Uj2byaEA1BH3jI4lI2R6q9L583xfNmUhtyQ3utSj3j7PbC0URjUTJ1l5zVDvdVuIjBqe2TEzTx+tR+JK8k5og1GfQnCnwZyR8V8j6HNG9vwmuQNOUFJGM2LdowSYZ072ybRDTUnZgMnVUezBV3M8un7pZG8vPlKBq+UxxTo4KeL5HogXW7KVouNzgn9dtTWhAmP1WOcTd5zhHdzGy6fVqAQNlpO0+fT/ZSWXOuuBRr51cKCcSIMwjiHeYi2Jj/4ZB3ihZ2iGZGdKfyH88o+q1meKRcohjhT8tOJ+Cv5xQOhQ6soXr5Ggznrb2mH1qnDiBzpP6ZJLhu23sFds8fRjbPaRRzchzSVm7KTzNCfPsqvi8rwZIsCKEl/SUB6tTooEwmEQp8lL59NkGVHdNn0isnvYArrgSPV2sr6ariapMCFYIxey7cxBxFd/iNtgh4HEDzYs6UrlwZb9DovqGL2i8cXp9enj0VwpY36RUI91yxc5s/X81jr7DA8H/OWBp9/9bExzVty9gQ8wGbT0RsxoC6kbiyTgkoBsna6qxt6KHOpVeC+gP3LfBx7xk72o8F658yUBsShcV2IE7lVDEjHAua3HXdpPlasFabRXjkyYpKdwTC/Hr841SpW1t7HMkUIG49B8bmSit30o01MrUgSl94npEI+WE+3jxduS22ffI16U7r68uYmDa2ZTgAoe6YATwUWlcl9zxJnekly51hxezuKQMfExBE3mMrRigLYD4SqG/NnM0gZF+6KtJ3ssbyCbc4lx6yWTVA3Wm9G1lFQXZq16xrQbp3dlbtDIQs6BXggvFUUaPscP2xlLPdXmQL8eX//NSfYVZ98MleEfzL8Sfz+59C9KG+2+bAIBCYfx/KUgqCxlDdqAWhh3qBiiMsIUKMxoAnj6x1jJPITs/mj3nUHj7mP9sXyrw+4FGbYJDN+Qm+mXgAuuW/NtpLZ5WifM9NbACVgzeKLmPqPQFoVctWIbqHhZSt+fYMEeK//c1exjd2M2IAOM0GzSXwo5kN/CFzPZi+M3xvsRVm0qlHXJR/hqCs8x095OsQ3nyGK6U5Ylc42CLAWNdIFPPhU1eshTkyxeRxnOziAHADmi58fuDUiUw+Bh0VzPwU01r7o+xgpwG55pLdsSILwO4AQIb2lqCSYr6dxndR68Ei7vy5SmEUpe3+O6t7ERHAAAAMANmEAAE44QZshSeEPJlMCG//+p4QAAAMAAAX20zP8YIZp2AAnScJQwUM1qsBU/4M/dgD4VeV3Gffy0nQa74nS1A0NkEMKir3CPP5a2T3kEWTicnWaM8gxCIeXov5bd6DTFF3ViEsujBIFF0MNyWmDoJ3roTKBvsTchgqbrc+R0YSHTsecTwsX5Dh9Roz8tdodqHHpeMNGEVGJ3B+nj/bJQzfw0YIgSgqM86mK4wAg2GHq8S/LoCsqOxM08eq4zrqICoQAiVIHnUxiOc/2iTAK5gvDFasXf924Zaz69AwKos1azOfoxHje6EesCGUMdCBkL3Ng8nzzr/aE/XZjkWLGRGBC61YaKPf1T+bq2Db7GgXMbogJqX0xroUEEFeVhYDt4rgFwtTX2MBMv/raFwLMrsliwJfdO34AEliSTIQYqLPB4xYP3qoXUd7MPYnSnUU5JhVDvQjsOMOuKerEVAjBiZcLHNVNxcqEas+RSBxbajblaCwbLhDc1J0cTRUxt+Wi9UW3ViBK/8HlqRt9wamqN7TKzzvbbpNEPpvzcVTmdcwixyrNCiGwoADpLBxu7tUVWKkzp2Y0Q6PppUFNvNv1HfNReqco1raO4p6o1okR1gfYe89/zcSXKrFoZ5hV/Cm1CXXEfbCEUF+Y73uyV32HZQaG7RN6i0mbXjxQqqSu+XC9S8IUjPlYk2W8f6+LJQbz2KMLEf0m7dsJFo/xy6+2ylu/7Zn4UXCqLWrXKC4Sk7rCR08gxL+cYWhfm4VwwDSOOxNmaQ32Lhjq7BJ6szHiIk7FY0cz7Bd6N7Dm69utaIsgyWH167FQN5HfEzHytpbr38TmzhfgxML9cifkW+OSQvsSDxnIE8a3TOsn+wgpNf/tW2+SD6G4Jq0zdGQ0C863MnAYEL+QtRs6s6hhDKk93jGsL9X8DmhkdBaAa3CfI9toSXNo6CQnKcvWuYxyu9Lwm5AfeRTjM/RAimeIcXnKQNjT4qNzogY1EmeUmoNsmFCVEHHqWFRLJXEUnI54p8vRetpdphIAAxlKuQuXiuNbO9B0vTGYtslfGnxNsesKEWcpQ+4izYTO2S6kyLYethsf1xipK9nFZ9F4zB0birhwk5UKugI+Lwh9z2uyixN/oK6LEJpf3TUTf0exJUQllnd++SBUCQlTEhYzj077cJlwBZ5H/lpNAm0krPHYo7Ck4jybJ1fgoksBoBhStsB9JCx7oqfANUkp2nm4DLMQeTZlcufyhu/AQyakx+3wNLhO8zsKBIcuJusSDvhJuZUYMN5VGbfz8ec+pafkMqD7XvMH8A9HLca4OdlqbDw1n6tjQGPhJQOvOyeu7TZpYPvS2dskIZG7JRbA6AAATydskAsqM3U1UWHDUsyJEiXfvqTR12CaMzqMwgUiiRQm4zCSJpXnLuC70A4UL8p4dZlupQc2jGtek9Uxldy5fBl2cp2+aqStWjdfi2JGQXnU4fMqgwsNsVsp0DUQvm6TuLT/rq0T0pSvnCL29Vn4Hj9NQNg4NhqoNbyoE3J+3Md2mfibAAPBT61wpZj+dQibdAZ8vIWH0gFHMKflVyGOg088p9r/meghqLRmfc6eP5uOs8a1lrunB5xBmdIJSnxlU28u+x/VOEMR+QY/qM3Hd0YK1NYIMUS/UJhqLFkKkLRnRQ+Po0aqUM5QB/nwDu/lLezMDrGDnQ3mb9m1lKCAEWcW0PLwc8x+SWcbM+jDqDXCqOjTbbCjQMZM/h08v+XZ2LzBClBaDAa5ss3pQdHfDamZzT5/huHtKs5Y49mnOqku4V2gviSJVoTKjP5Y+cra5pu8ouDfcRbkdOy6fBgW9HlHFu9kMG0vJHTgd5+Kk0YdzTD8sLvxS79oG+Hd/3eeLFAokQTRIYzmyE1tJkYuliL8Bj32DFHBfvPQKsMY+11MBvQv0RR5zSXy31DewXOnBbSPyJm+u/nwoAvZmkCb34WXGdI4AaHs1ItuQnDtivOCAb39oSTzen32Exa0/fRnnDul2V7Uxqu/hbysJ9QgG2L+dsQZBYk03nf4lqyxI647VE6+fzt78ZthkADXqL0rZb41/6BU+j7CQ7k/Jahd3aLVDXMH/fjAk4id5A2yzA2DSajWtKSMu9aiQO7NEPtShjLwo6xWkPDDR07Mg/aZq2V3afTY4BijdzO6h642ZlOM2n6+Q1ipHzsT8dO8RcksNSO1AdmmNrQTQZrJPsBidYfxI/bI8kka7VCGO9/N/gS6azpvdcxOD4srknhPTb2AYwfkGJjsRAMZ2REKerFCJUN+fl4GT8HwokGLSRJtKZuDRXUfvKnT2Z0OXqi1DvgI5zAj8BXLErNGm3kOMekom/sTAeOfNOfnrHcUX5dorGRK6Us6OLa1fmKkE0MFCfGwRMkp/MRFLeKv7djHuI7T44DqBXmb4W7rGggloRRGORXB0vyHA0TrzNAKte9+hMNU0ImJSNzXT0h4QqzP6U0I63axFtiz80OT4bbXHGd8vbheIgwhaAGG0jyDyuLVCFkByA1bIFg94qj+2BT0wWDF/i0VrBctgzleReXyidNNPFj6jYynTrWdQZ9/jqbEyY962U7984xrtYVl7/XiT+QwD1YJU90KkWhXSgck5E68fkz5iRY8TE/sNsm0Aj7LksirPulj3dwLb9pWB9OJTL8oyZfEVLkUy6mUvKSId20ih1C+pSTn1shBzZGXoxD+l08H6oaNfhop1+xiY7nqtwNf4BNVNexeERxFKG3tfFJdFJC6cH+1ebJjbfdvzUlBw96GWXPyS6W56+8YZV236+ZgcXhmLF/66xFprxxJ7KmXqwuG5e/tws+ZXzDlGsgXBn4fnJ6uCo2Fhc0tnk/WBsD9oCBLqzON10mxat4NaleLptI9WpHiZlFav5t9ut9K+SdaTxab1wuPevs0FM2Ht/QhD87k2VoS1CaN1SPEZ7SHaPUPbltkD1fg0TdE9e4BqaCfYBSb6onnM88yY9xcM1FzxUOjDKGWJdVoulX6bKu1pTIhFTuc605UjnbvTSGeaqjOZcE1OoZSlTaAzyr2TCYM2QrIDzOJDbNQ5vjkw3Rixou0a4zxYPrbWubzhHoP87mW0TkbezvPaJzda1jTg0P09ax8wt9Yy6FLatOkMnMYZ2SL9/c28b8w4LRx3qlXKcEQqQ1SuBnTJTghB7FfNMj4YUMR760patTv/lMh14jwD5LWBmMMPJ3ewWf9pIBD/vGyhUO+23s1MU379tbNrfCRKZRT4fq0YKhuuw0od19j8E9q25Aopj9CJ4Ye2Zlahi5oLjMlvz3jB9PvfP5qJvPbU7i2Wfs4gGaYWTMvs6dXLz4UWApPHr5rQeMh8EP3TBNzuLkp3ouIvfm5tqDF+RPQYuM7dFa5vGub8A/g+xwRkV+k1Sk2RzaIJYdhrzZxXyZToUmdNRlEn1JR5oRfvBF3URnnTo2P8vcsKG3P8LqMETwe4OwMSTZ24D8ZIwhHI1N/INJqXRMf2CdGuK1cpJojA0tH1es3PmlFRtKWsfQQut8xlkT1WuNFDRLKmE/rGBIuxCcxJ5tnjzxPcW739NrQYlFnSjm0Rsytopo7eWe52Si5LicDaU+YxVUb8OtCQBPQ6wDP/R2u8CaRgzDqL5Xqnkuz+AfI+kpaHR3kN3GjE7cwPtHPeynjYoKXWH4aFuW/km1Meoy8Zn9RaXS6CU4iRauktAyX24/dfmulVyq/QEgkq/C+lZgXYsHraBNllGJN7wUttSiyricRbXcTrsHK6FdFKi9EfXCNGC3y/zvLYsnbGf7USeWitoOeRuhL/HJij0hcuJW4aWOQFfN6yGCTTCIVhABjhFQBU/XiJXFjrZXBNpGR+KbeRXu44mz4/npsPKnw8Hov3uPJuFUMwC3XAMolLwD2Lvv91d2fO3NDEvXUDLCAoq13437KZzh0IF+oln6RpOsmd7xfF9az/EvttTV33bIWjpZeja8M7udMo+twXoPCJKuqD/l088ML7pDHLKxi/1lVJpuQa1/SSOFR+EETaBDELrwrkPjrMsLVTQZXmX2mLgh1ZDv10CO586P5VimN0zy48teE5SZTmVvd2Qb7Ub8bECPC+IHMixpmrGupNpdaJVGb+EjOJebxzYSMciE4MMOH1dk3wAlT/VFXe8tn+CUEN+2/g3a3TD72Rb/SYQbJ7nnb3Kwzv7IBNTwcFSemcSBjcQpQR5T1qnOmeZw4eMkdXgFJdVuTi4l2C3XYSogT7HzTSf8lwR42ptGjcjhQP5xMStPAV7b8MwCMltNJxTSqD1sIP+CAq9OiohkWIFKAvpA7Ieay4gSlStwuNa0keduBHFQ4Yps2Av5so4f/kiVrapSKaH15oZ2eunBBd5cO6NXFa3kT2BQb6WeJirT+QLGs6OgMHyDWB83FoyYzGC8S8gOPvbaHgV9/s7Wwo+97BLV9wa/vINOteZlkTOcDKRoaLTbCQyX2vEpXnMfDZZip50V33Nw6N0ARix5SpqcyLEWuYZV8LeHEbjrWrJY49veWgJ7CxMZGy6YR/WEMgu9+LblrrmOsRKMPKt4hOQEef4eNfib6mNfBCuRfCruGdmCbEVcPLlXYrvYMhqdXg3anqQEUGoeMSdZPrz5XxZQeWZwo+AH7oDhJf5cVQSNAkClMNnUpEIVe7jIz8lvboNUa+YWr5saJPxrVS3jE6oMxk7K4o4BGhuZ3RQj5a1jMs/Ca/yhCWgfRPE4V5qwx4MYQ/8EOZ2djJKbdXy1dw8FwdggoLBK6XFp2Sm4RvFkV+kHJlad8vreDg6hJobqAadmyFSWSsmYsAW4aAvgHAWSP0+LKgxBpwB9kX8XU//dIIUQXYetSGKNR+wSr2sR985JMbTY855iPUfxKeEKOrMKovW9ktiEk42M8yBqZvXEAwxzo3idu0/+ty+tVPKffVUoCDhjeolpVia5Ty9jWV/aMK/H2xOQfFv8KriITUY5IZdmhjQjvLHK4E1WSAJgeD/ZQT38XH31RNgmgvyNpf70aBvzVu2lPB8moxVQZoADtFDS4hL++gDdo57XJ7fvf/SJtX9WaM5ikzo+FWzBqtOas5dOn9bZaYnLynWk3GuyW9G53dEKgRtmfK6EPgoSPllXbDss215qgk0EcvAUUtzhu55MesD+0vZmbbOLUWFnqyt7H3KTxdAzHoDuf5baAs5PAUhY37/V3+m3hH5s0vsvkmtclfNJ0vyo/UTjVDT8PoZxV/J5+lWv63au7Y8BJDaMLp9nrdQKi4nXk/ELdLVhVNeBnTkaeIV1hRJuwvT/26emSLNUaf/fVqTOpGrtICLRJ9mfZgV+yK2EJT8q2Ed0F1D96J/vXeo2CjZfqsfFqzhX0FMzvuk04OIEhT+Z4Vcc/Xmhl5VpRlrjrjyeB2f/cv8px49QwKfPC6+qRxrhqfGVvGn6XdMeJ/ERx+jEln9lPONODm0nZr73Fb2WjjYLogVg8D/MXTx0t46erRDQ38D25ImvLZxKVjT74qdqDJpaNtw9ly6/GqZrNz6jDtfCYt3Gmv0mWrSa7Qg66ohAe2IQIsmeIxTZ4EsZijYz+oLq+Rvq/wmtmnd92938Bsa3VnWf38IA5xi9lcgPiRmxIcjPPdPVXBrVmErNnX2RoEd3OHWd688/pfFMZ0OmzMacHIsRAvF9BYTZlXBHeSaU6QxnF67Wi86TFlVZ+x0U9IIxcm1N5XKod7c6lE+Ph2RsxYTUOKdAX1rzrmyq/Es7hhDdCg9evMWw3LcUz7HWabnGTLS9OeEz5g1naYcQ71HI46PJFewp/Yu6KiMtWCCN/sm6H+MVFGNP97gtKAt67t/xyMfRIPExEMeFbJ/Brds0UH0KBuqlRFX11lqDXX28vJHxVSziVcPc5nD0LogtnsFw2srL7gOXSVWLkW1qsmzP0/D45t1cMBVOuh+P+6wRHiBVvoz39IwMUZw7ctxPXECV2MuDBouSDC+1HpZ7qFZeZkXP79u14JBTTVqcT7Yy5eLNXondXfuTP4HX5DtD2ZFwD+oCc/V5YYAa6F8W8ku3JV9lJCH5iBfAQlVAky6mduG2EF7Y8U4ME3p3lCR+kvgHonksJM4iZSi+yeJuGkU0+sarUvxUGYFHxpXEKX3rgCpf1sp7KXYxMRVqQWHiEsozGlWdDTHJ7Ufnak+vGfZ+/JUejbAU4xuKkKk9pUBPjbZcwqYhwCV8DXmSG25feesZgCwjfxbR0vQDQLu4lMj5LyxpCfP8YitukG5k2RGKywjORtedyohqAKNCRTe0zxF0A5xRiNewA7Gt11OwwfnTMZEvdTmcpv51BN/QeAMw1Qpvp35kXskc+du3NtRyciNb7pd4CZ8V7SJ671txj/V59TVK7Bu2+LuCtkCF35OkQ7D/+eJC963WJHNgpXn9Gzv99/9tKgq+N/vsRetO+M4tnMGChP8b8dU4r9YTNagMhkYB1VQrHW6X5Pe1cLguvwR+/0Bg6TRn3e8ZeRlkDAaJNd8JwdGNe8HQXHYc39OlnLHk9tWJR1PwF/s/u/LAHBBcvpldkCfUuiLvEs1S2q9/Gmxfq+IHFMGZjhLwX2pBcUNuwYK/sZ/F3aCprR6MWxaBeDHSFMZ7LG98ztOHS9gzksKES6py+82MesyLJmT3ep7fW2i44ISLcGkAWyPdBzjAypgVhnCktzlMll1MFh/W4rRwCk2NFPigR1eFsIgA3Q4fg3XmtsAmMNyy3vYr/69alKao8IHgVWGkdwxxs7eFNnc4QPg9MnO3kkEdvQUdiwXtorwT+bAsvvxIvkqasPPWSlg0nOmlmkoUv+sN7BQXmkuZsaiV+hg0YnzYgD+3LsyKuwpVuUX7kuwdyXsh0l+wcHGKszi8Ji5z0bbMspA9D4ivNjHU+/NwWvEA+dSO4/LxtkP0da6EvL3ggaM98EJs2BY23y3vV7fEDQJ6zXiGaG6PUd2EgtWPK0FQGEAYrqwNrLhsa/fHlZ56toWiy521++Zu8elcFgbRO8Ntq8UFqJzXR9hlD1Yecu0j0YrBw03W8n7gPN4WqTYGYDFDbXfLI5F5iGMQ12F+X1/VZxhqP1kR+VY0RMhgi4L/u5mbkoKUugSTA6xpdgQAb73Utr8v+0MxuvcwduTxCyQJA2i8gfstwbTGZ3UVztlL/on2FDU1FxFCXkuRLve94bePKzLs0bgHONg+0xvcbiO71SmwUvKlSvJz6tcAq7tHawp/AAoelMAzv0OfAagUNPHTz+Zd56qzmfInNPPl27gK5/y3nDjAtzsCrDfFTn/cBgm87cpMhfGEg2exG3qUuzOiuGBdKRvbvwwT1trvyt0J0M+IYSIlX5xX+mudzsRz03IGy/1yx+SD6IpxQ4LCY18EseJkQHGgDCb1QNgp8EfMJl1u7pbypkrk13+Gu7l91S0peScCsWX9ojOakApc3wtbp83D5HBt6kFLt/BXS/G91QiDFeRkbN3ZZ3l8B4w5LeFoFW5hGQ3IjmJg0/Fp7PPIafylOUJxublxRxqB3k0u6IYIAhBtkur15mUBScAWn78q/Fpg0UXTOQkUwZxO/GdxSaqObBbbjUvQjNGB5ch6uaj1mjYDiSYEkZ8rQn4qshh6db8F91SM8vcoD19sGCZhlIaBMc1BeVId+PDjuQdjK5dooTTP8U2Vf92oLOtGQMiEG2FKjQ8BZhxECiPbug8/3NXdcuqKpzYi3o1ue0VM+A+LnScwCobk2goMHczh6IEnxXrpE4zL47sylIbvpA2C/XvvQbNWUHgAHJdgOrGPj50jnToujkuNk6daoEqX4BmTTXh9VG5ckbt61toaEmKTrTfE2xGBQyY7ejrHb9xfFewQUX/S7No/BssTgKScMn1K6H1+DC5OqI2j4jSlJ15SnjfWYqs3uzrE8uo26TvnxC/dTmVb2k0KEjDk143vIBuEIwxsFZh0CkBfs+XLdUsYuW/d6UpwMTpWyl+TuMZ79qsn+/frO3tKpyg2DKfa2Q4+5VWpuPLSAi6aMCvnjJKjUvdUCppJWfbIJWz4ElJcdEv1d8EbSazkCLrvQWloCbLfv2dkefuOZbZd9IlvWWBaI+zGT52PH4qcXDVUUTOOInx/RxJfbJ/EZl5gWzEDzWERIDVSfw1fj0pRnARwh80Nf+TxHgyeKFd88EFXMY1mCTgTJRvnwUYiMlbPPPbHtiiPvqtysfnXivlqbNxIxVozwzgkGlsllDZQpxTUHMhQH7a+7xFRwupNPio36eH2mm1zos8yqmPuFsEHkJXZ6DrvHlxHvOXnYaMLiwyNNX3eLbiV0Qf7P5LQ/+vjJozN2sJbpB94P2S6DB7n8SVRgchVowBt2B1hqNfng6M6Ab7fH5D5ZW2x3k1A8TscnfA5wzSTO3RzRQVmYVLq01QJUkAQ2HvowB7HjUCgClA5+BGwfOOFobAG/pBASQfkNbCNZPskrteYJJn77tMHW+n8bctXCgoGPL86R0CcBJfUjQQaIX7VOOzwvGO0XuBdulHQaIeBu55tYzRlgXz31YqpK1VoLBJYVTQXw7Q52aOXo+GVL9qMtB/C4elZKBrwfyked/jeu9Ny9jF3T9NUPCA5pl3qWJDEnWv1nuerm3OdXFvNXijZxYD28n28UnVmgC5nVpP98jP+VUJqdr3j57v3IlA1x2XPlzHI+PJitkAIS/HSSyexAEpsYPyAHm+uKRAWnCjvIbX8pKBvf45re64Q6s4yJZk9wGM70JBnf19CYqJkgufxU4ThOfWnZfe30XtRTLL0GyDLybfLEJGObK02w0dUeGZVYvCYMafm4LjQohKGeCA9KkaXaQT28+ooqOGI5Q6HwunOWuTqGf6o0CMKM8ERbaY+CWGmI9CaVlfDuZsOjZt3BdPEaSHJxxoIDIyTxDaHIjfe2yWUACawPBh5pL538ZPyTN1lyh1HU5pFjY4YzzAteYnX1L+6Iurx1/9c5YzesSf4Do/FJ3t9gObXz9D+7KQ93Lx9fSezwY9nPRqRpp3SxU44tCgP4SGVo38+0/ucQhcRzN5LUgQm09nDTRFwDDQuJyG94ZOZTJD3esOocE8D+Rde+qdVGq41Oj8OubbEbsEjyqMAgdLzwYdk7eAqC5Rm9FbB7rwmzRZkHQQjIDVIv1kriPEKfjNru9kJQ0Wx7YNCcs38AL/Q+Dp50boBc5PQOVlEjLj+xwaKkT5vCN/vpal5YyzeTPvwxcgFeBPc4vsjtq42TZDoffzv+e/xtoC4o2XDqR8imLGwyTE6Gw1pfw2hb6fMkzSSZlufYUdtnczz9Bsqn8uCtXHshhiJZ2h8fFfKYeTimJc5pikFLw+XA3ci972YVkElDjxzdojDcBTSkBNbeFGoMzaT6/eQWHVTeQfMmxBqjYVJUgAEpyy4CyHSwiTrZM+BMSqPxFicIg8HgFRsLXXbx4qsvptrz2Y5txhTFU2/W6G8O78l+1lQWo8iyawzO4yr20AflEhynAcklxuuPQFmvYFhwWj0+GB6x2aA+PYEut7NtxP8aUArqbqEbwRFO1fX13zQong+S7DCGKLru380nStSduxm7xDfaNDLOB5b9x2ZndZlBBm35WP/Mqcng6x3oG+r/FpifUrWxGT/nZzQg3ftWQs6VvvAs7l9esKry60YoqJpqkXsqjKhFx4iyfFpLDqIHLDvVVJmsBwueSfAqwrapwayADlekLxA43QRP8qZ29ekPjgfFtd9nSWJ6hUoLlRJphx2Jj7N+CWtyFEVojH9FpFcQavGxBWYdyoRQv5kdo4oCvQ97NrpTilIjiqqMWSZIsSaVYg07fYn4V8KOll7cqY1h9MFBh5zzVESmchAphP02pIcr+MpyDy330wKzjeqCQr/UYvvfNy+ySujx5+8G8qhfhFNYjEKaX/I/BkkbAPZGZf3huxXDo4aeHQwbabHqPytwsegTKgQ5hNX+/+Iks/n3Ax8jdGN/uE2KzObQ4MlH6vbihT6KnLkuXej+JHAiPQ5cUzagON+bWBkH7Z/MgoxFOEiSGD0xBhWY1tufx3wdL9r2MNhfUtw8b2TclmPoAJiVPvavMbZUbtx1ZLJP/IHn8erDnk+hVmZ7CP46x7A5bIPyOL+Y7hu+UJNiGc3s+zJVC9iE91zc15HqC824EORJ+ildXSJKhNgsdMj+G+JX37Q17m1Dcx6FJkULvgoeyPGMpMwJ5m4h/+V8hdAnXoGAS2w54u6igFwZj6Af6Ex1XW21g0D6hLGJjxViLQUrKXpmHwCrV7zKdsbIDXgjaNLrtg84qgWCSVtkq347RcdEs5KFb6QR1dC7iCtREzkIjDEvUxxFKom2zkrROsYutmTdR4P8StTVUUnDX8/Tk8C6J71FZvEVZK8885LDMe74DIxZ8dfb2R+G5TJK8u04x5v7hslVfD8tpoO2gn4Y7y40V/iY71sZ9Mr0l7N8MXAqZ10jdNR73TmCoFLDw+HMMJRXvrGrPfRFc7o/EuOsROPpgT+1IAIAAd6Dl4QqyGkQyrxmwZAeY+PdoJH2RmOE5NLqE7YX0NpU3TkaPd5aItFRCy1UvnvFGcBOMQ7RcDBAozwuFeSBsvhz4AggdKwX70f7K5N1Jth9OB7ldx3uqrAZSDVYe4aIx6Cc7vtvEskcrZvUyEnR7Y7RBOFlMZjuNPdtPW/YTzpwbdRSL/DX29JNeJtZR8T0hDh3AppwzmrGWxFpglWIHMYmupSDXNp8fi7dsH7VR5vNZs55e8ulbMLwiU0R4YTxXWoomzxHEESjn/39004guvE1pFFhaJOKTgwm4RT21G0YZrsetChHJflwmOnx5URjFBApoT9ZsO+Zu5mZO+BidLVqbcPf13oCtfQO72Z/xtOYC7tXpLwZeg26BsRLEBWlOh8Ngcly61FtyEs5vNtv1IEdkxUnQOLqswhkqSrf5EZ5K+pPhvhGk03K2vObbV3BsVCgHl0B+AsQXq/Ea9femcR56BHILjxhV+MPNZtPQ/vzIDb5aPhlA2mxjNxMrmYJkcj6u5aTrCOnNzg8p7GL9jcH1PEOdpHrNrnTta1TTIfVwg2e5Ql9FmPrN4TTsNZ707ro1gBLz155ITFPzDZynqcqtTnXdQpq6MA8IwvN07OiaSaGaen9IoO3+I2MSb9Lug2Q1eDw19dlsdXs7J64h2NiEJYO1AIndIQX5S1D3CH/alhrksPFVkjoJqN1zhob36GgAglf//LXs0oJu0konV1wFitydrizIXY+1Vh/8KvCqrk5oo84JOXCYDcCTdPiNtBsZ9GseWMtaaYjeE3Fo5m0b7Af7GHxqRDYc30OawxW0RlvOamRBHLvpviOg69VIHYz8zaZXzJS8aX5KClNPjk7bmLvsl2OHVWROuQ0dzSzy1NWvCqgiFl8D26YA26eQhGawbXfpG2vMoyha7vtyLrOf56NCKNiMmXy7KnXe78X3sC5h4ZvllXXKmG2dBCqzhPzHAE17bJEasjTyAg/2mtzR/k+XxhT0W5LI4ZHf3pthuTr9MlPUXNPFq4gh31NfukZGqYnoMSHk17WEcm4lmNkC4NkKnX82kIu9bHHLjqUO/8wkppEvYR5O6ufrUMLVLAun91tKYvYN/pzdwDMCXUmUuP4io8WxG1bKzG423LQZEzsxS73z3PheLIMhAGTifYkx6voWtXWloRaAZWH46JZ8RkBupFyWHdnqjD2eOO0562KiC48v6iKu5winFdkZVCjoja4Kv0+XwBj5i6E2wvu4P6yKpR0xR11OGCikgbkAtcqil8YteUO2YNXFm+s7Cj10HZFqFjL9wsRq6w10QZZFm4nh+W14YN1UC2GbAkhx90vK4+1DJ8ILJQhDcWzWQJDbpHc15DmJ3IB7iQebZl+ppRfbNviT8kUzR4FcNUddFGFhjW/ySl7+W0sA7dS/EdccoWErtSzpHS3m0pubb0hiyzWa+0qfi+hjix079x8dSAfxlpbYtoQk8qCmf1M0AhqE0yJf+hzNQa80v7osVepRv1WBZuV5vH2SpMekDEuLZYYz341pCWJvG1Yu68aSe6yKoo3IWy6uK9rmiMYnvEwNIQmBkiWWXdCx+RYvsZ0uNx8auac+/6WgJ+OUM277/1m/6tfPpjnSBxSdfIjxA10ftcrzySLmfMhX7ruu9rd3rlnq+b1DISjIDxEdxiS5zZ9tZq43cmfVQ3FD6qzqA09Zo5WsZqx9pQMAxdOzWFtugD1vP/V0MmL8soBnvl/7bUIsPp4yJ0uRzdfZeflvRTVwoGar0HC+XfAHhBOa04TPJVSxYzzHV4gPyOprVttNjSW3nX9QdHtHKdpeYa9hBJSMePvShdNIeR8QME3Uw+Q+nwJ3V9bviw7cAsSz7XFXh7yxvVEOJhS5zIsOuQx0wh58fXrrflIfYMl7fR+XkdtfjBfFu1keJLD1n1IVT61KIS9j6kHnQFjNIHVIriDiNqQz7J1G4B66u5T7JYiAmbnz6T0AXDzAjVM633S+5sBxa/jMkJzous6Xwqi7WmevVbGAlL2QXv3ib83ulSjdG6gD7dagFcJu8DKOmMipXIN6YR9ZsWXPoDLUqu4roj7Z+whFMcbs5msibw4QYMlBwUk/NWZGtlow/fETJnPWggm6uW6G4IXSoqkmetFkeO17/Db7j0r+5ref6UtfvVSos3wIDoyAl9aRG9II/qaroUgbuNF/1n0HThDSNQQGtVTsuj+WzcTQS03bP/Lu4uHa6X8UfSoJ8s1gubOiT94+iNQRYWTtZ8Opify947gJ0ER21EG8I7NgCwuyQ4EbMtq5oaAYmfu777d8SK0ZU6GILmOXbTs7h2Il8NUvuUNZp9fV/cOJYDY/8BIanNHsVzK05PgoiW+9NSmcUvBrEyuFwfx//GGNohk5yjUYScc2YesyAL4/fZhoP+BWXEcWjpyb1a8n8XR9bY+AOQOF8cnRDSmQJSg5TxBoUwNYWO1JAiFVRJOjeV40wyCdEMq7T+oiPJ5cJGQmqrEpCwV1KDLj5VLwLMC7RvuE76F8Lx4IylVrmf+ZS23Pl8fyjg8ELzfRHLv2EcrX+SoekMeEp53js397w2f+rxzrrlCBA40P59fMxL7/YJRWLaGjez1byDkgXlyWqpUsRn67ErY577dQ9OELlLm32pR4kQ7faxpGEUyaBos8b54ILfXyLj8IZnH2k5SAdGPVyXSYaKd+BKSOdFgv39zG3Vpofu6b+pU3olAzRCbfftNDuP7eg3EZwCFAtyuHqq5LKObMYJCouHTPLm46l+0sERUE/KFfo0zBxbx/DxFs351tqLtVcq6AhUt8uE2y1G9HR+1B4fpeF+StLnvcUVsFr/fukJwIPQENyiGOrec8BNsbiqgMOUhjdazZwECp53N5ypHtV66O5wfU7hRsqC3sFRi0ZtRB4xZSYxCUAJoh7yBCNLCa6AfHyzowBJ1pUX904oYfSHejAJQnJO1YRt8v49KsWetc2zGLCyMNo9nBWstgEQNcTEW0UMMvh0TSCya9r7uCxT9UHSPbP8EM0koBTOEImokYNE9DyKoS+Z9FUhj3Rgwb+PT8gt/z5xmxTxiYfMSAHJOgdwzGwk/3U7cVKL72GvzBA6ZAzLt6y/bqfAJ51bykmuzXznd2la4fnT5Tu9G1nWMDlL+Qb5MFzKHZ8amMLN5FhITycpmhdNjt29cQYNLU8LfnVUSDUC0/kCk2/69c+vRUL5EYeqYUOnDQcSKG2pGh6m0yM99vE72OBgSjY8rMu9/iB8Ykbk2lQUOEQzFU3BdFupgr550GQBkO8EbSc4MpbWtp4SRs0ENCZX42MaH/CbG4lCIRCA8KF3WDbAUIuW4txrJcjDbQxEYJt1LuckrEgxeGzdCbiJh6w4EvlEwegs+vF2rTCR/h/lZ+V7XQUtJy2rVZN1Ig1JiOfc/dRK9khm3yP+EyGjQvNt31b2Wm27uIhS7dFS0rrSqBuc9A/nOx2+01jL0s/oVINb2Vx/fygtZE7oHhUG5dqS9oJObOar7PLa11Sig7zPw5qOHa+S7CARFI0+O0kXMHCRD285xY4YHDBPIrvIgt7qtPXtYZNziSJHpk0HgMr67Y2ODg//Wu53vamEyZnkzJdnjUnDIm3D0FEgaAVLML9h2DUNMUAw05HKLJTZx0bjEw1L08+Zz64Sw9DG32vv+7gjKYeAlIPD6LOeB0yFEZLphqhbG1gPE05coOVcY6gQEXJbVmYnvSRA86GmwAr74EwqwJbMbYIiFyJPXzjt2Ecct7vTdREZtajBD4k5pxZ7X6X8YmjDrQwd6uaxMHYDTEpLFDWWs6ukcZivUycr53Ar4M5smjpwewiuWdlRSNchVF9ENh3JCs+3rSIK6Wy5gG4+r47mjFhclLgLIXcOqoBc9KoHcuPJwhzT49Xux7F0n6ahqYpAKwpq4RYoYKTtGuzVypOjQPBuDwzMEER/13nNlmx0WwajX8bjeg3yYOip0Ol8ILN21blm2s2Z8LJ/z0OfxQ1cfYaaf063R5qK0M+4MgLFKvsTEklbGYdjCYEwYLR9h3ByF1wFr3OWyu2J88zUTcL6dRPEBc/t17rw2T9KksOumK7G63by9r58Ps55JPa1QawjOyxr7ps7JINZCH8cGnEFrn7QRv+RcNVBLHF+m9GarcStbEjyo7dT/Q3t3YSi8sqyopnDzn5F/SJJgKBlSybeN5JMcf+z86mV5w4tG4VZ7DHIeXKqjtAKdiF9df2FTF+5jK8zY+Wxp/iZ3MA/iWuMuNGOgPBydnUXuOgSRVe1ujr5kjbwnASRRSXas6Y43xUhlCgnAw+s3Jq7p9IigvdDjNppDv0cIhcjrEvgk29tBJQXI85CdolOcPGOZjy5+bxFI9/dg2w9eoQe8QDPNEH874AynKEvaKo3l+EA6uyT9fV9W0+nRg4p8QoptyiG3ezJmb/gTuk1VjenLRZBG0xa6DjQCVraj5qgkkxtnC4KCfHZxYHmRJRnZqzBTmLhkriy1d6YW63T1gUNXsBcx2yN5+g9kMdhP6W2iQd+7xMzm/yxP6ONF4JJY21Lesl7PoPd+vQUBwCsBlWrP2pUxJNeo2fuPMxJeiD1FVylUTQS2kYAehc8KcWzZKEscYL2tuy0kgz128+vCV/izXADcDgPf/tMtJTX7YXBPd0wD1Q2aV1dTtyOp2scKw+nSiCk8ryq91AcFiCLxagzJQh5QFKaZaqCRa8VEp1MebRNaIGR//KwK638Z/onLUEUGvebNF1qrxWNyLWdm4xPh9qPkOYhQIWuu2D/HhVZH9jlPuRj30trzTucJQdLtsEB/7KmHYufb4V4xHIpnpSa+e53RRDmRNRFCoWMrNe/QEgQUT6SgJzVXwiMFuQetsDpO6q+kO+AxyAi/PwCqUI/yaFOsvS8vNKF7snbuGAkbXvfKAyd8zI6c2ztFsnT9mRVkfs+WvL1CJw8Q44yF0oveDjmVZcqcCmeg8OYSF4b0dRFA4ObDSQ/oFtU+avKBw//KVL1nJzQxhby/8yBfTYri09H/oAOIZ/3NZiH03AAaVBu8UD9nqdwFetNFGEOGHK1ygAOgeuGI7wLhvETQEzLIk+iv3o2vbtIlJD7v7TXCDljvdtR9Y+2hfPR2ki5flM4YfUVKYQNxZRW7eN4JK9LT6pPiJiKWaj+t+8AzSimktUWatwzV5KHC9ppf96gLIZyoNkwhQL77/1W1QVmxU+vxum/qcsIWz2uffDplG8WN32ra3Y5wksiDgtpD4f/8QhhhK+niiy912+IlQTYgKz6FIxh5om8lcWgX0NZraGesHrvAlzBs+YxSbUrn/GEFhlYHWzXzZcD8Cqiew9s951dxO9ocgFXqdK/aRDRmlhNz8w+gCuc2So5yI/1PA07jlxnF7zVr5ZnesWAf4ZXs+QZUpXi5nrqCBmWEeVZSDtEiJUBOY4MbKtKXrqCR47ipoacn8HX7yyz/mIWhAgV+iP4ZKBSqiYQG6lBnCBSApoVuJtm2+tzu9z6D9wjZpFE1NiWO6CMDHMuwj6yk1Z/F5qEdBYWNAXYKvjS3W5mJqyL3ZqGipekxOqqkZtxQ7IG2dd7lqZHSqdKVuF8u4o9Yz3dO7fDmKJHB4YlFT72KfaN8m6Kn9xLaRUisRQQfPWyU+5r9QB/zQn+/ghYeANGQGpUlpx797KKQhlpa36EWAQdXLxFmEO6QtDrrXJwdpB/HlY0hAvci7FVXzcFvjvJ3amY3mQNfTxRMeKt/YnZcJ7Jq9BvTRxrtl3OGsIg3avNlMqYkyeEjely8zHA7lNPJpkaxJZNCdOC/8tHhSLY3YdMtDM0xbCcMi6hD0PRMQDl+0WsPxOkcPI7EYJ0hLqJuzYYd5w5q+q9ckrlI2/cOOZZdH3ZqE2AIGJlGIx263FwZnNRUn5vbd4MaAoCIfLsAWKR7fwQ+8mSDKoFoc58M7nDdVyjO4qqSGs/DRO67bHjRwSpk/uF3QZFC2h9tRgdzs155ohbu8zLdtDiLdu6kWWd/fhJtuNcfrWJvcXZkT6tntiIPn5pOGDM+NVJ7C8LoHSGWeAGMuNgQnmOYqh4AKYLf2hmiU5Z3sw9zIqk0sgzJ9nUGS6KchNADISzcEDTr6g4sw8J7ft2OjGaYIlJArFljiSPmW4CoyvKFJQgdjCC08vvVw/irQvH7W/F9nxK2Wi1iSk5T1wd/VYRod7VCJfwJNGwVWjl8S4Ou+dX7h4pA91l8mJ12wHaMDrMYD98cMRIIlSdIotxYepEs4v4iabGu1gDutjm0xiOQZLyhML8L7vaRfD9ek+lvU+6E3vXfwTell6AF4sloEtLdCyxoRNyH+5UaqKOjsa1w6wFIF0nbJP7Wx2KvklPI3ZNQlfbCxnRDABAvINUw368TY7juHyFAohu9B57cIHVCDbdwE7HozH7gLSMwnMFjegfCMIM0lVA+gVDR4x+v7Al9kKYw+C0fR8Rk2ThmJ5ggnXZXuFcCtkW2mfLjlOAdOwDXFbasxnUofGEB//xxi5xLhYPVHm8PLpO2jPlkjtN8zsH4zlEGZXJ4+fJPmykc5dSvW8D+o/pJxf7aKDpPGuZYta520P9TcRbzg0uIsXRZBB786A9mfO3yezmXPFfXsC+0cyL9edR1PAQ217uNfk0wwZRU0Nl4q7kvuWIV7BEhWHDo/sMqgDyzLXjC2AVrVSg2w7Hgk3j9xc68c2P48kEolmTBT+HPwVM4FJrOT4NsHQ3PjA6nQ7f8uChgy4AklVs+uCdU3GNuAynszFLyJVI3Yc3d72xfzVIhc9NDpUiWoOYvVR6Wv4zCNK8eryOahZFEmIf9LpskcncnLtiOfLeDTmxxhLgGkHfD+xX1LINEc2n8dpYgPX4Y/d67kr1ObedP5j/w8uh3UVjrU4wNhgSIzIWNpgHxcjhzXM2uqF/LfjAJYKo/9vD4QixuV8wdZSgANu4IBThhsMskrRPi5vaqBALJxIAHSeJTZG6mxyknTgg+qi/CpmNNFMgvbra4y9doqMPQaARw2e+ZMNiQjownd3cpH7DUmConEx/iBRf8uJsQlMBaWVeN9UNkJvensfJ090EUNPv8AADSU3/Gm+CDPEIv0cgiETWhjJFqc7CvQPUgwQzdCP3sYrbS25XFsuVkU3w+uxcvGI8uZd74fmxzHBdbkM4dxgqc6Cij05SEyCFrdgTtgzE/B1OTwmbXOLTuonezqIBnCw0e0JM1YBTTN/oFrZlZDXRn5ORgr2jAgELKntF5wJw+Rjc3c1BevMpiAUeCJBWcS6pIyZPqN4W32TQPw0Xk9jNFo0SY5c/2zneUvB+tYVZ/wigRVrEWiPfQ0fdXKdhM7U4a7y0TQIeNe9zgriH8fwqO1bKTOtM6iDoa8PTaoHEyjAWTkBKM/jmkBmWs/ZPj5OuQotm7WLqS6tEVC2iuef8kByxB9yKktZupcimBevBSmtpZ6jDypKFeNSnYEPE0r2BTmLyb02NSnKcieBKpTPirsfGIC1LbAKJzLVAUm+oUcQb0TBL+wOrbdN/Yl9ctoCcGYulO/QKTaRIBsjF9ryZeEwiCKf4MOk+BBeXhvpLVvgfMBVvXTAy8b7kD1DOwuClVDH6Cg1b4WSOjf4RZ/IsdAa/HUTYBFwYtWZsXKl8h9stKGT2496DQ4AnY7bbwpPo2s2BB8XvoBZBHth9eGGSF8GFfDdUsCvOFVtU0ZnbBUgJGBzL7q7HARjtY6/6sklJNn6KFSj35+WzGcmneHoYjYmm0YBl8urqRSP3kETzuZKW74HWaSjgsGJGguthI8WFmIM7joerdBEcP3qrSeHZfh4OcafK+xmGx1oEAj/2BMQJ2+93tomcQBXSGgcM+ZwQiOuPMxN5oPDKEiX5CPo8B80ggm4lxZgcozvX3KPHKshGuuLtNvjoAQH0LITn87ZDyhvLLoHsUgOBOjfuCKg4HGQRrkf6xUsm3O1jCfkp+7eAESkvrm9Nn7cBmi4gdOzWC4Ll3zTd7FyHuX2bjtZy48MGOhu5XYOKRgSsLs+USPbMMMBP8nxXD7ASFbou7rvV4zA4v+2E7jWxAX/ZiCUZjJkjSdA+bKU6nDD3NX1Y2/4yPqbXfizxGdi2E2PZzHqXpzovoD/pTKCLhEOtidNmXdDaFzHGmbYkTD3bh+BIBVWjbIxVavaVZhFNuofisZh4R+Op2fM30G8CiPM1VeRjelMy+zIxgn+Y4HfUEgGU+9XSEgtcBevNE3Z4ejbnSql8JgNeMMcez6oUqsMuLl/4xQwUfx6OsdHKKynNqJxlMUUmBe1oeFzsrM0wxSiUTGB6OM6Ksm3j0XEwyAn6J5OasMSksYAIF7i+zOzbf5Zvsz+NWi5jNNPj9I3sZJEZYmiRG+X+AN5TdpNUf4S0vSmfFDheQoD1V4mgQjH152WdmmfTrUXOCHFW8FI9MCBnJ03uYPZIqsg7aj0Pkd3wUht7Yia/mev2juKq1/yPhrFeL6xHY0eTKBtE6jBV8Ndj+TkFgn5iWNUc4lvs6FfRGdMcxkkYSYx0F7LnKksSAVQRBdIg2RGmNEF1fuUQTYBhuS5K1rE5iJZJ3iWWHNA8gAmBuueenBMQG+OE8AYFuSC140nDBp6jsNQSseQghcriMj2EfjnXeb2UUuAVd+Cz2v7TqQ1lkpK22dBjir9j34FC2oXZzekx4yfEcAGoDSuATd3ZEdUuAzJY9lrJHyitbDjtqhRtk/MY7FEhotJ9UIY7fru09BhjhCvz09p/5q5d6PFVnQ7zkkROy4Qu6WhgM3T6T1GQnovozc/z/0VVBkfhmnowbGv/MhQcMWBgYSiYZHdhI9lNG6q1pQZnfDnBeMd35xQ7mf0NhWb1i/O2srhXqyKOQOv5jReVF1g0Tm2iHCebJc6fyZK/CAMvWKg2UjsD7iTkdSqpNLOZmhHZOxZAjh2gJYeRcJ2Lg8v9khaAlImC3Iqq/CUB0ToB+ieytnkiOW4iqh5vOJBGnUuj46/kiJ+T4k+jYEZb5kIXWUyb4+ot1f5kXlUDzO4HDoOjS/t0AwdDb3uJIJfaReC2fi3euL/ZVhmthNZrQMbudWUkLlxwXMVE5Dniq1nOrzSomOjtk+ankbRLQatuL9f7nnngA1I0vVZ4wrA9Cd6wXAmgkA41h9VRGi2biqk8vCN8RdTtH0v8VcC6Hg8KwLbjgdatIHPF1Hgg7kNVT0WmpcVde2+Bq8Jt9RlEOmf5+dQXjzz+6InJLmC0ELNoxFO2ZIrs4hNc8xamSp58f193KzrpkAt80ajXAX/9F3C2zBR54ZExE1L+JAG34YtTiUkJ493Y1u0hvv93rk55+TT07oo/2+wEZyGSj2ZCVhpIgRZMs7FO0TPcLtEWUSuQTkjdIxL6heiQnZZGQw3jxryWjww/PsYa5Iaig1swc6xY+yo1Mn68CvgqlEsTdEpHVFD/TSDWkvCxFO+xbpVlGtD+eNhQr5fLsuXUpFKY92W3j33C9ziuJtCENI65SlA+FoZSRf4X39faNlwWdj1x2PbxeYB0AetEgrjocqoM3wsyX+rTYWfpCdOyV4F+tov8468qO/pOlkvjHftdyHAAPo1uQ82GDuRUEwGdLArq3cMAAGYS434la8cecVsmvF+aptho7oiBQHqtaGqoNW/skoWRYIDENYH/7NWC3a3IWUS0qjZQXBrQamFQcf+Xc+IoxFsbkbrkLB6/RUKT2Xvsxp+Gte8m3Fg59UP4/1R2oj2CxN2exxYQ4So94KWHPCdMcdYSfBWVmw/LcRZQX7Tjh+acpN+YrG+nn/mmg5YK7IShrb0yCHSxDldKGoB/eAALPWIvphulJSZ2ZWcGPMj+QitG54gwrf45uVPP1OABIaIN3q/29aJhUONYoM68mj9FiLLbC5khTaRvPtNi/eMQmHweReC1A+AVqmqE+n3+vSXDhz4vVD1dwiKPdgp2FafiowFYWkQN9t33QhwoAUj68jcrLEgGAeX8N1miA4dHpAyo0aI51LJBdHgEoxO9y0cEXAEE54xH16Mr8kxC9uZa3KWDTZAEpSzNAeX04vZFmhKWF7QSUC6mkz8gmfydNT28OPNgtzHgfvSEmJi5FPIHUYK4cu9h298GMAOnxa9WjBSEcreqPvDHVpmWfzl8h5WdTmuGurzEMwvDKnCPIIJtKB8tB3xx+rBRAe//ZKw4dXXRI11W0a0l37qDQfYkLDJmo3nRMQCTqz0cyeUXnBdALnclmQ0fRxhppsOnlIfvTJUPjR1Hvw5HaiI19CK97TSRziaNapoUmC5/yDSpB8ZcTigdEdSdzLFzGgnuDoifwcMVwKFxym7cB5pSD3PYSv2T6hiic7sS3mU6ic5IkiSJLbN2C7d05zOmEfsQe0B+KpkZ4KssJoxahDODUFatmbigIX0OFn56avkAkIpa+Tsj/jI67Jdf2uX826z2BII7QFUrYXbSi5HotNVJ8P3v+OAtn/SbDfytdUcbkEmx+t1EypbjrTXaL7nt0IpOxzmoosimK4wvYF5YvpC7+wrG37/DqUHi8J3tpobCpzIb9tYjaNFBLj1HNymN2/9JyS7IMxC3ZnJ0x+5maXHHprN+N3jINs+NIPzVN82sVwitm0TSVIMOv+JWZAYJ9CgM+BVJQaket0y/gP7DO1pzsEQXPY3dVhS2zjC5+itd5v2g963132kK96JcL+FKnB2LbcDIs+1TOeNKx7EzbwesoHoE3VbBihU37IrcT0uHky8wgXMoC2OXB2seTQFYEGf5e23zM6CubgxtZ3oDaL+aOARjEIHXHKT7PbQUDtZVWxTYe2iY1U+rkYUquV9CMdH5/RVyoL7F15cqdgjAllpcBxZGWzt4UGbiJOTekCbDcsMZVdKZaWYRw1lXFzUtxWxQcneDqWVUPVk1mUFnUmkJjTQwon478CoQZBnxm7ARquv5K532wxPz+wkyDXmUb6gmuk5nZNChrHRJdvd3WJWlgrnGL+xQ9rwFvBeTNOrlyl02jbrFRosRkd+0TFa+j9Pi2vywMGdgawuM8D2CI8dBuYtnfLcLAMA77FNYknUisouYHHu4Gtr7DL3AtOYIe2fBXfTYZTCBUZPuo/UFSLTWMwhvo4ZvFluJdGsSItClPRy1JMQvPAkGHLnvMzE70WQ1MxXrzCsSFYgxXrIOKS6hnIpFh7FV7pxPP2c0Fu9qrnvhSWtdAX4MlM56o2cNf3JL26uHUsoh7Mxir/ZnIE4Z60wEh/bwtMEacOou6dnk9aqVEKg/WVtui///ov3ZgNf+1PtKOvdD3euYVMl38KW5rCPC+6a03qW2/GZIvTkp1bhXumHjbQPB/0gSfEXNVIL6c3bSW5+cHFcaq7yoDBKpJXw/57W6fUKoKSJVIzBtFL5u2WF2lc9rsAVWwRU8Yfhfp7Rrib3XP8I5zM9Mbt52iDz1eSvff5FrEj7BW2eDGW6D5zJeDatlCAfMQbAS1kNgvx0t3l9hj27fCJ3IQcrm9ix67wr7HJOZKEOWWIEYgelmE/GeiocW87Vg6mj7c5W8q8b9XYml8EdBsoJibPm8lRKF2hpgWIWqbUn9pdW9XeGxiGq4/xHHByVe4Gr85rLqaPbIWY/YPoCO+RALvHe7dLzizR8WJHcYnI10KsZFqzWnX+yQQgIe8N/IcCg3JxIbA7oUDT2MzUIne//fgVEeqZEenHu9vcjdbfvj16JKKzmhUji8JhKtZHOR2cOlfieRdv5lDv15I09ihyO10ozlpQj0RTW8XzLW96L5kKGRoXMNqFja4fKMIl1Z527IEBKRM60cheXWoyssSUsQDf1h3Sov1EBtkKyJYJf2BHCGMF8mP5cFPUUikCFHC1HaodzbsNW1BZciN3fVLdm5ZhAYXtq8xDHWzZIg9DwEe2AhFsLZPqTkx+VWN4Rqr7iME9qHgr2r/2DEqKVcMHJLxjT3A+Xol0bUF67NguraNnDIFvOQ3DEL251GriqLNKg2jq+waZhVHQCULau3flEUTDDVwlqTh0w/LZEl9S6Uc59c7rfbwRP32WIOmhqJSRK3nEHvczjEOPSrVnlY8grAFeEhWhARv6mbS9ld9p3263Sg3KPnrh2wOKYef8b4xp+4Qt3zQSjbxXbk2OxpQfbsuZ5o6PXIXNT4l17nczIohCgeGD+T3JFKuMyas95f9v4PXn2QQxEDqkMl6H9exC3DvzaNYJA8vRXq3wDvGBMX/4y+D/kaC9XtNAPkkHnXqhcEYHnXT6BxUaHvVex5sCcFQC1lb77RB4OjeZmEypPzq8KE82bHrac9i96H9F8zp7r5blYanpe8IImssTKHRZU/x/7BgOUpsVGZRbEqwhUkn78PLKRRhpxZ3q65uM+ShqZtbb+PNzTMBKzCVnX7/61aMH3OpqRkIpfM6QnvaiLLR5bMXcA5cq6SSblvCf69KH6uifXGPJ38f162fbmNpAkM/VqTx1yWN0azRO0V5ULqHwpRX8MOan4xtKc5pA+UsKqFCJvI4OFj600IyfBzhGvnNZ6DUxuQKpEsnz6X02UnBBwyKkjikm33VyPmoTVfGTNEQjl0Qlix2Pb0pryh/UCpjuD0EZx2txkHFD35mca/vwr/yBKKF1trc5qqxqfUZsYXHKlDeTqE7xEmDL0QTaHbUk6iOFGLWLwbDefgZ0gvXg3OXD9qMujTNX0oZHkcvTdrRn6EryTAqDr6i/wBq3dWU6cziStJeQfxhtqrWLrwlu+jF+l3LGvjoJnPCEUih/UEQUbF2JtCIcip0xXY4kSL69etPtuKo5aumRQvvP0Fz1px7ezrvxkSr3rsBabp+z77PF5NVBUB0R/80tLm2qV6fCRfhUrQW3NqkhLZGGv9dgjHunDNyRLiCFCRDpCGXELxQuuEeSKSnCPMAQm7vdhRUtdp0pwAHVx2ywidAwIzyPwP7v1o+vRGUbcTkm6tKrckgzZez+YYpb+9K1xcOgq8AiUomVOJJi+u6HWEEKOPRmxIixy6sPLHQfePsLT8Ff96B8kZr/0uV47PROkWh9DfJdzY3VXWZ5KXcA1zHuzZRaK0zNIurZly5Y5Qnlo8wryA9JQYZwkFFujetnyn47jT2dufrl5ml8iRc+6nBJRj71xo1TMh1YCDkBmYqIPjkydiTV2kjKbiyZcU9v9mzVgfSu2whvybs140DwDfItHIDu0DK4vp4ghFNVXSQAIFxz/Lx7dlE3qisxplTj72mbCDEmCa2pujUemaZ6xDjN0DrLayIsoEDtkLjikmAA2ejn1lyQz5e3OErs339Z6/yOBcYEIzFYbgg46NkyL4koBgi/ueW3OQ1OPg2N7eiYpnFXmBSOTF3xCu+m//4LLey3FfgRJ2sN4OyiIMWeZcdrxe7ndwa8iUh2zOxg1DKLwm0V/ZdRJqZ8Lu2IKSzM52o09kuuGYq0630zsCNCGvwFaydeNAVl56HemPiEr5aczjTskEtjc1rOSILYgdV/cf9CCVKOgs96my097/tkbDYFinf1IzFcl5gc6Gek8zstBKdvD26/cWfY2VkHjRqPkMcSAYUwJN/QR9WOJeNCygxmHKG49m8WQpwLebFzFy9fJcdzcbe/bb9Yki96s9IQLPDVRSkvMZIcJpsJ+h1m6JUqLBWj+s31M+C/kFuuXwH0AEJIIksoGOyKD7Jqrz2OgMPqfFWmYHGtScuiXzjlAYyCTKOqyLcoc9TWZyIbT67eRpPf6o7mBHvQBZNnyj+d2ySMOYrmDtP9iQxG8tX1t52PKXW9tL/i/xqwdTZxa/gR0VMkVhhWZxzo4On+E3DL9xg/dNY7k8t5/idjJf+YPnYdnGNZ8Kgc2iObFh1fyvdi8wYj4n72U/2gYDdypz1+MGMcEpdEpbVy6YdLth1pJ2YevEsC3bqywz/zXAqGOvXNhYkv8aaw5Cg9o5s0/pm17TV0JPgAgZYfZUCDvcE9snlyQJyzsKnGamOKnMybRkXLKkegAKGUpFliMgMWlQimSep9QcIY1haclNQDmbYr3KPxnV478lH73jUUw8PUxTmCaDzquD7RTYSi/wAb4avOJSb7s/7TfFTH0MtP+MzXgEg00MrfZRKNYuVb/ZU5ijX2jepyW0UFPNhJt6aHKDL+D9mQpwTN5ew0huLwJVzxwfQnrAZhq3htpYxhaX5UCDKtF8OASu69GbwdYf1V6PxTGBXJ2WUL+PlmyoHyYHczEpdU3yuYra7I0nVmUwpRGf/ySRCE0QzRHL5nfHCy+PdW5ZdqMd1qa8j6kazCoDvlMjYt3DMNDCvn07ZtDsN+LGB4gjZSV+n1vZGdkdQROAwTedpSu/A3K0XVRBNtHHweYmuCVtmfuZT1JRu1hnePyveyF7VLna7PVJ/hWfjVgjI3+dr6bUFrjQZp9Rc7d/zWWGbSJ9seogNoLZTOecoh3K3ocsaG7wXpDTZDJLjG0cN67oz2I1So7Qien9t9Xv1So9PjKOi53OrOhlhlaccCR8SQjQwCECWuaCtWa6lqk0bc8Ax5Jjc5oAL8eERZZWdrwk5us4ITqDGuYUu4WQ7GKZzy52C4nvEDEDsmgyMyila/6Jti6Gp+GisdH3LVYK8SA8A+uGPu0UBhLX1YVV6dqwfWJTRF7l8ivZBKNJt93apbPyJUprWmYPKwCTgz0NAziTgk/vstmajdKLtW06GUCcsxczNnGEgvkcFH9OzFeDooxBG3NBj1o6KAFpV6x/57zFnNkkTtBJkaJLdqLD7pIxtnHXBLRJYpxV0zWKLzrKLkuEaEIMouCtJvRdb++SNOrKER+EJS5SnESXQbtriMt9J6Gzx2vtiq4VM7+isB8QVtmjKJuH9RYFkR+U7iqXMbihg4bMphJHu0wOrvHo2Y1f2QvNPMtxC5Ao/G7c7AET93+qVs7K37IltgsPX7nNTEgR1wQA1ui+pL4A0rwmpk4UYKSVIahsa8yY/9sjFDvxrOLItL92iWaAmxSl77qO1RYVA4k8/ddR9PEnHwaiBc5eqnEcSrAFSukm3LDCWCcwXtQJwmLMhOaoZEnDUCA/y4afDYp4tq0CS/lUoi1AXQJXyn3a0XncV1IMVTBNIkDZxB/jf1inuyv8S0yAITIA2L/D6/UhxTT3c9mNWCRHF7faALLZgRhKG/5ZVd+LfUmjzIfuhqmbyeZI4pT1SPy74IktFPj3L4Om1VteguY9cRhfPf88MIoqndI6SE5iDY3bItbqWdfDpdrHSOPWRi9EmOARhWp8frtETZG2XR51fDGfK0WQrPJJM4FrMT+xo1emGsEB9hi+/KoZTiq0a1agXO6T4Jl1GV7qZlakDPaVuI1H+Ifp5f7VUyqrDGYAQofoxQAeO1FqQqMiwsh0mlw9gzjhrKjeWcVnsVe++dRYhy59abjmcUHCs2UaX/aM5jJU7kchnCIAOv3oSrXmx9IvYusA7V5xHSN7UU3cnvoLXZZSXEKCF0im+6gf88xmfm/ql8Iwag0rr1WPKHHys+tlyCpRownuyMbbIeWum482F13YNDD8S5Z7aO44cAmFtc75NswggfOX67uN8YNPIbThEUYPU0oeFxbAVSViKLJzSidpV3XnVc9iO9sxYjEgZuyWiVxdZj7LTRsu2J0ck4DVqh2pcffrpGkFOGk9I9YBip1YgvVmyKzjzBeHsfh2zGDww55KBrQKMRWgAIPKiv06NhNlkyS/obZf2MhcrteFaqxwppc2bQHgLvs3DJij0vggrGwnk3x7HR1gi18qP+Dd5u6QNwdGVdcZNQpBkP2VfeYNpSjdA3B/XvG/mxZYOzuBySxMP+AoIheyTpuJHUFApKb8x8KZRnpW0YicISpIAhgZaddkh9/wvcL7n3vLpogEo7+mpp7FBzl+zRR/U7xOgfRVcJMIlqORnL02NPhBCQp//mSvAiBIemEGHmYUjjgcbNQVqUbXiJ064P/iHd077C2ynZ7Dw6k73MWrQ+ebNmL1en55FTViligW2QzYcg8U2xNDQt7i2rRD2VSaSQyXa+ouAC6enn6Iu5heDR2AIpM965+rDAn/STRjXw27LMiQJPtJW8MvYRNzAy65ic9FlCLwh63xL+aOlCUyoDJpWByKxZEuzbMEz0Pl2xGxsLnIY4JfCc+aw5sNh+B33edWV+lWWswGYgeYy9JaU87xKv85HBz7956WCrnjMCDvCzM3XVkSVFngTzAvLAZxOiwkq6ud7HT6B1GEY4455OV/fUTTGOpg+fG+tFdxhJyibgTMvoJ56gTq4TIrQTaPIOk6UfqWty44HMcftRnq9J8fkV4vabQetEaiyVeXA/qFzV+RGDCTRiC9eedRUSQPVpI4hJgTrafHVMjkSdfLojqUJufhu4q7vQ9FmowytzJ/yjpgAAEpZQZtDSeEPJlMFETw3//6nhAAAAwAAAwAxP9t3lpExTpgAKJ1a9s+yhOF39XHfUVjF+TSSqx6X0S2zhr8tYA0Ha/O4ELvEaTOm18LqImvtttcvKyAvAC8OPPLbseuDVX52UMYZiI5teg/GiMuZGE/fKdApdmCfBuBrymDbWhY0anUdO9TajYmLQePzK9W433s/XWS8EFYDRyIMLDvwNpUN9tA17mZ1ZEzufe8QN9qM6B9LNH7ZAetfFihoRNc/BZrAogb7IheRyuHatqb1tclN+B3D+bSE2pzm8LRwd5ufOAAP+AftaO4WLiomA23UuA1+6rzFFwPUHx8GGJQ0c9s5PWy3iTYGxle7Fe7+eXNYs2K3nRvlDrAk5K7k/VSltLHCL0igyIH4fxF0Z8fOxCTItWJcc8nm84hs9/sFV8bSpsFib7nWk2q91SoZ6UYYypZBEABTRrp71XHoJNYF00Txbko0hHeiCu1of/96aKuLO2e0KI9IDS2KRW0GUNoq34RNc7WpmA0Lqtv98ONVNP71xNC12tdNGKU3HnG4lccLSBCovL94KQ6p8LE+dBXhj2EnQrrGR3xfwgR0kA8E7rqV9nwL/Fe7/WIBLX/4r4N8JR+7k3sWwv3EDzDHXzV5FE9XtVc25bWtJ4An5lorlRm++JQbnQDygWGi89kHzz5hl3mBC1c8khu7MmvQtfGIV9rF8aEmTb4ZOH4aOrvSCyafrS/dSNeJW63PSvSyKLLZLuSJIECEuj2w7sI6+W0Rc8oplOu1wgiJFRs6/SCSaYQBwlsM+13SrUkyydI/rykWe8uvfB56POgi21hipKVAyXX3/6DyfXyQztjOEBy6hmdPwCCS9UVpaQnyvoaOabq77Q0zfvqhABerWIXaEAgNpbuWpqLFnB1xXpwtR/wSt1Ii+6DTEI2vo0e3bSMAMb2ruf5BdFyXC1H5BDc7U1AhLNVmZ1MRtPEQ+u/xRgJikA/ysHTsRQQOuE0HAhmbn1amY7pMeA4KqlxQLwhPgs2b9yycDDI+QVJtbZTE4DJ65enkNUwZ+53Ley3WsxeIiKRb3DxcGr4gM0FpDlsgrRkOb2Lry2kgHcrB9tL0ILYOjaCc+Sg00186KWpxhW1nSlBdNsL+5tDk7MNtkSWxhAJ9WDoMFPLA8v7YNlS7AH2Oc/otzlp7Q0T3/3gQPPBkLFQ+ljn82h8gi+vfOCejpHe+C+dEkdbYt4BJ4Q0KEFA/F3OLfcahmfC6LVFE/jyaFcrpAepWutWhmykQGgTxW+sbQ2/ALHOF3yK5xhsjEDefnIvJDGoCMdFFlJdxCmlLPrvjMXGrUHq7lDv6fQQNcvv4f2QXOvIsDD2fRQX4CB0qF5nM4R1DfDluYB+p+drs6pro9k3OC83Di3iQLm3CC+/bYE9xitzD/GnxVpmEBK421Ax1iBpG5ynt8mYMyfRr2KpjV+bmz/5YvWCtnl1CtQt48W/8yDAVl2MA4A4r68ZFSdLQoAx9rhJRwl1mzQC6BrwwnuiggA1lcvNudjLEe3/QaVHr49KmhTqK6zCNQzB9YxisVRWTHv3vKiRBDljcT8dmcmV1HSMeBriy8q4IwcTO+NCDB4TYRpOqbPZzti8nWny9P7wAbIiSjX0fWu19fZOJ6MXxTVMJZfNjr4CwMON9ZQLyNxTp7O422coDojvd08gWV3sIwBc/TJcVL8bkk9i2HS6Xb9nefNBLQVDJxMWpG6CYoe7DleZdimGriyuuXApv7p7CUpDLkZBhKOuTw218HnkVGPshCeL1WAGsKoM7bPqNaTeV8wL6Aeb85/hQwxRKmCHxAnMB7SArI22j+WivMC0WdDAI6TAJF5PheUuFnoS6m5mR5ZVy19rok4FuHU/N+ZREFYGRtjGx/4UlCFNwgPvGLvfw7e9tSdywI9gVCZn+4GJE7ZdHNl9X6WqfPs+U80pcXThlM1mhoOQdHFN/IHvOOXUmES4t1evxEOlpXjOxfmG6rF4TAusklqkVzsEoa+wl5UuqrYMywCHDp5eMvDXfn5rQuOSMX9aTGKQq5FNos/yQ7vhKE5Hrn9ongzf6sdBXZ+zY/Wo8paV6ep5QkYmsC2sEPEj9x9oy6ez1YcfiFKQBm5sd9WhALzBZNMFT7mr+w2k0deIlbX/ua970qaWnn2+fK8eUBG1Atl3ZSjKtb6fU8x9jmMD9E7O3beefU8gwpFMAtDI0A4palZzACaXwVpJg4tNiomlinmJtv0VGkzzI+bKQ5tkyKUYdIRNASRTKbnUJXBQDOkzC99706k2P2q0aij6SDYxq3tPxfA3+xAP8hzV1UO9GK+gaA/I8SkSMuAZwIo5RuWx07+Sbvr1qjCfd5kTmmpFmPlG1iamuvOknM0BDReaCQNwyDUUO8zHDINnPO4/pDIPjAeIQphmp3rC2zpRux/7E+5/2J9DwjWpx/kHuPqE+b2OheHNs9aUTYHEC5fVrp2qGaMJ7ErdCfFe5SDbxpGWQvSxl7H1oxaJiNZ98byqDoGUTBr6Bxf2+uUCS58Se4sS7hUk5nGHefZQfzVUPUJzaOvcBIXMpV0S62EZ+wBc6JOUvXYwU5G4NRCxYybtSB4MrsFnox9HhpFlg6MgFaPgozpvmc5BsOnW3BinlycgfygVDltsavNqQgwqFLxBMAXGOeTjsU8PQTMpr7hZpV5XhcPd/deLOdpUhTDH4gvToazUHYOQqQuZF1KFNk4XvwTSiLdrbN6GfjhCeH8sn87p9LI72jqZZlFABbOmQ1y+JoNnWgso8KnDk5SvKYJD5ZE9H+iX1tih2M6jEPcFoZQLdR566Tb3lM+MgChtTXKrbdS5kEW6Kncw334BEa3wCPE/+0F5IqtEswGWlaKi2Rc6l/UgNVbzW4+dyjtzHJfq5zpk3FjmzehwanxjodwyV6kXxS1PnCk/bP/0mJwZjLM5a1+UtrpklAwZcWVl35jBhZcww2x902KvsjhPXK8LoBjDv9LR2NHNRpT8qc7uMACeS6vVUrB1CrJh9MXmS6zMMqscqZfuZ8uxn/XviBMeEBsC7n3tu2lA30U0Joz6/Ohu41yRbcC5H/VkG/D+QNBG2O0+gZOHRG53s9hkad707LyUjhlB6skzhiLXAOIkEGUYQHfXkEM9TEnQykK/L9PFc8SC1I/iMD/sxWyfo77N96Fe0mBp/ypKg40X57HihMfebHlbcka3SQjkYfR0fEBBwzz69uaYlpjqj5p0Qb5xa4ln9k6fTaRbPfkzN4YBoVqy5IlfYgCzs5GlTXZ2fdHkACYQTKTYBCbOgBTaLX8gvDo5M/9pGaQ3Ga5LZdDkrXo7wUexpDJt7sIYlPijbzlvSvH3+JW+VQUSzw3c7RTNTWj+TN0/yieSkDAAfR0yFXFsvy3KThYhqWPJj/6OzmWE7I8pCBuU2hoDzzqD89oeddTEN3tp5kXRDwmhpgTib+yKQ0HtmjbxwkIuu0M6r+ZcvTm99UHk343AixG+hrldZagkZB9B3Ibr4zZSsRV1fivtAgR4yRbTSsGEuMuQzxt3xVJgFj5XcV6hMBqx5jOSrvQNkp+r10BxTZop/Z/aPy/0ff3xwD1b4HLS5qhVhiJ0z4+NjF18BMpGX6nWehBTIKFEG1JwoiMtCNuuifp5Yg/bfKMzzDiF06k+9h22xy4HSQciH27PVS/KISG/SEbOzXU/brutdYPcvTVPrG0D3spwF2wkji3YL4+8Hp23mxyClHaA+Gs9Zvzd/D23r6tb4K/AT9JXeyex78TiYGKDlBt2srLi7cxT6S9nXtJKF05542kBq5togQm08KOC5eIB0XcSGlaDLwBtwMsG1Hz8s8yjdzNbORj2XVlgDbEeaEBV92HfhQs5muKhMB7e2ZXP2vfZ7lq8OOB0BrYQWHqdIGOr9sJ1cnT7/hG2bdlbS0as540cf6/9luc9rFQs9dgYTONTz7qXydGLmEq7SNYpiafTvxwwUqZkIsZCOfknt0OKIDb3fzJZ20FObIhQXO+TOUXIKd3B9MHBIgMnWVLO6uk8ZoJXopN/7DDFpkZBZmipbHkK4gKweH5yRHIhsCYSTYIc7LuPf1WU7NpbBzHE9HL3bzEHPwty9hM9a8drJ3PeynV4/F6VDJSDJcJ05Ao8hC9Yx7uMvVsY9PW87ZNdd3SdFdWdFB1x6IW6pFr84UNbVB6uILAxiMuj3UUxgzzXZ65vikN5hKxKKJY6K6CYaZYUpnUVOqmJG9oG7CygqEahz3uEi0o8VKpHKhsIcSP7eUcqSiHmw24kDvWtswTI89E3+5hs+n3PJIPdsg3UVgFMylglZrPuSjIkO2h/mMRLTJ8dN7inWA6zsxsc3x4OM/lr/dUa/HHglw4IVa4bLBh4h+hJOyg+SJIKCcfYDAxNetceuiLNQZg86oBbfntQ4lBlP4RRMiZkEAuvIAdUrAIesDx4iYHJlQ5fP9TUpc7kzDntXrY4ppRhVEDZgOgd7GWOgfCPSvLmZQ2uSqTkA5HkARNyWgN2k15bfyfQ9oUAs8Yw4gkSNmp50cPrwFpb8g8qun3aHtWRjMB/eHCV2IBbym9P3oRMD09U2sIzkEBtZV9fEBXRmYtVPuEDmjnprEz4DoIbQ0vl0yrVWWxzziCSsZR/mYoKduM7Mz1OBk3gpjC37BC0wjidQGFz67gJP+O+NnYK7SW02yBEYwQJp+B4Lb9f5T3hjGnr2Er30EL6tgJI5KypGKwOIXCrm756dZ125oliX8i7ZbLpkQTrtyvjbT7//DvOAqU+RfNQGRx/GYspZ4Vz3ZkbSzmmx0gsv3tVu2gwMfPK2oJG09I9+atN00a6KX+8NsSHrKPVueVHp3HARIIpEIcN6YDyaRqvy+xLxHXOLWVP6izY07KBsP8k6UCm+m7BM/09PULBdm15C33mXzg7R/TYiCCsYvToz3VEnFrdMeASR+N8s+ZDM+yIDfcWqd7N5yZRW4GtjdcgwqHYXKn7PkG6tnJokzK+65YmZZiCV5g2GBzAvoleVRy4ivry0edvrgygZjLc5zHp2o88uf7mkk/IT6DW/ZqSLBZd1zEuvLyP9t+MjEKiX//5v99Zd3MdGIP0wGRCQHVWdY/MU4Jt9KeE2odEXye4C1uho9+JPnlJR3qvXv45DTX4SnDXniVXp2PuAqJEwvbf7gbORrLTQj/QMW0rsFqBOSjjjuH03pdQKid8FqAZp9AsgRlnShCE6eyz+uLA+Ia14nsQ3/yb11xZz/9ncCtwC60mBwJgn3GbqblECA7hfOovNc9G35XLA6kB1sjcsc/NTmDy2qve8F37/u4MVAtH0F9te8rjSQiOn+kmfYbG5axQSUJWjmjEr3S1Sf8i6cvm4JFhaP1SIAz3gKRhyQrSy1fBoMwqXHq6a0Q73K8zdGh1w5xx4m1rbQoPVw1HWKO1TtM7gpInxzhiwuF4OCmzqB/jvkd/M0kIGHAOWarB6a2TXNw2LguaUybwjzo09v2yIuwybBf6SN/bh6ZxKWXN0qvVx361Us4AAkDbVI7YXnXE+KabaualOOVtKOA7xvJ3ZqDqGf+6Z1b5sWtN6M0eqV/zTkJ0xy/iBS04aSz2gzp5eroYqkcxCzvh/5g+DQDeccaf+NNHnRyN4rND5SV6B3OL7mGPp1kngobmEctlplBemNmQgvbG6C4uicL5nz2xNOM1hHPv+2sqPK5/1u6aSviNFK57EFPvcDSurHK/lkqv5UuyevnCKOVts5d3A4VUs8CRLc4C6FBhCexPVhckvFVj2Ox7DVzVOY3IUfgtWgrrg8wCesBj+IZcfdtNbsPaF3Suly/iFBtYWwqlexFJOunef7HsNHrXmZhdTuUuNyA9xADiMXi7Ydrk3sRCVIVCj7gEQ5FMz/uBSiQKXU4HFpFpmiQFJUbsNSCfT/2lycOqUr01A1WaiL94C9khLCiBagSgjvuicpPjTl1U7MgH1/Kq+KyWXKbBFXBBEykYoIdxtDmJb3XPrulUwDmP2iDN3b4ioJ2N7SEAjSq/Szmro6+5VIov6+QumDcx1xyaj54UOYkRJUEMyB+hEKAJeIgQjEXSwPGE17U9Of97teTAyWMi6IdiFCzpa5UfhAtHd67Xm0+CUSV/F9LUbQmX6QktjMZ1Czxk9aM8tyPqm9dgVm4OFyXDX0B0xasdXAFlIsQEo1d4yeJ74GI3/PE91YOx5H7P32uv/+LKoEJdlD6AD1i84ohsgR4xW0lEX5kaoELR6e6JOwPwg6F51hz5UbP6yvG+FxIsLKgnF+n/dO/UGA/MHdlDegMoRKtuBmb0aGuP0iWJw+HBFIArIl1oS5lDdXCeSPFvTzNInb16JW2f+NPfhsEdiL7+IEQ5wMGuo7yTsoIK72Zy2zLi8moSw+bGhcgifMwCD/65H1/novcepqtZaBhjzShxuCnPhbq/6MthV5ooCk9Ltjm2Xvf9v+XUb2OOI5LeVS5FERjxzD5/9iDIOtP46Jrod14T68fdQPuJv+1trk2ruSFQo1QiN+/5fRbmarIVoA5G/lxedmmfJkEuixbg4xd0i9o4uO1VxoOotB1rvpf8FDXus6cdHUQcvW9gngshtnmsNN7bPFlJZn3nWNUL/A3TgwvM3ncJmBBuHpmXnfnXa8CckbKsZTzH8sEIVoUDpihVihBklXR26NLroNXEGw66xuanQ1I2Suhvo6FXvTDOtBPfyfGWt46YlQ6QwYbn0fIP3WT/XvdqBtIEjGBJzenjVC4f6sTKuHNF2qGvbzq2LYJPCuhfHAGbJoywvWgbRR+9KTgFMdnZGnS83V2g+1MdEd1F9ZsvAZ9idrwNVh5PWfpqDdjbiThxWc6Tx1ZfxJtEP0M5srXrdW7VMnAgYMRuUz0OrkrmcdN6k2P2svUv28jkCq8uRKwaPZJ3x30TKDjfo2Q2bu4qLM3t0HlxuaFx3V12fql7zbfXh8yGMJ9waNMpA4ekWUK019vqOkIJypRnlK7db5QYRb2jCxtYdSiAE6bxwnhnDRUdR980wwg/VNSJMCZTuSi8NFIsRZ43RjYj2x0i+vHPFFfoXhVDX5us2OH+2MyEBAQmGd2K/0q3lMuWq9V/1XJda8aNKmmoKLjeIVenmBZZ3gjaQ/UCWMq0/EAxmXrWgG1FUtxmWjLTqsn7fcFZO+BgrvOi7xFpfGDN2HbSLjGM3rMtrLptutLzF6nErDeGL8QGgHdL+BNuz90OQ2NtSViBdOQMQv4nIMFB53nkW+Y8SPPqWpxjbcxk7XS6LsDA5lZiDHTecAVamyQjaTR2sRleX+gUiXDWSkFlJNz4zYx3XDBoA0LNheeRh+qgVVHTQ7C1V+zP04sfY6iyfKNDTls6qfy0CdsC+xoCTEsgK/ohpZLQZmv4xJ+AuM6ydiJckrfmlW890jtQEOYh5gVFXIkJWfuK/RG+UL1S75aAO2KzHcJ0b7ENyKVTXqpGN3jEGJah/Vb3K8p4+QfGtv78o3lJ9hkABza7vV15OXR2hegxQkrMEYWBG/ZWOtZiI/dHQvuVtpQg1Unr/kOKExDlOWieBuibpo6mlz2XdqUsw5EYECWpa2A7NA8cLN6QgAqIt9U9ndHkqES5/lSXQ7yz4a4goNhSEhlFtAQRZbvl2N4dvFG7Gkm6wkT0eTonhTl8S4hTI+pNCANUToIytCNRfIGpjbdJBeYGF2/hu8zWhERkpmkY/tRQc4xpkzyqbUb2hv7BCJZbU/8923IUGUCzOxzSwa5jPavMHEXZc57t9Zbk/le9FhbNTOCQE7/SvGTY4EamM6QxTzgs5Kcr7U+qBTD4TURhtcm299qs95XBjEQFYu+u9AkCZ+qPhgh+2+DTyc+BbdBUWV9TWBJiPkZTbzV+GSCMfiDwtDQgpC8LdLTjy0lZmbJf/dUgOtmA2wL6nKEB0DyQtTBG511IsONAdz6RbpbhnJcPDIbcBiJMd6tkm4kqBLVOQ/MW/GolsrieO+ZubgB0dFeWFiaLKKePnclfAXF2+bcMgcSP2qH9xNizr53JfKLiTyo1nbyx+NdRUFh6cuRyzlDU1NLtd3GDyTsnvFv9pt1BOd2O1mqrGJbC+lI4o0w+iVNpfUM72p2LPhuoBgB73rqwKL2YlowWAw2iOoO2dGoSlFyXzPhREl2Noojp1gpCPX+lZSQUClHWgb6+V0pHqgs+w1eBxEb0FReK4hO5bygVjRfK/QxCMpaPKkT1a0TqZ1obX+8jnDG+B4C+8akr6kNGiaVsR6npso+IelxSOflUXV7PbvNVPd2DRbWeMEdpEjdMAtBBbkbV1gG6JoKFETVXjp5IWMAltaYVYOFlxZmP/6LxH1RqknxBlapnhIWU2SLB/hWvLDGuQAwGh9QSylq76o/mciKDbGKRMpRcBAxhYgfE6WQCOGfw/6jc3/5DoddtKTQ1PdlC4W5ozPBO1RACLAowssE2oMymcdSWYJC79N+c6fqHCa3edYqxRSstXt2Kons7zQiEc4TT4VRtMevveHQLN77t1fkKuBhkPxt5YANSo9KWm2sB/HGT7BGqPxZjKzwUabHJ4O5WLl77/5L8IjsLx8BCihPwVTyyw0ToupfHeP0aiOhXarX1X5xFDvuozy2YfPRStwYDYqWrbR3gZO6JG8XrYqz7cYpC+Cm5BkXsv0b3KC9drkRlDhHzBCUDt9mI7bp2Q3EncVCb6A6iwV52b/fYokrK8aPMX8pgoNKycVMim0kJ96SyKTL+Pv9yXZOC1/BktXljC+V0BKEVDIHeUPMDdC/lbP6/KtYkpwWAU2cvcBXY8CVFPcnzUQZEkSpxJZTQR+VMFubEvIvztPQwZ1dVdEXp8AMX8el4QQ3Yvm4idA+sIqTdVUovP8dZPVK0FWJIGGz071SyLO/Ee3bLbADM2MJQbd63gz9FYRz/S8Fq0uQts9y16f1g3iLKjxLPZff8EuigNhC9FsjtD1zS58NJjn7VWJhFoExLfTiV7QRSqfeWoX3u7KuJP7p8cqHpPDth+Ig/6gFVDk9JWhIRBJEdlq5yF1O+GsgtyM89Uj3K6tyXLCmuGcJ/mGAf58SVJqEVkL6y26hwNVUAIWYn7b5Nqyo55cwh+sciuHeGwyoPTvm29FyQAiZcB2enuDTwrE1yBHwMciktktrPJ+QIcUkJFstZnIHiBAjElKCTdJspzkQXaN4VDVlahEOW5b4z6DUwYacZWDxDL9KgM7B5gIx1TAL4BgyFjFoDLmS51n49srWsDIbKdsbNujQwk0wexkRvQSOzq6Rzb19l4gah40IgFWFiOVlhCbsA8ZxfC14d8W0t7vMFd/UFVs6bhw1Hcz2mrIp8S3QpViWIpMy43FJSvRMy9Yok0D3pYoeW1b4m4Zf1zWElxPyvCnnXwsnu2ZXN/j5+GVadz3tiiSNQ3djWKBy9yLy+NUA6uHW3xsB31kuLW8MUavQyNMpZDqgrXG3ucH4SrtS93nrOGHnspfbzUYm3Xb0T6SDZN4WrULuuRRmPbGlJCP9S8yq4fXhB8T7fNNWVYQQPBWu9DteAUyEAOUWx37RwDS0RTtN9CZAdQCOj1QPdsMloQm+c60vtGUgDFaM7GK5rrFmBwjYfcK/vKIxjvbOBi0ee0k1OfE4GJBYvD8/8Z/djX42TDo/W0Iz4KLahRbsnIKnM7mW2LP3jdfafEVO9R25LSryJDtRscTdDN/ZnKXDy+pCWHoD3IVERd6KIaXjo4R+maJxacRNPD23TWqvr8f47MOTckZVLADdVWvdQROX7l1Za8D74lYpDy00q1iNuInMz0KGOPN3Lj2wTodbzlxDS9f1lRwnkp5ojtMJvYZnABKR4cfJY1arQn0Ka7FHDkSMGpgwJs2u4MgZYAoDn//i6AAxqqSATZTFlQLIjdqpFaht4OIMGoKQGpEsSjQQexUTV0Hn++nmcwHa+xcdzC3WPB63J/pAAsXw5hvn8C9KkmhlE2b9tAhd7oj3hcJQBDyinxDdlN51FOwyzRWXFeCVBbOGr5dgxKoEDgZQ6UA087DQRY23kzBfevBNTVODu2S84xIXmc1NUon8lOriyFqfLBzgccUqB9FWIxuuR1O64O+XTBxK1vweDeHqh7Wo91YJwFxyuHZkjjyHvoZoOPYujCGWVEr9HoYDStkwP3yjKXC8dUqu6DPq0IwaNzaXCpbYRAVx6VVdZ/lzA8P2x14f3omQoMFh+QvqOeELNIaXsvU3FjrLathEiDlnUUOiLGhR/ITP78OoFewjkyHFbkRuP8tvYnsn/RaVumwtVGc3RDjAEnO2qP7Ee0tw0Qv3s1XOXqOqzrv7gC+WvtxN+esZ/tUSItV/JUvYu4UHuryhpsysQqhUAA4gRznZrOx2ZKfBvIvsNnbvXYtwAfGHRVy8Rd69e6sb+6ocDEcmg/xgi+m+W5b+Fho0C+F0O4ue1n7byIU+NpMdsqT4UJ+cojz4C//MaLnq7BZsEz6S901mHKt595JUaYIGfukDlQ8ag6LUZ8QvB/cEvwWYpfyiiLF3lZAzFE9y/r3sQjez1uVEIXEwZV0NdiJ4Lwj1a7c2QsbeVSHsjJHi94C20wd4yP/4bDl+PR4ef5pHLU1KMpf98tEx2nYp9iI+aTrIhQfkFI/OD/AS/q1qZfKbwxYM0QQJ9BqwZ19s+11eBFJjKMqchQqYxOAQbYcseoddp9lbhwItUI9hRYKGrr4/XUAhQtefWu+Yn8JpuVCCk0nZiD9SqeLGYzABdTa+Mzf/I5lOgiUofk/LVg8bdR9S8JPQXxmeDLKlih6ZfoLskRe7HUTmMtXdUfR0ipYCsklo7xRUSfoKNAopxx3uU9KMBDVnqlK1c6kVWqWVknNQVYxo5hHy0R6+0wKTNvc/ObxE6wpjgTQNGxM6QYTNL3dsiAlKrQPad1njmEMs4ykRK3GXdqRwPepL8HxIayTZfbfao184flqmvyQu4pL14BBWt2b9gVtycJ1notCF6WTVXYZumDTCH1tz0yd3RX7aiyH35VJAzFsYbE/KtZf/pM3AfGfK4e1yZ/ifu5wnng7TEmfK/xeejX0hk2sXGG6+J+PAVXNQnzOa99i1wfTgBYX765QHxlzjVLa1RG0ISFW4OXOzyxEK7CGLqtavQsMIPNKaRLfSW3mumvq3eIYnUkTZTYhNHruU/+f5GGC43tmI/HdOwbwyX7SkLgns95Wk6bUz6nSyQY0OhLogURJPa2kuVsEN186xR8YA+6ML5veKXd37shf6tO+gjCw7uVVBGRSvTrqHXzyziIMJop1ua/YEM9FU4aZXpbAeuBbYULiW8gZ5HAh1r2z7FbVSsVS1eZVJue6yRoqezcyBN09ezbH/tZYmMxV93XRcqKcTv2EM14iqVkpJy4IXX4LGal0Hg8RjPeWJjlwoUMiktr+8xTlskWkzL1SF+qfCR9X7rddd222HWzPCN3zlV9jUEsBeb+J753WC4kM0BCx3oufHonfM5J7BEZuU9PS40whIWBbNvSkk0Ezno4WrzpCtH2b+r9oy9Z1lThEYgzRQM6O5ZdGWZKv/cT11XgYbaRLe0PzIZaL7pw/KIEpd9zSrq7zZ7+/M2qEiXRelxEjsULnwYg8rqAlT22kPUIAr4Do0JBdpQm3l0FE/D3vBDuQc9cc9NKkWfQdzgFHW6IAGvR0esnIM2H/Am2KFDSLSRbnraHdxwkowJFaYUbINmTIA5H33fli3H46+GqTUdXkxvYBkh1NIvd1rV8ibjpJhf62G5a+mvj6igHYnuGTZZ56P0NE3DhobrNljYAPG1XxyhJAsKeKpmBKP3oEohUgodTrQQ8Hx3P4UyVr/sOy8AfvlOlLneiRG5PZc+ff00ca+EGeQaM/vRWXh8qe8389z2iFqwuHLDDTiM6ngJLYNoOO+lyfd9goL1hsl+VD+VwjznYdRZmzcGoO4mr0JJc+b7hVOkigeHLi46L+sKgJngmEJL1PHMRBrQ+83DaomAPAs1RSfnOMs8Y2Uoe008HKRunPl6htOjYGohyQXpxTJS8r27lXiXblP/ZrQOUCIccO85uCHpGflMJSmV+9tXgsYIlgpDT8tAN44auuLCy4MFY6X/vDTidjCFut0vl+esliEYc19nUUEeSLNk6WzR/GC+SLvCMQkECnjpfDh+gvdMvFdcknPYb4WxIZLf5FsWiXT8hrlNsQTA3OfDRuscLw67zwn4VXDyYMMAs9J3SbY4Y4JnfE3CuWKOtg/MgZvmEn+nkjUka58T2YgfSEIyy608qhv2meRe+04dJsFsDSPwxZpmKWhIGRghf5OBsnwzH/1ar6iL2UNGHuQdGmmy3iLgye9uy1jcFEBM7Yi/376PqjeU202UfkaDN+K+f3QFz87URPoiTQ6d8/xDENTPE8r6/p8PjecE8Tgc60fXWcFmUGyzZZELcsjHepfT62wJhj12FgLGTcoFUockwhY7dhvxu1hAmA1OLclqydiKFpqlGKU9eSeBsa7XQrgQj1doO0jHucckj72qziezqh7gJoT/Q9GOykc97ulQurogpqEC3mbSAnyb8XnVQQ/wSqrhs85FVXK0KntM2ND2hQeUeXU/4IrJk+QnT0dPLZaxr8T6MHOI1Lra9qt8tLfqplGI3A3IKFHgUdy/fcf+ELYe9LzjRq8URWlEjJQ307cOkb6B546z1FEEthkOrbb8BWrJGA8/jxPJxpk5ZPQdyuwRfZIH6vorPwvQ/qlW19WTBFfqHT5r5Lh6117ol1ngOB0IPQPgunFyhXN2stLiOVU/y05q4s9Tzz+Zb36uFN4UpSuHaFdykd1jN4kiMaTKMb0JmqExjSIDBMe95IoaUmv8zRuA61viruwICzoDHeyLXq2OSLChdNZihrhPFdAeQzsNc65MavvPYEM9BK3t6RLZoitVv7CYpo8XqWINnfWRDak3Yo4ahJ42WhJdwjMRxfe5n+Mv5iy3ay99sdi6uWbx0IRtJAHdxXVKDwGYzFygo7yRnsoUzHJSRccsI3Fe4n7sQKl1gpe+E2mv26bOur1f9IKzLkK6dTVuovLh8K/ch2uuCt82dlgk/DDSsgWfyTKu5l3dLinX9YuxPSbKCm0jizs8HPTXDlEZOxcfqTT6DWYAEvXCEBeuBjkEu3mmsxSXRtza7Um0dCnh9WaztQrFuz7DD5QkCrtKm49ZNmprX7htiVsm2a/auOMFiYf+sKG5jgDT6iPmTYvXh1IhDP6j8QJ9sRr2KacGXLaAtn88Z7unhyZLvzSJv8HH7lJw0C8hGKaKX4n1f0cBIvadPHKc21loiyvAajSlo+fj6tH6rtFaE6dFJcfKW8VXJWwc4w7lxZMBZtphV1or647cL44gA+b1C+v6mW6B4dXHCs7Dc1OFuwi5yqnkO25TcakOBNwCG7Y78mROEjxPgjTiCg/6C7UKq1N/DwFpk+mBMsx92o3WZ51E5949fxrq9uiQnOS8m7VSjYC0+9zJpBgYBhmD5/1aSrK692TsnhT2eTOj041pnDdbpZ7pnYtrEK+20O3QvVZF/JCMWBgrdiK2/r3K0wE49zqQQCecUhUhe+Yqje33tWH+RS/+AwLknWN1q+OKet+8cEhsz0EgurPxT2eHFEDjGwXuds2IA46dzJuiXflWBPH1oBGfYBS/IUzQgJCQS6TPZo6YtHocOJA+FR+LigWGqMfFqzDwjqB/RnKsToO/GtZFvYhwy91RldeKb1HunhUAHdedn2d2qQSZMmeb6AUBq3MFPvErCWW6a9Pyo6Jva/1MPP+yjnfZHm+nqOjsY8aPxpeevBFV/9X/dONWKY/15ygeeCQNz8ZnkdQLFupr+cszW2Q94sws9p4G1U1lW/JNHhM6Izj/XUxq6h/4sz+r/uZcFb5kwnIEC6kTxNvXjigfGL2l6eEM8EpLXYF6C/rJZTlq4vOj1p3nof6dV/gEeMQAuU5ppX6WSkx4lYL3V9Nd00Fq/J+i7U2o9imytkD/IoKrp4HtfeAnM6szXg4FqUliLHN2eVOnDZGpUIFa58oBVPy9L6pFgsu8aCw1wVwisU1bEO3vrXkMQrtWPb0MZ05Z4pBG31cVQjJ6iHf6l2Yo24ot1PVBp8xl+46r8lc4hgTLmTV70hYIw8q6lLw4cRYNPlw+dbpTr51HU3Mo9guoETBYaOh+/XpBIP2D3OKBxuqjpE56jgP/e/6lffAUMSnSWmvXEOrjEqaTkhaMxkLTwyNChNdwlGqDmLfsP1W2o5brNsVLWoqdFPdocKE7GLBaqj1dqqoYUL3OGgoNe6V3FO4Bt0hdGrBvf5oioCH8cK4roxgh00o3Qmhjwop4yy+i3JPHrNLEDg5VznDYM3v6jRv/OcImTvzHwiah7p1gc0HlLks5+b34ABNeEtIyspdQupmvYfQSnWkxnRtbncMX1LFd/QzXMbXrv0W/lKQ1XuuVlDr8INUHPd2dqqCQ6oV/3tCixuZwtTu/LUR3xddhvdN8ru5nn0ci5hE/spg0/tRNj8x+gMtaDnMy3Ib7lQbj/KVUwvmeIuvXuK2iHDub9RMAO2HgO+U4+TZWPip6xhunOrEVoWQ8XOFAbhnBV1Rct3GJHTtAZdPsWwlEK95nD22l+y8OQPt65Jpxt4vsfglqRWRT1flJjZJu9Uc0nQt/YBcTkYG22lSuhLpt0l053Kb725NPnsn8OS/j25VZLS80oe1eP7yeWDG1BqOcHxfxZQ0NHDIiER765SbCZ75OmYF6vvkZSVIotV00ONj/GzQkDMZscIsV5Zre4g5UslB/33VGBJBkEN08QSN/DielA3rmDM7X0YtVQ+QL5mSZRBTWxNevU/Zxm6oaxrVYcOgM3wh4T6udCfUKEO2h59QWGXIxnzxrjSvGrIwpT9Dr4sD0/hCn1OjFg9laU0g+uW/48TQyv6sG70Cpk4B+eReQQwjtI1e8CwOz15J03eDgSHFKYLWEUw6z0s6fpSIT8L9g5B6p+n9bHt2DCjylRPg4OsDoZ9JdskhMujp8urPvrtpFzwPBQ8NOX1Fr4XfqK63Dvf7B/xlbs4S9m9NLQIYxOQQG6Op89UNVbpPHOprRVJ5SF7a3XkfIZDDXySZi+0NrEjqBSpzn8xY002rtTxw5FWPC/GXCMaiRIKp/3QpNuX4XyeTd9lLiiUEoV5rHpSHxzX5dOHapAfztos8eQWng/e6N6J363n7JBcMUYjsDYShkUr0xjTQsiSFMymA05z2251mI/5eDOso/To4mRnB9kayZqv6+j2I76ls/oKuj1r7vOfvhx6GWd6jkpfXDb+4laQNgT8Td1vnw4TZzdT2Bt66aY/Wiqm16xZG+yYgM3Tqry2ClVJecWFIbeFuovfTMgMobPwLoC0v4wtZ2WKMf4oBE0d59BVnZoOF1tQSlvnrJ3bOyv0QX2wP1RzMKdlaQF3gA983prpfoNgzolhr15DOEI5jFQb/Y+Ho6qQrwjcU45t8P38TKwkRwg8q64R3Lmkba6EqUVgkym60S/hWl3EpVJrjIDoY+GidtvCnyTVhVedDtrgmBgImXEaIeKJpTeVBULTjJxzpdle+9RoDaCbmnsFt44GVGjRYS1ib+bEum7RNmkxckMslCgL7K8+nit/7bDlkUUR78LgcvY/pK6++aKPCnFO77XWL30LdhvV2bSekMf29U2OFOj0pXRXGTXb7/xcQ5j71YP2bvPlKS28kpdWSC53BD6naQ3oGeMBngX+AzPlfx1LB/w9Yjw42V9GDs3AmhcVEsM+6RgXK+nOdQFt/hqDlRwRYvhdiicjAimKOL8g/yuO4xHGiF1KcBhJEy4qjn4KTgidVB2fAi5ZI/SUE0+Hgq65t3w8LHOXUhokrj9LZ4d34Puu5mrxUQWL9fkA8QWsey2e9BS9pcDHixKcF1FCsHoi9UH5xP4ICAeT7rql+ClZ3PeP8ew1k6KivDfneDPFgU+zYKxp6P9yuNCxk3fNgKTGHrEFUOsHqIVhOUadjx+/zKB3Jf3vHS/WgjkJgYlja9sXfKZwLIyDMHVGxyuKVJDBNTNv8JLaxmEK01zI38Y98m3FTevlk7+kEnHHNNkuNba+RDlq5oVb3BlFn4TtGJmcfk/qOEKF6xrLIkNZgxb6o14UjgAcaOKbllt9RBgBMpVJO3xQTU6/N2xSrI5wvnPacEO5jWQVKmbyDhcoi7ZivbklEJjdXBKj1jv4jjRaYM3fOggXS0oGbgbSvIrzDsA7sJib/18maYTmetog691MOACNDJDqhlJ1PL3nfYKsY18Mx68tVT1zME/NATxmHrsrgWqh4/oCpm4V0n/5+cg7oC7vvq2jJKfFPidk4e94YwqfLbhrsAjdKkcVJWx6yPgzNWbwMK6ciNyYw4iUl9pNGq56H5nsEcsNzTfwRl393lUWTc7EY2XnAMXMFFs+wSPr0CGpDlhu0vID3Tv184bIRDlkaHMZQ/1V+4dX8+/iXcwfH6jkzo3YqRPc9ZKs92/AyFsUL+vDRoLGD+HgHEM6WgLk6NFNNLwsmLhQTYbga9Ao/fRTxu98X5CK+smW3ERGs/jVhBrnoq50iXQaUIDTBBO+mBB8GAfizaN3hxJwPzrPUf9SlhrgWBvxz3vOcVWdxXXXPKPlQR0yQnlyuJKouiEsvQC1dL8oDzPxTM6F3tzDJZ+/xqzPAOUgz///jJzX++FNsrzttRUbPgCdP8zK/vyQyWXL56/mLco43ddqjlryVwIXxMXBDRUYoodv3UTsbqst5L7Jq6dsKMlr9WBufmjy2RDpjUITpwZrUBGLKnxYb8N9qV63awKvEgDP+vNU5NbRGh51B1NFybmbFJ8P0mQ3KiPbm3FqoRcVWrFoFUqh5E5fzXQ1bC03nwq1T3i6DU5injkaYavHsuRh2GVjMFzlA+eMZCQ3lQgT4Wo4cczLJ1poUKo7jNB3SSk1sOWWMzdWrUHuhROAerk8cUNBaaaZcGZceIGEEoaqAeculop498rLgDKatpqcy9Xg092RZTxqYDZcjg60tVoChDKyG4igy9ZaJR5P74oOUistIvClY94fytxBdGwRj/73YYqbBrAejnEpWadU2vUT/Q5a1doZ0UfTCMmLV3NzTTbBE8pCrEL0tIe6P/9br5x3D4n1rIORmb+bbJDXlxKBEOgbMXGbga8k8sm9zFV6NZ8jAzJ0/kg0kMBFlpka+BCeqBcnhnNg7oUd4pNEw43m5J91DEDynzJaxy5EV2SeGaxfyncrlVaYdYvqt5jQXdcnv03RA5NraT2sN1/5+7FEDafBgZeBOifAWcQ9G9nuoXG4R7UJI5I/L68GGznypOm69mzqc+szb+4jsYuGXV4gMRyMlf3w3phLQYh0qClH2Zfmnw6FFNC46NZiWmFJ2XB9eTJSTfh5jdyV2ZxZ1UDuUoTpLU6LIjD+bHqSpQ2VibL9+Z/fQ6XqaCjnap/eZP1hmIiwXAxs8gxG3K1UWHMp8GQEJ6hQgRJ5+SPbaSY4qPJqNNATOa8rOqEuiF5dW3JfGrXNxsW08jrDfIJoUmvqSEMtGGsCtix0bE9jkVH+wAgcyGDc66qZR+OPAOirRgJp6J+NBwQ2Fmhhb+HmGKq2IauI0Uoe6N9S0/8eUdT4om6Db3/wmUzNs3ZQXTX7GB7sQnhuzm7Gyl7EXD90EEhhr3PkkwIIH4yAv3oXQ57M06pN6FnhrtlBcXSd/9XVq2/i8an82QPwSeUn7DSc3/zbR/ag5MTFeLej3hp4A9X4rHtzbBx+WE48NDmStncsojADyTQUV5wf9+x0aA3IKAUB+DsZxl5OBGOfQsC1/mRsA7wbPQXtGW4wc278Ferd3zrVJyI0tH7hHxIQRopIWT6xFVjHlfVRuGkS8X8PScPiCZw6+LDm4MKpdlOZOD04j31nqGfoAEW0FL53K9MK3oDpFWNo5TYG0YXYHZawRQ/dIrZdfyAYbCXKmOX5i8uldjFMXZJBgCsyNbsmN320MvJvlRaC+qL+ExySPHQHyoWDfIcIiP/WcH5ej5N05BYvYlCqY8B6u46DFGzHlrlataJ2tTvY9rYN9tl1JR98MVBd8XiQ57+FhwTIkUBBTarq4cZcjaFF75x/yUigOKJXgS+KKy54SkvXKyXOjptugQacBp9wFIWMdKBHOdBFKihCF2oGUt5GXPN6jvjPScjLuHpAs7pzQ9fInO1yQapF44RvANo2gPzAm1fAA/ZxdJG1LU+Poodd0+w4ITJiE1KUdRb3RvbdJAi3me0EYqO63zP/YbeZ8MPVilmAKb3Vl9TSyYdx/QME166sKkLYAefYRjz52IOHZCTiuE8LAhGnvKHxNVd6ecdhMmCzVVGrdS4WrmitEtszZFzu00ueQT5ylNBHo1ED3QZFdgGJsu+II4CPXheeKSqPU5onJdQfryXyplLURkhjNgZOd6GTyxQ1hHzXj18lAclZScfWsGm4oBWNUaFqdFNB2i6bcMGnOUuqx2Edw51UGP7TIRtQav3Bt7I9XgEVwZ4mgO7y1C8hF/qYWn1l6INekynd93eZcFw2oelt7VK6Ufc/jJ669xWowa51MB1ARtpP0Dz9J/8xFRzt3UQgAcDbmo+fHiG6DMgGqLN8mYgPUPl8XdmPoN0/BxcLcum4CTHODBeiKYjuNg9mnVxB8Y4+NFl7RJuCIolqTprorAJYv9l3b+EazlZmc7UePS+UjebeAnmTyN60Zt3ykH1B2Cxr0w9S4jhRz7lhFb+1OICdK4W8e/21FxASZNYr9yl4hFGowbOz/D2j/gmKSaAWfI+ynExaaKnbxuZRUKy56HICltjTHGa4W2F3n0WG+dQJ3x78X9WMPCJzcyvDHqTYCpvRcqU+kH+UBbWpev9pDwyrq573fTXsETvpONLE+8OIe3IJdCsJ10LrZsf9Pturh/jXz1+Hw2ZLIH8Yrlj28dd04g8eF5dBn9ucry+Ldnu99ywk8i1tPY3EE5SVBLIp+NKLP9/98ka+wOvPZlwpnFlQ/gKyp5Qw74GNWolEZSokIMll0fzaFv979dLU1sr2uA0ZJQebG28M+GuhnVEDLoww7i3ORPD52e9plME754HWCYhNLu2IS9StOO5gpXSyqhOpkMSrToBP66Mwnql80e+CeWiZlbnG03ERlR1TuNddHaL3L3qJ3kzBoqcM41gk4uDnjoNKPJF3TNFM0jabiFsXI82c2X0EgACjT9weRHVbNtVsM7CaeV3t+XtL+T0G6CAD4mj0dP8aZ+5ubGdd+rbtnUPUDkspQH9matL29IrrHFslLC1WnyOhX2Zgf7p9kytDQyxQ0fC3cfpulFCtNsj28F32g4q4og+yL8vqPkUEHyW8iSTJz6lXV+45NB/FC6FdfZHGbrg8qv2gRA/2V0S8ASwKYciDkCPvGglX2blHg5S9Z4oHCruLH0kh3HN/LxvUi6/P6MBG8wlMQnHJQsQpLX9Kdxi4eFyQLy52Zi9qWMKy60jeyE3+HSTiXYF0395Wdg4mjtXNR9v68nb+RAZU5tZ7f86XfKY9NekTLYaiR1lPG0I4CYPh+Ndph3avbo/qv8HhqRk+xH6AWcgWKuCTUTsCmZPk5ipMWhEg4kcPCLX3ft37kIAQOryKncNksucOT+fR3Yr1kEb8tWBkJ1aBQQC7sbMSXrI5o2XkQQs6SL3TcCNCb9/lVd7NsecZqiBi3EbsiARycOH3Sk1W7A2kLg5Ns0Or5TIjc9ebMngKaU5f/9HxUgU9H61ifsWZJbLyfkj+iO42Y3Fu+d4MhlPLFsqmotkFqXROR+bIbN5mU98XM6kV5pVB1zxWTC49ebktp10ZbczwccgAmgPEBdLARfpThpilToP3U8QCtr3oRniB2tyGWAAbZCNq8wfLgjnwSPagCHM2iIYuDEU4FwaydLCjsJNcBVmm/1MvSTVVraqZo3yXzzeXFTyfGrm7iKeHl9plhqG5UQmHN4k+RWr44CQfPSv01pF+NQZC5KXYs5D+fVZcnPWaCsEdYwIN86kj3zHQbcIOnJPKSnR1GsDZfMfYy3bU8nH85FLakmUsEeVoXLDYI0V1w+4DaRCEqpWot6torrw00ffoXLFlY0mQi/ZUDzkl+lkVUbNAnfFjunb+75WKom23RoI8t2Mbj/cLDouJqawItYDuFHH1OvKq1zMgzotwTeLEPWbr8Ixfjvaf+ZrUnJRdfhnQRns36wpBIQK5ik7nvtEutDKwj3c0V102jaU7AJH8TK9/8M5qQJ6sn4zAbSJvo3hCdp6UV8VlKqeA3LiDkpjHItk4SYFivEP3H2b3cX7zPI6ZSvQbXna4y2ZIAegLC+X72cchgaU54x5gm7IaXXX0P3MFM/7gLj+elR5X0MZxd48v64PKo7xEX3RL1encPRVy2Dh9s9DB5OfWnrprIx9x++791mBwVjZucs7sxCrbqzJCvptdD1WVknyEar5gfvGL3me9PG0+3U6UjMZ5tKjjtg1RDaMRwxzrgteDifPzV8bUcb0aTVQzatwvHeXgSHGWqxUo4n/F5o0b5w3pK3tNXvHmLoHQ8DNs7x1cYLu5Fr0amqNs1eA0ZZksZdbHl6RXCFIZ4+tq1WDIabBvFQh+iyX2zPRLZAzlPVUE3t561mCMarho1yz3s9vHADj+Z9sUikDeA6ZSbiE57eZSJan5+6UmmqAG6bZwT7+SFocNuKztlmxk90EVmU5x3Rw/8IOdem1tn1OM+PFbtC4tSLwuIboAxqcr63AlttkmOiIH9bk15hUxQVOBGYKYCKms4kPUe0cU3dj8PRj/NMZJv0s/lq5dRm/JaXiCNUwyHBg8Vx5MjRz+3BOrUkFK4DNQcimfbg9vw4vjAQgXAdwUeIdExK2llCzj9UCStya7XOLfU++wMxm/aKDfTguoQZTDw1Vc/5azJfpeb/s37fAL2YEJtAs6cK5A8v+ZXN6A/HOjQRf/0hkerHFgQY3Qh4t0RH639w5Yk+sa0DTO76Wkig+9H0ofMju5WdvE1XqUNrNMiSDCZkb70HESBjxCGhQLJv8g8v0NId2DwEmr9Cimfm+eWzqHLwGiJGHMWKI8chzm5baOh/C9IE8mNt4ILfNWvfucIZW1ZnXQXfckI8plnuabx/J/uugGNbAejX8PJveBDb0MJcQ1Zd0RMUdA27DTYD0ZBNJa5vXD/0AY7r2Z1mpwwe4WytxJcicaaBjgY0/3/JZoc7VEwemc0gDhynLOq0OOLSHEglrBg7uZDbuaystFgptz40UunS2eIfuIRR9DXzd/Litq39sHhKfriDdvDmRFkgAPXpRqbxEP8bbwXumL6Vot5Umufd3q2i33pGZXpxuq7MrrFfWZM9324mH7mswJ70UsymS9fnKMHvAbZVFy49EdgR2dhZNpT8ZWsUasIS7LgRJD2O9NxTbV6krnfzr0PE2ZLrCghNalPPyqrxUB+5Me23pjeba8h0JZmgCzaX9jjSiTmP3OtYwllYR6+a5/QaVq9nXSQ7/i0jcZ5Kj8QBvB1Xujf1cRh6vo2ZrIhRqwS3xaAJtjjIn0gl1MGSMMqIdNBRxOwymY/kZUIvlWdDGPE8Ez6P+3J0EOlT90u/JjsVAs95WIOO0dG7iL/IpaImmhFM1NcLrwjExSWKIkaYP94ZUrqkkCWD1gNUTwftiHzbuJ1hCE5FrUSLdxY3zXqiN6SHs/LMaA6hR6ArXIyraGXwTyWqtA43c3zpwFVrnix1ZHOuJzuRjBVDQ6PzooapKiucYAzZU2HHHFV3pkQ+Y5+HCxerwG2rfqQbpe4wNDUEloV2Q7qpGf7F0wJEWlMOcg/1y20yZnBWtJuX20neUndoqOcZBwzyVa6VadwIRZoL3M3NVAXnxfoi6q8eTwGKB+8e8tVHIK2KBTuEq62JWLHI7bfFgIDCxz7cFS9C7hdfXSZRrQhMlFeb+QZoCe2XwGm9WTJtp3DbTDVVU+RvU6S1vTXL4U8PV1uZh1u+MDLVArT12rGyipskZTWCq2EkLawzzCML/vqCQfKItGZDNiDHGgsF/s50GP/WV23QkL1yvX8mwR+7YQXsyfW67pMWrlNp45Da7nP6G5XLAi75QZPjYXBpds6C3xjMT+yzWEpGFQpDiwn77KevTG1z8yCbhOsmYcP7S9SQzPE9v+6Dg/R3+vd4cs0qvbjkvI8TK/ht4a5F0S0nukhN521OOQm7vbh6wIQBkbrsTcnuTCI2JE0+uy1gJH6OD5e1R9DbJ+rhEyS3ItQPVbCHr5Kyy7lrbP39jTkXDkS5SsmhplN1eWRwZ58T/sh6j4HI3vPb9IpSH3Dzhez0pe/nzkU5nyQLPJ4PuY1pEchQ/6zLuMFFXdUt4Gqw4fq90fVLeAuNDhqzePibanliU6CeXOjsPqLmIBl5iWCvBUTjpYsECXTTIpdn7ESB/Dv6ev/duc7DTdff1YENbS84/YuJE6lgEzEV7PTKLI9Zz49pIOvyTOdh7fimRY7cVBHFEzmPaJQ09iA6vMRahw0Iyds2b86hUq5WZ1l+8ppthaNmiE6MeiuLLlJ6SBM6f9brku2NcKoFyL0yVMh4mpVXoPZ9PuNUd8WyzRWg0N1o2DA5LXYHd9N/2CCgY8TeNZ1wIilILECNkQVj4oTliS5Q+cWfV82rCiLHu7uE4Mnf1ij1sjYJIDTVlRztKltLP81QDhKPYFc8CNgOXW+6JdJTRtF/yxw8JE3E9vHl0TQgmjax0Oxz3L0IErQlbxH5WT0h+X0LYvNIcEcz9eYO70jFsgph4kzDYEM7E8RiqAPLL8HNAYGaE2HAzPr56UjcVx/ZJ5y85PsPb8+tSsn8vILPS3INH885y2omGkGuGqbEeTa3XkuqgRf81jAoO+VkzJmVIZfVHBJwa64uOiVNNp3D0EozvzpXHH0oBgCksqUw+qAZOIhHSlHpLVuiBcr2+mPevgt2Z4tvncstebtTyIfg7k/0j3Mz2e1vEY5zwN+h0+N8P7nzlbpqui4Hl6kGYY379tmIf2CiFWlqQ/Ji7iIk5mJq2G6vhC5Pqc8xOPQXbUSBXWUi6wthmxnNBigYm3InSn34l4ujOcD0SqzY5V37uQnvT03N0Ukg0tlNz4Nc3kUWoYKm4xhYdhtLFjyq0JdEPvJEL7UMjW/aJbV72df1//4X0PWbvTYktMCxG661/hSoF/B9n6Xl6hi3W8o0BbwrKCWi7UH9XQPHnLdKp/yd+dixNbC7uimUZ7bkw7wZD7G9SOttyO52OXCy8nkyCzy2EaH2YO9aj+hsC0yY1hx83laOeNhk74AhKvsfEsZSOWUE/7uQLLMhVWT/BypeGcCL3P/8Wpfv+blKkOf43+I9OvRlvLV2Jb6JAZtIigg6YJmPpg1C0Z+Q2IQV/2HvKWFphutJr3tbaMrAnUNWddHI+JGk5UpZ7i+nnx/v0TEOKuUjSt7pbChTUY0iqmzWI4FNe0TRBsDgdui5fJiUTN2jn7t16S6glyI5mvLlY2iiDOwgHRKxJus2AhPRGpQ84VOdg6X1vWvskVWO6eBaqmT2uSpPXRfkRbYaddEoYRRHV2jgtltOgCEcjx+Nc7OgNcqlyDAyhvXTh5nYomObj47EIsVb1yz7Mjc+KNmDjrIwJO4Cu8pLo1jH6L1P0EzWec8v6jyB0C1NquklbgcMrTTdlKws85UeP1160nHyg9mfYx5ri4w5eY1IaSZnjKDAIFSGpTb6gw45Fe94IgQNdetwwkNFCLK6huQz2BVCwdjjPS1z77oMG3tDKBj85ESAkc46qLKPNWTE+see8PQgFJXk0i/2AXmFcG5M6j42KiBWyieiKc777o23aSmzN6mlqwSlbcwFPWspqSRB/fZVJ89aQtTAc+VxkEtjHmToob9x4qfFJPAX7EEsFaIOfr6BXXOlksiPlkt2UjRl5vYY5wen6FKV54T5+/QL+7MON5l7mj+MhPEh/wozacZchJewU6fOh0jQ8lv5X4+7i3schzZZ5hFsBkSrpQ7EmHhoYubU6D2pYnRWZx7+l+MxQomT1oMS++cNHfX9G/Qx4ZfMzV4NB4J9eZKVE52Z1Nps86QRzorvTrK7zKqgXJxWyiC4Oci3DsyhD46gP4Z7neO3y7Hy6KUji8aeqvc5dZ3z5S2cpxZaeNpskmfH1Su6x2thqwryZO/wTTE54wr2bIoHf/688HBKlkOShG7we5NOZAz70cAI/SkHiqm7P6BXiYJk/RaBpyJlYPQe/+CV498/t6zHC+xQXrAbUpyQEqwUjhYwSgKvI/qPbDMqxdpooOVgEDmEeTBoXTJG8BjKLBPvRUOiItFmIKcUMeA/13vhyyPv9IzBjjBhu5NZisQuvvK3mII0AC6BIL7uzaF9LO6mG88NC1hTcvoTIBfQKjZvzYERHhMUS5RqbiS3SztZ4cyFzKhh7lFCjBZzDef/ZmjLaobnLNilvyyqxwV18Xck0+1tnUtX2/f0DQNFEmZzU9Z+zOu/k0PA68c1COgbhKN9xbO5kna7xfdI4CYFyodj7q2wuQif+fqwUHeoh+brBOVrO0q3HVmlyqjnHBMBxkEc1M9ODNI4jKfvpIag3Ujp0TiRI/eTjvDurH/QxLIURVwUngM/cvEyAlLkZqXemNGE8IY+WT1n8cQ7sEqB/YYspUphqdrx5UvJu7RwSVa8sOjU5o6tOcP3EBLYDTYg+/JnpeNmLWTuDI6itlYND6zh+gYXkyQ9x1kTVHrCEXXk0X6/l/AE9XqXCHfc9LTgYCSK7BtNx7IuA8OQXhwqW2eS2kYHHtg3CngxnkiZRv/LZQ+zGpuQIIyRSUW3D85SZF5EzOX0PuuPRSzWnN8VGH4LwUs3Ho4LoDdLmJhLS8GllIlmzqmgOHb0naXCGtbHl6YpDKaI0F8D0kxj5fSyHJsjcsVEhAC0Uta/nGmWRuMIEP2F1Ls1JP8TKGctNRonfdAMfHxzvQBqF4xW1EiSDcMtArTUUlCzREOvd12T399LJ8+bsk9EdAx2rJRqumrgBh7Vh9ZgMxKaqgoraIe/jwwpEKzxfyPlviz5eCD9AcYaOGb/7+xPZg7AKnwiS14CquRmk1G50Ltw5C4ktzROFXCKjsZbc2RFO8In4mT1gEj8ltcnZwpDzEBN9hGISvBi+OLZ5CISP7/Qs/lv5F/sSSp0iq2Hc32MLF4V4UEoUbz2Flva5d38WOG8yh/UO+4Y3jkaoJVId8KNJXIB7q2MOWgXLyNPizdbK9AuBTBJMTdoNQSfO5rx+bibAYyLiaQgRilOQOk4iKXlTow2ZzlrF5tQp37f/k/taHpQeEdlYqv77kKeRRG5gkc88U5RfyOCVl6ePJVZZzmcMJkomNt0sqqtdd89mmBCN4IWXzxaavt9Qhegm5MQ8CM4HiZSDSMHU6HBZq6eKKKvqoSP0Zrl5UplHcabdiN8QWW8wE77nPe5mIPL10R3qOHX+2GnFTBoC0qj8qaL2uCVL5rsAVolBvSdWKErdnqj7jg0MWD8MqdqxJnqDaUjPkhNS80tRKwAARQIBn2JqQr8AAAMAAAMBLa/u99NICAA4weRO+smDBvRemFxjTuITA4lp68apG0jbc89wyIvHmPaPF43/S1/jbjzZH413oqCX9swZRZjR3ihU4+LgSv9y75DrbiccrrdZgNaH6DU5LSBezZp+YbbllrYUEU/3dLKjOi4QNJIxzwfHBmRi8FbHWxtDgKvtAc/WBTUZL99ZLdKDJ8fOFHt9WIKZ+yxELTXNkMjhp7gf8NsEZjIsIpIHnSWo+Mi+nKcRuNgK5jF4phkfHhUhF+DpHfB3tBADj2ISDGOzsJfYFwkTiuwo21UmIqUNtACl7X2sIy427SBAoIyzRQKt6haDZkpNCnNo6IZ6ReQ3ProU70XEiD7xzhzqOC5kQAJ0udOOTb5H2HbfXL8+GN70hysPe7U1JxtAqYPrxR0hxKD+J7dfRVw5qLc1NQpAAUJQs2+izOtojUxywChL1ZDYKRM1mQilxVKV/grBuCceriF3nQgagvm+90R/Vy5TtB/XqCTrV5b5PuTrpjkFEdlis6kchALMZNzF7hLPLXbxupGV+8N1tRoviXx+wtUHI+Pw4ZUrIduijBOrfrLFaLStn+OZ/Dfu7ERolDvmVteKOTnN7tN/+xpQpX5cVzoq2IXCDgStPvm/5YIOEMjbusdmif0f58JTvipwr8aqRMNBmKUM77QAPkxgbXGYAAADAmxLU5ex62XdgsSbSEUADJmqNpaTon0FHfclPv9KEKTEhkt5lbdkIquiJwXO+Aozy85XEZmBY4KVp3S71KyFv2GBOk12GZzkm1JFYJeNB8CIKXoWx+Wd+/sZ8MgfE8MsbkV7fpTe858ibE7ttPxVifodHXIlMt3ibLOHSL5x3PbgjAeVjD22NiDLMt+13iqiVa6SvRsTQMVJUQ1A/ICz1FiIbSK0welawYBZYKbB6mZwS7kknLTIqLGP672so7On9FUzSaIBQtKh2zqkVAfJdMi4vCoGy2IWRsp+ANS01M1FD57bM9nw4Em7dlBnU+um5K79w0LxWx8yjx3RNBf/uYHCgSUP45IclBzgmcEj61vVWc+a5z5Vga3ydJcA+Mg10wDIzQ89aFRe9T0Odk/r0wpHJrDWvQAox/rmM9ZjyL/w0kjOek0r0IlBeLHEWCQosdQItu29W+kzxLkM3nUIgGvcM4bqVM8l2DoJlSeFT3ZIN7ef6dctw65HPnZlN+7aIuex4rw/wp9//ebOXyYwk9rH8ySTbDtCInon+vYkfl7BOm7iAJ86c88JK56yfbqYt9rOouxMtOMM6vHipubmCZIMfWvVxXh8AuJuWoEXZEvpQJAskrm+0OPJSTbt5i5MwJvPoKMSmKkjLFUx/GWKbgiNSQJ7fMIonFaWi+Dq0rdka1Q6C9bu0eucQxcZBe8BV89c6kZgrIQyWucTwKStUnKGwWY4saI2Gus00B5zkHdTl0y/1gGbdZrv2bbC8VEt2iKiAKxv5JPr+N15/b0SKhVQQugpW6LeaxmCStYDX5NJbIrGqNojQIQMEPxd1LhKpNKLESQPO8hyGdt89naDYcHWME54wHMUmbTTiB8najpmmd/+RTQarjC5ubfEgGWVN9jg04rf+i3UtmQBQ2rj4WtyeTTjPOPHO6k+G6jLYgGbBkQjSd0++e47pnCN8V0mqfgzg7b83TISrqhppNLMwULGxET0xPBsQ46HsHuyhu28f6raSp5hw+v3QhsASTdYilw+4ZJTZbKDmBLAqXGbokjfG3oSoaPgMjQQKGhzGU/NBp5O/uC8tHSqjocLnlrCEFkNXz+1snNFgWeVfr0QiBBs2odz4eG/LyPoipKagyvCp8DeWs80n2g8Rk+fa7wkTchORvdGvjgw/KfigH3BTTLeHZWkb0oidyPTwPDwyPf/5LqzDU1rjAC53ze0Yv7muU3LzOM7X+0Z3CoLhjFh//i8k/V4DUjqhTS0KG2vXAAS8HZvHIGDASXDwD+1ZiRLBf25O3YvVXQnbJa9RugayTLGhl+ec9SfZV6migL62hbmF3wz5UP5CRP7vYPtj5e2iqXgIIjqleAyZnvzGIgeaDqAOCHuNN6PoofEEe4dMyX/QaXmnwcsZ8JVAFirEJ+1FNJLy6KNewBYtRtLFuNYfCHR552XvlU3CTnUyqPJwm6WXle7+0NO50qTecFYZ8b1Ipo/F1SCkzYeiLVszBO/TbQYZGkvF8BhE0g5jFSG92v0RzBAiCXMhpIbaN7TzrChEhG7+v0sX/Kr2t2oqok/79VXe0HIADFjoWYCb5JX79/rg5fcnMQSZaqhuvVMYbn075As0FWLvqCw6z3EAoNPLHxqcPV2VaeYmSlk6Qw4343nMUTZn1kce4PCMtPIxg7rKD9/VVcYYblQC18i5Yw4zDFsDqtDYlgPiO0hAI2A8hs4+b3sswy2VipiRHAHTZOr+N+tjhbF1ev4atWZ1pvduwTr9qGj1q7d6O2A9hct9Df6NiUZ0v2jvPBKerCXn1+slfOnWPYrJ6EMI3ZGGDRYQVbnGynkWLDgyva1D+cSALlNo1VYSWXDa/nZ8dsl/UQGAtLlkI8dEcqzjbR2wCVG71VXTl0AxlSw1vHqgJrdX/I2lit5iLhdDBwLhEy1RTzDJ7bfoKTqk5ZMtiSVf4Qx9YxlnhvSQu7pRbH9PQXl8y8jsSqUJZpKHenVnXV5SByihiK4u+U6xYwip8nt6/Xks8E8QOWq9P8sIFYfqISlooAC4DI7KSRPIiES0+DwiqQNycqsr5MwAcnsxDAexBc8HpRuUF2UtXYGFcWzMK+3P3hWseqHmxkpfYlQ4nenGunaUAPblor5Iyl8EUeXkK5OaFJWmbNLSnF2jOd+S7qEj3GRMvvQEFBb3Sd7FqZFyiVXdVZR+SPUBBqsAtqZdl/v/JsaLHJuidmSZO2KZ5W4ELqM0wwErmEgr18f5pXSdFHe7jrFtq5Fe9HXu2eyaB9OMEh3b0gRhDhHXnRINWsswoThyLUZo7xCnH3PCZQSXKM4Rq9ObeKiO+d4vV0RGh3VKN87HcvQK6n8cYQ1yu1l7z54ivvX+kpOMdqF69h6kZMIov2bwKhiY7oPBLuenz8twHPOG6xDYcyMHEfxhUFlkkNayc2NUhGfZ+PO6ppcVA3Vr+nwXiGu9N5z/uzYVqDF5e3b5T2NXcTJFkM0+wRDCL4mOuI0nG5s3AwVcy2XQSqwuarsV4nRTdZK6SqOd0OJSvUqHbevgYhFSmRqvlsqWp9Qo9BzCDcJNHg5G7SBqT5+xgVA8NhsnbEkogk2EybkL15ZeoB+8jRpKN70N86p2sA/uWC1HRUfoi76czsyWTVxOWgvL3hNwkE4I5JU+ZHodw2P0NG5bIfKXI4i7I2tkukPsDH9OkuaTTn6bLl3AnkbSeAE2WQbFMHgjM7W5LpINZYwleJV5b8AkODJR/juDt9x81MGAp3ifQp9egSmlrXt9aguym23gX2sMgH2q2rnOqYaOUbb8rkZUaAEsxgD9hNOV4av9zCa7q/o2SJcF+SnQEo7zYF+lfDknTh5PF3SIggKfaT4FubId6XpegAGHxtAJVYtJufgMeHJ6vRLJ1BA5LODvhIwE015H0BZqYlux8s27DjqSip9eZb4HIYFZQeKqYxkJClX+j9R/fmbpSe9tqOVZRc/QO3WcbgzZhPtrYpfJYGe1Yw8F9tiHXq9CfN6t38PyY7JmHM9oQQN2ZSmMjTU1hQmRs+bmfHrZTVcljAfIBAqpoCcFz7Gtd7/d2VgL1Dvyfynmo8yU4Nb9lkLWA9rUC/kDyPMVjsOHS6Cyi7rzYAw2Kk4uNgWchuIaCLNcA2K6A0RuK4g09UrmR+bXsP0DijrYTjbtkbHt66pFQiu9qyExhBDD8xmun49P1jeBS+7bIxfn9zDpx8Vbzk0vmIBdCYLtdtFKiJZUQLweCN3fA1ffphmnMwgwhrbuJRQ3dyrhm2c0bHoPo1/WJvfXSQ6x0vQOstGsjRYXR8oVkqNOD2QmWqpH+n6dFWOvL+SJRv+horT5hZuSK/aQ5K94W/MREaQlZQiz//EIvpm24yLetpzY4KlEwwC58q6XGgjCga6NPaI1E8Pa3lfaDTjQ5iXMJnmC38SuGFiB5ZXoyNsa8sR+j2jdbvX/KAudJJrRFOXiO+z4ccUd5Rmekjq7GhntFYkltOdveCbyRjqGYbzamc983FLPv/CqOtMHGArUKeRLWUXqaYhHDpaf7CNTsoHsllJvaH3C9qQzCYxahBR/ZRiID2lUO4P//xN54J4D2NRjkdgaX0nXUWbpAg3G7pDKhq3RwBQ3ewHxvFt2sYvjvuBpKh/xDbBSJ2kpHy409B3H0H/5aEsrm2DHQJfev0yQQTCp1xFzzFiZVsYShz1bpNFa1h73MQirFwrBb0G1VXL8KqGQFHMi5Q1ReApb4VLNFouzgZSGswYtoLGPfrENCceLmbNtX5vArUyVPyCAMEOYdMzSm19UUH804qC3os751E7/I+SClGeYbdB34QZu0UCBds7LVwuTBqD7ZO3L18YtnJ3DlhuNkiP7LPNiaA5kPLIMC7NVFqKfojDw2ki7CoNMcHTz72OqstlxItlbcuSPBB/GRc+ImKXn12u2sqwmKhk4YBmNqEh6UzVqL1RTNFmsNPBRS2ANZx1Lkyw1fw1X9BxLVZmd4s5BoReLfRmkrdWFu9/JM4CCV5UOHI+/sgH5wS9MQgmESSlechuhEnitaI8Ib/VtnTwJbYxGiOndc+CGMOwbfLyLzSq3U/0+n01TzcRHA2IagCaXc3bE9xOCAko7MXfmUREdgDJdfn0ubp8PXrwlXGVSu7J/+WaM1KxZ0M/1YmmJK7g1msntGgD9MAoFP7480GCEr+/oj86LiNPDys2LwshK2PV5mmAb0OseIn/g79GO7oSEXY0UmUKcC8AmdxeGD32H2FCofECPysgrFE4aoSz9Jh6xFYytdVgrkaZGas/QrDo7E63rH9KPI3krd9AFD9eByTfHAriIP3QhCq/gCAAJa78ARDlh2Ne+DijxadmUbbscY6zQsVx60HGdNwITuFXSv4zBJzlRYzpD8qWQZEMLW9IUK21NzK9rBRdLxvrguZU1q5KD2TE7V6L2TgF5rknfmEYsfTGtk0Ikf7Jv4CLcRlzaevbGfvkfwXxzcSd9lJTaPXHq+d9Hle0pd3yS3e5UN2tUrVxVuip0fd74fr4ejyxbnRu+iZXRe0Ru2PHc3ns9RWQr49U3HhCFdcSt4BystfZCsVYE4pkL6nlNntaI6WQhFI+PUr2bOdkgQJdzgfxBOErbek8EJ/aZ+YtuXksH78kpiREg2h+q+FrxXMuUSzI3FQD6zxm6OBNGaubP2+xznAw/nxST41TIfeH7dORhOaIvfB0wqTDwDtFSyOUEdZiSEgTl4ECFs98WEItnrC/BlsAZQeBhEc1LRqSHZpKZa3HIMoWmJ8MUjZZtF4Wt4AlPaxWu2TVyl2E6Ih6Xx84uEV5z0HRoE+LD2Shv9ZWz93iqwHbyuInwlq5AGUv36yEKTIAattwccWiQiKBSDKmgAPQjWTZ621hYUrFVWauTcisT3D62HSPVHP1+I78rlflWR48EBOXIyYTFYTMVduBaJsmVf1tZNDcuE1IcgBaH/JmdgMmARi4NpTAnN7Rj8wyaHwnBuBPqcjR5xJ92vuk6Fru6va59gq8QPf54/w6KDf1dUmsJ05CUVyj0xHjbm0TgmiHUqoFtNodEC+QGadv13ffcqlIdQERlgXUGrW7yTIckyXHyVV32uX1ck/HqqdjcmRzlGW+vt7SGMnj4WSyrz0CaWx/cMBuWBwR1V62txfqmF53lL8RZBPt6sZu9CCTqXEk0UZRyJaPteEwiKykZzawg4HCVOyjT5UJV2kmIOh+MEEvJo8yNdhxI14lJGsvzdlZwdch5VVIl0qJrEOtGdv/6QKP3VI/78odobg/LQZwPGB8hB4nacw0DnHqfA/X7ZRWMXUDmmSTBGtlbEJq0kzz/DtV1zd4ASTMOBIBRUXb8CaFAlqbMYKAg0sSWxJSVxt8WSu1/pIEj/ewZD0OGStUDEQAR/7BVleMWfW/MCTD+GKEPXPJey4MQiAk574KLCO/GbtnoiP3mSIkAVsmz+ysHtOzMBJCLJgpL2Nnkpv3DBFS/tWPOCyvnlbTCqJz1AsfospdTuQSFpbRfI7j7Zv2b22MdrLf8eE4wF45z8j/p5bZmME3nlicffCd0/RQucpyi661sEBEYGxBBSWrXbFqB2wfiW9rmXzkirgj+FJ/8UEB9lDPRa0LaDbMmmMilOI1tGgkLbheukp1K/N6cw2U/texsbVb1xcXcYuhbZ0c4jA81llXxUP7rhGprExm8PgfGgThGnlF0XWoGtNbiw/IWAPI95mvKc6i1dFJBaa2OiK2y3NnpJk2GCb76M51zQ18Xx/rL+x3q4CNymxFzSQcVGlxQb65KBTvXjQdnBW21bpQSsTvEo1CFGiLlaLT8HajoSGHUApDjeYGpxE7R40VUmzJvBpbvynX4LF4uxODbDnZSr7bBJqg8j35xRv5ch81MxJoHwz+C9RdAnG6WkQLCcm06aaOrx6vOynGDsJSibUAYMNhmd2q0yNShoZ8vF5MzyYjGZ2mbl5TBahHIdvh8omNmxyFNkvV16smhwIPLed4vFILR8ReuZCluCJ4o/7CVDxAeDMoo2eL8F7+2Dpyoxs1vr4ISXK2VstldzVWlUR0Q33T6nm9Qm62p2PmgPB0IvvsVp4SOyWXVa3b/PyKiEGCT4eb5c5Z5aUtJ5dJZpyQSuMwQCMS284sRjWGTCudg64nwK+xs/yPi5aGsG2WCmawCxANxcZ2E7W+PKh7s2R9rA4fNFxDgsRBAhgdirIwQrOriy/JG8tUZkrSZlqxXzhklncO1fv45/O4DJf+7Ah9OzFyjChKUI+IARJMlq54eV/XWHEjldcro4Hvf6f4lkkWj9Hc3gz6VxRPF38V1mpo2svaJYVcFGUQIiLYXax9JbYPTjO+Pp1tdn1l7EgmfNFosWkr6PqOtkSb26i1Z/esqCB+VZ7mIalr2PiWICC+6bryZ6QdeiiwpCYfzimt+ne1ojNJRPSV5CpbijxKAufdkjhDfOXQLw8IGvJbvLF60ZyTtWSxGy6C6vUJ+7ogfHMT+auqN1s+CBFDkcZ+7u9P6pvTpURsHlvKLms40dRFBHdNmyVYxA4JDUIBYY9XU209e0S8W9poGcrREQK3gS7GbAID1OVGRObN78SyAVjjYaJfplxOBH0xRnX3/4VWXit3TeVLwsCyR/iDcvpfVgMupoA8mlfHsLD8SLCTrTHsoX2H1Wwsb2DLQyLB1Sj5Dkso0c6eocChrG1L+5Fe0/N+wKlc3BoGfWz5kOLP65xS1I/fc999RdCfa3z3GXnNmavvas5FxYcWnMYkTpEfaMvHPR+Wwr06VGgMtu0YOa1nbVWwYMFRo3E/pkz8tdGZuXSGokuxKq7JxX/lxFfEaBw52QKKTvQmz/UYZarWqPmM/KMFU4zfi1gaaMauFw/xW/QjS9Q6utVSax/aqr6Vn0aBnghYshK0TCZTh4Pio+ZnmDO/zaooCNS6mTn52XGBfjOrFUzZghJEYJw84P9o6wY9EXGRDP+QHqpKhrlNk/32V4TA+NUa6uzVlShkLQAS1OzxQh/fWEt0aMa4HJ4T6kO097odT4mP/M90O3oPciYw0uDw5i3+d5mRkhaB2L32pOfgCJkGuwQWfhXEFh6DL5a+GRjSAm06fLLAwQVSoX1QtKi43j34sZlMySGZrIcjstlu6jQb2X1EhGd5vyk78IF6bkEx4HxY8py2zUHSPohAKNzSJyd8O4JwP+XPkJpBLkUv6SGGzOaQ/QAObyED4vk0FDesAwXprwlg+H30EBjs8pEkQ3TJcdIpjnD4ELnWYmaDWCsqdOO6DX8ByDMKcJIi0XzdJZ6Ou968s/jR175Mu7Sv6VT+t9kHB8B1QPjKw4+qtlwz0AjbGLTnshrGJ7KWLkONMGXRWFsSakNkvcHRy4M18BsabC24aKhPgOsPwVB2z6jNujdswlKd6MXLShvOK3mOVQ0BAy3v79eCCmxn5fIJlz3WMIzdMsROL8vb26cLTxOm+uCGt7OtyCEAg71mXOOLDpgZeVpmVhTXpi7gZziV0UK8qc9W44MeujytOqSYgIJD1euEe8ETR/Fi6p5wuHprg0wKkL2Ql0ef72xSpzH9sY96scJbznvLnI+P9w6gTB+3nO6onm7DAipBLqBh1ByqmGfRSS32nnD4CnE8uoOAZf2lI59pq+y3pdrCJTIzVBJFYF6PG3yri9WdELvJRrEWoxCmAYBdJv61rLfoEUKMd5Leg57RvDDSOpQlbBTvmO1q/T/+BZNDWpoFzjRMeJNW1RCPdO7PDeVsJwtwHORx6Oy4UgTUH2lVinpFWgS8PEqLAMHJi2sVlaQ51bk7mmobekpbxldD7GO+Q3ddKHb2RM2xk15kXBgU7891IBar+rkcRZiPQgEeqFIoU0O2VIGWVPDMd1xUFJ/Aoi7oW6Wow7vxxZGQPSB2Qhb505NWvYEv0bwlfiE/2R+uWLZBRJobU/t7iITJ1Zk0oM7fQMfi50yn/UZ9vmwDuCXDSksL7d6iSDxcrHvD3HUKp59Jog/v5x7b2VUarqn1Ky4dI+PfKYxVZniyvRJV1sG7E5CQv602NWXZeE71+YVudU3bh4v/OT2aVhifTfJ5+bqHXDLJoVZ0QHhIect5t++tZDwHirdp+nWzyz/X5lwbWargTK3cRluOTpaBzjTuRP9sNtUX/f4ufStfrf6MzHg6++50djgQRolcH0M6aqjFKP8G3gVLnV64DD+evYKHeos/YmrqgsTewtZnbBOGvEpKEcynEEbBTOKArx9tWsQxg+lDic7gCfPEkUsX/xACWsVZfrfQPqgTO6FS4k/TNSRnp+7byfVxuKem8urpAOwrJ5VcUqfL29ndZ/emchjDiufkNKlQCf1NKLF38oY6G0HmDNsWQviLTKdH2IRtT6xnxzaBw2nsYfGdYoawwHMJYq8VyqkY2flfEEzKhtnh0OQ138UkGOWpunJEtSMFRsYe/WFigfm+LIr8wyfXjAX/PjAiSVfjIKIXzDIBWOdJ2RBfThYgn3SuMbnINjwyQPV4f26gjnmD6BOwyWtMAcPbgvzEfJgfxYRiPXQsdFE7YSDSeGMgLIcTpNW4lxGXxdRjmHP/bRJCgyMtq1AhOWci9SrarQ4nkdOxEO6Ez3wPBR5OHgyg9AxqOqs6aaWfME0Q2pnD3PQ8pCVYj49Lk7cHqaIyxfMfThyNSSdDcdZNxJU1+MVoxuRfh9VxlBHT1hoDQcS/a0Nhp6MeKQ+l1ox3l68QXFYv0vURvs0ujbzSVJmmedcVU/egw9tvc3hK54T+77xMoLRwqdVM0Pl4PasGg7V+K8hFjP+Cu178wd7hMVp58fiHTK9ixU9tEPO8YCcXOT3kA8VvMuxaCGXr6Iw9cjFW7Y/jbgeguG1olrtz+O+dHSdXh1N7RtFVKyKxPPIz4kIcg3wz6P/uTnT8ww0EU/1YcwGNswam6BID1tFT+90IK2cBWY3vsbv+otRRljdV9CYhN4je8h7zQt9KBW5SREuhcbE3To2HU2EGw6hj3/zW8WFlMB/L1F0y2skRhcls1D+juOp94j4pgR05Eg41mmvnQz8Qt5rfH30ZmElMmyZ8c4tbszX7FR0qo37wWBToURTA56F6iDZET3gp6FsItyFHwaRxqvIuY7E04tPYSAnULpZ2I3bb97do3cFfrznUciqVX2CItWfO4y8CG+/K+i3dWFmucLMDtD7WfLqCQjRxL4RHZ/kYtiaF5BVadmKPGvCoFG20qKj2Xngf4DReTr88o/f4mhwqtRN12qp0Htro3/LVAEN4JPKWNonvSFIsFgrhpp6RoHlU0rxbaJIPq8PEE5+xkJVXFYG1Bd9KfHSm5hv9ALKp5q+9yUQj/c1ENTTqmPTxNDg1qqXj2Dk0xHzLneYJchVCW9PpweSKNSctobHRw/BWn6NVE8zZCaDm8LYw2V45x9lmCdwgsOoBjhwFAJoxrztMj6XQZDq7ZzoBfB6xaleqOkld9rlt3G/1HGwU+nuaVUaWJzZ3t/l2gS6PIQnwUe9sBWZIfLlmSUccOJSNCTVw2eXNxfEVGSBb8P+yU7zPkprVuBMzXmIQyhs9yhdUR2EpFwvVYjFvcPgHWY/36AqW+P2SRwBcPeRpoQ11VmGndQka2a+4nytFPjQ+x78EdPetlbvrCWA/xxvBkMhgKpDeXNW4/9pIhvFd34br+OiZw8jjxc4oBDxsyHa+MysBYGRcw4Pi23HZ6iHn7VtW8wP7ffKi3RziTIlNL7ZCcy0UgrZlThRKeT7k0Af7VCQVRBjs6Z7YgV87A0IIfkfCph/cCul874GAUjfdgzjzpA39V77mDLP/+3KevENcbxVUayh+psxrBAg4EPVsc9aMd1qgQGtP+2UtzxHfyF6U2bUeOL0yBREcteCkbHY5MNCvMQPqCFtUA/hpDA4LbVZJBmvCUvkjqiqUWYw4a743XXbvS4dRqbJtFoTj9cvdPOB8MrzhkIAh+3QRwiPxVCdMTAqOjiLHUIMk1wCTouv0Xa9I3vl5Ej4lO7MppgZ48Kv+MSKfujdhf7oCen06Qkabw9XQFa1SOuYNYNK4EQilLA32NHcIOuGaRK8vF51h4WTMabzBDs/B1N357TvS86/rWhWvp6gFX6Wa8W6iitC65M/ZVzW995gRRkuLCJonJ8OvJC6+hBxK3QXhHGi0ezdOi/JLgzIGzdkfxIx75UgGQ5PFYmQTCCiiu13BgRnAWMi3mzXGQPz6BxHrVARMTjJlFIC53A27GGMPz4U504qV9HvbvfR3MTE0tBSg9Oz/fUVfxTzBuvCz0Hxbk7TmoZ5BAiZ7xGIJnK0eJ7YFrOifjyaJmLGpUMkUtmSOHwIJ+SE6YP/PaeeoAR0CncWczFq2WhXZpMPVo/f57vAJ7LF6IlXAYbgZKV0LInY8aWgLPWBgGXpcU6kwEemR6BNd8weewH2U4ujBnDXY1L+T4HjECqMoNlpbWcGURpZGKU0BiAmfex+5g3Gr2L/6SE5KIqHrGp/PthxDDLiBerLT9I70Qi7Aw1tK3tfkDyJl4Go7c67AucJRqucFRbXl2ZIAhWN7N/ZxR/j9EX7dIdCoP75VTD8FFJo8W6A5fnU7GV5FoUZjFzwMSl/yv//7052I8YOfCQZTppwkVB4fItfOacmv4rm6g70Ye9Qe6LmGrye1yq+dKzRgkb1BiCL92anB5CVSVvTooXaVHx98vR6Gzg/30F4L3Ruflzr72415Ikl4BGyQgskdm6XOPwzPlJNZ8lmfFWHjbNg7kScdsQ9l/8hqBsL8j4/bsHDdVYELDYrU5EOvJdix2/G89lbtRYSOy8P6IDKxyNWQk4LCnUj0H1dimQEYRtHKIl9v33jVSDsQWv/MV26LIOfNAKlGT6ZzIFpxX5sTishDTSeKzXhkSWT1uhM15RxmbFai/7//3QRv9WNVehVo3UV2iXJEfGae3jWTtn3vnUgWsBw9JMk0dFJVTDRBLvxC1asswkKmpiYPpGk1sLIlt7L8p6mqukfsW7rN4nMi2XPnsLr/fCz+Ohd9l1dZdN+Bm1SB6Z0dDH54VXTtJ9qRF4vMtye6UXfB5+ESwOVBVvcAkqyZoDk/wlZ3U7Bn6d7zk6y9ZGLuwpymDmvA2Iw5ZjW/nd/0KteFIIRcHN5x8rdvM1faxh32pUWnxxxEOQG5GZ8HsfBTncSTeCOIS5EJcL3/Kz+0tbJPjAdbDc1u2uy06ZKUnTVzaPHfwvgdkGZ9zYMUBVq91Zrz+pnYzPrYt1dsAAnhvPB9q0BGZm+Hj081ZPJWAc00BeZ7rc7FKCSrEjAJSbq7VGAf5RyEJlYod6eargB0wR0e14AbxHZGn0Wpm8qz5Hce72kCIcKBO5eMgeyzvWBRbtgnHuVab2hirK0Bbzf+R0GBxExcqMmKN193AUfSHA+JDuD8amAf3XwsWoqpp3tqXWTkCYT9nREtna71EXnkVGK+lb7V8r/VxEdolouJIVu2dg1hCTON+hDlXDMEaQCfYOgAMs+Sq0gzYqZoO1jvxeLw2BZg4sBqN1ees2yUKDi1+ML3zG9H7qzrpyc8F9hVyQp1z/CpHAGfArHPqvGUvR+WWdfcq4scNoS0fh3cM/sHMW3WSagWnR/BFhNRtG2gdqY+DbPbjJlfVVDfFnS0T0VXIBo2Dp85QSFnAA91hM/f+WDDlHGusKXcow5LDmTUan6LePYFMIRtiqBzVy21AfzkMvaFT0Yl3xbKYWC58LXF4xUvn8V1fR7e+PpqTvfHMTVPxAE1lYWz3fNqK0wR+UjXilDjm9aIRARRICbp0RyR8SkXgEFBOHQTXo0EAG9JIbxuUBG+01EakFFXiWmYnNai46NxsU5ISGvTcf7G06hjZMvIvzcD7rsAqGWDDwbL7IY9IVDOa6uVpkmVQlOW2IyzvdVFtz5owCLDftZnc/lmo6Tfrwz8+JffKPyCWtCYfciUquQ/2fqhXw4kTD9EugnuXE08bzRr7jPKtke/l9ZTaiKEfDId0oJZnKr1sh7i6FuMi3/2siv0s2nnuHAOhWTWOsnf1v3NYGCIZQoito/YtyV80suzwV+FPmbsvcuevowAsFhxA7Jl/nTnXrrz8BUp7KFWJVp61Fq+o9dI4t87m3QhhyLSKoorqhZpRVJOjdOjjcB+pwLFXqrbmelS9SDD2bnFERUgz0vNa3rIWGcIQo39s81bL/kD81L5g0iBIenVnVlSc/PRsisgpt9DMDuMbn9Q+BNJSGOFb+8FtgF8UwugV35yWVbrzRVYVO18hI/mCiS7J2V4AazXH/HgKGtFQflbmFybQboPGpoem3PS6ZplqU+sKdG8e2aigMmqxMEWU6BkFdZzxntQ5AyyUIFoNJcU7/+Vo77eHpgZRjb+/jWHuusn2ukxeViOsvG0l9yxnTboT94p/4CfDkZSHPe6ZbM/Cr38/rR4D053APaYT3RrnzOAG5Vpl1apfLqNZNR1WYb9jExnLXUQUfrkU639Wv2LACy8ku0cepI5BlmK6koZB0GYCHkt5tnp/LzCWO+npuyZGs8ycYpOKrYNE5SsqFDzl3aTehrgrtf6fzij9RXD9DylRNfMHIzXnWhuq5mkoG133oNSCLBO6PF09ZwsVlZ3i9TQUTzz4doA1sUZpAVD0Nfydl3LK/4VuMqY2LB4uceE+Nli1dzQGrhKj1dLivA49trXbO+xwEQdp7iqtGAuyNhyyqHmhHN46LtARcZkbfgh5kM89g3bjPu0tTYou24Tz3XFhJoD9tyfHRRa9l8Ay0uKTy+xryVvXSWqH3w28i+UAKBzCFxJZ/cINKUgN40/yq5elcZvZ3AGPVCQcRQXGVd/0Nk7KWnfP7ZRxr7+3emjbR6u9yWmUAkVEG5iNpuY860KFStjs7cN8pecWERK+r2Dsh1yOGAuqkbhqF0BVrfs07mTDKjHklc4rZ1+YGCvjqFl6z/DQWYpYh/+IJ3MMzVi4rrkuDZFepy8Y+BwAFJV1oq7veZQNejXoYZxB+cNfyvYteOuJbLO0G8wPMqUUe8Dsn0Zcn3RAJg8uUvlv5yG3L5a+tjuBqWZpTC//zwSMlFcmZe/J/2Q2MdPYFi1cZWG/aXW2SvmkHR3pH1ekP1jTVjputq50Pp3DP1N9JPIYB26F9sk6LTzqJs5T/6EW8Ydvz3fUgRb2m3/cmp+ftK0PBtasLA3Udut9fwVeAfmRhWiZBIh8es0yxZ8UDcpYNAyDuJ9OPAcLIGLnXUvhJoiLUvxMaOESkVYVgsrAm3ZOGwTl29EZApH+6ZOVqkO2XuolJtJjDvnG8vgybQ5LmE6ebrSXDg2MEqhVaqJgeVixmzlxg7j2Y+u1CSV6J3yxF87BlJNRXpHR20wuuEUr1+GYZlCy6wFuQ2t5z0ySOWPkNwnvCrlRUNxFQGpss8N3jMBnMM34oSJKy9y0IZnhdm4o+gDDStDXz8diKjUlWknmbEhg4O0Mc8mx68gCQhMWQtd1y7rEGzkdZdulkBWAaIyJBaxP8EtzCZM+j8AEwjRzN+2Zc3xwyPfrwf8sZKMKjl09czeIEaukNvf3rpwYdU+CwAAAwAAzWet/5DLp2RsEZ7NQ7LFh6pyicS1MseTfhq5hikwls3KjuHOSttLXCrVaSezt3gQJv/piIbNJlXG7XD0qU2QqlkwqAriVOHAsUF+heYUpgiEtNKQWwxQ5PW5F2e9/B6whsBsMa6T15Ae5v9ftl8pePLHPX7P5elIWHj9JkAOM+kEoOWFB00KVNWJZke3gVGxX4EnyLJ5YOZXzTgJgytU8HRT2PiQ+VvsHKD04b0Zgv2q2IyDoSxdxR5vSd5wuR2uKcgOhlZEQu2Vtkou8zjk6xQS0E91LWLXDDcK+GLl8TIYVXa4WggjHSeRvK6OQ3JL8mWeaCwOHcSJ6H+WDpqnCV2HNGTyfzm8WJNP2g/xFN8ChFuV/s6XhY/8QR/Y+fnUglwOo5DwIgCsUsDlKRyvkSBRyR9kcRp7dXoMGGpsHOAEuVwubFJX5keJu9+4kDBzDHuDgpM7AGY5n7psWCHxsd8B2B/V+b+vBASWgwLwh/EBWJNywY8T+YrO5gIz6DZARfrP+8bIT/I4/M8Sl70RhszL5Oyz9mvXS1vEPMVj8hu/z4lp74+w2TSXys1ekrusJJHAyNDCFBlyBLCrQe84YZdSm9h8/sR6W6ITimCeCJkaCw5mYZlVZUY9vVok+kfHcWAcz1NFKGRBLvSqpDSxVVhS4bMh89YLA/Z0R86B7HJgFL+nQffcJugNqR5uWX4Lck9CEVe49K+kSPkBVPhG2Y0/lIMsCO5s1bngcAL5nStISZS8B3YPsplgx4fmqTZAgK3cSmobIVfbjuOEYm5w5Q31/DK8v8Br65g5VH4lckxG3E20qyIsmx1b67ddw5lGdZ6py6Q824xbO0EnzoEQQksFAHzCQmbxsFTFMpQKXI+EfrgQLjNZ2LUHBpkphAD4BXuS56UjYydbjtnmvJL9xjpNN9b5j+ZeG1BBjOsLyf9tmfhAD5s4OCzjFSi61gcOY4qU8pGM4STGYUdvNSRTMCQkayvuJwKNfOcR3DM/xD0rTlwiFezN1ueDkkSigAqzZBz59UMeb7geatwRLlEusQpCBvnelG0kIGwyNKwhvQ7nskqTfTMqK8Sud8CWDMdbnUaQC/BRLJD+BcTccDgiD5EAXodPYTsyOlHRzaCgfwgkYZC+z+JTMtNcPiHABMKk3RwB++8H9Jmxmgb9tkox3JJrbxs93wDDLhxjiMUulF1q1nZQmZlF+PqUpGz1sfARqZ2UQyReOSKknN5nDKmRhUn8auBZUiwpmHwI0g84etlEizbsP3S8i9jAzz+JDxaDT+Z0k9qNBXS12TtvMH3pqzmNxlm3AjpYqDSidGfjY21SS7DP40FyDmrz9oC0Tkf2f/HbEeLLNRm9QhRciT071Vh4b+BC3EAeJ4GabWMbksVcxn07wRrVAdlhtYuUSvknds5dKP5NWZonaSgX1hNknrzGu/tMgkpmii0gs1jqWt3BiLQGmUhVebYpXci4+vnXiqfLFszg/6aLHAYZHC44pCzyccF8YW33FM+SL3nNGyAD5Rh7RXDGQyU577dgALbMecU99oKGZgHGgZlpMk0SUOFJA8XZb+huoGlXRdG0LEorfmIkSwZsY21OKmR2Llax2cPvA7l0bzZH8fJkIeNnn4PhOXGyPqvgygqLnQOfFrHgR99hmw3xfiB2DDQ/zdf8EKSYKGdHUQ+Lt32JuSFBfa4Rj9GHmUMkNCKqbwZIag+IbMNEMxN5aeYuDIoIAThUmdxDMONvBTETmtphc6sCxsuyY01IPA51dCjya1rdu/NUWF3vW1pUeA7JaRz8FKWOFlnqNn8r42EWUH5RmJvp375/BCKs0ogBCc6o/RuIiyEQObEFU5qPPCwFRFcysjnQ0ZxOnHL8YUNXsWahZ2kLdKqRb5a7+fIzjmOlL2tvbdRacdecprlZHRefVvnGYcC7FUZZFZjlhZvmnbNWHMqiINTFE+FWFWAf0QNSFnHmLoB+5PvP1VP08+cO6dPnrKXWRrQw9LaSMvLRmTJTKbw1h7Qwk2SI6JzIWSLHGSzdstrbQecGBdlPzv1iguuN4KzZBnBTXFZRphz+zNDyBL024fU+P7IF687R1bT+aOpJR9kcrDMYjuZWsiNfV4Y6/sDWdkyjHBcgMBOuQRhgwTHLBZ5Ky7FPep8DD3jeFWVnM5gHRB9AcQUMbhuo7KUv4xRmYiAVqi88Ak0FxV+DO2tOrci3d3Kx7o2lwe4S3ikjqsgGQHUxZXW8xNVhbENStGXQj5+3sQq7clS82lmaSlg0XZZadmJ0EpF2FTcSaC0iqX0wsUk+8WC4FWN5NZBRgF6gyI79DbIYX0gMmtwlcoP6Yz+JP55D/SzSDdAjW0DlRsuDLrQ+PSiZm3d95Tiu9DbmjPvCvqsoMNJWlH6pnCaXq3sLuWqG1m3XXZMeKbE4tbS2zKfHy3YDiprY/R0PTdM5w+fy1vo6QdmJK8HTgeN2212UdajYO4Vko/tx6cXe05DwhI5ttTBcCJ/O28vpcdFoNaqcHVxSklmHUqCXNWFJeLGqQ2MSpRSO5nvVtOTLQjHZck33oKcQ8CH9kvackgA/u1/ymBmn+iDIGNmeknI2kPrcpBn0a3kqBDjP8j2zVokh/d9XM2eK6ntNls6xMp0wFHlhSTnI8B1KzsYnCT84qSlR9sIa4nRS/66e9jG3IBbES2bkvGJtZjg1GcWzjJBPy0HWQgO6j9eg9MYMh26vomLjVF3eFB6+plf9+W6R67+VZoGEdF2YN+FAokrl8u7fe/PfiOF0ML3sYTn/ElKfjxw29D7VWOLmAxkeT3VHWyfoFixqdgK/Ak1/bu6XjiBA7ouNpSFOYBzxV2SkrMwUbQNK7oUpPnAOvF81sizcoMUvod26Y7hP81/A0KdfksOJbhxDU5u8XSuIKyudGIFzFaGaemy0meDhQNLH9b/M8tND4DcmMWikKlrIBKHW0cO6f5h1FrgVvO2IyRhBKE1gzry2GbGNkLriwq/mJ1nBF1Sc1PGA3OXqvKiF7ix2Z/4iFG0kLNyxQ1NHNIkmtm8Mfpv+RfnkwLzPxFKS72cV+0CSjLO3XMCJqWOyVeu6YsPlkRcAwPV/1NASv1WvQM91BuEwk8n8iFr+4bFuzLGMiMQT2rfgcFVoQwYiNNh6eLC8V+ZRcnwk2q2nMNpcGLHbeUoUVtyEiUhaF5SIIQ3QytHJVj57OFgJpdZUMdDvzpr7x9znmHn3nLt/pdbe4wa0QAzS9TkxReHHBEWAy8M3EF2TrHKkOoLjY9eRuiBir5//wSzGr+qiN89YmQ/R8QwOu3AqvN+6e6e4nDpOgieQAASR2O96Dum+6Pe49E9YeLIPYxbkZbLZyEwniXnGriPTpX6zdBHhv/LBvbYKPtBg7x4w/7i58c/BuLllNl4OLAGY9OSBWEwl00FdVdVUHVYa5ig5fhnY+Khe/W2yxkMekXcD62MwYX4pQftwPbsoxfwA1g16pte4U8ANtfy9ZCD0Nd1qOtSdlAcmwOJe9zAw4iYc8CfsKXIXVEz23cRLqQT88SFd59Ymg6xP3+3ZBXauxvv5yjBWM7xgQDNv7Vaj3w2wtPMC90gMqJZ1vEVCdvATwxgB1qzr8FXQahxKKSLGZTBigRgCh8M0MEGki4qKnuN9E45bvXKhuQWmw+3m4SKmstC1h99SItRKO+dRSE+Aw6rYqzsNnDFprLRnBzCUKVxQl36bXuRku3yEZLXIbSSiDOChQc8nRSaInUo2vDMs0ktFlXCXDdAWJMpvYjPL1A4ZoTaBnAQ12M++gQ4lJdBV+BtY7GwBI0ZJ/baoX+mF31PzsJrAfs/UhN9TtvjKPLKnseljE8+pscKSXoRQHyBJndcC4FqZODGxi2H7762Z+/yf3GlPapiZOjHU47y2jFtz9v2g/BULlPoIwiUHeyFguFvfVP+pp6+/aRFAilYeU8inYLOH2vN84sfZmce4+qtKKkEGsFgKsRn2nRtiQ67hVdr5NWRAUZ/oZ7FrhLXB2m74ZVzt8sEpL2XPFT92VeChwljOzx7Ju3V1MifuOXV4Hmyd3duj/RWP0mEUhlH4SLFt52qoGVz2RgkeqAfUmhXiLAkgBayA4JXxL0zNClSA45KJC1EHprrZXkr2XCUXJQKPkJOJvXFV9zloBDga88O2b7M/2sMn4KYGx4Hl7n2tWaD4kx+CGaNt+wRsAxId4EvJ7kOapsnCvDTRepYJ2V9kE/oyIOGryIA3B/u9MS2Yss0tGkVbNyDzNay/FpDyaAYHXuO9KBTmnp/Et3bsWSgL63POxbbdd8IvRfR6Na608Kc3c+8tJ2PN7nRFTPKjX3T/eJGPZUgk/hTMkyLCPAAUbSKTeRwwQmH9W5WRkQEu4UGOFBJZ7FRskwx5V9g4c3pbFh3AA/c5laiOKyfyVWj9LM77W8Y1taI6jqa89ZvIrJjKECjkhGV/TKN1Mv4Mh3sLEnbQScO7dVC+ND7E6qhBmA9PR9lKUh1ZeSFfhlNK8YWkwh8TkH7BQVqBiSQB0ML0cXXtVrOiHFRxbxPYFYwvFeIYGhQ+qLTpd1DgHDFrKCv5aDen/jebs+h0t1m8oW4pBnZoaVyz+br6c4Y7z7Hd0LUJJBdPXHELJ2uHAmkvnPltlM8h4yHf/PmdIsAscc3yPnAGGzwmJE70kAtio6ESkm3Fb682UJraI3fjhutWac6Vl55OPgRosVsddfp9E1Z3ZW1Ut/KsXL0Dxj+4kPp8tMS05hNCfmIvYRNaWh/ECwKIkBXZOUv9Bl+rCe0FMNtzu+FLlrsytIb9/TEITNY7GMloe5hzQZ6GEjhrNSWhGUpwZvcBWCX23OsM6iM9/WrOsPPiK5zgVW0OUW9yt8aebeRXVv0atGjOPK/jTK5j+YebNRJaVOpu1xYGnLIZd2VRJ/+rWtpAPml0E+baHj9Hai37MDP7XcL9f4RBHbzJPyJl478rQubNjUsS7b829jxfcM7KY8LsOPzL64viKmxKr1QC63u1A3JZuxmrbT9/EnnSqlgDWbkrtDGijuw4NH4SEEGi6HTxT8KqaXwyJdvQnrOjvMQvQdp9ZKn1w5z12NEJd7Nw9ZgziS6Yno5N2ZZ5a6TyGXl5IGI2mtb1n4V5l8B/9jecHGyriUDWuFR3jDNddbpmU8aCFz0j81ODSU5cu1qOOUrjhvGr2R6MA9imOv+5zrM27ZRhL9DVtT31GPXQQsBXohYZ/vFNAPIA/1bXXRAFV5h40eoBX4F1HzFrgGaDHMjYxgt70CvqQGcTand3obuxknHk7Z5xPn7u/O3S6bM4Me20xRwBpMubqW7HrKspTLGV0ElbTAdD/NIuVhTiT40rkswoERk+vbweagLW1dMETLRbv0LE+PDrENxHIgINbUQs1qzSB4PBLFc4Vsyvh06ZwaJZxwrLaoXN1kX9I6bRjMQJM6R64S6tnrqLPrSfnBjmC6sry7BJQ794KkwjTJqgRfyt7uuRv5NmtzUeenpMgOFGILutLqjfarB55bcxN5TA7wOmt6+LZUydgksXFdyeTr4XhUXZt7BgQKydMMK9JBIZvi15mULnsFPgHjjanIrY2Gi2dbopLCF6JU/FbzqOR+keADL//IiTa366QerikJADdoU5NAMszD9Fu5JDe1iTGaVMynZf597ytXclNqABFCv02RvFvnb0XlKZe7hv7wzzi4XYRzzXHzvL4jdnoQUxR+HlAc1eUtW0DqXO+xnzA6c8Pwk2j84D8atL35ZpHppONC5epvlNp86sFps2vP9shi814taprWBuvw4ZBmSBjhXBXo3QhBjEK+w1sIWFthXGq60Qt9hsYeQJ906TNGWj6AeSq6q5H0oXFE0EJrjET0fvaNKZxJmqjZmX9FDCRdt/mWHHdp6m+YIJA0k8YUmVd0jwgA1xDazfqPjwO8wt0oZ7/0UPx44XXc01C7lAQgeHC0HSL0B7hPD9W60bLGbUD7Cwd2nCJ3Ybvn1tAbDkVmLlJiYHDShjicwMNBLYkSbtS3qRN+PQEeX8hc7l9gWr7q8oMTuYCJZY11Efe5YUdhIZQaTZwYZlSlI1SpDxdErL8u3bjG1+5XBhhXFbjUlffgxOPboMDkKIPcs7LXUPv+XOht1nHdQ1pRJqfC/WhmYMViszPPVNSEYPewkLe89oQVXzUehJOlHTrljGWYgRYVuKTftQnvDXsggGeFstiqfGsm76BS+By73D0fAyL4ol6mjFdOZnECIX+8qa1qxaALIRaqjgpAasqwTdC6pQCTrHXxUU+omeY+o2/pQUbpXZFr/OLsno/ew73+okHF8rFUB7cNUfu78IAl8k8HVnJLJc+M2/cicb/WIOZ7E/s8qI03Be5wExRK0ol3KyvFiDlOBrzhbeojStbDvEH2Fjmhbuj56TZzSbeGWrya050NAiWfN4gnnjkkRpRGVyGPjlqDHkeoonWVS3MdmPtA/1v2ZOBclECtKQJ5tBdmN5L2WS0InJun7GrYNFqGe1RW9kt2siWJMQxKqXZQsyEH2EfJpBXN4yV7tF5WrhnqNWz1SGXcfXniqRjgyZmYwGJ2/y3gQwNoBdHo6CH08NcGtNSN+XccxZo7+A+37TiYjmdVJe7olxprQzxk6kaP15jnlNH6xs8zE0CqEcIT1poqhP5+/sp6o8NJJcNUfEV0+VuUA8n04K56Fv1JbyvZShOrv53jPwwO2o3Xv/DfI7wXFeTYRnOn6Mr6TX95BzuZdMrEsazWc+BV4TloZYHuFhO2bLenjHtUHwHZsf8TfzviKFodIieGC6P8YFDHCCOnkUMcflpqYz5P4he2aFQTn/6ZLBKPVTyuu/X2bd2+nZs1nZALtTlz1v2nnDVHuigHgGhQj/DvxWvOXUOCPH7q6DjIqCg4UNWpO/AleA7A5c68B/465jOc+Oi4LUCWngyW+vAc/troDOO4DcujDibPF95SiBkUIHMkxLuCKUrLSG1hgvpc3SYGydTx6zGiu1epTzIBLdvm0jeeswXWhVxqJk0LcRahpi0L/wGW0+HkYNY1VeweqBzEY71vOusAqTbbzkSLQdQv1J7EGOn/nqJOZeksbDnbdNXnrNQUbrBsj5CqkNhtmqktbnP/ospdXk+x+GaxZSZXtAEp+89C5X2ZSQT2c/7Dp5v9AD87bbQhiWL9lYahT6QVh7sm54lhBHeML7GSA5bPGVyxmm3tP6zTOHNVFxqxAlN3iHqgnJkXvVPvtFSdyfjOb1Dhm3h/0FsJ7sZ/rWTAiwOEgUERJkuGGF+5LIX9mTMdJewv5KCuNWQRr4D/fwhyxDez5+oVWzK0WXwlT9TnRCM8HCQZXMTFEcqD3JpehlpsQJi0m3FGsSQt5JUBezKWo4ZFeTDJqv8o8uuV5BI7puOsc8PkHEzCrtR/EHeuxqB0EPhfwFNIrsuI+AFWdEUaAPL17cX4AULXIuRJwx18c2qbYI0P/y8sn+sphthoJK63LdQweMk5njoGruGeSwNphMAyZ/UQSK+8CjkghrUyKIvlWPjvbHWYXRyUGQ+i5vRiHQ3YnFGrokXs8+isOQJO0oI5Hjqsx318WUtyfHRydbY7wEB+rzdsyx+v1/Ki5+dbeOianXhUa0mLAyPm+kmj20U3fwYhh89no9mXI/OpAYPXCUpko6RoNG3hRFxw0nbBSsuUTMvpFq76puBr/jvBClXTvlRd2jtsXUNXEWurrL5H6XpPLWjOMNrqY/74YJvhyzml7KzeoT87jsezo4OGj5AzDrRmq0w8TeyHPnQP4WI/AEf1zYs5SxcsCSxVzZbh0SiuwriszUuDlqzxMwDdfR9INTd6ZO/KHeXiLs5hOzNmYtRm5gTLtfQuCKHi5HNizGZocSw01uC1LL/kldP5B8SKIlDoFotU++2lPatzE13sqWHkCr4M34bHtbLfw2k4sShSkDXI9C0/5wqf5TPFV/F/Ywp0TRsvTf97atROhGTlfQw48oxtN5wEYrNPzLeeNX3tiXwLyjo1i/Gr1sF9lgJ38eG8nf8deP+mynlpM/ins7f0pt/QY0FtcOq56iwWa67w76qP5NbpR8HqPYtaTfmTn9HbS1DUgx4XDRmooGANgCr1qamrHtSzm+67TK21andHPGcQVt0P7YLjEPZYpqAjsQI4ZtwOlp7pu5X3vCfNkCuaWEOvA0cB7DzP5WIqiZnoT7ThwEmAZpiOYh43CPVbOYH6E2yAoPpg/uOw4g8/yf/u7QF26HQym+ingcdfNrRvOlokhqS/Tqin9IQic2Ev4o+HOKK9C9wpcYrUuyJMEz+Lsdn/um0Wjf26Svc9IA+9VFBqW1FpCxD43Y/dSJj8dmNiOYBtuchMzLHo4kX62eu88P1g3/9lcY85vBFKRxfTGsjHzNv+9MX+7XteFLXFE/BL5A0aQdUYcNTPaVc/7rAXP7Ij3/f3hWjekbCm0AJhVVE0hz03Dbw+yPHeyOm6BgdL41snTT7eTxL/ccSBVNF4U6EJK606UABG2kZ9iMW2jRYmfWHC+DdNycUCnxkcPXclfN+DCbW4mZFShqRXuc3ltQc0Ci/r/eYFiSSGIagJuDYkkkKD0PG5Z11Nv8P4WtqpMg4SZQzN7AzXEwvzLbZCCtxXYzG/JJiIIF4VPBNVkiI6nvd/bqpyzMLCc9McyeszyLxM0c0oq6nXrlzXLqZMiEvw7zCNoIrrowovQhSI504b/wyeXUnwT0v455qPEtiq7V7msUKHwNp1uBT1mgJOBSjwBy8jHyG9FkP+0Y9w/O84Z7T6JrYrImC2kavh8CexwrizNc2PTkqagDGOk7RycfGf0sujq2OngchFLySBzki9qxNZG9bCSd38Jf1ExL2wyKcRBvELXL/HvGL5HwOC4rOaENmsSHiv+Bl9YdT2d88tMjxuPQ0t8oY4gy1isDfWjo5qXrmHbNInh7t52ZoET6T7mWmujuyOaB+S4LjhdPiMaq5FCA8MrFcLr+I6Ti7f2vjMFktfG3Hg+AOu8ZBST+8UQz3YdzVOv+lohsJvrUn/UdleZAUcGz6fh94uHrjcYYEmMy6xa3gOrC6w2mCTCdPpZjXUKgnL+8lFWwF4+sbwWuWYKKP3AG/8tpf4utv1+mXfLoHqGtPafdX4oxzLQ1HHPUjda/Qqce0WxRKOtOsyacU6mDT1ypghxwpq6OLA4FQI/PeRbhVPOXv0XOMJfoHkNT9NrXBcPtPrKAMaP4nKA/Jnz/28xYNmhHe2gU1mrfBU4k75UjHwfacBo+To4wfEhX22w7ZrHJotj+IEH3ecEtjPVr0pRJxn6jSZ8e3/E9aI/0U5cLJ1p4GD+APElUQwnYKSrO+dj5EVCgyaktvDvarIvw5M8icf3H6iteLvN+PYOUMnHdCP65+UZ1qnjAX/4tzov1aKsjF7VyiCdOfXWAdAAZcEkOwAAAAwApoAAASZBBm2RJ4Q8mUwIb//6nhAAAAwAAAwAvrXd6AB+9FuJPG+BE6QdVADh9elGbD8fpVTDEYxfX/kI1UIQwApyG0KAeu4lEyQE/HO+V5Cp2ounsw9m5oeloqCnxRbpJ0O2WIt9JqPopHuZN+FiZYXufdUNBWr2so9mDNaxu52713HoHZ1CQZar4Bq5wvsNpNWyClUARAKusxBjFm4q7tWNALZB1wHlxr2W2PzPOoBT8Zf/TQnN5vBjfxEv3BVTnagWz6oeIPcQC+ntxwhwa/sRzArzGGAbDVVzgsFCkdkHGBEwiwiuHYqWfw+ZROKtPWxDG6gJN0S7dbprln4/VcwCOMqq+oq/Jx3Z63I9fKRRO0obzz3exKGTNG1OKxiLsVeN8/XUkYX6UBAcVG6RGADnewvDDdLyhauVL6LpRAhEaNq0EuWWiK9n4s0sxRZwnoY3KXZjVjea8agbHYBOk/snDec2TUq7EwNa18ILMuwIgaeCw53PwRZQLPb/xfRZJ67yoM6Or1NWjqTFTVvR6h/H4l8CG4njUppD/MlYItYFViwh74zOVm4f0ctNErtmN9C0dBJbbihYnlgw2BFglXM6wuWZxNcSku1M6Udg0jxvplOZJVaRJeMEbVxROnYonuFh7uy0MZiBYIvIxIkHPIZtUi6i+kLAmmr41mvqmjq9YZdiQ8+BVkYDsPfKhG56jD/4T42hCJj6Ukbitormu/3JyieUzvBqby7KIBXJCveV5aVTtyY1LTscx6kKB8X99/WB6wy7/C7YDC9gq69I/2rE/tWRuH9TSwSex66E7G6nUfx9IJzt5eqf8/SYVpWQjVIBL/eppZ0dqbjn4qQDVLoNBaI1huvRoovLgzY7Uzj2mMAyvZisRmG1iKQudMOnbcDyXClAfj7k6Aoasv9vPjqVuYDm6eaiwVUJtaSMjuMCEwKAXiowGXvuFKqslBsyN3QN9sxCRqwi9lYStdmNYCZk0gFspQvfHOfR9UY7N1iJ5NuXGUrFcxZHh+ovrVcB9XuyzC3tMZBQCsMjrDDNiq1HMrR7qcRNWgTHleH0L91Noq/oZ7mDwcDc5poYLDRsZWhC9fLQTiV7//+pc4aAgxughkJkxBstFxTLNZgykg3jeHCDyTshhv0rGb6mAZe/o//6zl5Osnvm8SujARhRXUTr3ewFLWzZBz+iD92rGtbDkxinMsKWcuN728pwMxhgSX+snihMD4lnfn1H7JPgKoF/B4XBraNAIxv0DGV/ej5p3x/peI0lFdaUYA+dba6sawtzqX6NC2dNC6Iz16gmu/7KbRrkp5X5eBvYIzVXI8u3cjbFxNDvJ8wGsZ6zl4vz2oo9OmPLR5w0mInurN95gZeG6c8W9/Y3eB4B9pxDrA+0LaTE+MrI/ngBjCkmuhbhXSkG3YnWad3JSykLSm+402ZSmyBfBdwtj42T+Y13VdhThoaImkMiJEUmw1QpRKE11EMXw2TvBQuTRZmXEI3rfS1Gdx4rdEySBgSoel+J8qavDw2uKFvx3bTNxdNl+6ffIbp+TTJ1V74J6ieVFoYGMBmc/DF/tYEPDr35fdBxTp+evbOoWpaZqz4I/0dhepJ7U0fttzfUBdLWo6vo77uPKlvIvzI1gKMx1O/VKrCfEwYj/OKAINE1HO9MDieWJxONSC2KcZjCbpCH5RNUqJyy6k5q4Bhdepa6R191DY763boIhhtdWAc+wv5bKe346sN/8Jami1oQ50UeKB6LiO5RnVrztBr7QHceGkAd2xfsBWKft/p+gnqbi1R8ozitlZL+tA0Fik7a/afnGb8IB37Dyxv6HtjJC7oQuKLb9h6xlTiE0KJOGUhW1H3Q1CnfyzIq/87/ZOCgfoPx//vciDFZbYF6VSigCPL6s668fSgR6OVCd7JG6Qx+nm8MgvG0F5zvk+QXVCQrrtoPmkJ68GVSZkhrmoy0QXtaCUUTDXcNc0Iv+n83i+pyInM/tmZbguUMW/Jt3zwpEK9jp/tol6cHkRb35Xy3L3LdRGJN3ltS5rG2r5Hf5095JnLf449fbE/ACJ5nFPb+PubD84DrkpbO+KFPIcRVIor2A7fn86M4TV7sNQw8NlZxdn/Rb9j+GjqW9NNYrb3QdAi9QyPxvNogqN0azhjgKbNIYCsMzKK58yBljzf9rnPr4wVSS6HQFR3KGzQlYYFM1lbesGnLqTv/ORp2+wWDKndPzi4dR2KNjmbSjczopD4JJVsf/aeuDTLrkVn8Dgn5AOFJ1epj+jTqAEdQCJWEVIEO51icL6TpYvGyoDbt29vI19V3grtS3w5efHBOVGojSVD4A+eBrRLClHis5xPEj51HFjhnWIJBqrKZkrL0eDvas3mqLdj/mw3zYhkZoO+e6DsPFNyIhQCChzNCa0eWUzMu/fohOgrXIAN0euuk9B/19b+On3PXieTXKzkMeMw1Wt6kuehvok4LlK/7s7PbSCbHHOUlaNPBi4CLGGnUgEPsHXvpqwymZymwH4LhtcIE4XKguHg0JaorZZ7eL9CiP/IW0OA/6I6T+Dxf+5p6wFZzjk9gfH0YOL2hNDNMteSrU4F2A7uZgfy4wERS3zbu7L1XXGX1lToHKyP/5exFGjfQILwNKiqqOELa3dvem/QicwU9vEmIT3bxmJ5yMxKI6w+O/EDhULcR0l+PAKBV3ldsh5abGn/X40FzXufn4Iw5W/16v8sj9IR/x4arndRfefide2wUiWXal5H10mFLHXVkE5+O7C2qE8fVVyL0u0TvxXjb8Y2/xCVQUV2js6K/ZJu3iCZC6uHyWtbQWbV5dMi4+13jk3BD8NSbxj7DSXOa1sOSUfsPc4p/7RscAd5zx+kEhPAl1cNxGMeF/ZJwbzyYSfIbnS0A2xypao6n0Y2oYFGEu2/318QG4p/wl1feAHUEqg3yHtKq72d9wpJjUh3YxEXFGMaBiEuwMuhPrDDfrcXQvrWCIRXy33IPxDO646SX3JqQ9CIu6RXAFfpVnHqeiKgKAC5PRExQE5NfbH+bbMC2ZG3CTHXxDWubz/vWJHMrKdk8dWBJ/dl5eyy87nePxMlF8ZFgUD+FOGDbCNyUtsmkSxBYjLy4yBXNEjxjMildY5/Ywy+TMH8MSoxQVu0PS84JIu8EUFD08oYJjn9Thnai/1jMUMMIXfidjt+0ANBBCkwMS6awuGurQQ66QU8U1M9q8bZo3a7/E4NJOECpsYD3uS0M7H5io/b3haeVFfF/JgPql+aTSv6FPT+4KSSOsFvL2Lgyw38a81HS1LxRc5SCQIpUlmkVNAE2mNuLXSfQXMlcsQxpEBMBGb3HLPD7fQeN4N536sShselREZRkjVr+AWc8gcSLU6ifMxNI1xbXq35z2wldIZZIgvS+Y8yzwdOmWn9qxjzEjodIp1zD9yPL6+vXLa4e70NRV9KPnUA+Li04laO1I9pKnoHB0Jehy/P9XBhHvLsag5y9YWvw9qzFNsTmORIdbRUfx8mWNW9esqYEiEGhkpZg/4LUwZvDtF47XNf+d6+4lkQYXVE2jlBbIusDypTRHk5CLW3XCqTN06Pr/qORicSiE0xbaU0mBaAbLvDPY474/KEbCHYASqy0iSd7ZG69BRRSsHXBdA9Gry1Ssf++oniBjcsCHKbDJP8aDCRTEonyyUg/E3zPdZ9tBW7xMdrFvwmPrwDrj9gVvbItVhQSgi68NuL6rNWKTq5X1jIbgDG6upa5zJpnFyGpniDND+u8KywZrHCjQRDhWGML549u+yeoAtAdIvLhdLcKD5RZnUD3EZ7RneQprexa2cW47yrr3ynCQGNiujgYYshsc9g/Gz+zrnlSjnufh7gUro/iEI16wkc+YeOrXo4ZdM/YoPpvsWp+G4R44wqpkahtGzYZurN8aP6UwzGOqmS9GdjhA2ya0kRPWAUP/FnExcDgs4qRyW9HCthi8PxLb0HnhkNjkXcp9sPzhjRV6ekarh5fTaLj+/J6Y8RepT9a3I1pVeEk6EIlcmYFIPwiEH4SwJRUub5rnjkctcEfmn6yLNWKf1JUMA6GFkSPjg42h9pjaiEh2bPNZlIJcDPP1nthNRSRE++3dotZktYXHOxewdR/LUCS/l556OJAClgKUGKXpVynewrmruNEJ91AikB4HnZsx1i0brdKGxGvmd4Y15LVOwX5FI+L6wSrk98kVhDgcuweXUl8AC36NUzZDa1U1Xq+zFHFYcjb9PE0jm1fdwZUL5D3oq9xrFT0q8dWvu3KkkdtWQaPyJZyMaWhzcgU5nGJ+D23+Oob6VyazCBdxqlpsi8hglhMkd+c8a+GWLFdMMdM9CpIaN/NeJ9xFxZ28an7LXYMWzwnR4j3r6OzQHkSs/aUx4RMWvgHNu1v3+uI2IZaJUG3a/ibRDu9cQfESoqGCEws0TmDgNGVubYGQcIkZfhfYFghSaLofSYeUKuJYku8RCeEFVV6/fX8ksQhK83MIRpqo5ljvjCd5YnrOs2mPh815a5tyDNHDqV+dlnXZUSD2qVc9FSLzVlEfQbUigKu9CagP98gohGRS2HT/h/x/pkq64yB+pyfi4MA534cIGzXehVf2OBE2w0Vt5PcWEWTqX9RXlFTRrcvXd9PvvlxM07a+dERujJ7ZAQkuzqxp0M+1Qz65r7nxrO8/0hZdkkT6To69nIKHOt9R3Q5BFghObyqA3KkEqeVi9XwzE3ZFTsT1JkO1nxctrpB8KpjMmSXxLYxBQ5dCnkYqjkHhD5foQGWsc5jejLLVbhAi32P2Tcho0EDrhZ7Npz2X71bEfbAlswN3AmgxYJAOlS2ZsivFg2AkHr8YMqFGIJrejP/SilZ1g+jes9ykAVlrGsMbetxOyGnVcqoR8XbN7382Ac7I/IPZJbJXnT3DW1fq8C5eu0+2d95KwTqUVGAkuwqVVWuDOr28gsZNcXxE7xEcXsghG7w2jBzbiWI8UBP7N6qgoiDawo1y+eyRCnnqN+My3G4rf9MLapdp+0SpP02zAeY9KYjWE1frbUX9UR2PrYiGdYHJUG2Xj5bsLgSX1aN70KXgRcnXLcYbiMfXyZVJeb0oTNTendl53sCSIwVF9CjnfFMOe8WaAkDI04+2NWFfCPdj9Ca0d+UZO6oMSbO9RI2SDSo6AJmX/rtfoG9u5keLR5RW4v1d79KSvuh1eHTIdOw2gS0P++m24sLIemviLm1dNL/xj1svBvZm5+34g8gVS9wV13QFTDAT6gA3FTFyv8vGnN/aTrdA5ZN9hmD8yQGlpsdk9Z2/WmjMHDqr/u61LhyKYx7nYdki49i3HgvgyOfVywygJmUGfIE1NJ43QN5yoXuPCo1rpW1ZzNWbqKuFYD8OHhh/9AmhwBqRneUP53nPZqTaIp7zaHidbH1ojV6T2Ev+bY5pKoMXZyQdnFCmzR+I5b+udSzoxuFVepRM+XrZLjmVvhm4wjQCc02i5fldNkSjLxA2jP3XfM9Fw18VwvnSskXrDRNbw0xqMENjcUrTfm1AWnYSIG2jkSSgmLQr3jRSEABYBq/eKWWRS8d5jsNH3d26nm2Kid4K3Aj/kvnr3fZO2ieh1V/f1J6GslgLuOVDG1Tj/VMTVKStf+jmw6BjquEWTQXcfQsB94+5KA/jhwnSXSv6wWfuZqUtgzIjK42imGoPKxejYjbdFjBQeWK6H229q8K958lbZiQTsNPA08JmoKCH9HVPDGL5AA+bHOsJ2DIxhk2hSJCUgEGN6z7BdM0o8Uvvq2939cvEotieIrr+O5RGwjKsh2nQmZ5OYpnKkquwI5FS5+szENy/+tDk5KeoLh4KoL9y8PAU2z3bEHlAwx2lq6+27kmpLbwzTmtDDT9ef2/7aljMosT+OO0mjbcd30nWc6hHI9CKCeTV0F6kLQJd0J8grVavAEWfToejQhqVQhCu2YQ9Jh6stsK50L2/D3Qa0vTZtrucYvU2rz7lPRWFaIHA0zIZ6D3MS2vg6Wj5FICiYZ5ZTb8C2FFLFwqQAJmhgEDm1N27gTH7SYergECQFuW8VK0KRylu4yfLBTGDeu0e8jvICXwQx4bPXkg46V0JN20Bb0KuVee3T1h4KML6oWk8V0v1c46p9upKS/qEJzxoeUPdjpUdl45pbKfi9s5tvV+xFQ83GlNDkkXaYJrUDwbheN9o33VLpMdlc+98KfiCxUnbT8l16sKHSn6PHT75PSq0IAHWSXqv0Cv8OwCeVi+YoHh7ehlJWr1gXr8qsfxFbXhVFr+RHvTdtYBrWBHVgt+s05LFOQ8p1rqbopcDbtO+TWwK7OlKaZGNi4eOqIFB4UaUd4Z0LdvZagzNIcCWefXAVJczGH3vyasaIPQjceu3jI1rZH13XIFvSD4Zws1/LMjOxlinE3o1xNulLSLxV2IneU5BgyQoWBSIe+fa0Xtz/n2p/hNrzjTy8Iw4hEULJ7p3AWltwKER9AFDKslLB0nNcA5Ddxu1H6iCWoYsiqsqH7cbPhpBsY63pm4ogO8g8d2r/LVuNs5snJUPfc9xQywee162nEkHIWN47nxrkGz/XPZ+7odTCEtVBdaKl1rVPeVOl5EOziVurDDBJElXGvXcyr8pUqb0JG9WAo4/RUx63K0Jmlq88iN3DCY5x2zBAgKmAwc5iljTAHx6KrvFQtsfXUEnOb2ICdf6ewgruKnPW2ZZB1188i/Q6jg0yaINi4QxjmvcD74stpNEXZ08Mc7z1GFKnfGy/56H3mIB/GIYgNGVj+QmW/QaMNAVtk25ei8v6XMnl696v1V1mRCv9kI+FigOO7QNliyje0FnMCZiSFOFjuRwkxWze4cF+U1IUuwmebYnr3wyOPlXvLzEZfOxuafr5scon+6nUXHYCKSMAYIpq51nGCb82hv2m5kJxu8qcrWgjWzBgcHRRAz2WehsvQkP8Bohv02YhVEZXdx1B8hcOh/l2ety7imrHot/xQpbel0WJXKg9qmjYIoyfXoIU3hTx27/ce91dFhBX4CKYOIVRAccx/s5IhykIBpNrLlvYOeDLBjmyZ4y7/eeuo0DRyrbX2XMDD2V2eJxiou/bn6cv+UbY3ljpFwwQagTVgZqQw+IJ/cxa6vcfNWEcjSNDTw3XwUckv9S6pn9e5bRNONpxhBUyyUuaIDWmelXFPLOzcnJFBmMuWjsfg5Tkcp7ZcbrGMwwA0YUMoKGrFFUaRjofeOfoJF3fb7IYu7HXyY5gt5RHbKHPVo7esOKcErC7cf55ru+iyWjZGGnlfcddFMfyqEvQavnSISDncVoJfd+9ceYIfoUDY1Tko9FBZAq8gYROOQeTnW0YrgNe837c65s0dG3pBgqr3sy3HUNKm7LiF2SlGgscDOYAOPodZjpJNNG7IUF+LmDolZ2RsNau3teNAHaen7HULc7VQT/6MYNEtFhvVz/cYh8X5uiPrb1Ik1Z0wHWOA+JBhfsWM39dfdjLR4a1jd9/KrEBqKVdyXE8YLq8vMGyeL5L5bciz0jbiYO53N1JL2As7yrroPUn9icFVR7Kd4p/+74cFuUXgV3rF7GX0yp4NH0EcKIZCc8P8h9K8C7OPZGjM9z5YYz+RQQnPo7RHqOJ5StRiWzGEkLRINZNtbMC9RN51piMPN2VacNf4LOaBJChGlEC5668KRGmOnWPuL/Xo0sD9AHqxOYNN2GdonKL5SESQysezULnaTEbYkSaIxbb7QWrgN4tCm7l1a43j7/eqzn4YlyyUYBCyWFcOBqKAYXqlcrifOrZwiVqvg8uSESmHHQn5rULo9vP8+cP/E57vjccLsdVP6RTik8klMzxKWOWe4Xf155pFDuNiFXXtL6u/Yh6pziNLimEl/JWA6Vc/b7sRsNFAf5ChqREZrq7ZmoAkK9l+J3rXb0ujnX135AltKLCL6TALcyfncKB3QH/ph52OJJxFgWq8Ww2yYONV7nU/weHD/zwJtYSkPPgYCRluJ7Dzi3IMnoPlvVO1+nT5O9+9Btxb4mPVQ7ta193UdO6qOotiN5JTb2SrAvcqncJVAYZGcRzZJw/E7zNE/2MembpQNXygfVezK3GtgZZAzXvx7jS1jLTAWndKJLygQhly+g8aWOdqlxYISDuaX4OX3BbTWwgDGR1Yiy0WHajw5Wc9DpmZXZTQcXCnq+TI9Yj6+IX5MvwhoP/z2QOWuYYRmWHNJ14g9uIFGiU64zJRVPYoyeULVoso2HRW/4XMfGiEkY/MB2vLMjHezDkl4mGsnMIELImiUsT9rN7gYSlkmllhgzkZdea8YS91NYEtq2mO05OjlJyW/So+dyZsuPIeyvJA6Y+m0jOn0ca5Tm8kwaW608KD3fH+wSMe42NgZ/6EFd5UteNs5NXTkDeSWQGPdYAkD6nYAdgvR5nsttYUumRguHko56Np5yPetFe/EeVfOu/VeOsg2A9MWhBMwM1HOguyfO4leX4U4w5l0ci+a+ZVcgt/23owS9HPiwNdAS98G3AER0I2SC09Ltn2FL7gt8Nu+cmUM91LdwPn5rbPe8mEy3I4twm0YRFLMuhsLu/AEow+Rqum4s+ka+zroVc+fkBZny70wblynbNMOBh2wulaiAszOCfHcvagWgxTvXnWsncbCXbYVVWypQa5dVRgX2tIalfJUlb0bnHbFFpVlAE1NCZQK9Z0imkygsivR4Ang/ry5Q67IFBG+8pa0GTnD+ZHQ7xEBFuSLvgHmDCluHiyMz7rQpKqyu9MazzHcB7OKZFMutV+E+jCKZQWejVDS1HAyj6WGwB+Q8cbVVjWI8KQ/I8p2TE7CJW9+gNIREvO5GHOOo3g3IlgOVo8mzBtb43P2beCiEDc/yfHrs9mp3tp9sN6uKHKRqHUJpSxgp8sjrP0uyOZT5v3+HeRYk633zdmo4hNf6zR9/+qkRwNKB5rfB4dcTFgZgJ7i3Ykoz9vTOf37tCoM1VYC96k61hA/5Xg6Tc1m/doCQ0P3kTMGP9WaIiP0oWrQ3uoQnIoGznU/NmIZ4pTVaT/tlkEjqHoJBGm5aMRQiZ9xeLZXf2O2zdzMiS6LgbAQvKEFzCAoDMw7nMyI6cpucFoNYig+bawcKmYCIyMbM1fpNLOur4a8rDK5CxrEZrbvk00QLH74BUjRUCIUDzUZmOdZbyZSpBwXuTeDatoHvy/fUO8BWO9o+6w58jF7YVjOzxWz3xVwRguRYfX+cpXrOc/UBVh5uNG6q2Ii+sXXel5QkrVCXmkkLaoCHltF1BBj7fnYpFmCyusshN4dR+87H55b5zfK7s43G6TD6UTciKp+jvnA/5YABnaiaY7FwhFO9NFxsXCYJ30SzPzAgCauZ/4wBktf7NtOXMIG867YXIaGWLllAAXoMecIwg25n4clUz6swWkGkB54iY9vblqwoVTPb+/68AgA5Xc6aNwkO8tk0VVbAGJk6sc+DP3iffSzOy/FuQ4NUyvSn/tBwDoC5dfLZMHKbLIgbQrCqdK8ZOdu6TQeTmw3GyjwwOH0TCH+jVgw5wJU4s5g+MFliPxZtskZ7uPta/2vJIAI+oGGT2uBbuqu3KYlyV1m3u6FQwDsAV+rsz9Y6egvh+7hk0EBRHzOSa3YfIO8LWoAty90oR0dp2kMtQo9jFimbGRjBgY2idm2nwrvhAv3psvjAhWBQwY7QVVZssDRDvLPhpXTWbwO4d4+B2kkBTvDOHhTtha5xHaxyoz0+9Lz+yQn8ir10swMuN43p9w5jz/wF3cZtCOvwR2aKXpDYhRNuZPPMihxfH6VN4B8PbvxvSXeKSCaIFp5yOyaJdBmrxcSUCuiuN3Iqns98zMGYt7/7B+BVszxefwTfRjSfbUofg7cH9BnUDfWlij0lBTiKnMeOUcX3A96ptkXORNPDO0qrmH7BiFV7bONvGT0W3TlJ6cDHWFWdLeExyBW+bMEmrqNg8AIgzBgHjQizIMJbC4eeSq6PwI5LqWncaOmrxlO6UmJTUhyi+q+zz2mET1s8VYG7FDV/oIor7LBGpMaLWLqSVP9ZthwDsNpktBmHbfoOmvgxfNXrNo5XkO6eIRVAEDttSQqwI8KGlzyqGONeu5F4bNL+E79PeWxDsNTAo29KFScjgGi7j9JnlnLzRLkxcnD8Efj4aOlBpmmGtoeNAox8NAfxsO2bEyAeT1HemwEuH0scpF2odF1FDUzyHvJaKKwN7Ntz5Qn36uOGmb3inN3C+OMXtX5s08B2vJ+XrFb2e/EZizLtQOoc8wSqux20qFZgQnz01a06O1tv0EgSwcMymCZm84m7Ctt6EhEBLfOAsa/u68BkPyUR8KokIvcv/QO0mkAY/uKW8I1Sm4irBg/rT0++DyPS1iKFgU/7iOBwQHA6gseUx1M4WHof0YF0MAdt0mPc0DNXZrB1/aal4ZR7TMO6wpiLqo80KhXmwiDOTVoRNGzpXkcclC+wUiROPvO+0YhL9UFbFhyhcM3ZBwjFiTS1Jp77f6r7fGeDl0kaT/rYxOwzRRcR42eUf1AvoKN9Cp88K948hDiD1aIF0CIxBlyAyJFD+EziVopseWIy5I49n/Eyyg8xWyp/OgAM0p6x09f6YVxgMPw/F5Jv5XhPRsSX/rWPOU3iWNxsTS9VnZopLac9WyCUUhdQ2bjPuKH5AFZTMPsd+Qrr6upKn0qkzEL0Kye8jQsu8o8yk+mO9Nb8yO6KUoRQvbwLHrbhSLwgIfxRI68TuunQyykrirthvTNK0Gs79TggBWIqrC6P2W90XcksCefmIn5WX9siP3M1yRbi3H/DlJc4X2lLXSEli50KXOFRdAdNkeFwIHFDcg/o+Che+74tge5vCBLmkdoVfyVQyI4GO4ovQac9Gh8Z8wrhtq7+FfQUVvHV/yqiF7VKfTqY6IOr5AZ26wRo5HColzR8E97hNJsFS0HgTaJgmmY1c+F8TlkjZ9mWa0KGi4r+k0BCa8U7QYLWFPRoEjZlcCcvTNnPANJTlQ+65Zln8No2yr3lbfI0Xya5Pqm9wISu3LczDl/9IJdgVOoUJDUPlXTR0ROAbCbJE2HkygScbeldeIYrU4pSuYeESH5DjMduc0+U4xI1OzG0cIWOBF2W7casQd40fPSU0Z1yPdUZ2aYTOFDNeP09y2BevG+cGOIV+GAr/bB90EWlIbJ2F1c18d/lajHUXCFOyTS4g5VuwfdeBvD6wdY61IEzj7o2b2G1DHpChvW/cRKJlDoz6CXUOvhEtGIB01dA+TDNONQLHmDCx0kyCZuiQWljxLv1BuLx1UouSpCCCsHm5RpL0EuYqWXvliA1Q0RE1h5RV2DfvFxHgGNFOmfJyzyewYyaIb6tH2kBqOucftwlfVJl78h3IR6q5rNoY35lJjTizH1OcJBo8qryFzPAohWIVREJk/FR7tQYH/LzoT7BOv9TQMom1bRpifbIe2enHTXvqChpbvZVFK4OEszCEJzEo92XkTYsnZVd66ccgVijP8kzUV/9zFXXRFvb8DkMIo4od+ls9nnA+LNrZgRSRKll7Ak9gVEHlGGnAg13FgO0NsNqXm0O5rpNF1rdf6vLiljDD2xeURFHKg1WY5fFcqLmj7wnCbB/cHhC/tb6/+J8DczqasLcDDFGiF0mQEm4NCVP8f7tI5ccxUmMbfqCEWgYOVRLN1mZhn4q4ceZO7b51CCXSc+l4w2amSDtQXOitZWDCivKlnd/jvZTTpR/o7ofD6XdrHbqlhv+mLqajfiPKLmpKAmhIDcJYyC0bz7Q/81EEDqXy+HMkWvPB93mG0/sS/sIy8VHGDZtl98HxTLgWOa0xg5HHQiYHbAutoRknNnjd01gc1x8YEcz8jyto03Rr0B5pQTfcrGUqRTl65J6dTAUx+/u7ns+/qW/b6qER7rrsvi0gQga5fYoATAsEAAA96Iqohu7diEzpRlWwVRBa01hYAwCBn3L5q/UT8V16Xs+eEgxARfv1KiYiP6wHNIpOS9V19zj2NtmqdAPrAha9cTxPGHn9pyIG853reCInnMOzHm240GhN4HQyZaaGLR9rrXYC7zy6WChva4NpJY8XgGNtshduBNJ622fQ386329s7Pa53F/MFmkrU6rdVKZxlIaW5/jSIfa940qotZEibH4VDKZhqaGRWBsQ7eo8HfqArzDFWTVtdH4SCntiLAvwTOnQsjFGh4PAEHlkX20iv0erL9XOFk+43Il7fuoAHeOCeDfLY7gfjntqex/2bOL+mPg5OsByvHKD+fSlCVwc90iYQ7l0mf/9/FLl88V35aPMUTzNP0OkmeiMX4OBZ7Z/fxAGg0OVhGgNxOijYAABEfBBEPZFv/6EvUPRM38S8OeuU4nQthGD1f96/bDIvlyUSBrptSm0UcnAkcCWF7bW96Qi4OdvIMbCVkNofGUMjok2b3etRH6ZzCq/kCco+yuik5pLqRhdmO3W26p78sp3I5PpqcUt9GItdg92uYZ1QMyYKslcturAsrjrFtej1f3Y3DC332Jc6Tnt+u8Rt7u39cFZC9q7jHTO5P14FQWPaWVwZpZhZS5YI9Y88bg/HzPu5p50HhAOZ3gdsZn2E60FquMlD7U+GgTWbIamurDt2KnuCRFSh0Cb30oXUM8QkNaulZOQK9hkDWhdY4Xl2WMP7JKDPctObS5IqOXMEy+LCjAwU3//EOTPFVU8G1o40sWfD2BZORKXemRywX73Nmw9Fnbs5Epu7a7SJx8eE0Vomw8JtcNv4KWeHNnaO1T217Wa8gGGcIXM9XVTVXpmc65EhqOr5wDGPFXJRPVq+wYmGOva6IE/lS5PHDV8LM8N2DRA9QMnXGbcxpYEzITLMWESfEvGpBfS5YG1qRq0z6bZmYp9r93whyAXxdfwd/ld3SVfp/eOD17sdeGkky8geipwfuTmsHIB0hsV16JEmvIqeJ7WVOvfbsqEQbt3Qm7PBZFpO7m3i2JFTlvuQEDL74DWf09H9tXmD2/+FHg+/MAu3DOq4kG7MikaELHKOZGitrhywg16JmfAlFgHx4etvcA6u+nJ6vFLPQ2GYxz6YbjAJut+weAA2FuOBJtiUYn620kEw1TT2it8+8zWK707B93e+rX8l2TzScmuwYzTghCYrYuilUKtC7FXAF35qXr2KTLt5bR+rxkTz44/XibLbj7kruHeKRXuqhHazgdOlVgp0NFMavJKK7/1xh+FmSJEfQDqtj5mJhiy3F3ICgF3hTXd1Mabz1aEt0IsapPrhJDPWCS3HuZwIMzYSywtOGvq87C9mfAOaEnYZgW0PKlur4d8kc69sMISQ5xFFxthL4KJlsBMguCklvjY7UxnnKcHIf9TOkpt95MWyRlvLqq8jkDwKATK3Ar+VSA8ejLJ5xWxzKVdAGDrp8CLCKOk13T1Jj5T8zRsFw1uygHD1yUIzFzFhUqJ4GYn1vxYjRW76XpZVcEC5qeB4Fk27o6PceHXF34/qnGw4Deiyn3AtbJyulte4n5maD3QV9W5uWh6ws6wkFMr1U4Xg4q9kBtReMLX2H25f5oUUAuD0Aif5tm6PicPlkN0qdrSRe7lYvTY5JEorCtS2XdpFhTnDWDzE08IPATSUuq51mArHBVhcVYwV0RZEBBiyUADG1r/F2rCieUNraXhI4c3mI9IAczuMhQmZJsT9253bncmJcIWIm+q7w3M9qJt8Eyn7oZtaZAz68t/Xzl9xE0/iTl+6+/myWxVq7PQtU4HU+5jllnQ9N6lZ9KSVT0jquObbxDg5gs1Y7jmTfVbh6h8XLUECzhUbRmTTxEVPQcCLFEhgWoGRyo+R4QWZwZQvMDsT1hF9v0bGKqrJ06oN8+42qXz+ixTlrEDUd5HGE55uhWaJs60Jxt2Xxuv2FOCDW8K8jJONOYMV1gO8UaPOVq7f4pxER6X04dQIAsCBEPinVX+4uc0oMf/wyhtRG17EKwFUbx7mMl/Or/6HYNiP+p+Op3rXHtxudDIl0Zm8b0HqwMCHOGbvHwFgA5RY1CKJxw58lMtnL9UrqOI49S3zknq92U8Ehja72SJpXHeNdwXBpqMLoP/HdId944BP15XgqkBdjUJ0PeOY4swA44mop4iwx052rY2OYcYsa7DmXvhfWaZ3STRnAHGh+EzhILpI43y763jWde/dYsjkwwk89GOhLi7Vg8+KH4YWP7j8PPKwNxr6gTOClW3LnP5TQb4FW4/sdk6F64W65QV4qLRrShdLlC8etwacrZWaM00hAqim2UvUanH+R9EsUjwlcc5Fz2kcVPNNv9Lhd8Zk+T9aKlBCpebdrazG+GGeG61AtbaomApfdm2HOQV4Grgy3CtrgLl+WZ0PdSByqRxM1mCDHWWy8sl9Zakt6M9LS4Hvk+pDMq8PnareZl7/bNhNlFeR1K0piKwSEUSQm1Z9nRpgFFO6iu/0UacocWe4SpPl1o0mVjpTXyA04Mn0JB8io9W6ycL+wsZ5OYS9nUmBmST2nFaqnMobCB+8yPZK2s8iujsfFVLFPs+0gjx1yu1/V1bhnw5CNNaMHvKkD5PpqUw04ZE/6hVqfQigviFAH+CUNYPvcTfVRVKOe3xKB1Ao1ImAy0M6nQwXB023J0MbUlTOx2Y2qjV/xOht6UODFo1ZOicluQJPOivPxFJuBvKVbCheEB7ekqrqqOJyJ1uCxbk8x+CUuOoOwJO59O/Oe121JT57YAJspUJd+V5Cg5GNkb5aIOzG3m/WCQYUd2jlVhXeAA6V8d2rZXRMnAOas3iwVcvkqjbAfC670mD9tznnFHk0/oikjMnxtKfA1zaqtNuFht6uC2Azw6UIZ4ZWa7ZSlW+ZIVxX8fMi0FQDXawWt7u3GjEageNVeysuvAeL3mS6fnSzHSI5tw08EMMtZhgN+odeJlrTNzpBXkF/pQ0aW88rCNLgpHvp3F3urAO0zVYBPlsFpvygMJRdG8+KVnFP/6yeYtQYmRBccDA3XMsH0otjdETY9eCmIm2mGuWmEcwecqUvMhWlw7SOpFIfHfW7QcQbw0aYGqvKILlAzoFfoFbC9OWA0jbw86FSfdSIZ0bNeLtxSwm2vp8ZuVA2p5LbQn1/KdCtj10hqeiHHgsz3nI/eWXvFeFu0FkyQgP7HuEj9tj73tt0PI78dzLhNqp9BZpc43iUm8XTo6C1/YOIaPtV5Q2EQlRvAPxhwfFO961jWvj1SP2pGxIzzuuRYaOfMpBvfwXCt5QtCLLYGuPTnj4TQ5nBIi8g//irBb6wQE6OCETV9pjJJsoqwje67lLtcjG70RDsQed+kXjuADijsiaFvtwCuxH7YaxMU1k18C0rH8gSc+WiT5bNfDm0O24OJhQxVWmJlgAdQ2UxyqkJwOO0l377qcblycBr64Vkkxnx99UTVIYVJ5l/+PoqaXralZFDYhK3ixtvp3TSYIM/GsAvK7a8Hv29s/IPrAsTWIvHdffNzTjpaVdBqFoPvdWeeuaDCEAN/nXfcJ+gyxYRmN0ouWud7ttzwaaVifDiW34wrvcKRESt4VFSXPCAcJuTawYiYxphlqBq4R6KDAtHeENm1PUr7eRVSZ12cwRvtTE8Vzyf1N46G5YfZxE3dO7B0v0eDKdAg5pOcwnGdbqMO0XxMVYfWwFpvizs+cycSS7IXVgbRNMIwcg4BNvIVkBvMKAr43PyO3P0SOtXxAstgCvWB5CtK0yLvIdL2vWZEoWTqN9nrjS9Eva8hhcBzJhH4TEsfAsEnrznYd38Xmm9Cdf+OKrYnnpjFk2TJ0N2i1maqH2cTPLikDLKvz9gp9vdRmILB7v47GRST/LxnbFZSrffpIxc13LgH5u68MP+fkl2Kyu8qRL3KUBx+FifYhFxmj0Nwg9HYIe5GrPyynxW8YIJvYfW6/E7Eoe25EY3uk2rUMMgZYaDFy0ebfIlGn64wkaminmW6RdX6jB5By2aH2RvO8CAHD7Dm20ZLPT/+lWR971YHUOAkyOEoOpt75rz2FmKEaCcSHXk4eoyGBCd5ymVwVfeQ0KwBshoebqpmVGjPn0S7qbY3yVB8XGDK358FX9dHN1+ayevwlYEaX4ghFDUB4h5/cLlVpQ0STawfECYouIVcehHOPECBNsqGvVt0I+8zaa5in9gsDc6wW52fSuMmTE0TsIrCrDakpqiW0tYegH077bvsG3l4AASEijnMtGyo7g1oDueIhZ4BQj34XgK501gtYuJwnTQ4vz5RU+lWTMUB2e1y9l2hSNPicYt7pCH9bP36Onc585oqiBaVVzqHX0gAmm6hyRRZoioBGbivSNY6BpmN4Vqv+yi8MzVlHXzlQLYdDI8YWmb9XLUCmvv4WeR11JdRw+Erg7kaIzQ3FsTLqf50QlmV7I1WI695DhGoTGxnKwLYWEZCvD5X7GdZjDNbzzk0F/321B/D/1tvnn3BbM1oElVgLBCPx94e4gc9wS5tgRtetJhk3iMJFQqK7CQHKBoTnLbV8SF0Og/QIjFURT96Kn839JXwzB0UecXne3E7LjbrUAvlbB22ierTiQsfq5SE9000oA+ibo56f1gYOxsF5EXyLepeQHbeiOHNkD0lNaOASLVMaNo5v+iMsitzcqHFZoHHz5u+VXrEXBrQ+e7lqqaOStDKFuusIVVw/mc8PJjiAKKk/8BNxk5DbH5/HJGPidy6r2bBBveXF5ipDjpxJuQNSWojPIeCaxAbfaUSBYVMMPEuCnnjgUeUrER618cXYEhHL9VCilJKFqw7Ixaqb3qKMKMCs9KEtoNpae40Jfh8I2Abuy0PKI9e2pPvBGb+xOsJ9EzHcIFGLGPgzxJzT/bSliKygCmSLamKgw5AFAW0LmRbKtXzVwYHCTnE4CxNjMIZoUij5shoyemHRu1FIPHHzg5gDyWXqUB7cpdx3bagZyu8agTK3+p9NS4ws6vRfK3ui+P+VeY51M3D0GlNCzIPGPEnI0GcC5lOFle/CYtyiDo4HGrhllHFHULIpxqgx691U1j39LHAU//LkD3RIFtgnX2E5NG2/DiRQQRoQKGRm84pGR5mmc1K4JbocSiGjAZEYKC+7HHLzXSASrfLO3cuyNTPCaQuuLttZGYNYQB7HR/OUB/sEOyQuxTel+SOi3urH2BI2MLSMZSf6DJZH0b3NEBU+XQAvLKCxTzpOtX4ndNluRgdZ4lIl3NkYMuwEO51sgsfUv0WqWUz8nJJSqUw0mPg8LLQxMsqSsHfwD7J3VTKXZMunBLAeWvk4cqjeLrhkp4CCz2GD2yBL8UXSUbyLtxoVvSfv/hhE3ksN9qvClLdyDFcXiAeS06mO7Mse3CBltdjZgBjdogURdKQqqScg+x3xx4bsYHioL42VkunjewCfieaCb1QPJrB1fSj2XMqzKnwmqclFvgCricwNlCggQtNYXaZhXKFAG4OrppujF9alcmvsI3tHnwD0PcGM9pVnJx2w1WIbvzqjRHaG9IVUIOsBWub7R/GbE2teRTXF8patOHmWGTjNoY+zefgCYxk+7iMYZemZataCyuTHVPvOh/GpzRi4Jv1/LU54mWtGIw8Zd5+U19Y91jkc5GYopT74JTP9vjJKVWFCHBAho3L30o1NIfadtylhFn7/AsV0zh8KZOpobSV8Uvu/ueaAagewng2FHsYXb8PeAq5lPLG+Gu7s7bzhBXxQ1LmIHzvTdeexOuffZnaVCSJMMEoUUEO+nMsml+T+cv4DxTvyx5eTr6P+aGm8TduxYAjQuesCJT3f//RTZpzK3XwuO9xSlZbP77vGFfDxkHF+zwpohtkcaOqQqhFOR5xk2qhBowfLqxvUYgq87hSxhq3Jq4WQthY7uHrG51UJbl5gSn9U0z3ColJzJygLiVAKpuavOUl1Tm4WEOO07hZ8glkVIMAdRZqzsi4fam06Qq/dQz8akSlSTZIyJ0OJKYSbtkcCVZ1UCeBUrZ8DMqKyEhex11v6BlNxwsfa7RfXucm5vFOhJFD5+OOfR/Sf4Y5e9QR9OgGYjlCoZ8bu9ktlYFJbrkopbp1K0xY3lYaW6rG3ts/pawTfFpXlu5Xu7mv5ad3B9fpxdEUGdWlAfn0k52ewWel7rjoM8I4hX1ouvWf5DWJzDrNJjjWS4L0WeBzIlNSQPN5u7y80zL54VLInR7WQn0vf0ulaeH4VQhI9VlCikhzyzsu1dAbBJcGyR1emBF2LNFzRXbNSe5kpZOQTvbkYgBnpYIcTpg8MV+tk3ZdaA+FUPjkqJpnQ0PR1QPk4jIIVNyW0CsAE9ITS6z8sBVXz1sg+XRYPbNd1y9JTrdyZ8dSpEHbXnzVJZQ/FUW3iJ4mvGL6HC6FLl3VNl55QNpbLcIsoEyLHuxoGtExrh4K+8Dhcsrv7yGa42S5/DnfocOy7RvAjKdhLB1DxEDO7iaIh6H7ZR4WnE6LVrv+UR6O2LQD/Gv3NnzzfgVKqy5g4lajoNFCY0nIbqAVvTfcOyB1iIr94hNujfN4g95+nlXstgAItsvNPjweNCNs9WYQEpXDAKg2xIHq2JNPnranszkun+6MGqW5pugPvMPPxwubLFfqF0JHTZQ7g4V9+pQj2wkciLZDMlHC0iqTdmmviqZPey7kM0AKEvrKFvwafZkoyjngQaQoqpJeBOhMkb0Bhu4rUHAQFCbjoyEyJvJgjp8Jzrz67uJb3Wn/YZ6f4n+sgohCo63vWBuEOxm4f7tncMDxZxxgOCENAnbY7e//0sZ0T3OTLza7QmdN9U7+NzV3zkRgGdHCs1BYq70EJIgu1niASvVr5w7MpjgP6XqVlZr7HzJsVtGOzK50FhXiNOUV160UJKrcuj8rHMJLDgX6ddkytIxdujJ22qGiHMH5VdLj9KcT0nZqeMn+/bFo4iAr0f3apmAz6T3kT6kOIfVg3p4j0tje0CHrrCWf2383aKmzZMgTcC3+djYp4MumumnAja+9/3EgyfN2B6XyNkmhYkU+zYAFP8SG+Im3zgOhdIEroY97mzS7pA0C873eFdvqMgjWUuFhZpmjFLYCy1CIE51b7RMhfk6r/msMwAztICbjPBTWRzf3unk/bmdhs0WgZnzcouKENycjCqYd9nSivaVhMl+uHFl8/FB+cQyzSvU4/pY00u9jLgiutbU8avK4lY3z2L8B5MnHsNrAVq1kkXH7OTF9BCcviD/pkc4p/YtdYxsjhYWmm/4CDOJLVpaKPxV4kz30b8fxhzmK/0roUtAjx/a6/5ssfz0Z9iAb1zwszrcP/kVolFrmk0/tTdsxcClGYQ7Tol0JVc2IGJnHf2AVb1bUZ5rU7zFa6QIgMHPGRq5jArzyJPrit+785i0WNYSzzmle4XmsL4H+BYNCsRHZ3eedlQ86GS0i1Svz1kphcuHBAQsY1xyKdSN/KhvTZmvONin9ZUBj93cjkOsuZwVyI9R8dey3RFEKar4407WVakk7Oj6xVc6cV9bUIi69YjjvUJB3pYKNqMlkbHGm2V3DZOxsiQP7c3ypm9LJGvEJBxEcAafxHEU/tD8e5hn0C6iUJIdAiIUnAq2v2AmSjSjfW10oYPK1Mw2kLcEVoBW7DtB+5hNf0ObMCb8BLLe0TkJPUlplzw/6SkM0DGr8gUQ/ea4a0NUQ5Nww9WxxMrpZedlZdfVrbeIA5mQieG27dcEoZT44yYyoLYsTc57v0e/zOUIn9ppdn3sPBKTTsSfgm5aNq19i/XGIx0mqfwPy9RuXV94xySzVIXKcX7KkY/A1VfcmZ0Zo2Pol2G+W1XG8fA9t4ff79k2ZSwJGrj97y6C75Xy0rQLwkIkG6C88fVhEGrZiV/FE5vz5OumwXY+hBzbegiATEadOcaj/cnwAQOS5YML40vTLk5zmT6g2GOyW5MVfsnCcRL95SpASG9ZMBQnmgjP7jyI9Ktshc4MLn+zg73ngDeRPG1dovZCYW+FO92UKLWGn7iv4Rmz6NFqnvZiBouCBAc85uvtsTlV5SZJ0IAiAZL6tH06e1D3ELEfkC9yXkMCbmJ9HNnyINtPWQZnI/+v82u/Ljzi/nG6r3GGO8ccLlnbiYNQA0tGCuOo9SaHiPI2orLj7fYJeoiJTf4fPPId6YjwxZw7plnBY8Negl8dS25Eg7E5/R4zmbPsX77m8f1XVQpWD3ll9N08JLZ/BTsm0pHaZo5kmNmRDhgXPM0SMkM3H+M/A7m6JlWvkkgRNISQhqh9fzmmLbzLaMXkSBMS2zwhmIJfx9pZsLOmZFGQzn5gFwkWKaG6lBflK1mE7rVJDT/4k40yXn7maN8DqmQzSkZpN0UAZA3Z6wFxsXfT3SJF9jhMLjvfnP/MXQkCyyr0yKCHLDpWlJHo0KqHAjPvrjg9F0oHuCyQcUO9Vegc9fPuEMBdSYIyfoPWp1TVDnFq69FzPb1IaEsmigAmvcPJnVVi/OLQDVAoX2fw9qXFD0DRBPgzq3Y6kBfWfaWrE3SRQx3ztDKujQKwDH6eUyPaVRnSfHa3VaW2ggztUCRJqFMXrPQnsvyn50I7yGVEfaugUEEuHbn7VgJqPo5HBu6lKVJp0c/mM3gQLEKk3lbxl71Ef5vN8Kwi+vMEeihsww0qmhsGQR7DmIDFRansg/SzrMKZF8NXoHK3odAucJ9dvh4w0Xbcbzba+TlR0Ny10QTuXSEr1W3Q5I4OA/sX91S5NHTvs0p1FyWOaNnPpwIej58RZd6EawCPmE588ZD8zlIPZNbqSxY9TlSHte7KS4RYuu0TTLB8b2rekUPyrjY1tEtDrEwbH0s+V5NZYuTl68t/ZN17wZw40H22oJoLk7yUKgB9uJGZC1ksHdMv/VDsikn5cWvNqNWf71fYgpZXKtPdfb42ln2m2XNY5lkUb7V+Guqi824A7rBgs7CmtVsHeoVqkTO6KP67oi9Hy8+P9qU3M3YLd/VmRJOFGZ2LbuDBCxVd/9xEi4kbJ06WlJhToSzGO51sYn0Ur4wXYMg3VHi4A+BV4Tb/SOc4BHd38pcbZqysjUUEfQ67QxgJILsidImzpd5hGMoylR5w/BR+6Vq+3Ac7jYSvUa4ECI+kLloFuH9URz/B0ISU9Ouced7iPseQqOwPw9/YHqkMHiJ/4e8sX7enCXmx08T0GEwXBCXlGIrig+JvItm9NhY0rL5/lrOvjVss/R4x71Nrq8vVKOOghroabNQvCizB8rdWBRcmLorgpZmCzMhgbTRff6W1M0sL4Usbi4Wy+JQeprx/WvplcXdQ10fKDpfpj78tM7tNZA30BvfB3k32OlJZCGmf1Zw8CbDQAn3JtkArQ3jJ/mJXUKEOYihLWGiK1wcfopGSZ0uKhhvq2ZpL6XFdmOS5+u8w0RqWdIdZE1oqV5xF7u09sl8D3NZ4zhgchSzbaHJ74CfuVkRAFYbuVjDf0od7ZMNrcW0vFeF3NOT6c/yInRgbbgX6m3hO0umWF3BMilPYky3ki7pXaxNK/h2AvR+J1paonXcStr5nsPfS3+QqlicPsQlL8Moc0odP7b3oMdQdkT1+Z/DYaTz0W0xiEtJviMCwuBJt5TMJyjjpWK9S12ZURci6Y+vTIaUJb8Ta4sm5BYVi5Jq1GT5jQnq5fPjVmBhAdIK9Xdb4j9iffKmFZpGygnbvyk4fXDUnqaU7x2lx/+eT42fCiLMdwgZW5S+VneOiMxJs/8q9w0wO475sVTPm9RRg5K6ATIAaz+yrW/oZz7tHkuyJ14qlYc+eSdfGLbIzotQ8LiAi11qwqgWW3uGUPGx94O5R3eGOYjR5RkSlYs9sQEVRzhM5is4lN8klJUCdHXKsKXn3klfzlhxgd8QsJNvRRxa7rv8Y5toYzL3IEaSN3FAILHKIYEA0KIdPJngL18JEdRFDDF1vKBeV8mAMR6xmLqs+6Tb+fzT9TtLSF33VSGHIX3xWh9tU23RtwQS/Xuz+jC/kdnkU2w73dq+qnOUgcX5CLGnowqF4xmG0lM3wsZsLYB5yeyW6ckVWQYq7h8sfqF0NeaW7Ik4a9dZmcCLJUVOvRkfxjGdbUfT1d33sz9vnpxJ3ANvXRbc3rMOQ3Ti+0o+PDuCmWfPtwVX6YwXSSvuNBgCDGbnAsJ4C470QNCFD2DmF/aciKEqbHGQ3QNzaGrx6fOQDK1BIx2wcqrEfFeXzo3SblDFamAQSBENo2BOgxr4IpEPCa5Keyw9lo3vwueQgggE+P/08pm3HO99HsRALSrbb5uW96+HJQLqGTSg29cNMVJ9uK2m24xYb4aai86wl6H7YL6UuxxPhgasbeNvGA9+QalUrBwza9nJmC8TvUUX1fFvXEKWX4v9gY8nHFrBuVqAaS/+oDeaMRtRgvUFu3T+LM3KoNLh144u78xhyyuoES6WabLGPE4iBscgxDP2Zv9uVUb/uhs7OMJUNlxAjEY6UFdHFSVMgVonO/znjEE2twUj5Ad17IY4IPOtFWnGh0J4PrCSA4cU2GjHDEkS8SESlEG5ashv/8D6A/GMq4t/VXZBs73ButmulAbwjz/695K895iAN1YTiGpbyrKIaEYUlw8dr4XtdmswbLZxSr7F9MtJSemMpOXYMWfTe3B0T7OayATI8GIs81//VViJkDBSPp5cGk7yqlsS5NMaJBdrXihJyB3j/41pbyNmUzmUGj2HhxyZL+3zpyZybp5xYSX0tHid/l2hdlGLSoAnflxU/7WgEfY+Mqq1neA2vXMyFje/0i8Gg/ZpZIUotbrIZX6sZNt0bOpMawPr0CFNXbfGhr7Y/q3KNIRhNEqaDSs9WUpm5FPTkej3ch0qsBhcHdXfirBIWmVT0rmHM4N9E1wxcE9Mxox4ClZVNkCincrmebFvKm3xEB+22AGIlZ25g614FYW269BzKi+iWFk0mXTSZp9ecTWEtpCaE+ho8TIKlQmxKqVeUBG6w/OFKoV0DcKL5qgYWG4LlE+ZB9IC3yixC1TuGVhISRjXBL6+wNy3J6flcLFyODkuNj1wryCW7VoKmXUF39Jb9Wqh3qya2yKFCjdcJAiGXCQMmuJbKVkFYP8ql87/qbAZ/7xF64OhYoHJa9dnxnIn9tzANTKKR8/CNP7b+cOT02By+Ah9sYd7iuqgp72trQnhcc1FYbprt+qO36cxicC99jcipuedFryUtvbjdOB88XbpY6Mb2JxYJ8uQVmS60EQN5TF2o5ifzJV6HDgXCNFaUB7mKIRQHyD8PRmdKVo/lLHF7pJGzEaSkG1M2hmbkaY1K6rVbRagbXcSvruxM4jXSfXMsx/LFgRmHah6UVxXIMnAqKwLzpRHyE7ijU0adqRz0iHl1zscoKxav2vMKFKZoyVKFpZZWO8/HH7x21lRF64v6H0fixfozXbYjI3joKWv847uZeDk76oYLNZetFatNW44Q6FV58S1H9W6lV7WbzCo65ehTn4gdKcZMq9ZRRX92RCixyDVggZ+NODMW5pdeYmt/gt9UXP+Ok1J41BtrjwfK6/npYj2aUeWQ8M75w8vnS1n7A+AYgHsUA4Hx4/7ZSfEZwxqIGsqQmMj7HO2CrKBtttksYkvVyFbrKZLa0uu1/Q8J0SUapNHD5wL2h8ESECJWGArlxAu4qPPz44OonXnCK2LiGAEChm0Olgm+AF50cfvaNVC+5hGQHBZhQEbK28s1KO/1YIyKi93rdn+tSf/o0qk5hbDIbZoJf8M3UCKWXlOH+7u9P/g0OvoHovHvCn4rn36zoOZN2HZ7m2trBtXmh2/dKcpkWZQpNMr8kioCyjVq3eh9D5GPj6rIounrWXrn6nF2JV9SfgZVZhOIVk2iT4bym5YJ+v98nQv/FqOa9ZJxlAvPLqpMklAuD0OuyJeC8OxD7dFo08BFanLIIrN9IPk3E6rdrCKTLnQKm+9OCY28o5spRKamLqEYLPBTtjDAQrfpI2urR29nMj1bRDXWPy7zrqs/VnxCdXwgIk9BqDHGW12kFdRMjRmP+Y5wcgaBanNe30elAPkGhdF5JplYE28cYe3hHsF4CPAierknTmusr6BZaG47sBcK8o+1x9PctmpMoR7fOxeG5HyMfaoHdBdwRU28b97sm2F+4qdRf9sYtyUHP1gwB+Lm1Tw4YmmlxD7oVQAkZG4doNwN/ocudFUUPOmPa1tRi+uEAUf0HVh9FeaovZdtPGxrdw4vUgl8x5YWtRjtrBJ/8Ndliw0lp/MMHs3L2HGD7wrewhctm7TNOdaYI1K87L6/8YgWa5CoDdR9oqlw3239gWvWAyvRwbSEGpdOBvoeDxc6F0cJasGpIImcVWJbJgHJMRnPTAVj0KhSRHMch2kSCLcS1qDiqT6cNGyrUIer5k2KZKpZ2YgJU73i9dXrRPhWUhh7VuPaYDwwA4B/MMTzofjAewu80BzHHZFQ7DG//LawbEbFYPFQySvzDYdeL+jnZBjExL5oUDAy+HhuvY2cJWQEKv08k0//Oj2h3C8uzUsBlUuYAp4mp5OcwxvG/vz2BA/xUVNL5jYCossj1U36hiodC4VswVid9G/Dr7GQ7FEVk1uXy/kTWRw8AEy/dv05ePHWQ07WTkjSpnJoRQo3ji7dQQQ/eNjfMPR11QQRn6mxhQgggSOp3BbniJe7bzlb/epVOtcR1TNVIvtSTPlHfE5vFK7fwy0KkeKU2i3s4DWJVbI1uigzUsxBAZPSf1mC5IeLZzcerWeT/5XxEYlkyfgED+wZH+OafRHReHAdyT7yV1NQNalWZa9L0WkLW34qaU7qiaBlm5IKRJQe7aAvtHXV8tQ0dIdAHcDZetR2Qa4TH598defn/YfNnj8cTH7+fJOzTnSE8UKJn3v0Ra1Hc43KHV+IPpgpoj3RkyZJUmL931WBV9MQh4hk+YYQz6lFq2c8V2hlL3AV1erSpD3C3ckWpKnKPWipe/yQ3ussPhYXGP6Pg2ZksepMLky4Cxi+9iYBYLPH3BGIhGOSE17IZEMRHkJsxJ6zzucvdtTEZWqY62RRXrpYvEaArtStBq+/rz4kg/vLp7bkpF+n4UZc+bOctkHNnhebwpMxKzNvusEBSLD/KKXLGrIzVJwHVMr9xAYysdpAfrpMRa/B8UXk+vRVy2/JbVMFxSOsXproFWyAqvZjw7GGAtBPCQ3+KS4CrWT1hygxl0YMjGaBMcJpCRcqb92V0oq7kbY12MXA030rXxxY8NTSnSTHZ54zHIsqm9di/3miYAZjQAkpDBWuDNGWD6Z21qRIl47PyHYPSzmXuOItAxR9S+CB+y2IELu4910vSNfZaXWAF88F1H1L4L/vGpNY0Q/mPMQ9zbPL4vgWXP71hYomjbSBMrWK2rumOfhqebTwyv1TtuBAABJuEGbhUnhDyZTAhv//qeEAAADAAAE929YAA0MWaqOVwJ0SKNwlqjh48ECsvkvfj2Uonknrv5or6OW4KclBd1Q2wxld1Mt/lgbyJbtOL/VOw9Wgfdvu9lJm4yIAIet+12j/hyPB4H+Uer/k/hgD3HeXW/WbnpGojZL7ppexvGxFY6wcad4bapaOgVP8ZCcY2qAsPqn0puAtmYpLOiUKCCp9bq6Y93ZWS7P/yBre59Af7a+GNq0D5ZRpiOxJY8PTeysBkKVxzS172KhfWp18piAST+ZBZj4YZS1aEp962F6z8uXsfPdzRYiTGo/vHB1Wld2qCaWQnpEUhbzdSuLxABlOVFESVAX97YhOsI61atodoizgwt7ye/W1ucZbyKJhUfazLG8vXTo7caw7WYQBw8WIM/U1yMnus7AkzsYJnShfK+wo+VeNmO9MW+cWpACO76SQh5zJVstrWftDfq6Y4dCF7Hz83+DuqFDdy+dUhX3hoALn/CaxfcaI9NwvG/CnqVpy17l838oJXtAAvGrIq3F2mYPYRctP88I4j8J8RFn2VeddtlicpyJ1u/hkpYlZjMSQFC3eou6mpkoRk957qqSm1VHns3uP7pioQiuRCP8FkEwggsnmefV+88qpTGE5W5P/R5pWwVKi24s9khldVZc5GcwkgcyirW9vDW3WF6nKU7lykkOgZ4+2F+tPAhQPR0CgXaKfHbIovkDLRQwSzJNh7wj0wE7y5TrfHXV+ZdQ69ziTWvo5OQwiDc93e/Y3QTLeqPG3cpXXA1kKJe/V9jodLiFNgSlS2xRsWlhHd7z1QIBlbRbhHpvWjREwvNu4UXCP6L/SluOZeTUVEXx/fVMC9JhAWYH0ejm2BUbTNyWWmp7YQmUqwW+3YLjrsuVi9u9vYJ5Z1gjzFDlq8/+y2rsIDYLwz1ZAyUhFHDRr8BUQg/zdNimVa4diiH69S4G/cDBV11VcxMMBdBXVJnjabF8xcZT6a5vTGlMa3/M25isSzsOYAlzAZ0140tPEK0NEMWJEWYOuk7Sva+2KqSh3sMmgcXgfRHcr5U6Taq4pE+9ubCKynBwwvVpEzCmVz2LEtTNFwN7wiXY6hTaxJeaVMG7s0SPE45pPvgNZTHh1+wslz+8VXBby91jCN3YqdHB/XwT8Th+7RZ0zn3dyHNJcEbpdANQMCCq61LlKLAmG9vRU6Z+WOe6UC0ryTyIWK9eaRL1PQSoqpazqk1CSGxENfoD9INIDPiztF0lG92984kaZEbcfZirMWRz0Y7f+ttjqxwotJu3MhYlDwwhcIr73TCGYo1MOasoZpoJdleVEJDa5WOVG6NojM72TqPzY9/5jQ2AyN4gwzQz4PCGl8fUaLPrVEzvA0v5oTNXGIPcZ1j1906C5WRnCdiv1zc+JYVoQWKbC9RDR+ZZRA5sjcuICN3MHGWVnsC5BzAJl06IYoRKpCFoqXMC0pZnr+rg30O70JdeYHlh/Eg/RRpcrjcwIp3KwXS13Gok1ExzmeCGhMTkzcqRsDWy1EhMnKNXpnGAbzrg6K/+vIx+IUqGtuk8N1Q271pf+ix+EHJ/PvYyTjBODL1Aw4iJyC/BOaGfGBdWRHZ0mt0s/cIi+gFN2jlPmmil+lyeKBLrU44YPa5wcM/9s74Cd0WtZaI0GY36LoDJ3DbdWj7ZOo1Ci5UhJBklQfh4GWZEgGP63X+XwhhNpOeF3xvQ6OWdHiZAaR0FZoVxM6m3wLTk3ky0N93rrE/tA6OsXViFqqyzWjJkw19BYcNBMj2PKUnWrxvTU2rMloJ2S3c+6jvMPSIPOoV27xgeR5O6Yi4906rU8GQ5WGI7f+Cgv8BrZLLKffLtZ4MwiDPlE8k/UPE9Fir3mhn63zFHB3OzmUQ0+DNGKPx1BcLwUklnmTVUmfBso0KArM4N/pVKaHf2C3FhgMAID326lfbXfacXtMq3ibzdZWdjBFRCJOcWclziY6abRsLDVYlcdtFV21qwB358rSQ1TTVTkYG5C92XV+EeoVEmByqw4rc+jBR3tlfIU2h9IVN/UJ6fwz/U2RHR7c0SsiRXDwHI+9ZxgXe6LHbkgp1dVE3jTRoP6U05Q3a96Mogs/dZgts8pDsqrFKm+ep5kVTCphEs4zBPbObSnMgJJqMZAfYJ+hXMCWwDMoUkS/1Z7nzd22o22iHZ5ThzNoepfPvKFI+A1m9JHAEkm+/fZQm/JSzofX4lzyjgedX3p4CRPGdG5+kyn+IaD3R1YqLfk/0QFl5SoYeti4oVB/PJPTgmcCsEeFYSD3tWlgmglvMbYEJ9v/6bl4ShGj036iuAB7CU/dKMydn0U89HzpHwIc2IHojgL4MdgAFabYQ0IIkEn2dSse5sEKvVXc8Lje7UdI458Y5LwDxGX78JlwLsZEhCZho9b8eJEeS9RE9WHi+5sE7DAjlFUvBrXy+bTGNmq6lPS+m0KV9HfPkZy/WOJJMjtwE3RkPSN8HhJ0sMqYRE5TXB5jMGwh9FVIOj/m+xgFkDvj1EwWyGuyinEgrNjU4Wg7h3eGqYASkrV8GsDW3brdv6w+zh5biTZ/RhVQjkAjG/SuyqpXSHWFrL2RCqgmO/BwTeiOb4k1PBZKmeHS28OqG2CbILd6gGz6SA2chKsjhbH2A0spYdugckhRjOva0324XlDFKWC8WuNTvuG1DFDcI7Sinvlp/fimlorG4GmVWkX6CfYxpYVUnYtlBoVZmB6v+xN59IX7JJ9hbl565K7iwbHDNGZi8xqGtagvMKlEEX6D/iXyRd9s4K9vx9aT730sR2XMmsyQ2DYkypuek6nTploR74Yxc/i+svPeMr/EcPi8C6YYoR4O85OsrP8VM3jbToBppC7TWt6wJH/0GeImjgcZtc+gKdeg0XE6EBGgzIqzz+LkCNaIyn+7GjsngBbKHpTtvvwFcQioQTk6EF/HXZqW22hX5bE4e/pQkeitEP6lHecAC+V4q4Z9eHnhOibVBdNftIUENG5DiZbLZvVt3NXaWKYp3lBqx15Gdh4LUdIvSD+nxzG2WsMBorY/W7DWlDg/WWd/Oo70zrCCKuaahJWZ1p2yyoHjlScHqtt2zLrmlVess5+VqYXwui3jqceHczmzNaBEhPMrtxr3cB9JoVY9stJQOwVHHwByPwsz0gq0CsNUvhJYNv7iRp8bweKx36f5+QbwEw3RCPKOHCuuttPnIJjcIPWRNX4QZChotoayvqw6i729ZkXZbAVXcJal95YCed+IU1tQaqzq3rpjL2loNg8lfaZxdP43rH0KqUUvSIjFJRfut+rLmChGX+JpOTO9e8xIPiPoDGpgZYja8Y+Q4NjCCPlmcmvBOUsVASAzl9sh46tcWBUednLJxXwT7AvwXHL/C55HsMSI8nnxeVzglyf+BckZ8+j2HSIsXAf5FTZY17siljY0JeFaBFqQJNcOrEhVOlY9wKyCfcGxtlOzh2kSvgO3HRLH4JTWoCB+6NOj0eHCtfIfFNMMuNKZBO80cVcPY01YxTDrgts0QlLaKaF0Tu9zvEosxyBQWpO4al2RAsr6mbMF+tb1+vcbG7EOyWPgNnIhGLDGfve9OKENrMSsQldOjp50gapXMAQg3Vce7HhDlgIyBDcsok7NZMNJJ/gMwsFkR5puAkPNGAenQPbQCVjPQU9UNmBgxQFH7cYHiG7xSCLg/Lj31Ma7KW4IddPJsFUB20aKU11CBDmj8aHMmdzDtHfKYd9MwuMCzqPTPlb9vH60Ky8wJ5nguhCmHP2xjggL4CKd2j1vOu5tKw5J+ZYgHYJzohoh0KoPu+cSF0EsXfazUBcgPAkINJFexlfUCNqzIy5gvH82eybDyRhudz8sOBkICB6IxWsYZtUvy0wThWz9q0UsriAMKD8DBh9FclZSoDNKdxZvKMG8Zpfn95YYB6w45UWCiZK9rrWHlCR4itsDd7ZJULVytWFwWQQdDJXZflzYxyH3WNvmt/YwVgPrw5LcGnazoBsaeSN2rCciI7E0a/XMeWRhsxXbLgKMnXWhZ/KDiG6bs2BJwVlp6LCdFaq5xWNWBbawuoe/S5ZHCt/NJKuLjhL+DmZRxfbSy7ZsM250vzJuscZd4WqT6oK72YMTYq853Y1CP/wJssKupUO8FJk83y+dRNgwu8hL8r0EdtZZX8e+lqiGM0q0zAJvOzGNTVivdfezyJZaZHD0F87mTdWRdWJBWuHOkr7dwQOHp7XMV6RV+mglZJ9au7xWbbQ1MUKe7g/IeU+E9t9q5pR5YrCfiwr+++3+QOFs1zUgCmC2YzvrgBgzeaOtn4QCfOY8q+mUuYw7bwkN9d1zgkcMD48MYMgAxPtpdM8+uAA4zvRd+sZi8ZjC+k890ZFOhsCHQQFZd3T2+NGSEBrau2AhcjCLN2pU7bdGZxWPa0/l/UwmbBFcgZF0sH9LFLVJpF431Uo2K9Isrzphs8zM1nP0PS0/PdMjen0+He9u8CLaLqLHgAHfgtZVm5ROyhOhD3B9kMz/XI8R7F/kzZAIlcT0zyd/ZIDM9+SpklL3+DwXDYzqtik2muKFwhOEtIM6aDERBkcawkSM1wxIXnWVCd9WlMpEXzR3Efwc2MCLw9oWGAfmLtKQCR8ZW1wwiKHvRw7LZIsq4eXS+cawyRNhBwtkhIn55Dl4mTnoy7XIXDK55AejynpbrBxgxRDpXyx2BPnGFf/TWF3dW2s3NeEGTsh/15QnHS9YTfiFh0iz2zMdW7Po3ZoYi1mY499TGzcc4X2BuV781NVWQNcmbPLQsx4txr/AGmcHD74mOgmuYtZW3CRrc768tR9/+x1sRGjC6cUnULOI3joD8ZpbDpsNYbh4In9PI3IBhcMX8IntZFW0Fu6n/IzWPV7L91MZuWysVHFHOxe1TVRNE61yawHaymBxjIwFpkYJdp2rZpt/vyMj0PatOLKylZ7NZ1JMpJfXVXdqcjxi8jKIijIKAX64dPT0l3yCn/syK8FBtp9Zro0fkkv55n1/0+XwhsHXDLuofq3gps6QtYj7ue+gerN/Qzs+NdtpfWYtwklIiiFphU+RGN1YfaJj1UZTMwgk+WvNdHgzCgJ7clcgisMYEGiETu7DDNz/m2D1sCAVUSRED1KzlR1TL2zxhGVw6gwGZP6S9jwW+zZd7VChN4YH/+FNkVl9PFUx33wtv2/6LRC6JOceDpfnNIO8c0N5w2DpiIvAaNtXKQXpdEzYlO+fVPntnevYnx/JSsaVzueDQzDzRaJeu6Ky1O/ZZjEXddvxwmoO0EKAc14B/E3BjMXXbXXrtHGHDIeLVV2ySqOsf8H0qv4AtxUQ2kj2LYPtDKVqvb22RJWgHJbriapkVKxrYEu0xpxXv3cLr5B0vQgCiy1A3i3itgegPfhbHvgMbfh+6aGN8X8qs/HlxX1k4c45622131VDQiSZnDvNGOehfIWQ385rBHJ0VqLDqRHVYfd2BSroiPqDt3rG2A6e6tWd1+x+Nl+bNQosvhAJKmeECSEIl8nrTES+9p+yt2grhsqBACNPceyfPaklGx9mm+hPQPf+Jh6NnTrUeH5CNmGRUtHq/n48gcfoW4h9c2rSxUJHVhaF5/Fb3uLxNy4GAQdl7+U7KL3GmVPWjZYQDuIki44JcLVfD4ZLqXUVuYC6Acep3VCAttQbOW4ebkro6OniEncTAO/pekIocgBFy0FIeMjyqDZ76ilVqaIn3V5wNN9s+hZPPVqEvGwk+qxG76h/46df6weNFXcG7f6FRc3vOR9XM6AhE0yMNf5bsWkP/BDmZnfzX/87gJBBvcuvD0DNXsPtQ7Sdld+Pc1FjtfD2oFc3h6Y2PUkd8WiY3If+cmY0sjEJscM0J5pnivttNmM/YYlBqkJRJRjvSXdlmPEuz110NENbsZPQQConfcgFT9G0Pqi9BIEX9d0mRFdPd4FTuUmqkHWhyWHTqYnrh80miECgiU9pnENmma+EyKhi/TuBDVLuVRlVci4NEX/fq+vH2avCkyFKMcN/87XUNCSkPYrDG6nuAaGChmAoZJP8v+WSeYwI42I6dWcQUG7A2K9PLYCqRlK3aXgKbAR+aBg4qeqvpyygIfrVE8p0gussqI8Xxk0NOnOPTJZS3lilkXCreoMoZ9m4Njuv4kLs6v8MtWbFeYb60SjEoziCGAdBq23q+Z3ItwWehLOpdbaxj6tz/VHgp4gN7JeI8zFJY6TOK1uudJwfZ7PhpoRzDSkk9/Sg7MljO0ALBU23mbYUnbHB4jiiK99j9hs/DrLdVoaIDRlmuwBGUpcy3Cx7Nd2IQf+vYm7Nel1pSH8RApOGMMq7sztdwj5gYLTEDS0/8pc+oeznrjFdjlsnhmlKhqNLv61nI222UbxdyYC36QNmWJtdpPyQ0Si7N4zM7CsXqUzhQgspuVuPmf7aAjlUXKhl4UuTI15eaIk6bRkgqNwxgg3NP9zP2nW4FDcFAwb/an99hNKAB85s6oT+GLHZysLZFwzKfNM/ZBFmACJgo3E/S/l/rX4NXRLax0kU0sxwUr6hOqJWltzu1xgobOzENOOSzG2RkGKyY3ETJ79wB/DMj7shzcy2LA8AD8YzEqnVctxFwjHh2wRHdrEYnPAPuT3DE5BvYoXnx+K0PApyQX4FKgzkBUb8JQ5+2ZAfYGowm7tkNlTvXk2GRgv8t1ev6eZAn0OsxhKMS5POAya+mqOtnqct2/oGtbTLKrVVG79bA0AC7nkxd420gkh3wwAoq11w2AwkYkIzwhTCyzl0rCJ4AcamJiW1RTrr501DEjKHhNgYWCgIJo2tfvhq7GT6VdNwbi6ghonqWTZ7h1xdXYYl+jXxqphb/LX1pBxqm0LG4uXjFFtdMowjsFEsltF34kUoOzumXME3bC01rjGxW5hjI3+d0iJqb9M0q2EdUrIRnSo2ZUUlJruNn27T2nezQO0iZ8QvU7FS7aHV26XNTVfEGVchVdQ8rxfopuM9wTtS5OFf2NGwN8ZrcNoV+sVuWl661QFxZI/qhKKdbr1Tu2mlKhfYeFqpsScu6pPY+/7XznsJb1i3aTutqP+2kqHYvAAB77yfrYs4+e92D4wUrNTu1wAhTCGoXgjnaH/McvaGacrBbxxa7WK8j/8opvVVAIyw5x7hN+q2Hg4jEx9yrbzL5la1PY91WCaUIn6Kmx1g9LyCf3hvtHIWBs2yE3B+puY54jJGfRcebrPSqW3yyJmWasT03Xmljh+gYgaLpthKFH+viPbVgEj/Hcmk+sdOWrrxtm7mn428imfY8p9l9AZevyj0S3jY0g2WxbtLbihQgleCIE7+yVucy6B99nAp8GS/IoQ5W96Yao0UoJt1f+uX6spoiU/eK1D+rlDLaPEe9/5dklh2fkTUKfsXBWWVYqYtB7b0KX8HOFqoe9aGthXS+1R85rbnoXi5Gux1sx4Sn8yvou4r7e8p2VSlktyvXYqrm4PvhSIlFxcgbuvv+rtu1DVs+5vdnIHt+2zioFi93FIAv4wiZSywHon3i/5TGdBp5YYwN6bgCwHtd3HhU38eGWQWLLLNmM3xdz3bd+xvhTgfer8zGCUf3xWJzN2f7jwjQmMlRP35eCYQdtt31Uo26iQlDLUcLgAeiR86bhiDIS8/DyvbWRoEY/5uFR1NaebRxHP82NHUbQPgu8uE+rCZc17fcuHR3mF8kcQyxW0Hrd8XTp7YiE1b3rxkNix+qa8pQ3HP/wP9TLeEuvi0S7sc0oaIvTlJx3+s5Uxks6wMr1XtR19SQg2bp8yFidgD9wVTuVdP44G5myqv+k4vhvqtKtBb7ppuoMX7n5eVBUgIIvbcTlO0z92njHeBOmCbzjd4wlFT6/DkMFiYF092hm3M8y6leEGrIYEzVRsm3doXoEDpQRAWKyRrV8j1XBFLzLiapozlnzKY+rX9dUNnsToc2FQPXhX7CbZrKOqqdlKjYv+Idi/dYV/RcxHo+jEbSs+u4ua1VFltJ6ZsOgiRaInRJnOymmncht65/rfxU7TZFB3y8rtCmsvLwaNuJiGRdGutgJqltPSFa1Vmv/VrCBhK+y8Ui02uw0Vx5Hz4LVY45E8ZVaLxTsD5yhaq9KJNTtznRDsgH735KOs5XOPCwte/ej413HoFM1MNoslL2AE0shyJE2sos2TRlmSG7Yo664HJe0pgtw2rWBatKgMkWyufhva7y83zT8A7MhnWYMkrZTLklyWlT3iq90Xr06PAnv5I8xjuD0gzSHaJHp/UkDYwIAn8cSd/3qTuYeX58RUMFcZyOQa4EZykUrdIMozNQXvKmGO4yGZdGyXN0BjXOlrQ6T4zugIZaUWjlvuMxk695BmqlIdoXSNCMUsnv83J6pGD6F+9GS9gL8ap2mrvlKJXgHjbbTx/Oec6Vwv2Bt/RR3zFafC+U6R3GtW2Yu58giFDV458NoxJusOuOPnkStPoAtceY9PFo9rFxugzunP05wr3dHktlWWsu+AfEHGUV/evrpPWm1mkcQeCbrJx11lkXfFbXmlxDlnOjFdhM12c8Rgla96c8zqFAI9e2MejdepcePF4LBO5LcLBe5YnWDSJoGDrrrA/JdvW8sAm7W8VHR80PEk2Uae9kguRppBbB4/ZRjdLaG6LdXvm1SxRxlbFzxqIit4KpqlIkALciiQDn95qpGqFSJq243hqNeFMpyq7YU0E/uAcBI5ZJIKrk9esqOe6ih5MtNdg+TPTrUNUyD9HFKRg/dwLi3vv0v/bQ9BvnylyNI8r6VIqU3sXiOcUF7EPWUDHwO6yIUoJhIYxXLz6Hr0Wqj+sEUoLbOR13lXge322CJICb02iT4Ps+QZVELFtWz9ibWtE3AeZ4mBjQBme7K1Mqbkp+qWPghRXCTiHG8LcNz+qTjkTq3GjYkHeP05mgovP0nlazdWpiuKKYw42E9Aq2usg7my+fRHsQnSSbk2HdfgDC1k9s9faaOm59nMUbLxKNt5QfPWcVzzqvA/Tg0XvM4jpeAOfPaKbRE4huTJ+AMutELyxbU5LB0HN/pLquDHHzwNDZ2VHf/+kbhwSvP91hbDIO73+0hTjzbsNhogMe8QYemBUcGnubvfn6TlAjxV87WS2GLqyU6Smir7Tksq4SE7k9zOqDCQIjadNyxnWI4HqmbGeWPjeAcw3bmlaZBsYtAeJ3kSyV/VTmNffIt2Jv/5Y64b0mkOAyJY+x4g87eQTBlGZT88U8rwsNMDT3tygu2RRNBtEtHI/85EhkHobv+wno3o0WUsDsfH2SIDvXWDDPFhaTJuZRpO8ZrebZu7YGeKdcQds9kdAhziKUvC6ObCBUsy/NPWUPLjbHdVk7qSIKsvYERq4w7R1Z+Xc7/GKC8OERO/ywOMAf6jT0MnCzmZAnxylXJa/E7HIyO2zNT/GY+0vXa26se1F7Lo9+apg+vigHiib/3TRZNNR/J9krPfSFlovDXJUAUDYw6OOIx+HTBrxqPQ8EoyZcLQnmnWdgpYlnmWIbGhqA1gxMNszVS2ESERUD1F+gfC+HJ4PeTCks7omBAhbxbQCsLOENKvbJZEbDmIxYYZrm0NuyJvo0ZuxZIOQndrkci1tioo3H6N5FTVE2//0oKTgsDyarubXiM46exBkwBwx3/nU5JeUwslpuPBhUP0nZ5H5jkfyXce8Xn7CoQ70Fhgu4KTb0ZJAdbt7GSMpPcy4KVmzytKoEkhFDF9wV2fLDmj5bsQwCyE8aKqHFj3Ds2IUoSVyjYcVCk4UNBdr6WPvP6hIBQUpo4bjf3nLv23+gEcvrbVpZoc6zeGFQtJBafrBbtpNEh1EzAeaa6KOOPAANg6QNlZtn17HmXQVZ2LEgEZvTp6vRhXgv6Y7jJ74cTTh+K+PEIxbd5G0rHg3d4bNGUcyF0zkkFWntqPsFra1roJND/PUW1VFumkYdkWtnIdP23jsC6k+VAP3VjQpErgEbRu6OtfIdppykjh0d16Fv81+104xv1rdMYeNQfa/0fFrRmgn5wc0zxVlsSCz9siAKkUMzX6GI7nu4Dm8CnzSWNFs65iQYPEEbjhYA6w6VjmUX8jQWTdJxzMaRk3jRvhABBtROFs1TNCzpKw6s14t9QbCDVN6qv4o1rZqXHfgOFM4LM6BKFhETz4R0XJlOrPugp79qh2gfhHxxV1UCsrCw4XxHqkUATAUrDed+W1BTA/wV/ERakCA//+M1s4/r85dX0Zh/QPv4hoQaZUgdbQDCAEcWB8rM/gp2e3iOe6eFvvYjDrlzcs1fLOT4lesV8JtjMk2jO3JZGYwSZ1K1e0sR2SqgxxijkEJ5ZRFiq/be0cFOnoAvl1teRMcifydxezjmuhuAybLCt4F4AufL/uKYG9AbgEPQ5eskVfo+zOrVWSoQcxZgPUbD+Sk6X6eoeZ6YjZ1a1bTSM9y/c2LFfgqoqTXsPv0j8X01dTBEq16/VEucnhaDrckcmC0GuuPRl7WredOxa1i+uANuk8jYzrkTvMbM/ngRS0KMOT0GPFXOJ3/2/vVCnGkjxvf6OpzuaCS9q9Dqs1TZbzuwMkRMbDPnVguZsy23RDd/I+2zUG1NjtCpEGGlgT6j1+HdrwBCtSNPeTKXDJzrSjBrGQisOkd5b6Rou9QOYlpHLrByUgViBp7rO/6wCNZPn0Nv3vcIHU7TSM2hLLU32Mrptu2SRVq0RqpFHCo6un29K3QP3/9lVT7fYi2AiomAv5SQ11spZe7KCyExwkAeeog6J2MJEgTo1Drjr3EB2A4P0Ge4GqUIF80a2EDRUMaxrbtoyAvGOfZga5IandsHd/gkzQaM0IrF8lQKO7Q0qxOYxkvu9BfO8wb+AFall1iL6d4dfWkl+LqtBwemIlJGfJseCKJvygfILhGD5YYCLiWMiwvEvjpI4GljF9eJ8Qea/9TnESOGBdV1fE94DyLYkJad3pfnSi1KvRTF+rXoXaWf4hKwrI+p66805y8+YO06rg/y3Y+60sLELn/EDdv2s315eTr3V2cBQUGGXep+Sabo8DL9GkRjfhFAoPqyIhgOtiZ5AaOJ9QA9GfnyF6cf2PRZaaWD+jjhdi38mHiQNd5O3xnVP35QnZ4Qo5t+rvDI5rgPuNQ187+dZpCfIUZAMAXm/VprDxveuO6vow293PoDiPXK1WoZaNXpHw9ReObcolIeLYedpUVCwqWHgkFBaORHeO/VnC7dQ4RzgqWRYFMfB+mUpR8/jNmQYEceUweAU56DxM8wPI2YrUdLI8Jo0dRI6HWBR04XpwLPNFDIxT6s6MJa5CSn+jZsRcnekN63qbbdQBwTjcnV3qcyS/1U9ZvXlbqKfSjPfeY9G7sQQbjGCJ6efYuFTw6GVVdeA2enYHLLGpSm6cTeIwewLb0a/JM5WE4w38yKsTlYkl3zmUCTqx7c7CHPM9DG+ageBBkzGQu1F0jCFmE56xoBZLtlH2k3Q89anDlIdivradwpT1TgQ5h4PfHNNLa+t4P/PrnFRkQ0ReIYz5+tYi+QV2Ki4ewWRA1Jh+vRPvNZwbJEpZI1WYcotSkmX+PbRVBxA/gTTjzFeonBA/0hAWCBGaPnFHWaWV2JKt7BLIeyNsNHjmtMMpEou2IIPCbU2NA09h/cEtwCqlDnnOl5bUSrQRlAdoKe+NjyRhUL8X2mNGid8Hn61W2xDHuuIvcxPVpvXNxJRpQnkXBs3OIdYzXh7oe9VVMTuuSeH0NcIfeXsNN6XlRT+uRRZIr60rDAWTh8dfrExUrugU5I+6olA51CxtXjbY0JPqmGjpDLTx83sQCPt62Zo06CpmFT8bsj76Q0xGNRL4n4KJbOVsmoK2KO/QiRDokJOkQ8vJfNA66qG2xecVKN29MCdolelTlAWM5EA5Zg4fIVdEM7+RwMLGFZWeDoPI+6qw7ju+AeD9k/hH+lNDCZ3BYqmRDSgUbdeyYUCsOHLsrvnSden7nFypc/vUE958HaexcRRSPSllZQ6XMnZ8HWInjDIbylmSrsulDOprpDjA7WR6wKEIN8MGI2jVEKyz3B/Hd3WdykDS6U2dEm2ACp2My99zQTwgqowAJADvCJxAsiGJiCNmSloSTb0vPcFwziIDWrPsv4+k8TMfb9PF4ZTwZ+Ea188eje5bQDgwUmUCRwCDP+Emd74AeWb+YONJCokDwfx3n9rRjHheHBFBzOjk60JX7nKDew09HW5xUGthzCuun75mG545jfMF+q2N8l+aTOYBvMTGESeEK4dbHbOzyovnHSki2TsQFonfbXsfv26atN1dTjemi4at1hxtlDRaJAFdQ4Rsfe5F37rhkyJtKihwFAkcLrnA44M9wUM/VF8JLoShW40jEi4Yqsngl8OKUm7E6ZkjiGZh3FTFKOGNb1MTSquVbK3Mao9aNVAYgO+Bx0CyZo9N6L1mC2i26qk8q3thiZJzG3WpWjNKrwxKZQ+AgXzwglVdJDAf7eNVbTqz1p5pGSOZUE2syniqyLoriAlXLL6KvACbUbg/LM6/D17em4UuoY7QgfIHKY2DPgdIznnJRBua10l+t+d8eiZ17vPC0yw62OgOXbbCN6pAAztkwXLkflpLY129ESubHFrM3cJkWhkEZyw9m+463qOcdLkFYEU641McnMqS870n47PgxgPZqDl+W0HSaWPmB4Qifgd8R/48mxeNuyd5a5mmRnggFrmd73tt37l3irkQXSAPLKKYYCniRZtiHvKHsQ/NVRUPZNyY2JcAcN04+bFXpqgsvEyxvT++qi3mIL9FFo7tV6O6Oxk9EV9t5rnCMbQdqOhCRFUqhTJmvs8CmI8epWoSkEjUxE+4y5Qy1i2dcmJtE61OnH252fv+ZBeoiX+F8JYx6qJAePCjaR/VkeauYLpF3D/jqfQMbP0ELCIHQA80JJkGRpEAzATA4Vjm5oTs6x+5PsJ75pRJtgV6pTgVD3yp2WhAzUHLEp/Sy60Ap7nDNdpGnXdEfK9rwfnpfD+yY6txWNc0T6ViKHt2DRAPF4eKTEYumIB2bQGuiAlIJohhhoYvX7qB7f0V7rCfQRECgz9/pCwKwEntib0Cxe0+1tF8U1CauyaF5H0PvGsxqUzdrBdOLpUa5hEuAG15p1bWfb9nO6scwdG6VyI/JtTmznKj+ApGAcEGzAgMrx9QLpkA+M6/rI8NKPxF8J/kfCAs8g5IwGvRfGT7JTTu6YpvisbNBFKsi+lDFaxFcN6L5pGVGOlvQ+J7OEnEvhi5zJhMk9MQlUWsstMFW3pg+U9EgfeMs1WWcvy1sPONp5x8uK7zmjYODyNGhn2fGYIdyyiCZYovPulehltDblcP2FwaYSwRFyu4b95NMWxvUr3rbhnrh9EyPN8IAqPurG54s4bNpanYLfT+bXzNUhqB8ErVC1GgnOT/PyfR0uzE93mPCUDOULtrt+tsOzi5tXHDrNeGHaRX42lua/Obox6NnBz/JjliUFXI4fsk59yARH6wrreVxhZJldp6BrxK6p5yy2ujH21/PXtt+Q1A7iKMzIDnhO0Bur0xr0KENHjCppIRUhDl7lJu6WKJmiWevDnHr2NUPlZBghxzodthm7+FQ3QjOb894tstOt68YPxyt3tHwzYJLqmAH56t/+MSTZwCBgEd4ZorNsNeZkbUQ1CWqmzTlf/CX31CofueLL4lJHe49yySb82r2s7UF6kdD+hSvj8/xD/AEnax9mqLvzSDNZtxJMSy0OiC+6LYIUoo/MYTAv+j3h35kTOo2fCtfbnK6EKTQTAXZXRkYtrRs6eHwK0dy+KvKmczwT9Rxbfa+6nmepSuWR5aKaHNyWjDzqiAXTAcBGYHzdjDB3lmyuxHKL6dws8eZgmHrXK/B9fO10mDlf/c3Y58R9gbTticTin5EqGktpJOdR8D7CE+C445MfiQUIN8OBv0bVcFzqRQo1FdLSo4/F0w4ze1322R4GT8A27fzrkUkmDB2/cZau0KaGA76OW5sFGWH/ZPydTvVnBwDzcBJ+7DixhxTC3PITCyV6eAbQv2Q7rMJ3d5AyNABplLWnnvAHIngHfpgpcoIUDwa4oiU/fn3s4SoO9Fx/mbD3WwIf4rdLGe7G47RRmATCRbBuOdU8HLpjkhDBssQapvIiaz93K71/LbdWgtP2KqzCAqdGfiEX2F6RlDHYI7nR4MpiF1s4DuLCkhprKHxsXd3ii3j94LoenxGAPz8OP6DU6TUiooHE6Fo2ebhdMBCXAOePsOhFtl24LtcVUI4NzTAQjH51KJ7cHJnCwoEIZvhsL7K4I4tbFSUh+fW8fvRBO+Y3OA4Pbl3Ja1khTRhljMhRC3edNMKCI2lRAmjy7n0ZyVZWgf9Pi/a7NlKBSbgnz/CR3nqzWzEbnWsgWlR9NPoCEXi4Oj0qYnsaivkKf+Hp88H53Gb631ZqEp+Mj3/4Tl4F1s4qSddvWJBHswRhP3Esw7i0ncqNDKzYiI7w63F7WsLU0hrrb4CRJx8oPc0x6msBCRVtNZDx8InkohWyx8SI1IPfKFgVZWZUY+mdd9yakkTj6ImAAWad46MHIrd5+R+tgxip1QBa6cjwE+UxjJen04cOcFeSizk3E5Xb8Q/TStGKaKDkSM/B0+13TkIyoo8ofQZ5sZVn2Y3xC1VlSk4QmEEK2dv8kOm7rmu9v/RuUTVsN4Rnm+wLmH+wBhX3DI+G9LUpZNe2u4SmSAF09FPMuI2QCgYP+aj6tmVnk6sB/d+2OXFryZY02Oi1C8V8cVgIXVYl7TBiur7HB+XiFg1bBa53MOY7ELmFe7cWjj4XsdQDDlPVnO/uVudVSQB+WgE08HQ+5iMuHX9TatD1vSJwdDQt4UOD93F9GRT8aQ7ZA0QCl7v4gJyQt8w0hXv2pX3lGBM+5/D9q5Ch6AyhExVgzfaLWnxS5krqA5t5cKUQrX2mxXwwM2W743+nfOxA6YxZIzun3ynP11F8c67K4uuGjBSm+AG7IuL0wM0LSNHBniHAT/2HninYWfp0MZk0u0q0RnkjEYCK5r3aYj4LbUTgG4Ww+/LgB4ONnOcLMZY1a3kP5AT+XnoywqF9+zkcmScpcDZbAADehYpuHG9VgpCbaWcRtxdXK/9gPOdCJmITcGTTQyBp1TD5IFxM/D8sodopEIuxi1jjycAkYNK4z48dmFaVGWUzeVHVJTDJUUO8LoAr8lPntoohawxm6zuZqw9sRv+qaQWD+nsrnNecqKaD01GK84gUspdxQ8SrLIt3lefu/x0CEitXFnliIqVAyBWkfDSFbLJ4VZvO2cJOYgGeUzlWVSMt5tc609/O1lcOryolJOlwLQ7wGNELeqyJOwo2uQ/aIoOcrmXJYYQzje1CxAzEc8oBNHQNS2EXc2HxojeSjRxFhLcRi1BS/uEd1onjZS4BKbzF3QJT20wGkMiZ0s7WvC/8SQGPT/gWWfTNuC2EFLlM4ToEqITcD8CFKYt4Th4p+RBzHK/iJPQ1fyIZHASVaqwzIN6z9CFPsVr9NNqIucWjpxnWHfd4jjvztIjfV9AOrv33pKAMhUaz9kGvqmsL9x0561QepQaHEMei2SKIC38EKdHFJRLhsAiuOCKbHrTvN6WIwAzadKMzcpoZtUVA7C2e9FZyIYK4EX9sfHwAXYUjs5+TWyFKsFjTfRJecfax6IN+c9LdO2oQbZSvob6PApOOs+CWivmCcffE9m6/KXyCSoosaMJTRAflf3/1ZxO5SLiGr1tIpztotH16if7+wOqz22PU0XzKE3Fm/BZ/J7nZ5EERv/f18nDoh6q5A1ZSzu22B4YxEtpvRIhfXJL/suuhvWwm0RclzQ6TXmp6usQ7T9hwj1cM9oybhg+K3Wy1nhal+2Q/BT01h+MTO0ARaYYXKf8/LR+0KAuC8H8eshOQ9sbodfgeKs4r+XIngSvlGBa97JYv63HNz9yfWXEt5jC/6jfeNmMyjY/WUc6UDWp7SV3HiKFSxTpg2bwItc1BOmZdxDEcJAC4GJpD73Q3Mdgw4kdE82EfI393356J62MtyUwM4h302euFK8XvDdTv56HxjDAWWJDgibvqEzrNB57nFyslh3bUS/vz7WKTF4gnW/wL1hdCiZ4K/Nx7cK5+N8FTgrjjS67QDvc4+T81FvAV7tQfdMMw24S80pOnVGxHr6WPXa33KKyWnE9/1og0P4Xq5f9diRV7JfjNWRpw1zz6F/r3sg4m25oG3VY9o2ZX8xXRc7pylZU0M9/e8xUldZJHhKy33PCPwSBY/VmlrtZBa4lAIYwapxSenVV5hBrW9kYV/X85xqAj1cd2RSIew+AqYAtS5AV1r4JEqe2U3oalEW7iiPIVFZL3eMIzqn7BewaOpm0ivKc3D0D5BrngizcSBbkpapfO7zZbsr6yZ7SKSGDoxytiymJ9D0zvC5BJjbXTshLv//8CHJfim06xJph9XDFTRbIouB2wNnmJN4mXjoXoZpd1bnEmCc1uAFbkNPofddhThfWXxct+AHzWKMHGyLwjLRvvrbtkYVAUKcVRd8jx5Njb4nZ+62afSHEWwo22T6WLq+uLAhVppoHkvcpkY6mM6XS1tSCQ9B5awWd1IqitnGi6H/I6rm73y9Q6nGJKgGq0yQ0Yl2gimohJqWni4Sqh/FlyAZfhsUqs7s0SFzq7kubXM/JLW5i1rDSuk9ou+bxhWnjOL0aPBBbJpFlTKPLBWUfm2LPu92vODkgFJdvx+evfV+BgptYcwSIZtm4hdTnFn3/460N679mwz/yyz28Z5b+qoRjWzKCSDBuAY5h6M6odGEsbaT3v9BMxMgzljC9f+FeoBk6JY0zf/ZgeDHUTfc3ya8jg07djqDW+XNhtbKR9pqr9TgYTS/agNQ/esmDH/OkAPjusWL1R3pq9HMf4saYWE0dIkRQU3tOYixK+wHOcE/lCbyyaUYKJjBt+cyFM1kxQA4G2bUtEaq+s7sXRzxnYs1f19CrSzB1i7SYZcph8iuiXYn8stW3Wps8A2Vg9IkZXVk7rYPv8FEEoTITaVgG5ZCpE0nZDKnNHnFs3PfqutHeNRTDkIQXRQ4p9+O7JPQ6HEYycE+JrCALxGW9MkQfMZCHsZWEMvxI7ICG0rbMPE7fZKrNhSzNDCeAqNDFQISmoDb67M/aRzZ5SFbvlF4IuUjIOyPVCDTsrWib+Q4ZIh8zEnEgAAAwAe/lk8J7otg1T6VRMIiVC/0qF0zttykmm27Szsp/B7Jx0VMIYLfi1OW9i6FC6NkxX2+5fTGoFVK1UAQDyayEaHieVBVQVB9GcDXjfaUa9hBP9P246qT+Nm/PyC0FPMY5Kv6oyJD57mRNRQ4dD1Z7b5iKJyANZTSoOjt7Td00dD0AEGnsWtqgZLPIPbAVI8fmNhslZGbADH/SAqiF4fXsjTcoQBEODFVuZBi3J3IDyuyIPQilHkAh8DY0a3uDhZzQ42Gcd2spa+6Apox33+L2liBba7mbI/hrSkIqzUKPFxtk3mNQhSHVb1rSC7UMnfslsHJtDSppowPWhpn7TdlpV5Tu8+II0i2nr4TlC4rROGHtRsK9O7bed/A37DdrRV7BDh9NOmgNjmDR5zm8yFC5q+6l2jH6qhTaUHJX+iCd9Q/emD+63QUO2pqkKBUik8/RA7DRe9LmcetfweF5M/oCXQ7mL0eemtNqToLVOYdKpKov63XUYHa2g2yR/n99i51pdEMukbGlM8JQK2g6cI+kS9IFQHDLzkKplH+DDnno+AKrHZwywbtKOHVWvNvK4DgU7P+LoWaiSZTTzxq2ombElv2QDozeAeXZTeRvyXnud+t0kAvGO+Jik9Wd/FeIg5dSyT78nF0mbK0YquxyasSBb1dSxD5FWMLKd0cJxJNrpM+tKFZk9HVf7W6Ewd9XQVNI2kTcyEdS47lTuRzQvT2VvJMw+2Tww+JRw8Z2UXoc7dSR33B6d1ljxCMdJUtcD8+6dfcZgyTY8RRdz98WEI0i5uMi6ZCym4GaWQj79LmWkEZjlYchjfFDKbke9604gIvVq40rb9SwmGnUuJjXVu7gVVRRpI0xAvwjREQs1q74O3ERxGCnRrbCYhXF88ETWQ08yRhmvF4CWuqGBFrPS9QcVRs8MAiMiqPwUoU1mGJsdeaZ2O4E2wDX/mwRq4GVzuvXRqSi8Oh8SvOkKRLSVizHu3LL1uRgcTw52X/pwWheYXfqpq7Gf2859XWuFBhJOd8NoHoIx40cvOdNY6wklrg2HcDs/utLEvsrG48+fqDau9yH//WHQrpwfuaa1huRBXNnqvPGxXe5b8+BpYpyNH7at4LdqKxuOUUI22uxvg5JjvNBxtQN/9O4HhpeGwu1WnvSkMcqBjRMO30+9R7x18X0OH/JNtK01VgVji+R15xNatvO9lF+1uOtG9VRXbcuhOfItIxXkjOljdJNmb0zLFAfxI77EWw5U6j2bGdA6Vskp8o1x/DyJX5SUQGnynPY5nLRA8ybUtRKOJ98FsnwRn6JDTSJLPhI2UunXvCgoMQ/yZbJPUYL08fss7TCFluP/0LuWL/xoashIlRJoVfi2qkq3SPCqwRUobo5LLhyzWxFcFYf2okwquaZ/McdRQ+QSaEX2wJVb95pIkx2OIxFTaI6yWHDdT3NTkm9B1s5ZhYp7G2uqqp26RTfwd0SJsAU4j0KLo0asfgf8awWjgPjmEszYQDJ//68Rs5TZcLNhuqEjBSlY2OLIhakdoVFi1vjRrj1fiNKP8FXY1liA+4bcIuVFl2EyarFHNSs/CkG14/GG6pr2CW6+17cjkDTcX0piCmJhBTfXFflktpOQUWOMSs7nmvwo/X57XHlURr/GNTLz/9f2Bgt7T77Oys6+cmCky9nN+7glTWgyotnaDypRJ4Npy6M9dHJx08gkLzFSODUOlBymUXBaaf2KUzuwYTm9/f4nG5B0+AED/GaMI5/1xBUUYhylkM7/OOfr4SUiWBRX6EaChpW6NjhacZ18nvqj5FtCvM2UaNzhkGV8sLpV9KdbS9z+vKk5sIp7Isu0kGcJCzLtSjH3+6uz+WW/XhhLTJp/0vFc1Mczm3Hv5hCczhCiWYvUlrl8HwNMOhNKDEcnEqMGS3j2rWps2CzDC1xD+fMIgLF65QT6/kR9Y59uxTfhjwmXN5HsgXnGozw1O0ouLFkrVSlMLx+ZpnCW8VzboEoADGfy4bwV1f6lnAjyRGlduUZER2y2KQZ99xPbSIzqxssmOPO7i0dZVJhMhF0zlqycvoerj406o2JrLpinA1U/wMqvAGzovnPoJD1Swwe6SEoMThfeDIVYB0WVYsrpQyjffg775n3cEqKA/lF3EULLnaM//h6OMpDrcN5MYkWNbIS8pa4vHBNLt42M9Beh7Cd4HGkBBIUZfu8qVOeFZzc/Q/M6G/WjGB8sa+CgHSfZTG6emi5UyWMsz2FcESJ2scT4Uf3Il20zquarV0mD0ElikjbXwDmlxRdw8G1i0IH9H8OuS+JyATZQ6hNMduhkcxRPKQwZzBsq69QfRcDtk77+0co5kdakhXPtHCei905HcmZcPEpWlzltyLsPgZxu/AkwVMJULPLiBQh4v+5IO+mI2Pxs0qttzrbsblCNGnpihi+H7HdarAjDneFIafrT8czwIIanUqoR9QYBBAQ89rWH6buypQObE77u4E12bP0p9FVjNKr0rjluOso2Bj+91ncF/87+6sYXn1f62qDd7fUU6/ICqWdQiD0ZDDwtkBzdOxgq4tyWUkTPOirwdrH5uxxiGN7ULf9qI25Kjt2yUUbT5rI2v14VhqQWpkCYiJvnUGDZZxSFcZaGjl/Ae3qVo09vcP/wmszmSvaTVVSv/MXMnnVYR1GZj4TrsJpXkRyNjnPqeU1a3kx3UD9wSx2aWkNpqRCGLv43X19Y5YoQMgxH2qnfMICkSNhhZlGp5h2oIiVzg7yYuYfll7xHu5nETccWINwrrPFWVimntXrcDKpef8238K+6bXHwsO/a3U/0p+lj4ETzqfmL9ZuhCkkpRaEmb07MsMNIfBjIbSrhkbh35Goa/WVvM8J2MzNci8sCq1iWP6msgQ9wM9nfwXqTKbQGur5uapJTp8s7G6PK5ISoTU/TWTGh6fjarZxGH9NSZIwXzuKcUhG8CbT+wTMY8xC0sB+HGHn5/zOGtugwMW4XRfdbAGmcuMZuZcZNfYm/Y6bM/SDgzDC/ekaCmPnJkGK5U0Y7DpVlCnM2L+cKFZCdRbL/c6/Qpg48E301C2aHirVEPrU1F4QrXsIyt8Ia68NPXyJvuBdWgsFG+oo7MlV1FP8n9myBnA0oduzTzYAcCvsf8/B2g+bfKG+2vJjj4UveCi1VscgesFW8qymDgg8eSWmUxqflLyqUKKfcaindReyams7idDjijrq30q4vCKR6G8wamXBOmEa/+NdYdG48pm3yLyCCgBjRGrCsE82P2GTGRuRxJRIMEB3Kxjz64Liq7NMahPRnrxiCuIRUQBU/VFmCgelTRQk62w6hlGbWIp7oVb2CgTS25pr/Yz7SLgpS7AYcA1ui0U4RbGvxDI1DFnoehroVjhk4MrZ88joPvvM8TNRTv95fbJCWhifRQ7l60EXKyUo6dxnQiD2Y8d2LlzZZMwP8x38bDxo8hfYgQ3CSu9hpPB4URvShQ1t/Gz/GiFAhgjjASNi7wQNQMY5oJ99VKGGeWyORmd9onc1iEAQY2DmQ6fFAbi4cKesxx+SSY6GF0+RKqjFLOowCbALjvkf9Rb3Cim8r3qmLnyextdVicWdnmlb0f3SOwghdSqwZ34rf+g9L0CHJe2laM3C2EnFHBhEGs6Lzj7LUV/Ja+7hbvzlSRtFI2iofxvmNGf7Bo2YmryDpHEysSwLGC0cKNoLdkwLSJlWUMpsfZZeNvAWEUEGwSTTrzxY9OsYsWlVve1yEgffKMU61P6/a2l2jDWBS6gbqzul+ZsUsQzHrOAN3gHQP2lncVh42GfdczSbELecMH2AbhTXOWOQLMybvv9uBH7JUPMYkkxGO+YwpVvNusk8woyDfPDe72MhrTkddStQtC4uDL5XtEkAjRB/8staiBj1v2uC6dIFaYxXq1obIV7+GoZswPXFVIx3glit/i8EI9DgfAp7LFQmk+8AyOGY5NnG6Xm9YNXg5BCwb98GWSthF2bSQ/IGqCkw09ee/x9Kx0al5J44E1zP+kVFRKlYMJrYjX9/rbjgyjt4o765ncsYGlv1SCe5SmtveEsllwYFJpVQA7tydkDy0T+xGU0AlrOtCDtYIOq0W4UEisQg5Te012gG1UEQ2bnqevOPoHcfpW5uO2YM5AKs1X4+Aqa5s5lRKd3//5vLMNC9p5Ks3s1cdPlYt9XaFXEgRYAq1tqUwDDrBSZiiBjfULcC99PsrhJcrY5al6+Jd9ULtTfLrrb5wg3Y/f3Ay3H8bkHLK9Rls3juUApy6ruEBToEfTvBhkPXWOTYplWsnnoiNBfBtgYETxDJuUxsTW/AfSJBZphgugpguNTVDcLJfMb5eE4M5kX64++tlqGCnjbHLdw9zVNrY3M9hMfrhA1//pN1ZsJH+S6IqIBCXwZTPsWUR7qKaAPzpCdjxf6XfQYvgwLHWaR1ZmQsvjd0NgZ+CnfvEqmVI1AtXKAC37XuVWSVG1yfgiKLiqwo4FDx9KaVrEZOgeoas5DzXKgeNpmEg/grG3JLvhmRfrraNBIurd3Biqp7A6tNFDW+zCu3JGbCTUBl8kDE72pQcYLi4VkNUHsm1Y4iCWoZ3jvgPgQ4tsv/8680PU2DnAU9QZt4bznOl87D2vMASAIZzGJLGCvC4uHDwjFfce4aTO7i2ZKBJtGkc2/YTdhj5UXN4XTvmhWDtdvcEBqiiZEo5+9FKNhOoXtlXb/y1P7tIll6264887DTxMMpyXf+6dKdFYIklp1MqEQ/U6PEanhSieHOVBunprU/JSko9b5VJYJ1htaujlAQsn7icy+xvLCAGcLd1c86nEZj5eKOI2LHIRW/QtKGEisagQPK4kCXvGWuHCjaBZCfZpxewCTHNU8OXGPDTWyLoMg4utian5b52kNgAA5LRqBcGhOH/gO3N+rfyZbe+0nri2HUJWQECkz/N3SFxTCePazMeP8yr//vr/ufWMKpzrzaeMe+QE1yn/qDRMwPiSrnAnSwluKbANzsrT2+yXrA+7OUSaOvwdhLPuL/sDGOrAhQgEgFFF3n0QlxpwRjUGR0iAOGqRG2nh4ZfYXWPsfMZ+vuoMAmZ3CILQXJyUwhYJhfhhKgPeNl3ofZnhrPd2GcgaC5tYkGsQ/skUj+Mgs48j2pYt03NImrffWLX6QEbb0FP7GJDnFBChq8w/hvhFQ1+aoglhRaQdilN/ke/OUqPzzK47y6mIH+Lw+qL2PP+LWxhLfsTzomw1VKd58kuVeHlV2FTkpslQyi5RXBO2c+GlTamhLxcbIrRMww4pu/LRLXyaD4Iz6gso9dL8IqQr2Rxn1IUD75hb7dp8/IllYEMTXG46e0q2nx3hq3CdARPzgMCnZGfoE2/qfnar8Hndxz+7NmGwR8MbZSRhiHliHgLlHL5uuVkYWoUoOPp0JL1P5eGKIxeBpnElZjufgK4fUmcWuUlrT/OTL3n3FmJbXGv1aYvJnmG1Ghus5nTypzy7jBTqkepUC4berswzYoJxxOqzqmkXqDwhhW9RkktvteW5y1S6i+/PydQuyZEtL+1wlzThGJjEhS+w7Cq01AwHnaCXu7eLU//ngyccfWQXIYxHYoNal3I7B+sz4iiZx7btnLP1dkb/mxZUzsoeKEZxo2JGWB13IczQcIwHeixiwR6jPYCYw6M+rvAlTEwdPetm2n+KcYpgaiJGKo8gtHMg8NIUwutf1uilSOwi/idfhKRXEyQH45rM+AdJOBmos5lgzCaoL9algTej5q3KXvsIB8uVSaJRDv1zcS/R+/opJyKhLYYhrgtUupLbQFmivFJCpRiyzKKlQYfVeyyAwIj/4JseF9NZxEhE/CTZD3iWZO1JkTlrsWLrrlnR0ev1GvLTIFnZJctD388qQnDSw3SwK91bR2tikjtww3Xq/QPwhN8PfPKXeEgfbrSBbKc/0GWMKiL3AcOFxHDZMsCa0rKTtU+WhU15CUJ9HRoS5xgXETehuKop/4haTqJkdSaCBDV/7pSQtNvUTQtZKLD6R2lg9j64HALnGO/Uz3DrrDtI9UFNMVxlJ5bfTIjFgH3nVbukOj7yorDgbElVgWbqjjuNIqOXqEsk0MlHH9El6eB6aA3qESbmWXp5wNjnWgjyEzdLQcSJW8YnQA/jeg2hUIEdOWQjkngCAtGWC+NLOO7k6jqU0NbpZiDRkM6Je4zIzmi2xEWoKzQ9X9M5wGQiDYJjc+4ElzZp0H244bq2CpjosfLeu8yKQcAQydHscm+UXfRPQPAENhdRNJuLygOH7lcgYZwGQn8VIf46B3+rH2WLhbJ4VYuFbNDAwwd5RGxj824buD8gT2IFGvhL0/iXZoHywbpSTc9MZ9E1/ic7BZXjQSxSL1yB7O6+8TwAG75OAAfM149xfns/SG5/nUbRCj8oWm5ZxYJ3DrBG3PegFpX28M0x5ayijZnHU/gf/Xfu62Ky+IvmI6i0fXGxImlsCmjCmyQqr/hGpNun/9nva8KG8q4tRm9UfgwU/x/E2ab1992cW5kIPICtY6C5TvoWEAVbDL+mOZ+8HIFOEoqINSibzmCr9bkz6tTZyhhZOfO9YE2uATyhbK7vKUvnTdsvsoKryxvtsGoQUSL/8vsOfAiP6uk7oIoon/iv0m++dPTfaY4GkiKYGlR2PAXo7O5duIQhT+kmT1D/OGXIhtzbKSrFKeigNQWf3v6HVNhC1SV4vYpNykzlM/dxKi24fmavmxYLbO5zT66IE8aSx2TEazCJ5+Liuk/vHuMwnR9kXWXD6ToH9d9wD+riaxkDNJy/FUvX6kRvN4F66viTBkBpBaxKQ3wjfg0H9j+xpPxECdgC5tq9db1MHeF9C3rVZtAFcVnPSzdkdJ4vLAYwUWvlZnviK7QO6Y0Xy4dD2vUz2hH0amjt94fKGxmKOw+BkeY0PThULeaPVkQQuAX2mC3vTTCW0mUQ4wLr/T2tRkLILpMlLJryv2rRvSQKoTBQDaUTrQK7uaNhkbIrso3SHNdnKv8Etm3EMTMdkfxEi2doRkEOtUbnrfj6zf/440jiMquZQOEgf2BbG8uM3pKcdMwMjShOo9zvFjcl97k6pN6V+0IAGeQxAOvJWJbf0Y6BdjJ+ZrNk/pUgDZZxeVlfQHQpxgRGtlnXQGmdpmTzYtkufG2XoVz8fWqNPps9EYl6rEo4fMLSXVu8da0lSQYJlGvh4jGgdbHbMbkQ807X7//+MJ/xCeUXULcBq/U9wsvpZypo4iSljakUCDoyTml7cM9DkjQWpbKsYJjGChbZtRwenYEs77cGvGE6HFzxjMF6yxIHM2qGR38tR1zRAdtlPVdNwgLDAKr4vs2/wR59FPdBIe8+1s2STy6pEXsy12Tilr9tWw64rkUCl1faRIqmwnRTOTiRBPh1W2P4PBHiZegHX0nFowg2QMKpgBLWnkS/yLap+oli6ss+d9FcvVkZT7WHpQTyEQjz1Jk6RRt1L4Oyb/346x6JKTztBsCOcy4Kg5MhQYr9kwjtqRmzzdRu67FROisgaX8/xmQYAI+0KmNazHQvgvNbnTKZU0UUL914UJSHwGxZuqRy2ZVJJh7JRcCQVB/Xi56E4Wp5BB8e2pjfGsyR5zZsrdooTcGqAPh6BNZ14xcqLYzcBVdTwuZebA+Yn0K8V7sNZ9b95ieGFJbr6EFaQkkLhfiMNc8xxoSKQlQosNt5oqm2sANZFUqW3AyDBfIBdtx8Ak2S/iZxJtmd0VhrFEucR30tEoivlxE5XYg/or7GDcd+/dKF8cSsTcK9tC8iyhuLYmf0uC6InRjKd5cs6yh61r6WoVb3MzmIqbHksJddMR6Pk8N/f5Jihma9FeRVt6TVxYYJMgP+E7qU30kuB5HQ4LdTHVUfutW6DtksQu1wYQaYZNV0/dz2cE5cDr6/xkEcVin6VcodqppIMfZw/CyIBA07zmQEfEBVEC6CC6bmF+hLpMbr/ZbeWWNI/wQKPvyKAZ8AHPK0wfetunTbInmZauEqCY1Gyhi4OZDKETLSYshvTpyDx0+rKoo/6ZMRHTjEvWoTyf6KxqlU6GK+ZTskl93rQswRz4zj+l77lnC+6Hbb8a0F1eIkGyW9S+YgyoebA2nWZR/41ERMHfApbw0wMgwYSFFZg14oOigmepwfnMIECrwII/7imhSETwcuAAADAAEnAABJREGbpknhDyZTAhv//qeEAAADAAAF9NcUexADjyfZwYp72tzy1Qkv/pVrX9OzJq58OUt89vKbLBK66a4+X8XdSuApKuO6oleA9J4DWudclJCH9wK03HZXShKA5ir86hmCEoDmApFqMJVkE9iCCk6JR8TUy43sWGfb9RMmA8ROwJESMLGT8/8jujboaX5ZskiuEeLOyEZV8liRbt4f3qlheGau3jOlPG/bchP3HraCQzX8TMDuUKoWJa+5pRLFmzBUBrN4W8vtn/7MROvzyAEndT3LsFiPzEC69QfiUUQByMvHnoRBNdtIuO8b8DQKACiQLuYL1N4Gnwdbx5mWhRVqyqyToWJYCkEEXT9hPdkJInPgcnRRv2MN+7gX5/YF08RujZf4ujNxWcWYGO23KpOLXNk358r5PtNW+xwJWAdYf/k9iyBL00I+5wHpFb4/ZT7KqW8/9CTcUHtgn/kRo7ZRAouyFswtpQ17OefSBqSlgyL0SSc/ZcbplaqoALYnpSkXXrukd2M1gw1lRId72G0ttRlGcKZWpQJ2jAv9vFAw2L2LWUy4XFsGhwvJQNyCt4PjfvA9NlG7pGV0dzQuk8Lx39GZHcn+Wcz+WvEN5VrBM5Hwz9ApH6vvAbqdhVVtC5bb0xDWTuSBnUvj2Z/rXolUNP3zjiVtfvGJ0Lr+Ymi3AfRfXKXu4omjXami52Ei7YgATjQ6qIv/xAkuexwJNUYYzITz7G1W0/wMCalkhtaS5AsQQ5LXM1qsichMfZ10cyS40hNTOo4FBVaw1yL4c3XJCkq7LdyMJpJTbq5/ZfkF+ZYx6JcSXjOug+HiXBN88kXaRbviY56WVxLI85xoK31L1wo4xIXopmIVvZDL0TPv9dd3EDhVm+rFfQ7DLVj4HUfibRlXKSm5UMBERw7qv3Yrq6U0ojlvCT2zZ47eHwGnSxJ7d1Yg3Cw/8nc2/JzrHRDMyUiYCbqzFk8E6iPJbLRVmPJvA1h4m1xMhe/itHftvj07Bt5vejJK2WqlEsAk9+WZ8jbEa32YUSqW5CTeZrPMUlVHY/ZW62nktGB1al40QragdYNZlLsFrNMdEEWD7yWOfMvEPvVUuCubCSRL7AyzEoj1QJk9IXf7AF1V/CdoNz4FXQ9qw+bCONOOH4T6xPuxgPSZbS2/+Yeyom/JIsCaw4IIN8OQErvkOb0s74PKrWGi/M4Kn3nRR0daDHLDURWMnhzjMvuVlC9NQxqd1xuuZIBM0PFMmLSmRdpkaC9NOR7CMi10h7LwJ7BZHQl0WTA59BCNb6IiEmWgH/qitgbgjmOcTS9bJ0ARLaJ1lrWqEN+bx1nE3ibYvIPOQpu8QqwrRc6llzNT1fGjidb5qWWJmMLva4DvIX2QELC7Ep/IWLNl+fn1xIDVQbnlr2oOR/Zdl6rFdy/RHutFWexFyIQWeZFXOB3M4bsOShpF21KKtxKl56dhKQsnNECUzc6doIgQzBVv715vxQi0CD4wSapTEL6ocyGkZttkDjh5J1SBm+81GZVi0JzVigIgUXQjhwEUng7WjNrPyi0278diyhntE3BvpJ/Mk4f2Ri6uxWZEgoXI0HwXhCdktvQsVJhAHFt8YtagOqsD0Yxv0HWiRX97IIxz62xmc0CSgGjgUjoR3kR5mE7wAAusxyGY7NK8n8iaIs3Tx4vb8sit/CAozd/DwStoK09rDSFz2cIYJxMxEj5wv8P7Cnr8x707H2/ybbfG3tQmGwtN+6gjZayX54mc9CGmXYXrDJFjEx+rE2Q2kCWdFdEuTV9praQr0W7HDm1mU9NoNn4ZJA9WLgB2FG36wWJ1QcXkntYfulbq3gLwREmm7kPNu9xe+ClKdJqwIdFZ5h8O4pOJzPZF7lGDeWgn5NWA5iXx2cL+nxnP6XI62iT5OfVR0ahhq7ksr2xXkTWezxVa6pglqhos4D+LEPRObGvd8Zu/3FA0N3m5FtVzmPdbKK4+TjK3W6YZiHYMQqhpXcuNa7LD1If3cU4bPvo+S/G0E/66OLOCp8YL3NS4ZoP2dQPnIqoY1WXKIPZ5zBVenbky7a6FaYgUkOfYDsPaOkN0meg8tUIZf/rONzIJAwpBKORlIeuZ7RotDlAnWCDdqslylehqr4CIdEStu9NvUMovCTH/3AehvnIT0o75l2vzZzLUEatL93karGOSKIzCkNLqNMU4zxHnuYF+LYfy9BV6UiEfQCtl3HqmwQrEhaghH/OvDRrD7JQjT2wqDlL4b56EXzh6ZEyfeYDqPZzSamy4Tvs9Nv4Qq3NONjppHJ+isnuWKYnSp9zcH7JuI7ldJJOWua2LkmSNfHNYrSZ7Lev9RHMMvsxUkGnoE52rS9IjN5/IUYyy9a7Py6jIqd7MGHz5BT/TI3sLSsGaYonbcbSxovapS2XX4/6jfG1Gp5IUXxISMvqigWLhbw+3XZ+kEdwhzdqrFL3ukr5eFvjg+sgPlGUObeeu8plTZtsTC6kqkRFQvxek92sTy5ls06b6IAeEXUpm2BGqPJsC5XrOYuw8s25vB+gHGuFOUWBV6Ac1HlcvJbLG3aEg69jkAXnPbjYK1yxONI0psmKxyPS9NLf9P0wIZdGNxeFbZPGOKOPfIfJBBNhXKXzOgcGOhAfSD8CgBChgr3+yk9EgqZ41G0HeZzogF/d97IDsyXhITvK7XaaXc3WBeNRekTRR7sUQDuYAb2V6AAMk9W5KwQ/uuorK0PAMEs8uF3iI59fd7vlenEi8jbkz9nA1XJx590nFDJ+MdSvZUc17t0c/je89w1YqVBZE+GYPhifJoysPOezldXF8rLOLx7u/2+ZUkbZsLfJcILcGkWxHHgKH+2awnpTcitwcTEPAQw6PTu23SEH4bhG9FU5CBs6NrI7NC8XGHCqhqoVauIJAbbHEl5VCtCSkXyQBw6+k88G/M9wahZx5xcaNVOIvMTwAAAemigcCoYHQwoDRGhBcXClj3wbCkvTRc/YQpFE2oIoGPMsIoaWOhw29T91NonQ3RJWuTUzSPkyiw/16nJJ42/9UhSwpJA3DRaQ7oOJ3wczFRDXQZiaqiQmQ5yO5xTWitWyT0qNhCRnIWi1mbuXzVpxHKViEBFPmEubbQWsBV+DF+/XGckopPgupj+UpAq8yAeOZQtlaAOyLOtacAKe1TtOB+Fm1FRyfVwSPILIrw7ZDA6OzyPR06GSwV5Jf9wfUY3QcK3O961U6uuMda9Bx/sDpUARaw+chxScuNrrhLLpT+MltYvZNgnG3v4BmH8a6F1HYO2uAwLHfmhLK/uyN3gRVeVySD6mybbj2bUIvgopEKgbqK35GP8rnVMcL6rn7Lbn1Ui18ZJ8c7IJZLBshjLTHrBxDUtSemVmIsltM3fivbxO5petTGLOPjyuzZtwV7CoYJLVvahAIyzp1se3XGHY2Tj57Un5Rn5UqD28dFUeXTyNxmdXFa9vS/vUiRgQZDlc3AJfuMJ2sMCcxkO+XTdbiiknG+gcX2/3QdeU4+ZOcKAtAWA61BXDtNEWyaSOPg4vxrdaLFtGNLODK1zNHrTeL3Qq6Um9Ighm+xR1RDUpS0WjLu95MhEfQ/MUI25YfBqT/7zHf1cDsfyn31G+YAusbtU3ly1ItFWVC/BVce+mfrJntfpnoKI7AqKG+hG7XZh/DdJ+TrrcEFRp3wgKAwafPTDaLas3Hut4hpPjZBL2vPn1L7PfF546CnKpbILcfTKFITKhUoRZECqxthR1juO12cyxJY5LQPrQ05onqKJxTHSYdDZkp2M86WdBpr9DFVv8bpSkVezaydasow3CHwYckC46g0mnQOi2qWanayYMLh4TszjVXTAPjmKdiB/0//4nkJZfNiVY48qPVzDMSXOdKryY5bAHPYqR3fgFrmTWUvB1Qzs1kxMQlYoxeB+NTBABrFzDEIXPs+ihj2kesDyr5eSHSSktQWDHLlMv1G7fiLiY8ulX89VZRy4mDwWDTBNOyqdsKLIoPnZpdEA6D+VvGZ95PAyiAYIuOthWpferqlNsjxWBRUca7o9iGCmgZrA8MQtsTsqAUcJaeUAdwWxTqjq3jajU8wt5EbsxuPuNh989pKvb6s7IgnI2RAxR1emZ3SfEgBbM4NwSuKrfwG1SCTJUeOOKrvOJE/4l3WzXik16Fk2czHn/PddylTn4eaHL6PRrcTed4LbCbwFeBypRoV1JX3tF7WjSafxJe8RPNhI+agqMcxTEWeiySzD3LVxLFBnRavpehXKYlQRTrqkBRUjhc/aRBvZHFK+Jt400oEDAOzlF0kFevAvhatIXY8H7p9wyJTPNN+eE8Tr3/c5Hpt9SkfBGNboZt1n59uTv6FX8P3hdbJWb7+AFyiGktMFTtcwDAgk9sjaFyJO3vbqc0wSM8wsF25+1ZBRnMNwRFUakq5Wz+z3H2tvb9HVrXzi2Fc/hus1p3p4JEtKLf47a8sqYxeBBshDTa4GA+zLZL2DEgHVajhw0UIXRyMhcyYn5zUqZkCfUbGcz0AslHEjnNc4MfSJyeMzmMMGn1UjGUp0zh1aTsIATsDZJy688nLLBcM7Heuj4jqyYBOdywPTBKb5gGk7pcAgau1yXXyTo+bcuwQGcF0Bl9iPySVijWYfDxLb3Bw94fhxieoQpO1KMHnno44X/d2H6+cYOF4uUMYDWLYmVyM5AZw/94/WYB/PdR4CmExsBj6wGCTXwmsISo+4sYNE3ubCbV2bmyIWHViLiTFuupRsfYJ47q0xc0MVHeh4KYT+ErosikFKRxSk2JtwJS+xPpK0cOWBp4Vu8k9Kcxtgew6CV1Da/11D18HHOry3iyI8wQsgIuRnP7HHECppuXVmHB70JfGyZY9IABZoQfx4PreXijZg0WuRBghGim9rqR/qA91M5N3WQilWYdVKrl0y4jeJJr11FkiZ1nZGNwaUhFu8/Sk3kSZhkHbCypxelSwzD6C9+/Vr0ClxdeNJxfWjbS6YbImNKFQ8kXSCovKPdQvNCH4t8bAGXad1un7+6Y1hJtYAL7L9P2PdGN8BbQAja+mGETveFFe9FhOxolueVgAJXnqNR37HSvH6l2uvvEpD539q+EjWLtWlkLZwPFdCeLY05yySaIrHakb2gU//wPFDBFX6IAOU2TQWRIzcWKkjaFicPSHQoZeMuDIwuW+Uh/oHBhqdrmyWbyQHbQyrQePk3hRsTz97LdCvwYalFUrt+ikuMANG2vBDT7fHYH/f0rGcIEYfr7UpxTtvyHXHAwE3UhcTK73vq9F+BE84ahoJM/FiVRnY9LIKQ+2OwxGpetmgsh6gtYXWa8VK3Pzb6NmzC/UzgCoDRnzczDmiklXnXE1smgy5O33pf+um7S07bEBQaJmpqodbotVeJPErnwPJbGLMoBPQ1t4WPLSKgVC8iby0jOav18FchfokqLqqd/c/xAn7Sha7zIQS1AS+4aSAKtOXIBfbu7Fl5Lx90wKsM2h9zLFCWuzGurTLXqAChDJpWUpjJic9Q174QDNDTkY+k5DgzixLoGgw5Q6usnWQ7wPzilzm2k9D4sA/nuesbnfvJ192QVzlNwM0ITcehYLcwmNS2ARpkRf5sNG0/oquOcYWadYYUFFRS+b5h3JufjmFassnm6ACnq7cxP1YRfFyPXB3ZxV9kdE549h95ZU+rAUo+W52wMrA2hXmw/Kcp6y1eWrNLH5MgjLAwMhZmrfSjDHbsCIU6yO71Sjlol90O5+MNRCKaMTbZ+92DQMIWDYqq1wCScHODhKDrXAddoPoGqelVX3dHCQgXBXvCBQiPuHXPh/f0Ah53MkWpd6BrGxRGQGogocxhYo+jY+sITXEK3Gcq7rDbjpLROl0pQsz5NwF4WTtIQQ2scL8wdgRVj/kyomwq5w+SJhum+h5I/xdWCLekaGeyus7RCsS+DV0dkb5OlnUK64MDOXDM/T55u+K2N/jqTjwZUVseI55qrirYEZ+n9NFdnwSdMQF0lioM4eEj0Cn0o9drKLsYeKU5YRvOU/ANVqSMgTOku54oIQvhSW7HriuwPotnoS6DEUIfo1Dv/zvi6YveGWo/Et3SmqxQXEd9SqY1LC4YDTn1Zxpo7C99/+8i72ViYtjXDKtxiPEr8Vr7NbzxZLmFYmcrPZGQppYINNvkkLfoBWSU86WSF21pK0ghnd3fRO+5mnYqGvw8I9QdglZ9YNaqlYCpTYY3r/0w5GPGWrJ5cEjlbYn1e20jYbFaP4DRCd2yAvuG0nVF09nVk+PgTByl4dmRA4py9kBQA1NkYnNnykcuFAlQJ0UppX+K8oDy6fJPKmNQGrV/pBe7sMhWeKFI35s/XqGfdzF7Jqo1EZ4V48p/yxrgvmKOGCQ9vc7DbeIFdhc/QOjh0LQFUnVYnUY9YyBZPYCGXc1qjtUKmC4w47BwWhEv7GnyoP1ytooshH3mYCxZ3suen2kOaw+Ec+HLJPhzKqhTEYQR9gpS1LFtHA08lDMzoNFfwjxfjD7CRnLevMoFq1ELqSlfoXibJdOOX3MauV3/VdMIPNkonyerZhfOO7L59yMOX7g9SQCeLyETCGDSE9ms9GUttSDGmuEC2yFmhOMrK8Z95RyzAHKe39IjQpwjI2tms0IPM7+EPvRwocZn7+VqM2uy0BH8cNScpYgr4OSbmDRsMjT93MR3Syn/b+kew+hMJVAVsBH9zZ7LYaw7INjoyZ8cHo2kPT7f/hl/YA+EXXnmdvl/ho+NQL3G90dhkYkE9hOnQEuU6xOLNRcZoD9QA3c2voZOJYihgwSpuCVMq9Rtt6DKTT6G+29b8MgoDT3vmYKjJeJGH0Y0Tt37ekoFAjIlwl3AotGm9CTH8YuQHIiLkLno247EV2vqUwrzFu3kZd0sAe6+U0PUYNt1Ve5QT4qXgkZQRFoxpSUAUEJa2a1bPDbpC8w0TatbLIbTIOwuqzeuUE/HW2vIZPUu66MNwiws+y/6x17dWfE5xlhqKDT7fbhvJjYsFlsinOfc7F7LpNlxEKkDzfNMcWf3rciWvYIxI4c7HvTouq5ae+l0Xy49IgrMRw2gwiFyxCI+7b4mzGhsXjcx6wRvzzDy2OMFjAvcH2dv4vz5oj1NbsS10D1sHbZ4Gt4kA9Xy3bprcgd/RaOQU41GC14HJIf7WfGjRKOJbme2ucfuUHsD65hpTOzDVF2MtNlwtkcm1YOAJCt+M2UYn9NgPvN0ZZ8wNkhG1h3xkBjbXokJVdrQiLH/yLTEnzwezt8bmLsmens5wYNxoXLYdFIPmcc8khELpv1no0dROPU1BiqMhMTdu1mAKdMOzgqc87KuqI6EYeyzgI/9dFykRcWj8KTXLb5NIExbynviD+Rng6eXCL4D2/iLs6/qTz6+ta1cRFN/X4whWTzN6wIBoFiKp8RBLh3mxyKgJnDbbk9sfuBubFj4GtXfaid3RVGd/OGWjMPPKMN2OUyZ4YCdgpScUM3ikx39eC6KCNRF4e+I35KdrinvObOP23iXHymWZJ/y6yUp+YYxEJYze+Zt/95tUUo3qg4jFsq9/lAHnseEZzZSu9+ExPpHwnZ/tejqcIq+2zDrGExquwTwdUnh5hE5BwcE5rv8ietDzb9dI/Eg7fpVTsRHjPNvgN7IpHKNtHKKA4Rj20h34ck7QHw+hBc+8Uloz2U1XqgqjD3svS2hIxs81h9p1jqNEZjJahMjoU5qpc4TIzf8Z30WwjR/M3GuelvF835ypYZRZ5yvs2O/xrxfZfrN+ILpK0xkNSNKR3780NaK05h1ghjNEyCXk8VqJR7cc1u1GusD2KHo6uIztTSEA+4KnvSj2rGVj7CH3qtk6Royqec5vhxV6iAg5Eye1CR1FqkMLRha0V0c61IzWspVK/3Stc/w0cDQzm4VvU0Cn3I5mAJBcAUAuj42S+m7mDAV1Xwtgh3U9YE+1n3CcW/woaBnhLyFtYnHpWv+2vFpN5i1pMxB1OvAFQtoH59khmwaHoc/fhf6tz/miL7iTF+m1TMmsAaXJf/pCmZ15PEV5oVNhD4VtheeEre8il8xDjozFxHQnHHqnqVj+ZUw7jrtD/8fWdSTvDj9oaekbcj3zohrNi0XEcXzG+mJbSsIRDQfMssvgwKWV3dOSBXo1NaPhJv0Ggw34+knIbZ6w6cE+TPQ4WOP+4Gh8fcxu1K+mn9S/vZA93vAJmTlF1A2uw1L5d14idyr97+uiJ24Rt/6mb+6Z79YGfrZAMaAOBijwzqk0o/DKt0X8JSCF16YdI5slBphRc9IYlPQ03FLMKkGj9WcSY5/7SL9iYxCalZ5NSdNleWoPe5mkEb8+jRNJuCEj8T4audZVqbwED0y6zXY/5N0fShWF21j+DyfodpST1F+kB3cP9SYTUXjuhCVoisbzJu6L+1j4BZl6vpKyklcwHGrPIm9h1k4EYGrFHjV3PGw1A3/HtGZ7L1hzC0D1c2HKY2n/rMpRyNaNmBrKbLdGmQeqV14T4rREDr+aR+N2Zy01/YxRCuc/5dOO5upm8uN+WxadEbr+P+ysb7CBOk/xtJfJZJ9xdLWFU4VTwH3vWMLz53URKo6hwE6S9xLhLc/rRtt2vpm8JdzmxTF5Pfg0NVTKcBTWLpNR7BJCZcc2fE19Yty+wCVKhZwKyo+jDrgkXU2k55oooMC+DDSO+KrTL36XRpyAINE8tXn0eZBjgQPDjufs8rODD6dH3q44Dyb3/Zg2lxrOj10d8sOQj4LAaEKvZi6RcL2SMzDsDzkUI0S/08z6CYgYYlF5HaezSGwWyvKAKT+axrP6j5/3NQvWLzSWUORqAk89/eezUR8nnjeKYFS/uhtz6dON88SoHWo28C4DVm+PFQANcVHG1NitDMzy3a9ESd3SfwZHbcXIjEI2in4I/TkdA4qPSzXXOdF6sRE8tHd1BJ5FeJn7wY/1OyP2WvpoHqUxdWJNHe1N0g7NX0fV4zzqf8p9W5PzR79U6odUVs1kHhBSG71KYmZs3998U9t4v+cIrS0cp9UHyemouHgQxzdckzJvCzmCXlXMneAvS7epZnz6Tiv2kpgVMnCCL5bM1CaHr5N48F4B0SnbaJkJ1K1/LglwMQ2CSV/Tnwm8vnNfi6ze5Kfx6LvgEYyMLPYGSrqeyRt5UTHStjiuNgq2CBQwFNA+jwHFcxGIUwEzRr3LvVgFwKc0N4h340qpK+1YdNBo9IJ2bJFiLOL76TnL8FdbesJa3HqMUiO9fAUkXdU8VfyPFg8HkNHICoJ/2W0qT6LmywTJUf2k2GzlEGygpF634rC8nWr4qDTbmYySEfxz/3JJtGg9+4p/uqI5xs/Yok09PCffB+5UUzvknxNujsndjIc5srS9OCCqod0/cwkA0ydD2UC/1RaaOP07K+rZwGcTibv3T4BAHAhIfmx60UGzFd8WYOhzSRxWtMUTfms3ngaaRVCk8vvLKXOEE6dWpLVaNfbh3njD0nwPdcr+zwuhPag1gOYRE9ba8QXGcaun8vc+JRscYNZq9bu7zHJeg5t6n6fWTAQUIdrJe2Q85gSUdsFuLarQcGXSoit0Hnzk1wlce7x8/JqnxHbYsjt1DVJWx6N+TtuRJXRqOduhBsMmL5eeQoMKO7/QbzCLsSmiGbU/OPSugJxnhhOTqSoAN6ry3U6EYSJhpm1duSfruE8Gbu3xk2ow8iaUyUoRxvKHH8Y1ZZp5BOwG5CKXoOHt+qy4+E+jUNJzM8BBmmt7e2VstX/eRibFcYEqFRJ5vxIPbb9nL84BIMkfGw7ZjC/zxtdFBw4cCg3ic2im+7gGHPjs0XA0EiBDOjaG6ol8OwQQ+hGREUZc3Z8T+7/ghrlourSS9ch5p5HaRAWE/ri2i+1xR38naLR5I8WhZC5zY54y2N5QR6nMV5y7ihMuz6RtTh3D+7hdYblMFySGFAlS1I0dZkk87SzXnrXEG8RCrRC8efsy1+jpPmzHFFWP5l4SCo4zD5/JctvlUyrtv912BihXUvaglr6zmXNEF7UcTv6Qp2Aka2w7yEV2t7QW4w/RaULBcWMJidOCor3zSp/LfJUapIuwmhprmkhb8+uts7QwZqU6uEg2jxxFaac82yxL4KrFVcGu+QGj+ix84faRZCA2MUphMGZszXaYIumR0Myw0ajKZAe58IDMmXQrxLFwteYEuTolnNYTqL0W5h//JV3P11j0udUZ0G40NH5LvIpwODSMS+AzZWBBQdBlUARz9I5tXOUL+Tb8WG4lY9jNDCipmLmhjFsmnPGDhXWZBbKk51fZWNiLrcoI5u93RXGZttBYJ0tvaQAc7il4Lidu/oZGeN96r6ook+3rvr3FAvDnxxraeGJgfdCWX9f2ImHjRhDy1Iu4OkSPHf/7yyXRWf0CMxuYFaSSm3OJwJ+NIDn7jmNvLHlkl+RBsb8iKxx9j+i3TUQuU+t0DeD16M5kpBcn9Nvzy/umqsJ2AzMAziO1sk3xggvajBI0taBnGvxBZsBlVx+lo/PkCzT4fgBkgD+QfF/knYJg+Inlzz8DIhXb/QT3D8NEFEmrx7eIsruaQXLITbX9XHO0uYtt1SQ83HsLFSZtWTcA/3MJezcQNgujralnxn+ylA1zAapkctoymuPVglcRvv8OH2xAla8X52iyRqQxmGppHmEhbxFC5EVHVZnd12XEwF4hc9J6QXo8z7mJ0KIHL2u3EEb9hDDDktIFDlfzzIMusTj2ZX74//YFMx9e+/vJGXHnQ6GF7Iv20BhZzNDbh+pnbHbIAo7A4s9FDzJmxDz9NSKRv68vESiQtTcCEqy4Wa7KvBkp/qoG4vG6NdWxYyvcf09Zr3mLf/iQxbIF6fPno/OvD6KNH2HgvwzS5qxmHogvuXLMj2SrujLNKzYGvrKPboZBMrLO7QyuIBH6pJfFSXJ7s+A2XRleIZztMeraqM4JVdQGTYPbZY91UJcCTLcZWqx8TU4GLHqA/RbNRiBgJaX8lzR0aUcx4B5Mbz5tx0abL2PjvpHSVOJ4J2Og5Te2JtSMpCeniH2MH5IVYu/4QW7qXfD1qm/vDL2dNug0b3Rf8A/Eywl6ILSlTkG5rLqw+rbl+1+hy9KgbfNtDVxDClNE4LKIdDdaLJtP8fttmJHdY+aGsGMIooLCYW+fFN39lIipCa72LNu/e2S4qQuNRd0TzdJA0HU3AYPxtstgzX+dENC0Dscg0E3gKR8+5cwhu57y9AZCXsohJea61PkRFZt5YpeS0JniXtYoLQbYNVxuIHyyWa1/BiJo9B0EAYRcYEnOZaR7FY/n3uEtBKXiZXNy8sqZSeyAhA0lSXVLn8YDi1c1Ab7ClxEUwb87j1dSsPSMAlXtjHB6BlZhGW6KAhzaE/j5+hGJ5PEDIwxDkiuZr+ch+KgRfwAncYZsvmS6WzT05lFIKCjvYLYIvyk8ciwUFD4l9SZvfOfGxUyoiQtRyNJbyfRqbHPTCcCJ98S8O7/FjBf+8dicgqz1a8z2gQb8g4Lf/bQkWqoR6xQO74lLOFvZyeSOdn+si2gnAvs7W+LmvUlnhUQ3uE74yUmE7unsDWiFgSlE+WK2xw03M6Kp+fBjhHoQmblG+27syDpOHJMPtcr9riT7nLzGT1gYoTTc5LtkK60+VLVI/aEm8Ocvywih3h7ZjIG90nSIt6JpHl6iWXobEYa/dAUO1adQts13U8tfTD+t3wAB45r7ioASM4x33PwKS9IS+XicN79IoYqNOrzM2OqBvHCDOEY7SSModZsLTCw4ErCJzHoXsLluXvUiPvtsVCXRtsV7FMBcfzvAT1f+FKLztY7TGpWaoilf63jvjmtFFYR/lwyHBJJ/6ttw65d97pb8IeOAnLZk+mrNIFFsBchry4tDT2qGm5g4VAvhsQdj1Ax/EkbGzoZmrKGf5zzIxmk83/Av10fX8bZDopX1xI2qOHKU6CUD7vxbBm4Dnu9fQy/nCZZQ1LUmSlydhNvmwWEBc7PcN8ZTZkLavw5xs6cQMjsT/WASKKjf8cKishLQjOYYUAM197FBEKnjfrkcP5d5Ptn+cnvtrGo6ebYUPvKVtDCUfI569j6kNtX4A5sLoiYZ04fpXvFPyRhH0eWQgWYPb8fkUjWokVL4vP1Y7e6nY3MKoHcynbONKKKd2Gi88+t9qajMVJDpm+vIBi0m4PfyaKSgSAcFFVT0dfbJbnjaVFLfoeUg0rswGVCPfIN5dP6rNY5Jx8ic2JZ5b0U40HwonCHkeDgyRgcJNNBv7P+ojIJg3T5HCFYz+ArGRYTDmOT91tVsg8x6mYEfEUL1d/hXqzv5Z5r7sIxbnqA0FTd/YR/awjisgOv3hJBCVk6TcAsAmycOylssnpEmgzpQAkS1PcpYEC6JefI6HfMa7fGdashe7+burNsQsLfkr5OIcMoGfMutLb0eCQ0gSFga1++HBc8US3ZGeO4A3frDbEyF26espgI31xHL5LwkSiDl3UsIKPxboGCHLG7qn3V7ptQYczbJ3CeZoYI+WLdamHNS2da6eTiD7kDWB2TCTX39EVTU+Wz0NUbPVy0LXEVW+h/k/huvCvOI86wfgywI8cQgel4PnQu6GcwhqQJJzxJug4zLbW1ceIuoQiPAYCZ3b81uDbH9xCxtnQYyPz5sw1r/rgQhVKoyj1FgBSnJGEAn4SiQK9stAkqB5O5Y+yaML9WgwNn0HPhl/+vkdfN8nrkh2xDR/LUCbabPGlUiOAXrVJCRZCjY7ImQp+U++TWRimQvEJPIA2sFNzNeoGaroG/R+ui9YWnhSWdEQKq5U4H7XjeXD1yLMV+ibDKdqahISAb8oFaqOOKOT9NO2rBqMtbdOz9oQjX9Q2N72KFV9S2rGU9hvCFhPJEW+vcd2pEG4yxLVCu1KuDllPfJ4cU71MW4jB5xJe+dbxCL64rXO2Hsi6Seo3hbWUFGIqt+64OKcCum1T63RoEAdsXP/NLujHrNgvS0S34dX6ftHDXC3t6gaZ03MnTGFjb422kI6Bt3DE5UspArr0O38+4hS5eJk0RrjhwghsiRn7Sw9H1yCUklKGnxDy8D5kWT224Pq+LAlRDflrxjVjm0/C6Ah0qtTZS9Z23gNtLdhTDkOBjalIz3gBRuYYY4yMS7vUSx6HgbnQGhd+6KczD6rrUdYmhu3FKmG6PKIULkwTqPWJ61ZTn4FryGYoy9+QNK0eaPDF27srsDuE5x2pal8zKUPixnbg2Zw523qSPI9rcEx8LEL+iOyR8YLF8qML3N3lBGh6o3y2FEQYg+CsNd8Cj7uSVV6q+yf/6s9eaQGN3DgeXUXI9j0MZNJCmhHN3DxsbwMAwz+mnXGtcrFVg5mgkgDnXZR8LGq87mEFQN7s5n9j+zlgNY9J0DbvjAiP3gXk/Nv4HD2y1IIf44WwKPuosZS6aHpPceiUguv7Ku2KG6JqwNXYRWSOHZY+YAMEXfyfvUxPecW9W7JK+x4BnckwGv9Mz+OFtTiXHgBEOY5vStdUm4kHnL7fTzf4XvR3g1V4zx0wvP9u9/txtsG8lTjug3UNxfVStNcrsE3QYKv/ky9GjeLQVZ4IqF2fJ7+wgsBrng2sPBHU1EsiDauuxTRa5r2V1l7fP3K1AU6LtTjTKNChHxxot49EupLn486fgTrAgNw0ELQqozeSK5BXndkNkSG5YjduduXQex0D03ZOCTLDv6Bs7BiRy7HYdyiixkW+0yzAwRSme6UNd/H3mU2bNcH0ecrMUpMZBiKJ53k5DkxWFs7ysMhlrt/9F0LksZlPo1LbhMTx03XmgW+Hc+A86Dt2pLprfzicrBfeCezGzm4wq7bghgkjG30iS2XNkcyon81x2M3LhUSFJjSUrD5Izvy3LwnPTZSApayPpP+bslYvopFnYvZnm7OPOxqoUzTwiQUs6fkHc5Btw9RcX/008iW8cygbG7NGL22P+CFBT83kNKMvXP8Uvqn3JeG43IFm9PUdOvl1TEt/F2MMUonzUcW+jbRhAsLTCXx52+YwcyGrteNGCoZUpVKOOV2Jmc87nXVSIiaX10y+wP5Hv07Rrb4hDUdR2dGcUyrz9o8fpY2ejNVcMmNKGHECi5WwLisl69js9JI9+GG6bkl9xE58CUZWzFr2PqpzGfIX476NYCVSDmIFFRHJ1xHchwyroetrt0eYKRC0URBLZinMR2dPAud5i7TEqTWirEYiGBHB3TwokC9O4rg6EXJ2H7C/k78z5qi3vM/jmIHgHzD+KCPYDu3IQtb0yi1Yc5yBtS1vipRgOwZlfXW/ZuUnauCGqKHyVyCfh6wRNoAABBU6Z2InbcejWo1+DXhI50Fbkpf75j2bgYEkvXHC7mR2AqhJYgf6hgSeJwRK8TITA9kioxRrJzLx0Le/IXlxFZxdQoM9MkeGscLS9Lj/gwbUXDLCQUcFjyihu7Pc30zBzJC+PCy5vm0E5LaNpEv5v2HDP8fotq7Qt7yM0y9n/si1T4ubmAcVeKnwN+dOF/ZElbEhIBpVJt1Tc6PU6VR1TwT1CxdHp69Y3dPKEHqM1KgKHIMeRfzx9p7lwcs42Ns1yGEalwZ/CVhEVUOQ5vNoT60BXWeKUayUCI4l+B6POaXK2pyWnwbDPpjv0ratEq86apYi4c8KcNF6Okya4swzCbnxS+4yPgPs1k4JV9eXIFSC45ME60o1cLFlTQ1T6bC7+o5UCBAP/9aKIiihr1Vk1dyv55deG7r4NvVCcAIgLRD9jb4FmxCOwk0lW7IoXYoLzmJxzhwKFIu0cqGhtc5SLNVafOIKO5KmnqbUk8tn5GobEPP+I8brUjKu2W3fwKJoG9zETBCAADziHEdJqMelzDqeGMHa/NWK6tt5cBBxD4h1/pzZpBNiYi4oB9qCmYgWko+QkF54ocJqgahUcZgyveXABu5TyIAW8Jo1jDZZW00ymqgoUv4DysV9zpAVJutSJwkOqTd2n6XsuMYjgkY1eJmRPZmVn6b7rH5XZFb6pqVOXg1ePJhBbD3oylLEwxMCgugWtwjcgEknHRNkCr8EJ8uE7BD9vbZqJ5BQXZ7J9KYrluLbnhJZwPiuDI1DH1KRTwkMRS8suUcnrLFWBz3LfBvklHe4Za2y7I0tXrIFg177FB2j2b+wzhDb0d4OX99PsRPi2lDNl8y4RwlSCFeJwr83aLETkTL9Bl9j0oQKcv86SFk8gXP5tCQQDFR2TbXfoXHQZxQXLGsBNEX0wSuOKzBq43MxHGwn3TPuFPxAFsXnFr/xh/4fSrbXaxXFFWqvzWiCt8oKOYnC/fV+uPPI5RFtNcIqMbo1wru2kQrrm4dWGlSQp4mj9YLddUXXYF2s5pQ/4EM8L2A3+5+WS2Eoqm9D1fFjvRFNxMyGNaC+SGXXrLQyTXzlCmZhdgnRS9UaQgVZjdZQIWJkV83LVVX1jSnXfxyZSdJXf0i673ucqHiXZ9/+qTiDCeEYiCjNtB8960R/InFWgVGDpR+8yolLdyaldi4mlW1hFeprouIOUy/VhmgTOthOGu0LfzmcyoZGs1WuCnQH24HWBDwUfPSX2Z8O5N/hbTKwdNCVVV6xQPuHiOLHoPSiErY8gZQUyY1TjTUTIn+uZAFaeR4iSei99oLy98kWm/Uxz5ArdjRwP++osDgoMllt/5iOBAfHNS6EcpJJaAZssZ+8tKa5dtEyOrFpFYRwHqjpLdpPjaIsc3aSOUZP8W0+JM7Z7QG6lgBQldYX3Lq1L1EKIsvG0HQ2KaeHCR7/tEqye1ohfe6yHa9t8NosWyRP4ljSJmZTcgWu1qvQ/LK4TsUD6RzWfqckiQCDeuDDomyVGgtTJzGsxEFQqQEsijr9MpM8FlQAcG2GVpUHUWz+7M77TXLM+eh8E+MXcYlgYXpv6oNybryVcRFHwlrMcXDEKUOV+B9zxWjvhvoZfac8Uf3KetcmaSdXyhAv9ISE5BCFNA9LITgjV4oCEfXKYg+hXKKytEtNN5RGuXcyjENeKrWPDA4Nq81m8UA5SHZT77Sjsvfd48HoWYo92au8d8JJJNmXKF7vBPDJ1jQtmSUkkMDUVTVOCwwS4UB1JdZHVJK4mXlmE+yOBwEhMnDXLXSBCLtWH0O25Kc6heE9tOwHsOv5Rh5AycGYq6WADzPp6BVRBhR5f8n9YA+6qh8pPWRjrAQjj9ihlD2Ed2Cfthlzc/SB2JrgzRIR19rMDVBuaKxOLeSypEWnnZKxWZ+Waq46euPjU3Wo8SFsXqRwQ+MrL2x3uPj/166KyxHC/fe6pmj7/7N+vkdS7bX+K8IhdL857+rtwd/kDCJ+7Up+LMTlC9Zcke1H8QAlYLAv5W9cp1hGYQ98f+s36BBQf6YfdIK5gOTAAAAwFCBgGc4KS6z1s5DdwcHazRC/aogat+IifO1yyl1JLffMTgr52JU2gE2KCGbdVRjZgK59NUw0azkdBPAOiQqzouAuA7PQcdFgLv9fO6S+YKLn//lYI7OhpfAUPZwBk4xXEsZSMZsWbp0XgzZ2zwXQNG0OYpuC7/bRPgMG+fgTZDlY3gnckrKmcijPgJAoQHpx9jkWRjLwAHD+57AzZIGiFUWYmsq06cyUBBkj0iPijNm56g2IxT08CKqRkdwVuvz/RkTksGvnG//SMeu8e7noy3btd9eBcdR3crx3JXwGadjDD5rd6Z/IONypzk3kFGe3RDEMMyRm/Qx7SYtWBZ9iIZK08C+UZ3h6/5iPgjBpojmDSdNq0CTcDarsa9Vx0lstXscgrV0jIIWmiplld9Fyp7k2/TpTr4Cr0HqMQa7NSV3eXcUCxcEDB0Qna6MiQBprT2qao5u0fAJqp24Z1ANWHloX6llHHdNOElaTMOyWOlZR0uHemvQZkxuTgYB0jerlwHN58AHEk+tMYQ8USH/yvFc/Sr3d8+DkFEOj44cX83j3YPHlBU8qjt5+WRDWzNpPDFdMHJEUaZDdzidHI6f8HPGe9sW0dvUqyWcIE8XNnJgsUVLbNbIW5BYKNX4RNxphLNr8HMDgsoIIm8eQkSfXbVcS1ZQpi+r/qJmowY5lD1HKIbEE1aCt8rmiT0lQ70VK0K9fK+YRb9auV3fAoBCylBICKzs3+aU6N9pnRXdxQ+5iVHq5jq+TolC9H2loT/eNm2vblyisiAiRXwxGOpi6MXTsD3WzwcQ3f50lWdMkt6xc9uypoVZTEoAK8WRs1Aankp4ijKiq1rDx4CSvqJDm7PR8mbmDEEdkv/xAw0WmTzq2krZ6l3n7TTVdOkDovcG/mo6BYPHQrFqdfhVZGwENqzla2aCY4hCYuv/8xpR7Hi45uwgCKRNcyoUm4nKZQYkngQLgRVjWd+YufMO7bkwUAKsIF82qf/Jm7km31XEvoEfGPqLYJPcS5HuKPRc6ncx5jJhE0oaensR3oplqaFlYF09Th+zMi1Rimc8su4TxVvxj5DWJD0zKrE5gbp+eS8LfaTzkMJHvLCD6uU5Yl++HeXQZMXMYIXTVGk8sFDtUkuI2WFtYx07n5E3uTVX44XmEHZ4zT8SzISV21eDnUVlWQdErJPinPl5QAD7cdO6Mo1DLHYySzuvkqU2PZRJjfsw8etcon8QFZvVH+YN5TK6lWqGwAaocVDSGfIVGqy9XqbhrXrNW99MGfzMNNFy2vZwwo5Z7wj6DfzGNIDTGQbQUaSoLr64jaovvHRIzo2+wX9QA3DmkoBZQ34L7ReMTE/oBLZT8d2I5f8Mb07/t1J1rXTVbbNPvLLlO5MCwsqvcprOAvxi+O6aZ1zR/W97DTBHUvm+5o0E+0ZENqpS7TZGv3v6/F/QF9MTySE5QqKt7pBghHH+zx6Hx0xAvpgt8p+RtYQPrkv8IRShE71IjNXX3Y/OrUwGMnI+9N1b8i0D2ajaWQmtjjRFUY0mRrGkQGbUq3/MTxkufp2ZgC7kVICJcf4P0jtqTUIIB4cH6kM658zTLyCNNFIjlrpIxhs3Ivd4zYtITuCotGdaIjxNhrIreZRZUr/1qCusHB78kwb3fsCmqbWvrgPiP6IUP73kANlMrO5Uxif24pNu2xFBSNydWDX8ijUCdxKq2YycS6HXHapaeC04IGA41L9EpHb8rEpUU3WcIv9sziXI4uH+svLXSoY/P+cuujb64I8wpNPlssOFvIXzb9c8xLU9Vjix13TxikfzdOMjbiDw6hP/dO6Pq2ypnQ8lWEr9PMMfb3G8g6o52cAir6UpyB5B29mmbLk3zWiZpIMVuAnZM9d2g4OtDXj32u9AWmzCu40kKsiWN3o+t4n++oHtlhiv3ebm9pfmuHRFllg+c3QeIHzKS6cbUVbp+5jsLkvPzLidkOnLR23QTz59OBbA8Mc1oH190V6QOKUIQr0oa6ddJXMM67Obxg6EV2sJefztAQ6FdkMyu8xIYYlfboI9L1ENCw/Ofl2OvlBa7NKGOgYjm0qNFZTLbd7+mK5yqfl/MYT3Sp6sOikWv1I259HirMZ5MdNuwyaIPE7IaGvuRmofHvOJI3Iz58kUEqqUO1TXI+I0eU9m0aHWnp9xYuqaOtF/VMY4s0f08Tdw8JjM7EFl06kuNPmrI8zLSznjPDjU//g3/20qFUj1E2Lk47FvExicapeLy7w6pCpyYsQCu7P0MDvghR+iOI4gKpMZP72wBz4ixkpqQPPF/p97qJQBlkPWkXMq/zmRfa5WjotOl12R/u8Br+OBdvNIhqRtV4qr87zs9GYnQnlsSyJXGiaKqeq7W8/HPfw6bLLkSw6Kqb98T9TUXTT077uw1T6JsytcMYgllteGJKHE8V/vtEJ0S1djkbIViCqXbTLH4wsb/lvVkZdOsrQ7SIHI5FCbunD8iZtJDZqa54TA20io7Lsz1xB9IgWD42w7j4O0yJMoVtdykCPV8/spgAAVCidxuxl67ry9trXaQvVhPWput3VT+9KrTKmFv1WfX8o+Vd4++KopECoj/b52pBk+MRA2mX3lQu+CfbSlHJvJw/rFTwWwogKMrekloOsyljN6hznpY7ulO2S9vzXXhC8BQTqM7eR2eAcl8aIesY7hmi5xVt7wLNhp13zPQMH683cw25bQy2y3H+SvgUHBRXZXWuRImiDdC1mz0hfjCayX8F4YRLpy+gV4+SCXEDttohAlnd8x47CTwcZTtkHHStLhkg2S3WHexmQiNvtTlkggsBssoEocReNVo0vXOesEsySSk2SLo38W3OTxmGBVc1K+jg9UxjMa9Pta700WnjyNxlOWyLV+gv/Ixl9jX3em7RAvsMd8QKjK/CYODeK1XeeBaa2kvlzzeQPFuz+3WeHaQXP2FaQUqvsiQnF6EwszrGSuaeJjaw3Khbu6r7HJy6MHqpF2D7jewoxMFbwRbwMr55FPzZIOO9+0B9/OG/6O5ei6Yz62KrJ6PiMbwrfP7Gk1Pa6LGX1T1lnNpUEZZsGFtH0LJ14ackYveMS620LJYLR8gGOBc+eR5n5V83JMowoOeuPaAlLiUqmKpb+DnoHi8SaJvimG2sqhk0ivIIL1FhNsZUlCibK0hiHCSM/WSmEes/a9LF7NAh7Sbd18HgYIRLE1IacbyuwZKhYaGl91iLyFC8ww1wmwuFZnhMQvzCaSK6aY7wP0/7Ll3+zt+pc2Hb2SfYA8mAMxGM2LMVIiSheA0g8laH5liFEoL4l7s5hZks+02qMLGPGtEaf/VIF27J8/K6Dn+9ari/vnRcJuOP+0e16Zk3Wii83aUWcDCbFhv+WJKlH1Za1qWL9TKZMMue6Q39vfQJ9Lyv9HOPUxaASHiy1UooeCrVAsGtco2Jshbr/ylPhrVRuV39GgS2etAVCqfTPDfKmNf8uUhNhRUID/u6Pker23vaxCYa/lL5krOnlCuVR3Lkb1bIYh9sPBptMTefI/4HRSfhO6MIqxn5S2rsD6z0JkaEwygpD23De/isWK+iLDygXfCBJ9b9jFvoC9puugQU/fpy+IL8IwtFf9iKemObB94N6wZfbsHdK9ES/4Ry0aBPyU9JgspP1eJmAUauxsSdLJ1Z7xD0musFFAVhFdPYq9QfZ2onp6RIjhg61oOlu7jcGfpcVqPgxBudAps+G/B+TMChWMw+lMoqPmxHLscR1xxiytx7/tk7coYoRiUnE8CMdG98/D/HuUX8yFyRtqzNpXTfZTirStpjspweAdPq9jBYZFZ5TLnX1iC2Q+wXweltlT980S+a9d4t1Edx50TY4n9fdQBI+z1x1QDGiKsdopm/ZwGG2LTy9Yrl/dlt9spmDs5Ve/0nSJ1uZ+NsRdZAU8zaWGLlW3U/oCjaJu+jhMgYWVnaaV7tRZnF8fDpqIwN9zOpoALAirLvWQLdCIK4yu9eZI2SM2UfWpBPMbjkaCkXuJ368sghBIKb8Fn6ghcOrB6hvEVHwuhkNeQh9j46EHbORhflb3/93HV5BCzW239enxr7MvdSMn7kWW8xWgNnnk8hxDzAVopz1J8Pz887xkOexwcZr5d49UU7Qc8PKJdxTTIXJtPeYJ+Feh6aHmmrpT6T3ks1cxjCMGIqQD8z3FOT/Vq/Lot1gzaND5IjDJiwkkODDDMt2hdAZVCHtR1jjI0XHBM49AJpEDbs+NeFjO8HreaYkhyWukmgZMIcbWCJfKIhrPpUwoRDTtD2S+8fbuhkFdcJW1IS2ntArzKKklkK3XggUtfXJewEHNHasYIeunoEsjIifYNiera//+FmBUDsWBvIv48tIin4esdizlZHaiBPeghypIdsV6+cxbsztRYbjK9qhGnY85gr9NYjN04LURdoWv/FiHBUEvm3tSr7KsrBmqfR4OdDUYo6/+wSSXEm2gmFN/fE4bIQl++etSc15QzjcDFgiNhRBehkQzlsb/LonGqXBkxk37Kfr6ZJKQxwKqaCWn6BPgB2OwPCaB5fLfWPPXfPFOqQLRmAcsV78GWaSPTvwTURoQmfTw2KNYFt0C53hezf+7TAn1b79p8f9Q2K//hz8iW7mXz85xdiFpII82aBMcQqShBucRTtMPz6R5asWNMkXwOEjnDmyinAevDqYv6C4Pn3TOPDUh/OjHkEG6w6Hr5nBEjv9T57BaaN1JiRq0kmJ4MBM4HnIu5mb7MODTmBbyToepOJaNbIZqgwKy+PA0C02FqPco30//EzGI/s3RV2Brlw2okVs5d//I2CNQ6ILC2cBVJCbDeETmdZNI3ruZQHKrcLZWxVdMBsig0f8Q7Cjn8zflMC/b6YK3gCcWJwrOKG7w9wpHy0gRH44cRA372dZjBdAhO7SNaDW+QghDKwxFL2bpZUKrTxRcOMY7eON+KX2iQ9rqeXoaJrFmMBHTqVxVhkDaJdeISdRHQc6q18RsPms0nWT7mVL+thiMg7dO2Gr8M+gh/n52H+iQh53bsZOMCQOOGgQJBAtSrfCplzbZe5aJCqlUUDWatNWs5kAmX/qD3Dzsgzffmk2IBTXLOtj/a0r8IJ3DC7BiKea6wkHtsgM9k9HLJz9h3JH4p4yrerKs1A70sSku8yX1042lpL/gfUGqkgwzNzFzNiD0gVfGSIrvcHKepw6FqcGahUnkgOVSOmTFpC6qSc5HTzo+TTNC4ODjkFxJSsJcmiX5xgXkVgm+d7yamVUVUnSpAla80B/ziqteWi8M0ru5ljZbTDUYWPWhEKVTLUX3NuAIbuXLvT4UyNXcijTbdl+/MjaTtVFDIYqySpNlEjWy4PyZcNc/+5btT6QTWjEJTNGkseot2iCAeJ0FBgewr3DVvAtL3RM3tZ5/3MmY9Otb7pUsBhghq6Ate/XoUHQmUGqU7zqFM0tv73p60hvgVbBtDof4eqQkQtQgJgpmtgpo29NKx7gP+5Wvwgdziq+I+oMQlU4SLcIn/2qfpG3ZH2ZEdQu+LzGNu1/ABtEdvr2zOsFCfb8t6mxrFnzGVhI9YhKSNyAiJpSk3gF10/yTdp96/UpxZn56QgISd/x2gMHuYuudLAj5iJyPzD+h/kPQT/vgjvF4UBqkNOHiYplE/K2HKvmrCU77y/lB7rGfB4ebWCVaB5zGKGwfgAjMLeg2XXBnAEe/Hsl5+GFncuH55a/sIh/AjHOfSMkMp/ys40SbXFYffy2uO0t0yE6HTpdw40AG0gaFfKNZZ5DLPF2tkKRdukUm5P8gNuu0y9sXC3/DFYqN0q0jSzs29IuZxtb+tpl27WiIo5z/0/T1OB3bKbSLwMRGAtJirCdQwxTzKe5cTkFGF58Gptw4PItMjmKL66fXEa3khPbZfOIgpeZ3kPk+XnS/mW7fYrJs/iZ1sq20HtB5Ae5i6tENTaQIUnZw4UcM604gHezqUNOR9NIvskbYAzjW0e7F+gpKKVfUK2AFLehZ1AnW3BSC4RJ1GVmOuQE9H3Xmwz0KoFsF+u1dIV3qVpZoKjvBaywxEeka4m4Hwt9w14thKQbs5auhuSaJEgaeqosdPlILK9RvQtU1v9PaNN3UIKp86aYhZfdIPIPqS9WrIQ04eO0NMeOwzWIzpFo5PbojR8Y6ax4T0yKgGTeY/Ps1jX4PvU+S4u6cS9ZLthSBzH+FOWW/uXIhcBy4R63+HVoec81+DtkDPt88/GRTdfaa504dWq2XTGUHqNQgIejDVnV67OBz83zmBxK+ccujaFG8VOn3elI8Fr9qgosTCmabd9P9s2puBFWAPRAtiyhJd0rmUyfYfqWDc2igwh2hRiQhOCZzoRyaqGNtK4V2xcc/c6g7dmEaGWlSiOQyHNzV8t2P9mOZRhWu8N3pMZ1jc5KUkxRRIqTd//Qt+lgbyM/yhDhGx/VGiUNFcnkAApmzS82KOgRk1BrrouQWKxz0uvW5nxsfoaQaHWyd3IpEv+GtHj908mzMDR8fyuVlACZVOO3d9UpnZ4CZHny924uGSAP0mPQbrax7q+qASBdcWifruDf458dCyxS4vtyxJ2QVechHcc/2OI2Fq8icYRZMxOCOXXY2wAwi7GcabjqTyJhr4E+D5vY/2w6knDDa0toOLu0UUQpsLNy+Eq2tSfAgDyZyoQLYuXYFO91YLnAb1vPtAaM4qGM/YPV7mP6Q/l2JbKUJETuOrMthYdrZVGqid8tungH9zRbfmDqR3tWZzQEsAMl/11pP9omrwvsR00ob8uDTZhzIdguGT/f7kBOazS/jMaVT0tLS/w0aclq88yaLoRAgTC5/NKcvTHRyUKhD+SS+RBxAfgTsCJ6DZpdEzgpMWcw+3RG7E2jvKqPKer6dhjRlz9/doJ52hFIOSIt0aT90hnh/Da4NsRwj0tXBH4x0x6js+Dcr2GZ7ZnTjux1hr7aDkhbVgNEVXIXFHokKx8OpH4aObGcbMgCQCy5uQB78PR2gkllXkB69NwSNCldKb7UitxoMGALMmFyJ/ahI1treQcAZ8a0rfn4i7aZCk8+7R+J/dZuPLks1mESUaOCBB2y6seJMaocoS9O/lA9CnGhYYM/0VGZp7u5lgzYqPw52o7XgWhW+ONrZ1SPpjCvq9UVPPUvRBeQK63p1UFNjVPCk7l6cJFw/qu2IZjbai7l7trtHFuPlVQ+YCNpeU4R0G/o+3cgrsq+KIvJdFYJH9N1YcNxR+MK6fXJ3TjOUqgmpIACddaNM/au77AXP1vs0Nx8OGJCdbvkFkmf8REXbpOfRUFlN1WkqCgf9lt1syq7X2w3cHkou9437/tec5R62kFf8I+VhpiUWz37aYeh0cKVFeDzgjdji/oL9+9XL9XQTMnCrZY/uRniSibkgzX5OkMHuf13HnQXiT9YvrgLpawFJFgvHMeCcIuM9Vhbq7ukpqXuVZATKd2fU2Qe6xPLKwHS1I7uQAJmOg8KdqzINg4hm65UFpAmi2zCAAHBkzQFFDdHviASkpJTAyz3USqI2Ws9a8gwXcu9BjQvmKTqEOwM++hBiIc+a/XUf3Utpm1498sG34vdPpXgModMmBeLm1/iyjxb8NZTbcSzd6k9ZVsoWCFYegF1G5UlWCp+WRWxhEyXv/dfPjk6SxlcyYDBDKITVtJt34lrWNp5UBBu/5BaEnfl8tO159j2iWYbZYFg74xrdCaH0WMObI3RCT/9AxF9JjnsyN013Q6zD9ltjADGuddm2v7sXIeQEF9vEYKqMEgfGqvGYhKuf5yRlgvwK5yDS7AuiJdSf/CJkK0yOafqBGSyfjI0or1e2IzJbdegFPtNUzEQK5lEL6pMHO/+RsVTW0iFRzRqasJwNNeL8cngYVMtWQsty1LBiFEO/tMqH/S1eOXS85QWRQcaEBNLZElEDJL6P48I/ghr5E8NJTns2Ddi/ng9kQpuu69pcK/B29RFhQz3wNLUc4xq1NnKZcLAoqAP7P/mb/kviRFlPPedYi/9jI+A7wPh2M9z59dPx4tXEoVfDpBvMkeujMps7J/iG4Qjgu4UMG/KxVkMAzfu0kd4aQPU/gxKzJ3k7z1BlL4yXWWfELqddDy6Ols5XEJXA8Rvx7ECIFRvD5Lty+qQUQQCDX6XZF/GzPtGVauOKsTYZ+jFQQoV3TMnGr7PASZ5NAplTAM5vQwDxi/ptIoL8QcfY/L0HoYXfL95lnHVkwXzzqxjfixBQNPRS199mWg9tHWxVY//0L1vq/Z+LObvzpDOEqDm6FOqMXjUaygDrZWV35eerfSzvPLjb/EaMhokAna5qv3nVkrGmKlwbm0LoMDGu1O9iTPjk94LAEYhUAb43+emykxgdfrRBTdGki+Wmt7NEt0SDqbieTf3JH+NtGZUchhBoO4/ejpf/7i1/wOqf5ttCpWYiJUbNWgh2NRoYdZKBmlmzKGCNibZDAC35ag770lcnIucJwR6AeZOV0+yyXAhibYHrqgWTdnIpvnLrTDQMdsX8Gz8BoJ+2Ii47S6rob7YY9mjolZdb4Q49jAaMMc40m/wIGYDcXDQ0UVZVSZq37/P5RlG7aeQ68/CC83qQQSPYXuwEnF0wk6pVvbuehXm33Zf7L0B1FmDpwTOexrtdH4j8viRY50QF6JTJVYwvbWzMl+iXRzaK5uTDfedX/kJH7qWyt//XK7fYjuiZXJjuC2xAFchLkgyOSzVIr3Lkqw7zb/BBMOnDU7Xp3tyElGcN6oBnlHmTVMyyuFx5xXWRPPM4hHPqHMrE9xZUa4vzbHJY1CGf19QQKzn4OsPl4OQIeVBACYGIxZLAE/EdiKZryAAAAMBBwAASDBBm8dJ4Q8mUwIb//6nhAAAAwAABfbWFgAGvs2evWNmy+F0C35imNSA+ip5Vgo/8Gfydlh2P1XLNIfqraF5vzBrr5WU+bGEUefwDrnCL8i6JXhJDcqOHun/tYyl9ZCHlnYQPy48/O5cNNpHsDdV7j/SL9Rb/vwPhiZPMCoUjcZ/EOa4SRGjOKmPoNBfksk1RlBz8dPrHODX+X2pZ0G619WL5FHvNAOsMs734eeB7j9M67TxPDctIM4wKFeRgbLMHQzhdiAt2OKpwAO2QKVIlocJPW6w/xMZ/opLiKPWeowmPwPE2/PlkOJSApTST9sp4w3wSVqcNOuWC04u+TIwFucFjhZyFVodwMmhNn10eNW/1D2Wh5BScPbUem9k6saS/r+sUR/EhbQtFwp0FH94fzI+cgR1lNCUuh3KWpZklRlmkvWqfyg2mDafsyvsBiquScLNfuKuhUN8fu7btGuTJcxNvPyn2tCe9c+DvUskRwVNdBymWKR4G88NIfsJotTSeQpAOQNGiv7FEEy3eCQox/ZAO4BDP+A1FZ3hrYEDyBhVSsaJ9vs9VQZvPMrGRZXIazMLUnMwQLl19RNp0dK/H7L47EWrEf4SzyrPU4ZkgoyOpNuyLKeI+OlRT/OgTb4QLgRYlKdNcu7HCSjYVj9h4HvJCyvpJTJkKjTPG1NeMnEDeiK5DxZnFwjES9FpxoNTLLxhu30aSQv76AS59ttSreNO8i2OKOjmO3MEJmVK9B3h9H2U9MHez3g+rB+1eEFhDtny50di1ndGBE2i1U8jh9wV4N9pmnwCpeD68aw7XdEYRwUlqOo8iZCiroAcxQxQFXCChf0vaiF2u0wRkGyXapVjMn+S6V4wvRCANKfcSMu9A2pK2k1Rz2DZokBuPs68gkq6LBYMQT1fFlDDIxJEGnOnqq8wb2bDRh0nUr3TA9KuwBPd2iuH+PKub2bNIr5m5grp05tIIiOntRq0ZlP81HVk3e1zz7zaP54bjC9eVkE6vye9HASoLiAUpxvVvOv5V3wXy4GQhqX7NJovqPVr5XZIEXK77BfwRSllf5LTQJJLthuMqo0tWDD9STCx98gR2xoCTVv4+M/z9SV1Hc9jtl7xPQ7jd3d2tbcoasO/KvgAMDQWT1wKE/yiRzRhxFoUneUaMkObyCUFswwRXRe4lJbfTSmEJFNkZcqX38xzVcdO3wrma7e4YTiJ5baaSnT67XvQ244dZPy3ScubdRJMaFdqh3OoRpq9A2eOh0WQJ8knrEymu8xS3ubcFrc+6nXwN3Lyg/E+uphfNHw7GF/Cmp7xpJTuz4/ct4303vm3Xg1j7kzTvOe9/12SWNZKEUJDgNEDIInZCQ1aC1Q2owQgf1T4lnpmBJzfY/3ObXjYdndIRXy2ThsjKuQ3cTy4TlxmY6tLQsoG2yeNFjtDvrHXfcg8P6kFCqLQ7yHlLx+97uakg/XTqrhH6izABW0wbIU9Bj23pblzvYNHwOAZd65O7mbTgx0iPdS/6APhE8KhDcV5VOrbjG6YB9uxJc8tvGD0Xv0Va6RVzAYyv8biTUEBYID3jI5HXrMSAZNBpE7h32yvmiU0fBn6N/Q7mcMZPrVOYpDvtDRkBsBJqN0rwsgakvVA0fd03WGWXWGJTS+a5D5OZshF4C5ql8QNVPNl2gXzz8Po249lh0iiO0R00T9p1xTrtsPssGBPXMo35NqWnVsJWF5vXTEwGYJWtw/hMxZoUDH6T8M0nNDnvzCmbBsYp7TLfsyUUPHbR6cXl1zlGdCaMVwfmAKJsUXv6Q55LZkKE9OEUgDXAskQwTa15bgOyhPUUTkzu/ax2xvKs2iet69PEqlmfqiyiYgw5f0+ThB2czQymnN2BQvrXA7LZ3vexzDpsUTplw0DW13XESKVlACRvRMYcLaNhLfGv1bLTYbD388YylM98NzNzztfRiyXmmWly/Tb1QJfNJH9BUTzHNIq6qWcQrv2j/jP/sLe7ExKqrONhLzV/1S1OJLV/qWE3rwiqS5Zg45X04KiAYNY+6MDRjVyaqAvhDDwBILz4qff+6UHhdxxRiUZURVpTRaWNApPclyWinCeyzJVEyAZRzqo4x8ux7VzW2HiDJ58P6qwmD2b9uYEYai5HuLP34jx55s0oe6YdUPHPe/ycmRUZtn9ChHzGeQjQzuHbyzo2sVbS3J2dUSePa0ARYVfijXcBesBN5SYRNQhBYG+sBLYlwimTSH2Ln23+8BUeErI6deu0pT9+ACHX2s1mhtYofb7CHc9/Jj61SDObvIsfbp+4o34yZzp/pRaHX34W24ND30q8cdzVdZZmxfIw9O0cFq8pycCG/4672GtYG2LXgwhDWcq9jMc67pLM/bjT0m0S7HOVMWNw5YuxHleZdIOyz/9f/NCfYJXdN+yQTGky6xcT5qeAc0tjZyBt6ZXfDiliSyrT/qtPOLSNu76u1Cqb+1NtTjsZaVarfz0KTY3k9q4QCAX2mbFTsrkxpKrcysdEiZYJPAGGZsgjbThWQMkuioKHpuesWBOk3EbzpWy+dF/EMyRUrZU/Qe+QkyNiPMgOZBbAZ46Gn8QJ1PeVg1x2uWxgyYLwUgFqbbrb3eH7pVD7wss55MDy1hsSoi1ynSmCNHL98SbUqV32wWflPSLaFWWO/CGIPZhv/kiB7DqRDZr7gb1rceYKkh0TBhE1NSUYF11rcOH8XZJ/2CO9DeU7KarB4C9Kdf61MYhp7exY6hc+AkBZNB4fGR7NPzlMoDq+dzP5n0Vt2RgllI2cbQ+wkj9GSo0aK41GgbJn4yuJi9b1IXiueMaqY4y0xWY5BoQHIEHC4S/uw6NO8SQFdt5jbuS17z5AWQPhzXPnaUSqahfCC5ett3mOBckDgHQfFRIGAKll6rgx4OAIbmB/pVpYQ+mu/nB2ol9+afi5Mbfu27ABWnldlSXes3zwQFadTNCfCoOoVtqDIl7VBbOsfGGQmCdNC1fnyzYtwfcyVU5TDGLo1B38zq496r+QdrfwZYCyRS3Pe4Fclax+0tou9m4I3GVnvMvhpuSKGSCqjuFlt7DiJYBJt+2X8UhJhq4bRMVjtjW2+R/QnqX+zTTTv9WhNh/pZZQk10UW10IOkFLxP67vTFAPL5jQdK4RJQ5YI9/rNlgb2Cx5rhVVy7uM2X4YmKMKOUlpkbBgtuK88EDwCwk8HwYtXGNzqjweGDFI8D4+6Gv0gfXLoB1QsJt5Pjtt4Eicy0gXAavw1T2l/ymXN92C6P/QriNMlClpLxtWHosnAzWH48vlKlDBAMyLSa1QGABBP/8dMbrxziCJaF+qBjTVF3TSBrLWEZSP02uYN6ipqtRBtJj+yEGVw8eQrcO6c+pFRkd5KSc3auT7i5AjiNGSAxqy5Bhiw8R/gVruTAAkGyugmccMfMcPloZrukc2Nmdri4ZIEQJoOVW7KVLebvOFyXztL6GyHUP+g2OHCX4nd9caHECv5G0U7vh3e/AEcwu9UscKu41gDObbd2XqcWN6xHuHt7Nl3yjapYB0fOOeMdRG0hN6YGc+Bx/Ke8zeSgeUWBYo+otaapfGkU1hK+HzfvNwOdzhgIjKK2R1dOhZfqbE1ai8YJ2WATcpR1nr62ft4FRWAnj8y/roSSvt90zkB1+nhzYjDx/m56w89SYmq6q2S+JT/+uBOnaWZnIEuO5ML4ctW1Xg/S614g/Tv4zUJPf1gCh5EQC/xD7yihG8JiBrhsQi3/awOwK/48EU1/KYB3bsAhoohe5ORfRXw2g/z0mwVdNtf9BVxnPyCR0Z5II7IMtn0nFJDBOhFVE8nLWOM3d5phA3OZfAe8BuXcxh/De9zq0aCsYYInhAo2E81pzFeZmMmSjWYUvjm+B+5T1upgqwfRVHeNJucKga+GRvSlZM3gJ79fgiWy2j/lQ3Vhuf4vwSPv4+7cbmeUTKtbX4uNcqwQ1WnC/VPplKS7YivJNQ/y1xnMdsTTSzdXMZ18qoQHQDav+HLKgy64Lmd6IiPX/dnAGvkS9nAwwpPunukUNxQ+B6jX7ryquczQbI4XQ4pNLqTyYjVXZPS1sehzW9Tkr2k8j2oCk49EJggDiEH/wpSAm+T2Oj2VQtQpYw264jWI+8OMBv7BozRXCJgyVRPjeMU7ryAqy3ja4ZHyJTYc1YiQ48i3avLBQDR6KQZuTWnGuZCqyxtlqCEU90tbdEQS/344HnnhoBDkVGHoOaECQ57wq8ryijcuyTkJiT75eb/3+ZJmsddD0QYVuFJEDUj0LsaIw+xGo9jNIGDU8T3V1qI0JvX4upSR8DatU+ZXBOcI7I6cwP6i6GN+e7HC5z5au5bPl0FYZbANfiDgWJWsQGmKc0PgAg4e6RlEb2XRVI9f2hernAy6Vy+vzuR6Nqt8eZ7HXO2gK6LA9F4V/gNQ7hIbHjs3ZR0Oa63pwI1jZQv3qGKWY66D5bau9cOVjT0zOQBQyXVuiQFOpN9O++aCOYBONX/5kNgyClz9XCjDo9QUwSgpkCDVyd7afQyBkZ3B39ehP3mUXElz7rfNQlvwQbXvYZQvKDlaIiPzm5G/GsTA5z+c2KB9cSbIL5ORli1GTa6Eg4VHZ//fVCPNfeH7igU+HniY2FStgPZ3C7J4jF+IJS9E3/EZAWmx99nXUDde3wRt1bNbXtOGeUwkdA1r7flZDqWhG1DHhcFAOcwdem1N08lgz95TLudfpGPkg2Fe01kdLYKyXUXZVdXNkRxYtz/+shoHh5cPTIjRHAfbO+49FCXal05fzu0NJI8G2Ekfl60xKOmXPcxOY4Za4QlxBwkXcW5L9NNveTPKbwtcO5xl/db2LJGP0LqJS944X+Fd0Nmdayk46uu0g3iWjTEGs2kfwLPkWpaKlXx6r0OqgDAPMnHGfqt2Qe1LXlLCuEJ/faY3gALNqQRiFoy4s3VmLIc658ZIqona6dqxwyaHUtWZ0f9DorVjXZ42QQ2gMUsP2jifTtzXdiaJQ2i4HHcuVdGh2XsliL5EHuJQIdS6gL9et9BXyIw/UcRfGSRHJdmuz3Pduez3YftWmhQQbWVYpzQkLyruHT1GhAMBT0Op5JsCBlxyNDE7ZgxNssxvz7R1SqarUiZjZVbruqaawphr41gGFSylpHnhcVJLrSWBi/mEhXahaEhJ1EHDBK74En/5fpgl4prUacwaW8gIKYzORMFjQ4eDOduzkzAur3IZdxs95/yPvfaaT5lK7vBCtfOvb6IMKw/GE0774q4Ti5kfqGfI97PaDSfQKDZUgFKJBFhz21YGXLssezOjhxggsESW67WI+5AWzQuvBKEOStBvoKPd23F72dlbXPT6utApEdlMCqlu1OuJ06ujyBNr17dMLG2WMJ4CCdliOe5JdodmLiG52ACIDEDTVyYgtRtybAnNlvNpOpMncB+b+m0byduQJQjvIzncjgf0Cu7xmuw7jC+btqv5Q4/2ab5FDKu6GmeVR0nrReyps3akuqNeEjWle8m7Zk9jfwgQMAcHgAcTryQoqzco3zDFPqcDBb5BQtbbDI8y9nV9m9jynxdg742T/E7DbCgyfAvATAuCWVyzM1bYVZrRN5NbvoqRYg9RTwX//2PU69D3dPnh55TDugnlGuP4Vom5VlFf9bg9iTUnS5gKZO60JptnbqatnkDRohBpfRWwKdDrTq/PdeCd/53rQJfdrwg9Bm7KlNJm7yJRn1sMrE0xLSIJ6XkUhZEDmRW3sJrcaeL35mkElZGookJDRm0kIQTqf07yF9oNPtTB4MIn16fnvEL2NS868vgPTmrmBxJa1EiG/kSNpOJHBjAQehkdNJZ7Z7lNDz4SLJPPjYcisromokWn2dDBlTfABorCIbtD/jT09kIBZKKiNYegFuE6R+BxlyXzMmep9HR/masJaCKMOXhAAavw1Fk/PIsFCBbzxZTbP0iSyHGRv8QfrYoG+Fc4ESEKojulBEqz7NaN1gfPRGADZU16MObDFuaDqmQF4M8bxVhH9vxzea7oEmox/iZNgzt6+igQYzwW6H4SQ4NrJLyTqY/wQc1bfshyiCpmciZ7BaS1ytwROceKy92tJ2cL48CHYdW6Tbuzfcskz6bb1NSukCJvpLpr20MR3g3pdOHJzmXsdbak62/S1x0v2ODwRNsj41EzNxtC7YK2O0vzZw6SAg0SR6dqB3HM4RxSOqjUjP+p+J622+V1XkelojWE/1i9RnGk7drHJwAWBsrXOk3QKNfIWkCFqbYPtE9Yt9IXFZ5y+EiUeduvyucn9sBChJv9X54Xa3kRMDNgflEbdcr3xoaxYtfLyieFzRFPnyrzZAuMD0aWGESWgHXiLbjxVNmD+nafC3NEwZkxvgUlPs0ubFljKTDhs6FldqEYbZPA/2JbZ+mmUgeI4YCxTOuTbV4CGhHClWZsq74UujCmADgSTY5F3Ml/ELJZd6Z7Mitdz/rg71QysjaS4PjY2dI7kSJXONAm4Ws/tAdkyh9VBioSXUcmfvXCVuyZGdspyLm8Sk6yuBLBmvIHGjuNa7pnGGuYSRGVWpTmW4gOKLTc944aCusLc/Olp7kb5wa9KmJOsDB/EU/iyQFZmRiDt/cZHwKkjRxs2FKwRWOemqFRRfzP0a42ZIa+IPX38J/MTp8JINIPGvRoUUp5SOKc1IDVX+ofULnxDa43amLfW6p2w8xqlJYNd8RwW5EVQGcWOLxj7UGuAHlk6SoysadfxefIa2q2OYXm8uATmJ1oKKBo54cQQGgk90cUM9eX1cE1BIEweXy8xPKmCHvD03x23loYpX0222f1vIWIbnjmLl5x0z9RxHaZavDr+u8kNIyzNW5VH3GdSY+/D0xar9yw1RrUNZrEWvLSSzWbah/VgZ5QOLZnS2gI+imySWP17aDe2fBkUnxYGlorOoKpcvJs1BAAZY5rZYDcOIbRuzt4OfvAnWouBJEZ6gD8F8GFZ0ciHbR9Dwqyny1yIHHqhCauFVbX4r0tnjlt86JrPxPHoz1t8t4vXnIGRyrmbVjfAGBNZsBfvqvJMOxxYpcoOOhR2sHWTabo/6g7wdgArWIEtp4mI2+2TQ8t0tirpfTxpF977I4Bl0PakSzmREhlk2nFHfSPuaKQLnFxE2GtvAZepG8A3tbS01IvC8bBq7bnYFbxRIdllhg1byBDmIJnq2D4zHRBca9bEr/MWQ7c/a8f+183ln+T+vysIZ4YJSonz4rdEEZ8KlnSIZAKbnvteIsq0PejaBwwmwijp/hvKTvFgvIL6N6PGREKDxlkp0u9WSrqoXgpRG0+ZYUxbjQ6mtsr+p3COmIdlnGRtJdYS+yIi2byDbHm8ZH91/nSLwdSnVhzgVKTfJt7EpKI4eBvb4DW7p5EW3P5n3vyHymRkR52NTsxnmLmzlsohY9NqjKF7N/0z3oCcrbgNE/olC4+oRq/bQLdlUjnL3dH5Wg/QB3WF+aqAb5/19crGoq3DLt5AmBmuGphFElneAOJUlQuDFU6/dIwm3+qQwqZYHki0hQDfLrJZNhYAPP+nsIHPGWmuyHGJTxLmILhOaYHDI7dESED2OwE/YJ11ROBH1yIzUt1cgQ9cJhjHiC57mAD9hnWFYR6Wpgx701CyWncv80Io5K46oveWKHc/GHK/5n2cgb0Z/dHqfCr1mu57+SOVawYjv1uzmmpXC/VhCl7DIBoMSexNrpRTMuUsnLQ2JsUYQs6r3aZKxcTaeBkqg00HlBp55QkR06TmJH3sh3bQ7k2EdnmDbM87sg4QOchb9s83m90eSJDgJJoR/3Tdd3CfJvubwX2LoE/xfZDMruShcP3wi56uADxC5j9zIaSA+Xn3g+GNcLBfGd1CrlOttH+sf0y77zUCsRiWrxG8mrLavPt8kpFYplGqFoqs0eXN42xEydRKxoTxmK6/aJZYbj1kw/TXOb774KRmdNRO4vuUHN9MpRZD1nAMcsp25zmcjgAtJlSJls+USDQ540k9vwG9K/YNES6gSVo+x/7hnHa/d/O8ePzNNEISNa0vq0XqAad1/u3FuveP/xYI6V9eoMHgxUw3LyIJrZWtVOWihoN3aEds7RLAD3Me3NlWVnEI0cNfpFpuLfz2Y2bwpXra5CYe4ORLrwotl5J+uNTuiEcVewTXOCMbnpSwlQ+gXOhjQ9BdyqhbHBMTDPtQAGYOm1JGQ2S9c9hirkTdpcuNFO/MVMFsrtYnztZnysLnyH4KuYXcfCBqurhL+s1BNtdzzAjv7vNcxmTOZ/Irr3NqqtHlznChVAMZxc9aV6w92OEgqcmaNMqYoWcsReEAAAMBxGEy9yKl6I0HAQkXjBBFW+cYExYEixFJv0Bc6v7N0nIZYIMLHGLfrMoh0vM+QkOMWRCSZy3/HwmdUWVl8yeiaFdnUS29QymarGS3cmScH0jLUFqL0lNgzGeqszRtmkkCYfxKtzozFwHT2UF8RhCQwye/j9NR0G+umzbsVfbtRqq5INXyWLh6TF/EmHqoZ+N8vB8srzjMRvvc/I1ltqjPfZWHDz3/w7tMq1scObhYvVSn57MqIAK8TK9+T2RWuOrLCwF1D14X/xvlg54UpHGX5YIUxwSWam/jiasEzLC8bHJ/iXtrpnOAR9bNgUSm9WXNTOxx8OLLL8GWFxKiCIM3mexn5P7DOapofugrvVbrfSjTuQsX8cwhMHPYjAYqz1KUfnmUx2w5vYslYRQO1wRIJYq5eFOrlzd1Anpb0IHJHOewlAP9IwMsz+Q0tyVorZDHPgBxMFIBefNFalUuBWlv5rdFK9jRYYT2Uzbc09uNd50GpPATEckoWVu903TVjrCjNoTIpbxffyDacXb/oTGJSa+SYj5MlqLsTGPFHJ1FuxwsGQ8Nv4B6EpTuQZ0MYLKFHKBEMLvNyENuGgWhahlN84SyAPcKpms6C7wOMBXOJ262SXp9AWlQRv0qvX0O6lgLW+itqT4RV/55FWPaseIOT0RN8/KndgsndEFGqoPGv9YH7k9nJQCflp0TSqWpa68JsPM/QgD9XXm+3MoVT94JcqrxcrnLd6q3oVhcDDnJ3lkSKE+xaj0Jv3EIZxbKRZ+oDIGn/wl4yhkY0LBiFijOirSDJP3QnjicAKNGrrzy/DzSLSF+OtdfXWbs0P8x+WSPW6FHclPfNmbncFrr6vukTrugXzIz92n67ns1/o5jKi5erqM2j2HSI2LjsvNZVQeWjSqL9xZsVU7YGAhFEn8ImBYgcnf7weymJy2k+Llnr1ErOspOd9Hp8sysJBQPvCG5w9/L3pwvr/S1Xivk+/ZVhBGHX1ms1k8KEmrFXhn7ybuxS4uiFCrXPUxvII5/vFzD1PbigU9NeVv9tZdm0XhydWdfFsBDx52FwZdzJ6a1hWb0sbCHEuKUmjpvaOWw/1NYXOCwvgqzVMrgafKmln09cjL2B2s6M0xbfh/OoGUprNJC/WDrD7oCnYUwiP8Wjt7cD2frwENaHsceRh5Q1NOwxdc518qQ2eByKGzG5o0C+CVqi6VRRngmMjjWORnb0+vFTZP1C2MGSbVUF16N9iumeoYPaVL/b/CvwVFIh8FgwPnmDaSNvwdCKWgDTlG4Rqe7RQK//8DaQ+QmB65oZi/9G+SMTb7RZPTeF/wp1IEBp3hQ34dF1LFPpj32qrYzIHsS+iC41/NI0ltGWeHg2+5LQiptoaxkKoE6dbuILXzdepilTQESXE+8xqrPCWO43Mmj1OcECzHQhHHrBU2i593V6vjVOrwXuakRiboexC7Gg5oupTo23HrDQ4Helyem5oJdKWHHl26kWkCxZR3NuEIv4aerrHXtFMn+TXU5UKXXgAEsxlyIATzdq5rKkFhfhyI6uVik6MgXA2dACtxCkaz0qIB4RLGdga/tDK3K7JiM39XHLeJ7JoFcvC3ljtkPNkoptbogJ+O5O0/G2JNjI9d2Q6oZb2lHXE8o+nPPZcysUReVFTZp1DTfMWs1C8BOuh2SEOOaTNHzD/VZh8P3ZottZN+TZeJugtqzRYi1zkDS9gXVDjGMk03SxJRk7ve+PjRbaSrflsvZO7SxOQiBd/dORTNqlOl7L7c6BBv5NZJArIcEHPZPOkrcSZg1uaR7p7k0+nK/3a/osQXy5AoSgIPb3rG/Kex8E30o8dnzdXmtK4kf3Gz5i6hxJkKyiofyCgUnpI8pmYWQ+0dTJhYJSBqJ408Ut27PTcJk4VcwApy9D312wtx39sm6M7hC9aLbNL9W3TfqAOYytqpKpVmnVxUwimP3zTWYjuXxeLpqhbisK/9b9qJAg6BYaB/a4qMDH54sT/pCKmnmJot8qW4WCyFi6EsVIN1hRb5vtPQH2whXrP2ZtcbwTsZM+B1zUCvdnagxeDSQGNlnuT8k37Y0nLjYaQ4x0ODKi0gmcTLAXGfdMUguLgH5EkTXbmRI2FfHaYRL2sSOMV14QJuUqRWFsaMGv0cigiRzXTBLnaoNh+ZbGVJsvMSRuPabUubqUZ51J/3WJgjwtVUvWLhY82tRe/UjX0p/rfxKGtwzdQdmIGT/N7PpkGn+6HEIWL8pYVATMhhZWldjerHA3IhG/WxeeM9bna1gy9yzX4w4rpzmNc7O5orHVgXTGnRpMcZOngSbLTRicv/2kJGqKEGCwRJIJYdoL8+J5LcypE4RoySkc10QR6p+UXp/ikyucEbFKjYlllJTHKY01yMNeGaY1Z2GpI6TKLWJORRGVNPOb0hUDb772OoeeaTYc20oB01jlk8PTCPbRqecJeZq0aPW31po0CmZPV2qUm3d4GwCvyNgRZernmlV37D4c1j97HP8ccyaFKXwdu9aQ7mml3j8XOcXw3cFpR7veIp8ekP1sobOoc/6f2XISgTFzbQIOEDDOLMC/7qScqweXOrWBkMym6/lnHJlSHyY4nyjlNalHPdDT3fNhEjlVq226O3xZgdrrVIiWGtdZ0J1xXv0wfHAqCwcrXaJavLFKGwwT8eMCOfyfAl1frjePwExAB6wPFaXo0GvD2QlmqCnM7ctQ3lRnfpmbXcKwgOpb+hzt+4e42U94meapbrikHSYpAC+W3XWw73lsN1bcUYqmon/sR8XimZz0kmZFgLb6RgD4TnrrhyZgDtf+sDJUflKmi9UxV7sbWnYcnJbgl38WoCngsR97YiGp6frdwC8lXfr9yUpW/LHBkt/CZiOrOEfE8yXCkr5LjHLEUyR4oDfHyxUEOckGd99azSCfdwWX3j33Hg+iET3F0Sob8smbm0bAY/bCo1m0AXzMimH3u/HdmFRnO7XIIOPslkcD4dRn2xy7GxzSgz7LFH2NVylcHvnBiNeybmPRG8nY3C0YLMiwkmaWQ5PYm6Eb931GyLikb8h4KLdtP1MxSRpi5KvGmOw7xQYU03/NcypK14g6s+qCyzjhl3Rmk3N0WuNPQjC1l7Uc7GXv86BKBZFf8aEspn01fhHYxDmM49l4xgB23fWVZvgw0JXMK5q9UmIU2i0Jv1nWL7oxOxJVmZ+aC51weIrdaayoHG4KORme3YYhJ90ZkukqPoc850+3T0Bg71yzCzeexQvYFIA3gDPfNbghtLY/LhVKUBpgzRbcgVt06JVytlEyYD+klmjsRhOZATCqWqKsgkEeFrKV9vsEUtIZg2TMkBBsTWT2jbP3/x/TvDFr8WH5Vf5QnrM4r9Yx6rYmj//+dzcKHb+w53rUq+I022J7JLNYaEKev07mJCnZr5Oh9/PyF+p3PXEaCLGggk2o2+9/uWiv+ekGdyeh6he/BFF5YRIle7rvFpA+YQ8Y9v5LaDNWACp7Qj/9BRg8NLW7a46144N0wfZzhsXJsZul5pLvbXY4Xbk36xN91WO6IlkR0aQiOD29HtB8/eGN4N1M47RwjIwZc2TjK864IWi80hhfCKi1mDgddPR/3b9yYLEI5Km3ofxNr9bJGoUmZq9lzwW0PV8zfG2N1DrXwLKqdbAFSQOmd9bekSBt3uh8ONQyZIlyq9texMCN9YF5zGU6odU+uBzyLxbgmiCjUjIa0qWb8Gd6rM/pXY/1fb4DcK/aEjgnl883NKe63qOlO2Vj+TqycqArS6C3SVINBnigMl2k4A448EJkHLruuM+x+bt8MLZQYcNNrlr0dxOMcp0fQh6Lb0a+Hjj9AtMt1Gzb2sW1hclbjn3xY70uEXMXwPFO4yaGDS5akveFyIUg7XdUJ9eSy3Q6A9YxF0QniWlP5CMbKwM4uOHD/WEakL4o1yVwB01deZTRq8z+GyV5XzLma4TNDhoblXx7P4bUghKrPuTrb7TWR/V/GvJKMCE2VGbJevldX9yrcjBuE+zkl0cIM5RrITZyNxyU/XOeVUDi8jQYqD/Cpp6i4AEzyzkufkX5kwl8P5pikGw2vfxhP70vUxn/w+NAFf/mhp3UOWB9/G/lpBI+mrPqqJ7QEj78vgkmkUcmdpMjeL4iPFLMQLn7zjoNq2JA61ih4K7qNwikkU5Uk9nDmtP7Fr0ajG+fY8fKL7mqe8Y47L3uWzqX8lf6D+hIgi3kUHnBWx4DPjjSY2cmOWS9Y8IXrl6sDbrs1ATXMAyjLsV8J8oRA3BdTB/Y2DJ1YHy+a73RUtUXqBRaqZegHvNLjFD+95HbTDCatC9VSj8reMdMoRL+wxOXN8B7dpakwXwGNMfu+6pe02jKvavziHjJM9eo25gQxpvW0+xOTiWpRdzFv1PgMH+ci5wnrKHuww7K2qUoju7OFZ/FL8jE30pmgpDoQU84iFsSGm1zC6KDzcmDNrug4u6NnKjXr/dEtgzxIIusn30ZVXBQSTjartCm0QOGwlGotupyGZav+znC2LUwurtCEpsOZlUfRc6jxFQAceMec6ZMNtAmrK8ORwAnPObKu6F9cpD4wuJMbSLhWLqXytC/Pjl2ltV2MY7j70DKxYgbMYNgmcaGuIDztsjrlY89QT343of2ujqllMBmoBXpcRv7xn/BLv59esTlXuELOPkZY96KqRK+26CyrGJRIVhMjVRtXDrY+1SkCOLysszEwyZdEEfYSWlHlwv17JKZCvPohr8OD2z0FxieCQ9jSvwUDDIMZMLZDbC4whn6wGOae/OH6zklC7oZmeRs8daNmhnmPUI+1FwSsrQY59Z2HrYbAaEsE3wTtAbWr7nZfpgo0XO4LrTWhwnelTqQtgncDVLlu2jCwXd7FIU9wQ+FfXudnWQQW2XPwaaXNGE58ZqDLaDgJBEOevfNVuYj5Mboz0vlPhI3z0fYnrGM/qp1lsAQOgNKAEFIqgFtJVvfecozhvNRcZLDdFAVH4aNlQiCH+1I8EcTDLMEJmDPPNE6l0pA5IOeYRiIpJWx1BIJU6Bfa4LwfIo4dFv9t7QWK0Apls6WQkDncZjJ/NvfojQJEZmHk2tW4kKW6cxf9kFXMNdVxD5DoqWaLB4wwy+Toe7SoriYglYwUo0XgKg8qX08FPly8PxhyRDDh5dG35idKdcQNo1sR15rUgiwhJS8vlYgg0EHfhQd95p1+5m0hxxB4C48r0YOrgkJXJ5lmyiBhf7MTRum2WQ1gmCfyLemyRuKDPcMeDoSqlLV/z/fOI1SS4cGHAzBu01JTYsPgEh06002WRXq4lFqN95njYCMtSS8XWLpXzo2dKa5RHHGBDl3hADvjPLma4L3fxTg00AAWQ3EVlUnZr3qxEI4DK8PDR9uBm4Lkbya5gi6WUg9eW/wmftiLpYiCPG60ksXX7s7mND0X8oQqNVbVLQsLbpShpOVf0sIfgNUPSeGBTE8/9ue1zK+/VmDe5+Fk6/vieE80QTcRiu03FLbVOTMwNS1muj3MjQqbc1qJRnXvTkBbAA79ySA+i0Uvr3GwYuXrDZ6+zS9KIn0aiUqAogsDj9sTSzm5+NaNcWAKw2eqZsKlHOqdNbyYcPM79mcRR3AIe6+g7eh0ijEZyMt4iDwMrtE9OZ6OQw1e8k/nN+jXWx/9qe7c6rC1w8UVxRIiaLsTzVUzg8TOs1GRo102kwhMHzyCSO6jtAgno9398raJ+6PCoKHA6vkOnj40T18ZUx7qJdVJGImVRiwUSGZkyrjoPagMk/pLWga6PvSAkfTe4QpmNEfyWtYrqhZ1K7B1qm66VxTVko5cvj1/Ym3n7O0Kf2/3JUkp5O+gOnFb61KeMbVbHP/8if8LE7sX0zxPKr5MFkAJ8enAZ6ScP1tfmCVEOAnhi2ysforj66Oe4lNXDksuUetjnM2M9b6CH41BzarnKMUbo4FkwTlDfypzm0gjjec+N64yGkfC39WNFtUOz2PIlCknjbrnPF5fge8OtLSHKrFIoU/JNaNIfYFKNW8UzXTzAZc7dCGlXhFkjrb/V3+nQhLUEUa9F+AzxUaRceP9zdfgL2884EghVkxNBOMwlKVFFY5BYnkb8kJmQszOPe77OtAGK1VLDtjyO4jNQuCViG1pO256yquC+N+XTIpEnuQ9VavWAih5JqE1zjLqsVzSo7M5lO1jhLL7QJ+MFhm3/kEIxtDmqKYctNgzlgBXo8UTjk12NXNbHXOuH2IotNl8V305IG9fNKQ6bVraOYmQEDMYjlQj7PKhKMEbDlxcMA6o4/mZT4ksX4/4ieCs/k7RaEvG1O0bLPACfGnTCkJcgukR5KFRx/wNJSzh97suuRUkObzv/7pPkLKAWGd5FwUdc2y2shEwi0ktyoZkVZAO+P/Vm8ttbvJNu15gXJhD7Mb+FkVs+biRENDap0QEehrUmuQHKQW01eU0EFP5WIVAaXhxIEt5oBcVUr/O+pAXOCK2EJjuMQD5IzgUka3YJ/D8Kte2KqI7Z9LBWlu6VqlgJv1rvHbUO7SBdIZiAVDIsDQs+dJt/FqtQ25DBGzF3MnVaVKost0nMvEWH7+b4iTUDax1XwJLcAAf2xpfj6Fe50R+0nP8C/4aUCMGKt+JFIn9GMTHuel2ZrmFnBUmogYYPG4/nD+kMn3+45WHHYtW07daO97ZJ5nQlMx0whAYz2KrAoVDl4QI/RUkUrUMwBLGIRG3BAogLFZOmk4neIBmOSAJn8cyw/c7eYMdPaD781IU9QEmzNWOSd8RMY6V15s/NY9asLhcmgoaMcLYX37uP4oQ4F/P2pM3quPU2d/PDF/xHQ/qLQUTrFKsv+rdHiuqPN21URp3Oi7y3iXv62Sv08jXhcjQEzMAMhjvKi37v79kYG/IZHdgFpPsJjApdbFddOPWonFto7Wxn/nRnc76R0BcfddBTTIbfvMcjbbLsXcyIN/TOVQv3CacOQ3j7Bvclk+CswgIoTiHGQsM9Afs/QqQFI1/dOjBSzZuoJ4UUuVcz73DbTbFQu+2uABCp7K3diykdoPbL68+u80aT5MIaFvUUQPt3KvX5ojDWNEvcksXeccfSP6RQp76dO69zPb5ZzVWoOHjuyg5MEji6PNtr0rwkz+HrMS3qzKBZB52lyMBdFsPEnZ3RaSr14yGid+rSHTxJj3hNlfChfuCuUYhXkqFSdQ49GGxKE3xXzNYcYt5e0Jm/YqnNvrRz2okddh8q18uRwNrDpcdfuUfF10c4ijwQ3mx+1FZf3TT/soJBZRrvhDMOQpCFagq619Ife7DzMLXBTQCq8JuVx1XD8yL8yMGgTIffLUK/S5hIpZ6tq32j6sbm99SdFhPUUIcAt44L68zfVywBfdjsB69qXOmWbJ3C1Lsc7jkf7O9MeGxRL7R4HXbH6EPDh7pRQnMEtfzHEpjylDS2AMR2HaeeV7Ra7/Xpnpv2FqnMJ8L4ftHFWHLtZETvo0CSlcTe6rSwj1WLi3ezbVm/pwZOy2zV/4Lf6CcRif9Xg4h/RZCnAxR0XlHgTGYih0vk2OZyqBu01h+8Aotw/HeOIOYAVBWjy3FGwXQ9jqLZqnkJkNAcWiKFfu8fR6PI6ikI1I5Z+WSPL6gt/brMVWMcN1em91U9Y80VWlzwGWCugFpHqCQz6RgyxiZ+faSgDeg5B/GTLcYq7nKQaR8HD4lnn4px3gmulPB5ZvslLm6V1eMCBG92m1pQxMhaeyapcIBJvIPXmS3QJImma+S8dDxpyJTy6JIgQf6qH0sF/R6S09nEr8ahad/LyNLzy2ubvsKtSCYSxhb2fZwBGlMEZzhLnUyQSOYvpHvw1uNnC3no+1ZZHlbji/Vo2Be1+PkoywmR5BYAJi9/blH/0jjRxWlZevqGbGfnrU7QhPHyz3B6qNVKjfQS9I3RYWMGQIWejXg3RLMHy4gB9hlTRiR28hv85wkG/ZR6odlM1hXtVkMYsJ2pkg9EWQ9RsVraAPjm2WEp2HxWEztjuEDUjqmFUXWymjRB5PsfR0FWvFT0r/aq/+Lpo5vUjh7x/afaydrB9kDlBGjjP9beHTthQzvdoVuWCxXDdFrpYPx9YgerT3+qYtDe1pNkPNyzMGi5/Cb6UnPapDuDMySSuvXZWuLEnxyY0RBVKmG6p7aP7/S8W/tFvOyI+KCsfoMJdZOoIX4R6CfO9+ZpGny9Dd9jdK0DVuaUHqROMsv3j3ZN4XP3Jd4H98J/hc87JeZYH/L7MPlJFlCds0H87EkGwT+K8kWuDyHXvYmlt+FWoCblKhYuhiuIUMeyPpZkbXNjfkhnjbmcWPoQBAU8IuuxZK/qXqyKuubew6eydNLxCBsFogQYiFbp29HVHZhuVGKpsdTmhWSGPPVWwYSclTvN1ElcXmfOc+esztSG7B3yGPGwdmTNevWharyDieRen2rMdOIKxVJcYoCovywaDOS9R+uNEejURJ42EvUyTC9yZge2Wi1NmS6RZMUhgvSKOwQMPt2FaKDUj89Ftht+mAJKtI4DI1022maYDfD1M6iSYWwsX2Qwn8/JQQGbeAT+ksdNP4i7n9WwkxaFCwQPzA7DS0TPqEHqdKp3oRb66jQKsM4jmneyBmAizqWvUIOBGWLiliL0Ud1/TtbPAqJiAMdIdfV8AA5J5R1vyK9NKh4XkNJsWbmle3YwzZGaqhOl98g9gEuY5SgAdC0+MqKL+lyri99soVwY/JjRpxtO7PYH5DBuPZJ1JCktg/aPCE59ZEpjWuaUrkIHvOLn+yuA8jhpBA3EulFc5FcB7ISmHunv/TpTS0GxlqntcuhdApJ0j1KzLSfBUJetvNtHz2A5+W31w8w/A8Xnvb7wOuFR/yoZiqFvww7Oa6g+JlP/TL/wULht6Ebwr8sbfp1vrfpXtH/umpmzyK2dJMLucQRBAdlywGe/ceBDLXL3+GFjY9gAYbmCqSuHCP9P3H20es4b1UZTTTVrEuqwRfPLYOagZEiqehFv7ByE5Iq7mTYJseiAsFf8ROUiYq9M9hyMqbg7BtJ/m5CBw6nt8dpA2tuGvJZWmLG4og/aJFhZ+I60qaSzyuiIrJeZ+52XOis5Kqev784Ma1b7rH+LEYjwmMM6gtqGNDIjww0sS/SmHmBugFn1+87eP1OdTDTLFXvKpbhL3MgY/VENHGgtPUIiQ1TNWifwmjF57bt8+uA+XdPruNXOh3gheoxyUTemCp3a6AfjnFnr3yN4xbUq/ec1FtOSMyZIRT78N+KVNLqv4/+f3VRHJifvCTxjFrHN2Q+b61d82N+pjDWjCWrlN22zCo5RJfd7yDg31r6d6by3jogmdb7VTEcZInQHQpdFvwl5kXQTh3pPyhN+JjW4y7yFBnHQmjFks0932IhMYUCWmCvIyhkrtRAeTbrGkfnoErxSkOuWewztaDl1scHIALt+aIA3aqRQ3wsMCdCo0qDAF9bitG6mvUomufeNgGI3zvZs3Uup5DpnEWfG6QnkTItq4Cs10yHmQrsnN6lBk6sZ8/Z58N0g+avOUZwdvtPMrsHm5DPet61vkCgRsAnelagq6UkwYkG/wymR/yhfUo6y9/ASstlZsQ0gMtc0FC48GspJyY9k8X6qYH3idbH/sGsGMzC0ja3fHQqF87EqA3arRI7h5etpe7KTCO191vmhlQnEeyq37ACEA/ogEYIyU/8L8wexsvmsmPlwTUL1XOLo4B7F/wyWRMfRG2NMfFRixb7kctO9affl/0eyhAd9gP+I9yxPMMHJHRIQoJ/Uq5T4xs5jOJ6rPJynyKdaU+hHaIIZjZHA9tcmRRJ8sAtK8+AP1NJTgnuf4gPWIjlfpftI66qItHF0dyC+ndWZGEgBSbXnTWArN98WLj0GBNjoJwaDNzgQaGUjAmP2gw9KiTcVBJwRX0161OPDOleUsOCYHB81ScMZBZt+iugs3sCxRavGBzLMOKtKx5xDXvJz4Dr/3Ja63ESCiwTtYTx1HR10aXhroc13nuEZ5F3vcKObvOqqIsto3xF6/4oUDyBNqfRSCP1lFhFpX+NiZG6mjR1Vi6zgYgn16TMf8tKcT5MSi7FvyeF0Bjf1jNjWuk8gbxGew6hP6OugOmsYGrOMbtZqgsp8prDyaLiEQOmfeWNEcH88RhmIee/zD2hFb7b5VHUVPw0tKdjFrTnBEw+zO+Xm6m3iW+5a+dtgfcNOTRQN86v+c2A28VdDs27hCopjdLpmD08vOBTWIvnmQm1vvqM2dkMfKabaPxFaki7ggfbnuvCK3+MnQUawQWNtyieiI0ZMnh1QTHmeoX0WKFgsMUFsOqTrP4s5lP2niMikApb1/z9TcWJpvOu8MXJoaCJiWyaVxlxTgjZfCjpPNF9Qev11QrCmeXYL/GkKs4V5HCrvC0nHqfN1I5ngMJkbY1gJa35CzGFQtRmlU79+oTDEJ4uXfcVO0aP9vuVUfcehXklSAQk/kPSHSQWyybrXLnjgkbA9az0nDvEZCRxbeQtHyS16tGKTscsv9tuWgVJpUR2jHlUr20/sEcBxHVRUi+LknmKEhVMYMeK0bQ3z5s5KOqsk/L5z2+9hODUCz6j7L8doiqdPKU8VYsw6iPLMfi0MwSFTiJZtMHbRLDhj1y8CFNE4cXNmXisnf7uKz/q3HkcJLVxCv3ks0qA8dNjJ2WLO8ggZZ+gTmA+YguPe7qJqVJBgXOzwQvnKP2pWewJHjxROckoP9xqAUbwaD+DZVrP7W23jIkwFi25jGJ26NpecFBOJadevCAk9e31q83MlqFGCQjb+8mNbNv6BOPHV5VnYpYbhhKbagKORk+kdds+m6FlujmpOjfOq6YNE5k1PK4TVW7FPITXBX2OkR32e5ErBeTz1GwWi0emp4oLBfQiWO9ac8mX9lkksmA/WSKRC625nlrB5WqZz0T1NS418SwgVH0IVNObycgPdayccDC9OwfYwzhTMTPAbxHdHIWRVpnPsc+/0Fq93ZYZZ7uP7rmdYZEmsbfNC/I7WAYzrv6yeY52DK9yUNVDC7cUdnLsHSdUHrpMwQLiUxmzzaffTS9rKhY5iOPkZvr4WaU9liBuu1+ZzeVjM7zibIG/vaWf//NlTdffQodpRJ1zMY8cGNbf6cHMOsNJt4lXwfcWrfVWTQLkOcwQ/V3H9uP6Pwkj8CaPzknzEWrt/Pw3hUOFY1aIixr2Rtk95xbNB1cAf2yzFCar+gNwD7W2SX1z3jJzCyY7PkWV24th8pCDtZ+OBay/MSw88UHJnpAgcsAaOQkGvjOadoXMcRBfbQrRNknrFI/+Ef+9GaLRzP+g/T4tPaPBMoOr8Y8TliBqIPg5xdjK9XaL6wii9zHCFZUqg5f6QAqzX3oiVaEO6uP66s1i/TzOx6/DQR0AtGmnxbL2x+/QzTAO2QJIhC+kZ2/LYym/BxgZkQB5rCtdklg32ELigrGHia1bz6OSi/+Rw/B0pcNlTiIbUNQHC3NmY1R5DS35TnvNP5rS19ygg8fSDXhC8o1SXaM8qL8pfIP346jQ4P7mDpMFyltD4eFoPb8eqF+zkBb7rHk2o5N6OvEbWQZNve5fRpqEMyo4d7RhdpKjWXjOLCxCQKtmSjz0a8EvtXa32473XeHC/FXoBhei2JTPWzsJBZyR5RG2G2vpPJ7TFvYI7if7E0K3Mg6weqzey1rO/PslEaj0Iwa+oONpRy2Pa6wXfzKN0MskGr4WWyTHW7vOEueaS2gkd4W9bQekABiaJmlcHs8xi8qfKlaQOt6AzFPmeCrZKggOV6JfKS5e6nLA4M4xjyzjpHE2VSrsGfQX/55+icaDjRVpsf+Qa2PWUE+uPlpQ0L5sHB29z8GznI5/6xfr2WZWt1nLFODCmpNt3jDpZvGJWYPrdkqHwZ6w5ZU9BUdMHmGcfml1dPYI985rf9hx9GSd3odRCoQqxRHP/dQcueyfhv1AzHjzXgT6PZC0NUSWvAbFiiPde7CkjXvcmN0rTmHNQmotRr5ITiN+X50u2ps3Yu4S9qEdX0OxA+1eje62sboebioCfXHEJTHNLS7z/wbyxWb8eF/YgI5JRKfO0EVsSx8gu6PGI9HkA1e6kn5fYwKgRh0+SA1u3Yz6MPkoP3WQrqfCpRe0o6Ga7NWlPAU2HazOSTvq3E9/pnDy0nKxNGHgHlXo7kYxeRPkey/SrPp1EcSXPUo+AV5oN5MHtcZEIjQfxT8sp99fVdx/oaX0ofmF6qtWNnqbwVEHUWJXNn33EtxoeuZC20XHpCL5v4m/jhJO0HeGqCDCSn03S0dNY3MO+frxwf7wz4Kca2fqYSDhO6WjhGecGG/94BpStiYBkmcFDWhXsL7tVtnWCRD6SN/9bYcPqNfqpVuVG/gS5LVY0F7Fsp867dw31dFmxqhHu1xNAhtB7Sx87N9CLabJDrhmHn5UX2CKSxj8qgw9EguhB55Aj43tqr6VH+bUnuQ9Jl6xBQ1AIm9bnG0hugkoPQhOi8ZZO6Pf8yl82TIRUuMVT+9OEO5BVQeYISEeAmDtE9He64RfOnren65kUhXmmjx+7PymZr9LIp7VXOaOwjpwCzJJ+PWx511E4L40llP2nSaErQhWahTsISXSnDJZYKvuwhxep9p2FjUnkwACMFO8fLcc8KeVYBzVPiXxc+8LlbhTnW60sROr1TSNbCivdII0x/qDIfjYNe442TqJd5oUpgDAnh/2ebSxOp+PaeZINHp/wEMhjv8cFbz6lhKMqlurFL2/tYkTx3ColnGD37OS35YOMv90K85AupXJdHCOZV/xBKO3nvmMcIQEFVhx0DaDnBK+Z0JGpuJHyUdALlP6EvLBuK2O/FWL7jaQTbmI3bY55QXJLKw6+zN79Nqr5qYefoJMqMyaW33ParA5Um4ZubMSozansT+ZnAMUvMOq3Ih/nGx+257Rj1Ksg3ikAUACX/oX8AMK3ahZaiF5Nqba8slAvnFWCJWdNq8xZ1v6P2vXnbbsvuI8AgGInKWSyRkfBkMXZPwkEza50fr8K1lkBvhXdwiUFFFgvcTyL6ccjdnm35u3eylXZrGgzmMPcNFVu7LTuiOYd85Q3HrysJluLzTw8XL0hw4Pvp5qnUqxjcUk7y60btOEqIsjQztzL5E2kZpDxhwG42VpcgKx24pvVRuhCT48AYEl8W4TwE6pSisAyhQE4ad3jdGaMcWbmFBbrvXCeXqCtL7cpPlDDATi1F0MiEKtB1njFgMNPgQbxutTRPY6V21f/BaxX9jgy9KF7SAQimYqqrLTtHpa76IabFo8G1g5Hd5or27QlnzRwA3T9Q4nFSAEnDA1XMuEK6oE6mtn3SIv90AdWRs6zLJM0n0Sd4Mz++ams4OiVoHFusZtMoL02VbOkPgHVhtDg3RV+wicQLx1uNn5TCFs9UNrZ5QKqMbU9BL8lDLDDnBQCYmMH99c1gnMC+Fng6J/NcgO6yBsBv1uvXpLT5v4cZW88FFbUH+0m6t1IUp0CeIsUnJYzHm8E4nKuc7C721eVLYWm8rrgeZb8fy837WDrvDTfVE3COjwiphXzzFzk9tdJbU3V1NrjTSLn/PsIj5a3im8KtsWI9ONOcIYVvrOwUX7EpVmo6T9eeSDPIF8maoKj9XNdWFhd4nXiHNLDAxYLAKNVd//6l8ETfhh4Cy21UXacHpBKlV80CFsO7AmDiVcnVA7kbrhDG0JxjfvooHE9GX17zTEGweoQg+moqVbxLanbd8ZFQ+/grO7rF/KGDiAa3o9QnHhlfbtzZmZ7ZyiBxEQl0G/Ya376J/RSWse5h+jbmfgVGaxvqmqGE+k1JUZp1AtakgYTMOjXj30l8mg/rORnH1Dh8Pvs7lz9LRJcs1MVE+mnknmyskMkvSthfkhcofyYAwDFU7TIdFre983YmEVNb9aiqa7NljMa8gHOQg7OBZp1X4K1Y/AL8dE/MUlirF+UwkHNOpFfLBugYmabhNv3TOhJmZd5MYt3zPDXUZEB6Q53Hcfmre8CFjhM6IcuJf+OMWvOCp1DZy3cHGtvNX7K6cuLb1Qv7Dze6ybpwib18SuH3Ey7IPuzpj+9zj6gSeEC+Oo5xMf9x4vXUdjq5QGPK0eoEu0A3yBIIS4SCEJuYZu0xkqicqOBaWd/OLoOY1xS0AQecbn7wESPrdR97NYdAKOh5BgBvrFSuAeTQuOl2njUy/qTV5HlEN5IVG3XiCbO1fycvKlPRn8b2Ek7XCkIMLb19ptYHUVJBz5aOafL/LkorxqE27gT1BGoKKpZet5xlfWfx2LR65DHd+nigRglbImq09fzgRt3GOc5dvJxz1DpqOup7/wWAMN2qGr9yAkizJktLghzVuy+8fgOmwf476lkTUNoNqF1t98lOm0UcD6GZnrkjmcQKUZQosiY0AKHq0+Uv60q4OKyfxlXB7vTQVtqrEoq+Ra5Yb0Uj57bxVHWEN/zPJCTP7poPrTJw/FY9/6owP/Hz/b784yxNE1EzLUXZ6fldsxfYNHFEY4fhzLHPmXP5DxopNbOzGKonvV7mGNFjiJAh0ionmEb249HQ4a7a38+0R+LUQkYc6JJHzvUzSVDS8oTv7gFlQQfT5Dy2e7wJC9yfDP5hc5NU+tDztwiECd5G3SgJTfAhrU1kh4bflhuyM+II3mvXAKd6QE6zv/feHbpkLud9gLyrenXD390mNpMNOWZmrHVY/HO5sGXqhSbAxbSlNlpo1mL0nhIT/zFTF6g2NfdZBFaCXl/L4L0rZAY7K5zhN6LqFKQM9/+l2nHO07cO+X4nNdHoP5pxZ7CMf5fKaKpwb4CuGr31UDe8n4L31cszrl/1qLIyjXbzHRHIslphaKyWNNvqDwra63K1/o2ClfGjkwxX8y0T4FThKw9UgFj8Tt4MFVXfbaXRfOljp1TGx7sePib9qFC9A2OlSBbdqljOyUEhOX6XtrwRtndkw9ShXhahpuLR1gSzWHFgbTA0fq6dCweWR/ECXYRYQtXxsd7jVTwiJkZQ1qBamseqdl2O49n2W7+IlRQRDQIqFP5hCfsKNhXib6IaAgCLbdbrtHVCqghNzSPpyi4t/cxITphmmUCpX9mfd4uHCtCryMRvXZEBmzo9zRC53nJ5KBHZCYv+yifKpw6NbV8/DQfWDKxA5YuCiocIT/7Lg511aaifQtcmStvI21ugw/s6PQjSpp//rWjXrAlI4Fh9UEHJh7Oho4YEdpZQfUuMbvTlB+z9bbbI35Tj6WFOxAdGgtax0N7go1O/Y9h6BMNftiqa/Y+Pzmnp5dbEROqRSUmnwE+YZ3tTuZ3M2o6JqhyK42/Qx6JRa26jG68jf/SXTxXO2wBk18xLFJ89TlRf4RKu/YBJfxKHfjKWwvt5qmw8fsI/FtDJmVAxSB9h5vorJFyfseHEiexrQCXJSfBUV2XSMSmIpQ9ri17uYDDo0dgATa/lqHkMk/wR5+GTJulc4ISBHbO6BFQd3V+3DgbHsIkWZe8lVdPjcTYl/Kj7HWFFAO35t2xzZFVpib/amIgpciGWPEvEH3qyWwRP2OGH5FGkTHYT1ZYy/NaIi2SAaTzcbe38q6OPhBQ86c/cX1T4Zgf+3Hnehvd7V3uHjFdRfiB0H91R6786qYqlSTYBGlfXU6pSv8TkQ89WKxbu9kdzxdgfqhc+xx5O1qQZAdliXk7LiIAnhiKnM+dCBLmEN+SykwW1L1ow4ucxrLAY4IDPxTjeVRgMqR05nmNYIcDpmxmbMtiVvkeWgMCqmpLE1hJ25OVeP8emvd2/W3LofCXzK1LBTvVwhwLq9zgqdx35zwORNjfLQqTFYpzN8I73ZAuYaDKZ2e6acAq1OwQRMTH931wex4PBeWS2mksR8dbF6E5QZqro10XuU3/RqrS+SSSTmg0+L6UXpZUqcfZFszNqsDuP1ym8dUAH2+dhIy+dQeq/3SXVFpZNQpv5nFAB2KEDuM4NPYdSdPd9L0+uTqdSeh0Gb5B43FZzhPwD/Z91/EfHSsXsITnEWlaB9IlmEQoURkvIGi4576wu72APCBVIDrXZU8ijydvmLP24EYqomlU3rAR4D/JRalvAXjpH7BfVzvYzdqa2dYW2zh3OInmmlOt5SfFrplf+1jQVReOy+bCfZBST6OFkkN+iXEjV2SeBt/yztPx+OZj9oVD69yqp24O/eUIOr//xeYARxAB/zh7UipqHb+9z3DyK0x9UA060jQ3NJxEXGcQeZ4w8HBZXWg155iDgsgANfPBK6LgA8MyJqFjtyz9BTfQ2JrfNo363qIrtO3H4+V8PZldVmdcLl2LNnqugW1K7ePtJFBjepFbWosr8mi4cLRX/IPWb4eOb3qRn7ZByPxPANgVOjE3tvcUrGByhfJk4BUHc0MGz5ec7PjUavC9HiNydhESaB3MMfuW8HYAovel+B38ivC0RQ7t1xjMrHuP07j7vkueOMYnY3L9aZti/x0Q5TmBwcjvQ3vKgvlovlRkR4MDN4ZyYz6ps4uNsJoHNio82jYAAAAMADZkAAEmXQZvoSeEPJlMCG//+p4QAAAMAAAT4Ez7eqy7dRMbujMIAFiAIEg74FuJpAl1TbwGftduKreg/VcizedyTlEA73phIAr5rZJJ4Z2jRewSMiIpsMunmumTPwRSPdQtNHDj8yFwNFWXR1S0RJ3V4UORALeVK6/YN7pSZ3ea0/UESPSkSISeJ0HxfwxnVZ8urvMnNMOIzwCZ6PWJ/Tnu5LIvr9hNmiplrVa427Zhm5PSBXQ+hMMsNrvRf/43bEEegENgIafC8sNIPq9hTHnaaiWcNQRlj8iQIevrNiEWzhdUrmccxRH8g7PXsFeAwxaQq0KKtRtqcuJ9C1KAKcTLJXVAm5ri0seE1wQY8fttxlxgHdHGDoEu76sJ9y+yCl7EiATMTkQ4Bb5Yn5u6B8fCeme7VK7s5HCG6JW6U33VsGpKCFbZ28sSp58p7d4BxCtDN2DiNoyVHXcBzakDNj41ptkD7nSVNw1SUQUNcAA8rRm0xO/zdx4gGMJ7GGwMyCo1SJ4KZx/ZYFfAWgvGhkp6DJYFAbigJiSMhwVapAh5klOgLqDchxKo41X2DVNBzX3wETHCFLmV96mUb609j4kDwnS7sPDHXdIYd6XsOxiFyyPM0IqQBP3f6HGkklpMQ8YO9JNVVfv/cVA2ABpn6E7f6cBy7N3o+diCAa51CqPLarLIkTzSigSXHksFmaJMEEfizHnSIIBJtLtv9WRBMGuV8iqMRV/RdcRrF4B2tQxUmGkFA0mDNBOK2K1OIetfwa3EvcXLIELe636cmPSRa/KhuhdXHyI+4a+6UyvT9Na4DCsIl7rtCW2QgyxUUMLhKcemKCYvbwjvIZ3GGeW/+u3FG/fuR/a69NjJDtnLPUCHCP7kvZHN+dGOT0r3BaD1JIxi88acB7DwG1D8LQVt4rDIJR8OT+lzAay9AwM0tscmS1qgi/GpQOMXr+e4uBdPSJy7jRtXD9+WGSiuyFtLwLO796N2DXr/HpVRmMH0Luqvg27+eznSLyP5857P0Ku9Yh0XFY1Knz0nvi4A4O5KWWJ1g9JmygVNs90Sh3aIDFEdYbnskGycs0DhzYRqQn8nAPACX0q2pTgrlXYH0nqW1BRFsL+F0KfmG7/BIVdOZyKwntxLT05BEShiEx0NaY1NPxkKlZRrWjZlv+0+n/J75fSN9kl/YrIAUAUuUy8DyjVB3Mdu3jKipZm1Yo9VLkSq3EGVDL8un2Nf2wOb4XdbRCLy40O9SRlNVPXP59NVmSYwKjDgWgVWcqey1Ku5AY2fTPmdnWAGMTGPqE3TUS4L9zQudOYnif1eZCtSkx+PRDPUROb+T91tGVR0/BD/ed2Zx7/UI+Owv3UpZvHFFanBCy/54pAW62kbsY2ebOxhXrC7pAEJg4sbJfkwJHxBjGQKVpGuydCeU8HZNUeN891ojQhRnrE6adEZklkSUHgf5jSE8uUQSjlKk73oUeqnC5zoaLja96gmF+e7q0YJ+WwXDiIryvsrQd601DcVI/5m7pJ8JMtGv4KgX28Mcli2AHXizideVQ5Sz6uM/IqT/13Mh3MFJofAYLvbAh/rm+fo68uRQQcMtS0atKMkzBHNhncwxwDnVIKWso9S+DeIxX5/4KRLXK/hFc5ObmwGXoTy+qXDh9i6A0lHgLsJegFcFCeO3+uI2MVaLmw12OHhlCk+TtQy5wqrPy4bnpAjUkP8ai00v2818QYFblO47tXrmJsx6BeJyGGcN6BJS1QumE3O/bMJAE8NHdQRTz++tJ8w3FG9r8xrSecX51YhNtTNU6ZmaJKPD96C3hUu1ylsH4TyRtIQ58/P2VuKLdtTw4r5qi5TXkuJJLZyMFlWZBe4QdPnspjf0pWalMHZ883nYBW7jAbfFdbwVLdPbnK2ETBX8J4K2zbiowa/vSTxwDXp7DOHxoldVmHtLOynaBxpph17FnVOomyMKtBz/lwZ4iF2F1a3Comp8k0bsdkAbhW3chEiyQykUQUP5DS87vDj1hPtQK2UFlxhwlPcnJjYAGBOY3bAo6J1yUjSF9wZgG8AQgqv9j7UlY20fOgH2CrTdg8XoM2ZSdvAZBed3lrcMcZXimYxRiawwc2pc95Gf4w7Ovf0fhHYdzl2YoKKowL8AYAWgzBti7HcwBQ22N8AFuFv6oV+qZWVy/LVntXdn7M/Ga4n3DWZ9BJfrkMZ6bNyUEnXbUoLAHNNjg+sE6R3lh7beXQQtew+xBlEOYBjteyPtqTVkP8lA0dwxx2ba7isTuAWZ8IoaNSS0cwxsbqyKJPD5WS/eKd8vfU1jWURWH/k/93cD3jJ/g/F9NXZAkvnhdxZpD1NvZ129bnbkl+Ic3AYX3CYW0CyFRTTzp+7k6ANjVrWRbek8hl+DaNrdH1RYm098mvC6ivv9FI9Z8OMpHWRhKnbhGY5Lj1bVGaPQSpfT0QoTzEaUWyzfY5YwhCO5IjaeW+QsNKCItazxfDBlrV+wOU3BIyaG96/NNf9cYrV+aFsLNiyeuW40sCQzldmQS0ynamiTXbVVup8QnVvhy0cHw1O2wv5s5kMqXRbyBi95LqYfArCYPE0z6xdl7Gg7BzVccl+25YG0/pA2Gykxevv4p76b3xT4DOqd4BfWB/VIksEX6tFu6f6LUjQroNNS1nWshQGj9WW23mfQJLBeWB9lqaI+SFY82HQknaLK+AsXi+DK/g1y7dCURyqDGSu69VsjeUy/o8fXOSlSHUDpdoCGXrURhj+Wsgb0VVqzq1aXoyjFJR5uR+CjzYoZRl2ypcOh1kxYm7SsnSHqyEwvenxbnvEEIO7BER1uUM4fgygfbbrEP06EpvKJsYQK8uYzz2540mqR+9coJU7ItcHVF+yEWec82XY6b1G/8y/3boYrqSAbG2M3uFakZePiV/86qFFjhm3vJgRAXIt7qHCrNEeOun2iuq9OaWp5PBqTdp/cfF6E6BkO1KZT+CHc2/VCkVs1+hSSOQCf9Nrv6CxHS8d9smrduQVMylErmrgse3J/beGXNkroOL2UQSRhwWRd67hKDHiAKFKF2icBBRa/vyd3/Bg+dmpoul+jo/47YdiyvqrwqL/Ze3vtuAB9w0JT/ntYNW3e7JEq0z6TcesDNNmaJIsQyrTRo31dgBcwtAh/KS4w8kYy1IkmrpeaWxLQD+rfkMudDBZZiGY/Vj3eW2/2CB/n3lgf2kyqm9r2OsPtw4pVqSecyR+w7TUkHCXgOJNvvAABiZyqcd8WwmshBR5s1efrwPimYimVV3l5XEUAhVYUvaj6RP0D90Ti6uUsXr6RxLhS/wu8gmVB0d37pvZnC0fapsZwvXWL/8tEXlABrpN0YfXoBdp1KOhP18VZLmklG+2JYxs96T849VHStSclyqutvxtu7clTb7Sb04+ce4aiC5H8ULL1CSqNISdDB1+II7rWCqJNYIdPKBJ58V0N0pWg122YOj+ZIhR8ipXORxCgJG0gEjKxrr2z9vyT1LHSRdlI0P2Isb1pDvDFt/S54zMTQiMFh42PEKlgTvbLWccq38wehUQTFkkttUQ0itf8+MIRRW9xdR8p3bw/je3Jjs4la1QRyBrPHfR6v0L6R1X7tqCeHcnIBGeJgSaKABKqPuMWHKcnQySZpolIGupdGGDftR10x1/DLkpgDFLySrn68YPqDYYQ0npM1JWq9AqtfVNabtXyV4+V6s95sUeSK2qKMVgoieDM90JuPOnr29aPqsuV/UuvbGp07aH45h9MDf0Au20AdmO2qpKIqaaJeRloE2h3wZ1Q902tmLe4Y8iC6WMbNbePygfzJMT6Pp9DsBSInU8y0C9Isr+Ccc5IRcp7YugBalyVudQWBLwmYZz+ntcs0HHKuAvws58sAhrVLqPV0aow+2HQctegY8+TszWEISlBE8xhbD/3N1PdLmFuPHBtKIdF6xJ6DmGbukvMKlsInNF8VWZMC7xF92yxhZl/84js10lVlkZbIMlqpWXH9JNbfdniPro8le3tiQugk1TQKbOYnMITi8h7sCRITsRYkwWER3TkhUsmckmJJn2njR/srrugZw1wec/zUX7o3vgdCYdWFRZJNfZ8QRGbouEfgp+HsLP6QqfAmIcsDCaq+RrBKg8jNQrLEjUXzPbDSMlRwrQFtOGaKZq2iFKnxslnEFJlwOBrOmoitHS3RHOdMUllWWmskRh+OQ6PCqkkkp29S/D3mMuCTNtttqZvZuEIEckakVf8Mogsq5nCl4YZlvegYSfCidhMCWNCDMsBB7fd+omPzJqrs4q1BqywQpy6yX8u6FqwJ/zK0xewXlEK3Af8DWNDgYFTGvPkqrAR/ESH8gN7c2E0ebGxIJu+lbw1PM53yxxfTblqA2G4oRHuMz9JHLEQtLdBTmIIxzfz79AAseUJA7Vi9zaQjmsdAG3g2tndk672MUPcks29eJOfOq4hSkyGOnHQGWmTcly9S03A+FHJ6IqNaYWOK7P+4FtTdDD6Zzd71mI+pJ9WvCj3qr8sLCpcUEGpAYGNw9auF0E2y5MGvUfKqWbYFcboZMAs7G4kFysOZSfJz3w7492pjOUWrdRmO3Lp9UWwGsLwREhtMk1eZ8AmzcD49lCgEGTXm0ObvMAhmjLkZ5AJbRb38HeNsCHjQTS5qyaxxAmCaqIkIuj6yM6T9T/eAL94OvY9cWLur4GKL5N/eLHluIBkT5RWAuagfOHpYxdrnklnSGHE+2AIuxZoFB64ZsXqNfqZajWpLsNjbS5Iw2tviz2812j6vCdz2X12LCDyRQKkWNLVzTEjcJajILWBGBeKkmaemoU+f+6n8FvPEKpdo0/DKfEjWRtAQNRx6F7oa4i2s+LXICKzi9v//wEEEH9JqZt26wgssoCWUxQkp9NtmK0lsfO48vLjvqzDyfA5gsiPYkUZKND0WqgNy+6Z/K/P2baCCy1+Ib56Ye9RbIx4uLLsnVhXvEJYoqVKCWThuro3rCa+DXoXIfTlJTLV1i96ni/INUB7/9lrswJ8hItEAYZESfBtCDh1Jt4QIKv//X/LjQ/8Nl6FFqFqJsPzzgZtbXJGwmPh2qTpXYXL0ayVvxr4q/ZuvQ/tv9bFf4TswRo7XPmgj4hfjY9BqNOjRHudfeTTDKBDK9Unn/+fRjRaEYdfIS46ouaSwxXZh1drsyR30roSoY9rK7mfazvoBDb3SvsharVaJTfkCSs/T/duwIFhgZgCU2IVYastQC9nkJvWs3GZoM1tZjowHDNYl+UCr/qEcL/kBf215BPEeG/bqUdEiVjpYx1twbH6Ea2vj/hGMzqGH7t/sUn90OqsFdd80FonnPqbTwoXPeqry0sLzLbmEfCREB/tdPfgs92vDYoTaCPrGe0DtTdc6oOra4wWzfZo/XIczeK0naS6SnYP+VQ+oSr3z2pajwzxFuC2RQ4nYhTsCRyDgY6/YTI22Yhso3ZHJLFj+H83QQuK0/cVwNOTPzGANqbGS0N7+N37Xm/l+wqjgwtm4g8mVXymkOB2au1W7fUJRbexNiCV59NxPjh/dBMhkyqbfVwLluI6D2yDyz8s2t5Fq7cEtt0m6zGUoDiRZSlVNJk03A3881ND8OomfcfrfRxagdH0rlsr+Q5bpsThwnbnI9qSmKAwkjtvS6KJ+977Ck8SYzUTrQF1dVWy9z4xnKEufn+kb1HveFAtAW0YiDXbRT2zMDhUcHe82IR7fXBEI89tkCf7zREO7xpOCSYCklkN/5eUwsvaUNqTdpWwhaQD64Gmv8MAndZvS2oLAA0OyY5d4oMpn7RMEVZT6Ge3dJRVT8fCypJxiBoojkhly5w4y1akh99WBTCn91eW/MYyDY5uOPWTIitx4+4osQ+uuUsVUc0nT7JLXj82rlz4fy9C8GjNnhNGAfiuUvlHL1Xv4/JRXw0dZ+iygKO5WZehf5csb5lMUeK28XVLhIlXRD6SfNFy1idKfPZ08n6EpdWbHxT/XvPK/YTYF8jwIfXR1pwW/A+nyDbV9NCZnIMiBNvZ3uih4mmQg1DcH+n4VWsu638P7Y+2BAdXixMcu+epOi+fCqmTD5Sala0lUJmNLWY6dPOrg7DkfzHvg2VOWGq73MRyLF0pFzfLF/8UiW4lOsMGzDjujWe0HVFTtTWbKCHG1gbT9GhRxx3YmgZFJc0J12676W0WmjWHspRWpElSb6RlAg9eGcpPPjRPJYIS1icAE8CyV6KSw0j5kiElA2q1VwP4k7YJEfZdBerlebHAVe0xalEAWRJMfWk1P4qmPgNQXe3nK/lglilbfXd8zQbcxdUX/vZYur2KRX9Vm8yPLeAf9mxOdUpC2t6D/+TbHBQP36joSOmuy6MkkfRwzXbP/82Ltek5KIUpMq0mOGR8KagdotwZXh+19EzmL1oQBDpphA6No2WOOBh41TqrRaHS6HrowOSKVOqYHKN+Vwk6xEjqQkvyywhfhZcubdEo6RZf1lCESZb0aADAd+Pj7jcMIGXZTC34aHib9hU9zNpAyL+TcLntjSup4r34DxSfx61YvDkR11CLOxY5V7TLD/i/bnmo0pWTPZsksssUYYO2cHo6tv7jjG/lxYJeYkRWR2gSOJlAT3okJt2p2onLXywOG4h7YvTJpoeURxel5ue/6NQgdjK4obO54suC6eRLnGs8S3Dka1sTBk81Tuhrv6mehAGVvG01c+1tP1CUq4zTAPMPhlNDgCMXaWNQJeZIz7wg+si7glSIKmvLfvR9OHz3qcjdUuL7tqUs8chY9tmMb3tZyT9XdX8H6FYH914GlUAGsV83029tVnXHRru34nmO+aIMGZ4XprgtWmDK+zIf5LKYcJffVF2/x7QN3CEUNTZZvSvhkTh2AScivSTg/TFLjhOb2HKSXxV2nYc5LsVGodRwGAFyPFqGfz9F9Ic+EeLR6d1Pd2YBn0SjKOPe9g0ruxX8qnKofKt8/PrfPr22uT0yWx+g10HaOw+Dr3Yzhpebq2TXlBN/pDv9JBKV1VxVTKBa+jotSp9jIuguQw2/oPh90nopwT4XwzK9pxVR8LCUgx1HpW7UXvci0HZ254Rt8XjNJIgAJ/anqbbX0//X1McvxR1Q2+uoUE8GeT6pg3l8Bnue466i/rusqvuKBWUuMR4d+Pl9TaDXi8oS/15JduQXboMwWjDEEb9bJkXm9nU/3z8OGvPBeky7MpsJGPv57Rl31WvLsE+6tfN7PSpy4lCFeVmKZN3WDuaj7KaDTNuRsMs1mlJCx7OQvirXbuHZxrWLsCqGbQz9IS4m2IeCG5EBFUhJOREuL406obCzk4UBVAjiuaDy/zO6yN0N9NmssNv8v5ZR3iNxJgmHPE0PvC1sL0J6We1qQIy9+K/HCVdelSPWS2Rf0A/G4nPhWogBk0en6Qpy1KpeUdPG9QhiTIcMYt3LAwlZ9vxwJGDzz3Z/iQ13GCILTnuBIXPFWpPYWIZeahVhcVL1vRV5X95005mi/r7dxNgYvflvUt5GYAN8yIQpkIpyu/MrEw+UPvtlDLjE80/wUz+NlcN6JjN93TwzltJIO9CFZmziwX5+xQkJuG200ADAzuMX7hTBLvbkTMFDgwsjrEkCqUjzSfTBMoTd12D5w0uYSehCA/BtKThbtK8xYmu1F6FGwjhMvsqhwPph/+bSo4feE7N5rtamZM+dcC1v+K128H5BPsOvNP6rl1ie+Q5Kl0zeJQiSJziMPl6PROnfhIisMe5H1J/HLkwJffAPgLVMSKrS98suI7qOqq+JA4XdyLqW1iVllwL7Bi6K3Vhe85tqFH4OQQY1BfOHhf8+dDVf5LEXfwBytoTOZPHf4q5hlalC5S50n7PfKtYXUKZbmAMCdFF7afobuULA8TK3nap1NWqHYflxe3QvIl2k9arGpyWRo/o9Yh5TNyr+TWvs67ibieFRL5bnbwSiNEhCClcSuoiOtXCnn69UzKa++frq/JKdRUtJfb7RqBmkVWqP/dNPb4qX5rfu7ejQqjmLZaYuw/y/CFMFL/GWDeOY5v4/Ze7XZS6XAko0AW1lGzCgp28JSrzTpRJkwRN6B+GRjptHfdDypdX1jNBLoqBUellOJtzlhUAW+idUOKO78F3z7bbmdChYAtZOcyjXq9nXUlzvVeD0OsUHqEeBQWLR7OBJidVBMS7QRaW5w0DoMyckecj/KE0OJ4lIR0p5pA79/3MoFecNWKVsCoDb1ToPcNR9b6E1xmWWnKS84o3PpCroosvYGTZrr9fP1wZFVI4Rp1mmXkIYv+OYdDb/tsCiuvds7xYzSPIZgyz1e26nOBK+0/tKOu4QF/o5ToMplmJNUgwQSvaPYQ2RHQCbuxCsKvNrTxZujaptFVfg43DLsVBWpSJuHOoHGeK4LywHBf+GLmz3xOu5w0YfLi7uroDFLJm0MQ0Us3DW9u1LvPPiRN/TB/qh0Z7wxbjJMvOx6CwsklsZ5E5yUhM8l33RMq9U6ZMwksdFAKQgfv9V6NMWqKWdlbe+rDu+kERboZ8TKRvf2AOwsC6cA3VJgy2PQGsvf7o53ftpV5tcccSCU+SMc/dMtruU3ta2FIBHm5qA/ELCuCqO5xElGAzzFfg3SYdkbXejfh7p/4pJlXlF2rC/ZDmsUbygpgO8im+Wek/aFfNp5qdx3U0SolNx895tU6xk3H9iXFjx401VCQ6bWEhMLk6Ie9Z95LHtPa4AACNMDtAe2ximsjTLJOhn55//01uu8G4OBiWmjX9mUsYO1cDAapjn7e8IeHT9kHDmNlbpy4DDszlm6jbKshW32GvemeeEaq8iM7zZAf/UGBTLYWDRcO2qmTYxBjmWb0y1Xccq6HVGcjYY6K5ji6aQ79IxDYvN2qyv5Ri/T2ph6rlXbW/Oorqkld9ZeqzBH+iqpp9Fk2kxk+J5sCW4E54iuK2vXdrR+JPIwcE7IbCeUOer2Nwak0hsHVVEP/Gb4dD2BF88j4BkkF3HladTVzIyN27M+cpXfnHhtoYij58vdBFeul6aA7CNIgeyC/Zi/Gt7fa4A/7gWQvlL/dQM3KfGK6/xfEO267RUD6xe2TxGcGiSt65VzUXVcN06GSBtDrxVyLrP+ROEcT4ZmoSlYsUmyUxj7aGgssxRmXLIi1MaA6VIbirindEjYmcm7kQZ04KcimHBaJND2UavfHxu7MHeMitsKc6iQ4xMeSR59fjy9duTJyyaksRCHFvgssk0L27488iDSuHUd/G34yn619yh7+Y7n0L6cH+30iuVMbMQuD2s4ObOksUQeyWrr3MLUZDui4jiIWFPg/jAtm1KKS9C1EgWkLKmdfa6N5/FJO/vcU1sCbYSzBJxx1H7Xr02VJL7xFJA/i8xKbx5oGPJV0IimEY7YXvhNvGt8XtYUOLHXJAflCmjXHIBYyHaBd8xNfghKAFrVquqhxsvdVqroujRrJ2vlc42k9kvs7Tg9sgZ8TCzfaVQV50mZc18MbtsBYCk+6hA9OmzBsziZPjaY3F2JSYw9kT14KQOJDd3hlfPp2RT+oFC/V4BEHBOvxYrIIrc4l8rIzynhtU0DmLNn1M6jwVdbIXoVyegZ9ZH3S6iGszRO/8Cijls3/vXEJ/wu/hQLr08Pc8jyEO/scy8kiBFMk5nJfCmelU7VelywhM4Czb/0UjYtP6FBpz2QG1qslT61Ky2AQTwLuP1OWnEXuqkAMJzPgOxVzLnSZevgzB+siOA8MpskTyrRpLoxmVbp5IegZDfcoosFeyEV9/z7uYCcIVgRS8Gwni4FLSX6+YcDhqGChmxDEPx4Nj7z2t9zqpIxu9OnsFm0x52fdOYY1+3N4wBXbj8FPUaa50VS9FHSot9g6EI45kEc7NylRPBP5bUuvnTK1+iR2D3cHci56+LVaRyiwlTbsJ33v8hySRoWqgnFyCDvP5zRkyTDakwjAAp2XInGqOCY28ttT1s9ZVHZV61zdwgQfDOwfOqh6lUxja4v2VGbfwrTO/rIKw9/5Ir3yd8cDoq13OF6LTtXXQimL56t7/JF4qG+xf1cMM22NP5EjeyVg/9SZB4M2zA8fBk1Xll2ZMCUq8fFtDsVH4hb9ROQD95eNyOjRT0hfb45SmwUO1Cx/2c8dv7f44kA0/6jIb88Hvq1uybzN42T6xK/FEx0ZBMSOqSyxuvuhMnl+ONVBPOrToPSCe9hIi5+W37KbN7Bcadu/jiow9YliUy1gOujP5oTHOnUoW4ZLEeOFss1alRcsPQuAVbceYOzFNN2Zv0pipCX5loPACk1wd3Jz5/hVlTHdpJ6yGjC7CqWszF+FS8hBHjuQDR0WE0GXCOcGLQ3g8lqChfZhQ2Ebrp4JnvBPSH8/m1oZVfik9g4CKnWqOUQvfPsuOR4bzkyqlmFCKzx7CCQ/KanoWX+IlPTb2gHfrSgl1Bq1fklpDiuvw3e49zLmV24EggBbbY0+UTLm3Hyb12xjss7W6ACV/i9bawVC7N2YlG0gCHd8toWrmGX08FkqANttRl+LZitHpEtyUfnn5jwoIgHaNr2J4mjpmI8lH6dIhW8LkG0Lqwr1lHVIAY7ViMUBfA5SvViq3DSfpVRrcP7/ZR1zUxKnENlQFgZMempY6aioRK1JIvpJd2DxFp7Zy5me593nLANOu7ALlnDITjof/hV/zeTTRSviqoKJx2ZdmLITw9ZmZQe58N6BuEFf+Mlkt4i1vacTCj0+O2ZS0xvE/9LQedZaTAezsyCwPkZefxoKn4n1Sh4WyFLX1iirQMGoXLanlCdaOBt8iflyGrlBuXAxM2efcB+V7LQWXsFHUXJbQwJzIYw6yAmjew2iY1EG9ILQIm30abnMHcTQ9yw/2m7y8a504uV9IekeUvvvUkE4k2UN4eJ+Nj+ct2iHceYAfW4sV+7bN4x9zv53C3l7EgLzFgjGb3221SKg8VCbMw/gurqaDFhxGJBTHEsiS2ZvT5VKUG/7ZzrUbM83gkMRwj1KNj4CoRUarr5AejPxsOST9UehGZuDfHfyziDx4S127KhziRAzI97+OC2E8H/DHIEgEq+9hejLU957SI/Ju0IVN8DuJ8ZIovesCY2efFtOnUEPSXq/qXrS5QT7j4nvgvmoFvAgi2elfRScnGvvx3vGNwpwWvYMAxeEe/IoFgs5gh1msHwhDW9vGa34gaRbjY4fTHxqinjjvPlXSLeP2D1I0/1CheVKtE9JIoQJ/gANM/1I2XGWjUaBL8J/SNdadDbm+sAnOG5gAnJxRM54VYhC3MCCMd5EEI8U3CtUTWjvmu9DpXe3mMdij4GQ4Zpfe3cZWDjzGVLSubRGG2UMFsEADb5z9F9wHZu/7Pjk6HmjVKZ/K2ibFrGnYplAkF2QWdV5l4AbRc/tr7Yg1nyD31hLVYRjwe5f4J0cRuBf51UY2YBnOp/Be4D7aZ/1+F+6oPRxcyw2U464UhRIipFLoNZ8LVVBS8fdE/N/CKQOBNrM7HAda9oFGDKAHHPA4rFDgjybJnTy0JQoQHNHF0EMmNs67sbEIcBhKJGUog6dVb8Lx4p8z3auucux19UjsgHWj/hgvgv+OK9o9oM4wC6tyye+j+BCDKsNBkf0pVur1JltfjT1VNfo8zIrZjAqV/+tiQ5LKCD9kdlTjPKr9Tb4tazW4GYCyhuaET0eDWif+HX27m8F9y3Hs0MylXrbUmDomqXsoSeqwHOEAYN16twAAhxnxw3QvHJgUhGpS/dWjcD7XS/7FkA+XF+7PToGSOdPbqOLm2YxfVo1AkdQJaFU+eQbRGQfBAeqM+T2mqyZhN2PxjMZ70Jk+i5Krhp6Z9xRxGsUEKsCs7FyGoh2JyT2dx0BTE7j3b/ek05ydYTKUUyeDj9t41TNQhoKceVCHeY04X/MlWIGmowLQc7/7JBgVWUiQp/iZisqrNlnXl3V2qxBjl55ERKwR6FKuFG9uP13NDEiCWTy5/CK+LXzCUBuG19x2MnfUlNjms7sR6v4lJB9mSGIcO1WqbTmEjcWiuqnCD4gM8eKcmW3FnM9P34gCVU8QIziJr5qTBySFRt3ntS4g3C4clcqXaj+xTU+XHK8MzOJJ1uw7pNiVIDoHrDTHNpVqJLw34kFS6KM/sHiiIn8ioKvs+kya2h889xICRv6Im0bXKYgLWxFnbwYyu+X6Pcuypp/fUYtystEvITg6IlMroZkgN4AwoDVK1qNVokS75NIRVVqJACtTfckY9POO4Aq1d8Z/i2t7S6VGzzFOnVffxyYZF8H9CR68AHkubytZ0ZZafFkAsmcDfISIKk6SwMmcx2cr2y9PfI3nGcq0QXdzcnuLixD5WDZ0L5iU6sX+IAs5ZEhlWEy0I7e8kJwyCHYO8d7ppLr//UqMOOVScLI8RLQrE4i/Duee8EkLLNQHmODBOj30ovZEFK59HadlGDngZ1ek3MHUFZD5kmyXyoLhiYw1E3rM52NydEpwDYUcFUkz65O26MxcL9/pv3a9rZeuFTK+q1ibhWdkUsztc3PzntEq4V3vtaXsubyK+6o/qHD/WSKjtq1SYl9ygu3fAaleZOjW/2U5SyFb2DWlf2iuCRHrl0wmH0EK4PNSMCDzqkFEQ9HFaPpu0e8eXSW1iOHl4A2YqS+10ym9lbdh7gn2dHkVUPo0+Tg3HLGVp9HYffr4FRcXwNmToSkIaeQsQPF+FBppqFB6UPBR5sb4Jt9CWWTWSONduoL8DaufXG1J/egXx8MiOzzWW6dkzA0bQiWsLEHbZap/ETjtvxMn6hzR7Txr3kpAzDVTSKFlbldERmnJJ9cQ+tqn37AnGCoOmzgte+mmmNwTqx7V8CQmnw+F1EwQafSUjsGuvoZqq6SuGXkpBW767PVTroK1aAzHNCtxIDQ7ag/icN/8m1/6IblNyZNPO4YPsZjv2jvZNdIVlLDhFcqEkpGbCaoBIeigMy+YDcIu+GOn95Qe4IoLHi+AVDlBwXgzJ7XfSv/a9mjnsHM2/RCTwFxeOq+WLMp6WqygmSM5nG1lZ7odz3Aaff0FUYdklm9b/TjWnGODJpSsDBN6uW65g8B6Q0YYb7SJ6j6g1AxcCijjuJa7WIMjrrmGLHNQ4pds9xLp0hOxbV9UjbWJ2NziCCsuyerpDEGiADhYwtXpDErYtAfm8uUn2ysDCdrgutDbT+RXHC/6ZRZ8VXBa6Zj6HnmN3vQ2D/e5QpoL+PoeH7YfWBBRvN3SWJDEUCahyEKRPBhAOAYZuI+Nh5Dt1snDr0tCaJbjSU6s7zsTC/T2K95aG00cckJAiRv3Ygju3W/1sPee5BKE8JL6lXkUxP5k9lAH9Hv+Z85gq9iXZTLry2HlLj/kzcTCkOMbRTxLiB2x6OVgzXZp6uE1Fhb+W7265CZKW+MFMMZ8FmPH3/Iu6cgnEOmxFhYRDrXYcjYyz5vrA0Swahs18VymDk2lxqq1CL7XLwSJ6Ltqd2l31hGvQzYE27YVYObWTHluUwzF0OLEX8A2qXtwGbk4HDa11XgWH2gmx/3phn2f6rkxPC676TzDrU9LUTEuuw3AEf3B16PvPEFfVqiILcVIQD97C7TAP5GIlAdQh4dWYseffTUd+fAMNd4cX2iybEJRfY7lNQgg2eOarmAVr37EIpaEAsqHzYCgC8vAW2kRKOY/9eNjks06XKFabJRhxu+IvwxP5kHzDue9+D4Ak2LKLBjTrAQSxHykvhxoPOcu52TgHNqyK2w3B/51nENlNmlNPNQ5JZYhJBCWdPxCx7xJCRNm7QAmb0VRjmdYdzsCblC0FYbAR5qOzAWvZjDJu5o48FH7ZYK+bXu2nd2qWg/d/ncIDLLK9eW86Xn2ziorHNnK6YoAWZiLOXZwK//NPYiqN/D20GBPif4Mn/OUlm+pZiy1q1+trRj21sgpMlN/0tNREJxCwqhYb3HRJXVRXcg+nq3sPMr2eP7/wIqm+59/DwEdYworL/DrgHvyxKhyzM2W0K+VeVH7GQOo/QMa0PL8VzfPbco5xhAfm0WkHVdHWxzkUIfjSkMLE4nPwGs6++qfwkkBXIliVavkjhz/a1igm+OhInC8wOFHiYinyPQhm/xIiooy2gJjAyYYRISUocdaSu4RXi2V6hFQhoNN8Qt/CO8ekXDgxGb1o+KDd9kwZFbvlYCZ6zuposysMZS2d0XFFHpZ/qs3nbWrcMNFGzLuTU7W8F5HI/EVRuGKdkH9WTUdX9QKBlDfcFm87CvgTPEQjINBGuhFdUf+DirDJyHBqGqrSj6UKH1DWuUVH1ojtTsPnYJ3lf2TTaih3olkDOBLVKN+YDEN+3r6Ivgcvfekl6mOVAnlgDW41Mqdm+PaqR97SNHHNd9X36/+Lu61+7XHSRYa/QcArlYmaqUctYjROjVgAWPyhJLY6f3+S4IQkZuyFoCI4eDT/XjED8/7InPrrAGH3WLhFj+kSmb+nfkjcjid4Z6IiRhB27Fe2TdVN/QA5EQqur5HneeeVrma896y0jZMj3SWWciaGQvN0ZJbL9q8FcZkgs2nuxGr/K8lQni2eZ1PEYS1IiTPDS8Z3/k+vYECShpzxcbB03SLZSGtLyc1wQrqngbmMnpDXtonSCVmjF8IHba7gfYtYjAxTWqzT8NsBGSBiF6cnn2jgpQcDkrcbvAQyHnZiNnNO+IOZIpOJb73jynr8FYix125s6rbmHlmszliHyUjRxuL2NC624NKIpGMT3AEbtY5gxlOAdDhKIlM65tAA6uC/8s34EdGQW1xaVdqQVJUiP0x8AFdRhaO/KYBo2kSpNpsLCpH6UcLN2V/0f93Z8ih8NEssk1pFKcg5s7wNA2UYu9DQvyS1RPpwF6RPRDFtSR45OimGY05FvyJErLk2g9olh0EwcBLoMwzTEWA068dgdrhw5fyxqbPdSVrOHUlHNupA+zumItJzbpvgDPafqPwqrf90HxaIrgyotBl7DAGc3C2gXC5WKiBNZq+ZDiM0NDCSvMkwoxVM0djw3Jwty1qKxRRJEtbwq409BUHurg42i8DH44SpXEiy8rQPF+XL9P2q8aph4xSiQ0rOtd/JW8OSPhh2d0nyffELhcGOMVocj7caCp+kHW3e/4+7SnSD0IN2STK5dTdajB8atYiGRjEjYrq0NNxBOfB/mBKyx6bQmWXBtBxJnMrllFhXuMRa5XG+SP2KNLh3JG7r2QS3t297vApoLDNZ2oDQ3PXTXXa7oLgjtzNWka1ELKKyFj7NbcaUTcw/VDz5FZC8qe4lLcfMMC7c27q11jXPBBV6kQxEG3+fsMpO2m/Fy1F+QA9+JC3KolmndcwIAV2bK8rd+AGWhiB2Li7hTxiHsufeowPKJ8YijmsZzhsisPaaOZ3KQBfKZyCJnrNMC1s1pT4iFvUfGn+jYnkNK9xaXqsi97Rzu1poPPbCPWBr2OJXgQXe6neN6JlnUTpHFdt7Ynq48Shk69M//LirM2sGsPK3UYw4GHku8usNaKCZ4r/wTEb7UbVw+gcdIERqGaBVwKAZ4T0+TCuYxp2GFtJtT5iOLkUvdnQWtjgfsq+SU3wzi0+Qwvx5tnAifvsHhvZdybBMUlKiUmNwqLjzWXm65udgcNob8XNyDXPSUQzJTmJp8+UC4rWG8d5zxzHVWR20Y2Y471vrhLZqV+KU0qtZZHpxw4ruvG3ue/3vSrwTHeQ/1HNhya41JZ5N8GsNE8+g3FRAyGYsnxIuRqKhry7NL2b6atv/LF9ruo8Eu4DgQWo7PvPrf++S+KsmLjww3+YU/Z1HbhqK63DUIrMfL9fQ6VvehEGnV3DNIkqPv5qlH4sUxDjPjEHc0MTg0GHvoiIHy08W3ghE4SphuSNV0HnQ2p6hylkZk3sMj/xSm7NWeRjt1W13O6vRtnS+2UvH6yWb9kRzaEAM7mdRAhQWer98d0x0nHwHyI+IN8sDh6xcyyRaF+fZZ78TK7NuPioaNVOd5n6jCcuZ7DRthr9p+MnfQD4MBMgmQd31rx13oc/zd1FJ8Y3mlLgwoIq2dTFtaAHZgbw0JaGMwBKjPqfGkfjkK2BeoQVAATQsQrS5Fi5+l2EdCdq1cKX9qBTygzOiEZSDwVLCtWz1TIyhQyqFUeLKSzv/CqeuH5iGFCcxGOO1QUdt7GY6SXudFuU5+6WhBjv3rtAzGaRppyN/u/YngHkc3VJIf70B6sAK7Ctyg/zEZOQSzaVDuAy6bM70e2pcYRKqff/gjk3svDcbnX9Nd6fbxn8I3rwgKDsVBox2EweEcHI4Qg5ECmXVSwIvanSFtmlyfykdHZivVW1zao4aYvIlpfbBdTjc/XNO+ZcffP+w5xefXey80An/p614WxxF5gq69Ym0qAzmpm8Mz2WgdPTE7W0AZO4WzqhNgi1QhS7Aan1NwM0VlssL6YlnqnTJIBlEWzxeibiE2y4Z3VspGAiafTZeMbOqJldelY8TytrvucvPDPlH5+H8zztyJLZTgudbl4Jgu7gqmEBvmxoWcHV0cSv1HajnT5OJ4qtASqsQQ/yD3zyObwy6MrnR5IQJOtSFCEvi7ChG5NjgqOd9GApf33hRhce04j7TeX4JrKvJ9c9EVylZ1IXRqHIKp5SCGUPwZeFbd1JFRUoHFACoJYo4DvoPpkwXzFgrkUHM6NVpuo4XfqtXW000tKoOrAvqpVwDDvEzJKT6UxBDhPdZl3Ql8vRWvKbqyfWGhYIuUzEWUPvLBjq1+TPC5ryiOU4WmGp3/gogRHkpcASH8AApgOYUVXDnYvg0o3ZdOFSxFh8xHrsZziB2/E37HoeKtCyjYzPuoX2I0Wb4ybc+okz/toPY9PypR0SBuf/e5iKJGF6QxDlTDHWFY56/ulpWT5hXgsIcK9qv0i8HMQuXZFkRZJQmbkqZfNfzpyBWUMnqj/wxbgU3q9AY7Tivxu2jxfL8xxWC3knOyvyJlwOncJN+de70wowvg2vikDupA448oJb4TKVXME9nxPq5FQbVr+E6+t87ijW8pUUTLmV9G/KGPGbEVVo+HPiQA+zK2Dt27TbTMejfBMIAUeEqnUpFDnK56M9Ky+E6J7S96QFZ3oxdBNNVhtOX64VIWUjMdFXuEUWI2Sl7oj7F3VpJuSK9SHo2lcNou4v1WwkdSI6zUdYAaVRzr24shcGCbjv4S8BGQ5kKSk+JguxlCsG7wy0lS2VsDP02MKxCPse6UVwSuik2q3Ct4F/MRSUa4GQ3Q0itMcI/HmXz4Pek1aGmW0gGfh4JeCjhjwzWLm2R8P1cPTGHxDZ/QKC3o13IJkzQIm5pMVU2vVXLdNrZdXv9cCmm/VAHqIlGsDFs0Vd+3UJ/OYsAF9oN8n67H15JUSOCdkjb4Llsv6I7+zuStpuUQ3LTifHcmi1+jLdouxXBCNooUEYjMztV99H1w2W9hhElkbYJi4PU4SR6ghfuBCn5mifuz2XuEGfYAa46F/s5q6RrLaUH8YJNOmPFNo8PHNRUUBl9vQW3s/9PNgsI6m4eQlsQ5oQ3t6pTer9DoSkxUCVzFY4WpugXNSPYhymvQrLn0KPhQjj1pAZuST6Dy9LEt1ASS2W7GG86bhVHBT7PZM2onODGxgEvJ9wQz5cWyMZbsgGUUFiJ5fOv+L3iGZT9H16WxNryiecQBgB9i1hKQd9PjNsFKc5Sc4+EJXskutz1aGH6+7J2L3R/r6JMpAa7ln+Eyv6atGcNkp27r/XzkOTI1G0ZD9LCZaZCvJBDZ1ZpP8mecoWJaCKMzmSjmJZa3XwUSC4codJ9Xe43bsvzYJUQObYz6RtWfot6MmOKj5Qqtopb0ibt9Xv/XifOxAQcFIuJTjE6cwSTQVQBbhEHFHh7kOPpOc4zCK+KB7wzObwRdZsAtUgFZpvIZgncfIqLlyHDkPoG17/u0FJKzpR70ZIhNoIf3FKN8RFm3SFq964nIHyjdwewooVofUICbg9V2sV4pUXa+lk+GcAfrY8iJWABjn/JJtMrFjU7gHrvDJ//aZCsNuP78oEEo9swvyEAl/l57sWPYaau9cjAf6NyAa9rQ2jd2f3CJGabcOOTNV93HzeBDRB+AAYojny0LKXnsSl1akWEp+Wpk3Qtd+M4eD0mX+WMY8i0tCVl4dDYOQ5oLM3pG5V5S+BxypLOfQe/NS8fJbmsa+YuZBY3nQf49Z0yMSH+nEIPJ7yxvrwcYfNq2pODoKaZtzd7DLSKGNdHlZUkBSRcLht83PPhRLSu420/gDAhUo5OxqHpSHblesQ8N+V/r4ENfThJ7LLYnJZ4TPubLFgNvoNWCyZqTzV0hWaBllI6K+SykmbXBweBiF/T2p464vh9L3DG0SMcrT7m9sS+4uXz5W9a1rv6YcVrDu3Zf/ieADqXdyGOBp0+Jlfe7Qf0Lxrjz6kcqhlmpC2HvUYFnrDkSk59t/qVYpo5baP+peJNpI6aaH2li2LwoLATmFXoKHOJKs60/flLvZrJ9s0OEpmFmv7eNkUT2oRnaqqj1cC2rsYHLPa+KHqwbC9cZ2TxoVp7OvkX8FemYxaTS5ddkrDwACfXvlXfi7G/xwzMr1lWBLSghInRQzn5lf843AoZmZUWgsQhV/Jn+8GC/8j9L27W3FS0QWElPOLZmGB5YRccBXrAqMa9GYijw3+eX620tiGfb3Flw/jGl9RpdIjUOu11wb9WH6Ro0iLpAXjyK3l7Fhz+zeUhdhIIUXZtUWzg74P4HcLe/fCRJ2HOs39wiKA74S+E5k+E06Ktf1nc8bRVObz0rAjzFuVRDc0sUQhk5WQUySwwCCDU8W6fz87XBzXSc1JyopXIPAxCM8eomFB9zQuFTIfVKtsQJMbuquqaBN6TQRr5m9xn2wZIm/FSEwZ9Wt+SI5pO602hTa1LESPidAJX+qEiRn5G53VnkqE3y6ZmCARniNbNml/zU/R69s4QRnFruBhTCrCD0k9NcWt5u2bD85HlLIQ573uWqn9KzNN1lYbbc1vxpq+4ubDLBoYPeeqnLJjk6notFSbXofwQ2k0iftfEsxF1SNKFpSxExH24y1vQlTIc1Q3P6yDAwj2IXLRykz/MUZEPVgscArbgnWQenwNYviu017Fg+1u/LSuTHMa6gZBBcfO8HWFVB+ZP9qQ9OonD+gIx12HtCwxgBbSvv4R1URUR6WqfiONd/ExGLEMFCeG/NMKgJ70nRvg5NuPqfw8Nw3v0sj/mI+31rJuYtcdg5WzKkrzf50fjf9KdD1b6xhqBexPeWa9D31IRa7qZuFxP85JdhTOILphbB/UX5VEW44qKMVzgE0Neh6K9WXxG6J9ErUyG4VDhnl/FQNdExDuVb86BkrkLMi5qKueHWT/rSCRg78D3GbGFQnCDasEJqKi74i/7FKvOCSftogC1aP/2UIwHgaVixAziVN1gRk/WhJ79gX9bqJflSFHzrNFbrdGfkUPQ8jJEvYIRc1/29wyss+NWZONSSPeGjJeIwbOopkb6hkcXsCxt+yUQix2pssJwAxxWuEoheIza8TTN0xYsnw4CRDqPNgurEa0Uwwno0yH1gU1b7YBrbl6Bw3Iqfm7FY0MYIM7GHaOQnfROxjo6SZb1jO5rbu+gNDfTjvyQWx5UQ+jHJwKZb9+TYkcOMzLnvJ2AlytcrH/aUdnZaYNAXKy70t/l9yTGQeiMI9Baeze/5em0eTXf1hhffJt7BL3njD0adJBkBJk4KQszxbkk3Dyh4Q7HCnacxJuU5qgYbTYHw61k8XgGVymR7dJ/b0WRHKvC9EeXVJs4/4zo4o8b8CbDfLePRij+CzbGB0DLGPdks4+dgs/46fo9v4cPfPpI4jTxx4dGSJ9yaiEqpMQdIYPb0Vjn5rWQLvmHdmMermkQg7zFJ0zWYyUr1dl0+u7ugvefvAp3NX2wlcAe2/NzV2jCboHD6FcM+ttXNcr9OU+2pQvnyLKIHb4hqmuAFsUDw8ozmRzOVHPvyt3O1/kVlb77/n0HmT0HZvlXTniDO840TR3ilsR26ZZEjsECE0rEZlHG7ztOW/2luALUeNgzAL+vG2knPzv4qgDf06GjnSMWys43DZH4fc1vJKI1KOiAwr/U1LAv++t/7Bfq7hJitd7e2ZFpRh3Chg8iKjwFDPFEsLgUdzZEaj6aYX6Pl1yy99ORFbg+n2SHYnWfKpVTOVsriq7KYsCo/s8du8y6Ufunw6hMt4NH7w9mV++ZLve7VFHXuRz08HJpHmJAPmXf3oUFtvzARz0JXgK6TSQtU1nfTwTqmo5i5XGbKdLu79xAH8iqGszIvbNcHEv8w7LxHuC83bUMiFVaWerulVZqK+Tr5Yi+/zdGPsf+iELl3yqoZfFHUQOphoxD5Jhfn38fBcPQUcpSW//L252leg72zlXN7b7f4AFsJOsXbozfq8zHpuQC19KZt4rgY1KpT69lJYB0lsbLATHTrLGtD0/5zs2/PelYpLQTx0KncSDO2AAloxO+X3CMjCg4lEYHbmeYXiOhU9bNR+IHKjpo5o4dZWDtjakI+6XKVTRaXB3wpTzc2AhNuRqNXeb9FMjjECyT8HOT9zq9U3arH/8aQhNW4GmdIJU7sH4AzyYgH4Y63ngrXhKOci8GakTaPIfreLCJKsFRVYnu6RafyE2NN0STjUZEyRNJ56knne2Q8I/KCY618Zbdl6y4M737We3a6FvzJoGi6jeXwYasID8KPlj0fpbSihMO4XNMLAdjX4gochsu4EBqMLxI0p64Y/1ygM70eO65Jn2krNpeVoSsBsODnFHvpFPRVE97+0OYvVGoUmqb4VUzcTrWYVJGV0fHYTYynjfElukwveWxfdPrI2kphNjdnDGmZOdG2LZfMiml5OCGlOpnqLUwMHaISkmMKGU5Il40JqbD1CfPyhc7Qxu42cWg+DM3HSwkc4NKYsQ6TEUgFrv0HUNeJV82HA1981TkpguGRIcY8t/ViTA/C0G2ns0Giaoz5DZsdx1250DzH9FPeHQAZflJTek4N8a3aAIxY4eER9HDsup43nAS+FGpKQZ8tRYplmJEzVFFjggAKwPDvdOwqOkxxVFavWvQjJVtAdOkusYBjYQUKknVazawXf+SbdmJR+2KnSr8NPZg/Ubuz3iHZ93eHaQZo0uc3fwDTxEdn3ADbQYSUNv65A9d4g/iN1Iig+pBkbzasPY0TCPTMp2TJgA+Z1hsBoi4UPTaND7Wl+chcTykoZ4zwa8yRwhTbPzr7Fm4e6xgGGM+Ns3Y8WqSphW5A4uDikCmu+9xJR6kEO0o6ui0Him0+rmdXcOL/ZWdFBtzQzkuz9lIbdLAiBDjRFsnuP+CrS2hFvCY3TLER6XQDbyXLZ6Thmd69ytET27/tsFYqXM4VDPti7GH5ONdw0WC8O8Yhcx+N9b2Ms4bAALv3IkODcslcLfZyq1KLYLy9mLw/qNK/KR9AWGFUuey1KSChrBic1ILSo7nzJsl/kHCnMLvaVni4j7g+DYEbLVUpESTsr3zZod6j7DWeBK/ygFNJ5bwvmJRYknBshV2NYomoRQcfFaBzI3nucAewiUT6h/1hz4sKxlxEGvavxcCmV5XG8AULwthL0NsXsytvr6YJs1jVWGNjSDRMJUV0hEYD3nJSSCvCtz9iuLrlU9sgUGY3R/Fy1DEdPORdvjH6w8yx4i9w8lXKZsWR2+YR5DYl8CmDohCNKk8f0xuGCZS8I/jhjRtIm66a4CChe/gKbHv9K42jqtdPRPseDVYknL/+cDstqXpXUKb76XIgBY7UcCahmdmLjkrSvNP2DFRz9rrkqw7xNga2xN0E518123ZnJ8DI4Xq5YTdCANpK48nRaU8IM1GmsBXD2x+PfrUp9WcFdIcwdUMboXvuTog5jZvPDrEUTNr8UOD50sidv1tTPMqvZixRsf+ylhPwAaLZJADQ2HlySJSPx25u9616LGuygsK3M7HVFGlb/TUnmeLd6MB2CkibsWzFdVS47ptr8QZuuRGOQobC9JQvEssfdqHhl0GjdKebtEzjfcjsC/JtULtw2evBBI+7ooJkyBVNJ1V+G7otE/CRTqtwls+iRSyBYLhHKoj58uOHjoQWdwPCaItRHm//5AQg67m8cuYIiUrwBxHqCydGRHbv54BKbNqRNGMP64Y8Kjy8KfWP8byw/HNl7NtMgsxRJxMYf48sOaQXQpGUelPnkdt3wS4vsLS+9GhI5KIVCU+pWFVC/C1bdhRROnZn7j3vy+ZzBzDnYwFpG/cb3PqxKP1J6L1Vm19nSNpCxAqFPd4Sv1O0hiuJdmxcEH1SgjB9udbr0LA4lFvlTt7grPJy0+rSGTbeHjWN/9PgSPGwAsjBhWbmPtu4lJCkCLMNuftDY7OIwJBZN4g1BODADdFUqtFxOIlrj0fXnCD07jPklm+j7F4EXT+x2mNEzt8u4O7xnOjFu7RGA/3jvnyq351CMOfpQp8Xj9c8z6/V3GHmK0uabwHuNmCQPSrTJ1yjd4dmhcecxoCu0mOGEmGj0sEuAimtrDLo1Zec0lhi0m6cURwbU4P3IG+iFxB1bQ7pGukfwgemCRTqmB0edOr+5kXDfsmVRSsAf8jhunsccfKMjoOMVM41AwDGlKOvERjFUfNMhcfnZcOlcIOxKG4YZKmPnGJTXCuRIyoKYonhQ0PGuXqduo6VyxN8tD8SugZiWqnTVCIrM2+odbrJK0kOn/IVe1wz3ftf0CjXzGZiPQ5BJkptUpRkH0ZL4dgBL4n/WAn7b2RgLHZnbFOwgBUpqiZzNb6Meak7RaGIRSa32Lswv0UAcaZSFxkbHPDqvuu2TkN9U2MAARuSMK/S+xbvZUI0OE8DjWPhqBAiGOfZTUR7zUWbc796DE7VTV1/FR9gTkadnugPIKAr0CzsTiHnx2ea3R0IJeoCF+8tBnZq/YudMRXvbghlsSTgaZugP/G0WMsnMpbpBiCWccCu3fxu3W7EMpBjVUuoKgrOmsXYGgCRTs2DoBszRhn+HBIkUCh4qQdmsBOvDQwOUxBl1XwcRq8qebeGEIaFLt47SUWQvxMmV2qAtS9PooUfUbsIsi1Rs2Qbrwi0omBmsUfdHTZhahtFTnShO58q+DJBm2q/WKCZQps3E7VI+7mVGu57gI9JMgAi/CqAHinAAASgi0v0eJ3iNTVVhqy5z8xtlegrJeM8m6CFQIZzFxcd28jbdlyifinrGuClmQ0H6T6Zg3604CZLPr5QQEHbMTe8WjTY9heIbspV/QfUniU7Fw5temSQPQ/peBh6SU7iflVFPUBhMXKoBCqqEQdrW/HYBJLJK74ee4TSN03FpCUMjn3umjYr16yoWDmbxJb/jd0KGWIxnvPMvHEXJyYGsAfiTwu0hdtmpexDEMW6h0DYZXUo9QMkiv+uJGx8LMV5lNSySph5iZRaxP2x0G3JMBklnoPUcpzICLUDB5Q/b5P0rDnp7DjA6FtwOkTDQLUcXPR8bfo2Q8vr5MCBi1U5ijk9/1LjHelNLbeHKDYp5V+/invRWey0nHlCwTU7fAY3YHUq+Umx2mY+VfPslrclTH9uw3+gduvZYOxZMnKnFZR85zKWgYc03d0c5SIcV9JcpNinP0+a78qymV8OP200DJdEomQzhv9lPk0xt5hufjRjSsCSI9mLeAgz267lhl1jcxbVawBIs335GqbbGBhJB9bdPkjZ1akA7kX8tVnXe4VAUcFexJrPiQizx3vclXk+BwLH0fLH0Rosc5rJiqq/6vpjzwAtFdKI+mBfvbAa9/evaC7ZidowBCRXB8/fsjGRns+z6NPUaC/oewtiXTIDAtyE9QgD6hZ7wXWIvFFb0SxjSWXlI6sGQlhBJuuiFvbZYDCO3yAI6T/ssRqCGmHGkde1QeXwT/cfb89kPXy0bnTFwdX9nh4ywum+RN6r+JoTjc6EJ5uI2geLNSiMHiK5ZHDuS5RS7uGBNGHhpoMuVH0fc4VphrFmlWG5M2Glk5WHfw2XZXmOz9UJhaEeWJouliAbOSDVG+JcF+byzdgWNX7JDbHmWHEUQz1RlpX9CkU24wR3A7UMyJUGbXGR3/v9Vcb6lOXfKccBkySSbRyHCPGkDFe2+vGH9QId5fnf6dVe2EsTe2k9UM3FeXMDZXbuVbMRoY3CJfASYgoEnXAm6Bv5Ml8lnpzdnrAN6WMTVB5wD+R7Myy/uoaoG9yaSXpmvHV7UuJ0YMDV4JSsj0yf9ulrBArp//y7615Wws7oGVvOEY/zlrPpm9kJyaxbExzefwCSBsvrfbYGtWf/kjEfp6J24H4X4fXrvWowDOY9lh3wjQjTgAwVRjnqaeCbHjA5b/iEPsBEeYYgzwAYcL/sATS/hsQ681CrOQlWKse7DsKBtWzgwXgr0WlxqzDDp3WPhRrI6id1EZTpxPGkr3v0tt+RIGjli9orvmvxepjkbJFwxry/CncisZKaYuZla37I57hsllV0bJu8UYY0dbc+hQ4TWM4Ayln9V9rAIM01Ttqr97ScVEekUmixTgBK/9I+aNzDc0U2I7uQipkKPWD3gZcrScCjqK4zWBXAJ116d/4Pn7VyaHaIG4FCfaOivU6h41Sd/wM0rzFfvVXe9xOQyDAIT+45OdaScHGUJiXsP9ORI3hBJLbp7dvAa9bFP/UNdwdGumNTv4OJYcysBT8O2KGwFZyUmVD335Sn1o/R/EUG19WX5SZ3eJwC9YvCmHlOOyfaunmo+3vI2HgopZ3eGQvc/Wr68Ge9eLa8TldRv2oRUnzC6r3d00pAM3utIOl1eCiwHJd0j1Kn9qMmIemlEg2/+zQdX2GIYuzu8t6/itdzzsOoQkX0A+MqDQSrZDoxc53LKaxxdbn6/Q5jwJLMRq3yaOorF+zxL+BVGH/06/Uqh0NXR8Ich5j4YSppOsJUUqDohjxKb/XO8nqEyrDibgp4cU0gX1cnjf93oHDO/qCo8pgTp/JuuIbxYnW6eIuSWmCVB4SeCxUoHOESMXJXXxBOyBlXkWnkiziNTazLOrex9cPezPm+vbK+GKAlV9x5PGADTohwBED3n5gqNCyDSBierKh9pn1gkCQYOdTpbSkCU1aaRvbG3ShtGsiL/MtR8BaMuasl54dtBWpelwZqvk0VCeikKp+oQ52Erl5HkL0bof31AeKQoJLfxEq2utf/rO5DNpUl2i9PZ28M0EgcoAr6hGs13c2OYFHQrBQocimdhth7mmDczl7WGRvQY026ysJSRz0IaadGZAzeEysR3f0xPJ8xKlqBK+drBJ9aycEsav//w5L0ALomTvNQ7f/NwO4xtiScK/wCvdm09B43U8o6Lj5OiiY/raYuO01YqAAAAMAIOAAAEqbQZoJSeEPJlMCG//+p4QAAAMAAAX27uWoAV/J7aebtfhKdJttQJvXQIaI9PSmJZe4j8fCcotrYhCroq6wQyYu4SCYXvFEL8Oz5hc6pkKA0IVAGmk9DEynQrdb7zcNSG+eXMCu2+j4gP3FPBwx90X+IjR92TU1YDYbpaXU8LgS3YtK7LPuhN9iNpC/oebL+BjFdxb5BKsQjvMKrArn3DOGYaGpYjWo6+3YX6zN+YdRexPf/urU2lwIv6lkKxm0BNYLR6Yw4sy5dnfkkaSJIdtKFBY9PzkS5k2adsSgo2XahkNFGIhr0hTU3LHC4uDYsdSYcE8dypGVMa/9wz6nD5HhfFt3sM8lrubVoFV8IUE0mb9BoEHJkttn6okZIxeuBUtr+aAcTzyBvl6vNNY2OqPEZkgf/DA9goQGnHUgmooM0tsbTkROwF2YGtlEFx2rtmU8jqBuTteEin7tVvwUiYif06cToQlmbom8dsLih9IknxpNOFSbTsx3JuvWe4tXTBOKton/l6g3rdjxTXV7l7dB7whySuXfSkRiuFzBsT0lbVLUgMAAm3jTuJUbxa2WuGj9kUpEtXjI9zSz7TRl5oSA1sj7SjyrQ4AK3JDh9VJJgvx+eqH4mf61ikCsqUp/SGgS/Kq+XjMhBV0TSBbwfEeWXK4Ugg8B2efwdU3aoXJUiMGq3O+NRdH4X6p5smyyekrCuhKLRlFEPxdJzAkdamfQU2QqoyYSPm6006bBc2oY/LnSnuoKwJtB049vXTT9xsgP63wE7+WEbraXAA5fgs7eYnh1gB5icfyDh1VIwg5faCDpTr250G+pHdlPDOqbAc2JPs72gCoU85FnglJKZJoyzjS7VkYxYk/kWlak25uXehDjHPlGD2Ua+0FS6gfhlw5xp3KExk/n2fBrahmkF5LOp88Al/U6Wcdl073HLsDOHgi0XxeYB2fe0HfzTOWbxye+FFwyiz5hqqSEVt5kHkUD+O/X8RItNToQmwT91aRyVo9brbzz+sWwafgrA5btX7H7GBTtOc9yffWou4ZmDRW3sIPSb526FdHH+h2SL4OhZohtx9+JG8Z6fibJdAXIh4R3QY96pgvH9yk9Fnkl2kQvwyNwnMBQ8AoGCnUBQMGAnmCvQKhoTRp3dtUDi4flJ52el0O4cEtXr6WWgKOULOdLcyDrUhaMZ53cZuu9GAzzyLAfiHoYkylPH8coe2vCbva0kOR0rFihhF3XsPjdvnL0FlF2iC74em1rVnaNNA2qbcuW/ATSai4YRgZ7wPa1vgt2EOm5/gOacJJ23uh5yyourGcwffcdkLLSARC1a1IAyASHXnBMcETHXgrMINfSZhrS/tUImhVXINgwus0tSCldg9D9KvTFClIApIdoknTa7aK0/x8u0xKHls7g8fIPQtHJr+YfgT2O8a/w7cFnvMP6hZNlcydUvxDeK1eYrQYemjEeWrfoPZyFzRG7CJxt28q+ylSjCcVIMyhWJwT2RTDqk0z1d+gpd1m9+TfW03c1DJNXgNk6y/pq1tJDOI9Jugg7TPVpN0qCCX9JzzSNThe0VltAbLvbBR6OV8LMiY0qNxqAbszZlf8MqW/z0Bezq1TYd3mDFZQXEYU4G6MCJmWe7JEMO3etE2dBPSVfpWpmpClFd13o1Sc1hUdtrwcL4a9cM01q1pz17bcxpIpQ4ph513mrEII4tbSqwuYpKv4hOkBnDgG6ozHQHxPOKERvIh6LJI8PpOMpZqGsBQaX5LzQcO1ABxVf2dTvfB91sU6ka2VVi6ChVtmiQvwDTGdNr3JMTz+2ik0ZLgeTMB5gIatSo1XZ0CDEq0cqCDaCZ3rW+JsMG8scKlVVghDRPw+JyHTmeEerEZsVq8ff8vsGh9fXW+RXMgGk11gMxV/flz/s2FfrBqiPfRmV5SZnUysK27cwEc4UQv9LCkVKC2/Bce09RdvIwql34se+VrtAJR/MlJRnfdKKLfJJS1Gd5PUTYrR5GMDnkffJSaOvBdZF6fVCTXcpyB22cC2wMjeEAM9ZnkRDxzD91gRpIYTRS/DS0bv5TJmc9L8YyBNGKB+zRQpPl2FT1f3c6MQSP2URICjUohGDk3VawHRxR39hnTjxN/e0IRT+eOL+Z7TWXirjX4MC5Xy+uvWh4O47aSSHXwafkdybnlxznZCkORuk6hu+BMFLDgtVgDz+/Qpf6NaKKcowXiLIdZdR+l6EEkbZHxrG1uLey1BAoA3uJxVgsITpdRpGr8LSm1Q3zqE18ijXEASO6oscEilrpttHf3VJAc6TYFQqt4cH0mKuVZJ3a3srcadOeD0B8nNZHAvvlXiD1VgF2JXT3HyJftkEEGepFuu7OjvUw0reMkFtVIKCnedM9YCX9+WCn2FRiP/UG0Ym8NkaFKmRrRYa9L0hCwS6BXrc4IrwEhtFOt19l717stgM2Q6vVYbliKLiUssvfQVUBVy6NBhOS4IZvtfmxIH1SyhV4iluS6zxNqaU+XapObz5L7JYKeuneUHowULWGPeHD0lvauAednLObEENjLinsw2rpozYUe9W8aUD6z3xbkP7r0+2LGMU6tGlO/16whM4ry4n5VY4CMATIIbnJKHW0GLlg07LnAXrvPM58iE6FAn7zm6Z+mvinGJMaDE0uw8qLwCvAdzkSiqJ2X6uftsl5sPJC3Cye+5/SpT+4Yu9CtBIQ705Um7WK5fSYpY2ksiFtStC05BPAELzO3txLDrDaObtdADUQuZESQLlhhPACKT3R6bVruHVG0teNHKbzgn3Oi1VLDrFLkvCUfoJ4excUpwGR/BWFDmTF1MSVFZgzQAHzwYhZnKvYC3TP8RT3042SpkJRwVRNOgoXLYZhOVZAXeQNnMKmNBowKPFC0rVUcQnLBObCoS/Gg+m7Ds6WHC+Njq9rb9xfJ0r+47Rl3zOqt79cWhp8rsY8eaEf07+MUtjosQvTN98V5j0n3lNuZ54v9dZNhJi2GoWuKbz7cBpVaG89t4OVLGz/KM6UN8/xz/+j2qJ3rnHEKBl8gGB5UF03HtUoerrql6l8riBTn7GV2rQ0f+ubXlgK/zLMuA8jOMSL52xstUB5q4dCFtl3NKh2O9g6XPoBqBSvqGgJmK/9Mze5PjohDeCkmqybFh+XOluHMjGdDHcDRrpMzIekke9VvJwWluZrurhlewUfBIZ5JqUL4SWfGN34J4I1eqM8Do75FdpVLgIctBWD8Q4R896g6716KVoMRCHPmEhuWgXcB1mg0b+d02Q1NL7rC1c8zcDie1y+SX3jGg91hehKRZKB6CC10LGKW2Gg5fJNvpn+0CLjU6WDHGewPCP/er+VcDJVsIs9bnnov8TzkEEypaNRQSAggrr+qDIRej1EcUJtdwloV5aL2l2uvDe2+b8ERCbWekfrlw4AKeKyMie/wjsPWzrsgzUx4+eBzYvxfyt5IEdP/W+ux+lnvbwiXhhXzZbXjoceqRmcQqti51isirLern/l8HdkL54+Wmtm57JJiurbpT1vYeG84Xx2Gi2/46dOcjl+Szoc3j+YioMxyqcHfVba8Di5u7jR1MvyyZWTiy2tXZs3CF/pCjJnp0mbHziUkccQZ5oj6p1j2rhv0TtyahksrgCuSTAhh/iOi4XIdOhnIuI6sVr9objn6a7+N7VC2KxJmoLwUZuuoNh1/ISvmln1NL/uUDCWf7sH6q+odKPByjVcL8SSJzZ+i5NNXIDbqB91VDGJBbk1+Yo9HCVoojZWHSRUuPXr9im2S6g55mJhJ80fFUTaRfGfS4PSxO+CYHS97VuPG3XdqetZJ7Fr2WC2YsNC3aDec7OK7sF+fc0SmyMhRzVVKQtyDv4fPFg8B696wzZzyu38s1zzrq4/i6vmBeSeyXHrWN7ulOvUMKr9j+uD/HoTtkKq1ltHdIPTfpgOW/bu7XH6doAIzS6QgCtNrwfY0srcSdv90ZU6aSUUX9adKRUX+9c+/ky5hgp3k6YuJfsimbZqhL9huF9rRZn/lh0FSxQtfQV2gIDKgsX+xYZpnQBkoW/TFk/YB/PDc0U+u7e1wZVt95Ws4SpSm0EAaaLVUicgIWnJbt5Y8bz9b8i9cxvwkkC+IQflAOamjbxrZkMMY7ZFA5f3x3QR0Yv+Sl2KgysrZ5WGeCZBT6p1X9me0AN/tfP8G6EKiYv/BPBssyjjicVaCHLDAKT96Grdq369bWUW3nR34wPKeTeqGDelAYXgIjvKG3Kc6vJNmoMjkd3u+jNz/Y7jdshQ+wP0Tg9ghS5nIFM3bQZlkYZGZrzUAa37UBYi0HR9zbKYZ9BYKYxug4KBoWx2nPIENtLRKCSUPT6g4FPG0koRhOUIJ/trVWegcRSp/t8Dnw4PfinG17xt716xr8KYlP0dmEFL76/zk8xFTf7TjcUI5k9rJAiSdxWXklYwWSv/9czqFpik5LoBjkLiZWmxR1mo1FcvPiavcUxZEhhiW7B+bhuMqMnMd1CdE4AGFF16OT95Oj4CIwP4yDxxnR+OTFJ6oE9QqrIlkcZLUfQd++CtVFPaCGx3bP4hnN8KgNNzcRUbrzpgE7/THydJ4vzNMt2c+nVEk/y+ySxEAxumB5qoztMTiowRptYTEjpx+lQYv0ezM9FXcRMP/PCURPAJa3IQ3nOSiMn2tWTbnn1OpCMH7ych6XDyPYVYJ0osKwYIxihnoShfR4cvUkqQcqCIXoNpOMYfgxrky7AyiFB5qfXY6vgkX7ZqcFenQEtklGLZOZqQatMBIBYDHgfzOTa4KqqZ6dZabmQQaTGeYVO2gZWac4wJB7ZiNOTG56gV+f6MUNCqX+QrvXx406YpaqDotycswL4COYwBCjNmfUqy27utSnAZnG3Tno4sEvCTXYCreV473chk3XMycNV1yTsswgj7cTzP4vYql478LFriURKvfFcLINncdjTz1trpGZ9uPAmHxJTY7osE11M0IOD2meL/CC/IWL92sbFvwCBcHMbtZ1+Zh8fts7dxxGy75D9ENh+GULu03AbNtAa98st0r2B2nAVXRI2B9p7sZ4ANGmrLSo9j09H1r4v2vlNtz9eU9r8/iod9wv80y4uaMY9KgLT4AYal4wX6n6a4mgwaDWVsnSVr4g2xxJDBqtyKxbzGWmwUnU0MbWJtBpUAmpxikJ6dqSniPob+LH2SCLIu3kZB82UOS03/6lvZqfa9YXMF+mJYfPZhFAMfS4hxX6mTMfieM6/s2JUDzsptzvpciwAfE4I+LfmmlKnz4APSiEhwsSXZd9PGyqexckbJYwPYGGITSnf/gxix0bEo3hzU4ukTnP35Y3bYRdFTFo67wWsZr2UyHBKKb2hiJZcKyFOoq0YSsg/nsbzOmE6ne8bPlVrqqlhAhZxzjWz/LIueDbM+5tPYhY0TdGXPbzCmcvK2PqLeokelQZkW6kQiXZhKYXlxvKdfnGiPYl0yWjR3MouepAj42bwSzEyZemMAPtyhHn75fEh5HZFzXlYLpMRZ0vNoyVQcgLRQbNS572Bms3R5FbHyfQ+O48jj6YM2jZp4c0Azai46ge0r3DEQvofFNc56HIM9/cBpDEyTPnJ5QtVpuf0zpIBTOOBrMoz80k/FxGpF9GJkPa2Yug1TT71HmD0MuDECFv5rLosuyZoz0iiALaLCNwPMXLFD+TI21LOf8T4JuwyBL6Wz5kZtX4LzK8HsoNIrAnoo12pIulAHxgB/jGbqacE5YfMAjlQUzFo4vCcH/MQ1OebCxTDDtj3fV5ZvpmDCEb3EvT3LdVoVSYt8rT4bM6U1R28NS1MIQqfWbNO8p19tyeB92fzAFNnJOmDgXAurA1e6/8zBBCyX+Rkaz5Y7w1DKZmsDeoVNJ2fny1Q3IrqLRbEuixG312rkkCBnixNnnrrleVG0iV4FlJ6aQWRK0yINu/MF9r4WI+83M4q3i0Lw33YngfdRTw9RiSffrNKLJASYmo3+Z2cfbv2VfEWNJTwVgIDEusybPtdkoCFaLY4ly5IgYHboByX/+6k3/9X3KOpAWMgYkGPzNW1lrRutRiURmdC9e4Hs2qplmVNRwlDedXBQxHtWiPDgo15XzUq1Tz9kFzWf6SzWCboMDJsk1Y5nzeLC9ceRLJ05mwk+tVUWaaU5ZAJ/aUujDmjIlIa8CXc8YQmsfQprsOQSP93SaWo49XAQbTHiZ5oBLfbTxTNOYS02y7zz8FMREoP0LeGR/2E9x95BRtRWBGZ+yjNfBVtSRVhVY15nWyzGzIqM1dJl4kC6Z1zr5XWKhtTLM6zvvFVrYAThEO7vF/UguJM+0JHebGYJH8d5dhfulIeHhrO0k7jlDgra0xBFNXdXKcU0Lg9voyODAa7ca9alF8LhrOt/ePveDNrVHxEvIPTY1ZpBXZz3UrhQIsMBKsCKrULTXOXBR+Vi5siSPfawqbn8jCNPoumbHrlhj57MfDL2UVa9Qgxg0nv3Kd078mJ9z22FmHXZoW9gjLwOaM5A/KQ2GRbP1fZJn692k2LWWdW9/OL+aalCSNjyhN8liQm9JZRD5W9LJ1gz/SDlsDWX/Er7vycSkPKnWG0Y6QroKXd9Op0//zAAABRZ52NHLwCdQ8iIxcUcsRujHYP/BtOC7B/nY8bT1NCxmepDNcmFETpgqFiS7rJijW9XCflAiA+48waHs0idXSqYfP839C8N9kUBXSViC89L32f8SWKnhFg8TuMDlrh4SEB/SmuZKRMobi+vqr4kllFy+YdlGzZSE7MArIVb+Zd8RfkdCVw29TybcRMXaFVdlR2iuuF9A+isa4bU0Dv+QMy3ViOGMNm/UtJUam1f5LPywy2ImRcrY5dJ6kgBotHNyA3s6sEIaVAz4kjkzjs6wMetGCgVq8X24fAAAAGfcWGhXL9j1HDPlWClGag6c+RZtV3GdzXxJ4c926+R4hnvipnbNsG10R5/5Kped1EVuVr2whr+PKf2XUjYixtzCIRCLcOPU3G2Jw/UVl2LEZk9fb8xRXPlripqI7YIHjaQhX585C7pEf+VANwOelzt+OQyIVgGFtNgFI1YNP015P0DzWxMB/SDCwSbVeGxxq1SY85FMIEXXwVNdvGqDy8y4Qg9u53KA1gbnLDHKmxXbEfjZyGQfoamz219a4ruW/Jyj4TPruNHtF+emw/DXcDvS4SdAJK1jnefG+inJTgRpZwWPVcXyq9suXqP2uCcOvgzUX3gDZ+q4zKUEyFiKjGUeax2IOMNCEz+DN6Ptx8Zc/X2QJg5A+RlKYALIHqwrn7+w2nZmYXxFVXpZXy2py37BVFzed5eJecF02IqljCR1Y/edZ/wBuR8w7Tr0Z/DG//rwKU+Wq6CAH233aOM9GaiWl/3r3XIWWkttZ7wgzzXJAvIIlhWTU4UN3bpCoM4xwXtuLlz6zuOwz15kTQQ0FpPuWubirMyy+oQ8ueMGWS5n+3TJ96cwa7rCSMjXRNiwNiSAZ82KDrBvXkx5oXaOMydqHNSvYKN2LgpGdRH8MNBFWiqZEA9SC6gK2kNn5oN3N7vbs1A+qSMSbQSRSwJRNI31CkoUI9XruP/65JDX7mhRPcnt8sq4wZHI6AhJA2uN5eXEYjCFbAR5m5NU/79QN3QLZw5crYIZ3RAGGgiUMDrA5hVuSqQH0tVFH9/04mHi5qN1rNWGxQgPMfNVW3+USuKtvre/TqjFv1JCMD+BI3lVpcDAUz2W1ulkSMVjzBvImfFs4UJGp/jcXyttZZcdcjHpoRUJD/Sh3dS2ZE32trehpFCrR5/20ke3FXcln3cQ7DhcxwLQeCbNDKYQ1KS8gTuVf3ricSAdVPr7f85YbdCl0Yu6uTjMIVTn8KQPyqzqYWVTyQ7CeKSNkNKc8Gcvr/fHtwO6wiPGX8nzwQuh+eTzT0CgA3DlopL+7Awh0tiY+oABb5n/CognvlkQlDSVB9PzfrKq82MxmTE96F5CKF9tpfQYIGokk7hSz+RY4oxhZYyo27Kuwe39HHBSY+yoU72dMmXaDeV6UO+FC6nh11+Q1BOZQnhVkd9eSI12I6mjFfJ0uK2TsvQiPPub9svOB9XPeeVNoiiwCTQ7Pc2vmll78cl970RXSLUavFjowtHgzM6AWThMXPNBICzmXSMtx4XQQxwW8ddjwktcXCil6sJqO3KP1lyyb+hRwgnJBz4SW+ZMjP6p0VgYuTTqhZLyw1ujPX3pHmnxgo5bGD4+pNGlrSYuY+bVSxzr7N0coAnI/Ku0Gsv7hSa8pZSvErgkefJghmNzh3jOEQiYmOSC7nHMhIUb6/+o1u1+QjE6/Ea3bJ+nO3KjAGk/zLByyHuNKP6WpW30oM/7sdbyQz6gfL3fdmqFBAuWY18+IqsJzX8lzhnT7s7jkKUSER8tuiSYGpTVl7NW/VcS7eApqL7JlYlU3kD8mHMOleG7aiaUa25G0Zi91UypFqrGZuuo0EOR4bRwckeI9t9IW2S/eDkN0zaJ1l8FEH81oA/k9JqRabM2IaO9496Dz5VvB2/xOFLj7b22AipX768ntBlVYN5PrwbBmeDr1kw5W3ZkTykESEm2DlExj3rgvqExRiYN7XWzpQ0aCSHwpGxVAV+oxOoLacfAvttttMuHeueXKg82Rgy6asECIDvkhFk5cdyGUu8qYR525DgvJr+ZfmSgf876sQT3KjENKC3SjhoDSVh5W9VkJVy8Ia77DB/ZhOEQpHEqNX7iShyHwYIbHxKY4a4bbppWX2ie40+3IG3C0fASerTx8hsqyYEqPKzCVRVapW7mQQ432B1+lL1LuCF22N/qUT/HjXAmo+Q7wguPZcaNJ4w8rDHgqZdRiB7qcBM66AzD9g+oy5Le8LqnVyZcFY8A5ZmM5t2A+HjQ1LfTa0Pv/n1iNhi/BxRExqMKJlbEVx6ghVGRW0ncfwdSqkTEDW4SyO5VlQJaopAiIuCFVF7Zib8fZ+mZcR9IJuJUgYlsgbwKiDcHrFPA1JH5jdUMyijms6+sro6sTTpiLzc7loiA9KPV0ZckbZ4sALUveNKNCOscL/40mpS5dCLcOm4+vT51HwmdjUYYlTUSHWRLuYbZ3sfQ+HN22lCja3VJiJ4HbZetpf78zq72mm4r7W+JmBtSx1anGxRoj1RVmtJ1R5d5dspYtCVibbtTgmXFtKWc8P/SafrvUoKoM3ekG1e1T/8bDenGmiyqToPnLdxk1P2G4OI0RhDvZk5L2Zd9mNx4+rNjqqV5M5j/d17Va7Va9XiZgXLyGJkHl5uEZQ8CvAUn5oF6wJV2qGFGvyQasaApCmHNbQtIHkTz/KLLus9FR/Is6l3DyctERDQecCoJJUaCpbJNckmZW441lRlVmmiSubdKtRQ4kPB0/ovPslY35OXgvZSRVmrGGx4QCdPpydGRAc3rOGLcR7P4TV4R7S3Bwaf+fuA4T4AZXQQpOZ/W2TaIW8ZqMVnCPtXQSPhe5Bal2nd3ibQDxIk6nd+m+1hqKAHBJAYSt5Nw1CFJMQw7rdeSSwcqT84XG+sDb7t/QedRhgzO8hu41i0/3Thy/VB70Nxw2icsiGX7mcc6J6SUa9zgMgzl60RIjxN5HKR6yaNN+Pk7eW3YF44ermv/anJ5sSGrAUAMwprQI5x+KOW398CGMDPHjgD6j98EvIsr/9EI/GZnVtSwOHqOakHSG2TqJ8Tp4q//HJ2++LftGDa44WWb7il6GIy80QpEV8f1DgHLtIPzcSdL8dGqj83BGi9iIm1FPp51Z0NfJ9VSgP5LRD/wuO+BDCxHc+xliXnm9MYD2HyqywXATDkhgMxy8uAJ4s77oaGgRgsMCNjpY5HVmBMo3txiJB9TF7Qdvb84GsPa+6zUKp7viXTMJl3xaY18iua63rBD2CM6UNbhNtw+5h2SFPs6cGNMLRh/+du6NxSuUr5QOKSCPa8TC1oBDaF1b+Hrmb1t+cuDAuO1/3pCqFW025nlv8QfaKcN29/2bU7Kowj0e9KZ1h3zaeP0yr/kMfG8TblIUgfxqWenj0MYK6mErT4MT5YritrlQQf/23fv5VbPfa0g4MWCNeJKz+zyPAVEah6mh9oIeO6uVfLbyz9fUSwJzCbvrnizvkgLu5H5D1/Az1q15GmtPl6r94/nl6hPCPukhZLoh1K6xL9qm7SbJ67ooOBrQKE3yPgwVYnz+y8Rxo+tYNJaBYeuwXAETwYBlW4FePqW/w5WjBMw1IEKNFRlkYawHpdFV/wzaPy3meyJKJ/ENFM6uvsQ2nOxMBqlKZJfA7fox7cs8S9J/R16VNz/uIL3Yx+3h3KNMrzm3mg0xjT/YnWjCZPC2ssNY8wR5E9n3OgjnFrWscmj7A7nd0MhhhLyad2HCB42ZKFRQYr3z8dAUaJnic7ai5hdgzSNlTtg6qH6ibLgbVVBha1LWz1GPLL22jRPZ15RkrcMv/aSzd+DipQQKvzu6j3udBsyOiqoFWMfbElEith5BfgR7utIaT2N/mUj7vAl2tUxYF/Xy2uWCH30S3QDNlT0TbgmzF6TwVi9e5KUAAGentNaww0prEH5GS4bR+hUNTLwEpW+qOqw0hIu7LHJKe/9pRJgU9+DKJaGvYo/vcaFct7z3ZGnsTOB0KO1V1J0K1HuFLQNk5QzPAP8pW3vlb0BaYlXdGtywoXQDdTrQ1LwbsXtRFAirHLFIhAa6lxqfaxp8ShTOiWjVj1QLJY4SUYWHN5QUtt3+8JvRUSpS8fCXQl9pNzA1wBcZaRHNxEYmjSsZBXBk1hZemX3PW+fgw1HTFLD4wvzFC36tu/bQFi2NiFnM9gadLjd7RrpibHexjS+OLtUk23mj/Zgc1F3kzsyQiGo6bT+WysVhpgemwwyjgVoPruowC5aGzroBUv+vruD4fCigzxQY7+jScL8I+9F0/1kVlwPubiH0jnsJ6m3jC7kcVLKNVuFveeuX22Nn5YR6tAtrOev57tuLLCMyxfp5olvEHXG4myq3QTzXJBMqiQ7sTEsMzfe3kFj2cnUVBxByapWXBQX0vS4bPJB1BrCoUPNMeKjtsV0sYQpCZAhZVW45N3w17MAMRBXkfKDhMhG3e39q2XNr/7satpo5fSSO2lRS5/eC68CqBsnPFnz5hcTQS9HftLRw8Zaex4B4Ct+TSaZi9KbGlcWAhpJITSJN8sUl3/gbpRwZAu56uA/XP3WvMnQe+a1d2zCYZdvsUDpB7Pn3UM2RCP6LcOwY7lF7qWDQTX+xyEvMDoBckK/IPKH3a8NiioFx0XQSzCqVRN2Hf7JOq58t+vLNp3KQ45vkcSNGn6mKdJPieQAkJ7iEuZZ6fXUbQCOKUv3oldZs8hPRrjabiAI6nk2k4pF1pKkATVHG9hamU4pS8h5ymaV4SzIR77YuMm+7Qs/0DoHfSvfbY8O0P2wXBlUTyCN4I4vFkjrhP7GyjYEGjhdo3BC17pCaDFteYC02LzUUPNqddkmASl/geiSm1uOS7i6GN395+w2HDBbvgNX1XJTOFQrTSBnqmvJ8J/Vw+FvtVs6hI8qqrYeu/Q9m8I4E80WOEIzh6noNYHjhzOsSG42rFg2Q5Z+//u3wnP5zk47LCfDz05QRCeP048BCbpvw+oWUVEkB4piqIg/4jKhqgVKryzpe5a3nQbahee5tHEPpwEz/Qg93i440SB0IdD9SyWHuCrFoWzKnCCHE2cKT+RWKA0FUcRuWybK2hBfqqOx4NpkyDCm/N9bV2UdAyGG6m84d3B/JHLJt6Xue9PrO4JmSO/jNaMKZEExqHYpOCgth7rEM/an4dMHOwZEmLntDsBvgLi0tc9BZZhJh53Ls4+0+2NDiuBb+0dh2gyP0XQQ3fRepX6rslKGJaV8RayLXkNmy4+e4iCIB4WwoNeG6W3wb8S757BUMHfSsHkajYWlcTwEmg39u4QwjPTnaPC1rA+ciW0X0gXi4M2s/lGBLjvBgImhABLTiYNvA7MEv7qMhWEn/zgujLxSxMkQKvDYRAw3N3w9mbvbGPe1lAByGi0gH5Z1+j/4EqWYgIzk9BvLzAKN2abHZBYCfTk57arMFZu3+GKUWfbnsYzUWGH2XV2Z3WXiJY0nUBY0Oia77PeY+OhjHFaNI7Pag2l77vXcTA/mnBnI+i8/53bN/RUI/u1vbz9x/ZKX+ca6h1r3qxh4CQtq7m5h+reUMA45VTU4SiPWLPCz9D7JEGeZpWyi2PmPB0gugHJw2ofMsmy1+P1rpJLU7jJVlFM1nUwmUYkP0gfYEef/mNcTzd6jjV12j8UjE+CA3fG7L9HMX6n2fJGhLDx49agv9P85GT+1EL2nxzazUgnQdzToiX/bP9iAjuPvitU6si9bdrIOfa4GZUJlhXNQmqgIR/dtvdr0QZ+FlkhMFc0nNEXDlC+ELh6TLdNMOu9Y33MIoiL9s/6nqa+kN2q514WLofeehycvvbDORBb8zj61eTVbKdcSh4Q5WHsb0l4TTm+x4o1mGy7lpSD5ZBBKPlkTnfe+O+0LKTxoBhgT0lrapv7ho+hniK+HICBrL7hzn8iQGjcVvOZbASPjUGh+H9VjqD1wJU1ZL6UPRGmjbMIz0u0Hox4+W6kVNPy2z0QN1Ly+9IU7sPH9SY5kwfDq2sSaDaWI2P2i6CSmFllkR5+pk8bpd6qBEP++ESXYBe514WXHuuiDpzVlZaBQb3OX38HvJmSOp0v/7jJT0GbDW1GeA0K77F96Flkt8uSW3bi9U9CFpv/0nPuEX8qm07wd6cIXSlCOhPpIuR0d39Fdik1pVEBk9tN0JRI0+f5SueKE6Ul+//7ocBciiPqQkZUrOQcW8DptXvSrrT/034hrZpZ4FITQJqPnO5ZufkXlyEzJZYIPhC+huwWgNe9t5HdIrqupvHVOODPzCC2285h6ZbfXiUREtmrsW/258diXCHHTPPH07atmOgiQglYIruePEmjAXD8WLn8gm7hbKpekYQTAgKtC9uZB0CVLLvvlZI7qozlZ90r/RpnsAcPRqSj6hPXEjnxX+y/x0fC6DLqpMshYSxC0eFllE9MWGTAuwzi41hOFktIH9IaVbCnOgiQTG1Y124Zo4y/35B2UzUfDViGUKHyV47XQ+dQzxSwx+hDnL3n0zMjR4k4Q8sWdL0WbpJ4rJSLhSGazqydOuzv3VMcDn3UtDg/rHPCxe3FQgKMB8hdk4xpKolbBYgYT7EQs4K6pGpOxo7bCwpExoF++wneEl5DDoZuXjzKbvMnMlAaC0TjaPJsu0SrwfN8PJIpNz9D14XDLmT2sTbMYfYGb/Uxf47lgcM8L1iBkOg1MybFqti0WI6Zo3OwBl0QvY3YAAAKdy6dv8WxjvbVEUdjcrdaZtS5jnikON9XvSDV00vlqPYJAIbOCMdhT73K4hP7ES/1qLqFRE1/r2iY3gMx4yKUQ0Wm8ofYu6zHls0WYLsjvO8eVLuEN1HhYYnN2UTRKbinuEnqnRkhtRaeSY2NJ0mpF++DMyytXzYnwe+3jmlrWMh48pBhOZxaiTGsr7tkUa47WlfulIEv+iowwu9IJKJiLx/i2WkXxZWKGsbAKKuVuESNRyB+A6jdzR5wN4RQszU+SeHJCwTC4FalFnuZ75vPoX6HaVPHGkGq1wNlmfq9E1mX0RWzuIBOtP/7H7LCezXTOQYZJ+aaigFZACWuPeggOCd+6O7u6d5777mjfhsULRezwk/uoKi462nA2bMGn7ZVPiLMtPbC1Vh0nxoSCDeZZlTTP7wAZ3xp9E6YNSwx4D3Q2vHDFqXSrCV2J6i0GOquYr94LAmnT48+xu05UXtaVVSMVq86UFQPJYHRZJ7kYyjG1HmJvIGQa7j+/rfJHTIn6Lr8oxND8T0HsKdTqrLuQrJAvd9RysJRWnz6qCOFYx022yQWM/ifxTLxneey6BTkXYPEX1my54F8dc0AkxL4xnWINsWviJaMzK6WLEVgrmKBVbN5Jgl4sVNLCfvijJR/JUCC17B+W2a+UPfMC/ndJA+OWLTBdjey0jD0wC/FolKW8v8L1fhLhXXiTeP0D+wtbjvJ6Ly80rYqXz/ybmcO032gaQfW2YE0ZJkk0F2fwSzdqu+PbyGXnuNI0Gl2m7X+MGDFXC6705peT7Cquv77HznnEqTQzSd50pRqdvqu8iOFSbvpW0m1Bams08YEqdDB5dAxC/R+HaEkQf/42R6lglqlDmcg97Y9QLwEe51sgC++KVgX8dYQOuLm7ZQDTJ/2rHVEjLRDq8fpiRRS+HLtTmB4al1QqBN9h6xA8iqwvqEY13rF6QA6AvVzs63X2Qr6eaHDtw8obrxXk3Ud6pAwt7U88H4OxxQx+7L3Sfn73cjzJCV1uCxkezkI4flaFp2B0TiTW0N87I8LoIOBj9SfhNFfN6jFiNI7GQFN4giG5a1P3vcpSnEvCGG9YvYGLSgAyJl3RcmMavEjfYtirh9+18/3Vr6ivF+/cfIjNemnzmgTCjQfzuFp2WVShwCoWNO4zNf2wwD2kC7KiBVn/ZDKTNXx9NBlLAPbu68iENwWwlvlMcYgQhQ90hf0nLtfjwrhsyuUE7LPOpL2cJGZiYy5XyPvdPmEOyupitb2OFoxleLiMW5LUTs7ECOCH/7ZK7ybB5ASuCfOLinliSX0wK7hOgPm5baBLF6Uvly/QHIDHBSFkzTj3ymr/yX6PC82bjUmz3ePBy6wctU8+3eUtepB85Y/9jtSVRyu1N1P5OU5ONusMppGjy+SdyRIvCRXwDHHFlyEkVZy3R1Mgx1UUi8V3GzH372zDKOwfj/G1cdw2GYS+EiUxNouYDP3gB+w3DivQQvR9Jl0O9xWTsNNAaROEvm4AlAMiUmvy0Jxnembk55vJe/+6Rz2H5Mfe1k/9FnJbNitjEtK5pEcmrApDNGBDaSWNSGCN1J5p91+T2Ei7JblhNdkW2OdGEkuxrugkIJNIR5+uvhm2NosX+Y8br3oZfORIdG9DaRvzA7LCxlR1Wn1Xf2AbAuf2pG1LIuh5124NoFzQ96twrYrKDtEcQjp99FgFhP+qlpaNXyey6w0huFsaPzl4B7Z5W5FEr9KvGUoxNi+Un2gLDwRbTs58RJiWgA4ezE8V6Ds0ilwtSAbRtyIK8y6CPe74FOtPIPJRHoJXIYhn6uU3SkKKGeTK1+1iuaRzocok/LZRQWgFjlwKDnKMPVSOhM8JG2Mj+KKjlMhOXkhUk5LKx+zUtXQIPJ4f2eHy8WU1zO5bkUz0gRuheBTgRnCTnJZ9pFHxHgbPYfFUR8A5eUVaxNFpPHyKdchqFuCaZdUzTfJzs/LjeoJBVb6U6gN172B157p7HyavKGGk8kXkTiKENJAe0SY7iZK+nEMCy5XQ2fO/MCxVrnfUi+wcr0tmLOVMyi2b8+pf9gLmjDmJV5RfxpVj9PQ5L4E6LL3yrFTanJw/9arikWQH/GfSI4TDneZ4qUflQgT5hcTXVpo80NGbdAm9YWRUBzHhWNzOqqHR4lHoMpT7ZyHV/3dCu42fGwjzlPyDYcJ4vRvFEHkyGNu/pF9ymdY48AF5oVUhsXtUqXbvvXgBUADDAmPJ3yqTvQWUwLUh4frMSNw4x5XLRRgbIzc5pYAhTgQdH5y2ugcF33dqxzGyp22X11iANjDODf/uWssGuVE9LSVCAou/0l8Rmjk3y1EKGBX/TMToGqbrhIYidrY+v7BSxapzefT1dIKrkE1jRcr55qVQy0DJMCxq4o8tyCF8reEqKk+ASrW3jrgfXQrKW2P0kJ72O1y87s1z8WIABATilAg7+yMZukhc0Ir7V8/xWbTAZAS6sLDNY2qXm+G/f2YM7wPmSxUBx07svjDV73PITaRgfIC/tv1nrJZ0+NfIo+egZE0LnXvH1X37g6eICygKk6nGHL4bBN1VPbJkX5xpQXZaJ2I+MEuvSnpdiKv7GM3+QOxXKI6m10fqRvBuyyQwqQpqzCCXeFWVrAcf7jjoWjQvUW+cQRaFWPu+qtx/s+I00moxoSiWmLj/eC56m8eGjY6JE7k8z2naG360SCAiU/7QcBiYbOc/2SPB53JJ5Aa6QNSxWXPqN7G8pxCyIee0fdqBrP5qw3HZZteI2OFad1i9w7fJ8S2rNtvl6dOkD0Auc3V0hMhcE9YFrKsswvE5GqI1X9xPrAu/cOVdN2u6RXaswoj1rEsNLVBDRXDp6E8UpsBT9upudSXYwjVlu/e1vJngUPwla/zG0pjxanYicL/AgbuPrvJ+ErpoiJ5QxcoEijVrbjRn+yze2GNHbtd5An8B4EohDJMDXwV0XwW4PRGFvntp/uQGBSKM5H+Kh5iNTNP/3nm9cn2hDrXKJgQ49tyu9zkIqh6FavRiaKyPoo5f/degHMK8xYRyg9/YZqK1Ur4ZEfWuAyrOP2bvTDeXy9YrIQDwJ/xjNiKX4Gc0aH+f1ZoTNk9VpzCBUFZFE1IMy8NbV5QE1jj+jo5X8CAQGWXOT/L2XztinA/bAnpRfMqg9hO9IFUtacTHbdhSHvZmihBzj05pBaOHpQfA487vhPQit+/RRS+jQxd6wIOzT7ZU/DttrnAuZVXefZ6W3V1UzOZdEVH9LGMxkvaXiiyuK877FkJOS4jOkMgcgwdw5gkgbKLOzUM7ZltoCqD1D4L3hvqj+snUbAuIGc2ARPWvxRn2mxuiOrAY2sVOtKWLYoRd9GAZvSMn6vlKVq7UNy6ncaXm7KodwEor7uaCo5p3iZMBUC4pqndyxd9EOqfXTgTVGSfMWTvBkGuQC64/HXacCBKbrGdQgohkIRXAfrv77HoWQi7dUBQB1Zd73rwvnVAW5ccb1qEZryk6q+ZNp0Rgn+b44O5a8nYqPVx4CRL7SSOkm6YkSEHSEkm1sF/7u40m5StM4qgxfA0cF5MYO+f8i2oauIFXCjlnQIV6ApnonPXeDcPnYFa9jPTH3BnORPeH1a+fEKWQsvBx4PrS/Qei9gfMt6NzvYIDgCUHiOujByvf+MeQBeClLqmegGK4pPGehln9CAHflKmrHpAfD9hGYRHxWvbGvYxcS1XtHxAouVlPVQiVYY0ixWAoSZOFccNtYksPUSS9AXxi2SwweYcN2P8PhXzawvse9S/EFMPH79fFjfpsrMwESJEVEI5mwtOxTN3knvI2skYTjOWgL6RMtmRGjo/7TWsgMXCsf1frkqre6S7h+szwQtwrvuA47mtUdqZnQ5gasulI9m1sMte+oxGPadjAbrCjK4ulDTt8avDcu3MEKkRf5xXCkEZesRyQfPs0BY9JdtoLinXZNTq2hxSgOaK7DhGvvGYuF3upJEtfBTP8oh6/7RSE4cRmuf6svcx385RqV8YWgnRKa73rzOMza1s1J9zvrYpE6BkcIchU5ZQKSA86asQKPU1KeaEytnBLA+mHrYO/h5eZtMZKHYonMdE9svoLeL/VdII5NUSLbHnvLgqHwpaNP2hbez3XCXt0fxv7YUOKnagE8eRyYs5oCAMT4SgnlbazdffoVHOSspEq5HEQlqMWf4VnbUzpw/tdowDJpaV3dTmK/bEPRGF7pHKlVKhEEKZP67RmnlXi3B1MRwuLHoVFDpv1n1dAlYjJijI89/T24LAN9/CvOyp8h00YpmOq0YDd7R1b4GASVQsu8PFowSFWPzeLoPtxQUi7cmErMEETx/qIYm2pWY21uWM5ALCICh/Z527vz046f/JqS1oqeXtiycA0GYcjS2Osi1TvIfSty5UlGhOftYk43k4VM/xWQddMKw7Yx6Qa4Q6ckSP4XJ877hsTjoG76O4UgyGDHRRWbdDhrhMN5NxonPe2pCD8q3OeuYP/sAMez6KcTmfze1Gj3DvuLNOJH92W4mZ4OaaEUYdWgcQs7Oli/HTa4HwceeYblqBY9jEDc1pIAGIv93hdJL5JjJ2nfEvs8gGI/TPXru0qr/7oYithu5HbxbTXNoPtHRhY9CZjuMcrVW82XuviNsK/XjM1oqNvJovO/0pRyHb5euJjuEo19s38dPi1YjRDscblOaeDsk5KIiSpdJkadKk75VqBWpV5gp4dQAoIDAAuM/W2ejbuBlOv8osJr3EnyKvnxXdiDhJmCIbhfDH+eZAn+W7P56nEFNaFo+e/8ogJqvzFl5iDIJVVnLPCNvWSYYWCekPI0zq3RnahADtvbCZribT66aUfa1eM8zJ4v0Nt3xKhDro/NCr7z/RxD+PekNFkQbyaBiKFHB1a3YPYIGhEAh6IQcGFEpf/n/SZevieCXhezTyF2txjF5EvxuZrc1oopxcF1TOJ9CEKbE/m/jMhZpClykCDkXmkJhRMx6qz0+kMbqxx2QsXQLzASX3ImZcUV3kzSAFdcP1mWu+bpsOzX+thbbK0ikYX+feVPY/Z/oGM0Iw6P1XOzrKHbw0TUMHwRMfaA5tSIB4xsoIwH4uvGbuEAxL+lMzLF7KtRzggY7XBU/e7COgm3VIk8k138TTyq0yrhxx5SWGZA+xSCxi6FgFWZbUilfcPgyzJWdok5Vz3ydA1qmQM7AAZwvD05e+nA05j5dx0pOYoqBuL3krnWS4QBNgG2CXOjMfIHQTVTloZ8Y2KbnVxf+nCtshlZiygC4XcsH62Ln2UPkwcIJRKI138KqSfHTDf3vPb5tpNV5BzlKDNqsLKid95BXjs2grGaisoheAjxP4fkw2M8yAd/HR6Y6t5+grO4SDCuyZ0Pp6uyeGMevrHvGtKjpf1iINtzR/m2gRqOpAYkkVAvw6eVBr6pfRNo3C00NKVPowba3n5NibhuXBQK7FQwhSZqD33UnTpDsnhO1JIMPPtUny1XcHvTmHY/VN3Al9uG8FgeFeUMP2xMBanvWmhMYvdvCMaJ1jYefi51pBVvnPIdfz9SpFqhOEdHDa/7gavg8uSmrmh3FTk09EkfWI9VnqA12heDI0HxnywXXkQyK2o5x3pneDOVdg3qWQOmbpD88hbNKrdT+KT3ZuEjUUMOmwPF4JRIY6CzQrR0UlPuAwmP/9WsRbO72ZF0g7P2SZXrHSmtsFlLJIAt4NdH8+9qJZuqB2NfqHTsnHYdyLwfNMby8bUe3FX586fZqTfX9mnklMTwiPTux74CGKf1VjOVDWbfty1GgyHRu/ghhv/kZgTHK4nUUlfjGW+Dl+5LZHAZrq4f7gQcGFSNyvhRh9lf3F+j9VazFGFsMNN8H4ynlOf9chOyN9KR6gjW0I/+aRuIbYDTISUJypsZbwvcwp4oXr+vtbUDDQN3YV/nVDfmrq05jbb8FWKvygrUam5uxu6N+junElbMLx0EEJEOEhjOxZ66Qe00mbZxTmTqT+Aqf0Dt9xx6AnRC93zcXEJBncdrPlYEaq6sHbaVEKe9khZyc9NTB9Sby7qEjTgSw/ZzANvinmLolRNyGuKr6TuFzYIflWUtxcYxHs0ohoNiFfePvJ9MCy5CEDpoTLk/Kv6dDmVEX32/OzXJtuvaOvz06IIdjCybxyEDNSvcAwMO8FlM5kP3rO+2lERR+nT2LEGSLZ147Nrv9gsWyGIg3ozqOyaLCGKs2y1pN41gN3X0iLJib/2gPpUYCc/n3ZenM0CH4X+GMOHHruvHQkaIRfDoe+X1DMvHjPvw2N+z09bxWw+TlDZ3fJ8bu1smZrwTsQr5LI7hDfJOyEKOBof9nw+kzR3sm6wPJt88wmab9OPOiZvEw29YZE0LYdaP7zcGZLW4aQEB6OHdLOaicctiNhKLSn22j4ZE2LhbVpuKRNopsAoxxmY3T17YRblV6+FUpf5BISGb2kUM0ouBegHIeIPVi1N+NuTmKRmVYDtIdRPZSQqu4+tXn5BXtUKTbMhIEP/skA7vaEB4JiSzABLj+AaZC598Fx1DnNP6ywYzergvTe1GqtZsU1rRDXM9t6D6np7yLmfg1gPVvOUxut//baegykJkqeeHJTkt6PWG3ZBzDLIzEXBDWsc6Nl7u3V1elJy/iEqsG7vrejTcVFJnB6PtJ6NAVxvI35wjoQX7tqo4JR21lYdkx8GQOWRDyaZdJGs9h6Z7ncjDU98NRemDM8qVZz4c5TXmRWrUyj9HRhGaq+1QSd/Z62TCDfSYUEMbu6KXw15aJDdRB1orN7REcMqDpXs2+laH4CJqTMNYhcEpzOUfkq7flpyQew75URtQiKUN3QY99qp8VFayHn98CcrLhlnNKPZ0YZCceXNfD2ypDs3P9ERjxKvwF05pHwRzyuAd/jdoDyA8pGDRaHJnqWRdNnxF6mS/wa9HyjmB5ZXbcUIlRKRJNTVchpS0eFhy2a59HIgerdUs18YV3Ngc3bP2znHJp9cfTEb3Z79JVxyrjV734dqhuTiqAE81qdfBn71LpvY0QpK0kf8jSCpAhCtn94J3z9sGN3SsEolH4hdyM7yJrJui5INqOEem6nBhoSwwaQZqgRf8mYUSlIWHU3PuG2bHSQ6kwJ6tgT6mt2o90FojqbQ8tNzm6goI/VON5KCsU2sxs2SVAgs5u3xe1QH51jo3w7OasLWh3FqI/lLp8fQtWm3h4r4F+heEZLV3qoyLoyLTZLRZFIa3Xu3vOSBdmwtrkX8fyB15Oz77QJoBWoPK/hEYDs45BLarqZ2kcmIuApV17N14J2WEnr/qAoo9PtVQibAqX8BiEoV808TcALTUWn7aw6qSdfui27sP2Tfk7BxZ+264Z++FCU2F0NWh3UZcwJ9WtTOULWA9wcAqHEL7IiBCKUh8vI21OK5+PK5OKaONgtmw57hPgpbVEnP5R00XepBR9XXZMmKVxfdE3Us1VYM/2LuABp7M1F3fQ54Ram+RhDCHcevP3XriL1wvTpi7gMCV3bPItTBQzEFNo63+wlS+8mG2RgBXFacm0sDaTHzj5uVXFey+hQsVZiGICK+D2BcywwnqPo2GBxyGSZq0D/COVA49fBJpfSMt2C9K6A2b9qPK0Gvo6xDepX1xv3pemHXLyR0xhkrTKqX3i5x8chUSssmXS9wvcTXLEvO+K2IT9L4itI17IetUIHWklWli7TLRO4eft6RFsrmYVHxKK+L/eyBRIH7/gwNPV3uaEG0Zc+NixyvPM/zX/W/atPYRms0LYU5ifLMJ/I9XavJLiYlo0FjAWk4mAfjawdprtpaHiUzuX8VHL0kiE3eurTdVJhqS7MLp1fGezHa4zXWHPjHyeywnptbpT/CMCuln/5Z8wYBLjOSFCgMUkcdWfn370dTq9/FMcU/+WcaPkMgUUqZ0hrsi5wCoagSuZgxFUBsXPoPhWAmvDd/C9FTpOtwwBUuOzciB9beAXd4RFtSiJ63evhZ/ZEnY09HqzLQ/HlDnSCqXvB81C6WD0/c8WyIoFQuQjy00oSGhTnMTnpq/D7WtNMRwuKT8tdandG27gxlDLBGXF1vEWWEJVybSueQ/ln3FppOe4kiu3ZVC7pWbIWYluhDhe9pCypC8GfG7AXn64o8hmnCRG3W9Nu5oTGfzQs1ksoZTkcRebDr/U2rIUFdE7T2OPVXvziKutepYmQyskRuVorPbte3ZR2mY4mxVFcXnjZLePT8Ie/haSUpj1XZAkC34DxDZGUngkrIKwzvT9sTaVnCfeUp7R99TAdJMsI3iACt/G7seieKETDqNGj66Gt8RZPOCVXWdy7lBebKlebet0bCCu095hEnT6YqZKHIiNqYPu3JakxHWvm0G5g/AmUYsVVkmMCI2Lc2PUipjcRdM8y0/2scoju+4YDfTdjC5OENP45EQaj3/tAvubsABvJ/VlH+rh6RaFO7NdYZu01BervNIdIcHn2nNkqrhdhMHUR1gVmXsErOAFJG8kTLC/V9GQ1+noZ/6eNZ86leHgDDDdMgJwWLGL0zxsbwe4dZt/XRitmXwyUfVvnLUGWOKPXuPwEymMS29nln6rpAK5zgS/9f6yfZGNxGSFahW4adshEMZ7idNzHOZuy82moifEPZ6X5KXJR99ET+WFEX4e7T7osrav+VQUO1pUPvI/o0BJ0pJXGMtU1mi2KntmzpxJ7CRB92oTi8O1+5mtVi77EhK0QzPlNZJuzgLOQ/8oqr9Fkr90hOWPLem87DLuNA8Ej1SjmTvQKOnQpqiCGIQOzjoU8WiUSuNiEjoGMHItYmSfN3WX+k4M6jcUd0BIZWAdNHZocoV/J13Kehzfh5lifNO/4PUmdkEfkUsRdTnOs1lLj7VlDo+naasXNlvl1XesFlEI7nCnVNGwOdjCaHLyPTLXVNa7nUAz0eRPKNn3ZG+DdzAdbc1ZrEP8Yguw92kidVzCvpX6Tq93gzWYQRYC2nAxE+QY9052z7sA1GumP/0xboGQJUIUIG4cvvECxGVyzMsc3C9AnryQnAqSloQGr+dnb0D8lecU6peZTRkrvT9WiCOb7jUQKiAkgMN1+N1q3f9t1SivPVBqj0uCY3G/BQtJTQjYYJ8nj0bt+ce3kWuorRlQbLUOYN8Oqt3yPYzTBoORdhECCR6xjsOmrsd89Z/6ci+CG2NzMl3DMEQ9qTEt4saFhqZPe0tqbjOI97QORz03JYLiZGM4euYSOJf41br2ijKF0mSwSPrE6Bf2soZlUB5ej9ghRvedDs9fyEMYeQAQp63JAkpC8H2mkJIpHdjdz1YkCZWCIWHyaBbfNiCS8dkmUoyondksKb6+0hsAw0R7kwwiPF0Obd4B3mxdRcVvBAa6chrHvhhVoFc3qMvktdMKu7ebDwGMmNdCltZspnclDZAKZLLkcRNr6d6ucgc3L10ozpFbSYOUajRphjBwtZFhQ3lacu/XBZEnkUvq5vwt7bTTUXgrmpZgnomrB3pGTQL8V3n2X/N08+Q27eorJP/7xZMkNVrtfoYFjIVoRK+296/az46F373n418bWJrR4czfZeafKVIFP61NvqGcCm6TQ6GMonvuOOyJlvljrwZexHDtnaVQhpCMMoiw1mHBhG1cQFvTj1xAujCSxoWI/dgHYllXq0y4w9xjOl9025NlttUFZwj0AEHbXknRkRk/O8wngzsh/9UP7ukLjwlSdEKrvwpQUzRVzjOlv8AN+/m9M/cEAC8a5kt+LBEtzMbEFi9c2E2qwA76vXE6Lv8bow76XeJb3/NL4OvYSwhep4HM8UQ+94fARakmx97AJ/C5RPyetJ7ii4RbnWIOoZ6TrUiUUbb8wcs/sqdshJnujK89VfGCSgY3ToHOVCqlqi1NA5oBykBjdNq1+75NJ5+iHzbG9JrZRhagC3QB5sv4b5AlUTuTDG+KG9hhjizg/EfUj1veROgm5ZMRXRvH9SN04Zj0Wsi0fHCZqdDfuSr5XLKK2Qndi1j+So5fPIdseXWX/Hhh2c1PHyBpCc13cU4FkHEHKaDcGVECDZKBvDZaQSs65ZwFtMb6Yi+F29DC2yIUbwp6T3Cb43iAUAx6HkwyclVJRoRssChyo9E8S78PA+BOoTsB8F6aroUGmttSrg2lwaagX1Ytjr7ERBpUIrkS/8xHhabjx70hw0S+PHw1gELmT5Ela14DEUGDQJR6GgZwv18gbna/KF+RjHS1VSqQSeJmh7X2b64dCkHQSH823kL1XE7OZCQ1CuTnUJe1nyT9rRdLPZDWgNPa5HFig/pW7MZuvvh9e/AN2Se/VAif/r58aPHjFd6mSQvwPTUJOafsNKxybosjIxqEocUPek/du1KP8pgKBZoxvDBo2N/T0Y20LXV9UtSx34X4P/N+TP05xkwhrG54LuFEwSr5tAohICeGBglgZey75iXdGRHwLV5b91pij80eREI7QkeBwDVoJXCr3bk8vFq4PG4VowyAT4D/vYpTosyFKSwDqPw+irXmxTqn0/I8aVHzL1D1L5H0YiG1wqGwV0lgZpzmtzEYV/TsO77DiDWDwsQONBo+SFm5HrCwoVY4Ic9nekGoarRnkiTAvrFOmdW/kl2dRz/1lNeMvKNSF5DVYteBu5JSOkONEVr3bCGRRBmZZKX1CfBcXrytZirrXWxolm+Rt8tk+vbB0FIXRjaSl8fff8kNImcF/3Otxs2ftZ3QtF7UPXJqieqbpX0b2A83J/qAFzaJ7XJ1o++DNw520cc73fkWMBvkuipQCCWgUNJ9LTo/xW3jsDegVI2EKKCF6qXd82JbyxLC42m759IJXRUG9QVnmYMjTlDDHSGqwpOWr2lfC35vWtL0xFYD/7Mjx4AaSrlInpPpmURgOUYwBP1S9Qt+IX9PGt746HBL7BvaFQFD0DEDvvkUM6L337wH8QALWuuk2EQDM4I4ae95ZEsdDYzJ3OT4EL0hjKpARbDDB1/yKXpEDBXQW8M1SutTk3JVNZLrxL3dHuadIcGkcmgzKhecs146jRvISAinf1JmRQCccBJX2t/u5wJEwaaLmsBP7f9Je3xrCMi3JYtj+XCCa3ks2HvaBprpymQvkMQGwPprtWmfFkSkTs9n3bx47vOkpVZVH1/q7iv3+SC5mf5EvFVAj+m7LBbjsQbpE2jpq/hhLmd/6WwFkzIMFDEb+kHUJc3CC/z/UPNXXvSH/K3EzmJCeDpUZnjb8sFx+giYHLsL0//fWY+qQq4Xg/ODIamIlxUbKSLosblHGZKKvEsBBdpBPbYF5CJ22g/40fDgT+6zhxJrzHpjhnAvFAt9E6/j6/VfDlbCPQg6nTHXLiYAzl2tCm/hhgKcdFfDge1f7KotzHsyDpTxxQWUz5ejkvFSQsrJn8sZ9rDtps0WPrzlbynuiw9mLy/UK5Xgx4SxZWyHY/mL60Pr0A2OrFvwat0CYYkc+UzoiF5Cx1+EXuWd919/a3kETHFcathaiuKVtGrD7i5ax67xFAzbTQq4ESfp+YL3ZOJuhkXN6liFCwcy78RstAmcksci//TZr7lHKVi1eVZWybmeUEhNvqHSNh654QTyXOE7TfnAdEF6tldUKqEFkNvspow1czAyAcXRl6Acd+stZKOr/jgUX6v2RveOR8WA3baOOV5XuDNpOP0KlPvYf/GFgZ8VPgZuWncipX1b037un1hImbGQDlOFk6nrx+3TG54gLPZkcjphHl0nPPQy50UwVSwqW6qz+Y4mrseL3b0VMVnI1KBQwpGVdvklyOOtKKSaW2Ubjvw1U5mqZEK79pGU+6UcHJDStKMGkATJSYjlApN8skuZWNZkbaMQaOSrHtpZsJgS6J0MWfqll+Fz7AOLhKPaGdu7G8DKH2f56HE7TtPWKsOBztQWQWQRxdltSzTuiDvFhV9v4obmPGdRDA9tDUA3NozKawNKazyw46Huucfqj7KxmwLYpTpxFVpbpyFAncdB4vFIFl/wvJinN4esYcg0Z58OYAuwY8A7MvOhnnA+trpJJokbbecZAUCGpYM2oYf3VDgSdZquV7IBHnsoS1Dp3oLb1evqJQBXsMnpeubajiYqCy5ENrvHovdZwAE4rDANYSE4M28muCxkSjjrQxmhcfIKFtu1bHTmCKsFNUtbr3RY68ZZiUuntls4Pf9voEePATpEzalPBCckN6pe3pYIMcEVPdLJ3T2AGltH00BREjkuVibGV1/2VQODq4yGAs7tCzMUz1bwVKi4ftcmj7S4qwyin8d5kc7oOxIVKzQt49jKo5x8AORekm/iuunFQlzlqYTvj42xA+BZoR/46OQkbp2ZpoPwyAAAAwAoYAAASpJBmipJ4Q8mUwIb//6nhAAAAwAABPgUJrZ/IwgCAPToCrcZ5otLynOWRPwvUJRBjEJ5FLEjVgHNMHkk7AB/RWPfTZEiulkb0N0cJ6vReUmFH4yqAffbNOAEyZj/4yzfrUFoDv/2F90RZw1D2DoyUvVqYSaiFOectY63iNJAMFkxutTFRw87Xkaei2XCU+vYpXVujNMxqtcwUnun4Y9xlfmIC9LlT3HzpNuXBB2NVjseO+HFTmSBIp6+9eFDtMAxUpZocVn+a4MmDpDlszmFJ6aevKl359T3X7ry2vV0CxF4ImEq6ZXVxOq67MF1LycZMZH0nV89BmapJRaGRnRJArwObtOYsijSZy58GCaOPwfgvAHVE5YQWELLP3t/wwHE/bqvdq570M4uerxLI+tW6PaDSIJNxuKAUKDXy11YEJ0lw3ZOefG27C9uolOJ0mh1+YgKdC6p5N0pag9RTyc37jbOvsXVm9LSj6CZ78yfrONnDmn6R1JIMJThT8aSgZ4Ht8qFQlt1qO5t+lgJS+8+nE6Z7JxInEd7VIz0X/02YXfEHK9HC2mHxBcmqMOv87ENYdvF62t9CMode5/eEhg24JYM/DpXPRRc6mQ/5u3zCh9nqSe/6wjel3uQB6t3jBnd6q3ATSPlmfQ/iF330OepTV+AYvv7iRHi01OKQNI74SdJS7nZxdvbE929i1F5M3kvMOUAKL6kq4d8pPralXJ153/vOAGFAH6K7AVSPLg6iZ2/zcOqHWzsq++GGXAPb/g5QKtB1qjfu07ZK2vOyp/fuOR+GP+jUeZYq4yUNT+K6AneGN7theD6WzJP4im1fbSAqSz/czbxTiRjo9WEljj6b44WzeiZdrqfG60ASRqNPa0MD/L2hJh9vERNrP0rBA5RIXBxqz2EmXbp1hEFBor9V4R2i//k32febistCK6715TvaKA1ApbKzkjhyuGH6Mj+C51B3PXXy8SEqvk+v/ANq+1W1FnM5/C3xtVx0X1BWp5RvL50kg82IWyjRYGyOpHCPdG0KCtY8/tfFPO0YwNOdkOi56YUx1xWAog8gykQMUb9+kRN5MjcOutOr4EmozO9E3jh4MvRYAsU8Krr568xlfIspL0yIeyjYck/N7lSJUhcK4XxGvgV6NXqYqkYOt/NIx+BW/AmRTsUyvQ1FO+Fo/2GSLDEjstAs+b11tVrm17Hz4DEariyD1pd7U4WygQ+fUIm2U2GUfU2WTJgBrMaKCP/ZqrZ5wKhCypGQMD24lO23JVffDM80eARyvuX7bFlYTrO3Iqj8m5Z8UZVBlgbvqwZaxTf0aNxq+ia5nM/JTOBDv5KdtMz7vnmhDuHTVbHno3JQHusHxGtJkj/cPY77uXChOUdqUFtK2janXt7H9Cf/q/aVwllSkU2L5ZzIhNM/23AEFK9ahBYeaewUTt86dlBJD3t3KTMUfnPDX0kNbNPKTRnAPpmNswwEKipeu03uhbtYOkMDQj8wrL+E5/L5U/tcRRyobUYS/wcfxXYWGNqtuALCJlj5JiKHkr0jErhnCHWJ4YJt7M2jKf/IuClMcHaDE82TxCDu5VwEm6nxwBywjkbjH/FcCsg2YsoY634czq6UwmJwaaSbjXGYPI749JsTxKvT55xWew/phkNSzScyUFkpUkNsr1qDLOwDMJb8tEQoGuV4Qegk5oRuZUf6CjCbCyeAuMlW02fNMoc7aGZDYO7OEXrAszAbNFMcq/kZyjTS33eI4gw+9CsIRa9pAK8UifEZIfQAwOTLn7C7jCdPDHVDO1fCMjkqTfcKeKgTiqcAPTrZwsi4CpfoQmp6DkzGiwADtaVuseg4NDX+rZuXMekrGKJXjXYAVmkb0ozVZOu2Nhhf+9ek4NWJ575YlO3/VEgHCtgwQm9j7pJv/EJMFybjmlj3YAQVIUHb/3ZkzqS8RtBf0YxAdw/6sdAeT40PTJMbPeGYVYlxHHDJkDL33P9EYROlrHw1a5fx9+dUG2Q7teado4ybpWt3+TigvlZw2J8fDeFYQyoIVhW0iKUp3Dcib+ZsK7XKdr8rqmycnJu56n2cqvBMNQJVp1osZaeXN548rK+ASkw4/jR1dV0ufxdxLHvuWq9y2WcwZB62hm0W4KL5LsI3j7HnRhv6aMuU/Cq6Nf2Rp7m2lTe+bRxNcgEZGv7ytpsOj3mhd9U7zMtoQXTV4kpkzDxTg6zyD3q5iU5AA1XyuNu/nnmqVnD0B9KL8hRWiTpRoY72pvKeMomDyhdfCSIpjI2ANh33sByUNQStnBfRRsoDYWQlF05DnB9VCLDGRBNED/RljY3ZUDI5FNeWP3Id78Fh7hoHldMHtrChuZ9PyNIAOn9Q+rNAQFT9UbaeJZ+xs0OINE7FPwfRRKBqn/lAUrfdJjdFbUigZk2M+MDfzWUCIYPieXbcvNZGr6Y9ez67zwnyUR6A+hdLb9KB534vxoUpI6rj9E3aqAXc2GJ9JH+Bd72xsujbxFN2p0fXs1HkjzVlw+BRuw8XJQXtceCOPuu3eTyF+Rae8DL59iWSZ5VRoTOfxzvbceTJDm7xkfwHrAqxitXOCXj6A/DDbKxM3xtYLcQU/WKGbmPSvAoLWeDRShHUjjxGym9CBbCVImqvtWTMkh48jw1ELOQ7k6ju5sgVkIsj1EZF7qFcJH53KjVDNqtlCl02dDt+XohlimW+kun+YVMNxfawpKcDKzTvqB7HE72jsGyn8rS69++hzSBmKQtoqxbx8zXA4p6tchDXYBybVkFiJlSWlf8Ut/u2VjsfqqLjQi4lGnx0vXBYS4KQe0FsBB1A22JKnQH8yFrAno0ZJ/5h1Hu4AvsGHBiOCm3WtMEj2SyM3JKcpAbcxu9yu8EeG4lFqB5Npdy9fYDdCK6k5FdBMqLipOnHfO+MECdG10kK1fHNlKlczZLRbfLnjtclvZtcd8JPi/YAlR4b4ufiVQEb5/PYgs40vayeTkiujMMxiJUcIMYMdnMi+Hfbf2Qs17rt6e6DDNrfOSR8jp2/G8UJLvu/KVIUQvNLT15wbd66VGutIsHj5XAEH0aqOlNmMBQoS3OPrCigAeGcEGtvIF0x9ebH2GF6RoUFgIDjlmqQ5Ucz1TWu9djgVqo0pm9i3uWRuqTSTXT4/WsCwJmWB5HyXNzfOK9xGMZliEIC2eTmkBWas9PsOnItAsFgSdtyctI6cQ3TWEAR8n6+yng2jv1RGruutat05PDJKrK9dGHTnhTXHCKQQ0MuLcUcoCj1xyoz9xVfP9NECAkUkZ7Cn7y6EvN4HZCgpP7pJUo7574Betl2v4vVyLxqxrYQv6Rmf5+Kfb+b2x6npr356bKHLCK/I6FGWTNqzhOWTd7Xc3O/YgubjvmtZ67DFWaTzhPE7Vdf6ZIK8pu7G8WHXOfj7IuphCc2mfaG/uHLdjaTIapENKnt3XXqcA1ZGkBLNB/x5B4zJl31FfsygGGICcEbZGwcarVzVSl/enghnHJf6xOqMogfsHgDl/AIR1LLmtsONPQLcngkllTwJsGl1sYYk14S6x1cXwL6gI0cmmVWp5AkIjOwA1EyPDtu7ZYDFVFJDVeeAF36TufIAsUdSKu7EjNwjqJetjUIm3iRyxJOSn/fa16ng+YFUKNWyohqTVYVZhVmi+FYTqtbWKYWO+ekIC4cNThrYugn3nRqT3nLbFSa7UakYMxkO36jpEZv3Fyk0aUGAo8eWcY/Hph0o5EotOIYGrf6sLKzm2GrI3ezOfyRN/M8buoc1RmA1quHKUA4zp6gT/WSG+4a68auOxQrMKKS4X/mDeF5Tn9STvSBVx1kLqXZc4MV6Cri7fCUb6eGe/v+IIwqyvQeSnlqzTySIl+eHkraZRrlKV19lmfsyl9r1EMEQi0fUupDhK1ukzR/fCZH4S9YfmX7LCACo0JjoTSFumGNqnccs8kRFDCIlZFZ9m3TUgcYkgx4q7Se7UppacNqwOR3GnzmlkqUhIjfIhhGj4UtkBf6bAToV0345V7TaoywqvTEDU4d4xtoJf/+BKMvV+kto5srjETiSzcN6tw5cay25qeXp+18ofYukhSUdcakc5dAGvGXAC77aZzce+c0IZSZbnf0c3aR+zqB579sStVLlXZwoE/XLNkIKvbwZpmeCRV6fXbzRAPU+ZhK7Dr+qaSpESN2h5A25HztXbsab5rV/zprvI4ExUFdUOwkQf5aI3QEa6Jk9yS+kK/1MxFtq1WPi/FP5dwK4YN7cl8Mw0OR4g0tjs6/EmA+zXbA+GeHOuIhUh+tV9LwTUmsyfnkaQIdWdeswwtvcDrDjCsWKSL0W+953HL6NiZ6cIRIjH3SUgUOrl5iJfx9wx7sEV7KGB/aj1a/IpvIl/33t9c/kJLUJJr/JVGhSgxUJ9a9prhIXWNWwlniFQG4rDayqD+zMFAAmpm1kzUvZXyjnlhZBlMAoEsuYFNV17H1Zu3ABWJw044BYW1dZrQwEjxPNTUu3CM+FX9cacTRi7jnY/GKNoHBKkHOCURvUbS7HwRO0gRNVCbrbMZwHWzhhANZHPEcry2u1pO1lKud/GDhKQpzQN6e0gCWSIRWF9NDTpb8bgNeO97lov2/7YTCEvnMF6JW4jzs30ryp/mCRTj7X8Bxs9bcwiZQTW543nl7Hx/gVNioFQf+sGkiR1+f/HNzrCkGIBkT3lPCI6uYdw8lP4MDpuhweHYyeZ8qxydbohe12xZeMxUJU31uDgqV7pqqRAl0jf5D+b+zSgLqea2Itvl1bH/1lEfS2O7d0VczzAuZq6UHSoc7Su2uzyyPkkwsVOSZ/yOgGhYHpIbWOKo5HE7zrAS1gZaxGn0T55fDevmLwLx4Us8bgiUG3g4w1kcTfez+b6iFLpWPiZiOkyz+RCxcvOFWBr8Z9CA5i9LES6fzJjL9Jpreq2iUyzy+hi6hd8fOEGtTF+UgyQxNLZgEEVz/hpQ90MmQvikWeZx2fhPaH//Qr4m4UEhy/otfW+Q8BOriz7wz2/SnMp4h0nwtzz9Trd2+K47UEHe3gu4yHSCw0BU3bAsa7PNZ/tRQV4GNoUh9+A2j3zI4DMZFjzJo+ZS0hDTV1vVx6/g9XtR8516XwQiI8trJL3TodlSgRca+K0VKcAxQ8XCNBHakbVLDXbvPjd4oQFnKET8l4xD4YFciFm7APdyEcAdfbb5h/zcL8bpi1Kf7baWB8kuNBmQxusGewa7QnJCand/YOKK7pKjpdhepuIQ7gLcQBQhP4SLnArwbv6fjVoI88MV/zswzUk0c2z2cBjS1cDMUXlmIVh4OVN7UagHfiCtpPv/2uVFd8dADxRgN+PkvjXcwR7WHyDvWasHzONS0E1ttbaZgESq6o6KLq61go7LeO+KyTVD+3kK9dATD9KNdJwb6dhujSuq0f1eWRItpgZZaFleJuQkqSF0JhUJS581qzgpgBUhxuJQ8mrDpRqjfZrxAvUDkussEgcxGqb1P8pceJVOSbtXwGXEP32N3f5/s8gV9Fu790Ph3dQsfUTW5zY9scDhbBJETqr2Q7KPdnmW7DjxgrqktEr9IL59Wj5UXMXCkydoONvoRiN/Q6YjjteqJwpEND04eVrqydbm+iNicZp6sU4SGQzQBeJCMCfcMQwT96pATHaTToGgz4eUlFu/LxFLf/DHXLFsWyOSAIdmrbiTZ742peyEiFk16oO1Iz3c+X9Z4YvS1GHbztG3/nwKaDrwSB7buEI4gc79eD2Qds0s9XFwhnuaK8J8Dmm2uUNcdDaY1b9wbQAAUjRjbG4D9CI1+TIVbBVXuCS+xdnNrGCVIT6Pb7MFNLabCdfBJ3QRVNRA2a8PLODI2pxy4HMIblFrWuwFML5fOjesk4tRdMvRmNCcgyP/XvhHJazveRgP8/XnmMDZe4ZlPw6D+8kyXHat9PUBtlAXQuJ9AuQTQTZkXF502fcV7iT/RKc7FKNBTHX88OLZHgFZX2vIzwbHnjeHeB0YUZG9OQ4pyOXt2oCLsy/gQu68agAqssbgnWsduGO3ywsNDe0Cl0MioK1+b/s9KolbrGuxPJc/cir+FhFWlaIDPYJXYUI+D8/SRJTcr/FSwYfsnQCxjJqWqcl8g+su9IrXmrgvP1ZUKgP5Ygt3i8tXhR3+2RvWphimskMNItEFpR4EC7RB7V0DWIkkr3d4d2xUytGhLOpy5f/AtstOFE7ZwIyYInIJcZ3+2WBrNq+PaF6ZhirMq8Vk5N0E2laQRKrZXHo7ghnvbQVsgbkOs9JsS4QN86vtSkbSCr3J7N9zmQK4LV9HoTLcyqXB3+976AjSzvsonquCkKhrAQorai+5U6Uqz0yTcrn2u43TNAcvMPEdHjdgLtRtfROfnDh33w21VCQ6ojS0Uf3l3pjgkpFmwxrG0mp26B98cQuu7hHBrgpHlrrIgjX6O/lGmByn2Js0L/1vUv8ZmH0OH5My/RAbM+gmuPxeTNaLawvZPJtb5sAMTUdE7ToPb0nsIbvo6JuWW8EajARS2sWmV1v1PcxJrvyUYqxBieXpDRlANbNweyboDRUD9pREGxvE4JZn/sn2ghel2UJIaK4LWRQJTF0Y1x7QHzUIDgQpiuydhhg2u2H4wWd5hPet2JU1FzSuV1c9FPi3ZMUCdq7Es3GP8qSSqrBd/1GKw2PkOFihI2/1yhCS0TU0ggyrsmh7R5pus10NtwUUJHDwnt0QG+QsuFxp57n41vjgMhp36asiAsmReYvD8Hw5kTeR4PgGSEQqOoxTFRzp9WzAGnEs1M5Nkj5UVMIbEK0rdoPFzDoLixasS7NvYFDovldLPmISgYRkJ2aztRkdN/0s79KdKUJDBnnn71kItsCYe6OOXviIEIECQcSo+WDUm1tg/jUW1+PMdQMNwJiMqwQvfgLSwUjw4r7lYpHVVedVCgVmPvPPJkZuiL0Ht43diVCHA7NfNYJc21awg1oziLXoG9ak+UAwb+M/EO9ymWg6LFC3DVFVlJQN6XHzpgHpmljd6fKJimjZIDcnneifxlVE6FQo3cjXY8pFzJ2jZldgOApz690SR/di98OEO8rshp/6X9w9rNx4qousjMB28OUElJ//KZ5OzzTVnDzydJEzTdpUDhBIPaH8yB+t6MjdEQh7hpVJn+fwuD/BHJtxXnPu2pYQ5i0YGBjlOWz1lXqM3/V+DbHoY8YoGpeIW8f39H35G0TY/sOS6pyJlm5201MEKd7jBdb90H9knRTfE9RKhhyN1DrPu/or9wIbNKXtgb12EWeMU/AlngLmMkISx6npOaciEZUS1jPYZnCwdt2IHYUDfk6rubHJxwk3dZHlqToChQ3aZAHXNoNAVWIB5AUJ+obrngR1q5bu9p3Mmpnud9EZjWzCX8bd7eoExJ9PZ6TjxMwH5e6sVVtklEXlTDcHmY1kIUSGYRXbfmn6nB9UTWIMQ46n6Ww5NEmk0oZA7FOra4HElIvebVfTwUP0TTjA6LE1LE/lMCdyrZnUKUuMmYz0IRS+G1ZsfZa1qeE1rQaon1O6QPgPSvwrbCEXXzBiK1M5EZSU2RaGZIxsONr9cTxShNgh1Hw0GeXMjV9WQTxd6pb4j3eRbElBCzEgELRkU66cy4PIXuQo7hXjTaFctr0MExncOHm7/m9/iltjdilbCJNI+bRxjMzKiBgQebkpV8E8QVWsM7ZcahTOwZGOEwa9Am0sFYtI68WCaXh/iRVpszI2lLSZkK0hahwNku7uhEFKuLWbqMHLKv8LvKvqWVdWKHnKizQKp4HiG2C65wGF4yllaYShgK1OYDJ3hkGOFlPSrE16fWV3x39oHW5Xm9IyRm3oQQrw9rFpGdiS7/AVIGkBk+iejxXRrhKkZutubky7PU63MGE3KZio8h3c/zhkCkTVQ+Ts31jtxQ3mM5lxXE0ks8O0/+wQSiBTl+1M7RdE6UkGlOql9G24lu8wiCGtev11zePEicnKVBeeAKmiczWST8rP6lLG4jhrT+j9SAPflJ0wzKppau7sCC+DknYd7yYowoqMd0ctN5RL8VbVSI5FDoq2SlRhpnatxqioL2efzmBfIyTXlhDxlVkn8IRsFFmF0vqM/do8Rp03K1SM2KLXSU7ddiUXqkjNkldNoalkCNNGhdesZfNBMYR8SznEdjd+YlApWmJi9HEzbWv93WeOZiF7ZXd7wE0CgTNn1+PCmsPXjbj7krR/3Dqs8dEPRcBw4oPNL3UtTh0WEz4jL0quDeiV77ZG13uI+cYP99mYF+6GYMEkaM7uPNk/e+xUREmmxnzHw8bOXZlwCYvSk0g0NdepYwzE02SZm4/0A0C4yXABZBZCFGGI9GhT8ssTWrBuwA+fzdmurCyh71ObqQrAWoU5hliIIRz5dllBeILbfVjiXCAmBBkeWeOYDtZ1J6PmRVmZFgia3dIjkyKvEefWOHT+fhUZ11LOwXwk8+V+nDG7yHQ4VQi1bThiJOx4gRcdndzBdhK3S8d8mJ+KlqSquzvo9gNel6Yimh6F7UvbSFc+KeUepi1Pfv2dcYIluiAWdzBGdN0cqrMiBc/RCpMp6TBaajLQ5LVnMrPyEKdqeqXwn3lRumFumAFR24atehrdfyUQh8pIyjrpFGMj2u9ilEyCuSrVMVa63SVUEag2MbmQo0qx5YLikqXPoRq3ludcIDaVZEIJ/0XGk+khyb1+Mx5hz1EVZg5/9dfecL8XBQoYnknZ+z+ww3AlqTIRrrgGb1RHV/50HGQW5JTZnV46CI1m3WdDmDXSdAB1+DkMMaGyi4GjbVBpuvSeiCvNQ8Ry3ZLmW8l2u3lzt+Aglu+EN7hgpWsanAAsoPbqe/JtChihWk+1ZX/iD5m721ytByONrso/1Jkkvqs8c07Ac7y4L64/t70J/7qDIa5tZRSTSA2gTt2+Sx1TTP6czC4chKUvSAQyRI+/VWb8gAWfxRb/Bms59Fao7MWAuHrn0WZ8vSl5lJwYCvQm1BwMOHeB0NJHrjXsLpaCv3NDunAudXh/a3FrsF+lTVfgxfYZVU2QYJcDdqc5Vjas+pFTSIvln+gWiLflnhAk45OoVTtcF2ciM36EPVLLdeP0d41OPuw8tFlBGgndvpxVg0uuj4s5VHfzpHADNGtUaIq93pVhdOfw19a4VuurQd582YkWGarAKf0v7gWZX9dA2rD/u+G/k6HGo/3Dl/OT/QkS1tb/fG6jF3zrbjAnSeRsETsQD81kW33wy/FK+hhnEPNG5ukJ/rqETVmzWSV6FliY5skIZJhBMg6VyRyxOhBHbh+KsRiMzSDqXg+S+vXV7Cz7nxSWGzo8psR7QU+bQLuQZJUntwwRclceN7RxeQUF7P2iA+QE2g8CWUZxEwFyo9hAqZPD2bk23jICXzSueTyaNWjtCKPHh9mS35WY8tx/Zf0k/mPEvbPreERcDHSUbKvU9eCzUCm4avYKQtGarf5Gt5OChHcAwdODb5xWFnlirCBbYyIKLsU32Z0uuys5ob46LgsMU4tKkkEQr6H3NWAdXgjsyfYxvCRsNz1Pzvt3cZPSgAOcotQOoOL49jo4nJe+HQWDgNXuKAGJQHvk6gFG+vey7luFMrEzN5wABo+hbt17GP6BR8zADEvtEbf83wH41Vv/hLoF+FijZwRLOeVaAhStEtz7IwBM9Qm1PKMcS7PRku+dJXijRTMnk7+wDZ0cWzzoYJTUbhoH3T6Nz6EJYtLaLqlVs0iJD3hzrrTnPYyGiftGqHmgU7mR0Asibxof/zs9cHtg/jnpINBUSszaCqDgRjbpA8bFlsahsGfJO8x5iIJ/nrt14tG54HowHgkbNvdXeaOsLMUUP95+qd0GLAfJ+giHUu+UXmzJI50b5yjZD5dapw1hnok7uzJs5JRLAjDJ8KEB0GngmkkQNbiauT38qnvgfSXjJRnJXhhc3B7GQED7qMZT0hhuRClXftqwgSBwGoTJ8aECPdc1AViJKv40jb6NmMYKOYC5cbCIaFacxdZUwiHI9V/QWKbrFoVpZmLUzaua8iTTayQd9JHA1ilsVl1jNVutWNiLDMVgTR0J7hPwnUL2Ac0VRbgeCTpx+zsQ88yck4iLyvrRv+IQDn9/veVd6oaI6ew9TImof/j28AxYlVt1y10QBgvUH1yPCyW17FDUSDvvt3aWoDW5QWPhQuqUITcF3eY3UWIepRGR6KwyLGS9wbHOueb1+wSTr+2xkg1+HWVmS+mL+UgMq903M2j10h45L5283StfqSTJ9ofk44dhDIE1k+wsQ/cBkC63QWGvdaZlc4NZ8tW76LuKW1qJ0Q+LyaPgGoih51y8iIZSaPngLx0yuxfgMeFwb88AeVvka+2/sCre8+1b9P5XF5OK+1fvTilccGYfRQfk3nav1hZRVSh96dGYlwLJp1IGWj5BEFXCellO+lE9xM8iLzTechZsbt4O0O3Ox6QUIYpVvqMnmKKBCqG2MVpnaZZLVZDmUFSNqnJCh3Z14C6vx8qNjvjovg9S3oCXHjISVIHaEirO0LqCpyS9vRHaun/wFxO0995kZwcyvwpCH3sz9EGtmPeXeMMeWUFNlhlT1hZM1nJ3Fz+ScxKFbwhZ+KMRvMxOi/Vt27z0vL5P5nry9PmoYtdO9IWS3p+g8jtSfCZB0br/i/AdiUiyb2dPbJOIJvXt57wsQUlTlrEtCX4l6TbSM1vTZ57hnIyg7hzm6y0vB5CPx/+4Cg/YBu8IR9kTdpRfmqxZb06QlQAoWJ4NU0Y/WQJO3pUJj/A1zE3hnA78+VMSRpir1zZ+7G3v4uA0t6l3xHFQFz5G1mgdhKPbKkRej3WHPCdoz/PK9MUtqXeNenWrfpNRIMRwZ/jCi9EF+XCPGQXnr+ku2gcV3FoNPghrxkXC/Q4C0anCSUhY9iHspl2Ju8LZYzFyaDHDviSreJLAKKVGY9aPYz+LmSFdonm2coEfGhe6Rmx43MoL/k+jWQXgN63SfidduyCdCi6TalK1CWfPVTYWt2pqljWIp12SX6d4mSL4Gl+i8NhAD3bRLQCSRikXY0udB5ThxPNN2DOroY9hnCyop/xSGjvHqxTVDfLI0nryjd7mEqhiT5e4LjGYQ3p22MiH7igw6HBfeIcnpvsVBKVjEE1eZ+4j3fXWFdA5p0RRsYC0bOPjcJQL3WAqXu93E9AyL4H/nILOHeJlX1OvonqOEYP5vmmvR54zzCcsNii7rSRQAMrm1nwMBIZB3o6iXMyXt3nxDieRn4Lf9RbIfXZ05zUq3pJ5VyGlU7KIDjOQTsN13oWOxzIPZRV7wIy02CtB4djyntzgZZZMlTKYB3q3aDXTHoVnejRD4IgZzOV04XMALBgktqNCWSlwM0QZ+MUelNnETNPvyZSV3ZKchtVTmDdpkuxSx/rHcGqFlbfrtRRJQ4sf3uJ/GJXBELYDi+rEZuZwPCsm04STGEB788FwOB0vyIeQ4scZIT91sK5k4swt003Z4DQGdZ5HPfpnGDK9xiu6bZtNvkfQVkcrMdUNvhk/CoviaYW5I4qv+eWheiY3twb6hY0hJb+o37XIEtXlQyhPfTif9+MXUChP3BChNw+dVWVSGEXH5pXFWnDSyjYl9lqA3oz78UTFJI+chEhKcFKxh4Dvbe/oMhJAqrN8dLv08HTVOkQLTj351ZGhp0y5LnpKXqfN8gYmqAl1l72U/qik09252rLfxtmthl+Yyc3CICRXM1nvtCMc5xlHo6NFlCrZJ5k13Pb257iW3VLTG1eb/luqPyQM4KjAPpIByKt7al9MgGTvW8WYT0YC74CzjZJIK2rPVAcYMcuFyue8TK8RohZLSv8lAaujSedsg/1HE+53/G0G5JPvC08G28IGHqUXTavz0uMMEDP4e+zy8mpUXL3O8NSE/8zHyf7bJ62OLvL9QelNo7zqVGNxTTsk9H5Pu+2KYggr/aTD59A0/9S5mlTuk57Ji+gqXus3ZLAPGwhXO/5x8/0UPxeR270eIgrnUliE0EtRc7a/8Bm4+kCmq9pVVBgR8nARaV+28yk5bRi2vjbYDdX/6AXTDd8sVfjIGXFMwILdEm1stIjpzo9JfchzGge90hjhSjojIKlvz1tC41297f7bKjF4oHmgfQjzEz2LZjuMJOokUsTnsjOEQ4LMgViBihLijbkJXA4EY/cVSy1NAAbDar7fRRlJk7cCIF4XN7tmBQ4rUCjAu2rNa8w/e8mEC8ivKgkobdXstWv3/P8eA4+eEbUY0u9BvWtN17k2FaA4NGG9cyc8cBOf6GvskLHCyW++yrbN6aDYxzdpHBeIxEdVwU2zzEtovM7+POT58rKCXKl0+gf+OFJji3BoPKeE9PfO0Yt7aDJ1SA+fnUHUsWhPMV2CX/6QvOJp+O+mAAoNlRst3CPgM3+Ojr3vB/aCtgMqnRPtsBdXEMNExmHCcwDXXpeGsWjqTqeG0qyuDkuklKVhW5mOWihCedDZ83i3iXwsC0BaGmdfmpUH1c9RDZjc0oGfKAJcf+LxMfg1jM7dtPb5C0hcQtaBtuXpYRIO04dPdd6ROTp4zTa5VhixxSaGRsY1ueXzIvnwhXzZWOxUXvwIQXbpnnP8bzGkXKcVuHlNVF1mMUbxwWqeLO20Cq0Z9U2j4w5udx+sznACJ3dVQ/sDEGnGfUfKULR9jhMbpHobyyDOkB9XW47hVDSpCwxqrtHKXiNqQjjIxKOWPPISMyHNDjPIveBppvBQVysATz99XHZLeqW8RtuhDcYc0mkGUZwB6iOlqdUIoJCW0SYtUmEthlrUPM73niuWDIIMPbV6az8FRZ0tIpZDkLWOoeN3Q/LVtIzijTgAXv4JDNRE5IdDOqg+yso08gObZc+X5ujYnzv6FWGRJEJ8YZ4qC3+wUOsMR5H9qEv6LL74OotSHVZvtF/W3LgBJfYQlSClC0OhUIGOS5qvJithSpKNmWa8JROG0Mypb28LkURI1OTvhb14XHBnLFOH8gabFOZkhJZFnq4v7oowOH55bnVML8h446Notm+BRFOdBpwEFSxubiAUl7GFTP5aL9MX/hYqcl7xByvB3nn4bbEOrMOLyOd13V+TpCcTx9vK5VR808zoL8QSFWWWKjhU/Vh/8JbwZoT0CEP+kvUUZFoCOdUIWiI2xNrLtrh+Xqo7+OOguztPQ27km8+cFuqMcAj9qXt6rmZNsFqBoZnfg9lnAZdoobrA6Y67xHG1VF7OTAFuGpyOgAtGuplesNY8+dThxg7oNTsJTFvmdsrONMNcGmSwsjFUTT2kVzOpC/nHJUt7MFKbNkAvxlcJpOsfbBIWyFJBL2rYwEIg2NIlDt09Ic5uck14aMbs41CY9pUvpOH06SlQPJL2uQ33KycNcNXLMsFB/+YgYxR9HyiLagiaIDuShyYMSJKFtnVu0/pqFknlxD+O3Df6RtvSogge2klvAiUbQ7t/qg1efnI5BGIxNK0sO+SA29WsfQznvhRfU3A/JfFdrmhdG4IIBnrRTLyA7qFZzJvUnd4dfHfcuG+BXH1nA3tb51lLh8qbvJfLgHfTw2jtkyHK6MQbv6dzQxKB+mCN2dT3mf03Vsi2gqfME8AJ5e/ApwEopIdDuuRWch8gzoDF+ziEwQv1z2GI/y7l+4oetla58Of4anUxgzNgxUaIr15hp+tn3qX9TcHgPk0LWA2J/jpPppvPmcDkyHghnAMOe58ME5MNtSzh9Y36s7UGUNb5qW6lXA2JTgYCnCocT9+tFKAx9L7ONvVQxTaCHot5t+sM+NFi/N/Q3E3bOKmpQmBOa/uQQsdPVXyDCgmcKr/gTQJZr86UOXASYWtXA8AMwdrGhrxXXLmtg3M4/gnNqaO/15gHC0Vkc4XbJpFRLLDWKXri6AB3Sd9JVhmOWXLnTInLnr28N2VQ4KRifM3M4PJms24z096XDcGKlUcsvOaFRhSi5hkqlig8V9DfkrBfRGmvK66QNNqYmBsU/PjG0Gnm+tG7ha9L1NRidng7yz0WmJcSJLAnGD35RVnvo2CqexTSRYQymuBo+XAlOQXKLGbHsCU+X4W+cQtnVYN90WZGMWEdQqJq8eAeGmMGOGPnhjBa0NRH2l22QjnqU3EskLe7xG3tk77Z3oIM3XBz4kw75FlQEsVD1xHwG4gu3p8JQCJS/ZAbJ/veZyt1hgdhBu0mLOx9tyPoLQdpTp6e6eDUhO0zkF6NqY9MYYNHQ3glHtEv6PPXMFNfab/EY8vLpDAEMtTXCqIBSwml9F+rNLPLN0QL6x2EyJQ29nuJQrAmkn6I30EsJ4LirV5HIqyqZa8bRBhleMEALTg5CPiWmUSs0Afk60I4Lay/MKl67sEoiWfeeA89kNF/hkJ26TVcBE7drFleLRu1gPc2EdDNI1ugZziTBDIyC9hMy+HxItZa6JCFS8Pt6K0g4KYrDfW2y2JVDEDhPed4iRHyIRA2CclYTCagNYZAa3Dy34h5xnOkGyLniCeLqLuovfbkDokglH7aE/UmTkbVlwScmD2AQYNJ46pQ+J5cjvVgMabNd4K6RYTiq7OehrJWOrDcU0tdkxdEldAKiJHTQSDB9P5cRFb3ToKcxcRZio7c80kNrr53mXchUyWiqWurWG52eriFwBfCOLPG5h4LVeutXvGuYcL9rHq4JUQjahzujmN/I3BcztQWNxPYwCzRWFccwH4p1XOBHIW4eb3RHikcSWVoESKiN2pL3ToXESDnLNQrb+SifVlq/a0V5Dzk9CFNVVGrurUEuqHEADhuYyYs//LA2b+JsSZGtHbcOx4sZ4BvO2sxBtshUPQbJk9v7/NDO9+SC2cHcpVei6qliqS3TIFZdU9BF6L3Zy65I2uFvNQWvxekxaDx/g7ZrCry6AyCU2VsLSIK2goCEv6w2pJrlbpr6ojOMHE7XY6oIKgUiNcySNRzI7gp5aqHaFSTUOx9KPxBS7NQe9WwlFv0QCN21pvSTGKlIhe20TZRLN+ZrP8lTnAOtQe5/TaNapO0ExJyxlmAXfJdKJTRb+o8/uPXYD9OitiGs3POYsW54T1j4TQP3eQ+xyT/oR1jj9+7+7RcmulZVgOFaS6fDdu0ovrgTDvXXNhvUCn1gSEi6eZXFpXotnCSwg/7BB2tZdDU8X/Nrq79npbioUWpo8naA6vFW73vachpkaoKcPniRLvw/iQ8HIORbI9+0GIthBjLgfGmp6aIPRRLF9DrQUXT53ZBOPSKwS4WV0xleTRSbGlDhwxgillXIE/yHCBdubce7sopsecOriUjnTsQEdYNf+5GbDWnHjcKbbUjsAFPsRnvx8p/LRiF/IGGLXUbiTwNVRqPNkLmbLTHgKesTFAzUh7klA2D8D2FxqnqNPVEIULtBnipA6b/98cb0f5GnByoszEFOC813fDixYqUFoDu9kCdWHME/rKoidaf8BjYI3GdmOv0dabzpgZBnHsUQiHDAa49jTBKsCPE74dEhR+bPojpp/tnvkIVcNf08C1g+nVX2DHyGr2Ciy+YLOLPttMFWUc7xlAmcvLS36QplFut2f1r+1vOH5/9Ov9i7ta6nMjQG+RauDwsUeyb3ZxaShz40SHUCZrgCXo647Ek4WbrY+BddcoNgEOD7Dt4Lkn1zPf0OGJK/xxEBoJBXOkE57zVRTZB3ID0NmRfkCTQdu6/YZw6FfXvSmDT/rMNZYixjlpD4bd1XG2TQfrdVEIZfBfjVdzGsluXRXUF943alzOxYD2zjbaWthExv487BJW7l3o8J3D7ePxI11imi3t1eS/6GgJVLK7wiAXwzRByKGr7StcpguqLvyXFB9HuWlhOCxAQX2C6dovjxE8JFh1y+rpkMzXB9IkohlDIz5XAIE/12CGPJBKcQPLcQTNyululf+N/3prEAeLb8lhMDLvqm1DfRRXWHEeVC5dKjxrWOkh/PzIGJI3u9XQgHxsO7xKyI7GAI4seUbSseJtX/Nj4dYBjSQ2T8wkSSrPSqM8HcQ46Sb6k+Qq5Ybq1/ynW+dubz1ziyM/FSQV2QO8ckCEf4/BWTEPQMGTXh4JYdIO76ran2fU4CSinoCW8q+GP4qur9GpmXaYMl0JlkRKAcfBmCAU2NxVQVzeBy/gK38oyBVepdP8DQK9ZBOFed/xJQwEuP0EEsdnwWXae4IrrZUJAvlxI0rdl8dcZZ7DrdzvvuvMXCWsFC3YOCiMeNnRkSiF5MaD9s/qq/9UTiiBs5ZUSNCPFW/5dMKG2goWr0fpzvR+Qo7G4P313ZkZLNz21Xv9uAPzg1fQ++CDr+2MlEKgpE5YkyoYaBd2MRUC5/PCQQxCFdYqVyZyo/E9KkpDPYr44Ai/strJKpy58YTsNkkz4UcjQ/wu+g/dPDEbWJR5lFWFoJ1Mq0BU/FBPZbrNkdhwwWTtlvXa1wtgBtCx+6TncQQR7ffFEiKcgbRMu0L5okZ9/kcvtpQGsozWBfvRqWc3srdCYVY8duiOJIs6hsVcsBLSeiCttOgH/6EfY8frOnKrG9bULwzAons2dxjg7W6y6Y7MUcsWJRaOrdspDIkZt5jYBBVPa0dRaqigm+5icQIbpdKPCXHlYtoGlZwA3Q2Va+f2KAZANEH8YrwrQTSxXZb4vWUdDCk2Z5mzLHcspdtEkoHmqahBZfvOzw2rThne0sljmm/XxZEoACxTG0DY4ak9EzUFwe0XM0yffdsdt2u6InDuyYOFzdnQdC9slMA8i9pH+trL0uXIwV7JyDqpjEyoZA3IEBgDGi6lwX5gZ5FtV2CwDh8VOt+a79YcmbIlwCoST+x57chZEiqq9s3QmiuU/0SSbRPVjuq8X12xx7XCDwVddZYKhqSi9GCnqfz3mpWyw46itouG29ot4orBqf4Ho9d13d8sVSkAu2qHJakFAuIvjrrOBdN0f3rX3u7Jwx+JrPBICuPUIAb40dTif22i86xMmv5dhFDs9vgg0l0UrsAGloqk7Gdzz6gTVgoJA5b6lUswqE9H4YicE9YUVrhLr8bGn3KX80hdOfH9Y56A14usUY5vijvqVeFbePej40WvfU9DQkCV93Es6os88oWLZJekcgEZucWeFnsPU8Bc2avfbXW9yPswiaSvkNo5YGCtnqN+f4YkyxCmW8z7U/34t+jaNyNk+CzFV2w7Z4xuGvTO3It8E5L0lKvLbi/qUOXSNV8jhpGR84oKxUsM4mdjCLbFSKKH+U0jZUhQX6YbPVq2mWLENSt3WFDKB634m5gKN4YVTRccKtPsEvZF5xhVt0Vy3mr0dh9IEiaLH4OLc3V6aO+Hky1BcK3LKrUKmydS0GrYOmnhHP3nBNXe6GfmSo6ibbX3/S2miUfs9u1qI7uPgEFIEFLLdGG0fxu7auVvgPlcc/bRBg3j3+M4GK+L9yObgM3/jo94Wo6vhKKrt5AuEWamw4B5rkHXqGXiYnvywPMw4mMOKhRAaQrwnanwzb3YZNk+vFYG4jc5u/lyvg/l9RP+71I4WnZY1o9Vqgr0KYZYRgVleJGTjJBcvR4lJo3vzSub+y4tOlmtUCrexhJzdT7GqIIwDIkw3+0JRlPp0xNhnN9DZAKXFf7N+E82KggxPA5m3I3ulUASMzaCGdhfGaPfI8X1WY+3LYQE4YWWhQCFqbgiCw/NUMEpkv4RSyy69GhjWMrArbrxS9nUZXVVEyS2XAJ3VxoZItrQWFvRaGz70VW3abtL8fK7ycpB159LT+WFC7t/jbcZ+XQbUj6c+zk9ruwyodRokV6APBlFlpt+AqgO7ldqgogEtUgsDtxQKzleBpWzGkWtRXVfEQTImC32CeqW0WbS5tsXnyGltw9aHmzySepNoJpzpsokjKx3HTp+ZVdsftliptYKY1N9A0JQWYWvFjXkpZjqiNCIuv8yNc7wb1eS66VGQpVGRQ1JEKBKHjH+8ylou3D0IAcplmM0MHWwLsT1disaxyG5bOjwQrkIJWF/+hwwck7luWh/rej+VoCrqt96GQpF2pW+RD2THOvkRTnrX5zIWV4W4Ecgqv59aHRUm3/ZWgmlMmhzHMMlFm8nlSwFCNjN4TlHDtUq0mt+cgopWvr1wsehO0oMc0AFJwWEdqSBohjY8rWNikDgcN3K6bdYcTnN35J/znw7wEwoiXhCWLia19O1X3bRGm+EHfTiBVmCKugcx5hTFPemycURtCPL/ieS7DwvFgReP+yPMgVpZmQq9ouW/yaxqMITwKWSsrHas0gaksFARjdtM3BN0z6U6aBbs2sk682VN3DthsrpWDD065qkOR2EHL2SPQRCG/dm/5YdkGoNimBIOTprizTyltaAgvQca2pqAItZdt8Qch+XINmUevdbgzzdZPHdfsrOitzHZIzrhyy1zuCM7FN5xY8igoLaFpN2csFFosQ9TmfW7ay0K6xoXmm4pgPEsRppKXV1/xaNWyMbfLDhJyfPgllelYr+3A+gzVY3EICJyp/efJCEG6LExSMKRB94oWTjtz96VjGyNDiO47goXDpUr7W9pTihDVZfSOG6yAjNUga/ghZ8hMuOsavpeCEfpZnOk14TFpxgkPqWkPnjA9+GMoPLDoDQ4sBEL7tjt86pjh3EPuWCQomLF9+kcvFhZ+8oJj6fz59A+74w6dnHdiU2wRzYbqyYIlJAVbcMN5UldvBceHoYngPpzOx7Eo8BY9U6BXApN322aO8t5cgVMdSHnj0ow5JIeY2+EEHrODBT84djFPvzUj4Jv41o9zn/eU/YQ3dDv+aXlHEauH+Ra6trSSbj8mqeypkPslpvDAHpW4fU/EftoFnZKCXjXmKXYR7yNYcZIZiBOEyHA4XyKUUPW6ZPV/QdM/TeqTbqAZmV3UKfYmefaNlrbnRRrNc+YlWWl1TpPhLNn+XOwW5lOnH9ZUQhs0plbCx7ZbdRoSEuhn/WFs+g8pV2SLoKdGLA0JEG3VM1jET+rgeF1T3raOdCZSNzfsBWbV1QeGIB/dsGHXHq0DoF2oEt+SIe0Gr8/Sppy01aTldkmbyU2RDjfuI7g4dRnU3P0eRexv7Ydil/j37T7vtwt14KazvGIJ5aPAv+T3I5NV4iWZqaOQcmZKgftXDs12j4u9DreNd6Zmc9wqZoM/7f8LbjPz/W2q6oigi7N/2hmgz/bJM1Akp08ZdlVd3McyhIhw7YcLAc82cFLDaY2yiqsAzG56OnICuomYO6sTN31NH9XzGgFsoapzekv0kyUie/blWx6Mkv5PlrUhDyn/LW4DbDb/EndIv+6jux70byBGOEbrfNjx/K9twy9PEbqHdpKs4cvSb74OnBgf4/WVyeQ7X3Vx+5pX7FpcV/mDxJwUDcMzWRBIremmgFtbPazd0QR51PeYgTZsK2aLTqVBS/0eO7CsirUZamqnqeWwOj/seElMCqejfksr9TgLFfgwaweggRVFELgbEOcK8QBcz0tnm6bm2bKpr9TLHW2OwwAgagX8KcQRCAXXYleouiCOU5rVVfECupX8Q8gXYv0okKa+86z3xxLhwYI2VWkJVOIoD4CKyNtwtMVBDgOf/xeCZLXkMja4P2OsARFO6OkwX9YNEinj62RCE1HVrGAqnvYLMfNSyuu+6NkVZMdPqUSJ12K3l90u22AgjYXyxFE1YKRs0MTO/1pGqw9LyssTzb13BOcUuOgl+UT52CRTb423GDBIVJNx4E9Bbh2a9EJZwQABnzg9j8pcLuKZDR7sWYSpRTtEoSLU3mKKlkU4SBYPjL/iSqpSaZ7jN1n9z/jWD8542IQtiiJOBTlUFSpCdXebX6CjVVDSx+hZlnNyfOTqrBwW2erDAPevuWDSaRToAXvuTuIef85MLTeTohIvWnVyOqr825P2rluayodwhr5Y7nn7y4grC+PhbfdhJ4fi5gyhb2Gu7R0mcwaTUbrFcvXkvCLGc++Of+Em87rQ3shCWfMiduVVfwN/HtIevVZDqUa8Gaz1SmYtp0LdDyHMuzfWRyT8m+7qkshZ1T/nxb8ejDWKTkADMtSO81hWQoG8Ry19EMrJPlvNRiSRjFcwDkCeHB94tby1XTx7p5lPCpkoS2iVbf/NCLgVqTIxdb0H09HCSmS34bqK7L8zrIn6xS3tKpurRmOD55PnlbV9AsJWu1bY7e8Nb/Ea3PmBrtE545xLMoQgX76G07uFo5ZpOGRWs5phgghp6AD6PuEtGzY++9rfdq+c0GX7uvcVcStA12NZ++bz4XKK4VpIq0LnVWaAdk3gePVALRfpDSKoSQwmGHIf8tqyFM7dlQGFLsQo8nAmagjHLpDcukd/rYFpCaYhPc7qaA85NTpAeKNVsiUU09NDj55YEbKkeHtYd5tu9vCWAMwu1Qtbcu+I/0ts7IvipMo0qiWZW96P66OnhtqHBtatST/Q+l1B//bO9gQpTEhrWYAi0BFK9TMBFmFAJvM/zX3Gzmc1pdXofBkTyK/oyMFM2M6cLhvd51QC8i5nrJBYuSerTv+7gs6jXa2ia7hNp6VyMsa38EQmwXTFJuhE3rpT3lh7W6lULnk6j/idvM/S25JT0Em5oRBF5Lcjdka6Of9Y0qcgtIDzNYKfB4NAOQHQljYeZ/CXVjFUsv4PcHl2p1tYimPzWNaLEuGNMc6JVeSLwdRsOJ+Xcd3tf8grTaHm5TRp9yOlA/rq+r/6yIiPhgt9Swdnn0pJ8FSKJ2PPpQKDtgYqvHjGYUfj16Ok/JYi47Gw3+Whisw/fz4+MbNDnMJvtUrgbkVmcRnAZf9UdEqLE2waqF0pth3mNONR1rum6R8UktWutS42iQM3Tvm/v688urI+UvTEFchRE9XzjO05PqSB96AfGJtIf23+Ifkhh5u/5KYAzftJvPN3rZUBfgnpXwQDdNhWJDxf9vNmQdNBaNyzkpCPtxDiTjaZuAIMOGGE2mf0G6VTGT+IsGZ/gofo0U2+ufjG+7H0Xg46qvKN1iI49C9RNF0nMswCRyxH7nbHcUv9xNZDzcZxl3xx2ssnZHH1+kitf64ag1/9RNpR706BKn8TBVpg8IPuMU6TXQelRUetnmwIjBY4lYstnZ/QbHWiKCQ6FL8mVpMFf/Rv0a7Zcl572XNJ+svHiFHLl3h/JvP60cDRRj+W9+X8x+Mj3PngqRixWOgbbqSzPjVc7sQFxvpLyHUPbD7TRmRq0Cm9hIUdFhzX9/DnwUekPlT2SxKOYTSZLVa/eqXMz3AeLlzPMOfBNtyFmmdrYRF0RRBwTS56RDr38kTHHTscE3Ii0YNUyIeIz+Nv//dHmfZYJmQFgEQHLRNBYdjbOLieL6+/w3e7WQX6XCd0I81Y6ruyYuplMgIA5Jj9eWQ+Jy+DwRGwDbNI8D7SkFK9vGhZ7iqjKWU1qGwesnn3fhqRDo/WdOBoW3idSPbZ491Ic+10720lPGnR+9pqlYU3/AklkJ8rJm06wB8xoy+C/iCK9LmNvvGWPqYi2zLNTUDeLMJJeDsk2LVKhQF4y7kRLnuf236DDXVMb8szUG9w8Zo/7UMC/nlMPMTTr0MXDg+lS+m681ouXusSeJF+XsP+2KMhTSZTy1TELlb0/xBmjy6nxvAVyGkaif3f0I9KFW9f3VkfB1yXxsvX0aJeKngrdmwEh+g6UHpLxzxE8ptfKCHYyIiTBWF56hqWKKFF46DyZvR+U0QYEHqv/d0MINfAnVK3U6jicuKGkx/VhE6OCKfocECyrEdNkNEIqCtM2Y9+7cymENJaUCe/Vz8LkCzjGc+2IzeWT2T0BEoxTba0LHP+BM38fO3K+LTs10zSFQbeI/eEAQqVh9P6wEoGQGOH8LXNsbGuJD/cnlSKNLEvi5WjmKVyurD7a/U87D4SA/A0gok1dGxs5gwkWhVPYFMQVXFtmJeJPYiBPNPTgRFp1WTBb5xqmN16abB81ywTVFSVcro1amZa+zgIZCu320+Fc1Svr6FNp5kaVBWraBGXxAIlSAd9dk/jPQxnUAMUbu2cbI4Ca0Sqq8WUIR8lVDURX8DQTArhyLNGsKPO1iShxoOfqsMiAmvnIzAWi0p2nHznET5ktbrWYwHT9NWL0WTbsPKiu9A2genrvjt4T2ZNFn2s+6+USBTOqGlnQpV9rNdpj+ksrXQlH9Akj4P8Y9ruYnovP1W7BtxfopbYczDKwZXM0xQjjS7lAmYHmVJUnO0A++VA0MjQpS5WzKac/9DgkmR6vsIM5Zqa4YJzLGQoiuEdSU6Co7so87f1NxOR37cxx+JFHcUXOKktW8dZcWFVuRxb61LrEHjOG4yjW64rfC6Q4CiSkY0Ea+pJ4xsn4vy2wsLvoid0LKjEYaTPIKw4PjQyvqUGn2MojS/un3bOmdyuvFFHpVY7HzR/lZ7f+x7QcHQZVSv61ekK82go5HHDWGb0/OrKYPacgl/jocew0u6cLWoUfvz+j1qnhyYe6VHlYWsVTXoATBMo43NcpDfbCUywwt0cYpxuBxJnyXX9szXwOa0B09YKmA6KeycAg/AcvjrcihhydrGSUh857Sg5DrqspK92xJGR2GdsmveX1yCED4Tu2rpP5uopamDHwRQN4a5VFVU4elK5NPmAyvxZh/ydI++asV/mAABs7TWLWxRgGGDoA05vGtiQ+vTJm1bU5jYQa4+hIJh6vr0FG7xqP2km+7IjKrphbCIpJORgAIoVCCdXCtsWQssX4fGv9r5VAywF15/mvpANJwScDbWFNzPEXPyUC9tYpbclzfv8MbUUt5+Z1EPzmzfTmKQlFg7eCNuXJ7Md6Qb5ysgFLctFlz5+PkvgyX6bktEZ2r2cazAl5w0gKZhxJLwR5J2xXriXOkJKmegMQOQQCJcLE3m2Evl7IfUDWEyKCozGnlx6gNFYGVpG5H7w78MkQdjYQEYY5OwUg9DTZaknmL+krbbGX4B+viR6gEEWxJPobFi5JbNfjhZrYseN8gBijr0IlwZN+RKM19uUlYpMNxDCCVrekueUzlu33Gjie6jfmCSHptF9rL7s49w9XFewMi0MJQEBr3JMoynJ8ybzgeEzkhqFrGjNZ+poinbyT+Pn5yjwPj8DqdQUtfI310CRhqLYpa8wcenNIo/31ngGfxx/Xi3/FtET2zXM/ogwvTQBBtb9hcziPPTunizD7uqjNX8Jtr/5PJ+h7Z3wQQ20D8lNVbsZ3ZdMDvfECiMv/7RJjeaTDobieEt2D458/rGYkEnT1Es9T4m7O74fhkuoe4uk+jeWLv/Qg6VuMMgJBDIyz4C+LrMeHNrrot8e9/FEkMk0H5cIS5CzyQTLzXsaelEjH6Uj+7UPmUSg7NtEw+ccKPlt4043sfEhKvogJsOxXDYounWQTd4zJsMZOeDeb/spZEnVZ1u83O2Tz0GNi9XihzpEwxkmru7wwa0PWoXPcvcvR9hiOlrNb+0Ytwi5cery2v1Qbh1B2xPaL9SarLiC+MeroaUw2ju/QLFAWJ6VMP2NDiNH6gAr9Gbf7djPJvVvBcN4R97NJMBcDWjPDmRrJjgekyf6w9X7s+J5DQh6okZt5ZM2xNFoZdMptxuiqviMLTK/7e2ldLodRwg/I82Ol2b0rzoPkJgYE7WBEJBvO8m9aNupIn+49S6lL7D3AQdoLEzyNgHmYn2zDsDqSZD7ZX+tMmjk+QuQPTqI38QBPUZUqqCVEtxTnd+2H+Tnp96YUpOQgyom9M3vu6DEGO081dXdEisYcMbFCLTbfW0n38OFE8Bg1S+TI6dRAhX0a1bAktnxFOdrWBjmZXH3/4BmvGk/H5VlVTLdpDociBTHkgjoZLlRTcbR+8nBjOC1w2GE8GorNWIzHqN6Njp9Uu7QMNm8p9VDvL97X0I5lB3Y41tgrNcvsmw4J5LoqqrOUz5Qw/PVOqSP0QOSLNAZmq3ulDhbjsSM3pTAE53REHi6RrwExekxt8Mz3ycNItgUV+E0w52K9jI7+0TgYD+UuE+pVOfoeFiqAGdK5g48YqMOaLsdNVToUlrcLWh6XaD6UtpPUXMNpi6zAV94kJFXOFaZyvWKrVCNqhyzNopgdArE1p0lizSRf//6LcgxCEbrN2uaZITVaI5e2RBOcxmPWCi1YgW8Rz2s8pZpaSR2md+mnT9sKoiICStPjxGduaUjCRQEDvDxwhF8R62MMeIOJ8CQqF7hiXZOgvcscEnT4+lxPWFD3z+9cNYMhi1UjRIdu3qzscEhQC9R+qnl+5+1C5ufxd6PrrjegrAukU4R0sIizVsrQAjUAqyEXv7I8tvLtQ5wjvGiGWWvVmA0W0HWE7F11Q1NhddCiVjGWElR1RNuXQFklulikgcXMPw0zxQvZYhnHm21N31fRVQhyKyDQBW4OhTYzrNzp68QzsX/lA+WR9F8EUKwtme2/6FSZVNKIhoqlCSYcZ9nyEXMzYgDAgWQRpNnJOZHlWSxXO3GLOQ8w9G+Q7YHag+n/L59T8Judlg5rExgu/nPIzjObZUZods2CwJxjCVDx3SpfYx6i2ATcvXnpyb8lgCli9D4kwL9WYmjmc+d8xw6DTnn8sj+FKMF61YeZgk4Kx/lTeUsHR3Veqrhwow3EpVWO4uSYCzk4n9AoO4SoAm3P+NeoA0mFZNdkxfM/cYbbJcrQbSDeChYD+soc4rX3VbgJz9xx+JgGErv/ro2Rx68FAoIbQsQ0+3KSErE814jxTCf/1lxW5gSztsF+G0bYgshOfQcFQu21krE3Mh5jWQfmVdPoqC+zJRNTLBMPo9DoMJlazgLp+1e5fnEHLNXmLPadQokVQgSRdaAalYM2ULUr72RGNDHJzRKVtlc+uUGo8tjASBXQDIH764TYLhfUIro1b5iMORKzcruDVg15YxJyckMdl39aPWYE0Kb9JBB4fl2laWDs2BT1rj07YaMrvpL2IM8/cPyad6y6K2iTHjxh/NGzl/wUOHNddvW8JM0rHay8zmX1oBeC9KpP9oxLQqmlMrdpfZ9OKMEzz30FlGcIaTb63sPrrIbrTGCF5z5lhWa8CD+Hmu7z3Dm2iqB/seTCnVxg5T2ZC5lqytS+LwApFXCm9WJDmHflyuzyC9KrPp5EZSnH8bs06ajE3iXeiUIOjgiB3VH2uMTdN5Jl/XRlkq9OF2DpznGoyZJnmhyrtavTjjjH2U+rsHji2mDqnF4I0yKKmvwghKkLK+rjrqQq7mWG4VmAc3rcDQvf3+AdBT24Q7okyK1onkHg3g5DSjzkhAaR1CzacZxao1OJWg1ldJCJVWJmaMwGuwPdYYO7r156CPGvzIGlL0y8y4nAdsGrzpVZde9B/xb4UZG0OZoGfrOeVBMr3Qj6A7wvz0t6Ve4mDyxG7gmKennCrNQL4MxOhDNP5QG/YoyCevLoPUTyY0/PLW044kMpePE09w+04yJFkrjNpDYXdwXGxYr/PmZBs3lgGlx2+N48gy7tHquQqQF4DAjnkcArXQd7BkJjPzS2SEsq8HnOSavwDu5i0/LzDv3uw7Doq/UK77kzTmqQ2cFkzfV9Ju+YprsiqO9skipKY6m1YH1IcrQtMpxnsddMcrLzn2fO7jnOddrFq1fNMZY9wtd6t4QnqNBRn1lmZcamwGGL/YD/E0vjm9fqRVmXPfAI2Sb7CQcL/Hn9e814RvjNFUeGmV38pyHPYSgdwllgzOtolnVc5so1uBAABM2kGaS0nhDyZTAhv//qeEAAADAAAE1MXyADLteWr7298I131gIjwaj4tTmaxn7Zez+8f6CIZ7j/QPhZkH6Ggjks4+6S0l3LcXzyZmUL0VV4PvsoIHKSj5CSJWf5WqY/2yuNGhDPPq/pxKA7BfopBesW9E9UIUlC7RIRa/KCljNzONEUrhgPhTJ0dkMBa96TjWEvj8C1m9SBExP5/We/kp4QqtAu8dVzXoFzYKdwC3azE5z/d/vYT/HNY5zdBp5bEKXiUQvlclA6b0Ew26VdNOK5uTPuGC5PYnnX0WT+AEWPBXx4uPZFAS4IpkYE1cN4R504wuDjgpKX5TVleFxfc26MrEJ9HOR5dtAQCu+4g4HTmLErs/QaR6lHrtGr4ruU5WIzGPZyTLoAALXRQhCJxrFaLxpeN11TbdEpXuyayNXXWksQg1cmYfhtm9X1X8668V0yA1KdELqMFoOUwiUAnvy/A+KWhfwHBvmOHyCQ3ASwFEwDmsCv+Ztb5xvVzZ32x+leQeVUIf4cS0qbU+ZqvRX2rqhHI04+zvJvhpbGxwV1jI1mJbA1qE/otTXHyUDpfIPcJJZhQUKE8XIrLn3MtOyjCVW/X2XMfVyxS6OLYTsBbjJIj3TMDemT/tVtqc6RHDsyAcrt97uHLbGwQy+EBcmgq8Rzf8ynP2b2gGWI6Z29lNMv1Kz3YwsQw20Lqdyd8K7WcqTOTsEupR7QPAYC5Mc9qTq0P+RGfYL/3istryNnTvHS6xn9kHgoWtkv4SKCd338ZLE3IE0G9P1z9lTHfKMghpg8/AClYHh3FG5QzinXmSI+s9ZVJLw1JAjlZ6zmP3fBR+2fQncrA0z0WTZg08PjJIcTdi6P2YZJAds746B8UanZiIDHdCwGqVO+dW4Jea1CRKOkucD4nwPp47fyOhs1tWqnp6fwdI6ZMOBLyMHVfLHw/fI5Kj2AUhPuiXt+44qg/xD8/xUPvO7vle1Jitw0tJGam9amLl45LXjeP6VgwA7wRZgO2G5Kuqj1U+1rIqquXhGSC2oFfqHwTvY694vO3NtPjFI1+NyZRlMXIekaaosVF6K6Xo8hxLbgzpxrKc46Jn4Bk8Kutb54/6eGlYgUIAMD1ogW2SwjhBANRupe4pr7reVB+S+m4UjXHzr7L39fj+m/Xtfjg1osAdsjXZSOe1yuxFoymPIBk0Eb6Zo1SGAAUMpKKaIoJXmORpxxCRSD2kK+JMd6Brh539YhaHIBrPGr3jEN6aW2WQToe5EUTerd6ZKNLLAoXjGnkiQFCf0J1qh1xj+4LlV8zMhKlhrryGKQNSAMxVNgXdRlU6qlC/UBw75eOKHrJ8xTX0WAJwneD0wU7NJskDV3oCQKmzPkvSir52zo7xukllNbU3Hb6Esi6WWWHSV+/6bKSVyFxKYajkpmz+WCphKIJgvY3RVum2ULswyDj+O2zlM//LMi6IfZ+TwRNkpohVW7Y11IRGmu8o5gowMT5O9SuFaBCsZJb6/tE6EaNOtIRnvjKt38WNnFVWI+6k+xjcuUyVbCnja0wfiDnPyXd7eb6J2Lh+a4xl0TwI+8Ro6rn8OqeRrtBXBKdrOhMNHtoheccw66qePuSFNBvFYGiWE0fsLtchoHCFSO1EwbEX5pKq5PNMwKtRLmg0RjMpeWM8W99mlPjypxFnXWSS1qZvKP5RElmvKKwHYmHS4O6d2kx1pagNIuwG+M6grFFaM+/A7fR/1/6knzMBmxIUzlzKtI/xqMdQN2B5HoxcKNe6vceslEl7mo12GtunudeqSbjo4HMy5xeaNkdmCv5Ppz5ANEko53cpzUZsNs8JEBLJEh0mUouzkg7UenJHDyXoI36afl8zfeov2nRwVVWRG9pyz21bMNenERLqJJi0qc6au+41QlwOAI9y2Sgh84O9uVOFy78Of1GKEmXWhVcYUQ/8CzYdtgixS50jVlStTzxsdLuB2CCBVTqtdHiJm2qNYYlQ8Qyp1SDDnqaOMW5cWyakf0v14pieSguX+NAULYHBoVZEWGIL35e7/6xcJgc24o4/Kz+wP+HbeYoExE7oMWWETmS7Fn9OlNhcDN68wW5/+2l2MQJHDFcKXHtBGSPKxMCZxHO/+2FqNVlcl+/vzlDMgyy55UBkBPoCr75uNX4yZ3kunDZ3tR/5yFQpD8aQ8LXhgL9hKxaKIiW7rVmS6plB4HmJWsIl1WQcooRN370DC1DQoIBECBgmOecnl5zxzuL56a+6TNibe51bhYJxfh+eMbxpkSJW4L4HF+BcC42+KCWu2PRGDHGbdxFerE0cM4sMQ1YofzJUjx3ENwqcG2jr+M0Q1jA2O8zsxM9J0uVywqd9wzXpPVQZrHhJGwVcFYOIIz8HVHnz2L7LUrnxv5nswZX4tsABfl04/jgeCj+CuftEIcOi4JMtDqMokelQwbxOLPWV6NDpBNQR8NtDV5xs+xvbiWTR/4HnDLfpSg9NvYcPi0nVAFRfVeu+VoJYEKKQCOkQEqHnHDbwZXGqc/SuV+qN4BRpoflXvKYeBigXU/bRfAdmVyA2I6cEn8k+TJSq28SqJiwzSCIB+3j4svzkNZRt+eC6Qc+WYjQB5vmFlu4mdczUSv95RujniZnJnGLEwyYBV61N8miURNd21qpEmTNnWA/5laXpTV+oOfy8poq7h06kOYc6vnSEOQ2XkxuQcKrLV52IeqIXptj+IYvuWsoyk8F1maOoGqXrKXbFl6MI4fE5qbRiTG6zDydxThAd6fZC8oPrzw2X7w374FCvQbPairMXecO4CD1olhcrgQ1orxzamMkx38RJM7X6U2JhawWD4OOZK1bumFCEHrms2tf99r2ARX3u/yBiZXT5mpXoIqtVb2nNJc0/RpRt7LlhQpCKWzbg76DyC8u61iWSD+ZOfCyL1IZAJ2TDqweR2KVZAWriRkrUQlQ8xRo1GBxJTv3FrNQO1SnBHJ6G9GfQxsuB/Sqnx9os1wo5q4nmC3osfmn+9zMkYy9rbqza0PPN031n8OLvrhmjIRq4pTjJQqCHsanvo3nU8I4xY/BnuCJ3x0asLlB6Wdm1HdENF+VSqekn3yuOjsxiTldoZ0jix6KNDKABTfuKjdVtAqKDshi3PJ/6IbjgDBxBeqv+lwL/5CBaAJtUTrCz7FgROJeIvilv7vkXh8bD9bb015pN6WYBNHnyTreb3sfRNRk3ntgxV3BcT//wAI0p2biYHx4mwxybLfstuiv3+4ojNsBHhEGRFBSl9GobdzkIVsOEGf3PN0Asd7Lr7HiiNiEYCTYQlt4NKivHjFvSxffL7QJJSXg1YIrMpVrbKi45WfmGai5pK5JmQp6leGN1nC8mGqnfgHUwG2aLRyRYIYf5c1M7ZuT0iJ/apKfL5iNPwNPBaf39Lru7GJCYSFB/plv90cmpLNoUSlVXuHghuDg2scD/uJSAVlBaLNC5mtzM82N2VTYi/Ju9H9EfbEcFT2PNAw8S6NSub/tWUQuiOdL7ZpgXnneRD8oMwjsEQ4jgDFJKP2RA1UAX9RgCWYUtuzhgXz257PypSsk9RuzycFVk+trglagDA22bAI6YIO4nu9KrU6H2soh7eSII7YnQwmgt/af65vu+0pv7lJOSIJkOU0YcMnRzsHntbbM5vts22WbRFMADyiW6iBIOE3EpQIHcd4naCWjL9uMCvR6kxLCz7L1ahyplo0ZmMk+gWgH4fOqnJXPzXbhscvgbeVNzzkiDB9/8X/FsUz49XbCtbwbzJW0yeyLKY63+qOpqq1VnTP4dVl0OFCZrraPuiN/zmNKykglTE0q/xAK7+ALaH4BYDZ+K0sF5ObUxifzj5HX2OOautsF24fgVveHallmw+LpPlEmzfBSuTsCoM9Ivwuwl7MzZ3c/9hG2TJXcSRzHQ7ouD/xDeNpYQrdN0LYYyqtutbk3UTG3t45GRZt0QqZVBJww20jtSBHZh4XrET1IMyighduaB0phaXBe257aY8vD+M2P9FVdsl2fFRx3OGtNFLswnhUoMTeoEZVqJeIFoSCMJzagO0gmeFoJ8VSBcQnat/9p6eKQ61Cz31wLL1vFLzXWBoRKyDIAI6+wkE0/4yOMUHUvG5g+/3TniprkIu8pegJqO2uMy41o2ayr0a6WuOLCHJiO6A++FWGmoFzf8DVz/hcNSjokacKEr1ydnGDGjBAZ7vp0he8ZHxCbkDm3uAmPvvlGfXFuFkWojvsVFL65xV7Z8BXDh78uj6q+m1J5vbWxQkogZF8Pt9e6uMAtJUsV7JdPK3B4n2T+08BM5jJ7YQOgUffYxvgTK0Rl5a4ZP/pZ3P7nh91AqMoFgP3E5cGQzAkk71IBwKk5MNfPcByh4bFgTqoVRHJncqYTQp3P57kdkoRH7HNKt4jcFSSJnugGqmNu0of1PLTbM8MSu/YgZM5otFZdwkD6Nf6dUFaEKZs5Q8vWMdrosj6QiNm1gY1M76kwHCg/t7y2Me33oTI4jrnVlwDa5ZnH5MnrSvw/a4leu4pJAHUkFNerF9BHVLlsmhoSI5ym52p3JNaGeJ7diMf2O9T4m35iWTHbS846Mg1YJXd4uJZMgnySYkBqzHEharRzxEnajFBCDky2hXAov8qRv2rdIvSU6lSNnsquj7tJySz/5pIy+PyGLq2Pf/La60kjnkV1ZwvUbxLSyApQHhUIYjYBuAJPOB46ddNmIN+DywJyo74zSCkDastAWNOuTYU7WDsnWI7rOp2N9rvcjmuLfzGokKLGB+L9uN5KgvvkmUi6/OYhzhI3Xq+9Ap4g5P937J0PzLtVGb1CaumTuVYLj0kias8apoyPmytgQ9cl0Pxb8nKXeERRnjxxzgV7PBWRztW71YCH98ZJT2WkH0Slg6IIkG/mvWKCf8ndc47r3+SOsr6US+7NwZtABdWKMohCshbtQYk3eIinNubEcmQ2CT9WfRFUSnxN29cc88D03I74jZlXMJuL0yKLKdU3C7HLF58QkRUcjmxO8dMCWECqpcZLyZFe+ZpK5vH5eWAFmd5KOPHkByjBSStztGLQiTRfN16R5naTeMo7q0gHQZam4sRUs53b3AchiCwszlD3htRGYkEBoxGEFSPCYBrbuLJaN7GebhBx8t71X/je3isb+YYrvSMRIVdlVoTcCqnqO8olzqxVbANhvjueBFCkyDFczES3/WPqSoZTiVZMV4ieyTZA5VvdqHgPQGL6p19+EgSe7TdRcuHss/H5KMR2XnwBu2nXG/AnQaUuk1ZAJAHM2Ft2G8UE6SMXVXQlG2md40MiIOFTPDFQ03NaPQqBWPEhZRHaQax9TgcwL56MYmaaqfrELYY8/1/NnsHlrIZX3GTIm/5QM8Q+YU85lSusUOJnXs2YSfxm16j6/lHoNh53YH/ppQuW1+1e4INoVmD19XREAOBlUK2nKVowwJLVR5xkc+9rMAKUfo1Ijo6+omu11vj1PYlsazgrZnhlmLExJ/a9A4HbSHr4pDX4ntX3U1ApjfsiV0sKz3iec6qoSvQRo+AfUU2fKWIi4a4KuRk2B312Wc/JZS2UPPKHtQhAjsZo47W15fdpoPDQIpOd2rR9+SvEWpsyM0xQGN5y/9N/I2Iw2onXSjued9o9bLwyx8A0+Cp1BQ2n8dgpE4Of4OCEQLDwckWjav4cdvAUCpoJRlrB4JmNRyKdY79nzerDbfsNPXmmLtdNnr1My/YFh5qSidxr7n4Q7Sj43pAtKbF1f0bAVpOoacEkm3Z+Gts/yn9i25Ec7Ey9+V12m/9ue7jTtIjXhQowTgsXcix6g16c9ZB4lbpqI/lo2h1AQeT0G9l7eRL+ZrQqBWsg8T1W427iTEXjRVplkO+mGssOG8ZRJnWBaTCO9fgxzOvm23Cpafklhl5irOXy+owaTVURhAP/P/vj7o2Mah3EafpvtMBYAmBYXYM8lbIFBMWm84B4jRNKLD4ne7d/sANZneG3JBhj3FtsAVZzHUf3lkrT6uJVZcEj32qhw/poBoxCxDij9Qky3bkG6IB5KsQ8Lqtnz9BOg7NXttuasOf0bAjP7DrEBZhBBqRABafnnDRmF5sQeGayOvBbeSZIqbLyqHvkSXCBQPIByqU9JS0i+jZQ/s2KD+ICtGFbZl2ctp4zLPLRtL2bnlYaRTtKpRcKH8rm9bj+n9+c4GiK3FdN4bT1ynCIH8YVtI3dtX/cQiVR43Us5TAJlsW1ojVo50AbkITHK7UM8rBrAiPy+iNjPckW6BzKMiTTZWjEd04kQrCDOf+2ZbwYN0qJCXkcADLhV6yPKOKW4TnJATMJYnlAnlufACTcZIq4BrQJ2E+WNs2GSIxNjyGfDfDnqlAeFxKGGpY2GzM6T4n30MXPtN6bX4L6fMOiLJqGbY/IlS2i1/cgFnHVV/EiOPa6XD2xVrTW/f92WTEWEii59uqujwdjJ8JweJ5IaC+JDeJSxCRc6v407naGXgDUS6sLd0z5ZQ+VHzXF+A6oAmL3PgneXkeKw5yD3xLGf0PVcWIFuwiD+Bb51pMvPgHzy5YLw2RvDCEe7pAkBjOaZQf1w7vmEHb2Fopf7c5HdqqMiecR7hpE+C+GbeVm6BejBgqo40aXL1aQj8CnpkKl38ZRZq0BwqEgRfxXNY3iT53/QVnIddo69RVUSAS6tvjtdUi89DZA9hXK6AvURlvlJnaj9/vqpvmNH9v+eDRegVNgFborJmo9ty7ydiX3WTw65mBVzARAcfMBVAaXtJ+u6riHtn3Y8cJ5AlO53Xu26G5ETSvORjToTW4uXF2DXkq1yHCHbTMg6K/J+PMlfkHVovhO5oOZUfrblXDdVJBy2GR9yeKfvL8OkWZQNftPANs/YMSuYI493IUvYewGTqdA4U2OKkrZjAjlylArubr75pWtqoBgPrFWDFucqAGnGUUnYxohB57ZI9G5XMy++EHIUf2jpL0zgJiFpp6ZIioI61koO/WPaACOFxdKyt6WRUOaZFiuXGHzZjs/iAqamzEfGeleKg4fn8vPznORW8DYnq1czW5lMQl9moBkZp6YZEza3XqV0ldB3fVbWLmVqBNUQGJH4nDvIzhs+G9aiErDy3py310n08BkXVTwtu4o5B5eYglfUH9ZhM0xYWkCDsrRueiMyAnu17MAtS61Bx+9k91AIvFwKMoyykrurDy7EK+lR21VcWNxRYSRrzDx7Xrpv/DXuS1I99e/izQiiNJbqQLxjUrf8cu9L4VnQya8/jd9olk+rILB9yKUGB4eC8QFzJffT1gwFJHtmoXiMjcH3vC1qxM+NRWuvv29Ko3udn2sYpOvjsEibsT/Hk6b2foHxwtVfSSks+6jmUrEuy4vK26oyWNyj476fjQ4LY8cOo2HVLavWhZyzQp/Yliz7/HbK7qKBMDmOHqkwm4e/JB/4JW4pSQL6pCOnXXY8GkH/F/VJJHktiCj8+Ckz+9rbMF2vs2Id1L5MZ7NZ2oyR9Xj5faMF32Om5PB89y3ZBgYiqEYxCZv+kLrS7GxDcoiJfGWH7dynGRsUmqEt6pgOn6f/qZfUScYr1AqskVmMA0z3/Y/ujGOw4GFPli9JHj/Yi3kLzG5xAyXC51q5w/0HQDiXWrcFCAF5Nx+6auY5X0uFIui5uTEDBJpZKbpRDJJ7SAECNSxE+omuXlAksCUfgAl5h/FIN3FAYuGUO8dwoX0Skznp8XsTzOaXMZu9ks1VmRF/t26oluQG+A4LZ8SDyYwxedoUrTeiXQ3+hVa0y66zuZTkEeuM+bPxGYuK2kRlqDtJitctaytt1zWC8arPjQkEvddfmnMxjqWPQrdwpGudo6IFeDppgclefPPFbakn0imzcksiZ+IuczPgILkJ4rGevAaupiSB+Yvj9sxDZiDvuSghGiiiVe/XtKzgodukDU7jBRBXFZs070m0BRjVXgNYMbcoFx6SRvKff5BPljbmIuT5h3TdVOu2byiCMVXHkpq184PGgJAOn9+y1YvLSfMDcUc56rg8IXk/vSlQDr0wg8rmWGaIEO6XW9EGaHFOyPlzslF9EMo4KuImx5DoziHJ3pptDQTQayjHFnNN+OTZAGb9JgRBrTw0akiT8skNlWvfSK2/tTSTcfz3eumNHBnjL0CkKuxkfeVnXZle8TIfJ/0cbitwe0kSIp2XKGd/Ox/7+v7OfExf0FHySG6Yg5movhlZ/7DH8Cv7+z8DfTsMSoo4d+6QGPx1k91Cnj3pBTt7RTG6UBWieg7M6dEDB7Z18JJYMw4ntp4KmA6oKUmBXsLYDQfWNphFtwGjmpgXrM4kLxCjYsCTBkMglhtlgzLR9D07U5sLWyM80y6B0uCklOvwjqZVjx/hJum7cFckYKSpJiUMZ25arKERKpO9uVy3Ev3TeBUUoP9lAT4U8UqRF05FIsWpP/1OG0y+/iVXvu+YuK05KVpyLWuRSsrcpfaFpooXMD+spKJJ5sg5Yi/ZtoQXOFMhY4+LOsrVvHMijZFPIjrkmUIpY5QicvBHpOmsgGr8m8oYjRjbYHFMyiMryjZajIm1xJtqrEGvTiH5Id8y7MB+nxIkpOguiRlaqtjGxFL6sXfwuZ3SgSCltt47Rb+NuxtaXrMuHKtkDTJRL25G4oLW7FwCtFe45aYQAJcOAd64MLKqe0LrwTw9S33aVtiPvqSEzojqFNBp1Tm31NNcPyarI2rWFjYcvXUSXTv1BvKJsxLYqJnxYpvb+p0CaGqfeVNUQNWoivTCG8XnqWIKJo4Sm743zGfgAEHkeEYXjeDURxwizguERSypPfJf/r0GAVryP+mlunUany+hLmEJVi+7lsh+e/CeGv53xfUuLFpnfgD8A8QqCV9nWgnVrKomswCVB/+cSqd1lSKlDEtgFu2wzqe1N7BvCQm9ECm7XieTx+U0KOYj0K+jsZlu2tRyrh5qYrrptci9J/29uHBMLZJZyMe97B4YcRf08Qjuw7lLCbFK2tpcXsDiwqlH6+Gv9tCwMhnfHQU3Nukt6htGmXie/dW54+Ju5v8u6tMs1WvE39R+BJqNpoyDA0gYY9foBtNPhAKkUFWlNC+IQo0DmNfAf9Z9pty+rTtjGdFriLJ2arsDN77CxFJcGboL2TE1JfH0yOR2efSd+3f2WvSLfKWIX145Unwm9FWZPmQBQv/VQWqxESwtCg0MlTNC/mzhw4868YSYTxeBW0LEmzBI01fuDwf4t8C4xkaWh0ByImwy1r1uvkoAlfXNTnayZzTenKhl4EEl2r8DiIxY5c5PoWZsZmtHY0jEA37DBCzgXw6ObxU9PdJ1m9fvK1BF5g6Vx6bZDbh+SuDp7IFrNaz0ain0NCaTS50UarnKPWqv8HMrmLYCOEIjmR7Lr6y0WxiGFxVrH5hdR5UrQ27wrh+qgBWGXrmuQG43mmOkBg7GXyAMzpor813vQpTyNtIP+TzUrYVpJ3gnU4xhBqCaFY4LvVMnAffqovgoB2LSQSu7T2JMIZNZCGKF97BL8MPZRSs9rtdx0PA9d6CxRjoUAWP5IOn3+myfMTjcmmfbl8xzQbZmoVqlibSf6v0O7PJKavu+3L1kl8U3/GEubFhFxiT8dXO384W0/n9sJwzEIiix+xMBrrfJJRSxH0nc4LDspfDsaBP1MOukr6JIIDX/c8SsgdJI6zop1bYOmBa5pDwiKpRCU+sCTV9405BBmOvxwb04/TTL0zSPHQalEyflrSIK8+YfzTCtt7e4DlLrttcJwoouuizmjLS098sG4132vSK3N64v8vm2FjAsgzJPFMRsgMmm0DD+DpCnjb5A8nOjQSKxAY9UDF2S3Qo69MVwJck2eVH97/AooWKPkWxDf/pMpmLy6NRKDt/r2F7L7lRa84o4HzzXoBaUQ8PqlnFqCg+1UmUS2ozHmzOEA140wS8ZElZjaqRPJffWfAhzd2sDbiaUebeKakcCDI8SDQUOhd7Dy9SH4LtjXYYfKR5G8K904/JZnWNqdHQupQnsBxV7vLBPLktvsoRJ+1f1TUg9R4TPA6Jor+n27YHIDPJmza+WrTKMUbplHm/B/sHweaZHA7C+6OsJsCCe2EvrlRiUhLUyNU0mNgF+ws4aaPuSa7owRyzgYgPtoSOXULFN4nm6NME3Yw+3qqaYUiXpgevUe1d+zH/706HMPpDADUB4rQjS4HLPWzUJewkGMaVWLZeI/GCTq14GBeFUuV4riEMv+qdB5+OYZHgnhhDXvIIJMeXQ8GfQyxi9FJ5E5Q7WYsBU8+H23ZYc6bQeNBbsuMSpzCixpl22r6gMwYVUV5ywFJvSQBDRcMQOZvrgfJzZSmb2MbPkNsNwJjkpXnKrcG+/WEm+RnrZAyb0qoJbxYa1bELcNu40gIc2YJ+CYwUfd529ucB1WtwiJy8C8MeDcPO9/8fu9DaTvFepd2Ge2XBjjnikRAobHkSzd1YuH8Epbkp5wNi22kdr9tatYng0BiCJdOQUWEpxLFtPrW/s78laW0BvRmdDKqiWw71PlMdK79cVUQKOIZva6+Q6BAv2XAWC0T/8h1XK7zwncnww1qQAGTDZpmnsjxVvHMSI2LNHZPHr+vRX130aPsjImX6/Jk8ebVx3wgHvZUH02RU+0HesusLFCfZ0XI/T7+3sPsEWXFQjotODsn+0mkHsMyvkfrLIr8iHBh2fFM/iaLF8Ati5CWsGRTJS7PT9dei1PrPHXydkdgQZFmDun7+9QtdmpFTrJwlltRVdCHrw0j9sGaNggNJS6kNhg1uxWml3cxnoYFy+ClmZF9/t5t+jZn1Eva05fk+mBSm4FS7RWfZVBARbTe2f8YFrl+K7AvWRxBzM36jenk9+lPTtMQtknQss6CLty6Shxd2+7W8cYZPIMiFQBiOHbmSab4H8oK+jo1O/wMsrtY2q+myUvfemSvpFDakoWgUTccHlC6c5AtJPULOg30vnRpovCRZRm472tZcgtX+tl5LxUjMz0pX+94Ki6lVNrHwgUb5q8MSMwnNJHZiKaQ6/RtfmYCrbuYH/3q9zE32fFTlTDyZn77hv0e/Q3Z3/wLLMmVG4jbrkfRk6Od0qJUbDqukFFya+w+6fjsWZQTg6bu+T6iePhYaFKzADFPOmej/ac4baoi0bwjH9I7sO343Y3iP+7ImPamXvKlOqb0YaqJm6hVBEABFKC9LTgZJv54DnuYefJCZ+VprDx/XfNfQ4V6PHpz43M9JRBPRP+AkzDFGo205itBe3dv0LAXARSrIRzejmVywsbxeNeQRec2j2z1FCSDl2mlsxn8LHZkvWAnDAgLiyyJ/h1iuk6/GcGEsjnDPJddZxWwiLNJYZndab/e7hZgq/Df7XIe1+yN9PTbMCD/NQ0mDHh8wQzLsF0G+NSALkIUafBbuaM7YP6B6pDKUA6Qo2XG389+W94DDBDtC7DhEg4eAZuPIy19EmCIvuJ6oXgdMVoulC6K5W1NJEBO6Li7syoP/8n4PaVwTcADspEdturlOebM5wOwxaoC3dIALeQLeC2iqg6ralPtrQOz/NqzCk1SS1Yzii/fT61mHMZPuVuGloSUSDfBHSo6XyAg4h3ylIpq6fX6hB90HtgCTyRPlXbpz1XirCxXHhXeqnaO7tlRKJ5LFoCM1TeBD9kxCeYdJIrM6jwscQWArgW2Vpo8wv7RY3BIvGRxTNvvxl0O8WaZ232o8pCPf9PyMCuTV1dHqv/lGTeMUcK8Fq0zrgfsPHn48q9ROvtvIoV/YW1trp14ig/8HYFrdi/HGdDGiIkx806/Tr5M1m1CqxN2dW87j/kwv0IUiA22iwNOYbDyd8tKjA7HXXWLu2Qbvc3iB2FSmUM4hloy9196oIrOzu2bc9EyniYzF26EGLqdof9um8dOOFDwFR6N/HFKGI32yePVG1RXrIKa3O+WaOhObnXCd0y3p651LPT3tlxR5+GsKc/kIREb2E/u8pEaiHqLSDVPSi5lEHvk4CBZxufmzPCAzZpy0dCCgSkvaOmhCCs1/cz49OlS3MwUPHzDJeOlm+Ga8WVxLtRGPnOkYjYoCh1blrlXpEyymEvs4s4I+FiIs706iq6lsxgDpSalDPAHPeDS0GfjGt4NaWHH/2Z9pWn4Nd2xP7SDf1SmyWcwuzk6K0KRnHO57I5URZgpCWdgdrmct4PDtVhZNpq0umNAWi5g1wCjv/zwwp+thUpAT8R2OhX9skHTqL0De7UepNZPPS7w8qEe+p6naNmyif/2tAppIgQuv4M2EpBEwv20JnL1nA7PFwDJfEvta2Q8HhextoBsyQc9o8WjtW/mLAq4yRgjLc34us926zXko9nN4oxVJBLslblE2Ovy/7Eb4J6QIoZjOb0flxqLbIYsUATWiayCouF8oGKe02y4k0wvx0HMTJtG5NxXOziQ7isDSRAGr9Lr/WgCzqGeLk63j1cxw6D38s2yaly95n7hDorn4LShV0+i236oSObXgxtdP8HBdDkKMHucSq3wsXMyhG8YL6ge6gcRHDaey0yVvQY+KY6ON1RazmTV6MHkRjPPAnGzesyncDOIXWV2btpx6BIv4YxLANWLIHnREu9/AhTFuymrBfL+4UemeZHkyK2C2d+HSMoUI2mexpgKnig9E+Mnt/h4cNVBZmS6yDL3vYy6Rf8+G8o6HZ1sDL94H+Orb6QDV+bu3JwVXBfQ7Bz7biARoFpSw26OlPIuhyaR6Hu1Id5KFDtNBp6fBqr44BekTt55Pc6Dxwzyt1WB0TcsMYqePdk4NfXGS1pbSNCarALjUKtg+BSIrPeSAUXRXzuTj1XJxKqu/EW/NSn0O7t4cMm/ef3KY9iwOtfhfqXXaKq9apfisylGX/n8uMSy4uGJqqKgNGL6E7vB8cP2cUfDIr7wRPz00HV7qnm9+ltmDUNJDD/jX/uqQueaWACnZj4VUvlAdPOanGDdIrK5+3pxu++OUGHw6b7+NOG5iCXNdiecIAaZAI1hXHHsVgnfc4SX0b/fDofn8GqboCTGDiLIdz6HCF+RSIOohKkZ9RqOaAFNxWAz06VrLkv0apxH39AaFfPw+Mpsr495JuY7fgZf83rJT7X3BefjdeftfaPY2hbDbbkMVCBHGT5nZUuq3mHFzD7PzgScf335OcuKln9yFHm3+7TXK95HX61w2QKfSrYtp18YoFznPTCMs+HfnU+S105dst8jBf0ftrYhrp4Jb8kolFIkbZT/vn2gFU0AXKUGOGp70WwoVH9zE6Zp+mjiWPQEC77JEpt2wNswf37JihPQMJdcOiZLtFJe/y6Do9m098PsbgsN9G77Mu8id4QjlKwCwQ7wq361uyY/It4B9XA4r9heiaPSqDXbtCTNYcK3jCHXW0EmR1vKESbOYRmeo8lzZYa9dP8/EJFtGZ8v12KQcvHJZtdPNgIL3c64+jv5MHw3fBjo9p+OqvWIO3+MEgQ9NBx2BdWWEO9/BJ8VOJlBfuJsf/4O+J4dsbO86wyPcJP/hRDoBMRBFjN4UOVIb1u6hpN5G5AWPPUgIHjMuex7+A+rSvClOvajeMB5FN1EN2ogKX1C0L/nOGEBTKZOvz+zRWi1Uri7aopP5bh4QuK78o5hY27ignwLh93T/jafmFy2W8JlRfVNwu/b4a7iCYJMDE26HlUm9c2qcz4qA5moh8441XJH8Td0EPRXgHb4d2ocUjmydJbrh4xF3WdXDB2a/bc4gEjqYLdyMLccr7QePU3xFvC31knyu0UBDo743gDtbW3euFFy6wIdt8jRugsmKrnbGK+H3JZyPkDE34SYXPYMET7/4IxXJKc5V5cTjVoRMdC0VZoB7ms9PAD/BF0O4AKmLsG74Ce+SR5maZ4/pAcKyQ7WZdu2tYvEZOhwnG40/BbZLYdhSFW2n/PAztsT91A/+J5z/e0GxgkHkgQIdfciO4tQW8NxE/M2ExuU8yyvubJPtp2seA6CSrG6LTYISVCGAu6yjsDOyk92fIEvPmO8bCQfz92hgZNR2l6vgnjQspEUcMuW0hAyVgLRYNr9cRNUln1JhWzhHeur22LctvrEqCwqo001p6C3RxnEVQyXDNhQIbtijeUlzYB4CTIJWIbxZFG9pNVX/US87EKJw8J4G8Jdz7zgJQ3Wkogc+CcdQXmKt2zX78/uNGFszBa78ktomArT7YRpS2xjfI6A91ZmTjnUHbVRswxD5cHpfQZluE/pXCTuh1+8vjHgAxJ//UL8j+FjrKgXwNtOZ2rDn95ZKvz/+14ZYlTmN1xYToItVDKdLgq3sGGZns9IKllSabsMAPFc+OIIRrzFUuc5d5j9oESs3F+Ke8Ki3NNB4f7vqkcfyiGUvxaLJOwIOJ9YolxD7vEr6abC+sPTAs5tWeZzEvta08kBDw74xtqs+1X3COmqldP+7pIWPdNGtoBnZ3+nqt6okI+b8dwQCoxHKgNjpxGYtTsiJ8XLABpwlE+2IBnyUh5Bnukloj6M0wwzxYsmhFnyOHpY004A1q0a+CvMkbV3FiArfdle1/v1XGQKDyzNJZDKUtxmCH67j/ZhUwjD2eU4WMEKdyI8S5DXUqlsXzUObs51dUZJik0UAz6cXnq6bU9f3vn2KTIw0iTKJr8jZiHYzQWftEISXb0FskF89XsNzvwenxs4yLYNoY5nRjykURed2Y0XwMZHkK9PMID/dMSptd5pGo6QJmfwfHFxmXFUBZj7pYDnRkD8ESGaTmxo7IrEy0B7WsotVh2tKzBnarZkGJrhLoZ/gCZglwgMLlpz5jpt9m7FuVtic/iegmYsuETL4UAmYN3UXgtkzeJvgW56KlqO1ei4YUGA2Afn5zQt6bud5InfCfhkSeUe/nOGevLOWvYbmKYGWgDkyqg/taTrPqpStx7T9F0vwMq8Z/t5StY2sC7DjKyALusBdQQvlk+8/yTY+NHCjHKvMKsVP1dOMd1EUdS0JgA45JpHh+ShHbE668XQ8PD+t1fSFEbzB37cMn3YwqbbyhYqWhw51568F+bb0LrjamIR3foZ/l1UM66yVRhzDWf61xP4QkASRRVQutJEGMOX19LFQNv3viaB0PJXlty9MQxID62ufPOiLzq2frNevZWr0tAgxpIgQwAqdjXhwIu1lV8C/sSh1bqYNIeUNAzvbckxYlPTqCqOZm2CSBdRA6QvS4MGFjIJ13zuydLAAEx//OH0e/UqzlMGeMHd1FezQzS/7sodgYiHRoS1eVRJIHAjWGUb55lx791zBqHoNC237MTfZrrrMgmXQuoTa35v3zx9SR9TJ5PxXwh/7bw3jtu6BGr5ZR8X8JWQaKOlYHgAjTD7oJbz7nlxUxSQ5iuzG12HU38wXLiRInRRgKtKg1tXr4acEW5egz3EMRjJzUvBsPyXeSrgZBNMm8mSF9GwbXBGBO39kfDA0DMtpnbRu14MMcqMnf6nAZic6ihiuEA5lOay498/MaQBuL0V8/X7JSJZWkYF6eCf13IrYbB67CRcz8b32758+akvpmWlztyI54pAYb+K1doeRTmqfPwU4M/tPZjSZNn/ybFvdqzn5kVt95o3x3VeV+MyinF8YAfy1X/y5+tW9nSSbUFqZb1Jy9iXviYB6LBoEtEYldHfCARKh7V+KCobWdc6qOF1Ck4GlJ0lcdq07/04Cc7XlTigDs00b2cEo2vHZPEpsmuSRa/FUSW0G/uMdFfzu3Fi0jJwK08dsnRGRaLgfatcVpEjqjJolELsUQSU+TrfT69iR0TnFo+xwgZvG8NlCF4KtA3JBiNQ7X03AlEgyrROap7VHlVoxbod1ha46eyIuWWElBSXpVetmgX+2WuBHcyW/0iaq9fIVh3riFGDV+bP9iSJ0vUsU7cDwbHLq0vYx7OXQdByTAv/Mv87UNvmNEGMZYfrgtEN4kLn0Dkrri0ZCqQ62b+MH1IPrkrAg26stPoTWkuvaIhr2rtFgDEZnL4NqdtL3K1ITR87JaDUeOTeupJmhbi60NiXrTwX8bqk8GpUeF2Icp3BZaV2UYfIcguhAXYdlbM9Dob/UaZ8vRHq2xmjZsN/CiU7FKSqz2AfT1TUC4+hyktEVI963VPNqSZY82ll7kFe1mJ+x2jKD0H6evlZ8ddnj8dclTivSqsN5XDKew2SivCHiv3YlRB9gjKaiXqM3Qxm0frrhVspXDJOtegB2UvkmSaYcz8+GllVj73Vg8KL+wLn95yPYu6HRhr9koqMUdJ4MS4qmRIZtVOJHPUPSS8+blbtmHZQGr4ZqW8ZwSgnxeUdxbzFQM1PPCBCiu0XTr0mWoVHpmOEwTKgCwHnNC1I/qjEcgINrkuUeX0v09Kq9fMD/QVTQlI8ZIo/gnZ5vmC8x3rJLhz0n3SGLHkx2EMvZmUUAfbsy8hD6WdWkn9xWKcersRK4H9RIiOkN1cUoHS9TuLVWoUe8tBDqEryyOd2RuYmt49X3eRHcXHAAtwvhc0NhC4DNumDaqNDHXQF7cG1WB86fbdV/UtwmsWGm4TYIkPC9G/1hbJzNo6mYhjWElph9gfg0esNXowjRmaT4zg5x3lPZD73vgk0Cdi96kTBodyfP+11Ra9h+8WsDVZ04+24ASY5BVWQzq/mNHi8Myy472hFH1qDm9wN44ROfV1c04R62YhGyxw6Dm6eqpeFu2m6P0WfDetkRcDYT/zPmpPwNjRnrAmwhWNPyFP4xCxpuIegMesgO7af92mLtjYMQx/qoEoMEtuv12QtzhvFVU0OxY2nPM42ggzabuKDut7zW1UcHs+txAgvG/KlwBvGjFOadG9htmwHRX2pSfXf+DU5DGA4Eem5HIYrjCZxuFVxIiRKTeSilgwWo07ZDZxECa8x7jdRqulF95sW8yODPirrwkUfk/EwXcpFi6Mu4TK5LaQt+P1y4/jomKXgoAHy8lEpr021TFwux3LO2Rv8VTCTyCHIelSCcm1CCfQYxK8tJlgTnZMr3hxb5R97OyY9NY9MUc5PGZtOOwHEnOLIJee835X/EFjJh7d5xb2dhA8l8xG2++WWiGAL5JUu3Z/W2gWJRSLA5LV3v5Qp2jw+3JPQ0UVNipFeHYE231AdAWC1h9KSxw2s4mRwkVKyessugEZGAqguhMh1pwy+CMPjAEYmP78sqw2fw1bKj20ryZYjXKMAlOWLqPVoI/zFz8BQZW4/LbK1SqlfTAgfFt8eCDIgAnuu8BJiehl6Vn0N0YkaR2p3yBSG+2MA7SQZKl3bOLF22+oUf3qlXcny8bqY8TPAHh92Mz6mCHOTmmNWDV8uOUVqIpTYIHfeVWBDAIQCugVHwwLjNqgCpurxbDfzo7wdGLxYaYxgl7lQPiHmFx91adGwRAON825PustjYIAVfBSVYHWVv1G0yHmMatvpUaglGdZ4UEymXaKunUIIitykkU0uk9lRGGTF7WEgQ6IGiwUQvOf10M75DvygsEw2yme2LuFqwMshYpSPorHR85QBgJvxSAg8+P9Y3nwbks10vyvFap58N6XnPCWuDHMxBgfA43gpvtj9BvWRrM2Ibr5pLOy2rnxpFGE2mJyv29ZAAJT0KXtdYvtuH/oPcBFkQPNBfeCRv3Y2R7z2pNJeVJ89fUu5hqRquolYLq1KYS0xmiav3IjTLNt+i24Pr+Qz++wWdTEm9Zc86cOWakj/jQbZX2Yb81vbENSs9iVXBWXZcoBzI5H8DCQ30+Upv1tsVXgq9ddzFgWD7j1fMpXE0VQLcrOuWeftlkXK7HG63V00WsbXPqidzF84jpGKhD0LoEuMD3kv3HRFKKQ0rsUZBjh+e4chul5ALHdEyL88tuabyMyERXKrkkSqap5dsLwbUBVSJDKuz1tNj8o7rldStnHW0sKN1P61b2nYD8V7ySbjj5hN9sTYkYaHUKXCvVrCikrwajdavj6JbDIEdx66oX0/wwykXMyEcRPf5RqB6UUac6P3MfBrCJdzgGaZiI/kOEySZRAtLkL1NaMTrdEmyX9yx42audMrtby4gp4hmyNehVUoqpoU54GyTbD+psdoFypbgguPRJ8OUGci1d+DRXpkZlWAHaACQEc1dNIfYJ6DTv0+2IGX8TAGqjhVHDFKhKbH2lcsOclXnlE7cCPtAulnYqV8Kadmber6NXSmIzv8oap9uybEJagYyMjeiVbxez3FqBhn8dhtWQqCAC7FMBv1+UUJ6BM/JdAXpx/TZY0Ca3cZmdkyN1c+7OV08K9MuFEPRjB2Lc6pIkTh8OKY+eJ/+Iic88pvtSno5bA6QDjPiO3Ho8sKoELPa2oGZSqlLrip+YvUBeYrEU4PqFanCW6olgJzkJLtcU/O0t5DzaHNnT6IJcSWP4UNQjnx2D7knsGAwYifHXCHp0peKrJHFfOH1ye/SBcjCiXWKINITOeJHPqvkSheZQWMaGgHeuC5IYKJmpikNMEPWASwZ6rBK/jfaUPNRvYVyfNxb/BVGp4LkI3PoXc0UFN6rujUdQyNhWcNeQG9HXgEq2iQru6+oVJAwaVF5E0b3PsZHEDhvQ0Bz2GzTwbxQhFwpF+vmQiYwcxTbtu+Pvy38p36W0FXc0kbjjOvQtBXupiXMRNEPXO+ZUMUIecfIFmt3zhDUUg9ZwvT3NNQYSKVu6k5olewR38ppMla+2QaZuLLp06eWE9vvNd0QoCoWYZyQfRLOlYOQO4Rl8HTFxOo0mKZq4wKKEUPPQZXr0O4Kp0sZ9INL24bQjbrDvbxq7EBUvqTBU2v9P/0yXE26JivSxWu4vG3wW39Vfa9/6nzNYv8X7ds8vT/qXj3FHvsekk7JAku1iDtl15KqfvwHy15bRE37UDtehIvT/z/MFYCbjn34agUlJvAGT8dHSxFy2kIb2xJyWvrfO1BNLNUhQc6CzWD4QtXIA3CL35S6n/kZvD1jUDjVq2V7aU731sAG6Vk/lRMcr/5NM+o7rvpg+BRBmHZ2llOXWNb4Kni3qDJ7417AZexHjZNlbC5NQocVWZCYGdcOxUg4dwzu+mPg52olbYHmGc49/HAgmp5IEG9eUpXHCk0b+kffFItFpi+eVBktbsnInVuwLGz/v5laypHpV+DFmXZ1xRw9nWfmID0uae8XNNQTEstAbsPU5vjfFPAHGUIlsdPV1yr+ZPShp7o7Bz8SJSFtbJh+AYk6XOKUCvKQ6sBYqYtOZq0gNs37sKnuqgzVC4nSh7MPJsewbCiZA46QLUsFqWYDnrfBHPqQ354b55rLp0ywws5faer7vqz0fnaq/Bzxh6s6KadpP4fDWBec/s3Xq7bqtzgjBB/Rlkysro+EQ8VnyrxAHSxZOIscSHfWGe/s/Iy5CL5kXxBR2iGkUX//SVP53PMsfjXIeEEFU1fn/c9PJM/gXp8UWKd52gAlwhJBgRItMU+yw46R1/f2bVXsUkpEvi/Jjel1bb4WPU0Yqd718cxYWEocrreAR2HsO3qO9Rn02b8xmo6yf2jzfWFeBlxuW12fG1Jurm++orwaNMBEn6PdPH//dcruaU2V+N41qPwuX4a4KyVMRLOfWNCawYZFtoaN3lEEOWPGc4eZIc9ygM+SqHxE7EJYPzORGw2ZmjUACd0R7ED2VAUvIgc34RK3/l44xtnYN+ZtolM8eMMPE/OC6vOW3RgBrju1dVJW0lFa3+Ql8fZlry3KdnBuSLQ4oHV6i9pdvyfLSJLLWhZ/JzSuvMHOZ8lxMqK3EJB+AovTlFJdHJKG/rSrOcDzf4UBTib2U9ozk8UIZADD7WTpxHwZXyY/WfbF7W+8gIpu7ZiVsXK8Ugzxo0NcmFnTWsBnTkL14W76300x0GCyh+Ay1zq1zkMEz+7wQebDiFwUV4g7GYr6i4pHj8Mc56Jl1NTwX16TW8jR93wJB3xjrzIsmW8P7Uqw7MNJzZFZ3/EG2OoErfIBrhK9HF9aNDETUk0hr7gFyX8Ed/cQOQl9jBWR7XHQg14Qc8hLBvZNh1EDM4pNeL1c1Muwl9IRr73EOwTL5UhK9kbmLn2dZNmocTC4aeWL9ZCoSVqlKB8RHISEhoQW43JuOZHVBcziUl84dW1UgDN2RkybaA6NoPtAB9mvs9Q8qW6lI0grql+EXkkt3nnbHBb5hYYJlMpdRmYD7sE6vUW7bSkXvvgwBhtq2+H32QxNoHobZXwEVHcoPfFFx3axM/Gn4qMdH0FFT7Bt/gp8iaL+p8ekAXBMl97lOvGb3Bh58JS8vZfpMzjSpkuaJsscYFf9wxAiVSqnMXwuDasYSf5WregeLwYUlFGnNFhN8m0c8m4Up5DZdRBhL2IPvdVPoa1+MRnDGS8i0o+mH9OoRl1C8xggu5O/n4OHzLaMvK9Ons+Ke57v6+CTFI2CD5SRZj9/etZJJL8uf/6lMU2QrTNcXagKP4nO3hsNnG9xQ0NMKnX4LjVZjQFZFarQOMMpS/caUHqK3uu4XlPLUC+vD4ZvJh3mZvWkd3V+X/i5y2mjsci+v8Ym4JY2S5YJ53fQ9pM7I+1zmGUBPaALH9cDQeGfag9jq7hLLv49VE58of5KfJI7B7wflmdKXUE79nuKhLSdEIAtXBrvX5+OKL/mEELEpk8mx26/R0Mhn04H+BLODd/EZmPElEcgakJBKHd1pcr808L4Wcs4bEOZaHPFZJfYVOVk+WmtSmid/jJoBpkg6Q4/7jMVKmHUlD9YJTAD5+U9RyqdTPOIKgnquUPxNzIDUXGR/e2hi+M78mq9eZBUpLmSrLm1BdiVZwdjE/MjvKbEWxY8Q8M5D3D6ETRVFQs/GNIBvQSkzEdSP/VIPKRdo/xa+7pEuOg9ltBtBjZhRBrdlPkl7qjZI2mPq8LS0nBDKnBeMxwQ+GfS/hyLMlDDYcjA5a8LiuMtch9pkqiZ5SAf3IRPrz8uyFAQGJzfR3eOyjyIgwe4Gft+fkZxVQ9Sc8GZVNDN9fTZkxkTT7rTdaoBcwb7L+buh0SYi1alLm46LU11jFtxXGF/4QFspnGbHuJX7BxL2hMGmpkdLu/OwwvLtuiYJK+mY1wcDkr/g4dfRSbLrNm7m/tnCB/kepR/t5HR/foB/YatI3cA4O0GpJTd8qmpIOvfLk9L0F7w/5hHnTEQtS4CNy4LmZIAAEhbU1A92xHt5s69mr03GrwFGvqZI1hDgDPC04ygaayll3DyN+tk7Hj47FgIgfbq7V1LzDN48upkQOL+T/JpEGbDndMD6E9AQlNkRercSq6NOq87m5DbPKJJy6YaMcrZWAAopvRjKUc3WJK4G+fah9nIYNEfyvA3grcmEbkr3vFBtw8cYC9x8JKNrpjTj68rjRRslGi4mJG9uSNjGmPz7gmfbGBJP4EqDM1iDj0COXNOgmiPmvE0WXqQVq667gI1Fx1Z/i8RFkRZYh9n12YI/5K16jkrIVnEBppOpdiU5AddJctzGm1OTwc12H9bTTHriR49D+Gh+B5iA59kd5e4JImC6G5eB/9lNeccXokC33J6nBJqiBqP2DKBBWDZUbyJDZnBZ1Bx1jHCCTV/eO8mCZ6vjrtb+6LhfagR04zaLPYp4nowWfH3ptC0L5eMd3WC3C+t/XaXnxevPO+MJYuQeKNxNaBPgCtgpnKWJe+GTaF5WkqFpve8Yjz1qWSMpd46lShsRQUBijqcoJ+yRhZn93lyKKdvqZph9pPAyu4J4TXCsFYRKcMNXr02kSXDiobvd2IY7AkyQkibGr/mKEnpkqpA1lUd6iIhfp9zXIuhFS2yRGObzyjP/VRhNb3eAjrO2j6HDZr4joYjHF/7cdqWR/2NYbL5PiyUir1w1P7pD1u7K2th5x9cDUl1UPTbjLHzES7PivshIV4QBaALfPWCA6zFVNzWfOguTlFcTZlkaVXvEcBUidDvy7HxzoR4YDM0G5xdTliqDHyVmxxeUKqOWBK/bQhPiN1nGc1vmwOEuEAMdAUL+Ck6qnAQ+wejWz3KHxtDO0aiKJVVGFxLLrxBNi6IzYcxHt+UtL85qkiGroBRfaaagiyXKf35+5AU+1zluBgR4XwWrvQ/+jfSRPIiXa9GGnJrqTs5e0XdcGH1zlQygLXVEwXxtX4TGzPmf5nN76pJyJv9Uz4JZUWUtDu8ObeUHMGEwETvYTLynO3xR5TTOAE9JHzYwlqVP0kT3nrSfY6UeZSTtwfzowUl9zTHTTE488mSiw0t1FqTDn2iC83vLD71COwHamoRWaHtwjJbOt1cd8zyizE57aAOvir+V0R+PhMJTjNAyu4MdcXyCj9TEv6pPCtQFpX2x4jtZtTGiniqEqw9AsrB7kJet4A3xxYP3fcg7zn2bllSauLJPwB5pi+8wTg43rqhrCPV5c1bQQnpbZ6lEfZ5YYHMJhIjy7oxbI5+t3pmQyf4V8JrJxIo+YPj/U5hdni+AX+5DxeqXKa9mjldGClZTX43ZIpO91akMQi58Cfu/B+3/8g66A2EMXEtWTBMDODYZspotLLKZQyxxTeW1UohJq4wFyk5abW96Bvqm89KVowGWnDrYQ9PFb3hZ1uYzkGA61LG/bBqVTAHslRQeXqKTKauX6bEvZds4WRrRYp/ADvOFYqefM6ZiPBEx9vEJu0vvQeGTK2seW1WmP78GoZQE+BM63rUWjZLCsQvlJL/0NnJMDtFhDBWfqPB22UIAquf4ojVgAjGcK0qY3WVo7uAPCO8EanwrCcP2Hbw2BGKWsmKhM/JrjZoW86S4FN72s/dUj8BFgDxNcgeAOZ3twj4VCuQRoLgLat4dIbT6fktR6tOhZKdF07YezuX9hW3vodpfBq6M805dIuxENX6zpkbPuZ1DkGSYskMeD7r0f/S6pzMk06ehyGGNW2se9m0FbpKiJ/weoiOimxhMhx/QbpEXVCPAd2ZaTeDlukNekUo3kGi2dItq3jrBwA6Hhf6ZMRhTsie01pAc9O4hQCewPgOSlp16iiFSzkmmEzsMGCVmrC2OaoMbhe1h/uR64TiTOcDYPxxqRwNx5y8lABHhQmImAbjS9YSKABksKE6NK8gx1mS6sL9HEeBCimtMwmDo/1u7xqiw3TyM6l+hXTUm9cAvrq3UxGxgvOmOmz7D97yBLxHq+gAaMZNph3/5DT8aJWopvudq0VkSkkyPEKhM5Xf5TL2ne4kTqhhh3HtdUBjWCWShzXHO63mm5vO8yyC9gYXtWpQgczQVujzdGWgT0AvDv4KSzcFgpwNdpjt7ppML6M9cbBi9RbgclDRF46KqPu2GU+QugtCT/QRyjh3gH7brWv07jNRFTUUs2QK/vLwTNbCbSSy+nyJKwzq5wkcehC2xnlpwThJNAH30+L7+IKoFwRi0XkjIap0otKf13PL/SCysXntfsOLV85E1pR6JttSOqpogriyVjLUG6ZUcqUNXziZqNur6FCqdfeTe6hUb2q8z47EaukXhAg4jOeRZN/6Je1gAZTIMhaKu0ylCmlb4ZNS12Kf2LeK9S7Z+2NtUErl80e3pefnl47ofaJHDbzT6wf/ifhSBb1f98n0hYAfjpZ5U6t5qlYk7Kiy9trreq0u4jzfeUIP1aI6Aj9CFFwLujZu29dpo61wVnU7jF8mXqFjiXHao3LEkN4xfkTIwSG4mtMR16pCedi826KVj673eppcV+kdzQl/Imw/ZqHr7B0yx4wpCznhdypd61gg+2545/gYQQYikyRjn5dbNQ0cdQFNo67bbNESaDunRSdYP5XQG2kDlDG9p6fxMQXbkfHRDa1RUTRN2PrnMhaoZs2XPRROkd212azoonNAl1dbZz7Lj9wMJzev/YjAo7gXBgkcp5GKMXQZW28Z5yyNbC855Mzq2//c4SuflKEKMYEctVbyOtWVYWs3PRgio3S1oqAPS0k+uGwjuhC+uH/11Hhb50SbV6x1uSBpBeuD7xp3VsNOoxPBRqciWSLmwcCgRBOaoWRBEPjO0RHlzvZ+rpbJfnLcSf0fWcegJZVpUC58fvXSy5hwlEW9SOWWxJsP+uBTw2NglFfYKWAcm3vUJH9bYudkvEi713Hj4QYijUDLI+1Xt1VWbI/1J1P0CSMwlTNpCo4ThNULf/O3ZL9DuXfhkn6GyAmg3y8YOK0ryNECdsxGe3St+gRjBROP5E+iQpFEZX3SE8+Efarn15UPwmDUdnwKXoG2qxmE73YwBG1ShtqyaPkgXlw7s+zjmsumKh65EehUI69QTBadJo6G9FwgiPrAkbeSxbuMp2G7Hi5fUMOpXhgM2E3Y0EIB4NIhdgIoUXBvKoBcrldl4nXOyF6xN/st2RYCT0sk2UnvTKPaznKNik0rL8s6+sCINdr2iQ/594t6c9PsUy+DXdfOxnl2XetfZ+13E8oNppAJBh2DKEkH4arZWZakA1q5NM31ieYjighdJd7mxCGvszS8HQcAGaLi8riRDS7tKbYfggpU18yhIC6wnkI6pnBmYHEZSvdcnt1VFV/8co9qIqpW/WiJVY1q4i9ViP1Vm0uaMUf1D5BgY4Q4qTrA9kzhsbSRSOoypwVmgwER2bOqPlVmrVtGizZ5ctLq1uvaP7zbpp7euGHi62ww5hhORv91i+FPs8xYgOPEkflGezisVzEjgvpweulXJivJhUKXT+KcXYU79/GEvr4ab/SaZECxRenB//gCAuky8+GLVx7gqk8Skhu1jh1hpneaAQzczmbACtaFOHvL/VJZDmbAIG/LXzNZfTyRg+phPBowaBcypHrKRken6v5N/h/Bn00OGEj6cBFxweCXpuxFDUXqK7xJbUEQSs9Pvg8gZm7ZILCZ4nlovAmkv65pW8NkYUvSWb4Quegn7OvmeadWMowp5yk6jtPhg3oiYp1PpETqtrVWPco69a/sbjPO6WaD/1TVrFMkAh0ZU6s2dfmHNzCxkgTFNRP8q2IuwKILRHl9UnP8IN2Txi1PBLOi4KiShJHSxrJVmj/Ozv/ym6e7wzkzVfQnzY62uXmaiUx2jZJJe1bHloLsmRcdQVD+FXFAYDtyUOW/KeZCE25SEa58QJH0UscbvGmrnbtHo6tJkNP7q9k40IjAakG6Kp/94Vizr05xtUo7ReoW3owRBfru60UvGodQ9HWfkDjmWCOOZL03soqPZiV2GPE/SMg6DMKfxI5cHEyAUec9lNwQYuS9MvUy8WDcDlSq6pHn0qAmnUgVnsylIw7wRpOS88Z6yYWsz3FD716ByP+axCuYmOdUJCJf3cdLJ4u927z2XuEtHv4AXUuXT7aw2gZsyNkYUPGTlawH+FLCs6Clro2tdP3tbfp0/LpewFjPtakx8LlulFzf7XYpI+Vd8dSWImoON9bZwFx+dE1qzr+LQyofUtO2J1rqOfFmVK4XQc5+ms/DnNaEt3/a/4/djGmqz00tfyHF1zEFzYlO9KGpQ4FULCybumE7KdVgL6H5+JXk9CKeQEnXC4pTYojFIID4qhiRMAFVzP7AQzgXf3JB7rufPXrxud8R/0dHNE3h8ofAWePTdc7x8Ut0afb2Q44x0pgYzVeU4tbUE/RoBa6VBcZUhwYvJXI7Ymm4dXvjDw9jv7dSzAaFEeQH8ZM5k0sfuu6vGuPDMGqyqS41lY5O9roqHVSHMyAPTjosbw4M4QIKM8a/SkceCitnA1rxQaqIRPRqTqlIrBV3kJM2XSZS7tXQrBVzVqEW0f4ZL2Tnj5Ar/5iqOw8tVBxTcce/gmNviwuXS6QRR3tI+2J+OiM0yTlugzS1HscAgB5VKbIWWuM5QJWmQvQGV0J0HSsWYYgkoj9rDM79oO0I/oJyEZ2G6mHZqrPLXP1YoFkFn8/LmOjbQC47MfhOaWGXAB7HEj5eVOmGz12bejq1kP09rLS3MGiV6d/U0k3FZp88Zb9XuM2JOMZJ2+Tt0t2SwEUYThd2ArOBbeNwvhhE5WagUeEU7dJstKoDFl+5QnBImWCoSKHglqRO5Js6q9wToV6AuDFRR2oRhHi2BwTyKdxxx2rLr15ILhNGqkKFcAAQj56a76a1teBRmru5uFqGR/snXysBBHhHOwImxF+P71lyt6nvGOGnVhuCf1Y3ruz8tGFaGl8CLND2sAZa5u7A8RxdgvA1HBKy3R8zZLPmrwQxZl+fY5kt6BPq4FsoZQERGWL3NK4KBwcjPKRZ+tMM6Yw9QZDRVHowFqd/t/dhilu46AwG8gcMe5GwSSF43gV0/GjYcfFVw1bgdDHavEmaZvEt6GBoXxOiBdob5HSQxCfXD7w5K8/03bPO+8iHsBdI4/xb7t+C4PdzSTBkJ1KL/PHsHV6RuIuT1pHk8F1obKabLkTALJiqS6XBlc71AA3D2bQvVQRlKXqtOjpVdH/bm4HPO6s0SdiIX9DFBCffy2lv0XNOWKOb+E93PRAgsm0EBSegiIty96SyIy/lIVTrCsEn3XxmBIswPeU5bAD/xBcAq9TD0xmJr5N3krH2esstBr4C3uiGgAAAOOAAASINBmm1J4Q8mUwURPDf//qeEAAADAAAE+ENBveYt0W5iod6UjT4INIysEDwnLP4ycXKcxWhAxBTzAfJbI0TpRm8RM57qckyJPwJSdoIsLhDI7xfXKQjoaaDixCMZi1pj4+1ifNI/gqRbgawuV3q3wtnboMHlYvq0on6/W4qFoQbtosyOmuZMPVMpo7NJ/0ZqItZpsTCToYcWONzjonEl/9N4xCgIEyfXNpIPMkOTU+BQ4JRfgf7l81cJBHYEbz1Mg3XaOkRTMUG/Ev1J2W5kiX5PkXRJqVRDNcTRXzO/ypCwREAxAbnGMdiiK+Fl8IMrEpJMiDfMdLjvsODO0SMU0dABNlaYPwdE7wLRwUhRmmJqu5wHjRda11IEic2JPT6eX9dQEqNY67K/QMXGAwxVgJ5wbuwmxMJMdLvet+Bvq2abcQHsJwU5UUub/DPJg17eLVjpfolQa9xtmnAT+gMw1PBRWokJdx0zX5fPg41Pd3Md0v536noyaBsq9A8IMR1insAk5WJSpIdd1Xl54mVM0xDnjAGBJIdcNT9D37NxVFJ4KSfJ73i4HhT/4I3n65QqUL0AunWsDfg90EYa5/iZuZ2oFU7PNXuT0PpHsGY7Jo3VdS6P4ijUByQdFnTQ/svJvZ1f2a62k0tg1ppm8xpHzuemP6GTPWg5GyXbARQBEueeer4VfmiWl6XI79FJUAc+a4X2DyOo9issJc0UVT5VcirdjX8we3anzMD3M5jiP5l/ZP9FE3Tjf6GxwFUaQlRsLtEaDoxz4rH/eA29Oj4Z/yhFiXt3pLzuI0UVKKBqCNb/AHWuJPd3joib4XSmLG90u8N7q5cBpXpgYtAc2MYyVsppYdktJJD4dmYoBl1wb7T2q5Zed9vz6xZUnIxJOCdVAsWrrJaiosat/5MLxZgz5WjRTdJNX4trwkhwEbBtLB8hGXSCRNyHA/eTcBjVRsE2my+eo0gAl5neUqXpUyupKOr0HN9HnrNNPvyyVa0I8FMh4skgyPwDw+2iRGU6bChVI3vRWrR0ENpWxYmyGlnqr0nSrMZCkpFF6YyGR9Pz+q1uIAsbYiPQTcd3wP8eYwYn9YVZ/RXXz5GXtkfoEC4kvI9UlZ5jiPNkjP1+W/E06QIFQAVFS69I6uU3qgDKJGBnqMu0HZBMTHIe88HRM4z0HaJpJtejVUJsPFcvhcDe99b3VPeG4E/Zg6hvya7NyzonFq8V6Ma/fa5pX3/42FPvr+uCiVdbsrAzIafjvCH9kHCV/GZkilJ0eNnsSJ0AhrwjSacfNsxIuRv0HjOIzR7FOr7xvHkrznyqI3VAxSIaIobbMImRDKTqsw2b0+66MqsjWAOFhB0MRbN9+0j4tqVzXAAFu9wcQRacftorMmB2IPVtFCVfR0PR0ZRtRZbR4LnoeVusO6IHLXy2tU0btD7acpC45I4mazDSlG1AVrO41p6seIHM2Qe+6OGWSnS6w+B/yTcpl638HBxefZ1CGuEXFyZcNmanW8u1OBF3ZpTtv6yCttwfCB+pY9MBmSym6dlYC+hsXupH2q4JX7obJnE5tsXFzsg4UXdP0fqhvXxYoBfnFygpRP8c0Qmx9BgBDOA2d0sJMn4jTt9598QwXKTg18Ykh3PRS4KfRuCr/hCMQ2u2RBfotImUbv9nLlr3w051jLQ2JE7SfHPSXnK9Do/u9VS+MQzURicKySi/bHLGyGDj44MCcqlgGsMpcQorCAytM/EehKDKps6DAdyxin3ikXdQhac0sqXA8/XpjsyWbZ+DimdMslmN9fdgM2npJJKOUWRnbzdB+3N8K8TX5mdgn0/UFp7+vqzxyryQFF7NiB2MwKAVKNaYSw+Z20D++mT22JDYGBzG6vGtBb0/1FeW78BKWrCTTdAzX/qU/BqNu4Dy/gMZrRxTTlCxpV6DPwproZjl7SXTO+9W3MhUQ8uZVuEeai2A8f+8DS1G9vm6LkV3ykyFjpk+kBOfrEd7Pd82InRRIxrdlAenBW6HVUD9gBWCwwG/ZfiXj7bW+6xYlpNd43sF++gfaaEPQiwFo1N+C1fdBFovGhtvlwQQPVEFlZfm3RzuREHw2E8bk7UfXlrsOMsRy3BRekSloaDHXcwdIHQgNSyMyZwsYr3FVAay0qqWZws/gVHCEJxEFQ4tMU/nMy/oTDTuCTFH3ZSDRq27om7CEoaxLBqoSglVF4jUUqIV/zy5hPDoWdnoeG8jea9NpIzAbVRC0HKw7mOKzSaENn2wjA+otHs5YcwshnYoww/DvwdF5PVA/mck/p2kVaFr6s8KagPcOP6/s0noRMF4qfstGCTKc+Nxuuh9agu2LgXllH29Fa8q9YNYYzujDQfwRSe0y7QSMjv+avmLh0ZSLtUWdA90gdu84Y0d24vZrjbEnovIruB2BxO6G+Lv3KOzSLv1UFMlIL6XUZM25QV3FObzKFQ93WVrvLOkR5eQBcuJDiGafzQFQgO3uXlbmMggQTBBx6KQHeEMe8Tva23T794DLGCxIc/pjA7NJEgRae3rVaQ7r1z2lNzikMGQBryKHnz//V/Q4+ISk3GdCqAVHoasGg700XH5/o8MFjFZxXrwg/xJYl3+Czr4kYjD/38b9tjI86uAE/ZpbedtkDLTcv9wGdrizZaAi2m4gWA2wSxj6kHWudnpdpTFG2TIFgl1K3btP6iMOrP8p4CN4X600Yzwzo23MA8zRYHKRia4QWemglukOkogbJGpjiV9ff64qtOlHXM0bt+U/GKtmwJnsYIszz5G0UA61oSpEYNhWOCnWBbxjYo9UVvAOwer2+2N/KV+/xN4w3z/tjJx0gQnMiPdf5TvSRTr8coN+ODXiWANeKA607sVPvfklQaUQP1vXu1ECSxpKP5DQ+ff2G3rWcf3JtdT4g2VbqHHDdwUjgdAcuBmMh0qVjJ9klOtlg50ExX+s5VMvU0Kpy0Cbue5fgVxqb8GFxjp2GWbl9vRFt5H7d9w0UbqQRVfPxr3JWrCR0Clz+NFI+/3grMM/8fyozb5nId8qetAvUVonGgTPc9hr5vm5P7ICrG9SoXBWZSd9CmbrzAoe23xIOkULPKGrQgo+GEydxsGZkYmJ+FLVzoR9ZsiOwE0I53Ek2JeN8bU5IsnHC6Q97q/6G6NKSBQBAnbK/sWm3SloAszIRg7pCOlgqUzarn5ugp6xpLo8Aqr1JM//UGP8AMZTP7ECWmVIRlJPLF6wUk3QPS/kCXv23bTH+QzPTNmfD1laOkEMfwWImabh5LeE5zZ1pdKihl1PUBB6f/7y6215Qg3nafL8lbTm9j+zmRBowzSPKH+1pLpFTy5XGaeHuObv51XhKAbT4imrj3weNyqCrJeFWDxEX+1A38FE2Zxyu2Z7sje5OZwhJT39UJEjjFOONq9dHRNbG2HDC3z3HzrRqmxzmI1NKx5YAHwQohsMPCSxAZ9/tz63+vxN80gz3A+z2axhncjpcKR9rZY95WJDo3g65ipnLKLjwHlC4R4r9y77iwkqJlYg32CRdurxvv/zMXCFEGTYkio7UzhZgABGjQAuJpYABkXDwOyUafNvmyhXKv3ncnkKWLjp6m0CN7F+8dCY9tertqIF8jc6y+75NDlNafJz/RQrq5G5kO9Y8c3wp9yc2tfW6Nf3juPykf+1Vv7t67IKkB8BrL4T2f0EaNyb+oVj7pF36IDKx7W9WWKZrtAR7sZ5pMCKLSEc7N8e+LH/2qr1cgdQpTTfxKJ8UPWgXmpmK9CQOKwRqwZPMPsODJPeqvvC+dR0uaN19KCJntZD/whLRcM3w+SN+zywsY1eieaT2hRKNT1wjlIHKY4u2N0KPqRlb91AnQ4BNASVIki5f3X7GON4SyWNJSMlk4+wnmWT3+hQaxLE/HiA0jVUy4vpLFZ8Np88PW6yqsSj+pB6D01y3bwUBqHLzJA+cyyLTTuoXMKEV3jbVE1WNRmggaeEQxhNX1OLO9eQI9rv1rrglvTBPgEKHdO6qYj5tj/t+i9ajF1kMxibyUeNk0LOlOjj+6l8WmHkolnr+4zW4/tSM2v3/gKuxUvmoCMjnaln56j9JBGYDCfNhtScui8MvtjneKKZUauT9yrMPgBmjdfDKZP7D2Yhl7spHL9H0C9Hhydu+ZkdnZLGeqD/zNr88aY1IR40gFg0YKbxs+sNy/QamFG5POct9y52JLAHzsGK8K3T90ORhE3Ks/0fqkwCgg8tlmTn1Cw431h9HCsBY3F1AC0xsNGEe/LTvxhnhMuVZ3uNP307D7qfK9DjKhTVilnfRgk9N2eHcg8Y/hQMkrExVWebJPy6CtujvDbXYHanHvtex/OzHAAIZp3AcmNm3njVTT1u4UcES5i74eMJ+gE3n6N6k0gaeBZW1RugPUjcCTyTb1MipjvGka//7xek58UDs4vsj11zol7KdSFxjTnRRt7+08hAlYXdQP3ERP8zU/W9BTTio047rXRAoj32I45XXlNADcvahFigSlH+iC/hCxKOJEODVoP7oEocbdf/47JQ1qhowBdb5iwGqNfxi+MZTUaeqw0qRm6GCyXaOIidD7IQC2N+7V7nsj9rs9OkeBmju2bcSajRgqtArgy+bwxK1p/39oNG4FB3St8NVXaPIAcXLhlFpN7DEAZXD9Wfm/4E3fC96o5m3N6xv1E6b36t7HOy+vcl30hq8C7DeB6L72/elFzuX/AJY6EAxEV18ZHoAAWc2bzP7StHmJphR3Yw54rQEgzAk5QFfzsw6AalsDdiwe6A/vPVAUNOC7y/C1SbcRpYxDwF667oOTN90+SWQeSgBuBjKghNvTHxgvMDE1dMZJzgw7bCG8x0zwv2s92JouKYJHkGQZyGdrdf7ueam+uyyJ//eJskNwsJUBuMWmmej5el6WttxAh67EQfOMpdChFEeJQrVkMEnpRrzVc73hj5W0b4cFpYfcXyRQ7xsUxPHN0pYyuUnl7LSPaQzzmmNKbHf5vg/7mLM+SGojFL37YvBU4lXpu+kwsdI0zF+KstjmOfSgPA9uU3ztwEF61kwt+r0TTKmoURMA2RZeN/k/bk2n1G0d7TAGb4xiKqDh6IdRKR3ODuBWKBvVOSUSGpyWxtj63Sz/JLT482TXYi+plsgzbVGZasJ23O4a/hdF0KUyDlf3mQqSaaOD7BKF3y0mzmoUH0IAMzWCaXMznve1CFfrM4/xhRkaGeczZRf9i1nEWb6YGb5AbE/atmJEhybkd+X2Wjoihb+WOYi8yqRjx0GxKm3WGxh0DPuqmGOoeiE8Cuixu8XJIm2273pKMBXmruqY1aAu1y7IhAcFWlVGiimzf6cz+AqhwI2di+72AerdosovvJjhvA1lzKsGVPDDzt4ZIjs/mbJg0NYEp1IQpV9ltC+ED2/0q+piEAXYCE1rXeM0tkbtGU+5X5C/awkYwd4jVplM4KHL+ziZjO8zHabGBxOVK4QWidF5N98kmLUjqEwe6r/C6schk5ea1SrIoUFW1brahykl4UuI7pcC4KVzSqi5AVPgrNfSvtSFKumFUfUZXZrHxNR4ib1daJX7vpmUkqbitbFBglSz3NmzXWJa8yMArDUsfEUyANUOM2WMmX88J0k9hcWcTiRgl2noNlWu1HzRAwr96l1Un4cLxc/F7ug6qYiDz4zNLG8rH8UjP2euU0axJgsGwbkQuuYTrTSiZqF7bcUKMsIUSnNfQzbf9qeWyiZq2d6HY3O9+9dYYZrE5aw369+fqslWQtegxpeGFLfmWO+uP4LyaBOFqkzvXnWLmMotg/2KhLiLyY2h6VE0WTu3KcMFIuFtm1qh4Q4FEm5f0+jLwXmO6aaHF2d5lufeQSm9DZNGCy+Baiz0ZbKOXoBQFIy5mjX8Uo5po/0ry63JnNJx2j+aT6hKIAOlLExS7XB9uxoD0v75Ifo6NsA0eDp0hM1UIBQp8N9gbZWH0c2c5JFSOGGeMArbKSLphEK67+Cu7LIEdBp2uzc1rZrQFyQ73pgskZaeINXkZh90TdQdNAveGX3CAIbSm47R/qBDyK+TdSkO4XNFoWJo1IIVytfMLYXhKdKR0MPqmIaNIBaO19muJG3+6jbq2FuVRvBrMgGhyTrOgxhROYo/bjj6dZb/bqMNM6iOmyVDe9lk6+kj38oXFm9+INWsyusI+MNxo0HmItokUHoWRIH26/ffT3dTf0z6OC7MTNNWsTZ8w+/5bmoko9e0QTugEJeRTzlbjcNq2JUZxZ/NjdK43q2HyjxZxcAqcSqA+kgl1asszBQaBPee7eP9jYd0gnrY07+O6AOlvmS4rSPzZJyIlnsfAYDkIZPNn6B21/v0C0Cpa1utpmIw2cqvjKD6ANgkW0+N5SDNVYda0d3VhGtS/q05YeS4zobCuBLNnhZcj4IHyFb0zb2aL9VbL0pHDG0p7ORutk8xELFHgb4b9nQxsUnBD8KYL3Na/+KE19RbxfGGsxfy9ZQKuJ0MXqPkYBKWlET9FU+FM1JFIMYZqkYjbZsc0vqbpGSiopmy6CVLshxMct+WONiO5VjhkCiNfjdg5oXi4HnMNpDyvbSV9uPpB9ck8SOAMASX4ra+ex4uWF2wzghmMcwCAf0bPyC0OHTVQpfFlsV748jh+9YtexJHdjtKCWvVGjgbOK5HbGfhcgQCz2uhSi5xvpJvnhiiLk91ROBpoX2UTWSbtQdfMa7XC/36XLyCT627CSqzEP1vUntNfwo345MxPGWbHgZ4/NJab3kAtEh58Sv6mpG/XCepl1yPCyY0fz6CN+g3mHgZUk7+4Ej6U6y/r8WmLIy0TelmDOSYFsBPrIFqR9ZUeW4567s34fP9Dy4fwDDhWUbToTn/PsLQQrRyhy1wCO2p1TGGH8du9RMqJ4W+KDL1VmCsyDc6QGP+9ffydEM4NJgsHtOazseE6jn0smgGjiM34AqpY5Ti57uaUuXN/Gg0SQteQs7ZitOl8F/7J7dILr9v++EbUqvjPACa5oqwGvkbfdwKVrlzH1FtOl/kXsWUXVC0JAGhG7qepdOeOr/sBHiqj2GoGEAt+o3vNNGMBDRIb2jKS2xHL5iCBb1z3z9/UjpJCZp1v6N5m/dqpOUEBcZLziOPIsSZqt9i20/orMF5JuAZny4mCPoEZ+4KcU6SDQW49kxcIJCV8AzJzkBjzsZkOBG9i1xntYTAfHXC11tw3LN8o5WalttIoq+YYr8XJcmSwO+T1cGFXAOf9Nu4OSWWY43K64Jk4OBNsJ/IgqDpqAOjJKYQPLbdGEjXR+qXqF4budKFy7G5QaT0iogOs4IOuuYp/wPA/2fezmm73T7SpgOWQK5lwp1QAYeL0ePdlfQkJ5r7EXpvtpcQb53+Cq9klHUpiFsA9phnSBdYYCpBesGUa52z8PRDJCIgX+44j83BkC9e5b1XW8OgOZM1xw0UqMaXe17tqsdmxxPv6y/d1rGBiTRbXlWhVene4x+FKVriZh7D4S/NtcnxIaW7iq9kPnTh2MJtgxav59B0PvrskfnkTOU9E4BPjCbnV+J85XCUptY8CmAEBCA3Kanjs2Dn0Ftn7M64ayJOouq923bLU/6lwWbkfJSPYpvIy++EDvuR0R/7qHBT3uRTVOwrmRMkUlKFka45ERJJUpV/py8xFvn3ZPRdpfND8IFBJkkI8CUKED/iXNHNN4go4xqvlUk1Wj+6HCzh7INsOmAT7V7FHRQPmaddFMAE/JBKtVHMppf+H50SER9+woJ3pyezvXDsUmrVsqd1hqi7ewQvKlWyCjHdpMNk3aa+blSiG+4n8Zpwnadffy9m9AvRM0nMmPBgN9KjfnDkOF5Z4etWLcPu9qZmIPR6IT2YYbq2/QhJVVrUZc4T3TlO+1P1PvKCxg7eBtT7NCBPCr54Pienw+rLeYzmwnfRYRcim0q63bq1sY7STao++KtmURKZaDe/DC9uWi9PfhLZGGXZZgxFoasf3sCzarDq/jyNqbT9QZCY0oCfmCtnYc3qq/uKV5nUdgjNj96mGg3F+21KVjTLIPSkRZDp3iKv9ULCFS5O2V5QlWSUZtwNoUKBaz4i5FiF/HfXkZW2dTaNnwpz+KDsRYra1QhWG4miSdT/1Qnw2bSkzwL/SPfQrURUvqsIZPROCSYS4xKej5e2/9gU3d8oZ91SdinyTXMmLmG5qfJz0abmvOMNm05iGMA4Yn/kZXncjQlwWtftStj4mJ1qnmGlZmQsK1Yf27fDfqumpKhpL9xuweeG1PdUsYoDM6bUh5WFtRRvuEUtEEZiEP1VpsTLhkJXL9IQu24Y6VdsbyIKSzUbuOvgZs7cWiDfNrR6Y+O3IySKZiwqI8r7vdWvQf6g3eIe//QjwZgcZX/eFRWaqMWDXqzJiEyGn/cTm9iKQEaHP+03lznRJjfWz72/7o8iLR7w07lGnJY6M0+YVn3rp6xAn881R2pDT0evWqZVtWspxzBEQqsYRDYiMK61abJwzTcWqY+uKKnQrwyVFSdesVpu9OPABWYZ/JTnFgJpAFlRCfXYf+vv0Lnr/44iC2GCPi7w0wBLvnWFbQ74FNWye3FbZn0xzxCJ8bBUU8uX+DKVFiDSDeIkFc6rKEuvFGmjuINawnYlzhAZO+F61QXhVgKtps4jMYy2wSJV9g6VB0OkrgHzvon9s4QYZFAW38KV90d/UOA5bwY5EczEAPB7iATjv1M6D5G3f7Y35GxmUKvNIMSahtu/kNuJrNHf7iP1mjr4cslB4RqaAwhthGyP46QfMLLuXGY/I+ek74spjhw4Z84GKO221feXJ/WdMxEiljS6d8pG2zFJlwPdfZjqKmabmrREHhkEJHTGvncEbvVAZwWO98+nYwOm9Rc1yZPQVv+aXL+VleYofP8PXXb1LaWk3I7wrghAgNb2dPMVBvrXr+Zx0vQz81EznTVw/uVt0AuN1NJvGGwVqU9wqtD1gYX9+V18ioZ4G7E7KvWekQy+I07irgDX7KuvZEorBDt5cDMvBg4Bv5ouug00edZMEx4v1hj8AL4eTZ1DKoAnBFMQziBHrVo5GVFYZ5WLtXMnGvhFPqMFePpkCEgIlNGQJN6rCH5nmGcIt83QbixXpgZkc+dEFTenZi6AC0DtWmkafZdwbD7OUOC3dJANMCJ7/9JZ3i/7Z1UTgslIFghXyGYbLINZIOJTQEdUFasol21u8Hqwz2/0Rb697y4CC+zquuOF5uNJ8gqGWbirOA7dyxmjhmpBWuF33HjEygzWsKLY/ndRYAWco7tn6Y4lsCU3fxN//WjXz0RfbDJ0CZNuKYC+qCK17yZB+g6NXJKJdJvCsiI7MhvL38OtR925Kx0BG6JVvFAUj5zWcd20u26GjRgCqkAN4gfWO904DtLy120yaDxYxcalCqZd45iRXal5jjB43Mux7yn2Zsgh5wGidjC0IyPT5UOP5cLwx7wQ0roLU00otwf/xUJjnSHE/uRzYPOXsQQalpT386XzKorNlFbmujZNKC2OvfEg3DCFhwV/Cy2E+n8WcHwSOAOdR4IEyVtWVb6tfkm179NyJs+Y5p9Qbte+qCQm+AjM1B/5AU4FvADwNLaPwKmtuDObVs6AynkXNlLiamDSRRttfteCHBAOz5mJzhs/OMiLE1X0dJHPhIcaCC1CNOUT8sDfl8oui6nLG3snfXwOhgjGiK2NWwbWOMw0hbboLxQIhYhkOQuPSz058tlBilgoCRgHOY+/huOqUg74LVDxFClg0aI2hQBW+H4249vzw1VLmm7/grmlb1aJb4nas8x734dM15jtVIn/m129ildMtw37OB2yGJ5iiUNFOBht8zG+beIm4PRVZNuqyDlzWrBCpeCCCedjZh2vjdtBFX44OHdqIFXXQneW4Gtz4kbUO4h3CZmQ8DYaaafHDJ0qRJm/q3Z06ecQmXJ/7Bv4NJ8XDwzzBWDBP8xDNVK/4kjNgub2f8uqqT9IgLU/Wi3W4/t6WIstY7UJ3zaYVIh+jcTdHTZOeRw3nXfbCe7Jjhkxec489fZrTTSiHsovMnM/cRhr+Aj34HQRQfNQ/sdVbm/3jD/8/eVeAUIwGj/Wx9yHMTgrZ7ZBzzCljr78LbbEJ/iUDn8Zu9VD3JLU7IB4aSkN7lJGn+UROMwZV4i/tiUkK0VWo/DZao3OBEq8SzRtpXbtFi/GvwAgiztw9rpETiWYSzFRgJc16ZM7VZVw+QjI+xY89SXaXD/CIn97nc2VpAb/Kws79LsV1yIeovqkqlkyMjMCI8UoELS/yP3zx+2aV6a56mD6EyTpn+48BTS4kVVbp4qwbXQK/BaFfAVWqaU0JZpqO+zZBo8r4C59qsZzQsknKj0+1NnFon2hqcmgqk3MLV03jk3lBvZmLL8wEfEpykHlMZWDcFg1AtI5gALMM7mMAb8mA+vlaLX4zv1ZtEOKMQzXrVGjr/yxvOaI44dMBzIYUzjKv4nJb4t0HiznNNxKPmyDxhwy23aWtSyAoeBbnNXLjds2oxXGD+k9XZL/AbsEJWI3W3ktM/MRdDNmKrXJUg5n4Nw8oIM4uZM8buUNvBzdfE+owO2Sp/Kl2ifCX4m0y8ol3cDZG9sXvYvHsi9QxyBxwgAAg04zvkox/9jlP1WgSxq2xwU/p0TK2DEiivwz5naT1dNUdN/ZpEphEWhOyE3XOK2ceMtuCxKtjkJ4O+N6cTOhMM5+y5pdH8KItb+Y2u0eGfyMi0dJCYdPGP3K3Leb67hal62bYgLw9HlW5gqGcS/IQKhADjuqzPpakgVBmDMuxyRrjB37taBnx4QzjKOqO7jGziUEsFIBaLMxBQc0OGbezR7uh3yLLnmPFaJp4BGVKAJM7NM00ercZO6vNJ7iMgkIa9f3tu+VB+BYQw6rVHDUSTGrBSfPg8r44puX59b26XZ+5bLwMhDroLsYZYJrg9xerNdPqliPoby1gabiaKX2kwS9QE46sXDpBMGhXuBCLFfaPKohYN+YWvpZ5e0bG4kGG+VUG7LvNU4diTgL64PMc68Qx/nSGV7/4AJ/UPLqVKxedQLny8Xii/NEkVJ7JNmvN9fXqimaIM494gRvtHEtFkqmOp2Cz/9e7sFMiKUN4vZMLWbQWeeMSEQO2XaBH20Vso75LAEhcI72GO//qjbiuVnLoQOTGVAmdKCTVfN7y51YcGnABAkMixt2P9fmdn70Nckovq2kjSlg8PbwfVgyrYxE/rxazpEHB3Hlrn5UeUo5Ec1cDr3CHgUyq2k5mjW9k18pOoTWhu1MIDbFdKgeNR9wzQ/ES0pjoBY/3uhM1DFE9eHy0yMsluh39C6iHzoglZhXuNTh/CGDa4P35Zt21e3VCkO9TQYznuu/DBPyGwlOmlk4Vm1gd2jdyYlIPc5WJuVzBqyCfC3aIIoi1iT10rkZz+eCgiE7PoDF841GtK70/rS7D8zr+lHWSTsP6QDd9kDL+HRyJCc1YI8twIpKy9RW0/M03zVBerlv7EthYpY1LSRzZH9YBEBO5Ju4X1fPvDUCdR01zJeF6pPUVvhZXdMZ2oDwDsG6+NS3FI5kEPvBKLfY+p21y80ljDx5RCUxelAex27V9tf8dlHjhWG0g/wV+GOMqRMcW/bueI+J7mJ5EfE/fsSMN3IVa8242l57CPASdd7cBLx6q7BbmY2rZ9WDBFIJZFGA8SxzrkpiTJA6mNfhmIUTSxy341DXBcCCOiWyat8SqE9X2OK3KusUqzceXPTox/t3eTCmfiaezzZ6ZtQeKjv3/uSe/HOa5Ggx0kt87AOCjF+5o4GpDfejalBrl/fW1eqTLoYD6XOCr1Cxw3WSu+bSeAjzO/+enXuIGFHMEzgw3QRjwhafxBFc8OKy7CgJyWPZeonAr4KTA9w+aR6scrKG/bKPkYVjI83YHWmNocg+uC6JE9NQocUuXwldvXYu1u2Z1QgVG2Ge7gu+3EFrODvhrKsn/dK1liF/VYWgT3VGn9DajRFN8wuWeHF7PYh7KbMoeCHTjLZDRatoT9Q/bJ73juQBvia837M407yd05ysIjhBdIe6XXvoPZ7l6Bw3NwvK5zJ5+dfGKpJRxoIY55oZx+HU8WlDweoZge3+e3SKWgFNJELeg4ombZRvLyzUi6zruQLT2+YqjxePALLObV+kGD2cl25GfJi/KyR93aeCn/10SJfkclb1KY4kFO1QfKqVhwzPU6NdX8DYLGDl/7cCT+PFophCC6yRe7IdM7IX1FHKdRJgjUlTBs8kL1vVcnkeKAhvhQyLTQuwzN4FDIexF5UzXYEUXV9m6/CGAe9H4adwfUOQVfaNzirL+V6S1Oaq2jFOyIKLksf6ECxY0IZS+/8RTz2QQSofCsCZxchBQP8BCJGHlahja8fjOx39dmUsZ1VEFvmpTAsPuMSnr9PSSyiLHS9/G9tKebl4FB89RQSkPrNyCWdteuuJNq0K/Rw5lM0/9AD8+KtM/4VjMPpJKf0ai1bKd5PYdcyKl6N+WEN65l1hjEkSsTiZoVxltyrsVWtsz/t97FUS1pMjXqlHHVRdppd4wbINEF0N3IXpYzJptKZOf8alWzZ04Hp5J0PKRyqWfJEcplzTVSrX9aJcQMXrHSbn5PTyi83mzA/6EAdWU0Dmgl7t6m+DaHT1TEHQZ2KqsFb0FULlMw9i0gujdgCRm4L9QKQRxMbMyw3FOMDRkbp4h0FwGhexIZ7oq/WYRfixeFkflj/JTOT69D1UIapZntZ/LGpwG7uV2GfKZp+Sf8CeAj1FuDMJ/vvswEnp8JmyZ8RDSm7GoJHflOQlc8vmMxvfSfSyOCnHif9o9lf+0NQzyOBTUKfH3nMnm8ooEfUIHc9SzBIw7/qdJodtvHG6MMyHoTbH71hZ6MP+RJlaJZLRv/hsPlmF9v2Jd6lYqpWAKMQwOR8Q21oQc+9ImZNsynxbIr17VX3uj4QYVBxN8AveQK5B2yqp0mpcE0ngC2V/fhVhmkDrDV/z118OBvXKK3/fKBKBNvXI0d/biY282V0rpY3AWQtOWJhpu6Tjv/iqZIwdQ6J3hVn/Ywzm3gAOSd/M7u8o6FwAmCBfKiRzhZ5K+4S4wJmXt5wOHSL6jP2xf4s/C05pfyejfn0J/mYBflVvqfqTaLDzpqtS/A277vpkAEpUjHlD2sfvSUaovcZA88dlysYciL8F5J3GsHRd6K2zuXHYIGeT6p0lz6AIyriCVbojWMu7WUFaT4mB9nxyXme6UEMHvrnYuaa4GCxqL71dN5tg9nEwKjfSdtHmcTVthxXEdeo+37wVijzevA522pmQBRtOzbTDlUO5Zo9bX8xz8QbAD3eKsm/Hy2ISMai7u4z26llL8kr6T5G8Fohmp2w6+t6ilTTcx3s8ZRpKx0WEMdw8mZQVSYf+y4xn02nVvTwxkE3Z82s0bRfIkgWDcSGhuf+rtVrArt3Kc5bPfV0ODqwP0GjodL7ohElE9U86+3wUHQFVq3nd1PUO1zKi+pTKpRB6sUtOHeoCoJaRXyQ/ogFmGqavjzZumTwRZRH0oFZGIwzXwGFv6H4CGR4tFrqxi2Ady/LQT+WhMrzMOudL7RXeBL0aG5NhBUF8qg5sv6mfGzlGX0z5C1px2FVuJzWGI8Zedz2jxhSzZZ5LAy/36pt9TGZU69p8/ztizwCoN1uVTEy90gs6AletDJdpWttEFPo+g2wDpAOZ2/Vzj+GhV8sTiz+yD/2dGDAhXRGtm70JJEphHrY0gC31DHeeVKKRZLx8XXtMwoolDr2qB3uGvmpYPrLtAZs77uZNxDhDY05zwLi3T7WL3Qpq0qFq+k2q02b150tNcIK+Yx8MQjTefySrJ0pVk+xn11gi6mLken+G1kQPeNpcq1rO3SA5g5OvR8jRj6qT/iN3oinjk4kB6a6Gns4ZQSbZzIzN0pvavrzOSVo0IgCaxK3iqwhmUpJj/9S2T2608mQyl4MybbrPn5ftk3peOqVI8nLR4ZIazGAIRf5x6CwUfQrunuWDJIvC/WH7vQCKXMYm1kjMJxB7B83IyTqKM6vcxMEozTOt4k0IW6P96w7Vg+TuVZ26t31leptIVNZUUb5wbKTNSmv6kmXjSE/8oZR2myW3NAG24FVG+mpeW3HAMQXd0Sce0GSYpZ7aFIomMq133Wcw4qZVZYZSgJ0Zrx/UO19ttnzuvhuklzdwVjb+vUwXPZ1ZzD5pz1hAY+rfGIkoti/y6x5y6eUxOCwlZP8eKST8YlkyNe/VgY55Xqr3LXkcjvnZX8eohPEWvCKkJ/AGcM1J1yNuOg/UeN5JI1uBc7av/ok46avBzHFRX8wcz9riMsAq62E2WcjAjzf8GuCBblUyDw1C6nH+XmVB1q4ojnVlkMZoProNewBaWQip3k9FCBC5z/9tOA3TPu4OnBnRarsaHVcJtur7dHb9oZCZa1Mp5V7Mowt9cDHOiKgJjkUcxBS2iBa5O/TTbbqvDK6odvMTFkwV4bVQRqmsKjw5BRZb+h8jvnyUEuVREosWr3TwH/FpK4jcyXhneDuIF1PufjI5aeNsGQ36wpRtVAjBbVvINyWldw/RQFbmItPfEMhaj0CGVA9nhi5nnjLPSnC1Fw9ZdbRehODPJVu9bxBLoxs1/tXYcIX/DYsXCmLqeLQI1/sujLL4ZURvH/o5wHI6oRTEPCznDERA7Os0ADVxBRwWdx+WwOF/w1cm1QLUGEchxq/5T9E3MhsMiOJNyEr5VH6LTLQ/FfoK1iIDZjaN3OxJn2D0kUf65pEkVln/GLOL08PUeWdmv/8es7zAfNmEqAbG/c4PBISD3rcpMtlOe2/q6vQlZc5eo4vkbgBgSxaAScAKRMAWmViamWjk9os7M9CnQZBgKZ8iqH7LXyzsRDPkRMVRaTfcVSBjVyraqWwkAugAPlum8utfkk7q0QMu+67RH5oiHAsFflLhg0OcRUEgdopfdGb06niYIUMMOCsObDqPjCoBjpKsWLztpq1hkQI/3U+iutesHirVwoi+ypbdBaKrnCdFpcaywje013+xzNQUzhwc34FcYVmpUstZEsp+FmDZML7KmaVqoVNloerteaN7AlYtndcWNZgB6przFzQdGsyNjA8eacLQm262hyDg+Jz/KsCfr+N6TwAAKStpt+65rV1UKFrwBeuwlivH5hjVbm7g20j14fRhYMCW/Sh8zH0aGo26pfQoy7VXec+gWlwig37i4sX8wry/GtfhJ4ENFoYXtKcMIjinoPDQttLF5dguki/s16ENgTZAJaT7OBOYtaSsdFao26ysK5xlG1eWULNHyyMqk79tARxvllpBbjeaUVFOCM3D7alR3wHvPvSbyG0YeSR+H10wss5tqEzSkh3SQllTJnePzkUkq8/n3BPTX77pixTn9kCDlGNj62zaADyPexlplEY7E86vjZhJDY7ZB4yxLQbvXFvE5MTt3Nqeo6s0asG8yaSYXYPzptocyP5uE8Cmas7XJoc5PpSSNB8KocPfBid3marzvhFjZDIAVNwvM/gfioBn90nr8eKDCMoYfzaE8CJ2HsZwSHL+ECZsK6JOxievQqqO+6pdPFUxZlSzQA2eEFG6izxEX0YQ9h1ohpX1fSJIxVwMr//0zpo/RM74TKbOKEmiCSay0J2csNh9aMRvaDF0tb18JgIHM28ItAakiLy3I8XPNWYwm61Jg0sENscNdyEQMBbXKZEEHzhlXLluQPOPtVqEeFCM/01YfzW7wiztXD5qIKAICunu3gE1EP+4uMJ3lxxkIrQEDBqTRzEa4KTuTF4NOkMXQJEF3wocO7wICy0tLoPCHwCsmThc0rw1MHej7oyzUKjJcKEYYyELiljEaB25eUr9zlLNvGaoRc8EIX99Hcv0L+60cRFrYtDRC8worAGA0u6QmUzfJasdv/wkO10VQF3uVLoCS3kEz6U2czCiS33Oj/TgTMYzg9PbJy6uSEI+9r15qYS09k2e9fzbKvE5pAn+Gcqe5dzQ66uSs8ZYFRoUwnnfnqXP2aLOGem16Al1SvCHDImK4ySyL3M+XaXEWbGmGv2DRmIxmTGkolXyzhVaW6kUGiO8H3gf391DIU8VuBsJT71cufaz7y/0lX4xp5lFbDzhDUFzcJuJ5zrFI3oLj3k5sQc1hCSzYGXPgTWFpsyHVNLztvb012teH4dTjeMOZLRZOQ5r5PHh/h2bvqRFBF+NcqBBO6OemwlGoB0dQx79vtDWIlsKJVW73eUbo+z+t4iEbdZXrPzqaWiiJrDvY3VI153dCJn1yJFlOnsXPUwZXczgOTkBfbRVU148lRTQxrrf230cEDiB8yx+V8nbCAKx7OHmA4f4ZIUzJFesgEGotbLqGbh/iRIV1Z3hMPvncv6NrTEXc7IAVqC2/ABUwWcrRvM9ftlg5z2CExwbIO0TOayleq1UfOd20CRgKOYCuD04GNDZmXkKEGqxxzAPyVZSLKFZ/RdO/cVEVXvkiy+BcBHywvrAXPqP7Xea+bQGRKk1jL0yjCi2snIToo9B94VgHPwRaUi3ZJzd5kS+BYtDa7tj6sPptruG8Fzq5KwolLxOyD7o2x/KvHOOwRLgOPug4eV8X7/iCGa/W2eqVXMn4T6nm60qOK0azhVQ8znbv73/aV38Z/5U90ooVF2Ty3FttpLbmMNFPYF8fKgFvhTREkRBzXLx1B351BOpFFdn4h/lpPayyNMEgZkFhXglBb8RSdnkopGq6TPgyEuWbYQZJJJpCnSIAqHV1XQRAdJclTURhiQwPQGg7oYyo/Ww2ohpJxN40V3sle2fYG65zydmBYQurgbKs0OLGL623PHFP9rR9GKPi/NjMG/ewZduSRtalLcj+og//yjktNq4qvElVwOYk76lqxt8Voe0dQCjPgjK5hbGq7EjNvdy12768L5aENvgjSXdzJuSgaw0jd0yY+TVi4fzOPF82i8EQYvcrkHftQpTAEsItbeUJ25xIxnyp4/F+q3Qdn4KcuYBz2A5efa2JuXSiMWGHXIhRjnb1Yazx1oHKC2vN3XklmkGMO+qZCzVU3QvhbPhM++8G44gHHk3keOOH6SLgEhT8gzXhNuN4aBulpFYydfPHtpWQqCq5r2VTCpn8icEX36SMQUkC37GE61w5pOLNgqv0P9VyDSjpgGdBbpkoZTRkpq69xqj+F3LAUWZBtTvYZ4VecAqxMzuvvOt6V2Ri759mYcu5VsMKBNjqHkbhPDi5DMxCD/thq4uvT7gr30Afxlwb4t26w7nlluc3aHFg2zO3MEI/E2FCuCELdCAqMAB/xgXxgBy41H2Za7OiNdtEdrroCRj9Uar6SmR1IoQp20hUcWADrmuIz4fy+qjRmUuLg49W6leVUqlHgEXV95rPwKCjIR7d005l8+A5eJjk9g8w+h+FDwgN5BEgjUI+fMLPJEJutzIA/hIMCK/IxHavz8z2rRFRkhoV3jQdl8lex3zywWO3akKlXBNgqlRuBHgdWKmc1ViY7tdjG2NCWryttUzZp6Wh1BH4UTggNWXEWThhvId2oJbRMca9wcIqEztjveU1N8b6v9ZWvRexUOYkwFJ4TtyNOIoiZ62zoWsubcWPKJvgnjYrZneCfoni6tt02LB1VAXib271jGoXrxvegSYKfw+872hkfNE+lXJlanCvyJrVXOFCPFer7vaktg+oNc46HSGxE75fAvvGhNK1jWmZXkVoszBBwH98eUdmvicg+qvj/4M9LDhqMkQpLtRlnR6NcpecduBc8XvrmYhr24ea19qfH7s10djqH4RRrvGGaLjQTJHO7ruGQQpwQd0ShqAYqTD1nPj3RpRBysOQL7xvux6b32Wp4qpDc2yzZDRfZLzS0ZYVCrrwHd64kMsQ+f7g+ovCr/ESRLLHOZ2jBXsmK8q/fGa9N4JyCt1KpT6xv0k8G6IGB8PsOFxT9DRe1we85fes8W94DVmmygVcFLgtjzIqCDWHWbsVifStQrziUn2pjAhxeD1ExtYJNgk/bsrkXGmwfXpdTz71aOYjWihIRP6/t4XFb4S+fCi9pwCXHt+4cpAFdTKaB2Twb+mVMfyWtAiqLZdZm0y18666priehyLj5ZyYUpFyQ1UzLqViufG1IuwFXmlJ5PRHsxCGiM3eGPidqEjmawhyUZG+MSy1XD0R2Z4mdhkUlqS0BTsfMEeDCD8zuDAb0O4MZ0s3wt4hc6721hltWVgv84guNbsr0qrubsl6mukMtEMIAkeUxLyzT5x8K+rwuTmv/dryp9anQK8yqgJ7B/uLLRRmZSsNiS/CFtkYeR0iwrTYn3TNVBGV/imdcva4KwTf6OHgIB8euoZyxNCVo0eG472vTtIPY4/n1ZPpvenAj2NO2+xVvQYQYxgyKUr+DbbfVxeObtoeVMW6SG9w9zc0Cg+JyXkzYU5ln/vdCTiI9XVlrmJR79zafiZWO5ghT6XMAVY06LlKdD3kS9Xu+gp1Oxk+NeEkbQZtds+VP1WfbdwxrKMNHxvj9YpRc0ZxBylT+W7GcBRoUmQ9KRU72K3JVzyneN7Td82ZQn5UmM6JvRvzQRr/nhYGkkKKDj1fUUpN6xu9C8vJ+oUnava8xAKYhw29JlVr75TNLNsl5V0hVpYv/EjetU9NFvMwEJhI00nauNCOuo7Ve2zMjvieKcHSI81aK+8DMsEVbRpAhl+nxhhtrmoSH+Z7FmNol18VS3EmBVZyIwNJtKpmWl/hJ5IZbUR2Bzb3qKPj4LPq6+9nhSljfdZW1gEcwRvB81nFnGjnDyiX4HhbJosmxhfxASL1i5+063a/Z1dPuAqu/0tM+5Pr/vwK+en+C3NmfxkWtW62AUpKv/roDl4nJLk/kLjCvphpODCQ3FaUiPvPX0/wX7rN6hfF0cHG+D5k/qrOhRqheglMy5n/uQDx3JqIrO+uvo/UDGQFhemHVc7v1v9/0t23IwgC5Yv1IieBAeg5QNGvW9SVGNSaYFnlnJsJka4H1/7FAQwqNQXdSQ3yIGtHjXXK2LQjLgtxnIWsG0ZG5cqpxPWiKc6BdBCLqeieeCBUOD7OJriHdzAV2mtF2ggPJ4OWgSJaf+88lCfXiXSZ+1Fr8EY+WMdPJUyCL2BiBmZlOFCrCofxVcu01Z2eifHaJhtI26/nSrGdi8ay8XOx83D5LZTnQ3QHcRfWCzrZQlpTH+jCAl8qAKImD7+i4KWst4McQnF7o2LRWIb1rdIHiUsnQqVWdMkF39v2GshD7UKzBF89BukQ4abRK2bz7pNxjakS0X8pNFgSYBY3JBrO3DoB4TuxMjo1kWzcSRHeadFpqrii26AHDHZCQ0RnmROdQaDfI4zC9VCX1hOQkPQ/mhG2ydfLoW5QNAkD987c3nBa2x2YJkYKoeH+UsC3stQgaoP5QGs4oDrPxOy9IkkpXGRfCWNypnQjrdFIB/4JL5Ov7jCPn+Ymoyh2VZfocbPmJT7IZHhpJo7N4loDb9xIBR2SDh79O1J0zjYzVVl7lPlYpyyzvh7K0HoNhoyga1CSoFs1rxnFBIR3PDk8L6qxiV2cIizeUl4Wdq9ZLcWzTRvOdqA5paTfwoRZsyh6olF3YuQlWxzOs864NTSRpv8OI3VWWb04gczgHDAdtv2zHqhJJvIzlZVb+pg8CcGHXKhs5+VuQPjpDri20tfoIjgrjTrlXofNVCcMUd+gyuDgK5MpnW9+nd9zO8q5TZd9x4HI/d6AwWJf9KV/Z7Rk5zIKImpai+5U7w4F3HWzeAtBtUIH0UydX2noAVqgg5UvbtBuKvvMNpcPMzzsf+E470z2NNz1BlLbTs2jnyQlwfliga4U3T+HKD0PQCee4egP9dZvn5+AEwBRcBkC9z48Uhx0J9qwlGKjZ5ecsLssCnlhXa1HBTUfd+jH1Ubr6D6I5NW2DAAKrs4srhZ9TkKsnWnjTCZjAVrT+XIprVHu4rNoeNXhDRE3bpFu5Ll9tNOCuuGkPgx0i60k/EhH8FBEk9leOmf8A5+iezk/u0yrI5Hi6SkBtPLWrHBk9mZnGNCSR9nNbPUTou6xMZYWTj3+Xri8nRsMtu0wvk1TsOoAOjuMaNeMLBreFY/mEFeQVe9kmjXP1+5eFu6SDkEKr9dhgzh2B3mcH3VrFZP08G3g/9g3XwML3PkKlzWHMsV/28cq/mV/iih0Z9dIb0M/YeQENdjSH4kWgsBXhfDmsfcd1XBGQjvrsaAKHvCR/tLQ3sfIAdLDGoilknS8Bh3ycHPj+Sy8OZ2R/5ocLBv/Lq5nh/+9Z5lNy3hB2QDaDMT+ooYPmlCjKORL2SLFfwvAcUHAZFkoYqU8LpzoDb/kMcHrVwWX78z/ZX7qWq45Lab9a/qjQ6tYIwsnNad4tssA6Pzv8/aFOEJ17L1Gy26XgH2V5ZzvP9wypVe7Rv57XE2wca2w7pIW2ecFYMqWZr/revbwxtRFcETTehd9r1tdhCDiVHy75bf/u2k7QN090ELORseSkSvUBDPiQUZuPEymY11SAaoAulEPBIU2OdszpfdGxugBnmU5G1WrLJ7fIhn/fLbXnf7Yw7+VSHb20v+UtCO2wBZofOh7HyWdNJHIBUO2wdxHJL24qnvJ0z0c2W07na3yh2xSjBFKK50Qwgt7P/sdcddEOi6gooj8Il6//ohqG/saYhT/3xE1Y5PrJ3/ghWhcxF9G57uXD7ZjYQ/oADzUiOR64tGm1yWyUOa9KdxuUBa/8hbS8+K2MgUq7c3ml6LJ+uWOPFeK2d4jFg+pm5arMS/YLfKIBAxkWy+nqIAcaLQwTXAPVXqXoLzBXX4rdAtZLRwKtX/RARbpXY8soFXC5+tdIpn/9NZYFqfVN5y45QNIgZTvKN15paDc7MUB5/EzY20EGXs93c6Rc7b3rbTy0SgRm2dSu6wwEcJNQOf4rpOGBAXbXS/uvLZx95UC6iz/PvpmXMWDx9awUyPaqNseNjxtuwaGu7Iqu5aEPCIKPdaqkEDAvYxvtzfgglniWub+alnFSHyOGgqRKVbGqq+oB7NZdi2pQFIF3LmYR4nXsupd3eHPlh9dmzmwctdpnlnbXWmLbiHhM5BiYV1xsSEjrNLTZt/s0hGmsOSHvrHdS8ucRzYSK52W07jsI1B+hwtD7eDp260O9staNmJQlJiMOmLRZIbFZHK6myN1j6vP21mE31xUuemEOGcHSHJi9206e4laoUEanUraAVkZMk4iHgXMZr46ZChyE3eJMMH6WZZFA2oAOiFo2c+fxOlEmnzjfBOKqiuvVa/VXH+/WYGTqdsGmTYhvfkPYViQGF282Bs93p/+7e/p5cnYLtBN+iVMNlaSVKGHvzGg30W77fpvwQrD0KF35Gd9uzWkUmtqdoq5nul67SLrg2tFBY9wGryfe4J6/laxt6BDViNz+pcq/qEoYrMeFsIPhoDLYMhir3zRK/6aoAF+o44XTnbWJ559Kxkb1UzRAwlMWb3fup0Qn8MwV+cluaZ/n38v8PHQwd1rlzPyf4eS2cEz2GU5EpcbOTINW09Cmzubd9+jnmg60oJbd2RWsMzyUxdWdzRVwzt0ug1tOisiluGJdkwDhQ1H6O/Ohms1/UFSQ/yzT7Ng2GsX1M+DBMmwWTC7W/dfYHb3cMfzizCxXMzNNfFI51IULZoYjGmXsLifqENFic1+4tXhfMRrlLfk+2QXr6J12k5evUQ6I+qXD9mZJC9uVlBIqUMeETwoMmfWQYmodP4KZGHYVMOxxNfbpByOM5BsuT5X5cJA51FcAMcBtMnmCvh6pxHqtIrCjTHRpRyS3t03sS6deG1SoswsNRJ0bZRWJ8i2NvufKZ6eEuG8YOnVtPXOyWBLqS+wG058Qe/dFPtuSHAS8wZ/SZAyIwXoW55FI8F7kWKkw9N9FOlNceotOoZGbyxvvrZKx0BVH8qsaAyr815rNcCmMZfqbktc9JZdjAhQY0r0LaBH8rZ1zjSrQfJELHHxjCvMADl1QKocT/ufRfezHPZIkw3iF48Jk/ioY6cIbWdkjuTH0IIyNzfa6jMDo1hEZyyQISiWZzkYbeFtYNC6CQRxlRbW6MnvCULvvsEZBouCdpbyB6SVy5tc4I4MzhWFgeglHgibWzUjGup6YmflElnGm5XPVOJlhph7qbZqLfow9pTphsWB8T+ixLUHUwAnIvg01dxAr1meS6ZJY7HaqukC6rpZd49Cah5388GoiaDAUJlAHb1rejyQHyRsjUIw4F2XIFwKstJJwNXEnDTa85sUs6Giysu9K8/3GNazrM9T+EGIisHTv2tAiIPYp0jjv8tkXv1MGCPn6lPKpL+CCsAb2B6UMuPSb8ptRE3cexvj2K/s9rdW2jM9jY6ryGtEqC1V0485SjKXccZL77wOkQdGP2WL7yqqmehdz/ONigsH/af9+QdAzInQL/4+06b6FemheVrDtHO/Q/gMi/Clw+TqM2xBAFLOiys5NEJG+07Kd6XVqR2eIHMiqywcgG/+hkJ13ieeps1SffRIeixLDVMDsryK/IoIWQCJXqpdcOI5UBo+ECxLQGvqcpomTrggQoNiVsJI27bFY2n+x33nkvvIf0s/2RUctitDaqiK/a+orGBKaQLBSIvs23IA+icAAo5QPTSrV1WeM7wwZwAYLGc8tjdx9AUaNFrgFsff6T0Onuhuyd0pNzG6AWqNR2xfkI9PF0EyvPm4kmAQWXIzEC330OnGWoxyd1FIlxiFt8UnDxgPUlpCeT6Jsp+0XJdV8VaQW1DqrYJYqbwKW/c+Qo9bXrnqlhrCL8iIDRy7E1J7e44kZ1vNKod2HeYl4eTUieydSjBQj92lmtEAAwP54f7ZKDENbta0ZQ2DVny2FEUE8hveIVinX42/rAMAhjnCNm2K9klAGiIEAsutVhxtnM8t/xE1h1YjwLhXtq5/d4NzR2aaux0hQEX2pNq2qI4cjBYjfaBaAQYUfGM5eCQGPX6POid8BKtU/24eBTbPhGmIBX1qdT0DTCG4Cgs9R3nmZF0ut1sFXJVZwcdW+JwS49/D5D7YEMyu3M9ExVuLu4664pv5p5zp4qx0gZ4lNdnfUFlt1aYNmBjLxvydSjMkfml6pUSJqDCbv5hS74SRsgHlWPHIw6wTW+bknmrF21yKKZcykv21eCsyd6Un5O9H5XrfkMl9nomYDqkaDXrr379iDvCslriwMLnsFwm4G+y1Iut6vbKYLoFL+KEb2kOXVPfPMiYtHNELwkYFZ1QLOXbt9PgzScAHBLIoGag+B/ZlEaukpzltSoneAn4RuF7qt2ZR0j04DWEo51dgctex5wJdktO3AjF3FUmNuTFmFZJzcuSD26dmDV4F/E+Zd9YqrkgTsXK1QFr/tLeupXlEP+psgx3wghKoMWf3KvS99RkSNclTVlGfu8BLuxYTxu2aeY+YWzPwnRQtxGvSvA06UZt4pNWz25L0Jm/AyGIAFeJvks9HtVyfTQZ2HLeSdjdrzwSf554WA+O85QRIAf7vtm6hvYgNrRfCuBgKsIOOMpBL4Q8Lb33DdlyBNAnaBIIK04+kSp9UHsOzJ+6QjzlPq6x+4ecU/gsxA4iKB2KBGwTfiu7JCQRRf4SSSbiX2vQDx79qOCWH+UIk7jfCTU2imjILLeulEVhe0cVF7dj8wVHQyNmgic1G3xTsAxZuYntxWfkpDplgIHEsNERZKIs4k/zIU+30PNcacarVIQiUID1anDHMkVZuC6sR9k0y/GTmqXKmXyF66SWB5ob7riTMtGTe35lxLHTwQkzlZ25uWQhownQ+RaWzLqAsV8F0ANA9/abi26rFSineeIP5KYobIy1+3MHq4JQDNrBNN/QmcuBR9HpedSf43At+VSb3E+BL8atlUi69KL53Gi7bfIayasY+HlD0XObGBz+WhxKKHJAZ4FtXhvbexK63lX329ADx2TVZY0XVXbrju+dlRLwMZpfEmg9bGfx4mjmLKqO5vFFwqsrBi86k+GOuAmbaSGNKvFtUPQIhfaw6CrNaO3sTeWlqjafsVS+vw7cDDTkE/6UU5Wi5l4zIc3E7z1zWP5KVE6npmt3jH/vQyGf7myZh+laXwlKVcULXwTOMtDceYEe+yA715Av3TqlPEi5gSaX0hPHjRpqbGEorUeqF/QKVflfOam62Ja45VJ6GpWtuDOeWkcjja4HTMLeWpauZpcCtWuk2uwB/z0bDK13ieDK/Z9CZHQpif4h8dNzxzG5rDssNNQNDyKLNuuOMsrbNkHy8P9VrgpliXyZl4ymc6iK0TYo8NGM51jfduxKzz62LF17iZW3i0pmjU34sFgxn+rqT3vKR2EdB0XiFk1Zp2jLSrcyR5ytmnGqyGUeLxrXHyLmWDrGZfdGn/vynKRDEyddEnfiwe8RmE4reztAr/AYAVPwxZCI9Vi0OkoLQA5oahmZ7O/M8HJ37p7ogzwRCl/Zx2LbCE1j+weYdWROiyAoGzcyM5LozVjnaJFHGkJCLsrB0s7rB2s5ALpwR9BgkJrJ1R6jS35e4UBRb16w6Fzn+lOmUFpUx1EY6b34YBTk29kBKNHTU3mg7fRN628EUpsIAKwDTC/AbGoUEGLixcn7MVD2W3m7d0zuvUWvGkPgvEoSpRxyK3v1JbXt/vF0x095pbixnYJte6TzS/ls+JoEXFJwrsh5m4ozhYQagTZOJiu2z0HpCNhj518NnmZ/yZ/gmTduu0XLyySVsYZxwzGTkijYUA66IABY0sAdF1u6lMPEZR2AqW23C0UN9SzIi4KlvSAs49A4f/CO8bHI3VD+HOdqMzCIcFWXJmIE5ChJ4cijxVQIs4iCh8TkMG41fXlInt0+TzwDmIAY9v77W3KXx1L5ulV+c36y4YLt7Li6DO4mdmEsSDdeNfcRm+E2OwB8Lr+Gc/n/P0ewH7x55vHXwgwxgTUz1QGFQsmVWAiVR0gX9TroWgAAARbIBnoxqQr8AAAMAAAMD+Ml5FcspZUSAWlxACsOfRJ9aDTQfQkH7t/g8yWLJjzDLXgbBZpbV4Sv0utv/7/qsHgb/jG7OeOoL6S2cL9okBRqH6YGYB9S0anVzWycyH6YgtQochK0D1hGwbh+OyfIFeHL1tnBP/17OTI/TKt2428FUUvkTJcX2ftTyctTauhl/MLvY5S6DqXl3VacIgTiTXku7iffgIqIObX5vh7wnEDwyVT/7kuuaTTXUt7ohSldHiQgq2+Ezk2OIpAGwNP4Xs0Q6c95ZnQMBovC5wdDoBGSfvU9Xm1RndiVc0/utj/q4JUI3Z2a3qcO5coKZ/UXQe6bDv6Y42VVW6gUSSx30ThFRbjo8ydW824oxCOSmuv+kJybUZNeCZenU3Q2QMlokFo5pFCgK0eGDTv2z6Y8Cx1L+Q2Aq6cJE6IT2H9hb0GxxtDBk9H1L5GCvmk1M5RKDF6WerLY3vY/aRqcrjY8eY0HXoN3C++MZ20JxedpqhXPCsNg1hU6Pi7wa+i1RmujXDomqAFRtNmpQ5+zFSjzN8G4RrlTSU5RxPzGsqk8JZsJAnXmivNOLzcwohNcaVm2uD3Gxs4uxx07Xnw1YkTqnlX7wBMocphRKvOjHUd6aaTxoBPUskkUR92Z+ZbYsslOktKmUkxzKavqc+iINyXn0cuuCeqeYn5sQzHp3SIDJYAjTErXEM1QAc43O/RqwSX8+5oDKYOMgU8K2QorjUFqV4cfJGDQnPkbly29ry7+9Kx/bs9ioM3XWeEhlp1IRpr72W4VoMsqfy2yiPfNnf20WKRMSH1IyrJlmIuHrkMBaTHVITwIwT3HWqsQRm3Cd2pWxC6loxvreOlYP5wv+/czAbbWtIPEapZcRzEe0Vcu4Fod3LXL9VBw3SeMN+MTcX0Emb0tHtrKXtUaVToA1ChATpypIowlivZGCRnZaCUrssZD2b2HACJGelojdbWPdr9E1KSUx2qfhv4gov0nomJUf+NP6PKsyip9YkVvegFjSIc8I99px46mSt9sw3Z1ZylVFRz7vGsjbqYUqj0UPRwLll1lPasGeVm5Cf/drDcPZYB/uaUPqKft0a9Z8futpYDO96od+phj5qgUivMFEhjmyPjSp3TCqX7hpAH7ID3Ger+2Mj27ru/g+RldMwyRbob/lhcwasMg6UFSLYxkoFmEvIp3YFaFBe8igtTH2hyZCfyRveTQaqYXcdykL3yYmLSwLRQqTVVdMSblA0BvQFuYBZSr8BifNS7Mk859UxMyX+nDl1aGQAJ3duPrL9NKOABUB3YGSy46x0Ip6BQ+alXo7qha6hAghmoKEMselY82XIx345KcqqE7vzH20IelcsAOuMMQ9X6B5YG3rMLVjSqrsyzPaFS/4kH9CI9Dj0qsyISWwvtafn5fswAdK+eqZuky68tY75TKIY+7hUniFm2DRsmVJ5T9h2eyJvfK++p4wUf9wVOsE1nh2x3k4Nfk1Lu5UsI9iOct1hNqIFuP2oN2UlVNS2MELbHX99FemLkWjsIBAFb9CKIMjfhzp/y8sSZURjpJ2Ztvfn94tL7Z2OfKaj72rbfJDviReSltDxQCBWHN2nuGOBFKOybqPEZ//gxNDm9jlHPTrd6F7Iz6we8tIgsEKkWZXVQ352avnYxl89yZMvv9ooGODcYXq4g6TwBkuwctYrfabwL1uIjo+aDtwa9vIX8Ww7Mp1acitKNycFCg7ywU4X/bsjAAz5CGPn0KlBu52OBaiC3vryKq3bmxeFvX3FD9KSMa9c6yeun1gmhV6TfLhXyN8O+EkAKsDqY3+izeq8UtvIu1pNG7kzCed0m1lQK59tcY+mRgwLSvHj5aBiUMprD273sJboHkaTfjme8x2MWb8o9q7PjDfVvBUeh45tXILY26OIKeoetCjGkfBpzBbT9VP0iD+F3YjuHA7rDY9ZVZrhIqUu3Qs88D6ZoY4U6Sf5TBpLELW7IepxJtOLa/cQUlbTQf6c/nsti2nkbRw8h7W1lmNFJtJmtH9WbtAxoRXDyCtFK7lMiW7ZnuBg+PdF7Mk3n3b/9BDjK0XDq+M3dfmvBP8aR/aanoE4y8WuoJXOEJqAq1GfWwNhQHw/Px/vz0byBnrUWsgeT0SGlkYP7F2nPayJJgzqyCOQdZ8XuiYampVdrcBN2Cg7FvgHwNuNSatgVz0Q5+JpqMsflZRlAwxCzf42XWsHv1dvB6t+JyinpmdWHH1KHfT3+mU6q7rNg68smgdTreFvU7LjW1MRuOw+Dk6NBPHJGsdCcoJ6fiE087B3k7Q6tco+m7K//7xY58Y6i96ytzvQtC+LmKZ6q2qYbcMZknSW0M2CpC29kru6k8CcT5/ydtB0kbiHcqLWdYhLGr089EyHkA4arr3Inj7N3HR/0caG6WGZ6zLfl83xy0mqDYPgAArBcYACgEraqKdfsmb9JYbAFxuOZ7RMsfIlR4gZfnMbRqw7fqpq4U09BhffNIbDDMMSEhlMwK/CNrogzrjbxGuWkEfOAfS2xqzEa5EvRstuYXnsLI0Bevz2zIZm2php9D+dGkAMeTK414m25WMjH6aURGoLlLxhiLggaVJ/aoRCiOtCV+cTEUAwMrkOwsZEO6JjIQ8vdQBrLbd8waNxuLARv2vpkMQUFfJHV8QTMkmE5QUofr9jRsvuyNwnH1uCMRvH/hO7lhDT9lE0eUmNQmU224dNNVDAH8i4R9EiC2IfZ8bnTMTdMuLJN6RfleN5njFOmHLHWg4rfBQVrDXx4QklWq+ekjahNNbA7505xy6GPB3oddT8tYJau5MVQmCo+CG4pDJMdBG/fdwTp+NGYRuzU+2K54Ce83B132VvCreG2J6KY+ncoorgrhXoTjv4Lvw0Niy1fFaeBuxPNesIvCbhBcRSnG2e0oG+aIkYA9KU3II3qwTjje5LyTymLXKJKXi9qwS5gV6OF2oRZp9G3xAqZH/ahm0uF62EOnMvpBQdIaVupq/eurlSH8A0KbkoPIcGptujJ5WzZegGWYA+9X7fKSWEgYuUjDfBsG2vRXAAmyhqAT7SrlQvCie2/ofUvhkmEco+gqeqSpVlZndg/enQLL/LratITCBMZCiJYuDXWykhKGyNqA4a03Urzurju8nticHEQ1iAnklmct/99XLUbptSXvDkElZInM3x8saEIZQyOmmb9iuV2ekGYsNS6QPlw59iG6JTWoJtD5KcDR84lRjMZj5Ac6C6PVoDR5uth2HtWlD5Ws7lLCguinoELAn0anZNevr4O7DCKX0wt7aCSeuzSc1dvjjSWydsjoy6ObneAp+/gdSRXR60Ox6NIqoszyZKIH8XBU/KxTMARvCBmQpnqSPDS7UAHmPvLL6DG8KC2B4CI23lwxsPWv/ygwJ23VpZqAxfTrvaBOSvXavMUzuhW203KnTbWo8wZjDfJWb13E3r0M2wP+M9IoO6ZRn0H04zTUyy9DaorPmNhkvCmmyJj+3Yot8uHCMBFFJCL8pVo886FMc3z5Isr3OjCHzZQMIKcWuSEaG4WByRahL31Y6PoY8oEtreImcmZRd309d3Gbg+UWPRc7R89T3wd/wcrCUfkgODqpcUqqbiTDuwhHQtO+Y/5WcHXIFNG7U5sQN/RwiXjASGYZ99fKzrmcA6EJ+V723M2YV03TGfT4S/ZhCrhyY8gfFxLklV7FXqHmckyTsoK70ZTSeq1+b7cPqXH+oAwd5n0KZ8+/l08yZrGsXAFx3ttukUTIJX8B8RFtZJ/NfhPr5hS0mdQozY3lkJjluxLyyp+ji6xbFjlU+oz0g3szVJCUrvtX9fo1aVQH+/DlnTVy3GMxhhDiVngpZizvwcnVlTGrlpEaXFR+b0blNKf8B0IFzxlB7y9ca8/YaFUjJ6ybTy2ZFmj852vJo9ast3Q39+pUjL+xHudYhW64PQ5Be8d/Sa1yiVzBJsw3YZubVkv/fWuEyh6pubxZzS3sGMR9aOV/Y6Sjtvr4vn+rStTJkvT7Oh+MiLeJ/l+voNZpAOc9hho7hym9Cqi8hXdBxPCf4uxAjOnuaFcZmDv3558bqiafH7LfiIdCHbE6sdrw3M1Werc+h1fESSz8JoOF+c/PkTiww0rYclb6uyPLMGJppWX/RF7sTyyq+YDF1fB81Thf2iajT7xd8S0f/zXtEf0NLwBDOqeIVgzZb3q2yeXEO6pae5++0/eqOKWCpA+kN/8IjivCq257KmPcSdF+6HoX9i/ZEjawpdOhWorSLN5PQRWHe5EGr/oWfC9oIkdICpv1K97YZB2o6cD58TJaCZX2u7xXGmPJ8rTs70dgIpHv6rFqYllEw5APYmAZ/IoOVVdzFVhANixfH9Wt74pgzgxrxjUsjfTDK37ZSr2851mIX7mHvD2NioB/pzYZr2snvX5qx8hZNGrgIpLM4RMuolOHz6iyZjHux48GMuU/VCUIOtguDKFH1nCbsHbBYkHPI+2VK7MfAMm3Mn2PRBg0VaIHv7fwyx5qjxjDbLZfQIbJjRJID9bSwYSB39zp6YrZKiKvlQ2vMW++7+1/vVGViwEeIXMn6TzcfmqqQpO1N45F7KvdT+uC+CfxzSS2zH1mk4wM1RhugpxE8EWyS8v1DHmSKYB7WwRUV6IEObo/w8n+mvb04fh7WI7sLECtmp81GzWYtL7pbbkJ4FNxy8g7MoMa/z2/Wl3q6oy50OUxVZW8/7pBy73d4v5Q04W+pe+KRIHpddmOl5vz7wwu7du2sWq8QkG2auJabxh7K4uiBwasIR+IZCRzQ2iR1b325s7FYRB5ExXZm00nRbE3aRtnUVO3Tyt2UCrkm0H1TLduQwm+WUgLagk6rIM4EQC+v4GC2BrmZAVYerTwj3zBxvswNO8mlpUUyNX0eHwkzn+B8T2efbMbZTOHf1KsG+vPLYciZtniHPRiz14gc0voeZqZM5laM7XDFUlKJ5dPckhktnFbJNw74FdXiqZUsqoWiV8Rzfw8FV/xoRqMC9uzO/5S+DmwiSR2CLgPEkC7sS7pM+3Sw9NjvG/rtP6hkH4RxKRMB4nyjrY9V9Z+9z9W9ZdvGQ/Md6zsq3bpC6BPgT2UbeDlOi0GKf2NVkGY01Hkd/LgFqfiLps9JEgd5xXjq5DD4YWr1EEqfkO+ha11AgjfE1WCOZuYcx8cuCo9eBGvW5Mp7SN67qhL2y9FCcWDADK/T87bduCBa7DpdE8OAZE1BEBNhB0UC8DhCp1+0+GntGGIIxVN+42L17qk3QRDnmSCMtQz1FnXgoDxFqdsjadHNtZGNmYcO2JQB/OsG8FWPVHoYiEwHB5/nawu+iK11WMvj5sD2WXeH1i0UpPD1sxOegftfPhhs3UjQHHIMCkxTSvj9EXui0bNly2BLOP1JPB+dPj9OlI2w41DQe8WyaTs3x1NhiAu4Z1B8upG/x2lyjQmEJTrjD95eJ2fGovqQxM9xJ3JeTaBKVbXUl93lC13HeOB+1k0dPHdzBipVTUyW7cqlVCYT5+ztk4kgd/xNoJD8tQ2VNyb6jNAigiHdymT+SjZTP26rEj/47bF5kAt3FyhHIaPSM3XDA3YOhiT3xUjVBIlNbwqA7TV2VmJrEPlKVt98O9lShA5k486vAwd5bFsm1wMuCrKfhK/Ztg1nQddKue271LxWzp22+8igw+Ovzpl9NpNjaUOS3Vip04SIdaaob0LjfnHSv0Fjn75Zpkj6k66h12Mapngaj0aqCSA8etLW42ZDhvxng9Mi3q5WFABhNQWnV68dY2gKzZlf2ityKmJtKruixx0z1OdFtWauQwdPwsn79EVRHo02ew3YfakX+WgpQJU5eoaJjhwg6BzTAdD91U6u+EUwllKgyDRDtv/RsBYK+6AI7SEWmr/Jd2rFswmGxp/TB9L8HlEOvqi9Y4xjY3C8jj8Xg/eGWM0mxh9IRvDqfWyI+GCyPcCzz+XxpzhRjwJ2td6cEppSQjhXmziWPSXZOhdlopnS2gLrq0SCKDRgM06UwyYCBDrtcmd+lhVoZT7NkU5lHaOuWt08OQHU43vADyYfNE3KUxufxwgFpP717TkQjWLR/l1ts7CvhCdR5dlpy82EYMidKQZ7DUaXxJY7YrVuWXYxUl97nPxS/FXW+PhM87rmVZeH7DstE45pURJPZbx6DIXdYRuA0YbWIqWYCO6ZQpC0B+DyX5pqiX1w/j5Ja6ShnGEm+9oE6zpi0vRW+JzcES1kTfzmOhf+bv+02Gk5jHZ5LHKHkYrsPPqyb347oZeotXhOvZfFMGsWVpW+0gO01IlJj+N/p5zDaGWpeROdykbirvTbvKCwqulG1dv/XI+j+AuwN4Ery6fTX8mEVsFzsTA/QwLkyf1oiC5JetTxUhJcvgYWSWE/3RMwcUiADN3QL/RxBwWHVP9+6XfV9a7bP0S5Mpygue4xLm3HqwM1uND318PwIjAQgAVTe77r573PfBq8VN7UbGLZLqn7jWPcHVR/XGXgrgZePgztlFyGCd/shTFpePQNNvBK098n15vCHdKJM+rwqsTwO/DR++iSUsFTFCF2KtQe/3KGulp3eiRxXk3CgO1x3VZWviKykIh2ErREr5K88SLpDx17N4p1JXfLuA3nEEWzuAc+eTHyvqRAPacFQhZJFHOhO1YmFzrIwDLTG/loFASpXI5ox46USyAOdmmbIv8H/4b7Za1jKoZ02KTsIcIsQAVVsqLyiQEkMc4MYo7V2lpteEZ76MgtE1K2m+7HCF56EuXhupOo7R01getosMMHksy1TplGS0kS11swlPIB0Uzh6C1CpRp95WhOMevWcpDgqN+ZZNJhGo8Qn5wRfYFyznD+6sPYa2enP967Emt86O82nlBvarYZEzpW3a673h+SGDHUidB94whtdaEnEly9sSe2qkv7NKa6keEIgrT+3yLxNdN9BPnkbf74hFVMMEekJQQzVR1rCYxZgsmq9oF2asD8A13XxHkCkXn0iyVhS0vrKXXeV6/tZU7nNoIFzdh2JzrWbjCmr6Rq3Pb5wIMzOsDf2aAlRACvZG0rpf9ZztFO+rbPufoWhtNPIvgj59ZHC1ElWtf51rFJuyUXFAtgluvzvcEEoWaFsmjQfPHoIPCTiqrJqYzGXRKTs+BdYty992BcWG0sjbp/bWdJAJM7d0EAA4z05GqlmxPEUoBHGwy3tFic/ZXR9jftbx3FpMbeGxwXQOFg5jJzi0kSy2JDKGDBa+iyCTlzuOkwaHH1NgTgy5AXUlCzOEFOBQOUZNC+enSeORFDwZ/olbcIPjE6lU8JIA/n9fjRMxxQrfkdmVXspl9WQCoXR//lOWYfVuFrjH206p/Tjrj/Jzkj9DA9YEE6CtOG02908hWsCmcp+4TnstLNGqBW3rYMbPt7/JviNhH5K/svk5wc9LqzH9cJAno5Ate2xtjJeWpubEQsUno76PfLfwgFZyvuVXOfk2BFz1iam0G1fYY6eOOhK2QLSifLt+5WlSFqxgT/LQL1SyFGyiPcNQV+5y0vcLVbqL/iCxW//NRzUx+9r+ifbmt12VUTVxJVG+fBtL1xiTdFKHjaD5GzrHqvZA5xpupnA61H9D9NB62ZfzMP3CRXZWNg66Ynqt6b7o0z248egcMw4RFNiW1Mh7mp01XbvK5AtY30Q2AK0WPVL7cBWrnDGeQI5moiuLAyrbaPxZivyfS+6W04ngJDIPr5qrGam1jX1wkF7zbSM+3+bAbWZ6ZRXNmwtG4B26izKhH5yKryAJ4OS4InaKym5muLcYgUK0/tAHdDw7Datn3OR301FLXCioGgWcbee3eoOdnMLP/ez1PWPWcYnlnnixjpONw35IJhwGcVjGtU+z0j64qtx3bBWWZqwUsX/DR3fv3kUIi0nzBjegNyYsg7sKlAegSM2MEpre3dPrpawa1PVf4936XIBg9o9rOWqdci5KWzUWSdfxwEiBX67LLVbfYh3GnoH+K9Ehc7Buf2nAMXBH7cZxuBPyyBTkc4ZoV9m5EBhMfXID0nDjmvTG5nnOp06SazJ0odhMmzWssropzYS3u4Pe+Q79cZLsKEhwFe5QY1l1BjDBBC1s4g0XIE7QBtkyYWXBkTMfdmumO9fHcMZFr0hVPfvQekjbuqtM/lzjP2BZAA6mSrbbx2HG2pmdwZ5PMs8ulEEXmXuVS4qS4C+LTDeZk1Tm31Ol+L14/7PNtym9dLgXP0/vCuq7IfkbG9MNvJwRLQ/PluZ3qAjkEEmLikkFgPl9Swb5i0yBBnus4KVW6JiUoFEcOLaOo/LR4W/7MrEdxiSQ31DVi8bjabE0FCXKlJvEt4kFko9bpq1312GchB/N8ZEogPncsp/AIUaLsiHF0UOOerrPZx8RoMDxoeG4rZdWyRYABswl7qRLa8sl8JVaLj6kxPmmmQLuvc6jWAXPbmWty9W2Q0SknFKAE9zYrUCfz6eWkew/NP/7Ez+bmAmDlVwK9y58YDnSL8kpvDOEsPYrv/Qf9X/v6y9Fk4R8ZyHc57zqqYjw6ufVG+Icm+G/YZQyc8RwPAbkt+5DHAVgi0Qnw3YF5+pljtxk4EHtHYhuyGKJRVWV7CSYokqkwqI4QTFMmKXSxzn+0piNiuX0idnyx9cFf8JzrODyabbwNRhDRScgkHF38zODJbwYBoHtZWE5ZdxpcIhAHoGiDDkfPlyNG9YKu/ATu9dBrJNykAGMr07N2mvFf6uHTnBDvF01KaLBsjVN9xEg26dBJTNoiHFSJx2VHKprk/pHXANg6LK2loXqSG1qy6EqYPf3ZFrgK3eoK3qLibCSdRCUV9wvHb79zXfI2lCRZ0isnqzhxyfZKsV+OWi2r2L1npmZ1J4Qmm3kYg5iBUYmSEQRdgUXfa6L6LCY6/3Tfw0qVGANPr03d4E+8bHrn01L7DyB+ODpGx9U8oG4XVUen//IW16/o/jCcPrE/9JBxArsQDohR5iP8/u73Nqrp53iT5x1cxC0nOrX5wS1oixJNS1ukCdz/LONREb0UKg94swwCYXeosfx6DyeOV76KlAYOSqmsyjJAK2OX5nWoLGCEg9RYC4dHs5HqJpHLY+j/R6NFxBXkxsaunA2WvvpNpoE6ENDjdwwjui3F5BFCG6VBE4QtZvUcgavyn+7aaq1WLTl1k9c5LIv3J0KmLL19tDLA41jmL0+5T5I5zfLMNye3TRkG3Z81HtV1/AvAtDJ4XFYoQs231rOS//PTvEKOhicT4+p2RXsqAWYu8kUmQhb3x11VL1unXy8l/qINXIRvP6viwC6tHDw/Y2dxUD/ufp3DH6GiehzsldVaMNDGNALqXhSIzkNtsemzMWw9wSJDNytkDPj5WcV1uGpIeHbx2KYeXIpCQ4rlocSDhRcf+4yXdAaa/61vZsKlyNd4c55Rp5MO8tYpJyihxSNRNQUfAWkUngXOnCT/ZR3aUfyW6vaIA+EQV+CJ7hm/FyKK2urOcgimaa3vMzgYGSRDzv2YimvWG1yjgXsQ0VvODDKKcMnXwI90jzBXOH3x/GnqoSohGZkaUAyMPpWcAX3wKJp39lzbbpVc5VaoKyYunRzGlnYQQxgl66DVgQCf3GbEEtliuwzHb5qUBufttNFD1Zy5SoE+VOQeZQJ6ij5CLZe/DaC/EvZMsChsmmY4z5IODYE8/kWJ3GyeBpSrNaIXErA7ewG4FA2obn3zwQ9YOEbTLic1YmiXi/uuJ6qXG+jC9oQfgkUh8q0RkFiZEj6fiGCLX2IFrxABF/sUCb9YnBe3kda6/pRixxit/Kq4lxq7poKI5TGGohwV60howmPgBDVoqZbOnsgkeZXyL5ktmMXsOwyO3xd6y3ScSyyPAVtpJfpeZYNJqI9FJMv5Hqs6/SixkexEOmoo+LLCrH5MlnmC7MEG5dJaGfXfM4j+IggT217MBnRgCS1XGWXYjffMLJKzHIwXa5TKmQtYQAfhT1IICjmCD6LB1xBRso5sZOMxk9buAHd6KQ1ad8xFVZh2vYT/VWwYYLX9Kf3MY/C6LCdQOgcu1ydnph3P3eJYGli7/MUOX22BlPKdm+nkKvlq4WVmiKn5uw9WQEiK18gcCjLWGjFaZv+rnstoRNAkLMw8RfSoc1NLbivNpKvjhetq0EqLQWjKi5UFwU1VoZytLLH9ELBGkgRG/IKRdwPDcoigOUcYFUDm1+dQNB8vuPb8aRsUk0LrS9E0+7HZYrF7MAi47Bp83iR2RIQd8y83EzE1w3or3RUYxmnQfDumcI0e5fGFfJcAxDSfZUpO3ezHfi0Xi6xtval3T54b4R571o+Ut4svt0Wo61/ur0hf5aCmqkyjnsKD6YiUhdB6dS6OLz161LadMLLs4Y1w4IbpoiyP16DfmS+rDXAzU7+rVqLrkSt2MfxDWVhby5kePFLs/kcMZvwRK2k/XsgFcI1pPRhLOTLvw5pKIgv4agNWb8fd8BfL3D2xj3QEC8R/L6squDX+n5xvC5A9VGhq6GOh2O5i2Oz5yb9fBczvEjcT+a2WFW/xcJcZwPcSq0SzpKV1a12FTFq8aGYiUeGSGmN/jOa6gCMiaRLD6Z7frib2Jh2p5S2XRfkBbkSRWCsSYXPnQPNPUevktKSG/mxVWo4Hi0k0wpcrucuzz/+2SFMKelGC5yoesQyj7tsludjrlk4079+YlHYXezhDBcQwYXQMFLk7qyiUvaTOlVGSRYUUxDd+6q0qaj4W72A09p73w8XCKAAWI2yMQ8NpxK8W0pQjNxkHyFzSZugY8tkbVXu3ZdW3efwyQRwIoGhoAW1IUZuW1pTuFtv4Qb5PmAcdQcB6GcCxqOJsa4a7/mB7v9tqZQ0dZLQFEBChvIDzxV9NoARw8I0I2IjsDEX+5y3Gj3Aq+PrmpgMQ2prfdPpyleDVBY2Y1XLbB6mKaACbbZxnmlO4rHWAus4oht0lEUNYPvfv1rg9S4qN5rwxOkljKFSU+tYZQ6fuwr96EKivCxb2wA6z3OavZbT4rwJBBusS01BqeSbgHgH3cAkuh2NeS0DNqKk5L/zxbTiAchNt0Fjhy6xaD/bhY79064tQlPKjB85LraoI9xk+tHXcyGxuJUiHbFOaTntNSO/pG/7cmKNqjkiebweAHR1RpphjUxn1QHTgWqg+kIcWIcNXPkWoMjyWOlRyWtSX3/Ws6MaVBgF3uI2RvVvok1NmOBARLBljgcUrvp6jVX1qqzrX6aurNyIsQ9cW/jb/HONo5yC3TXOdDd+Q6o3Vfcwp+NvG0KmQgFxGqNbW4TzbWe9X5fvf4G5fhxtm9nA8K2QZ0LX9f6tAgcfXqCV9dg7kslXiZRpB0bl7mE2sRywRskCnUND6qlbQ1mIer+VoOnRwu3KwNvbW3RIdHKCxqBje7dbnDx9hNSMQz7EBFp+TPEa9Rke3Zj96LAoUI6en/AKF9rK/QjGuDyWD6BgB7IVvqgUH7/13TqwNLqOAkPk56U0EISm6DXyziHRiUYxmHyXrUiGuXihtf2tTxLDlBHePWc3TVXVgxjqdK4k+W3OPbLqlD4kwvUwR2C8U1gE8I8GIc+hm802THKn587ovnnU/h+MIKH2Idv13illULLjG8HdK3fsenz2NsCa3GJ3JfFYj9bblIqMolkmpM2NBEmMvJxHkxO919ckxxL/rwfxUfVsqTfAmSBRHsTiHujN3kAnQ4qvn5/Qtce/jHi2gF5O/vKBGGJHad24Mh40hc09qU4bFV1fd98cTUlTqmBccdeRsnn8pEcn8hmYqkjpjHp5K/XXIqmG7qigp7oF1iLu3J8fDmp0iEcCAhDi4OOSCkSTCatyGTNTbEnYlB4eJ608nXPCZb6+/ONg5+WrDmkDnzwOr61QnNGm8bW68MWf9W/KHPLb0D1/AwmIAZNaw01HkbKVrs8sxxZoASZ75aAHKfAporscfW8Oq0/qwNItdx2Fq2Xn/D4Qf+oLvc+2vYcOHKgfVVqp+DN16apHRRw+tMpxsmakWCyaoHNKP89hxwVB+zZUiWSSzGHRPcUQUovZxJ1xawSy5WPZ0N/HN2W0mpIx1bIk3JYUt7KrBuTEYo3kR8yyCUbQ4evCC6rY4Z6v0o8XjR2GLe/HaSf9JD/PhpN6bBnieEWY/dfTddm/oprSnaj7ZKZaU2aPoaq1c26Q8N0eXa+9ILGUieeFfalV1wEIL3iVWbt/L+h8dBdSUqK7J7sPHbH2+eePMTcCP/H5MyNKea5Xh+GKlrBiyJMyQHFBFBg3zZxRK2xYZmAkZlSlLyWi2eEjEo9yEUgip2ouaZIwUZTHBdutThU49fYKQIuxa+s7k8ZrFCwKPcboUuxc5bVmBcWbRgGSHaAkjf2aAVqv3+iOGxtjyakFwlTYQhgJ6ao22XcpSdC8sws0BOWZXaMWuLpBPiE51wPTA6kiwgt/ur9J0oUsM5JzxJxbe3foASU+qQ8tYH4zfIsMkS5Sd3XxEQU8S7VU+4JUXP5bo/sznGNEatWBbRJV/nXUf5uiA3AQPwkQFT9BAMD/XhbyyCiWGrr2JZPfNb+Li18svrGWcpWLWnGcEL8velIBEvji6IJP6MFZeOsly1D6Awg7p3yypHXqdfTbvU6UB+YB1f4pWXQtXmWSi8vopayB7bYbMWXZYPPUss+HRPcKCoWS1h8ucC9eTYExVQyn6sYKV8+sZ6RzVyW4TcZ2a/20hsUD1mLnlZ3c5qMqbefJx5JUMOwRrnd6n+PZn3/bxdqFYf+DnG7GlX9N2ar05DsOsEvGtnEY5w/NAERjtYjd/zRcoLgvyiag/+PIUarHJ6ihgYhIchiQFMc+OqjiRJ+545Q4aRiu93X9lZA0yb34YPNIsre9lLgiCALvTkmExuT+A6wJdEJjMVVMQF9vPBp9Z+BWgMvO0FWPhrmWWQ1w6cRKagzxAQI7pmeohJ7tBJGh9X7rrIy+wUYbH5y+gSCHSrU1lznhgNhThORW2NvIoPeMz3NPxBf/0X1hGx3Zrmd+Jvm2QNBe5fo13AHrpDgi16n+GUbCHh/Loa7MLaVeM/nbp0xAm3IcmiKXlgiIZ4Pm7Hpz36X0sHdeFjiQ5+vVAYl6fh6OnQF3uWvrps6NjlDozHWBAkN+G13Y9lx0WBePbfZiKoOU5PQLwWxod+n1v0duEhO0BDkWrwDMbsaALz6DIyJkK1PNDkOxOPCafOrX87SlQAZXatrUeziP8DZEYefz3ArCADsakVmxPjldDeFjQj0Z6OUPNpaQD/7h/BF3zYPR1vm//VfFehzDQEY494erXxnxj9as5i5bSwKTDf3u7JkTBHwpVzoX+GsjrCPprv08mpU5eaQ+JqlH4IHXS/gFlDSFRC7PDlKQi6RDQ5OojqKs1haQ4Vv6HMnhKYsPW8dAs2je6VuZVxG0BfGcMzsAjybgTh/N+HD6Y5W1Ikvj/3Lmpagxnzp6otpaNZSNiHXqeXncr9mNNLh4j/sfrf77LFUBUpUVe3tdgxOliE/TxMdYZZwgm9nBuLKOq5whZeO7RQ8UJN4oFCMUFFelvAZykSdBY6WOfHtAT4OTX0DGgc9k4dwVwfLDOUTaTSHmDe0m3v1GwERIm7h30E3QwvUPDYMl0zk/AJa7nnRd/W7n+oKYBT+L1Zy9X3jY9mn885oKRoXnlk0x2tzUOaIBJDBI73GZ1DXzxJrU89BTTW0UmGm8ApaTRZeTgG5wBFRsktjGTInV1mwvWRfQ+7tv3mIGxISn7fRRjD8dc+J8KC7NC5cDC8+Avf+QESvASpK28Et2HMk92pNMDZEoD08V/8zZWlEpnETw5E+/k5d7zSFdfXofdO+O3xETOzNoXz9kcbc35ri/bXZHs/zVKbSXCaeSBzWsufqOyIsaSS4p1Vm+zaf0uSIfYh8Xtbq29xfSxG0nva2jknlox7PJcA1tlyaSo7UJkGAWcyYwMrxa2ivwd/WsTc1+Hw3fO3ZDc+Jq02u1aawNhgQVKrwiX+N7YkO99E8amxELO+GDkdFmD+8kx9L41pPKoy31qPTfQRvlYWILpIGLY1roTz1KwOBdfni5oMYGjQAG1TwUDP8s2g9kRhs0Gwu1e8TuOt+i1J4TrzTvbAF2/RCmOyGVxfFC3124r/MchacMVYpqpMm7HMg2/nGF44hWpBuNrJXXxj4zyVMU0/xswFG01Vsu9Hbs++8YjSYXTKDrHOOgpgeRS137iKjo/974nVv3rwflLmuGZD1Y5EQOnE94Qi04ARCpk6av0HfNRSDTy8vyjT5Rm6m9dqLIf9PNSuTzFTGC2+zYOUK0ZRBJSMJwwVaHwkujebVJTrv5nfm7p+7ghu+SR/0CaLRWAdhws2Qeen2iR/qOE56K7yVsa6Q1w/fkUMJWBMBgUXzFxgnUMQ8EMc3SXppueCDnVeo+F4jHMbAC7ztlGLx6TLwepvS3CxiMoeIvZq1h/WxB4Ki0CJHaiqqO58J7ZeztIm9/9kostYRFEPZHOatv3Cb64kmhSzxY/Z3SqGAbL9VZXpKmH2c/kE6tnEpSJocCvou+dxk4XQEkS5d9hkoWgDrk6orGwEBN+Ulu+NoqbmWsJqebUuobVuvBCck+s4aiEWjS+eLoLc96PWYFveaeRU4rz9u67/lH4O5WEYSiF2SqeTROLCCVdqW8QFmSs2ga3eIZWt/jIwt0qjDFUhiBWwoH8OVfUYrSv7NMzb4UjvOMluIPkGf//YWVlvSiQnZQWG6oEfjiOGlZjaLNt30mjtbQyDCsvjOj3JNlMU4fYU1vH/Vb16ykv67XG5LNZrEamXwIxkMNqfe6Or/vo5rJJ6s/HfKQeWuAxwOu6+do0OIg9I3tLVrakYMkG0r9d41qVoAh1YKHilVcZNTm3gyZt16mDs+pLXDdNPU0AhlLTYkeTZz8yZH0bJGt1dzyz7BjcXDNp4Ye3P4PUQLx2hX99jYfRpqrdyRuDapafIg8RfcKP3AFs5TO8louEJeSvFJ7WhOH1eK7KZPbUbtu6E5MWVRnHB79svNBLf3p78Z7UxacxXxIoOF6QaCgYPr3dtJjyVCKFnHsV3KaivxhmqABnu/p+7EmApEPGSri2RtQvmoB4wyoPa53bWzHrEOz89MJkIDsXvJOFNmYpA5pK/7s802+lGwLBKt9za+JpMLVFEF0/u+7IPUcQRMYXhF/HzqGgZtbab//cVd+SXqoAk7jPD3MaDQ8Z6DSwkyTG+/CwlSpwqkLH9laT3H/SedJ5o47IFPxff3aGudOwEYbjOrLLzk+aQ/cVX7X0pkZ/XdE7KpMoeTpQusCJlN/XIxqJRTwP3iB4jLJ4dstUAQJklT1qLRuZJs/bLlqfixZaAclwnKkxWzs8NUlKTbQMGMmB9b9y7CG/lPGxZxn6WMN8voTpX8xGFZ1A/Df2aLOm/jRjC1ILs0FbNIWnWHQX5A9H3xIiEHa7/A6WEPASk1GyFSK37lI3M5kQoIKJg+eQC8Vf0XFVB1qH6zaFGT7ioXLwJYUPZMO7uWabXgcsAwUz7ugOuQg5TsfGOu4vzP3EkA4InmGdHmWmfIWAMbUu9hRQwojzt4gbnDN12zQLbUa4uTjOEMkE1l21r56gRDRPdWaHBa/E+7Ozcw7LIYQADF0rrCeHA0moe/YZx31lmjqFiTSEMh8KN5bvZMPNzYzXaniasihlYgTTAxTEqUiOTMW1fJX+6rtTOwS2yj2D0iC93l/7qxNOGR4E01i+R6zi/ofmKzOeXSclYNGwtwPOkxe8iiej1jnf0UCwkXmEUJJTJs+BNBSLBd/+r0vu7A8YokgZy/bjAkGsbVh9SD+dQBfLmeCN9WlyK9p89BYBPf8TDuxlC4mQ4PXbGI8FMU5vRU0VfNa9rBrs9D4miOwevm7WqQZLX3on3IVy1CqQ4cnx8gYJyvaw0ymizW5Chc/eJCLb0cZeeEZd4gbK+4u96tkQ8XSbplO1YBLuBpoHx3JO8XCwYztXUUb6fjfqNpQZER/6AqFiX/Yf80IC57hgoEoe8tkSKfv3bql3+PNHr9d2SgrJXYzeuj8msJ/k6wADDBrv4l4PqW0zGwc5odBderuSjiu0swnDuFOJM1i/f2kQ4bLJCSCVQdO9DP34TImN2WYQFpnBOp9hkVVhm2Z01a9bJglF7RuEsh7vjX/jc+8PvQ02g2+mgd44QcgPBXbPVD5YZDvLT4KjAGBuaFCq3tksiJAwk69+rdb8xLvZ1bAgJDJskVb/XTYbjzVUjiiak5++ot8nKxsg6TjC/r06KbdbKQNbNCJynJD/tQYE6e2kLRmKFh24uz9Nnck5ZoRYThn6UYqNODPjnW+SExnb8iqKd6z/r3w/qqQZNlOLuL3Oxr8/ZJR9AsOqKgeAxNmSZBNOiRM3j1426U1hI5KEXX1N0Ey/C4tIo+S390eDg+BJRdCNsRg1eIEH21zJOWmmAWJrEGp7Fz0iOF0CtoMNPT7deBqTbs0N5ZzOVm+DP/KnQHw3zyCuGXfiW7+MXKdARPfnhN0C6vhlrlRBuWGbT4PnYn2u9odjpQqeSb/2Cbhhx6ikU76LZ/yBX1skjmcPyeXB3OtltNYWQh/vFaRS/DLF4lYFbnEwbY4/QxUz1bcfbsXAcVENfM7tnMc2/LpY4nv7dV6bHPEfInEl9YbGdHXbSXXvqrrMeFgVWjE3SLfDE1OxyIGGky6wgvMwDN5Mr8wvG9Z/C6YwamdOJY+RQLw6ymtn40eLFqD9cnNgOlqccBCPVsIxQuWM7rByKtZWcswG1YLh0fo+J1UaX7euq1wN1shvULdU8ZvXdVChrgaDQfGRHDSOLxsfCqtRRsh6/p3R5mScdsiPiSXx9hsstFIovv4QByY0NNLrZqOFEwAf/cOU6KU2bWI8m0UFK29tEc14nZTdjwBDvz6Hvs0X4QEJxwD1pg9VGlYfzl/7b25htbm0sBKEzdvkXxnvJnI0d0GrJYnvBcbiM+eUAGOGs1n6UfX5aK5OxXq5ZGniqPr4AwrrmQ+FCsPmYLUEyUQHaVdNq6Bgw7WDfzhfgTDUA+TCxm0c87zhXFFAKBQsGNIMs7b/ubHQ2jADoqXD+Tl7cgI5bKAT+lFYfhK07FUBfWvSvJvTSkBqBin/twd++E786tljpSIdZO19U2wKaZBS4It3SwENAQaRpOXeV0bCDj/xHWeqbids3xGqBcVfUkuPvPGa5iI6tvxghTPdHBSbMar4tdGbSQnCVVqVGeUTIWfPOuZoEJhB1NE3F6NHWroYOHXaXGVcGTP36rHL013dCe5CchgVojOAVOf/NfCEwJ6vITgPvStL8kk8amCefBP0mvuBKYQ0m611GU74ndR7IStQ6CvOyShpzfgBLf6FEE+Z49gwkTAN+xJ5eccBLkOuZIBQgBG7c6T4BTjGjTV20DNmE1dyhRIjx+P+qZU4Xqzwr9Dl58TyDGxS9XR35gSx9XzK6df0mawCzKtlU9uyoG8Tud0XyADZldmPM7vBMEkrPwT7BLM7sKyq1Mkl8eZePAE6xQf74EKUvUNKXPdsX08I2/MIMIaaf1CPGXb1SAwuLhkBgGcZ0xM5D5hy2+o8F3LOpT4Cnc4JtpDX5W3Vr5lRFd3k8f6nNBvadfCdfNuhsjkUiL9EerA8srDFCBtCXUASgMMkzXyFW+dElKfFxeRqnVtJMp6WRDlhbtjpEM507vv6SdX5JwqMbf4u8o8SrJ6BDFEg1GGmEb8mHNLl3gR5nq66EytDS5xkyhPGvwCFq5UK4sW6qD6uTx/H+GhqW9MEdTjoe/5SEu6tnTP4iVz8RJ1TRoI9HzSDBUoeL7OV1FURTjAZ7PCxBejHLq0y4+kfB8P+t/Slxwh9q/nFLZq68RS1UCqRTv2e7nwDW6vAulsSWgUXDjANm2+mrfAnvlbBLwNkrxqbTmnLB/q7m7Qf9GsIvmEQpWGkLpDzxfDJQxkHnySvqTg4s+SE/HdQ6+PJI5DhTmgmoRhZxSpMzw2ppes3So/TReP82fZsiPsyL3UVMGOXq3g3KmMVMwNnVG3qMNYvLrCQzT8Qw0p+3Pbxs6hdED4lLiVSyJqohV3gk9HwUJjC70mbRMwtKxePOZmKuboLlKj/xwWp2JVdpc/8YdH12ROPRozG8RdX75xPWiidPvkNij3uizOa/dakaoPC70ufSi59Z6224Wobk69DdFAu43knehIQOC4WkoeoIuNXZT8L1poAbjsURSACMcV0aCBWmwVcs7BfxmTWs+aIsf5gdnfnXakkd6fMRhfaJNN0ENYZWPZizwWNdMpG/TNncqo4aw4q/YMqmWoCGuFUvSK8+Y7KJZf/DqaXFgydx1Qmym/1tb+S0+rhlkqT83k0XIilB+6aKsiKYud/n1XJUFUrD2paQlmzAN8IAgLmlTDsj7FXezrknzQ8aavcz7AARNztOrySWmmtP22loQ9WbZKPyIOBbEJNQ7oMhSEAwGCEjZ+fAz3GYcICScEWddX5Lmz1fYOLrE75DnJPVPMcpH7+Kv139pBx+IyZVjyIVof6Mk9SMCHcuSXxMB/D0rl+vnGZuqF4lwZmEl5r5EbAreDMsVamPzNZEx7Tag++zQg5SCqN9+DOZm1MAv1WAZsQdfXE4HFyW/JrQbtitvKjsRDZRmuvamVPlif4DOGkV7bCJAakefFJn8fppN0Rhe/AR2iZUg5kmc2Vumyn7gU3hNZ2pc3xZ8kO/EaOuAzT/Pu3ReboQkLzitKvtIKVSE1CjPejE78PiWNc/m79hkO8cIbKG1CCWECRtpUf/zwM27OtlY7FGaRWIltDTI5N+5gVkRMoqX43QAcgnIp5bwlGDG521H31cQKjJp2FIFORsWF0NIX7+A05kburwY+2BURdo8nwIAQUkFTvolbc2AkUo5bsjcX8ewOb9/QstFhlSNtnCVGHr5aSwg0BPttdrs4jc3u96eG0i7BsVsHrPp9lhBMg9uff6ujIMa9HOIf2cppzpP3ydxqVJalBSQA+75JKrC3Ou6LFkp9xaAkGz50+qxlg9/H13aQmRFbBTkC5Z2mIa08HKsZmWfqRe6OTBQ5lr8NC9DWAEMyCJ8tIvojIp0wsPl04Zwf+gKuUJF3OcGpdTDUN8VhlB8W33PpQzBPi7dg6iA/W/gyh/bl6r+zIcrpgf5dKNYmoB1MQi35C7bnSZYE0jWWIYR+hLp9Ajc1F+B3TV3ppPoEaY69vZUYZvgNWz7oBrDe++DLuWwVsrpoAitPvn8uiOcgOfD19w7DWAvzo1hL3Ok5GKa7ms+KN+22b1cTiq2gJyllybVhkkVaK9D2Cf5u8i8Yc+gi9E05dLU6L3reFgN3BSnGnYe/nKT7HV0Gt5iUvaYMGIhU0245qMOl4qNAti9tZA8wmE8CReFIkz8clrjZweutKGCBKhpKVP7a92w67TRyu7NbdPPQHjfMQHc7yzBeq/p7YjvOg4ozsKV/AkfK2fIArH33V7t9S2thxchvMArX/0MqnKbLERlvAn58fCdg3ooHn8GcekDlgY3SZri3Q3bs7NHWuucjT3sBQyr7Vrgk012rdDnn0CHM5b/QSLL4uBgqlt1qoK4biXcUMuN/FUa8qf5/c3nVurxSRqH4Zb4yd2bo4iKozVIqeP8wCSQRo0aT8dZCqTh4eeYjLKLfh3Angpz8ibV/dG8AmNUcf/AOudGhBZVPUT/Enkj+WRZQFl0npW+kaXwH2Koh9Yj9KfHSElo29Oo6EVZS8VHbag1q2ZGYFMn0ERB09N1a3Rf5OVFdwcdP8iX46DhCJKCymyi4rk1BnywaaS95d5X1OMtjvgBpbrosvzW09aBOBscTHrVEJEvsTPCi3SUJ2wZocAL+8y9DWPolSCEJSIy6UQeCIihFc8iCBAW8j8e7kmyxAHc3FCPMdfiqJMbHlIls/jsJdjNC5r4eXBlwegM9KQovRT2107po0ZZk/S559on/UfDlyNI4I8LOaudboOKBCvcO0FT1T2v4+lmTUicMf4gX/P5fvXXB3LhgKRQFOplxq/PpyA2pwXSCZfsuQI4OpgvlMFlpHcufpBmAVekYRd9R2HSHR+zRS6hFiYFHmJ3YSUd8W1swyjnKNHQHyw3owEt2FCR49WegZkedOkP6ckbK+VFZN71MwOovu9TAUGnapZ3rfiwfWBX0M/iong/szo67rQZ6VEdkcYB6PlR0haRfWQJaSX87GAGNNK+aeN3VImYwWOA5ZQJJaIQBUPdNU/W2ozLbvcdENucbM8htFAz1A02gIxJ8FIbvGtrjI74YbjldpgiX3ma7n/2NkXpMk068qy2n4hyODIajUDU+6qbvT531yhcXlX9o0CA5zZ+RscGcQyZtsOMqJVFwOejyfe742MQiC6zZ+X6nAX3eFHedfKv+28xiFA+gdz5vE3kFOqiIVgRydYdg5gOMMhu9TkqZDAm973sAqEIKRZnMa6YxMEbIKEZGB9BCrN8cIOGC5m8cs/6mO/WqVnPMngNJ5fE02EJWjqk/DHeZm33OyDhnLSbAO/CUi3sUrKe7O4V5azDOddsvQAwl5omhv9zDrxTnmGvSXUTrC+kWfYUjVQDpJ9COJF4uHX1SkVGP2K/lErkZzzSDX/gLeqf9O1Lp4EIPVbfrpsRvP5fIMjUUpNe41oyINHNRVEFz/+WPsJoHZaBXSaLnKR70FCPQ9cf694KCQ6vUyiE0pQv+FA3L+Ctq5NZwfSCD/lWvf3evDnveLnYP2liuwrALzotc+uxlpyu+FKQ2+9H4G46lVk+a75kJyYfGQ0Z+80ypjtM69VCjwfBYmysPTrhLb8rJWz+9vTjX7dMpTpyAtSFgas8eTxpuqkXN6nHB0FQtQUJb1beLyxVzeRdZ0ownxizeG7lltTmTAoxhUnCR70eQD13VT2gjDpxsu60/QHK2fPb57I3rZQ69LyZ3++uijQyIi3pFRCCj2d55PbIESuhFIrHWTkvTcrOJJj4J7AK0f3J7wJGfksvLTSYGx9Jo9i2rBNkBC0mx9dGr2j3DLYgzps9hsL/VQ8GuhxX3ZD1+gs1SkOk+oEAmd2lcX+/fduEpprRGEqD4mo91ESqUJ7FO67XoA+YGDBMdH9W7fYSC0qGQjHX+NgqHwItEQvOWdBu81015KwboBx0abZI52dBTDkcW6rhoMH9gx71VdghdB37m9hkR8If2/+dBetIf9hXiqJFUKXg2hdfXkBaTpqXalNxB2aTVf2xqjfMCwU0BKN3vPtxs+X2kSKnrwUw4fSDLpUGAy55xH+VkI3115m4MgwfEsJ8jLkMUy+C55oc9C6kq9Di47A1Pnv/M/Tq8BB7HCXNEZbcXM8aeo40ciqHc3a/r6oSkcFU+bPxkqLMqWNtKwKpL8Q6MrzjUWRtMHluSnRAB5paprsZVJ47if/7J4QTbf8CwtLssXj5nh+vy7aOcargrZ9ehZx0AI5kkUZDdYrgzajNFdGYknhnkRmp2L70VmHuy1AM6Jwv5BNaDL/j39anu0JOw/MHk8UY2q53+wINrPVcce7Le/6rnX1ZV5l2YJZuj7/cZxda1dfrVubpfhQw1PoqIbtaUaefcEtrfC9x8Pt6SM17SJW76+bgPUm/wtMip3jT/XZPXH9ItGH7DF2svBk2bA4Xh4Proz3KAOty7Rj7oMqy5Ybj4RqNKX/NeZW0n2jGeYv5P6fYPp1Y6AyNDsDtphaZQSg35yK87VrN4swgesTfw8ugUoe7U7G//5XCb+9P5jXv0U+dhqhGhWYWl42wRGUY+KrdgvhCEdHs/rBWqOPbTwLjgmjP3m6+XJqL4vy6y8Fvb71dJPD/cgVTuSH+/pZbbEHUuGmXR4/hzFjqdO1l0lW/1lpbHm6jMrw1SzJtQL7gUl8diU0HsiNzExH+FcJ1HLAfRlECICyaQ0xshm3DVoQm+7rwctquWoeaEBezMudfgrz3srFRlGtcckY0j7pyUGFbxYeBTW0Jod5XebnPO9IgAUHUlBIFInSqHbU4O3XueRXMR5gP3msVuujp2qnnfAgTXDn/Gv22pHbtJCEHPIuOthbO8tAfnMMRiYFiNJbfsPxOKokb+MTzUEtvyQS5foIZkRbgqaUwr89b0Wv++I5gLsNaGcL/ye0CBHiKcLmsxngXdll8tvJbF+l8HtNBeZDrKYgxRfvvnCdkfKs9yPIqfgXqwEn0nV5XG+G5iWGsFxaB2ttuy45PRPfYf78qnVQmfDeo/iJ9j4kvDBbnj8t7PLd/2p4np2PPUytpGKFn1VfsIcZqLrC8Am2oU1w/os0lu/i9nZ4d7o7xP9pjd3ydv0agXpCIvvs3mbJc5qUMX7SRIsSJ71ccrQvjElxoIeYDkmjbSt/N8eW6jzXvnXw/2WmyTK7A65YRelURKeYJkosgZ8TI2hzzm92xVA0xbbpw1NF6EoJ+QDYyn3QhL6ZPHuzIFPX7YPz6cQYurbdz4lAQtt/idgUfX6nTCjIaa3nGv4i8oPMmm5nkhOlPzLi2IVXddURiloouoGauDm538R+QxMgIN9eIkrkqPPt6e4evQijqJdBMmIYTnhhqJ6fFrhYaSn5T1lnQlIiuwK62jLhxYVTB38KGEbfYM0XBbCrZ7Gd1aUX+ZZKejTU/qFeggiOJMY+COBIA6/YRwwthB3N0ZEsEZPXxdKq9ufbUZ0rTbTrbfxAhAMk1+haXHvnrwkQxn/LMgQx3hZoOt563K4SeBLIIrhHXgTrveTVxwYAh+fyA5xZ2twL2BTcnN+3NGELUqj8EJQooVdDIZ2oR5KRMAHf8sT5kGA+9S+UKAlhKU9tJ3Stdk+A2aXgepJs5EAIfVHBFPIUzCd46dmoUyRR/dWmFMaZx9QosVi+fjZ/DWFD78eR27C6u9khCdX95AvJFFWYbKROmuUjBnMNDgJZWJjQVv5Til31NIaOkP7UPAuNk2KFGw1pLxXvXy/oWEvEzcd5iftLV+o/PSGM+Siz3KI1WPxSozMgzFDXhSY7Jl6sXEaRfjg3TbPasSdcoBniW5sKFjc0cD2B87EspDl7KcuLsa+L6f9QkYE6g/8g4yD/yQowV66Z/s3EK2rFaeybSJVj9N6E8A7h8Ffm4Q7XE43sGTR4Iha24YPFNseYDvImzXvTO1ZlXFSCfGCvA1cvuerTsurpOFp1G19X1cfBHfvg+iDDtTs4ZpLm0FKjsqBK4lIyYcqlIbBslC2TT20+0AlLMIm6vLUZPn6BCSY1Vp+PwwOLrUNYPd/7R2uU+GKQsCCJw6gGBxao1FeDRnxFI5DnMAz7e/R1lSIfe5x0Nf+YfMTUYhqa6G+G1wrQ7J3L0d6/3aEWDRKclWCRTnPjTJJtWW/V4G7a9oS08qEMw6nHODi+JC6Fo3foym+ib6sA+Sc2E+9FMSSSCyC38RTCYV3nmPIIMRVx06GO9oNXTqWfKcld8X6h0v3KJRhbWUveblMH4sSoavpEaXUVPKPABFkIkk58sCS1LTysI4LKFit/v1osjzXHZkMz8ELzQFVUU8DegwUnCuzDIgHRLCGW6OMmAoObAKkr8w6K8j1cvFksBGIzQzPGdqY5giMPW4glyyY5hWDdLRzfTvQXmQahoVPExqmOltWnkvVmUo100zDoFiorNBqqHwnf/vFNjxf0+fZpb982/5bm7I3R10Y+K4SHedwaLf7iS5JMVQQ5MMOrgOoVLXDwEqRMh9DC1QiKjuYy43WxoXBlp+mx8astsbyROAvZS08e9qjQNHE4yBR/Sqz9nxoZVOIweiyHYsdNRtNaCZtkZIKLeTsJEbnlo1HjcfHUgjO/2eOy+4xVBblbs7PyemsyU4PXPP64LJ55XG5zk/JdlC01KlJivawk6B8DQmBMm1qvmXO3ixBvNCCa4bHir3uYLtqA6iwKG3ccTN27iwyWnSBEAbHzyYzobjTJ04cboOPzUTr76eMAAAMAAHdBAABJqUGajknhDyZTAhn//p4QAAADAAADALoET3AAiNP4jqTyg41iy+1enfGcoFq7xff4UL5Zq9HmneW4QrrHmsSIZD85M9sYH1cnKft7HBbwLwHHBGQA8TAzS5uDhw+OZydFycVbJNVrnWmnU5zGiz+Hfcmh5p76c5AQWTJdCBAjgpO8jjhjuTftJ0H/8MEdsfqDb7ky0ZC2QVUqHzxt0JkO7ZZglwqJHx2yfMPayhRfPJ5UfBBSN/qNUiW2KZLd/7JHpaYaf+1eTDxwmN6GgO3TW48pMeZGJLTYFqLt2JFMCpzIgimnop5CYAubZkwBPbVNhg7wMz/XAMeFrC5bnTo8onaMBozHOsytjNoLbBfHQeQ8PJ3M2ZnwLCT/phgMpjhupUjf9wjbGVQA7szCjzLBSzgQGAgkQcQqyYrYXId7V56l1dR2Cd/OLWR08ZsC+7GdsEdWyG/B0LizS0bpYgXJ97zBniPLGKeBjyxZ5wq75ufsX3jbZ9KPYxgwL+6xm5sJ2Uq1y12FD96Ym8bIg8pgrhywqhl89eBWIEi6WqtZ+LVyfmYWHv/1rJ2QfwTMqd8NK0reeJPJL24fprr4SmOdPBBNM44FBiX4bTTkFSAe9s6DCSoIWxhpWfwWylGGw0lLnmfL2+e4d5IYNQ4n5hrGC9VHfOwVXJNJSc3h8W6dai9slh1jq1BbFDBhc8y4FGEU8R17AMBvu0G/lXk7+r08Pu2EjGujEAdjItQIptWlE9LD1B8F/G+XpZC2otAtz+eLzWlpjJZMQDq/pwBLmblRoCb0+HxMrm9Tvj+/gPvtV4oQg2AT3kE/PSaRVPNiHPuovmZAIIOjBvad/LHj41b66baMovSA+APK87kgPacLlL8he0G2AZ4hnZBnw7oE43WYtrwQjlTjkYuRaeBoQDvZWO7unvdxXM0277ZWl2Vzk15USOW9liceLp/d3+Y66QxWbbI9i3SIrxTdljcOQm7u4c1jjaCYfjCYJ9zU/A8ddT+nMAxtAVmH8xjeGYMhQlN2CnReuNvdYRYT766yYQTuQBgTjQwKRIprPz/befpl3M12au1MSdhA+Ij7cQWJWdz9pwK9BbvezBaI/MvJUidVKYoICiIRVjS9R8KLfKs95pl71e5XTfaGqF+kwG5MKJ629uMayCxISSUVngFE3ZNGhVgJfnpp8CHMpjQq8QuD+3OCNpPFHawUrIfGJBNVSxV1x2leMvcU5H/RvqHcJCnpzHsjxPMy1D0qoWg5h0JRnKaCvksxdCEVP8twoUOQQfKZPU0/gv949ysAG6VvTE3S2fr8ItKduGFPTOu5H6/zt+9StnUKGzh4LjiUXajIbSCvzKU1HzaWvHYsxPkKnpLt80YzcWqblzYPMYwsIdWktFqhub9fJ0S1yEVE9coYBt6Mt5Q6qY54LdqviNSv6RKRGkDxqSu+Gqm971MRJw1IPxyGW0YX+jRls/1I0kDezBNy8pD391p2TEr8/Z3ptamuOllQGaR8nvhhHLfgzSYgvG5rGvZb+4q9QfeEsYceDm43UeNpEsjnKrVYrwHeZJi8XNEXmIteWFm0HmbGLdEGiuXSWhHs/9GG4WOYOO09Dw3IHP7H6lg1kzE823ovVM/hagmqjHlzyBYzDZ/txEQlbGpxQwFdEAljbJQPVZTdrFLeXRKaqdc53DxkCdEqRpIZrhYbJan4NYJtUoMhhtp2fm5o944u0QKv3J7PrTlSdxEZzeYsB7Ar8oPxHYV22ECWb4+1rp8xzs5QNLaehvfTj3b81efZt6x8tu11LZuv0ZRvKPMfgtfWHJpVpqLJvjwfM/XR1oqSw12LJzJYs5/Tdry/Ba4toxWnUejhj+mDOK79+f2ubkmhP8V6y6HQOefX2hUuPyERR7/+RmIQMOygqLI65sKw7bqnDkJ3RVQde6cB1R9x9FG0dX5c+J7SLJGH0G7IeQpwq7A2Yzediv/kJYrFaOnhWwrSqYHtaCFK4c4vNrGeWjdxAs8jy71RaU3leeiorh6byi2XZGwJZPzNGM7SVVc+TZO/Vmb8MJB1kN+hzeCQxR68JuPVYbLBvchAv9qLfSUuZSgTe1Jd+VMqV0CQuINl3RkBDjTxf+ytipTKjhXJVDz8bLdPpM7mZEV31h76f4hVVF1HUTPjhAWWOm7rzb3+CWxP8/7msjpPUFdd9Htq3cQKmxLCRBiXAZ72YuLL2lei5Hgoym+6P2tg/WPaeOPNkG5Z2qEIx/MegFZWgCGrUAp6J336S82xUpqyqBofpTACt1VUmie1CrwnBUtwMQoolOIfCYVESkGxC3XkYC/3bJgtMhB0FfnJRMvPFXKhrI31bj33D0LuTL6liysLrUz4PPZdJrX2etX22PANSV8SZDEI1XQC0ynJffr3rQgq3zCNdirJHwQB6ICe6AC7q0O/PuPvQ5NzDqvNodjVsdzohYWtTuMPJRnzr73uICcWSWecsTOP0XMojYTykGWocbuIKlb/rNOaDMy0+F4kW57Zq7VWMe4ArIYqWNmgLrlpdVsHLKhZORtGRRyOWk8EUa0xiBAPB3IXea6GrYNw6NbvbS2Fy884tQOXr7K5eTHmKQQvIPtOpCdrKnA94MeFZ6uvt55Ko6lqvTL6e/hMMTK4fJWvFp37dQmaAFsSRk23Oj8YXH5sxQbWU4yiDrwilbnnGlUo5Yjs2F8mIFWikSlxj0+BtuqSFt3boqOE4voPd/6y+yXhOy+ItZL0RMr1Gx5z35ANy/tWgfXXDTzoKIiqmsYwSMJ4M6/2/qpbbpLfppQLvZ+zhJMHWcgfnl7uX7fFZdJFeK/ty4cP/ZsdjOFm+NAPM5YL3eVtLdecDZzbhzlaIyjOO1XQyImrOmO8/Kva1kh5hQzKW0TeYn7J7MkrbMtYcWPNeuSgLLCLQ11wZ2PD1qEiUyEW2qM2T2pyK5WgFapaau5ozEy8893iwAGpSP0s/g6SIqXnHmNkqGlxB4YCfL4q/lfWQceMI0N9omlxwePr0/PoOi7EABLgNL0xreRiRUIrvLtLrsfWtF2ayduMSNDBWH8GfssDhgW6zLTyTVTP1z41yL8X7c86c6vTGoiA7634cx2lNYcGQWYkCEcfojVaXTBUh5liXxZOxe9YxKthGMeFtAE6aBi2hOzL0ZCePXTJcOs7hxtT6DegD93QYI40WTv9XVu6pO6VaYeAMfbFV3wFobYK/jI/I3iDjglfvhAk8Yuk+5W+Mw72GTVyOdIuxuB8D9In9qS4op9JiOoH6L2cpKv9Q5RSwYGnQkhMe+j/olBfpYn6ipfj+RaqmW7bfG1GaYEMorcU9m4lD66zOkp3wsbptkePiEy3sX6K61vQaQ5xzoLlxaYaw2y7qgFUH2Pa6xQm0hjMwCk0rKhBDLFWo1t6zl+jG1Q0vns/rEa/CWN/Z8JMZqd2b4tKyn5O0psfnk2cNGWwNzweVMuaYcY8boXcljgt+3Evh8Y3EaMLpu6APTSTL4CBxHlOxR5wFkXRzy6GB6f4B53bEED+p3XBJd4KDi2wBHTFLebGfqcAf5D0dsmKxagThe3JDvssk62uEiWCwky47walQCuvCsnySNqxxjg+HGuPTy4nL+MoVTwsbSmzIeseUCVK+pUcA+gJjpwjtRIxQ0mlx6rfeuen8NYMclm7bna7GjLOy0+DnrfMyi8g0eP/NNzyCjvemDpHpk4c2sxCF9+Wczvj1PBwOBVKRmCZVX1eFJcsU72z8cbCZRULUqlFYJN0FMzU2fGf2t2ogYdAD5thvKGr5MDEC6lSVok3omXRLRjgNfIhKP0F+5SfFu165R8lpUfMMKPjXBm8wcKso8zdyy8UnY15ilmf6dH4v/XxLBhhC/fFmiUaGTxUrCSLoXxHDvpBUYKkjv8pri67lC5aM8IArrdb34xehJkwrfEzSslnObZw02h2FhlScPnyRcm02otBury+fSSt7ulIZy3K03CWBIOPDdfwV4278ife9AmvRzrIrBGPatGTa6PoAJeUaJrFzeuARU0X+BKIk9gAvLFOooJ9XftE+dgWjwVZBwk0GkCOnfuu5eZfLAzdGXjll6rDa9zvy8nL9jwZDAaWiqzugLHeCy/L3D8d1B+SaUvTQIFce5LfSCdQCG8GRQUku7+V6/GJEELTBHGxkejbD3bPbv3q9Std3Pxscq6AHAcbNdzXvZ5NUFZGpx5SR2icDw0Sxqz22eOSzGTYQHlziNz9ZUglvNYtPWBTqy0N/6SX4tBnGVOpcBTtDk0iTvsoEY8rPjlG3thtxLnadWmY8zCrg3rMp4fTQKaNNI+6lLUjRg7wEEHQV1rn79eBwo4Jz2cG1i0AcXegmHKq10+ijRWW+xCDI+rfml//3/nVbusPGzirxOChXcz6cGXMYkgtSjqoUWRs27DAjPC+gzBFi5VLz33rzn6r4p1jkktduC1X/EEafY5iq+8v4THTDbyJBMsQ2s7Wl1U1OVclhIPGkrxBE+YnsQX6t4YRDrwB9mBia2GRKFzN1E0WY4SA9ApLDb7QpWkzX7Vi1HPt32YAc4u/CbGwACqoiQWugm4vevZ7fxnWVdvGvUN9rJPdZm+u7qqCoY67mGHU4MIb62kjluzIT39bfiKXAAle2ckLIbnYYpb4D59KDmw/9W3TA9RJWDxCUWMDe0NdLFWOdUBvPqHYC7yTSZT3uk0LT3ZM9031ELCkrLBpBWPtrvMz713zoW4Xc4UTrfMfVGwCF3FYPi3G06pms2urDiC+Rvck6S2+COZ9OD+bTx4Dpj1w8cPpXMxnYKB37M6qeCXTMYZtbH/ktaqvzKuwKNv+ydVqc+pNnIXu7DmPQPXHGie2EYJN+a0weOyDB2iI/1sGhacjfR6wd/tt+yjuyxw/9zc2q/KejIlqcSQgZfMzuCg9CnxXldn+cxvw047dsx+S/ENF+jpUnXhzs4iHP2VL858qk5gdX6R2jeXxUeu0/vTTLStR5BfqRYsAgFtZng58Hfqn6ZiNuYQkYYle4h64cpg8DVEDSpOP9MnawQF0BPNQYWNAK3dLn2WfTiEJJG71Avgi/NMb5bNxfckfv9Dsl1DJ3YdDAtM0uduQtWMwIGcSJOYfT381LLGBnbbZHM3F3tDJaJXhlsH52H5rcQVFYRcZscTAlB8qjyJQiu74CT5dk3KwXIxE/dhZ0xJDTBHfzV8O/cDQGB1aQgKusLPWlvk1KXQLWm03J+DwC89y692ox7PtXJhFjOMkH0Hx8+2keD7Mez/utAjZRt4uEee5nVzkYtQKXc4Tc1sS8E0XGShyXz3FPH9kRFZvriJseon5fuaTrG3zhAXUVYTwMnqlZjtOEedVpjRbll3v/X5Womb66ua2aX2KDf+CtqkQA5IXxpePWSB1LGJY8scLPBwy64rlonYfZy1vDiCQ4b8oL1K85HYtmbeDHU3Fl2iqV2mgV/NLAF80GUHjgHc6lJ87m4lE5gRtSo3SuUHD7qioE7RQSrf5sXgpf5UaJucce3SAwyE9N64HB6eCKqOE7Ld6kseLHSh7KmFkmc86Rd9KlGzrmvaFUVVH1qKqkiXDmphUhh5n6RS6c2bzWqFBi9/qI968UKza70Tj1GrvlRvV6FpgT5um//gfRlJrspZoXUhlzgYC36oCJbwOJWIlQms7OCqVVcuNiJl9kzjeAx/iqh6Sijd01qqN1t5ooCVjztnoFYmAm3heH+lNW9iPVZVqz2cTqd1pVFDUtnfyqR+nFaKj44GXGnPOABtDLZUZ2/xgkKX2zy6HXFl5iDMzGLQKV6zrcIFSO2h2tz8axJmuF4RWvTxOi5O3vRSiAXLmhpcgdBY4NPyUwjJxyL2hXqu/XEeGjKrh9Ljal9ZsIaiiUrNQQ3V8WyEULKqo9VDxW7NpmxA6H2UUqVy16/q3xllmzmVC5EaCNwPrZ4pmUYLL3ek1kg3O9BAP/1FHFUbnRk2ZAsaReCVImbyfbR++Gu5uhxf59bNXAlgc0/ixOBtfvZD6OqUBgPkcxtBYZRuI2OPVS17HCOeV7l0aWQmk+FnYTC5vtylaJ1MfQx0smSG1MXtdsUHdfVC/guAhdZj5Ftgc0Hz/081q1oPAclJ6c1UCOiQR0rIEcV8rwefT2AqF0xYKfxWu9MOALThKFPpeGzdxDDqc8lKmWlsmaTwEWvkjfzyo8RJRhsg7zRDUHYtzezJSQLAU3he2USXsMDDTJNjOeiSCLPg5XqsSkJaGlt92hb3jMtY/kRYjDiVXkQId1e5xrv4aJwdmi6OgJ9G83Xwq6LPDIU/2AZUxWBXaAlcQdhfiTHbNQbdQeNV3EFW3yglDl2wxiZaY2jXuXArGRP5dfKGe14uf+UnFFhdRYEYjmqKH4V4fYvgldF/hOBQpCr/KinR8qu75Ic8fmgz1aOM/jXQgjE00LcjlCFZbbQALX+DTtVGUh1Atr731kFYdS8FKmBp1WVzFurgzyVDqJJJ/M2OImutGeJimM7Q2fs2MlI9eyosTu6YF4NyM3Hoc4PsvUK1kHRkheTEB2Qwt/4hRhb3df2FyDd1THPB2sTWwX4jXqjero6SxXFtwoTu1RyJENq7pwRswNnW68vapHYNB219e4LQ0tQwJ3MtEpMta+hRBDOLpaGuFk2wiM9XkbjdYtHGfFTy1pufk070h6ye+PYS1ub3xzYhdAx1YDiNTaTHj79/8v8IPQd9nbxxrr5HMuTD2ynG3W55SkwLVw40ui8er2b2poxk2zdJS61UHYeF1Ho/ETebk3KhXaHNjsroLIveKmyM1u9+fakKUNRlmDQz/N5KoVPE+NRmkjypxGRG/PSsAHzl9XRP5JXmKRZQVaaqsDMT1NunPxgVuwJSd4vyhXGHWTL3RdSkITwuDRteffFpPJt9grPZvMdofQbdFCnXcT5Y32nIUXXKullV5qjO8ZrHwwWxCtvHM3Rn58EuIUrtoid3IXGAqB+sw+M7G3bi4QrwpTzOnQfiycrTvGgF1ri18jmta2ZQmZKs9UJdsw9R07nCXd0mcA6drzlfTXdBGsvoHwpgk/9dc62jpcG4ImLtgA63afPcEmlZKv+orszXcwXPLivyTci7DctE3S4RaAcz8MgpP5fueEX1ZmBmBGgyMN/nzd1ZlEEeom6paLFXEkxe8kVBftNtm04gY+27WPhmk3brHZmtmr7uIZnVqwKwdXlC2b54OJ1UJz75jkV548dwLusS9LH2ll3cuprCzvg2dy9wRvz+v48awbrTa7Yy2pAKoZ5ho974j7U7YyfY2E+8wFQIwigzCrJU5a/+vF3Jd8b+ODsOqBhosK1Y+KOe4hluz8suS2BN6P9IlbOywLqrasOgh9eq3cnbds4RaHNXmR0sw60fXxRfd3gMtMLvEaJw9J6kARgj9RCOdhtJBh3ruuAtTIAiuMZTObo0S0nJiMCyVQL2CaEKhsuVWG1l8kEQWuLirZhgSaZv0KaBqVAvcqAf2LgyZQV5+GrrMbdBM1rZJv7zucc9UK0J6TU/0LkXeVteTTJzV75Q6s7P6fENDy6+iJ5sKfKPxK5n2EIkggNYf+pSdDHY5E8NbCyzi5FWAXju1TGMhx0FxAOKaJPJs7IQY/nGoXI9JjkG/EzMpei9VodxXj+2VQ+Mb8nOGQhPNOLOJlTwwROoV7AdCo/Mh5Me6YDR24HRX5OzrgB5bdI6D84UHo/e4eCizpfYx9DtS+DPy7lL/RCdxEzNCJcCQ4Z3AspELKr1OaoiZUESfWREjv5Dlhp7ErtT52HSVBecz0ZCS43BVPPwj+Ao3cN+jr3330g5ipjNc78p8OiTZy9QS22cmR83f26sPqrr5dqffENVtQZYmVPXTqxeI0aNrzE+bn0qczj/WXUChemG9XJ1uxQzZUFTV6yI6RqQznkCa5x61vTHvw/zleiq/thTLyEBsXsUr035MHOCJ5Uf0W18+RGwK1c70U7qFUH2vs+oDH86MK477zFhlUgNXkwcvE53X5bLZqJfyhhm0LnTdZ7lLnRwV1g4ggJ2awQGl3IXraVd4p2r/mceXzhH70Dea9Y4JRhLKUp8yUbRYqNUR0Il6TTKUZzRIc4QbLNzMOeSYXlLJ0QMsrB2Yr2qHWKXHMl4N8Y2JE4vms661ozRyLsh3rp9iaNu3jnOwCkJU/ffCpnkg0JTDrU7B9LliOocor7k3MmBChrfI7CxN9PeLzmUqZPXqpE8w4lToOuDac9khQ1d/t7wP9AcO9bos/5/1GNw5zdCowv9vjMrM42GuF7/IAKfZ+edji1bZiOJ5H/fDzyJaXhYtMQUdJISdvzfkwF4raryoRgeOgeu3hQgTqq3QkpPW4UDM0gYcET9hXDpwjQecgZfakZzkaVtbVNumudiC37kOUGsvgcWOvFjUpRcnYZXjfve12hbf3azp9Se6Z+M7EFhtJ/rFNOoroKtm++WMLVX62eVsrFVKKrLEz/KAhIztTfjRUANusXk8HlcegdQ5JV6ggqn061byINYc3e4eIYmc7LjZhdvwX8auO3gPX5swPnt57YGerfvh5zFi3kAnBDWlMTcnYpBpJzvKfda0JBl3vHQZng1ViLKB4GHMRFQVAhOM7+8Z2Lv6F5OtxI+lvebO+yC32sDxsDaGUkDJXi+27hq/ppMyf7H/LB3zCS6IJtAHrhwSOanDI/dq88uZEN7EEWBPBK5G/lxa/Qe5UT6WzTp62EtMjDexzZuvWpI6srXRyh9yxdPPdp/NlUDpUm5aT+vvLjYpVXwuNZXOjXNEMzwHDGhs5Fk0FaW3uxRdZpdMNYk8uPag2j/tgrtHdhzoWzNaah/kdpCeE+aJ/Sq6bQj2q5BGm8piaH1K3SPWcrVBprs8z/AyXhtilvSeZcadItAFNdrtpjNmIS4egjyJenIG/3qkxLWUUTtExedsc6yzNYJlkM9LhoebcvvWX6gpu/YKLmr9BQAmj7w2vfUvj8TTeCMrDnoMz63EGcHpDiHKEcKbNgVn7yzUf+vM4V8X+wk+vq+s/OAOT3dtoTJ+d5vnycrm3qlTWPlE3ydnUFRVMEUpyp6F27wj5CIAtZvRKDhZ3dYdRQuZwR74S1lUIT2ZRA2XXNf6u8IN3uj94k/J4jifprwklEsMJGic/w7RUbLCE6iEbkQoxG57VXTVLHx740chRNwSCiKluO4JVdDKtcswxIuC9rfeFSJ5hzGI18mrDu9tJxLsbXXQ7Wp7WFVYQ3cWpHRU2dRRhDqxfbFxYm6i3vIjhrPySY54U5vROjkE6q098aoZ19mWmk0vfBOJGmepnEUBpsE2QptHV2VN7WOcpNC3o3+B1CdTG2L8c6JSGcPX0n+yyH3hdg3tpwQsUI0uilTQ58Yo2bc/lyL3lw40RDKQ6/Sn6yWUDhbJU3ipbT9PWgepvMBfljNeB63cUEmtHchW3Lycfw1tDrlj89R463t7sbZyqtzRxyhyWTb6pC0CPhIfjxWoitjjA9tOn521a0UFc/7dmMmImWBVx7S87+FOmv1/6CpIDNRAw3EjGV4/Klp+6BQjyvy8JNF//SIKeu/tJVRHkSmnAI+fZjxMalOUG53sPEkLrWqr+rznnOiqYbUlMTzrE/8heEcKt8/5fix9MkLXaMFPmtsrmld6mdoeZnmDNfbZfUEh5s0dbcIs1ycGfYPRX05ZLlyBololyZy3CRYXdaQAGIRWsonCtghmJPsKBhTnabSe8CFBg3ihOtn6oszfKxzpTttImMryXGEL0BL+XWp5oOoYPR1UTVzXhB0sIJa42rjvWJIDT+gP8bqI7R3XaV7+HbMMV1iHLkqY7vPzkBKewReQ/9S9ko+hJh3rcIjT3VFNr/NzmI/KrTKNSU8z/ZKj48V2/VtesK8vlNmFcvSByteFjEQr9+Z8fDx2F+refQrlIcgmKFvcAzXGG/Ti6X0xozhlvsQKgXJtfERYBsQ6AQEmAMYTphZdZM9fS9PwCli+7AHyw4pHq6AJJ30MdYaADsupIwaKMKJBdo/VikRYQIlTR4U/HEqbxcfYY/Shm0+A4iSWxZZO3NPRTgKeTaj7xabRVXIJsCs4iYUmcnIYpBZWlkBEu9vJyb5nQ4oMlfKJw3dSCLAtuE0I4Tv7mXLDyqdt/Kv9aT3sXSOmO87rMLOfVkLY5Hmxw01h/s3tRJyb7kSGwtUhueM6vxOHnoVhIwPebcvFqJLRZiNtoqOHvWRx9C25n7GkN68TSdH0klVAlCALNz+MElDJdb0EZtFWCa+/LGHW9xP6o8iQ3llZ0PHiAJjE0g7s+Pqegq6SJb7F+9REe+QAoVQ4aDrcfdY9aH8YWJzCLoN4wtZR2MwnDVBEjqw0vh+C/UjFewQUyz3ice5ELhUlgWqONQ/8AYHmUOeMBp+uGd62hhIa2BlHwEhPev8sxvO7397Sh4Xs0xnR6BoLZv0IMdBrp8jsJzdwlg5ClYCxHz6ObGGlV1C0607ngMqtfsEmlawD/lkA0p4PE3161AQM68W3UlXAL6Z7p2vHy/7XWtnlLuldo9K6soMidt+sKQemaixvYUxJOPDRPtcNJR/dJhINwTO3/KQ07HHUNGDU2QArFSZp1cN8exuDTuClA51p2i9p/s2i73i57hcTIEYbMm38Ke0A1S+CjjVHRleZqcNo53T5r2LUcWKFJVtNPbrCnUeGrHmiTBJkHheSXMwfwQniAD1t5MW0wu8bvMgvKRcZrFStS9OmV5mUYVRubQQrEq+x1Nf7Y5k+G19IJwAKqlKPuewTPsWxBcHjpQYC9L+eyeoQghWoRHI8SN4xhkOtlgFnDiRb8uok+Mh0spdqLMhtVaguk2+vpituWiVN9Ay9VepqmFsIp0cBhhOv9q7SyXdI9bBJjV8DarAGKEHkCaOmxGIiLsgoCJrOpq7GJcK8jOdVEZ8AzZep1KLp9kxH5T4+8bqBqxBoZAOls14hDpe0wzGh7QPlmerFNhmEC9/H53Xxy9953gJj2f1X2qRZU/ZrMNkWrfjRz/NwK+Ca8pfZYMRRhek75zbSCb/joTNfQbWv6nwM9nVnkDHM6Ek9Y9bm3/xWb0bzL910mF5wCfO/pdB7yQr4MiNe+ndK2WTIIbTVe6msBXU9oAsIeAsLgW85O6iv1byrCLK7D5tYPGs1wk4GYaIZ3QVnTc2ypGALAzFIGJwWPADSdv/mEtWaeUZjl699oRBn9AEa1nIkQqaV42Wi4L3eBT/cu9jAGH1K0r8xa9Y3o9xqRfWzfxlpsRFKi03MM8EjxHdzQWgxw/beqIngkh+7o/F7nP869EOvv/oiBAAT7blkfHDYqtZ8p3iTbpCmqTGunXELqb7aSl//kKBijW+l5AwUMcLJvu64Mjo+wostYs0mXl6qqwCFT/vh6tCiMr+dLz5R/UUdP3CwFO5AS0XIpXibwOkAStA82+A4sWU0rgjuuX73lXgE0h1XmvnDHBtyC7UWaJ2bZr/+9hDziJzFGjDLrdeGCfYwHCqkoRKMxDnrCEt6KOeNs8l/QbHAEalmqxjVJKVXsmqWDsMC0Heljiukzcc4JNAqb1gbqu7jynRCxxM+jv+6MSn3ijlnOp6s9QDQfaMXMIxWb5ot8lKGqQShhN9ZWSQ3gf5pjDy9CcRsGVhytzIsBCZ8FIipssTll5NMiTc5zKot93Ru+PwfelWTENAvrJVPWsc4AgvvGuMXXulHPuMqUbfPQe1HF68XKTuHp9hS0gj95MtKPzPvynNYG7Tp8wSJkqvt+KOFKDI0CazKVAPBdXe4DCptg1jhLIwi06GY0P+4j1wK0I7PhSsklBGSS8nTwpgw7KNcAM+g3tM+N/nlkLn+z4NKukSB298ntUHbjreX6kMiC28sCYYB4S621QyZJ8SgGMq/yukmWwb2B+2jdTnB4r4ZImQZ/iJj+dRIEtrOTTSqcBUBkuDmco5LP0ZIZ1neHVXcdEp0MFjmJC1uEJU7x56JnrpjLGX/0U83zctC1bCgVviy+0cgWhlMGejO6F7afP8sNp3WjDw/wySqDitcuWtuUdPc6BVfAiiDiMJsVyGVWmMOcUCTIZBqdas+TQ7My8pPrK18ApTrv4qde0Xl5ac6QbrGkzp70yi5AjnM5P3G1WVl0AgVtfREbwvrZIxHX1BMOo7cUhp72JG/VoMgVheay+U+PN7Tp9i0m88SIC7XAre8d2xJVn+TLHgiQheR8lRSykgMqOw4kT8JAnb7wNitKKpUxQwfCdAJB/5oIkCOwzFAdyjp/NYUvcadgrevHRt0DiNEPuLnVhP5Vq++EZf/Hiaw1MPKJHIWKUDUjaI8iZG88eAWECmeJ1WN/TA9fvDH/BhAHCZVVLKlti67mJftFdeAQjXr4uk5e3XYPorQGmvTfu0HIJG2AICT3+pPsScjzc5saAoY8xrC5gHWlN1YQ/wv6p8ayUdi/yCVZQLi30MslObsLNgWhzrgG0U9WGfYJcLPBLO9N0JZrDlas68h1kMMi9nfx1IEfmKrkLyB3SzOGL8qwPtJlXkHxL+QZKyNV1HSPFor7sboLyf241nWdl0vofcAehsfTq2DgCDgI+l7SZ7MVI2Vl5lxi7w3YeqKDlzPJNTUpAdgP7U88GW7ZXfrbIz/emuiu31QtiDvxYf7QzuFxskMuEp7oAdpYv2IV+hWoTyoRvwZfp17h0cIyzXtfJXxVM+3+5mUsQmkdnHPQV19on73Ucc6MeAYmaFHAl5fXlLQ6A9a+veK4CCFs06mOinC9qw/1rH4GRLEZEtYZAmRPRICj/Z936rAZuO53XsTbdXs7meqoTRXJ3ALHDrMAA7ESUmz7cYMw7NGX/jDKeuewSeZqEOXXM35Dt9TjOIPmdbkjnB4S2zj7boQ3eyJy44Z0f26jfdOU3EberGojgBA5e6em1HH2T91T3x+YFiaEcsQN9qbEHt8sH03PmEsfAMPHZidTIA5ZykxGslOsjT1lCKv5bxkt3i3gCjCBiLm6A2So41MNRCCUuHbTCO9ZSWgdT/nuT1Ha2C+wWj7wAMcxhOBLahreMiizPf//m5No20ZgRVuY8+Pk4Eoot/l4TluaBNqSNULYm8KnN9PvnaKCNaa7WgdOnmg2Rk4sEu48BWlwhJ/rgjPVUSPsOgb9W/P4v/yN9bAn6+2uqvZRc6ehOv9FyRhNl8fHcCvr55bbgYd3BLaAoRJkL7sT5RU+Js0gwvNXH+V40GgZ70SICMNtxUOvsVRB3m4fiDzFrl07qTccl/5Ydl0Os2NQ6Jpu/Co1CnggSZgLGzFg4HTBbJj3GbfxWNYZvpgW/aMS6+/cjuQTtQKeCKknPhshjacBScmL6DxZ/WGuJoKnWCZB88SoUwnCniA2z0zhdaInv5pT2tN332dvNbnE2TZTTl3SMg5NKpffaqWmKupQSUgi/AQ6BmnGa7XbNAXa/SV6Ec6B2pZfAX6U2WE5eNaYBU368novIQE3aNurRrVz/SH4Usj3UjJoI1jVE0m6PYBCznUtNel3n/9QynzL4Wrn/jjIBUYoWUCUgFNzRMuWTZYH59sHw/k4/4fjPbUZ1CsGJTFDraSfraMcu9EFbjkOycltQQiXyQxPsZIDcj8mlvEXJJI0cv+p7cm0DFMNTr9fkh0IaV36ZKGffHFkQcbxqoyLKo3CgMdKqPvFcdo89RwZrTYuzgdj1CVVwXnw137Mi5qJsRpbZZYnKbGGa6PFkfJj1yY9cQqaO4CInmrWBZ3PxqotzAix4TPHHEBvqzuNlpt+2ezxmOMiLBi3DWNqi4FNcErDuKH/rCi7/t2ArRKqsO/flchFImUpu98rrO21bXWFWibF/9B3hRZQtsUIP9vxV74Ee04cVsqmD5kb2V5Jlyi0MjqZCBG9+EtbEJ3l1TWWvH6HiVVFwRkWiZSjhO+SXqwu0WD4Oi8DgBQskYQUk3owW0DiyC8swvsG5l/ZdnvdSwoBaxnCRiX7dYwfCTcT6SDBD3u0iAhM4lM8kOqss8tziUEFc9Ql/Gzs534k5GIU1nzQz+4HI1Nr5dkCfow8VgCODhrXuTSImSzglHpyU/IQjJLNQLx4QSGDEXf4Ifd7XlgLqNmvclCS0UWELbiGpY/5oVgze4kGLqJ0EB7uUAfy35h2mtXV6WJzwUh4UK2H5asz1Pao/9WVBbIUK5ipR474DD5/BCXRFYXyhv8qx3xHXWIeLyGrdbcgPGb3TbvAd/TmYnHJFXLOaFkLTLeLwDWA2mBjjGA5DkEwScLyi7wnUa75jvxxkrvvgvSm3dbSz0l/vicEP2HqCyV0oVTnzq/ujm71ZDpyHheCZd8O6/8gqEwUX6rPuNrnBkFOuFIPjYlUlC+hUc4IgwVpR9Bt+0KZdISZmwkIyTyI/XM3uuL6GCRkfuM0O+far/F7zVITwopcP2+6R8He1lIMa93Gs5QIdusBZF6u21RxQdmXDQ7ltoml5Y3EaSQmXLLuN2PCx9wO+p9wll3IdOPQAPJQxs9xh+Auk3qyTG9j5/whjxCqyeMVUbpjax5sNoZRltYPP3bjIB+WqjQnmZ2SaeBoekmA1PmbmceCvlAP4kIm3aO466j6euKTviDmtJ3+/tCVGQyU0OdOxWqEuNuHJ9D/heBfrE1QULVP44KM2qPcbFSJrr1kAoZmuiNkccB5ugikLgcsFZelP/Duf0Cchlfx5F/TFunq31LMm5TYdBDY57xQMDos9FV3azofy/NJ+SNIAal/aJWi28tH+DK/4nqEPpo9L5/N3ztbZtUURF9WNRadgwZca2UZWl816OvyqLGlRRsvsa+ccOGPXwutVoz4o873LGunusjAYeNeepz444HHSPQBRJypdvRqVlBxCmCFyobFYzap5KQqLpzAxz4tljNNyEI2eNXY5FstHXE18toxDjMG6oxP6EMbKy+DheYMajQLTLmdnmydSkwhfcwZnnUtgctK0QhSmeKlZYeqeUzA+b+0q4+808cUkCGBt9brQfDKRKJW6Gfcbxl/3VKY4rKKZd2EofxO4gBRBPSPrUPrDsNVJGCte/tg85iaMNP6UhyeOOqz7KxNF7jcEREBwKR4Vghr1Op0R2dWFkR1kao91Ayiw9uFx3WwR+pgrdCTZTB7HeKEs9Nx1mt1167/5ikFJoqJrXrconpOMZnk7c97wOHi+oEs0jDD2BzxH3YJjRjEMtaKdu9nHt/GOjvKe8THiFJcjr56kTXlT8RLocct7UqhXOZE7eI1Bx0qZLI/pYiK8NGpHzpoXVPWSKP9lXw70tRA51sjbvA6TmlSJCyKNEjIj6zBxz0loNSH0Rf0+jKTZ4wu0Y+mFknPosNzLznrUM3Ys90ocnlUBhaDYgRVx5avR8IdWPxD1IaUlN1WWRwLngrW9+IygubinsEpGNCyBpDjgiBgnrJPCGjRAZu0lZr/YUnSnNiWGpmTMHlGf8yABOT80+R+MUc6kucsIIyUDH4dRvlcza7nhuqEy1S430CI6OOH8FGBiLFU4UR4meaFSykJ7p4o1A0T6aMJI+mQOoRL96IRwjP4fVyIM+lebCoyTM/LWBDl36ExjDe9QoC3b7hDN6TKpPNOUUs9zGTNp/VDQxNBn/ASyr/SyEBQZAtyHt0jtnHiUR2BJzbrE3C5nQNaavAhisYG7b2q+gLzkLfM+XMr0xZwhi5p39T2228mRQfyA862O/l0600M2aUvVAr2SGP2yvSEKvmM2XVFs7sECPlyULhBycc3FtUQ66hZfff312QIVVTn/S3nn76ErhxsLc5HFQyOCt5gFESs9wJiG8Yxu7a3zsTm3G4oc2uQ6zxt7sZXDMMoo8TzOfpK+nww7F07Kl65nlGJv1uYUNnhVzN4aRQ+OlC8650rj64wJeWb2VAPVU7oZOBNjInAl9+dNB8tXblgNzI/iwDdc5ZQgFvMyjkpho3laRuQrb5/Amiu2DOAg9L7s1IqWoszrxrCeCrzthAaNHemXUTAoxw1gMVWcJq9E1repD+RxygbwIzqE9OpLYoVKk4IE5TEVtnZdh7fNVWvPWAocCb6HCBN1DNMcUEWyiwCGUcaTS+iWIFnM7bCfg9yB9Rbvqlgi0CUbdhDGCcs5ez7aMkv2hTUl6osouSH4b7jcoGkOUC605vVUjTChPtULpPeUg0wEqTmIuTfgQWKB0LPQ7q9Pt6trwQbVD1HsqrVGfBc3QipnLSd6gcudhRXG/mH7rw73IcBLC9Bo/lBY7EZv+9z+34GdPFkXSXjUs344IKBLLzChJsA5aYgecJXX4Gaax/9rnsqTeT30XgFtXv1SgmMqabaseT0/6fh9LkMEySMu0ppQwEBBshyfQBACFXlQ8+m7kmMoehW+sUdAGD7lFdin8fR278cZWuVdJdIzYKsrYYZExmUfM8BcbRbqRDOLpyhyxyDfifjc3lkMcZKPlJP7KUfG2Ad5s39soaXiOqvp8reCOhE855Z+ypu7MvsbIsHofXoaWVlz6+w1iYgq9a9GDBRbfkMeLJFN9RComBmyTHKPbKgk5+kKdol/S5bUz7nKt36Lbcjvo+9cjCZxclPzoSIP3jAjEbSUQ3O4nlh7chsW3GHx5YGpcPeiDcP+sEV4x9wO+HrKBhSK6gj8Lo+cGOr6WoQanyqwJs5BOM1Ne+jGXq+T8Ifj0nQRorrjU/t57ygkULAb5Vru8Yv+0u7No4XlMbVFuc+pzue34f0xTUHMZtwy6ojQ06edoW+EMdqU2XsAzLtztf/5EkVzuRaGlbN+uSE9ftZfX9K3D3HQYZw+VuAYnHS6rX+AOq50TCpr0shgUnelaiYiQpl1D7wvShaGO9f85iosgnEWEagO3RvJx6/47scAIfqiI09vVWic5mnjbd8oMPUZ5rH2gFG91KXmAccABqJ5RbDEE9zEi90EevTn0Qe5Ad0NZcCQf2hoCv5KZI7liyGP5W61E0xgmopd/wa1pcX0bqwMrPpCgPRZEb66vGBtu+kN+BxBn6wdeMUKNI4qnOnG+D9dbrIrU1leNLBuhQ/czaef5VtnK4U4EMnqeZM2wNgsH2olFxdzVWQ5yAv9XgAcraRBjVIjvCJ6gCjU83QE6sqVZagl3k33VUIkHDtmBv+pQcF7lHF60l3qbGYWw050eewTVccGjRW7Zbpx846jusex/xI8klBG+iJqGQup+5vyoPw3PCLLpXPxYLxtxWJqNM2pS2MBHGx6TmOkcUeAFdR2GsrcFD8wHJg9jeGllts8rK9ErDXUPW/nzzgkHCFqFjWEU+d6qxJjQG6y1O60uljDRqCxEm91VbzAMdBYqh7F/ql7kMG9JvpWs6yAMSNXubd0cU/qFQMySMbr8CEVOK04AgqPFWJOGSJrHm7nRXcc6HxvTeN50ws6YF2PR7NdkdCFBe3H8IhlgNfzAnB8PG5njuosbbhM2gQJQwkEoj2EnwYPX5RKJ+QKvsJKXoytyNT9S0yC7WGJ6ASZOscwL3yqrm4ExGnwCM0HECsRydKKKz/rHa7GeiymluG/3hdfuq5vtcUYbtLbTBvScjYgCmYnlrZQxYcNf27CiJ981+XfDVJxXX3UF4Td3ZJJ7lYold486R4MySQaFCUn8/7AX9ddcWx6YON9iYDXo+8P2JYSTig+5ZqhGeO7oTuXaoY3QH18m3F10pdpYceah/jxG9HcpkNcsqxcT41NQg67co3yekNBIcYv46p9FmYKRFxaHn/jOW1GwwcaoGedYcxWwC3humcXNiqjkMTBvyvX4dA3Co4F/3YbuIRdrchx96gZrVn0N9CROUMvK7xqdwMLd13hanLjzaDaGZs4ly8sUOZl+TTocTIKk8YAmFjdgqKls2dSJztNOjstcrBHXwsbSmIS4bqI/7OuYI4vt6Hdu+pdp/Pr/fyet69YysGYh2Pa8sSAzcz2+UQbRQc7ItS9brq3R5v6o97quU0NBlCB6qoI6AmbEYEeKpouhbGmXUcIOKztdLkEdBSyf/9Et7C+P0CF7HNejbMBygAxUr9CSFATmXqAcrdU34ErGbJBWxDXlsYqpHzMMnaAKiSTr5KUeXsWanUwOzydZyKxo1cTje08MjwM41VD35PRrFmMddo6WqB/yenSwS5yKcATWVn0BDuy27llDt7KrXOYyiTibqlIPBVdHIQb6zGBiXgitwwf5VFYYV5PxtcakunoZy/3BBIarsIvL35ovH/CRbWD0xuzoswMd8vE3Tidpm4oOe/2BlXkZW3p9bmW8eN8QS7TAQO+70JNprNjNJltiaFgYr1RTTzpuFijdsGSVnKDaC1HJO6Hu1LxAguiFByJJUwMQSGWXNkSEZT5ZK8NpUFGZ3D8sjmQlDXMoGAZG++5QhA+gk4IbS8YX2pwzngZf25HvWXgIK85Z2Q9v1aklIi8kxJo4XTxvgKLF17+fU5wtaJkVUxc3If/2b1ZhzTlGraIxDlIiMvHhJOHMx538+3Lqhuwpe17vb0iUD7GxQWOjw/suu7EIDDL+3zujh57lEdNC1T6B03CnLh1esAQz25HvMyZwvUBhFNh7T1Lc+9MFGoVTizubPZMdCNYM42EG05gNQaOIqHmvFjBhkgUFTsbeHAyFXH+fbQIg8ZcSQkAJxioB/xrZJFwaBdLXsgcjpScLIjohNfbqb0YpE9iTSN8aFIHmokH/cXqiiBOaiof9gIg+4rqKF9IN0ItbYL5zUzzNrveWmi/FB2yJmecxpQ4CSTD3pAqqEK+8ILYcX1UP250Nx4dYDrhAagFlbnT0Vn3Z7KSBqpxfx8oDsbDQidvQAbU0t43TBGtRxlfaCJh0r2UZmrwQ3kSNMJSazVQ5VNSpLsliAvb50lGroRCHNis5zzEuyYdYlPNkzyBdAx2WdVWT35J5vLEFYSsZhCZSFiWqqW5QwP9xjMQqlobp9i/G4jA/jC/hfgGuBIfQeqjIx/mnOh0cICh8ZBLFHKYt/YzwytIuLhuImmNPaM1Qdf6US6O4QRNpJMoxenY/6TDdB22wkdIIMcftY9UMov1vPMi6rHhXWxFS5l2yxt4M4AilKRdw5UcvvUvCh1cEtfjPsRG9cApOO61aGuih5YXBZImVw1J8jbOP9UCEolMS0yyHossxgmCiUxH+pwKjp+607Rfwo5cAaxa6F6GGQ2EW9zzNvUA3eC9Da1Nd3z8g0s8Q1ksO9M3/CS3aKTvTyOM67L8xp+bx4wLxtA05dctGB3UeRCuses/Atdf51nu0IeREYXLywk6pixyw1cVsp7+tAjMUSjv5oAcUiB+GvICJXZ2cfMEDXATA4Ideeuw81s9KETuYn/DzDu69XzTEuLaZbudyHeZuRHQdx9fWJM8CdNeMRKF74RASYEMn0OhNxaYUZG/L15bTYY8P/4lLrdlVwliwO63IzyPZBCTQwgwmJ5/DtS2UKjvQvMPw0JTq4qz4LLqk6XKTHadNhm884VaM1oMVC6p3jZlwP7d+4Sfe/uPPtAWgPKn0N3A+Ys8cfedFkyTBg2w1guW+WeXn3zI/8kINBMH0dG2pXKkYVd9jyUG8uWzu4AHOHvEz/2r5L6Psb+OGsJKH5MVJ1SoG0j9anpeZ6NJgQv5z0cVDVXkngqnpmsljPtkDwGP5V7fOVox/YIj0SfkC7Hf5Fzz7sPaiVF/Dr00vOWeUfd7itCkXeqzBuPtpJvjBLNh5NwyOIdEJ3+tB3JI7aTpMulcn7KuRfuVmkvdOSMiMKapZRVokdKR7FvpnqL5HJaXnAIJDb0DIqwcDl6+KM8/T0acXJ0wLFgG2SqOYzyfUSQu5yL+hZxquQVQHmSv9kVN0IJYvSPBzTCbtvSkom1C/CRKRqc2qm6QUWL/SySkokwBW2hieb6I3aSC7BdVM/hGnFmDw8DID5/rvnveqmRymvQ7X0qEg5yAur/mFdcXx1qSUIM2qZW6U7yG1funP3dEy6elwOn6u0yQ2tdgZiSCHMHkbsdVBi8AbEyIhZWUy72Zb2caSbloSGZCT8Pr+g/wBsCIJC9zMlqlkBNKH1x6ZNTDt7+hpJdSVVjmGYXsmps9Om97T/yxkrge/i5uKcJr8a7ksqQSv6Rkco6jjqDg2u3gwwQA0dPW33XE8y2V28hjh+544y/obb2Gbw/uk+gZImy54bJ3Q83AhXXI9U14eQv6fyRKoUoWIVINZVrxuDJnmJt9+PYaSMq14SSI3/7/GBuGEiAEUmacMV6iKcoNhMrqIQbWabJaY/+Ii4rl/FrGjR9oVZvZ4DeMJpb6S7fCHGlytWI4y0JZdObqXN3JK5h110oyKDzZThjqdo94mQQTAJn003E3ThVc5Pf+wi8z8DKiubrIXPr0eMWb7O+sRrGyVAFRDhnzkjpn27P4xWKvY8fUk8VrYMOcjmq7+ciCJqT8egpsX8AumWCDnZ5Pg6qQd8tcUyGAsdMJB8VZQ1o2z8yb3DPFKFvKowAQcpA5fgdzKZ9BQl12DX1lEnAvXDKEtIUz7Fg5HiyXuTtfyuoV5IiSG5xbfSCBFz5MnppiNnCE+LlOAHdt8p67iYtX77X3V28zJwXtT83yKoNdrt2ZK1W/DcYN74x4utZZdbt7hEi1/gjpGAwCLMDvNVvzju4JK0cvZCr1CrQ3+lrYi3NP1S8pPItKqENqK1dr7yUpVIDFI4FGonQZeAAE+qF/3tExQg4ESn/vdRDk7waLkRY6rzkvZOyoT464mUgw6n7mwEkDYciLapfRt9tbtQVYO/c2ULVIL/4P2ydYlYkYCa2v3i+ohgJTOrbgbEFb0rJnV+HwvLEsrWuxN0ineGLxdOAEb5r0Bw/pLaYtvrDrooQ38HoiEoaFajWXl5Mx4CphTh/5BGuwPIUxAQ8LzIhDpd2xyFO1KSdKLStFYtDbtqVDrJi33lr3xIH46IcfZdMVx9n+pvNaKp/N3sNYFxqydsLsUT5yHAesrwXkV/uKhu3+7KW0k9DwDI03b+D5vGJaf/TaHZrtvTJugxmEzFIZ3PhawGFhGHANfQ26zMGuaoDYZhOSUtcwV/P06NuNtDlsu1JR7vvTiaRjEzRRY6MeNl6IYvzvY1Gb/6wRRCLRj9Cm0x3ThcCOf9yUHIWTm2cQk1aPOKU1fZT4tZm5eJV/i99exTXSx1DXIPo3CoekBfqovIbbjPXXw4/pFZDDlXQWqfYiM1gM/zWzQr8Kl9ZhdbZkL8reh7e/Tlx5mG1f0taLpwqpe1YeYvNpOw4CqSyrA2zuSsLdUaFmPW3A62NpMH/uByzBMUZPpd44i861ASI6VLZ5/wo4uybHLRcgCjlHGm7BrVB0eGyGD+zLnKNJA1T/RyD1Cl4AABOSC7Esc/ANN4hNdmSBoFq4b7R4Kov+Q50Wx5FGMFI3iAfQsUBdZOeGbm8u+tg6QgwcRie0udSf/CJSiaCBnSl9AumgdvllquA7VGPmVLyfq/V0paeaIQ9MMqk4ZnJBjns1fXv/zrQmCkuYsaaLTxPeBy/dju3cydX9l6I4TA6d1e8gCOviHxo2/ZWq4ELUhMEmlBrLzliJimyFoUu5z9qvs11bii+COz9k1mke7nEIuaOxUY855SIWV7FFeIWkB6LriBbOIrvOaCphWCU07bPkS96NB03X1Hmj+1ROZkYBieFqufKHp7/HZpfiy9JCgBv9M06iGHoEpQn7qAB/QT86RqrChphqKbT9l3X2P9M5LqZXekQP0N92GYY8hut5zlMey+KOUwscf9vnP1SbO80hBLBuvOEJD1iSqXiUPb31Fm31T4F39i3/JganyDp27B6kHOkpHErxSMP8jbPynIObJM6Gmk5NSfIYizlQa+5piJv7scGN72cypdVMGhEc8FUy1P1oeqUZGZPPZRzWp2aT/kGqy4hckzYXc4nGPPdJw/uFXCwrv/v+Y7YGJ8x3rN/TaF70QIbBlB4iE82JJpiongH5BIzfTm8N+McS+IwtjL7EFP/gault4OHp7TfAN9+6vWzNmB5cB4voRnLFVSG9vtqRs2b0gSY7xgFwEZDOWJOcRt8evmZMqRoX+MzHsPP0Qj6IE1C0LPReZNLCkuFNNXeuAaosFAzbtTI0CSgPP4Fv49sCM59J4kQeFKeMrzihOsvniV+dWeEXpgmzlg5+RBRKqp5lIpiYCNiSq7nK0sAtZJQFx0O9Qw9apRGXH/jGfpTZkrcAJ80IjUWrnUVAw24Uu25y+iguEw0IRFDfaMbgBZl9w1sIPDgQWXr9vFWhvU8q+dLxov5lLERIzkDHQkoOgJoZpN4znI+ZqIDxCtnMRENBfpX9QrUBXPkVJeT9kAHhRUr4q+Qxjbr9zBHaFNTOxif+IgsAev7BD0zSY4BjD82ghipwLGm34A/p+4l4jrue0Zk3JXjF3lqqCP9OXIO7jHziMIIjrPbZRSLrBVX7BVDcYaBa6aY4IN3qKKp1AFT2FeJozQyiJ9DWf5zRex2a/YJT81UUCsuzNP8czJjOG88MbkxVWHUmBrw+/DyfEcjIV8jIEDI+4Ef/MYVdrKHqQthDFvKIMxWhKS8WKoyT61B3TcVxwatLn4pzYPyLCrHZxaUya/ysHm4y72avE03QIdbbPCCDHD84O9rCBRQPG3D6GtqSTncgFG8+drc8kkrWNCyvXpfvaozZdCZVlv8QyPMlL4WYNrshreEsrMPnzZgpeDgRElyQX4ErDbbJ5+KK3LfPckCCtuyS8C59WdNVE/GYDklTk5vYxmWC/eZsQjUeslQEbgKCsknnARDa8mi0UFiKz0YreeyiOKNiopfFyuMB6OfE9bZwAT8Hw19TDtZbAnCnHWOSqzsrd3Q5h4NUckeulx7bEO4lq4EaOxBiSf5gA/Bqg5kaLyrFWJMzOfkj6a9s2TZv/ZFuNX+7Vim13BKRpd0cmatsMw8vefZGv92iHMaD2tP0i9B0JDPv9NNKn1RgLzF8MNqEuXFTSTDzhOYVW75e/q+x9FZEEXDDO4QFummFQnohjnyDul3/MDw4QvF9xRKMjF5dP8qWy3XjdcBN23sXuB8spE3EwX4gmn+qXsqnilMn61w1S4O28NugQByB1R24/mwsnaXtmioKZUj0PUWly2lMpLY8VysHOMuCFMW92h8fvje1B1dD7BoS0aptXrdHbCDpAKaNe7ZogKbkKFQvIvJ93Z4evUAj6Z9SmEZs/fBK64EB5mqlBM3mUqOuztHwy5dcPeIY3ERKIY60WjKYUfySC19ICGKwQMVAtFR+Phs/kFz/8vta44tKUkIDqY7BXadN1BoVQTBfyj8PyD3NjQYtOnqJL+Vh59QLU4qkN8UPQjdCP6CjrIWBZow979T6b9fmxvEmAXDCKPJZo4mZvYmmduXIj+h6GrnrgCqfo8odtR/8crxDEkwKB0VZwPAeIu6VCDDfS5XCdzp7ch1hksChqcnwr9MAdKqBvxvqGpomfoWmfVs1SNv9s9V0Gp3vdNDCW3yzL6Nxz7LQdChXy5u9zg4jyOFVQfpUGeqhGJEyrrl7QluFHnRM1rJu5wvW6SZeg/OWK4hUDzJJIJeCIPn/vW0fKjckrX7LCB+eP1y3+g+oAwlz/v3Jyh+2LjOrdUyAtqKrln+akLMJb1dEIv20v08M54s2uqVbr20w2f2nvhJewQrv6tnUicTzxbbeQZ1wu2w8tU5q76tj7TW5JO2nveNHWxNPUShQat3Pqd0NZ8k0XB+Y34KqsBS2LcatSjoOywzboealCe/2Mk560TcMRz0QmMKxvm/r8z1jV7U3fVzw7N9OvpLXLdbhgl3GU9ROLF/bHQg+lRP0Cf9feFh+8gPEWAzoDEr0lNd8tfDXBiHEuzZuZeu+NeIKD7mUFteCQdpXoFm4kA5UJf/zaHiHrhEJknPLaDJaKkvF13yQ6VSY4r+mQVeeaAaxW+7n7Ea6gK3o45MjBubzPIMmN6V3XXdsyMYSQLEgx3t5jXPCsDYdZEzKvAwHlPaIXzeBXZxOZT6RbMnKYDoJr8eWmHAAkKJ9ngqHHRd1M6rCAPLIwa0VM3Xt/paEQOjg/eJ1FGuOCP9s7R3WDDsuaHcF+Ec7lVAmprNarAm2q5BO3yqtVEevdK/QBZroBGl3n0MijnyUTTHxW6hkiGI7JixTZhBaQxSf5DOL2cTMkYCQsUpigEMv6LA71ZschFi7mJBKhfiwcULKJPZZjc2F8ykL0slBsmPwXg+GAw4vu8bqICxb+JI9CWywAo8pHZ+DY3GEaoMqEsTAsiw1SGBYFFLNs4hhnsaQPMVmdOO1+qZsFVgfhc9WYajW1APpnG3CFQYZbxCEA+BekPk/3i2SPnmbY+ViLPvooZfdOiT0RuJI+0CX+JS6ffdUwfQwnRG5eAXwaCLgGhMpOm/AQ4wZ6O0byc/8qo5RrgSq+TQalyq7WDomBXfwHdkeS4uxOrZWHrilUz8Z3xzDC3hnqI+5WYE+InSDsPwbtOQw11NZMLmxcqpq4jYJPV4kCCRNKDWYdrDUxQaZx5WQDbbJEHwLe8m7bE4Jl1+qhAi256pI6IIG7Oi8mVdrdEhZYUtILHmVL9PzMmjPp6RbfP2b/3OchpE1W3JEUyz1DrlBoH0vOQ8k75YWrIUJDZ/rbn7lG1NFRaFVPU3eG+A265oJG+nLy6d1HsNGsf8XNNqorjArzu2ROZl/9d0RS56T4feAWAEYbOENHJVJqJAGNjliUNjyZHRz/WFNpWoI5qzvKs+bCEABPONV8bWnfznzRwBEEEch3TUmhyOosbuep8KPg4GK/G5cXFuepDxCaDmaLbU0RvhfxOBxZa36V3ZtBp9Z+Fg/2KP2CJkNcxJ5JweH2LWFX/MQ1brk81fm6UQBCAjcOJHcR3eP8BM9XLoEWAESgHFlS4eq5eiTOA4huUdFJxZiKMqJ2ITBxbHfzwgPBvsKyV8wr6nqyCwBi5k01Zmh3qAORYHQKbyr3l8GK4ntTJVWgRr+oBwU0md6Gqb60mUxn2M9jMZ/ZXIISHlB9KMcZbVpBlVMIVZUp1siGNEE/qtJKJTKf+u1RFwnqsbqe7UDaO/WEgVkn/XV7MEYCFQei5k+tnnjVgaDMvgawaPGS3dGxRwQaD/LRwF+LZo6IJKUA4fBkP7aeomb2gk3ZuJCz4ACJeybP9mqFDkNeFbCdRpE2Si5wy686j71qItDNmg2bWlhbmSv9kVnmCGzLtmG9Dz347jlFY3RnNSp5/NUfS2y8BcJ7i7lDQfen0a2ZDTP7Sn6Ru5tzHVffyGnTO7qFoCYwbrVIh5+fXzQ2BFYobgNLy/89ixbvd5pROC6Ubtd15rAeo3/tumQTr+gAAAwAAAwJ3AABIh0Gar0nhDyZTAhn//p4QAAADAAAXPGL0AJE7JF1vC930JCeiOV8gbyfNK/4OPeMI5G5tqiQbKjppH/OUGRsr4ev68nEh1dCaAYaIJ9HKT+3LKDaK58TI/M210+lS/RYayrFu2ePy9gEjXtj80MYcQ1AAeMtiRBe2QPE485woFhTZbRz3rSiO9Blx3OQxu8XSPoE8Sa5UuwEk3V+hS1ikt2ckAig67akfWKQmqS3OMzSHbiAFzpgDWIQlOTWcuL+dZcvqbxnRbyVogHRuj1JtVdlcoB9lOeyxDnXw9lrpUypkxRBr3pWnwANkc+fkb1wESoWZiaxfmUztKYGV1tJKe5Q5CT7vkkWLQ4vtIAX2DdBKZt0mSHN2lxS0sFPZcZ4ixgO9UqG5NGrbxRWQlFU6qodX8YBljDO77bfYZzKMkxIZm0Uq5gT9ncpYMlD/lvAtAZzAm/oWRFTy9SMVX+VhMycNqEtGzEOWO7PkgjE5INcNYgLCKH4vPRAt59+LU0Cx0M8oRXrlnri5eFBSF9C6wqie9G4DasJ8j4Pkj+O59wIow9zpq88IweCywrGaL7kv1l0UGgUCROWF/FUvW8F/NkC5034MXznDN//Uf6uz5/EXQR8IXf2lfiLr7NqHZfQ3IO6jd8xKIrjLyNOs3eZip65C03iyn2x4Zi05YZ1c0f36uPPcbyrapM2oSBMExodig/Yf1ORa/RljjQTSgpVdc2qJeAzJnABWTaz64y0GeungMKrYKimfCzZp/rDykUvIi8RH3YGgWUvMKAvPQi7T20zPSOFwJ7eDROe192t/dvWxdUiPE4UMGknvuu6yL5W9nQcyOSWmQ0rZZ7wZNTn313Q5zSvokPYTAXpvyzKPTo4v8NGwrNObLkELtN6KNea67vQ65QDhRahnTna3AjUYPOguZSPBKqtdO9kkW80JDXbz1VkGhudX+tjVTkgUUmrdDBiwibgevRSSs4LCDUzBdRawti2i+bv3Zx32RafaxbmCPQCBqnuQXcD/RN4gzf1e/xoxBvjJt2O+6PO2kZVerbhYiCqtvhBNzCkG34c5Hfafc/gl8MaZdc529mjDl453pSRGzRHFUWVoHOeQ5o7vg79Qr7Sfyd0puxo8kNxdbcvvdZClhRibFIsHZ0TI4ZX+tMpjNUG973wa0C2AdTI7e1re3QV8BlySEEuFP3bPIekCabFrqRXHz/VTR/WQcZ7SufuWFH44uLm+lxDhYbB3GTp3q7/6CQPIuzQza6CVkFXrYtcVCaKey7H1WrnVKElJ4gmNvz7pYA8lxTr03SXAawHEUMHhM0bYbAkMSnmPaTFunn04bMXZOjsFsDfZ6bEUJwmafQOYXUeT/rBMlge8kDsVAD7u8FM0rwKVM3pAdzuQYq9/WM8isUmM796VfvZkNx8QULV7T0Nf+BGaNbnD5iNKwrNgu/YrZ1Wk8sbGIJ+DTzhfaMph5bYGooB26WlWVw6wcwBKkTQrL/o04ZAu1NMgB2FMyDVhLaGbh6QjX7X9TBxYeTTJWl9Cw4/lKr5+1nVtHtqLqFuU8QM3b5hVHT+PtE7dt/sIWxfjrdCuYGrrkUnMxscZk1xFSC6Aaz1lc9Qe4fGLREU82EYoLNeat92et86q9j5M5YwPKOVykUx7xzB/F3/ot/XkXoqf9fZlZSOPl9s5LCzxXxu7TY+L2WiinSUJyskuQTwcT4CV58SK4FqgN43tR9OOLLhzXtQXqVtRHsYe1FMq1LaUHvrRDQeiBrqan9KJkZ8tqT9PuQ0QAwVFu+qb1MA1e2Gsh4sRWDlYdQCMd19JhBt8us3bx2BlduWTwDgLyj8TUTjMt2mMVI9Jj0uVcRLgKH+2boZ9tr4TB4Z59/bwwewxWu5++MBf2SgziriBlACWi+h2jtqKHRBs6gZ+beEhAT8sDCL1rrQs/9g9LxI21Kv42WAAdBidQ+BCK4ocDFZm02/0Az+B6pe88CYVBFlVLiFUWtGYzZuymiZzWZXd7sO6QrvBnutpyYtbNcRGTbI2b6Z8rj/Qh1rksphqWpil03RC12hW3aG82ZNHCKonMrNv6WayKKxTai2hLt55/5bZOUbveKxlty9uad63djTsryuc37exnKG8JyybzPJs0nTCkecefxkxqb15Mz9unIYXD/JAyJatK5QFVRpMvtqHP57uaSN9yPDYFasA5XSJC1iv9YvW4LXDRzlzdHUHutX3a+ZZYR75lvwh8fYiTfuiyh3scagLEaxK96iYOTtAntn6dHKJjbebOVDe7KgNe/+ICtjqmni4KZCZBv0i0dP1qygkmWqslV49CN9h3BWZuoWOaigAGqaC3cmKjw3mMPa/7vG3hwi7PJK01Ro5f1BRbJ8Bz8tzguO6Aw1+XFSkdUC9ZqMk8MjqG6nrLHe83DqRmrpn8qtI08todRb33MGMm6g//q2BX6wroK+xZppPvY52KwqJghJj9eut4FiMnelczZNh05DpUn24mjo6OFEGOcDSD1e5CGFmH5aqLrGXmWL5GSVu3ILva93z3XCdjhq3OCKMzkCqE5UYSZa7JFMQkFTBMVBPaaiEmq0417Bj9rbIRKRw1PwTBoCHtW09m1aUYdoG3rmmdJt7c2b1gn0/i1Caj/aDGb2ZdMQ//ExSi4H1vp8rkt6QLx+rwu0SQ9NPg1mAJbL7g6X7H7pxi7NGtkyji4axcPmP83ZRCenkD8uCL0vgbxVGiXTYd1p1LUEuZkmewIzeCIv/0NXmH7ATkqZPozHYh+NQmUIUVVhq/hMDuvOj+mQBndLesUvz99ZSRcX9zUSnnd5SOK1saWplow7ieIkUsgl8LlFghDQfXfTZouGpfjpXNulDFJMKtAhlRNTMvpbVw+WeZ50hIBKjT+PPjnINBZyqQP2bpYbBVt/6KxPLszxmBuJbVIyV0v5rU9UCGl3+Q8v4WwEuNBF3WWmC21gOJTUHVx6h7LbvH+5Or3tg8VdO74StTzqa06b6poMX8fXyhdz1KqzACYT91d914qoHvEiBkn+6Q+T2x+b2GYgRsEWOoSPcc4fGoV+Wdq7ENZsheh2eEfElFD3mvFaAwICQ8W807rwyR9t6CZzMVR4jHC/kt2kTGSBQyh+fh0GFXzpX3SuFNm4Nc1sRX9OYO3fZghTnaT5CvzQ9pJSS80JgPglz1m10UFZZwf7qjpH5Cgzlp6aPyAFtwRYkpaT4tAt4prIRdl47pZFp8e5Z2hDHPxgUu2IsJIXDIPBXRy2jiDOCevYwBwZVXd8cVSR5Jt13ViA9cs8Wz2AAA+wo8oZ/svX9t8qHy7qng7JJmkU7HHSErL5fDFlaVZrxZBaooAfO5RUqix0f087es9HXvWCiHavz4G//g9rFqQGr/5nzqzmxQ72yli8tw84EO5FUjbpyKqLjRy7Zs/hHdvjw3l+UgFuTTNdxjGBfWBQ7tNi+xRPAQCaKWyGj9BcRGn990EhZcvSPksYrQOVdT+UPlHl5yfehhF8mHDA+kT+DBKZlCZFjbGLP7hpfe5pfk6uZyElEvJZi5KslElAnxtSi9KN0eTvhpq5tYzzUkv6OBZw6RbVvsAHIXg7E7ydirLRsQgLzL9rKvZa+T4i3+x7kPJ6H1kRlU9Jq+Akc7lrZkhG4zYL4OpLKUb70UAUd/PgbyfAu9eRVBOTVLkeGkktbPxE2HyWcO76jhlDVS8Hc4j6LaHN6u18PbA4yrIAgpZC1MV7Xv7WJmvFbd7BBpaWgYauImd3KZJuWsEdTTXGrWU9bzbPZRjk4sy7q5dlSrF9wBdV1Osx9SvMtLlYkHP5mgfdGDGxacYyqqKd9mAuHsmAp5SpxpibxrKH3fKvJ61Ich+ZXBAP/nxxJOCj4utQg1axOGUJLZ0hPbqEsONYClXUgKFretJGna9WXA3RZXuJqFS1uEg/3AKTez3eWeVu+eicmbrqqZ/NCbRDNK0PQ6JNTIsz3wNlCA6jYc48V75P0C+DNSmw+AUll3+e/x+3lsEuJQCGOWD9nMnY2Tbhhir3d5UYoTetqBkeQH/NFrbBZS5qeoOHOhkogmyuPQu8qXVpeJ0+9bq0x63tgplP2bgjr+SAHI3vOZJukyAldOXDtzjAxaOpO+J408TQGTycGsP2pptShNgaXHa44TakUKoUNnnEVlL2+5EqSFf1q7SbYmi845k5AOPAwwQ7xRZPNTtiMzr519xtSZfJDJzkB2hsgKvEj1oOfDQHGm4dSt0Ep0UO5oS8xE1/tBQbRaf/8Uq2D5ykPOFZ1OSMUAxBkTwCZDR13yqdGhJlg3CPcagi33Dm4FtLD4wioT8bGO68x1QcICW+rV4o3PwDzgYBmeAIDvW4Bk6FBW/FT9pPqsl3jJ4V0I7GN9CXlnOO4sQZJuKfsWSO5ZK92MLs6UokjpvvmQKXXq+BOPnhl/Yd3p2o9oAYiup/DkxpGsSN5uXz60X7WXrutLDhPhNs+WbPvTUNrijH+Dqn7m24dmmop9mSWxLcIuCjuGX6KMEkTjxlzRQJE5hDwg8axzbuteJJqOgFSwrOsFJxC6e7LRBIqwv6wECuWtqwYNNRajKf1E1TsXq1F1KvY/HTzsycn7PCHSic1CdguZg0BxNLVfKj4Ugku3Ul5zVMR9BhO8HgjJB533ielqQBuKHEPNNi+eWrEAW65tAPJzVyr37MUozb0InkbwZhgbFA8TdiP0CaRUb3iSDGUia1n+/q4mJdbXZno79kW8YndcKN6H99OZqqTiZr6fS2S+ot6f2JV/4A3/J3ihCBfMQRyI4qNn//4Xh3hJ6eUlwD9qADybMJhyB/mYSH8VTskOzicpFKYGbvXWUx00WzWT7y+dG7/ht69jXkEJfx3YVv4FkI4pGP96in/lj5pxExhWYyiaNd4PC7QjJSBDnKRxo5G3vSR9OQyOaXUY8rFiFiQw8660qZDE1ux9OjmRXLBiZ7F96nDzGL0SZM371U7hTPtZ8RZ3GxvclZgYSeyHGKhkjRWy1MmijK7/9rGoJyF3Qwpaf/NC98vWz/u9IBJ6jS37rxzWGvR4Brfr53VVUdi+OYHTDKgFOB2jyBiUm3v3s/iXiq6FM7/oJEzkAkIcGPju+3zPP7NTCGTg3GXkCGcQJ+KZrMul3iY/AzXuzQm/Pp6VUbg/msS+UArZZSQfLg60XXFD7XxdRD7kUFnfPKl+BuFmOGz+BXbvvcsxA00aGpE8pAxogcFVXjQUApS/GVfqk9Na/KRHCEp1nQTg51B1HF7ZalnYrO3OFdACqP5JxlHAdhC6WEz4hJZ4TrSgIyrS0XpvU+2XM0Fy+6DFMoLNDmQfCB3vWB6FTfiWb3GwgRj3tY+5B86vg/at3LRMy0Kix/rH7sbcdMCaVQeLVSNGXgf6Lz20wEWHPIm9VrH7U5LMGNT8bZ52QJBPEl5HyDRVKT5PcI0Zq36Dve/bQBVrUY4FMcmFgoA7X3uGQvkOplajnhLVpAf8zuiq6aCpvx/4XCuPeptCHBgvRvyp+72ZvNDib9jHzpVOFDeXb0RPjsi5gA6u1/p1L+5uUwI592rJtpuKV2Teyj8V78Pj9D+NZFio7jM+Lg+4qlYeEKXQmwW6AH2kgE9QHevhqPz6c1e9w42PoJgWKINFuQxDvlmyeDbsKVxaVuRM8rmNAZe3AmM+vPvpb7nzdrQhmD74RxybKNs1MHj4ai/FZvIYFVPeQZ/ve9GXVZdyXajV8UP9+00FFw7ToMbppk4i8jfXHvdvkQy7sEluYw9TRj+SyCk522T44RCUcWMUZedHw/N8MBh3etZQkpdCdD108J2Zqkjxze9fhEsxEIqKNicl9RpOhMELJs5B4L3qJhxAo7L186GcZMlkr/Ifcsx0Kr84CUeedv3n/fyt/OiHJlgf7m1LzS2D/l40pM1xUt01z0ZpaqbJYsRy1UMBrcLZnDybFTSP+C3MN1P1AdnfdHshQbLWb0G4fqaz0fJkBpu0t4r3jSox4KWNY0D8CAUWc3JS/wit1Ol5i++nPQ05i737nKGYT2HUQLgMCAkRTQ3SD34xGXWD13wYcJEOwzD5osgiy5eM8Qm1rNPTBVXqZPGMfdIIVEAcEwBL1rkF7tnqCFBLtIiyl0JDKK6+KstUetQ7rsbFbb4f9+yO1/YJ0wnma8BpQ9WyHskEiqwPUoS3KOI78yP9SzqCY4r06c1YNfi+uG5c9NDVRSmgavYAU61G8sF1oj22LLbJ5S8hypeexwkDWvIcyg95/sT+SYbwLPLTdtXtjwHVvBbbPCo3ePS1PuIup/r7H1JX4gykHOp9bqSqqORgtiEH1/2gqhNBxfzbJTtWDpQy39oHd80ZWn0yGNpekBbq5N1lN4d3lHnb/iNC5T27L4m8FeRGh4ShB8kR2cWS49GrQrzy1GbEWo8YfwxbH6rlyP8gmUKus6cO+XwljPiVWBSfjHfk8OHcd39jRDwRZLo+YkxaC088ag4nD+N8YID2G4oSkbBpKWfEn3oy0zGkyOsBdcjEYyy23EA5haMGHXhQQHUCVg/i9Zi3kvxMqe12xTgzESsl5UFWK2bge/XpNBiCzQYr3E2c33am78l5nWTkGch/AlokuX5HInXsGIUf0kN1m26OaQ/VzNm6XNLfvbQwLM1PpGgg2vcJgyi+zJp9nFqaRYrplLaf/fI93ZvTeEEn4U47Td46daeDXtYHfQ2WYk1WkEMcMnPfpDzmhfPM/4PrOPSnYCRBKfnaC7FYYjokYtyxZl/5RMho9xTbRUiLNW79GZf+y4jTCLkHHH19AIAenWnr1OPrVZWVmp9GfO2PYdhXaGz2g9ec6++wxb8RdvX5ctFbRNYzmzCffgQ2pU1IiUbTULBREMJwf6vkKpWbnqlgdA/QlL2+WVLAgQFQlmmK5r75u1prpWOz7VMrnUyvtbcS8BAvMVj/ykUNBpKJpQREwxAd3mPNtcNxnU3acmoHVbnJ5W2QN3wLT1c3KFuGxW/kwsq5Ap7l0+faQsw6hj7GbqDt1o3WcgSOmPIe9oWxdVozoFNvLsXnqvBZucAALUbddIupyI5cgvbcxDiq27JGF7Ysg2XUNmL0cCsJKkqZNF7R/YiSWdnnSED0vZ13vBeHsCO8YiGmf3u6OVk9WSYUQcUY2r0uo8PaksklqIg1MOWfYWOIfLCKTRRivzKQVCTIA0878DfiFDWaT83HuQ5+GCKc5qGkd51f1aiQm59tB8/DX/5KX6FWBqWwU0j0KlXv/x/LvYA7C6O5Nc9W6Z/Bel80I/DdTDeHXygGdexg/dQ4bXm01nHze6F4D+5TebmH8r43F3K3ffl+8F94xJpnBMRZkZLkcbX2rlGNKunTvGWKdgSq4xPOtLIIbxdo7jmQo8GVboCgMh5rguCiZay03V1PFuodkMjiMEA56nvii0lQGAM3G9JzWfIlIE9vKmuY39cRVxcfSXJqLNDrA0GSQSjH2Ur43n0XDo95GcMDvJ3CLlgZwine4ERxI8Vv5h8h3kTIZIn95epipo1pDziwYsIOqKoqo6TuY3jbDEq09FaGDxXZcjYzcH8gnp9nJZNk/6+YIp4xCUzCu2Xfa2nENlsbF+lpCfJ1giDyClyKfsNfU6A+BQmkhETqZloYC7Vwc7jRa0sqwGJCrQ+CxnFwT/PafQ3YbUGDYhrGlFb3QercrAYcyVAYG3aBDD3xw9Eq2EHQfUJuL+E0dcZPo1RwGePvnowZqAz7l5nrq6Ls7jsxrbRHiOJZOItxTW+Ow7kHSnifPJ4EcEVkYdhF1VIoWXWy74imhGur5fwS7ZDR1nuhDmqOP1dPnKQ3xFv7UmHXej88CMtat8oQjc9O7RvFQTlJBtyfNvvYFr5NnmtZQWypmjqOrFsS1BmYHMJ9QtMOsSiWwKlB/LM4YrTvZFraXq+Jp6PsHe+D5rk4647HfpLTsjYJ6i1FBRdhPEn5BwpHYoIlzpaXHtZCkzUm22HFrv7K7ytE3Przyhc0zANe/hMNQ2qOkWGIsTtjhhMITeYjzIbZt18z6E6vUrdYYBKZdnmr+ctNqEXVS1+Ee3qiyQpiJo4Fn1y7G/JPgsUvWkgiDOD37fAqlvY7BHNWi847DFsCzDZafaIqxTPCYX3GPAGzhL7aTndk7ZeuEkoJQit72wK/r5sHGRvGG1p3FweoqHdx013pNRuVu3jt1WqqXejmLE6QRorzy1TRry8rLEEw9PYs+Y0ePxTrJ9OGNP9JCkTUn0YJsoVkIr0+RZVkBtvPWSFa67ecBWd+SCt57Tr4JRlxsczlbrBm3nWAtRMf+0/prL+WG85vDEMBbatpVxskXfFwJqTV2uwQMq4PomJrNVY75J9osZ/SYdf2BkN7UuoYNukN+xj22J3WYZygian2PLLp5Kvmh5tn65yHR7rjLBzbsnIOhzV4Otb1cMwEQAVIDcn3cuGbCJllE4YUCH+qfiYnM6m/9S/5FN7ADDvN4exewOBcnAvR/heeG2eOMHIrHa5YaR/HG/ZJKNxWD5PI7JSMrdSzLD06kD68It6mogjQTy2WPFbVs62y99mUx/hqraMLLKvEz7Ao5bdsf55dSAeCSZ4F+LMJRcfOzW3hB/hK6qDPQf3ypJINYDm0k1gopyynstCn7C+sSQI1cg8ig+lnn2rcqCWfSt5RN1uK9mIcqpQaaqoIqJmLAR18G4Am983PtzZFROV0RgLVstUMdf/OmId9M9tUl87VPGH3V+tMJOOGvire8TGoXII+uknkZjKM1qfiQd/3pjr+aJqPdcvtGNGRG9+WXe0fR/iSCwiotUz8/B2RV6DJWoeJvNtOZ/oELAdW51PZ8SBfMbm8Snj7wpRIlNkA9/dUrV5r27gwQGb0ROwhbwJ7HTQh+XZoEE8M8kgGWNtLw72NlGjy1oPJbB8FZcFBiGZSMTOyZDLSMEejuXzQ67f/Pheghp/tghXrYHumcPQW0GGdeIKOD7VpUFykjxG8tuCz1bOh9lMZgG138IT39CNU9lP3SyuHtWNwIe+dxegJdF7WqV6xom8Vh1UXIZYOGIDHRftDDG9gp0Iw+lvH/D1cZImRL6rPPh2d+TjROp+4jnZmiaL907OyZ7FLcj/JPKcGULhlAZB5A2phmCq2d0ULJIzkERLXWcY2awY5U1cbUVF2rWCs7ZxpNFnvHSPnq02nxxjF15C45yaLg88/V0AVRRZa6Q6ihNkNnk2yWALwWRpgWjc3XNNUQ4+BoXAybImHjilWFW6YwRWXGNRyZracyf9BIFEbktUSt3LAPddDG1N1uXdgyZ5ib4KORDv11BXx1Eg6S//HEznHPCqbAERcsR/KshfCkybDyPmZlf/LiAoNT0cEdNpCODJgQxpSblDsgskGnFJuD5PrbRXvwsP3XcJMKK349qR6vZFYOQB4nQoyKwdEHBVxm8qE254jg9Kw451Ui6d1H8mSbvW8WsIBgmUn8zev94dP3IL5lbsSGhmHlqXC7wyBTXBmbmpjR/Fp8BJRDQ+jgjndLLwwC+tFZOP2vtaHBByPK/86XdiU2X9omcPel5fiIwkn8fng8wVwQzWQpumkyh92TIhI0WuHJJbvIdoNyhIf6hcn3RcQfUyH49n30vPDVFcQ9vvyBYOD3hMtWdnCWqq2oT3p0jITwh+7t2aJ+kg+wo+swPH0J0jZMfinHCo+x9tkNRe/8onhDFj9YVX+Dw6z3kR2B496z5/nIHgjzW1VK9XHbwraJekQ/24sbgvQB7C1xWu8A/GJLbHiYRj4Bin9tsYf8CqZ0lOrYbaZtM7uDZ4y29AHhNUWmneq4x40ZXd+X20lW3ua74WuINfYWNG36A/BObWQhJ/okGWHvW4HdKxLiHXyKOFBzpmVvgt9iMxpShTeP6tUgeB2LSRTswypxvVn7zeDPp34cRPbJ/4Vd4+HB9YE7yiNzi1gLGfCQqAjMyKbjNLwKH6bt0GM8d7iETVF23XhSpuoXsXFwuf/PN+a3I3acTONYcx5I2zkK8564CX96/LTq0/q3sXTWosdhWGSbdH9zeiWVQvBdC1hByNyiR9XyBtCJMExiNktcyu/C+LXA5z4efxNkmhfXIE6zlMgYzmi+zjnV3Qdrn1yYfDVt/CJ+sVaZVODJb1PWOR2kgiMTDP1thyRTkYxjZB9gQQHF4DgX3RQqGyLCbxA1ecy1703knwaNyxz/pyDIx9fV2YQxNYXsMHnv+G12yMZz1ZYmRDfcE3M10m2exQlT59n7jQuEB7K+FtnjGeFeog2TLJIeL+WfjfBXoPYke7NL2BoppVe8sKs0Lkr71XOUbjIxSfa/65/yGas7n86nwTt3y+xRIPnYOG9V4MPDIYJwTmNzKw4/cMHU1N48+uXuV9YwzkZAMqoaF442VXM+LjHaroDOfrXR+9OusC/FawKRwqVxtLHdWWXhgqr9k8zBUXreXjSJLQfW6qLu9A3Hx1/s3EnoPwTnoMDozdhrUuL1eEfrLgykfKQqCZ2tzzAc/sKQPdwyhBQ5bU62Q2MDnS7LGfgneL2ME56AFn0EPg52h9cfOtAqIi/XMZchz6XZpqEoKKYL7lWfw72Cb048c7mz7jOEnrixyg8GNqWxJRChIRWfQISD/u/wlvi+dN47jrLswRSXlxQehcy4jmZkfQgY5d1/qPQ812CosxrMumhWjQFIlQgYlC/1LRhMWbAzIfrf93sMg/7pgNu0ckhPDq/UHGIRRTv5YT9Io/lQlVpn6z0A5aKmM7dLI0+N3threwle/ovZRRsqQ0DWixd/OmfMoWjXO61/2xgjc5sMLIPNQALo/u+AoofL2pVebV7wsbTkmoZZ1vWT5E8Rki8RlfHckSacv+QlM9aOp0f+i25HMc2QVrk1O5WI2L4vucCJ6+WrCmqRBGSl4G5IhF4CnEwAnPnwD2Audrx7jYCiFxz8DP+R/tQ+o5+on4fu4UXeWGeKDXmeDL9xm/U+C74eGKan4UUF3JKWDmktSlH3ROUgZvUBr4fJYKQGXaQUoYx5bm5f1P7N+meYAj71JfZntHuquL/IUSaLoVsogbOeRHMfO/frjIglxne7UunlhHqaD+4EI0yZ51UhcSvwDNCsWtk8NoDSo1vO+LsndUwCOWMp8yY6i6Otsxsmrw2yeiGiQNNb178PfGjGWTobMGn/1KsCx/EIGRonmRu6VWRNckS8w1R+hO+HPnw7U2rUFSYfEs1ZVEbQ40GA8WLMCdOd2rniQjpbP6aWGDWAvLsUka6IVpPoNbPbB6pLnxX+xpEukQAPoQnRTKkZM0gx/WMISv0Zp3qwdHTfvymIj41YwaD58MqXW/2jk9ORAkxrNjjDHVyqR3ZDQuZI4VNpCva8K5xScbjrUjUA8rDt/QcpVZSiBHy5DMis+4w4o3Z/93yDdW1RfWNUgbUMd+89/5+hLbjI6djHLEk4wp0HGU+RNAdfxgYJLnQZuqBKCGXjlz+sHDjz/5R5R0/S85T1Z1OPCUN+9fTjf+W/CMVH96rpezMx+RyAdUVE2Sq9cJPa+Yub0QK+GiTbC3fBmCYnV5Ejh1UZZmt8LB8/TXghfsltBpwWd9/qIBj9Dr+OodZpIGbAUDPr6eFq5I83An9Ucduw7Igp32LI8cWNUlrTBmSn1TPBFUSwqMdGj+5Wqjqr1Vjn8cuvxmimepPQGXSUIvg/H6qQQtJ6/fXAn+U4pSmdhwAXv2P6JQvaz8ejuzZB2uqG/IcI9XjUUlM6aQP2kG5V5OC9Oh8TgjIG1QSpbCoScHFSGyxSoiLDXVX3cDwAToCychSwhTcjv72t8Vb8gK6Y5ApA44Zw65XshxJQArxwDTPXHEozLZxVXXcRhlSfRg1GOjOWZOpIHAuaEUFtEvmu4pGh4FOxyYh1teh2vFTwcpp1KV/cgfbTnYMlP9PDS2cs4mRS9qW1nfpmPplV/pvuA/CfRSHlEJbqvdHG4p82dHpovyel9AGNm51rfh9a0Aq4W4mhpMkjkrj6E7cnuY1LvTnZ284Ee27X5sIqwHQKPeqkSRPW0EE13/+9F9/NnZrUapAVZprQj2pKmbDJF0vMn1oMPpVzFyv4CWXS3mqScJclzzDAuSADsxOPY0BGRXi4yXU0ZtAd9AMeH1yiJJNsjunhfitbyW4gUgCJo3cT2TeZWkW+zXff9XWK4oC8X6Mm0oUxiWEFgBVV5Pqhy3mq3QCSPebqUOrJRUmmVRuES9Jb88ryTXTnyZBxESJnEBlk01nnuGe0KLr1PyqaSNA5x3ZzbCu6lT7Z5X/V6ixanNRoA14RzIadp48dI6AUtqY9KN9vratDFwZOOKqh/7w5z44HLvLsudxIO1WxD4SAt3xeqp0j/WahDUfBkXogm4EIQ4+jzzQsa51ZSYUSrdrgf1f7bB/FcnM7ymyjC4Hlc//VTXgDx5V3WOB+jyMrnkg9rHAA2ZvVoPclH1nfjItnhyt84w+x31h0lWYMj61hwiNU/50xT4HsvOjKsr5Kj9oAa7FgpcYBuX8e3Z0fjhUdmPm2UMEj25hAlBfbAWUICESkksxZs9Rq2YK/vaD/JnMGY1IZrSkk2zFVjK71kQo/DNzH1BPPwYeDBgTkwuDdYhJZu7WkW9mkpZpJDXTK1bds3TeQKSHGkaPNo8S110crGpKKeHpgPWZw6nQKPCierzxP1IZ4JNflOz74N1uFzFPwBMsverVO8pdSaDLbNRqcKu56OAjGvzsTlbaJ2BoU4U5cJQ+obRzSwlL2DZKw23W3MIK5A8krFJxvBZHmBQQEHNOu8FghoFMLdelUXsUjs17zg7YhjZ4bBif7UXd7TMYQYmwrbNK2Zl+YU0UtuuM1OODkb6cBF9w6Kc97Xc3v9fUo51prYvyn9B7trqz+EHsZhXVv25p/jK/ffKsZO1wb5gSHtKBhVUhrYj6/8GjCEuRvAfOfti+2ewJPxN+TW2C69q44bPsQlC1cFB66InV0Fj885kOEc9EJKzIyy1t5I4ttf9mNE1vovhM8fz9oKyRw66/E6YHWaeBHlLaAhao7zvXc5NnsxAGuOR1oe3VUeltryDyz22UaZQ4uK1DRiIVyd2p5aJDaU0We71qd32xtpzdGhILDQsL3+9wmzILRu7N74aWhfv5PxEP6/kEwgahGSRQ0wUvWVjNW8pY1Z6hWPcDmfUKCqh65tvCnyzBlrScFskYk04LzAyF59LY1b3BdoW7fVow3RESX0uJy6WDz7wojJfuBfIXfC967a/qF9bBTex0MkZ1FuW+6SbEDWBAexcWWY1PN34I38kXV4CJihESHIDWNAvD1oVVwawETWU8oXXMTKvhbR6UeYoWZmhV37dWbkME2ukE/WD759rV/9KMzNfWO4+4v2hfJ5+9iaDl/zAf0Xp3RquFzO2BG2KHxqafxCda5xbxZm2cql6WeQ6423UDvmNlR4mOQ4TgwiiZ8/9gA7Q6v3CfwlsxA6uCfpEufFSpxR5WdY2J3Rwok3LuKl76IrqBPBN1y7W43uK2AKY3ps+a6K5sEjjb5mHGTB7+5tw9W33QOUeiwuWblrNcn7Vxp5TbKRAKdf6sGlWohjFSPYsOjTawj/vAaP3QjBPZUhyM21P9yQlhnBjT+GmzzYnuMf5xuDFgMK8EpNN9qGzcjkcotyQsS7vC+g+wXZtGQx4rGHaIhgVUkopTbHuT1rm86N6mp4GLgffimQi0FqgkveCEZbb3GKCboTJYQGhSw+53IJMlwUx3LaxVAeeCYv9w9ilkqnoInqzoW5kR2v8wz8XmWEAvq2mQGHc4/HBLR0M+iEhqcRJ3ySSECSr8xZYA9/pKCalEkAzkLtzBQYUW5mV+HV/u0QoALdtoWqYVNht78HnUaZU5J+7RYnK4iTh2O0lpXxmSzaJeFxuYq+UMqmnc4FDeXNOfvHB2aX+vbLCzJJ8peVl8Qb9RODcjmftXjVQs+iCIvUkRBH+892e7MHlbJ3nyYsZqQsfaOGc2W1qwA6HPLYODsGI27/nEUd4C7aU2nGScnQwFcpiwkLAwFAvK8kKX5YelgP6eAjvBtiwBMNmMOBlrp3eJ9/wIwruY0Sb3RI0QjM9EX93BPLCBr79mLinUBu9Cye8g0ZvoGaumFgHbZU+sqmqnUHIC3sIyV5XLVz15ZmLzPeR5lT/lbvcAauhAmgJHI8Onotzg8IwAz4NB8K0nTh04E13KD2dPv1SKVpXV0X9kiWUJKp92xRZ1vQVB+Djk5XmVJ3If0GSxEBrncl3h2uI54jMSSEDG0kWt+zcjknqjx944OTdz+QtnF5188vUUTIcd2wretUMDQvWZLofuo6SZwyJSWCYLs0HSQeiytHTyEUIQB6bt6AVs7j9iFd18HwmLHlXALKE5yR5NMRXXJ9fqrMY7YSCKsMIrlE+SkIhvtn3TH7tpFGuNHAxAFQIBwjLHrmW99R0u+WhjnICqq693sZsLMilt5uS5vRbzm6e15xK0RseiUCgwhiXTVZ6aAjsCFopF6huBxHNVAsdReTIro2IKlq8DNFCuTYLKIubI0VV9jHQsg86TZKFj6d3VnvS4v6Li5SaIEwdGAq4ajuzfeMdD/9rqEuPdwd+Y+8VDQyHB1ifzgD5rDGt3gWGDDsIGcXl8lAG+dwZBXEa8r2FL3MHKZ/SEoNHPeF5LXD10C4calPJD+4NEeQBYz0Pz+hJaqACda93yrgPT3HR+aqAjhgI1s9jsqtqnB2Ab/f5bekJXGNnevQrXWhJxLPN8TfasFljaafQLjmEzrxS2moHNOBiKuLzPxSU7uBUTgVAqrjHlguPSoV2NFiViOElu3NnARIcFji9iChuwliEhWJRjUY5ZUAanT/INwleyOeVNnoI4+oxX+QWzs5DEpQio2YzjmEjg7DysEaRHZ4r3nBCzxiL/xhb2W6Q8p2g+9+4pRMR5pr+nUOEn6GU0wOxylPNY7qnlKNbAqUgvr6WqnXDWfJ+Ew/jXihl08KLb4uOyAe6Ff46zXfACMk/TrjXwsHF+piHnA9DZYHQ05lVBIq8fL40/xHpSijnC/k+3xsFJBBaailtb+ftJHVoxnMZ6hLb/UyOvr0LVM4dm+KwUJdrd1kf+4WiuSlt6kBRgWz+mlO/Yd86gV6gd+rf6Ln7xPU7zhNErkBGB2tBrNGq6toaib/po9p37yue9+JfgIN4IrSYsklQj78jwpOKxOSgABarRTXVTqr+OtStCBkg/unPXrQiD1c23M1rIA2tNbkNswyO0fFJOk0NeXGuG/yt3ZvWIlrOc2VJZK+4sKUom6ha9fP9A10oCfhrrPTVwHSFJ0/o9eUGwJJOnyLMstZD+DQzecH9MBeu7RJ+Ei+qj7/KEN0/5hTDik/FAQS4EMyIvpDY+voPidK4F8jqOqPLX3I5dxM09GW49xCIH6nUbtu0IH/fGUQ5e0x7vnCbY85dMT4UtCt7mWCWBOOmnIwRSz7ykO2p9oP0lM927UypPU7TSijknDYEn5flGfjEg6i/lzsvMnaSpR/r5BvVUgzCVuscoAKLyCTSv/iP19hv96lBidyXAWIvW6r3TScOAXEQLzu6BM0HnNFfinKm/iY149rGLbOrTpPSVo8svxnjLF5rJM1peAcp2Nd2c7NrFNcZDHjdTWAalTz+FKPQfpq7HEUAICKUgdf34dVhPGMwgz0NLirglU2m75fmCmGbNXEoDjz15rup14r7k1q9Kl1pIFTYec0QMjNQWpypcJExADZ8uBvJyWoGiYQFSSFlU/qBMaLyIedSa79Kz1a5gdZabSUkjcPiFbR0yeH4iQLERZA4bRHn+HyuAL8PyBNqgZDsRFYlL+c+cejH+0fCdPx/RRznwQcOS99ePFsa3idM10RdV+1ajooy4/2Cn9lBtKAqHlxi46J+yHZptG2vcuhZy2hFeAh2fG13DG8m39B8xNvzBL2uotTs29/NbGgfe2CI2qM3wgeZenVHypRzFgP1IZ7X/6UersMl+944iJ8qQVWAvTMF8nAjHsHIS+FvH3GsUlXWJSbJ8k1isEtJIUKgSMn9Lw1ziQbXOfFcgpZB3rOJlaA1CvBNTwwujm+GN7NuQv6n4oAHbBffjJ8EKCEHduIOaz8Tck9zPngyKja5CE0EPojEW/pCPm5cEdY1pJ5RlEKMdoA55Z5jSU25i8doGTCWt6uuZgY3v3YPEzENpMMpaOevm8peh1qnxwpP53th7Dzbje0NbtbncVMkPU3MmhCeSpUei4UHCQgfAj+eWcCuB88T+FOJHIQHYQR5ZcO2PuHVqRw/j2Sr9lP0+K8HkZE1bjwk/pOXRjViTKBWqMMgCKcZmW/odRqpoBkOdm/Bx3PzlthqSPjcOzV51RYKAf7YKBhir5jLXz03WRdddBUV7ztU7+krrOQMFGRTsCexRhQihZJtIkVKquKK+fMqTQ46H3QE6xacAPJ2YoWcHDBpN+KbdVmGrT/yhbeyuTwvjaXnG8zOK43DXthQ/GInAFMgHJOpq60OSzwo5SfccAweTBN5vLsDSerc3BIBYFSA5sMoFbm3LI4JoqnJy+5L1YQLtTMEyxcLgwQ+pcXTGpuOwQz1hG/ilf9RJQACEVbMAR5ddPvl0q7RwIL89hQTuumD0L6K1qbDlmcGQ4EK4irIN6J7JchGRWvx372OnYuMQgMNg5HHm4UrXlOjx6Jm/U+XRbx/BdELdRVeCI7dzcLggSuvdAXdW6cO3Umdu32aG3gfGgBeCh/rhq6DQFNixaDvvvn518n/Ea1tIgPaLM2rqvqrJkBB1BkscrIBSbYsKBnnLQOYn8p6oVpIEZG2WynOhCibXJuy7I7pSS0Cv7j3bOkq4nXSOSUJk+b6bs+v79tHYFiGIblwkyIfbvBxHIbBx+3RTp4fyICeln4AdW3H4elEcC3Svxdk+lD0aZgzScDvQV/hiA46ClY4lSPeKFmGq8Gw22HBnGDr0ypslhQ9SuRkmEEIj9MVTPHnujZtS2XFcMCJ2OeVAyvx6xXg81EmkAS4qGBaLV2oQCRs9zScSpFuOA0TW/B15FrfOv5tKtqPO0HtLMaOVy3YeUnsYy9upgPWVuoq/uvpuUr+vasV0TLsOGW0TbMkA+AyM5/29euZp4MuWhA5Gf7yS15QBy7Xse0htBK3LDdhtgoerVkWviS/v0oNB3qxvt3iEVPu0DqrbbdbujfP4ciotA5IyETFlI9kr2uxpI4P8yzw6jwzZdB2e1H1RcoD77MiHOy2kkNbC0lrS1NSB2ZAH5tBgW7EJVcLdbl1P7tpUafvMQ2BV4t61lTSvQY3NYYz6lLbSdLQ3tA0c2XIDwsVKd7j3gKuFseqCoV/6fpCWVo7G/SSpvV7DrmQkqzOT1p0/Fp2486tghqGeuFhlAd+CfKlg4JDMt7zsBvVQHjKjT+ho53oRd2lprAEeECulrABnabL2r/g8kr6M+A4fLL94SrrFwEssx53hMT4XWAwsYNIAxip5gWjvp0Jpp1ibbAboxlJI1TwklZTwNWszlmZfLWm2/NbLiNh+/Q0WhiBqDsj1B4X2W0xu13kwSrUVdKqoJyc1KR3ciDgzm4GBxcW/k04OuKqVxxgqb+gvQsR1fvuY2qq7+mH/4nMHl+KlnI0MxOhnb6aq8mLmouhhTvn4CKU0LjWLnhhOGyZAX91gaWOTsiAmvAg9JfB9RuxKXlubBLHszCWPDe9ZQSGrEoZMgWL9GnQNiAGXGpzsoTQsVWdREF1fu3f+Bxe1Q4ihESogscYrxHB50GE0G4MDGWe9NDf3B9ZHDy+4SjdivRyv1q1ssLIwM9ao5Z4lyKjQhYxUCgx3F5AewQPWNKwlPLtqGvwPcizVsi4NXioAd/L+3WXIogNJb+uatTVxFqstwv8OHChlyns3ncyCJJPeIlqaRwggi5j0CNrj/e9l/r1YhEYMjMzkeXfgCTwn6ukacsfxGANZN25hoF+3Y88Tjx7l+mpWCNN0cC0oXOqZp7t+Ae9asgG/5A/wgy1escT4EVMpogNhA1dkQCdV+m2TphSPnKzob4v/xgB6HeqNE7xuj2wmAtbKbaLopn0KSlU23FqX7ubhQGjtPmuwU2p3o8C6C32vjwjJ8YBCOkqJC2lU9WA3UbcYiU2iV/XLz+bevUAycdEYdcvnDYz9BpT3vpmR1b5G0kKH09bMxp3JG++xx0WaLVkeKtjcKafRTf6O1TrjYDcThs9i9dVvbWTIaajjgyBQh4PgxXO0aaehm38gZZX9/k/tpUt0f9pxQ9kikxZny2maJVvGCvi2kwPS8lhnuU4ZKxOOSRfqLrMBfXow8AB9IEy99F3Rbc35QlyMuLVBrnSyMJmheMYyZ3pDg6DRyQLsibH/mPP+2HacZ/QdzoyLTdg2fJRGGkfLMdoiODhx3tYSb4qkxaa+QwhVwo0tqadTnTH0+b4sijEKUkC8VDV9oPvp9qkm1tQqGZMkcXRFy4GzmohqWi3TLpn3XNwluI2n+r4IjdA7b96FSmrd5aPQDOTmlub0nrnO0QFaG0sQJIWAwpaBtQAbwvt1NZmYjj2b43AwTGZbvnh2m44+PvQA72JOJ0LTFSii1Ky71beavwuAExxegfmgNtYVeCjHPx1gSDkx0NY6B2i3rACMx7Z0Ju1Bj3I5uV/uOUPlcSSrsZAcIHicWMvnmu+6VyZewfNQnsvL2c/8tcB5v9Q0lXlkg7thfGskHRPRi4JnLsylXuf8SxCDZ5VEe+AGc3PBt8avA1bM6W8SW8wfpQN2UELzIlzJw96zjx2EtgoKX1m6iRQURcwZGP8dnMVNamWsDZuvx+Q76Ig98Gw7gDB2Chc6VSYGTNw8QyxSTyaqrMtABEitdGZ5KB1rZPrLSsTe+6igYv3cFGJE1kCUQu4QP8YSwDb1CELe3tcYe5OYIBli54u7VUV63tC/ciQMsDl3fWcv94anD6+FBTp/gcb5N85zXWpBsJmLYWlkKui6ZUbVX0Gyjq1X0pvbC+WhU0kdnB3QahEhdZIwtct6HqT28XtKmDissr6qWDThZ3AnksOO1rAnLZIJxzegsl3LX5mawUwIri1pbOS1MFapL3uO4bwjAlznsxZG0CYPGoazx8VM+YTeJ2l0ZLcpDvyKpoENrRU2tz204kNRlcBGwzOlp+aRD8oQHRq48Yv+D6flAde9woSOMTdVg1PHagCUzmas2coggYcIRSdWJwYDpq7JVbqyhmqcmfwwZsGh/s0UlJxnO/+DHsqXoGqKbEzyGfwElMKyVe8uoAz5o7lGZMeQoKXmWRx3K8utrny7HwtsyAJWS0wyJM8oAVDK/4Ys7WYDFFPIFkuUeMOVonr6gfzei7a8bazo50U1jOYr53cipromxIAl6Lh7DXYFbLkhDGfsFwm3wFfhUf3tltQQgUcu4J7QWSZWogFsNb3BWzsFcULfmmCg5Qv/iDuZyOeHyc1sSeKNBOlpqXlMYpAkTPcBpEpxjw7jd1lMYdIMGjXn33XHIvalLpdGnR8gSF0z925Yvz5ZWHmWVDTAzuOXmpHHfnhUHXPyDMrnYy5J1yewCHOPFNpvT9DOsfB488Kt/9/2DYTq3tNZHAYD9IBuwiPYJu/Jp0gYhRlmCTS54aqGmaiBR/GffpExrencKdElpxhRhzPDnmzvTC7bBtHU4I844/bye+YK4mu60N2NKvhToWJKdvLhtO+BawljWfYAlDV3vmBFmderqCk3GOduQma4RvIEQF12PvcQGy064Wwsi5ZfSsV2NcIjK7Sl4/m+uAepTl2oExiGegcPqK6ZYI8v/924T0bHt10iDv8pQAh/oq8/2DpRFlEQqAjEBEBlTwLjm6Ii3ujyPHg43A91g/I118jrbWHo+GvW1WFrWP/50XYbO7x0p2qUmeI/hftx0Xz1RwyFAOGmLYeUr0GRQ8c5d8Ft25GiXDlHnmDYMgNpblxm4+0eqdjXDWhkLJUhjPiN/ysVZW9fsHunAg0FkKLHbb2z7cVvOxG+/13Aez07HQD0smTntPvl3t3Uw3YXplRxzzZY9aOc6IFhi1F98wrcu1HohnobFO6aU2coehU20crZ9Ga6pbnTxHbRa7L+5YhtGyrqWq9ahL+fkoiHNJFaE6hEuSZ5QtTzS62ZidWo2ZGrsoL4dbKfixfDEKceOwl6pnUANURCwQUvo3JcRp1fB5JrcmpdYtMe03cEk8CWW6Mv+WQlD7gpiXPuKY5JNpZ+jjS8qvXvqwz+TS941Bm8s1f7VepgL/X4bKcuN6YOe+76mNRKhSfnbzBdrvUekT2vXv1RiHJpwk4nP96WfX//Eix7/RgZMcUU+ZjMwHItvrca+HtxHeN8wPdN9hs5/YRTagYXdaqkYVmN93xUsFxGTHSNou8uSwECL2bjaSSoMsoihsVOWTxZpt+LuTaMSIjYU8ZH+f0nuSbRndYjjepnIzLt7nEMROdFXiodwOEFaWBarjqLlgorSoKwBGvL7Tp6V2bwayzKV8q8A1KvbNr1vYswlOexHVlCdRIgtoIxYLhF08CX6hsTPbRWzsz4K2yMh2S0Aw41v29kaXUXu0hr0CpqX/Gye2jLoOXBSMTauMp+2Cla6zyo5LHKBzcJXqs/zSjPrcV6i89fWBSlMJ+HBxc97FtozGHHxhaQs+px49335keVGAAERKH4IHMew/QRghycETuJJJy5W6n9hLDP+n4ajHE0LLGyLapecNFOjDKGajzO3AZ1A5KDZ5+5qAPSHgQ/uMXsYhtkdxhk+Krt7i0xT6SgjXR9cLN/PK35haxpefFymGZmp+ZcnNA6J8V5XuxEBYh71xRsAnbhMJ6kLCHGYHgrLfLgjYpEEX4fB7sCeYPSweGnZqJvRrhSCE3/8sfHa5SIp29ee+5JxzEQBcgr+l4Pr23SEgrXTs5TY13MHDf4KgJsrGQZWIzOPR3fT/7Gjhk5FnYYtaVPyNfDhdGxWLeUG9jiN/fQKrMojkxA2kQ853JXrMF1pgEPQnv1yP5vFs6ts/FiydzHKWL25cU1VsZFpLQxCEANEVXTTWbMhugcF+oZeWBVkw9cz34cCtxGkneDbWWo6ELd9bK2LWry4qzHxpraLitH8LUfMALtIY5fmICqELBAMkkkPTwWfz3a9hITmyXLVDb9qnF+YZ8gbkPUPUx+Ounu8YUF8EAPO1M59fCvNomoF5MpfFyPw40m7MEZdvX0X5G1+IsQb2qU1p1ztrWG7eIVmS7IPovnf+9U+TsWqoKJ58XGeB8cYVA53qMwQR/EvbRZIMlDt8IL6Vo/GEGS+7VeWx1TeeYFr+PMJ5mF0xrVUwChBYMKWj4Z0L1w0IDEtg7FMRQCazv8UOH4mzLW85XYf7a5dUI2gv2FRxlVyzeLHPu+u2aFwLOd90+gPbMP2pDWCvWNhLfBkoA6DdAmzcAv9/knQDHYV3Xa/pmjFry/V3ZyD6qHNFbIpiln++drwqeRX80NK0jwxrXaSN/0g4yCwF1s/HHvnLQEO/nLQdtilQq2KvEZfgNWYfX1JlLzex2o5bE9fOxFDtGTJsR4GLP7YLMMNCZ3VU7SgNvBr9E7Dbrvp4M7cT1cSz0q4RWmMrOI0tzjktpOMefzXZmrT3pQED3D+l1MRnI3EBOKAudk7FoaLIuDQX2Hllza6/Vkmgp7MOqow81N5wKkgUfcgTldvgaEnqEgPvNXu/mQkBd3UzcjdsdlXOfSj/UezZE0B8fsjguRRp5lVQwA5MHTXqQRKSfQgrmkMXRLtaCB+JB1pB0bcdgEVW6ztMuGl9mjv4L16rjLYSJYfIfYYBk89ycaIygbJe3PYDAnIs1YdTiSHltlWOf3IYZwNPBoN6wCeyZqYjNvQfDnuX8VDnEQCF79Zu0qC9Q24GF30wAHp28BFQzrtwAlU0gPr+VPtBIUmd7YbaLZf8PP2GigWAJbwAe2RjT0N5KKEd8umOtZgBK0icUTrfmtI/VFebXuw0ii+yJymLiB1l7zzygk6Md9NPBQTt6IgPGcLQxoiFs1jXU0cZoKyUPJBpxM1fbKfWzYrHxbqEGOR6CBLFg/as5s9OsaF6p9xmVgiOGyvsKx+r9wFtpDJFaxJeI6YSZVj8TQH+gU9JHe6x9KIPZwmE0k7ZqK6FiWXbZWS6XkH2nMjYA08/TmWYz5CQ0AcUgXnFg9imCPatLCNiozL6Zx35z1HH7LPsumU7sZyy/+ofKo5DFiSyd6bep/cvrcRNCt9Sj/sNrljg9UbOpWpp7bWysaQD4zi/sXrWeLgQ84iXucZe0Yb3rbhVAYuXyCmgwNWAuDuKJfRJWB3L0vvpUpGTVkcQ93rKgrwptDR1NkvMPD4wm53H151V8hW2hI+EEz2RF9tksFZZBuKksLkOFluF7inc/k+ZzTjPXRY2Gf7cGCU2XaI9LFkzaDoVuV3KybzlY1Y0uaHVi4rSudO/vTW7/rk/CZCi+w01prA9HPnhAGDlSG40sqfF7DH+M5PGaLEe4t88hHJKa+bNbnQbnsUP7Am5whi1ASqHU74xq6Fn61H2G8eATZKA4Qmc2o6NjyrcowBxTwqCCeiZAEmpHNZN9/FThssn+T0WaywQ/BxRjKS2YBqKkCx8dU5qtxY6KwM3X3c1sKWnOCMkAgek/1In8dPVKPpWPQ3orYD6+xqJQKoK0f/Bzp4V3ADdB+/0sCfqdu0u8803BD0kVLysUHpiTQGm96HKHfC7g2fPBYtjMTUCodJTsSPYb3UKY/TpmfiijjCU9Y6zN7XeGRtt2NevFNor9OZOjbwEpvB9bDlSN7ohWRuQAxz8Q8E+ATLw6ri+JibcCCeT5+K0OW5OnoeaKWf9Oy2aTRiykVMasfiIypc4GhdVVmLipWX+st+w3a6Vr2IhdeqpMbFCd7iwnbt6WCCE0cIIRBcD0gX0QMLFyTWO+222YxXD78eZh/0nqy3eqbRGqKBy+mC8AaStFF/gFgsGfcWHUePr9NpQh/1aXH/tjNO5eJGFtk3YYnqtDs2gqy8cycMaAyCrT1og+1+GxTnP84qxNLWAfOUatCi5NEYxW1yjfCzgwSxHjzZR2PXFBHLlQjswbur1+a8ZsZgNgDGOKo5Z8d6bhR+gb/PHMSTG+1lcDMZuQDwthJOhPe7Io9yZbA07yBXm46R7n0r8fpCh6yhW6zlRKF6X9BAC2/iPu8Ua4cjSc2dNxN50kAJwRpLyi7vsokfsVOfMhtFqlq9wh8TT1crTMRd5YNObu07mJUNTEmKK9MNxqvwnSFYO8J1FhohdVMmtRfsYu8qsTWfzn0UK1ZLaP9dUwKWKkUtJH5A/d/UoKCEyn8u7YT8l9Sljo4WPBMjBGB8s68PDD3vTvTNiN18XnzCIHEtIROV5Kc8uXEyxOuGYyLPe004hl9AZ1hm/AUCWened5Y3tXWg8DlmR+aFrWS24Gy3HGP2VbWGVf410+kUEOstQ30koHoDPhHrSm1Cd+iTDoBbXqR86QEO8ojYhGQTDEjdfAduTeep/y1POKy3BKuxkh+BixOoo/e1iG44Zct7QDXr/zfRr8M5GfkcR2stLr3Ndja2ZzLNztglO1Ck3OmIvQcxqoKPG3KSMH/4Ftf/BzcyTcPpwzHqPlAGoqwxHb/n2XkCoY5aho4p6mkmcR5EszDJYUbw7I+SdrH9qgPIw+S4/9fLGxnP6Tq4BGEQ9iPppiABFkBZjnjoARN7u/7IpKGbDd6OsgAvkKJ/c8UivkQwnZNJwbLJ96r4t9FcFHpkvhLj6kEkEUQUvW5PuiSSZPm4LdlH5SUzRxnx6JHvQGW2rrK7L4jUIURoKegbRtqiu4ON9fLu2ZSEmZn3bcM1DUEtJ25OakL4At35kb2QcUNnan+BbKf1gPt69r5MAoSz20v4aCNA2tMka2HQcr5AnzAlGdQxRwbBGmome12tuvcoLZ/3rtaeFxfo4dgXyvlUrLkSf/9aUxwdrjkc2EGdWPyE1ZiwI01J86P1tjh0auFxSOrsI+VhwjpPBE+/Yab975ezwKr6oM0+WR+6ILmnBGRCCDArT6FoP/CafH3L9e/ucKcY5qIklZW12IBo2QC0H6i4unRj0VTZ/VLkX/gfrionJd5t2Z+XHKckFtAiYbOJEGlQE3AgduKI260kaD9BBZ6wizLY6NKyOYhkU6UfMcbNppTJjnryhCkh2cTfbqB+qBUmmgMX0JSOB0XDv5uQ4EI1nkPwd1255Sxn7sKfDgXWyvFbArq2FdpV5V395D34x5SKGlgj+UF3M4+kJ/u+Br9KPjXg2ZZY9UVQ2NkWIchFcnl3j5JcvwhbX2r51tYUuCqNtY+uilDkyWj44jPTtHEPDbyhhLvunlQqmstJ6PYqyRMSS2gJnvaavh+4Xn8kStHfXlG/53LOszMLMXq/2c1bz83C7CQkrgQWgNNcsvlpwQvMd+EYExAB9uSxJI9YGdaPYz0/xqmyvL3Xvt2DEDSd9WPZ1rxyoIGUHCyDJYe+0VwoCUiVL8h1A6UXn1YExu+FE9nSn6cU+efRDmihhnyULoPHDK3klMmog1tr1pY442ECN4/erZpFK+WLmlc4xOPSRGTnVMSFhRgd5l8vGM8ERqoubw/cn9H5bIkR4qs9Vq+JpO/E+iP5STv9DMDSO/nQyjujoB37eDXEI054XKoRL6KLckyQXWC3aCEpAFB5aacSVBWeDJR4NHxW68psp0zdB/7rnj5lKXb5zQfzJyGw1bAWhhLB/4osoavYTilJKAfCbiOQ6MOISm+lSYQJ2ouPr4+Gwx7BkT6OFAdBIpcO4PTu/9snnr5Mn4nXQ8+RCr+fl4NOtBJUs6xUHYsDG9AjBSe1wOChOEJ/+u7KumxX5guFM+6JPxOFqXpc25J+3UBReIjiuEh6NESxSi+XhoOzOw5nzz9CJH3ANKR1vXlsxXWrLyoQAAR4dBmtBJ4Q8mUwIZ//6eEAAAAwAAFzou0ACdjfSLWADBP1ONEwreIbAZv8Fi7540vK3RRN8B7o5/9qO/A2jThMkd168CvJ5MYrNVqvl1gR67sXw7p/fxV+5Xn/oO8iNkZ5b5WXXW95B4H5aps54X2nGegxq1aS6Mav9E9unRpvZVQ3bXLylW+hTbgspApHU2vPJgZvrzb2Fr9oJfa7qf038U2T28tOOSKdQcpiANQDt33/ddz55jHmfv31IUHHlx/FTOMzJkCq3T8OruM9KkQ4lfRprb4uYBByixxfSEAbTB4QII6ohv9X3DKaZBeX3s2vUpEKZA3jCu8mgcUC1xHRjI1SOlvqDdQvKvd//j3YnrdMCVCwgBf0ffUQ2bKBMlLtHdzHo1K8zeBhcvizAYP/vebehEVniczqt5E7esh46nL5ovhRMVddeNPqRdflHrqfqaEm/fVv+0L74t/MQcmeMfxrvfXgPeFgAx7s426YeR6SV3s/i7OVKASPh2knA28hTsvHOxNzn856VzQgH46JCcAXmo5v+KJpkki4nA6TI+6uSuwLqBzoWgdeeA2TEwmFAiTMFGm7cZWA1usAls5XiI6kIxCzVeEjIAKi+GZlGBxFHnA8zA1CEhA9ZvR7vbk1OTZct5WbYXNO+Mrjy/YKJjaDyRcospqCiM5n72abb6WYZhN2Q3myMI0PpwZUFR9LD9G2CbPWS/UGRtGGwqBjMbk5ZnNVLMNLvXHhxKWPaz8ZvNQmlEVellz9u7JTm63y5+5uboorPF2lYCBfopsWVeO9DElZXMRssctWbwe8B6JzkrW3WexfJ1I9Bdc+rldLfJW2QoySzxJbpsLj6YeqM3Ru0vEdiQNWtjbTeo1yG+cAOysEHjdHfU8RQL1l8nN70ShrCpw6jBWE4QawhpYL+GttJL1fCe4GYZ5iTNYvw+jFMEOl9y36YmgDfgh/2pqS8/PX+n37f1lgCxJ0MkmXRhXTfSEgtWBZob0AhHL/7V2+YHG/B5i/GFSFRBd1eQbvJYwX2D8ao1CDRgWR7mPJ2J90lmZo0wh9dWtFqEhA9LstVxxl990uJpX968yZeVx4dKS9flQRCxCDVt13tHxHdknuD9zM2LDnYdHUIk+c9ybRBAjqMvzAcrxJKl022hDZj1y+AqT5S+ZTeco0gLVgyWgq3ol/PWYFW4rET9/MtVLIQ25gOaqghOmiY1XP9lDeZgDpwSdgDQpZo0HJompUvPBq976Sp4PuZsew8c/ZNFYMwN3hzZrMgn4N9f2Y/qYnJKi7pAQBUoq0A/vaKx4MFWl1DUePAaiqEWa6Ac8HQxrCOz22tnEWpSRXKrNaVNXbNPqe1XP3hQHM5DUnCyvOUsDFMX1Xir55p8LtKPLrdxs1e6oUxmwCaWrjGX7s2NI0aJUFpR3KYtdjhSdelM4V5LzuDqfWKMPJvJRyVidoET3io4Ry4yBemib05TPNu9szghjQQArdqiNmOadu/vV/nSFZwhBM93/QUryXbvtSimKXjp/2XAMkoAD/ENuxYtnU82RRlP43BTxqpnfkJTdhTj4zWDuOsG1RMWjmkYRgof4QtOaK6k+PEm+ZDvIcJXgwLZxP8chU1qA93uQR41sds+7c2Gg1V6ENBNFfuQ190phssTwIKL6wWVhVm/CDk14bFdzje+b+V1m1Og5fsV3LLPGyFa7iqPfft6YLJJUiwl2qPQXxSwL6u18auA/M5hM/tfEg/zhDNrgCUBqtWcMWH98V3g123FhP5McCGo40NtectBsUnTLN+vzUvnESLzrwI07+PNx2EJpejClW/7Qq/VdTmwDH9WiaTmQKptx9RKzHvgSNAIDai6/Gg5zhkmB5LSTvaJsraFzzinUiMCb8xld0cgp6dDSFBlJRWFuGl1AskC73Y9DUKG8WhrUiSRXEanfmGfNWG+fsomlNMn+yvq+rZhcqpl+oFrv/4q9bynzF+SfKj72Ghz7cm5zrHotOLsmovkk/rosX3rC+25sKXpZcr1KdIDIhMhOdkQTOw/4coVNAMWNCJL3BciCTIrmpydGmelA33uRpvW0Xf9TdCOoq+rLEy6vs5hwMCr/nOfy8ApOmP5CC1sVyI92FgkS+IJ2p6q6oRHbZ7DZ2VRIBGGvfU+ZCNX7fLIpHdL7JZLrtw6XlUzlIL/uueD6lrWQSUdI9qILhcoyuzh27iO4X1irGzu6T1NOMi+uSnqCeUjciZlf7ui8anuZWdJj68jX2YpT/lrb4ufROlgUMJVveRi+tx3rddaTnCVPpI09wLhOb1E0uVoDAFicoulZw39zZ9ZQn70l0uJt3sAbh9K9qmNyJZRkPeg09fEFVaUSugm/sdMpFQWx9vqW1/Se5Cycd0FvgI1gsCuvKDbBJ2vXUvjB/7XATaEYyfnKPXotmadtDzHy19ltVP/J/o9P6joV9Ut2YZu3D09O/Bv7zqTB080/gp21zOf+RHprxOPR8zBjK9k34GAwQ8wiiw/lcM4nOVzSteXyrxtEhSP65FudmnNymiYcZ7DZn9N0ApJCEgLwpYhQWiyC3X6xLe+vaD0/OQXbeC9Ar+Sy5ZfI8JLHFum2hur4ywOUGQ+ED8q/pvtvGfyf7BHS/3VVBVQJztgx8JwFt5zTTXEdAljTuhZj+dRoxOSTMgDnONBcNZ9zhTv8y3Nf3/E8BXdGAl1ROG4/442LeYSuG/xUl/J2PrdHTDleKM8oADDM+m4OaDWy5lUhx0p5+DgxYAhH23MGecSzlJYZpLfdD2S5wKXeIMgBCm3D7DdoPOcgEhMrKnf9X+rpdl+rjbwH1jIaosbnmnlAuUEDUbE5xicxdibxfr68efzeQ0UFJ8fG+tPJ+3mCdkmVOnEPQuc/BqSV9p9RuTiWxjq8QNb/chRZTA2QMP8Fnd/YggEuZTBsxhJcqk0dLCpBy1tEnOmGG9GCxHH7yqTh850gJRyFzr/zLU6wSmU77adv2Jbz6xgeC00nlYtQEQJY6Rsp1VM0bFSMs8fshpAKjr1SgUcflO2A3cPQxSPp/sTGpTosR/0f0m8HqUWiFTqkjCbSBGFdNsXeeHEOtQNo0DM58SwNwdseqi+bNiyahgoe32wsXHLz29p57dSE/yM+Lp8mxnAME6fDg77yA297LUIUgt/uw+hf0kdzSvNgTI5PU8a3k8BbJjF1tPRJFvDTgGjfl+kZg9IA96MNe9+muyQFi81AmQUb3aCwQIh2NAVVHKt1v1V+F+yyXkV8hH6Nu1BxOQg553slzpWmn7oE0dHnXTIaVa8aLPpX3JWTcW2T5ars5x2Ys4mhmF+hWZ4R3u55zYS28FBgMlWrrVc5XJiLqVx0mJ/1KysE4MZsTt2cI5qxXfKK4JmnafcImnfUT0tumlGbVhb0yctxCenPHwhNDp25dN+unpUV0RT/6Yies4+Gowef5BVLkFewg9Z2laZGlulqhjq6KbxtZkPBz5ZvcZApaGCS9frh8qeww1G7cDGfP0fl7AlQ4FdZDy/RsukxbEgPyYXnYbyspkVqaJMk/tc/E9Kx/QNgJU4O9GbeMdLYyqoCfKisQkJcPRlpljQ9gWEQrOFZnd/THRC6mISsQcgdcw8wMItDWiZl7Slp+4YSBMa8yMHdTjJKSpCNHpjSpbSSdNn0bs4FRbkA5GMsGDN/P/5xqjsnQwi2Kwny/qwM+dCcomaZqMD3L8GWt2lZud34I0zTWmJ/XU8Wbb7v6+epGipAcgd45cszkdcGhKUEpGp/Ej6CFsqkgjLCU5CU9SFLwlxQR9KknXsypFzLpQPgoZ41npRch4iOV3hu0dgMPdwlD+2GdoTyGfvNcuPzgS7lr0fr7vuqQdweu0ryb9vcCoMxaCpmgiVNH2lh0MuYtHv2riOYNH8TN6UfnxiZU3NwvAh6rE+qJTcj/IF79PZLo2VyQHEzI9OrbHEI2Af6rXddp57XOiBjFY5r134x+bejWp7xj5F84+LIuPQnm2tzF9wQnQxAkhjOPH3uC+Gr4lKsCYtI3MpGxmSTOVDqnic3ubxhI/8dGMJL2BwmC2a7+oMWkZ+BbEnFK1dFbAoEArW+lMUA3hTOrBDk8RISKl7R3C7l2ceNotjn+p5ZreuLAgyeZjN9Ex6kQ7faPbFgLWE3nYsa+/6Wzu2e5CS6pTs121vkFAZO4Y+e6aIW7CqwLQktq2gXXeskI2xRRYnwjYJpfPVO3I6kpHEx/81IUN3GGXX2nbPoIJJW4MzZecPEXQ1XHVwcbxThqxLEFaJog3ila0lxgjmLJ9DeAXs1UXA9MXDG4YKyX5Ve/0PcRQ4JYGpdzzR/BuyioHFAe+CFQZ+7J4xaU7OeW/jpnzPf7gIAViGRVDAqBw58hrv1T31cwnCbHUacl+UnWZXtKrqNofgklRM37NcGuqj+qMRLlSEHBvxJNjB00841dG36THbTGNj0cIKlaCYu+sSze5amarTwlsYS+oGkheWldj8MUJw9lZp/ecKK31MkdCt/yjc/RNsXWtNT4GK6zUqYxZuB7AD4RbJR57ixADNO8HcSAUeAEmMthyWyHXbIhBgs///gVfnC9HfFIB8uKrmyIIXT9AEk0+R2uh86v387HLowzaOQoDrPPf9505ZMyH4qlmct42WXoLLGrZN0v8NlQbDhW185dbhYgS7iloO9QL1BXIpjrMFM+QjcJ34jE90fwVCs9yv6MuYVug4soekSskH75KgwRnugrGxLVght/gNen5n6j08hgFiCu8e7npfaJoUeM9ztKL1iuFr8VpEZQsxUFr9u50poHBVMPW5WNfuVvr1hHPLBx/Y5qdj8C7rBVTah9xn0lVvxtHJdmRrwigP6VTIkU/8cNrL5VOZ8ekuJbrWXKa3UMue003MGOYGBKdnNiopNCb7nkfcv41sEYl6ujnr/EBo2AIgQv0FTrcJl+eIYbHRVfkH7kEKij+g6l1DC3GbjXslktEpg+7/I//1tyFG2auogP5ANYoXWMCIoY4VMDNitgSGEOPmXKcDFL+dmFRLTFe6P3qv9iOaaYguZQzVQ6GPirSYgO63hZxLw9e6EBmoCViZBC8zQVan9o40TcIMRc6jW1AQ8vcOPgD5fCRZw6hKpyZTNgjGqz1HnVZeSYz4KgCKteEtLn0khK9Zhm9Vwg/TFK6ZyLxjNl2ynNKuV9BufQgoKlDfdlpurjoAm5TF/lHh5WG+0NJp1DgjaCMWa0DWkKUEzlNJzP24cYllIu/IhN8N0nnJYhL1kSdpkMuV5GXB94V5Uf8cCTiXVVlVlhaW5Q+KWFjbvpEfwiPf3P2PcGT1wpdJv47TV3aTZ2IKMRqzDBbBlG6SKLXi0cfWNcoQWnMtPY/cw74Bp8jwryLzrf18cALCikjDbyWoY32dnkJaNdi3g4r3QTWUPvxt1z4wNdzxH8lfSRAVgp32S6hLN68hHDF8nJhOlT5WmJVkg/qNTnKTx+YL4o8SJe0gI2J8ICDatju9QpI5GqzVaFPxSZRr/0rDowh//XYxgBHoF5Grx25+sm4RFBxn6GF4+Ks9r34fkBc3qTUhSutr3lC41c+StyZbKAZOUyUjhOzbpmmtFhFR8D12nogERhpHz8HlvWjTwHbCMwCLph/OLsxeUGDG2KHvDxY12XTJ5cpXI4Y5AOX5Rc0+wj8W/AP1wFcis0DqbgP8fnN963Yreu46vYsU4TACCc6VbGfyTVAGmAPoEKLY+VEUPrGApGxSECks95Mf2uMw+47eAdJgqnK9uxZFMgSefH0FUyDwZ7f8HhP1B7gvHJSr/M8gnUYrgAmweWvjk/0zGT4OItq0TDyPFxN3SjLlJdexU/KZO1sLNoCJBEu2l3ctiT/6JGIVRscrDzVu9nhXmOl0Xi/S2V9rwcQ9c7ercjjT2cxKwEl/S5PC9nJEEMq1xkU18S60N7kPYRXjMnRFDtr385OR+kMu4HfkiVlShYefsmARTPiaeCbmwH2owojwHlG6tM3/24hJBiWwZDXCHL1IcWAJfn/F8bFy18melX1cOCFYrXTUaWvy2kFnDv9WqEhRqZDQbyM2iHP6884BMnGdcseuwQffEKyb10Qsh+2Fo/+BFaLLT6SI9XetKnmhnI1VyLRaZ/jM4S15tpfQkxT2x25oo4W3GTZEWv1Vm5sBAoM5cM00Xd9KCS2/VmdTkJBlfT7zlzV3Xtf4rkqC7wQDZ6NpX7UzSBENhbftOj4OBsHoy8bD4D/e53wHqXw/Ol3ebgS9K0KMsyyuoi46lPqjzbMWB2H4yOFOMBkO5f0Oyg1viXYs3Wxe/RMcIS1rfP7TF/UOYl1oDvHyKLDkSepFjnsAyz+bBxYIpe5B/ha2NY3bBZ/1RWcTBedS8pPCfOJCbeM1z2JFduI/TGUOvzSfoaHjmoLzgo+a3dPDAHavwQyq/xHaHASzCpU2F6esoJF5qVIXaAJ9oO+2tHACI4qiHUenIa8RtKC4MY0nih22szCQ1pSIY7KbtBQOwzmO0+H937xrhHdnGAwDjuFQgQIGRrK1htt/Sq+JcVPKcTGdDSuRtDdOMEp7tBvkL1z1um+Ud5BtMXRE4Z+CJ0FMYT3WkvnYhaBLINcGJDdkpHcywxMa4OaZpKTwFJxumuwF0B8mIjxbRTutynlByZkM8kiEJ7iFBcnRFSR9zovevvglyrtgt56z2JXujQTw0gPIc4jXMZn752WrcDG+bgJBplRYH28+wDzPpwPvA74u3/MAGXfcz1fw8OZL296pf2kfFnRYZch3P2qS3sYgJQBlyesN9Rj7ikQU7BABp+jPS6N/WGRLFO+wcbAiXEuRvHOUQNzVrUN7h4q6vciFj72o9ogDNdUeygpJGaYlDVDIUcsrREBPptD7iwODkkHtDA3kWfxsJUKzaVtQvV57Pi2Dwg91OHMLxExvbSs40+riig4hq7scLBsfVQiFednKBau7zvTKCOli0M2FnbUmfev3/xKjJS8qTVsT7IJCIVut5aP+j2KGnfou5ENLH6ubLfhePBP6Z5bUL6jf0oCQxU7UFWiBzxUrMOMojf/J8j4R/6INHbcDxaUboCv+zhpb4L2YCaaUrR3csAFmaIIIpp+sNMlLcOGRH94MCxrzJrWTDtwX/z4dgxBDFdtcCnBpvwmdhvY13JN2nqSDS0Dm4zC7kMjRMZgG9bj9fo4nBxzRFbYkd1ciC8E5XHAqA4nfv/5BiejHAaoNU/jFJFJPXYV+351tMHIoPpOCYCPF3zdvWB5NLlqXqicHrPsm4CLXI+UrQOSXE9TFIvgaNJ9xAlvW+IliE2bGRSg+x7jVE4fU4XSRCajg32Gs6poN7Iggope9Px6IJZR5GXTI9pE297vxotWm3awEAnIn+2sd86S3xNVrlOh7/WFaLvkIhcWEMYLdSqp/E3fbXVieTYqyuRjNGlHg2mjwksASVXlM+KCl84Pv9KWK+Da6P8ETaLXfvS3Lfp7pP2ZKx/pTtXaq/yI2JIjulP2xFakUd9bYCCgu+27ghMtY/+zRUcYL+q7lWadn6hDswgunH7aTN2ztRQdb89KC4tgy09exQ0GOt1PmRlo6L4sMCXza0UYGHkxFL8PAziprOCs8o2O/KtOBDDm3qzspKmlaGajc5mBjflYXMikw9NtAXV0CcweQ214uLZBagyYG8z3lhqgTpBFzLTMLM/k16IzLom95msn6xKApU0ZA524i2qeipbqyXCNISFXZJiP8OT1sJSKw/jr21/0UHOVh2VOfrwF23ObAsnrwh8ouKJUhKg9vyqz4j53ZvNo4BiQK0EQCvYJ7e76ayLkOnoGuSEGeA4OqgTrQpmHDsJnMZPYEYzvCFfSzq5lMg1N/4eIfyuZ3UddtB4NfwH0R6rqh4NpSh+xD3VuvqZf0vWIMtsQUvtf5iiGCg9ddOmbl6WgAQoYeX+9L3YfIKRDsF7LbnDwBE95GhDfy+tc3msCU4uNjCgBcFxBIy1FsCYBzl9MWvmtYSZ38vnFhXGzvoB0xOF4WGfpEobotXQ11IzEbfjTfdk16+2ss4xUQOr7hK+doUf6Z2KkbQBDwJ2sN0if89UDQf9jr3A2CHK97a5UBFmZxwWginX4Nez61AaRxoKu9a3nOjZkB59qmRUAZJzoltQAJ3weLqNeZtT7trcLLd1AMtuwIHMjadv2lf5sC1NNgz+GDpCm6q8m3WDlWtmU/Ls50ieYuVVF4CCA+lJALoa8CJkXZfhTGWWQHSpkz4KHDBY45TPfQUhqE35IqcurSVpt7QlFySUqf/VkhM08En8Ju05oBSVEkr2fLl4mWgVjV+jDv9wdXjELpGkFj/NZE/3qQQAkeiYAH5uNuOqLYmLvy3sPGwdd/aOWUfJPR7Nx07sAkWm/V/LTaXl7Lsvo0o4wi3Is+//3ysBPUQ1F1DL/mpTplmbPfaIZamREMCWXL3O35lnJSL6ZXRGynWtvy3dY7WtJGns9QhbRl49VPnu1FZT3w6eOU/V+TdF2sOecaCQULsUOBnNknLKHc15oxYbHjXJD0RW0qyTWN73UKFijzLR3ehDHXqur1jr3+IL4Om6cOdK2rE2bfwlla38+Fu5dq5c7jzWSbjPoHVQK2xVulP91Z99g0+wmgPKO2zGgVAwuEMILNQjmbls2pgADFBtYdVCd8yVZwU6gCb9nCvNz3NxwWHi0kgWlUx5TI8oRUr/8J3CDc4fdaUjmed7+i8AN+ejGghg9oh+JSd4Je01bjQz5K3fWFrynpRNQtW3AzvzLPrisPdwzWJmSkFSR6sNVJWJXeK81BlwAuPibgYrpHj1XbpoY7LSz1XJP6pTwbD+DakQXjrIEn5qCK7yI7uHlHCFPKCiZBNDw5GlpPWPxb1oGf4aN1EmTA2lg5GQzpKNOsw4MmfndCKOVZYLwDjxmjTgG1sj1AkwD04oZmpPtzWQ6aqODiVsiLyB6n4HqvMVmPNQb0x05tpEoTIPCk9w3vXLxgom0JsD6WyB0LGAxsM9OU361jCrViLMLL10uAE1+FKFKJx0WldKjX8TMhHNgJmHPGBmfAvxsdI5qx87B0MMOCGBO+B2LFgod/aYqRqPh5U67mCboK9Uf5Ypolt6Vfp7R2ZrOANshpoWJmoysLEfa42XZUPPfdXGKF/2s3hT71EiyZLrF8h/H/xtHNw8uteA/wndz/0C3oitEMGPYnxKAw5Wtzz09+Ms+8eTkXQp//wnC8/35AEPKFxIp5xrhe5Y8C2GUudy0YiNjpviYcbB9mNfu97bJiYi84/GmpXL1MNpoD4q2KNqEWGb8Ya1f/gTDPPKTfPTtdlyw4tkIPU1DVlhtWYoV8IkXYV8Rv67oaZXDHEz9jM1EEu7oBizPMYyAlx8sBUtqJFFhF2n43DvHvE954iHo9ZEMeTOtxjndNT/L+I6A9ADUWuhXNQ16iw6g4W4ZuGidt+32aKoWllER1opqKadXsXpPNsXBvlIFPZRegXCuboXgbZOugEscO0sW/2H+2V70o/oa/9nl35wEPPa/hLRSot9eG//SZBAHGR6qGa9yRBgwBSTChcu+jlD5sNLvhfDMNBk55840wpkvdD43cT49vW4dJqGa7UcNol7o5lZrPj6oJiv+eT72vcLulAopzQg/Px8I6yRF0sxdXMbYgAXD/7JemDWhcrRsqFBDpy6EnOBeAJESQe72kYPIOGTqIQz29MCk2WjKnORqwWkM601ajiFOWMJtC5qMQLVdYsf1MGNagmv1MTl/kQI1rhjmSMP5M6lF5y0UUKARNtprfYqJ8/ZyBMe/nr4uQ320jNJtUps5kyk0hhcPB/ew6jzDQiZwDtYtHGmGjMxZ2D17QbxWGDXRwJ9AMqnZCxDOT4gjuAU9eZaG9ClXKVmmPoF3j68bEnyG6O4jF/uQBXkW/J//zxlK82wV91sG/y0pTgwkzokW298A3TlVVZo4OZ1TFqFnqVNnIYTdL4T+d9GUCxNBDauZ2BP/RlTM4gqoN44pGbsKo5AA73V0tV6hmmkGNFKwwvVFY0rMtagSsmOOFUM+Ue4YEfsWfruFlmxZLSfODG1AGQc8NaYLyyZq2xY9Qo5zr63eFq9BhJHUBN/IpC2zglYY5dFGuFcL93fnu6UEkFlNhjqX33qEFeCWxKkipa7eEZXWdQ7IKnXKHRqkU3VJF4ztQvrnyQfAufo2ElMqrwmDg+SUOgMdOAd3jl123A89th7n4iYfF93x2aOAFW6V2bxjlvyVo4ydhpstB1CH1UDZXZZWPMsMrVzvOOsPVGhz6QTew+jFiAm+AL33PmgBr6LWNrxDlR/DJ3D1QiFpHNTnPYHTmxufrgqhXD069Jjt+a5HrAWNOSGJ7VuCyTvCjuJST72iAn+lac5wYD/cuC/xCPgX1YYrDdwqJnqLrsfP5GEJ1qgEkac19Gscu9rLTxw3KQdDQPPMkHI9tc8H3W/awW5jfDdeE7uHlJ+OtEHn1N/ZFUY7TeV8yY8FmmS0GouXEqUbzQXaCTOXtRFegI+kpCDwymdAoLb+pAQLdLCSaRwKf8WUM6FmWOinSzYRzJBTaoR4fjjphDE1q9ZW4PV+RceJ5B1SwlRTXqF1PbA66q8S5lz25b3X3PyaTUea3CaK2HPxfYAD8PUtfO9pjCGHFfwx6MChU9PTQMje+xYi8XoK0KlS8EmdE685fS7aaASMdSOn3szfMG273TzpnozF2qHplLj7LZiWpm6N0QyxfKXuhx4TTxhRmcguuhXcykfZ+XOzF5KYvDkvQ7FH+jc7fnp0IqBb+8/X+ntDwKhjohF7hBawYcYHNItoi+lAreWcp7QzgUXWFmzHcv9wFv4Zx96m+RN1If0hpi8z45cLBaEtwoxQmLO0+B0a7gWaMvRcd/t6lGKLNJCcPXa+HUyeWfEp2XQcAM9ElLt5UoEcqTQ1IRXeykrjIMYNCVKGHchtaBnL0flMm8oBzl2p8AJ6mePDvV33MX1dasoBFtk9JNSSHAiX6Lnps8xCYIsvEgy6dfFrpXtrvCWgUOgXOwvV2jSN6b5YJvmCcSzPfamMurlZYmwMpXWwDjUHCbaKzq1IAUogH+9zTikqvJ7svpUyU4EPW4xViard288uZwWvA3SZTET7hibPWoAg80vp16ila6wfHoJgSQh3gMn04vtlts39eIECMUc1azSTEbOET3qK7T1jKaSo+SVSG7y2XKagjs02GxgFo6l6uJJz+4TXPYF5YJdpTdLVT9teciOFF9LipkwcRhyVKD47neQWeIm5/y6/nY7OgeVYMRbu9H/kUQg2rL+Rq3tgj4m4G6t9P/K8dvtjx0KIGbK4hua0bZQ7bypqWkfOpOtZ0kznwXENJHYOGHb5Nvs1Y9Tq7KhGoa3+3VeSm3h+MUrlbV5V90Nfim2mqK/zdUTzNBWOn/Ovlxihwym4yT+b2B4zruQWk39tlLpMzVny9CLDOmw/HWdAPAsP+cdGNpi18nz6TUBMkm9Tn83Ky8thXuA8Ms1tZ6qg8CpmlV6dKso++bLNAe1FJefyyhYXk0wAlYkqPg/RAG/R/Vm9jx8kmyzTQv3wYXOvBgUBYwSatHzVn5V3hNx0eWbLuUj7tQZ25Y20JZCFrapfQ98h66CxinTzEwPn6nzEshMxmO4e50uj4zL7mzESAcowkqQlI2T+PDU3xtt0J2vZAJWbVg1h6vijZ/fXBGCP461YqDH8oiZQVeMUCTLvO84GnBs/9IPueZacdJUudE8KQC4+eU/s8BN/Xy9jhYSZ1kR0tJwjkdzAsyrChnMzxFTYDveZwnwyd6mz3X2p6XNHTbUIhEEzDlwVHGFogOX3aTRxHdnjhbzNNmxiYx+Y3ccfJU9qzbtefFuIdGbuLWrbi6UqbPf4p5RE8UZwJyR/9JSQrkizYOQPOIUfCrNZ6bMnZ5MbYjFiLfkz5WV6EePreRxrsR998uVtgGJ4Ulo/raLs1ke/Mih0TdmKzx5FCOs8NyvHjXJpcX1UQx4M2v1s8JEjadvf8XoP8Eyar1HyuMl3vQ/viWz1yqHuMcSy1qJP/igRrHU37eSg1smpGilkx9mCk+9QN6jwyXB2scHzKnIBqut+F7rf1u4Rp+Fm1O/kG/4SH/gdBr92fZ1C1+ifpR2UI2M9/AVVR7u2yKGj5n+mJXZCOKdZVyrjuZrkYNm6DMS4jY5mtJKpFZ54FYk3KELAIdtcZsc/Xc4CykxX3c9ORsR9wXmXFSrP7g06hScLdXgGARw23FjjQxPyA5OujMvEz0KrF3/UJa8tQwIvm8WlHq9emRfpoQ1ECUhCwIs/vHQR6rVJzaGjKdZNxyhjoIan9+IR76S/vKCZ3pu8Il30khjk/Db20EWMlHfRV0+jcihQ0gfiGApQxL2GJ4g2BoZRUIBwbBzIe3qZErches3QhDC8CDs4yXvu3wnggIi1oALmrLq93vS/fU6uW9wVyFxDKCdToTFZD1R4UwmptRUkbHSrO/rjkWu0CXr3v/0+FyRLWUeMqhIy2M7RmkwhR1vugm8cvGy42J15aR/rIW8rSPWb5MZUs9IRQ1Op0hE90SbZswtARLud5zV8aMuU1PyjKrIEABHNJfGxQZ5l70cczCgkNpOlRt8u9M4H3A/YtP1s+vV/A7wzW2ScZ6+30s4pusWjLXgprQcsofsmRoJBZBaM33Ol2JqUD7F1UM9Dp9OoZb+s/CeCW/ZlrSwgtnu7ByLgClskrblX3loT8RCEPMs1xLxJSU5KLCjQ3BnNUZpbrA94coitjaIF+am4LxsCEHS3zuBnfUAlkFIxa82uWbxeMZGWQiyzwjnU652HGlKh5C3J1v50A/87gn2NxUyZJbWzEEugOxEIIyRbts57wdxW7YDtfi6GSwDrahjAs+mtRzV0IyyZ41+Tw5f/xnKiSlw+MXgaLEEuG8wsQV9CkOQWJt68+LvYsxc4N9/fARcXyknpeSDBBsdOW+yMCZjcYo/kT6gjMDHJrwpIPqiKau8wC0srMp1KUuP+37fALpu0QQdOXei00SZB7sG7X5GyKFGY88TyUUlL8FtEn59IkeNUphdsNlzdBQPLmUb60PamygXqGyn1dIVnJhZfHZF4uNVnzq8gAoJMf1SHWFc76f7uT10ro+RJwkPvzRyFVNpNCuqt0d6rF/uYJBrNScWi+HrnNhDJBLi/2a9/2cV42Fc1N+9L5kxUdAzjHFUAMtUOaw3FxjAtLCE7gyKkEUg6Xuv8x3hNtYE8BBl0uBytNajG+yAzijidb7N8M65x/ojJdkScs0AkEEPxrIXhnPV1E4buwcj3J1Q+ZdBaXnU0F9eOJYXN0h7Of35rKSOiEUZdN8hTugZqOm0QUq9E/ZLidLX2xcFim1jywKtvbQmqFZOgVv1SHHSabrcGicV9gO/L9TxikRO3J38wX0GzwnXJ7q3FPxVxrLb3lLmr7WXctwFg/avjOimbT/tCWSNQ26C4hliWzxwaSG/2yfQ1GVFJqyD8RG3fsaEEeCaLt/6sChCMqeONwmFHikTAGVB8wBYiLSCCtpy40KtUISHgTT6PnnLCAx+sQtIkLPFdZOtKlFbvKd2nEHb+WjW3SGM2ctzQ4fhC1QwS+zrHP2Nx2QKryKoe2e6sbCSlQJkitKsDPGWzpxMFaTQFCI3ZQZUzA1qy1TKLJciMgUeTl9nYcKUAfibjVx77ODebFUlJLv6dZE0AiIXUiBbyOhGF2HwGb/bJ1+WJVZOUvp7z3uKxAnjvCpZECm/dc7yPQ9Mkw7bmpf5nysBU4mCotxRmVaSghFLwYtYuduJjdRjRvAXTJxFeDq+89Wpf7x7yLNrbTLtlAA0wC/kan+bE8qci0Ooeb6jnlogGYt6FrHU9YUWwEenVbRx4gBk1xlGZ5L97/ETG001ABkr9+2XmBExh6DRdlVqEwzjObtG5i/qKaolyX/ylmpFNiUR9/1LyuQ8xCCXsSsKd3aOIzYE5UO//5WZBzzk6FhEkrY++nEn3Q403UkMDujb4JwTffc0aw0zLDw5lwJ3Vua9oUCeFniHGg0rM2ZEaXIAWsWvmdoGtMgISMSjOyHC91RSoTcYQn8MrSaxmODAyf/i2Kdt2I1SXBUNEvZ7Aa5F3mUVrCNIB4K4mkUKdfCLdOQAX0UtcG01Gk1Our04YF2VDYKnDQnF04PvAldv+CEEbNrq3AhXbyCmgQzwOSADKX21YWho0tdjA/gCEecdL+k2p7RblRfu6aIe+GtcAiGOmrRfmgvhC0Mg+lojm6MIOtMCUNeSkCAAmDM7ZiZ3ZKHS8W0QlwmPj8qgPKl/uCLcgYnLbCtvYeel41H6cWb4J6l7L8kvJGxJX8QEcB4hqsa6L0jzVx8JnA8H2pbYvd4kU5Ctg0BA3mokCf0WkMI/6okCL0bbHxjpIq7gSotPrD8nx2HHRd1RJpQpfFCOKZ23eLld7/lvoMSvwfXzEr8bpBtgRlETKXGAoWz1NVFNIQJJSI2z1lJsOxVe3lkSZMhJwRXfldbw+h2bUbe14fLqt6J9meTtaCqTudU94RV9MtZveY6vJ28XOCp5sHfWt9jyIgNxib9FeqlMwj/MfICn4TthJKvYSVgHllVJBik6m07aXchuCiSk6vBuQK/I5eY8vQznhsjMLZLRvrE8u5SFQFWbJzkGPgUc6uemQQLfRHgYmzFQu7Y9zErbssvWMGR83vaRoCjWDt6sS5Rsu3qsZVKHzloS5rCtqxukO66/0EWrX+TPT3Fgi4gW3cd3/kS3tYORghninuyDyhnVNu3VyEk06FAFasjiRTHRm721U93IFWRoO5g6OtDGG0BTEkdW3Q/M26Mf9iF83jHv/QAHDxxJ4EN5Tomtme3NitShfUBtWDHxjpukeSAFp7JF+X0ICxTG+HvIhwZmaCDQyD567lq9k7m7ZWNwXX7DI6bWvI3gF/SwlPRyG1Cup8Kx87J2XG8iqklej4KzDXF+bF63G0FNYQLT2VdGbmGL7rqv1g4ZorX0tTKnek9XoSgsN7Tyd+zWE8R3h0tWt5BaREUYmp/yPcNfLp7+LwMm6Ga8RYqnUBMsfMzYE35NGH3zjx9Rebdykc/0OT+oOiLf0Mwjf4fMnFYbDuPTe9xkk2T2DYIudE9qMCpror78BzZo2Q/Xu66upC18GVLy49zdp1e1rVZjfG5pkzdgX3OJDIQpDq8ahwt5B+C2n1OMsQvq26DncelVvDm5brpqS4ffm+lk1plNkqB69eEZ7gNrZk01MR9djJLeT/AA23l2wnnW8ffPiPLzTX5Ch+zhsgWZUF9Fq7KvFs72d+lVwqxnceylhH+VQptRd2yQ13M+us2uArRQF7XMsZieuF3ck5qPGNGI4T+tKz6K9HR/hF8m4yLNGUaLVm5xeu1uj1RgS+uW8j+2gH+OFcMJadZ1jnd9v6jcyMsVIf2wIQRVI8/e7lccxaFIl9A08lRFQcF1os8ByC1Ib5w9PxXy/34nhkOcvq7Z2c621ytusCGpQEVsZVPjBaAIeMvui/K9PwGghkAxNykH5VBYYgwhZIHfXaMAfBN9o0pi/Ea2/9tq2NKtV1R9ygxQ80KBqFqb4BAOqu7r/m1cNireDg/epHLizmMWW7TaReKPRq+O/sDdMlL04hPEpLa3IMZ8lrFxu4kAYjftaFDXqZFW14WLXVC3QWZcaLGlWnErpX01JLV29LoQEOV6fB/ZylKUvgm8f/f+my4rkf0soWPHGDPtZ8V7ipJwmlJq6Xc15hgjHmg3CO6QApSM8kPXSnd1uMPlY3QmgTkO4h8Aov3N2AqPIwqcKCx0/ATOIhZp/w5DWEa1KQQnIBvYjNN3aPB962EZWTACvhuYqqF5q8G8K2WfoZeiMK+iMka0wJPm8AxEQB4ZvtCYyTH4hN/tSYXyRiwgkviYYvbd6SanlA8ctkm4CV/5/GkUqz86RD0jdNufNXQZ/oeDI8T4P2Tf7+HfyY5voArS+rtqxiE8ZRuIVlT+llGPNCWvkKj2BxHTtInN1XMqqG4hL/31YBc07x/dTwbujhulUpIsRnj+Z4Vdpn7Xv+IF9Wai2mnJFhTF6SDq8vz9M14VPAxaZN9oO9njqTp5iAf+IibuIb6dDzTeysMMhphuoHBbpnDp7JDYgqjUeM/NwjTEWuL3BID5CXHG8sGgNXjRU8ObCFxbEHEf1nzUc9wv6rhfigHyFagzgk8zlwrD+GkBBFaXf/85RewceEtoy08p6GH4skuBSKO3xnrGVtYkokLMDbguOS9g/LF/YoTCnvHb2Sg+o1boQiBnQYdwhIUOngYR5uXC5gAvTaPvIOmqZ+TPYviNhaW86v5NcwFPVqxJJB70m+JT1C7lXk8krffWmcKFaDC/RJq8LRA48luLp3seFzmFV9Zdn2UimXfDy00e+JefGgWiLaVP6N8MUi9zln4yYCRY3XZaqfnwzGo9eJcSM2Uh1e+ldqswKVTooeW0MJsnjhgEHF9zfQi+UteFWJrYgQkRUcz1d3Kw2+SY/8TqZGTB56sqT99k1Yb9yVDVQ6QST+yH+hLQ3bualmG7eBRHTt5c8gxqgKi002z3bmwZ/cCwKQmOJdaBimVkhhjc6ZSpphcHdTT/hdHwppvIdONMu/3snKa49URiu1XR/tL7+0bcScyEJJ5yQcbffwUujZPrd2TfzpbAEQK7b82yxBrcnjlt4NkytdZ/mva2ghnpYFG3bnKtX588JFNfDqQqUv2Q4VF5A/RcemNbKOXGn9HpoJcM4Ndf4THNF77WydtjZi4dW2JUSaoNH+ss1oNSE5qH2TfmuzczctG77YW43N1tXcQL6hhpa7GVAdG24k3TEtH78874dGAAuGKN9VMnNpZWLGmAaMmK2z/n8RAMOMnFhh/3wX7QrxLERAH1fz6jZa+DybeaNlOVeh40Arjpwzx1G/0YOugR47b54b5A4PqvLmEOtdpkRb/dEQroEqaM0MYGLv+8hZCE75ioh2z7a2/PtTyc68N6U3KHX6Q2R9cdhWA82AyKw/7a8suk5lsgBHb0o9WPJz1Nc2jm2MMxXuAL3H44Uv1XfLJsFTUceeAHX+2ukvDCDic15eHLestsk8R7Ng/WE9KOFo5Sk/6Oaxew4SZIYp3pvlJV+RvR4CX2df1c297lz0JvMcTVW+nDQ9zdbSZ0g3fUC/1KXPDUa96ROhvLrpWh8kXU9avd7cHdYaW64Z7+p4fjebwi/egGJUinCnXornCAoTV1aQ6kci1oSd7itK56u2jPofwJr2rxzfWvE6xNfhGh+uetb/20syVmsocJesjDg3xYQEHKdFA8l290tOmtySaL2lk5jdDvLDtKh0ehCnzsKkOXA+AerIU5P16v4vI+HWzSqGopRJuO9c6I/D4OA3gvONXiiynROCjKgHS99BVcXBA/7Z95a5H7e7cBSpeI+9dMzzxGbx4fk5R9W4N7ljsMmSZaFxRE6XBxoiL03HmB+fzrBAyBKTyBa/twavYZ84av1AbVp4+q7KT4+2GXImDQk28jx1m5TTls/xOPSpEN+0AEgUVei9cA8QsvWLQO3EZsEBiq7FvG8ETiqszx/RG3rdnWBgGgC+46KVRpB7Lx6ujPKkNP4hnkb3R/XiseONlIkkc7Apz+SF0xXxoD9liOyVczvx67f8ZNXA3dROaeijGClziYBrEW8lvrxLqwWKCZOgXPNVwJbQN6hXMv9zZfXMphiK48ZyVRWT+eIWCyJ08IOuBP1oXjZjSJ5VayrewzMoNpxtS/g4mLO57iASqFqBTrWTN5uYNu/4q/0rXodPeU1tBFcvQU/L2HIpe8HyPfbZ0P/EnA6oVHTj48eV/srQjTcYCMPuDjcnU6mkEb+p9PSNs573GCH9TbJGKfaMzQKhxcbfoNQ4+xgR/Qq/HXRNOrNnN7HMtvTz6T1yJlktmypiefs5Oo9FWcKV4UoeZpmmw9bEqWd9dyv7xKfSScJSi6eh9kM+1oh1deAaeY4Nb24UOuvScTOrd+uEcVfmAOytjpBObziYz+CE+NRF/F9ZfcAjE2AlLPR+KNbVb52pI+41q+60Z/CUbyqtfLtMKfuLZshXHyhN0LU+0iCwIAFpgTVRbHaHbM/AWduMLuJVVDIVUPdWOHueRCapiGexhu9rFdMLZhQc8qoQKfvc6tvt05sq7Xor3QNdUto3bPPMhmQfKCPAET2wE7Ij25OXF9eVAXSz/fqYMLPp/Vd7i8QFvjm/kKLN6ugtdA5fx1t9BQdkGSAJrx8J8CMrzi/CSEz3f9PTKQ1dPDzJuyeLKT+tNZo3Ex6rS0miN/5j2JPvduumvvBMXHi8obWhevd48Nojb9PBACZsJjGHafGunP/tzUsy3KCGV7L+BXiJK6PaibLnM+8v3VP54bklGqcsQbHZLFB+vAbXoeITqlfh1TXt2K9qPo4xPN4P6hl1Y9hG8XtOptvDHB6vnwnFSDnQGqic2q6AxR7WcgrdJf2H8o2Ny9iV+aHz/QUedhedV4xCBO0fbOkx3FHTVZnd+YUGzyE/zcoXfgSE7qfzxLjqAGKPoomvXSySnEWpVGYmGRwMMTR01vecZhWOnfUR+nuWR7e8QMBm9N+6NkDejSsGnCld9QHlUdaRopIK0s9JjHGIreBI/9IgLUPBKEqvvL/it/d/TGyZlBFQriiUn7Jy7Re7jVDsP5FjEbRkWspizBwvT8jofT5bMH4pd/a7c4jovRAu7FItfv8PwwZZSU6EuSX7VUotf0ibA99Cg16O7Q6NW1cRelNxAVPFH4DNt+0ofYfOs4IhFpAAKEM3IFHRcUpgQotKBeJ7ALZXAIkR47mhzZPKa3SeJXFKLiaERHXC0NGlrb7lay6YmruPu4u2EfOo+5yXG7R+5xdyIzNxJtbAlQlw+Zk0770nacsQgAhOUjnmRKYc09j1eCc/6ujaR45X6ePY+SlKPjqgDE8Kd28TsBkiIRlStEXC6+IYonY+YCx9AtG+NgvpJ1pUCYui5uPKp1YVH7ckmHJq+cNKdaIcc8/Oah4kweptNqvLxO0GluxbVEQO0dsNSt0Vc2jbtdLk76I7iEEv7qq1+IFlaCQcQ6Gzh1se1pqeIzSoSSUAD5enieiul1DsNMeKv6FYsOcQCo7sdfrO57ucCccGKEJUeH/DxvUNNq5a+lZghl5WaAhkWECpmPWhEewmhe9xVXIlcSVPzFjFVGNGqpj9WT5VAeo5KCdMoi78sYjpxGaV2qUPFF6nXPqjqqvnyQ1+f+wRn+LejnxiKGVhGc0M6n5m/2jcLzbNT8a2G92RtLr1qf2a95keiB4b/GFYWrVho+jyQT8WWmu/4tte1TJOSjvzPRG/sGU84E4L0howcDf83FZ0t2l6WcWVw0STTTEl+uO4EfXWXwgx1cMW/IilXSCoiOw/YrEZerAGxBS5Pr57w0/UgcljdjwhLuu1hhrtqQNQmQchZWgZbHS56hP3ffptSj2k1EUy8ZE+RhOP5oE8NVGUaMAdRCPfc83xvZFp6aApGf9XsTbuhKe9L0LWf08pSlW12ZAPEChO1KIMzTy4Uqxvqhn+0RC6RrNv9nfhMiI6jwKqYRHDVJCaPQy8I173CETyJhkX8w5+y4HNtlZovwwSncdKK86VMd71d1hrKW6KOTXRNhGWjEFecKNRolosn74kICpgvM2/J84uAPZXo5hy7QfIlIoQTUMZLW+a58eo78bNKwQ8L22/N2UKC99kQ2yZNUxNCbduosCfHvj9AtpIdqsE5TnblA4zJhpri6Bz3C6Dhc/18BoW0G7duHOsmYYr753CON1KzfPiWq8I1fQY8G0gKTJhT9tgGZkW+hKKTIl0FgzaOvIuxJKwWgmSZxb7WHrdeGrYVSsSLZW4oDf92DiAGPfMl5du4LynY+lBzaXlJHlSB8z/npwjAYLHz+h5hzO8EXP6wnxNwblMyTK5V1FC8rg+EtZ9/EOR11Xotmk240QpXj9L/T5dztn2TZ1Mi7R76S/SVPc+7mdrcHSvg+3t+3DQP6fVv5jikG1oAbUkdoCZx0Pjt9KzxtpEra0hYFq0KWlCWNR8XGjep4i9zpZzzhoLF43TM3qnXbJZP+29G+2JGvN/J4yi0Qgm3QjBdTv7vn7WQ09/pS/B3ZeNSWdVnyRhYl5/X5wev7WzvKUe5aK/TXqBtxhqDZ1obIHOUwuUZb+Ja8NL2ifDTY9TZKEA3LgsHynxrwOirHgIgD7/XpBol/rWd7gHZXDUiJuDKrMVXztXMOrPvefIzqYPxRAnU35qSD2eTBUe+M+Oaf48JBabIhMsWxco/M0wlYcYvaBbLezu7lCO8m52h0YkNabN24gpuHFDISPelsiJN4JRmwC6KHoMetucpOT/DroVeCUMVKIgjCH9Evm1FPFD2Ae0amIgn0VCx8wO8qjjguoyJaY6sbF1UXTM4Q1eE6BcmXW+zX66JcdcABo/Mt8b7vGhy1+8y8u9QC9jjkq+bv1Jrkj4wymMzscFmJKjtjBocoRQZymGy00Tj1i3JCkrotmgzDPnF42He0yyah/qd9LYG1DcY1UTVLxf3G8FMWtFQQbevkLbphrjt69da7bNDusGpxzTOAJrnOpW+OEDwPwLnx1pJZCqFSNBZs6g/E75ceSebpvJIG6/HIOz82x1MXgnsbrzqD+kIHakxcJ+/LMSU4qs0rVB0BVkRAoVMTkQgfnt2wjVYgYgXXyj5hk5yLy6OelcXevdFzjRwj9cmfvkYt3GZ3iiRi0tYBo5AAVBLxD91n5ow8fxEWyI27Oyv9z9C9ZeWVfmjRfbPKlf8MrkPQlLNz0zHAPR+G8pgyoeb3QcdmRvZ74Y+wPvm4B3eOI3EM3dWaUVWaerkFTJPn+0uX9kX43TKwHzsqluQ0OX+tIwwgzfcYFmHrL/SBBiNfjlt4JpfZGyGhTbuZI+cU9VkjL79li4ttLZWU/653vAt2nou9znE/G1zZaAhNuLzPCPD4El3498z/Nzgf61FsGEFdTHdohfClcQC310Xg/HLdGPV4zI9yBUrIf4+l2ot9KWlH5zJv+s2Nywr52oIg/qy0HvIBaBjhsLYS8UHgTdxiIbQY+vrw4BueypGMZXin23LPeYIVHQ7Y1j8hbmU3FFO1WEdg6/zUnrLfXkZrQQYw5ri+WBpLxreI0rLOquB/uWGMOJUJwUyO7YmeWwdwIbMRHvk3hGGtKDlBdwwnJh1iVswO7u6N5I6poTD/3Y+MmY1vYCOlocjrevZCB711M7U5Pl6zcbboJbGMYmeEXU4gtefm9JWXv0UfxPSTnuQ1ylXyutdyLgcWYmflap7BNrf/GGI/5Ml8FX+KweIzNFs0FMQ7nOS2p/HO17dj0UFYuMM30le+1vd1c/RZityb5GoFdibhhVlnnpLWFrHPmdJ/ZTciS2buOeKhFsaJN5iLdLhAfPQhywV6Zq26LVXqZ6H/NP1N+s49S5dNneE3qI8Lgktozki/yk1imcUeQmaKrGOh/6oa5KiPpL61tGps+9hZphpAEugkx0DALybv/9rbXxZ60MTae7HMD55lIhnhe7U/F/6OME8iAA1ZtNL2Z7/m0POJ9LVcU2XsmTVq8kG4nMPy+QNbZY+R0oufkTxmBSFJScMyo78y5GLVPvHI1Xaizce6X+0pFoyT0vJgITw+Df1WgA/zl9PgGFstrf6aL9Ley1sOrtcSKieTMjxY7LvBGJHQRLVp9mvGArGHq0IwKXQhcctqqGmAU+RCrqG++2yXNjswrWTVtsxh3kE9/zOYEFYYSCEi6enpw2NETTjDAVqznO9AnD05VoTlEJdVHgFuHcWtgtbkVbbr8pnULT9H1vtfcX0SBIMlygsoOVoGau2ZGNyB1ATG29Qzpme5M0b8qgYqnLvqkxG3TBguh9KOyhRnYw4gkKXVaweFOx4RCnTmv1SBgMAnq4D/4o4nGM678oQf6Pq0Ld01m/+C8Is8z3drFxYqbs7LuoM9pm6ZFoFbBOWoE4X8PNYzkmdkGqegIrcluiI3lsDJ/FigRK8l/SvY3RjFXfbqcGPowb620krfYskebA22O3bOG59Y7krVX7H+vaOCzvOzldIY9Rs1P0lzHCmLQAJstgH1jSUN4WwxSlp/Wl8I2cNiewZ7WttAa+1O33/vNIe3uJajG0Y2dhxWEr6aMn+HOSkIX0h4fW7/ZFagpqa3bKwzUaF2IIo/OUsYyS4XRDj9VWXnTDIDFZNPda2c6bY4v0nKKelyCc7iircYzSO4llOf3B/LpbiN3pgfX6AzalTVZrFhc9oTBwP21Ky7oa1VdCiYwMe1HUvV9CgJGiODstLVIaa4BoUbYxFh8CUZkFTnUyK18pRnXqt1FucgWHNhKFb0//smm7oxy6xXi6nDfDqWgWyPUNYG06IKjPUFEqOQ2AAs0OObf/VLB5QerAGkGjyef3Wm/vEwQbuzHU0JWHsu/Ss2HzH2BeAsoWf/ZCHJuUFBkk4UV/e1PJPJwJogeekhtNSISPEJzy0wVu5BMy6TQuv8R85Y57jyZq8UQgbsq9Dh82iNn/KIf6Ro6oysI+w6z0G4Me8E4FNz7yVg+nzgZwMBJ9yo8w2iJiNqnIa5M/UZDNIGawiatcckm0QUvX7ko1jrjSqjDV4V9V/jVdp+yPmn1xs41nEngXjbLI3ZiWIP6sUyf8LDhu7N5XlJnHoKLW7gFXuZvfqWNkVLyxt2V6+dpowqAthnu9nM7dxpJUKAu6znEEKQpjcFi335sf5v+jIBoFPW6G8PODEElTis//qqnu5z+uy40odjoolwDh3uyjNI5EtwuqpGVK8KMn28tUVQkhiDMqBPRN6/tl0iCkKk6sgLNrOwMVf0Z0+BAtUq02YsR2nRUT41FX7Nx14in+puBcu2JUUP9Dr19+MB6HsN/1oFxjTts8FT4jrg+W6TIKbXgZpENftmuEioNkiIkIqr5LTJzg+7Uh+VDmV9D3Wvck/mNEyg0Jl/Uz9aRYCCBSp2SmWfPWzHZlZJK7U6xqiMm8DWytlD4f5IY6FyCrfBF7/2EahPsnJ18M8qPEKqt+1LSm6/58ntSls4qd/to8Ke0jynRy+2ExIBMsMeUR3N5feQlFgWIMyJp+rln0cd7Ijx61EZWvzdMSKqSsY7ycMI0eGJIB6ZXsc8qZrmcGTqHgNtf4WB6fm7QeP36oIFFNP28qIcfy5dIjvFpWavCmZPOmQ4eFwOxq4JLWNjLdHmeR0SGtBqucbmdE9C8D1fWcugKOUmPMj2HNJr5QezZepvLEc6DcDv00kq3v0XFpb8SaxW2Np0/AcYWgjgoGDYgobXlIxXGMYVLhfAuMfS/XjyAoeaNgRZBJQZ/uSVZ4hCiQuHAY1XJBAUbA/2HdpSz3cHwLHMVF6F+G0EPhDA+yPbvHgCWnc0K6V+rErRQPhcb81rjecmmnyspL6AyWFH92Pm/T6rzKvn+3Lksw3qbgifegMjQ0f6waGfIjOlU3cBxFvbrYOvfcdY/hTzIJUgVfyuKxwUofw7V3wJl82JGL82psTmhG1s225/NoFTQnlP6IHTgDq5W1AvekARbhoYeU5lz9QkKimaOhvSfGfvmlnW2lAdX/yW1NosanH9OUqeel7yt3g/zqHb22LgGOB4NfiTvxZ5n9tldL89ko22OshYnLxmaLSr2OfTprUVL/j3pqx/KxvBu1vLvqzHEK1Xnf8pq0/tS4ZFK2EcunY83qplKRCm0ceUMBYmZTKic4YWQBEe+bNvjyvGl/ebUHRlFv1BB3/nyts6dd+Jf6FhfGdsSTRfzakcqkX4tyYc3KG2FkKHDJt7SfDq9dr9Lv/N+R/mFF3dlt/Oolc1r4SM3iAiw26eEqc+Dh/1/kxKFWRyPyfkmp7Ivb9FezLGgSBRie1ps6tl+Dl4fxrxSJR4nXSVoG7ZdynYL3qgVcZhafQwEwn2sbbFP9VhlnjH0d4Z9OyTnfeG7N0xiyp9MQeJXhStiLfKY+0nMX7qyqj87uKgcbNLk/MT0XMLEIEdxLr5aPhb0ZZ92mfD5RedVmu9nuoRDLtFGzzG2aK6/l6ugoN+xvwMIOtGGjLKmTFpIKudwN68B/j+lz07e0UROjILItYC7Pzf1NiZPAIsbEWMZGD035hYHx5OBXNOnLr6Nw6FMu+RFlVq5v+CZP4bAneshUE2y3rJM2AJzNkBzTqRh/q5W4USAC54K18ivl/ipEAUxgXX7MEGElLJLtbevmAWRholE7JcLKk5YoCduNExHsXos0gsQAtjZWvN165GPJFxIejed+VK1zvWlvT40lu3cHQx22gZ0nFev3NM89zGDz2ZfcT0j/+0sS0DDHO4HHv2XCTZ4NS1PBkd7p1mrUaVEZjoqVSiAf3gHcfe9Tovd9SSTblzBip9P454e4uVc24CZ7AUilv9ySb+OQKy7iwDp44JtY8hDTqqwwzQSrQ1VNluOtftiCjxfEzdK0nLZGR72k2YXgPSMk3HyhJ6Wzr6ej6I6DMb7O+mq37NNXGei9TMUSByZHGIEvT/vMrYuqlbjiTFmNJJII6+nW+EWRQAAAAwBHwAAARXZBmvFJ4Q8mUwIV//44QAAAAwAAAwLoBja40ABu25kOX+X277q+gHROSPsjZwohdHqz6jDgi+NmM6HgzA4SeJumZvkVbNxjv3YNIkugp44Qy94B1VsVfAkcjTdFKdFNNZrjfapskOqZ/FYF9f7m6a5+2raG6AGzAkVBArWrGp3fWHwRybacMWJ2RV8K5POkk+iEW10tQmStiZJf5cPyALq4evzrIaFW/xm9J/+YqEMVc5Rglw0WnFBHoh2LBVCVV1tbCB6NMPs/OBC/loF9SlS+Qm3jLxSBD19xSTQvuDy07jABo9V6DDMZGYT+NTlPP5AUFO4eotkXgFPti2Y2ZLxtCMRQiHcFzL1NpPrPfdoYbWB+SXr6ASJLm/hhBKVHZ4+niA4zV+4gmbx07McoAiTQAuQ5jJ5an8s2oHCLX23XD2wYeJ8wULY8PRMRiuNNLUVA9fXt+z5CSqrs6Ly/3TgWWoVbNdAbXrgpMG1wA+tUcvDL8dfCt6Ks6ppw2Ee0rp9ItoBP5lI+OoH9sMUJimX54uBzGH4x9UUFvUo9qxDE4kjuNHT8yq7iExNPUrkiQ1AbuZN8JUdhqgfKSAWIlgwAZ5wj1SFkfTp/65QLQPteUJudVhwkBzNRG4c6FNyc4XMXSZ8D1nXZtsHLNqoCjIVa9vmUMWHdmuYFQ4/e0G5jbymwUpVZKpG8oxZaxf/jY6AXYgt12VJlUxiG2lTo8scq58biONoNiH8bTQjH3MwSyoEWfIsw8B2SYEnD+6kxJTFZlm8Zpj5imWDxsJHRoxRBq24IAv8/Lbg5hdTdrVAlxe72iex9QnW9cC+OFSTf+h5sHKaQxpH3AnjzszYxAzV8OwR+P2oh/RBxqqXqPDZM648sqcqEad5ikO/komVqm9r6WBe1nFmm5PPpdCVCwjEssLExRg2IIXgG0TIVdTgCDyp9CWN9hqKBSsOVd+w+Ab+KI9UFIBUBy7sm/s+/82nWZkC8ZEC80kdjpOGZmhAb98LOY2ur9w76ydj+cpu6Ue7jehzH24A4FFzBPP/wpjyg1hUwNTDIaduyyVE6exPBfUNo+K4LJwHZDtXy6rbJWq+sOCWryug+h1H5IkexO57TVylb1njd3mazhxbybS7DDn0OrgZ2DeVp2lmwWIit8vMPJNYrTx0I/H2Z11Po8qLARKUhb7uChOE9IgZGCr1bGB7+DFGX6mk00qxFf9+feI7zR3sK9Gvcg5oxFuYtjoLInXVgHiLtrbQmnAVB41tQPIgSSUE6WpGQH6VZY3epjDHylYfa5UDcTYcyEuhGvsM+lb7uzqyN0kNJOtdUY2C8ZF3kmcYFEdlwkY4f4M+575s7d7nsgQoQ22lpgV3XQyN32tE4QR7WBSrsM2eiR39rTSu9+pBoyLf7E5eor4gsARXsMmzZsO0E3x9M7WugPjFW5O7kHXbAhNqYnBORXr+rkcOaRZYPsqzKmfbkoz32jUOJFO96Zy8OQEtbQY8V9C6t2MqprBZzBOa16qZkxXYoJaukUAIwjxOIsQfDC+oSp+4XyFx2j8mA9+ZhtyhEKQLr7JuPm4Z9oNhvKmQcjgzvtTizFsjPF5hNZJWnHc4WQDFe7rmx9AI52Xw6eapebSVNS0bg7WSPdENHsZLpbgjWuTe+Kz+fkO0zZ0SW7U2delNzP7afHVsinblFXhFyu4KPatLwDqbLzIg4npC7aiwrhu24/z+4VzLfeV5U8WjFxSBElakr0+NHF4trPZ0F9S41Am46HYrkon/cls3eepi2dcas98F03ALcDkLz3kIRxVUl23Qqj18YlypIjzgAP44Ckh53zRIzeJHNVxU3RAgkHmX6GJJWz9Fq8Vpv9YvVbMxlSPHM9kt2PAHe15CWb8WzX5OViWM1uqR3Y/IA/Wa4k0OTGW5Jos2b6D761zTpsbYhWcKUZ1RFXPStjzPAq1gSgjd52kfQs7LJkjMoE6cJUVC/SwAQiCB8fUnNjs4NwUi/5SWcoRULvpSVA9ZiUznMbYY4LvNR/9UL7yBlB0NK1pHD6EmnvxOC1IHMJB1WEJMsZf1pouz7IZk1C4YYOcWgt3bGUsUN+tDF+xSeaMb5PgD3gJ6Wz0xkna8yXZtZrHyWz3Jtq7Au9WD2GA2rVZRcY4LoZRvl0JHa9F8K0NBjALDuLKO/5njiq50FEPF3M0ehRyUMHmMkAjJuUdil78438MrfEzmawlGWgc5x+Cthoteg+VHDeKrnyMrFitHdyMhVDfjf9WtsptnXKhhCoOJarYj1ZKNQWOc0rnz83uPYxc7gToJEBPZxG+i5JQxNB0CWdvhKFJJfW3Zxe0gn+5gUjh1HuuHQm8DoGqfcXrpGdH54UIQmLe19ddYw75UkoQJY2/RQCVB/LcgCsNYNan02QLlVUl9tElGK4wNRohM0x+qg2MV4Rsz8yiMGcDOcT3weIvTmuZFo5caE6yB3rijr38Q57P5em3nFYZxAwlRSUG6WjEaBD4Q+ZbFXfqfMIf9f+T6KKG+ebjaUgN1CmCNA2KJxQiqUrXd/ng9gIguYXTTZurwc5li+39grsWlHscx4n1Lvnq3q7bNRQNla7dShq/u/SoQNRU5C+s37wQY1pb3Z8w0+YUsC3XBlLU0mkd8axzAZL7i0op23gzJhL2sy9x7R3R30gAYgajurubE/5ggHrp3mQlsWfz2nFmFUYpt2sXnwzgv9LdG9w1283MltQaYYIInORsODBbWnukFtwvyIeqvqFdR4HWiWj3RoiDWeeQfgUsPs4z362y+fK1drlal+ztFEtDCFwSwSz0Sy8CLPz6SaIZev4ItsT1mwAcGBoNVNLNVnJqBFNKONwTns8sIJypvDFNgjGLCs7DgntiPuKT6TFhimmWDxfUfskrx2PszQPIfJ1KU5IBptidgvi5in1wbskpR4b537z7eT81dqCEDAAasO5G7wIsHCOWov18yuIJ7nG+pblSm7Bf+lEkMINX5GqcdPh9ambAuS/T4Wp/kH0vJbT+gU5xuQl/Jqo4Yx+D87gBEW4Q4QkFAEJBy53H1RRcxQSkaFddPfFtM9cz533JnrWK3op42lvekhVVYLkHd5wSs/qNJsCAKTXQaXmN/MRRYscodPiXTwPWflPigl9zw0BcSDGLi3gEoalII9ZN6N2er+IPdf2iT6hZ4W7jwBww++i06cSmy0RIw+bd2j0JH5/bO0d2ZQGgZa9bLk+e8M54BJvrCjv3Yp0QxuYQxZJ6ggwa7j1G7DbPSkC46d0xXFqQCFw72ynbkDBO7m63NCyQ2HAdwgMgwsoutVNX8lRcUyduLNXjEBqLTuNvlatAPQisDMdDgiEEiGdzs8ds3UKwI1WsEHy0ANSTGhgoTv4073ryfeSwC0skaLuWkJm03d3Pkx1CtkN5UmZwSL4W4YuQydYgsG0sQ7nDmrncw5RtAqBhvr/hjwOyTYy6bweNtQpIH0IeYqEdZh4Lz06aQZTRbDLBeb+GJeynD+EMM+l5T0FBhD+3qhiKMrfImVlq3n+u0MbvHhx+fxJCp9cFYOEqLAAWdOV1ESPsJ/E1UfWri620/rcyLzEjirq7AFF/reW1jaChe4Lnm+yfFDMgvLNnqIrsML7cI0eiNufmlTug15E268xQLltOZVuSaKGPZnMIuxlhpc7BaFk8Q8Mzjtz/unnIyVWSj42nZCJY1NTepoUjsXkSnO064jm+5AtvCnImPh6mfWzNmQjPqhaSjbRtEPbd6CzJv/COx+m6AmK1Hak9BsoA6s7XOD9gVxPU0uyG5IRJGn6g0BhOR0ArZ+ouJGP283jUsu3PHL9vfxhuQwtKPudM+98w1L2D6Dl4HeSok+lHHyeZz3Lc5wJa96NkHea9CrMFdDtMiFtj8Wuo6x662WNMXH3soC1r4HW4/HPG16rEfLt4GdbVaQ7jbc1MNYPgvDSszGqOD/n2tDIiJTox2z7ZlLnFJkPnSsrKduCrTVxV8pbh33bNfFsjxBOkmSi+cMjpYpyzpVCpMImZIMl2lCZ30RcNXfg9wmNxTjdp2EB/qUA0uNF5Jkf5GYUZhlTvtW1UjH0i0MZdMky7WO75wWUX50q1CINmpH9fyKdG5NTjg1JeNdu0G7tCk4spi21eYr2rFuyNvCExgTcqF5BqGS19iftkkFJhyCsSAhnHvoFLLRCsbmend4F47/JPkQfREvJzgT5+JBIrO9YhPEik9+soLkIiZ4+P3ITTCnonJ0WQWv8We3qnIh8ToQvCG4hQu55g6DtXAtm8WfQs7JNBVoithLmNtnowEutc/pCxlz3c0FLKqmyMs7GIX3Lg6CIDYJhVofjCHjX4vD2QIYKBHhqSOSfCIg5eIscFqrs0bg/NtEaCL4JSDxP0ebbproSrbz+EXlw2K47d+vj8Hgi3f2NoxmTl/JHkleI6qZ5FlkrqtElghyaGUQ2IcsU8V8vpeuencgVflLdMgvp0tljHUE0en8yyOPJKo33ShlaEYkbg7L3TSXpVsDxJPNaY0KkhoIXwY2bunTCTsJkIKuhLoej5uW5vxrq58yoYJVs3asP7WUvGnHwYElc6iwXYiW19bImWPQ2ArR0aIoK3GCHPOuw/E1rYIDvu79Xn5XFpSFlc2zuzsutg8U5K+1b2rFRCz4K+4aUnL4Vz7N5eoI0MiwrzQDCHhELCA+fYNe9LrtQ5pWxuIKR50J4Ffv4qgBFdGnU0Mi9xFm8NidgJMBtLqrkUANm4WUDyOkTsZV7TY8q67uvNPIYacpDbTOr2pzcYhAm7Xm5rirDU2yqD7h91blZuSVaMvf6HT3qlyLsAvs48lZH//5sGN4hf2/v/Oqlhyzr36c+ohxdWR4jSrYczbDH6tpuqIf440k7ObdF0ZJm4eQpzERpmEXBukAKdAR4qwg1n1zYeNNBpxZ5/gtV2bFQmQmeBVDiqCBDVOX4Rj517+D4PquL9bkHRC1a6sz0KbRSjqnvTO+k+Eq72S4MOo/S7OJt28W9V6uPaXRuWwCxs33vHdm5Psb7G6+WpBHRy+x5W+Gn7mXaJk7aNauFxE7aw8aI2ujyzTzwccNJ5t4eQaKtIAUnkfXyVXMCWEk/sjI3ecbdchyinsj99owfxVYphJ0KIG/+eOOqE6sjOUyZsR/9pqgkk33Ud4BHDhoh43hoQsb2+VAX5OvWAbcosYNGoqQVTXaqsfh82eZqhH1ERAYOnBPwnApkkpB3Z2LNde8NXiKWwKPQPj6nCaJbtLNKEA9fJucrOesCM2cgkwBSO/KRib77MlJZZZcXSVnxzSFxIedi9BpWKQ4Y6cKjHFbU9SOW6MMTJ6cwx/neSmXbkhV8gjkJHILuyFVXe6sXx2t231UydhBtrzBxi8NVQS89tB1OvenQlhX25r1qWHcF3HK+tjpL5KkApPYPkYwIae2BpH+Bwuv374e9L6qjXBoaE0XObTR4oBcVTt2vTG49M8O9qJodz3ivqBN/gemfZiJDawbYfoOTyzad5l0Xg8lwmyWiqJOHAfE2wWYSupyPYdCkI6fSt+zFfyQ+MB0mY4GnoWiQYA13/jB3tnWGFDaQtCfdGZwaGkijpO+HSAOFaIhPoXvV7h5BiOIgyTis1/8wkkD38UAOHOtJxfGcZZRtKbAJaPbcaJPPPanKR2u4LpV/qecZHa8w36xt5I6VHuVFJINk9dupCdraSOWei5o4ulz1Mf8AjaZZ7yM/Q3mJD9rvobMAex/aQOwaFfzH4VWEZafg0LRPDetTNW0K2kcHqmQgFaqWwu7dWtEY1zbQC6AGgqfnbwn4EriShohe9dmUzaSGr9izu9AaQhO9YVHahjRFlA4awhu6/2nMXl6CW2qb0A1g/U9IxiAe8IMKf9aHedOcbM63l6FEohkatx1fIzLxzvzkGzGFkMt4wmsDqWQdss09RtRXLuoP26hfmGTnUyNwugANQNvBjIOa9cKny2px6S3tywyHjZ2Sve74v4Ik/lh/5lauf01rSMws+W3mS44doJwWPI3BEpF/kP4s374fRrNWMr3/UGazFSZZP3++zXGaDb1SLjgBjBFYAY1a83tk1wBuGED/hLyAmmva/gcNyt7ckuUeNI/F+upeKCUWCmpC/R0+z9Xj7rDcZu8ZONoVZCVw1dgPeAL0y24/tm13RJXpo8PkFyYsfBB+HkZKoa+GQJTNsgdtkEiAi0gJ++O6kmI//hu9qs97NaVtrkHfGFCHcta42Bjoi6YLvJWzzUd0WGSy0Ijr3jwRA2lmXuFNHZrSd4uwkvmlROMi/2wxGrUygsUfAb8508Jh00IvkGz3rY2u9mIntVS7LzSCzWdqArk6shipuSfH2vsAIY5buo/f6Dcg+tdMeL2YITAQVNl4tdeAnErAnEroVjmLKpMAGemBwN8qTYoEOcgNtG+grVZd6LX0HCrk+c9yG/Dn9+XKN6YXLhBE4f93t3+7PFwJ76eZpu/doA0NWxwskWJfgAIraYaSYpBO6bEHgnfjgzhRstUoL1/DAsNCwMyZmn0cPVhxXK3h95h+AFrP+7URdD3SqRYk1Qkw7bMq7Y2SGPv1flZrCPPpT5FWUbLsnBxL3K0t9uH5BvzIFG1t08SX2b8aRpslxuDAtSpGyV4PoW5FS5aYoeJIw/3+a34P6aHQUmzBrEZsqBuLEtxUyTkv2Vldo0bdFv01jmOlbDl7j7D0KdjAOD5hMxaPORrWBgTDEORt7AVkACaDmaPKbfyven0xw8zj0fnwxGv2XU9hrhtL4dcRsB3Q6/MtgLLLIYN/5nV4Cm8cZSKPEZfc8Scxsr1arzNuQBfxvbkrYrDtuPErH1k9mPx0W/oQtq67cp4FWOR7RA8LyL0wcdi9n3f/2fKgGTnls8xYDzPlb2Z+Tzj9MxVc94XniJ9isbmHec0rHptmFKXRHVD9NQovW1m2rgtVxMRKZBTU3AzGgswykk5yhlbMBy1phraj7LwA41uwNvbQfSFEs9WPa3GEnAbqhu9h5oxGQH4Cbq9o7cP1ENJ7q7WdRcaZBoPiDzk9n7onRZirbx46Cx00KRTkY2Sr+coxZ3rYwvU1wap8ldaExeQ3QwTBty7N6YIWg53l22I/+dZLjJk066SeeWOmwvHrseNfUMiEKxpx3M5o+CCHepYIDRr8J44hUwJcpJkLroZYoWvwVGIQlezvWHfs7uLz+1DP9isbiLKCk3GaSZYDvvE04gIhZ6j3upcdt9SSORLOcefO0x+kjmp8dhD9nMnq+RdyEWcN9eAj3EnjweFPklJbqhBDTv0sXmbVLb8XpIBltpSHs7XSC1iwuA5M3F6BaXQVn4zKQI/M4LXdwvunYfdwaMmFc/Cj+IHDcjcHT3phnCV2UsfYbjQrWMtDcCvlpUQuXkHX6MS1WEjEraR/me5HFWub4LcuEtaO1Bv8er3CwIMWF+9fqAi2wk38dfxKGKr5Dc+mDUypgos1pPvFInBQijO13oL8cAowAWj2JK55QqCGShjS7u2TVeCvxaL3xpeqxrhKX3R9zqxyTuTTw72mjEavkWPbCPfLVZ7Z1D82vkphpsP9hXfDk0YngN9l91pUNXOguhp0mCMAl9GYIFYQjXt1JJ23mHEr72X3Abg4rTZGxG0NjQGmAHqnAlTAvn0Lzl22QwYbdoOY2jjN9ocBXvtgTNZ4IRCK5DE40rllY+dLrsfdzKql+HDLi7XM8KpNJWRvs+5DpWK8uDxKWOsXn7S1tW6QSt57zQ/pB7/Q+3JTDhn39OUiaB3cnR3sWC2kUhse2EDOEd2xQZAPjumYfiaL+9sptPUJLlOEFX+mOXadm21c9qmJKrWRYj4e/jtIdR6eg93nW0DArkpZUXQhMS1URqXDvBj2zBAqInMmJAz+4xaiBOHPrtbBq3L3Puy5CRZ6AC99uYPZxZdNe92+z1at62sTDk1MCPWbZngC526cK9ias1MGGairSHPzrwRb1zsMq11/FBh5iApLjoDUKgjQu+K5Bg4cJaRuG3PIfWJL2KqXjMQH/BsI6pxR2kcHrCwfxeZgyi86Ry/d+q/8hU5vlZrtIKE00EiNNSt6+kARdnNUNwp/BEReRz8eiDFsoMKZt8mfz/u1MbGjqyGdsy9HkaUC0ObcdiXUaCUWa/WwC0HPvPYOb7+Pde8sCHcO/8C3wQNTWqlr/c4EUmahRmuxqJNtVU8tw13+1pqt2QbxHGKzq++sW5+A4/L8hpllIsnqvAq6VZr8MFUnb5Trd4s2wTHXFdIyduhgAWKpwRiGkI/nRdsUpLnN8Hb/I4Nj3dQEQ4/Xmh2zTl653o6FvFdfryqiPee6Ads/X9CIU/e4/wu97nSgfM8xiWpu7waXy9ODvTKb/DICq0sCcgZIkwsVTIBTdG9J5Pi0apFJ6h2+5Uq284fpvNtsm8duNIGVt6A0yQ/zi6EpUpYNBUSu/Ph3KQ7YgGtBuaFEzwBJBZqJnTt9RV8tfUKVnlLnyMHHLPuKQCgzsda9TGAHWQC4Jo3EdTjRzRwiBPajtXBuHprnSZ4vyroK5AiUeSKNTy11g8tGkYYMDAshrQngn3gAZv47fDF5sLdBv9WkUOGGXT6PL/M0cZsW++sUoe7CT1POnWqHQvQ4gGs8Y958SGCTNk91cfc9X7p5fpJ1eEKPUhvSLVC9Z5TPc6Mv3MXiyTBOzasAgq5kLs4y2VIxsbEQaryDFiMe6lbFf/N7kndJ4ScdRABTH6ZnV3ooF87V5HmeNVuetgD6K7WG+hdT+m5fHv8x+dTpC8anyyG2IE0HOv+K2KZAQ8N+UP3/u0q2LIv5/qXhFxo+n+cpCqMBzaovWHVyyZPiSuOrnpIhZ68nAKnif/DOp3uPQ+0CTgO2gAXbr+T3a/tdFY74IiGGKR8B6npv7CxLOVysM7gzG+Wr4MOYM+Lj8Ep93G7lsEg7OMGE2ZnHqU0UV7GZEbrgCMGDgJpa43kJfC2fTzBFdZ8KwjFwl6dAMdO9yX4UvKFU1Han7mPo7Tgcqo+SAtXZ2ue/8SGCoRSmIgPQ7erhMxr1D16EqQUVNsy8HSKcOBYMFTJr7cSw4pcymGfOSna2V+hYNuZ8QlsEbjpjTu7TBfL6rVB9QpGKvFA+yjhV+0Eys9IhgNDps3nfLMWqhmzvnqd6Xaz0lGvnBuYion+rzNuCQIGJ2S6PMvBx+tcwK0vQhLlTEJXbAD8rRvuyxvO8DVHmeyfcs3l0HLutwztAO5B8HsH8rBm38Ec2yeMMPEj/d7u2LduwSPeZLNrcAmRL8AhouLxMEcHLI6Vf4WF0kvGgUidQHz2nRotYpwH2gVZXImhhz1ZtSPFl8Ag856QshWdmLenvVFhTk0qgE5g8CYr1eWTMTHQKGxk24NW3KlUlbXzPezUw+V31beE0YNSGBqGw3MayCbwEmTZxdImgoIZpfvCSMAi546K8/E7v42plNLaIHWwfw4WD9PXXblXOsI2DRfDhtsbXyjxvsEc2fYfVME3SwBhl9tINl7yIUQ82fUjDVXrT72t+8gP0KzHV0BU8etb2OA9k4DWGebzityLZABLzohkWQr/sfggi2/whCOfVdxWevijVT56+LQtdgUikxFYU31et6BpGyLuymKp8C9SK3oBjtFCbZBLzM3L+2DDs7Hm9XzFSN7bd4k2721Z+FLwidq5uq+dFqan9dmr6CMs+g43MfFPm3auhR6hDdjW+9HL5scqFQqEcm9L/mloWD8g7oNntcpFy8th4dJ9Y9Pz9j/8U8bgX4f5izqjbMVpQbZV9u3H1Kp+E3KwteMVSuULwcv0/I0bNMwQCmKqMmEth90sURAIIPxO2GQ+2kzH+cPhjOQai1/coKK7YbGw8BTeOM+Mx0r0QiHeUGBZSbHiz5e2h8WmTbULnVwkpN1+/NIEkn+hSFCYpzSsyjPLKccmx0njQ1mGtcINSTBiJ6nUYM1RzJ3K9m6vYlw54FADr3l9g+T/zXtb/zAwOfiPxRIbyrcXdk/14AlL+nCGozxNASatFRT1naIFz/4E4++nGeXPxfj1jUoWLUQDRfzZsIh7OmLql5Sf4KAkj61moA0NgeezFbdBUM7NsYb3494PHklHpX+Q7q6TnAnegcsV/SlDCJChEqpicbHUTRsDTnJJWe7WmVK0xlH38Y5ffRzo3hEelyfkze4D3Sqsn+FE2vaZpMHkqAJb0FAOh7Z7dNx0stozxKpKwnEhMo+FCQWylG93AU+LG8QAJqcW0Fget5Z29vYPIBW4RL7I6I/WRql7y/RTQpgKetM+Gw/YdAG/PTd2PRJP+awaU42AIX8BzrqOB2K/uTeX6UIdvs+hzoptNeC0W7X/nOvHREbB5ozBg7G6vAyKpgMhoOMbZWECet/zesgpANHwn9jrwV3uf6CvZVLUKUdmJ62hEysJgVil9CLOkjfHEhKAs+6TEeVbIQ1XgJJrsf4rgYP4KYvA07vpwrc5cnScEHF2V69DC3WnO1SEK8UHaYjkKdKtbChjjgOFewU/S4+vzlPdtd4JWku0ibIVzCvB36Mvvdx75EdUwxAmD7eMgoNk/98PsLU1hV8OjljT9kaR7ew0/aqjMx+XRGq2ml8fH+S7Ipts/UUP4Z1nWA+RAzBnq7zPskrs8NaXa0oz0nHkKYatWEWQWNSLpmIdkgzBXVePxs9/naFd2Hk4yOLUAdqYepCWcSmSKvbWeX4F46rNplzlupQf3z/QmBOcv4OZtBkpyjYkshY7OL3TysnVEaeDpb3x6e3eHZDQl5wwtdDKeAoPovpjTA5kwlgfgMB6HEcVgT2TmuSWKGYGIDiYe4Ugz3S9KD4pfR7JP7zh1SENI1a1TZ2VARNnnkTr2mPFcosVgbHq0GLlS/N3p0e71j7Nen0Xt0e3AZsMHblKPiZuBLRXZb3Q53f0+MhU6XM+3HOa8O5oBwm2vtAueFnTm7yiLZ5l9Uo3DcSHOmTZTrQB8DXPW91Gt6V6bfnTMWg8zpsQB2L+sLTVUyZ6ZkBHCrvatD/4AG+ac41ClMks1NQ/jtqTNQZ4lNLsMCHUDVRBYsbFTFfLplYaqvEspPZAxuK5snos5qnJ64ojOtsdAQ75KTwrs3OSltkTxlDjTFTzhoF4ACSqw3uaI/XTjpAGGnL6VA0isbKStfPUdhuJWf6Kas2wpjMVCbQpB+wr40cCOIU0S8HudrD7Qw/p9Hc6g7fIMBa3+fyR0XO9P/tTBTEBUSDpG0d6PkMUMDMrs3iVpbTb7RlRT+L78QaCBiIwQW/s/q8xBmIReAIOeRrYQC0wUpkEk9T4Hkxsjcp8UuZHr4YknvNHtyerlwvkXhavt+t4l4ByW21UkjlimhX0wv8fI25RMK+5AE138he/pYUQs69JO/u541yVE3lp3vEP67pZ6tWI02VDORKr7G8xtfF94xyqvyAz3klQYHWUv+QHFlgg9oALXXm8br9kLihNezVJUYp25zU8QUPqNrDACVRY5/wv2dW8jroy1LMPylknXsz4hBBIU/Of8sniZe4aYM0iVYVhkyfTVTABC72BHUzBDUkMGS7Ll2JSq0XAWD43cyz8rUGRwoBNlCrF63IJLncH984IULwbc/7rnOHokEIKw66Q+gH+PKOEUdThHj0PLs853hErEF9r8sIKPvoND/Kth7YwQQ2KKURXQ6PvzIPeQ/ccCOFkr+DzCAVAeCllbpRQtSoB5PZVewCY9eVwEU7aKvo6zDjtBCNU7z7dlKpHpWqW+PwZwctK3Tb5SYTFbRQ/9YtHxqt4J2M4EaquhVGcKEw8wz/n5mP4c1KL6PU/L7nlxiK1GPZPWhJ+KT3+Y4oU/59RYimSJMZG8VWbD8oVPQTzBVyBOJEL+mm3Pk8Sj9Cx3wMjqnsWcu1B9IeUNXgOrlpO37LwcAeIbmjKTk8dc0Ko2pBeY0gmIqEMa+qAB6v6JKBO+N+zZmy0mEf48zOMWLkB5urfKZjVWDmCp4vfttmUinSdMbL20aNcs028i99kGpBdiYlcf3vLCO2PCKvLSCqJ5BrlZP5YltHphBoyzqYSaA2p5+0ytDbG61Ly3jvnx83C4RaXErCRjXmxgK8SP7FgRH/4L64VgLelBMzGWeek7JhanK/8gOodhseqwIw0afqbfq/rUGnjlegLimQaVQf02rgkWf8ANmEkqB7qRixpyQd+a3K9crVPfXzsQ7Y+r/eg+wY86326h1qWhTLqj4Wn0nPiK7641U4u2utTfu+lLOreTbo6K5dj17r/A3Xm2HoaB/oJhllIejY0a9eXtX6VuVyzO4QLS2mwJ0PjPVC6MfTUc3jr9RwmBom3o5Wku1gxP6RQ3kOm3PVRL7UsoJJ0HuE3LTNuq6W7sy4nO2L5nwkDr/c3BstQ2k1f1KLCV37cZq+C4wdUNdcp4hUN2erHw8F8WGulX3FovUQqDF3xXmLtMwwIPb7cEfWH/1rH+3l+lacpDs6uKPQU5ucfsb1lSXj4AdbWZhuFCkXX/XK+S0muVk4BU6nGYFQGVWi7vIE2PDVlwlT2SSHgElw9GH0fgzcMhfXR0S6ABVVcm7dd0brR9qc24b7nJXVbLKdxzo5CCtOhI8AqFKoJsgdeY+NSq7LwqSU/Hg7TfyJUjCRZXXqEniIxrR26svDeJWP5lPwzFMzDx/fyKMOi2+vG1aE5LdrPA5qJQkEiKzvZbCw2slphPwfs3DD6DJDFi7LCm9KXk+ph9J7mllR0VSPM75ScyExAiwdnmRUrtwmV/tpCSH7ppOTnyXxvI7CTmvIafTfRotI98tyUfMJhDd6vpnTrlnTHfbbBxYUSXk09LhBolDGO+jWBUOJQS7erDGqTUjAK2TlUn+ylNiha/w3xaHxbkwb53R3UXqW9ApZhjJQINZKHGj13Gu6pKvRMDhiT6lNi8bHIysb1IXDpA/7pOzUaI3SA/zKjfJFInJtfTmM2BJUGR+nG8uC4CFkBS4fhu35Ud8smiZStOAhLauRskeA4ZghTB4RdGQ1TyNjzSzsQQaPMp0I+08r1I8jVOvnRh5rXkQiHxqp0gJv7D8y4TMl4Ik0jzCZBdsg3+OK8BOsPWTuTsdNxbOaZ5BhgtmbfeZSyklJUjVreTsPHq4DN+NZcDeck3HWd7aRA+pduRa7gl3t122td2y5DIaSAlLso0b5k/qvvtlaD/QmTXXPi/z122xiTXU8xkPwWeJWG/RJfC3KaYATBsR2Qo/vRLcmiACKwoK348H+tfQ3/bfEWVGkOcuf+0c/eFoUKELao1m9QjqfiFj4iQ9G11Jehd8ku2zNldRORMoAXLv6jAFRRWGf7/Zu4V8BHZeeATriAsB+ZqsfTdg6aDcAj0jX2YT1Zb4FK8W0L/ssDh5r2aa/QCh0w/7iQIxBjWsn6Dll9kY0JrDKshdpAAQu+MlxNHftQaBrhiLV3f6JHKt4ZkfKHtmf76/7Z/1qMKJgApzl75XEXhX2vqJuE/lW7GWeMi92B/MbkGZ/LXPGQ12Vy9RY0c8BpxARLnnzDjX8mnvsyV0rT7/NFgIfIYHVvaZGZOjKpdnuGv/WjuKJHkIQPWUbWNf5iDDjjNRN0+98sVpsksuEvdZS3HjAm5n92Fvb/fe4XWlO7E9x+mGPmYGABCMhog0uhk7qMjCnby/M3hMbOMQ0T6WwdeMgcb5eWWrX/3rvisi/Q3hegG/0xSFvx4dTLlrLQEPvD2iVAVR3loqOIlWDddBPylb+SF6PKw+2eduk/YS3KQpmLmltQTLA9I+ACB+k6d0OUf3KWVSyOnN76soATYPGJYs33wIvvZuJaDLI1DBziph/EWCqkqVE120lCOTuUCQ4iRDiq/TezPqXrEdypBVY/4VCAfuPAX9G5Sfvir620ZQTko1w6ByzdfU6ePc6eOPnJ4ZBICt38wuFyOiHJOa64h4+s1XPkxLvlQ5ecbn65Afyrs4AEg7BM1p1uDPg8LkIbMwVyv14FhXf/8BvTlwraChsEKzax1rV/4fWaVUJZ8kWQsQt92H4qHKZrINMyOtXnDHbkVMfcg3vHokB4YT6d0pAaGLZk22+vxF2ve+ghTmq4GwsW+vEJCG6bGLKKqlCK/BOxEbgN8hxtoHRESopaquOVC/HSZoMziyes1bK4ZQiwlgekHtSjxaNnmdQlPE2aHivDtmt5/A5IwWI913+0ehp58ekAOdFG9aOthZBOCIiPR1J3KpEU5oSzellVMbbLMLy9TAKBEgTK9rGnSf7gee+521Y7i/+2j+HG1sy2nW2Ue1Nu29sBWZS+YrOtqNUsAhDNPdQIMdcjnEOJTx4bwBTpPtEkzZb9U4Ah58ivc7UR/KdJc6eJuLrL4d3Hxu6CuBPvng7S6sLvhQTKhMI0cKMa0nTHKIxyR8j2y/e9dtS1QyHF/OnNDiR4a9MakloEdflxSwo64jUxciIIKb3yFOCswfUtLAkERuOdfZsRwWda2U2xHOyanfzcaPSAEW5Sb2F5ELfsh7kAKx8D4eRsJIbur8K4bULH5VEDCWiPhYDPPq2fm3T6OiBuCO0h0DKC+ezZyw5QBH43Tim6/AQ0cbsSsX4/wFTNa82Qy9dRKgbpjfTaYAAAHWJJ1dltNlLT7wGkV3V4MaRwCCFMgV4pJQ/9zxlhyfrPCYfJYFCuRfvnvr89NuGGneVNhwPQBaAl1TDN3nxe7cB3WtDcIb6mfhyQNeN+gB+tpqnPAJsslhAkVlUqOx9kdwEsQw3dOccIYJvuO1HxUxY3KAeSFxWBjJeJJyAgu4bEHQw45y8kIcy+qVuiisDaAt4e+17Eh0JwkmH/x0J4qtXaFi4dmqolBvSIFQ/dtVSrFFvGdzii/EhQZASvZD8uaOlXkW5100l7iSZ5SiIEIwlRIK2GDEKqxvMemIU7JF5TO95kTweuevlbxXmGW676KClUujakTsQIURTXqwcx3Z585W9mEEav2mWnjRmyzu8cakwQ+R10Pu7LcRF++d69B0GZiYMA6uU4b1h/xHC83aoVvVuuGSj4OAYuksgZKNVSbhtiPpw2E2cnpyyawLlnr75l8X2N75EETV2bMh8eMmnUT6/9T3qFkXTLXwhFYg4rTwfBQ8Ml0jP4NXeqTQrivtj5UmmpSwIuEyveIbb8VRkfbHq+XWjjzlknwS8G6bx7wxS7oimwJuS4DQk1ZTtg6/23+zw49VKGbFLZ4l7IGoe30I99+iWfOWggvtSKZp6xzQ6JAfA0ZgjUh4hdHjZB9F8z7wuEY2qvTq38MkeMu3u/a53feILM4BCl7l0Zcd5hlKjmZf9Mv+I/B2HqTsvTulWFsH+7TT/Lik4jAIeTpIoGv/OaqBFcWDpSrn947HkKKpe4m3KeAf7R8HIbSpcSkiVhCYGvMw7vPUwZp+v4A/X82XPPg3Zr+ODbvCqjwYxWVjtNRG7SoZMNptv5x6AsAmlIafL9Iq/eUw0xsh//1VZyzZS0n+khcLrI/sPaRmINqO6otcBjjacgYA1DkOEJn63XkgFipn/28NyZCdhRLMMfn26bm+pFXrFds9Lb6ITMPpQvlxiHfMTU/hFa0RAy5RDGbyJPAvIf9jwOfG3HyYRwVriFn/wqDwXU+cqxA41TbEyKRcCIm97xYlT29JhH7DOzis4MEePXKv8wj294q/dot1TC2pj0IRGtocx5b07JVIWToD9nuyTlDVzxs8muHJM6V7JB0AeiX6+w4gwEPIpuCMnf9H5J1OCJLv1pIYgqa+e18/dRDpNcOg6Ybu+A5IDbT594+BttHvukiMrC338Opqq6tRAxQyJV3A/OR6RSuY9igI0LzkPM9BigYl298aug9OxbYLBxJvWDj+vpPxWaJ3ZBphZ7lsZ2Rbv0yjOGS3nU20U8BhBOxBL6AQy+6e7kWSPc45PsC3x2gBmsqC6q3/frI+dxzUgbKm1T8QQChjBl1OaxmbCcLfnffTkoi+gGJ3LYgdrfBjfVmzBr8exmSIh9SkbxaKJ0u+dWzxmyJ2tvCHwymbOHvfYHPOmEt6rvB+O4hjNdOoao1yg+TGoJRawF1s4sj75ruZap1rAFFYvde87WfkeKEjMnjlZc24IOFEQdN6IHTwr7whkggL1ZkWFT4g2wF12wW3+zy6ut/Fn2v3AT6nuK/oaHYxUVVJyUsoc56keC5HUno0zOrOt0/AUShshyh0S+OxD9LaEboHGPj0D9LLWq3uLzh6o24fs3K2Q+y4RGck/FouhO+AAjvNi/nZ4b/fGCDJ0Lg7/YOpTnGVxsiBp2eBI3TlZ6XenPOuETfLrU/wUoX8NOVXff+ihg+uHcI1UGZ4MXbm6SZQe1rQliP+01Ks7uJJYQaTi3hCT1dsnqii+Gh1of0tK9CdmB9/xe+xIjpS65pqQzE9iTucpuYCrsRb9L4bZclfpQutWbVJEgH8uvonvEokm/ZjQ1DmI2KZmfCR0fcObWyMqulWYjLq9dlvrLp4pElzj9if6NXJcyv8tYo35PQybSXjOXUASIDRiL+e+C91XUDwEhmjYnA/khf1O12Ew2g3fAj6xtZRCwUYoZIzZBzJ6fA8WzqEwiOlh4JGKoYWJ7Y5kMp4/GaozPqCJUttk23KmzcNkihfSC3NUUJRQyTLq0CT3rjUYAnuSSpjIRRBW055okKJL9xHpGnnB+wl5We82lLD/XYCY5ZCgQlS5Yf06sqrLXREebeHRI4oLrmNir2wt2cN/ifGo5uIxN48LuI2JbgJejrulXldKkuNNGnYIRi+4A3B4EuQLmC8zsKlEESNueUp5vMYKGwaVmTs8n2w4+vP1Ixtx7cboG+eHOfs6ma51WyuTlSiTyvQgoEV/kNTL3r3yyAml9fRN9iZxVRw8h+JHW77XZUBvPszZIeO0N6VII5Y15XM//EdlgMXIG3bIxfsmyrB8MKBB9OTmoqKlsuuq02PqAh+cX5Msel9KQwHuIYFwAXIMN+iRVxLMV2vKuLa3T/DVzqhjzq1BtVqDgHoFrirvWa+RdJPXTffYe7eyIt+F+wgMDbY3hb0hDIq18dhvgvVof/QOPvuCZNtEBJEiJIldwNP1DWvlfcZFburiE4d9aE0egEpf41F5M0R+8MCqKnFHZ0xlEdFFTd4lJf+R/M4cadU5zLrk6mr8+rMp4b3TXGrrvw6uClJrLUUIyOmNKxvbcdLXfIPYCsfdEWjhMWDZ0vhzIc7EZNz4b/inP9vql4MGnw2KcyiatcTzQSvyIxc/sUe6qCziUZlOUiQmQ4FVtqTF4PQ76/aUxtYySGrha3w1J9OjQNtXQu88Yt8eTgRQZ7jj8UIXxwfvC69cvfbfBnjRI+axrzNL4W2wyuqmVKyUVhs0nQSi98akWw0xr9+VvRfTtE5t4vozNBJDihgeq1/U48sKej0gxgtZwH8+8YEyeJrJkLzryIMcXO4Kaenpu/fMH/T7YEbP6kTd2uOqxC+C9bVb4YXmIDqS3qvD5lpuQkhoLOppbl7CMSCvF8kO5Apmw2toV7A6u3F3Fl8O0YZcJU0JLGCT4VXac9DWZ05iLm20oJzK3X/tpj+QXduEQGhSQrVfNEA4oFfkTxtkC2Bwrrmts4m//rfhZZxsY0dapw759jqBTg0dYzawlrMXzpnyc2vVlSvA6Jf7H9piRvU1isv4f0JQXuJuNqOesiNXjNnT6EFBpcTDoNHj8aKATvUPgZ54ylxCfxSK0hKYwf3QVtkMNm5L2lNAo7Le46TGiPkhrwvpssnKcwquayQz5UOiAS6mjdTNhj4p80SOtcuEjR9wuTweZd9U8T/10pwZPgH57aJHb0sc//fUB4nhI/YeDG85MnkDd1mcsWs0fkr6kD9AHQ8FoqgLSR3I70/gAA9mgrC56lfs3lD1wwg4Hjg82aXYl98hxYlL2Ob0GsW8JrbflFBuX0M4Azo62SUBh3i12dssTTBbSaRS6sUbVeUpo9K2CSTlIthq3kGbiljyxst36vkn4+T37/SdGpb0cbIkacqKvlDPQUhr7I3hHyrMDreerE6TV4malPlWczAHX1+D/i9br1k7wV/92JMXHvPgZpEUwRQUQsWsd2jNQFI4EgbcUn6wCz1lGM2MEKsQuCkG4SZr4ybdxnJPQgnrBhNup5R60u+EzUVo3mkGKVwDFpvlNa1UOlRez6Ff51lsamq8T5It8O6xIFaitgFOymlHQLukssvMWrkYg7MykZ5gZe36Haus3YlkN5tgu8L6FjoJZ7tSVHtT7Wybf5Kfquw4g0Z5kMpfyseZkrRw+ieARIRt/EiGAMyFef1NzjxCl1RXe6fs5MFKYFI3wrpsA8xDG/vjwBUIckx86qST5KJ/mQzBK30qoJiaFfO1XWrbRU5jtgFCsbg8kKYriqJvG2hNXmuoBQbc+9RzptRXy7Y/mfSt+aWH3J++PY45Oh7K7mm42QnssS/4FiR9958xn7CF6PCzdOAseeA8sAAMj/vGByo7A4wQGDgzZtwrAY9LvMK+q/nB7cmrOygDJy+/UNUzigKape1FcUk/YbjD64o9TQrLQFS2597d7Ta+O2+32UgHfwJWHFwhQx5RW/UYmS/uySKTiy24uNOsWcVVKsGSXYb0jMa6VllkQ0NLmxnn/4MMcoXXaNVV3avisI8DbTRWZi2WZi5bNkudzmBDA79GUuNn5JLRBdw5e5Wryk/pwGtlaEWO3DFr7UszBdVHleBjIdcDoR/VQrXJzaARlppbUfQwHQQvoV9IJubjX22zDKMB1JlCao17+QBbxWrAosXboH2xzDIN7+HGlxcD1lDUc9lylAyabVkCG131CSiSUBSYxyLfDzjw5zI4UAhl26LjcklCt6TdHlJkjVB4sMsQQEb2EWuJt7tCoti8qNferHm4V4gnK6zV1GJ1yz1cMpjIvH5cbblreSaw2H6DZFrivLSjqcGeO9lZCC9HeFt70tWKb6LFZBV9EY8ReGq9xEM/BdJlSv71rv3WkmX/3UB7B9arnINWV41ouz6z6+RgSwDhj9LDtRN97IXMjQX5cvhVu4geQytBjLV6lddXfRf04OdPuPDnEQsc6v0wmzuIBqMKVJ8r4BCSpqDHDP3gyDkYj54tvY6ohC3Ln7N01/dOVE+6oqD3UNUgct7zVh63agBOrQoyj9QoPCEpAEM/FXxydh5xH4Y1lJiuZ8/5+E+DR3vM69fEAoc8MFfHrCPUKGgJtmcV2j0ORdiIOeiWBuTyii9Z5qL418dRPrkTJdd1Qpm9AWzmtoRv748y1NLGa5Iq4DP4yKd88bfVs7owdB95wZm85ng56v1eGMipsMjkygjfLZRdXVCA6UF0gAC4+arA/KteWWQAlBFn01DonmNOSCTxeMCLl7539WQgfiD/jcQnE3sSkhqKH/ytV9dY+RMWJQjR6EnRRLEvIEuH35MwzvaYMgE6UoolQkyFrHekSCCtmOJwXw9Ogg0k0aZD+NCUSYhKHl/EXywk8zjNw51vFxUkUVEjl1onYJemxs+WDUewRir1FYef1tVrwbE83NfIzufe1NeLEOY5gX9QDciq4sFsWZa4CQVQJtbQIZpwwq8QSDZ9zVsiUFZZDIYM3iK71ZqvmDVxm69zMa0NyTt8YGJj/wUQO40tHRxcVTVRmzuY76xD2OIVbUZzoPEvmoJyVRuipqjj3ZcDg/S3heWgIMab2GJpQSonD6LcizwsHJXQWygNb0fMBrH7e4dGwQxEH3bPDIlBHvNl29GDKWpsAAAMDYQ31bWit/85Rp81P2ixx+tiPGwBB6+v8ZEPtNwqHJMMqFoncQZFyG28Q1MYsqypgdK/doCZIi+CJiiTudH6csTblfDRpaK6Ogf4rtcmYv8TyYM92Wf7QUGfWa3cJD0ecXqJ14txGtHU3pxQxfVUCe40j6CqQwKQCZOgIg5ohAre9fW1HYpCWcTAPqeT32zp492elqOa+4P+sxKbfp3NPDX3tnPh3jY4IO082glx+XRbq+e9plOzZH7dhdFf8cVzYfrujTdt/JxddkRUXzFS22WjLtGZ4bs8PYLZhfs1+0I9tIqERHFpEYl5D2+1jNq2ay/91sgbVcZwoFi29XSuSMA7oc6xJJFAbre58Hy333NclZ7Ul83HrAuDkIGh3xOITn8BIOcdGgQ2mdMhHTRQRqQs1OSMPbRT4ezKuvQo+7nwgzj8D5ucdpTIOf9EhIGLD9QjS1EwDhxfIQj4ClDQQVHFWR9v8pZgV+CX/Dh3bmfTdNxPuwfn2umtF8OB2p8mOAKif+lSwkEeb8Wy8k6AnWfaryEVKoHiFp88n/63LfZ0AGxuucxJxoLw+i7Yw+Y3bNFUtH7k3cZJ7jsQAjq/tV8mFbooadVf3jXTqhG03PqG8m9sPAmM7TZc/A/cJsX8cYNSBTe0JaekDuRKPEN0k9pkftTDOjTDWWddf8z1ubgFlOXFepsbdLabCJDrFHTq7t/b/beRmP81XufTGudfVw+qFdaF3Bi9w6DHB/J22GFmi48SVGr80LoMlqS2NjvulUtGSVWWKphclyjUL5QkIGq8zuHkREh7HiMxWOLRnkSckHM7HsrWUD7qfnNsZOAE7V+bmIFVGi/a9AYnCijDD3QT8eKDdqA6wQ1s9yo96Fxy3q0az3jO1pmEuXRfOXwek8MWCw+17bpIOBrxootLmmUYp8XVmQCfErBUxjTWwsYasArSnGuN172tUsXWGlCuh0Da9iTT/pjNzhuADg67jKB0vKzLpkH7yIb+eB37fwKkYPfmbclRCEVknfG2Kf4SXduifA/F8C5IOHQzcZsb5KnDuNxkzD61PwXYfNikmZlMkrTwifnY8s4IdNvaCQT4iP+r1ilHP+Hp4x76FGNkFOkVjfdy1r/9rpVIfSiW1KOCAj17K34UHBbPer9R/cIQVm+xdPy+0RMn17U94btbGpaNcYDznm01Xxo8SR+z8RwMIL3FqePU+uxO4ENZmg1VXnT658StN+48HYMYOgG+GdNSWHmdMsBwOqqdkmvtNsbhZ0/i+KV6s20ETTCfWw4CzeFa/NLfZo637qk9W5ZsYPuCXntjwsNjCmQk7SRtr14VfPNajClzM7+6eX9VaLaP5dj2aPvWAkTbkUqtZU+VvLz9b1kMhlHsfM5BQa6rQ8ums2YoUtwoz05Brvyk/lzIkFb7X1GJjmQhI80hDj+NxBtw55bYFVmeHgHiSZOTLVnWH8SoRWl8m6OIB4/aCnQLYGbYlBgHJxj8YFWqfsH2P2Uqe3qV6Bd1JpRLLMAK5p4AI+qVu1Y+I3BZ6tif/kZVhML8CwdNWFQMpjwvmE4LIKIj1XYgq/hCh5n9Iy+Yt0Wa/Zom61bGhXzrOjUQTJTbW8CJdkCmajGWLIwq22TRekk+PHT0iAIKj90UAZRVfyGmUzwiQNaJBfeUkNClp61FGRBS0xsqrbflQVNqczWtOj5CR7TrROLOFVUQRVL7zlBau/XWkuXtWy+rio+e4EbEsqm+tiKBL/e7qEc1/97FaYOaMOP+FvRw/Y0nCqUe+AhvR6nXEzP9xTJ1e397p1w6RV+M3I91f3lIgAF06Lk8pvm/+tp6LcDRpOR/+Jajp8c1gmdn5BmAUsbeIfZXl0KSEjf1v1FxvrpxX+CaA8cymi4DxEMbkcNM9qtPd9w9Ga0Nnios55uhvU4Gu5VdaIJKp0XxvvSYA16qDaED80DjjJ2b7c5MBJGypkErrsBuXEAPcOK/tIF23McgRDcEaFWAuEl99P6w7ktJlDQA5e4mY7FYSM2tfDbgHAjyEAu3CaQUh+rvtd7lAJJ7DXN/t1zwe0GRJssT9y+FbpYgJFpeXj6x42EIGk0cpTvv7mM9vb0r8rEyStPDxdC+JlNU1ReUDAD/aSxAipYGhqEYBTIysJs+MId9gAb90pQstWp1L5GgDBG4LeKKD/7znWBdHFFcNf+5p3AMJq92KB5n580dbFcjvHK8WmN3zbxDlAU0/bRMaCXGmjdXV/J0naG994pH2etKARTkjEB7hsxQatKdgviGdcQrRaOEC2htu57NgvOEt9BpvPvJ/07yotlcnwow5PIUCtRJ54VFiKNcN9cV/5gXzaPwAShKkUOXE/ajEX/HafZfGiOuExxEt7CCIoWKvad/qxKceMPXiXvFQn27AyztqPssnYORayaZ+Lfc1iXYkaR8LsQfPKducFUtWYNB2BsU4LjbIHAeq0vqvHI1BQOza5pYiOs5L8nYmqQ9DYBpOWxDcSXEh46wquAFDFK3KCW5QCL1aV4rY/qaaf3kYHVNkgoUbtakV6O+RCpyzvAYhePYVCHKy4MfCSs+lY0mcT1YTnkyrWr9lxg1x0xuSB/y1lv1KQvBvVJrRUlsMuX+VNRBuktCCZN6zAhsj3vuLcUOVZgF6+i2F+o+1AuiMZjZLcMFeJryfmRohWBUIiBCxAdxNz/xthxX07lDc85hSTyyPfVLBEQtV6eeL9PJGLXTB4jclmrBKn08sAg8cv+I47nTNORPdYwkWOet9XKViNfsxS1IDwgTvzBuNj+rUOR3UgUlhq25NfTQg7PC6gY2AJIrq8rCzGS9MtR5IOo/DwPpEEs+SK8Nz4smhFZLjPP+SIopx7UBjPk/jQG8+EdSn4LJhH7hit5mkuigxbyG/2cseDdD87MoMkpUfFsUMWRfzS6vbjVy9qV2KmsFGGmPrfwIkQXi7yHPWlAJ8rUPbxDD5KHwHi6lpPqx8orFY5MAqKGsdUdEpvEh1cfdYKnaX1q7h3/NE3/gwFihEyA9WXxSZ7drPnbW6ExxaAXMkk41XmSsCONsGbp6K1l9bR2G2ol2jNmyOObP+MUXunSJd8y/yKbTfjngJjA2GjHwSB++6PXIp9Vvi9uxSn8Vt2O5lB8UH52/JHMUnka+U1m+wigvJVOItmOb3AQtMHqWKAyND2L4g4EjEPG8j4aX5/QhET698Hszp04f5g2UaXhdZnwOUUVEV+rcXAO940vGftyfxAXMIzIUuEfrMjknIdFO7dF1bNrK+LU5OKA7i1w3ANP/0Zyd1G1ksuVJk0C9xkxPgZXuVkQKqJpp6jZuEldSSYPnvqWJq6N5pjOqTcVyx8IS+0EDsxipWcWGSK49DfyQzeV1GcBW6ox3bZcgA0Wp6pVXxUM8tEH1F89v07oR+udxNtHVyWpOcHJLyj6eLPUfv6AHlT2dZ+tPAl7rBxm/LFbG+48ZEmmj6XKR/rAg4RImemuLtUa9gbLfUb+A62marGGFn1Wi/juup9VvawpCmsJ2D/Tfc91gQswXjah3vgyrqqRuUeO1AplJKFffaM9NGwiXn/2bUUO3aQI7IB0XvEve1MTSZftZoPiQclYwqV5mhMJscSCZoUPJLPRbXosKKnP8N8ZRwQY5hguiV5VHxLaOX9/gt6s5qsQNlUWuxVNx+w80kG61znEz8hU/xJ7zQzaz7jHoabRVnDYx0wp+oSAkeybPE489ZBz6KkEjnFzj1nABdrsvhrWvucwDQ7molYAMlWz83q+gHk81EgX/Nx/ROl20r7iN7xVjXNGjBECvWC5v1CvAI/B66EV6hHmsbSl48C8GJiMa/tvIn4k3BtjxN+GYFbXbSb4vAgtFh/AVfcuK/ibw0jOFs4D1ueHF/dDBZquBkQSfgLF2Cc7c2lZEJDl9g/APoDr3y+CdllEhrqpbvwC+4Ukib/4XCnoUufVALA2SAqbqesbGGExpqpasCR6ZQMtVF69XdSYdPMdaykvFdJdDkE9BLzts7jvNAUxQe/Noxx64iqvHnzHZHBpYNYR0o9dWQ8DBgv4Y2E1B9/4w/unJfi87NJb9N/rno0+LOLmykMQmDj6tSAsLqJRmPaxKNj3WrFrJmioRey7Cl5IgAAAMAANaAAAAE021vb3YAAABsbXZoZAAAAAAAAAAAAAAAAAAAA+gAAAnEAAEAAAEAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAP9dHJhawAAAFx0a2hkAAAAAwAAAAAAAAAAAAAAAQAAAAAAAAnEAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAQAAAAAhwAAAC0AAAAAAAJGVkdHMAAAAcZWxzdAAAAAAAAAABAAAJxAAABAAAAQAAAAADdW1kaWEAAAAgbWRoZAAAAAAAAAAAAAAAAAAAKAAAAGQAVcQAAAAAAC1oZGxyAAAAAAAAAAB2aWRlAAAAAAAAAAAAAAAAVmlkZW9IYW5kbGVyAAAAAyBtaW5mAAAAFHZtaGQAAAABAAAAAAAAAAAAAAAkZGluZgAAABxkcmVmAAAAAAAAAAEAAAAMdXJsIAAAAAEAAALgc3RibAAAAJhzdHNkAAAAAAAAAAEAAACIYXZjMQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAhwAtAASAAAAEgAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABj//wAAADJhdmNDAWQAKP/hABlnZAAorNlAIcFuhAAAAwAEAAADAKA8YMZYAQAGaOvjyyLAAAAAGHN0dHMAAAAAAAAAAQAAADIAAAIAAAAAFHN0c3MAAAAAAAAAAQAAAAEAAAEIY3R0cwAAAAAAAAAfAAAAAwAABAAAAAABAAAGAAAAAAEAAAIAAAAAAQAABAAAAAABAAAGAAAAAAEAAAIAAAAAAgAABAAAAAABAAAGAAAAAAEAAAIAAAAAAQAABAAAAAABAAAGAAAAAAEAAAIAAAAAAQAABAAAAAABAAAGAAAAAAEAAAIAAAAAAwAABAAAAAABAAAGAAAAAAEAAAIAAAAAAQAABAAAAAABAAAGAAAAAAEAAAIAAAAAAQAABAAAAAABAAAGAAAAAAEAAAIAAAAABQAABAAAAAABAAAGAAAAAAEAAAIAAAAACAAABAAAAAABAAAGAAAAAAEAAAIAAAAABAAABAAAAAAcc3RzYwAAAAAAAAABAAAAAQAAADIAAAABAAAA3HN0c3oAAAAAAAAAAAAAADIAAIx9AABTIwAAUPkAAEpaAABFxgAASugAAElmAABFuwAASpwAAEzOAABLXAAAQ7UAAEziAABJogAARIUAAEybAABJigAARmkAAEqTAABJqgAAS+8AAEnLAABEVAAATD4AAEhgAABFoQAATYgAAEcaAABFpQAASUsAAErmAABKAgAASboAAE48AABKXQAARQYAAEmUAABJvAAASUgAAEg0AABJmwAASp8AAEqWAABM3gAASIcAAEW2AABJrQAASIsAAEeLAABFegAAABRzdGNvAAAAAAAAAAEAAAAwAAAAYnVkdGEAAABabWV0YQAAAAAAAAAhaGRscgAAAAAAAAAAbWRpcmFwcGwAAAAAAAAAAAAAAAAtaWxzdAAAACWpdG9vAAAAHWRhdGEAAAABAAAAAExhdmY1Ny43MS4xMDA=" type="video/mp4"> Your browser does not support the video tag. </video> ### Joint Posterior Analysis of sources ```python #Select source you want to plot joint distribution s1=2 s2=18 ``` Sources 2 and 18 are close together, lets look at their joint posterior probabiity distribution. The code below is an example of how you can plot the joint posterior probability density function for the $250 \mathrm{\mu m}$ flux, and an inset of the real map. ```python import aplpy import seaborn as sns sns.set(color_codes=True) import pandas as pd sns.set_style("white") import xidplus.posterior_maps as postmaps labels=[r'Source 1 $250\mathrm{\mu m}$ flux (mJy)',r'Source 2 $250\mathrm{\mu m}$ flux (mJy)'] df = pd.DataFrame(posterior.samples['src_f'][:,0,[s1,s2]],columns=labels) g = sns.PairGrid(df,size=5) g.map_diag(sns.kdeplot,c='Red') g.map_lower(sns.kdeplot, cmap="Reds",alpha=0.8,n_levels=10,normed=True, shade=True,shade_lowest=False) g.set(ylim=(0,40)) g.set(xlim=(0,40)) g.axes[0,1].spines['bottom'].set_color('white') g.axes[0,1].spines['left'].set_color('white') cmap=sns.cubehelix_palette(8, start=.5, rot=-.75,as_cmap=True) real_250 = aplpy.FITSFigure(postmaps.make_fits_image(priors[0],priors[0].sim)[1],figure=g.fig,subplot=(2,2,2)) real_250.show_colorscale(cmap=cmap) real_250.show_markers(priors[0].sra, priors[0].sdec, edgecolor='black', facecolor='black', marker='o', s=40, alpha=0.5) real_250.recenter(priors[0].sra[s1], priors[0].sdec[s1], radius=0.01) real_250.add_label(priors[0].sra[s1], priors[0].sdec[s1]+0.0005, 1, relative=False,size=20,color='white') real_250.add_label(priors[0].sra[s2], priors[0].sdec[s2]-0.0010, 2, relative=False,size=20,color='white') real_250.tick_labels.set_xformat('dd.dd') real_250.tick_labels.set_yformat('dd.dd') real_250.add_colorbar(axis_label_text=r'$250\mathrm{\mu m}$ flux (mJy)') ``` INFO: Auto-setting vmin to -1.522e+01 [aplpy.core] INFO: Auto-setting vmax to 3.332e+01 [aplpy.core] ![png](output_15_1.png) ### Posterior Predictive checking and Bayesian P-value maps When examining goodness of fits, the typical method is to look at the residuals. i.e. $\frac{data - model}{\sigma}$. Because we have distribution of $y^{rep}$, we can do this in a more probabilisitic way using posterior predictive checks. For more information on posterior predictive checks, [Gelman et al. 1996](http://www.stat.columbia.edu/~gelman/research/published/A6n41.pdf) is a good starting point. For our case, the best way to carry out posterior predictive checks is to think about one pixel. We can look at where the real flux value for our pixel is in relation to the distribution from $y^{rep}$. ```python from xidplus import posterior_maps as postmaps rep_maps=postmaps.replicated_maps(priors,posterior) import matplotlib as mpl sns.set_style("white") fig=plt.figure(figsize=(10,5)) # This is the colormap I'd like to use. cm = sns.diverging_palette(220, 20, as_cmap=True) # Get the histogramp Y,X = np.histogram(rep_maps[0][20,:], 25, normed=1) #C = [cm(((x-X.min())/x_span)) for x in X] C = [cm(((((x-np.mean(rep_maps[0][20,:]))/np.std(rep_maps[0][20,:]))+6)/12.0)) for x in X] plt.bar(X[:-1],Y,color=C,width=X[1]-X[0]) plt.xlabel('Pixel Flux mJy') plt.ylabel('p(pixel flux)') plt.axvline(3.9, linestyle='--') plt.axvline(-10.1,linestyle=':') plt.annotate('flux in map that \n model cannot explain',xy=(4, 0.01), xycoords='data', xytext=(4, 0.1), textcoords='data',rotation='vertical',size='large') plt.annotate('too much flux in model \n compared to map',xy=(-10, 0.01), xycoords='data', xytext=(-10, 0.1), textcoords='data',rotation='vertical',size='large') #ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15]) ax1 = fig.add_axes([0.82, 0.15, 0.02, 0.7]) norm = mpl.colors.Normalize(vmin=-6, vmax=6) cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=cm, norm=norm, orientation='vertical') cb1.set_label('$\sigma$') ``` ![png](output_18_0.png) We can calculate fraction of $y^{rep}$ samples above and below real map value. This is often referred to as the Bayesian p-value and is telling us the probability of drawing the real pixel value, from our model which has been inferred on the data. This is tells us if the model is inconsistent with the data, given the uncertianties in parameters and data. * $\sim 0.5$ means our model is consistent with the data * 0.99 or 0.01 means model is missing something. We can convert this to a typical '$\sigma$' level and create map versions of these Bayesian p-values: ```python figs, fig=xidplus.plot_Bayes_pval_map(priors, posterior) ``` ![png](output_20_0.png) Red indicates the flux value in the real map is higher than our model thinks is possible. This could be indicating there is a source there that is not in our model. Blue indicates the flux in the real map is lower than in our model. This is either indicating a very low density region or that too much flux has been assigned to one of the sources. ### Creating Catalogues We can also create catalogues from the posterior probability density function ```python import xidplus.catalogue as cat ``` ```python SPIRE_cat=cat.create_SPIRE_cat(posterior,priors[0],priors[1],priors[2]) SPIRE_cat.writeto('test.fits',overwrite=True) ``` ### Check table Lets read in table with Astropy table ```python from astropy.table import Table ``` ```python catalogue=Table.read('test.fits') ``` ```python catalogue ``` &lt;Table length=51&gt; <table id="table4746376360" class="table-striped table-bordered table-condensed"> <thead><tr><th>HELP_ID</th><th>RA</th><th>Dec</th><th>F_SPIRE_250</th><th>FErr_SPIRE_250_u</th><th>FErr_SPIRE_250_l</th><th>F_SPIRE_350</th><th>FErr_SPIRE_350_u</th><th>FErr_SPIRE_350_l</th><th>F_SPIRE_500</th><th>FErr_SPIRE_500_u</th><th>FErr_SPIRE_500_l</th><th>Bkg_SPIRE_250</th><th>Bkg_SPIRE_350</th><th>Bkg_SPIRE_500</th><th>Sig_conf_SPIRE_250</th><th>Sig_conf_SPIRE_350</th><th>Sig_conf_SPIRE_500</th><th>Rhat_SPIRE_250</th><th>Rhat_SPIRE_350</th><th>Rhat_SPIRE_500</th><th>n_eff_SPIRE_250</th><th>n_eff_SPIRE_500</th><th>n_eff_SPIRE_350</th><th>Pval_res_250</th><th>Pval_res_350</th><th>Pval_res_500</th></tr></thead> <thead><tr><th></th><th>degrees</th><th>degrees</th><th>mJy</th><th>mJy</th><th>mJy</th><th>mJy</th><th>mJy</th><th>mJy</th><th>mJy</th><th>mJy</th><th>mJy</th><th>mJy/Beam</th><th>mJy/Beam</th><th>mJy/Beam</th><th>mJy/Beam</th><th>mJy/Beam</th><th>mJy/Beam</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr></thead> <thead><tr><th>str27</th><th>float64</th><th>float64</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th><th>float32</th></tr></thead> <tr><td>1891</td><td>150.74711462</td><td>2.01937229149</td><td>3.7484</td><td>7.66319</td><td>1.18164</td><td>2.14374</td><td>4.78448</td><td>0.654144</td><td>3.95658</td><td>8.78007</td><td>1.13176</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>1.00125</td><td>0.999651</td><td>0.999694</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.001</td><td>0.0</td></tr> <tr><td>1896</td><td>150.74655644</td><td>2.01381734435</td><td>4.60005</td><td>6.3697</td><td>2.84267</td><td>3.65866</td><td>5.48689</td><td>1.85056</td><td>1.92826</td><td>4.57817</td><td>0.519253</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>1.00153</td><td>0.999281</td><td>1.00056</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.003</td><td>0.0</td></tr> <tr><td>2640</td><td>150.742672167</td><td>2.02937330604</td><td>13.9984</td><td>18.8843</td><td>9.17463</td><td>12.8981</td><td>15.4871</td><td>9.41806</td><td>1.86951</td><td>4.1993</td><td>0.517889</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>1.00192</td><td>1.00116</td><td>1.00028</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.008</td><td>0.0</td></tr> <tr><td>5128</td><td>150.752680282</td><td>2.03659114242</td><td>3.17935</td><td>5.00112</td><td>1.51538</td><td>1.17502</td><td>2.5795</td><td>0.316155</td><td>4.84374</td><td>8.41198</td><td>1.72842</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999281</td><td>0.999725</td><td>0.999016</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.017</td><td>0.001</td></tr> <tr><td>5129</td><td>150.741006288</td><td>2.0332625701</td><td>4.14086</td><td>5.90487</td><td>2.33828</td><td>1.57266</td><td>3.09327</td><td>0.515144</td><td>2.12692</td><td>4.43263</td><td>0.572698</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999627</td><td>0.999396</td><td>0.999493</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.018</td><td>0.0</td></tr> <tr><td>5130</td><td>150.747123319</td><td>2.03992641714</td><td>15.163</td><td>16.7734</td><td>13.5599</td><td>18.3508</td><td>19.8903</td><td>16.8378</td><td>14.386</td><td>17.3602</td><td>11.346</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.998979</td><td>0.998597</td><td>0.999077</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.003</td><td>0.001</td></tr> <tr><td>5159</td><td>150.754346603</td><td>2.03381290524</td><td>15.0139</td><td>16.8077</td><td>13.0577</td><td>7.17588</td><td>9.16244</td><td>4.82038</td><td>4.09872</td><td>7.76803</td><td>1.15535</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.99918</td><td>1.00112</td><td>0.999327</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.002</td><td>0.004</td><td>0.001</td></tr> <tr><td>6067</td><td>150.755456605</td><td>2.02992385524</td><td>2.4755</td><td>4.13946</td><td>1.0596</td><td>5.07732</td><td>7.13054</td><td>3.02158</td><td>2.407</td><td>5.26434</td><td>0.697328</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>1.00153</td><td>0.999871</td><td>0.999267</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.002</td><td>0.023</td><td>0.002</td></tr> <tr><td>6728</td><td>150.731557942</td><td>2.03548824889</td><td>2.27546</td><td>4.03699</td><td>0.814594</td><td>1.28256</td><td>2.65632</td><td>0.377102</td><td>1.25702</td><td>2.82928</td><td>0.311752</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999194</td><td>0.999004</td><td>0.999294</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.001</td><td>0.0</td><td>0.002</td></tr> <tr><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td></tr> <tr><td>54557</td><td>150.747116031</td><td>2.02270538967</td><td>4.16608</td><td>6.52053</td><td>2.01011</td><td>1.80936</td><td>3.88562</td><td>0.481275</td><td>3.85372</td><td>8.23103</td><td>1.19911</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999127</td><td>0.998905</td><td>0.999505</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.003</td><td>0.0</td></tr> <tr><td>56696</td><td>150.721556173</td><td>2.04382481093</td><td>0.88412</td><td>2.1644</td><td>0.240798</td><td>0.949373</td><td>2.36094</td><td>0.255432</td><td>1.20004</td><td>3.06691</td><td>0.313454</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999351</td><td>0.998961</td><td>1.00171</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.014</td><td>0.002</td><td>0.008</td></tr> <tr><td>56700</td><td>150.729337091</td><td>2.04159980217</td><td>1.48247</td><td>2.86367</td><td>0.449076</td><td>1.04582</td><td>2.22337</td><td>0.322739</td><td>1.39198</td><td>3.18743</td><td>0.412141</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999942</td><td>0.999822</td><td>0.99837</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.001</td><td>0.0</td><td>0.004</td></tr> <tr><td>57200</td><td>150.740458126</td><td>2.05159489041</td><td>10.474</td><td>12.744</td><td>7.8894</td><td>4.53638</td><td>6.91396</td><td>2.20241</td><td>2.68414</td><td>5.65835</td><td>0.824703</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.998646</td><td>0.99865</td><td>0.999078</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.001</td><td>0.005</td></tr> <tr><td>58792</td><td>150.739334129</td><td>2.02215285778</td><td>1.53584</td><td>2.8906</td><td>0.536787</td><td>1.04091</td><td>2.18379</td><td>0.311871</td><td>1.33951</td><td>2.95336</td><td>0.337598</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999491</td><td>1.00085</td><td>0.999512</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.002</td><td>0.0</td></tr> <tr><td>62679</td><td>150.751015847</td><td>2.04381351831</td><td>2.44807</td><td>4.68218</td><td>0.755575</td><td>2.66707</td><td>5.36711</td><td>0.964311</td><td>3.18924</td><td>7.19739</td><td>0.878154</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999891</td><td>0.999694</td><td>1.00034</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.0</td><td>0.004</td></tr> <tr><td>62696</td><td>150.716547293</td><td>2.02827210175</td><td>0.900113</td><td>1.87745</td><td>0.273319</td><td>1.05167</td><td>2.08977</td><td>0.323288</td><td>2.6556</td><td>4.82945</td><td>0.958473</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.998641</td><td>1.00014</td><td>0.998887</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.001</td><td>0.068</td><td>0.226</td></tr> <tr><td>64788</td><td>150.757117895</td><td>2.01547979941</td><td>7.4053</td><td>8.99943</td><td>5.69952</td><td>6.23498</td><td>8.09541</td><td>4.30285</td><td>1.50978</td><td>3.65069</td><td>0.413473</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999124</td><td>0.99898</td><td>0.999234</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.003</td><td>0.004</td></tr> <tr><td>64789</td><td>150.722668543</td><td>2.04549095568</td><td>0.693414</td><td>1.73135</td><td>0.171959</td><td>1.00955</td><td>2.43527</td><td>0.254088</td><td>1.50451</td><td>3.61353</td><td>0.414402</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>0.999581</td><td>1.00064</td><td>1.00024</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.319</td><td>0.001</td><td>0.002</td></tr> <tr><td>64790</td><td>150.746006008</td><td>2.02659443544</td><td>3.66645</td><td>5.70863</td><td>1.70092</td><td>9.75185</td><td>11.836</td><td>7.74227</td><td>2.95004</td><td>5.88184</td><td>0.874799</td><td>-2.55132</td><td>-4.50904</td><td>-6.23681</td><td>1.57567</td><td>1.54154</td><td>2.35809</td><td>1.00089</td><td>1.00012</td><td>0.999632</td><td>2000.0</td><td>2000.0</td><td>2000.0</td><td>0.0</td><td>0.004</td><td>0.0</td></tr> </table>
H-E-L-PREPO_NAMEXID_plusPATH_START.@XID_plus_extracted@XID_plus-master@docs@build@html@notebooks@examples@XID+posterior_analysis_validation.ipynb@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "pandas-dev/pandas", "repo_path": "pandas_extracted/pandas-main/pandas/io/clipboard/__init__.py", "type": "Python" }
""" Pyperclip A cross-platform clipboard module for Python, with copy & paste functions for plain text. By Al Sweigart al@inventwithpython.com Licence at LICENSES/PYPERCLIP_LICENSE Usage: import pyperclip pyperclip.copy('The text to be copied to the clipboard.') spam = pyperclip.paste() if not pyperclip.is_available(): print("Copy functionality unavailable!") On Windows, no additional modules are needed. On Mac, the pyobjc module is used, falling back to the pbcopy and pbpaste cli commands. (These commands should come with OS X.). On Linux, install xclip, xsel, or wl-clipboard (for "wayland" sessions) via package manager. For example, in Debian: sudo apt-get install xclip sudo apt-get install xsel sudo apt-get install wl-clipboard Otherwise on Linux, you will need the PyQt5 modules installed. This module does not work with PyGObject yet. Cygwin is currently not supported. Security Note: This module runs programs with these names: - pbcopy - pbpaste - xclip - xsel - wl-copy/wl-paste - klipper - qdbus A malicious user could rename or add programs with these names, tricking Pyperclip into running them with whatever permissions the Python process has. """ __version__ = "1.8.2" import contextlib import ctypes from ctypes import ( c_size_t, c_wchar, c_wchar_p, get_errno, sizeof, ) import os import platform from shutil import which as _executable_exists import subprocess import time import warnings from pandas.errors import ( PyperclipException, PyperclipWindowsException, ) from pandas.util._exceptions import find_stack_level # `import PyQt4` sys.exit()s if DISPLAY is not in the environment. # Thus, we need to detect the presence of $DISPLAY manually # and not load PyQt4 if it is absent. HAS_DISPLAY = os.getenv("DISPLAY") EXCEPT_MSG = """ Pyperclip could not find a copy/paste mechanism for your system. For more information, please visit https://pyperclip.readthedocs.io/en/latest/index.html#not-implemented-error """ ENCODING = "utf-8" class PyperclipTimeoutException(PyperclipException): pass def _stringifyText(text) -> str: acceptedTypes = (str, int, float, bool) if not isinstance(text, acceptedTypes): raise PyperclipException( f"only str, int, float, and bool values " f"can be copied to the clipboard, not {type(text).__name__}" ) return str(text) def init_osx_pbcopy_clipboard(): def copy_osx_pbcopy(text): text = _stringifyText(text) # Converts non-str values to str. with subprocess.Popen( ["pbcopy", "w"], stdin=subprocess.PIPE, close_fds=True ) as p: p.communicate(input=text.encode(ENCODING)) def paste_osx_pbcopy(): with subprocess.Popen( ["pbpaste", "r"], stdout=subprocess.PIPE, close_fds=True ) as p: stdout = p.communicate()[0] return stdout.decode(ENCODING) return copy_osx_pbcopy, paste_osx_pbcopy def init_osx_pyobjc_clipboard(): def copy_osx_pyobjc(text): """Copy string argument to clipboard""" text = _stringifyText(text) # Converts non-str values to str. newStr = Foundation.NSString.stringWithString_(text).nsstring() newData = newStr.dataUsingEncoding_(Foundation.NSUTF8StringEncoding) board = AppKit.NSPasteboard.generalPasteboard() board.declareTypes_owner_([AppKit.NSStringPboardType], None) board.setData_forType_(newData, AppKit.NSStringPboardType) def paste_osx_pyobjc(): """Returns contents of clipboard""" board = AppKit.NSPasteboard.generalPasteboard() content = board.stringForType_(AppKit.NSStringPboardType) return content return copy_osx_pyobjc, paste_osx_pyobjc def init_qt_clipboard(): global QApplication # $DISPLAY should exist # Try to import from qtpy, but if that fails try PyQt5 then PyQt4 try: from qtpy.QtWidgets import QApplication except ImportError: try: from PyQt5.QtWidgets import QApplication except ImportError: from PyQt4.QtGui import QApplication app = QApplication.instance() if app is None: app = QApplication([]) def copy_qt(text): text = _stringifyText(text) # Converts non-str values to str. cb = app.clipboard() cb.setText(text) def paste_qt() -> str: cb = app.clipboard() return str(cb.text()) return copy_qt, paste_qt def init_xclip_clipboard(): DEFAULT_SELECTION = "c" PRIMARY_SELECTION = "p" def copy_xclip(text, primary=False): text = _stringifyText(text) # Converts non-str values to str. selection = DEFAULT_SELECTION if primary: selection = PRIMARY_SELECTION with subprocess.Popen( ["xclip", "-selection", selection], stdin=subprocess.PIPE, close_fds=True ) as p: p.communicate(input=text.encode(ENCODING)) def paste_xclip(primary=False): selection = DEFAULT_SELECTION if primary: selection = PRIMARY_SELECTION with subprocess.Popen( ["xclip", "-selection", selection, "-o"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, ) as p: stdout = p.communicate()[0] # Intentionally ignore extraneous output on stderr when clipboard is empty return stdout.decode(ENCODING) return copy_xclip, paste_xclip def init_xsel_clipboard(): DEFAULT_SELECTION = "-b" PRIMARY_SELECTION = "-p" def copy_xsel(text, primary=False): text = _stringifyText(text) # Converts non-str values to str. selection_flag = DEFAULT_SELECTION if primary: selection_flag = PRIMARY_SELECTION with subprocess.Popen( ["xsel", selection_flag, "-i"], stdin=subprocess.PIPE, close_fds=True ) as p: p.communicate(input=text.encode(ENCODING)) def paste_xsel(primary=False): selection_flag = DEFAULT_SELECTION if primary: selection_flag = PRIMARY_SELECTION with subprocess.Popen( ["xsel", selection_flag, "-o"], stdout=subprocess.PIPE, close_fds=True ) as p: stdout = p.communicate()[0] return stdout.decode(ENCODING) return copy_xsel, paste_xsel def init_wl_clipboard(): PRIMARY_SELECTION = "-p" def copy_wl(text, primary=False): text = _stringifyText(text) # Converts non-str values to str. args = ["wl-copy"] if primary: args.append(PRIMARY_SELECTION) if not text: args.append("--clear") subprocess.check_call(args, close_fds=True) else: p = subprocess.Popen(args, stdin=subprocess.PIPE, close_fds=True) p.communicate(input=text.encode(ENCODING)) def paste_wl(primary=False): args = ["wl-paste", "-n"] if primary: args.append(PRIMARY_SELECTION) p = subprocess.Popen(args, stdout=subprocess.PIPE, close_fds=True) stdout, _stderr = p.communicate() return stdout.decode(ENCODING) return copy_wl, paste_wl def init_klipper_clipboard(): def copy_klipper(text): text = _stringifyText(text) # Converts non-str values to str. with subprocess.Popen( [ "qdbus", "org.kde.klipper", "/klipper", "setClipboardContents", text.encode(ENCODING), ], stdin=subprocess.PIPE, close_fds=True, ) as p: p.communicate(input=None) def paste_klipper(): with subprocess.Popen( ["qdbus", "org.kde.klipper", "/klipper", "getClipboardContents"], stdout=subprocess.PIPE, close_fds=True, ) as p: stdout = p.communicate()[0] # Workaround for https://bugs.kde.org/show_bug.cgi?id=342874 # TODO: https://github.com/asweigart/pyperclip/issues/43 clipboardContents = stdout.decode(ENCODING) # even if blank, Klipper will append a newline at the end assert len(clipboardContents) > 0 # make sure that newline is there assert clipboardContents.endswith("\n") if clipboardContents.endswith("\n"): clipboardContents = clipboardContents[:-1] return clipboardContents return copy_klipper, paste_klipper def init_dev_clipboard_clipboard(): def copy_dev_clipboard(text): text = _stringifyText(text) # Converts non-str values to str. if text == "": warnings.warn( "Pyperclip cannot copy a blank string to the clipboard on Cygwin. " "This is effectively a no-op.", stacklevel=find_stack_level(), ) if "\r" in text: warnings.warn( "Pyperclip cannot handle \\r characters on Cygwin.", stacklevel=find_stack_level(), ) with open("/dev/clipboard", "w", encoding="utf-8") as fd: fd.write(text) def paste_dev_clipboard() -> str: with open("/dev/clipboard", encoding="utf-8") as fd: content = fd.read() return content return copy_dev_clipboard, paste_dev_clipboard def init_no_clipboard(): class ClipboardUnavailable: def __call__(self, *args, **kwargs): raise PyperclipException(EXCEPT_MSG) def __bool__(self) -> bool: return False return ClipboardUnavailable(), ClipboardUnavailable() # Windows-related clipboard functions: class CheckedCall: def __init__(self, f) -> None: super().__setattr__("f", f) def __call__(self, *args): ret = self.f(*args) if not ret and get_errno(): raise PyperclipWindowsException("Error calling " + self.f.__name__) return ret def __setattr__(self, key, value): setattr(self.f, key, value) def init_windows_clipboard(): global HGLOBAL, LPVOID, DWORD, LPCSTR, INT global HWND, HINSTANCE, HMENU, BOOL, UINT, HANDLE from ctypes.wintypes import ( BOOL, DWORD, HANDLE, HGLOBAL, HINSTANCE, HMENU, HWND, INT, LPCSTR, LPVOID, UINT, ) windll = ctypes.windll msvcrt = ctypes.CDLL("msvcrt") safeCreateWindowExA = CheckedCall(windll.user32.CreateWindowExA) safeCreateWindowExA.argtypes = [ DWORD, LPCSTR, LPCSTR, DWORD, INT, INT, INT, INT, HWND, HMENU, HINSTANCE, LPVOID, ] safeCreateWindowExA.restype = HWND safeDestroyWindow = CheckedCall(windll.user32.DestroyWindow) safeDestroyWindow.argtypes = [HWND] safeDestroyWindow.restype = BOOL OpenClipboard = windll.user32.OpenClipboard OpenClipboard.argtypes = [HWND] OpenClipboard.restype = BOOL safeCloseClipboard = CheckedCall(windll.user32.CloseClipboard) safeCloseClipboard.argtypes = [] safeCloseClipboard.restype = BOOL safeEmptyClipboard = CheckedCall(windll.user32.EmptyClipboard) safeEmptyClipboard.argtypes = [] safeEmptyClipboard.restype = BOOL safeGetClipboardData = CheckedCall(windll.user32.GetClipboardData) safeGetClipboardData.argtypes = [UINT] safeGetClipboardData.restype = HANDLE safeSetClipboardData = CheckedCall(windll.user32.SetClipboardData) safeSetClipboardData.argtypes = [UINT, HANDLE] safeSetClipboardData.restype = HANDLE safeGlobalAlloc = CheckedCall(windll.kernel32.GlobalAlloc) safeGlobalAlloc.argtypes = [UINT, c_size_t] safeGlobalAlloc.restype = HGLOBAL safeGlobalLock = CheckedCall(windll.kernel32.GlobalLock) safeGlobalLock.argtypes = [HGLOBAL] safeGlobalLock.restype = LPVOID safeGlobalUnlock = CheckedCall(windll.kernel32.GlobalUnlock) safeGlobalUnlock.argtypes = [HGLOBAL] safeGlobalUnlock.restype = BOOL wcslen = CheckedCall(msvcrt.wcslen) wcslen.argtypes = [c_wchar_p] wcslen.restype = UINT GMEM_MOVEABLE = 0x0002 CF_UNICODETEXT = 13 @contextlib.contextmanager def window(): """ Context that provides a valid Windows hwnd. """ # we really just need the hwnd, so setting "STATIC" # as predefined lpClass is just fine. hwnd = safeCreateWindowExA( 0, b"STATIC", None, 0, 0, 0, 0, 0, None, None, None, None ) try: yield hwnd finally: safeDestroyWindow(hwnd) @contextlib.contextmanager def clipboard(hwnd): """ Context manager that opens the clipboard and prevents other applications from modifying the clipboard content. """ # We may not get the clipboard handle immediately because # some other application is accessing it (?) # We try for at least 500ms to get the clipboard. t = time.time() + 0.5 success = False while time.time() < t: success = OpenClipboard(hwnd) if success: break time.sleep(0.01) if not success: raise PyperclipWindowsException("Error calling OpenClipboard") try: yield finally: safeCloseClipboard() def copy_windows(text): # This function is heavily based on # http://msdn.com/ms649016#_win32_Copying_Information_to_the_Clipboard text = _stringifyText(text) # Converts non-str values to str. with window() as hwnd: # http://msdn.com/ms649048 # If an application calls OpenClipboard with hwnd set to NULL, # EmptyClipboard sets the clipboard owner to NULL; # this causes SetClipboardData to fail. # => We need a valid hwnd to copy something. with clipboard(hwnd): safeEmptyClipboard() if text: # http://msdn.com/ms649051 # If the hMem parameter identifies a memory object, # the object must have been allocated using the # function with the GMEM_MOVEABLE flag. count = wcslen(text) + 1 handle = safeGlobalAlloc(GMEM_MOVEABLE, count * sizeof(c_wchar)) locked_handle = safeGlobalLock(handle) ctypes.memmove( c_wchar_p(locked_handle), c_wchar_p(text), count * sizeof(c_wchar), ) safeGlobalUnlock(handle) safeSetClipboardData(CF_UNICODETEXT, handle) def paste_windows(): with clipboard(None): handle = safeGetClipboardData(CF_UNICODETEXT) if not handle: # GetClipboardData may return NULL with errno == NO_ERROR # if the clipboard is empty. # (Also, it may return a handle to an empty buffer, # but technically that's not empty) return "" return c_wchar_p(handle).value return copy_windows, paste_windows def init_wsl_clipboard(): def copy_wsl(text): text = _stringifyText(text) # Converts non-str values to str. with subprocess.Popen(["clip.exe"], stdin=subprocess.PIPE, close_fds=True) as p: p.communicate(input=text.encode(ENCODING)) def paste_wsl(): with subprocess.Popen( ["powershell.exe", "-command", "Get-Clipboard"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True, ) as p: stdout = p.communicate()[0] # WSL appends "\r\n" to the contents. return stdout[:-2].decode(ENCODING) return copy_wsl, paste_wsl # Automatic detection of clipboard mechanisms # and importing is done in determine_clipboard(): def determine_clipboard(): """ Determine the OS/platform and set the copy() and paste() functions accordingly. """ global Foundation, AppKit, qtpy, PyQt4, PyQt5 # Setup for the CYGWIN platform: if ( "cygwin" in platform.system().lower() ): # Cygwin has a variety of values returned by platform.system(), # such as 'CYGWIN_NT-6.1' # FIXME(pyperclip#55): pyperclip currently does not support Cygwin, # see https://github.com/asweigart/pyperclip/issues/55 if os.path.exists("/dev/clipboard"): warnings.warn( "Pyperclip's support for Cygwin is not perfect, " "see https://github.com/asweigart/pyperclip/issues/55", stacklevel=find_stack_level(), ) return init_dev_clipboard_clipboard() # Setup for the WINDOWS platform: elif os.name == "nt" or platform.system() == "Windows": return init_windows_clipboard() if platform.system() == "Linux": if _executable_exists("wslconfig.exe"): return init_wsl_clipboard() # Setup for the macOS platform: if os.name == "mac" or platform.system() == "Darwin": try: import AppKit import Foundation # check if pyobjc is installed except ImportError: return init_osx_pbcopy_clipboard() else: return init_osx_pyobjc_clipboard() # Setup for the LINUX platform: if HAS_DISPLAY: if os.environ.get("WAYLAND_DISPLAY") and _executable_exists("wl-copy"): return init_wl_clipboard() if _executable_exists("xsel"): return init_xsel_clipboard() if _executable_exists("xclip"): return init_xclip_clipboard() if _executable_exists("klipper") and _executable_exists("qdbus"): return init_klipper_clipboard() try: # qtpy is a small abstraction layer that lets you write applications # using a single api call to either PyQt or PySide. # https://pypi.python.org/project/QtPy import qtpy # check if qtpy is installed except ImportError: # If qtpy isn't installed, fall back on importing PyQt4. try: import PyQt5 # check if PyQt5 is installed except ImportError: try: import PyQt4 # check if PyQt4 is installed except ImportError: pass # We want to fail fast for all non-ImportError exceptions. else: return init_qt_clipboard() else: return init_qt_clipboard() else: return init_qt_clipboard() return init_no_clipboard() def set_clipboard(clipboard): """ Explicitly sets the clipboard mechanism. The "clipboard mechanism" is how the copy() and paste() functions interact with the operating system to implement the copy/paste feature. The clipboard parameter must be one of: - pbcopy - pyobjc (default on macOS) - qt - xclip - xsel - klipper - windows (default on Windows) - no (this is what is set when no clipboard mechanism can be found) """ global copy, paste clipboard_types = { "pbcopy": init_osx_pbcopy_clipboard, "pyobjc": init_osx_pyobjc_clipboard, "qt": init_qt_clipboard, # TODO - split this into 'qtpy', 'pyqt4', and 'pyqt5' "xclip": init_xclip_clipboard, "xsel": init_xsel_clipboard, "wl-clipboard": init_wl_clipboard, "klipper": init_klipper_clipboard, "windows": init_windows_clipboard, "no": init_no_clipboard, } if clipboard not in clipboard_types: allowed_clipboard_types = [repr(_) for _ in clipboard_types] raise ValueError( f"Argument must be one of {', '.join(allowed_clipboard_types)}" ) # Sets pyperclip's copy() and paste() functions: copy, paste = clipboard_types[clipboard]() def lazy_load_stub_copy(text): """ A stub function for copy(), which will load the real copy() function when called so that the real copy() function is used for later calls. This allows users to import pyperclip without having determine_clipboard() automatically run, which will automatically select a clipboard mechanism. This could be a problem if it selects, say, the memory-heavy PyQt4 module but the user was just going to immediately call set_clipboard() to use a different clipboard mechanism. The lazy loading this stub function implements gives the user a chance to call set_clipboard() to pick another clipboard mechanism. Or, if the user simply calls copy() or paste() without calling set_clipboard() first, will fall back on whatever clipboard mechanism that determine_clipboard() automatically chooses. """ global copy, paste copy, paste = determine_clipboard() return copy(text) def lazy_load_stub_paste(): """ A stub function for paste(), which will load the real paste() function when called so that the real paste() function is used for later calls. This allows users to import pyperclip without having determine_clipboard() automatically run, which will automatically select a clipboard mechanism. This could be a problem if it selects, say, the memory-heavy PyQt4 module but the user was just going to immediately call set_clipboard() to use a different clipboard mechanism. The lazy loading this stub function implements gives the user a chance to call set_clipboard() to pick another clipboard mechanism. Or, if the user simply calls copy() or paste() without calling set_clipboard() first, will fall back on whatever clipboard mechanism that determine_clipboard() automatically chooses. """ global copy, paste copy, paste = determine_clipboard() return paste() def is_available() -> bool: return copy != lazy_load_stub_copy and paste != lazy_load_stub_paste # Initially, copy() and paste() are set to lazy loading wrappers which will # set `copy` and `paste` to real functions the first time they're used, unless # set_clipboard() or determine_clipboard() is called first. copy, paste = lazy_load_stub_copy, lazy_load_stub_paste def waitForPaste(timeout=None): """This function call blocks until a non-empty text string exists on the clipboard. It returns this text. This function raises PyperclipTimeoutException if timeout was set to a number of seconds that has elapsed without non-empty text being put on the clipboard.""" startTime = time.time() while True: clipboardText = paste() if clipboardText != "": return clipboardText time.sleep(0.01) if timeout is not None and time.time() > startTime + timeout: raise PyperclipTimeoutException( "waitForPaste() timed out after " + str(timeout) + " seconds." ) def waitForNewPaste(timeout=None): """This function call blocks until a new text string exists on the clipboard that is different from the text that was there when the function was first called. It returns this text. This function raises PyperclipTimeoutException if timeout was set to a number of seconds that has elapsed without non-empty text being put on the clipboard.""" startTime = time.time() originalText = paste() while True: currentText = paste() if currentText != originalText: return currentText time.sleep(0.01) if timeout is not None and time.time() > startTime + timeout: raise PyperclipTimeoutException( "waitForNewPaste() timed out after " + str(timeout) + " seconds." ) __all__ = [ "copy", "paste", "waitForPaste", "waitForNewPaste", "set_clipboard", "determine_clipboard", ] # pandas aliases clipboard_get = paste clipboard_set = copy
pandas-devREPO_NAMEpandasPATH_START.@pandas_extracted@pandas-main@pandas@io@clipboard@__init__.py@.PATH_END.py
{ "filename": "How_to_open_the_machine_learning_H5_files_hdr2.1.ipynb", "repo_name": "HETDEX/hetdex_api", "repo_path": "hetdex_api_extracted/hetdex_api-master/notebooks/old_notebooks/How_to_open_the_machine_learning_H5_files_hdr2.1.ipynb", "type": "Jupyter Notebook" }
# How to Open Machine Learning Input Products For each detectid in the line emission database (detect_hdr2.h5) we have generated 100 pixel (200 Angstrom) by 9 pixel fiber cutouts of the weighted sum of all fibers used to measured the extracton as well as cutouts of the four brightest fibers contributing to the flux. We also include the 1D spectrum (this is the same product included in the Spectra table for the detect_hdr2.h5 file) and a 30 arcsec x 30 arcsec cutout of HSC r-band imaging for the detection in available. ```python import tables as tb import numpy as np from astropy.table import Table, join import astropy.units as u import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from astropy.visualization import ZScaleInterval from hetdex_api.config import HDRconfig ``` ```python config = HDRconfig('hdr2.1') ``` ## Pytables and hetdex_api.config provide an easy interface to the ML products ```python fileh = tb.open_file(config.detectml, 'r') ``` Here is the hierarchical structure: ```python fileh ``` File(filename=/data/05350/ecooper/hdr2.1/detect/detect_ml_hdr2.1.h5, title='', mode='r', root_uep='/', filters=Filters(complevel=0, shuffle=False, bitshuffle=False, fletcher32=False, least_significant_digit=None)) / (RootGroup) '' /FiberImages (Table(1239239,)) 'Fiber Cutout Images' description := { "detectid": Int64Col(shape=(), dflt=0, pos=0), "im_wave": Float32Col(shape=(100,), dflt=0.0, pos=1), "im_sum": Float32Col(shape=(9, 100), dflt=0.0, pos=2), "im_array": Float32Col(shape=(4, 9, 100), dflt=0.0, pos=3)} byteorder := 'little' chunkshape := (56,) autoindex := True colindexes := { "detectid": Index(9, full, shuffle, zlib(1)).is_csi=True} /PhotImages (Table(1239239,)) 'Photometric Images' description := { "detectid": Int64Col(shape=(), dflt=0, pos=0), "im_phot": Float32Col(shape=(60, 60), dflt=0.0, pos=1), "im_phot_hdr": StringCol(itemsize=2880, shape=(), dflt=b'', pos=2)} byteorder := 'little' chunkshape := (60,) autoindex := True colindexes := { "detectid": Index(9, full, shuffle, zlib(1)).is_csi=True} /Spec1D (Table(1239239,)) 'Aperture Summed Spectrum' description := { "detectid": Int64Col(shape=(), dflt=0, pos=0), "spec1D": Float32Col(shape=(1036,), dflt=0.0, pos=1), "spec1D_err": Float32Col(shape=(1036,), dflt=0.0, pos=2)} byteorder := 'little' chunkshape := (63,) autoindex := True colindexes := { "detectid": Index(9, full, shuffle, zlib(1)).is_csi=True} # Open the 2 Summed Fiber Image Because we have over 1 million detections in each table and each table contains several 2D arrays, the best way to navigate the file is by detectid. We have indexed all three tables based on the detectid so it is fast to query. But we do suggest you do it one by one. Please do not make copies of every component of this file on TACC anywhere on /work. Ideally you should learn to use the h5 files, otherwise pick smaller subsets of detections to work with. ```python detectid_obj = 2100208240 ``` ```python obj_data = fileh.root.FiberImages.read_where('detectid == detectid_obj')[0] ``` ```python height=9 # in pixels detectid = obj_data['detectid'] wave = obj_data['im_wave'] im_sum = obj_data['im_sum'] # this is the 2D summed image, 1st dim is height in fiber dims, 2nd dim is wave dim im_array = obj_data['im_array'] # this is the 4 brightest fibers, 1st dim is fibers, 2nd dim is fiber dims, 3rd is wavelength zscale = ZScaleInterval(contrast=0.5,krej=2.5) vmin, vmax = zscale.get_limits(values=im_sum) plt.figure(figsize=(12,5)) plt.imshow(im_sum,vmin=vmin, vmax=vmax,extent=[wave[0], wave[-1], -int(height/2.), int(height/2.)], origin="lower",cmap=plt.get_cmap('gray'),interpolation="none") plt.show() ``` ![png](output_12_0.png) # Get Single Fiber cutouts for the four brightest fibers: The 'im_array' column consists of fiber cutouts of the 4 brightest fibers ```python # plot each fiber for 4th object in example table height=9 detectid = obj_data['detectid'] wave = obj_data['im_wave'] im_sum = obj_data['im_sum'] # this is the 2D summed image, 1st dim is height in fiber dims, 2nd dim is wave dim im_array = obj_data['im_array'] # this is the 4 brightest fibers, 1st dim is fibers, 2nd dim is fiber dims, 3rd is wavelength for im_i in np.arange(0,4): zscale = ZScaleInterval(contrast=0.5,krej=2.5) vmin, vmax = zscale.get_limits(values=im_array[im_i]) plt.figure(figsize=(12,4)) plt.title(str(detectid)) plt.imshow(im_array[im_i],vmin=vmin, vmax=vmax,extent=[wave[0], wave[-1], -int(height/2.), int(height/2.)], origin="lower",cmap=plt.get_cmap('gray'),interpolation="none") plt.show() ``` ![png](output_15_0.png) ![png](output_15_1.png) ![png](output_15_2.png) ![png](output_15_3.png) ## Get the HSC 'r' band image if available ```python phot_image_table = Table(fileh.root.PhotImages.read_where('detectid == detectid_obj')) ``` ```python #Loop over the images height=9 for row in phot_image_table: detectid = row['detectid'] im_phot = row['im_phot'] # this is the r-band image zscale = ZScaleInterval(contrast=0.5,krej=2.5) vmin, vmax = zscale.get_limits(values=im_phot) plt.figure() plt.title(str(detectid)) plt.imshow(im_phot,vmin=vmin, vmax=vmax,extent=[-15, 15, -15, 15], origin="lower",cmap=plt.get_cmap('gray'),interpolation="none") plt.show() ``` ![png](output_18_0.png) ## Get the Detection Spectrum The 1D aperture Summed Spectrum is also contained in this file ```python spec_table = Table(fileh.root.Spec1D.read_where('detectid == detectid_obj')) ``` ```python wave_rect = 2.0 * np.arange(1036) + 3470.0 plt.figure(figsize=(8,8)) plt.plot(wave_rect, spec_table['spec1D'][0]*10**-17 * u.erg / (u.cm ** 2 * u.s * u.AA)) plt.xlabel('wavelength (AA)') plt.ylabel('spec 10**-17 ergs/s/cm^2/AA') plt.title(detectid_obj) ``` Text(0.5, 1.0, '2100208240') ![png](output_22_1.png) ## PLEASE CLOSE THE H5 FILE WHEN DONE When done with an h5 file you should close it: ```python fileh.close() ``` ```python ```
HETDEXREPO_NAMEhetdex_apiPATH_START.@hetdex_api_extracted@hetdex_api-master@notebooks@old_notebooks@How_to_open_the_machine_learning_H5_files_hdr2.1.ipynb@.PATH_END.py
{ "filename": "_currentvalue.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/layout/slider/_currentvalue.py", "type": "Python" }
import _plotly_utils.basevalidators class CurrentvalueValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__( self, plotly_name="currentvalue", parent_name="layout.slider", **kwargs ): super(CurrentvalueValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Currentvalue"), data_docs=kwargs.pop( "data_docs", """ font Sets the font of the current value label text. offset The amount of space, in pixels, between the current value label and the slider. prefix When currentvalue.visible is true, this sets the prefix of the label. suffix When currentvalue.visible is true, this sets the suffix of the label. visible Shows the currently-selected value above the slider. xanchor The alignment of the value readout relative to the length of the slider. """, ), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@layout@slider@_currentvalue.py@.PATH_END.py
{ "filename": "oci_generative_ai.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/community/langchain_community/llms/oci_generative_ai.py", "type": "Python" }
from __future__ import annotations import json from abc import ABC, abstractmethod from enum import Enum from typing import Any, Dict, Iterator, List, Mapping, Optional from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk from langchain_core.utils import pre_init from pydantic import BaseModel, ConfigDict, Field from langchain_community.llms.utils import enforce_stop_tokens CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint" class Provider(ABC): @property @abstractmethod def stop_sequence_key(self) -> str: ... @abstractmethod def completion_response_to_text(self, response: Any) -> str: ... class CohereProvider(Provider): stop_sequence_key: str = "stop_sequences" def __init__(self) -> None: from oci.generative_ai_inference import models self.llm_inference_request = models.CohereLlmInferenceRequest def completion_response_to_text(self, response: Any) -> str: return response.data.inference_response.generated_texts[0].text class MetaProvider(Provider): stop_sequence_key: str = "stop" def __init__(self) -> None: from oci.generative_ai_inference import models self.llm_inference_request = models.LlamaLlmInferenceRequest def completion_response_to_text(self, response: Any) -> str: return response.data.inference_response.choices[0].text class OCIAuthType(Enum): """OCI authentication types as enumerator.""" API_KEY = 1 SECURITY_TOKEN = 2 INSTANCE_PRINCIPAL = 3 RESOURCE_PRINCIPAL = 4 class OCIGenAIBase(BaseModel, ABC): """Base class for OCI GenAI models""" client: Any = Field(default=None, exclude=True) #: :meta private: auth_type: Optional[str] = "API_KEY" """Authentication type, could be API_KEY, SECURITY_TOKEN, INSTANCE_PRINCIPAL, RESOURCE_PRINCIPAL If not specified, API_KEY will be used """ auth_profile: Optional[str] = "DEFAULT" """The name of the profile in ~/.oci/config If not specified , DEFAULT will be used """ model_id: Optional[str] = None """Id of the model to call, e.g., cohere.command""" provider: Optional[str] = None """Provider name of the model. Default to None, will try to be derived from the model_id otherwise, requires user input """ model_kwargs: Optional[Dict] = None """Keyword arguments to pass to the model""" service_endpoint: Optional[str] = None """service endpoint url""" compartment_id: Optional[str] = None """OCID of compartment""" is_stream: bool = False """Whether to stream back partial progress""" model_config = ConfigDict( extra="forbid", arbitrary_types_allowed=True, protected_namespaces=() ) @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that OCI config and python package exists in environment.""" # Skip creating new client if passed in constructor if values["client"] is not None: return values try: import oci client_kwargs = { "config": {}, "signer": None, "service_endpoint": values["service_endpoint"], "retry_strategy": oci.retry.DEFAULT_RETRY_STRATEGY, "timeout": (10, 240), # default timeout config for OCI Gen AI service } if values["auth_type"] == OCIAuthType(1).name: client_kwargs["config"] = oci.config.from_file( profile_name=values["auth_profile"] ) client_kwargs.pop("signer", None) elif values["auth_type"] == OCIAuthType(2).name: def make_security_token_signer(oci_config): # type: ignore[no-untyped-def] pk = oci.signer.load_private_key_from_file( oci_config.get("key_file"), None ) with open( oci_config.get("security_token_file"), encoding="utf-8" ) as f: st_string = f.read() return oci.auth.signers.SecurityTokenSigner(st_string, pk) client_kwargs["config"] = oci.config.from_file( profile_name=values["auth_profile"] ) client_kwargs["signer"] = make_security_token_signer( oci_config=client_kwargs["config"] ) elif values["auth_type"] == OCIAuthType(3).name: client_kwargs["signer"] = ( oci.auth.signers.InstancePrincipalsSecurityTokenSigner() ) elif values["auth_type"] == OCIAuthType(4).name: client_kwargs["signer"] = ( oci.auth.signers.get_resource_principals_signer() ) else: raise ValueError( "Please provide valid value to auth_type, " f"{values['auth_type']} is not valid." ) values["client"] = oci.generative_ai_inference.GenerativeAiInferenceClient( **client_kwargs ) except ImportError as ex: raise ModuleNotFoundError( "Could not import oci python package. " "Please make sure you have the oci package installed." ) from ex except Exception as e: raise ValueError( """Could not authenticate with OCI client. Please check if ~/.oci/config exists. If INSTANCE_PRINCIPAL or RESOURCE_PRINCIPAL is used, please check the specified auth_profile and auth_type are valid.""", e, ) from e return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"model_kwargs": _model_kwargs}, } def _get_provider(self, provider_map: Mapping[str, Any]) -> Any: if self.provider is not None: provider = self.provider else: if self.model_id is None: raise ValueError( "model_id is required to derive the provider, " "please provide the provider explicitly or specify " "the model_id to derive the provider." ) provider = self.model_id.split(".")[0].lower() if provider not in provider_map: raise ValueError( f"Invalid provider derived from model_id: {self.model_id} " "Please explicitly pass in the supported provider " "when using custom endpoint" ) return provider_map[provider] class OCIGenAI(LLM, OCIGenAIBase): """OCI large language models. To authenticate, the OCI client uses the methods described in https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm The authentifcation method is passed through auth_type and should be one of: API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPAL, RESOURCE_PRINCIPAL Make sure you have the required policies (profile/roles) to access the OCI Generative AI service. If a specific config profile is used, you must pass the name of the profile (from ~/.oci/config) through auth_profile. To use, you must provide the compartment id along with the endpoint url, and model id as named parameters to the constructor. Example: .. code-block:: python from langchain_community.llms import OCIGenAI llm = OCIGenAI( model_id="MY_MODEL_ID", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID" ) """ model_config = ConfigDict( extra="forbid", arbitrary_types_allowed=True, ) @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_generative_ai_completion" @property def _provider_map(self) -> Mapping[str, Any]: """Get the provider map""" return { "cohere": CohereProvider(), "meta": MetaProvider(), } @property def _provider(self) -> Any: """Get the internal provider object""" return self._get_provider(provider_map=self._provider_map) def _prepare_invocation_object( self, prompt: str, stop: Optional[List[str]], kwargs: Dict[str, Any] ) -> Dict[str, Any]: from oci.generative_ai_inference import models _model_kwargs = self.model_kwargs or {} if stop is not None: _model_kwargs[self._provider.stop_sequence_key] = stop if self.model_id is None: raise ValueError( "model_id is required to call the model, " "please provide the model_id." ) if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX): serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id) else: serving_mode = models.OnDemandServingMode(model_id=self.model_id) inference_params = {**_model_kwargs, **kwargs} inference_params["prompt"] = prompt inference_params["is_stream"] = self.is_stream invocation_obj = models.GenerateTextDetails( compartment_id=self.compartment_id, serving_mode=serving_mode, inference_request=self._provider.llm_inference_request(**inference_params), ) return invocation_obj def _process_response(self, response: Any, stop: Optional[List[str]]) -> str: text = self._provider.completion_response_to_text(response) if stop is not None: text = enforce_stop_tokens(text, stop) return text def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to OCIGenAI generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = llm.invoke("Tell me a joke.") """ if self.is_stream: text = "" for chunk in self._stream(prompt, stop, run_manager, **kwargs): text += chunk.text if stop is not None: text = enforce_stop_tokens(text, stop) return text invocation_obj = self._prepare_invocation_object(prompt, stop, kwargs) response = self.client.generate_text(invocation_obj) return self._process_response(response, stop) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: """Stream OCIGenAI LLM on given prompt. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: An iterator of GenerationChunks. Example: .. code-block:: python response = llm.stream("Tell me a joke.") """ self.is_stream = True invocation_obj = self._prepare_invocation_object(prompt, stop, kwargs) response = self.client.generate_text(invocation_obj) for event in response.data.events(): json_load = json.loads(event.data) if "text" in json_load: event_data_text = json_load["text"] else: event_data_text = "" chunk = GenerationChunk(text=event_data_text) if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@langchain_community@llms@oci_generative_ai.py@.PATH_END.py
{ "filename": "dq_init_step.py", "repo_name": "spacetelescope/jwst", "repo_path": "jwst_extracted/jwst-main/jwst/dq_init/dq_init_step.py", "type": "Python" }
#! /usr/bin/env python from stdatamodels.jwst import datamodels from ..stpipe import Step from . import dq_initialization __all__ = ["DQInitStep"] class DQInitStep(Step): """Initialize the Data Quality extension from the mask reference file. The dq_init step initializes the pixeldq attribute of the input datamodel using the MASK reference file. For some FGS exp_types, initialize the dq attribute of the input model instead. The dq attribute of the MASK model is bitwise OR'd with the pixeldq (or dq) attribute of the input model. """ class_alias = "dq_init" spec = """ """ reference_file_types = ['mask'] def process(self, step_input): """Perform the dq_init calibration step Parameters ---------- input : JWST datamodel input jwst datamodel Returns ------- output_model : JWST datamodel result JWST datamodel """ # Try to open the input as a regular RampModel try: input_model = datamodels.RampModel(step_input) # Check to see if it's Guider raw data if input_model.meta.exposure.type in dq_initialization.guider_list: # Reopen as a GuiderRawModel input_model.close() input_model = datamodels.GuiderRawModel(step_input) self.log.info("Input opened as GuiderRawModel") except (TypeError, ValueError): # If the initial open attempt fails, # try to open as a GuiderRawModel try: input_model = datamodels.GuiderRawModel(step_input) self.log.info("Input opened as GuiderRawModel") except (TypeError, ValueError): self.log.error("Unexpected or unknown input model type") except Exception: self.log.error("Can't open input") raise # Retrieve the mask reference file name self.mask_filename = self.get_reference_file(input_model, 'mask') self.log.info('Using MASK reference file %s', self.mask_filename) # Check for a valid reference file if self.mask_filename == 'N/A': self.log.warning('No MASK reference file found') self.log.warning('DQ initialization step will be skipped') input_model.meta.cal_step.dq_init = 'SKIPPED' return input_model # Work on a copy result = input_model.copy() # Load the reference file mask_model = datamodels.MaskModel(self.mask_filename) # Apply the step result = dq_initialization.correct_model(result, mask_model) # Cleanup del mask_model del input_model return result
spacetelescopeREPO_NAMEjwstPATH_START.@jwst_extracted@jwst-main@jwst@dq_init@dq_init_step.py@.PATH_END.py
{ "filename": "main_step2.py", "repo_name": "shihyuntang/igrins_rv", "repo_path": "igrins_rv_extracted/igrins_rv-master/main_step2.py", "type": "Python" }
from Engine.importmodule import * from Engine.importmodule import read_prepdata from Engine.set_argparse import _argparse_step2 from Engine.IO_AB import setup_templates, init_fitsread, setup_outdir from Engine.clips import basicclip_above from Engine.contfit import a0cont from Engine.classes import FitObjs,InParams,_setup_bound_cut from Engine.rebin_jv import rebin_jv from Engine.rotint import rotint from Engine.opt import optimizer, fmod from Engine.outplotter import outplotter_23 from Engine.detect_peaks import detect_peaks from Engine.crmask import cr_masker from Engine.molmask import h2o_masker from Engine.step2and3common_func import (setup_fitting_init_pars, _make_dpars, trim_obs_data, trim_tel_data, check_if_template_exist, check_user_input, setup_logger, _add_npar) #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # idx and description of optimizing parameters in pars0 # 0: The shift of the stellar template (km/s) [assigned later] # 1: The scale factor for the stellar template # 2: The shift of the telluric template (km/s) # 3: The scale factor for the telluric template # 4: vsini (km/s) # 5: The instrumental resolution (FWHM) in pixels # 6: Wavelength 0-pt # 7: Wavelength linear component # 8: Wavelength quadratic component # 9: Wavelength cubic component # 10: Continuum zero point # 11: Continuum linear component # 12: Continuum quadratic component # 13: Instrumental resolution linear component # 14: Instrumental resolution quadratic component # 15: Blaze dip center location # 16: Blaze dip full width # 17: Blaze dip depth # 18: Secondary blaze dip full width # 19: Blaze dip depth # 20: Continuum cubic component # 21: Continuum quartic component # 22: Continuum pentic component # 23: Continuum hexic component # 24: The shift of the second stellar template (km/s) [assigned later] # 25: The scale factor for the second stellar template # 26: Secondary vsini (km/s) # 27: Secondary to primary flux ratio S2/S1 (km/s) #------------------------------------------------------------------------------- def base_dpars_dict(vsini_v1, band, order, numofpars, run_num=1, vsini_v2=-1): """Setup basic sets of paramaeter variable ranges Args: vsini_v1 (float): initial vsini value band (str): H or K band order (int): Current run order run_num (int): Number of the optimize sequence that is being running vsini_v2 (float): initial vsini value for the secondary Returns: dpars_org (dict): Sets of optimize parameters' variable ranges """ dpars_org = {} dpars_org = _make_dpars('cont', [10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23], [1e7, 1, 1, 10, 30, 0.2, 50, 0.2, 1, 1, 1, 1], numofpars, dpars_org ) dpars_org = _make_dpars('twave', [3, 6, 7, 8, 9], [1, 1, 1, 1, 1], numofpars, dpars_org ) dpars_org = _make_dpars('ip', [5], [0.5], numofpars, dpars_org ) dpars_org = _make_dpars('s', [0, 1], [20, 1], numofpars, dpars_org ) dpars_org = _make_dpars('v', [4], [vsini_v1], numofpars, dpars_org ) dpars_org = _make_dpars('ts', [0, 1, 3], [20, 1, 1], numofpars, dpars_org ) if vsini_v2 != -1: dpars_org = _make_dpars('s2', [24, 25], [20, 1], numofpars, dpars_org ) dpars_org = _make_dpars('v2', [26], [vsini_v2], numofpars, dpars_org ) dpars_org = _make_dpars('s1s2', [0, 1, 24, 25], [5, 1, 20, 1], numofpars, dpars_org ) # blaze fitting order setting if band == 'H': if order in [13]: # fit a quadratic (2) continuum dpars_org['cont'][20:] = 0 elif order in [6,14,21]: # fit a cubic (3) continuum dpars_org['cont'][21:] = 0 else: pass elif band == 'K': if order in [3,5]: # fit a cubic (3) continuum dpars_org['cont'][21:] = 0 elif order in [4,6]: # fit a quartic (4) continuum dpars_org['cont'][22:] = 0 else: pass if run_num == 2: dpars_org['s'][0] = 5.0 # The shift of the stellar template (km/s) dpars_org['ts'][0] = 5.0 # The shift of the stellar template (km/s) return dpars_org def setup_init_rv_guess(args): if args.guesses != '': try: initguesses = float(args.guesses) initguesses_show = initguesses except: sys.exit('ERROR: -g ONLY TAKES A NUMBER AS INPUT!') # Load initial RV guesses from file if args.guessesX != '': try: guessdata = Table.read( f'./Output/{args.targname}_{args.band}/' f'Initguesser_results_{args.guessesX}.csv', format='csv') except: sys.exit( f'ERROR: "./Output/{args.targname}_{args.band}/' f'Initguesser_results_{args.guessesX}.csv" NOT FOUND!') initnights = np.array(guessdata['night']) initrvs = np.array(guessdata['bestguess']) initguesses = {} initguesses_show = f'Initguesser_results_{args.guessesX}.csv' for hrt in range(len(initnights)): initguesses[str(initnights[hrt])] = float(initrvs[hrt]) if args.binary: initrvs2 = np.array(guessdata['bestguess2']) initguesses2 = {} for hrt in range(len(initnights)): initguesses2[str(initnights[hrt])] = float(initrvs2[hrt]) return initguesses, initguesses_show, initguesses2 return initguesses, initguesses_show def mkdir_output_dic(args): if not os.path.isdir('./Output'): os.mkdir('./Output') if not os.path.isdir(f'./Output/{args.targname}_{args.band}'): os.mkdir(f'./Output/{args.targname}_{args.band}') filesndirs = os.listdir(f'./Output/{args.targname}_{args.band}') trk = 1; go = True while go == True: iniguess_dir = 'Initguesser_results_{}.csv'.format(trk) if iniguess_dir not in filesndirs: break trk += 1 if not os.path.isdir(f'./Output/{args.targname}_{args.band}/figs'): os.mkdir(f'./Output/{args.targname}_{args.band}/figs') step2or3 = 2 temp_f_dir = f'./Output/{args.targname}_{args.band}/figs/'\ f'main_step{step2or3}_{args.band}_{trk}' if not os.path.isdir(temp_f_dir): os.mkdir(temp_f_dir) outpath = f'./Output/{args.targname}_{args.band}' return trk, outpath, step2or3, iniguess_dir #------------------------------------------------------------------------------- def main(args, inparam, orders, order_use, trk, step2or3, i): """Main function for RV fitting that will be threaded over by multiprocessing """ nights = inparam.nights night = nights[i] # current looped night order = order_use xbounds = inparam.xbounddict[order] if args.debug: print('Working on order {:02d}, night {:03d}/{:03d} ' '({}) PID:{}...'.format(int(order), i+1, len(inparam.nights), night, mp.current_process().pid) ) # Collect initial RV guesses if type(inparam.initguesses) == dict: initguesses = inparam.initguesses[night] elif type(inparam.initguesses) == float: initguesses = inparam.initguesses else: sys.exit( 'ERROR! EXPECTING SINGLE NUMBER OR FILE FOR INITGUESSES! QUITTING!' ) if np.isnan(initguesses) == True: logger.warning( f' --> Previous run of {night} found it inadequate, skipping...' ) return night, np.nan, np.nan, np.nan, np.nan if args.binary: if type(inparam.initguesses2) == dict: initguesses2 = inparam.initguesses2[night] elif type(inparam.initguesses2) == float: initguesses2 = inparam.initguesses2 else: sys.exit('ERROR! EXPECTING SINGLE NUMBER OR FILE FOR ' 'INITGUESSES 2! QUITTING!') # Collect relevant beam and filenum info tagsnight = []; beamsnight = np.array([]) for tag in inparam.tagsB[night]: tagsnight.append(tag) beamsnight = np.append(beamsnight, 'B') # Only do B exposures, and just use first B nodding masterbeam = 'B'; beam = 'B' try: tag = tagsnight[0] except IndexError: logger.warning(f' --> No B nodding(frame) for night {night}, skipping...') return night, np.nan, np.nan, np.nan, np.nan if args.binary: pars0 = setup_fitting_init_pars( args.band, inparam.initvsini, order, inparam.initvsini2, float(args.fluxratio) ) else: pars0 = setup_fitting_init_pars(args.band, inparam.initvsini, order) A0loc = f'./Output/{args.targname}_{args.band}/A0Fits/'\ f'{night[:8]}A0_{beam}treated_{args.band}.fits' try: hdulist = fits.open(A0loc) except IOError: logger.warning( f' --> No A0-fitted template for night {night}, skipping...' ) return night, np.nan, np.nan, np.nan, np.nan # Find corresponding table in fits file, given the tables do not go # sequentially by order number due to multiprocessing in Step 1 num_orders = 0 for i in range(25): try: hdulist[i].columns[0].name[9:] num_orders += 1 except: continue fits_layer = [ i for i in np.arange(num_orders)+1 \ if int(hdulist[i].columns[0].name[9:]) == order ][0] tbdata = hdulist[ fits_layer ].data flag = np.array(tbdata[f'ERRORFLAG{order}'])[0] # Check whether Telfit hit critical error in Step 1 for the chosen order # with this night. If so, try another order. If all hit the error, skip the night. nexto = 0 ordertry = order while 1 == 1: fits_layer = [ i for i in np.arange(num_orders)+1 \ if int(hdulist[i].columns[0].name[9:]) == ordertry ][0] tbdata = hdulist[ fits_layer ].data flag = np.array(tbdata[f'ERRORFLAG{ordertry}'])[0] # If Telfit hit unknown critical error in Step 1, this order can't # be used for this night. Try another. if flag == 1: orderbad = ordertry ordertry = orders[nexto] logger.warning(f' --> TELFIT ENCOUNTERED CRITICAL ERROR IN ORDER: ' f'{orderbad} NIGHT: {night}, TRYING ORDER ' f'{ordertry} INSTEAD...') else: # All good, continue order = ordertry break nexto += 1 if nexto == len(orders): logger.warning(f' --> TELFIT ENCOUNTERED CRITICAL ERROR IN ALL ' f'ORDERS FOR NIGHT: {night}, skipping...') return night, np.nan, np.nan, np.nan, np.nan # Use instrumental profile dictionary corresponding to whether IGRINS # mounting was loose or not if int(night[:8]) < 20180401 or int(night[:8]) > 20190531: IPpars = inparam.ips_tightmount_pars[args.band][masterbeam][order] else: IPpars = inparam.ips_loosemount_pars[args.band][masterbeam][order] watm = tbdata['WATM'+str(order)] satm = tbdata['SATM'+str(order)] a0contx = tbdata['X'+str(order)] continuum = tbdata['BLAZE'+str(order)] molnames = tbdata['MOLNAMES'] # Remove extra rows leftover from having columns of unequal length satm = satm[(watm != 0)] watm = watm[(watm != 0)] # set very low points to zero so that they don't go to NaN when taken # to an exponent by template power in fmodel_chi satm[(satm < 1e-4)] = 0. a0contx = a0contx[(continuum != 0)] continuum = continuum[(continuum != 0)] #------------------------------------------------------------------------------- bound_cut = _setup_bound_cut(inparam.bound_cut_dic, args.band, order) # Load target spectrum x,wave,s,u = init_fitsread( f'{inparam.inpath}/', 'target', 'combined'+str(masterbeam), night, order, inparam.tagsB[night][0], args.band, bound_cut ) # Execute S/N cut s2n = s/u if np.nanmedian(s2n) < float(args.SN_cut): logger.warning( ' --> Bad S/N {:1.3f} < {} for {}{} {}... '.format( np.nanmedian(s2n), args.SN_cut, night, beam, tag )) pass s_piece, u_piece, wave_piece, x_piece = trim_obs_data( x, wave, s, u, xbounds ) # Save data for second template cutting after optimization cycle 1 done s_save = s_piece.copy() x_save = x_piece.copy() u_save = u_piece.copy() satm_in, watm_in, wave_piece, s_piece, u_piece, x_piece = trim_tel_data( watm, satm, wave_piece, s_piece, u_piece, x_piece ) Rstell1 = np.median(np.diff(inparam.mwave0)) if args.binary: Rstell2 = np.median(np.diff(inparam.mwave2)) if Rstell1 > Rstell2: rebin2to1 = True; extra1 = 0.; extra2 = 10. else: rebin2to1 = False; extra1 = 10.; extra2 = 0. mflux_in2 = inparam.mflux2[ (inparam.mwave2 > np.min(wave_piece)*1e4 - 5 - extra2) \ & (inparam.mwave2 < np.max(wave_piece)*1e4 + 5 + extra2) ] mwave_in2 = inparam.mwave2[ (inparam.mwave2 > np.min(wave_piece)*1e4 - 5 - extra2) \ & (inparam.mwave2 < np.max(wave_piece)*1e4 + 5 + extra2) ] Rstell = np.min([Rstell1,Rstell2]) dstep = Rstell2 nstep = int((mwave_in2[-1]-mwave_in2[0])/dstep) mwave1 = np.linspace(mwave_in2[0],mwave_in2[-1],nstep) mflux1 = rebin_jv(mwave_in2,mflux_in2,mwave1,False) mwave_in2 = mwave1.copy(); mflux_in2 = mflux1.copy() mwave_in2 = mwave_in2[1:-1] mflux_in2 = mflux_in2[1:-1] else: extra1 = 0 extra2 = 0 Rstell = Rstell1 # Trim stellar template to data range +- 10 AA mflux_in = inparam.mflux0[ (inparam.mwave0 > np.min(wave_piece)*1e4 - 5 - extra1) \ & (inparam.mwave0 < np.max(wave_piece)*1e4 + 5 + extra1) ] mwave_in = inparam.mwave0[ (inparam.mwave0 > np.min(wave_piece)*1e4 - 5 - extra1) \ & (inparam.mwave0 < np.max(wave_piece)*1e4 + 5 + extra1) ] Rtell = np.median(np.diff(watm_in)) if Rstell < Rtell: sys.exit(f'Telluric template resolution ({round(Rtell,4)} AA) ' 'must be finer than stellar template resolution ' '({round(Rstell,4)} AA) !') # Rebin stellar template to uniform wavelength scale dstep = Rstell1 nstep = int((mwave_in[-1]-mwave_in[0])/dstep) mwave1 = np.linspace(mwave_in[0],mwave_in[-1],nstep) mflux1 = rebin_jv(mwave_in,mflux_in,mwave1,False) mwave_in = mwave1.copy(); mflux_in = mflux1.copy() mwave_in = mwave_in[1:-1] mflux_in = mflux_in[1:-1] # Normalize continuum from A0 to flux scale of data continuum /= np.nanmedian(continuum) continuum *= np.nanpercentile(s_piece,99) # -------------------------------------------------------------- par = pars0.copy() # Get initial guess for cubic wavelength solution from reduction pipeline f = np.polyfit(x_piece, wave_piece, 3) q = np.poly1d(f) initwave = q(x_piece)*1e4 # Initial RV with barycentric correction par[0] = initguesses-inparam.bvcs[night+tag] par[5] = IPpars[2] par[13] = IPpars[1] par[14] = IPpars[0] if args.binary: par[24] = initguesses2-inparam.bvcs[night+tag] # setup fitting boundary if args.binary: dpars1 = base_dpars_dict(inparam.vsinivary, args.band, int(order), len(pars0), run_num=1, vsini_v2=inparam.vsinivary2 ) dpars2 = base_dpars_dict(inparam.vsinivary, args.band, int(order), len(pars0), run_num=2, vsini_v2=inparam.vsinivary2) else: dpars1 = base_dpars_dict(inparam.vsinivary, args.band, int(order), len(pars0), run_num=1) dpars2 = base_dpars_dict(inparam.vsinivary, args.band, int(order), len(pars0), run_num=2) continuum_in = rebin_jv(a0contx, continuum, x_piece, False) fitobj = FitObjs( s_piece, x_piece, u_piece, continuum_in, watm_in, satm_in, mflux_in, mwave_in, ast.literal_eval(inparam.maskdict[order]), masterbeam, [np.array([],dtype=int),np.array([],dtype=int)], initwave, []) if args.binary: fitobj.addsecondary(mwave_in2,mflux_in2,rebin2to1) #------------------------------------------------------------------------------- # Initialize an array that puts hard bounds on vsini and the instrumental # resolution to make sure they do not diverge to unphysical values optimize = True par_in = par.copy() hardbounds = [par_in[4] - dpars1['v'][4], par_in[4] + dpars1['v'][4], par_in[5] - dpars1['ip'][5], par_in[5] + dpars1['ip'][5] ] if hardbounds[0] < 0.5: hardbounds[0] = 0.5 if hardbounds[2] < 1: hardbounds[2] = 1 if args.binary: hardbounds.append(par_in[26] - dpars2['v2'][26]) hardbounds.append(par_in[26] + dpars2['v2'][26]) if hardbounds[-2] < 0.5: hardbounds[-2] = 0.5 # Begin optimization. Fit the blaze, the wavelength solution, the telluric # template power and RV, the stellar template power and RV, the # zero point for the instrumental resolution, and the vsini of the star # separately, iterating and cycling between each set of parameter fits. cycles = 4 if args.binary else 2 optgroup1 = ['cont', 'twave', 'cont', 's', 'cont', 'twave', 's', 'cont', 'twave', 'ip', 'v', 'ip', 'v', 'twave', 's', 'twave', 's'] optgroup2 = ['cont', 'twave', 'cont', 's1s2', 'cont', 'twave', 's','s2', 'cont', 'twave', 'ip', 'v','v2', 'ip', 'v','v2', 'twave', 's','s2', 'twave', 's','s1s2'] optgroup = optgroup1.copy(); initstellpow2 = par_in[25] par_in[25] = 0. nk = 1 for nc, cycle in enumerate(np.arange(cycles), start=1): if cycle == 0: parstart = par_in.copy() dpars = dpars1 else: dpars = dpars2 fitobj = _add_npar(par_in, optgroup, dpars, fitobj) for optkind in optgroup: parfit_1 = optimizer( parstart, dpars[optkind], hardbounds, fitobj, optimize, binary=args.binary ) parstart = parfit_1.copy() if args.debug == True: outplotter_23( parfit_1,fitobj,'{}_{}_{}_parfit_{}{}'.format( order,night,tag,nk,optkind), trk, inparam, args, step2or3, order) logger.debug(f'{order}_{tag}_{nk}_{optkind}:\n {parfit_1}') nk += 1 # if nc == 2: if args.binary: optgroup = optgroup2.copy() parstart[25] = initstellpow2 fitobj = _add_npar(par_in, optgroup, dpars, fitobj) parfit = parfit_1.copy() #------------------------------------------------------------------------------- # if best fit stellar template power is very low, throw out result if parfit[1] < 0.1: logger.warning(f' --> Stellar template power is low for {night}! ' 'Data likely being misfit! Throwing out result...') return night, np.nan, np.nan, np.nan, np.nan if args.binary and parfit[25] < 0.05: logger.warning(f' --> Secondary stellar template power is low for {night}! ' 'Data likely being misfit! Throwing out result...') return night, np.nan, np.nan, np.nan, np.nan # if best fit stellar or telluric template powers are exactly equal # to their starting values, fit failed, throw out result if parfit[1] == par_in[1] or parfit[3] == par_in[3] \ or (args.binary and (parfit[25] == par_in[25])): logger.warning(f' --> Stellar or telluric template powers have not ' f'budged from starting values for {night}! Fit is ' 'broken! Optimizer bounds may be unfeasible, or ' 'chi-squared may be NaN? Throwing out result...') return night, np.nan, np.nan, np.nan, np.nan # if best fit model dips below zero at any point, we're to close to edge of # blaze, fit may be compromised, throw out result smod,chisq,trash,trash2 = fmod(parfit,fitobj,args.binary) if len(smod[(smod < 0)]) > 0: logger.warning(f' --> Best fit model dips below 0 for {night}! ' 'May be too close to edge of blaze, throwing ' 'out result...') return night, np.nan, np.nan, np.nan, np.nan #------------------------------------------------------------------------------- if args.plotfigs == True: parfitS1 = parfit.copy(); parfitS1[3] = 0; parfitS1[25] = 0 parfitS2 = parfit.copy(); parfitS2[3] = 0; parfitS2[1] = 0 parfitT = parfit.copy(); parfitT[1] = 0; parfitT[25] = 0 if args.binary: outplotter_23( parfitS1, fitobj, 'parfitS1_{}_{}_{}'.format(order,night,tag), trk, inparam, args, step2or3, order) outplotter_23( parfitS2, fitobj, 'parfitS2_{}_{}_{}'.format(order,night,tag), trk, inparam, args, step2or3, order) else: outplotter_23( parfitS1, fitobj, 'parfitS_{}_{}_{}'.format(order,night,tag), trk, inparam, args, step2or3, order) outplotter_23( parfitT, fitobj, 'parfitT_{}_{}_{}'.format(order,night,tag), trk, inparam, args, step2or3,order) outplotter_23( parfit, fitobj, 'parfit_{}_{}_{}'.format(order,night,tag), trk, inparam, args, step2or3, order, chi_new=chisq) rv0 = parfit[0] # Barycentric correction rvsmini = rv0 + inparam.bvcs[night+tag] \ + rv0*inparam.bvcs[night+tag]/(2.99792458e5**2) vsinismini = parfit[4] bestguess = np.round(rvsmini,5) vsinimini = np.round(vsinismini,5) if args.binary: rv2 = parfit[24] bestguess2 = rv2 + inparam.bvcs[night+tag] \ + rv2*inparam.bvcs[night+tag]/(2.99792458e5**2) vsinimini2 = parfit[26] else: bestguess2 = np.nan vsinimini2 = np.nan return night, bestguess, vsinimini, bestguess2, vsinimini2 #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- if __name__ == '__main__': args = _argparse_step2() inpath = './Input/{}'.format(args.targname) cdbs_loc = '~/cdbs/' check_user_input(args, singleORdouble=1) check_if_template_exist(args, singleORdouble=1) initvsini = float(args.initvsini) vsinivary = float(args.vsinivary) if args.binary: initvsini2 = float(args.initvsini2) vsinivary2 = float(args.vsinivary2) check_user_input(args, singleORdouble=2) check_if_template_exist(args, singleORdouble=2) #------------------------------------------------------------------------------- # Specify initial RV guesses as a single value applied to all nights if args.binary: initguesses, initguesses_show, initguesses2 = setup_init_rv_guess(args) else: initguesses, initguesses_show = setup_init_rv_guess(args) #------------------------------ # Read in the Prepdata under ./Input/Prpedata/ xbounddict, maskdict, tagsA, tagsB, mjds, \ bvcs, nightsFinal, orders, obs = read_prepdata(args) if int(args.label_use) not in orders: sys.exit( f'Oops! -l_use INPUT "{args.label_use}" is not in "{orders}" ' 'from the given WRegion list!!') #------------------------------------------------------------------------------- start_time = datetime.now() print('####################################################################################\n') print('---------------------------------------------------------------') print(u''' Input Parameters: Tartget = {} Filter = \33[37;1;41m {} band \033[0m WaveLength file = \33[37;1;41m WaveRegions_{} \033[0m S/N cut > \33[37;1;41m {} \033[0m Order Use = \33[37;1;41m Order {} \033[0m Initial vsini = \33[37;1;41m {} km/s \033[0m vsini vary range \u00B1 \33[37;1;41m {} km/s \033[0m RV initial guess = \33[37;1;41m {} \033[0m Stellar template use= \33[37;1;41m {} \033[0m syn template temp = \33[37;1;41m {} \033[0m syn template logg = \33[37;1;41m {} \033[0m Threads use = {} '''.format(args.targname, args.band, args.WRegion, args.SN_cut, args.label_use, initvsini, vsinivary, initguesses_show, args.template, args.temperature, args.logg, args.Nthreads) ) if not args.skip: while True: inpp = input("Press [Y]es to continue, [N]o to quit...\n --> ") if 'n' in inpp.lower(): sys.exit('QUIT, PLEASE RE-ENTER YOUR PARAMETERS') elif 'y' in inpp.lower(): break else: print('I cannot understand what you are saying... TRY AGAIN') continue if args.binary: print(u''' PLUS BINARY PARAMETERS: Initial vsini #2 = \33[37;1;41m {} km/s \033[0m vsini #2 vary range \u00B1 \33[37;1;41m {} km/s \033[0m Stellar template #2 use = \33[37;1;41m {} \033[0m syn template temp #2 = \33[37;1;41m {} \033[0m syn template logg #2 = \33[37;1;41m {} \033[0m syn template B #2 = \33[37;1;41m {} \033[0m '''.format(initvsini2, vsinivary2, args.template2, args.temperature2, args.logg2, args.B2) ) if not args.skip: while True: inpp = input("Press [Y]es to continue, [N]o to quite...\n --> ") if 'n' in inpp.lower(): sys.exit('QUIT, PLEASE RE-ENTER YOUR PARAMETERS') elif 'y' in inpp.lower(): break else: print('I cannot understand what you are saying... TRY AGAIN') continue print('---------------------------------------------------------------') print('Running Step 2 for {}...'.format(args.targname)) print('This Will Take a While..........') #------------------------------------------------------------------------------- trk, outpath, step2or3, iniguess_dir = mkdir_output_dic(args) logger, stream_hander = setup_logger(args, outpath) #------------------------------------------------------------------------------- # Create output file to write to logger.info( f'Writing output to ./Output/{args.targname}_{args.band}/{iniguess_dir}' ) filew = open( f'./Output/{args.targname}_{args.band}/{iniguess_dir}','w') if args.binary: filew.write('night, bestguess, vsini, bestguess2, vsini2\n') else: filew.write('night, bestguess, vsini\n') # Use subset of nights if specified if args.nights_use != '': nightstemp = np.array(ast.literal_eval(args.nights_use), dtype=str) for nnn in nightstemp: if nnn not in nightsFinal: sys.exit( 'NIGHT {} NOT FOUND UNDER ./Input_Data/{}'.format( nnn, args.targname )) nightsFinal = nightstemp print('Only processing nights: {}'.format(nightsFinal)) logger.info('Analyze with {} nights'.format(len(nightsFinal))) intnights = np.array([int(i[:8]) for i in nightsFinal]) if len(intnights[(intnights >= 20180401) & (intnights < 20190531)]) > 0: logger.info(''' WARNING: Some of these nights were when the IGRINS K band was defocused! For K band RVs: IGRINS RV will take this into account and process these nights slightly differently. When you run Step 3, RVs will be output in two formats: one with the defocus nights separated, and the other with all nights together. For H band RVs: We do not expect any systematic changes in the H band as the result of the defocus. IGRINS RV will process defocus nights the same way as the others, but when you run Step 3, will still output the results in two formats like it does with the K band.''') #------------------------------------------------------------------------------- # Retrieve stellar and telluric templates watm,satm, mwave0, mflux0 = setup_templates( logger, args.template, args.band, int(args.temperature), float(args.logg), float(args.B) ) # Save pars in class for future use inparam = InParams( inpath, outpath, initvsini, vsinivary, args.plotfigs, initguesses, bvcs, tagsA, tagsB, nightsFinal, mwave0, mflux0, None, xbounddict, maskdict ) if args.binary: print('\n Loading secondary stellar template... \n') watm,satm, mwave2, mflux2 = setup_templates( logger, args.template2, args.band, int(args.temperature2), float(args.logg2), float(args.B2) ) inparam.addsecondary( initvsini2, vsinivary2, mwave2, mflux2, initguesses2 ) #------------------------------------------------------------------------------- # if not in debug mode than enter quite mode, i.e., all message saved in log file if not args.debug: logger.removeHandler(stream_hander) print('\n') # Run order by order, multiprocessing over nights within an order func = partial( main, args, inparam, orders, int(args.label_use), trk, step2or3 ) outs = pqdm(np.arange(len(nightsFinal)), func, n_jobs=args.Nthreads) # for ii in np.arange(len(nightsFinal)): # main(args, inparam, orders, int(args.label_use), trk, step2or3, ii) # Write outputs to file vsinis = []; finalrvs = []; vsinis2 = []; finalrvs2 = [] for n in range(len(nightsFinal)): nightout = outs[n] if args.binary: filew.write( '{}, {}, {}, {}, {}'.format( nightout[0], nightout[1], nightout[2], nightout[3], nightout[4]) ) else: filew.write( '{}, {}, {}'.format( nightout[0], nightout[1], nightout[2]) ) filew.write('\n') vsinis2.append(nightout[4]) finalrvs2.append(nightout[3]) vsinis.append(nightout[2]) finalrvs.append(nightout[1]) filew.close() warning_r = log_warning_id( f'{outpath}/{args.targname}_{args.band}.log', start_time ) if warning_r: print(f''' ********************************************************************************** WARNING!! you got warning message during this run. Please check the log file under: {outpath}/{args.targname}_{args.band}.log ********************************************************************************** ''') if not args.debug: logger.addHandler(stream_hander) print('--------!Initial Guess!--------') logger.info( 'RV results: mean= {:1.4f} km/s, median= {:1.4f} km/s, std= {:1.4f} km/s'.format( np.nanmean(finalrvs), np.nanmedian(finalrvs), np.nanstd(finalrvs) ) ) logger.info( 'vsini results: mean= {:1.4f} km/s, median= {:1.4f} km/s, std= {:1.4f} km/s'.format( np.nanmean(vsinis), np.nanmedian(vsinis), np.nanstd(vsinis) ) ) if args.binary: logger.info( 'RV 2 results: mean= {:1.4f} km/s, median= {:1.4f} km/s, std= {:1.4f} km/s'.format( np.nanmean(finalrvs2), np.nanmedian(finalrvs2), np.nanstd(finalrvs2) ) ) logger.info( 'vsini 2 results: mean= {:1.4f} km/s, median= {:1.4f} km/s, std= {:1.4f} km/s'.format( np.nanmean(vsinis2), np.nanmedian(vsinis2), np.nanstd(vsinis2) ) ) end_time = datetime.now() logger.info( '\nRV Initial Guess DONE... Duration: {}'.format(end_time - start_time) ) logger.info( f'Output saved under ./Output/{args.targname}_{args.band}/{iniguess_dir}' ) print('---------------------------------------------------------------\n') print('You can now try to get a better RV initial guess with by') print('rerunning Step 2 with -gX set to the run number you just completed.') print('OR, you can go on to the full RV analysis in Step 3.') print('####################################################################################')
shihyuntangREPO_NAMEigrins_rvPATH_START.@igrins_rv_extracted@igrins_rv-master@main_step2.py@.PATH_END.py
{ "filename": "plot_wind.ipynb", "repo_name": "sirocco-rt/sirocco", "repo_path": "sirocco_extracted/sirocco-main/docs/sphinx/source/plotting/plot_wind.ipynb", "type": "Jupyter Notebook" }
# Plotting Wind Properties As described under [Models](../output/model.rst), SIROCCO saves wind properties in binary wind_save files. This notebook explains how to read and plot wind variables for the ```cv_standard``` file found in the examples. Before running the python commands, you need to run the model from the command line. I suggest running the following commands, after you have compiled python: mkdir cv_test cd cv_test cp $SIROCCO/examples/basic/cv_standard.pf . sirocco cv_standard </code> The model will take about 5 minutes to run on a single core. It will not converge, but will give us a model to use as an example. You should then run ```windsave2table``` on the output windsave2table cv_standard which will create a series of ascii files containing key variables in the wind cells. We will use these ascii files for our plots. ## Making wind plots using PySi We will start by demonstrating how to use PySi to plot data from the wind files. In particular we will plot some key variables in the wind, followed by some ion fractions. PySi works by setting up a ```Wind``` class which reads in and stores all the useful data and attributes from the model. This class can be used to inspect data or to plot it directly. ```python import matplotlib.pyplot as plt import numpy as np import pysi from pysi.wind import Wind root = "cv_standard" directory = "cv_test/" wind = Wind(root = root, directory = directory) ``` Version: UNKNOWN The data can be plotted easily using the ```plot_parameter``` method. This method returns Figure and Axes objects so the plot can be modified easily. ```python fig, ax = wind.plot_parameter("t_e") ``` /Users/matthewsj/.virtualenvs/sirocco/lib/python3.10/site-packages/pysi/wind/model/plot.py:484: RuntimeWarning: divide by zero encountered in log10 parameter_points = numpy.log10(parameter_points) ![png](output_4_1.png) ```python plot = wind.plot_parameter("t_e", "linlin") plt.xlim(0,2e11) _ = plt.ylim(0,2e11) ``` ![png](output_5_0.png) The ```get_windsave_descriptions``` method in the wind class comes provides a handy guide to the main columns in the .master.txt file, which can be plotted using the above methods, or accessed directly as, e.g., ```wind["ne"]``` ```python print (wind.get_windsave_descriptions()) ``` x -- left-hand lower cell corner x-coordinate, cm z -- left-hand lower cell corner z-coordinate, cm xcen -- cell centre x-coordinate, cm zcen -- cell centre z-coordinate, cm i -- cell index (column) j -- cell index (row) inwind -- is the cell in wind (0), partially in wind (1) or out of wind (<0) converge -- how many convergence criteria is the cell failing? v_x -- x-velocity, cm/s v_y -- y-velocity, cm/s v_z -- z-velocity, cm/s vol -- volume in cm^3 rho -- density in g/cm^3 ne -- electron density in cm^-3 t_e -- electron temperature in K t_r -- radiation temperature in K h1 -- H1 ion fraction he2 -- He2 ion fraction c4 -- C4 ion fraction n5 -- N5 ion fraction o6 -- O6 ion fraction dmo_dt_x -- momentum rate, x-direction dmo_dt_y -- momentum rate, y-direction dmo_dt_z -- momentum rate, z-direction ip -- U ionization parameter xi -- xi ionization parameter ntot -- total photons passing through cell nrad -- total wind photons produced in cell nioniz -- total ionizing photons passing through cell None We can also use the multiplot command to generate multiple plots for specified wind parameters. This method creates subplots to visualize the specified wind parameters using either 1D or 2D representation based on the coordinate system. ```python fig, ax = wind.multiplot( ("ne", "t_e", "v_z", "ntot") , "loglog", nrows = 2, ncols = 2) fig.tight_layout(pad=0.05) ``` ![png](output_9_0.png) We can also check all the possible things to plot, some of which are intuitive and some of which aren't! ```python print (wind.things_read_in) ``` dict_keys(['x', 'z', 'xcen', 'zcen', 'i', 'j', 'inwind', 'converge', 'v_x', 'v_y', 'v_z', 'vol', 'rho', 'ne', 't_e', 't_r', 'h1', 'he2', 'c4', 'n5', 'o6', 'dmo_dt_x', 'dmo_dt_y', 'dmo_dt_z', 'ip', 'xi', 'ntot', 'nrad', 'nioniz', 'w', 'ave_freq', 'J', 'J_direct', 'J_scatt', 'lum_tot', 'heat_tot', 'heat_comp', 'heat_line', 'heat_ff', 'heat_phot', 'heat_auge', 'cool_tot', 'cool_comp', 'lum_lines', 'cool_dr', 'lum_ff', 'lum_rr', 'cool_rr', 'cool_adia', 'heat_shoc', 'ht_ln_mac', 'ht_ph_mac', 'dv_x_dx', 'dv_y_dx', 'dv_z_dx', 'dv_x_dy', 'dv_y_dy', 'dv_z_dy', 'dv_x_dz', 'dv_y_dz', 'dv_z_dz', 'div_v', 'dvds_max', 'gamma', 'dfudge', 't_e_old', 'dt_e', 'dt_e_old', 't_r_old', 'heat_tot_', 'gain', 'macro_bf_', 'H_i01_frac', 'H_i02_frac', 'He_i01_frac', 'He_i02_frac', 'He_i03_frac', 'C_i01_frac', 'C_i02_frac', 'C_i03_frac', 'C_i04_frac', 'C_i05_frac', 'C_i06_frac', 'C_i07_frac', 'N_i01_frac', 'N_i02_frac', 'N_i03_frac', 'N_i04_frac', 'N_i05_frac', 'N_i06_frac', 'N_i07_frac', 'N_i08_frac', 'O_i01_frac', 'O_i02_frac', 'O_i03_frac', 'O_i04_frac', 'O_i05_frac', 'O_i06_frac', 'O_i07_frac', 'O_i08_frac', 'O_i09_frac', 'Na_i01_frac', 'Na_i02_frac', 'Na_i03_frac', 'Na_i04_frac', 'Na_i05_frac', 'Na_i06_frac', 'Na_i07_frac', 'Na_i08_frac', 'Na_i09_frac', 'Na_i10_frac', 'Na_i11_frac', 'Na_i12_frac', 'Si_i01_frac', 'Si_i02_frac', 'Si_i03_frac', 'Si_i04_frac', 'Si_i05_frac', 'Si_i06_frac', 'Si_i07_frac', 'Si_i08_frac', 'Si_i09_frac', 'Si_i10_frac', 'Si_i11_frac', 'Si_i12_frac', 'Si_i13_frac', 'Si_i14_frac', 'Si_i15_frac', 'Ca_i01_frac', 'Ca_i02_frac', 'Ca_i03_frac', 'Ca_i04_frac', 'Ca_i05_frac', 'Ca_i06_frac', 'Ca_i07_frac', 'Ca_i08_frac', 'Ca_i09_frac', 'Ca_i10_frac', 'Ca_i11_frac', 'Ca_i12_frac', 'Ca_i13_frac', 'Ca_i14_frac', 'Ca_i15_frac', 'Ca_i16_frac', 'Ca_i17_frac', 'Ca_i18_frac', 'Ca_i19_frac', 'Ca_i20_frac', 'Ca_i21_frac', 'Fe_i01_frac', 'Fe_i02_frac', 'Fe_i03_frac', 'Fe_i04_frac', 'Fe_i05_frac', 'Fe_i06_frac', 'Fe_i07_frac', 'Fe_i08_frac', 'Fe_i09_frac', 'Fe_i10_frac', 'Fe_i11_frac', 'Fe_i12_frac', 'Fe_i13_frac', 'Fe_i14_frac', 'Fe_i15_frac', 'Fe_i16_frac', 'Fe_i17_frac', 'Fe_i18_frac', 'Fe_i19_frac', 'Fe_i20_frac', 'Fe_i21_frac', 'Fe_i22_frac', 'Fe_i23_frac', 'Fe_i24_frac', 'Fe_i25_frac', 'Fe_i26_frac', 'Fe_i27_frac', 'spec_freq', 'spec_flux', 'model_freq', 'model_flux', 'v_l', 'v_rot', 'v_r']) ## Plotting ions using PySi PySi also allows one to plot ion fractions or densities (fractions by default), which are accessed through strings like ```Fe_i01_frac```, using astronomical notation for the ion stage. An example multiplot of the first six ionic stages of Carbon would be as follows. ```python ions_to_plot = ["C_i{:02d}_frac".format(i+1) for i in range(6)] fig, ax = wind.multiplot(ions_to_plot, "loglog", nrows = 3, ncols = 2, figsize=(8,10)) ``` ![png](output_13_0.png) All the ions in the simulation can be viewed using the ```ions_read_in``` list. ```python print (wind.ions_read_in) ``` ['H_i01_frac', 'H_i02_frac', 'He_i01_frac', 'He_i02_frac', 'He_i03_frac', 'C_i01_frac', 'C_i02_frac', 'C_i03_frac', 'C_i04_frac', 'C_i05_frac', 'C_i06_frac', 'C_i07_frac', 'N_i01_frac', 'N_i02_frac', 'N_i03_frac', 'N_i04_frac', 'N_i05_frac', 'N_i06_frac', 'N_i07_frac', 'N_i08_frac', 'O_i01_frac', 'O_i02_frac', 'O_i03_frac', 'O_i04_frac', 'O_i05_frac', 'O_i06_frac', 'O_i07_frac', 'O_i08_frac', 'O_i09_frac', 'Na_i01_frac', 'Na_i02_frac', 'Na_i03_frac', 'Na_i04_frac', 'Na_i05_frac', 'Na_i06_frac', 'Na_i07_frac', 'Na_i08_frac', 'Na_i09_frac', 'Na_i10_frac', 'Na_i11_frac', 'Na_i12_frac', 'Si_i01_frac', 'Si_i02_frac', 'Si_i03_frac', 'Si_i04_frac', 'Si_i05_frac', 'Si_i06_frac', 'Si_i07_frac', 'Si_i08_frac', 'Si_i09_frac', 'Si_i10_frac', 'Si_i11_frac', 'Si_i12_frac', 'Si_i13_frac', 'Si_i14_frac', 'Si_i15_frac', 'Ca_i01_frac', 'Ca_i02_frac', 'Ca_i03_frac', 'Ca_i04_frac', 'Ca_i05_frac', 'Ca_i06_frac', 'Ca_i07_frac', 'Ca_i08_frac', 'Ca_i09_frac', 'Ca_i10_frac', 'Ca_i11_frac', 'Ca_i12_frac', 'Ca_i13_frac', 'Ca_i14_frac', 'Ca_i15_frac', 'Ca_i16_frac', 'Ca_i17_frac', 'Ca_i18_frac', 'Ca_i19_frac', 'Ca_i20_frac', 'Ca_i21_frac', 'Fe_i01_frac', 'Fe_i02_frac', 'Fe_i03_frac', 'Fe_i04_frac', 'Fe_i05_frac', 'Fe_i06_frac', 'Fe_i07_frac', 'Fe_i08_frac', 'Fe_i09_frac', 'Fe_i10_frac', 'Fe_i11_frac', 'Fe_i12_frac', 'Fe_i13_frac', 'Fe_i14_frac', 'Fe_i15_frac', 'Fe_i16_frac', 'Fe_i17_frac', 'Fe_i18_frac', 'Fe_i19_frac', 'Fe_i20_frac', 'Fe_i21_frac', 'Fe_i22_frac', 'Fe_i23_frac', 'Fe_i24_frac', 'Fe_i25_frac', 'Fe_i26_frac', 'Fe_i27_frac'] ## More direct data access We recommend using PySi where possible. You may, however, wish to get more direct access to the data, which can be done easily by reading in the ```cv_standard.master.txt``` file, for example using ```astropy```. In the next code block, we read in the data file and print out the columns. ```python import matplotlib.pyplot as plt import astropy.io.ascii as io fname = f"{directory}{root}.master.txt" data = io.read(fname) print (data.colnames) ``` ['x', 'z', 'xcen', 'zcen', 'i', 'j', 'inwind', 'converge', 'v_x', 'v_y', 'v_z', 'vol', 'rho', 'ne', 't_e', 't_r', 'h1', 'he2', 'c4', 'n5', 'o6', 'dmo_dt_x', 'dmo_dt_y', 'dmo_dt_z', 'ip', 'xi', 'ntot', 'nrad', 'nioniz'] ```py_plot_util``` also contains some routines for reshaping and masking arrays and so on. One of the most useful for plotting is the ```wind_to_masked``` function which turns the raw 1D flattened data into a masked 2D array with the right shape which can be easily used with ```pcolormesh``` and so on. Here's an example plot of the electron density in the model. ```python x, z, ne, inwind = util.wind_to_masked(data, value_string="ne", return_inwind=True) plt.pcolormesh(x,z, np.log10(ne)) plt.loglog() plt.xlim(1e9,1e12) plt.ylim(1e8,1e12) cbar = plt.colorbar() ``` --------------------------------------------------------------------------- NameError Traceback (most recent call last) Cell In[10], line 1 ----> 1 x, z, ne, inwind = util.wind_to_masked(data, value_string="ne", return_inwind=True) 2 plt.pcolormesh(x,z, np.log10(ne)) 3 plt.loglog() NameError: name 'util' is not defined This procedure can be used to plot any of the variables in the masterfile and is a good starting point for delving into the properties of the wind if not using PySi. Ion populations outputted from ```windsave2table``` are stored in files like ```cv_standard.C.frac.txt```, where the letter before frac denotes the element. Plots of the C III ion fraction can thus be made through commands like the following, where strings like ```i05``` index the ion for each file. ```python carbon_ion = io.read("cv_test/cv_standard.C.frac.txt") x, z, c3_frac, inwind = util.wind_to_masked(carbon_ion, value_string="i03", return_inwind=True) plt.pcolormesh(x,z, np.log10(c3_frac)) plt.loglog() plt.xlim(1e9,1e12) plt.ylim(1e8,1e12) cbar = plt.colorbar() ``` ## Make A Basic Quick Look Wind Plot The simplest way to make a quick look plot of the electron temperature is using the ```plot_wind.py``` routine in ```$SIROCCO/py_progs```. In this example, I will assume py_progs has been added to ```$PATH``` and to ```$PYTHONPATH```. ```plot_wind.py``` can be run from the command line using plot_wind.py cv_standard t_e where the second argument is the variable to plot. Alternatively, it can be run from within a python script by doing (where we are now assuming you are running this code from one directory above cv_test): ```python import matplotlib.pyplot as plt import numpy as np import plot_wind fname = "cv_test/cv_standard.master.txt" plot_wind.doit(fname, var="t_e") ```
sirocco-rtREPO_NAMEsiroccoPATH_START.@sirocco_extracted@sirocco-main@docs@sphinx@source@plotting@plot_wind.ipynb@.PATH_END.py
{ "filename": "welcome.md", "repo_name": "amrvac/amrvac", "repo_path": "amrvac_extracted/amrvac-master/doc/welcome.md", "type": "Markdown" }
# Welcome page [TOC] # Introduction {#introduction} This is the documentation for the 3.1 version of MPI-AMRVAC. The code is available on [Github](https://github.com/amrvac/amrvac), and the documentation on [amrvac.org](http://amrvac.org/). If you have questions about MPI-AMRVAC, please send them to the mailing list: <mailto:amrvacusers@ls.kuleuven.be>, which you can also [subscribe to](https://ls.kuleuven.be/cgi-bin/wa?SUBED1=AMRVACUSERS&A=1) and [search](https://ls.kuleuven.be/cgi-bin/wa?A0=AMRVACUSERS). # Quick links {#quick_links} * @ref installation.md * @ref getting_started.md * @ref par.md * @ref faq.md * @ref demo-movies.md * @ref contributing.md * @ref publications.md * @ref acknowledgments.md * [**Recent changes**](https://github.com/amrvac/amrvac/commits/master) # MPI-AMRVAC aims {#aims} MPI-AMRVAC is a parallel adaptive mesh refinement framework aimed at solving (primarily hyperbolic) partial differential equations by a number of different numerical schemes. The emphasis is on (near) conservation laws and on shock-dominated problems in particular. A number of *physics modules* are included; the hydrodynamics and the magnetohydrodynamics module are most frequently used. Users can add their own physics module or modify existing ones. The framework supports 1D to 3D simulations, in a number of different geometries (Cartesian, cylindrical, spherical). MPI-AMRVAC is written in Fortran 90 and uses MPI for parallelization. The [VACPP](vacpp.md) preprocessor is used to extend Fortran with dimensional independent notation, but users are not required to learn the VACPP syntax. The philosophy behind MPI-AMRVAC is to use a single versatile code with options and switches for various problems. The advantage of such a general approach is easier maintenance, the compatibility of different parts, and the automatic extension of new features to existing applications. MPI-AMRVAC is not a fool-proof black-box design. A user needs to write subroutines for initial conditions, and for source terms or special boundary conditions when needed. # Development {#current_develop} MPI-AMRVAC is developed and maintained by an international team led by professor [Rony Keppens](https://perswww.kuleuven.be/~u0016541/) from [Centre for mathematical Plasma-Astrophysics (CmPA)](https://wis.kuleuven.be/CmPA), KU Leuven. In November 2022, we released the current 3.0 version, with the aid of Beatrice Popescu Braileanu, Niels Claes, Chun Xia, Guo Yang, Wenzhi Ruan, Fabio Bacchini, Yuhao Zhou. The movies generated from the demo simulations (found in the tests/demo folder) can be seen [here](demo-movies.md). Prior, in 2016-2017, a large modernization was completed by Chun Xia and [Jannis Teunissen](http://teunissen.net/) marked with version 2.0 with important changes as following: * Automatic regression tests were added * The preprocessor is only used for the problem dimension (1D, 2D, or 3D) * The code was modernized and re-organized into Fortran modules, and there is now an AMRVAC library * The focus of MPI-AMRVAC is now on non-relativistic hydro- and magnetohydrodynamics * Many smaller improvements to the physics modules From 2018, more developers have joined in to contribute in various aspects. We explicitly mention important help from Oliver Porth (main developer of MPI-AMRVAC 1.0), and Hector Olivares, who are the developers of the sister GRMHD code [BHAC](http://bhac.science/), the Black Hole Accretion Code.
amrvacREPO_NAMEamrvacPATH_START.@amrvac_extracted@amrvac-master@doc@welcome.md@.PATH_END.py
{ "filename": "example_lognorm_censored_MAR.py", "repo_name": "rfeldmann/leopy", "repo_path": "leopy_extracted/leopy-master/examples/example_lognorm_censored_MAR.py", "type": "Python" }
"""Example of data with missing and censored values and lognormal distribution This file is part of LEO-Py -- Likelihood Estimation of Observational data with Python Copyright 2019 University of Zurich, Robert Feldmann LEO-Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. LEO-Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with LEO-Py. If not, see <https://www.gnu.org/licenses/>. """ import numpy as np import pandas as pd import scipy.stats import scipy.optimize import pytest plot_data = False compute_maximum_likelihood = True np.random.seed(2) print('Example: Partially missing, censored, and correlated data with ' 'observational errors and a lognormal distribution') dist = scipy.stats.lognorm Ndata = 500 rho = 0.5 R = np.array([[1., rho], [rho, 1.]]) loc_true = np.array([0., 2.]) scale_true = np.array([1., 3.]) shape_true = np.array([0.5, 1.5]) print('population parameters: [{} {} {} {} {} {} {}]'.format( *loc_true, *scale_true, *shape_true, rho)) mean_pop = scale_true * np.exp(0.5*shape_true**2) + loc_true std_pop = (mean_pop - loc_true) * np.sqrt(np.exp(shape_true**2)-1.) print('population statistics (mean, std, corr): [{:.3g} {:.3g} {:.3g} {:.3g} ' '{:.3g}]'.format( *mean_pop, *std_pop, rho)) ## -- create observational data x = scipy.stats.multivariate_normal.rvs(cov=R, size=Ndata) # print('rho(x) = {}'.format(np.corrcoef(x.T))) rho_x_sample = np.corrcoef(x.T)[0, 1] y = dist.ppf(scipy.stats.norm.cdf(x), shape_true, loc=loc_true, scale=scale_true) y_true = np.copy(y) ey = np.zeros_like(y) ey[:, 0] = 0.2 # 1e-6 # 0.2 # 0.1 ey[:, 1] = 0.1 # 1e-6 # 0.1 y[:, 0] += ey[:, 0] * np.random.randn(Ndata) y[:, 1] += ey[:, 1] * np.random.randn(Ndata) print('sample statistics full data (mean, std, corr): n={} [{:.3g} {:.3g} ' '{:.3g} {:.3g} {:.3g}]'.format( len(y), np.nanmean(y[:, 0]), np.nanmean(y[:, 1]), np.nanstd(y[:, 0]), np.nanstd(y[:, 1]), rho_x_sample)) # censor some data (variable 2) ceny = np.zeros(Ndata, dtype=bool) limy = np.zeros(Ndata) sel = y[:, 1] < 0.4*mean_pop[1] limy[sel] = 0.4*mean_pop[1] ceny[sel] = True y[sel, 1] = 0. def logistic(x): res = np.ones_like(x) sel = x < 20 res[sel] = np.exp(x[sel]) / (np.exp(x[sel]) + 1.) return res # data missing data at random (MAR) based on values of other column m1 = scipy.stats.bernoulli.rvs(logistic(y[:, 0]-3.)).astype(bool) # for col 1 m0 = scipy.stats.bernoulli.rvs(logistic(y[:, 1]-6.)).astype(bool) # for col 0 y[m1, 1] = np.float('NaN') y[m0, 0] = np.float('NaN') print('sample statistics (w/ missing as NaN): n={} [{:.3g} {:.3g} {:.3g} {:.3g} ' 'N/A]'.format( len(y), np.nanmean(y[:, 0]), np.nanmean(y[:, 1]), np.nanstd(y[:, 0]), np.nanstd(y[:, 1]))) # complete cases + censored = don't contain NaN's ycc = y[np.all(~np.isnan(y), axis=1)] eycc = ey[np.all(~np.isnan(y), axis=1)] cenycc = ceny[np.all(~np.isnan(y), axis=1)] limycc = limy[np.all(~np.isnan(y), axis=1)] print('sample statistics (without any NaNs): n={} [{:.3g} {:.3g} {:.3g} {:.3g}' ' {:.3g}]'.format( len(ycc), np.nanmean(ycc[:, 0]), np.nanmean(ycc[:, 1]), np.nanstd(ycc[:, 0]), np.nanstd(ycc[:, 1]), np.corrcoef(ycc.T)[0, 1])) # complete cases + w/o censored ycc2 = y[np.all(~np.isnan(y), axis=1) & (ceny == False)] eycc2 = ey[np.all(~np.isnan(y), axis=1) & (ceny == False)] cenycc2 = ceny[np.all(~np.isnan(y), axis=1) & (ceny == False)] limycc2 = limy[np.all(~np.isnan(y), axis=1) & (ceny == False)] print('sample statistics (complete cases]): n={} [{:.3g} {:.3g} {:.3g} {:.3g} ' '{:.3g}]'.format( len(ycc2), np.nanmean(ycc2[:, 0]), np.nanmean(ycc2[:, 1]), np.nanstd(ycc2[:, 0]), np.nanstd(ycc2[:, 1]), np.corrcoef(ycc.T)[0, 1])) ncc = np.sum(np.all(~np.isnan(y), axis=1) & (ceny == False)) ncen = np.sum(ceny == True) nic = np.sum(np.any(np.isnan(y), axis=1)) ncm = np.sum(np.all(np.isnan(y), axis=1)) print('{} total cases, {} complete, {} censored, {} incomplete, {} completely ' 'missing'.format(Ndata, ncc, ncen, nic, ncm)) for irun in range(3): if irun == 0: print('--- Using all data (incl. missing) ---') ly = y ley = ey lceny = ceny llimy = limy elif irun == 1: print('--- Using only data without NaNs ---') ly = ycc ley = eycc lceny = cenycc llimy = limycc else: print('--- Using only complete cases ---') ly = ycc2 ley = eycc2 lceny = cenycc2 llimy = limycc2 df = pd.DataFrame(np.array([ly[:, 0], ly[:, 1], ley[:, 0], ley[:, 1], lceny, llimy]).T, columns=['v0', 'v1', 'e_v0', 'e_v1', 'c_v1', 'l_v1']) if plot_data: import matplotlib.pyplot as plt plt.ion() plt.figure() plt.errorbar(ly[:, 0], ly[:, 1], xerr=ley[:, 0], yerr=ley[:, 1], fmt='.') # show data with x-NaNs sel = np.isnan(ly[:, 0]) if np.sum(sel) > 0: for i, s in enumerate(range(np.sum(sel))): if not s: continue x_r = 0.1*(np.random.rand()-0.5) plt.plot(x_r, ly[i, 1], '.', color=[0.7, 0.7, 0.7], markersize=3) plt.annotate("", xy=(0.+0.15, 100), xytext=(0.-0.15, 100), arrowprops=dict(arrowstyle="<->", color=[0.7, 0.7, 0.7])) # show data with y-NaNs sel = np.isnan(ly[:, 1]) if np.sum(sel) > 0: for i, s in enumerate(range(np.sum(sel))): if not s: continue y_r = 30.*(np.random.rand()-0.5) + 250 plt.plot(ly[i, 0], y_r, '.', color=[0.7, 0.7, 0.7], markersize=3) plt.annotate("", xy=(2.5, 250+70), xytext=(2.5, 250-70), arrowprops=dict(arrowstyle="<->", color=[0.7, 0.7, 0.7])) # show censored data sel = np.isnan(ly[:, 0]) #plt.xlim([0.2, 3]) #plt.gca(clip_on=False) plt.yscale('log') if compute_maximum_likelihood: import leopy obs = leopy.Observation(df, 'test', verbosity=0) ## -- set up Likelihood and find maximum likelihood parameters like = leopy.Likelihood(obs, p_true='lognorm', p_cond='norm', verbosity=-1) def f_mlnlike(x): # print(x) loc_true = x[0:2] scale_true = x[2:4] shape_true = x[4:6] rho = x[6] R = np.array([[1., rho], [rho, 1.]]) pp = like.p(loc_true, scale_true, shape_true=shape_true, R_true=R) if np.sum(pp==0) > 0: return np.inf else: return -np.sum(np.log(pp)) bounds = scipy.optimize.Bounds( [-np.inf, -np.inf, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3], [np.inf, np.inf, 10., 10., 10., 10., 1-1e-3]) print('Maximizing likelihood - This may take a while...') optres = scipy.optimize.minimize(f_mlnlike, [0., 0., 1., 1., 1., 1., 0.3], bounds=bounds, method='SLSQP', options={'disp': True, 'ftol': 1e-12}) print('Maximum likelihood parameters: [{:.3g} {:.3g} {:.3g} {:.3g} ' '{:.3g} {:.3g} {:.3g}]'.format(*optres.x)) loc_opt = optres.x[0:2] scale_opt = optres.x[2:4] shape_opt = optres.x[4:6] rho_opt = optres.x[6] mean_opt = scale_opt * np.exp(0.5*shape_opt**2) + loc_opt std_opt = (mean_opt - loc_opt) * np.sqrt(np.exp(shape_opt**2)-1.) print('Maximum likelihood statistics: [{:.3g} {:.3g} {:.3g} {:.3g} ' '{:.3g}]'.format(*mean_opt, *std_opt, rho_opt))
rfeldmannREPO_NAMEleopyPATH_START.@leopy_extracted@leopy-master@examples@example_lognorm_censored_MAR.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/graph_objs/box/selected/__init__.py", "type": "Python" }
import sys from typing import TYPE_CHECKING if sys.version_info < (3, 7) or TYPE_CHECKING: from ._marker import Marker else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import(__name__, [], ["._marker.Marker"])
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@graph_objs@box@selected@__init__.py@.PATH_END.py
{ "filename": "_align.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/indicator/title/_align.py", "type": "Python" }
import _plotly_utils.basevalidators class AlignValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="align", parent_name="indicator.title", **kwargs): super(AlignValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", ["left", "center", "right"]), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@indicator@title@_align.py@.PATH_END.py
{ "filename": "conf.py", "repo_name": "ejhigson/perfectns", "repo_path": "perfectns_extracted/perfectns-master/docs/conf.py", "type": "Python" }
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'perfectns' copyright = '2018-Present Edward Higson and contributors (MIT license).' author = 'Edward Higson' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'numpydoc', 'nbsphinx' ] # nbspinx options nbsphinx_execute = 'never' # use stored output of notebook so data not needed # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '**.ipynb_checkpoints'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'alabaster' html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'perfectnsdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'perfectns.tex', 'perfectns Documentation', 'Edward Higson', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'perfectns', 'perfectns Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'perfectns', 'perfectns Documentation', author, 'perfectns', 'Perfect nested sampling.', 'Miscellaneous'), ] # -- Extension configuration -------------------------------------------------
ejhigsonREPO_NAMEperfectnsPATH_START.@perfectns_extracted@perfectns-master@docs@conf.py@.PATH_END.py
{ "filename": "bspline.py", "repo_name": "grzeimann/Panacea", "repo_path": "Panacea_extracted/Panacea-master/bspline.py", "type": "Python" }
# -*- coding: utf-8 -*- """Python/Numpy implementation of Bspline basis functions via Cox - de Boor algorithm.""" from __future__ import division, print_function, absolute_import from functools import partial import numpy as np class memoize(object): """Cache the return value of a method. This class is meant to be used as a decorator of methods. The return value from a given method invocation will be cached on the instance whose method was invoked. All arguments passed to a method decorated with memoize must be hashable. If a memoized method is invoked directly on its class the result will not be cached. Instead the method will be invoked like a static method: class Obj(object): @memoize def add_to(self, arg): return self + arg Obj.add_to(1) # not enough arguments Obj.add_to(1, 2) # returns 3, result is not cached Script borrowed from here: MIT Licensed, attributed to Daniel Miller, Wed, 3 Nov 2010 http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods/ """ def __init__(self, func): self.func = func def __get__(self, obj, objtype=None): if obj is None: return self.func return partial(self, obj) def __call__(self, *args, **kw): obj = args[0] try: cache = obj.__cache except AttributeError: cache = obj.__cache = {} key = (self.func, args[1:], frozenset(kw.items())) try: res = cache[key] except KeyError: res = cache[key] = self.func(*args, **kw) return res class Bspline(): """Numpy implementation of Cox - de Boor algorithm in 1D.""" def __init__(self, knot_vector, order): """Create a Bspline object. Parameters: knot_vector: Python list or rank-1 Numpy array containing knot vector entries order: Order of interpolation, e.g. 0 -> piecewise constant between knots, 1 -> piecewise linear between knots, etc. Returns: Bspline object, callable to evaluate basis functions at given values of `x` inside the knot span. """ kv = np.atleast_1d(knot_vector) if kv.ndim > 1: raise ValueError("knot_vector must be Python list or rank-1 array, but got rank = %d" % (kv.ndim)) self.knot_vector = kv order = int(order) if order < 0: raise ValueError("order must be integer >= 0, but got %d" % (order)) self.p = order #Dummy calls to the functions for memory storage self.__call__(0.0) self.d(0.0) def __basis0(self, xi): """Order zero basis (for internal use).""" return np.where(np.all([self.knot_vector[:-1] <= xi, xi < self.knot_vector[1:]],axis=0), 1.0, 0.0) def __basis(self, xi, p, compute_derivatives=False): """Recursive Cox - de Boor function (for internal use). Compute basis functions and optionally their first derivatives. """ if p == 0: return self.__basis0(xi) else: basis_p_minus_1 = self.__basis(xi, p - 1) first_term_numerator = xi - self.knot_vector[:-p] first_term_denominator = self.knot_vector[p:] - self.knot_vector[:-p] second_term_numerator = self.knot_vector[(p + 1):] - xi second_term_denominator = (self.knot_vector[(p + 1):] - self.knot_vector[1:-p]) #Change numerator in last recursion if derivatives are desired if compute_derivatives and p == self.p: first_term_numerator = p second_term_numerator = -p #Disable divide by zero error because we check for it with np.errstate(divide='ignore', invalid='ignore'): first_term = np.where(first_term_denominator != 0.0, (first_term_numerator / first_term_denominator), 0.0) second_term = np.where(second_term_denominator != 0.0, (second_term_numerator / second_term_denominator), 0.0) return (first_term[:-1] * basis_p_minus_1[:-1] + second_term * basis_p_minus_1[1:]) @memoize def __call__(self, xi): """Convenience function to make the object callable. Also 'memoized' for speed.""" return self.__basis(xi, self.p, compute_derivatives=False) @memoize def d(self, xi): """Convenience function to compute first derivative of basis functions. 'Memoized' for speed.""" return self.__basis(xi, self.p, compute_derivatives=True) def plot(self): """Plot basis functions over full range of knots. Convenience function. Requires matplotlib. """ try: import matplotlib.pyplot as plt except ImportError: from sys import stderr print("ERROR: matplotlib.pyplot not found, matplotlib must be installed to use this function", file=stderr) raise x_min = np.min(self.knot_vector) x_max = np.max(self.knot_vector) x = np.linspace(x_min, x_max, num=1000) N = np.array([self(i) for i in x]).T for n in N: plt.plot(x,n) return plt.show() def dplot(self): """Plot first derivatives of basis functions over full range of knots. Convenience function. Requires matplotlib. """ try: import matplotlib.pyplot as plt except ImportError: from sys import stderr print("ERROR: matplotlib.pyplot not found, matplotlib must be installed to use this function", file=stderr) raise x_min = np.min(self.knot_vector) x_max = np.max(self.knot_vector) x = np.linspace(x_min, x_max, num=1000) N = np.array([self.d(i) for i in x]).T for n in N: plt.plot(x,n) return plt.show() def __diff_internal(self): """Differentiate a B-spline once, and return the resulting coefficients and Bspline objects. This preserves the Bspline object nature of the data, enabling recursive implementation of higher-order differentiation (see `diff`). The value of the first derivative of `B` at a point `x` can be obtained as:: def diff1(B, x): terms = B.__diff_internal() return sum( ci*Bi(x) for ci,Bi in terms ) Returns: tuple of tuples, where each item is (coefficient, Bspline object). See: `diff`: differentiation of any order >= 0 """ assert self.p > 0, "order of Bspline must be > 0" # we already handle the other case in diff() # https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html # t = self.knot_vector p = self.p Bi = Bspline( t[:-1], p-1 ) Bip1 = Bspline( t[1:], p-1 ) numer1 = +p numer2 = -p denom1 = t[p:-1] - t[:-(p+1)] denom2 = t[(p+1):] - t[1:-p] with np.errstate(divide='ignore', invalid='ignore'): ci = np.where(denom1 != 0., (numer1 / denom1), 0.) cip1 = np.where(denom2 != 0., (numer2 / denom2), 0.) return ( (ci,Bi), (cip1,Bip1) ) def diff(self, order=1): """Differentiate a B-spline `order` number of times. Parameters: order: int, >= 0 Returns: **lambda** `x`: ... that evaluates the `order`-th derivative of `B` at the point `x`. The returned function internally uses __call__, which is 'memoized' for speed. """ order = int(order) if order < 0: raise ValueError("order must be >= 0, got %d" % (order)) if order == 0: return self.__call__ if order > self.p: # identically zero, but force the same output format as in the general case dummy = self.__call__(0.) # get number of basis functions and output dtype nbasis = dummy.shape[0] return lambda x: np.zeros( (nbasis,), dtype=dummy.dtype ) # accept but ignore input x # At each differentiation, each term maps into two new terms. # The number of terms in the result will be 2**order. # # This will cause an exponential explosion in the number of terms for high derivative orders, # but for the first few orders (practical usage; >3 is rarely needed) the approach works. # terms = [ (1.,self) ] for k in range(order): tmp = [] for Ci,Bi in terms: tmp.extend( (Ci*cn, Bn) for cn,Bn in Bi.__diff_internal() ) # NOTE: also propagate Ci terms = tmp # perform final summation at call time return lambda x: sum( ci*Bi(x) for ci,Bi in terms ) def collmat(self, tau, deriv_order=0): """Compute collocation matrix. Parameters: tau: Python list or rank-1 array, collocation sites deriv_order: int, >=0, order of derivative for which to compute the collocation matrix. The default is 0, which means the function value itself. Returns: A: if len(tau) > 1, rank-2 array such that A[i,j] = D**deriv_order B_j(tau[i]) where D**k = kth derivative (0 for function value itself) if len(tau) == 1, rank-1 array such that A[j] = D**deriv_order B_j(tau) Example: If the coefficients of a spline function are given in the vector c, then:: np.sum( A*c, axis=-1 ) will give a rank-1 array of function values at the sites tau[i] that were supplied to `collmat`. Similarly for derivatives (if the supplied `deriv_order`> 0). """ # get number of basis functions and output dtype dummy = self.__call__(0.) nbasis = dummy.shape[0] tau = np.atleast_1d(tau) if tau.ndim > 1: raise ValueError("tau must be a list or a rank-1 array") A = np.empty( (tau.shape[0], nbasis), dtype=dummy.dtype ) f = self.diff(order=deriv_order) for i,taui in enumerate(tau): A[i,:] = f(taui) return np.squeeze(A)
grzeimannREPO_NAMEPanaceaPATH_START.@Panacea_extracted@Panacea-master@bspline.py@.PATH_END.py
{ "filename": "histogram_ops_test.py", "repo_name": "tensorflow/tensorflow", "repo_path": "tensorflow_extracted/tensorflow-master/tensorflow/python/kernel_tests/histogram_ops_test.py", "type": "Python" }
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.histogram_ops.""" from absl.testing import parameterized import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import test_util from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import histogram_ops from tensorflow.python.platform import test class BinValuesFixedWidth(test.TestCase, parameterized.TestCase): def test_empty_input_gives_all_zero_counts(self): # Bins will be: # (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) value_range = [0.0, 5.0] values = [] expected_bins = [] with self.cached_session(): bins = histogram_ops.histogram_fixed_width_bins( values, value_range, nbins=5) self.assertEqual(dtypes.int32, bins.dtype) self.assertAllClose(expected_bins, self.evaluate(bins)) @parameterized.parameters( np.float32, np.float64, dtypes.bfloat16.as_numpy_dtype ) def test_1d_values_int32_output(self, dtype): # Bins will be: # (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) value_range = np.array([0.0, 5.0]).astype(dtype) values = np.array([-1.0, 0.0, 1.5, 2.0, 5.0, 15]).astype(dtype) expected_bins = [0, 0, 1, 2, 4, 4] with self.cached_session(): bins = histogram_ops.histogram_fixed_width_bins( values, value_range, nbins=5) self.assertEqual(dtypes.int32, bins.dtype) self.assertAllClose(expected_bins, self.evaluate(bins)) def test_2d_values(self): # Bins will be: # (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) value_range = [0.0, 5.0] values = constant_op.constant( [[-1.0, 0.0, 1.5], [2.0, 5.0, 15]], shape=(2, 3)) expected_bins = [[0, 0, 1], [2, 4, 4]] with self.cached_session(): bins = histogram_ops.histogram_fixed_width_bins( values, value_range, nbins=5) self.assertEqual(dtypes.int32, bins.dtype) self.assertAllClose(expected_bins, self.evaluate(bins)) def test_negative_nbins(self): value_range = [0.0, 5.0] values = [] with self.assertRaisesRegex((errors.InvalidArgumentError, ValueError), "must > 0"): with self.session(): bins = histogram_ops.histogram_fixed_width_bins( values, value_range, nbins=-1) self.evaluate(bins) class HistogramFixedWidthTest(test.TestCase): def setUp(self): self.rng = np.random.RandomState(0) def test_with_invalid_value_range(self): values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15] with self.assertRaisesRegex( (errors.InvalidArgumentError, ValueError), "Shape must be rank 1 but is rank 0|should be a vector"): self.evaluate(histogram_ops.histogram_fixed_width(values, 1.0)) with self.assertRaisesRegex( (errors.InvalidArgumentError, ValueError), "Dimension must be 2 but is 3|should be a vector of 2 elements"): self.evaluate( histogram_ops.histogram_fixed_width(values, [1.0, 2.0, 3.0])) def test_with_invalid_nbins(self): values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15] with self.assertRaisesRegex( (errors.InvalidArgumentError, ValueError), "Shape must be rank 0 but is rank 1|should be a scalar"): self.evaluate( histogram_ops.histogram_fixed_width(values, [1.0, 5.0], nbins=[1, 2])) with self.assertRaisesRegex( (errors.InvalidArgumentError, ValueError), "Requires nbins > 0|should be a positive number"): self.evaluate( histogram_ops.histogram_fixed_width(values, [1.0, 5.0], nbins=-5)) def test_empty_input_gives_all_zero_counts(self): # Bins will be: # (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) value_range = [0.0, 5.0] values = [] expected_bin_counts = [0, 0, 0, 0, 0] hist = histogram_ops.histogram_fixed_width(values, value_range, nbins=5) self.assertEqual(dtypes.int32, hist.dtype) self.assertAllClose(expected_bin_counts, self.evaluate(hist)) def test_1d_values_int64_output(self): # Bins will be: # (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) value_range = [0.0, 5.0] values = [-1.0, 0.0, 1.5, 2.0, 5.0, 15] expected_bin_counts = [2, 1, 1, 0, 2] hist = histogram_ops.histogram_fixed_width( values, value_range, nbins=5, dtype=dtypes.int64) self.assertEqual(dtypes.int64, hist.dtype) self.assertAllClose(expected_bin_counts, self.evaluate(hist)) def test_1d_float64_values(self): # Bins will be: # (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) value_range = np.float64([0.0, 5.0]) values = np.float64([-1.0, 0.0, 1.5, 2.0, 5.0, 15]) expected_bin_counts = [2, 1, 1, 0, 2] hist = histogram_ops.histogram_fixed_width(values, value_range, nbins=5) self.assertEqual(dtypes.int32, hist.dtype) self.assertAllClose(expected_bin_counts, self.evaluate(hist)) def test_2d_values(self): # Bins will be: # (-inf, 1), [1, 2), [2, 3), [3, 4), [4, inf) value_range = [0.0, 5.0] values = [[-1.0, 0.0, 1.5], [2.0, 5.0, 15]] expected_bin_counts = [2, 1, 1, 0, 2] hist = histogram_ops.histogram_fixed_width(values, value_range, nbins=5) self.assertEqual(dtypes.int32, hist.dtype) self.assertAllClose(expected_bin_counts, self.evaluate(hist)) @test_util.run_deprecated_v1 def test_shape_inference(self): value_range = [0.0, 5.0] values = [[-1.0, 0.0, 1.5], [2.0, 5.0, 15]] expected_bin_counts = [2, 1, 1, 0, 2] placeholder = array_ops.placeholder(dtypes.int32) with self.session(): hist = histogram_ops.histogram_fixed_width(values, value_range, nbins=5) self.assertAllEqual(hist.shape.as_list(), (5,)) self.assertEqual(dtypes.int32, hist.dtype) self.assertAllClose(expected_bin_counts, self.evaluate(hist)) hist = histogram_ops.histogram_fixed_width( values, value_range, nbins=placeholder) self.assertEqual(hist.shape.ndims, 1) self.assertIs(hist.shape.dims[0].value, None) self.assertEqual(dtypes.int32, hist.dtype) self.assertAllClose(expected_bin_counts, hist.eval({placeholder: 5})) def test_single_bin(self): hist = histogram_ops.histogram_fixed_width( values=constant_op.constant([3e+38, 100], dtype=dtypes.float32), value_range=constant_op.constant([-1e+38, 3e+38]), nbins=1) self.assertAllEqual(hist, [2]) def test_range_overflow(self): hist = histogram_ops.histogram_fixed_width( values=constant_op.constant([3e+38, 100], dtype=dtypes.float32), value_range=constant_op.constant([-1e+38, 3e+38]), nbins=2) self.assertAllEqual(hist, [1, 1]) def test_large_range(self): hist = histogram_ops.histogram_fixed_width( values=constant_op.constant( [-(2**31), 2**31 - 1], dtype=dtypes.int32 ), value_range=constant_op.constant( [-(2**31), 2**31 - 1], dtype=dtypes.int32 ), nbins=2, ) self.assertAllEqual(hist, [1, 1]) if __name__ == '__main__': test.main()
tensorflowREPO_NAMEtensorflowPATH_START.@tensorflow_extracted@tensorflow-master@tensorflow@python@kernel_tests@histogram_ops_test.py@.PATH_END.py
{ "filename": "radialfun.py", "repo_name": "dsavransky/EXOSIMS", "repo_path": "EXOSIMS_extracted/EXOSIMS-master/EXOSIMS/util/radialfun.py", "type": "Python" }
""" Utilities for radial computations on rectangular data arrays """ import numpy as np from scipy.interpolate import RectBivariateSpline from scipy import optimize def pixel_dists(dims, center): """ Compute pixel distances from center of an image Args: dims (tuple(float,float)): Image dimensions center (list(float,float)): [x,y] pixel coordinates of center Returns: numpy.ndarray: Array of dimension dims with distance from center of each pixel """ y, x = np.indices(dims) r = np.sqrt((x - center[0]) ** 2 + (y - center[1]) ** 2) return r def radial_average(im, center=None, nbins=None): """ Compute radial average on an image Args: im (numpy.ndarray): The input image. Must be 2-dimensional center (list(float,float), optional): [x,y] pixel coordinates of center to compute average about. If None (default) use geometric center of input. nbins (int, optional): Number of bins to compute average in. If None (default) then set to floor(N/2) where N is the maximum dimension of the input image. Returns: tuple: means (numpy.ndarray): ``nbins`` element array with radial average values bins (numpy.nadarray): ``nbins+1`` element array with bin boundaries. bincents (numpy.ndarray): ``nbins`` elements array with bin midpoints. Equivalent to ``(bins[1:] + bins[:-1]) / 2`` """ # gather info dims = im.shape assert len(dims) == 2, "Only 2D images are supported." if center is None: center = [dims[0] / 2.0, dims[1] / 2.0] if nbins is None: nbins = int(np.floor(np.max(dims) / 2)) # compute pixel distances from center r = pixel_dists(dims, center) # define bins and digitize distanes bins = np.linspace(0, np.max(r), nbins + 1) bincents = (bins[1:] + bins[:-1]) / 2 inds = np.digitize(r.ravel(), bins) # max value will be in its own bin, so put all matching pixels in the last valid bin inds[inds == nbins + 1] = nbins # compute means in each bin means = np.zeros(nbins) imflat = im.ravel() for j in range(1, nbins + 1): means[j - 1] = np.nanmean(imflat[inds == j]) return means, bins, bincents def circ_aperture(im, rho, center, return_sum=False): """ Extract pixels in circular aperture Args: im (numpy.ndarray): The input image. Must be 2-dimensional rho (float): Radius of aperture (in pixels) center (list(float,float): [x,y] pixel coordinates of center of aperture return_sum (bool): Return sum. Defaults False: returns all pixels in aperture. Returns: numpy.ndarray: 1-dimensional array of pixel values inside aperture """ # compute pixel distances from center r = pixel_dists(im.shape, center) pix = im[r <= rho] if return_sum: out = np.sum(pix[np.isfinite(pix)]) else: out = pix return out def com(im0, fill_val=0): """ Find the center-of-mass centroid of an image Args: im0 (numpy.ndarray): The input image. Must be 2-dimensional fill_val (float): Replace any non finite values in the image with this value before resampling. Defaults to zero. Returns: list: [x,y] pixel coordinates of COM """ # operate on input copy and zero out bad values im = im0.copy() im[~np.isfinite(im)] = fill_val y, x = np.indices(im.shape) return [np.sum(im * inds) / np.sum(im) for inds in [x, y]] def genwindow(dims): """ Create a 2D Hann window of the given dimensions Args: dims (tuple or list): 2-element dimensions of window (can be the .shape output of an ndarray) Returns: numpy.ndarray: Window of dimensions ``dims``. """ window = np.ones(dims) y, x = np.indices(dims) for dim, inds in zip(dims, [x, y]): window *= 0.5 - 0.5 * np.cos(2 * np.pi * inds / dim) window = np.sqrt(window) return window def resample_image(im, resamp=2, fill_val=0): """ Create a resampled image Args: im (numpy.ndarray): The input image. Must be 2-dimensional resamp (float): Resampling factor. Must be >=1. Defaults to 2 fill_val (float): Replace any non finite values in the image with this value before resampling. Defaults to zero. Returns: numpy.ndarray: Resampled image. """ assert resamp >= 1, "resamp must be >= 1" if resamp == 1: return im dims = im.shape newdims = [(d - 1) * resamp + 1 for d in dims] imc = im.copy() imc[~np.isfinite(imc)] = fill_val sp = RectBivariateSpline(np.arange(dims[0]), np.arange(dims[0]), imc) imresamp = sp(np.arange(newdims[0]) / resamp, np.arange(newdims[1]) / resamp) return imresamp def gaussian(a, x0, y0, sx, sy): """Gaussian function Args: a (float): Amplitude x0 (float): Center (mean) x position y0 (float): Center (mean) y position sx (float): Standard deviation in x sy (float): Standard deviation in y Returns: lambda: Callable lambda function with input x,y returning value of Gaussian at those coordinates """ return lambda x, y: a * np.exp( -((x - x0) ** 2) / 2 / sx**2 - (y - y0) ** 2 / 2 / sy**2 ) def fitgaussian(im): """Fit a 2D Gaussian to data Args: im (numpy.ndarray): 2D data array Returns: tuple: a (float): Amplitude x0 (float): Center (mean) x position y0 (float): Center (mean) y position sx (float): Standard deviation in x xy (float): Standard deviation in y """ Y, X = np.indices(im.shape) total = im.sum() x0 = (X * im).sum() / total y0 = (Y * im).sum() / total col = im[:, int(x0)] sx0 = np.sqrt(np.abs((np.arange(col.size) - x0) ** 2 * col).sum() / col.sum() / 2) row = im[int(y0), :] sy0 = np.sqrt(np.abs((np.arange(row.size) - y0) ** 2 * row).sum() / row.sum() / 2) a0 = im.max() errorfunction = lambda p: np.ravel(gaussian(*p)(X, Y) - im) p, success = optimize.leastsq(errorfunction, (a0, x0, y0, sx0, sy0)) return p
dsavranskyREPO_NAMEEXOSIMSPATH_START.@EXOSIMS_extracted@EXOSIMS-master@EXOSIMS@util@radialfun.py@.PATH_END.py
{ "filename": "_bordercolor.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/scatterpolargl/marker/colorbar/_bordercolor.py", "type": "Python" }
import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="bordercolor", parent_name="scatterpolargl.marker.colorbar", **kwargs, ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@scatterpolargl@marker@colorbar@_bordercolor.py@.PATH_END.py