metadata
dict
text
stringlengths
0
40.6M
id
stringlengths
14
255
{ "filename": "_valuessrc.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/table/header/_valuessrc.py", "type": "Python" }
import _plotly_utils.basevalidators class ValuessrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="valuessrc", parent_name="table.header", **kwargs): super(ValuessrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@table@header@_valuessrc.py@.PATH_END.py
{ "filename": "ClassFitTEC.py", "repo_name": "saopicc/killMS", "repo_path": "killMS_extracted/killMS-master/killMS/Other/ClassFitTEC.py", "type": "Python" }
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from DDFacet.Other import logger log=logger.getLogger("ClassFitTEC") import killMS.Array.ModLinAlg K=8.4479745e9 import scipy.sparse from DDFacet.Other import ClassTimeIt logger.setSilent(["ClassFitTEC"]) def TECToPhase(TEC,freq): phase=K*TEC*(1./freq) return phase def TECToZ(TEC,ConstPhase,freq): if ConstPhase is None: ConstPhase=0 return np.exp(1j*(TECToPhase(TEC,freq)+ConstPhase)) def Dot(*args): P=1. for M in args: #P=np.dot(np.complex128(P),np.complex128(M)) P=np.dot(P,M) return P # it=208; iDir=14; S=np.load("L229509_merged.npz"); G=S["Sols"]["G"][it,:,:,iDir,0,0]; f=S["FreqDomains"].mean(axis=1) def Norm(G,iRef=0): nf,na=G.shape for iFreq in range(nf): g0=G[iFreq,iRef] G[iFreq]*=g0.conj()/np.abs(g0) def test(G,f): # nf,na=G.shape # #na=3 # t=np.random.randn(na)*0.01 # c=np.random.randn(na)*np.pi/10 # G=TECToZ(t.reshape((1,-1)),c.reshape((1,-1)),f.reshape((-1,1))) TECMachine=ClassFitTEC(G,f) #TECMachine.DoFit() TECMachine.findX0() TECMachine.doFit() class ClassFitTEC(): def __init__(self,gains,nu,Tol=5e-2,Incr=1, #Mode=["TEC","CPhase"], Mode=["TEC"]): self.nf,self.na=gains.shape self.Mode=Mode self.LMode=len(Mode) self.G=gains.copy() Norm(self.G) self.Tol=Tol self.G/=np.abs(self.G) self.CentralFreqs=self.nu=nu self.NFreq=nu.size na=self.na self.nbl=(na**2-na)//2 self.CurrentX=None log.print("Number of Antennas: %i"%self.na) log.print("Number of Freqs: %i"%nu.size) log.print("Number of Points: %i"%(nu.size*self.na**2)) self.Y=np.array([(self.G[iFreq].reshape((-1,1))*self.G[iFreq].conj().reshape((1,-1))).ravel() for iFreq in range(self.NFreq)]).ravel() self.nu_Y=np.array([(self.nu[iFreq]*np.ones((self.na,self.na)).ravel()) for iFreq in range(self.NFreq)]).ravel() self.A0=np.array([(np.mgrid[0:na:1,0:na:1][0]).ravel() for iFreq in range(self.NFreq)]).ravel() self.A1=np.array([(np.mgrid[0:na:1,0:na:1][1]).ravel() for iFreq in range(self.NFreq)]).ravel() self.Incr=Incr Mask=np.where(self.A1>self.A0)[0] self.Mask=Mask self.Y=self.Y[Mask][::self.Incr] self.nu_Y=self.nu_Y[Mask][::self.Incr] self.A0=self.A0[Mask][::self.Incr] self.A1=self.A1[Mask][::self.Incr] self.x0=None self.indA0=[np.where(self.A0==iAnt)[0] for iAnt in range(na)] self.indA1=[np.where(self.A1==iAnt)[0] for iAnt in range(na)] def doFit(self,NIter=100): if self.x0 is None and self.CurrentX is None: self.CurrentX=np.zeros((self.LMode*self.na,),np.float32)+1e-10 #self.CurrentX=np.random.randn(2*self.na) self.Current_iIter=0 for iIter in range(NIter): self.doLMIter() #self.Plot() self.Current_iIter=iIter if self.Diff<self.Tol: log.print("Convergence in %i steps"%(iIter+1)) break return self.CurrentX def GiveGPredict(self,X): t=X[0:self.na].reshape((1,-1)) c=None if "CPhase" in self.Mode: c=X[self.na:].reshape((1,-1)) z=TECToZ(t,c,self.nu.reshape((-1,1))) return z def doLMIter(self): T=ClassTimeIt.ClassTimeIt() T.disable() #J,H= self.giveJacobianHessian() T.timeit("J, H") z=self.GiveGPredict(self.CurrentX) Y=np.array([(z[iFreq].reshape((-1,1))*z[iFreq].conj().reshape((1,-1))).ravel() for iFreq in range(self.NFreq)]).ravel() r=self.Y-Y[self.Mask][::self.Incr] v=self.JHy(r) H=self.DiagJHJ() T.timeit("diff") Hinv=killMS.Array.ModLinAlg.invSVD(H) T.timeit("inv") X = self.CurrentX + np.real(np.dot(Hinv,v.reshape((-1,1))).ravel()) xx=self.CurrentX.copy() xx[xx==0]=1e-6 self.Diff=np.max(np.abs((X-xx)/xx)) z0=self.GiveGPredict(self.CurrentX) Norm(z0) self.CurrentX=X z=self.GiveGPredict(self.CurrentX) Norm(z) self.Diff=np.max(np.abs(np.angle(z*z0.conj()))) #print self.Diff return # HinvJH=np.dot(scipy.sparse.coo_matrix(Hinv),J.T.conj()) # T.timeit("HinvJH") # HinvJHy=np.dot(HinvJH,scipy.sparse.coo_matrix(r.reshape((-1,1)))) # T.timeit("HinvJHy") # self.CurrentX+=np.real(np.array(HinvJHy.todense())).ravel() # T.timeit("X") # #self.CurrentX+=np.real(Dot(Hinv,J.T.conj(),r.reshape((-1,1))).ravel()) def setX0(self,x0): self.CurrentX=x0 def findX0(self): NTEC=101 NConstPhase=51 TECGridAmp=0.1 if self.LMode==2: TECGrid,CPhase=np.mgrid[-TECGridAmp:TECGridAmp:NTEC*1j,-np.pi:np.pi:NConstPhase*1j] Z=TECToZ(TECGrid.reshape((-1,1)),CPhase.reshape((-1,1)),self.CentralFreqs.reshape((1,-1))) elif self.LMode==1: TECGrid,CPhase=np.mgrid[-TECGridAmp:TECGridAmp:NTEC*1j],None Z=TECToZ(TECGrid.reshape((-1,1)),CPhase,self.CentralFreqs.reshape((1,-1))) self.Z=Z self.TECGrid,self.CPhase=TECGrid,CPhase self.CurrentX=np.zeros((self.LMode,self.na),np.float32) for iAnt in range(self.na): g=self.G[:,iAnt] g0=g/np.abs(g) W=np.ones(g0.shape,np.float32) W[g==1.]=0 Z=self.Z for iTry in range(5): R=(g0.reshape((1,-1))-Z)*W.reshape((1,-1)) Chi2=np.sum(np.abs(R)**2,axis=1) iTec=np.argmin(Chi2) rBest=R[iTec] if np.max(np.abs(rBest))==0: break Sig=np.sum(np.abs(rBest*W))/np.sum(W) ind=np.where(np.abs(rBest*W)>5.*Sig)[0] if ind.size==0: break W[ind]=0 self.CurrentX[0,iAnt]=self.TECGrid.ravel()[iTec] if "CPhase" in self.Mode: self.CurrentX[1,iAnt]=self.CPhase.ravel()[iTec] self.CurrentX=self.CurrentX.ravel() def Plot(self): z=self.GiveGPredict(self.CurrentX) Norm(z) import pylab pylab.clf() pylab.plot(self.nu,np.angle(self.G),color="black") pylab.plot(self.nu,np.angle(z),color="gray") pylab.draw() pylab.show(False) pylab.pause(0.1) def JHy(self,y): T=ClassTimeIt.ClassTimeIt("JHy") T.disable() v=np.zeros((self.LMode,self.na),np.complex64) for iAnt in range(self.na): v[0,iAnt]+=np.sum(self.J_TEC[self.indA0[iAnt]].conj()*y[self.indA0[iAnt]]) v[0,iAnt]+=np.sum(-self.J_TEC[self.indA1[iAnt]].conj()*y[self.indA1[iAnt]]) if "CPhase" in self.Mode: v[1,iAnt]+=np.sum(self.J_Phase[self.indA0[iAnt]].conj()*y[self.indA0[iAnt]]) v[1,iAnt]+=np.sum(-self.J_Phase[self.indA1[iAnt]].conj()*y[self.indA1[iAnt]]) v=v.ravel() T.timeit("Prod") # PSparse=np.array(np.dot(self.J.T.conj(),scipy.sparse.coo_matrix(y.reshape((-1,1)))).todense()).ravel() # T.timeit("PSparse") return v def DiagJHJ(self): T=ClassTimeIt.ClassTimeIt("JHy") T.disable() H=np.zeros((self.LMode,self.na,self.LMode,self.na),np.complex64) for iAnt in range(self.na): #Jt[self.indA0[iAnt],iAnt]=J_TEC[self.indA0[iAnt]] #Jt[self.indA1[iAnt],iAnt]=-J_TEC[self.indA1[iAnt]] H[0,iAnt,0,iAnt]+=np.sum(self.J_TEC[self.indA0[iAnt]].conj()*self.J_TEC[self.indA0[iAnt]]) H[0,iAnt,0,iAnt]+=np.sum(self.J_TEC[self.indA1[iAnt]].conj()*self.J_TEC[self.indA1[iAnt]]) if "CPhase" in self.Mode: H[0,iAnt,1,iAnt]+=np.sum(self.J_TEC[self.indA0[iAnt]].conj()*self.J_Phase[self.indA0[iAnt]]) H[0,iAnt,1,iAnt]+=np.sum(self.J_TEC[self.indA1[iAnt]].conj()*self.J_Phase[self.indA1[iAnt]]) H[1,iAnt,0,iAnt]+=np.sum(self.J_Phase[self.indA0[iAnt]].conj()*self.J_TEC[self.indA0[iAnt]]) H[1,iAnt,0,iAnt]+=np.sum(self.J_Phase[self.indA1[iAnt]].conj()*self.J_TEC[self.indA1[iAnt]]) H[1,iAnt,1,iAnt]+=np.sum(self.J_Phase[self.indA0[iAnt]].conj()*self.J_Phase[self.indA0[iAnt]]) H[1,iAnt,1,iAnt]+=np.sum(self.J_Phase[self.indA1[iAnt]].conj()*self.J_Phase[self.indA1[iAnt]]) T.timeit("H") H=H.reshape((self.LMode*self.na,self.LMode*self.na)) return H A=np.log10(np.abs(self.H)) B=np.log10(np.abs(H)) vmin,vmax=A.min(),A.max() import pylab pylab.clf() pylab.subplot(1,2,1) pylab.imshow(A,interpolation="nearest",vmin=vmin,vmax=vmax) pylab.colorbar() pylab.subplot(1,2,2) pylab.imshow(B,interpolation="nearest",vmin=vmin,vmax=vmax) pylab.colorbar() pylab.draw() pylab.show(False) stop return H def giveJacobianHessian(self): T=ClassTimeIt.ClassTimeIt("J") J=np.zeros((self.Y.size,self.na*2),np.complex64) Jt=J[:,0:self.na] Jc=J[:,self.na:] TEC=self.CurrentX[0:self.na] dTEC=TEC[self.A0]-TEC[self.A1] if "CPhase" in self.Mode: ConstPhase=self.CurrentX[self.na:] dConstPhase=ConstPhase[self.A0]-ConstPhase[self.A1] else: dConstPhase=0 Phase=K/self.nu_Y*dTEC+dConstPhase Z=np.exp(1j*Phase) self.J_TEC=J_TEC=1j*K/self.nu_Y*Z self.J_Phase=J_Phase=1j*Z return T.timeit("first") for iAnt in range(self.na): Jt[self.indA0[iAnt],iAnt]=J_TEC[self.indA0[iAnt]] Jt[self.indA1[iAnt],iAnt]=-J_TEC[self.indA1[iAnt]] Jc[self.indA0[iAnt],iAnt]=J_Phase[self.indA0[iAnt]] Jc[self.indA1[iAnt],iAnt]=-J_Phase[self.indA1[iAnt]] T.timeit("build") self.J=J self.Jsp=Jsp=scipy.sparse.coo_matrix(J) T.timeit("sp") # import pylab # pylab.clf() # pylab.subplot(1,2,1) # pylab.imshow(Jt.real,interpolation="nearest",aspect="auto") # pylab.subplot(1,2,2) # pylab.imshow(Jc.real,interpolation="nearest",aspect="auto") # pylab.draw() # pylab.show(False) # stop #print np.count_nonzero(J)/float(J.size) T.timeit("prod") H=np.array(np.dot(Jsp.T.conj(),Jsp).todense()) self.H=H T.timeit("Hsp") return J,H # import numpy as np # from DDFacet.Other import logger # log=logger.getLogger("ClassFitTEC") # import killMS.Array.ModLinAlg # K=8.4479745e9 # import scipy.sparse # from DDFacet.Other import ClassTimeIt # logger.setSilent(["ClassFitTEC"]) # def TECToPhase(TEC,freq): # phase=K*TEC*(1./freq) # return phase # def TECToZ(TEC,ConstPhase,freq): # return np.exp(1j*(TECToPhase(TEC,freq)+ConstPhase)) # def Dot(*args): # P=1. # for M in args: # #P=np.dot(np.complex128(P),np.complex128(M)) # P=np.dot(P,M) # return P # # it=208; iDir=14; S=np.load("L229509_merged.npz"); G=S["Sols"]["G"][it,:,:,iDir,0,0]; f=S["FreqDomains"].mean(axis=1) # def Norm(G,iRef=0): # nf,na=G.shape # for iFreq in range(nf): # g0=G[iFreq,iRef] # G[iFreq]*=g0.conj()/np.abs(g0) # def test(G,f): # # nf,na=G.shape # # #na=3 # # t=np.random.randn(na)*0.01 # # c=np.random.randn(na)*np.pi/10 # # G=TECToZ(t.reshape((1,-1)),c.reshape((1,-1)),f.reshape((-1,1))) # TECMachine=ClassFitTEC(G,f) # #TECMachine.DoFit() # TECMachine.findX0() # TECMachine.doFit() # class ClassFitTEC(): # def __init__(self,gains,nu,Tol=5e-2,Incr=1): # self.nf,self.na=gains.shape # self.G=gains.copy() # Norm(self.G) # self.Tol=Tol # self.G/=np.abs(self.G) # self.CentralFreqs=self.nu=nu # self.NFreq=nu.size # na=self.na # self.nbl=(na**2-na)/2 # self.CurrentX=None # log.print("Number of Antennas: %i"%self.na) # log.print("Number of Freqs: %i"%nu.size) # log.print("Number of Points: %i"%(nu.size*self.na**2)) # self.Y=np.array([(self.G[iFreq].reshape((-1,1))*self.G[iFreq].conj().reshape((1,-1))).ravel() for iFreq in range(self.NFreq)]).ravel() # self.nu_Y=np.array([(self.nu[iFreq]*np.ones((self.na,self.na)).ravel()) for iFreq in range(self.NFreq)]).ravel() # self.A0=np.array([(np.mgrid[0:na:1,0:na:1][0]).ravel() for iFreq in range(self.NFreq)]).ravel() # self.A1=np.array([(np.mgrid[0:na:1,0:na:1][1]).ravel() for iFreq in range(self.NFreq)]).ravel() # self.Incr=Incr # Mask=np.where(self.A1>self.A0)[0] # self.Mask=Mask # self.Y=self.Y[Mask][::self.Incr] # self.nu_Y=self.nu_Y[Mask][::self.Incr] # self.A0=self.A0[Mask][::self.Incr] # self.A1=self.A1[Mask][::self.Incr] # self.x0=None # self.indA0=[np.where(self.A0==iAnt)[0] for iAnt in range(na)] # self.indA1=[np.where(self.A1==iAnt)[0] for iAnt in range(na)] # def doFit(self,NIter=100): # if self.x0 is None and self.CurrentX is None: # self.CurrentX=np.zeros((2*self.na,),np.float32)+1e-10 # #self.CurrentX=np.random.randn(2*self.na) # self.Current_iIter=0 # for iIter in range(NIter): # self.doLMIter() # #self.Plot() # self.Current_iIter=iIter # if self.Diff<self.Tol: # log.print("Convergence in %i steps"%(iIter+1)) # break # return self.CurrentX # def GiveGPredict(self,X): # t=X[0:self.na].reshape((1,-1)) # c=X[self.na:].reshape((1,-1)) # z=TECToZ(t,c,self.nu.reshape((-1,1))) # return z # def doLMIter(self): # T=ClassTimeIt.ClassTimeIt() # T.disable() # #J,H= # self.giveJacobianHessian() # T.timeit("J, H") # z=self.GiveGPredict(self.CurrentX) # Y=np.array([(z[iFreq].reshape((-1,1))*z[iFreq].conj().reshape((1,-1))).ravel() for iFreq in range(self.NFreq)]).ravel() # r=self.Y-Y[self.Mask][::self.Incr] # v=self.JHy(r) # H=self.DiagJHJ() # T.timeit("diff") # Hinv=killMS.Array.ModLinAlg.invSVD(H) # T.timeit("inv") # X = self.CurrentX + np.real(np.dot(Hinv,v.reshape((-1,1))).ravel()) # #print self.CurrentX # xx=self.CurrentX.copy() # xx[xx==0]=1e-6 # self.Diff=np.max(np.abs((X-xx)/xx)) # z0=self.GiveGPredict(self.CurrentX) # Norm(z0) # self.CurrentX=X # z=self.GiveGPredict(self.CurrentX) # Norm(z) # self.Diff=np.max(np.abs(np.angle(z*z0.conj()))) # #print self.Diff # return # # HinvJH=np.dot(scipy.sparse.coo_matrix(Hinv),J.T.conj()) # # T.timeit("HinvJH") # # HinvJHy=np.dot(HinvJH,scipy.sparse.coo_matrix(r.reshape((-1,1)))) # # T.timeit("HinvJHy") # # self.CurrentX+=np.real(np.array(HinvJHy.todense())).ravel() # # T.timeit("X") # # #self.CurrentX+=np.real(Dot(Hinv,J.T.conj(),r.reshape((-1,1))).ravel()) # def setX0(self,x0): # self.CurrentX=x0 # def findX0(self): # NTEC=101 # NConstPhase=51 # TECGridAmp=0.1 # TECGrid,CPhase=np.mgrid[-TECGridAmp:TECGridAmp:NTEC*1j,-np.pi:np.pi:NConstPhase*1j] # Z=TECToZ(TECGrid.reshape((-1,1)),CPhase.reshape((-1,1)),self.CentralFreqs.reshape((1,-1))) # self.Z=Z # self.TECGrid,self.CPhase=TECGrid,CPhase # self.CurrentX=np.zeros((2,self.na),np.float32) # for iAnt in range(self.na): # g=self.G[:,iAnt] # g0=g/np.abs(g) # W=np.ones(g0.shape,np.float32) # W[g==1.]=0 # Z=self.Z # for iTry in range(5): # R=(g0.reshape((1,-1))-Z)*W.reshape((1,-1)) # Chi2=np.sum(np.abs(R)**2,axis=1) # iTec=np.argmin(Chi2) # rBest=R[iTec] # if np.max(np.abs(rBest))==0: break # Sig=np.sum(np.abs(rBest*W))/np.sum(W) # ind=np.where(np.abs(rBest*W)>5.*Sig)[0] # if ind.size==0: break # W[ind]=0 # self.CurrentX[0,iAnt]=self.TECGrid.ravel()[iTec] # self.CurrentX[1,iAnt]=self.TECGrid.ravel()[iTec] # self.CurrentX=self.CurrentX.ravel() # def Plot(self): # z=self.GiveGPredict(self.CurrentX) # Norm(z) # import pylab # pylab.clf() # pylab.plot(self.nu,np.angle(self.G),color="black") # pylab.plot(self.nu,np.angle(z),color="gray") # pylab.draw() # pylab.show(False) # pylab.pause(0.1) # def JHy(self,y): # T=ClassTimeIt.ClassTimeIt("JHy") # T.disable() # v=np.zeros((2,self.na),np.complex64) # for iAnt in range(self.na): # v[0,iAnt]+=np.sum(self.J_TEC[self.indA0[iAnt]].conj()*y[self.indA0[iAnt]]) # v[0,iAnt]+=np.sum(-self.J_TEC[self.indA1[iAnt]].conj()*y[self.indA1[iAnt]]) # v[1,iAnt]+=np.sum(self.J_Phase[self.indA0[iAnt]].conj()*y[self.indA0[iAnt]]) # v[1,iAnt]+=np.sum(-self.J_Phase[self.indA1[iAnt]].conj()*y[self.indA1[iAnt]]) # v=v.ravel() # T.timeit("Prod") # # PSparse=np.array(np.dot(self.J.T.conj(),scipy.sparse.coo_matrix(y.reshape((-1,1)))).todense()).ravel() # # T.timeit("PSparse") # return v # def DiagJHJ(self): # T=ClassTimeIt.ClassTimeIt("JHy") # T.disable() # H=np.zeros((2,self.na,2,self.na),np.complex64) # for iAnt in range(self.na): # #Jt[self.indA0[iAnt],iAnt]=J_TEC[self.indA0[iAnt]] # #Jt[self.indA1[iAnt],iAnt]=-J_TEC[self.indA1[iAnt]] # H[0,iAnt,0,iAnt]+=np.sum(self.J_TEC[self.indA0[iAnt]].conj()*self.J_TEC[self.indA0[iAnt]]) # H[0,iAnt,0,iAnt]+=np.sum(self.J_TEC[self.indA1[iAnt]].conj()*self.J_TEC[self.indA1[iAnt]]) # H[0,iAnt,1,iAnt]+=np.sum(self.J_TEC[self.indA0[iAnt]].conj()*self.J_Phase[self.indA0[iAnt]]) # H[0,iAnt,1,iAnt]+=np.sum(self.J_TEC[self.indA1[iAnt]].conj()*self.J_Phase[self.indA1[iAnt]]) # H[1,iAnt,0,iAnt]+=np.sum(self.J_Phase[self.indA0[iAnt]].conj()*self.J_TEC[self.indA0[iAnt]]) # H[1,iAnt,0,iAnt]+=np.sum(self.J_Phase[self.indA1[iAnt]].conj()*self.J_TEC[self.indA1[iAnt]]) # H[1,iAnt,1,iAnt]+=np.sum(self.J_Phase[self.indA0[iAnt]].conj()*self.J_Phase[self.indA0[iAnt]]) # H[1,iAnt,1,iAnt]+=np.sum(self.J_Phase[self.indA1[iAnt]].conj()*self.J_Phase[self.indA1[iAnt]]) # T.timeit("H") # H=H.reshape((2*self.na,2*self.na)) # return H # A=np.log10(np.abs(self.H)) # B=np.log10(np.abs(H)) # vmin,vmax=A.min(),A.max() # import pylab # pylab.clf() # pylab.subplot(1,2,1) # pylab.imshow(A,interpolation="nearest",vmin=vmin,vmax=vmax) # pylab.colorbar() # pylab.subplot(1,2,2) # pylab.imshow(B,interpolation="nearest",vmin=vmin,vmax=vmax) # pylab.colorbar() # pylab.draw() # pylab.show(False) # stop # return H # def giveJacobianHessian(self): # T=ClassTimeIt.ClassTimeIt("J") # J=np.zeros((self.Y.size,self.na*2),np.complex64) # Jt=J[:,0:self.na] # Jc=J[:,self.na:] # TEC=self.CurrentX[0:self.na] # ConstPhase=self.CurrentX[self.na:] # self.A0,self.A1 # dTEC=TEC[self.A0]-TEC[self.A1] # dConstPhase=ConstPhase[self.A0]-ConstPhase[self.A1] # Phase=K/self.nu_Y*dTEC+dConstPhase # Z=np.exp(1j*Phase) # self.J_TEC=J_TEC=1j*K/self.nu_Y*Z # self.J_Phase=J_Phase=1j*Z # return # T.timeit("first") # for iAnt in range(self.na): # Jt[self.indA0[iAnt],iAnt]=J_TEC[self.indA0[iAnt]] # Jt[self.indA1[iAnt],iAnt]=-J_TEC[self.indA1[iAnt]] # Jc[self.indA0[iAnt],iAnt]=J_Phase[self.indA0[iAnt]] # Jc[self.indA1[iAnt],iAnt]=-J_Phase[self.indA1[iAnt]] # T.timeit("build") # self.J=J # self.Jsp=Jsp=scipy.sparse.coo_matrix(J) # T.timeit("sp") # # import pylab # # pylab.clf() # # pylab.subplot(1,2,1) # # pylab.imshow(Jt.real,interpolation="nearest",aspect="auto") # # pylab.subplot(1,2,2) # # pylab.imshow(Jc.real,interpolation="nearest",aspect="auto") # # pylab.draw() # # pylab.show(False) # # stop # #print np.count_nonzero(J)/float(J.size) # T.timeit("prod") # H=np.array(np.dot(Jsp.T.conj(),Jsp).todense()) # self.H=H # T.timeit("Hsp") # return J,H
saopiccREPO_NAMEkillMSPATH_START.@killMS_extracted@killMS-master@killMS@Other@ClassFitTEC.py@.PATH_END.py
{ "filename": "plot_c_fitting.ipynb", "repo_name": "jpierel14/sntd", "repo_path": "sntd_extracted/sntd-master/docs/source/examples/plot_c_fitting.ipynb", "type": "Jupyter Notebook" }
```python %matplotlib inline ``` # Measure Time Delays A series of examples demonstrating various fitting options/features with SNTD. There are 3 methods built into SNTD to measure time delays (parallel, series, color). They are accessed by the same function: :py:func:`~sntd.fitting.fit_data` . Here ``myMISN`` was generated in the `sphx_glr_examples_plot_b_sim.py` part of the documentation, using the :py:func:`~sntd.simulation.createMultiplyImagedSN` function. The true delay for all of these fits is 50 days. You can batch process (with sbatch or multiprocessing) using any or all of these methods as well (see `examples:Batch Processing Time Delay Measurements`) ## `Run this notebook with Google Colab <https://colab.research.google.com/github/jpierel14/sntd/blob/master/notebooks/docs_fitting.ipynb>`_. **Parallel:** ```python import sntd myMISN=sntd.load_example_misn() fitCurves=sntd.fit_data(myMISN,snType='Ia', models='salt2-extended',bands=['F110W','F160W'], params=['x0','t0','x1','c'],constants={'z':1.4},refImage='image_1',cut_time=[-30,40], bounds={'t0':(-20,20),'x1':(-2,2),'c':(-1,1),'mu':(.5,2)},fitOrder=['image_1','image_2'], method='parallel',microlensing=None,modelcov=False,npoints=100) print(fitCurves.parallel.time_delays) print(fitCurves.parallel.time_delay_errors) print(fitCurves.parallel.magnifications) print(fitCurves.parallel.magnification_errors) fitCurves.plot_object(showFit=True,method='parallel') fitCurves.plot_fit(method='parallel',par_image='image_1') fitCurves.plot_fit(method='parallel',par_image='image_2') ``` Note that the bounds for the 't0' parameter are not absolute, the actual peak time will be estimated (unless t0_guess is defined) and the defined bounds will be added to this value. Similarly for amplitude, where bounds are multiplicative Other methods are called in a similar fashion, with a couple of extra arguments: **Series:** ```python fitCurves=sntd.fit_data(myMISN,snType='Ia', models='salt2-extended',bands=['F110W','F160W'], params=['x0','t0','x1','c'],constants={'z':1.4},refImage='image_1',cut_time=[-30,40], bounds={'t0':(-20,20),'td':(-20,20),'mu':(.5,2),'x1':(-2,2),'c':(-.5,.5)}, method='series',npoints=100) print(fitCurves.series.time_delays) print(fitCurves.series.time_delay_errors) print(fitCurves.series.magnifications) print(fitCurves.series.magnification_errors) fitCurves.plot_object(showFit=True,method='series') fitCurves.plot_fit(method='series') ``` **Color:** By default, this will attempt to fit every combination of colors possible from the bands present in the data. You can define specific colors using the "fit_colors" argument. ```python fitCurves=sntd.fit_data(myMISN,snType='Ia', models='salt2-extended',bands=['F110W','F160W'], params=['t0','c'],constants={'z':1.4,'x1':fitCurves.images['image_1'].fits.model.get('x1')},refImage='image_1', color_param_ignore=['x1'],bounds={'t0':(-20,20),'td':(-20,20),'mu':(.5,2),'c':(-.5,.5)},cut_time=[-30,40], method='color',microlensing=None,modelcov=False,npoints=200,maxiter=None,minsnr=3) print(fitCurves.color.time_delays) print(fitCurves.color.time_delay_errors) fitCurves.plot_object(showFit=True,method='color') fitCurves.plot_fit(method='color') ``` You can include your fit from the parallel method as a prior on light curve and time delay parameters in the series/color methods with the "fit_prior" command: ```python fitCurves_parallel=sntd.fit_data(myMISN,snType='Ia', models='salt2-extended',bands=['F110W','F160W'], params=['x0','t0','x1','c'],constants={'z':1.4},refImage='image_1', bounds={'t0':(-20,20),'x1':(-3,3),'c':(-.5,.5),'mu':(.5,2)},fitOrder=['image_1','image_2'],cut_time=[-30,40], method='parallel',microlensing=None,modelcov=False,npoints=100,maxiter=None) fitCurves_color=sntd.fit_data(myMISN,snType='Ia', models='salt2-extended',bands=['F110W','F160W'],cut_time=[-50,30], params=['t0','c'],constants={'z':1.4,'x1':fitCurves.images['image_1'].fits.model.get('x1')},refImage='image_1', bounds={'t0':(-20,20),'td':(-20,20),'mu':(.5,2),'c':(-.5,.5)},fit_prior=fitCurves_parallel, method='color',microlensing=None,modelcov=False,npoints=200,maxiter=None,minsnr=3) print(fitCurves_parallel.parallel.time_delays) print(fitCurves_parallel.parallel.time_delay_errors) print(fitCurves_color.color.time_delays) print(fitCurves_color.color.time_delay_errors) ``` **Fitting Using Extra Propagation Effects** You might also want to include other propagation effects in your fitting model, and fit relevant parameters. This can be done by simply adding effects to an SNCosmo model, in the same way as if you were fitting a single SN with SNCosmo. First we can add some extreme dust in the source and lens frames (your final simulations may look slightly different as **c** is chosen randomly): ```python myMISN2 = sntd.createMultiplyImagedSN(sourcename='salt2-extended', snType='Ia', redshift=1.4,z_lens=.53, bands=['F110W','F160W'], zp=[26.9,26.2], cadence=8., epochs=30.,time_delays=[20., 70.], magnifications=[20,10], objectName='My Type Ia SN',telescopename='HST',av_lens=1.5, av_host=1) print('lensebv:',myMISN2.images['image_1'].simMeta['lensebv'], 'hostebv:',myMISN2.images['image_1'].simMeta['hostebv'], 'c:',myMISN2.images['image_1'].simMeta['c']) ``` Okay, now we can fit the MISN first without taking these effects into account: ```python fitCurves_dust=sntd.fit_data(myMISN2,snType='Ia', models='salt2-extended',bands=['F110W','F160W'], params=['x0','x1','t0','c'],npoints=200, constants={'z':1.4},minsnr=1,cut_time=[-30,40], bounds={'t0':(-15,15),'x1':(-3,3),'c':(-1,1)}) print(fitCurves_dust.parallel.time_delays) print(fitCurves_dust.parallel.time_delay_errors) print('c:',fitCurves_dust.images['image_1'].fits.model.get('c')) fitCurves_dust.plot_object(showFit=True) ``` We can see that the fitter has done reasonably well, and the time delay is still accurate (True delay is 50 days). However, one issue is that the measured value for **c** is vastly different than the actual value as it attempts to compensate for extinction without a propagation effect. Now let's add in the propagation effects: ```python import sncosmo dust = sncosmo.CCM89Dust() salt2_model=sncosmo.Model('salt2-extended',effects=[dust,dust],effect_names=['lens','host'],effect_frames=['free','rest']) fitCurves_dust=sntd.fit_data(myMISN2,snType='Ia', models=salt2_model,bands=['F110W','F160W'],npoints=200, params=['x0','x1','t0','c','lensebv','hostebv'],minsnr=1,cut_time=[-30,40], constants={'z':1.4,'lensr_v':3.1,'lensz':0.53,'hostr_v':3.1}, bounds={'t0':(-15,15),'x1':(-3,3),'c':(-.1,.1),'lensebv':(.2,1.),'hostebv':(.2,1.)}) print(fitCurves_dust.parallel.time_delays) print(fitCurves_dust.parallel.time_delay_errors) print('c:',fitCurves_dust.images['image_1'].fits.model.get('c'), 'lensebv:',fitCurves_dust.images['image_1'].fits.model.get('lensebv'), 'hostebv:',fitCurves_dust.images['image_1'].fits.model.get('hostebv')) fitCurves_dust.plot_object(showFit=True) ``` Now the measured value for **c** is much closer to reality, and the measured times of peak are somewhat more accurate.
jpierel14REPO_NAMEsntdPATH_START.@sntd_extracted@sntd-master@docs@source@examples@plot_c_fitting.ipynb@.PATH_END.py
{ "filename": "_z.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/layout/scene/camera/eye/_z.py", "type": "Python" }
import _plotly_utils.basevalidators class ZValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="z", parent_name="layout.scene.camera.eye", **kwargs ): super(ZValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "camera"), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@layout@scene@camera@eye@_z.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "adrn/gala", "repo_path": "gala_extracted/gala-main/gala/potential/frame/tests/__init__.py", "type": "Python" }
adrnREPO_NAMEgalaPATH_START.@gala_extracted@gala-main@gala@potential@frame@tests@__init__.py@.PATH_END.py
{ "filename": "units.py", "repo_name": "gammapy/gammapy", "repo_path": "gammapy_extracted/gammapy-main/gammapy/utils/units.py", "type": "Python" }
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Units and Quantity related helper functions.""" import logging from math import floor import numpy as np import astropy.units as u __all__ = ["standardise_unit", "unit_from_fits_image_hdu"] log = logging.getLogger(__name__) def standardise_unit(unit): """Standardise unit. Changes applied by this function: * Drop "photon" == "ph" from the unit * Drop "count" == "ct" from the unit Parameters ---------- unit : `~astropy.units.Unit` or str Any old unit. Returns ------- unit : `~astropy.units.Unit` Shiny new, standardised unit. Examples -------- >>> from gammapy.utils.units import standardise_unit >>> standardise_unit('ph cm-2 s-1') Unit("1 / (s cm2)") >>> standardise_unit('ct cm-2 s-1') Unit("1 / (s cm2)") >>> standardise_unit('cm-2 s-1') Unit("1 / (s cm2)") """ unit = u.Unit(unit) bases, powers = [], [] for base, power in zip(unit.bases, unit.powers): if str(base) not in {"ph", "ct"}: bases.append(base) powers.append(power) return u.CompositeUnit(scale=unit.scale, bases=bases, powers=powers) def unit_from_fits_image_hdu(header): """Read unit from a FITS image HDU. - The ``BUNIT`` key is used. - `astropy.units.Unit` is called. If the ``BUNIT`` value is invalid, a log warning is emitted and the empty unit is used. - `standardise_unit` is called """ unit = header.get("BUNIT", "") try: u.Unit(unit) except ValueError: log.warning(f"Invalid value BUNIT={unit!r} in FITS header. Setting empty unit.") unit = "" return standardise_unit(unit) def energy_unit_format(E): """Format energy quantities to a string representation that is more comfortable to read. This is done by switching to the most relevant unit (keV, MeV, GeV, TeV) and changing the float precision. Parameters ---------- E: `~astropy.units.Quantity` Quantity or list of quantities. Returns ------- str : str A string or tuple of strings with energy unit formatted. """ try: iter(E) except TypeError: pass else: return tuple(map(energy_unit_format, E)) i = floor(np.log10(E.to_value(u.eV)) / 3) # a new unit every 3 decades unit = (u.eV, u.keV, u.MeV, u.GeV, u.TeV, u.PeV)[i] if i < 5 else u.PeV v = E.to_value(unit) i = floor(np.log10(v)) prec = (2, 1, 0)[i] if i < 3 else 0 return f"{v:0.{prec}f} {unit}"
gammapyREPO_NAMEgammapyPATH_START.@gammapy_extracted@gammapy-main@gammapy@utils@units.py@.PATH_END.py
{ "filename": "clova.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/community/langchain_community/embeddings/clova.py", "type": "Python" }
from __future__ import annotations from typing import Any, Dict, List, Optional, cast import requests from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env from pydantic import BaseModel, ConfigDict, SecretStr, model_validator @deprecated( since="0.3.4", removal="1.0.0", alternative_import="langchain_community.ClovaXEmbeddings", ) class ClovaEmbeddings(BaseModel, Embeddings): """ Clova's embedding service. To use this service, you should have the following environment variables set with your API tokens and application ID, or pass them as named parameters to the constructor: - ``CLOVA_EMB_API_KEY``: API key for accessing Clova's embedding service. - ``CLOVA_EMB_APIGW_API_KEY``: API gateway key for enhanced security. - ``CLOVA_EMB_APP_ID``: Application ID for identifying your application. Example: .. code-block:: python from langchain_community.embeddings import ClovaEmbeddings embeddings = ClovaEmbeddings( clova_emb_api_key='your_clova_emb_api_key', clova_emb_apigw_api_key='your_clova_emb_apigw_api_key', app_id='your_app_id' ) query_text = "This is a test query." query_result = embeddings.embed_query(query_text) document_text = "This is a test document." document_result = embeddings.embed_documents([document_text]) """ endpoint_url: str = ( "https://clovastudio.apigw.ntruss.com/testapp/v1/api-tools/embedding" ) """Endpoint URL to use.""" model: str = "clir-emb-dolphin" """Embedding model name to use.""" clova_emb_api_key: Optional[SecretStr] = None """API key for accessing Clova's embedding service.""" clova_emb_apigw_api_key: Optional[SecretStr] = None """API gateway key for enhanced security.""" app_id: Optional[SecretStr] = None """Application ID for identifying your application.""" model_config = ConfigDict( extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate api key exists in environment.""" values["clova_emb_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "clova_emb_api_key", "CLOVA_EMB_API_KEY") ) values["clova_emb_apigw_api_key"] = convert_to_secret_str( get_from_dict_or_env( values, "clova_emb_apigw_api_key", "CLOVA_EMB_APIGW_API_KEY" ) ) values["app_id"] = convert_to_secret_str( get_from_dict_or_env(values, "app_id", "CLOVA_EMB_APP_ID") ) return values def embed_documents(self, texts: List[str]) -> List[List[float]]: """ Embed a list of texts and return their embeddings. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = [] for text in texts: embeddings.append(self._embed_text(text)) return embeddings def embed_query(self, text: str) -> List[float]: """ Embed a single query text and return its embedding. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embed_text(text) def _embed_text(self, text: str) -> List[float]: """ Internal method to call the embedding API and handle the response. """ payload = {"text": text} # HTTP headers for authorization headers = { "X-NCP-CLOVASTUDIO-API-KEY": cast( SecretStr, self.clova_emb_api_key ).get_secret_value(), "X-NCP-APIGW-API-KEY": cast( SecretStr, self.clova_emb_apigw_api_key ).get_secret_value(), "Content-Type": "application/json", } # send request app_id = cast(SecretStr, self.app_id).get_secret_value() response = requests.post( f"{self.endpoint_url}/{self.model}/{app_id}", headers=headers, json=payload, ) # check for errors if response.status_code == 200: response_data = response.json() if "result" in response_data and "embedding" in response_data["result"]: return response_data["result"]["embedding"] raise ValueError( f"API request failed with status {response.status_code}: {response.text}" )
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@langchain_community@embeddings@clova.py@.PATH_END.py
{ "filename": "noxfile.py", "repo_name": "cosmicrays/hermes", "repo_path": "hermes_extracted/hermes-master/lib/pybind11/noxfile.py", "type": "Python" }
import os import nox nox.needs_version = ">=2022.1.7" nox.options.sessions = ["lint", "tests", "tests_packaging"] PYTHON_VERSIONS = [ "3.6", "3.7", "3.8", "3.9", "3.10", "3.11", "pypy3.7", "pypy3.8", "pypy3.9", ] if os.environ.get("CI", None): nox.options.error_on_missing_interpreters = True @nox.session(reuse_venv=True) def lint(session: nox.Session) -> None: """ Lint the codebase (except for clang-format/tidy). """ session.install("pre-commit") session.run("pre-commit", "run", "-a", *session.posargs) @nox.session(python=PYTHON_VERSIONS) def tests(session: nox.Session) -> None: """ Run the tests (requires a compiler). """ tmpdir = session.create_tmp() session.install("cmake") session.install("-r", "tests/requirements.txt") session.run( "cmake", "-S.", f"-B{tmpdir}", "-DPYBIND11_WERROR=ON", "-DDOWNLOAD_CATCH=ON", "-DDOWNLOAD_EIGEN=ON", *session.posargs, ) session.run("cmake", "--build", tmpdir) session.run("cmake", "--build", tmpdir, "--config=Release", "--target", "check") @nox.session def tests_packaging(session: nox.Session) -> None: """ Run the packaging tests. """ session.install("-r", "tests/requirements.txt") session.run("pytest", "tests/extra_python_package", *session.posargs) @nox.session(reuse_venv=True) def docs(session: nox.Session) -> None: """ Build the docs. Pass "serve" to serve. """ session.install("-r", "docs/requirements.txt") session.chdir("docs") if "pdf" in session.posargs: session.run("sphinx-build", "-M", "latexpdf", ".", "_build") return session.run("sphinx-build", "-M", "html", ".", "_build") if "serve" in session.posargs: session.log("Launching docs at http://localhost:8000/ - use Ctrl-C to quit") session.run("python", "-m", "http.server", "8000", "-d", "_build/html") elif session.posargs: session.error("Unsupported argument to docs") @nox.session(reuse_venv=True) def make_changelog(session: nox.Session) -> None: """ Inspect the closed issues and make entries for a changelog. """ session.install("ghapi", "rich") session.run("python", "tools/make_changelog.py") @nox.session(reuse_venv=True) def build(session: nox.Session) -> None: """ Build SDists and wheels. """ session.install("build") session.log("Building normal files") session.run("python", "-m", "build", *session.posargs) session.log("Building pybind11-global files (PYBIND11_GLOBAL_SDIST=1)") session.run( "python", "-m", "build", *session.posargs, env={"PYBIND11_GLOBAL_SDIST": "1"} )
cosmicraysREPO_NAMEhermesPATH_START.@hermes_extracted@hermes-master@lib@pybind11@noxfile.py@.PATH_END.py
{ "filename": "1-bug_report.md", "repo_name": "LSSTDESC/rail", "repo_path": "rail_extracted/rail-main/.github/ISSUE_TEMPLATE/1-bug_report.md", "type": "Markdown" }
--- name: Bug report about: Tell us about a problem to fix title: 'Short description' labels: 'bug' assignees: '' --- **Bug report** **Before submitting** Please check the following: - [ ] I have described the situation in which the bug arose, including what code was executed, information about my environment, and any applicable data others will need to reproduce the problem. - [ ] I have included available evidence of the unexpected behavior (including error messages, screenshots, and/or plots) as well as a descriprion of what I expected instead. - [ ] If I have a solution in mind, I have provided an explanation and/or pseudocode and/or task list.
LSSTDESCREPO_NAMErailPATH_START.@rail_extracted@rail-main@.github@ISSUE_TEMPLATE@1-bug_report.md@.PATH_END.py
{ "filename": "spectra.py", "repo_name": "gammapy/gammapy", "repo_path": "gammapy_extracted/gammapy-main/gammapy/astro/darkmatter/spectra.py", "type": "Python" }
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Dark matter spectra.""" import numpy as np import astropy.units as u from astropy.table import Table from gammapy.maps import Map, MapAxis, RegionGeom from gammapy.modeling import Parameter from gammapy.modeling.models import SpectralModel, TemplateNDSpectralModel from gammapy.utils.scripts import make_path __all__ = ["PrimaryFlux", "DarkMatterAnnihilationSpectralModel"] class PrimaryFlux(TemplateNDSpectralModel): """DM-annihilation gamma-ray spectra. Based on the precomputed models by Cirelli et al. (2016). All available annihilation channels can be found there. The dark matter mass will be set to the nearest available value. The spectra will be available as `~gammapy.modeling.models.TemplateNDSpectralModel` for a chosen dark matter mass and annihilation channel. Using a `~gammapy.modeling.models.TemplateNDSpectralModel` allows the interpolation between different dark matter masses. Parameters ---------- mDM : `~astropy.units.Quantity` Dark matter particle mass as rest mass energy. channel: str Annihilation channel. List available channels with `~gammapy.spectrum.PrimaryFlux.allowed_channels`. References ---------- * `2011JCAP...03..051 <https://ui.adsabs.harvard.edu/abs/2011JCAP...03..051C>`_ * Cirelli et al (2016): http://www.marcocirelli.net/PPPC4DMID.html """ channel_registry = { "eL": "eL", "eR": "eR", "e": "e", "muL": r"\[Mu]L", "muR": r"\[Mu]R", "mu": r"\[Mu]", "tauL": r"\[Tau]L", "tauR": r"\[Tau]R", "tau": r"\[Tau]", "q": "q", "c": "c", "b": "b", "t": "t", "WL": "WL", "WT": "WT", "W": "W", "ZL": "ZL", "ZT": "ZT", "Z": "Z", "g": "g", "gamma": r"\[Gamma]", "h": "h", "nu_e": r"\[Nu]e", "nu_mu": r"\[Nu]\[Mu]", "nu_tau": r"\[Nu]\[Tau]", "V->e": "V->e", "V->mu": r"V->\[Mu]", "V->tau": r"V->\[Tau]", } table_filename = "$GAMMAPY_DATA/dark_matter_spectra/AtProduction_gammas.dat" tag = ["PrimaryFlux", "dm-pf"] def __init__(self, mDM, channel): self.table_path = make_path(self.table_filename) if not self.table_path.exists(): raise FileNotFoundError( f"\n\nFile not found: {self.table_filename}\n" "You may download the dataset needed with the following command:\n" "gammapy download datasets --src dark_matter_spectra" ) else: self.table = Table.read( str(self.table_path), format="ascii.fast_basic", guess=False, delimiter=" ", ) self.channel = channel # create RegionNDMap for channel masses = np.unique(self.table["mDM"]) log10x = np.unique(self.table["Log[10,x]"]) mass_axis = MapAxis.from_nodes(masses, name="mass", interp="log", unit="GeV") log10x_axis = MapAxis.from_nodes(log10x, name="energy_true") channel_name = self.channel_registry[self.channel] geom = RegionGeom(region=None, axes=[log10x_axis, mass_axis]) region_map = Map.from_geom( geom=geom, data=self.table[channel_name].reshape(geom.data_shape) ) interp_kwargs = {"extrapolate": True, "fill_value": 0, "values_scale": "lin"} super().__init__(region_map, interp_kwargs=interp_kwargs) self.mDM = mDM self.mass.frozen = True @property def mDM(self): """Dark matter mass.""" return u.Quantity(self.mass.value, "GeV") @mDM.setter def mDM(self, mDM): unit = self.mass.unit _mDM = u.Quantity(mDM).to(unit) _mDM_val = _mDM.to_value(unit) min_mass = u.Quantity(self.mass.min, unit) max_mass = u.Quantity(self.mass.max, unit) if _mDM_val < self.mass.min or _mDM_val > self.mass.max: raise ValueError( f"The mass {_mDM} is out of the bounds of the model. Please choose a mass between {min_mass} < `mDM` < {max_mass}" ) self.mass.value = _mDM_val @property def allowed_channels(self): """List of allowed annihilation channels.""" return list(self.channel_registry.keys()) @property def channel(self): """Annihilation channel as a string.""" return self._channel @channel.setter def channel(self, channel): if channel not in self.allowed_channels: raise ValueError( f"Invalid channel: {channel}\nAvailable: {self.allowed_channels}\n" ) else: self._channel = channel def evaluate(self, energy, **kwargs): """Evaluate the primary flux.""" mass = {"mass": self.mDM} kwargs.update(mass) log10x = np.log10(energy / self.mDM) dN_dlogx = super().evaluate(log10x, **kwargs) dN_dE = dN_dlogx / (energy * np.log(10)) return dN_dE class DarkMatterAnnihilationSpectralModel(SpectralModel): r"""Dark matter annihilation spectral model. The gamma-ray flux is computed as follows: .. math:: \frac{\mathrm d \phi}{\mathrm d E} = \frac{\langle \sigma\nu \rangle}{4\pi k m^2_{\mathrm{DM}}} \frac{\mathrm d N}{\mathrm dE} \times J(\Delta\Omega) Parameters ---------- mass : `~astropy.units.Quantity` Dark matter mass. channel : str Annihilation channel for `~gammapy.astro.darkmatter.PrimaryFlux`, e.g. "b" for "bbar". See `PrimaryFlux.channel_registry` for more. scale : float Scale parameter for model fitting. jfactor : `~astropy.units.Quantity` Integrated J-Factor needed when `~gammapy.modeling.models.PointSpatialModel` is used. z: float Redshift value. k: int Type of dark matter particle (k:2 Majorana, k:4 Dirac). Examples -------- This is how to instantiate a `DarkMatterAnnihilationSpectralModel` model:: >>> import astropy.units as u >>> from gammapy.astro.darkmatter import DarkMatterAnnihilationSpectralModel >>> channel = "b" >>> massDM = 5000*u.Unit("GeV") >>> jfactor = 3.41e19 * u.Unit("GeV2 cm-5") >>> modelDM = DarkMatterAnnihilationSpectralModel(mass=massDM, channel=channel, jfactor=jfactor) # noqa: E501 References ---------- * `2011JCAP...03..051 <https://ui.adsabs.harvard.edu/abs/2011JCAP...03..051C>`_ """ THERMAL_RELIC_CROSS_SECTION = 3e-26 * u.Unit("cm3 s-1") """Thermally averaged annihilation cross-section""" scale = Parameter( "scale", 1, unit="", interp="log", ) tag = ["DarkMatterAnnihilationSpectralModel", "dm-annihilation"] def __init__(self, mass, channel, scale=scale.quantity, jfactor=1, z=0, k=2): self.k = k self.z = z self.mass = u.Quantity(mass) self.channel = channel self.jfactor = u.Quantity(jfactor) self.primary_flux = PrimaryFlux(mass, channel=self.channel) super().__init__(scale=scale) def evaluate(self, energy, scale): """Evaluate dark matter annihilation model.""" flux = ( scale * self.jfactor * self.THERMAL_RELIC_CROSS_SECTION * self.primary_flux(energy=energy * (1 + self.z)) / self.k / self.mass / self.mass / (4 * np.pi) ) return flux def to_dict(self, full_output=False): """Convert to dictionary.""" data = super().to_dict(full_output=full_output) data["spectral"]["channel"] = self.channel data["spectral"]["mass"] = self.mass.to_string() data["spectral"]["jfactor"] = self.jfactor.to_string() data["spectral"]["z"] = self.z data["spectral"]["k"] = self.k return data @classmethod def from_dict(cls, data): """Create spectral model from a dictionary. Parameters ---------- data : dict Dictionary with model data. Returns ------- model : `DarkMatterAnnihilationSpectralModel` Dark matter annihilation spectral model. """ data = data["spectral"] data.pop("type") parameters = data.pop("parameters") scale = [p["value"] for p in parameters if p["name"] == "scale"][0] return cls(scale=scale, **data) class DarkMatterDecaySpectralModel(SpectralModel): r"""Dark matter decay spectral model. The gamma-ray flux is computed as follows: .. math:: \frac{\mathrm d \phi}{\mathrm d E} = \frac{\Gamma}{4\pi m_{\mathrm{DM}}} \frac{\mathrm d N}{\mathrm dE} \times J(\Delta\Omega) Parameters ---------- mass : `~astropy.units.Quantity` Dark matter mass. channel : str Annihilation channel for `~gammapy.astro.darkmatter.PrimaryFlux`, e.g. "b" for "bbar". See `PrimaryFlux.channel_registry` for more. scale : float Scale parameter for model fitting jfactor : `~astropy.units.Quantity` Integrated J-Factor needed when `~gammapy.modeling.models.PointSpatialModel` is used. z: float Redshift value. Examples -------- This is how to instantiate a `DarkMatterAnnihilationSpectralModel` model:: >>> import astropy.units as u >>> from gammapy.astro.darkmatter import DarkMatterDecaySpectralModel >>> channel = "b" >>> massDM = 5000*u.Unit("GeV") >>> jfactor = 3.41e19 * u.Unit("GeV cm-2") >>> modelDM = DarkMatterDecaySpectralModel(mass=massDM, channel=channel, jfactor=jfactor) # noqa: E501 References ---------- * `2011JCAP...03..051 <https://ui.adsabs.harvard.edu/abs/2011JCAP...03..051C>`_ """ LIFETIME_AGE_OF_UNIVERSE = 4.3e17 * u.Unit("s") """Use age of univserse as lifetime""" scale = Parameter( "scale", 1, unit="", interp="log", ) tag = ["DarkMatterDecaySpectralModel", "dm-decay"] def __init__(self, mass, channel, scale=scale.quantity, jfactor=1, z=0): self.z = z self.mass = u.Quantity(mass) self.channel = channel self.jfactor = u.Quantity(jfactor) self.primary_flux = PrimaryFlux(mass, channel=self.channel) super().__init__(scale=scale) def evaluate(self, energy, scale): """Evaluate dark matter decay model.""" flux = ( scale * self.jfactor * self.primary_flux(energy=energy * (1 + self.z)) / self.LIFETIME_AGE_OF_UNIVERSE / self.mass / (4 * np.pi) ) return flux def to_dict(self, full_output=False): data = super().to_dict(full_output=full_output) data["spectral"]["channel"] = self.channel data["spectral"]["mass"] = self.mass.to_string() data["spectral"]["jfactor"] = self.jfactor.to_string() data["spectral"]["z"] = self.z return data @classmethod def from_dict(cls, data): """Create spectral model from dictionary. Parameters ---------- data : dict Dictionary with model data. Returns ------- model : `DarkMatterDecaySpectralModel` Dark matter decay spectral model. """ data = data["spectral"] data.pop("type") parameters = data.pop("parameters") scale = [p["value"] for p in parameters if p["name"] == "scale"][0] return cls(scale=scale, **data)
gammapyREPO_NAMEgammapyPATH_START.@gammapy_extracted@gammapy-main@gammapy@astro@darkmatter@spectra.py@.PATH_END.py
{ "filename": "modules.py", "repo_name": "yqiuu/starduster", "repo_path": "starduster_extracted/starduster-main/starduster/modules.py", "type": "Python" }
import torch from torch import nn from torch.nn import functional as F from numpy import pi __all__ = [ "Monotonic", "Unimodal", "Smooth", "PlankianMixture", "Transfer", "LInfLoss", "create_mlp", "kld_trapz", "kld_binary", "reduce_loss" ] class Monotonic(nn.Module): def __init__(self, increase=True): super().__init__() self.increase = increase def forward(self, x_in): x = F.softplus(x_in) x = torch.cumsum(x, dim=1)/x.size(1) if self.increase: return x - x[:, None, 0] else: return -x + x[:, None, -1] class Unimodal(nn.Module): def __init__(self, input_size, output_size): super().__init__() self.lin1 = nn.Linear(input_size, output_size) self.lin2 = nn.Linear(input_size, output_size) self.increase = Monotonic(increase=True) self.decrease = Monotonic(increase=False) def forward(self, x_in): return self.increase(self.lin1(x_in))*self.decrease(self.lin2(x_in)) class Smooth(nn.Module): def __init__(self, kernel_size): super().__init__() self.kernel_size = kernel_size def forward(self, x_in): x = F.avg_pool1d(x_in[:, None, :], self.kernel_size, 1) return x[:, 0, :] class PlankianMixture(nn.Module): def __init__(self, input_size, n_mix, x): super().__init__() self.lin_mu = nn.Linear(input_size, n_mix) self.lin_w = nn.Linear(input_size, n_mix) self.const = 15/pi**4 self.register_buffer('x_inv', 1./x) def planck(self, mu): y = self.x_inv*mu[:, :, None] f = torch.exp(-y) return self.const*y**4*f/(1 - f) def forward(self, x_in): mu = torch.cumsum(torch.exp(self.lin_mu(x_in)), dim=1) w = F.softmax(self.lin_w(x_in), dim=1) return torch.sum(self.planck(mu)*w[:, :, None], dim=1) class Transfer(nn.Module): def __init__(self, input_size, output_size, dx): super().__init__() self.lin_neg = nn.Linear(input_size, output_size) self.lin_pos = nn.Linear(input_size, output_size) self.dx = dx def forward(self, x, budget): z_pos = F.softplus(self.lin_pos(x)) z_pos = z_pos/torch.trapz(z_pos, dx=self.dx)[:, None] z_neg = torch.sigmoid(self.lin_neg(x))*budget y = torch.trapz(z_neg, dx=self.dx)[:, None]*z_pos - z_neg return y class LInfLoss(nn.Module): def __init__(self, reduction='mean'): super().__init__() self.reduction = reduction def forward(self, y_true, y_pred): loss = torch.linalg.norm(y_pred - y_true, ord=float('inf'), dim=1) return reduce_loss(loss, self.reduction) def create_mlp(input_size, layer_sizes, activations): modules = [] size_in = input_size for size_out, act in zip(layer_sizes, activations): modules.append(nn.Linear(size_in, size_out)) if act is not None: modules.append(act) size_in = size_out return nn.Sequential(*modules) def kld_trapz(a_pred, a_true, dx, eps=1e-10): """Compute KL divergence using the trapezoidal rule.""" return -torch.trapz(a_true*torch.log((a_pred + eps)/a_true), dx=dx) def kld_binary(a_pred, a_true, eps=1e-6): """Compute binary KL divergence.""" a_pred = F.hardtanh(a_pred, eps, 1 - eps) b_pred = 1 - a_pred b_true = 1 - a_true return -a_true*torch.log(a_pred/a_true) - b_true*torch.log(b_pred/b_true) def reduce_loss(loss, reduction): if reduction == 'mean': return torch.mean(loss) elif reduction == 'sum': return torch.sum(loss) elif reduction == 'square_mean': return torch.mean(loss*loss) elif reduction == 'square_sum': return torch.sum(loss*loss) elif reduction == 'none': return loss else: raise ValueError("Invalid reduction: {}".format(reduction))
yqiuuREPO_NAMEstardusterPATH_START.@starduster_extracted@starduster-main@starduster@modules.py@.PATH_END.py
{ "filename": "_uirevision.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/sankey/_uirevision.py", "type": "Python" }
import _plotly_utils.basevalidators class UirevisionValidator(_plotly_utils.basevalidators.AnyValidator): def __init__(self, plotly_name="uirevision", parent_name="sankey", **kwargs): super(UirevisionValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@sankey@_uirevision.py@.PATH_END.py
{ "filename": "mask_ops.py", "repo_name": "pandas-dev/pandas", "repo_path": "pandas_extracted/pandas-main/pandas/core/ops/mask_ops.py", "type": "Python" }
""" Ops for masked arrays. """ from __future__ import annotations from typing import TYPE_CHECKING import numpy as np from pandas._libs import ( lib, missing as libmissing, ) if TYPE_CHECKING: from pandas._typing import npt def kleene_or( left: bool | np.ndarray | libmissing.NAType, right: bool | np.ndarray | libmissing.NAType, left_mask: np.ndarray | None, right_mask: np.ndarray | None, ) -> tuple[npt.NDArray[np.bool_], npt.NDArray[np.bool_]]: """ Boolean ``or`` using Kleene logic. Values are NA where we have ``NA | NA`` or ``NA | False``. ``NA | True`` is considered True. Parameters ---------- left, right : ndarray, NA, or bool The values of the array. left_mask, right_mask : ndarray, optional The masks. Only one of these may be None, which implies that the associated `left` or `right` value is a scalar. Returns ------- result, mask: ndarray[bool] The result of the logical or, and the new mask. """ # To reduce the number of cases, we ensure that `left` & `left_mask` # always come from an array, not a scalar. This is safe, since # A | B == B | A if left_mask is None: return kleene_or(right, left, right_mask, left_mask) if not isinstance(left, np.ndarray): raise TypeError("Either `left` or `right` need to be a np.ndarray.") raise_for_nan(right, method="or") if right is libmissing.NA: result = left.copy() else: result = left | right if right_mask is not None: # output is unknown where (False & NA), (NA & False), (NA & NA) left_false = ~(left | left_mask) right_false = ~(right | right_mask) mask = ( (left_false & right_mask) | (right_false & left_mask) | (left_mask & right_mask) ) else: if right is True: mask = np.zeros_like(left_mask) elif right is libmissing.NA: mask = (~left & ~left_mask) | left_mask else: # False mask = left_mask.copy() return result, mask def kleene_xor( left: bool | np.ndarray | libmissing.NAType, right: bool | np.ndarray | libmissing.NAType, left_mask: np.ndarray | None, right_mask: np.ndarray | None, ) -> tuple[npt.NDArray[np.bool_], npt.NDArray[np.bool_]]: """ Boolean ``xor`` using Kleene logic. This is the same as ``or``, with the following adjustments * True, True -> False * True, NA -> NA Parameters ---------- left, right : ndarray, NA, or bool The values of the array. left_mask, right_mask : ndarray, optional The masks. Only one of these may be None, which implies that the associated `left` or `right` value is a scalar. Returns ------- result, mask: ndarray[bool] The result of the logical xor, and the new mask. """ # To reduce the number of cases, we ensure that `left` & `left_mask` # always come from an array, not a scalar. This is safe, since # A ^ B == B ^ A if left_mask is None: return kleene_xor(right, left, right_mask, left_mask) if not isinstance(left, np.ndarray): raise TypeError("Either `left` or `right` need to be a np.ndarray.") raise_for_nan(right, method="xor") if right is libmissing.NA: result = np.zeros_like(left) else: result = left ^ right if right_mask is None: if right is libmissing.NA: mask = np.ones_like(left_mask) else: mask = left_mask.copy() else: mask = left_mask | right_mask return result, mask def kleene_and( left: bool | libmissing.NAType | np.ndarray, right: bool | libmissing.NAType | np.ndarray, left_mask: np.ndarray | None, right_mask: np.ndarray | None, ) -> tuple[npt.NDArray[np.bool_], npt.NDArray[np.bool_]]: """ Boolean ``and`` using Kleene logic. Values are ``NA`` for ``NA & NA`` or ``True & NA``. Parameters ---------- left, right : ndarray, NA, or bool The values of the array. left_mask, right_mask : ndarray, optional The masks. Only one of these may be None, which implies that the associated `left` or `right` value is a scalar. Returns ------- result, mask: ndarray[bool] The result of the logical xor, and the new mask. """ # To reduce the number of cases, we ensure that `left` & `left_mask` # always come from an array, not a scalar. This is safe, since # A & B == B & A if left_mask is None: return kleene_and(right, left, right_mask, left_mask) if not isinstance(left, np.ndarray): raise TypeError("Either `left` or `right` need to be a np.ndarray.") raise_for_nan(right, method="and") if right is libmissing.NA: result = np.zeros_like(left) else: result = left & right if right_mask is None: # Scalar `right` if right is libmissing.NA: mask = (left & ~left_mask) | left_mask else: mask = left_mask.copy() if right is False: # unmask everything mask[:] = False else: # unmask where either left or right is False left_false = ~(left | left_mask) right_false = ~(right | right_mask) mask = (left_mask & ~right_false) | (right_mask & ~left_false) return result, mask def raise_for_nan(value: object, method: str) -> None: if lib.is_float(value) and np.isnan(value): raise ValueError(f"Cannot perform logical '{method}' with floating NaN")
pandas-devREPO_NAMEpandasPATH_START.@pandas_extracted@pandas-main@pandas@core@ops@mask_ops.py@.PATH_END.py
{ "filename": "split.py", "repo_name": "tensorflow/tensorflow", "repo_path": "tensorflow_extracted/tensorflow-master/tensorflow/tools/proto_splitter/split.py", "type": "Python" }
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Basic interface for Python-based Splitter.""" import abc from collections.abc import Sequence import time from typing import Optional, Union from absl import logging import riegeli from google.protobuf import message from tensorflow.python.lib.io import file_io from tensorflow.tools.proto_splitter import chunk_pb2 from tensorflow.tools.proto_splitter import util from tensorflow.tools.proto_splitter import version as version_lib from tensorflow.tools.proto_splitter import versions_pb2 class Splitter(abc.ABC): """An abstract class for splitting and writing protos that are > 2GB. See the README on how to use or subclass this class. """ @property @abc.abstractmethod def version_def(self) -> versions_pb2.VersionDef: """Version info about the splitter and merge implementation required.""" @abc.abstractmethod def split( self, ) -> tuple[Sequence[Union[message.Message, bytes]], chunk_pb2.ChunkedMessage]: """Splits proto message into a Sequence of protos/bytes.""" @abc.abstractmethod def write(self, file_prefix: str) -> str: """Serializes proto to disk. Args: file_prefix: string prefix of the filepath. Returns: The actual path the proto is written to. """ class ComposableSplitter(Splitter): """A Splitter that can be composed with other splitters. This Splitter writes to the riegeli file format. See README for details. """ def __init__( self, proto, *, proto_as_initial_chunk: bool = True, parent_splitter: Optional["ComposableSplitter"] = None, fields_in_parent: Optional[util.FieldTypes] = None, ): """Initializes ComposableSplitter. Args: proto: Proto message to split. proto_as_initial_chunk: Whether to initialize chunks with the user-provided proto as the initial chunk. parent_splitter: The parent `ComposableSplitter` object. fields_in_parent: Fields to access `proto` from the parent splitter's proto. """ self._proto = proto self._parent_splitter = parent_splitter self._fields_in_parent = fields_in_parent # Whether chunks have been created. See `build_chunks()`. self._built = False # Keep a list of chunk ids in the order in which they were added to the # list. self._add_chunk_order = [] self._fix_chunk_order = False # Initialize chunks and ChunkedMessage (optionally with the first chunk as # the user-provided proto. if parent_splitter is not None: # If this is not the root Splitter class, skip the initialization of # the chunks/message since the parent's will be updated instead. self._chunks = None self._chunked_message = None elif proto_as_initial_chunk: self._chunks = [self._proto] self._chunked_message = chunk_pb2.ChunkedMessage(chunk_index=0) self._add_chunk_order.append(id(self._proto)) else: self._chunks = [] self._chunked_message = chunk_pb2.ChunkedMessage() def build_chunks(self) -> None: """Builds the Splitter object by generating chunks from the proto. Subclasses of `ComposableChunks` should only need to override this method. This method should be called once per Splitter to create the chunks. Users should call the methods `split` or `write` instead. """ @property def version_def(self) -> versions_pb2.VersionDef: """Version info about the splitter and join implementation required.""" return versions_pb2.VersionDef( splitter_version=1, join_version=0, bad_consumers=version_lib.get_bad_versions(), ) def split( self, ) -> tuple[Sequence[Union[message.Message, bytes]], chunk_pb2.ChunkedMessage]: """Splits a proto message into a Sequence of protos/bytes.""" if self._parent_splitter: raise ValueError( "A child ComposableSplitter's `split` method should not be called " "directly, since it inherit chunks from a parent object. Please call " "the parent's `split()` method instead." ) assert self._chunks is not None assert self._chunked_message is not None if not self._built: self.build_chunks() self._fix_chunks() self._built = True return self._chunks, self._chunked_message def write( self, file_prefix: str, writer_options: Optional[str] = None ) -> str: """Serializes a proto to disk. The writer writes all chunks into a riegeli file. The chunk metadata (ChunkMetadata) is written at the very end. Args: file_prefix: string prefix of the filepath. The writer will automatically attach a `.pb` or `.cpb` (chunked pb) suffix depending on whether the proto is split. writer_options: Optional writer options to pass to the riegeli writer. See https://github.com/google/riegeli/blob/master/doc/record_writer_options.md for options. Returns: The actual filepath the proto is written to. The filepath will be different depending on whether the proto is split, i.e., whether it will be a pb or not. """ if self._parent_splitter is not None: raise ValueError( "A child ComposableSplitter's `write` method should not be called " "directly, since it inherits unrelated chunks from a parent object. " "Please call the parent's `write()` method instead." ) start_time = time.time() chunks, chunked_message = self.split() if not chunked_message.chunked_fields: path = f"{file_prefix}.pb" file_io.atomic_write_string_to_file( path, self._proto.SerializeToString(deterministic=True) ) logging.info("Unchunked file exported to %s", path) return path path = f"{file_prefix}.cpb" writer_kwargs = {} if writer_options is not None: writer_kwargs["options"] = writer_options with riegeli.RecordWriter(file_io.FileIO(path, "wb"), **writer_kwargs) as f: metadata = chunk_pb2.ChunkMetadata( message=chunked_message, version=self.version_def ) for chunk in chunks: if isinstance(chunk, message.Message): f.write_message(chunk) chunk_type = chunk_pb2.ChunkInfo.Type.MESSAGE size = chunk.ByteSize() else: f.write_record(chunk) chunk_type = chunk_pb2.ChunkInfo.Type.BYTES size = len(chunk) metadata.chunks.add( type=chunk_type, size=size, offset=f.last_pos.numeric ) f.write_message(metadata) end = time.time() logging.info("Chunked file exported to %s", path) logging.info( "Total time spent splitting and writing the message: %s", end - start_time, ) logging.info( "Number of chunks created (including initial message): %s", len(chunks), ) return path def add_chunk( self, chunk: Union[message.Message, bytes], field_tags: util.FieldTypes, index=None, ) -> None: """Adds a new chunk and updates the ChunkedMessage proto. Args: chunk: Proto message or bytes. field_tags: Field information about the placement of the chunked data within self._proto. index: Optional index at which to insert the chunk. The chunk ordering is important for merging. """ if self._parent_splitter is not None: self._parent_splitter.add_chunk( chunk, self._fields_in_parent + field_tags, index ) else: assert self._chunks is not None assert self._chunked_message is not None field = self._chunked_message.chunked_fields.add( field_tag=util.get_field_tag(self._proto, field_tags) ) new_chunk_index = len(self._chunks) field.message.chunk_index = new_chunk_index self._add_chunk_order.append(id(chunk)) if index is None: self._chunks.append(chunk) else: self._chunks.insert(index, chunk) self._fix_chunk_order = True def _fix_chunks(self) -> None: """Fixes chunk indices in the ChunkedMessage.""" if not self._fix_chunk_order: return # The chunk_index of each nested ChunkedMessage is set to the length of the # list when the chunk was added. This would be fine if the chunks were # always added to the end of the list. However, this is not always the case # the indices must be updated. # Use the address of each chunk (python `id`) as lookup keys to the # ordered chunk indices. chunk_indices = {id(chunk): i for i, chunk in enumerate(self._chunks)} to_fix = [self._chunked_message] while to_fix: for field in to_fix.pop().chunked_fields: if field.message.chunked_fields: to_fix.append(field.message) if not field.message.HasField("chunk_index"): continue chunk_addr = self._add_chunk_order[field.message.chunk_index] assert ( chunk_addr in chunk_indices ), f"Found unexpected chunk {chunk_addr}" new_chunk_index = chunk_indices[chunk_addr] field.message.chunk_index = new_chunk_index self._add_chunk_order = [id(chunk) for chunk in self._chunks] self._fix_chunk_order = False
tensorflowREPO_NAMEtensorflowPATH_START.@tensorflow_extracted@tensorflow-master@tensorflow@tools@proto_splitter@split.py@.PATH_END.py
{ "filename": "tools.py", "repo_name": "ladsantos/p-winds", "repo_path": "p-winds_extracted/p-winds-main/p_winds/tools.py", "type": "Python" }
#! /usr/bin/env python # -*- coding: utf-8 -*- """ This module contains useful tools to facilitate numerical calculations. """ from __future__ import (division, print_function, absolute_import, unicode_literals) import numpy as np import astropy.units as u import os from warnings import warn from astropy.io import fits __all__ = ["nearest_index", "standard_spectrum", "generate_muscles_spectrum", "make_spectrum_from_file"] # Find $PWINDS_REFSPEC_DIR environment variable try: _PWINDS_REFSPEC_DIR = os.environ["PWINDS_REFSPEC_DIR"] except KeyError: _PWINDS_REFSPEC_DIR = None warn("Environment variable PWINDS_REFSPEC_DIR is not set.") def nearest_index(array, target_value): """ Finds the index of a value in ``array`` that is closest to ``target_value``. Parameters ---------- array : ``numpy.array`` Target array. target_value : ``float`` Target value. Returns ------- index : ``int`` Index of the value in ``array`` that is closest to ``target_value``. """ index = array.searchsorted(target_value) index = np.clip(index, 1, len(array) - 1) left = array[index - 1] right = array[index] index -= target_value - left < right - target_value return index def standard_spectrum(stellar_type, semi_major_axis, reference_spectra_dir=_PWINDS_REFSPEC_DIR, stellar_radius=None, truncate_wavelength_grid=False, cutoff_thresh=13.6): """ Construct a dictionary containing an input spectrum for a given spectral type. The code scales this to the spectrum received at your planet provided a value for the scaled ``semi_major_axis``. Spectrum of iota Horologii was kindly provided by Jorge Sanz-Forcada (priv. comm.). Spectrum of HD 108147 and HR 8799 were obtained from the X-exoplanets database and combined with PHOENIX atmosphere models for the NUV. Solar spectrum comes from the Whole Heliosphere Interval (WHI) Reference Spectra obtained from the LASP Interactive Solar Irradiance Datacenter. All other spectra are from the MUSCLES survey. Parameters ---------- stellar_type : ``str`` Define the stellar type. The available options are: - ``'mid-A'`` (based on HR 8799) - ``'early-F'`` (based on WASP-17) - ``'late-F'`` (based on HD 108147) - ``'early-G'`` (based on HD 149026) - ``'solar'`` (based on the Sun) - ``'young-Sun'`` (based on iota Horologii) - ``'late-G'`` (based on TOI-193) - ``'active-K'`` (based on epsilon Eridanii) - ``'early-K'`` (based on HD 97658) - ``'late-k'`` (based on WASP-43) - ``'active-M'`` (based on Proxima Centauri) - ``'early-M'`` (based on GJ 436) - ``'late-M'`` (based on TRAPPIST-1) semi_major_axis : ``float`` Semi-major axis of the planet in units of stellar radii. The code first converts the MUSCLES spectrum to what it would be at R_star; ``semi_major_axis`` is needed to get the spectrum at the planet. reference_spectra_dir : ``str``, optional Path to the directory with the MUSCLES data. Default value is defined by the environment variable ``$PWINDS_REFSPEC_DIR``. stellar_radius : ``float``, optional Stellar radius in unit of solar radii. Setting a value for this parameter allows the spectrum to be scaled to an arbitrary stellar radius instead of the radius of the MUSCLES star. If ``None``, then the scaling is performed using the radius of the MUSCLES star. Default is ``None``. truncate_wavelength_grid : ``bool``, optional If ``True``, will only return the spectrum with energy > 13.6 eV. This may be useful for computational expediency. If False, returns the whole spectrum. Default is ``False``. cutoff_thresh : ``float``, optional If ``truncate_wavelength_grid`` is set to ``True``, then the truncation happens for energies whose value in eV is above this threshold, also in eV. Default is ``13.6``. Returns ------- spectrum : ``dict`` Spectrum dictionary with entries for the wavelength and flux, and their units. """ muscles_match = {'early-A': None, 'late-A': None, 'early-F': 'wasp-17', 'late-F': None, 'early-G': 'hd-149026', 'late-G': 'toi-193', 'solar': None, 'young-Sun': None, 'active-K': 'v-eps-eri', 'early-K': 'hd97658', 'late-K': 'wasp-43', 'active-M': 'gj551', 'early-M': 'gj436', 'late-M': 'trappist-1'} try: spectrum = generate_muscles_spectrum(muscles_match[stellar_type], semi_major_axis, reference_spectra_dir, stellar_radius, truncate_wavelength_grid, cutoff_thresh) except KeyError: prefix = reference_spectra_dir # Check if prefix has a trailing forward slash if prefix[-1] == '/': pass # If not, add it else: prefix += '/' if stellar_type == 'solar': spectrum_array = np.loadtxt( prefix + 'ref_solar_irradiance_whi-2008_ver2.dat', skiprows=142, usecols=(0, 2)) i1 = nearest_index(spectrum_array[:, 0], 300) wavelength = (spectrum_array[:i1, 0] * u.nm).to(u.angstrom).value flux = (spectrum_array[:i1, 1] * u.W / u.m ** 2 / u.nm).to( u.erg / u.s / u.cm ** 2 / u.angstrom).value r_star_origin = 1.00 * u.solRad dist = 1 * u.au elif stellar_type == 'young-Sun': spectrum_array = np.loadtxt(prefix + 'spec_hr810_1au.dat') wavelength = spectrum_array[:, 0] flux = spectrum_array[:, 1] r_star_origin = 1.00 * u.solRad # Assumption dist = 1 * u.au elif stellar_type == 'mid-A': spectrum_array = np.loadtxt(prefix + 'spec_hr8799_1au.dat') wavelength = spectrum_array[:, 0] flux = spectrum_array[:, 1] r_star_origin = 1.44 * u.solRad # From Gaia DR2 for HR 8799 dist = 1 * u.au elif stellar_type == 'late-F': spectrum_array = np.loadtxt(prefix + 'spec_hd108147_1au.dat') wavelength = spectrum_array[:, 0] flux = spectrum_array[:, 1] r_star_origin = 1.23 * u.solRad # From Gaia DR2 for HD 108147 dist = 1 * u.au else: raise ValueError('Specified stellar type not recognized') if stellar_radius is None: r_star = r_star_origin else: r_star = stellar_radius * u.solRad conv = float((dist / r_star) ** 2) # conversion to # spectrum at R_star spectrum = {'wavelength': wavelength, 'flux_lambda': flux * conv * semi_major_axis ** (-2), 'wavelength_unit': u.AA, 'flux_unit': u.erg / u.s / u.cm / u.cm / u.AA} return spectrum def generate_muscles_spectrum(host_star_name, semi_major_axis, reference_spectra_dir=_PWINDS_REFSPEC_DIR, stellar_radius=None, truncate_wavelength_grid=False, cutoff_thresh=13.6): """ Construct a dictionary containing an input spectrum from a MUSCLES spectrum. MUSCLES reports spectra as observed at Earth, the code scales this to the spectrum received at your planet provided a value for the scaled ``semi-major-axis``. Parameters ---------- host_star_name : ``str`` Name of the MUSCLES stellar spectrum you want to use. Must be one of: ['gj176', 'gj436', 'gj551', 'gj581', 'gj667c', 'gj832', 'gj876', 'gj1214', 'hd40307', 'hd85512', 'hd97658', 'v-eps-eri', 'gj1132', 'hat-p-12', 'hat-p-26', 'hd-149026', 'l-98-59', 'l-678-39', 'l-980-5', 'lhs-2686', 'lp-791-18', 'toi-193', 'trappist-1', 'wasp-17', 'wasp-43', 'wasp-77a', 'wasp-127']. semi_major_axis : ``float`` Semi-major axis of the planet in units of stellar radii. The code first converts the MUSCLES spectrum to what it would be at R_star; ``semi_major_axis`` is needed to get the spectrum at the planet. reference_spectra_dir : ``str``, optional Path to the directory with the reference spectra. Default value is defined by the environment variable ``$PWINDS_REFSPEC_DIR``. stellar_radius : ``float``, optional Stellar radius in unit of solar radii. Setting a value for this parameter allows the spectrum to be scaled to an arbitrary stellar radius instead of the radius of the MUSCLES star. If ``None``, then the scaling is performed using the radius of the MUSCLES star. Default is ``None``. truncate_wavelength_grid : ``bool``, optional If ``True``, will only return the spectrum with energy > 13.6 eV. This may be useful for computational expediency. If False, returns the whole spectrum. Default is ``False``. cutoff_thresh : ``float``, optional If ``truncate_wavelength_grid`` is set to ``True``, then the truncation happens for energies whose value in eV is above this threshold, also in eV. Default is ``13.6``. Returns ------- spectrum : ``dict`` Spectrum dictionary with entries for the wavelength and flux, and their units. """ # Hard coding some values # The stellar radii and distances are taken from NASA Exoplanet Archive. thresh = cutoff_thresh * u.eV stars = [ # Old ones 'gj176', 'gj436', 'gj551', 'gj581', 'gj667c', 'gj832', 'gj876', 'gj1214', 'hd40307', 'hd85512', 'hd97658', 'v-eps-eri', # New ones #'gj15a', 'gj163', 'gj649', 'gj674', 'gj676a', 'gj699', 'gj729', 'gj849', 'gj1132', 'hat-p-12', 'hat-p-26', 'hd-149026', 'l-98-59', 'l-678-39', 'l-980-5', 'lhs-2686', 'lp-791-18', 'toi-193', 'trappist-1', 'wasp-17', 'wasp-43', 'wasp-77a', 'wasp-127' ] versions = np.array([ # Old ones 'v22', 'v22', 'v22', 'v22', 'v22', 'v22', 'v22', 'v22', 'v22', 'v22', 'v22', 'v22', # New ones #'v23', 'v23', 'v23', 'v23', 'v23', 'v23', 'v23', 'v23', 'v23', 'v24', 'v24', 'v24', 'v24', 'v24', 'v23', 'v23', 'v24', 'v24', 'v23', 'v24', 'v24', 'v24', 'v24' ]) st_rads = np.array([ # Old ones 0.46, 0.449, 0.154, 0.3297020, 0.42, 0.45, 0.35, 0.22, 0.71, 0.69, 0.74, 0.77, # New ones # 0.21, 0.7, 0.87, 1.41, 0.3, 0.34, 0.22, # L 980-5 radius assumed to be the same as GJ 1214 0.449, # LHS 2686 radius assumed to be the same as GJ 436 0.18, 0.95, 0.12, 1.49, 0.6, 0.910, 1.33 ]) * u.solRad dists = np.array([ # Old ones 9.470450, 9.75321, 1.30119, 6.298100, 7.24396, 4.964350, 4.67517, 14.6427, 12.9363, 11.2810, 21.5618, 3.20260, # New ones #3.56244, 15.1353, 12.613, 142.751, 141.837, 75.8643, 10.6194, 9.44181, 13.3731, 12.1893, 26.4927, 80.4373, 12.4298888, 405.908, 86.7467, 105.6758, 159.507 ]) * u.pc muscles_dists = {starname: dist for starname, dist in zip(stars, dists)} muscles_rstars = {starname: st_rad for starname, st_rad in zip(stars, st_rads)} muscles_versions = {starname: versions for starname, versions in zip(stars, versions)} # MUSCLES records spectra as observed at earth, so we need to convert it to # spectrum at R_star. The user has the option of setting an arbitary stellar # radius instead of the MUSCLES star radius to allow for more flexibility. # This can be especially useful for slightly evolved stars, whose radius # are larger than the MUSCLES stars. dist = muscles_dists[host_star_name] vnumber = muscles_versions[host_star_name] if stellar_radius is None: rstar = muscles_rstars[host_star_name] else: rstar = stellar_radius * u.solRad conv = float((dist / rstar) ** 2) # conversion to spectrum at R_star # First check if reference_spectra_dir has a trailing forward slash if reference_spectra_dir[-1] == '/': pass # If not, add it else: reference_spectra_dir += '/' # Read the MUSCLES spectrum spec = fits.getdata(reference_spectra_dir + f'hlsp_muscles_multi_multi_{host_star_name}_broadband_' f'{vnumber}_adapt-const-res-sed.fits', 1) if truncate_wavelength_grid: mask = spec['WAVELENGTH'] * u.AA < thresh.to(u.AA, equivalencies=u.spectral()) else: mask = np.ones(spec.shape, dtype='bool') spectrum = {'wavelength': spec['WAVELENGTH'][mask], 'flux_lambda': spec['FLUX'][mask] * conv * semi_major_axis ** (-2), 'wavelength_unit': u.AA, 'flux_unit': u.erg / u.s / u.cm / u.cm / u.AA} return spectrum def make_spectrum_from_file(filename, units, path='', skiprows=0, scale_flux=1.0, star_distance=None, semi_major_axis=None): """ Construct a dictionary containing an input spectrum from a text file. The input file must have two or more columns, in which the first is the wavelength or frequency bin center and the second is the flux per bin of wavelength or frequency. The code automatically figures out if the input spectra are binned in wavelength or frequency based on the units the user passes. Parameters ---------- filename : ``str`` Name of the file containing the spectrum data. units : ``dict`` Units of the spectrum. This dictionary must have the entries ``'wavelength'`` and ``'flux'``, or ``'frequency'`` and ``'flux'``. The units must be set in ``astropy.units``. path : ``str``, optional Path to the spectrum data file. skiprows : ``int``, optional Number of rows to skip corresponding to the header of the input text file. scale_flux : ``float``, optional Scaling factor for flux. Default value is 1.0 (no scaling). star_distance : ``float`` or ``None``, optional Distance to star in unit of parsec. This is used to scale the flux as observed from Earth to the semi-major axis of the planet. If ``None``, no scaling is applied. If not ``None``, then a value``semi_major_axis`` must be provided as well. Default is ``None``. semi_major_axis : ``float`` or ``None``, optional Semi-major axis of the planet in unit of au. This is used to scale the flux as observed from Earth to the semi-major axis of the planet. Notice that this parameter is different from the ``generate_muscles_spectrum()`` function, which uses the semi-major axis in unit of stellar radii. If ``None``, no scaling is applied. If not ``None``, then a value``star_distance`` must be provided as well. Default is ``None``. Returns ------- spectrum : ``dict`` Spectrum dictionary with entries for the wavelength and flux, and their units. """ spectrum_table = np.loadtxt(path + filename, usecols=(0, 1), skiprows=skiprows, dtype=float) try: x_axis = 'wavelength' x_axis_unit = units.pop(x_axis) y_axis = 'flux_lambda' except KeyError: x_axis = 'frequency' x_axis_unit = units.pop(x_axis) y_axis = 'flux_nu' y_axis_unit = units.pop('flux') conv_pc_to_au = 206264.8062471 # Conversion from pc to au if star_distance is not None and semi_major_axis is not None: scale_to_planet = \ (star_distance * conv_pc_to_au / semi_major_axis) ** 2 else: scale_to_planet = 1.0 spectrum = {x_axis: spectrum_table[:, 0], y_axis: spectrum_table[:, 1] * scale_flux * scale_to_planet, '{}_unit'.format(x_axis): x_axis_unit, 'flux_unit': y_axis_unit} return spectrum
ladsantosREPO_NAMEp-windsPATH_START.@p-winds_extracted@p-winds-main@p_winds@tools.py@.PATH_END.py
{ "filename": "param_format.py", "repo_name": "a-griffiths/AutoSpec", "repo_path": "AutoSpec_extracted/AutoSpec-master/param_format.py", "type": "Python" }
# Default configuration file for AutoSpec v 1.1.2 # DATE: 20-09-2018 # ----------- Operating Mode ------------------------------------------------------------------------------------------------------------------------------------------------------------- MODE = 'param' # 'param' or 'cat' to use configuration or catalogue file respectively for extraction mode (string). # ----------- Reference Spectra ----------------------------------------------------------------------------------------------------------------------------------------------------------- REF = '' # reference spectrum to use for cross correlation, must also be in image (IMG), aperture (APER) parameters or '' to use white light image. # ----------- Required Files -------------------------------------------------------------------------------------------------------------------------------------------------------------- DATACUBE = '' # name of datacube file (string). CATALOG = '' # name of catalog file (string). # ----------- Datacube Extension: Use if datacube extensions are not specified in fits headers -------------------------------------------------------------------------------------------- DATA_EXT = () # The number/name of the data (int or str), or data and variance extensions (int, int or str, str), () if none. # ----------- Spectral Extractions -------------------------------------------------------------------------------------------------------------------------------------------------------- APER = '' # aperture sizes (in arcseconds) for spectrum extraction (float or array or floats). IMG = '' # name of additional image files for weighted spectra and segmentation extractions (string or comma seperated list of strings), '' if none. # ----------- Object Masks ---------------------------------------------------------------------------------------------------------------------------------------------------------------- USE_IMGS = True # if AutoSpec should also use the segmentation maps created from the images in IMG parameter to create final masks (True or False). OBJ_MASK = 'INTER' # object mask from union (UNION) or intersection (INTER) of segmentation maps (string). SEG = '' # name of additional segmentation maps files to be used (string or comma seperated list of strings). # ----------- Output Formatting ----------------------------------------------------------------------------------------------------------------------------------------------------------- OUTPUT = 'output' # name of output directory (string). PRE_OUT = 'Source_' # string to prepend to output data files (string), '' if none. # ----------- Extraction Parameters ------------------------------------------------------------------------------------------------------------------------------------------------------- SIZE = 5 # sub image/cube extraction size in arcseconds (float). XCOR = True # perform cross correlation (True or False). CONT_SUB = True # preform continuum subtraction, only runs if XCOR is True (True or False). CONT_POLY = 5 # degree of polynomial for contiuum fitting (integer). SKY_SUB = True # Perform sky subtraction when extracting spectra (True or False). PLOTS = True # output plots (True or False). # ----------- Outputs --------------------------------------------------------------------------------------------------------------------------------------------------------------------- OUT_SUB = False # output extracted source subcubes (True or False), these make up the bulk of the output filesize. OUT_IMG = True # output extracted source images (True or False). OUT_SEG = True # output segmentation maps (True or False). OUT_MASK = True # output object and sky masks (True or False). OUT_XCOR = True # output cross-correlation map (True or False). OUT_SPEC = True # output additional spectra (True) or final only (False). # ----------- MISCELLANEOUS --------------------------------------------------------------------------------------------------------------------------------------------------------------- CMAP = 'viridis' # colour map to use for image plots. ORIG_FROM = '' # name of the detector software which creates this object (string). ORIG_FROMV = '' # version of the detector software which creates this object (string). ORIG_CUBE = '' # name of the FITS data cube from which this object has been extracted (string). ORIGN_CUBEV = '' # version of the FITS data cube (string). WARNINGS = False # turn warnings on (True) or off (False).
a-griffithsREPO_NAMEAutoSpecPATH_START.@AutoSpec_extracted@AutoSpec-master@param_format.py@.PATH_END.py
{ "filename": "another_test.ipynb", "repo_name": "LucaMalavolta/PyORBIT", "repo_path": "PyORBIT_extracted/PyORBIT-main/development/spleaf/another_test.ipynb", "type": "Jupyter Notebook" }
```python import numpy as np import matplotlib.pyplot as plt np.random.seed(0) # Settings P0 = 3.8 dP = 1.25 tmax = 20 amp = [6.0, 2.0, 0.33] phase = [0, np.pi / 2, -3*np.pi / 4] nt = [75, 100, 50] # True signal tsmooth = np.linspace(0, tmax, 400) Psmooth = P0 + dP * (tsmooth / tmax - 1 / 2) Ysignal = [ ak * np.sin(2 * np.pi * tsmooth / Psmooth + pk) for ak, pk in zip(amp, phase) ] # Generate observations calendars T = [ np.sort( np.concatenate((np.random.uniform(0, tmax / 2, ntk // 2), np.random.uniform(2 * tmax / 3.5 , tmax, (ntk + 1) // 2)))) for ntk in nt ] # Generate measurements with white noise Yerr = [np.random.uniform(0.5, 1.5, ntk) for ntk in nt] P = [P0 + dP * (tk / tmax - 1 / 2) for tk in T] Y = [ amp[k] * np.sin(2 * np.pi * T[k] / P[k] + phase[k]) + np.random.normal(0, Yerr[k]) for k in range(3) ] # Plot _, axs = plt.subplots(3, 1, sharex=True, figsize=(6, 10)) for k in range(3): ax = axs[k] ax.plot(tsmooth, Ysignal[k], 'r', label='truth') ax.errorbar(T[k], Y[k], Yerr[k], fmt='.', color='k', label='meas.') ax.set_ylabel(f'$y_{k}$') ax.set_xlabel('$t$') axs[0].legend() ``` <matplotlib.legend.Legend at 0x7f600b951210> ![png](output_0_1.png) ```python from spleaf import cov, term from scipy.optimize import fmin_l_bfgs_b # Merge all 3 time series t_full, y_full, yerr_full, series_index = cov.merge_series(T, Y, Yerr) # Initialize the S+LEAF model C = cov.Cov(t_full, err=term.Error(yerr_full), GP=term.MultiSeriesKernel(term.ESPKernel(1.0, 3.8, 1000.0, 0.35, nharm=4), series_index, [6.0, 2.0, 0.33], np.ones(3))) D = cov.Cov(t_full, err=term.Error(yerr_full), GP=term.MultiSeriesKernel(term.ESPKernel(1.0, 3.8, 1000.0, 0.35, nharm=4), series_index, [6.0, 2.0, 2.33], np.ones(3))) # Fit the hyperparameters using the fmin_l_bfgs_b function from scipy.optimize. # List of parameters to fit param = C.param[1:] # The amplitude of the SHOKernel is fixed at 1 (not fitted), # since it would be degenerated with the amplitudes alpha, \beta. # Define the function to minimize def negloglike(x, y, C): C.set_param(x, param) nll = -C.loglike(y) # gradient nll_grad = -C.loglike_grad()[1][1:] return (nll, nll_grad) # Fit xbest, _, _ = fmin_l_bfgs_b(negloglike, C.get_param(param), args=(y_full, C)) # Use S+LEAF to predict the missing data C.set_param(xbest, param) _, axs = plt.subplots(3, 1, sharex=True, figsize=(6, 10)) for k in range(3): # Predict time series k C.kernel['GP'].set_conditional_coef(series_id=k) mu_fit, var_fit = C.conditional(y_full, tsmooth, calc_cov='diag') # Plot ax = axs[k] ax.plot(tsmooth, Ysignal[k], 'r', label='truth') ax.errorbar(T[k], Y[k], Yerr[k], fmt='.', color='k', label='meas.') ax.fill_between(tsmooth, mu_fit - np.sqrt(var_fit), mu_fit + np.sqrt(var_fit), color='g', alpha=0.5) ax.plot(tsmooth, mu_fit, 'g', label='predict.') ax.set_ylabel(f'$y_{k}$') ax.set_xlabel('$t$') axs[0].legend() plt.show() ``` ![png](output_1_0.png) ```python print(xbest) mod_best = xbest.copy() mod_best[-2] = 12.99 print(mod_best) ``` [ 4.64977774e+00 9.99970528e+02 5.28794981e-01 1.86540839e+00 -8.90565869e-01 6.12527349e-02 2.35564873e+00 4.31216248e-01 -1.31963919e-01] [ 4.64977774e+00 9.99970528e+02 5.28794981e-01 1.86540839e+00 -8.90565869e-01 6.12527349e-02 2.35564873e+00 1.29900000e+01 -1.31963919e-01] ```python # Use S+LEAF to predict the missing data D.set_param(mod_best, param) _, axs = plt.subplots(3, 1, sharex=True, figsize=(6, 10)) for k in range(3): # Predict time series k D.kernel['GP'].set_conditional_coef(series_id=k) mu_mod, var_mod = D.conditional(y_full, tsmooth, calc_cov='diag') # Plot ax = axs[k] ax.plot(tsmooth, Ysignal[k], 'r', label='truth') ax.errorbar(T[k], Y[k], Yerr[k], fmt='.', color='k', label='meas.') ax.fill_between(tsmooth, mu_mod - np.sqrt(var_mod), mu_mod + np.sqrt(var_mod), color='g', alpha=0.5) ax.plot(tsmooth, mu_mod, 'g', label='predict.') ax.set_ylabel(f'$y_{k}$') ax.set_xlabel('$t$') axs[0].legend() plt.show() ``` ![png](output_3_0.png) ```python ``` ```python ``` ```python ``` ```python import sys import jax jax.config.update("jax_enable_x64", True) import jax.numpy as jnp from tinygp import kernels, GaussianProcess #from tinygp.helpers import JAXArray if sys.version_info[1] < 10: raise Warning("You should be using Python 3.10 - tinygp may not work") class LatentKernel(kernels.Kernel): """A custom kernel based on Rajpaul et al. (2015) Args: kernel: The kernel function describing the latent process. This can be any other ``tinygp`` kernel. coeff_prim: The primal coefficients for each class. This can be thought of as how much the latent process itself projects into the observations for that class. This should be an array with an entry for each class of observation. coeff_deriv: The derivative coefficients for each class. This should have the same shape as ``coeff_prim``. """ try: kernel : kernels.Kernel coeff_prim: jax.Array | float coeff_deriv: jax.Array | float except: pass def __init__(self, kernel, coeff_prim, coeff_deriv): self.kernel = kernel self.coeff_prim, self.coeff_deriv = jnp.broadcast_arrays( jnp.asarray(coeff_prim), jnp.asarray(coeff_deriv) ) def evaluate(self, X1, X2): t1, label1 = X1 t2, label2 = X2 # Differentiate the kernel function: the first derivative wrt x1 Kp = jax.grad(self.kernel.evaluate, argnums=0) # ... and the second derivative Kpp = jax.grad(Kp, argnums=1) # Evaluate the kernel matrix and all of its relevant derivatives K = self.kernel.evaluate(t1, t2) d2K_dx1dx2 = Kpp(t1, t2) # For stationary kernels, these are related just by a minus sign, but we'll # evaluate them both separately for generality's sake dK_dx2 = jax.grad(self.kernel.evaluate, argnums=1)(t1, t2) dK_dx1 = Kp(t1, t2) # Extract the coefficients a1 = self.coeff_prim[label1] a2 = self.coeff_prim[label2] b1 = self.coeff_deriv[label1] b2 = self.coeff_deriv[label2] # Construct the matrix element return ( a1 * a2 * K + a1 * b2 * dK_dx2 + b1 * a2 * dK_dx1 + b1 * b2 * d2K_dx1dx2 ) def _build_tinygp_multidimensional(params): base_kernel = kernels.ExpSquared(scale=jnp.abs(params["Pdec"])) \ * kernels.ExpSineSquared( scale=jnp.abs(params["Prot"]), gamma=jnp.abs(params["gamma"])) kernel = LatentKernel(base_kernel, params['coeff_prime'], params['coeff_deriv']) return GaussianProcess( kernel, params['X'], diag=jnp.abs(params['diag']), mean=0.0 ) @jax.jit def _loss_tinygp(params): gp = _build_tinygp_multidimensional(params) return gp.log_probability(params['y']) ``` ```python dataset_x0 = [] dataset_res = [] dataset_label = [] dataser_er2 = [] temp_input = [] temp_label = [] for ii in range(0, 3): temp_input = np.append(temp_input, tsmooth) temp_label = np.append(temp_label, np.zeros_like(tsmooth, dtype=int) + ii) X_input = (temp_input, temp_label.astype(int)) for k in range(0,3): dataset_x0 = np.append(dataset_x0, T[k]) dataset_label = np.append(dataset_label, np.zeros_like(T[k], dtype=int) + k) dataset_res = np.append(dataset_res, Y[k]) dataser_er2 = np.append(dataser_er2, Yerr[k]**2) tinygp_X = (dataset_x0, dataset_label.astype(int)) ``` ```python internal_parameter_values = xbest.copy() theta_dict = dict( gamma=1. / (2.*internal_parameter_values[2] ** 2), Pdec=internal_parameter_values[1], Prot=internal_parameter_values[0], diag=dataser_er2, X=tinygp_X, y=dataset_res, coeff_prime=internal_parameter_values[3:6], coeff_deriv=internal_parameter_values[6:], x_predict = X_input ) gp = _build_tinygp_multidimensional(theta_dict) _, cond_gp = gp.condition(theta_dict['y'], theta_dict['x_predict']) #mu = cond_gp.mean #std = np.sqrt(cond_gp.variance) mu_full = cond_gp.loc # or cond_gp.mean? ``` ```python internal_parameter_values = mod_best.copy() theta_dict = dict( gamma=1. / (2.*internal_parameter_values[2] ** 2), Pdec=internal_parameter_values[1], Prot=internal_parameter_values[0], diag=dataser_er2, X=tinygp_X, y=dataset_res, coeff_prime=internal_parameter_values[3:6], coeff_deriv=internal_parameter_values[6:], x_predict = X_input ) gp = _build_tinygp_multidimensional(theta_dict) _, cond_gp_mod = gp.condition(theta_dict['y'], theta_dict['x_predict']) #mu = cond_gp.mean #std = np.sqrt(cond_gp.variance) mu_full_mod = cond_gp_mod.loc # or cond_gp.mean? ``` ```python _, axs = plt.subplots(3, 1, sharex=True, figsize=(6, 10)) for k in range(3): # Predict time series k C.kernel['GP'].set_conditional_coef(series_id=k) mu_fit, var_fit = C.conditional(y_full, tsmooth, calc_cov='diag') # Predict time series k l_nstart, l_nend = len(tsmooth)*k, len(tsmooth)*(k+1) tinygp_mu = mu_full[l_nstart:l_nend] tinygp_std = np.sqrt(cond_gp.variance)[l_nstart:l_nend] # Plot ax = axs[k] ax.plot(tsmooth, Ysignal[k], 'r', label='truth') ax.errorbar(T[k], Y[k], Yerr[k], fmt='.', color='k', label='meas.') ax.fill_between(tsmooth, mu_fit - np.sqrt(var_fit), mu_fit + np.sqrt(var_fit), color='g', alpha=0.5) ax.plot(tsmooth, mu_fit, 'g', label='predict.') ax.fill_between(tsmooth, tinygp_mu - tinygp_std, tinygp_mu + tinygp_std, color='C4', alpha=0.5) ax.plot(tsmooth, tinygp_mu, 'C5', label='tinygp.') ax.set_ylabel(f'$y_{k}$') ax.set_xlabel('$t$') axs[0].legend() plt.show() ``` ![png](output_11_0.png) ```python _, axs = plt.subplots(3, 1, sharex=True, figsize=(6, 10)) for k in range(3): # Predict time series k D.kernel['GP'].set_conditional_coef(series_id=k) mu_mod, var_mod = D.conditional(y_full, tsmooth, calc_cov='diag') # Predict time series k l_nstart, l_nend = len(tsmooth)*k, len(tsmooth)*(k+1) tinygp_mu_mod = mu_full_mod[l_nstart:l_nend] tinygp_std_mod = np.sqrt(cond_gp_mod.variance)[l_nstart:l_nend] # Plot ax = axs[k] ax.plot(tsmooth, Ysignal[k], 'r', label='truth') ax.errorbar(T[k], Y[k], Yerr[k], fmt='.', color='k', label='meas.') ax.fill_between(tsmooth, mu_mod - np.sqrt(var_mod), mu_mod + np.sqrt(var_mod), color='g', alpha=0.5) ax.plot(tsmooth, mu_mod, 'g', label='predict.') ax.fill_between(tsmooth, tinygp_mu_mod - tinygp_std_mod, tinygp_mu_mod + tinygp_std_mod, color='C4', alpha=0.5) ax.plot(tsmooth, tinygp_mu_mod, 'C5', label='tinygp') ax.set_ylabel(f'$y_{k}$') ax.set_xlabel('$t$') axs[0].legend() plt.show() ``` ![png](output_12_0.png) ```python # Initialize the S+LEAF model PP = cov.Cov(t_full, err=term.Error(yerr_full), GP=term.MultiSeriesKernel(term.ESPKernel(1.0, xbest[0], xbest[1], xbest[2], nharm=4), series_index, [xbest[3], xbest[4], xbest[5]], [xbest[6], xbest[7], xbest[8]])) _, axs = plt.subplots(3, 1, sharex=True, figsize=(6, 10)) for k in range(3): PP.kernel['GP'].set_conditional_coef(series_id=k) mu_pp, var_pp = PP.conditional(y_full, tsmooth, calc_cov='diag') # Predict time series k C.kernel['GP'].set_conditional_coef(series_id=k) mu_fit, var_fit = C.conditional(y_full, tsmooth, calc_cov='diag') # Predict time series k l_nstart, l_nend = len(tsmooth)*k, len(tsmooth)*(k+1) tinygp_mu = mu_full[l_nstart:l_nend] tinygp_std = np.sqrt(cond_gp.variance)[l_nstart:l_nend] # Plot ax = axs[k] ax.plot(tsmooth, Ysignal[k], 'r', label='truth') ax.errorbar(T[k], Y[k], Yerr[k], fmt='.', color='k', label='meas.') #ax.fill_between(tsmooth, # mu_fit - np.sqrt(var_fit), # mu_fit + np.sqrt(var_fit), # color='g', # alpha=0.5) #ax.plot(tsmooth, mu_fit, 'g', label='predict.') ax.fill_between(tsmooth, mu_pp - np.sqrt(var_pp), mu_pp + np.sqrt(var_pp), color='C6', alpha=0.5) ax.plot(tsmooth, mu_pp, 'C7', label='predict.') ax.fill_between(tsmooth, tinygp_mu - tinygp_std, tinygp_mu + tinygp_std, color='C4', alpha=0.5) ax.plot(tsmooth, tinygp_mu, 'C5', label='tinygp.') ax.set_ylabel(f'$y_{k}$') ax.set_xlabel('$t$') axs[0].legend() plt.show() ``` ![png](output_13_0.png) ```python ```
LucaMalavoltaREPO_NAMEPyORBITPATH_START.@PyORBIT_extracted@PyORBIT-main@development@spleaf@another_test.ipynb@.PATH_END.py
{ "filename": "planck_lite_py.py", "repo_name": "heatherprince/planck-lite-py", "repo_path": "planck-lite-py_extracted/planck-lite-py-master/planck_lite_py.py", "type": "Python" }
''' Python version of Planck's plik-lite likelihood with the option to include the low-ell temperature as two Gaussian bins The official Planck likelihoods are availabe at https://pla.esac.esa.int/ The papers describing the Planck likelihoods are Planck 2018: https://arxiv.org/abs/1907.12875 Planck 2015: https://arxiv.org/abs/1507.02704 The covariance matrix treatment is based on Zack Li's ACT likelihood code available at: https://github.com/xzackli/actpols2_like_py planck calibration is set to 1 by default but this can easily be modified ''' import numpy as np from scipy.io import FortranFile import scipy.linalg def main(): TTTEEE2018=PlanckLitePy(year=2018, spectra='TTTEEE', use_low_ell_bins=False) TTTEEE2018.test() TTTEEE2018_lowTTbins=PlanckLitePy(year=2018, spectra='TTTEEE', use_low_ell_bins=True) TTTEEE2018_lowTTbins.test() TT2018=PlanckLitePy(year=2018, spectra='TT', use_low_ell_bins=False) TT2018.test() TT2018_lowTTbins=PlanckLitePy(year=2018, spectra='TT', use_low_ell_bins=True) TT2018_lowTTbins.test() class PlanckLitePy: def __init__(self, data_directory='data', year=2018, spectra='TT', use_low_ell_bins=False): ''' data_directory = path from where you are running this to the folder containing the planck2015/8_low_ell and planck2015/8_plik_lite data year = 2015 or 2018 spectra = TT for just temperature or TTTEEE for temperature (TT), E mode (EE) and cross (TE) spectra use_low_ell_bins = True to use 2 low ell bins for the TT 2<=ell<30 data or False to only use ell>=30 ''' self.year=year self.spectra=spectra self.use_low_ell_bins=use_low_ell_bins #False matches Plik_lite - just l>=30 if self.use_low_ell_bins: self.nbintt_low_ell=2 self.plmin_TT=2 else: self.nbintt_low_ell=0 self.plmin_TT=30 self.plmin=30 self.plmax=2508 self.calPlanck=1 if year==2015: self.data_dir=data_directory+'/planck2015_plik_lite/' version=18 elif year==2018: self.data_dir=data_directory+'/planck2018_plik_lite/' version=22 else: print('Year must be 2015 or 2018') return 1 if spectra=='TT': self.use_tt=True self.use_ee=False self.use_te=False elif spectra=='TTTEEE': self.use_tt=True self.use_ee=True self.use_te=True else: print('Spectra must be TT or TTTEEE') return 1 self.nbintt_hi = 215 #30-2508 #used when getting covariance matrix self.nbinte = 199 #30-1996 self.nbinee = 199 #30-1996 self.nbin_hi=self.nbintt_hi+self.nbinte+self.nbinee self.nbintt=self.nbintt_hi+self.nbintt_low_ell #mostly want this if using low ell self.nbin_tot=self.nbintt+self.nbinte+self.nbinee self.like_file = self.data_dir+'cl_cmb_plik_v'+str(version)+'.dat' self.cov_file = self.data_dir+'c_matrix_plik_v'+str(version)+'.dat' self.blmin_file = self.data_dir+'blmin.dat' self.blmax_file = self.data_dir+'blmax.dat' self.binw_file = self.data_dir+'bweight.dat' # read in binned ell value, C(l) TT, TE and EE and errors # use_tt etc to select relevant parts self.bval, self.X_data, self.X_sig=np.genfromtxt(self.like_file, unpack=True) self.blmin=np.loadtxt(self.blmin_file).astype(int) self.blmax=np.loadtxt(self.blmax_file).astype(int) self.bin_w=np.loadtxt(self.binw_file) if self.use_low_ell_bins: self.data_dir_low_ell=data_directory+'/planck'+str(year)+'_low_ell/' self.bval_low_ell, self.X_data_low_ell, self.X_sig_low_ell=np.genfromtxt(self.data_dir_low_ell+'CTT_bin_low_ell_'+str(year)+'.dat', unpack=True) self.blmin_low_ell=np.loadtxt(self.data_dir_low_ell+'blmin_low_ell.dat').astype(int) self.blmax_low_ell=np.loadtxt(self.data_dir_low_ell+'blmax_low_ell.dat').astype(int) self.bin_w_low_ell=np.loadtxt(self.data_dir_low_ell+'bweight_low_ell.dat') self.bval=np.concatenate((self.bval_low_ell, self.bval)) self.X_data=np.concatenate((self.X_data_low_ell, self.X_data)) self.X_sig=np.concatenate((self.X_sig_low_ell, self.X_sig)) self.blmin_TT=np.concatenate((self.blmin_low_ell, self.blmin+len(self.bin_w_low_ell))) self.blmax_TT=np.concatenate((self.blmax_low_ell, self.blmax+len(self.bin_w_low_ell))) self.bin_w_TT=np.concatenate((self.bin_w_low_ell, self.bin_w)) else: self.blmin_TT=self.blmin self.blmax_TT=self.blmax self.bin_w_TT=self.bin_w self.fisher=self.get_inverse_covmat() def get_inverse_covmat(self): #read full covmat f = FortranFile(self.cov_file, 'r') covmat = f.read_reals(dtype=float).reshape((self.nbin_hi,self.nbin_hi)) for i in range(self.nbin_hi): for j in range(i,self.nbin_hi): covmat[i,j] = covmat[j,i] #select relevant covmat if self.use_tt and not(self.use_ee) and not(self.use_te): #just tt bin_no=self.nbintt_hi start=0 end=start+bin_no cov=covmat[start:end, start:end] elif not(self.use_tt) and not(self.use_ee) and self.use_te: #just te bin_no=self.nbinte start=self.nbintt_hi end=start+bin_no cov=covmat[start:end, start:end] elif not(self.use_tt) and self.use_ee and not(self.use_te): #just ee bin_no=self.nbinee start=self.nbintt_hi+self.nbinte end=start+bin_no cov=covmat[start:end, start:end] elif self.use_tt and self.use_ee and self.use_te: #use all bin_no=self.nbin_hi cov=covmat else: print("not implemented") #invert high ell covariance matrix (cholesky decomposition should be faster) fisher=scipy.linalg.cho_solve(scipy.linalg.cho_factor(cov), np.identity(bin_no)) fisher=fisher.transpose() if self.use_low_ell_bins: bin_no += self.nbintt_low_ell inv_covmat_with_lo=np.zeros(shape=(bin_no, bin_no)) inv_covmat_with_lo[0:2, 0:2]=np.diag(1./self.X_sig_low_ell**2) inv_covmat_with_lo[2:,2:]= fisher fisher=inv_covmat_with_lo return fisher def loglike(self, Dltt, Dlte, Dlee, ellmin=2): #convert model Dl's to Cls then bin them ls=np.arange(len(Dltt))+ellmin fac=ls*(ls+1)/(2*np.pi) Cltt=Dltt/fac Clte=Dlte/fac Clee=Dlee/fac # Fortran to python slicing: a:b becomes a-1:b # need to subtract 1 to use 0 indexing for cl, # then add one for weights because fortran includes top value Cltt_bin=np.zeros(self.nbintt) for i in range(self.nbintt): Cltt_bin[i]=np.sum(Cltt[self.blmin_TT[i]+self.plmin_TT-ellmin:self.blmax_TT[i]+self.plmin_TT+1-ellmin]*self.bin_w_TT[self.blmin_TT[i]:self.blmax_TT[i]+1]) # bin widths and weights are the same for TT, TE and EE Clte_bin=np.zeros(self.nbinte) for i in range(self.nbinte): Clte_bin[i]=np.sum(Clte[self.blmin[i]+self.plmin-ellmin:self.blmax[i]+self.plmin+1-ellmin]*self.bin_w[self.blmin[i]:self.blmax[i]+1]) # bin widths and weights are the same for TT, TE and EE Clee_bin=np.zeros(self.nbinee) for i in range(self.nbinee): Clee_bin[i]=np.sum(Clee[self.blmin[i]+self.plmin-ellmin:self.blmax[i]+self.plmin+1-ellmin]*self.bin_w[self.blmin[i]:self.blmax[i]+1]) X_model=np.zeros(self.nbin_tot) X_model[:self.nbintt]=Cltt_bin/self.calPlanck**2 X_model[self.nbintt:self.nbintt+self.nbinte]=Clte_bin/self.calPlanck**2 X_model[self.nbintt+self.nbinte:]=Clee_bin/self.calPlanck**2 Y=self.X_data-X_model #choose relevant bits based on whether using TT, TE, EE if self.use_tt and not(self.use_ee) and not(self.use_te): #just tt bin_no=self.nbintt start=0 end=start+bin_no diff_vec=Y[start:end] elif not(self.use_tt) and not(self.use_ee) and self.use_te: #just te bin_no=self.nbinte start=self.nbintt end=start+bin_no diff_vec=Y[start:end] elif not(self.use_tt) and self.use_ee and not(self.use_te): #just ee bin_no=self.nbinee start=self.nbintt+self.nbinte end=start+bin_no diff_vec=Y[start:end] elif self.use_tt and self.use_ee and self.use_te: #use all bin_no=self.nbin_tot diff_vec=Y else: print("not implemented") return -0.5*diff_vec.dot(self.fisher.dot(diff_vec)) def test(self): ls, Dltt, Dlte, Dlee = np.genfromtxt('data/Dl_planck2015fit.dat', unpack=True) ellmin=int(ls[0]) loglikelihood=self.loglike(Dltt, Dlte, Dlee, ellmin) if self.year==2018 and self.spectra=='TTTEEE' and not self.use_low_ell_bins: print('Log likelihood for 2018 high-l TT, TE and EE:') expected = -291.33481235418026 # Plik-lite within cobaya gives -291.33481235418003 elif self.year==2018 and self.spectra=='TTTEEE' and self.use_low_ell_bins: print('Log likelihood for 2018 high-l TT, TE and EE + low-l TT bins:') expected = -293.95586501795134 elif self.year==2018 and self.spectra=='TT' and not self.use_low_ell_bins: print('Log likelihood for 2018 high-l TT:') expected = -101.58123068722583 #Plik-lite within cobaya gives -101.58123068722568 elif self.year==2018 and self.spectra=='TT' and self.use_low_ell_bins: print('Log likelihood for 2018 high-l TT + low-l TT bins:') expected = -104.20228335099686 elif self.year==2015 and self.spectra=='TTTEEE' and not self.use_low_ell_bins: print('NB: Don\'t use 2015 polarization!') print('Log likelihood for 2015 high-l TT, TE and EE:') expected = -280.9388125627618 # Plik-lite within cobaya gives -291.33481235418003 elif self.year==2015 and self.spectra=='TTTEEE' and self.use_low_ell_bins: print('NB: Don\'t use 2015 polarization!') print('Log likelihood for 2015 high-l TT, TE and EE + low-l TT bins:') expected = -283.1905700256343 elif self.year==2015 and self.spectra=='TT' and not self.use_low_ell_bins: print('Log likelihood for 2015 high-l TT:') expected = -102.34403873289027 #Plik-lite within cobaya gives -101.58123068722568 elif self.year==2015 and self.spectra=='TT' and self.use_low_ell_bins: print('Log likelihood for 2015 high-l TT + low-l TT bins:') expected = -104.59579619576277 else: expected=None print('Planck-lite-py:',loglikelihood) if(expected): print('expected:', expected) print('difference:', loglikelihood-expected, '\n') if __name__=='__main__': main()
heatherprinceREPO_NAMEplanck-lite-pyPATH_START.@planck-lite-py_extracted@planck-lite-py-master@planck_lite_py.py@.PATH_END.py
{ "filename": "_font.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/graph_objs/choropleth/legendgrouptitle/_font.py", "type": "Python" }
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Font(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "choropleth.legendgrouptitle" _path_str = "choropleth.legendgrouptitle.font" _valid_props = { "color", "family", "lineposition", "shadow", "size", "style", "textcase", "variant", "weight", } # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans", "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # lineposition # ------------ @property def lineposition(self): """ Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. The 'lineposition' property is a flaglist and may be specified as a string containing: - Any combination of ['under', 'over', 'through'] joined with '+' characters (e.g. 'under+over') OR exactly one of ['none'] (e.g. 'none') Returns ------- Any """ return self["lineposition"] @lineposition.setter def lineposition(self, val): self["lineposition"] = val # shadow # ------ @property def shadow(self): """ Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en-US/docs/Web/CSS/text-shadow for additional options. The 'shadow' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["shadow"] @shadow.setter def shadow(self, val): self["shadow"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # style # ----- @property def style(self): """ Sets whether a font should be styled with a normal or italic face from its family. The 'style' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'italic'] Returns ------- Any """ return self["style"] @style.setter def style(self, val): self["style"] = val # textcase # -------- @property def textcase(self): """ Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. The 'textcase' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'word caps', 'upper', 'lower'] Returns ------- Any """ return self["textcase"] @textcase.setter def textcase(self, val): self["textcase"] = val # variant # ------- @property def variant(self): """ Sets the variant of the font. The 'variant' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'small-caps', 'all-small-caps', 'all-petite-caps', 'petite-caps', 'unicase'] Returns ------- Any """ return self["variant"] @variant.setter def variant(self, val): self["variant"] = val # weight # ------ @property def weight(self): """ Sets the weight (or boldness) of the font. The 'weight' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [1, 1000] OR exactly one of ['normal', 'bold'] (e.g. 'bold') Returns ------- int """ return self["weight"] @weight.setter def weight(self, val): self["weight"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans", "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". lineposition Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. shadow Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en- US/docs/Web/CSS/text-shadow for additional options. size style Sets whether a font should be styled with a normal or italic face from its family. textcase Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. variant Sets the variant of the font. weight Sets the weight (or boldness) of the font. """ def __init__( self, arg=None, color=None, family=None, lineposition=None, shadow=None, size=None, style=None, textcase=None, variant=None, weight=None, **kwargs, ): """ Construct a new Font object Sets this legend group's title font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.choropleth.leg endgrouptitle.Font` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans", "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". lineposition Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. shadow Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en- US/docs/Web/CSS/text-shadow for additional options. size style Sets whether a font should be styled with a normal or italic face from its family. textcase Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. variant Sets the variant of the font. weight Sets the weight (or boldness) of the font. Returns ------- Font """ super(Font, self).__init__("font") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.choropleth.legendgrouptitle.Font constructor must be a dict or an instance of :class:`plotly.graph_objs.choropleth.legendgrouptitle.Font`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("lineposition", None) _v = lineposition if lineposition is not None else _v if _v is not None: self["lineposition"] = _v _v = arg.pop("shadow", None) _v = shadow if shadow is not None else _v if _v is not None: self["shadow"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v _v = arg.pop("style", None) _v = style if style is not None else _v if _v is not None: self["style"] = _v _v = arg.pop("textcase", None) _v = textcase if textcase is not None else _v if _v is not None: self["textcase"] = _v _v = arg.pop("variant", None) _v = variant if variant is not None else _v if _v is not None: self["variant"] = _v _v = arg.pop("weight", None) _v = weight if weight is not None else _v if _v is not None: self["weight"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@graph_objs@choropleth@legendgrouptitle@_font.py@.PATH_END.py
{ "filename": "_line.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/waterfall/decreasing/marker/_line.py", "type": "Python" }
import _plotly_utils.basevalidators class LineValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__( self, plotly_name="line", parent_name="waterfall.decreasing.marker", **kwargs ): super(LineValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Line"), data_docs=kwargs.pop( "data_docs", """ color Sets the line color of all decreasing values. width Sets the line width of all decreasing values. """, ), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@waterfall@decreasing@marker@_line.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "RafiKueng/SpaghettiLens", "repo_path": "SpaghettiLens_extracted/SpaghettiLens-master/_backup2/apps/lenses/templatetags/__init__.py", "type": "Python" }
RafiKuengREPO_NAMESpaghettiLensPATH_START.@SpaghettiLens_extracted@SpaghettiLens-master@_backup2@apps@lenses@templatetags@__init__.py@.PATH_END.py
{ "filename": "convolutions.ipynb", "repo_name": "google/jax", "repo_path": "jax_extracted/jax-main/docs/notebooks/convolutions.ipynb", "type": "Jupyter Notebook" }
# Generalized convolutions in JAX <!--* freshness: { reviewed: '2024-04-08' } *--> [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/jax-ml/jax/blob/main/docs/notebooks/convolutions.ipynb) [![Open in Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://github.com/jax-ml/jax/blob/main/docs/notebooks/convolutions.ipynb) JAX provides a number of interfaces to compute convolutions across data, including: - {func}`jax.numpy.convolve` (also {func}`jax.numpy.correlate`) - {func}`jax.scipy.signal.convolve` (also {func}`~jax.scipy.signal.correlate`) - {func}`jax.scipy.signal.convolve2d` (also {func}`~jax.scipy.signal.correlate2d`) - {func}`jax.lax.conv_general_dilated` For basic convolution operations, the `jax.numpy` and `jax.scipy` operations are usually sufficient. If you want to do more general batched multi-dimensional convolution, the `jax.lax` function is where you should start. ## Basic one-dimensional convolution Basic one-dimensional convolution is implemented by {func}`jax.numpy.convolve`, which provides a JAX interface for {func}`numpy.convolve`. Here is a simple example of 1D smoothing implemented via a convolution: ```python import matplotlib.pyplot as plt from jax import random import jax.numpy as jnp import numpy as np key = random.key(1701) x = jnp.linspace(0, 10, 500) y = jnp.sin(x) + 0.2 * random.normal(key, shape=(500,)) window = jnp.ones(10) / 10 y_smooth = jnp.convolve(y, window, mode='same') plt.plot(x, y, 'lightgray') plt.plot(x, y_smooth, 'black'); ``` ![png](output_2_0.png) The `mode` parameter controls how boundary conditions are treated; here we use `mode='same'` to ensure that the output is the same size as the input. For more information, see the {func}`jax.numpy.convolve` documentation, or the documentation associated with the original {func}`numpy.convolve` function. ## Basic N-dimensional convolution For *N*-dimensional convolution, {func}`jax.scipy.signal.convolve` provides a similar interface to that of {func}`jax.numpy.convolve`, generalized to *N* dimensions. For example, here is a simple approach to de-noising an image based on convolution with a Gaussian filter: ```python from scipy import misc import jax.scipy as jsp fig, ax = plt.subplots(1, 3, figsize=(12, 5)) # Load a sample image; compute mean() to convert from RGB to grayscale. image = jnp.array(misc.face().mean(-1)) ax[0].imshow(image, cmap='binary_r') ax[0].set_title('original') # Create a noisy version by adding random Gaussian noise key = random.key(1701) noisy_image = image + 50 * random.normal(key, image.shape) ax[1].imshow(noisy_image, cmap='binary_r') ax[1].set_title('noisy') # Smooth the noisy image with a 2D Gaussian smoothing kernel. x = jnp.linspace(-3, 3, 7) window = jsp.stats.norm.pdf(x) * jsp.stats.norm.pdf(x[:, None]) smooth_image = jsp.signal.convolve(noisy_image, window, mode='same') ax[2].imshow(smooth_image, cmap='binary_r') ax[2].set_title('smoothed'); ``` ![png](output_5_0.png) Like in the one-dimensional case, we use `mode='same'` to specify how we would like edges to be handled. For more information on available options in *N*-dimensional convolutions, see the {func}`jax.scipy.signal.convolve` documentation. ## General convolutions For the more general types of batched convolutions often useful in the context of building deep neural networks, JAX and XLA offer the very general N-dimensional __conv_general_dilated__ function, but it's not very obvious how to use it. We'll give some examples of the common use-cases. A survey of the family of convolutional operators, [a guide to convolutional arithmetic](https://arxiv.org/abs/1603.07285), is highly recommended reading! Let's define a simple diagonal edge kernel: ```python # 2D kernel - HWIO layout kernel = jnp.zeros((3, 3, 3, 3), dtype=jnp.float32) kernel += jnp.array([[1, 1, 0], [1, 0,-1], [0,-1,-1]])[:, :, jnp.newaxis, jnp.newaxis] print("Edge Conv kernel:") plt.imshow(kernel[:, :, 0, 0]); ``` Edge Conv kernel: ![png](output_9_1.png) And we'll make a simple synthetic image: ```python # NHWC layout img = jnp.zeros((1, 200, 198, 3), dtype=jnp.float32) for k in range(3): x = 30 + 60*k y = 20 + 60*k img = img.at[0, x:x+10, y:y+10, k].set(1.0) print("Original Image:") plt.imshow(img[0]); ``` Original Image: ![png](output_11_1.png) ### lax.conv and lax.conv_with_general_padding These are the simple convenience functions for convolutions ️⚠️ The convenience `lax.conv`, `lax.conv_with_general_padding` helper function assume __NCHW__ images and __OIHW__ kernels. ```python from jax import lax out = lax.conv(jnp.transpose(img,[0,3,1,2]), # lhs = NCHW image tensor jnp.transpose(kernel,[3,2,0,1]), # rhs = OIHW conv kernel tensor (1, 1), # window strides 'SAME') # padding mode print("out shape: ", out.shape) print("First output channel:") plt.figure(figsize=(10,10)) plt.imshow(np.array(out)[0,0,:,:]); ``` out shape: (1, 3, 200, 198) First output channel: ![png](output_14_1.png) ```python out = lax.conv_with_general_padding( jnp.transpose(img,[0,3,1,2]), # lhs = NCHW image tensor jnp.transpose(kernel,[2,3,0,1]), # rhs = IOHW conv kernel tensor (1, 1), # window strides ((2,2),(2,2)), # general padding 2x2 (1,1), # lhs/image dilation (1,1)) # rhs/kernel dilation print("out shape: ", out.shape) print("First output channel:") plt.figure(figsize=(10,10)) plt.imshow(np.array(out)[0,0,:,:]); ``` out shape: (1, 3, 202, 200) First output channel: ![png](output_15_1.png) ### Dimension Numbers define dimensional layout for conv_general_dilated The important argument is the 3-tuple of axis layout arguments: (Input Layout, Kernel Layout, Output Layout) - __N__ - batch dimension - __H__ - spatial height - __W__ - spatial width - __C__ - channel dimension - __I__ - kernel _input_ channel dimension - __O__ - kernel _output_ channel dimension ⚠️ To demonstrate the flexibility of dimension numbers we choose a __NHWC__ image and __HWIO__ kernel convention for `lax.conv_general_dilated` below. ```python dn = lax.conv_dimension_numbers(img.shape, # only ndim matters, not shape kernel.shape, # only ndim matters, not shape ('NHWC', 'HWIO', 'NHWC')) # the important bit print(dn) ``` ConvDimensionNumbers(lhs_spec=(0, 3, 1, 2), rhs_spec=(3, 2, 0, 1), out_spec=(0, 3, 1, 2)) #### SAME padding, no stride, no dilation ```python out = lax.conv_general_dilated(img, # lhs = image tensor kernel, # rhs = conv kernel tensor (1,1), # window strides 'SAME', # padding mode (1,1), # lhs/image dilation (1,1), # rhs/kernel dilation dn) # dimension_numbers = lhs, rhs, out dimension permutation print("out shape: ", out.shape) print("First output channel:") plt.figure(figsize=(10,10)) plt.imshow(np.array(out)[0,:,:,0]); ``` out shape: (1, 200, 198, 3) First output channel: ![png](output_19_1.png) #### VALID padding, no stride, no dilation ```python out = lax.conv_general_dilated(img, # lhs = image tensor kernel, # rhs = conv kernel tensor (1,1), # window strides 'VALID', # padding mode (1,1), # lhs/image dilation (1,1), # rhs/kernel dilation dn) # dimension_numbers = lhs, rhs, out dimension permutation print("out shape: ", out.shape, "DIFFERENT from above!") print("First output channel:") plt.figure(figsize=(10,10)) plt.imshow(np.array(out)[0,:,:,0]); ``` out shape: (1, 198, 196, 3) DIFFERENT from above! First output channel: ![png](output_21_1.png) #### SAME padding, 2,2 stride, no dilation ```python out = lax.conv_general_dilated(img, # lhs = image tensor kernel, # rhs = conv kernel tensor (2,2), # window strides 'SAME', # padding mode (1,1), # lhs/image dilation (1,1), # rhs/kernel dilation dn) # dimension_numbers = lhs, rhs, out dimension permutation print("out shape: ", out.shape, " <-- half the size of above") plt.figure(figsize=(10,10)) print("First output channel:") plt.imshow(np.array(out)[0,:,:,0]); ``` out shape: (1, 100, 99, 3) <-- half the size of above First output channel: ![png](output_23_1.png) #### VALID padding, no stride, rhs kernel dilation ~ Atrous convolution (excessive to illustrate) ```python out = lax.conv_general_dilated(img, # lhs = image tensor kernel, # rhs = conv kernel tensor (1,1), # window strides 'VALID', # padding mode (1,1), # lhs/image dilation (12,12), # rhs/kernel dilation dn) # dimension_numbers = lhs, rhs, out dimension permutation print("out shape: ", out.shape) plt.figure(figsize=(10,10)) print("First output channel:") plt.imshow(np.array(out)[0,:,:,0]); ``` out shape: (1, 176, 174, 3) First output channel: ![png](output_25_1.png) #### VALID padding, no stride, lhs=input dilation ~ Transposed Convolution ```python out = lax.conv_general_dilated(img, # lhs = image tensor kernel, # rhs = conv kernel tensor (1,1), # window strides ((0, 0), (0, 0)), # padding mode (2,2), # lhs/image dilation (1,1), # rhs/kernel dilation dn) # dimension_numbers = lhs, rhs, out dimension permutation print("out shape: ", out.shape, "<-- larger than original!") plt.figure(figsize=(10,10)) print("First output channel:") plt.imshow(np.array(out)[0,:,:,0]); ``` out shape: (1, 397, 393, 3) <-- larger than original! First output channel: ![png](output_27_1.png) We can use the last to, for instance, implement _transposed convolutions_: ```python # The following is equivalent to tensorflow: # N,H,W,C = img.shape # out = tf.nn.conv2d_transpose(img, kernel, (N,2*H,2*W,C), (1,2,2,1)) # transposed conv = 180deg kernel rotation plus LHS dilation # rotate kernel 180deg: kernel_rot = jnp.rot90(jnp.rot90(kernel, axes=(0,1)), axes=(0,1)) # need a custom output padding: padding = ((2, 1), (2, 1)) out = lax.conv_general_dilated(img, # lhs = image tensor kernel_rot, # rhs = conv kernel tensor (1,1), # window strides padding, # padding mode (2,2), # lhs/image dilation (1,1), # rhs/kernel dilation dn) # dimension_numbers = lhs, rhs, out dimension permutation print("out shape: ", out.shape, "<-- transposed_conv") plt.figure(figsize=(10,10)) print("First output channel:") plt.imshow(np.array(out)[0,:,:,0]); ``` out shape: (1, 400, 396, 3) <-- transposed_conv First output channel: ![png](output_29_1.png) ### 1D Convolutions You aren't limited to 2D convolutions, a simple 1D demo is below: ```python # 1D kernel - WIO layout kernel = jnp.array([[[1, 0, -1], [-1, 0, 1]], [[1, 1, 1], [-1, -1, -1]]], dtype=jnp.float32).transpose([2,1,0]) # 1D data - NWC layout data = np.zeros((1, 200, 2), dtype=jnp.float32) for i in range(2): for k in range(2): x = 35*i + 30 + 60*k data[0, x:x+30, k] = 1.0 print("in shapes:", data.shape, kernel.shape) plt.figure(figsize=(10,5)) plt.plot(data[0]); dn = lax.conv_dimension_numbers(data.shape, kernel.shape, ('NWC', 'WIO', 'NWC')) print(dn) out = lax.conv_general_dilated(data, # lhs = image tensor kernel, # rhs = conv kernel tensor (1,), # window strides 'SAME', # padding mode (1,), # lhs/image dilation (1,), # rhs/kernel dilation dn) # dimension_numbers = lhs, rhs, out dimension permutation print("out shape: ", out.shape) plt.figure(figsize=(10,5)) plt.plot(out[0]); ``` in shapes: (1, 200, 2) (3, 2, 2) ConvDimensionNumbers(lhs_spec=(0, 2, 1), rhs_spec=(2, 1, 0), out_spec=(0, 2, 1)) out shape: (1, 200, 2) ![png](output_32_1.png) ![png](output_32_2.png) ### 3D Convolutions ```python import matplotlib as mpl # Random 3D kernel - HWDIO layout kernel = jnp.array([ [[0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, -1, 0], [-1, 0, -1], [0, -1, 0]], [[0, 0, 0], [0, 1, 0], [0, 0, 0]]], dtype=jnp.float32)[:, :, :, jnp.newaxis, jnp.newaxis] # 3D data - NHWDC layout data = jnp.zeros((1, 30, 30, 30, 1), dtype=jnp.float32) x, y, z = np.mgrid[0:1:30j, 0:1:30j, 0:1:30j] data += (jnp.sin(2*x*jnp.pi)*jnp.cos(2*y*jnp.pi)*jnp.cos(2*z*jnp.pi))[None,:,:,:,None] print("in shapes:", data.shape, kernel.shape) dn = lax.conv_dimension_numbers(data.shape, kernel.shape, ('NHWDC', 'HWDIO', 'NHWDC')) print(dn) out = lax.conv_general_dilated(data, # lhs = image tensor kernel, # rhs = conv kernel tensor (1,1,1), # window strides 'SAME', # padding mode (1,1,1), # lhs/image dilation (1,1,1), # rhs/kernel dilation dn) # dimension_numbers print("out shape: ", out.shape) # Make some simple 3d density plots: def make_alpha(cmap): my_cmap = cmap(jnp.arange(cmap.N)) my_cmap[:,-1] = jnp.linspace(0, 1, cmap.N)**3 return mpl.colors.ListedColormap(my_cmap) my_cmap = make_alpha(plt.cm.viridis) fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(x.ravel(), y.ravel(), z.ravel(), c=data.ravel(), cmap=my_cmap) ax.axis('off') ax.set_title('input') fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(x.ravel(), y.ravel(), z.ravel(), c=out.ravel(), cmap=my_cmap) ax.axis('off') ax.set_title('3D conv output'); ``` in shapes: (1, 30, 30, 30, 1) (3, 3, 3, 1, 1) ConvDimensionNumbers(lhs_spec=(0, 4, 1, 2, 3), rhs_spec=(4, 3, 0, 1, 2), out_spec=(0, 4, 1, 2, 3)) out shape: (1, 30, 30, 30, 1) ![png](output_34_1.png) ![png](output_34_2.png)
googleREPO_NAMEjaxPATH_START.@jax_extracted@jax-main@docs@notebooks@convolutions.ipynb@.PATH_END.py
{ "filename": "convert_visibilities.py", "repo_name": "ledatelescope/bifrost", "repo_path": "bifrost_extracted/bifrost-master/python/bifrost/blocks/convert_visibilities.py", "type": "Python" }
# Copyright (c) 2016-2023, The Bifrost Authors. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of The Bifrost Authors nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from bifrost.map import map as bf_map from bifrost.pipeline import TransformBlock from bifrost.DataType import DataType from copy import deepcopy from math import sqrt from bifrost import telemetry telemetry.track_module() class ConvertVisibilitiesBlock(TransformBlock): def __init__(self, iring, fmt, *args, **kwargs): super(ConvertVisibilitiesBlock, self).__init__(iring, *args, **kwargs) self.ofmt = fmt def define_valid_input_spaces(self): return ('cuda',) def on_sequence(self, iseq): ihdr = iseq.header itensor = ihdr['_tensor'] ilabels = itensor['labels'] assert(ilabels[0] == 'time') ohdr = deepcopy(ihdr) otensor = ohdr['_tensor'] if ilabels[1:] == ['freq', 'station_i', 'pol_i', 'station_j', 'pol_j']: nchan, nstand, npol, nstand_j, npol_j = itensor['shape'][1:] assert(nstand_j == nstand) assert( npol_j == npol) self.ifmt = 'matrix' if self.ofmt == 'matrix': ohdr['matrix_fill_mode'] = 'hermitian' elif self.ofmt == 'storage': nbaseline = nstand*(nstand+1)//2 del ohdr['matrix_fill_mode'] otensor['labels'] = ['time', 'baseline', 'freq', 'stokes'] otensor['shape'] = [-1, nbaseline, nchan, npol*npol] time_units, freq_units, stand_units, pol_units, _, _ = itensor['units'] otensor['units'] = [time_units, None, freq_units, ('I', 'Q', 'U', 'V')] else: raise NotImplementedError("Unsupported conversion from " + self.ifmt + " to " + self.ofmt) elif ilabels[1:] == ['baseline', 'freq', 'stokes']: nbaseline, nchan, nstokes = itensor['shape'][1:] assert(nstokes == 1 or nstokes == 4) npol = 1 if nstokes == 1 else 2 nstand = int(sqrt(8 * nbaseline + 1) - 1) // 2 time_units, baseline_units, freq_units, stokes_units, = itensor['units'] pol_units = ('X', 'Y') # TODO: Support L/R (using additional metadata?) self.ifmt = 'storage' if self.ofmt == 'matrix': otensor['labels'] = ['time', 'freq', 'station_i', 'pol_i', 'station_j', 'pol_j'] otensor['shape'] = [-1, nchan, nstand, npol, nstand, npol] otensor['units'] = [time_units, freq_units, None, pol_units, None, pol_units] else: raise NotImplementedError("Cannot convert input from %s to %s" % (ilabels, self.ofmt)) return ohdr def on_data(self, ispan, ospan): idata = ispan.data odata = ospan.data itype = DataType(idata.dtype) otype = DataType(odata.dtype) if self.ifmt == 'matrix' and self.ofmt == 'matrix': # Make a full-matrix copy of the lower-only input matrix # odata[t,c,i,p,j,q] = idata[t,c,i,p,j,q] (lower filled only) shape_nopols = list(idata.shape) del shape_nopols[5] del shape_nopols[3] idata = idata.view(itype.as_vector(2)) odata = odata.view(otype.as_vector(2)) bf_map( ''' bool in_lower_triangle = (i > j); if( in_lower_triangle ) { odata(t,c,i,0,j,0) = idata(t,c,i,0,j,0); odata(t,c,i,1,j,0) = idata(t,c,i,1,j,0); } else { auto x = idata(t,c,j,0,i,0); auto y = idata(t,c,j,1,i,0); auto x1 = x[1]; x[0] = x[0].conj(); x[1] = y[0].conj(); if( i != j ) { y[0] = x1.conj(); } y[1] = y[1].conj(); odata(t,c,i,0,j,0) = x; odata(t,c,i,1,j,0) = y; } ''', shape=shape_nopols, axis_names=['t', 'c', 'i', 'j'], data={'idata': idata, 'odata': odata}) elif self.ifmt == 'matrix' and self.ofmt == 'storage': assert(idata.shape[2] <= 2048) idata = idata.view(itype.as_vector(2)) odata = odata.view(otype.as_vector(4)) # TODO: Support L/R as well as X/Y pols bf_map(''' // TODO: This only works up to 2048 in single-precision #define project_triangular(i, j) ((i)*((i)+1)/2 + (j)) int i = int((sqrt(8.f*(b)+1)-1)/2); int j = b - project_triangular(i, 0); auto x = idata(t,c,i,0,j,0); auto y = idata(t,c,i,1,j,0); if( i == j ) { x[1] = y[0].conj(); } idata_type::value_type eye(0, 1); auto I = (x[0] + y[1]); auto Q = (x[0] - y[1]); auto U = (x[1] + y[0]); auto V = (x[1] - y[0]) * eye; odata(t,b,c,0) = odata_type(I,Q,U,V); ''', shape=odata.shape[:-1], axis_names=['t', 'b', 'c'], data={'idata': idata, 'odata': odata}, block_shape=[64,8]) # TODO: Tune this #elif self.ifmt == 'matrix' and self.ofmt == 'triangular': elif self.ifmt == 'storage' and self.ofmt == 'matrix': oshape_nopols = list(odata.shape) del oshape_nopols[5] del oshape_nopols[3] idata = idata.view(itype.as_vector(4)) odata = odata.view(otype.as_vector(2)) bf_map(''' bool in_upper_triangle = (i < j); auto b = in_upper_triangle ? j*(j+1)/2 + i : i*(i+1)/2 + j; auto IQUV = idata(t,b,c,0); auto I = IQUV[0], Q = IQUV[1], U = IQUV[2], V = IQUV[3]; idata_type::value_type eye(0, 1); auto xx = 0.5f*(I + Q); auto xy = 0.5f*(U - V*eye); auto yx = 0.5f*(U + V*eye); auto yy = 0.5f*(I - Q); if( i == j ) { xy = yx.conj(); } if( in_upper_triangle ) { auto tmp_xy = xy; xx = xx.conj(); xy = yx.conj(); yx = tmp_xy.conj(); yy = yy.conj(); } odata(t,c,i,0,j,0) = odata_type(xx, xy); odata(t,c,i,1,j,0) = odata_type(yx, yy); ''', shape=oshape_nopols, axis_names=['t', 'c', 'i', 'j'], data={'idata': idata, 'odata': odata}, block_shape=[64,8]) # TODO: Tune this else: raise NotImplementedError def convert_visibilities(iring, fmt, *args, **kwargs): """Convert visibility data to a new format. Supported values of 'fmt' are: matrix, storage Args: iring (Ring or Block): Input data source. fmt (str): The desired output format: matrix, storage. *args: Arguments to ``bifrost.pipeline.TransformBlock``. **kwargs: Keyword Arguments to ``bifrost.pipeline.TransformBlock``. **Tensor semantics**:: Input: ['time', 'freq', 'station_i', 'pol_i', 'station_j', 'pol_j'], dtype = any complex, space = CUDA fmt = 'matrix' (produces a fully-filled matrix from a lower-filled one) Output: ['time', 'freq', 'station_i', 'pol_i', 'station_j', 'pol_j'], dtype = any complex, space = CUDA fmt = 'storage' (suitable for common on-disk data formats such as UVFITS, FITS-IDI, MS etc.) Output: ['time', 'baseline', 'freq', 'stokes'], dtype = any complex, space = CUDA Input: ['time', 'baseline', 'freq', 'stokes'], dtype = any complex, space = CUDA fmt = 'matrix' (fully-filled matrix suitable for linear algebra operations) Output: ['time', 'freq', 'station_i', 'pol_i', 'station_j', 'pol_j'], dtype = any complex, space = CUDA Returns: ConvertVisibilitiesBlock: A new block instance. """ return ConvertVisibilitiesBlock(iring, fmt, *args, **kwargs)
ledatelescopeREPO_NAMEbifrostPATH_START.@bifrost_extracted@bifrost-master@python@bifrost@blocks@convert_visibilities.py@.PATH_END.py
{ "filename": "introduction.ipynb", "repo_name": "philippbaumeister/ExoMDN", "repo_path": "ExoMDN_extracted/ExoMDN-main/introduction.ipynb", "type": "Jupyter Notebook" }
<img src="banner.png" width=500 style="margin-left:0; margin-right:auto; padding: 20px"/> This notebook provides an introduction to ExoMDN, a machine-learning based model for the rapid characterization of exoplanet interiors. ExoMDN is based on Mixture Density Networks (MDNs), which output a mixture of Gaussian functions in order to approximate the distribution of interior structures which fit e.g. observed planet mass and planet radius. For more details, see Baumeister and Tosi 2023 Contact: <philipp.baumeister@dlr.de> ```python from exomdn import ExoMDN from exomdn.plotting import cornerplot, cornerplot_logratios ``` # Setting up </br> Let's start by creating a new <code>ExoMDN</code> object. <code>ExoMDN</code> handles the MDN models and includes interactive widgets to facilitate loading models and running predictions. ```python exo = ExoMDN(model_path="./models", data_path="./data") ``` # Loading a trained model </br> Next, we need to load a trained MDN model which we want to use for the interior prediction. To simplify things, we will use the included <code>load_model_widget</code>, which allows to interactively select which model to load. By default, <code>ExoMDN</code> searches for models in the <i>./models</i> path. This can be changed by setting <code>exomdn.model_path</code> By default, two models are available: * ***mass_radius_Teq*** (takes planet mass, radius, and equilibrium temperature as inputs) * ***mass_radius_k2_Teq*** (takes planet mass, radius, fluid Love number $k_2$ and equilibrium temperature as inputs) ```python exo.load_model_widget ``` # Making an interior prediction </br> <code>ExoMDN</code> provides a custom widget to run a prediction for a single planet. The output of the MDN is in terms of a distribution of log-ratios of the mass and radius fractions of each interior layer of the planet. To convert to mass and radius fractions, the model samples from the distribution and transforms each point. The number of samples can be specified in the "Options" section of the widget. </br> </br> Uncertainties can be included by ticking the checkbox in "Planet parameters". The model then first samples a number of times from within the error bars (how often can be set with the "Uncertainty samples" option) and predicts an interior distribution from each. From each of these predictions a number of points is then sampled so that the total number fits as closely as possible to the specified total number of samples (e.g. with the default values of 10 000 total samples and 1000 uncertainty samples, the model predicts 1000 distributions from within the error bars and then samples 10 times from each predicted distribution to get to the total of 10 000) ```python exo.prediction_widget ``` The output of the prediction widget is saved in <code>ExoMDN</code> in the form of [pandas DataFrames](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) as follows: * `exomdn.input_prompt` contains the input(s) to the prediction * `exomdn.prediction` contains the predicted samples of the interior * `exomdn.mixture_components` contains the means, variances, and mixture weights of the predicted Gaussian mixture ```python print(f"Length of input: {len(exo.input_prompt)}") print(f"Number of mixture components: {len(exo.mixture_components)}") print("=" * 40) print("Prediction Summary:") exo.prediction.describe() ``` ```python exo.mixture_components ``` # Visualization We can visualize the output of the MDN with the `cornerplot_logratios` function. It takes as input the prediction data, the mixture components, and the log-ratio data columns one wants to visualize (' (`exo.rf_logratios` for radius fractions, `exo.mf_logratios` for mass fractions, `exo.logratios` for both). The upper right plots also show the distribution of Gaussian kernels as predicted by the MDN, where the colors mark the respective weight in the distribution. ```python # showing radius fractions cornerplot_logratios(data=exo.prediction, data_components=exo.mixture_components, columns=exo.rf_logratios, height=2) # showing mass fractions # cornerplot_logratios(data=exomdn.prediction, data_components=exomdn.mixture_components, columns=exomdn.mf_logratios, height=2) # showing both radius and mass fractions # cornerplot_logratios(data=exomdn.prediction, data_components=exomdn.mixture_components, columns=exomdn.logratios, height=1.5) ``` The `cornerplot` function can be used to show the predicted interior in terms of true radius and mass fractions instead of log-ratios. ```python # showing radius fractions cornerplot(data=exo.prediction, columns=exo.rf, height=2) # showing mass fractions # cornerplot(data=exomdn.prediction, columns=exomdn.mf, height=2) ``` ```python ```
philippbaumeisterREPO_NAMEExoMDNPATH_START.@ExoMDN_extracted@ExoMDN-main@introduction.ipynb@.PATH_END.py
{ "filename": "b3dplot.py", "repo_name": "SpaceOdyssey/blobby3d", "repo_path": "blobby3d_extracted/blobby3d-master/pyblobby3d/src/pyblobby3d/b3dplot.py", "type": "Python" }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Plotting routines. @author: Mathew Varidel """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable class cmap: flux = 'Greys_r' v = 'RdYlBu_r' vdisp = 'YlOrBr' residuals = 'RdYlBu_r' def plot_map( ax, map_2d, title=None, xlabel=None, ylabel=None, xticks=False, yticks=False, xlim=None, ylim=None, colorbar=False, colorbar_cax=None, cbar_label=None, clim=None, cbarticks=None, cbar_nticks=5, logscale=False, cmap=None, title_fontsize='large', label_fontsize='large', tick_fontsize='large', cb_label_fontsize='large', cb_tick_fontsize='large', fwhm=None, aspect=None, mask=None): """Plot singular 2d map to an axes.""" naxis = map_2d.shape if clim is not None: if clim[0] is None: clim[0] = np.nanmin(map_2d) if clim[1] is None: clim[1] = np.nanmax(map_2d) else: clim = [np.nanmin(map_2d), np.nanmax(map_2d)] if logscale: norm = mpl.colors.LogNorm(vmin=clim[0], vmax=clim[1]) else: norm = None ax.imshow( map_2d, origin='lower', interpolation='nearest', norm=norm, vmin=clim[0], vmax=clim[1], cmap=cmap, aspect=aspect ) ax.tick_params(axis='both', direction='in', pad=4.0) if isinstance(title, str): ax.set_title(title, fontsize=title_fontsize) if isinstance(xlabel, str): ax.set_xlabel(xlabel, fontsize=label_fontsize) if isinstance(ylabel, str): ax.set_ylabel(ylabel, fontsize=label_fontsize) set_ticks( ax.xaxis, ticks=xticks, naxis=naxis[1], lim=xlim, tick_fontsize=tick_fontsize) set_ticks( ax.yaxis, ticks=yticks, naxis=naxis[0], lim=ylim, tick_fontsize=tick_fontsize) # XTicks # # TODO: Combine XTicks/YTicks settings # if not xticks: # ax.set_xticks([]) # elif xticks == 'all': # x_dist = np.diff(self.x_lim)[0]/2.0 # ax.set_xticks([-0.5, (naxis[1]-1.0)/2.0, naxis[1]-0.5]) # xtick_values = [-round(x_dist, 1), 0.0, round(x_dist, 1)] # ax.set_xticklabels(xtick_values, fontsize=tick_fontsize) # elif xticks == 'upper': # x_dist = np.diff(self.x_lim)[0]/2.0 # ax.set_xticks([(naxis[1]-1.0)/2.0, naxis[1]-0.5]) # xtick_values = [0.0, round(x_dist, 1)] # ax.set_xticklabels(xtick_values, fontsize=tick_fontsize) # elif xticks == 'lower': # x_dist = np.diff(self.x_lim)[0]/2.0 # ax.set_xticks([-0.5, (naxis[1]-1.0)/2.0]) # xtick_values = [-round(x_dist, 1), 0.0] # ax.set_xticklabels(xtick_values, fontsize=tick_fontsize) # # YTicks # if not yticks: # ax.set_yticks([]) # elif yticks == 'all': # y_dist = np.diff(self.y_lim)[0]/2.0 # ax.set_yticks([-0.5, (naxis[0]-1.0)/2.0, naxis[0]-0.5]) # ytick_values = [-round(y_dist, 1), 0.0, round(y_dist, 1)] # ax.set_yticklabels(ytick_values, fontsize=tick_fontsize) # elif yticks == 'upper': # y_dist = np.diff(self.y_lim)[0]/2.0 # ax.set_yticks([(naxis[0]-1.0)/2.0, naxis[0]-0.5]) # ytick_values = [0.0, round(y_dist, 1)] # ax.set_yticklabels(ytick_values, fontsize=tick_fontsize) # elif yticks == 'lower': # y_dist = np.diff(self.y_lim)[0]/2.0 # ax.set_yticks([-0.5, (naxis[0]-1.0)/2.0]) # ytick_values = [-round(y_dist, 1), 0.0] # ax.set_yticklabels(ytick_values, fontsize=tick_fontsize) if colorbar: if colorbar_cax is None: divider = make_axes_locatable(ax) colorbar_cax = divider.append_axes( 'right', size='10%', pad=0.03) plot_colorbar( cax=colorbar_cax, clim=clim, label=cbar_label, label_fontsize=cb_label_fontsize, cbarticks=cbarticks, cbar_nticks=cbar_nticks, tick_fontsize=cb_tick_fontsize, cmap=cmap ) if fwhm is not None: circle = plt.Circle( (1.1*fwhm, 1.1*fwhm), radius=fwhm, fill=False, edgecolor='r', linewidth=1.0) ax.add_artist(circle) def set_ticks(ax, naxis, ticks=False, lim=None, tick_fontsize='large'): if not ticks: ax.set_ticks([]) elif ticks == 'all': dist = np.diff(lim)[0]/2.0 ax.set_ticks([-0.5, (naxis-1.0)/2.0, naxis-0.5]) tick_values = [-round(dist, 1), 0.0, round(dist, 1)] ax.set_ticklabels(tick_values, fontsize=tick_fontsize) elif ticks == 'upper': dist = np.diff(lim)[0]/2.0 ax.set_ticks([(naxis-1.0)/2.0, naxis-0.5]) tick_values = [0.0, round(dist, 1)] ax.set_ticklabels(tick_values, fontsize=tick_fontsize) elif ticks == 'lower': dist = np.diff(lim)[0]/2.0 ax.set_ticks([-0.5, (naxis-1.0)/2.0]) tick_values = [-round(dist, 1), 0.0] ax.set_ticklabels(tick_values, fontsize=tick_fontsize) else: raise ValueError('xticks must be False, all, upper, lower.') def plot_colorbar( cax, mappable=None, label=None, xlabel=None, ylabel=None, clim=None, cbarticks=None, cbar_nticks=5, logscale=False, cmap=None, label_fontsize='large', tick_fontsize='large'): """ Plot colorbar. Parameters ---------- cax : matplotlib.pyplot.axes Colorbar axis. mappable : matplotlib.cm.ScalarMappable, default None Mappable object -- usually image. Default None uses a linear mappable between limits constructed by clim. title : str, default None xlabel : str, default None ylabel : str, default None clim : list, default None Color limits. Default uses mappable to construct color limits. cbarticks : list, default None cbarticks[0] corresponds to ticks. cbarticks[1] corresponds to tick labels. cbar_nticks : int, default 5 Number of colorbar ticks if cbarticks is None. logscale : bool, default False Not allowed at this time. cmap : Matplotlib.colormap instance label_fontsize : matplotlib fontsize property tick_fontisze : matplotlib fontsize property """ assert ( (mappable is not None) or (mappable is None and clim is not None) ) # Deal with limits if clim is not None: if clim[0] is None: clim[0] = np.nanmin(mappable) if clim[1] is None: clim[1] = np.nanmax(mappable) else: clim = [ np.nanmin(mappable), np.nanmax(mappable) ] # logscale if logscale: cb_norm = mpl.colors.LogNorm(vmin=clim[0], vmax=clim[1]) # tick formatter def logformatter(x, pos): value = np.exp(np.log(clim[0]) + x*np.log(clim[1]/clim[0])) value = round(value, -int(np.floor(np.log10(abs(value))))) return '%i' % (value) else: cb_norm = mpl.colors.Normalize(vmin=clim[0], vmax=clim[1]) # Construct default mappable if mappable is None: sm = plt.cm.ScalarMappable(cmap=cmap, norm=cb_norm) sm.set_array([]) # Construct colorbar cb = plt.colorbar(sm, cax=cax) if label is not None: cb.set_label(label=label, fontsize=label_fontsize) cb.set_clim(clim[0], clim[1]) # Set ticks if isinstance(cbarticks, list): assert len(cbarticks) == 2 if logscale: def logformatter(x, pos): value = np.exp(np.log(clim[0]) + x*np.log(clim[1]/clim[0])) value = round(value, -int(np.floor(np.log10(abs(value))))) return '%i' % (value) # values = [20.0, 50.0, 100.0, 200.0] pct = list(map( lambda x: np.log(x/clim[0])/np.log(clim[1]/clim[0]), cbarticks[0] )) cb.ax.yaxis.set_ticks(pct) # cb.ax.yaxis.set_major_formatter( # mpl.ticker.FuncFormatter(logformatter)) cb.ax.yaxis.set_major_formatter( mpl.ticker.FixedFormatter(cbarticks[1]) ) cb.ax.yaxis.set_tick_params( labelsize=tick_fontsize, direction='in', pad=4.0 ) else: cb.set_ticks(cbarticks[0]) cb.set_ticklabels(cbarticks[1]) else: if logscale: tick_locator = mpl.ticker.LinearLocator(numticks=cbar_nticks) cb.locator = tick_locator else: tick_locator = mpl.ticker.MaxNLocator(nbins=cbar_nticks) cb.locator = tick_locator cb.ax.tick_params( labelsize=tick_fontsize, direction='in', pad=4.0 ) cb.update_ticks()
SpaceOdysseyREPO_NAMEblobby3dPATH_START.@blobby3d_extracted@blobby3d-master@pyblobby3d@src@pyblobby3d@b3dplot.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/carpet/baxis/title/__init__.py", "type": "Python" }
import sys if sys.version_info < (3, 7): from ._text import TextValidator from ._offset import OffsetValidator from ._font import FontValidator else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [], ["._text.TextValidator", "._offset.OffsetValidator", "._font.FontValidator"], )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@carpet@baxis@title@__init__.py@.PATH_END.py
{ "filename": "mmm.py", "repo_name": "davidharvey1986/pyRRG", "repo_path": "pyRRG_extracted/pyRRG-master/src/mmm.py", "type": "Python" }
#!/usr/bin/env python # D. Jones - 2/13/14 """This code is from the IDL Astronomy Users Library""" import numpy as np def mmm( sky_vector, highbad = False, debug = False, readnoise = False, nsky = False, integer = "discrete", mxiter = 50, minsky = 20, nan=True): """Estimate the sky background in a stellar contaminated field. MMM assumes that contaminated sky pixel values overwhelmingly display POSITIVE departures from the true value. Adapted from DAOPHOT routine of the same name. CALLING SEQUENCE: skymod,sigma,skew = mmm.mmm( sky, highbad= , readnoise=, debug=, minsky=, nsky=, integer=) INPUTS: sky - Array or Vector containing sky values. This version of MMM does not require SKY to be sorted beforehand. RETURNS: skymod - Scalar giving estimated mode of the sky values sigma - Scalar giving standard deviation of the peak in the sky histogram. If for some reason it is impossible to derive skymod, then SIGMA = -1.0 skew - Scalar giving skewness of the peak in the sky histogram If no output variables are supplied or if "debug" is set then the values of skymod, sigma and skew will be printed. OPTIONAL KEYWORD INPUTS: highbad - scalar value of the (lowest) "bad" pixel level (e.g. cosmic rays or saturated pixels) If not supplied, then there is assumed to be no high bad pixels. minsky - Integer giving mininum number of sky values to be used. MMM will return an error if fewer sky elements are supplied. Default = 20. maxiter - integer giving maximum number of iterations allowed,default=50 readnoise - Scalar giving the read noise (or minimum noise for any pixel). Normally, MMM determines the (robust) median by averaging the central 20% of the sky values. In some cases where the noise is low, and pixel values are quantized a larger fraction may be needed. By supplying the optional read noise parameter, MMM is better able to adjust the fraction of pixels used to determine the median. integer - Set this keyword if the input SKY vector only contains discrete integer values. This keyword is only needed if the SKY vector is of type float or double precision, but contains only discrete integer values. (Prior to July 2004, the equivalent of /INTEGER was set for all data types) debug - If this keyword is set and non-zero, then additional information is displayed at the terminal. OPTIONAL OUTPUT KEYWORD: nsky - Integer scalar giving the number of pixels actually used for the sky computation (after outliers have been removed). NOTES: (1) Program assumes that low "bad" pixels (e.g. bad CCD columns) have already been deleted from the SKY vector. (2) MMM was updated in June 2004 to better match more recent versions of DAOPHOT. (3) Does not work well in the limit of low Poisson integer counts (4) MMM may fail for strongly skewed distributions. METHOD: The algorithm used by MMM consists of roughly two parts: (1) The average and sigma of the sky pixels is computed. These values are used to eliminate outliers, i.e. values with a low probability given a Gaussian with specified average and sigma. The average and sigma are then recomputed and the process repeated up to 20 iterations. (2) The amount of contamination by stars is estimated by comparing the mean and median of the remaining sky pixels. If the mean is larger than the median then the true sky value is estimated by 3*median - 2*mean REVISION HISTORY: Adapted to IDL from 1986 version of DAOPHOT in STSDAS W. Landsman, STX Feb, 1987 Added HIGHBAD keyword W. Landsman January, 1991 Fixed occasional problem with integer inputs W. Landsman Feb, 1994 Avoid possible 16 bit integer overflow W. Landsman November, 2001 Added READNOISE, NSKY keywords, new median computation W. Landsman June, 2004 Added INTEGER keyword W. Landsman July, 2004 Improve numerical precision W. Landsman October, 2004 Fewer aborts on strange input sky histograms W. Landsman October, 2005 Added /SILENT keyword November, 2005 Fix too many /CON keywords to MESSAGE W.L. December, 2005 Fix bug introduced June 2004 removing outliers N. Cunningham/W. Landsman January, 2006 when READNOISE not set Make sure that MESSAGE never aborts W. Landsman January, 2008 Add mxiter keyword and change default to 50 W. Landsman August, 2011 Added MINSKY keyword W.L. December, 2011 Converted to Python D. Jones January, 2014 """ print("Getting the background of the image, this can take a while for large images") if nan: sky_vector = sky_vector[np.where(sky_vector == sky_vector)] nsky = len( sky_vector ) #Get number of sky elements if nsky < minsky: sigma=-1.0 ; skew = 0.0; skymod = np.nan print(('ERROR -Input vector must contain at least '+str(minsky)+' elements')) return(skymod,sigma,skew) nlast = nsky-1 #Subscript of last pixel in SKY array if debug: print(('Processing '+str(nsky) + ' element array')) sz_sky = np.shape(sky_vector) sky = np.sort(sky_vector) #Sort SKY in ascending values skymid = 0.5*sky[int((nsky-1)/2)] + 0.5*sky[int(nsky/2)] #Median value of all sky values cut1 = np.min( [skymid-sky[0],sky[nsky-1] - skymid] ) if highbad: cut1[np.where(cut1 > highbad - skymid)[0]] = highbad - skymid cut2 = skymid + cut1 cut1 = skymid - cut1 # Select the pixels between Cut1 and Cut2 good = np.where( (sky <= cut2) & (sky >= cut1))[0] Ngood = len(good) if ( Ngood == 0 ): sigma=-1.0 ; skew = 0.0; skymod = 0.0 print(('ERROR - No sky values fall within ' + str(cut1) + \ ' and ' + str(cut2))) return(skymod,sigma,skew) delta = sky[good] - skymid #Subtract median to improve arithmetic accuracy sum = np.sum(delta.astype('float64')) sumsq = np.sum(delta.astype('float64')**2) maximm = np.max( good) ; minimm = np.min(good) # Highest value accepted at upper end of vector minimm = minimm -1 #Highest value reject at lower end of vector # Compute mean and sigma (from the first pass). medianIndex = int(np.floor((minimm+maximm+1)/2)) skymed = 0.5*sky[medianIndex] + \ 0.5*sky[medianIndex + 1] #median skymn = sum/(maximm-minimm) #mean sigma = np.sqrt(sumsq/(maximm-minimm)-skymn**2) #sigma skymn = skymn + skymid #Add median which was subtracted off earlier # If mean is less than the mode, then the contamination is slight, and the # mean value is what we really want. # skymod = (skymed < skymn) ? 3.*skymed - 2.*skymn : skymn if skymed < skymn: skymod = 3.*skymed - 2.*skymn else: skymod = skymn # Rejection and recomputation loop: niter = 0 clamp = 1 old = 0 # START_LOOP: redo = True while redo: niter = niter + 1 if ( niter > mxiter ): sigma=-1.0 ; skew = 0.0 print(('ERROR - Too many ('+str(mxiter) + ') iterations,' + \ ' unable to compute sky')) return(skymod,sigma,skew) if ( maximm-minimm < minsky ): #Error? sigma = -1.0 ; skew = 0.0 print(('ERROR - Too few ('+str(maximm-minimm) + \ ') valid sky elements, unable to compute sky')) return(skymod,sigma,skew) # Compute Chauvenet rejection criterion. r = np.log10( float( maximm-minimm ) ) r = np.max( [ 2., ( -0.1042*r + 1.1695)*r + 0.8895 ] ) # Compute rejection limits (symmetric about the current mode). cut = r*sigma + 0.5*np.abs(skymn-skymod) # if integer: cut = cut > 1.5 cut1 = skymod - cut ; cut2 = skymod + cut # # Recompute mean and sigma by adding and/or subtracting sky values # at both ends of the interval of acceptable values. redo = False newmin = minimm if sky[newmin+1] >= cut1: tst_min = 1 #Is minimm+1 above current CUT? else: tst_min = 0 if (newmin == -1) and tst_min: done = 1 #Are we at first pixel of SKY? else: done = 0 if not done: if newmin > 0: skyind = newmin else: skyind = 0 if (sky[skyind] < cut1) and tst_min: done = 1 if not done: istep = 1 - 2*int(tst_min) while not done: newmin = newmin + istep if (newmin == -1) | (newmin == nlast): done = 1 if not done: if (sky[newmin] <= cut1) and (sky[newmin+1] >= cut1): done = 1 if tst_min: delta = sky[newmin+1:minimm+1] - skymid else: delta = sky[minimm+1:newmin+1] - skymid sum = sum - istep*np.sum(delta) sumsq = sumsq - istep*np.sum(delta**2) redo = True minimm = newmin newmax = maximm if sky[maximm] <= cut2: tst_max = 1 #Is current maximum below upper cut? else: tst_max = 0 if (maximm == nlast) and tst_max: done = 1 else: done = 0 #Are we at last pixel of SKY array? if not done: if maximm+1 < nlast: skyind = maximm+1 else: skyind = nlast if ( tst_max ) and (sky[skyind] > cut2): done = 1 if not done: # keep incrementing newmax istep = -1 + 2*int(tst_max) #Increment up or down? while not done: newmax = newmax + istep if (newmax == nlast) or (newmax == -1): done = 1 if not done: if ( sky[newmax] <= cut2 ) and ( sky[newmax+1] >= cut2 ): done = 1 if tst_max: delta = sky[maximm+1:newmax+1] - skymid else: delta = sky[newmax+1:maximm+1] - skymid sum = sum + istep*np.sum(delta) sumsq = sumsq + istep*np.sum(delta**2) redo = True maximm = newmax # # Compute mean and sigma (from this pass). # nsky = maximm - minimm if ( nsky < minsky ): # error? sigma = -1.0 ; skew = 0.0 print('ERROR - Outlier rejection left too few sky elements') return(skymod,sigma,skew) skymn = sum/nsky var = sumsq/nsky - skymn**2 if var < 0: var = 0 sigma = float( np.sqrt( var )) skymn = skymn + skymid # Determine a more robust median by averaging the central 20% of pixels. # Estimate the median using the mean of the central 20 percent of sky # values. Be careful to include a perfectly symmetric sample of pixels about # the median, whether the total number is even or odd within the acceptance # interval center = (minimm + 1 + maximm)/2. side = np.round(0.2*(maximm-minimm))/2. + 0.25 j = int(np.round(center-side)) k = int(np.round(center+side)) # In case the data has a large number of of the same (quantized) # intensity, expand the range until both limiting values differ from the # central value by at least 0.25 times the read noise. if readnoise: L = round(center-0.25) M = round(center+0.25) R = 0.25*readnoise while ((j > 0) and (k < nsky-1) and \ ( ((sky[L] - sky[j]) < R) or ((sky[k] - sky[M]) < R))): j -= 1 k += 1 skymed = np.sum(sky[j:k+1])/(k-j+1) # If the mean is less than the median, then the problem of contamination # is slight, and the mean is what we really want. if skymed < skymn : dmod = 3.*skymed-2.*skymn-skymod else: dmod = skymn - skymod # prevent oscillations by clamping down if sky adjustments are changing sign if dmod*old < 0: clamp = 0.5*clamp skymod = skymod + clamp*dmod old = dmod # if redo then goto, START_LOOP # skew = float( (skymn-skymod)/max([1.,sigma]) ) nsky = maximm - minimm if debug: print(('% MMM: Number of unrejected sky elements: ', str(nsky,2), \ ' Number of iterations: ', str(niter))) print(('% MMM: Mode, Sigma, Skew of sky vector:', skymod, sigma, skew )) return(skymod,sigma,skew)
davidharvey1986REPO_NAMEpyRRGPATH_START.@pyRRG_extracted@pyRRG-master@src@mmm.py@.PATH_END.py
{ "filename": "get_adr.py", "repo_name": "grzeimann/Panacea", "repo_path": "Panacea_extracted/Panacea-master/get_adr.py", "type": "Python" }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 20 10:46:25 2021 @author: gregz """ from astropy.io import fits from astropy.modeling.models import Gaussian2D from astropy.modeling.fitting import LevMarLSQFitter import numpy as np import glob import os.path as op from input_utils import setup_logging log = setup_logging('adr') basedir = '/work/03946/hetdex/maverick/LRS2/STANDARDS' filenames = glob.glob(op.join(basedir, 'multi_2021*uv.fits')) N = 11 M = len(filenames) k=0 XC, YC, WC = (np.zeros((M, 2*N)), np.zeros((M, 2*N)), np.zeros((2*N,))) fitter = LevMarLSQFitter() G = Gaussian2D() for filename in filenames: log.info('Working on %s' % filename) j = 0 for name in ['uv', 'orange']: f = fits.open(filename.replace('uv', name)) wave = f[6].data[0] x = f[5].data[:, 0] y = f[5].data[:, 1] skysub = f[2].data chunks = [np.nanmedian(xo, axis=1) for xo in np.array_split(skysub, N, axis=1)] wc = [np.nanmedian(xo) for xo in np.array_split(wave, N)] xc = np.zeros((N,)) yc = np.zeros((N,)) wc = np.array(wc) for i, chunk in enumerate(chunks): ind = np.nanargmax(chunk) d = np.sqrt((x-x[ind])**2 + (y-y[ind])**2) xc[i] = x[ind] yc[i] = y[ind] G.amplitude.value = np.nanmax(chunk) G.x_mean.value = xc[i] G.y_mean.value = yc[i] sel = (d < 3.0) * np.isfinite(chunk) fit = fitter(G, x[sel], y[sel], chunk[sel]) xc[i] = fit.x_mean.value * 1. yc[i] = fit.y_mean.value * 1. XC[k, j:j+N] = xc YC[k, j:j+N] = yc WC[j:j+N] = wc j += N XC[k, WC<4650.] += 0.20 YC[k, WC<4650.] -= 0.24 sel = np.isfinite(XC[k]) * np.isfinite(YC[k]) p0 = np.polyfit(WC[sel], XC[k][sel], 3) p1 = np.polyfit(WC[sel], YC[k][sel], 3) xc = np.polyval(p0, 5500) yc = np.polyval(p1, 5500) XC[k] = XC[k] - xc YC[k] = YC[k] - yc if np.sqrt(xc**2 + yc**2)>2.5: XC[k] = np.nan YC[k] = np.nan log.info('Centroid: %0.2f %0.2f' % (xc, yc)) k += 1 fits.HDUList([fits.PrimaryHDU(XC), fits.ImageHDU(YC), fits.ImageHDU(WC)]).writeto('test.fits', overwrite=True)
grzeimannREPO_NAMEPanaceaPATH_START.@Panacea_extracted@Panacea-master@get_adr.py@.PATH_END.py
{ "filename": "StatsAddMin.md", "repo_name": "tensorflow/tensorflow", "repo_path": "tensorflow_extracted/tensorflow-master/tensorflow/lite/g3doc/api_docs/python/tflite_support/metadata_schema_py_generated/StatsAddMin.md", "type": "Markdown" }
page_type: reference <link rel="stylesheet" href="/site-assets/css/style.css"> <!-- DO NOT EDIT! Automatically generated file. --> <div itemscope itemtype="http://developers.google.com/ReferenceObject"> <meta itemprop="name" content="tflite_support.metadata_schema_py_generated.StatsAddMin" /> <meta itemprop="path" content="Stable" /> </div> # tflite_support.metadata_schema_py_generated.StatsAddMin <!-- Insert buttons and diff --> <table class="tfo-notebook-buttons tfo-api nocontent" align="left"> <td> <a target="_blank" href="https://github.com/tensorflow/tflite-support/blob/v0.4.4/tensorflow_lite_support/metadata/metadata_schema_py_generated.py#L1874-L1875"> <img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub </a> </td> </table> <pre class="devsite-click-to-copy prettyprint lang-py tfo-signature-link"> <code>tflite_support.metadata_schema_py_generated.StatsAddMin( builder, min ) </code></pre> <!-- Placeholder for "Used in" -->
tensorflowREPO_NAMEtensorflowPATH_START.@tensorflow_extracted@tensorflow-master@tensorflow@lite@g3doc@api_docs@python@tflite_support@metadata_schema_py_generated@StatsAddMin.md@.PATH_END.py
{ "filename": "LaplaceErrorDistribution.py", "repo_name": "dokester/BayesicFitting", "repo_path": "BayesicFitting_extracted/BayesicFitting-master/BayesicFitting/source/LaplaceErrorDistribution.py", "type": "Python" }
import numpy as numpy import math from .Formatter import formatter as fmt from .ScaledErrorDistribution import ScaledErrorDistribution __author__ = "Do Kester" __year__ = 2023 __license__ = "GPL3" __version__ = "3.1.0" __url__ = "https://www.bayesicfitting.nl" __status__ = "Perpetual Beta" # * # * This file is part of the BayesicFitting package. # * # * BayesicFitting is free software: you can redistribute it and/or modify # * it under the terms of the GNU Lesser General Public License as # * published by the Free Software Foundation, either version 3 of # * the License, or ( at your option ) any later version. # * # * BayesicFitting is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU Lesser General Public License for more details. # * # * The GPL3 license can be found at <http://www.gnu.org/licenses/>. # * # * A JAVA version of this code was part of the Herschel Common # * Science System (HCSS), also under GPL3. # * # * 2010 - 2014 Do Kester, SRON (Java code) # * 2017 - 2023 Do Kester class LaplaceErrorDistribution( ScaledErrorDistribution ): """ To calculate a Laplace likelihood. For one residual, x, it holds f( x ) = 1 / ( 2 s ) exp( - |x| / s ) where s is the scale. s is a hyperparameter, which might be estimated from the data. The variance of this function is &sigma;^2 = 2 s ^ 2. See: toSigma() The function is mostly used to calculate the likelihood L over N residuals, or easier using log likelihood, logL. logL = log( N / ( 2 s ) ) - &sum;( |x| / s ) Using weights this becomes: logL = log( &sum;( w ) / ( 2 s ) ) - &sum;( w |x| / s ) Using this error distribution results in median-like solutions. Author Do Kester. """ SQRT2 = math.sqrt( 2 ) LGSQ2 = math.log( SQRT2 ) LOG2 = math.log( 2.0 ) # *********CONSTRUCTORS*************************************************** def __init__( self, scale=1.0, limits=None, copy=None ) : """ Constructor of Laplace Distribution. Parameters ---------- scale : float noise scale limits : None or list of 2 floats [low,high] None : no limits implying fixed scale low low limit on scale (needs to be >0) high high limit on scale when limits are set, the scale is *not* fixed. copy : LaplaceErrorDistribution distribution to be copied. """ super( LaplaceErrorDistribution, self ).__init__( scale=scale, limits=limits, copy=copy ) def copy( self ): """ Return copy of this. """ return LaplaceErrorDistribution( copy=self ) # *********DATA & WEIGHT*************************************************** def acceptWeight( self ): """ True if the distribution accepts weights. Always true for this distribution. """ return True def toSigma( self, scale ) : """ Return sigma, the squareroot of the variance. Parameter -------- scale : float the scale of this Laplace distribution. """ return scale * math.sqrt( 2.0 ) def getScale( self, problem, allpars=None ) : """ Return the noise scale Parameters ---------- problem : Problem to be solved allpars : array_like None take parameters from problem.model list of all parameters in the problem """ sumres = self.getSumRes( problem, allpars=allpars ) return sumres / problem.sumweight def getSumRes( self, problem, allpars=None, scale=1 ): """ Return the sum of the absolute values of the residuals. sum ( | res | ) Parameters ---------- problem : Problem to be solved allpars : array_like None take parameters from problem.model list of all parameters in the problem scale : float or array_like scale of residuals (from accuracies or noisescale of errdis) """ res = self.getResiduals( problem, allpars=allpars ) / scale if problem.weights is not None : res *= problem.weights return numpy.sum( numpy.abs( res ) ) # *********LIKELIHOODS*************************************************** def logLikelihood_alt( self, problem, allpars ) : """ Return the log( likelihood ) for a Gaussian distribution. Parameters ---------- problem : Problem to be solved allpars : array_like parameters of the problem """ self.ncalls += 1 scale = allpars[-1] if not problem.hasAccuracy else problem.accuracy sumres = self.getSumRes( problem, allpars, scale=scale ) if isinstance( scale, float ) : norm = problem.sumweight * ( self.LOG2 + math.log( scale ) ) elif problem.hasWeights() : norm = numpy.sum( problem.weights * ( self.LOG2 + numpy.log( scale ) ) ) else : norm = numpy.sum( self.LOG2 + numpy.log( scale ) ) return -( norm + sumres ) def logLdata( self, problem, allpars, mockdata=None ) : """ Return the log( likelihood ) for each residual logL = sum( logLdata ) Parameters ---------- problem : Problem to be solved allpars : array_like list of all parameters in the problem mockdata : array_like as calculated by the model """ np = problem.npars res = problem.residuals( allpars[:np], mockdata=mockdata ) scale = allpars[-1] if not problem.hasAccuracy else problem.accuracy res = - numpy.abs( res ) / scale - ( self.LOG2 + numpy.log( scale ) ) if problem.weights is not None : res = res * problem.weights return res def partialLogL_alt( self, problem, allpars, fitIndex ) : """ Return the partial derivative of log( likelihood ) to the parameters. dL/ds is not implemented for problems with accuracy Parameters ---------- problem : Problem to be solved allpars : array_like list of all parameters in the problem fitIndex : array_like indices of parameters to be fitted """ self.nparts += 1 scale = allpars[-1] if not problem.hasAccuracy else problem.accuracy dM = problem.partial( allpars[:-1] ) res = problem.residuals( allpars[:-1] ) wgt = numpy.ones_like( res, dtype=float ) if problem.weights is None else problem.weights wgt = numpy.copysign( wgt, res ) / scale dL = numpy.zeros( len( fitIndex ), dtype=float ) i = 0 for k in fitIndex : if k >= 0 : dL[i] = numpy.sum( wgt * dM[:,k] ) i += 1 else : dL[-1] = self.getSumRes( problem, allpars=allpars, scale=scale ) - problem.sumweight return dL def nextPartialData( self, problem, allpars, fitIndex, mockdata=None ) : """ Return the partial derivative of elements of the log( likelihood ) to the parameters. dL/ds is not implemented for problems with accuracy Parameters ---------- problem : Problem to be solved allpars : array_like list of all parameters in the problem fitIndex : array_like indices of parameters to be fitted mockdata : array_like as calculated by the model """ param = allpars[:-1] scale = allpars[-1] if not problem.hasAccuracy else problem.accuracy res = problem.residuals( param, mockdata=mockdata ) dM = problem.partial( param ) ## TBD import mockdata into partial # dM = model.partial( self.xdata, param, mockdata=mockdata ) wgt = numpy.ones_like( res, dtype=float ) if problem.weights is None else problem.weights swgt = numpy.copysign( wgt, res ) res *= swgt / scale ## make all residuals >= 0 for k in fitIndex : if k >= 0 : yield ( swgt * dM[:,k] ) / scale else : yield ( res - wgt ) / scale return def __str__( self ) : return "Laplace error distribution"
dokesterREPO_NAMEBayesicFittingPATH_START.@BayesicFitting_extracted@BayesicFitting-master@BayesicFitting@source@LaplaceErrorDistribution.py@.PATH_END.py
{ "filename": "_opacity.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/scattersmith/selected/marker/_opacity.py", "type": "Python" }
import _plotly_utils.basevalidators class OpacityValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="opacity", parent_name="scattersmith.selected.marker", **kwargs, ): super(OpacityValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "style"), max=kwargs.pop("max", 1), min=kwargs.pop("min", 0), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@scattersmith@selected@marker@_opacity.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/partners/qdrant/langchain_qdrant/__init__.py", "type": "Python" }
from langchain_qdrant.fastembed_sparse import FastEmbedSparse from langchain_qdrant.qdrant import QdrantVectorStore, RetrievalMode from langchain_qdrant.sparse_embeddings import SparseEmbeddings, SparseVector from langchain_qdrant.vectorstores import Qdrant __all__ = [ "Qdrant", "QdrantVectorStore", "SparseEmbeddings", "SparseVector", "FastEmbedSparse", "RetrievalMode", ]
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@partners@qdrant@langchain_qdrant@__init__.py@.PATH_END.py
{ "filename": "_size.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/volume/colorbar/title/font/_size.py", "type": "Python" }
import _plotly_utils.basevalidators class SizeValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="size", parent_name="volume.colorbar.title.font", **kwargs ): super(SizeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 1), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@volume@colorbar@title@font@_size.py@.PATH_END.py
{ "filename": "test_covariance_kernels.py", "repo_name": "ArgonneCPAC/diffmah", "repo_path": "diffmah_extracted/diffmah-main/diffmah/diffmahpop_kernels/tests/test_covariance_kernels.py", "type": "Python" }
"""""" import numpy as np from jax import random as jran from ...tests.test_utils import _enforce_is_cov from .. import covariance_kernels as ck def test_param_u_param_names_propagate_properly(): gen = zip(ck.DEFAULT_COV_U_PARAMS._fields, ck.DEFAULT_COV_PARAMS._fields) for u_key, key in gen: assert u_key[:2] == "u_" assert u_key[2:] == key inferred_default_params = ck.get_bounded_cov_params(ck.DEFAULT_COV_U_PARAMS) assert set(inferred_default_params._fields) == set(ck.DEFAULT_COV_PARAMS._fields) inferred_default_u_params = ck.get_unbounded_cov_params(ck.DEFAULT_COV_PARAMS) assert set(inferred_default_u_params._fields) == set( ck.DEFAULT_COV_U_PARAMS._fields ) def test_get_bounded_params_fails_when_passing_params(): try: ck.get_bounded_cov_params(ck.DEFAULT_COV_PARAMS) raise NameError("get_bounded_cov_params should not accept params") except AttributeError: pass def test_get_unbounded_params_fails_when_passing_u_params(): try: ck.get_unbounded_cov_params(ck.DEFAULT_COV_U_PARAMS) raise NameError("get_unbounded_cov_params should not accept u_params") except AttributeError: pass def test_param_u_param_inversion(): ran_key = jran.key(0) n_tests = 100 for __ in range(n_tests): ran_key, test_key = jran.split(ran_key, 2) n_p = len(ck.DEFAULT_COV_PARAMS) u_p = jran.uniform(test_key, minval=-100, maxval=100, shape=(n_p,)) u_p = ck.CovUParams(*u_p) p = ck.get_bounded_cov_params(u_p) u_p2 = ck.get_unbounded_cov_params(p) for x, y in zip(u_p, u_p2): assert np.allclose(x, y, rtol=0.01) def test_default_params_are_in_bounds(): for key in ck.DEFAULT_COV_PARAMS._fields: val = getattr(ck.DEFAULT_COV_PARAMS, key) bound = getattr(ck.COV_PBOUNDS, key) assert bound[0] < val < bound[1] def test_covariances_are_always_covariances(): lgmarr = np.linspace(10, 15, 20) ran_key = jran.key(0) npars = len(ck.DEFAULT_COV_PARAMS) ntests = 200 for __ in range(ntests): ran_key, test_key = jran.split(ran_key, 2) u_p = jran.uniform(test_key, minval=-1000, maxval=1000, shape=(npars,)) u_params = ck.CovUParams(*u_p) cov_params = ck.get_bounded_cov_params(u_params) for lgm in lgmarr: cov = ck._get_diffmahpop_cov(cov_params, lgm) assert cov.shape == (4, 4) _enforce_is_cov(cov)
ArgonneCPACREPO_NAMEdiffmahPATH_START.@diffmah_extracted@diffmah-main@diffmah@diffmahpop_kernels@tests@test_covariance_kernels.py@.PATH_END.py
{ "filename": "tvtk_base_handler.py", "repo_name": "enthought/mayavi", "repo_path": "mayavi_extracted/mayavi-master/tvtk/tvtk_base_handler.py", "type": "Python" }
""" Handler and UI elements for tvtk objects. """ # Author: Vibha Srinivasan <vibha@enthought.com> # Copyright (c) 2008-2020, Enthought, Inc. # License: BSD Style. from traits.api import HasTraits, Str, Instance, Property, Button, List, Enum from traitsui.handler import Handler from traitsui.ui_info import UIInfo from traitsui.item import Item from traitsui.view import View from traits.trait_base import user_name_for, xgetattr def TableEditor(*args, **kw): from .value_column import ObjectColumn, ValueColumn from traitsui.api import TableEditor as _E return _E(columns=[ObjectColumn(name='name'), ValueColumn(name='value')]) class TraitsViewObject(HasTraits): """ Wrapper for all items to be included in the full traits view of the TVTKBase object. """ # Trait name (name of the trait that is to be included in the view). name = Str # The TVTKBase object for which we are building a view. parent = Instance(HasTraits) class TVTKBaseHandler(Handler): """ A handler for the TVTKBase object. """ # A reference to the UIInfo object. info = Instance(UIInfo) # Type of view (of info.object) to display. view_type = Enum(['Basic', 'Advanced']) # The view for the object (that is, info.object) view = Property(depends_on='view_type') # List of TraitsViewObject items, where each item contains information # about the trait to display as a row in a table editor. _full_traits_list = Property(List, editor=TableEditor) def init_info(self, info): """ Informs the handler what the UIInfo object for a View will be. Overridden here to save a reference to the info object. """ self.info = info return def _get__full_traits_list(self): """ Returns a list of objects to be included in the table editor for the full traits view. """ return [TraitsViewObject(name=name, parent = self.info.object) for name in self.info.object._full_traitnames_list_] def _get_view(self): """ Returns the view (for info.object) to be displayed in the InstanceEditor. """ if self.view_type == "Basic": view = self.info.object.trait_view('view') else: view = self.info.object.trait_view('full_traits_view') # This method is called when the default traits view for the object is # displayed. The default traits view already has a title, so do not # display a title for the contained view. view.title = '' return view #### EOF ###################################################################
enthoughtREPO_NAMEmayaviPATH_START.@mayavi_extracted@mayavi-master@tvtk@tvtk_base_handler.py@.PATH_END.py
{ "filename": "test_empty.py", "repo_name": "pandas-dev/pandas", "repo_path": "pandas_extracted/pandas-main/pandas/tests/reshape/concat/test_empty.py", "type": "Python" }
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, RangeIndex, Series, concat, date_range, ) import pandas._testing as tm class TestEmptyConcat: def test_handle_empty_objects(self, sort, using_infer_string): df = DataFrame( np.random.default_rng(2).standard_normal((10, 4)), columns=list("abcd") ) dfcopy = df[:5].copy() dfcopy["foo"] = "bar" empty = df[5:5] frames = [dfcopy, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype( object if not using_infer_string else "str" ) expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( {"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_empty_series(self): # GH 11082 s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]}, index=RangeIndex(3), ) tm.assert_frame_equal(res, exp) s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=0) # name will be reset exp = Series([1, 2, 3], dtype="float64") tm.assert_series_equal(res, exp) # empty Series with no name s1 = Series([1, 2, 3], name="x") s2 = Series(name=None, dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]}, columns=["x", 0], index=RangeIndex(3), ) tm.assert_frame_equal(res, exp) @pytest.mark.parametrize("tz", [None, "UTC"]) @pytest.mark.parametrize("values", [[], [1, 2, 3]]) def test_concat_empty_series_timelike(self, tz, values): # GH 18447 first = Series([], dtype="M8[ns]").dt.tz_localize(tz) dtype = None if values else np.float64 second = Series(values, dtype=dtype) expected = DataFrame( { 0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz), 1: values, } ) result = concat([first, second], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "left,right,expected", [ # booleans (np.bool_, np.int32, np.object_), # changed from int32 in 2.0 GH#39817 (np.bool_, np.float32, np.object_), # datetime-like ("m8[ns]", np.bool_, np.object_), ("m8[ns]", np.int64, np.object_), ("M8[ns]", np.bool_, np.object_), ("M8[ns]", np.int64, np.object_), # categorical ("category", "category", "category"), ("category", "object", "object"), ], ) def test_concat_empty_series_dtypes(self, left, right, expected): # GH#39817, GH#45101 result = concat([Series(dtype=left), Series(dtype=right)]) assert result.dtype == expected @pytest.mark.parametrize( "dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"] ) def test_concat_empty_series_dtypes_match_roundtrips(self, dtype): dtype = np.dtype(dtype) result = concat([Series(dtype=dtype)]) assert result.dtype == dtype result = concat([Series(dtype=dtype), Series(dtype=dtype)]) assert result.dtype == dtype @pytest.mark.parametrize("dtype", ["float64", "int8", "uint8", "m8[ns]", "M8[ns]"]) @pytest.mark.parametrize( "dtype2", ["float64", "int8", "uint8", "m8[ns]", "M8[ns]"], ) def test_concat_empty_series_dtypes_roundtrips(self, dtype, dtype2): # round-tripping with self & like self if dtype == dtype2: pytest.skip("same dtype is not applicable for test") def int_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"i", "u", "b"}) and ( dtype.kind == "i" or dtype2.kind == "i" ): return "i" elif not len(typs - {"u", "b"}) and ( dtype.kind == "u" or dtype2.kind == "u" ): return "u" return None def float_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"f", "i", "u"}) and ( dtype.kind == "f" or dtype2.kind == "f" ): return "f" return None def get_result_type(dtype, dtype2): result = float_result_type(dtype, dtype2) if result is not None: return result result = int_result_type(dtype, dtype2) if result is not None: return result return "O" dtype = np.dtype(dtype) dtype2 = np.dtype(dtype2) expected = get_result_type(dtype, dtype2) result = concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype assert result.kind == expected def test_concat_empty_series_dtypes_triple(self): assert ( concat( [Series(dtype="M8[ns]"), Series(dtype=np.bool_), Series(dtype=np.int64)] ).dtype == np.object_ ) def test_concat_empty_series_dtype_category_with_array(self): # GH#18515 assert ( concat( [Series(np.array([]), dtype="category"), Series(dtype="float64")] ).dtype == "float64" ) def test_concat_empty_series_dtypes_sparse(self): result = concat( [ Series(dtype="float64").astype("Sparse"), Series(dtype="float64").astype("Sparse"), ] ) assert result.dtype == "Sparse[float64]" result = concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="float64")] ) expected = pd.SparseDtype(np.float64) assert result.dtype == expected result = concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="object")] ) expected = pd.SparseDtype("object") assert result.dtype == expected def test_concat_empty_df_object_dtype(self): # GH 9149 df_1 = DataFrame({"Row": [0, 1, 1], "EmptyCol": np.nan, "NumberCol": [1, 2, 3]}) df_2 = DataFrame(columns=df_1.columns) result = concat([df_1, df_2], axis=0) expected = df_1.astype(object) tm.assert_frame_equal(result, expected) def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_concat_inner_join_empty(self): # GH 15328 df_empty = DataFrame() df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64") df_expected = DataFrame({"a": []}, index=RangeIndex(0), dtype="int64") result = concat([df_a, df_empty], axis=1, join="inner") tm.assert_frame_equal(result, df_expected) result = concat([df_a, df_empty], axis=1, join="outer") tm.assert_frame_equal(result, df_a) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_concat_empty_dataframe(self): # 39037 df1 = DataFrame(columns=["a", "b"]) df2 = DataFrame(columns=["b", "c"]) result = concat([df1, df2, df1]) expected = DataFrame(columns=["a", "b", "c"]) tm.assert_frame_equal(result, expected) df3 = DataFrame(columns=["a", "b"]) df4 = DataFrame(columns=["b"]) result = concat([df3, df4]) expected = DataFrame(columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_concat_empty_dataframe_different_dtypes(self, using_infer_string): # 39037 df1 = DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}) df2 = DataFrame({"a": [1, 2, 3]}) result = concat([df1[:0], df2[:0]]) assert result["a"].dtype == np.int64 assert result["b"].dtype == np.object_ if not using_infer_string else "str" def test_concat_to_empty_ea(self): """48510 `concat` to an empty EA should maintain type EA dtype.""" df_empty = DataFrame({"a": pd.array([], dtype=pd.Int64Dtype())}) df_new = DataFrame({"a": pd.array([1, 2, 3], dtype=pd.Int64Dtype())}) expected = df_new.copy() result = concat([df_empty, df_new]) tm.assert_frame_equal(result, expected)
pandas-devREPO_NAMEpandasPATH_START.@pandas_extracted@pandas-main@pandas@tests@reshape@concat@test_empty.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/graph_objs/scatter/hoverlabel/__init__.py", "type": "Python" }
import sys if sys.version_info < (3, 7): from ._font import Font else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import(__name__, [], ["._font.Font"])
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@graph_objs@scatter@hoverlabel@__init__.py@.PATH_END.py
{ "filename": "test_c_reader.py", "repo_name": "waynebhayes/SpArcFiRe", "repo_path": "SpArcFiRe_extracted/SpArcFiRe-master/scripts/SpArcFiRe-pyvenv/lib/python2.7/site-packages/astropy/io/ascii/tests/test_c_reader.py", "type": "Python" }
# Licensed under a 3-clause BSD style license - see LICENSE.rst try: from cStringIO import StringIO except ImportError: # cStringIO doesn't exist in Python 3 from io import BytesIO StringIO = lambda x: BytesIO(x.encode('ascii')) import os import functools from textwrap import dedent import pytest import numpy as np from numpy import ma from ....table import Table, MaskedColumn from ... import ascii from ...ascii.core import ParameterError, FastOptionsError from ...ascii.cparser import CParserError from ..fastbasic import FastBasic, FastCsv, FastTab, FastCommentedHeader, \ FastRdb, FastNoHeader from .common import assert_equal, assert_almost_equal, assert_true from ....extern import six from ....extern.six.moves import range TRAVIS = os.environ.get('TRAVIS', False) def assert_table_equal(t1, t2, check_meta=False): assert_equal(len(t1), len(t2)) assert_equal(t1.colnames, t2.colnames) if check_meta: assert_equal(t1.meta, t2.meta) for name in t1.colnames: if len(t1) != 0: assert_equal(t1[name].dtype.kind, t2[name].dtype.kind) if not isinstance(t1[name], MaskedColumn): for i, el in enumerate(t1[name]): try: if not isinstance(el, six.string_types) and np.isnan(el): assert_true(not isinstance(t2[name][i], six.string_types) and np.isnan(t2[name][i])) elif isinstance(el, six.string_types): assert_equal(el, t2[name][i]) else: assert_almost_equal(el, t2[name][i]) except (TypeError, NotImplementedError): pass # ignore for now # Use this counter to create a unique filename for each file created in a test # if this function is called more than once in a single test _filename_counter = 0 def _read(tmpdir, table, Reader=None, format=None, parallel=False, check_meta=False, **kwargs): # make sure we have a newline so table can't be misinterpreted as a filename global _filename_counter table += '\n' reader = Reader(**kwargs) t1 = reader.read(table) t2 = reader.read(StringIO(table)) t3 = reader.read(table.splitlines()) t4 = ascii.read(table, format=format, guess=False, **kwargs) t5 = ascii.read(table, format=format, guess=False, fast_reader=False, **kwargs) assert_table_equal(t1, t2, check_meta=check_meta) assert_table_equal(t2, t3, check_meta=check_meta) assert_table_equal(t3, t4, check_meta=check_meta) assert_table_equal(t4, t5, check_meta=check_meta) if parallel: if TRAVIS: pytest.xfail("Multiprocessing can sometimes fail on Travis CI") elif os.name == 'nt': pytest.xfail("Multiprocessing is currently unsupported on Windows") t6 = ascii.read(table, format=format, guess=False, fast_reader={ 'parallel': True}, **kwargs) assert_table_equal(t1, t6, check_meta=check_meta) filename = str(tmpdir.join('table{0}.txt'.format(_filename_counter))) _filename_counter += 1 with open(filename, 'wb') as f: f.write(table.encode('ascii')) f.flush() t7 = ascii.read(filename, format=format, guess=False, **kwargs) if parallel: t8 = ascii.read(filename, format=format, guess=False, fast_reader={ 'parallel': True}, **kwargs) assert_table_equal(t1, t7, check_meta=check_meta) if parallel: assert_table_equal(t1, t8, check_meta=check_meta) return t1 @pytest.fixture(scope='function') def read_basic(tmpdir, request): return functools.partial(_read, tmpdir, Reader=FastBasic, format='basic') @pytest.fixture(scope='function') def read_csv(tmpdir, request): return functools.partial(_read, tmpdir, Reader=FastCsv, format='csv') @pytest.fixture(scope='function') def read_tab(tmpdir, request): return functools.partial(_read, tmpdir, Reader=FastTab, format='tab') @pytest.fixture(scope='function') def read_commented_header(tmpdir, request): return functools.partial(_read, tmpdir, Reader=FastCommentedHeader, format='commented_header') @pytest.fixture(scope='function') def read_rdb(tmpdir, request): return functools.partial(_read, tmpdir, Reader=FastRdb, format='rdb') @pytest.fixture(scope='function') def read_no_header(tmpdir, request): return functools.partial(_read, tmpdir, Reader=FastNoHeader, format='no_header') @pytest.mark.parametrize("parallel", [True, False]) def test_simple_data(parallel, read_basic): """ Make sure the fast reader works with basic input data. """ table = read_basic("A B C\n1 2 3\n4 5 6", parallel=parallel) expected = Table([[1, 4], [2, 5], [3, 6]], names=('A', 'B', 'C')) assert_table_equal(table, expected) def test_read_types(): """ Make sure that the read() function takes filenames, strings, and lists of strings in addition to file-like objects. """ t1 = ascii.read("a b c\n1 2 3\n4 5 6", format='fast_basic', guess=False) # TODO: also read from file t2 = ascii.read(StringIO("a b c\n1 2 3\n4 5 6"), format='fast_basic', guess=False) t3 = ascii.read(["a b c", "1 2 3", "4 5 6"], format='fast_basic', guess=False) assert_table_equal(t1, t2) assert_table_equal(t2, t3) @pytest.mark.parametrize("parallel", [True, False]) def test_supplied_names(parallel, read_basic): """ If passed as a parameter, names should replace any column names found in the header. """ table = read_basic("A B C\n1 2 3\n4 5 6", names=('X', 'Y', 'Z'), parallel=parallel) expected = Table([[1, 4], [2, 5], [3, 6]], names=('X', 'Y', 'Z')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_no_header(parallel, read_basic, read_no_header): """ The header should not be read when header_start=None. Unless names is passed, the column names should be auto-generated. """ # Cannot set header_start=None for basic format with pytest.raises(ValueError): read_basic("A B C\n1 2 3\n4 5 6", header_start=None, data_start=0, parallel=parallel) t2 = read_no_header("A B C\n1 2 3\n4 5 6", parallel=parallel) expected = Table([['A', '1', '4'], ['B', '2', '5'], ['C', '3', '6']], names=('col1', 'col2', 'col3')) assert_table_equal(t2, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_no_header_supplied_names(parallel, read_basic, read_no_header): """ If header_start=None and names is passed as a parameter, header data should not be read and names should be used instead. """ table = read_no_header("A B C\n1 2 3\n4 5 6", names=('X', 'Y', 'Z'), parallel=parallel) expected = Table([['A', '1', '4'], ['B', '2', '5'], ['C', '3', '6']], names=('X', 'Y', 'Z')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_comment(parallel, read_basic): """ Make sure that line comments are ignored by the C reader. """ table = read_basic("# comment\nA B C\n # another comment\n1 2 3\n4 5 6", parallel=parallel) expected = Table([[1, 4], [2, 5], [3, 6]], names=('A', 'B', 'C')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_empty_lines(parallel, read_basic): """ Make sure that empty lines are ignored by the C reader. """ table = read_basic("\n\nA B C\n1 2 3\n\n\n4 5 6\n\n\n\n", parallel=parallel) expected = Table([[1, 4], [2, 5], [3, 6]], names=('A', 'B', 'C')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_lstrip_whitespace(parallel, read_basic): """ Test to make sure the reader ignores whitespace at the beginning of fields. """ text = """ 1, 2, \t3 A,\t\t B, C a, b, c """ + ' \n' table = read_basic(text, delimiter=',', parallel=parallel) expected = Table([['A', 'a'], ['B', 'b'], ['C', 'c']], names=('1', '2', '3')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_rstrip_whitespace(parallel, read_basic): """ Test to make sure the reader ignores whitespace at the end of fields. """ text = ' 1 ,2 \t,3 \nA\t,B ,C\t \t \n \ta ,b , c \n' table = read_basic(text, delimiter=',', parallel=parallel) expected = Table([['A', 'a'], ['B', 'b'], ['C', 'c']], names=('1', '2', '3')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_conversion(parallel, read_basic): """ The reader should try to convert each column to ints. If this fails, the reader should try to convert to floats. Failing this, it should fall back to strings. """ text = """ A B C D E 1 a 3 4 5 2. 1 9 10 -5.3e4 4 2 -12 .4 six """ table = read_basic(text, parallel=parallel) assert_equal(table['A'].dtype.kind, 'f') assert table['B'].dtype.kind in ('S', 'U') assert_equal(table['C'].dtype.kind, 'i') assert_equal(table['D'].dtype.kind, 'f') assert table['E'].dtype.kind in ('S', 'U') @pytest.mark.parametrize("parallel", [True, False]) def test_delimiter(parallel, read_basic): """ Make sure that different delimiters work as expected. """ text = """ COL1 COL2 COL3 1 A -1 2 B -2 """ expected = Table([[1, 2], ['A', 'B'], [-1, -2]], names=('COL1', 'COL2', 'COL3')) for sep in ' ,\t#;': table = read_basic(text.replace(' ', sep), delimiter=sep, parallel=parallel) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_include_names(parallel, read_basic): """ If include_names is not None, the parser should read only those columns in include_names. """ table = read_basic("A B C D\n1 2 3 4\n5 6 7 8", include_names=['A', 'D'], parallel=parallel) expected = Table([[1, 5], [4, 8]], names=('A', 'D')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_exclude_names(parallel, read_basic): """ If exclude_names is not None, the parser should exclude the columns in exclude_names. """ table = read_basic("A B C D\n1 2 3 4\n5 6 7 8", exclude_names=['A', 'D'], parallel=parallel) expected = Table([[2, 6], [3, 7]], names=('B', 'C')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_include_exclude_names(parallel, read_basic): """ Make sure that include_names is applied before exclude_names if both are specified. """ text = """ A B C D E F G H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 """ table = read_basic(text, include_names=['A', 'B', 'D', 'F', 'H'], exclude_names=['B', 'F'], parallel=parallel) expected = Table([[1, 9], [4, 12], [8, 16]], names=('A', 'D', 'H')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_quoted_fields(parallel, read_basic): """ The character quotechar (default '"') should denote the start of a field which can contain the field delimiter and newlines. """ if parallel: pytest.xfail("Multiprocessing can fail with quoted fields") text = """ "A B" C D 1.5 2.1 -37.1 a b " c d" """ table = read_basic(text, parallel=parallel) expected = Table([['1.5', 'a'], ['2.1', 'b'], ['-37.1', 'cd']], names=('A B', 'C', 'D')) assert_table_equal(table, expected) table = read_basic(text.replace('"', "'"), quotechar="'", parallel=parallel) assert_table_equal(table, expected) @pytest.mark.parametrize("key,val", [ ('delimiter', ',,'), # multi-char delimiter ('comment', '##'), # multi-char comment ('data_start', None), # data_start=None ('data_start', -1), # data_start negative ('quotechar', '##'), # multi-char quote signifier ('header_start', -1), # negative header_start ('converters', dict((i + 1, ascii.convert_numpy(np.uint)) for i in range(3))), # passing converters ('Inputter', ascii.ContinuationLinesInputter), # passing Inputter ('header_Splitter', ascii.DefaultSplitter), # passing Splitter ('data_Splitter', ascii.DefaultSplitter)]) def test_invalid_parameters(key, val): """ Make sure the C reader raises an error if passed parameters it can't handle. """ with pytest.raises(ParameterError): FastBasic(**{key: val}).read('1 2 3\n4 5 6') with pytest.raises(ParameterError): ascii.read('1 2 3\n4 5 6', format='fast_basic', guess=False, **{key: val}) def test_invalid_parameters_other(): with pytest.raises(TypeError): FastBasic(foo=7).read('1 2 3\n4 5 6') # unexpected argument with pytest.raises(FastOptionsError): # don't fall back on the slow reader ascii.read('1 2 3\n4 5 6', format='basic', fast_reader={'foo': 7}) with pytest.raises(ParameterError): # Outputter cannot be specified in constructor FastBasic(Outputter=ascii.TableOutputter).read('1 2 3\n4 5 6') def test_too_many_cols1(): """ If a row contains too many columns, the C reader should raise an error. """ text = """ A B C 1 2 3 4 5 6 7 8 9 10 11 12 13 """ with pytest.raises(CParserError) as e: table = FastBasic().read(text) assert 'CParserError: an error occurred while parsing table data: too many ' \ 'columns found in line 3 of data' in str(e) def test_too_many_cols2(): text = """\ aaa,bbb 1,2, 3,4, """ with pytest.raises(CParserError) as e: table = FastCsv().read(text) assert 'CParserError: an error occurred while parsing table data: too many ' \ 'columns found in line 1 of data' in str(e) def test_too_many_cols3(): text = """\ aaa,bbb 1,2,, 3,4, """ with pytest.raises(CParserError) as e: table = FastCsv().read(text) assert 'CParserError: an error occurred while parsing table data: too many ' \ 'columns found in line 1 of data' in str(e) @pytest.mark.parametrize("parallel", [True, False]) def test_not_enough_cols(parallel, read_csv): """ If a row does not have enough columns, the FastCsv reader should add empty fields while the FastBasic reader should raise an error. """ text = """ A,B,C 1,2,3 4,5 6,7,8 """ table = read_csv(text, parallel=parallel) assert table['B'][1] is not ma.masked assert table['C'][1] is ma.masked with pytest.raises(CParserError) as e: table = FastBasic(delimiter=',').read(text) @pytest.mark.parametrize("parallel", [True, False]) def test_data_end(parallel, read_basic, read_rdb): """ The parameter data_end should specify where data reading ends. """ text = """ A B C 1 2 3 4 5 6 7 8 9 10 11 12 """ table = read_basic(text, data_end=3, parallel=parallel) expected = Table([[1, 4], [2, 5], [3, 6]], names=('A', 'B', 'C')) assert_table_equal(table, expected) # data_end supports negative indexing table = read_basic(text, data_end=-2, parallel=parallel) assert_table_equal(table, expected) text = """ A\tB\tC N\tN\tS 1\t2\ta 3\t4\tb 5\t6\tc """ # make sure data_end works with RDB table = read_rdb(text, data_end=-1, parallel=parallel) expected = Table([[1, 3], [2, 4], ['a', 'b']], names=('A', 'B', 'C')) assert_table_equal(table, expected) # positive index table = read_rdb(text, data_end=3, parallel=parallel) expected = Table([[1], [2], ['a']], names=('A', 'B', 'C')) assert_table_equal(table, expected) # empty table if data_end is too small table = read_rdb(text, data_end=1, parallel=parallel) expected = Table([[], [], []], names=('A', 'B', 'C')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_inf_nan(parallel, read_basic): """ Test that inf and nan-like values are correctly parsed on all platforms. Regression test for https://github.com/astropy/astropy/pull/3525 """ text = dedent("""\ A nan +nan -nan inf infinity +inf +infinity -inf -infinity """) expected = Table({'A': [np.nan, np.nan, np.nan, np.inf, np.inf, np.inf, np.inf, -np.inf, -np.inf]}) table = read_basic(text, parallel=parallel) assert table['A'].dtype.kind == 'f' assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_fill_values(parallel, read_basic): """ Make sure that the parameter fill_values works as intended. If fill_values is not specified, the default behavior should be to convert '' to 0. """ text = """ A, B, C , 2, nan a, -999, -3.4 nan, 5, -9999 8, nan, 7.6e12 """ table = read_basic(text, delimiter=',', parallel=parallel) # The empty value in row A should become a masked '0' assert isinstance(table['A'], MaskedColumn) assert table['A'][0] is ma.masked # '0' rather than 0 because there is a string in the column assert_equal(table['A'].data.data[0], '0') assert table['A'][1] is not ma.masked table = read_basic(text, delimiter=',', fill_values=('-999', '0'), parallel=parallel) assert isinstance(table['B'], MaskedColumn) assert table['A'][0] is not ma.masked # empty value unaffected assert table['C'][2] is not ma.masked # -9999 is not an exact match assert table['B'][1] is ma.masked # Numeric because the rest of the column contains numeric data assert_equal(table['B'].data.data[1], 0.0) assert table['B'][0] is not ma.masked table = read_basic(text, delimiter=',', fill_values=[], parallel=parallel) # None of the columns should be masked for name in 'ABC': assert not isinstance(table[name], MaskedColumn) table = read_basic(text, delimiter=',', fill_values=[('', '0', 'A'), ('nan', '999', 'A', 'C')], parallel=parallel) assert np.isnan(table['B'][3]) # nan filling skips column B assert table['B'][3] is not ma.masked # should skip masking as well as replacing nan assert table['A'][0] is ma.masked assert table['A'][2] is ma.masked assert_equal(table['A'].data.data[0], '0') assert_equal(table['A'].data.data[2], '999') assert table['C'][0] is ma.masked assert_almost_equal(table['C'].data.data[0], 999.0) assert_almost_equal(table['C'][1], -3.4) # column is still of type float @pytest.mark.parametrize("parallel", [True, False]) def test_fill_include_exclude_names(parallel, read_csv): """ fill_include_names and fill_exclude_names should filter missing/empty value handling in the same way that include_names and exclude_names filter output columns. """ text = """ A, B, C , 1, 2 3, , 4 5, 5, """ table = read_csv(text, fill_include_names=['A', 'B'], parallel=parallel) assert table['A'][0] is ma.masked assert table['B'][1] is ma.masked assert table['C'][2] is not ma.masked # C not in fill_include_names table = read_csv(text, fill_exclude_names=['A', 'B'], parallel=parallel) assert table['C'][2] is ma.masked assert table['A'][0] is not ma.masked assert table['B'][1] is not ma.masked # A and B excluded from fill handling table = read_csv(text, fill_include_names=['A', 'B'], fill_exclude_names=['B'], parallel=parallel) assert table['A'][0] is ma.masked assert table['B'][1] is not ma.masked # fill_exclude_names applies after fill_include_names assert table['C'][2] is not ma.masked @pytest.mark.parametrize("parallel", [True, False]) def test_many_rows(parallel, read_basic): """ Make sure memory reallocation works okay when the number of rows is large (so that each column string is longer than INITIAL_COL_SIZE). """ text = 'A B C\n' for i in range(500): # create 500 rows text += ' '.join([str(i) for i in range(3)]) text += '\n' table = read_basic(text, parallel=parallel) expected = Table([[0] * 500, [1] * 500, [2] * 500], names=('A', 'B', 'C')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_many_columns(parallel, read_basic): """ Make sure memory reallocation works okay when the number of columns is large (so that each header string is longer than INITIAL_HEADER_SIZE). """ # create a string with 500 columns and two data rows text = ' '.join([str(i) for i in range(500)]) text += ('\n' + text + '\n' + text) table = read_basic(text, parallel=parallel) expected = Table([[i, i] for i in range(500)], names=[str(i) for i in range(500)]) assert_table_equal(table, expected) def test_fast_reader(): """ Make sure that ascii.read() works as expected by default and with fast_reader specified. """ text = 'a b c\n1 2 3\n4 5 6' with pytest.raises(ParameterError): # C reader can't handle regex comment ascii.read(text, format='fast_basic', guess=False, comment='##') # Enable multiprocessing and the fast converter try: ascii.read(text, format='basic', guess=False, fast_reader={'parallel': True, 'use_fast_converter': True}) except NotImplementedError: # Might get this on Windows, try without parallel... if os.name == 'nt': ascii.read(text, format='basic', guess=False, fast_reader={'parallel': False, 'use_fast_converter': True}) else: raise # Should raise an error if fast_reader has an invalid key with pytest.raises(FastOptionsError): ascii.read(text, format='fast_basic', guess=False, fast_reader={'foo': True}) # Use the slow reader instead ascii.read(text, format='basic', guess=False, comment='##', fast_reader=False) # Will try the slow reader afterwards by default ascii.read(text, format='basic', guess=False, comment='##') @pytest.mark.parametrize("parallel", [True, False]) def test_read_tab(parallel, read_tab): """ The fast reader for tab-separated values should not strip whitespace, unlike the basic reader. """ if parallel: pytest.xfail("Multiprocessing can fail with quoted fields") text = '1\t2\t3\n a\t b \t\n c\t" d\n e"\t ' table = read_tab(text, parallel=parallel) assert_equal(table['1'][0], ' a') # preserve line whitespace assert_equal(table['2'][0], ' b ') # preserve field whitespace assert table['3'][0] is ma.masked # empty value should be masked assert_equal(table['2'][1], ' d e') # preserve whitespace in quoted fields assert_equal(table['3'][1], ' ') # preserve end-of-line whitespace @pytest.mark.parametrize("parallel", [True, False]) def test_default_data_start(parallel, read_basic): """ If data_start is not explicitly passed to read(), data processing should beginning right after the header. """ text = 'ignore this line\na b c\n1 2 3\n4 5 6' table = read_basic(text, header_start=1, parallel=parallel) expected = Table([[1, 4], [2, 5], [3, 6]], names=('a', 'b', 'c')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_commented_header(parallel, read_commented_header): """ The FastCommentedHeader reader should mimic the behavior of the CommentedHeader by overriding the default header behavior of FastBasic. """ text = """ # A B C 1 2 3 4 5 6 """ t1 = read_commented_header(text, parallel=parallel) expected = Table([[1, 4], [2, 5], [3, 6]], names=('A', 'B', 'C')) assert_table_equal(t1, expected) text = '# first commented line\n # second commented line\n\n' + text t2 = read_commented_header(text, header_start=2, data_start=0, parallel=parallel) assert_table_equal(t2, expected) t3 = read_commented_header(text, header_start=-1, data_start=0, parallel=parallel) # negative indexing allowed assert_table_equal(t3, expected) text += '7 8 9' t4 = read_commented_header(text, header_start=2, data_start=2, parallel=parallel) expected = Table([[7], [8], [9]], names=('A', 'B', 'C')) assert_table_equal(t4, expected) with pytest.raises(ParameterError): read_commented_header(text, header_start=-1, data_start=-1, parallel=parallel) # data_start cannot be negative @pytest.mark.parametrize("parallel", [True, False]) def test_rdb(parallel, read_rdb): """ Make sure the FastRdb reader works as expected. """ text = """ A\tB\tC 1n\tS\t4N 1\t 9\t4.3 """ table = read_rdb(text, parallel=parallel) expected = Table([[1], [' 9'], [4.3]], names=('A', 'B', 'C')) assert_table_equal(table, expected) assert_equal(table['A'].dtype.kind, 'i') assert table['B'].dtype.kind in ('S', 'U') assert_equal(table['C'].dtype.kind, 'f') with pytest.raises(ValueError) as e: text = 'A\tB\tC\nN\tS\tN\n4\tb\ta' # C column contains non-numeric data read_rdb(text, parallel=parallel) assert 'Column C failed to convert' in str(e) with pytest.raises(ValueError) as e: text = 'A\tB\tC\nN\tN\n1\t2\t3' # not enough types specified read_rdb(text, parallel=parallel) assert 'mismatch between number of column names and column types' in str(e) with pytest.raises(ValueError) as e: text = 'A\tB\tC\nN\tN\t5\n1\t2\t3' # invalid type for column C read_rdb(text, parallel=parallel) assert 'type definitions do not all match [num](N|S)' in str(e) @pytest.mark.parametrize("parallel", [True, False]) def test_data_start(parallel, read_basic): """ Make sure that data parsing begins at data_start (ignoring empty and commented lines but not taking quoted values into account). """ if parallel: pytest.xfail("Multiprocessing can fail with quoted fields") text = """ A B C 1 2 3 4 5 6 7 8 "9 \t1" # comment 10 11 12 """ table = read_basic(text, data_start=2, parallel=parallel) expected = Table([[4, 7, 10], [5, 8, 11], [6, 91, 12]], names=('A', 'B', 'C')) assert_table_equal(table, expected) table = read_basic(text, data_start=3, parallel=parallel) # ignore empty line expected = Table([[7, 10], [8, 11], [91, 12]], names=('A', 'B', 'C')) assert_table_equal(table, expected) with pytest.raises(CParserError) as e: # tries to begin in the middle of quoted field read_basic(text, data_start=4, parallel=parallel) assert 'not enough columns found in line 1 of data' in str(e) table = read_basic(text, data_start=5, parallel=parallel) # ignore commented line expected = Table([[10], [11], [12]], names=('A', 'B', 'C')) assert_table_equal(table, expected) text = """ A B C 1 2 3 4 5 6 7 8 9 # comment 10 11 12 """ # make sure reading works as expected in parallel table = read_basic(text, data_start=2, parallel=parallel) expected = Table([[4, 7, 10], [5, 8, 11], [6, 9, 12]], names=('A', 'B', 'C')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_quoted_empty_values(parallel, read_basic): """ Quoted empty values spanning multiple lines should be treated correctly. """ if parallel: pytest.xfail("Multiprocessing can fail with quoted fields") text = 'a b c\n1 2 " \n "' table = read_basic(text, parallel=parallel) assert table['c'][0] is ma.masked # empty value masked by default @pytest.mark.parametrize("parallel", [True, False]) def test_csv_comment_default(parallel, read_csv): """ Unless the comment parameter is specified, the CSV reader should not treat any lines as comments. """ text = 'a,b,c\n#1,2,3\n4,5,6' table = read_csv(text, parallel=parallel) expected = Table([['#1', '4'], [2, 5], [3, 6]], names=('a', 'b', 'c')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_whitespace_before_comment(parallel, read_tab): """ Readers that don't strip whitespace from data (Tab, RDB) should still treat lines with leading whitespace and then the comment char as comment lines. """ text = 'a\tb\tc\n # comment line\n1\t2\t3' table = read_tab(text, parallel=parallel) expected = Table([[1], [2], [3]], names=('a', 'b', 'c')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_strip_line_trailing_whitespace(parallel, read_basic): """ Readers that strip whitespace from lines should ignore trailing whitespace after the last data value of each row. """ text = 'a b c\n1 2 \n3 4 5' with pytest.raises(CParserError) as e: ascii.read(StringIO(text), format='fast_basic', guess=False) assert 'not enough columns found in line 1' in str(e) text = 'a b c\n 1 2 3 \t \n 4 5 6 ' table = read_basic(text, parallel=parallel) expected = Table([[1, 4], [2, 5], [3, 6]], names=('a', 'b', 'c')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_no_data(parallel, read_basic): """ As long as column names are supplied, the C reader should return an empty table in the absence of data. """ table = read_basic('a b c', parallel=parallel) expected = Table([[], [], []], names=('a', 'b', 'c')) assert_table_equal(table, expected) table = read_basic('a b c\n1 2 3', data_start=2, parallel=parallel) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_line_endings(parallel, read_basic, read_commented_header, read_rdb): """ Make sure the fast reader accepts CR and CR+LF as newlines. """ text = 'a b c\n1 2 3\n4 5 6\n7 8 9\n' expected = Table([[1, 4, 7], [2, 5, 8], [3, 6, 9]], names=('a', 'b', 'c')) for newline in ('\r\n', '\r'): table = read_basic(text.replace('\n', newline), parallel=parallel) assert_table_equal(table, expected) # Make sure the splitlines() method of FileString # works with CR/CR+LF line endings text = '#' + text for newline in ('\r\n', '\r'): table = read_commented_header(text.replace('\n', newline), parallel=parallel) assert_table_equal(table, expected) expected = Table([[1, 4, 7], [2, 5, 8], [3, 6, 9]], names=('a', 'b', 'c'), masked=True) expected['a'][0] = np.ma.masked expected['c'][0] = np.ma.masked text = 'a\tb\tc\nN\tN\tN\n\t2\t\n4\t5\t6\n7\t8\t9\n' for newline in ('\r\n', '\r'): table = read_rdb(text.replace('\n', newline), parallel=parallel) assert_table_equal(table, expected) assert np.all(table == expected) @pytest.mark.parametrize("parallel", [True, False]) def test_store_comments(parallel, read_basic): """ Make sure that the output Table produced by the fast reader stores any comment lines in its meta attribute. """ text = """ # header comment a b c # comment 2 # comment 3 1 2 3 4 5 6 """ table = read_basic(text, parallel=parallel, check_meta=True) assert_equal(table.meta['comments'], ['header comment', 'comment 2', 'comment 3']) @pytest.mark.parametrize("parallel", [True, False]) def test_empty_quotes(parallel, read_basic): """ Make sure the C reader doesn't segfault when the input data contains empty quotes. [#3407] """ table = read_basic('a b\n1 ""\n2 ""', parallel=parallel) expected = Table([[1, 2], [0, 0]], names=('a', 'b')) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_fast_tab_with_names(parallel, read_tab): """ Make sure the C reader doesn't segfault when the header for the first column is missing [#3545] """ content = """# \tdecDeg\tRate_pn_offAxis\tRate_mos2_offAxis\tObsID\tSourceID\tRADeg\tversion\tCounts_pn\tRate_pn\trun\tRate_mos1\tRate_mos2\tInserted_pn\tInserted_mos2\tbeta\tRate_mos1_offAxis\trcArcsec\tname\tInserted\tCounts_mos1\tInserted_mos1\tCounts_mos2\ty\tx\tCounts\toffAxis\tRot -3.007559\t0.0000\t0.0010\t0013140201\t0\t213.462574\t0\t2\t0.0002\t0\t0.0001\t0.0001\t0\t1\t0.66\t0.0217\t3.0\tfakeXMMXCS J1413.8-0300\t3\t1\t2\t1\t398.000\t127.000\t5\t13.9\t72.3\t""" head = ['A{0}'.format(i) for i in range(28)] table = read_tab(content, data_start=1, parallel=parallel, names=head) @pytest.mark.skipif(not os.getenv('TEST_READ_HUGE_FILE'), reason='Environment variable TEST_READ_HUGE_FILE must be ' 'defined to run this test') def test_read_big_table(tmpdir): """Test reading of a huge file. This test generates a huge CSV file (~2.3Gb) before reading it (see https://github.com/astropy/astropy/pull/5319). The test is run only if the environment variable ``TEST_READ_HUGE_FILE`` is defined. Note that running the test requires quite a lot of memory (~18Gb when reading the file) !! """ NB_ROWS = 250000 NB_COLS = 500 filename = str(tmpdir.join("big_table.csv")) print("Creating a {} rows table ({} columns).".format(NB_ROWS, NB_COLS)) data = np.random.random(NB_ROWS) t = Table(data=[data]*NB_COLS, names=[str(i) for i in range(NB_COLS)]) data = None print("Saving the table to {}".format(filename)) t.write(filename, format='ascii.csv', overwrite=True) t = None print("Counting the number of lines in the csv, it should be {}" " + 1 (header).".format(NB_ROWS)) assert sum(1 for line in open(filename)) == NB_ROWS + 1 print("Reading the file with astropy.") t = Table.read(filename, format='ascii.csv', fast_reader=True) assert len(t) == NB_ROWS # fast_reader configurations: False| 'use_fast_converter'=False|True @pytest.mark.parametrize('reader', [0, 1, 2]) # catch Windows environment since we cannot use _read() with custom fast_reader @pytest.mark.parametrize("parallel", [False, True]) def test_data_out_of_range(parallel, reader): """ Numbers with exponents beyond float64 range (|~4.94e-324 to 1.7977e+308|) shall be returned as 0 and +-inf respectively by the C parser, just like the Python parser. Test fast converter only to nominal accuracy. """ if os.name == 'nt': pytest.xfail(reason="Multiprocessing is currently unsupported on Windows") # Python reader and strtod() are expected to return precise results rtol = 1.e-30 if reader > 1: rtol = 1.e-15 # passing fast_reader dict with parametrize does not work! if reader > 0: fast_reader = {'parallel': parallel, 'use_fast_converter': reader > 1} else: fast_reader = False if parallel: if reader < 1: pytest.skip("Multiprocessing only available in fast reader") elif TRAVIS: pytest.xfail("Multiprocessing can sometimes fail on Travis CI") fields = ['10.1E+199', '3.14e+313', '2048e+306', '0.6E-325', '-2.e345'] values = np.array([1.01e200, np.inf, np.inf, 0.0, -np.inf]) t = ascii.read(StringIO(' '.join(fields)), format='no_header', guess=False, fast_reader=fast_reader) read_values = np.array([col[0] for col in t.itercols()]) assert_almost_equal(read_values, values, rtol=rtol, atol=1.e-324) # test some additional corner cases fields = ['.0101E202', '0.000000314E+314', '1777E+305', '-1799E+305', '0.2e-323', '2500e-327', ' 0.0000000000000000000001024E+330'] values = np.array([1.01e200, 3.14e307, 1.777e308, -np.inf, 0.0, 4.94e-324, 1.024e308]) t = ascii.read(StringIO(' '.join(fields)), format='no_header', guess=False, fast_reader=fast_reader) read_values = np.array([col[0] for col in t.itercols()]) assert_almost_equal(read_values, values, rtol=rtol, atol=1.e-324) # test corner cases again with non-standard exponent_style (auto-detection) if reader < 2: pytest.skip("Fortran exponent style only available in fast converter") fast_reader.update({'exponent_style': 'A'}) fields = ['.0101D202', '0.000000314d+314', '1777+305', '-1799E+305', '0.2e-323', '2500-327', ' 0.0000000000000000000001024Q+330'] t = ascii.read(StringIO(' '.join(fields)), format='no_header', guess=False, fast_reader=fast_reader) read_values = np.array([col[0] for col in t.itercols()]) assert_almost_equal(read_values, values, rtol=rtol, atol=1.e-324) # catch Windows environment since we cannot use _read() with custom fast_reader @pytest.mark.parametrize("parallel", [True, False]) def test_int_out_of_range(parallel): """ Integer numbers outside int range shall be returned as string columns consistent with the standard (Python) parser (no 'upcasting' to float). """ if os.name == 'nt': pytest.xfail(reason="Multiprocessing is currently unsupported on Windows") imin = np.iinfo(np.int).min+1 imax = np.iinfo(np.int).max-1 huge = '{:d}'.format(imax+2) text = 'P M S\n {:d} {:d} {:s}'.format(imax, imin, huge) expected = Table([[imax], [imin], [huge]], names=('P', 'M', 'S')) table = ascii.read(text, format='basic', guess=False, fast_reader={'parallel': parallel}) assert_table_equal(table, expected) # check with leading zeroes to make sure strtol does not read them as octal text = 'P M S\n000{:d} -0{:d} 00{:s}'.format(imax, -imin, huge) expected = Table([[imax], [imin], ['00'+huge]], names=('P', 'M', 'S')) table = ascii.read(text, format='basic', guess=False, fast_reader={'parallel': parallel}) assert_table_equal(table, expected) # mixed columns should be returned as float, but if the out-of-range integer # shows up first, it will produce a string column - with both readers pytest.xfail("Integer fallback depends on order of rows") text = 'A B\n 12.3 {0:d}9\n {0:d}9 45.6e7'.format(imax) expected = Table([[12.3, 10.*imax], [10.*imax, 4.56e8]], names=('A', 'B')) table = ascii.read(text, format='basic', guess=False, fast_reader={'parallel': parallel}) assert_table_equal(table, expected) table = ascii.read(text, format='basic', guess=False, fast_reader=False) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_fortran_reader(parallel): """ Make sure that ascii.read() can read Fortran-style exponential notation using the fast_reader. """ if os.name == 'nt': pytest.xfail(reason="Multiprocessing is currently unsupported on Windows") text = 'A B C\n100.01{:s}+99 2.0 3\n 4.2{:s}-1 5.0{:s}-1 0.6{:s}4' expected = Table([[1.0001e101, 0.42], [2, 0.5], [3.0, 6000]], names=('A', 'B', 'C')) expstyles = {'e': 4*('E'), 'D': ('D', 'd', 'd', 'D'), 'Q': 2*('q', 'Q'), 'fortran': ('D', 'E', 'Q', 'd')} # C strtod (not-fast converter) can't handle Fortran exp with pytest.raises(FastOptionsError) as e: ascii.read(text.format(*(4*('D'))), format='basic', guess=False, fast_reader={'use_fast_converter': False, 'parallel': parallel, 'exponent_style': 'D'}) assert 'fast_reader: exponent_style requires use_fast_converter' in str(e) # enable multiprocessing and the fast converter # iterate over all style-exponent combinations for s, c in expstyles.items(): table = ascii.read(text.format(*c), format='basic', guess=False, fast_reader={'parallel': parallel, 'exponent_style': s}) assert_table_equal(table, expected) # mixes and triple-exponents without any character using autodetect option text = 'A B C\n1.0001+101 2.0E0 3\n.42d0 0.5 6.+003' table = ascii.read(text, format='basic', guess=False, fast_reader={'parallel': parallel, 'exponent_style': 'fortran'}) assert_table_equal(table, expected) # additional corner-case checks text = 'A B C\n1.0001+101 2.0+000 3\n0.42+000 0.5 6000.-000' table = ascii.read(text, format='basic', guess=False, fast_reader={'parallel': parallel, 'exponent_style': 'fortran'}) assert_table_equal(table, expected) @pytest.mark.parametrize("parallel", [True, False]) def test_fortran_invalid_exp(parallel): """ Test Fortran-style exponential notation in the fast_reader with invalid exponent-like patterns (no triple-digits) to make sure they are returned as strings instead, as with the standard C parser. """ if os.name == 'nt': pytest.xfail(reason="Multiprocessing is currently unsupported on Windows") if parallel and TRAVIS: pytest.xfail("Multiprocessing can sometimes fail on Travis CI") fields = ['1.0001+1', '.42d1', '2.3+10', '0.5', '3+1001', '3000.', '2', '4.56e-2.3', '8000', '4.2-122'] values = ['1.0001+1', 4.2, '2.3+10', 0.5, '3+1001', 3.e3, 2, '4.56e-2.3', 8000, 4.2e-122] t = ascii.read(StringIO(' '.join(fields)), format='no_header', guess=False, fast_reader={'parallel': parallel, 'exponent_style': 'A'}) read_values = [col[0] for col in t.itercols()] assert read_values == values
waynebhayesREPO_NAMESpArcFiRePATH_START.@SpArcFiRe_extracted@SpArcFiRe-master@scripts@SpArcFiRe-pyvenv@lib@python2.7@site-packages@astropy@io@ascii@tests@test_c_reader.py@.PATH_END.py
{ "filename": "_textfont.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/validators/funnelarea/_textfont.py", "type": "Python" }
import _plotly_utils.basevalidators class TextfontValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="textfont", parent_name="funnelarea", **kwargs): super(TextfontValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Textfont"), data_docs=kwargs.pop( "data_docs", """ color colorsrc Sets the source reference on Chart Studio Cloud for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for family . size sizesrc Sets the source reference on Chart Studio Cloud for size . """, ), **kwargs )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@validators@funnelarea@_textfont.py@.PATH_END.py
{ "filename": "combined.py", "repo_name": "jroulet/cogwheel", "repo_path": "cogwheel_extracted/cogwheel-main/cogwheel/gw_prior/combined.py", "type": "Python" }
""" Define some commonly used priors for the full set of parameters, for convenience. Prior classes defined here can be used for parameter estimation and are registered in a dictionary ``prior_registry``. """ from cogwheel import utils from cogwheel.prior import CombinedPrior, Prior, check_inheritance_order from cogwheel.likelihood import (RelativeBinningLikelihood, MarginalizedDistanceLikelihood, MarginalizedDistancePhaseLikelihood, MarginalizedExtrinsicLikelihood, MarginalizedExtrinsicLikelihoodQAS) from .extrinsic import (UniformPhasePrior, IsotropicInclinationPrior, IsotropicSkyLocationPrior, UniformTimePrior, UniformPolarizationPrior, UniformLuminosityVolumePrior, UniformComovingVolumePrior) from .mass import UniformDetectorFrameMassesPrior from .miscellaneous import (ZeroTidalDeformabilityPrior, FixedIntrinsicParametersPrior, FixedReferenceFrequencyPrior) from .pn import PNCoordinatesPrior from .spin import ( UniformEffectiveSpinPrior, IsotropicSpinsAlignedComponentsPrior, VolumetricSpinsAlignedComponentsPrior, UniformDiskInplaneSpinsIsotropicInclinationPrior, IsotropicSpinsInplaneComponentsIsotropicInclinationPrior, UniformDiskInplaneSpinsIsotropicInclinationSkyLocationPrior, IsotropicSpinsInplaneComponentsIsotropicInclinationSkyLocationPrior, CartesianUniformDiskInplaneSpinsIsotropicInclinationPrior, ZeroInplaneSpinsPrior) from .tides import UniformTidalDeformabilitiesBNSPrior prior_registry = {} class ConditionedPriorError(Exception): """Indicates that a Prior is conditioned on some parameters.""" class ReferenceWaveformFinderMixin: """ Provide a constructor based on a `likelihood.ReferenceWaveformFinder` instance to provide initialization arguments. """ @classmethod def from_reference_waveform_finder( cls, reference_waveform_finder, **kwargs): """ Instantiate `prior.Prior` subclass with help from a `likelihood.ReferenceWaveformFinder` instance. This will generate kwargs for: * tgps * par_dic_0 * f_avg * f_ref * ref_det_name * detector_pair * t0_refdet * mchirp_range Additional `**kwargs` can be passed to complete missing entries or override these. """ return cls(**reference_waveform_finder.get_coordinate_system_kwargs() | kwargs) class RegisteredPriorMixin(ReferenceWaveformFinderMixin): """ Register existence of a `Prior` subclass in `prior_registry`. Intended usage is to only register the final priors (i.e., for the full set of GW parameters). `RegisteredPriorMixin` should be inherited before `Prior` (otherwise `PriorError` is raised) in order to test for conditioned-on parameters. """ def __init_subclass__(cls): """Validate subclass and register it in prior_registry.""" super().__init_subclass__() check_inheritance_order(cls, RegisteredPriorMixin, Prior) if cls.conditioned_on: raise ConditionedPriorError('Only register fully defined priors.') prior_registry[cls.__name__] = cls # ---------------------------------------------------------------------- # Default priors for the full set of variables, for convenience. class IASPrior(RegisteredPriorMixin, CombinedPrior): """Precessing, flat in chieff, uniform luminosity volume.""" default_likelihood_class = RelativeBinningLikelihood prior_classes = [ FixedReferenceFrequencyPrior, UniformDetectorFrameMassesPrior, UniformEffectiveSpinPrior, UniformDiskInplaneSpinsIsotropicInclinationSkyLocationPrior, UniformPolarizationPrior, UniformTimePrior, UniformPhasePrior, UniformLuminosityVolumePrior, ZeroTidalDeformabilityPrior] class AlignedSpinIASPrior(RegisteredPriorMixin, CombinedPrior): """Aligned spin, flat in chieff, uniform luminosity volume.""" default_likelihood_class = RelativeBinningLikelihood prior_classes = [UniformDetectorFrameMassesPrior, IsotropicInclinationPrior, IsotropicSkyLocationPrior, UniformTimePrior, UniformPolarizationPrior, UniformPhasePrior, UniformLuminosityVolumePrior, UniformEffectiveSpinPrior, ZeroInplaneSpinsPrior, ZeroTidalDeformabilityPrior, FixedReferenceFrequencyPrior] class TidalIASPrior(RegisteredPriorMixin, CombinedPrior): """ Aligned spin, flat in tidal parameters, flat in chieff, uniform luminosity volume. """ default_likelihood_class = RelativeBinningLikelihood prior_classes = [UniformDetectorFrameMassesPrior, IsotropicInclinationPrior, IsotropicSkyLocationPrior, UniformTimePrior, UniformPolarizationPrior, UniformPhasePrior, UniformLuminosityVolumePrior, UniformEffectiveSpinPrior, ZeroInplaneSpinsPrior, UniformTidalDeformabilitiesBNSPrior, FixedReferenceFrequencyPrior] class CartesianIASPrior(RegisteredPriorMixin, CombinedPrior): """ Precessing, flat in chieff, uniform luminosity volume. Physically equivalent to ``IntrinsicIASPrior`` but does not require periodic parameters, which some samplers cannot deal with. """ default_likelihood_class = RelativeBinningLikelihood prior_classes = [ FixedReferenceFrequencyPrior, UniformDetectorFrameMassesPrior, UniformEffectiveSpinPrior, CartesianUniformDiskInplaneSpinsIsotropicInclinationPrior, IsotropicSkyLocationPrior, UniformPolarizationPrior, UniformTimePrior, UniformPhasePrior, UniformLuminosityVolumePrior, ZeroTidalDeformabilityPrior] class LVCPrior(RegisteredPriorMixin, CombinedPrior): """Precessing, isotropic spins, uniform luminosity volume.""" default_likelihood_class = RelativeBinningLikelihood prior_classes = [ FixedReferenceFrequencyPrior, UniformDetectorFrameMassesPrior, IsotropicSpinsAlignedComponentsPrior, UniformPolarizationPrior, IsotropicSpinsInplaneComponentsIsotropicInclinationSkyLocationPrior, UniformTimePrior, UniformPhasePrior, UniformLuminosityVolumePrior, ZeroTidalDeformabilityPrior] class AlignedSpinLVCPrior(RegisteredPriorMixin, CombinedPrior): """ Aligned spin components from isotropic distribution, uniform luminosity volume. """ default_likelihood_class = RelativeBinningLikelihood prior_classes = [UniformDetectorFrameMassesPrior, IsotropicInclinationPrior, IsotropicSkyLocationPrior, UniformTimePrior, UniformPolarizationPrior, UniformPhasePrior, UniformLuminosityVolumePrior, IsotropicSpinsAlignedComponentsPrior, ZeroInplaneSpinsPrior, ZeroTidalDeformabilityPrior, FixedReferenceFrequencyPrior] class IASPriorComovingVT(RegisteredPriorMixin, CombinedPrior): """Precessing, flat in chieff, uniform comoving VT.""" default_likelihood_class = RelativeBinningLikelihood prior_classes = utils.replace(IASPrior.prior_classes, UniformLuminosityVolumePrior, UniformComovingVolumePrior) class AlignedSpinIASPriorComovingVT(RegisteredPriorMixin, CombinedPrior): """Aligned spin, flat in chieff, uniform comoving VT.""" default_likelihood_class = RelativeBinningLikelihood prior_classes = utils.replace(AlignedSpinIASPrior.prior_classes, UniformLuminosityVolumePrior, UniformComovingVolumePrior) class LVCPriorComovingVT(RegisteredPriorMixin, CombinedPrior): """Precessing, isotropic spins, uniform comoving VT.""" default_likelihood_class = RelativeBinningLikelihood prior_classes = utils.replace(LVCPrior.prior_classes, UniformLuminosityVolumePrior, UniformComovingVolumePrior) class AlignedSpinLVCPriorComovingVT(RegisteredPriorMixin, CombinedPrior): """ Aligned spins from isotropic distribution, uniform comoving VT. """ default_likelihood_class = RelativeBinningLikelihood prior_classes = utils.replace(AlignedSpinLVCPrior.prior_classes, UniformLuminosityVolumePrior, UniformComovingVolumePrior) class ExtrinsicParametersPrior(RegisteredPriorMixin, CombinedPrior): """Uniform luminosity volume, fixed intrinsic parameters.""" default_likelihood_class = RelativeBinningLikelihood prior_classes = [FixedIntrinsicParametersPrior, IsotropicInclinationPrior, IsotropicSkyLocationPrior, UniformTimePrior, UniformPolarizationPrior, UniformPhasePrior, UniformLuminosityVolumePrior, FixedReferenceFrequencyPrior] class MarginalizedDistanceIASPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedDistanceLikelihood``. Similar to ``IASPrior`` except it does not include distance. Uniform in effective spin and detector-frame component masses. """ default_likelihood_class = MarginalizedDistanceLikelihood prior_classes = IASPrior.prior_classes.copy() prior_classes.remove(UniformLuminosityVolumePrior) class MarginalizedDistanceAndPhaseIASPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedDistanceLikelihood``. Similar to ``IASPrior`` except it does not include distance or phase. Uniform in effective spin and detector-frame component masses. """ default_likelihood_class = MarginalizedDistancePhaseLikelihood prior_classes = IASPrior.prior_classes.copy() prior_classes.remove(UniformLuminosityVolumePrior) prior_classes.remove(UniformPhasePrior) class MarginalizedDistanceLVCPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedDistanceLikelihood``. Similar to ``LVCPrior`` except it does not include distance. Isotropic spin orientations, uniform in component spin magnitudes and detector-frame component masses. """ default_likelihood_class = MarginalizedDistanceLikelihood prior_classes = LVCPrior.prior_classes.copy() prior_classes.remove(UniformLuminosityVolumePrior) class IntrinsicAlignedSpinIASPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedExtrinsicLikelihoodQAS``. Intrinsic parameters only, aligned spins, uniform in effective spin and detector frame component masses, no tides. """ default_likelihood_class = MarginalizedExtrinsicLikelihoodQAS prior_classes = [UniformDetectorFrameMassesPrior, UniformEffectiveSpinPrior, ZeroTidalDeformabilityPrior, FixedReferenceFrequencyPrior] class IntrinsicAlignedSpinLVCPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedExtrinsicLikelihoodQAS``. Intrinsic parameters only, aligned spins, uniform in effective spin and detector frame component masses, no tides. """ default_likelihood_class = MarginalizedExtrinsicLikelihoodQAS prior_classes = [UniformDetectorFrameMassesPrior, IsotropicSpinsAlignedComponentsPrior, ZeroTidalDeformabilityPrior, FixedReferenceFrequencyPrior] class IntrinsicIASPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedExtrinsicLikelihood``. Intrinsic parameters only, precessing, uniform in effective spin and detector frame component masses, no tides. """ default_likelihood_class = MarginalizedExtrinsicLikelihood prior_classes = [FixedReferenceFrequencyPrior, UniformDetectorFrameMassesPrior, UniformEffectiveSpinPrior, UniformDiskInplaneSpinsIsotropicInclinationPrior, ZeroTidalDeformabilityPrior] class IntrinsicLVCPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedExtrinsicLikelihood``. Intrinsic parameters only, precessing, isotropic spins, uniform in component spin magnitudes and detector frame masses, no tides. """ default_likelihood_class = MarginalizedExtrinsicLikelihood prior_classes = [FixedReferenceFrequencyPrior, UniformDetectorFrameMassesPrior, IsotropicSpinsAlignedComponentsPrior, IsotropicSpinsInplaneComponentsIsotropicInclinationPrior, ZeroTidalDeformabilityPrior] class CartesianIntrinsicIASPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedExtrinsicLikelihood``. Physically equivalent to ``IntrinsicIASPrior`` but does not require periodic parameters, which some samplers cannot deal with. Intrinsic parameters only, precessing, uniform in effective spin and detector frame component masses, no tides. """ default_likelihood_class = MarginalizedExtrinsicLikelihood prior_classes = [FixedReferenceFrequencyPrior, UniformDetectorFrameMassesPrior, UniformEffectiveSpinPrior, CartesianUniformDiskInplaneSpinsIsotropicInclinationPrior, ZeroTidalDeformabilityPrior] class IntrinsicVolumetricSpinPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedExtrinsicLikelihood``. Intrinsic parameters only, precessing, uniform in detector frame component masses, volumetric spin prior (spin components uniform in the ball |s| < 1), no tides. For low mass systems, consider ``PNIntrinsicVolumetricSpinPrior`` instead. """ default_likelihood_class = MarginalizedExtrinsicLikelihood prior_classes = utils.replace(IntrinsicIASPrior.prior_classes, UniformEffectiveSpinPrior, VolumetricSpinsAlignedComponentsPrior) class PNIntrinsicVolumetricSpinPrior(RegisteredPriorMixin, CombinedPrior): """ Prior for usage with ``MarginalizedExtrinsicLikelihood``. Intrinsic parameters only, precessing, uniform in detector frame component masses, volumetric spin prior (spin components uniform in the ball |s| < 1), no tides. Best suited for low masses where PN expansion is better justified. """ default_likelihood_class = MarginalizedExtrinsicLikelihood prior_classes = [FixedReferenceFrequencyPrior, PNCoordinatesPrior, CartesianUniformDiskInplaneSpinsIsotropicInclinationPrior, ZeroTidalDeformabilityPrior] @classmethod def from_reference_waveform_finder( cls, reference_waveform_finder, **kwargs): eigvecs = PNCoordinatesPrior.eigvecs_from_reference_waveform_finder( reference_waveform_finder) return cls(**reference_waveform_finder.get_coordinate_system_kwargs() | {'eigvecs': eigvecs} | kwargs)
jrouletREPO_NAMEcogwheelPATH_START.@cogwheel_extracted@cogwheel-main@cogwheel@gw_prior@combined.py@.PATH_END.py
{ "filename": "iterative_fft_particle.py", "repo_name": "cosmodesi/pyrecon", "repo_path": "pyrecon_extracted/pyrecon-main/pyrecon/iterative_fft_particle.py", "type": "Python" }
"""Re-implementation of Bautista et al. 2018 (https://arxiv.org/pdf/1712.08064.pdf) algorithm.""" import numpy as np from .recon import BaseReconstruction, ReconstructionError from . import utils class OriginalIterativeFFTParticleReconstruction(BaseReconstruction): """ Exact re-implementation of Bautista et al. 2018 (https://arxiv.org/pdf/1712.08064.pdf) algorithm at https://github.com/julianbautista/eboss_clustering/blob/master/python/recon.py. Numerical agreement in the Zeldovich displacements between original codes and this re-implementation is machine precision (absolute and relative difference of 1e-12). """ def assign_data(self, positions, weights=None): """ Assign (paint) data to :attr:`mesh_data`. Keeps track of input positions (for :meth:`run`) and weights (for :meth:`set_density_contrast`). See :meth:`BaseReconstruction.assign_data` for parameters. """ if weights is None: weights = np.ones_like(positions, shape=(len(positions),)) if self.wrap: positions = self.info.wrap(positions) if self.mesh_data.value is None: self._positions_data = positions self._weights_data = weights else: self._positions_data = np.concatenate([self._positions_data, positions], axis=0) self._weights_data = np.concatenate([self._weights_data, weights], axis=0) self.mesh_data.assign_cic(positions, weights=weights, wrap=self.wrap) def set_density_contrast(self, ran_min=0.01, smoothing_radius=15.): r""" Set :math:`\delta` field :attr:`mesh_delta` from data and randoms fields :attr:`mesh_data` and :attr:`mesh_randoms`. Note ---- This method follows Julian's reconstruction code. :attr:`mesh_data` and :attr:`mesh_randoms` fields are assumed to be smoothed already. Parameters ---------- ran_min : float, default=0.01 :attr:`mesh_randoms` points below this threshold times mean random weights have their density contrast set to 0. """ self.ran_min = ran_min self.smoothing_radius = smoothing_radius if self.has_randoms: sum_data, sum_randoms = np.sum(self.mesh_data.value), np.sum(self.mesh_randoms.value) alpha = sum_data * 1. / sum_randoms self.mesh_delta = self.mesh_data - alpha * self.mesh_randoms threshold = ran_min * sum_randoms / self._size_randoms mask = self.mesh_randoms > threshold self.mesh_delta[mask] /= (self.bias * alpha * self.mesh_randoms[mask]) self.mesh_delta[~mask] = 0. else: self.mesh_delta = self.mesh_data / np.mean(self.mesh_data) - 1. self.mesh_delta /= self.bias def run(self, niterations=3): """ Run reconstruction, i.e. compute reconstructed data real-space positions (:attr:`_positions_rec_data`) and Zeldovich displacements fields :attr:`mesh_psi`. Parameters ---------- niterations : int Number of iterations. """ self._iter = 0 # Gaussian smoothing before density contrast calculation self.mesh_data.smooth_gaussian(self.smoothing_radius, method='fft') if self.has_randoms: self.mesh_randoms.smooth_gaussian(self.smoothing_radius, method='fft') self._positions_rec_data = self._positions_data.copy() for iter in range(niterations): self.mesh_psi = self._iterate(return_psi=iter == niterations - 1) del self.mesh_randoms def _iterate(self, return_psi=False): self.log_info('Running iteration {:d}.'.format(self._iter)) if self._iter > 0: self.mesh_data = self.mesh_randoms.copy() self.mesh_data.value = None # to reset mesh values # Painting reconstructed data real-space positions wrap = self.wrap; self.wrap = True # enforce wrapping super(OriginalIterativeFFTParticleReconstruction, self).assign_data(self._positions_rec_data, weights=self._weights_data) # super in order not to save positions_rec_data self.wrap = wrap # Gaussian smoothing before density contrast calculation self.mesh_data.smooth_gaussian(self.smoothing_radius, method='fft') self.set_density_contrast(ran_min=self.ran_min, smoothing_radius=self.smoothing_radius) del self.mesh_data delta_k = self.mesh_delta.to_complex() del self.mesh_delta k = utils.broadcast_arrays(*delta_k.coords()) delta_k.prod_sum([k**2 for k in delta_k.coords()], exp=-1) delta_k[0, 0, 0] = 0. # k = utils.broadcast_arrays(*delta_k.coords()) # k2 = sum(kk**2 for kk in k) # k2[0,0,0] = 1. # to avoid dividing by 0 # delta_k /= k2 self.log_info('Computing displacement field.') shifts = np.empty_like(self._positions_rec_data) psis = [] for iaxis in range(delta_k.ndim): # no need to compute psi on axis where los is 0 if not return_psi and self.los is not None and self.los[iaxis] == 0: shifts[:, iaxis] = 0. continue psi = (delta_k * 1j * k[iaxis]).to_real() # Reading shifts at reconstructed data real-space positions shifts[:, iaxis] = psi.read_cic(self._positions_rec_data, wrap=True) if return_psi: psis.append(psi) # self.log_info('A few displacements values:') # for s in shifts[:3]: self.log_info('{}'.format(s)) if self.los is None: los = self._positions_data / utils.distance(self._positions_data)[:, None] else: los = self.los # Comments in Julian's code: # For first loop need to approximately remove RSD component from psi to speed up convergence # See Burden et al. 2015: 1504.02591v2, eq. 12 (flat sky approximation) if self._iter == 0: shifts -= self.beta / (1 + self.beta) * np.sum(shifts * los, axis=-1)[:, None] * los # Comments in Julian's code: # Remove RSD from original positions of galaxies to give new positions # these positions are then used in next determination of psi, # assumed to not have RSD. # The iterative procedure then uses the new positions as if they'd been read in from the start self._positions_rec_data = self._positions_data - self.f * np.sum(shifts * los, axis=-1)[:, None] * los diff = self._positions_rec_data - self.mesh_randoms.offset if (not self.wrap) and np.any((diff < 0) | (diff > self.mesh_randoms.boxsize - self.mesh_randoms.cellsize)): self.log_warning('Some particles are out-of-bounds.') self._iter += 1 if return_psi: return psis def read_shifts(self, positions, field='disp+rsd'): """ Read displacement at input positions. Note ---- Data shifts are read at the reconstructed real-space positions, while random shifts are read at the redshift-space positions, is that consistent? Parameters ---------- positions : array of shape (N, 3), string Cartesian positions. Pass string 'data' to get the displacements for the input data positions passed to :meth:`assign_data`. Note that in this case, shifts are read at the reconstructed data real-space positions. field : string, default='disp+rsd' Either 'disp' (Zeldovich displacement), 'rsd' (RSD displacement), or 'disp+rsd' (Zeldovich + RSD displacement). Returns ------- shifts : array of shape (N, 3) Displacements. """ field = field.lower() allowed_fields = ['disp', 'rsd', 'disp+rsd'] if field not in allowed_fields: raise ReconstructionError('Unknown field {}. Choices are {}'.format(field, allowed_fields)) def read_cic(positions, wrap=False): shifts = np.empty_like(positions) for iaxis, psi in enumerate(self.mesh_psi): shifts[:, iaxis] = psi.read_cic(positions, wrap=wrap) return shifts if isinstance(positions, str) and positions == 'data': # _positions_rec_data already wrapped during iteration shifts = read_cic(self._positions_rec_data, wrap=True) if field == 'disp': return shifts rsd = self._positions_data - self._positions_rec_data if field == 'rsd': return rsd # field == 'disp+rsd' shifts += rsd return shifts if self.wrap: positions = self.info.wrap(positions) # wrap here for local los shifts = read_cic(positions, wrap=False) # aleady wrapped if field == 'disp': return shifts if self.los is None: los = positions / utils.distance(positions)[:, None] else: los = self.los rsd = self.f * np.sum(shifts * los, axis=-1)[:, None] * los if field == 'rsd': return rsd # field == 'disp+rsd' # we follow convention of original algorithm: remove RSD first, # then remove Zeldovich displacement real_positions = positions - rsd diff = real_positions - self.mesh_psi[0].offset if (not self.wrap) and np.any((diff < 0) | (diff > self.mesh_psi[0].boxsize - self.mesh_psi[0].cellsize)): self.log_warning('Some particles are out-of-bounds.') shifts = read_cic(real_positions, wrap=True) return shifts + rsd def read_shifted_positions(self, positions, field='disp+rsd'): """ Read shifted positions i.e. the difference ``positions - self.read_shifts(positions, field=field)``. Output (and input) positions are wrapped if :attr:`wrap`. Parameters ---------- positions : array of shape (N, 3), string Cartesian positions. Pass string 'data' to get the shift positions for the input data positions passed to :meth:`assign_data`. Note that in this case, shifts are read at the reconstructed data real-space positions. field : string, default='disp+rsd' Apply either 'disp' (Zeldovich displacement), 'rsd' (RSD displacement), or 'disp+rsd' (Zeldovich + RSD displacement). Returns ------- positions : array of shape (N, 3) Shifted positions. """ shifts = self.read_shifts(positions, field=field) if isinstance(positions, str) and positions == 'data': positions = self._positions_data positions = positions - shifts if self.wrap: positions = self.info.wrap(positions) return positions class IterativeFFTParticleReconstruction(OriginalIterativeFFTParticleReconstruction): """Any update / test / improvement upon original algorithm."""
cosmodesiREPO_NAMEpyreconPATH_START.@pyrecon_extracted@pyrecon-main@pyrecon@iterative_fft_particle.py@.PATH_END.py
{ "filename": "Executor.py", "repo_name": "rat-pac/rat-pac", "repo_path": "rat-pac_extracted/rat-pac-master/python/SCons/Executor.py", "type": "Python" }
"""SCons.Executor A module for executing actions with specific lists of target and source Nodes. """ # # Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Executor.py 4043 2009/02/23 09:06:45 scons" import string import UserList from SCons.Debug import logInstanceCreation import SCons.Errors import SCons.Memoize class Batch: """Remembers exact association between targets and sources of executor.""" def __init__(self, targets=[], sources=[]): self.targets = targets self.sources = sources class TSList(UserList.UserList): """A class that implements $TARGETS or $SOURCES expansions by wrapping an executor Method. This class is used in the Executor.lvars() to delay creation of NodeList objects until they're needed. Note that we subclass UserList.UserList purely so that the is_Sequence() function will identify an object of this class as a list during variable expansion. We're not really using any UserList.UserList methods in practice. """ def __init__(self, func): self.func = func def __getattr__(self, attr): nl = self.func() return getattr(nl, attr) def __getitem__(self, i): nl = self.func() return nl[i] def __getslice__(self, i, j): nl = self.func() i = max(i, 0); j = max(j, 0) return nl[i:j] def __str__(self): nl = self.func() return str(nl) def __repr__(self): nl = self.func() return repr(nl) class TSObject: """A class that implements $TARGET or $SOURCE expansions by wrapping an Executor method. """ def __init__(self, func): self.func = func def __getattr__(self, attr): n = self.func() return getattr(n, attr) def __str__(self): n = self.func() if n: return str(n) return '' def __repr__(self): n = self.func() if n: return repr(n) return '' def rfile(node): """ A function to return the results of a Node's rfile() method, if it exists, and the Node itself otherwise (if it's a Value Node, e.g.). """ try: rfile = node.rfile except AttributeError: return node else: return rfile() class Executor: """A class for controlling instances of executing an action. This largely exists to hold a single association of an action, environment, list of environment override dictionaries, targets and sources for later processing as needed. """ if SCons.Memoize.use_memoizer: __metaclass__ = SCons.Memoize.Memoized_Metaclass memoizer_counters = [] def __init__(self, action, env=None, overridelist=[{}], targets=[], sources=[], builder_kw={}): if __debug__: logInstanceCreation(self, 'Executor.Executor') self.set_action_list(action) self.pre_actions = [] self.post_actions = [] self.env = env self.overridelist = overridelist if targets or sources: self.batches = [Batch(targets[:], sources[:])] else: self.batches = [] self.builder_kw = builder_kw self._memo = {} def get_lvars(self): try: return self.lvars except AttributeError: self.lvars = { 'CHANGED_SOURCES' : TSList(self._get_changed_sources), 'CHANGED_TARGETS' : TSList(self._get_changed_targets), 'SOURCE' : TSObject(self._get_source), 'SOURCES' : TSList(self._get_sources), 'TARGET' : TSObject(self._get_target), 'TARGETS' : TSList(self._get_targets), 'UNCHANGED_SOURCES' : TSList(self._get_unchanged_sources), 'UNCHANGED_TARGETS' : TSList(self._get_unchanged_targets), } return self.lvars def _get_changes(self): cs = [] ct = [] us = [] ut = [] for b in self.batches: if b.targets[0].is_up_to_date(): us.extend(map(rfile, b.sources)) ut.extend(b.targets) else: cs.extend(map(rfile, b.sources)) ct.extend(b.targets) self._changed_sources_list = SCons.Util.NodeList(cs) self._changed_targets_list = SCons.Util.NodeList(ct) self._unchanged_sources_list = SCons.Util.NodeList(us) self._unchanged_targets_list = SCons.Util.NodeList(ut) def _get_changed_sources(self, *args, **kw): try: return self._changed_sources_list except AttributeError: self._get_changes() return self._changed_sources_list def _get_changed_targets(self, *args, **kw): try: return self._changed_targets_list except AttributeError: self._get_changes() return self._changed_targets_list def _get_source(self, *args, **kw): #return SCons.Util.NodeList([rfile(self.batches[0].sources[0]).get_subst_proxy()]) return rfile(self.batches[0].sources[0]).get_subst_proxy() def _get_sources(self, *args, **kw): return SCons.Util.NodeList(map(lambda n: rfile(n).get_subst_proxy(), self.get_all_sources())) def _get_target(self, *args, **kw): #return SCons.Util.NodeList([self.batches[0].targets[0].get_subst_proxy()]) return self.batches[0].targets[0].get_subst_proxy() def _get_targets(self, *args, **kw): return SCons.Util.NodeList(map(lambda n: n.get_subst_proxy(), self.get_all_targets())) def _get_unchanged_sources(self, *args, **kw): try: return self._unchanged_sources_list except AttributeError: self._get_changes() return self._unchanged_sources_list def _get_unchanged_targets(self, *args, **kw): try: return self._unchanged_targets_list except AttributeError: self._get_changes() return self._unchanged_targets_list def get_action_targets(self): if not self.action_list: return [] targets_string = self.action_list[0].get_targets(self.env, self) if targets_string[0] == '$': targets_string = targets_string[1:] return self.get_lvars()[targets_string] def set_action_list(self, action): import SCons.Util if not SCons.Util.is_List(action): if not action: import SCons.Errors raise SCons.Errors.UserError, "Executor must have an action." action = [action] self.action_list = action def get_action_list(self): return self.pre_actions + self.action_list + self.post_actions def get_all_targets(self): """Returns all targets for all batches of this Executor.""" result = [] for batch in self.batches: # TODO(1.5): remove the list() cast result.extend(list(batch.targets)) return result def get_all_sources(self): """Returns all sources for all batches of this Executor.""" result = [] for batch in self.batches: # TODO(1.5): remove the list() cast result.extend(list(batch.sources)) return result def get_all_children(self): """Returns all unique children (dependencies) for all batches of this Executor. The Taskmaster can recognize when it's already evaluated a Node, so we don't have to make this list unique for its intended canonical use case, but we expect there to be a lot of redundancy (long lists of batched .cc files #including the same .h files over and over), so removing the duplicates once up front should save the Taskmaster a lot of work. """ result = SCons.Util.UniqueList([]) for target in self.get_all_targets(): result.extend(target.children()) return result def get_all_prerequisites(self): """Returns all unique (order-only) prerequisites for all batches of this Executor. """ result = SCons.Util.UniqueList([]) for target in self.get_all_targets(): # TODO(1.5): remove the list() cast result.extend(list(target.prerequisites)) return result def get_action_side_effects(self): """Returns all side effects for all batches of this Executor used by the underlying Action. """ result = SCons.Util.UniqueList([]) for target in self.get_action_targets(): result.extend(target.side_effects) return result memoizer_counters.append(SCons.Memoize.CountValue('get_build_env')) def get_build_env(self): """Fetch or create the appropriate build Environment for this Executor. """ try: return self._memo['get_build_env'] except KeyError: pass # Create the build environment instance with appropriate # overrides. These get evaluated against the current # environment's construction variables so that users can # add to existing values by referencing the variable in # the expansion. overrides = {} for odict in self.overridelist: overrides.update(odict) import SCons.Defaults env = self.env or SCons.Defaults.DefaultEnvironment() build_env = env.Override(overrides) self._memo['get_build_env'] = build_env return build_env def get_build_scanner_path(self, scanner): """Fetch the scanner path for this executor's targets and sources. """ env = self.get_build_env() try: cwd = self.batches[0].targets[0].cwd except (IndexError, AttributeError): cwd = None return scanner.path(env, cwd, self.get_all_targets(), self.get_all_sources()) def get_kw(self, kw={}): result = self.builder_kw.copy() result.update(kw) result['executor'] = self return result def do_nothing(self, target, kw): return 0 def do_execute(self, target, kw): """Actually execute the action list.""" env = self.get_build_env() kw = self.get_kw(kw) status = 0 for act in self.get_action_list(): #args = (self.get_all_targets(), self.get_all_sources(), env) args = ([], [], env) status = apply(act, args, kw) if isinstance(status, SCons.Errors.BuildError): status.executor = self raise status elif status: msg = "Error %s" % status raise SCons.Errors.BuildError( errstr=msg, node=self.batches[0].targets, executor=self, action=act) return status # use extra indirection because with new-style objects (Python 2.2 # and above) we can't override special methods, and nullify() needs # to be able to do this. def __call__(self, target, **kw): return self.do_execute(target, kw) def cleanup(self): self._memo = {} def add_sources(self, sources): """Add source files to this Executor's list. This is necessary for "multi" Builders that can be called repeatedly to build up a source file list for a given target.""" # TODO(batch): extend to multiple batches assert (len(self.batches) == 1) # TODO(batch): remove duplicates? sources = filter(lambda x, s=self.batches[0].sources: x not in s, sources) self.batches[0].sources.extend(sources) def get_sources(self): return self.batches[0].sources def add_batch(self, targets, sources): """Add pair of associated target and source to this Executor's list. This is necessary for "batch" Builders that can be called repeatedly to build up a list of matching target and source files that will be used in order to update multiple target files at once from multiple corresponding source files, for tools like MSVC that support it.""" self.batches.append(Batch(targets, sources)) def prepare(self): """ Preparatory checks for whether this Executor can go ahead and (try to) build its targets. """ for s in self.get_all_sources(): if s.missing(): msg = "Source `%s' not found, needed by target `%s'." raise SCons.Errors.StopError, msg % (s, self.batches[0].targets[0]) def add_pre_action(self, action): self.pre_actions.append(action) def add_post_action(self, action): self.post_actions.append(action) # another extra indirection for new-style objects and nullify... def my_str(self): env = self.get_build_env() get = lambda action, t=self.get_all_targets(), s=self.get_all_sources(), e=env: \ action.genstring(t, s, e) return string.join(map(get, self.get_action_list()), "\n") def __str__(self): return self.my_str() def nullify(self): self.cleanup() self.do_execute = self.do_nothing self.my_str = lambda S=self: '' memoizer_counters.append(SCons.Memoize.CountValue('get_contents')) def get_contents(self): """Fetch the signature contents. This is the main reason this class exists, so we can compute this once and cache it regardless of how many target or source Nodes there are. """ try: return self._memo['get_contents'] except KeyError: pass env = self.get_build_env() get = lambda action, t=self.get_all_targets(), s=self.get_all_sources(), e=env: \ action.get_contents(t, s, e) result = string.join(map(get, self.get_action_list()), "") self._memo['get_contents'] = result return result def get_timestamp(self): """Fetch a time stamp for this Executor. We don't have one, of course (only files do), but this is the interface used by the timestamp module. """ return 0 def scan_targets(self, scanner): # TODO(batch): scan by batches self.scan(scanner, self.get_all_targets()) def scan_sources(self, scanner): # TODO(batch): scan by batches if self.batches[0].sources: self.scan(scanner, self.get_all_sources()) def scan(self, scanner, node_list): """Scan a list of this Executor's files (targets or sources) for implicit dependencies and update all of the targets with them. This essentially short-circuits an N*M scan of the sources for each individual target, which is a hell of a lot more efficient. """ env = self.get_build_env() # TODO(batch): scan by batches) deps = [] if scanner: for node in node_list: node.disambiguate() s = scanner.select(node) if not s: continue path = self.get_build_scanner_path(s) deps.extend(node.get_implicit_deps(env, s, path)) else: kw = self.get_kw() for node in node_list: node.disambiguate() scanner = node.get_env_scanner(env, kw) if not scanner: continue scanner = scanner.select(node) if not scanner: continue path = self.get_build_scanner_path(scanner) deps.extend(node.get_implicit_deps(env, scanner, path)) deps.extend(self.get_implicit_deps()) for tgt in self.get_all_targets(): tgt.add_to_implicit(deps) def _get_unignored_sources_key(self, node, ignore=()): return (node,) + tuple(ignore) memoizer_counters.append(SCons.Memoize.CountDict('get_unignored_sources', _get_unignored_sources_key)) def get_unignored_sources(self, node, ignore=()): key = (node,) + tuple(ignore) try: memo_dict = self._memo['get_unignored_sources'] except KeyError: memo_dict = {} self._memo['get_unignored_sources'] = memo_dict else: try: return memo_dict[key] except KeyError: pass if node: # TODO: better way to do this (it's a linear search, # but it may not be critical path)? sourcelist = [] for b in self.batches: if node in b.targets: sourcelist = b.sources break else: sourcelist = self.get_all_sources() if ignore: idict = {} for i in ignore: idict[i] = 1 sourcelist = filter(lambda s, i=idict: not i.has_key(s), sourcelist) memo_dict[key] = sourcelist return sourcelist def get_implicit_deps(self): """Return the executor's implicit dependencies, i.e. the nodes of the commands to be executed.""" result = [] build_env = self.get_build_env() for act in self.get_action_list(): deps = act.get_implicit_deps(self.get_all_targets(), self.get_all_sources(), build_env) result.extend(deps) return result _batch_executors = {} def GetBatchExecutor(key): return _batch_executors[key] def AddBatchExecutor(key, executor): assert not _batch_executors.has_key(key) _batch_executors[key] = executor nullenv = None def get_NullEnvironment(): """Use singleton pattern for Null Environments.""" global nullenv import SCons.Util class NullEnvironment(SCons.Util.Null): import SCons.CacheDir _CacheDir_path = None _CacheDir = SCons.CacheDir.CacheDir(None) def get_CacheDir(self): return self._CacheDir if not nullenv: nullenv = NullEnvironment() return nullenv class Null: """A null Executor, with a null build Environment, that does nothing when the rest of the methods call it. This might be able to disapper when we refactor things to disassociate Builders from Nodes entirely, so we're not going to worry about unit tests for this--at least for now. """ def __init__(self, *args, **kw): if __debug__: logInstanceCreation(self, 'Executor.Null') self.batches = [Batch(kw['targets'][:], [])] def get_build_env(self): return get_NullEnvironment() def get_build_scanner_path(self): return None def cleanup(self): pass def prepare(self): pass def get_unignored_sources(self, *args, **kw): return tuple(()) def get_action_targets(self): return [] def get_action_list(self): return [] def get_all_targets(self): return self.batches[0].targets def get_all_sources(self): return self.batches[0].targets[0].sources def get_all_children(self): return self.get_all_sources() def get_all_prerequisites(self): return [] def get_action_side_effects(self): return [] def __call__(self, *args, **kw): return 0 def get_contents(self): return '' def _morph(self): """Morph this Null executor to a real Executor object.""" batches = self.batches self.__class__ = Executor self.__init__([]) self.batches = batches # The following methods require morphing this Null Executor to a # real Executor object. def add_pre_action(self, action): self._morph() self.add_pre_action(action) def add_post_action(self, action): self._morph() self.add_post_action(action) def set_action_list(self, action): self._morph() self.set_action_list(action) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
rat-pacREPO_NAMErat-pacPATH_START.@rat-pac_extracted@rat-pac-master@python@SCons@Executor.py@.PATH_END.py
{ "filename": "backend_qt4.py", "repo_name": "waynebhayes/SpArcFiRe", "repo_path": "SpArcFiRe_extracted/SpArcFiRe-master/scripts/SpArcFiRe-pyvenv/lib/python2.7/site-packages/matplotlib/backends/backend_qt4.py", "type": "Python" }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six import unichr import os import re import signal import sys from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import ( FigureCanvasBase, FigureManagerBase, NavigationToolbar2, TimerBase, cursors) from matplotlib.figure import Figure from matplotlib.widgets import SubplotTool from .qt_compat import QtCore, QtWidgets, _getSaveFileName, __version__ from .backend_qt5 import ( backend_version, SPECIAL_KEYS, SUPER, ALT, CTRL, SHIFT, MODIFIER_KEYS, cursord, _create_qApp, _BackendQT5, TimerQT, MainWindow, FigureManagerQT, NavigationToolbar2QT, SubplotToolQt, error_msg_qt, exception_handler) from .backend_qt5 import FigureCanvasQT as FigureCanvasQT5 DEBUG = False class FigureCanvasQT(FigureCanvasQT5): def wheelEvent(self, event): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() # from QWheelEvent::delta doc steps = event.delta()/120 if (event.orientation() == QtCore.Qt.Vertical): FigureCanvasBase.scroll_event(self, x, y, steps) if DEBUG: print('scroll event: delta = %i, ' 'steps = %i ' % (event.delta(), steps)) @_BackendQT5.export class _BackendQT4(_BackendQT5): FigureCanvas = FigureCanvasQT
waynebhayesREPO_NAMESpArcFiRePATH_START.@SpArcFiRe_extracted@SpArcFiRe-master@scripts@SpArcFiRe-pyvenv@lib@python2.7@site-packages@matplotlib@backends@backend_qt4.py@.PATH_END.py
{ "filename": "version.py", "repo_name": "tgrassi/prizmo", "repo_path": "prizmo_extracted/prizmo-main/src_py/ChiantiPy/version.py", "type": "Python" }
''' the current version of the ChiantiPy package ''' __version_info__ = ('0','11', '1') __version__ = '.'.join(__version_info__)
tgrassiREPO_NAMEprizmoPATH_START.@prizmo_extracted@prizmo-main@src_py@ChiantiPy@version.py@.PATH_END.py
{ "filename": "test_friendli.py", "repo_name": "langchain-ai/langchain", "repo_path": "langchain_extracted/langchain-master/libs/community/tests/unit_tests/chat_models/test_friendli.py", "type": "Python" }
"""Test Friendli LLM for chat.""" from unittest.mock import AsyncMock, MagicMock, Mock import pytest from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.adapters.openai import aenumerate from langchain_community.chat_models import ChatFriendli @pytest.fixture def mock_friendli_client() -> Mock: """Mock instance of Friendli client.""" return Mock() @pytest.fixture def mock_friendli_async_client() -> AsyncMock: """Mock instance of Friendli async client.""" return AsyncMock() @pytest.fixture def chat_friendli( mock_friendli_client: Mock, mock_friendli_async_client: AsyncMock ) -> ChatFriendli: """Friendli LLM for chat with mock clients.""" return ChatFriendli( friendli_token=SecretStr("personal-access-token"), client=mock_friendli_client, async_client=mock_friendli_async_client, ) @pytest.mark.requires("friendli") def test_friendli_token_is_secret_string(capsys: CaptureFixture) -> None: """Test if friendli token is stored as a SecretStr.""" fake_token_value = "personal-access-token" chat = ChatFriendli(friendli_token=fake_token_value) # type: ignore[arg-type] assert isinstance(chat.friendli_token, SecretStr) assert chat.friendli_token.get_secret_value() == fake_token_value print(chat.friendli_token, end="") # noqa: T201 captured = capsys.readouterr() assert captured.out == "**********" @pytest.mark.requires("friendli") def test_friendli_token_read_from_env( monkeypatch: MonkeyPatch, capsys: CaptureFixture ) -> None: """Test if friendli token can be parsed from environment.""" fake_token_value = "personal-access-token" monkeypatch.setenv("FRIENDLI_TOKEN", fake_token_value) chat = ChatFriendli() assert isinstance(chat.friendli_token, SecretStr) assert chat.friendli_token.get_secret_value() == fake_token_value print(chat.friendli_token, end="") # noqa: T201 captured = capsys.readouterr() assert captured.out == "**********" @pytest.mark.requires("friendli") def test_friendli_invoke( mock_friendli_client: Mock, chat_friendli: ChatFriendli ) -> None: """Test invocation with friendli.""" mock_message = Mock() mock_message.content = "Hello Friendli" mock_message.role = "assistant" mock_choice = Mock() mock_choice.message = mock_message mock_response = Mock() mock_response.choices = [mock_choice] mock_friendli_client.chat.completions.create.return_value = mock_response result = chat_friendli.invoke("Hello langchain") assert result.content == "Hello Friendli" mock_friendli_client.chat.completions.create.assert_called_once_with( messages=[{"role": "user", "content": "Hello langchain"}], stream=False, model=chat_friendli.model, frequency_penalty=None, presence_penalty=None, max_tokens=None, stop=None, temperature=None, top_p=None, ) @pytest.mark.requires("friendli") async def test_friendli_ainvoke( mock_friendli_async_client: AsyncMock, chat_friendli: ChatFriendli ) -> None: """Test async invocation with friendli.""" mock_message = Mock() mock_message.content = "Hello Friendli" mock_message.role = "assistant" mock_choice = Mock() mock_choice.message = mock_message mock_response = Mock() mock_response.choices = [mock_choice] mock_friendli_async_client.chat.completions.create.return_value = mock_response result = await chat_friendli.ainvoke("Hello langchain") assert result.content == "Hello Friendli" mock_friendli_async_client.chat.completions.create.assert_awaited_once_with( messages=[{"role": "user", "content": "Hello langchain"}], stream=False, model=chat_friendli.model, frequency_penalty=None, presence_penalty=None, max_tokens=None, stop=None, temperature=None, top_p=None, ) @pytest.mark.requires("friendli") def test_friendli_stream( mock_friendli_client: Mock, chat_friendli: ChatFriendli ) -> None: """Test stream with friendli.""" mock_delta_0 = Mock() mock_delta_0.content = "Hello " mock_delta_1 = Mock() mock_delta_1.content = "Friendli" mock_choice_0 = Mock() mock_choice_0.delta = mock_delta_0 mock_choice_1 = Mock() mock_choice_1.delta = mock_delta_1 mock_chunk_0 = Mock() mock_chunk_0.choices = [mock_choice_0] mock_chunk_1 = Mock() mock_chunk_1.choices = [mock_choice_1] mock_stream = MagicMock() mock_chunks = [mock_chunk_0, mock_chunk_1] mock_stream.__iter__.return_value = mock_chunks mock_friendli_client.chat.completions.create.return_value = mock_stream stream = chat_friendli.stream("Hello langchain") for i, chunk in enumerate(stream): assert chunk.content == mock_chunks[i].choices[0].delta.content mock_friendli_client.chat.completions.create.assert_called_once_with( messages=[{"role": "user", "content": "Hello langchain"}], stream=True, model=chat_friendli.model, frequency_penalty=None, presence_penalty=None, max_tokens=None, stop=None, temperature=None, top_p=None, ) @pytest.mark.requires("friendli") async def test_friendli_astream( mock_friendli_async_client: AsyncMock, chat_friendli: ChatFriendli ) -> None: """Test async stream with friendli.""" mock_delta_0 = Mock() mock_delta_0.content = "Hello " mock_delta_1 = Mock() mock_delta_1.content = "Friendli" mock_choice_0 = Mock() mock_choice_0.delta = mock_delta_0 mock_choice_1 = Mock() mock_choice_1.delta = mock_delta_1 mock_chunk_0 = Mock() mock_chunk_0.choices = [mock_choice_0] mock_chunk_1 = Mock() mock_chunk_1.choices = [mock_choice_1] mock_stream = AsyncMock() mock_chunks = [mock_chunk_0, mock_chunk_1] mock_stream.__aiter__.return_value = mock_chunks mock_friendli_async_client.chat.completions.create.return_value = mock_stream stream = chat_friendli.astream("Hello langchain") async for i, chunk in aenumerate(stream): assert chunk.content == mock_chunks[i].choices[0].delta.content mock_friendli_async_client.chat.completions.create.assert_awaited_once_with( messages=[{"role": "user", "content": "Hello langchain"}], stream=True, model=chat_friendli.model, frequency_penalty=None, presence_penalty=None, max_tokens=None, stop=None, temperature=None, top_p=None, )
langchain-aiREPO_NAMElangchainPATH_START.@langchain_extracted@langchain-master@libs@community@tests@unit_tests@chat_models@test_friendli.py@.PATH_END.py
{ "filename": "image.py", "repo_name": "achael/eht-imaging", "repo_path": "eht-imaging_extracted/eht-imaging-main/ehtim/image.py", "type": "Python" }
# image.py # an interferometric image class # # Copyright (C) 2018 Andrew Chael # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import division from __future__ import print_function from builtins import str from builtins import range from builtins import object import sys import copy import math import numpy as np import numpy.matlib as matlib import matplotlib as mpl import matplotlib.pyplot as plt import scipy.optimize as opt import scipy.signal import scipy.ndimage.filters as filt import scipy.interpolate from scipy import ndimage as ndi try: from skimage.feature import canny from skimage.transform import hough_circle, hough_circle_peaks except ImportError: print("Warning: scikit-image not installed! Cannot use hough transform") import ehtim.observing.obs_simulate as simobs import ehtim.observing.pulses as pulses import ehtim.io.save import ehtim.io.load import ehtim.const_def as ehc import ehtim.observing.obs_helpers as obsh # TODO : add time to all images # TODO : add arbitrary center location ################################################################################################### # Image object ################################################################################################### class Image(object): """A polarimetric image (in units of Jy/pixel). Attributes: pulse (function): The function convolved with the pixel values for continuous image. psize (float): The pixel dimension in radians xdim (int): The number of pixels along the x dimension ydim (int): The number of pixels along the y dimension mjd (int): The integer MJD of the image time (float): The observing time of the image (UTC hours) source (str): The astrophysical source name ra (float): The source Right Ascension in fractional hours dec (float): The source declination in fractional degrees rf (float): The image frequency in Hz polrep (str): polarization representation, either 'stokes' or 'circ' pol_prim (str): The default image: I,Q,U or V for Stokes, or RR,LL,LR,RL for Circular _imdict (dict): The dictionary with the polarimetric images _mflist (list): List of spectral index images (and higher order terms) """ def __init__(self, image, psize, ra, dec, pa=0.0, polrep='stokes', pol_prim=None, rf=ehc.RF_DEFAULT, pulse=ehc.PULSE_DEFAULT, source=ehc.SOURCE_DEFAULT, mjd=ehc.MJD_DEFAULT, time=0.): """A polarimetric image (in units of Jy/pixel). Args: image (numpy.array): The 2D intensity values in a Jy/pixel array polrep (str): polarization representation, either 'stokes' or 'circ' pol_prim (str): The default image: I,Q,U or V for Stokes, RR,LL,LR,RL for Circular psize (float): The pixel dimension in radians ra (float): The source Right Ascension in fractional hours dec (float): The source declination in fractional degrees pa (float): logical positional angle of the image rf (float): The image frequency in Hz pulse (function): The function convolved with the pixel values for continuous image. source (str): The source name mjd (int): The integer MJD of the image time (float): The observing time of the image (UTC hours) Returns: (Image): the Image object """ if len(image.shape) != 2: raise Exception("image must be a 2D numpy array") if polrep not in ['stokes', 'circ']: raise Exception("only 'stokes' and 'circ' are supported polreps!") # Save the image vector imvec = image.flatten() if polrep == 'stokes': if pol_prim is None: pol_prim = 'I' if pol_prim == 'I': self._imdict = {'I': imvec, 'Q': np.array([]), 'U': np.array([]), 'V': np.array([])} elif pol_prim == 'V': self._imdict = {'I': np.array([]), 'Q': np.array([]), 'U': np.array([]), 'V': imvec} elif pol_prim == 'Q': self._imdict = {'I': np.array([]), 'Q': imvec, 'U': np.array([]), 'V': np.array([])} elif pol_prim == 'U': self._imdict = {'I': np.array([]), 'Q': np.array([]), 'U': imvec, 'V': np.array([])} else: raise Exception("for polrep=='stokes', pol_prim must be 'I','Q','U', or 'V'!") elif polrep == 'circ': if pol_prim is None: print("polrep is 'circ' and no pol_prim specified! Setting pol_prim='RR'") pol_prim = 'RR' if pol_prim == 'RR': self._imdict = {'RR': imvec, 'LL': np.array([]), 'RL': np.array([]), 'LR': np.array([])} elif pol_prim == 'LL': self._imdict = {'RR': np.array([]), 'LL': imvec, 'RL': np.array([]), 'LR': np.array([])} else: raise Exception("for polrep=='circ', pol_prim must be 'RR' or 'LL'!") else: raise Exception("polrep must be 'circ' or 'stokes'!") # multifrequency spectral index, curvature arrays # TODO -- higher orders? # TODO -- don't initialize to zero? avec = np.array([]) # np.zeros(imvec.shape) bvec = np.array([]) # np.zeros(imvec.shape) self._mflist = [avec, bvec] # Save the image dimension data self.pol_prim = pol_prim self.polrep = polrep self.pulse = pulse self.psize = float(psize) self.xdim = image.shape[1] self.ydim = image.shape[0] # Save the image metadata self.ra = float(ra) self.dec = float(dec) self.pa = float(pa) self.rf = float(rf) self.source = str(source) self.mjd = int(mjd) # Cached FFT of the image self.cached_fft = {} if time > 24: self.mjd += int((time - time % 24) / 24) self.time = float(time % 24) else: self.time = time @property def imvec(self): imvec = self._imdict[self.pol_prim] return imvec @imvec.setter def imvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("imvec size is not consistent with xdim*ydim!") self._imdict[self.pol_prim] = vec @property def specvec(self): specvec = self._mflist[0] return specvec @specvec.setter def specvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") self._mflist[0] = vec @property def curvvec(self): curvvec = self._mflist[1] return curvvec @curvvec.setter def curvvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") self._mflist[1] = vec @property def ivec(self): # if self.polrep != 'stokes': # raise Exception("ivec is not defined unless self.polrep=='stokes'") ivec = np.array([]) if self.polrep == 'stokes': ivec = self._imdict['I'] elif self.polrep == 'circ': if len(self.rrvec) != 0 and len(self.llvec) != 0: ivec = 0.5 * (self.rrvec + self.llvec) return ivec @ivec.setter def ivec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") if self.polrep != 'stokes': raise Exception("ivec cannot be set unless self.polrep=='stokes'") self._imdict['I'] = vec @property def qvec(self): # if self.polrep != 'stokes': # raise Exception("qvec is not defined unless self.polrep=='stokes'") qvec = np.array([]) if self.polrep == 'stokes': qvec = self._imdict['Q'] elif self.polrep == 'circ': if len(self.rlvec) != 0 and len(self.lrvec) != 0: qvec = np.real(0.5 * (self.lrvec + self.rlvec)) return qvec @qvec.setter def qvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") if self.polrep != 'stokes': raise Exception("ivec cannot be set unless self.polrep=='stokes'") self._imdict['Q'] = vec @property def uvec(self): # if self.polrep != 'stokes': # raise Exception("qvec is not defined unless self.polrep=='stokes'") uvec = np.array([]) if self.polrep == 'stokes': uvec = self._imdict['U'] elif self.polrep == 'circ': if len(self.rlvec) != 0 and len(self.lrvec) != 0: uvec = np.real(0.5j * (self.lrvec - self.rlvec)) return uvec @uvec.setter def uvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") if self.polrep != 'stokes': raise Exception("uvec cannot be set unless self.polrep=='stokes'") self._imdict['U'] = vec @property def vvec(self): # if self.polrep != 'stokes': # raise Exception("vvec is not defined unless self.polrep=='stokes'") vvec = np.array([]) if self.polrep == 'stokes': vvec = self._imdict['V'] elif self.polrep == 'circ': if len(self.rrvec) != 0 and len(self.llvec) != 0: vvec = 0.5 * (self.rrvec - self.llvec) return vvec @vvec.setter def vvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") if self.polrep != 'stokes': raise Exception("vvec cannot be set unless self.polrep=='stokes'") self._imdict['V'] = vec @property def rrvec(self): # if self.polrep != 'circ': # raise Exception("rrvec is not defined unless self.polrep=='circ'") rrvec = np.array([]) if self.polrep == 'circ': rrvec = self._imdict['RR'] elif self.polrep == 'stokes': if len(self.ivec) != 0 and len(self.vvec) != 0: rrvec = (self.ivec + self.vvec) return rrvec @rrvec.setter def rrvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") if self.polrep != 'circ': raise Exception("rrvec cannot be set unless self.polrep=='circ'") self._imdict['RR'] = vec @property def llvec(self): # if self.polrep != 'circ': # raise Exception("llvec is not defined unless self.polrep=='circ'") llvec = np.array([]) if self.polrep == 'circ': llvec = self._imdict['LL'] elif self.polrep == 'stokes': if len(self.ivec) != 0 and len(self.vvec) != 0: llvec = (self.ivec - self.vvec) return llvec @llvec.setter def llvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") if self.polrep != 'circ': raise Exception("llvec cannot be set unless self.polrep=='circ'") self._imdict['LL'] = vec @property def rlvec(self): # if self.polrep != 'circ': # raise Exception("rlvec is not defined unless self.polrep=='circ'") rlvec = np.array([]) if self.polrep == 'circ': rlvec = self._imdict['RL'] elif self.polrep == 'stokes': if len(self.qvec) != 0 and len(self.uvec) != 0: rlvec = (self.qvec + 1j * self.uvec) return rlvec @rlvec.setter def rlvec(self, vec): if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") if self.polrep != 'circ': raise Exception("rlvec cannot be set unless self.polrep=='circ'") self._imdict['RL'] = vec @property def lrvec(self): """Return the imvec of LR""" # if self.polrep != 'circ': # raise Exception("lrvec is not defined unless self.polrep=='circ'") lrvec = np.array([]) if self.polrep == 'circ': lrvec = self._imdict['LR'] elif self.polrep == 'stokes': if len(self.qvec) != 0 and len(self.uvec) != 0: lrvec = (self.qvec - 1j * self.uvec) return lrvec @lrvec.setter def lrvec(self, vec): """Set the imvec""" if len(vec) != self.xdim * self.ydim: raise Exception("vec size is not consistent with xdim*ydim!") if self.polrep != 'circ': raise Exception("lrvec cannot be set unless self.polrep=='circ'") self._imdict['LR'] = vec @property def pvec(self): """Return the polarization magnitude for each pixel""" if self.polrep == 'circ': pvec = np.abs(self.rlvec) elif self.polrep == 'stokes': pvec = np.abs(self.qvec + 1j * self.uvec) return pvec @property def mvec(self): """Return the fractional polarization for each pixel""" if self.polrep == 'circ': mvec = 2 * np.abs(self.rlvec) / (self.rrvec + self.llvec) elif self.polrep == 'stokes': mvec = np.abs(self.qvec + 1j * self.uvec) / self.ivec return mvec @property def chivec(self): """Return the fractional polarization angle for each pixel""" if self.polrep == 'circ': chivec = 0.5 * np.angle(self.rlvec / (self.rrvec + self.llvec)) elif self.polrep == 'stokes': chivec = 0.5 * np.angle((self.qvec + 1j * self.uvec) / self.ivec) return chivec @property def evpavec(self): """Return the fractional polarization angle for each pixel""" return self.chivec @property def evec(self): """Return the E mode image vector""" if self.polrep == 'circ': qvec = np.real(0.5 * (self.lrvec + self.rlvec)) uvec = np.real(0.5j * (self.lrvec - self.rlvec)) elif self.polrep == 'stokes': qvec = self.qvec uvec = self.uvec qarr = qvec.reshape((self.ydim, self.xdim)) uarr = uvec.reshape((self.ydim, self.xdim)) qarr_fft = np.fft.fftshift(np.fft.fft2(qarr)) uarr_fft = np.fft.fftshift(np.fft.fft2(uarr)) # TODO -- check conventions for u,v angle s, t = np.meshgrid(np.flip(np.fft.fftshift(np.fft.fftfreq(self.xdim, d=1.0 / self.xdim))), np.flip(np.fft.fftshift(np.fft.fftfreq(self.ydim, d=1.0 / self.ydim)))) s = s + .5 # .5 offset to reference to pixel center t = t + .5 # .5 offset to reference to pixel center uvangle = np.arctan2(s, t) # TODO -- these conventions for e,b are from kaminokowski aara 54:227-69 sec 4.1 # TODO -- check! cos2arr = np.round(np.cos(2 * uvangle), decimals=10) sin2arr = np.round(np.sin(2 * uvangle), decimals=10) earr_fft = (cos2arr * qarr_fft + sin2arr * uarr_fft) earr = np.fft.ifft2(np.fft.ifftshift(earr_fft)) return np.real(earr.flatten()) @property def bvec(self): """Return the B mode image vector""" if self.polrep == 'circ': qvec = np.real(0.5 * (self.lrvec + self.rlvec)) uvec = np.real(0.5j * (self.lrvec - self.rlvec)) elif self.polrep == 'stokes': qvec = self.qvec uvec = self.uvec # TODO -- check conventions for u,v angle qarr = qvec.reshape((self.ydim, self.xdim)) uarr = uvec.reshape((self.ydim, self.xdim)) qarr_fft = np.fft.fftshift(np.fft.fft2(qarr)) uarr_fft = np.fft.fftshift(np.fft.fft2(uarr)) # TODO -- are these conventions for u,v right? s, t = np.meshgrid(np.flip(np.fft.fftshift(np.fft.fftfreq(self.xdim, d=1.0 / self.xdim))), np.flip(np.fft.fftshift(np.fft.fftfreq(self.ydim, d=1.0 / self.ydim)))) s = s + .5 # .5 offset to reference to pixel center t = t + .5 # .5 offset to reference to pixel center uvangle = np.arctan2(s, t) # TODO -- check! cos2arr = np.round(np.cos(2 * uvangle), decimals=10) sin2arr = np.round(np.sin(2 * uvangle), decimals=10) barr_fft = (-sin2arr * qarr_fft + cos2arr * uarr_fft) barr = np.fft.ifft2(np.fft.ifftshift(barr_fft)) return np.real(barr.flatten()) def get_polvec(self, pol): """Get the imvec corresponding to the chosen polarization """ if self.polrep == 'stokes' and pol is None: pol = 'I' elif self.polrep == 'circ' and pol is None: pol = 'RR' if pol.lower() == 'i': outvec = self.ivec elif pol.lower() == 'q': outvec = self.qvec elif pol.lower() == 'u': outvec = self.uvec elif pol.lower() == 'v': outvec = self.vvec elif pol.lower() == 'rr': outvec = self.rrvec elif pol.lower() == 'll': outvec = self.llvec elif pol.lower() == 'lr': outvec = self.lrvec elif pol.lower() == 'rl': outvec = self.rlvec elif pol.lower() == 'p': outvec = self.pvec elif pol.lower() == 'm': outvec = self.mvec elif pol.lower() == 'chi' or pol.lower() =='evpa': outvec = self.chivec elif pol.lower() == 'e': outvec = self.evec elif pol.lower() == 'b': outvec = self.bvec else: raise Exception("Requested polvec type not recognized!") return outvec def image_args(self): """Copy arguments for making a new Image into a list and dictonary """ arglist = [self.imarr(), self.psize, self.ra, self.dec] argdict = {'rf': self.rf, 'pa': self.pa, 'polrep': self.polrep, 'pol_prim': self.pol_prim, 'pulse': self.pulse, 'source': self.source, 'mjd': self.mjd, 'time': self.time} return (arglist, argdict) def copy(self): """Return a copy of the Image object. Args: Returns: (Image): copy of the Image. """ # Make new image with primary polarization arglist, argdict = self.image_args() newim = Image(*arglist, **argdict) # Copy over all polarization images newim.copy_pol_images(self) # Copy over spectral index information newim._mflist = copy.deepcopy(self._mflist) return newim def copy_pol_images(self, old_image): """Copy polarization images from old_image over to self. Args: old_image (Image): image object to copy from """ for pol in list(self._imdict.keys()): if (pol == self.pol_prim): continue polvec = old_image._imdict[pol] if len(polvec): self.add_pol_image(polvec.reshape(self.ydim, self.xdim), pol) def add_pol_image(self, image, pol): """Add another image polarization. Args: image (list): 2D image frame (possibly complex) in a Jy/pixel array pol (str): The image type: 'I','Q','U','V' for stokes, 'RR','LL','RL','LR' for circ """ if pol == self.pol_prim: raise Exception("new pol in add_pol_image is the same as pol_prim!") if image.shape != (self.ydim, self.xdim): raise Exception("add_pol_image image shapes incompatible with primary image!") if not (pol in list(self._imdict.keys())): raise Exception("for polrep==%s, pol in add_pol_image in " % self.polrep + ",".join(list(self._imdict.keys()))) if self.polrep == 'stokes': if pol == 'I': self.ivec = image.flatten() elif pol == 'Q': self.qvec = image.flatten() elif pol == 'U': self.uvec = image.flatten() elif pol == 'V': self.vvec = image.flatten() elif self.polrep == 'circ': if pol == 'RR': self.rrvec = image.flatten() elif pol == 'LL': self.llvec = image.flatten() elif pol == 'RL': self.rlvec = image.flatten() elif pol == 'LR': self.lrvec = image.flatten() return # TODO deprecated -- replace with generic add_pol_image def add_qu(self, qimage, uimage): """Add Stokes Q and U images. self.polrep must be 'stokes' Args: qimage (numpy.array): The 2D Stokes Q values in Jy/pixel array uimage (numpy.array): The 2D Stokes U values in Jy/pixel array Returns: """ if self.polrep != 'stokes': raise Exception("polrep must be 'stokes' for add_qu() !") self.add_pol_image(qimage, 'Q') self.add_pol_image(uimage, 'U') return # TODO deprecated -- replace with generic add_pol_image def add_v(self, vimage): """Add Stokes V image. self.polrep must be 'stokes' Args: vimage (numpy.array): The 2D Stokes Q values in Jy/pixel array """ if self.polrep != 'stokes': raise Exception("polrep must be 'stokes' for add_v() !") self.add_pol_image(vimage, 'V') return def switch_polrep(self, polrep_out='stokes', pol_prim_out=None): """Return a new image with the polarization representation changed Args: polrep_out (str): the polrep of the output data pol_prim_out (str): The default image: I,Q,U or V for Stokes, RR,LL,LR,RL for circ Returns: (Image): new Image object with potentially different polrep """ if polrep_out not in ['stokes', 'circ']: raise Exception("polrep_out must be either 'stokes' or 'circ'") if pol_prim_out is None: if polrep_out == 'stokes': pol_prim_out = 'I' elif polrep_out == 'circ': pol_prim_out = 'RR' # Simply copy if the polrep is unchanged if polrep_out == self.polrep and pol_prim_out == self.pol_prim: return self.copy() # Assemble a dictionary of new polarization vectors if polrep_out == 'stokes': if self.polrep == 'stokes': imdict = {'I': self.ivec, 'Q': self.qvec, 'U': self.uvec, 'V': self.vvec} else: if len(self.rrvec) == 0 or len(self.llvec) == 0: ivec = np.array([]) vvec = np.array([]) else: ivec = 0.5 * (self.rrvec + self.llvec) vvec = 0.5 * (self.rrvec - self.llvec) if len(self.rlvec) == 0 or len(self.lrvec) == 0: qvec = np.array([]) uvec = np.array([]) else: qvec = np.real(0.5 * (self.lrvec + self.rlvec)) uvec = np.real(0.5j * (self.lrvec - self.rlvec)) imdict = {'I': ivec, 'Q': qvec, 'U': uvec, 'V': vvec} elif polrep_out == 'circ': if self.polrep == 'circ': imdict = {'RR': self.rrvec, 'LL': self.llvec, 'RL': self.rlvec, 'LR': self.lrvec} else: if len(self.ivec) == 0 or len(self.vvec) == 0: rrvec = np.array([]) llvec = np.array([]) else: rrvec = (self.ivec + self.vvec) llvec = (self.ivec - self.vvec) if len(self.qvec) == 0 or len(self.uvec) == 0: rlvec = np.array([]) lrvec = np.array([]) else: rlvec = (self.qvec + 1j * self.uvec) lrvec = (self.qvec - 1j * self.uvec) imdict = {'RR': rrvec, 'LL': llvec, 'RL': rlvec, 'LR': lrvec} # Assemble the new image imvec = imdict[pol_prim_out] if len(imvec) == 0: raise Exception("for switch_polrep to %s with pol_prim_out=%s, \n" % (polrep_out, pol_prim_out) + "output image is not defined") arglist, argdict = self.image_args() arglist[0] = imvec.reshape(self.ydim, self.xdim) argdict['polrep'] = polrep_out argdict['pol_prim'] = pol_prim_out newim = Image(*arglist, **argdict) # Add in any other polarizations for pol in list(imdict.keys()): if pol == newim.pol_prim: continue polvec = imdict[pol] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim) newim.add_pol_image(polarr, pol) # Add in spectral index newim._mflist = copy.deepcopy(self._mflist) return newim def orth_chi(self): """Rotate the EVPA 90 degrees Args: Returns: (Image): image with rotated EVPA """ im = self.copy() if im.polrep == 'stokes': im.qvec *= -1 im.uvec *= -1 elif im.polrep == 'circ': im.lrvec *= -1# np.conjugate(im.rlvec) im.rlvec *= -1#np.conjugate(im.rlvec) #im.lrvec = np.conjugate(im.rlvec) #im.rlvec = np.conjugate(im.rlvec) return im def get_image_mf(self, nu): """Get image at a given frequency given the spectral information in self._mflist Args: nu (float): frequency in Hz Returns: (Image): image at the desired frequency """ # TODO -- what to do about polarization? Faraday rotation? nuref = self.rf log_nufrac = np.log(nu / nuref) log_imvec = np.log(self.imvec) for n, mfvec in enumerate(self._mflist): if len(mfvec): log_imvec += mfvec * (log_nufrac**(n + 1)) imvec = np.exp(log_imvec) arglist, argdict = self.image_args() arglist[0] = imvec.reshape(self.ydim, self.xdim) argdict['rf'] = nu outim = Image(*arglist, **argdict) # Copy over all polarization images -- unchanged for now outim.copy_pol_images(self) # DON'T copy over spectral index information for now # outim._mflist = copy.deepcopy(self._mflist) return outim def imarr(self, pol=None): """Return the 2D image array of a given pol parameter. Args: pol (str): I,Q,U or V for Stokes, or RR,LL,LR,RL for Circ Returns: (numpy.array): 2D image array of dimension (ydim, xdim) """ if pol is None: pol = self.pol_prim imvec = self.get_polvec(pol) if len(imvec): imarr = imvec.reshape(self.ydim, self.xdim) else: imarr = np.array([]) return imarr # imarr = np.array([]) # if self.polrep == 'stokes': # if pol == "I" and len(self.ivec): # imarr = self.ivec.reshape(self.ydim, self.xdim) # elif pol == "Q" and len(self.qvec): # imarr = self.qvec.reshape(self.ydim, self.xdim) # elif pol == "U" and len(self.uvec): # imarr = self.uvec.reshape(self.ydim, self.xdim) # elif pol == "V" and len(self.vvec): # imarr = self.vvec.reshape(self.ydim, self.xdim) # elif self.polrep == 'circ': # if pol == "RR" and len(self.rrvec): # imarr = self.rrvec.reshape(self.ydim, self.xdim) # elif pol == "LL" and len(self.llvec): # imarr = self.llvec.reshape(self.ydim, self.xdim) # elif pol == "RL" and len(self.rlvec): # imarr = self.rlvec.reshape(self.ydim, self.xdim) # elif pol == "LR" and len(self.lrvec): # imarr = self.lrvec.reshape(self.ydim, self.xdim) return imarr def sourcevec(self): """Return the source position vector in geocentric coordinates at 0h GMST. Args: Returns: (numpy.array): normal vector pointing to source in geocentric coordinates (m) """ sourcevec = np.array([np.cos(self.dec * ehc.DEGREE), 0, np.sin(self.dec * ehc.DEGREE)]) return sourcevec def fovx(self): """Return the image fov in x direction in radians. Args: Returns: (float) : image fov in x direction (radian) """ return self.psize * self.xdim def fovy(self): """Returns the image fov in y direction in radians. Args: Returns: (float) : image fov in y direction (radian) """ return self.psize * self.ydim def total_flux(self): """Return the total flux of the image in Jy. Args: Returns: (float) : image total flux (Jy) """ if self.polrep == 'stokes': flux = np.sum(self.ivec) elif self.polrep == 'circ': flux = 0.5 * (np.sum(self.rrvec) + np.sum(self.llvec)) return flux def lin_polfrac(self): """Return the total fractional linear polarized flux Args: Returns: (float) : image fractional linear polarized flux """ if self.polrep == 'stokes': frac = np.abs(np.sum(self.qvec + 1j * self.uvec)) / np.abs(np.sum(self.ivec)) elif self.polrep == 'circ': frac = 2 * np.abs(np.sum(self.rlvec)) / np.abs(np.sum(self.rrvec + self.llvec)) return frac def evpa(self): """Return the total evpa Args: Returns: (float) : image average evpa (E of N) in radian """ if self.polrep == 'stokes': frac = 0.5 * np.angle(np.sum(self.qvec + 1j * self.uvec)) elif self.polrep == 'circ': frac = np.angle(np.sum(self.rlvec)) return frac def circ_polfrac(self): """Return the total fractional circular polarized flux Args: Returns: (float) : image fractional circular polarized flux """ if self.polrep == 'stokes': frac = np.sum(self.vvec) / np.abs(np.sum(self.ivec)) elif self.polrep == 'circ': frac = np.sum(self.rrvec - self.llvec) / np.abs(np.sum(self.rrvec + self.llvec)) return frac def center(self, pol=None): """Center the image based on the coordinates of the centroid(). A non-integer shift is used, which wraps the image when rotating. Args: pol (str): The polarization for which to find the image centroid Returns: (np.array): centroid positions (x0,y0) in radians """ return self.shift_fft(-self.centroid(pol=pol)) def centroid(self, pol=None): """Compute the location of the image centroid (corresponding to the polarization pol) Args: pol (str): The polarization for which to find the image centroid Returns: (np.array): centroid positions (x0,y0) in radians """ if pol is None: pol = self.pol_prim imvec = self.get_polvec(pol) pdim = self.psize # if not (pol in list(self._imdict.keys())): # raise Exception("for polrep==%s, pol must be in " % # self.polrep + ",".join(list(self._imdict.keys()))) # imvec = self._imdict[pol] if len(imvec): xlist = np.arange(0, -self.xdim, -1) * pdim + (pdim * self.xdim) / 2.0 - pdim / 2.0 ylist = np.arange(0, -self.ydim, -1) * pdim + (pdim * self.ydim) / 2.0 - pdim / 2.0 x0 = np.sum(np.outer(0.0 * ylist + 1.0, xlist).ravel() * imvec) / np.sum(imvec) y0 = np.sum(np.outer(ylist, 0.0 * xlist + 1.0).ravel() * imvec) / np.sum(imvec) centroid = np.array([x0, y0]) else: raise Exception("No %s image found!" % pol) return centroid def pad(self, fovx, fovy): """Pad an image to new fov_x by fov_y in radian. Args: fovx (float): new fov in x dimension (rad) fovy (float): new fov in y dimension (rad) Returns: im_pad (Image): padded image """ # Find pad widths fovoldx = self.fovx() fovoldy = self.fovy() padx = int(0.5 * (fovx - fovoldx) / self.psize) pady = int(0.5 * (fovy - fovoldy) / self.psize) # Pad main image vector imarr = self.imvec.reshape(self.ydim, self.xdim) imarr = np.pad(imarr, ((pady, pady), (padx, padx)), 'constant') # Make new image arglist, argdict = self.image_args() arglist[0] = imarr outim = Image(*arglist, **argdict) # Pad all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim) polarr = np.pad(polarr, ((pady, pady), (padx, padx)), 'constant') outim.add_pol_image(polarr, pol) # Add in spectral index mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfarr = mfvec.reshape(self.ydim, self.xdim) mfarr = np.pad(mfarr, ((pady, pady), (padx, padx)), 'constant') mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def resample_square(self, xdim_new, ker_size=5): """Exactly resample a square image to new dimensions using the pulse function. Args: xdim_new (int): new pixel dimension ker_size (int): kernel size for resampling Returns: im_resampled (Image): resampled image """ if self.xdim != self.ydim: raise Exception("Image must be square to use Image.resample_square!") if self.pulse == pulses.deltaPulse2D: raise Exception("Image.resample_squre does not work with delta pulses!") ydim_new = xdim_new fov = self.xdim * self.psize psize_new = float(fov) / float(xdim_new) # Define an interpolation function using the pulse ij = np.array([[[i * self.psize + (self.psize * self.xdim) / 2.0 - self.psize / 2.0, j * self.psize + (self.psize * self.ydim) / 2.0 - self.psize / 2.0] for i in np.arange(0, -self.xdim, -1)] for j in np.arange(0, -self.ydim, -1)]).reshape((self.xdim * self.ydim, 2)) def im_new_val(imvec, x_idx, y_idx): x = x_idx * psize_new + (psize_new * xdim_new) / 2.0 - psize_new / 2.0 y = y_idx * psize_new + (psize_new * ydim_new) / 2.0 - psize_new / 2.0 mask = (((x - ker_size * self.psize / 2.0) < ij[:, 0]) * (ij[:, 0] < (x + ker_size * self.psize / 2.0)) * ((y - ker_size * self.psize / 2.0) < ij[:, 1]) * (ij[:, 1] < (y + ker_size * self.psize / 2.0)) ).flatten() interp = np.sum([imvec[n] * self.pulse(x - ij[n, 0], y - ij[n, 1], self.psize, dom="I") for n in np.arange(len(imvec))[mask]]) return interp def im_new(imvec): imarr_new = np.array([[im_new_val(imvec, x_idx, y_idx) for x_idx in np.arange(0, -xdim_new, -1)] for y_idx in np.arange(0, -ydim_new, -1)]) return imarr_new # Compute new primary image vector imarr_new = im_new(self.imvec) # Normalize scaling = np.sum(self.imvec) / np.sum(imarr_new) imarr_new *= scaling # Make new image arglist, argdict = self.image_args() arglist[0] = imarr_new arglist[1] = psize_new outim = Image(*arglist, **argdict) # Interpolate all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): polarr_new = im_new(polvec) polarr_new *= scaling outim.add_pol_image(polarr_new, pol) # Interpolate spectral index and copy over mflist_out = [] for mfvec in self._mflist: print("WARNING: resample_squre not debugged for spectral index resampling!") if len(mfvec): mfarr = im_new(mfvec) mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def regrid_image(self, targetfov, npix, interp='linear'): """Resample the image to new (square) dimensions. Args: targetfov (float): new field of view (radian) npix (int): new pixel dimension interp ('linear', 'cubic', 'quintic'): type of interpolation. default is linear Returns: (Image): resampled image """ psize_new = float(targetfov) / float(npix) fov_x = self.fovx() fov_y = self.fovy() # define an interpolation function x = np.linspace(-fov_x / 2, fov_x / 2, self.xdim) y = np.linspace(-fov_y / 2, fov_y / 2, self.ydim) xtarget = np.linspace(-targetfov / 2, targetfov / 2, npix) ytarget = np.linspace(-targetfov / 2, targetfov / 2, npix) def interp_imvec(imvec, specind=False): if np.any(np.imag(imvec) != 0): return interp_imvec(np.real(imvec)) + 1j * interp_imvec(np.imag(imvec)) interpfunc = scipy.interpolate.interp2d(y, x, np.reshape(imvec, (self.ydim, self.xdim)), kind=interp) tmpimg = interpfunc(ytarget, xtarget) tmpimg[np.abs(xtarget) > fov_x / 2., :] = 0.0 tmpimg[:, np.abs(ytarget) > fov_y / 2.] = 0.0 if not specind: # adjust pixel size if not a spectral index map tmpimg = tmpimg * (psize_new)**2 / self.psize**2 return tmpimg # Make new image imarr_new = interp_imvec(self.imvec) arglist, argdict = self.image_args() arglist[0] = imarr_new arglist[1] = psize_new outim = Image(*arglist, **argdict) # Interpolate all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): polarr_new = interp_imvec(polvec) outim.add_pol_image(polarr_new, pol) # Interpolate spectral index and copy over mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfarr = interp_imvec(mfvec, specind=True) mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def rotate(self, angle, interp='cubic'): """Rotate the image counterclockwise by the specified angle. Args: angle (float): CCW angle to rotate the image (radian) interp ('linear', 'cubic', 'quintic'): type of interpolation. default is cubic Returns: (Image): resampled image """ order = 3 if interp == 'linear': order = 1 elif interp == 'cubic': order = 3 elif interp == 'quintic': order = 5 # Define an interpolation function def rot_imvec(imvec): if np.any(np.imag(imvec) != 0): return rot_imvec(np.real(imvec)) + 1j * rot_imvec(np.imag(imvec)) imarr_rot = scipy.ndimage.interpolation.rotate(imvec.reshape((self.ydim, self.xdim)), angle * 180.0 / np.pi, reshape=False, order=order, mode='constant', cval=0.0, prefilter=True) return imarr_rot # pol_prim needs to be RR,LL,I,or V for a simple rotation to work! if(not (self.pol_prim in ['RR', 'LL', 'I', 'V'])): raise Exception("im.pol_prim must be a scalar ('I','V','RR','LL') for simple rotation!") # Make new image imarr_rot = rot_imvec(self.imvec) arglist, argdict = self.image_args() arglist[0] = imarr_rot outim = Image(*arglist, **argdict) # Rotate all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): polarr_rot = rot_imvec(polvec) if pol == 'RL': polarr_rot *= np.exp(1j * 2 * angle) elif pol == 'LR': polarr_rot *= np.exp(-1j * 2 * angle) elif pol == 'Q': polarr_rot = polarr_rot + 1j * rot_imvec(self._imdict['U']) polarr_rot = np.real(np.exp(1j * 2 * angle) * polarr_rot) elif pol == 'U': polarr_rot = rot_imvec(self._imdict['Q']) + 1j * polarr_rot polarr_rot = np.imag(np.exp(1j * 2 * angle) * polarr_rot) outim.add_pol_image(polarr_rot, pol) # Rotate spectral index and copy over mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfarr = rot_imvec(mfvec) mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def shift(self, shiftidx): """Shift the image by a given number of pixels. Args: shiftidx (list): pixel offsets [x_offset, y_offset] for the image shift Returns: (Image): shifted images """ # Define shifting function def shift_imvec(imvec): im_shift = np.roll(imvec.reshape(self.ydim, self.xdim), shiftidx[0], axis=0) im_shift = np.roll(im_shift, shiftidx[1], axis=1) return im_shift # Make new image imarr_shift = shift_imvec(self.imvec) arglist, argdict = self.image_args() arglist[0] = imarr_shift outim = Image(*arglist, **argdict) # Shift all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): polarr_shift = shift_imvec(polvec) outim.add_pol_image(polarr_shift, pol) # Shift spectral index and copy over mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfarr = shift_imvec(mfvec) mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def shift_fft(self, shift): """Shift the image by a given vector in radians. This allows non-integer pixel shifts, via FFT. Args: shift (list): offsets [x_offset, y_offset] for the image shift in radians Returns: (Image): shifted image """ Nx = self.xdim Ny = self.ydim [dx_pixels, dy_pixels] = np.array(shift) / self.psize s, t = np.meshgrid(np.fft.fftfreq(Nx, d=1.0 / Nx), np.fft.fftfreq(Ny, d=1.0 / Ny)) rotate = np.exp(2.0 * np.pi * 1j * (s * dx_pixels + t * dy_pixels) / float(Nx)) imarr = self.imvec.reshape((Ny, Nx)) imarr_rotate = np.real(np.fft.ifft2(np.fft.fft2(imarr) * rotate)) # make new Image arglist, argdict = self.image_args() arglist[0] = imarr_rotate outim = Image(*arglist, **argdict) # Shift all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): imarr = polvec.reshape((Ny, Nx)) imarr_rotate = np.real(np.fft.ifft2(np.fft.fft2(imarr) * rotate)) outim.add_pol_image(imarr_rotate, pol) # Shift spectral index and copy over mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfarr = mfvec.reshape((Ny, Nx)) mfarr = np.real(np.fft.ifft2(np.fft.fft2(mfarr) * rotate)) mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def blur_gauss(self, beamparams, frac=1., frac_pol=0): """Blur image with a Gaussian beam w/ beamparams [fwhm_max, fwhm_min, theta] in radians. Args: beamparams (list): [fwhm_maj, fwhm_min, theta, x, y] in radians frac (float): fractional beam size for blurring the main image frac_pol (float): fractional beam size for blurring the other polarizations Returns: (Image): output image """ if frac <= 0.0 or beamparams[0] <= 0: return self.copy() # Make a Gaussian image xlist = np.arange(0, -self.xdim, -1) * self.psize + \ (self.psize * self.xdim) / 2.0 - self.psize / 2.0 ylist = np.arange(0, -self.ydim, -1) * self.psize + \ (self.psize * self.ydim) / 2.0 - self.psize / 2.0 sigma_maj = beamparams[0] / (2. * np.sqrt(2. * np.log(2.))) sigma_min = beamparams[1] / (2. * np.sqrt(2. * np.log(2.))) cth = np.cos(beamparams[2]) sth = np.sin(beamparams[2]) def gaussim(blurfrac): gauss = np.array([[np.exp(-(j * cth + i * sth)**2 / (2 * (blurfrac * sigma_maj)**2) - (i * cth - j * sth)**2 / (2 * (blurfrac * sigma_min)**2)) for i in xlist] for j in ylist]) gauss = gauss[0:self.ydim, 0:self.xdim] gauss = gauss / np.sum(gauss) # normalize to 1 return gauss gauss = gaussim(frac) if frac_pol: gausspol = gaussim(frac_pol) # Define a convolution function def blur(imarr, gauss): imarr_blur = scipy.signal.fftconvolve(gauss, imarr, mode='same') return imarr_blur # Convolve the primary image imarr = (self.imvec).reshape(self.ydim, self.xdim).astype('float64') imarr_blur = blur(imarr, gauss) # Make new image object arglist, argdict = self.image_args() arglist[0] = imarr_blur outim = Image(*arglist, **argdict) # Blur all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim).astype('float64') if frac_pol: polarr = blur(polarr, gausspol) outim.add_pol_image(polarr, pol) # Blur spectral index and copy over mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfarr = mfvec.reshape(self.ydim, self.xdim).astype('float64') mfarr = blur(mfarr, gauss) mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def blur_circ(self, fwhm_i, fwhm_pol=0, filttype='gauss'): """Apply a circular gaussian filter to the image, with FWHM in radians. Args: fwhm_i (float): circular beam size for Stokes I blurring in radian fwhm_pol (float): circular beam size for Stokes Q,U,V blurring in radian filttype (str): "gauss" or "butter" Returns: (Image): output image """ sigma = fwhm_i / (2. * np.sqrt(2. * np.log(2.))) sigmap = sigma / self.psize fwhmp = fwhm_i / self.psize fwhmp_pol = fwhm_pol / self.psize # Define a convolution function def blur_gauss(imarr, fwhm): sigma = fwhmp / (2. * np.sqrt(2. * np.log(2.))) if np.any(np.imag(imarr) != 0): return blur(np.real(imarr), sigma) + 1j * blur(np.imag(imarr), sigma) imarr_blur = filt.gaussian_filter(imarr, (sigma, sigma)) return imarr_blur def blur_butter(imarr, size): #bfilt = scipy.signal.butter(2,freq,btype='low',output='sos') #if np.any(np.imag(imarr) != 0): # return blur(np.real(imarr), sigma) + 1j * blur(np.imag(imarr), sigma) #imarr_blur = scipy.signal.sosfilt(bfilt, imarr, axis=0) #imarr_blur = scipy.signal.sosfilt(bfilt, imarr_blur, axis=1) if size==0: return imarr cutoff = 1/size Nx = self.xdim Ny = self.ydim s, t = np.meshgrid(np.fft.fftfreq(Nx, d=1.0 ), np.fft.fftfreq(Ny, d=1.0 )) #s, t = np.meshgrid(np.fft.fftfreq(Nx, d=1.0 / Nx), np.fft.fftfreq(Ny, d=1.0 / Ny)) r = np.sqrt(s**2 + t**2) bfilt = 1./np.sqrt(1 + (r/cutoff)**4) imarr = self.imvec.reshape((Ny, Nx)) imarr_filt = np.real(np.fft.ifft2(np.fft.fft2(imarr) * bfilt)) return imarr_filt if filttype=='gauss': blur = blur_gauss elif filttype=='butter': blur = blur_butter else: raise Exception("filttype not recognized in blur_circ!") # Blur the primary image imarr = self.imvec.reshape(self.ydim, self.xdim) imarr_blur = blur(imarr, fwhmp) arglist, argdict = self.image_args() arglist[0] = imarr_blur outim = Image(*arglist, **argdict) # Blur spectral index and copy over mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfarr = mfvec.reshape(self.ydim, self.xdim) mfarr = blur(mfarr, fwhmp) mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out # Blur all polarizations and copy overi for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim) if fwhm_pol: #print("Blurring polarization") polarr = blur(polarr, fwhmp_pol) outim.add_pol_image(polarr, pol) return outim def blur_mf(self, freqs, fwhm, fit_order=1, filttype='gauss'): """Blur image correctly across multiple frequencies WARNING: does not currently do polarization correctly! Args: freqs (float): Frequencies to include in the blurring & spectral index fit fwhm (float): circular beam size fit_order (int): how many orders to fit spectrum: 1 or 2 filttype (str): "gauss" or "butter" Returns: (Image): output image """ if fit_order not in [1,2]: raise Exception("fit_order must be 1 or 2 in blur_mf!") reffreq = self.rf # remove any zeros in the images imlist = [self.get_image_mf(rf).blur_circ(kernel, filttype=filttype) for rf in freqs] for image in imlist: image.imvec[image.imvec<=0] = np.min(image.imvec[image.imvec!=0]) xfit = np.log(np.array(freqs)/reffreq) yfit = np.log(np.array([im.imvec for im in imlist])) if fit_order == 2: coeffs = np.polyfit(xfit,yfit,2) beta = coeffs[0] alpha = coeffs[1] elif fit_order == 1: coeffs = np.polyfit(xfit,yfit,1) alpha = coeffs[0] beta = 0*alpha else: alpha = 0*yfit beta = 0*yfit outim = self.blur_circ(kernel, filttype=filttype) outim.specvec = alpha outim.curvvec = beta return outim def grad(self, gradtype='abs'): """Return the gradient image Args: gradtype (str): 'x','y',or 'abs' for the image gradient dimension Returns: Image : an image object containing the gradient image """ # Define the desired gradient function def gradim(imvec): if np.any(np.imag(imvec) != 0): return gradim(np.real(imvec)) + 1j * gradim(np.imag(imvec)) imarr = imvec.reshape(self.ydim, self.xdim) #sx = ndi.sobel(imarr, axis=0, mode='constant') #sy = ndi.sobel(imarr, axis=1, mode='constant') sx = ndi.sobel(imarr, axis=0, mode='nearest') sy = ndi.sobel(imarr, axis=1, mode='nearest') # TODO: are these in the right order?? if gradtype == 'x': gradarr = sx if gradtype == 'y': gradarr = sy else: gradarr = np.hypot(sx, sy) return gradarr # Find the gradient for the primary image gradarr = gradim(self.imvec) arglist, argdict = self.image_args() arglist[0] = gradarr outim = Image(*arglist, **argdict) # Find the gradient for all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): gradarr = gradim(polvec) outim.add_pol_image(gradarr, pol) # Find the spectral index gradients and copy over mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfarr = gradim(mfvec) mfvec_out = mfarr.flatten() else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def mask(self, cutoff=0.05, beamparams=None, frac=0.0): """Produce an image mask that shows all pixels above the specified cutoff frac of the max Works off the primary image Args: cutoff (float): mask pixels with intensities greater than cuttoff * max beamparams (list): either [fwhm_maj, fwhm_min, pos_ang] or a single fwhm frac (float): the fraction of nominal beam to blur with Returns: (Image): output mask image """ # Blur the image if beamparams is not None: try: len(beamparams) except TypeError: beamparams = [beamparams, beamparams, 0] if len(beamparams) == 3: mask = self.blur_gauss(beamparams, frac) else: raise Exception("beamparams should be a length 3 array [maj, min, posang]!") else: mask = self.copy() # Mask pixels outside the desired intensity range maxval = np.max(mask.imvec) minval = np.min(mask.imvec) intensityrange = maxval - minval thresh = intensityrange * cutoff + minval maskvec = (mask.imvec > thresh).astype(int) # make the primary image maskarr = maskvec.reshape(mask.ydim, mask.xdim) arglist, argdict = self.image_args() arglist[0] = maskarr mask = Image(*arglist, **argdict) # Replace all polarization imvecs with mask for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue mask.add_pol_image(maskarr, pol) # No spectral index information in mask return mask # TODO make this work with a mask image of different dimensions & fov def apply_mask(self, mask_im, fill_val=0.): """Apply a mask to the image Args: mask_im (Image): a mask image with the same dimensions as the Image fill_val (float): masked pixels of all polarizations are set to this value Returns: (Image): the masked image """ if ((self.psize != mask_im.psize) or (self.xdim != mask_im.xdim) or (self.ydim != mask_im.ydim)): raise Exception("mask image does not match dimensions of the current image!") # Get the mask vector maskvec = mask_im.imvec.astype(bool) maskvec[maskvec <= 0] = 0 maskvec[maskvec > 0] = 1 # Mask the primary image imvec = self.imvec imvec[~maskvec] = fill_val imarr = imvec.reshape(self.ydim, self.xdim) arglist, argdict = self.image_args() arglist[0] = imarr outim = Image(*arglist, **argdict) # Apply mask to all polarizations and copy over for pol in list(self._imdict.keys()): if pol == self.pol_prim: continue polvec = self._imdict[pol] if len(polvec): polvec[~maskvec] = fill_val polarr = polvec.reshape(self.ydim, self.xdim) outim.add_pol_image(polarr, pol) # Apply mask to spectral index and copy over mflist_out = [] for mfvec in self._mflist: if len(mfvec): mfvec_out = copy.deepcopy(mfvec) mfvec_out[~maskvec] = 0. else: mfvec_out = np.array([]) mflist_out.append(mfvec_out) outim._mflist = mflist_out return outim def threshold(self, cutoff=0.05, beamparams=None, frac=0.0, fill_val=None): """Apply a hard threshold to the primary polarization image. Leave other polarizations untouched. Args: cutoff (float): Mask pixels with intensities greater than cuttoff * max beamparams (list): either [fwhm_maj, fwhm_min, pos_ang] or a single fwhm frac (float): the fraction of nominal beam to blur with fill_val (float): masked pixels are set to this value. If fill_val==None, they are set to the min unmasked value Returns: (Image): output mask image """ if fill_val is None or fill_val is False: maxval = np.max(self.imvec) minval = np.min(self.imvec) intensityrange = maxval - minval fill_val = (intensityrange * cutoff + minval) mask = self.mask(cutoff=cutoff, beamparams=beamparams, frac=frac) out = self.apply_mask(mask, fill_val=fill_val) return out def add_flat(self, flux, pol=None): """Add a flat background flux to the main polarization image. Args: flux (float): total flux to add to image pol (str): the polarization to add the flux to. None defaults to pol_prim. Returns: (Image): output image """ if pol is None: pol = self.pol_prim if not (pol in list(self._imdict.keys())): raise Exception("for polrep==%s, pol must be in " % self.polrep + ",".join(list(self._imdict.keys()))) if not len(self._imdict[pol]): raise Exception("no image for pol %s" % pol) # Make a flat image array flatarr = ((flux / float(len(self.imvec))) * np.ones(len(self.imvec))) flatarr = flatarr.reshape(self.ydim, self.xdim) # Add to the main image and create the new image object imarr = self.imvec.reshape(self.ydim, self.xdim).copy() if pol == self.pol_prim: imarr += flatarr arglist, argdict = self.image_args() arglist[0] = imarr outim = Image(*arglist, **argdict) # Copy over the rest of the polarizations for pol2 in list(self._imdict.keys()): if pol2 == self.pol_prim: continue polvec = self._imdict[pol2] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim).copy() if pol2 == pol: polarr += flatarr outim.add_pol_image(polarr, pol2) # Copy the spectral index (unchanged) outim._mflist = copy.deepcopy(self._mflist) return outim def add_tophat(self, flux, radius, pol=None): """Add centered tophat flux to the Stokes I image inside a given radius. Args: flux (float): total flux to add to image radius (float): radius of top hat flux in radians pol (str): the polarization to add the flux to. None defaults to pol_prim Returns: (Image): output image """ if pol is None: pol = self.pol_prim if not (pol in list(self._imdict.keys())): raise Exception("for polrep==%s, pol must be in " % self.polrep + ",".join(list(self._imdict.keys()))) if not len(self._imdict[pol]): raise Exception("no image for pol %s" % pol) # Make a tophat image array xlist = np.arange(0, -self.xdim, -1) * self.psize + \ (self.psize * self.xdim) / 2.0 - self.psize / 2.0 ylist = np.arange(0, -self.ydim, -1) * self.psize + \ (self.psize * self.ydim) / 2.0 - self.psize / 2.0 hatarr = np.array([[1.0 if np.sqrt(i**2 + j**2) <= radius else 0. for i in xlist] for j in ylist]) hatarr = hatarr[0:self.ydim, 0:self.xdim] hatarr *= flux / np.sum(hatarr) # Add to the main image and create the new image object imarr = self.imvec.reshape(self.ydim, self.xdim).copy() if pol == self.pol_prim: imarr += hatarr arglist, argdict = self.image_args() arglist[0] = imarr outim = Image(*arglist, **argdict) # Copy over the rest of the polarizations for pol2 in list(self._imdict.keys()): if pol2 == self.pol_prim: continue polvec = self._imdict[pol2] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim).copy() if pol2 == pol: polarr += hatarr outim.add_pol_image(polarr, pol2) # Copy the spectral index (unchanged) outim._mflist = copy.deepcopy(self._mflist) return outim def add_gauss(self, flux, beamparams, pol=None): """Add a gaussian to an image. Args: flux (float): the total flux contained in the Gaussian in Jy beamparams (list): [fwhm_maj, fwhm_min, theta, x, y], all in radians pol (str): the polarization to add the flux to. None defaults to pol_prim. Returns: (Image): output image """ if pol is None: pol = self.pol_prim if not (pol in list(self._imdict.keys())): raise Exception("for polrep==%s, pol must be in " % self.polrep + ",".join(list(self._imdict.keys()))) if not len(self._imdict[pol]): raise Exception("no image for pol %s" % pol) # Make a Gaussian image try: x = beamparams[3] y = beamparams[4] except IndexError: x = y = 0.0 sigma_maj = beamparams[0] / (2. * np.sqrt(2. * np.log(2.))) sigma_min = beamparams[1] / (2. * np.sqrt(2. * np.log(2.))) cth = np.cos(beamparams[2]) sth = np.sin(beamparams[2]) xlist = np.arange(0, -self.xdim, -1) * self.psize + \ (self.psize * self.xdim) / 2.0 - self.psize / 2.0 ylist = np.arange(0, -self.ydim, -1) * self.psize + \ (self.psize * self.ydim) / 2.0 - self.psize / 2.0 def gaussian(x2, y2): gauss = np.exp(-((y2) * cth + (x2) * sth)**2 / (2 * sigma_maj**2) + -((x2) * cth - (y2) * sth)**2 / (2 * sigma_min**2)) return gauss gaussarr = np.array([[gaussian(i - x, j - y) for i in xlist] for j in ylist]) gaussarr = gaussarr[0:self.ydim, 0:self.xdim] gaussarr *= flux / np.sum(gaussarr) # TODO: if we want to add a gaussian to V, we might also want to make sure we add it to I # Add to the main image and create the new image object imarr = self.imvec.reshape(self.ydim, self.xdim).copy() if pol == self.pol_prim: imarr += gaussarr arglist, argdict = self.image_args() arglist[0] = imarr outim = Image(*arglist, **argdict) # Copy over the rest of the polarizations for pol2 in list(self._imdict.keys()): if pol2 == self.pol_prim: continue polvec = self._imdict[pol2] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim).copy() if pol2 == pol: polarr += gaussarr outim.add_pol_image(polarr, pol2) # Copy the spectral index (unchanged) outim._mflist = copy.deepcopy(self._mflist) return outim def add_crescent(self, flux, Rp, Rn, a, b, x=0, y=0, pol=None): """Add a crescent to an image; see Kamruddin & Dexter (2013). Args: flux (float): the total flux contained in the crescent in Jy Rp (float): the larger radius in radians Rn (float): the smaller radius in radians a (float): the relative x offset of smaller disk in radians b (float): the relative y offset of smaller disk in radians x (float): the center x coordinate of the larger disk in radians y (float): the center y coordinate of the larger disk in radians pol (str): the polarization to add the flux to. None defaults to pol_prim. Returns: (Image): output image add_gaus """ if pol is None: pol = self.pol_prim if not (pol in list(self._imdict.keys())): raise Exception("for polrep==%s, pol must be in " % self.polrep + ",".join(list(self._imdict.keys()))) if not len(self._imdict[pol]): raise Exception("no image for pol %s" % pol) # Make a crescent image xlist = np.arange(0, -self.xdim, -1) * self.psize + \ (self.psize * self.xdim) / 2.0 - self.psize / 2.0 ylist = np.arange(0, -self.ydim, -1) * self.psize + \ (self.psize * self.ydim) / 2.0 - self.psize / 2.0 def crescent(x2, y2): if (x2 - a)**2 + (y2 - b)**2 > Rn**2 and x2**2 + y2**2 < Rp**2: return 1.0 else: return 0.0 crescarr = np.array([[crescent(i - x, j - y) for i in xlist] for j in ylist]) crescarr = crescarr[0:self.ydim, 0:self.xdim] crescarr *= flux / np.sum(crescarr) # Add to the main image and create the new image object imarr = self.imvec.reshape(self.ydim, self.xdim).copy() if pol == self.pol_prim: imarr += crescarr arglist, argdict = self.image_args() arglist[0] = imarr outim = Image(*arglist, **argdict) # Copy over the rest of the polarizations for pol2 in list(self._imdict.keys()): if pol2 == self.pol_prim: continue polvec = self._imdict[pol2] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim).copy() if pol2 == pol: polarr += crescarr outim.add_pol_image(polarr, pol2) # Copy the spectral index (unchanged) outim._mflist = copy.deepcopy(self._mflist) return outim def add_ring_m1(self, I0, I1, r0, phi, sigma, x=0, y=0, pol=None): """Add a ring to an image with an m=1 mode Args: I0 (float): I1 (float): r0 (float): the radius phi (float): angle of m1 mode sigma (float): the blurring size x (float): the center x coordinate of the larger disk in radians y (float): the center y coordinate of the larger disk in radians pol (str): the polarization to add the flux to. None defaults to pol_prim. Returns: (Image): output image add_gaus """ if pol is None: pol = self.pol_prim if not (pol in list(self._imdict.keys())): raise Exception("for polrep==%s, pol must be in " % self.polrep + ",".join(list(self._imdict.keys()))) if not len(self._imdict[pol]): raise Exception("no image for pol %s" % pol) # Make a ring image flux = I0 - 0.5 * I1 phi = phi + np.pi psize = self.psize xlist = np.arange(0, -self.xdim, -1) * self.psize + \ (self.psize * self.xdim) / 2.0 - self.psize / 2.0 ylist = np.arange(0, -self.ydim, -1) * self.psize + \ (self.psize * self.ydim) / 2.0 - self.psize / 2.0 def ringm1(x2, y2): if (x2**2 + y2**2) > (r0 - psize)**2 and (x2**2 + y2**2) < (r0 + psize)**2: theta = np.arctan2(y2, x2) flux = (I0 - 0.5 * I1 * (1 + np.cos(theta - phi))) / (2 * np.pi * r0) return flux else: return 0.0 ringarr = np.array([[ringm1(i - x, j - y) for i in xlist] for j in ylist]) ringarr = ringarr[0:self.ydim, 0:self.xdim] arglist, argdict = self.image_args() arglist[0] = ringarr outim = Image(*arglist, **argdict) outim = outim.blur_circ(sigma) outim.imvec *= flux / (outim.total_flux()) ringarr = outim.imvec.reshape(self.ydim, self.xdim) # Add to the main image and create the new image object imarr = self.imvec.reshape(self.ydim, self.xdim).copy() if pol == self.pol_prim: imarr += ringarr arglist[0] = imarr outim = Image(*arglist, **argdict) # Copy over the rest of the polarizations for pol2 in list(self._imdict.keys()): if pol2 == self.pol_prim: continue polvec = self._imdict[pol2] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim).copy() if pol2 == pol: polarr += ringarr outim.add_pol_image(polarr, pol2) # Copy the spectral index (unchanged) outim._mflist = copy.deepcopy(self._mflist) return outim def add_const_pol(self, mag, angle, cmag=0, csign=1): """Return an with constant fractional linear and circular polarization Args: mag (float): constant polarization fraction to add to the image angle (float): constant EVPA cmag (float): constant circular polarization fraction to add to the image cmag (int): constant circular polarization sign +/- 1 Returns: (Image): output image """ if not (0 <= mag < 1): raise Exception("fractional polarization magnitude must be between 0 and 1!") if not (0 <= cmag < 1): raise Exception("circular polarization magnitude must be between 0 and 1!") if self.polrep == 'stokes': im_stokes = self elif self.polrep == 'circ': im_stokes = self.switch_polrep(polrep_out='stokes') ivec = im_stokes.ivec.copy() qvec = obsh.qimage(ivec, mag * np.ones(len(ivec)), angle * np.ones(len(ivec))) uvec = obsh.uimage(ivec, mag * np.ones(len(ivec)), angle * np.ones(len(ivec))) vvec = cmag * np.sign(csign) * ivec # create the new stokes image object iarr = ivec.reshape(self.ydim, self.xdim).copy() arglist, argdict = self.image_args() arglist[0] = iarr argdict['polrep'] = 'stokes' argdict['pol_prim'] = 'I' outim = Image(*arglist, **argdict) # Copy over the rest of the polarizations imdict = {'I': ivec, 'Q': qvec, 'U': uvec, 'V': vvec} for pol in list(imdict.keys()): if pol == 'I': continue polvec = imdict[pol] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim).copy() outim.add_pol_image(polarr, pol) # Copy the spectral index (unchanged) outim._mflist = copy.deepcopy(self._mflist) return outim def add_random_pol(self, mag, corr, cmag=0., ccorr=0., seed=0): """Return an image random linear and circular polarizations with certain correlation lengths Args: mag (float): linear polarization fraction corr (float): EVPA correlation length (radians) cmag (float): circular polarization fraction ccorr (float): CP correlation length (radians) seed (int): Seed for random number generation Returns: (Image): output image """ import ehtim.scattering.stochastic_optics as so if not (0 <= mag < 1): raise Exception("fractional polarization magnitude must be between 0 and 1!") if not (0 <= cmag < 1): raise Exception("circular polarization magnitude must be between 0 and 1!") if self.polrep == 'stokes': im_stokes = self elif self.polrep == 'circ': im_stokes = self.switch_polrep(polrep_out='stokes') ivec = im_stokes.ivec.copy() # create the new stokes image object iarr = ivec.reshape(self.ydim, self.xdim).copy() arglist, argdict = self.image_args() arglist[0] = iarr argdict['polrep'] = 'stokes' argdict['pol_prim'] = 'I' outim = Image(*arglist, **argdict) # Make a random phase screen using the scattering tools # Use this screen to define the EVPA dist = 1.0 * 3.086e21 rdiff = np.abs(corr) * dist / 1e3 theta_mas = 0.37 * 1.0 / rdiff * 1000. * 3600. * 180. / np.pi sm = so.ScatteringModel(scatt_alpha=1.67, observer_screen_distance=dist, source_screen_distance=1.e5 * dist, theta_maj_mas_ref=theta_mas, theta_min_mas_ref=theta_mas, r_in=rdiff * 2, r_out=1e30) ep = so.MakeEpsilonScreen(self.xdim, self.ydim, rngseed=seed) ps = np.array(sm.MakePhaseScreen(ep, outim, obs_frequency_Hz=29.979e9).imvec) ps = ps / 1000**(1.66 / 2) qvec = ivec * mag * np.sin(ps) uvec = ivec * mag * np.cos(ps) # Make a random phase screen using the scattering tools # Use this screen to define the CP magnitude if cmag != 0.0 and ccorr > 0.0: dist = 1.0 * 3.086e21 rdiff = np.abs(ccorr) * dist / 1e3 theta_mas = 0.37 * 1.0 / rdiff * 1000. * 3600. * 180. / np.pi sm = so.ScatteringModel(scatt_alpha=1.67, observer_screen_distance=dist, source_screen_distance=1.e5 * dist, theta_maj_mas_ref=theta_mas, theta_min_mas_ref=theta_mas, r_in=rdiff * 2, r_out=1e30) ep = so.MakeEpsilonScreen(self.xdim, self.ydim, rngseed=seed * 2) ps = np.array(sm.MakePhaseScreen(ep, outim, obs_frequency_Hz=29.979e9).imvec) ps = ps / 1000**(1.66 / 2) vvec = ivec * cmag * np.sin(ps) else: vvec = ivec * cmag # Copy over the rest of the polarizations imdict = {'I': ivec, 'Q': qvec, 'U': uvec, 'V': vvec} for pol in list(imdict.keys()): if pol == 'I': continue polvec = imdict[pol] if len(polvec): polarr = polvec.reshape(self.ydim, self.xdim).copy() outim.add_pol_image(polarr, pol) # Copy the spectral index (unchanged) outim._mflist = copy.deepcopy(self._mflist) return outim def add_const_mf(self, alpha, beta=0.): """Add a constant spectral index and curvature term Args: alpha (float): spectral index (with no - sign) beta (float): curvature Returns: (Image): output image with constant mf information added """ avec = alpha * np.ones(len(self.imvec)) bvec = beta * np.ones(len(self.imvec)) # create the new image object outim = self.copy() outim._mflist = [avec, bvec] return outim def add_zblterm(self, obs, uv_min, zblval=None, new_fov=False, gauss_sz=False, gauss_sz_factor=0.75, debias=True): """Add a large Gaussian term to account for missing flux in the zero baseline. Args: obs : an Obsdata object to determine min non-zero baseline and 0-bl flux uv_min (float): The cutoff in Glambada used to determine what is a 0-bl new_fov (rad): The size of the padded image once the Gaussian is added (if False it will be set to 3 x the gaussian fwhm) gauss_sz (rad): The size of the Gaussian added to add flux to the 0-bl. (if False it is computed from the min non-zero baseline) gauss_sz_factor (float): The fraction of the min non-zero baseline used to caluclate the Gaussian FWHM. debias (bool): True if you use debiased amplitudes to caluclate the 0-bl flux in Jy Returns: (Image): a padded image with a large Gaussian component """ if gauss_sz is False: obs_flag = obs.flag_uvdist(uv_min=uv_min) minuvdist = np.min(np.sqrt(obs_flag.data['u']**2 + obs_flag.data['v']**2)) gauss_sz_sigma = (1 / (gauss_sz_factor * minuvdist)) gauss_sz = gauss_sz_sigma * 2.355 # convert from stdev to fwhm factor = 5.0 if new_fov is False: im_fov = np.max((self.xdim * self.psize, self.ydim * self.psize)) new_fov = np.max((factor * (gauss_sz / 2.355), im_fov)) if new_fov < factor * (gauss_sz / 2.355): print('WARNING! The specified new fov may not be large enough') # calculate the amount of flux to include in the Gaussian obs_zerobl = obs.flag_uvdist(uv_max=uv_min) obs_zerobl.add_amp(debias=debias) orig_totflux = np.sum(obs_zerobl.amp['amp'] * (1 / obs_zerobl.amp['sigma']**2)) orig_totflux /= np.sum(1 / obs_zerobl.amp['sigma']**2) if zblval is None: addedflux = orig_totflux - np.sum(self.imvec) else: addedflux = orig_totflux - zblval print('Adding a ' + str(addedflux) + ' Jy circular Gaussian of FWHM size ' + str(gauss_sz / ehc.RADPERUAS) + ' uas') im_new = self.copy() im_new = im_new.pad(new_fov, new_fov) im_new = im_new.add_gauss(addedflux, (gauss_sz, gauss_sz, 0, 0, 0)) return im_new def sample_uv(self, uv, polrep_obs='stokes', sgrscat=False, ttype='nfft', cache=False, fft_pad_factor=2, zero_empty_pol=True, verbose=True): """Sample the image on the selected uv points without creating an Obsdata object. Args: uv (ndarray): an array of uv points polrep_obs (str): 'stokes' or 'circ' sets the data polarimetric representation sgrscat (bool): if True, the visibilites will be blurred by the Sgr A* kernel ttype (str): "fast" or "nfft" or "direct" cache (bool): Use cached fft for 'fast' mode -- deprecated, use nfft instead! fft_pad_factor (float): zero pad the image to fft_pad_factor * image size in FFT zero_empty_pol (bool): if True, returns zero vec if the polarization doesn't exist. Otherwise return None verbose (bool): Boolean value controls output prints. Returns: (list): a list of [I,Q,U,V] visibilities """ if polrep_obs not in ['stokes', 'circ']: raise Exception("polrep_obs must be either 'stokes' or 'circ'") data = simobs.sample_vis(self, uv, polrep_obs=polrep_obs, sgrscat=sgrscat, ttype=ttype, cache=cache, fft_pad_factor=fft_pad_factor, zero_empty_pol=zero_empty_pol, verbose=verbose) return data def observe_same_nonoise(self, obs, sgrscat=False, ttype="nfft", cache=False, fft_pad_factor=2, zero_empty_pol=True, verbose=True): """Observe the image on the same baselines as an existing observation without noise. Args: obs (Obsdata): the existing observation sgrscat (bool): if True, the visibilites will be blurred by the Sgr A* kernel ttype (str): "fast" or "nfft" or "direct" cache (bool): Use cached fft for 'fast' mode -- deprecated, use nfft instead! fft_pad_factor (float): zero pad the image to fft_pad_factor * image size in FFT zero_empty_pol (bool): if True, returns zero vec if the polarization doesn't exist. Otherwise return None verbose (bool): Boolean value controls output prints. Returns: (Obsdata): an observation object with no noise """ # Check for agreement in coordinates and frequency tolerance = 1e-8 if (np.abs(self.ra - obs.ra) > tolerance) or (np.abs(self.dec - obs.dec) > tolerance): raise Exception("Image coordinates are not the same as observtion coordinates!") if (np.abs(self.rf - obs.rf) / obs.rf > tolerance): raise Exception("Image frequency is not the same as observation frequency!") if (ttype == 'direct' or ttype == 'fast' or ttype == 'nfft'): if verbose: print("Producing clean visibilities from image with " + ttype + " FT . . . ") else: raise Exception("ttype=%s, options for ttype are 'direct', 'fast', 'nfft'" % ttype) # Copy data to be safe obsdata = copy.deepcopy(obs.data) # Extract uv datasample uv = obsh.recarr_to_ndarr(obsdata[['u', 'v']], 'f8') data = simobs.sample_vis(self, uv, sgrscat=sgrscat, polrep_obs=obs.polrep, ttype=ttype, cache=cache, fft_pad_factor=fft_pad_factor, zero_empty_pol=zero_empty_pol, verbose=verbose) # put visibilities into the obsdata if obs.polrep == 'stokes': obsdata['vis'] = data[0] if not(data[1] is None): obsdata['qvis'] = data[1] obsdata['uvis'] = data[2] obsdata['vvis'] = data[3] elif obs.polrep == 'circ': obsdata['rrvis'] = data[0] if not(data[1] is None): obsdata['llvis'] = data[1] if not(data[2] is None): obsdata['rlvis'] = data[2] obsdata['lrvis'] = data[3] obs_no_noise = ehtim.obsdata.Obsdata(self.ra, self.dec, obs.rf, obs.bw, obsdata, obs.tarr, source=self.source, mjd=self.mjd, polrep=obs.polrep, ampcal=True, phasecal=True, opacitycal=True, dcal=True, frcal=True, timetype=obs.timetype, scantable=obs.scans) return obs_no_noise def observe_same(self, obs_in, ttype='nfft', fft_pad_factor=2, sgrscat=False, add_th_noise=True, jones=False, inv_jones=False, opacitycal=True, ampcal=True, phasecal=True, frcal=True, dcal=True, rlgaincal=True, stabilize_scan_phase=False, stabilize_scan_amp=False, neggains=False, taup=ehc.GAINPDEF, gain_offset=ehc.GAINPDEF, gainp=ehc.GAINPDEF, phase_std=-1, dterm_offset=ehc.DTERMPDEF, rlratio_std=0., rlphase_std=0., sigmat=None, phasesigmat=None, rlgsigmat=None,rlpsigmat=None, caltable_path=None, seed=False, verbose=True): """Observe the image on the same baselines as an existing observation object and add noise. Args: obs_in (Obsdata): the existing observation ttype (str): "fast" or "nfft" or "direct" fft_pad_factor (float): zero pad the image to fft_pad_factor * image size in FFT sgrscat (bool): if True, the visibilites will be blurred by the Sgr A* kernel add_th_noise (bool): if True, baseline-dependent thermal noise is added jones (bool): if True, uses Jones matrix to apply mis-calibration effects inv_jones (bool): if True, applies estimated inverse Jones matrix (not including random terms) to a priori calibrate data opacitycal (bool): if False, time-dependent gaussian errors are added to opacities ampcal (bool): if False, time-dependent gaussian errors are added to station gains phasecal (bool): if False, time-dependent station-based random phases are added frcal (bool): if False, feed rotation angle terms are added to Jones matrices. dcal (bool): if False, time-dependent gaussian errors added to D-terms. rlgaincal (bool): if False, time-dependent gains are not equal for R and L pol stabilize_scan_phase (bool): if True, random phase errors are constant over scans stabilize_scan_amp (bool): if True, random amplitude errors are constant over scans neggains (bool): if True, force the applied gains to be <1 taup (float): the fractional std. dev. of the random error on the opacities gainp (float): the fractional std. dev. of the random error on the gains or a dict giving one std. dev. per site gain_offset (float): the base gain offset at all sites, or a dict giving one gain offset per site phase_std (float): std. dev. of LCP phase, or a dict giving one std. dev. per site a negative value samples from uniform dterm_offset (float): the base std. dev. of random additive error at all sites, or a dict giving one std. dev. per site rlratio_std (float): the fractional std. dev. of the R/L gain offset or a dict giving one std. dev. per site rlphase_std (float): std. dev. of R/L phase offset, or a dict giving one std. dev. per site a negative value samples from uniform sigmat (float): temporal std for a Gaussian Process used to generate gains. If sigmat=None then an iid gain noise is applied. phasesigmat (float): temporal std for a Gaussian Process used to generate phases. If phasesigmat=None then an iid gain noise is applied. rlgsigmat (float): temporal std deviation for a Gaussian Process used to generate R/L gain ratios. If rlgsigmat=None then an iid gain noise is applied. rlpsigmat (float): temporal std deviation for a Gaussian Process used to generate R/L phase diff. If rlpsigmat=None then an iid gain noise is applied. caltable_path (string): If not None, path and prefix for saving the applied caltable seed (int): seeds the random component of the noise terms. DO NOT set to 0! verbose (bool): print updates and warnings Returns: (Obsdata): an observation object """ if seed: np.random.seed(seed=seed) obs = self.observe_same_nonoise(obs_in, sgrscat=sgrscat,ttype=ttype, cache=False, fft_pad_factor=fft_pad_factor, zero_empty_pol=True, verbose=verbose) # Jones Matrix Corruption & Calibration if jones: obsdata = simobs.add_jones_and_noise(obs, add_th_noise=add_th_noise, opacitycal=opacitycal, ampcal=ampcal, phasecal=phasecal, frcal=frcal, dcal=dcal, rlgaincal=rlgaincal, stabilize_scan_phase=stabilize_scan_phase, stabilize_scan_amp=stabilize_scan_amp, neggains=neggains, taup=taup, gain_offset=gain_offset, gainp=gainp, phase_std=phase_std, dterm_offset=dterm_offset, rlratio_std=rlratio_std, rlphase_std=rlphase_std, sigmat=sigmat, phasesigmat=phasesigmat, rlgsigmat=rlgsigmat,rlpsigmat=rlpsigmat, caltable_path=caltable_path, seed=seed,verbose=verbose) obs = ehtim.obsdata.Obsdata(obs.ra, obs.dec, obs.rf, obs.bw, obsdata, obs.tarr, source=obs.source, mjd=obs.mjd, polrep=obs_in.polrep, ampcal=ampcal, phasecal=phasecal, opacitycal=opacitycal, dcal=dcal, frcal=frcal, timetype=obs.timetype, scantable=obs.scans) if inv_jones: obsdata = simobs.apply_jones_inverse(obs, opacitycal=opacitycal, dcal=dcal, frcal=frcal, verbose=verbose) obs = ehtim.obsdata.Obsdata(obs.ra, obs.dec, obs.rf, obs.bw, obsdata, obs.tarr, source=obs.source, mjd=obs.mjd, polrep=obs_in.polrep, ampcal=ampcal, phasecal=phasecal, opacitycal=True, dcal=True, frcal=True, timetype=obs.timetype, scantable=obs.scans) # No Jones Matrices, Add noise the old way # NOTE There is an asymmetry here - in the old way, we don't offer the ability to # *not* unscale estimated noise. else: if caltable_path: print('WARNING: the caltable is only saved if you apply noise with a Jones Matrix') # TODO -- clean up arguments obsdata = simobs.add_noise(obs, add_th_noise=add_th_noise, opacitycal=opacitycal, ampcal=ampcal, phasecal=phasecal, stabilize_scan_phase=stabilize_scan_phase, stabilize_scan_amp=stabilize_scan_amp, neggains=neggains, taup=taup, gain_offset=gain_offset, gainp=gainp, sigmat=sigmat, caltable_path=caltable_path, seed=seed, verbose=verbose) obs = ehtim.obsdata.Obsdata(obs.ra, obs.dec, obs.rf, obs.bw, obsdata, obs.tarr, source=obs.source, mjd=obs.mjd, polrep=obs_in.polrep, ampcal=ampcal, phasecal=phasecal, opacitycal=True, dcal=True, frcal=True, timetype=obs.timetype, scantable=obs.scans) return obs def observe(self, array, tint, tadv, tstart, tstop, bw, mjd=None, timetype='UTC', polrep_obs=None, elevmin=ehc.ELEV_LOW, elevmax=ehc.ELEV_HIGH, no_elevcut_space=False, ttype='nfft', fft_pad_factor=2, fix_theta_GMST=False, sgrscat=False, add_th_noise=True, jones=False, inv_jones=False, opacitycal=True, ampcal=True, phasecal=True, frcal=True, dcal=True, rlgaincal=True, stabilize_scan_phase=False, stabilize_scan_amp=False, neggains=False, tau=ehc.TAUDEF, taup=ehc.GAINPDEF, gain_offset=ehc.GAINPDEF, gainp=ehc.GAINPDEF, phase_std=-1, dterm_offset=ehc.DTERMPDEF, rlratio_std=0.,rlphase_std=0., sigmat=None, phasesigmat=None, rlgsigmat=None,rlpsigmat=None, caltable_path=None, seed=False, verbose=True): """Generate baselines from an array object and observe the image. Args: array (Array): an array object containing sites with which to generate baselines tint (float): the scan integration time in seconds tadv (float): the uniform cadence between scans in seconds tstart (float): the start time of the observation in hours tstop (float): the end time of the observation in hours bw (float): the observing bandwidth in Hz mjd (int): the mjd of the observation, if set as different from the image mjd timetype (str): how to interpret tstart and tstop; either 'GMST' or 'UTC' polrep_obs (str): 'stokes' or 'circ' sets the data polarimetric representation elevmin (float): station minimum elevation in degrees elevmax (float): station maximum elevation in degrees no_elevcut_space (bool): if True, do not apply elevation cut to orbiters ttype (str): "fast", "nfft" or "dtft" fft_pad_factor (float): zero pad the image to fft_pad_factor * image size in the FFT fix_theta_GMST (bool): if True, stops earth rotation to sample fixed u,v sgrscat (bool): if True, the visibilites will be blurred by the Sgr A* kernel add_th_noise (bool): if True, baseline-dependent thermal noise is added jones (bool): if True, uses Jones matrix to apply mis-calibration effects otherwise uses old formalism without D-terms inv_jones (bool): if True, applies estimated inverse Jones matrix (not including random terms) to calibrate data opacitycal (bool): if False, time-dependent gaussian errors are added to opacities ampcal (bool): if False, time-dependent gaussian errors are added to station gains phasecal (bool): if False, time-dependent station-based random phases are added frcal (bool): if False, feed rotation angle terms are added to Jones matrix. dcal (bool): if False, time-dependent gaussian errors added to Jones matrix D-terms. rlgaincal (bool): if False, time-dependent gains are not equal for R and L pol stabilize_scan_phase (bool): if True, random phase errors are constant over scans stabilize_scan_amp (bool): if True, random amplitude errors are constant over scans neggains (bool): if True, force the applied gains to be <1 tau (float): the base opacity at all sites, or a dict giving one opacity per site taup (float): the fractional std. dev. of the random error on the opacities gainp (float): the fractional std. dev. of the random error on the gains or a dict giving one std. dev. per site gain_offset (float): the base gain offset at all sites, or a dict giving one gain offset per site phase_std (float): std. dev. of LCP phase, or a dict giving one std. dev. per site a negative value samples from uniform dterm_offset (float): the base std. dev. of random additive error at all sites, or a dict giving one std. dev. per site rlratio_std (float): the fractional std. dev. of the R/L gain offset or a dict giving one std. dev. per site rlphase_std (float): std. dev. of R/L phase offset, or a dict giving one std. dev. per site a negative value samples from uniform sigmat (float): temporal std for a Gaussian Process used to generate gains. If sigmat=None then an iid gain noise is applied. phasesigmat (float): temporal std for a Gaussian Process used to generate phases. If phasesigmat=None then an iid gain noise is applied. rlgsigmat (float): temporal std deviation for a Gaussian Process used to generate R/L gain ratios. If rlgsigmat=None then an iid gain noise is applied. rlpsigmat (float): temporal std deviation for a Gaussian Process used to generate R/L phase diff. If rlpsigmat=None then an iid gain noise is applied. caltable_path (string): If not None, path and prefix for saving the applied caltable seed (int): seeds the random component of the noise terms. DO NOT set to 0! verbose (bool): print updates and warnings Returns: (Obsdata): an observation object """ # Generate empty observation if verbose: print("Generating empty observation file . . . ") if mjd is None: mjd = self.mjd if polrep_obs is None: polrep_obs = self.polrep obs = array.obsdata(self.ra, self.dec, self.rf, bw, tint, tadv, tstart, tstop, mjd=mjd, polrep=polrep_obs, tau=tau, elevmin=elevmin, elevmax=elevmax, no_elevcut_space=no_elevcut_space, timetype=timetype, fix_theta_GMST=fix_theta_GMST) # Observe on the same baselines as the empty observation and add noise obs = self.observe_same(obs, ttype=ttype, fft_pad_factor=fft_pad_factor, sgrscat=sgrscat, add_th_noise=add_th_noise, jones=jones, inv_jones=inv_jones, opacitycal=opacitycal, ampcal=ampcal, phasecal=phasecal, dcal=dcal, frcal=frcal, rlgaincal=rlgaincal, stabilize_scan_phase=stabilize_scan_phase, stabilize_scan_amp=stabilize_scan_amp, neggains=neggains, taup=taup, gain_offset=gain_offset, gainp=gainp, phase_std=phase_std, dterm_offset=dterm_offset, rlratio_std=rlratio_std,rlphase_std=rlphase_std, sigmat=sigmat,phasesigmat=phasesigmat, rlgsigmat=rlgsigmat,rlpsigmat=rlpsigmat, caltable_path=caltable_path, seed=seed, verbose=verbose) obs.mjd = mjd return obs def observe_vex(self, vex, source, t_int=0.0, tight_tadv=False, polrep_obs=None, ttype='nfft', fft_pad_factor=2, fix_theta_GMST=False, sgrscat=False, add_th_noise=True, jones=False, inv_jones=False, opacitycal=True, ampcal=True, phasecal=True, frcal=True, dcal=True, rlgaincal=True, stabilize_scan_phase=False, stabilize_scan_amp=False, neggains=False, tau=ehc.TAUDEF, taup=ehc.GAINPDEF, gain_offset=ehc.GAINPDEF, gainp=ehc.GAINPDEF, phase_std=-1, dterm_offset=ehc.DTERMPDEF, rlratio_std=0.,rlphase_std=0., sigmat=None, phasesigmat=None, rlgsigmat=None,rlpsigmat=None, caltable_path=None, seed=False, verbose=True): """Generate baselines from a vex file and observes the image. Args: vex (Vex): an vex object containing sites and scan information source (str): the source to observe t_int (float): if not zero, overrides the vex scan lengths tight_tadv (float): if True, advance right after each integration, otherwise advance after 2x the scan length polrep_obs (str): 'stokes' or 'circ' sets the data polarimetric representation ttype (str): "fast" or "nfft" or "dtft" fft_pad_factor (float): zero pad the image to fft_pad_factor * image size in FFT fix_theta_GMST (bool): if True, stops earth rotation to sample fixed u,v sgrscat (bool): if True, the visibilites will be blurred by the Sgr A* kernel add_th_noise (bool): if True, baseline-dependent thermal noise is added jones (bool): if True, uses Jones matrix to apply mis-calibration effects otherwise uses old formalism without D-terms inv_jones (bool): if True, applies estimated inverse Jones matrix (not including random terms) to calibrate data opacitycal (bool): if False, time-dependent gaussian errors are added to opacities ampcal (bool): if False, time-dependent gaussian errors are added to station gains phasecal (bool): if False, time-dependent station-based random phases are added frcal (bool): if False, feed rotation angle terms are added to Jones matrix. dcal (bool): if False, time-dependent gaussian errors added to Jones matrix D-terms. rlgaincal (bool): if False, time-dependent gains are not equal for R and L pol stabilize_scan_phase (bool): if True, random phase errors are constant over scans stabilize_scan_amp (bool): if True, random amplitude errors are constant over scans neggains (bool): if True, force the applied gains to be <1 tau (float): the base opacity at all sites, or a dict giving one opacity per site taup (float): the fractional std. dev. of the random error on the opacities gainp (float): the fractional std. dev. of the random error on the gains or a dict giving one std. dev. per site gain_offset (float): the base gain offset at all sites, or a dict giving one gain offset per site phase_std (float): std. dev. of LCP phase, or a dict giving one std. dev. per site a negative value samples from uniform dterm_offset (float): the base std. dev. of random additive error at all sites, or a dict giving one std. dev. per site rlratio_std (float): the fractional std. dev. of the R/L gain offset or a dict giving one std. dev. per site rlphase_std (float): std. dev. of R/L phase offset, or a dict giving one std. dev. per site a negative value samples from uniform sigmat (float): temporal std for a Gaussian Process used to generate gains. If sigmat=None then an iid gain noise is applied. phasesigmat (float): temporal std for a Gaussian Process used to generate phases. If phasesigmat=None then an iid gain noise is applied. rlgsigmat (float): temporal std deviation for a Gaussian Process used to generate R/L gain ratios. If rlgsigmat=None then an iid gain noise is applied. rlpsigmat (float): temporal std deviation for a Gaussian Process used to generate R/L phase diff. If rlpsigmat=None then an iid gain noise is applied. caltable_path (string): If not None, path and prefix for saving the applied caltable seed (int): seeds the random component of the noise terms. DO NOT set to 0! verbose (bool): print updates and warnings Returns: (Obsdata): an observation object """ if polrep_obs is None: polrep_obs = self.polrep t_int_flag = False if t_int == 0.0: t_int_flag = True # Loop over all scans and assemble a list of scan observations obs_List = [] for i_scan in range(len(vex.sched)): if t_int_flag: t_int = vex.sched[i_scan]['scan'][0]['scan_sec'] if tight_tadv: t_adv = t_int else: t_adv = 2.0 * vex.sched[i_scan]['scan'][0]['scan_sec'] # If this scan doesn't observe the source, advance if vex.sched[i_scan]['source'] != source: continue # What subarray is observing now? scankeys = list(vex.sched[i_scan]['scan'].keys()) subarray = vex.array.make_subarray([vex.sched[i_scan]['scan'][key]['site'] for key in scankeys]) # Observe with the subarray over the scan interval t_start = vex.sched[i_scan]['start_hr'] t_stop = t_start + vex.sched[i_scan]['scan'][0]['scan_sec']/3600.0 - ehc.EP obs = self.observe(subarray, t_int, t_adv, t_start, t_stop, vex.bw_hz, mjd=vex.sched[i_scan]['mjd_floor'], timetype='UTC', polrep_obs=polrep_obs, elevmin=.01, elevmax=89.99, ttype=ttype, fft_pad_factor=fft_pad_factor, fix_theta_GMST=fix_theta_GMST, sgrscat=sgrscat, add_th_noise=add_th_noise, jones=jones, inv_jones=inv_jones, opacitycal=opacitycal, ampcal=ampcal, phasecal=phasecal, frcal=frcal, dcal=dcal, rlgaincal=rlgaincal, stabilize_scan_phase=stabilize_scan_phase, stabilize_scan_amp=stabilize_scan_amp, neggains=neggains, tau=tau, taup=taup, gain_offset=gain_offset, gainp=gainp, phase_std=phase_std, dterm_offset=dterm_offset, rlratio_std=rlratio_std,rlphase_std=rlphase_std, sigmat=sigmat,phasesigmat=phasesigmat, rlgsigmat=rlgsigmat,rlpsigmat=rlpsigmat, caltable_path=caltable_path, seed=seed, verbose=verbose) obs_List.append(obs) # Merge the scans together obs = ehtim.obsdata.merge_obs(obs_List) return obs def compare_images(self, im_compare, pol=None, psize=None,target_fov=None, blur_frac=0.0, beamparams=[1., 1., 1.], metric=['nxcorr', 'nrmse', 'rssd'], blursmall=False, shift=True): """Compare to another image by computing normalized cross correlation, normalized root mean squared error, or square root of the sum of squared differences. Returns metrics only for the primary polarization imvec! Args: im_compare (Image): the image to compare to pol (str): which polarization image to compare. Default is self.pol_prim psize (float): pixel size of comparison image (rad). If None it is the smallest of the input image pizel sizes target_fov (float): fov of the comparison image (rad). If None it is twice the largest fov of the input images beamparams (list): the nominal Gaussian beam parameters [fovx, fovy, position angle] blur_frac (float): fractional beam to blur each image to before comparison metric (list) : a list of fidelity metrics from ['nxcorr','nrmse','rssd'] blursmall (bool) : True to blur the unpadded image rather than the large image. shift (int): manual image shift, otherwise use shift from maximum cross-correlation Returns: (tuple): [errormetric, im1_pad, im2_shift] """ im1 = self.copy() im2 = im_compare.switch_polrep(polrep_out=im1.polrep, pol_prim_out=im1.pol_prim) if im1.polrep != im2.polrep: raise Exception("In find_shift, im1 and im2 must have the same polrep!") if im1.pol_prim != im2.pol_prim: raise Exception("In find_shift, im1 and im2 must have the same pol_prim!") # Shift the comparison image to maximize normalized cross-corr. [idx, xcorr, im1_pad, im2_pad] = im1.find_shift(im2, psize=psize, target_fov=target_fov, beamparams=beamparams, pol=pol, blur_frac=blur_frac, blursmall=blursmall) if not isinstance(shift, bool): idx = shift im2_shift = im2_pad.shift(idx) # Compute error metrics error = [] imvec1 = im1_pad.get_polvec(pol) imvec2 = im2_shift.get_polvec(pol) if 'nxcorr' in metric: error.append(xcorr[idx[0], idx[1]] / (im1_pad.xdim * im1_pad.ydim)) if 'nrmse' in metric: error.append(np.sqrt(np.sum((np.abs(imvec1 - imvec2)**2 * im1_pad.psize**2)) / np.sum((imvec1)**2 * im1_pad.psize**2))) if 'rssd' in metric: error.append(np.sqrt(np.sum(np.abs(imvec1 - imvec2)**2) * im1_pad.psize**2)) return (error, im1_pad, im2_shift) def align_images(self, im_list, pol=None, shift=True, final_fov=False, scale='lin', gamma=0.5, dynamic_range=[1.e3]): """Align all the images in im_list to the current image (self) Aligns all images by comparison of the primary pol image. Args: im_list (list): list of images to align to the current image shift (list): list of manual image shifts, otherwise use the shift from maximum cross-correlation pol (str): which polarization image to compare. Default is self.pol_prim final_fov (float): fov of the comparison image (rad). If False it is the largestinput image fov scale (str) : compare images in 'log','lin',or 'gamma' scale gamma (float): exponent for gamma scale comparison dynamic_range (float): dynamic range for log and gamma scale comparisons Returns: (tuple): (im_list_shift, shifts, im0_pad) """ im0 = self.copy() if not np.all(im0.polrep == np.array([im.polrep for im in im_list])): raise Exception("In align_images, all images must have the same polrep!") if not np.all(im0.pol_prim == np.array([im.pol_prim for im in im_list])): raise Exception("In find_shift, all images must have the same pol_prim!") if len(dynamic_range) == 1: dynamic_range = dynamic_range * np.ones(len(im_list) + 1) useshift = True if isinstance(shift, bool): useshift = False # Find the minimum psize and the maximum field of view psize = im0.psize max_fov = np.max([im0.xdim * im0.psize, im0.ydim * im0.psize]) for i in range(0, len(im_list)): psize = np.min([psize, im_list[i].psize]) max_fov = np.max([max_fov, im_list[i].xdim * im_list[i].psize, im_list[i].ydim * im_list[i].psize]) if not final_fov: final_fov = max_fov # Shift all images in the list im_list_shift = [] shifts = [] for i in range(0, len(im_list)): (idx, _, im0_pad_orig, im_pad) = im0.find_shift(im_list[i], target_fov=2 * max_fov, psize=psize, pol=pol, scale=scale, gamma=gamma, dynamic_range=dynamic_range[i + 1]) if i == 0: npix = int(im0_pad_orig.xdim / 2) im0_pad = im0_pad_orig.regrid_image(final_fov, npix) if useshift: idx = shift[i] tmp = im_pad.shift(idx) shifts.append(idx) im_list_shift.append(tmp.regrid_image(final_fov, npix)) return (im_list_shift, shifts, im0_pad) def find_shift(self, im_compare, pol=None, psize=None, target_fov=None, beamparams=[1., 1., 1.], blur_frac=0.0, blursmall=False, scale='lin', gamma=0.5, dynamic_range=1.e3): """Find image shift that maximizes normalized cross correlation with a second image im2. Finds shift only by comparison of the primary pol image. Args: im_compare (Image): image with respect with to switch pol (str): which polarization image to compare. Default is self.pol_prim psize (float): pixel size of comparison image (rad). If None it is the smallest of the input image pizel sizes target_fov (float): fov of the comparison image (rad). If None it is twice the largest fov of the input images beamparams (list): the nominal Gaussian beam parameters [fovx, fovy, position angle] blur_frac (float): fractional beam to blur each image to before comparison blursmall (bool) : True to blur the unpadded image rather than the large image. scale (str) : compare images in 'log','lin',or 'gamma' scale gamma (float): exponent for gamma scale comparison dynamic_range (float): dynamic range for log and gamma scale comparisons Returns: (tuple): (errormetric, im1_pad, im2_shift) """ im1 = self.copy() im2 = im_compare.switch_polrep(polrep_out=im1.polrep, pol_prim_out=im1.pol_prim) if pol=='RL' or pol=='LR': raise Exception("Find_shift currently doesn't work with complex RL or LR imvecs!") if im1.polrep != im2.polrep: raise Exception("In find_shift, im1 and im2 must have the same polrep!") if im1.pol_prim != im2.pol_prim: raise Exception("In find_shift, im1 and im2 must have the same pol_prim!") # Find maximum FOV and minimum pixel size for comparison if target_fov is None: max_fov = np.max([im1.fovx(), im1.fovy(), im2.fovx(), im2.fovy()]) target_fov = 2 * max_fov if psize is None: psize = np.min([im1.psize, im2.psize]) npix = int(target_fov / psize) # Blur images, then pad if ((blur_frac > 0.0) and (blursmall is True)): im1 = im1.blur_gauss(beamparams, blur_frac, blur_frac) im2 = im2.blur_gauss(beamparams, blur_frac, blur_frac) im1_pad = im1.regrid_image(target_fov, npix) im2_pad = im2.regrid_image(target_fov, npix) # or, pad images, then blur if ((blur_frac > 0.0) and (blursmall is False)): im1_pad = im1_pad.blur_gauss(beamparams, blur_frac, blur_frac) im2_pad = im2_pad.blur_gauss(beamparams, blur_frac, blur_frac) # Rescale the image vectors into log or gamma scale # TODO -- what about negative values? complex values? im1_pad_vec = im1_pad.get_polvec(pol) im2_pad_vec = im2_pad.get_polvec(pol) if scale == 'log': im1_pad_vec[im1_pad_vec < 0.0] = 0.0 im1_pad_vec = np.log(im1_pad_vec + np.max(im1_pad_vec) / dynamic_range) im2_pad_vec[im2_pad_vec < 0.0] = 0.0 im2_pad_vec = np.log(im2_pad_vec + np.max(im2_pad_vec) / dynamic_range) if scale == 'gamma': im1_pad_vec[im1_pad_vec < 0.0] = 0.0 im1_pad_vec = (im1_pad_vec + np.max(im1_pad_vec) / dynamic_range)**(gamma) im2_pad_vec[im2_pad_vec < 0.0] = 0.0 im2_pad_vec = (im2_pad_vec + np.max(im2_pad_vec) / dynamic_range)**(gamma) # Normalize images and compute cross correlation with FFT im1_norm = (im1_pad_vec.reshape(im1_pad.ydim, im1_pad.xdim) - np.mean(im1_pad_vec)) im1_norm /= np.std(im1_pad_vec) im2_norm = (im2_pad_vec.reshape(im2_pad.ydim, im2_pad.xdim) - np.mean(im2_pad_vec)) im2_norm /= np.std(im2_pad_vec) fft_im1 = np.fft.fft2(im1_norm) fft_im2 = np.fft.fft2(im2_norm) xcorr = np.real(np.fft.ifft2(fft_im1 * np.conj(fft_im2))) # Find idx of shift that maximized cross-correlation idx = np.unravel_index(xcorr.argmax(), xcorr.shape) return [idx, xcorr, im1_pad, im2_pad] def hough_ring(self, edgetype='canny', thresh=0.2, num_circles=3, radius_range=None, return_type='rad', display_results=True): """Use a circular hough transform to find a circle in the image Returns metrics only for the primary polarization imvec! Args: num_circles (int) : number of circles to return radius_range (tuple): range of radii to search in Hough transform, in radian edgetype (str): edge detection type, 'gradient' or 'canny' thresh(float): fractional threshold for the gradient image display_results (bool): True to display results of the fit return_type (str): 'rad' to return in radian, 'pixel' to return in pixel units Returns: list : a list of fitted circles (xpos, ypos, radius, objFunc), in radian """ if 'skimage' not in sys.modules: raise Exception("scikit-image not installed: cannot use hough_ring!") # coordinate values pdim = self.psize xlist = np.arange(0, -self.xdim, -1) * pdim + (pdim * self.xdim) / 2.0 - pdim / 2.0 ylist = np.arange(0, -self.ydim, -1) * pdim + (pdim * self.ydim) / 2.0 - pdim / 2.0 # normalize to range 0, 1 im = self.copy() maxval = np.max(im.imvec) meanval = np.mean(im.imvec) im_norm = im.imvec / (maxval + .01 * meanval) im_norm = im_norm.astype('float') # is it a problem if it's double?? im_norm[np.isnan(im.imvec)] = 0 # mask nans to 0 im.imvec = im_norm # detect edges if edgetype == 'canny': imarr = im.imvec.reshape(self.ydim, self.xdim) edges = canny(imarr, sigma=0, high_threshold=thresh, low_threshold=0.01) im_edges = self.copy() im_edges.imvec = edges.flatten() elif edgetype == 'grad': im_edges = self.grad() if not (thresh is None): thresh_val = thresh * np.max(im_edges.imvec) mask = im_edges.imvec > thresh_val # im_edges.imvec[mask] = 1 im_edges.imvec[~mask] = 0 edges = im_edges.imvec.reshape(self.ydim, self.xdim) else: im_edges = im.copy() if not (thresh is None): thresh_val = thresh * np.max(im_edges.imvec) mask = im_edges.imvec > thresh_val # im_edges.imvec[mask] = 1f im_edges.imvec[~mask] = 0 edges = im_edges.imvec.reshape(self.ydim, self.xdim) # define radius range for Hough transform search if radius_range is None: hough_radii = np.arange(int(10 * ehc.RADPERUAS / self.psize), int(50 * ehc.RADPERUAS / self.psize)) else: hough_radii = np.linspace( radius_range[0] / self.psize, radius_range[0] / self.psize, 25) # perform the hough transform and select the most prominent circles hough_res = hough_circle(edges, hough_radii) accums, cy, cx, radii = hough_circle_peaks(hough_res, hough_radii, total_num_peaks=num_circles) accum_tot = np.sum(accums) # print results, plot circles, and return outlist = [] if display_results: plt.ion() fig = self.display() ax = fig.gca() i = 0 colors = ['b', 'r', 'w', 'lime', 'magenta', 'aqua'] for accum, center_y, center_x, radius in zip(accums, cy, cx, radii): accum_frac = accum / accum_tot if return_type == 'rad': x_rad = xlist[int(np.round(center_x))] y_rad = ylist[int(np.round(center_y))] r_rad = radius * self.psize outlist.append([x_rad, y_rad, r_rad, accum_frac]) else: outlist.append([center_x, center_y, radius, accum_frac]) print(accum_frac) print("%i ring diameter: %0.1f microarcsec" % (i, 2 * radius * pdim / ehc.RADPERUAS)) if display_results: if i > len(colors): color = colors[-1] else: color = colors[i] circ = mpl.patches.Circle((center_y, center_x), radius, fill=False, color=color) ax.add_patch(circ) i += 1 return outlist def fit_gauss(self, units='rad'): """Determine the Gaussian parameters that short baselines would measure for the source by diagonalizing the image covariance matrix. Returns parameters only for the primary polarization! Args: units (string): 'rad' returns values in radians, 'natural' returns FWHM in uas and PA in degrees Returns: (tuple) : a tuple (fwhm_maj, fwhm_min, theta) of the fit Gaussian parameters """ (x1, y1) = self.centroid() pdim = self.psize im = self.imvec xlist = np.arange(0, -self.xdim, -1) * pdim + (pdim * self.xdim) / 2.0 - pdim / 2.0 ylist = np.arange(0, -self.ydim, -1) * pdim + (pdim * self.ydim) / 2.0 - pdim / 2.0 x2 = (np.sum(np.outer(0.0 * ylist + 1.0, (xlist - x1)**2).ravel() * im) / np.sum(im)) y2 = (np.sum(np.outer((ylist - y1)**2, 0.0 * xlist + 1.0).ravel() * im) / np.sum(im)) xy = (np.sum(np.outer(ylist - y1, xlist - x1).ravel() * im) / np.sum(im)) eig = np.linalg.eigh(np.array(((x2, xy), (xy, y2)))) gauss_params = np.array((eig[0][1]**0.5 * (8. * np.log(2.))**0.5, eig[0][0]**0.5 * (8. * np.log(2.))**0.5, np.mod(np.arctan2(eig[1][1][0], eig[1][1][1]) + np.pi, np.pi))) if units == 'natural': gauss_params[0] /= ehc.RADPERUAS gauss_params[1] /= ehc.RADPERUAS gauss_params[2] *= 180. / np.pi return gauss_params def fit_gauss_empirical(self, paramguess=None): """Determine the Gaussian parameters that short baselines would measure Returns parameters only for the primary polarization! Args: paramguess (tuple): Initial guess (fwhm_maj, fwhm_min, theta) of fit parameters Returns: (tuple) : a tuple (fwhm_maj, fwhm_min, theta) of the fit Gaussian parameters. """ # This could be done using moments of the intensity distribution (self.fit_gauss) # but we'll use the visibility approach u_max = 1.0 / (self.psize * self.xdim) / 5.0 uv = np.array([[u, v] for u in np.arange(-u_max, u_max * 1.001, u_max / 4.0) for v in np.arange(-u_max, u_max * 1.001, u_max / 4.0)]) u = uv[:, 0] v = uv[:, 1] vis = np.dot(obsh.ftmatrix(self.psize, self.xdim, self.ydim, uv, pulse=self.pulse), self.imvec) if paramguess is None: paramguess = (self.psize * self.xdim / 4.0, self.psize * self.xdim / 4.0, 0.) def errfunc(p): vismodel = obsh.gauss_uv(u, v, self.total_flux(), p, x=0., y=0.) err = np.sum((np.abs(vis) - np.abs(vismodel))**2) return err # minimizer params optdict = {'maxiter': 5000, 'maxfev': 5000, 'xtol': paramguess[0] / 1e9, 'ftol': 1e-10} res = opt.minimize(errfunc, paramguess, method='Nelder-Mead', options=optdict) # Return in the form [maj, min, PA] x = res.x x[0] = np.abs(x[0]) x[1] = np.abs(x[1]) x[2] = np.mod(x[2], np.pi) if x[0] < x[1]: maj = x[1] x[1] = x[0] x[0] = maj x[2] = np.mod(x[2] + np.pi / 2.0, np.pi) return x def contour(self, contour_levels=[0.1, 0.25, 0.5, 0.75], contour_cfun=None, color='w', legend=True, show_im=True, cfun='afmhot', scale='lin', interp='gaussian', gamma=0.5, dynamic_range=1.e3, plotp=False, nvec=20, pcut=0.01, mcut=0.1, label_type='ticks', has_title=True, has_cbar=True, cbar_lims=(), cbar_unit=('Jy', 'pixel'), contour_im=False, power=0, beamcolor='w', export_pdf="", show=True, beamparams=None, cbar_orientation="vertical", scale_lw=1, beam_lw=1, cbar_fontsize=12, axis=None, scale_fontsize=12): """Display the image in a contour plot. Args: contour_levels (arr): the fractional contour levels relative to the max flux plotted contour_cfun (pyplot colormap function): the function used to get the RGB colors legend (bool): True to show a legend that says what each contour line corresponds to cfun (str): matplotlib.pyplot color function scale (str): image scaling in ['log','gamma','lin'] interp (str): image interpolation 'gauss' or 'lin' gamma (float): index for gamma scaling dynamic_range (float): dynamic range for log and gamma scaling plotp (bool): True to plot linear polarimetic image nvec (int): number of polarimetric vectors to plot pcut (float): minimum stokes P value for displaying polarimetric vectors as fraction of maximum Stokes I pixel mcut (float): minimum fractional polarization for plotting vectors label_type (string): specifies the type of axes labeling: 'ticks', 'scale', 'none' has_title (bool): True if you want a title on the plot has_cbar (bool): True if you want a colorbar on the plot cbar_lims (tuple): specify the lower and upper limit of the colorbar cbar_unit (tuple of strings): the unit of each pixel for the colorbar: 'Jy', 'm-Jy', '$\mu$Jy' export_pdf (str): path to exported PDF with plot show (bool): Display the plot if true show_im (bool): Display the image with the contour plot if True Returns: (matplotlib.figure.Figure): figure object with image """ image = self.copy() # or some generalized version for image sizes y = np.linspace(0, image.ydim, image.ydim) x = np.linspace(0, image.xdim, image.xdim) # make the image grid z = image.imvec.reshape((image.ydim, image.xdim)) maxz = max(image.imvec) if axis is None: ax = plt.gca() elif axis is not None: ax = axis plt.sca(axis) if show_im: if axis is not None: axis = image.display(cfun=cfun, scale=scale, interp=interp, gamma=gamma, dynamic_range=dynamic_range, plotp=plotp, nvec=nvec, pcut=pcut, mcut=mcut, label_type=label_type, has_title=has_title, has_cbar=has_cbar, cbar_lims=cbar_lims, cbar_unit=cbar_unit, beamparams=beamparams, cbar_orientation=cbar_orientation, scale_lw=1, beam_lw=1, cbar_fontsize=cbar_fontsize, axis=axis, scale_fontsize=scale_fontsize, power=power, beamcolor=beamcolor) else: image.display(cfun=cfun, scale=scale, interp=interp, gamma=gamma, dynamic_range=dynamic_range, plotp=plotp, nvec=nvec, pcut=pcut, mcut=mcut, label_type=label_type, has_title=has_title, has_cbar=has_cbar, cbar_lims=cbar_lims, cbar_unit=cbar_unit, beamparams=beamparams, cbar_orientation=cbar_orientation, scale_lw=1, beam_lw=1, cbar_fontsize=cbar_fontsize, axis=None, scale_fontsize=scale_fontsize, power=power, beamcolor=beamcolor) else: if contour_im is False: image.imvec = 0.0 * image.imvec else: image = contour_im.copy() if axis is not None: axis = image.display(cfun=cfun, scale=scale, interp=interp, gamma=gamma, dynamic_range=dynamic_range, plotp=plotp, nvec=nvec, pcut=pcut, mcut=mcut, label_type=label_type, has_title=has_title, has_cbar=has_cbar, cbar_lims=cbar_lims, cbar_unit=cbar_unit, beamparams=beamparams, cbar_orientation=cbar_orientation, scale_lw=1, beam_lw=1, cbar_fontsize=cbar_fontsize, axis=axis, scale_fontsize=scale_fontsize, power=power, beamcolor=beamcolor) else: image.display(cfun=cfun, scale=scale, interp=interp, gamma=gamma, dynamic_range=dynamic_range, plotp=plotp, nvec=nvec, pcut=pcut, mcut=mcut, label_type=label_type, has_title=has_title, has_cbar=has_cbar, cbar_lims=cbar_lims, cbar_unit=cbar_unit, beamparams=beamparams, cbar_orientation=cbar_orientation, scale_lw=1, beam_lw=1, cbar_fontsize=cbar_fontsize, axis=None, scale_fontsize=scale_fontsize, power=power, beamcolor=beamcolor) if axis is None: ax = plt.gcf() if axis is not None: ax = axis if axis is not None: ax = axis plt.sca(axis) count = 0. for level in contour_levels: if not(contour_cfun is None): rgbval = contour_cfun(count / len(contour_levels)) rgbstring = '#%02x%02x%02x' % (rgbval[0] * 256, rgbval[1] * 256, rgbval[2] * 256) else: rgbstring = color cs = plt.contour(x, y, z, levels=[level * maxz], colors=rgbstring, cmap=None) count += 1 cs.collections[0].set_label(str(int(level * 100)) + '%') if legend: plt.legend() if show: #plt.show(block=False) ehc.show_noblock() if export_pdf != "": ax.savefig(export_pdf, bbox_inches='tight', pad_inches=0) elif axis is not None: return axis return ax def display(self, pol=None, cfun=False, interp='gaussian', scale='lin', gamma=0.5, dynamic_range=1.e3, plotp=False, plot_stokes=False, nvec=20, vec_cfun=None, scut=0, pcut=0.1, mcut=0.01, scale_ticks=False, log_offset=False, label_type='ticks', has_title=True, alpha=1, has_cbar=True, only_cbar=False, cbar_lims=(), cbar_unit=('Jy', 'pixel'), export_pdf="", pdf_pad_inches=0.0, show=True, beamparams=None, cbar_orientation="vertical", scinot=False, scale_lw=1, beam_lw=1, cbar_fontsize=12, axis=None, scale_fontsize=12, power=0, beamcolor='w', beampos='right', scalecolor='w',dpi=500): """Display the image. Args: pol (str): which polarization image to plot. Default is self.pol_prim pol='spec' will plot spectral index pol='curv' will plot spectral curvature cfun (str): matplotlib.pyplot color function. False changes with 'pol', but is 'afmhot' for most interp (str): image interpolation 'gauss' or 'lin' scale (str): image scaling in ['log','gamma','lin'] gamma (float): index for gamma scaling dynamic_range (float): dynamic range for log and gamma scaling plotp (bool): True to plot linear polarimetic image plot_stokes (bool): True to plot stokes subplots along with plotp nvec (int): number of polarimetric vectors to plot vec_cfun (str): color function for vectors colored by lin pol frac scut (float): minimum stokes I value for displaying spectral index pcut (float): minimum stokes I value for displaying polarimetric vectors (fraction of maximum Stokes I) mcut (float): minimum fractional polarization value for displaying vectors label_type (string): specifies the type of axes labeling: 'ticks', 'scale', 'none' has_title (bool): True if you want a title on the plot has_cbar (bool): True if you want a colorbar on the plot cbar_lims (tuple): specify the lower and upper limit of the colorbar cbar_unit (tuple): specifies the unit of the colorbar: e.g., ('Jy','pixel'),('m-Jy','$\mu$as$^2$'),['Tb'] beamparams (list): [fwhm_maj, fwhm_min, theta], set to plot beam contour export_pdf (str): path to exported PDF with plot show (bool): Display the plot if true scinot (bool): Display numbers/units in scientific notation scale_lw (float): Linewidth of the scale overlay beam_lw (float): Linewidth of the beam overlay cbar_fontsize (float): Fontsize of the text elements of the colorbar axis (matplotlib.axes.Axes): An axis object scale_fontsize (float): Fontsize of the scale label power (float): Passed to colorbar for division of ticks by 1e(power) beamcolor (str): color of the beam overlay scalecolor (str): color of the scale label overlay Returns: (matplotlib.figure.Figure): figure object with image """ if (interp in ['gauss', 'gaussian', 'Gaussian', 'Gauss']): interp = 'gaussian' elif (interp in ['linear','bilinear']): interp = 'bilinear' else: interp = 'none' if not(beamparams is None or beamparams is False): if beamparams[0] > self.fovx() or beamparams[1] > self.fovx(): raise Exception("beam FWHM must be smaller than fov!") if self.polrep == 'stokes' and pol is None: pol = 'I' elif self.polrep == 'circ' and pol is None: pol = 'RR' if only_cbar: has_cbar = True label_type = 'none' has_title = False if axis is None: f = plt.figure() plt.clf() if axis is not None: plt.sca(axis) f = plt.gcf() # Get unit scale factor factor = 1. fluxunit = 'Jy' areaunit = 'pixel' if cbar_unit[0] in ['m-Jy', 'mJy']: fluxunit = 'mJy' factor *= 1.e3 elif cbar_unit[0] in ['muJy', r'$\mu$-Jy', r'$\mu$Jy']: fluxunit = r'$\mu$Jy' factor *= 1.e6 elif cbar_unit[0] == 'Tb': factor = 3.254e13 / (self.rf**2 * self.psize**2) fluxunit = 'Brightness Temperature (K)' areaunit = '' if power != 0: fluxunit = (r'Brightness Temperature ($10^{{' + str(power) + '}}$ K)') else: fluxunit = 'Brightness Temperature (K)' elif cbar_unit[0] in ['Jy']: fluxunit = 'Jy' factor *= 1. else: factor = 1 fluxunit = cbar_unit[0] areaunit = '' if len(cbar_unit) == 1 or cbar_unit[0] == 'Tb': factor *= 1. elif cbar_unit[1] == 'pixel': factor *= 1. if power != 0: areaunit = areaunit + (r' ($10^{{' + str(power) + '}}$ K)') elif cbar_unit[1] in ['$arcseconds$^2$', 'as$^2$', 'as2']: areaunit = 'as$^2$' fovfactor = self.xdim * self.psize * (1 / ehc.RADPERAS) factor *= (1. / fovfactor)**2 / (1. / self.xdim)**2 if power != 0: areaunit = areaunit + (r' ($10^{{' + str(power) + '}}$ K)') elif cbar_unit[1] in [r'$\m-arcseconds$^2$', 'mas$^2$', 'mas2']: areaunit = 'mas$^2$' fovfactor = self.xdim * self.psize * (1 / ehc.RADPERUAS) / 1000. factor *= (1. / fovfactor)**2 / (1. / self.xdim)**2 if power != 0: areaunit = areaunit + (r' ($10^{{' + str(power) + '}}$ K)') elif cbar_unit[1] in [r'$\mu$-arcseconds$^2$', r'$\mu$as$^2$', 'muas2']: areaunit = r'$\mu$as$^2$' fovfactor = self.xdim * self.psize * (1 / ehc.RADPERUAS) factor *= (1. / fovfactor)**2 / (1. / self.xdim)**2 if power != 0: areaunit = areaunit + (r' ($10^{{' + str(power) + '}}$ K)') elif cbar_unit[1] == 'beam': if (beamparams is None or beamparams is False): print("Cannot convert to Jy/beam without beamparams!") else: areaunit = 'beam' beamarea = (2.0 * np.pi * beamparams[0] * beamparams[1] / (8.0 * np.log(2))) factor *= beamarea / (self.psize**2) if power != 0: areaunit = areaunit + (r' ($10^{{' + str(power) + '}}$ K)') else: raise ValueError('cbar_unit ' + cbar_unit[1] + ' is not a possible option') if not plotp: # Plot a single polarization image cbar_lims_p = () if pol.lower() == 'spec': imvec = self.specvec.copy() # mask out low total intensity values mask = self.imvec < (scut * np.max(self.imvec)) imvec[mask] = np.nan unit = r'$\alpha$' factor = 1 cbar_lims_p = [-5, 5] cfun_p = 'seismic' elif pol.lower() == 'curv': imvec = self.curvvec.copy() # mask out low total intensity values mask = self.imvec < (scut * np.max(self.imvec)) imvec[mask] = np.nan unit = r'$\beta$' factor = 1 cbar_lims_p = [-5, 5] cfun_p = 'seismic' elif pol.lower() == 'm': imvec = self.mvec.copy() unit = r'$\|\breve{m}|$' factor = 1 cbar_lims_p = [0, 1] cfun_p = 'cool' elif pol.lower() == 'p': imvec = self.mvec * self.ivec unit = r'$\|P|$' cfun_p = 'afmhot' elif pol.lower() == 'chi' or pol.lower() == 'evpa': imvec = self.chivec.copy() / ehc.DEGREE unit = r'$\chi (^\circ)$' factor = 1 cbar_lims_p = [0, 180] cfun_p = 'hsv' elif pol.lower() == 'e': imvec = self.evec.copy() unit = r'$E$-mode' cfun_p = 'Spectral' elif pol.lower() == 'b': imvec = self.bvec.copy() unit = r'$B$-mode' cfun_p = 'Spectral' else: pol = pol.upper() if pol == 'V': cfun_p = 'bwr' else: cfun_p = 'afmhot' try: imvec = np.array(self._imdict[pol]).reshape(-1) / (10.**power) except KeyError: try: if self.polrep == 'stokes': im2 = self.switch_polrep('circ') elif self.polrep == 'circ': im2 = self.switch_polrep('stokes') imvec = np.array(im2._imdict[pol]).reshape(-1) / (10.**power) except KeyError: raise Exception("Cannot make pol %s image in display()!" % pol) unit = fluxunit if areaunit != '': unit += ' / ' + areaunit if np.any(np.imag(imvec)): print('casting complex image to abs value') imvec = np.real(imvec) imvec = imvec * factor imarr = imvec.reshape(self.ydim, self.xdim) if scale == 'log': if (imarr < 0.0).any(): print('clipping values less than 0 in display') imarr[imarr < 0.0] = 0.0 if log_offset: imarr = np.log10(imarr + log_offset / dynamic_range) else: imarr = np.log10(imarr + np.max(imarr) / dynamic_range) unit = r'$\log_{10}$(' + unit + ')' if scale == 'gamma': if (imarr < 0.0).any(): print('clipping values less than 0 in display') imarr[imarr < 0.0] = 0.0 imarr = (imarr + np.max(imarr) / dynamic_range)**(gamma) unit = '(' + unit + ')^' + str(gamma) if not cbar_lims and cbar_lims_p: cbar_lims = cbar_lims_p if cbar_lims: cbar_lims[0] = cbar_lims[0] / (10.**power) cbar_lims[1] = cbar_lims[1] / (10.**power) imarr[imarr > cbar_lims[1]] = cbar_lims[1] imarr[imarr < cbar_lims[0]] = cbar_lims[0] if has_title: plt.title("%s %.2f GHz %s" % (self.source, self.rf / 1e9, pol), fontsize=16) if not cfun: cfun = cfun_p cmap = plt.get_cmap(cfun).copy() cmap.set_bad(color='whitesmoke') if cbar_lims: im = plt.imshow(imarr, alpha=alpha, cmap=cmap, interpolation=interp, vmin=cbar_lims[0], vmax=cbar_lims[1]) else: im = plt.imshow(imarr, alpha=alpha, cmap=cmap, interpolation=interp) if not(beamparams is None or beamparams is False): if beampos=='left': beamparams = [beamparams[0], beamparams[1], beamparams[2], +.4 * self.fovx(), -.4 * self.fovy()] else: beamparams = [beamparams[0], beamparams[1], beamparams[2], -.35 * self.fovx(), -.35 * self.fovy()] beamimage = self.copy() beamimage.imvec *= 0 beamimage = beamimage.add_gauss(1, beamparams) halflevel = 0.5 * np.max(beamimage.imvec) beamimarr = (beamimage.imvec).reshape(beamimage.ydim, beamimage.xdim) plt.contour(beamimarr, levels=[halflevel], colors=beamcolor, linewidths=beam_lw) if has_cbar: if only_cbar: im.set_visible(False) cb = plt.colorbar(im, fraction=0.046, pad=0.04, orientation=cbar_orientation) cb.set_label(unit, fontsize=float(cbar_fontsize)) if cbar_fontsize != 12: cb.set_label(unit, fontsize=float(cbar_fontsize) / 1.5) cb.ax.tick_params(labelsize=cbar_fontsize) if cbar_lims: plt.clim(cbar_lims[0], cbar_lims[1]) if scinot: cb.formatter.set_powerlimits((0, 0)) cb.update_ticks() else: # plot polarization with ticks! im_stokes = self.switch_polrep(polrep_out='stokes') imvec = np.array(im_stokes.imvec).reshape(-1) / (10**power) qvec = np.array(im_stokes.qvec).reshape(-1) / (10**power) uvec = np.array(im_stokes.uvec).reshape(-1) / (10**power) vvec = np.array(im_stokes.vvec).reshape(-1) / (10**power) if len(imvec) == 0: imvec = np.zeros(im_stokes.ydim * im_stokes.xdim) if len(qvec) == 0: qvec = np.zeros(im_stokes.ydim * im_stokes.xdim) if len(uvec) == 0: uvec = np.zeros(im_stokes.ydim * im_stokes.xdim) if len(vvec) == 0: vvec = np.zeros(im_stokes.ydim * im_stokes.xdim) imvec *= factor qvec *= factor uvec *= factor vvec *= factor imarr = (imvec).reshape(im_stokes.ydim, im_stokes.xdim) qarr = (qvec).reshape(im_stokes.ydim, im_stokes.xdim) uarr = (uvec).reshape(im_stokes.ydim, im_stokes.xdim) varr = (vvec).reshape(im_stokes.ydim, im_stokes.xdim) unit = fluxunit if areaunit != '': unit = fluxunit + ' / ' + areaunit # only the stokes I image gets transformed! TODO imarr2 = imarr.copy() if scale == 'log': if (imarr2 < 0.0).any(): print('clipping values less than 0 in display') imarr2[imarr2 < 0.0] = 0.0 imarr2 = np.log10(imarr2 + np.max(imarr2) / dynamic_range) unit = r'$\log_{10}$(' + unit + ')' if scale == 'gamma': if (imarr2 < 0.0).any(): print('clipping values less than 0 in display') imarr2[imarr2 < 0.0] = 0.0 imarr2 = (imarr2 + np.max(imarr2) / dynamic_range)**(gamma) unit = '(' + unit + ')^gamma' if cbar_lims: cbar_lims[0] = cbar_lims[0] / (10.**power) cbar_lims[1] = cbar_lims[1] / (10.**power) imarr2[imarr2 > cbar_lims[1]] = cbar_lims[1] imarr2[imarr2 < cbar_lims[0]] = cbar_lims[0] # polarization ticks m = (np.abs(qvec + 1j * uvec) / imvec).reshape(self.ydim, self.xdim) thin = self.xdim // nvec maska = (imvec).reshape(self.ydim, self.xdim) > pcut * np.max(imvec) maskb = (np.abs(qvec + 1j * uvec) / imvec).reshape(self.ydim, self.xdim) > mcut mask = maska * maskb mask2 = mask[::thin, ::thin] x = (np.array([[i for i in range(self.xdim)] for j in range(self.ydim)])[::thin, ::thin]) x = x[mask2] y = (np.array([[j for i in range(self.xdim)] for j in range(self.ydim)])[::thin, ::thin]) y = y[mask2] a = (-np.sin(np.angle(qvec + 1j * uvec) / 2).reshape(self.ydim, self.xdim)[::thin, ::thin]) a = a[mask2] b = (np.cos(np.angle(qvec + 1j * uvec) / 2).reshape(self.ydim, self.xdim)[::thin, ::thin]) b = b[mask2] m = (np.abs(qvec + 1j * uvec) / imvec).reshape(self.ydim, self.xdim) p = (np.abs(qvec + 1j * uvec)).reshape(self.ydim, self.xdim) m[np.logical_not(mask)] = np.nan p[np.logical_not(mask)] = np.nan qarr[np.logical_not(mask)] = np.nan uarr[np.logical_not(mask)] = np.nan voi = (vvec / imvec).reshape(self.ydim, self.xdim) voi[np.logical_not(mask)] = np.nan if scale_ticks: pticks = ((np.abs(qvec + 1j * uvec)).reshape(self.ydim, self.xdim))[::thin, ::thin][mask2] pscale = (pticks - np.min(pticks))/(np.max(pticks) - np.min(pticks)) a *= pscale b *= pscale # Little pol plots if plot_stokes: maxval = 1.1 * np.max((np.max(np.abs(uarr)), np.max(np.abs(qarr)), np.max(np.abs(varr)))) # P Plot ax = plt.subplot2grid((2, 5), (0, 0)) im = plt.imshow(p, cmap=plt.get_cmap('bwr'), interpolation=interp, vmin=-maxval, vmax=maxval) plt.contour(imarr, colors='k', linewidths=.25) ax.set_xticks([]) ax.set_yticks([]) if has_title: plt.title('P') if has_cbar: cbaxes = plt.gcf().add_axes([0.1, 0.2, 0.01, 0.6]) cbar = plt.colorbar(im, fraction=0.046, pad=0.04, cax=cbaxes, label=unit, orientation='vertical') cbar.ax.tick_params(labelsize=cbar_fontsize) cbaxes.yaxis.set_ticks_position('left') cbaxes.yaxis.set_label_position('left') if cbar_lims: plt.clim(-maxval, maxval) cmap = plt.get_cmap('bwr') cmap.set_bad('whitesmoke') # V Plot ax = plt.subplot2grid((2, 5), (0, 1)) plt.imshow(varr, cmap=cmap, interpolation=interp, vmin=-maxval, vmax=maxval) ax.set_xticks([]) ax.set_yticks([]) if has_title: plt.title('V') # Q Plot ax = plt.subplot2grid((2, 5), (1, 0)) plt.imshow(qarr, cmap=cmap, interpolation=interp, vmin=-maxval, vmax=maxval) plt.contour(imarr, colors='k', linewidths=.25) ax.set_xticks([]) ax.set_yticks([]) if has_title: plt.title('Q') # U Plot ax = plt.subplot2grid((2, 5), (1, 1)) plt.imshow(uarr, cmap=cmap, interpolation=interp, vmin=-maxval, vmax=maxval) plt.contour(imarr, colors='k', linewidths=.25) ax.set_xticks([]) ax.set_yticks([]) if has_title: plt.title('U') # V/I plot ax = plt.subplot2grid((2, 5), (0, 2)) cmap = plt.get_cmap('seismic') cmap.set_bad('whitesmoke') im = plt.imshow(voi, cmap=cmap, interpolation=interp, vmin=-1, vmax=1) if has_title: plt.title('V/I') plt.contour(imarr, colors='k', linewidths=.25) ax.set_xticks([]) ax.set_yticks([]) if has_cbar: cbaxes = plt.gcf().add_axes([0.125, 0.1, 0.425, 0.01]) cbar = plt.colorbar(im, fraction=0.046, pad=0.04, cax=cbaxes, label='|m|', orientation='horizontal') cbar.ax.tick_params(labelsize=cbar_fontsize) cbaxes.yaxis.set_ticks_position('right') cbaxes.yaxis.set_label_position('right') if cbar_lims: plt.clim(-1, 1) # m plot ax = plt.subplot2grid((2, 5), (1, 2)) plt.imshow(m, cmap=plt.get_cmap('seismic'), interpolation=interp, vmin=-1, vmax=1) ax.set_xticks([]) ax.set_yticks([]) if has_title: plt.title('m') plt.contour(imarr, colors='k', linewidths=.25) plt.quiver(x, y, a, b, headaxislength=20, headwidth=1, headlength=.01, minlength=0, minshaft=1, width=.01 * self.xdim, units='x', pivot='mid', color='k', angles='uv', scale=1.0 / thin) plt.quiver(x, y, a, b, headaxislength=20, headwidth=1, headlength=.01, minlength=0, minshaft=1, width=.005 * self.xdim, units='x', pivot='mid', color='w', angles='uv', scale=1.1 / thin) # Big Stokes I plot --axis ax = plt.subplot2grid((2, 5), (0, 3), rowspan=2, colspan=2) else: ax = plt.gca() if not cfun: cfun = 'afmhot' cmap = plt.get_cmap(cfun) cmap.set_bad(color='whitesmoke') # Big Stokes I plot if cbar_lims: im = plt.imshow(imarr2, cmap=cmap, interpolation=interp, vmin=cbar_lims[0], vmax=cbar_lims[1]) else: im = plt.imshow(imarr2, cmap, interpolation=interp) if vec_cfun is None: plt.quiver(x, y, a, b, headaxislength=20, headwidth=1, headlength=.01, minlength=0, minshaft=1, width=.01 * self.xdim, units='x', pivot='mid', color='k', angles='uv', scale=1.0 / thin) plt.quiver(x, y, a, b, headaxislength=20, headwidth=1, headlength=.01, minlength=0, minshaft=1, width=.005 * self.xdim, units='x', pivot='mid', color='w', angles='uv', scale=1.1 / thin) else: mthin = ( np.abs( qvec + 1j * uvec) / imvec).reshape( self.ydim, self.xdim)[ ::thin, ::thin] mthin = mthin[mask2] plt.quiver(x, y, a, b, headaxislength=20, headwidth=1, headlength=.01, minlength=0, minshaft=1, width=.01 * self.xdim, units='x', pivot='mid', color='w', angles='uv', scale=1.0 / thin) plt.quiver(x, y, a, b, mthin, norm=mpl.colors.Normalize(vmin=0, vmax=1.), cmap=vec_cfun, headaxislength=20, headwidth=1, headlength=.01, minlength=0, minshaft=1, width=.007 * self.xdim, units='x', pivot='mid', angles='uv', scale=1.1 / thin) if not(beamparams is None or beamparams is False): beamparams = [beamparams[0], beamparams[1], beamparams[2], -.35 * self.fovx(), -.35 * self.fovy()] beamimage = self.copy() beamimage.imvec *= 0 beamimage = beamimage.add_gauss(1, beamparams) halflevel = 0.5 * np.max(beamimage.imvec) beamimarr = (beamimage.imvec).reshape(beamimage.ydim, beamimage.xdim) plt.contour(beamimarr, levels=[halflevel], colors=beamcolor, linewidths=beam_lw) if has_cbar: cbar = plt.colorbar(im, fraction=0.046, pad=0.04, label=unit, orientation=cbar_orientation) cbar.ax.tick_params(labelsize=cbar_fontsize) if cbar_lims: plt.clim(cbar_lims[0], cbar_lims[1]) if has_title: plt.title("%s %.1f GHz : m=%.1f%% , v=%.1f%%" % (self.source, self.rf / 1e9, self.lin_polfrac() * 100, self.circ_polfrac() * 100), fontsize=12) f.subplots_adjust(hspace=.1, wspace=0.3) # Label the plot ax = plt.gca() if label_type == 'ticks': xticks = obsh.ticks(self.xdim, self.psize / ehc.RADPERAS / 1e-6) yticks = obsh.ticks(self.ydim, self.psize / ehc.RADPERAS / 1e-6) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel(r'Relative RA ($\mu$as)') plt.ylabel(r'Relative Dec ($\mu$as)') elif label_type == 'scale': plt.axis('off') fov_uas = self.xdim * self.psize / ehc.RADPERUAS # get the fov in uas roughfactor = 1. / 3. # make the bar about 1/3 the fov fov_scale = int(math.ceil(fov_uas * roughfactor / 10.0)) * 10 start = self.xdim * roughfactor / 3.0 # select the start location end = start + fov_scale / fov_uas * self.xdim # determine the end location plt.plot([start, end], [self.ydim - start - 5, self.ydim - start - 5], color=scalecolor, lw=scale_lw) # plot a line plt.text(x=(start + end) / 2.0, y=self.ydim - start + self.ydim / 30, s=str(fov_scale) + r" $\mu$as", color=scalecolor, ha="center", va="center", fontsize=scale_fontsize) ax = plt.gca() if axis is None: ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) elif label_type == 'none' or label_type is None: plt.axis('off') ax = plt.gca() if axis is None: ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) # Show or save to file if axis is not None: return axis if show: #plt.show(block=False) ehc.show_noblock() if export_pdf != "": f.savefig(export_pdf, bbox_inches='tight', pad_inches=pdf_pad_inches, dpi=dpi) return f def overlay_display(self, im_list, color_coding=np.array([[1, 0, 1], [0, 1, 0]]), export_pdf="", show=True, f=False, shift=[0, 0], final_fov=False, interp='gaussian', scale='lin', gamma=0.5, dynamic_range=[1.e3], rescale=True): """Overlay primary polarization images of a list of images to compare structures. Args: im_list (list): list of images to align to the current image color_coding (numpy.array): Color coding of each image in the composite f (matplotlib.pyplot.figure): Figure to overlay on top of export_pdf (str): path to exported PDF with plot show (bool): Display the plot if true shift (list): list of manual image shifts, otherwise use the shift from maximum cross-correlation final_fov (float): fov of the comparison image (rad). If False it is the largestinput image fov scale (str) : compare images in 'log','lin',or 'gamma' scale gamma (float): exponent for gamma scale comparison dynamic_range (float): dynamic range for log and gamma scale comparisons Returns: (matplotlib.figure.Figure): figure object with image """ if not f: f = plt.figure() plt.clf() if len(dynamic_range) == 1: dynamic_range = dynamic_range * np.ones(len(im_list) + 1) if not isinstance(shift, np.ndarray) and not isinstance(shift, bool): shift = matlib.repmat(shift, len(im_list), 1) psize = self.psize max_fov = np.max([self.xdim * self.psize, self.ydim * self.psize]) for i in range(0, len(im_list)): psize = np.min([psize, im_list[i].psize]) max_fov = np.max([max_fov, im_list[i].xdim * im_list[i].psize, im_list[i].ydim * im_list[i].psize]) if not final_fov: final_fov = max_fov (im_list_shift, shifts, im0_pad) = self.align_images(im_list, shift=shift, final_fov=final_fov, scale=scale, gamma=gamma, dynamic_range=dynamic_range) # unit = 'Jy/pixel' if scale == 'log': # unit = 'log(Jy/pixel)' log_offset = np.max(im0_pad.imvec) / dynamic_range[0] im0_pad.imvec = np.log10(im0_pad.imvec + log_offset) for i in range(0, len(im_list)): log_offset = np.max(im_list_shift[i].imvec) / dynamic_range[i + 1] im_list_shift[i].imvec = np.log10(im_list_shift[i].imvec + log_offset) if scale == 'gamma': # unit = '(Jy/pixel)^gamma' log_offset = np.max(im0_pad.imvec) / dynamic_range[0] im0_pad.imvec = (im0_pad.imvec + log_offset)**(gamma) for i in range(0, len(im_list)): log_offset = np.max(im_list_shift[i].imvec) / dynamic_range[i + 1] im_list_shift[i].imvec = (im_list_shift[i].imvec + log_offset)**(gamma) composite_img = np.zeros((im0_pad.ydim, im0_pad.xdim, 3)) for i in range(-1, len(im_list)): if i == -1: immtx = im0_pad.imvec.reshape(im0_pad.ydim, im0_pad.xdim) else: immtx = im_list_shift[i].imvec.reshape(im0_pad.ydim, im0_pad.xdim) if rescale: immtx = immtx - np.min(np.min(immtx)) immtx = immtx / np.max(np.max(immtx)) for c in range(0, 3): composite_img[:, :, c] = composite_img[:, :, c] + (color_coding[i + 1, c] * immtx) if rescale is False: composite_img = composite_img - np.min(np.min(np.min(composite_img))) composite_img = composite_img / np.max(np.max(np.max(composite_img))) plt.subplot(111) plt.title('%s MJD %i %.2f GHz' % (self.source, self.mjd, self.rf / 1e9), fontsize=20) plt.imshow(composite_img, interpolation=interp) xticks = obsh.ticks(im0_pad.xdim, im0_pad.psize / ehc.RADPERAS / 1e-6) yticks = obsh.ticks(im0_pad.ydim, im0_pad.psize / ehc.RADPERAS / 1e-6) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel(r'Relative RA ($\mu$as)') plt.ylabel(r'Relative Dec ($\mu$as)') if show: #plt.show(block=False) ehc.show_noblock() if export_pdf != "": f.savefig(export_pdf, bbox_inches='tight') return (f, shift) def save_txt(self, fname): """Save image data to text file. Args: fname (str): path to output text file Returns: """ ehtim.io.save.save_im_txt(self, fname) return def save_fits(self, fname): """Save image data to a fits file. Args: fname (str): path to output fits file Returns: """ ehtim.io.save.save_im_fits(self, fname) return ################################################################################################### # Image creation functions ################################################################################################### def make_square(obs, npix, fov, pulse=ehc.PULSE_DEFAULT, polrep='stokes', pol_prim=None): """Make an empty square image. Args: obs (Obsdata): an obsdata object with the image metadata npix (int): the pixel size of each axis fov (float): the field of view of each axis in radians pulse (function): the function convolved with the pixel values for continuous image polrep (str): polarization representation, either 'stokes' or 'circ' pol_prim (str): The default image: I,Q,U or V for Stokes, or RR,LL,LR,RL for Circular Returns: (Image): an image object """ outim = make_empty(npix, fov, obs.ra, obs.dec, rf=obs.rf, source=obs.source, polrep=polrep, pol_prim=pol_prim, pulse=pulse, mjd=obs.mjd, time=obs.tstart) return outim def make_empty(npix, fov, ra, dec, rf=ehc.RF_DEFAULT, source=ehc.SOURCE_DEFAULT, polrep='stokes', pol_prim=None, pulse=ehc.PULSE_DEFAULT, mjd=ehc.MJD_DEFAULT, time=0.): """Make an empty square image. Args: npix (int): the pixel size of each axis fov (float): the field of view of each axis in radians ra (float): The source Right Ascension in fractional hours dec (float): The source declination in fractional degrees rf (float): The image frequency in Hz source (str): The source name polrep (str): polarization representation, either 'stokes' or 'circ' pol_prim (str): The default image: I,Q,U or V for Stokes, RR,LL,LR,RL for Circular pulse (function): The function convolved with the pixel values for continuous image. mjd (int): The integer MJD of the image time (float): The observing time of the image (UTC hours) Returns: (Image): an image object """ pdim = fov / float(npix) npix = int(npix) imarr = np.zeros((npix, npix)) outim = Image(imarr, pdim, ra, dec, polrep=polrep, pol_prim=pol_prim, rf=rf, source=source, mjd=mjd, time=time, pulse=pulse) return outim def load_image(image, display=False, aipscc=False): """Read in an image from a text, .fits, .h5, or ehtim.image.Image object Args: image (str/Image): path to input file display (boolean): determine whether to display the image default aipscc (boolean): if True, then AIPS CC table will be loaded instead of the original brightness distribution. Returns: (Image): loaded image object (boolean): False if the image cannot be read """ is_unicode = False try: if isinstance(image, basestring): is_unicode = True except NameError: # python 3 pass if isinstance(image, str) or is_unicode: if image.endswith('.fits'): im = ehtim.io.load.load_im_fits(image, aipscc=aipscc) elif image.endswith('.txt'): im = ehtim.io.load.load_im_txt(image) elif image.endswith('.h5'): im = ehtim.io.load.load_im_hdf5(image) else: print("Image format is not recognized. Was expecting .fits, .txt, or Image.") print(" Got <.{0}>. Returning False.".format(image.split('.')[-1])) return False elif isinstance(image, ehtim.image.Image): im = image else: print("Image format is not recognized. Was expecting .fits, .txt, or Image.") print(" Got {0}. Returning False.".format(type(image))) return False if display: im.display() return im def load_txt(fname, polrep='stokes', pol_prim=None, pulse=ehc.PULSE_DEFAULT, zero_pol=True): """Read in an image from a text file. Args: fname (str): path to input text file pulse (function): The function convolved with the pixel values for continuous image. polrep (str): polarization representation, either 'stokes' or 'circ' pol_prim (str): The default image: I,Q,U or V for Stokes, RR,LL,LR,RL for Circular zero_pol (bool): If True, loads any missing polarizations as zeros Returns: (Image): loaded image object """ return ehtim.io.load.load_im_txt(fname, pulse=pulse, polrep=polrep, pol_prim=pol_prim, zero_pol=True) def load_fits(fname, aipscc=False, pulse=ehc.PULSE_DEFAULT, polrep='stokes', pol_prim=None, zero_pol=False): """Read in an image from a FITS file. Args: fname (str): path to input fits file aipscc (bool): if True, then AIPS CC table will be loaded pulse (function): The function convolved with the pixel values for continuous image. polrep (str): polarization representation, either 'stokes' or 'circ' pol_prim (str): The default image: I,Q,U or V for Stokes, RR,LL,LR,RL for Circular zero_pol (bool): If True, loads any missing polarizations as zeros Returns: (Image): loaded image object """ return ehtim.io.load.load_im_fits(fname, aipscc=aipscc, pulse=pulse, polrep=polrep, pol_prim=pol_prim, zero_pol=zero_pol) def avg_imlist(imlist): """Average a list of images. Args: imlist (list): list of image objects Returns: (Image): average image object """ imavg = imlist[0] if np.any(np.array([im.polrep for im in imlist]) != imavg.polrep): raise Exception("im.polrep in all images are not the same in avg_imlist!") if np.any(np.array([im.source for im in imlist]) != imavg.source): raise Exception("im.source in all images are not the same in avg_imlist!") if np.any(np.array([im.rf for im in imlist]) != imavg.rf): raise Exception("im.rf in all images are not the same in avg_imlist!") keys = imavg._imdict.keys() for im in imlist[1:]: for key in keys: imavg._imdict[key] += im._imdict[key] for key in keys: imavg._imdict[key] /= float(len(imlist)) return imavg def get_specim(imlist, reffreq, fit_order=2): """get the spectral index/curvature from a list of images""" freqs = [im.rf for im in imlist] # remove any zeros in the images for im in imlist: im.imvec[im.imvec<=0] = np.min(im.imvec[im.imvec!=0]) # fit xfit = np.log(np.array(freqs)/reffreq) yfit = np.log(np.array([im.imvec for im in imlist])) if fit_order == 2: coeffs = np.polyfit(xfit,yfit,2) beta = coeffs[0] alpha = coeffs[1] imvec = np.exp(coeffs[2]) elif fit_order == 1: coeffs = np.polyfit(xfit,yfit,1) alpha = coeffs[0] beta = 0*alpha imvec = np.exp(coeffs[1]) else: raise Exception() outim = imlist[0].copy() #TODO no polarization outim.imvec = imvec outim.rf = reffreq outim.specvec = alpha outim.curvvec = beta return outim def blur_mf(im,freqs,kernel,fit_order=2): """blur multifrequncy images with the same beam""" reffreq = im.rf # remove any zeros in the images imlist = [im.get_image_mf(rf).blur_circ(kernel) for rf in freqs] for image in imlist: image.imvec[image.imvec<=0] = np.min(image.imvec[image.imvec!=0]) xfit = np.log(np.array(freqs)/reffreq) yfit = np.log(np.array([im.imvec for im in imlist])) if fit_order == 2: coeffs = np.polyfit(xfit,yfit,2) beta = coeffs[0] alpha = coeffs[1] elif fit_order == 1: coeffs = np.polyfit(xfit,yfit,1) alpha = coeffs[0] beta = 0*alpha else: alpha = 0*yfit beta = 0*yfit outim = im.blur_circ(kernel) outim.specvec = alpha outim.curvvec = beta return outim
achaelREPO_NAMEeht-imagingPATH_START.@eht-imaging_extracted@eht-imaging-main@ehtim@image.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/decorator/py2/tests/__init__.py", "type": "Python" }
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@decorator@py2@tests@__init__.py@.PATH_END.py
{ "filename": "fft_ops.py", "repo_name": "simonsobs/sotodlib", "repo_path": "sotodlib_extracted/sotodlib-master/sotodlib/tod_ops/fft_ops.py", "type": "Python" }
"""FFTs and related operations """ import sys import numdifftools as ndt import numpy as np import pyfftw import so3g from scipy.optimize import minimize from scipy.signal import welch from sotodlib import core from . import detrend_tod def _get_num_threads(): # Guess how many threads we should be using in FFT ops... return so3g.useful_info().get("omp_num_threads", 4) def rfft( aman, detrend="linear", resize="zero_pad", window=np.hanning, axis_name="samps", signal_name="signal", delta_t=None, ): """Return the real fft of aman.signal_name along the axis axis_name. Does not change the data in the axis manager. Arguments: aman: axis manager detrend: Method of detrending to be done before ffting. Can be 'linear', 'mean', or None. Note that detrending here can be slow for large arrays. resize: How to resize the axis to increase fft speed. 'zero_pad' will increase to the next 2**N. 'trim' will cut out so the factorization of N contains only low primes. None will not change the axis length and might be quite slow. window: a function that takes N are returns an fft window Can be None if no windowing axis_name: name of axis you would like to fft along signal_name: name of the variable in aman to fft delta_t: if none, it will look for 'timestamps' in the axis manager and will otherwise assume 1. if not None, it should be the sampling rate along the axis you're ffting Returns: fft: the fft'd data freqs: the frequencies it is value at (since resizing is an option) """ if len(aman._assignments[signal_name]) > 2: raise ValueError("rfft only works for 1D or 2D data streams") axis = getattr(aman, axis_name) if len(aman._assignments[signal_name]) == 1: n_det = 1 main_idx = 0 other_idx = None elif len(aman._assignments[signal_name]) == 2: checks = np.array( [x == axis_name for x in aman._assignments[signal_name]], dtype="bool" ) main_idx = np.where(checks)[0][0] other_idx = np.where(~checks)[0][0] other_axis = getattr(aman, aman._assignments[signal_name][other_idx]) n_det = other_axis.count if detrend is None: signal = np.atleast_2d(getattr(aman, signal_name)) else: signal = detrend_tod( aman, detrend, axis_name=axis_name, signal_name=signal_name, in_place=True ) if other_idx is not None and other_idx != 0: signal = signal.transpose() if window is not None: signal = signal * window(axis.count)[None, :] if resize == "zero_pad": k = int(np.ceil(np.log(axis.count) / np.log(2))) n = 2**k elif resize == "trim": n = find_inferior_integer(axis.count) elif resize is None: n = axis.count else: raise ValueError('resize must be "zero_pad", "trim", or None') a, b, t_fun = build_rfft_object(n_det, n, "FFTW_FORWARD") if resize == "zero_pad": a[:, : axis.count] = signal a[:, axis.count :] = 0 elif resize == "trim": a[:] = signal[:, :n] else: a[:] = signal[:] t_fun() if delta_t is None: if "timestamps" in aman: delta_t = (aman.timestamps[-1] - aman.timestamps[0]) / axis.count else: delta_t = 1 freqs = np.fft.rfftfreq(n, delta_t) if other_idx is not None and other_idx != 0: return b.transpose(), freqs return b, freqs def build_rfft_object(n_det, n, direction="FFTW_FORWARD", **kwargs): """Build PyFFTW object for fft-ing Arguments: n_det: number of detectors (or just the arr.shape[0] for the array you are going to fft) n: number of samples in timestream direction: fft direction. Can be FFTW_FORWARD, FFTW_BACKWARD, or BOTH kwargs: additional arguments to pass to pyfftw.FFTW Returns: a: array for the real valued side of the fft b: array for the the complex side of the fft t_fun: function for performing FFT (two are returned if direction=='BOTH') """ fftargs = {"threads": _get_num_threads(), "flags": ["FFTW_ESTIMATE"]} fftargs.update(kwargs) a = pyfftw.empty_aligned((n_det, n), dtype="float32") b = pyfftw.empty_aligned((n_det, (n + 2) // 2), dtype="complex64") if direction == "FFTW_FORWARD": t_fun = pyfftw.FFTW(a, b, direction=direction, **fftargs) elif direction == "FFTW_BACKWARD": t_fun = pyfftw.FFTW(b, a, direction=direction, **fftargs) elif direction == "BOTH": t_1 = pyfftw.FFTW(a, b, direction="FFTW_FORWARD", **fftargs) t_2 = pyfftw.FFTW(b, a, direction="FFTW_BACKWARD", **fftargs) return a, b, t_1, t_2 else: raise ValueError("direction must be FFTW_FORWARD or FFTW_BACKWARD") return a, b, t_fun def find_inferior_integer(target, primes=[2, 3, 5, 7, 11, 13]): """Find the largest integer less than or equal to target whose prime factorization contains only the integers listed in primes. """ p = primes[0] n = np.floor(np.log(target) / np.log(p)) best = p**n if len(primes) == 1: return int(best) while n > 0: n -= 1 base = p**n best_friend = find_inferior_integer(target / base, primes[1:]) if (best_friend * base) >= best: best = best_friend * base return int(best) def find_superior_integer(target, primes=[2, 3, 5, 7, 11, 13]): """Find the smallest integer less than or equal to target whose prime factorization contains only the integers listed in primes. """ p = primes[0] n = np.ceil(np.log(target) / np.log(p)) best = p**n if len(primes) == 1: return int(best) while n > 0: n -= 1 base = p**n best_friend = find_superior_integer(target / base, primes[1:]) if (best_friend * base) <= best: best = best_friend * base return int(best) def calc_psd( aman, signal=None, timestamps=None, max_samples=2**18, prefer='center', freq_spacing=None, merge=False, overwrite=True, subscan=False, **kwargs ): """Calculates the power spectrum density of an input signal using signal.welch(). Data defaults to aman.signal and times defaults to aman.timestamps. By default the nperseg will be set to power of 2 closest to the 1/50th of the samples used, this can be overridden by providing nperseg or freq_spacing. Arguments: aman (AxisManager): with (dets, samps) OR (channels, samps)axes. signal (float ndarray): data signal to pass to scipy.signal.welch(). timestamps (float ndarray): timestamps associated with the data signal. max_samples (int): maximum samples along sample axis to send to welch. prefer (str): One of ['left', 'right', 'center'], indicating what part of the array we would like to send to welch if cuts are required. freq_spacing (float): The approximate desired frequency spacing of the PSD. If None the default nperseg of ~1/50th the signal length is used. If an nperseg is explicitly passed then that will be used. merge (bool): if True merge results into axismanager. overwrite (bool): if true will overwrite f, pxx axes. subscan (bool): if True, compute psd on subscans. **kwargs: keyword args to be passed to signal.welch(). Returns: freqs: array of frequencies corresponding to PSD calculated from welch. Pxx: array of PSD values. """ if signal is None: signal = aman.signal if subscan: freqs, Pxx = _calc_psd_subscan(aman, signal=signal, freq_spacing=freq_spacing, **kwargs) axis_map_pxx = [(0, "dets"), (1, "nusamps"), (2, "subscans")] else: if timestamps is None: timestamps = aman.timestamps n_samps = signal.shape[-1] if n_samps <= max_samples: start = 0 stop = n_samps else: offset = n_samps - max_samples if prefer == "left": offset = 0 elif prefer == "center": offset //= 2 elif prefer == "right": pass else: raise ValueError(f"Invalid choice prefer='{prefer}'") start = offset stop = offset + max_samples fs = 1 / np.nanmedian(np.diff(timestamps[start:stop])) if "nperseg" not in kwargs: if freq_spacing is not None: nperseg = int(2 ** (np.around(np.log2(fs / freq_spacing)))) else: nperseg = int(2 ** (np.around(np.log2((stop - start) / 50.0)))) kwargs["nperseg"] = nperseg freqs, Pxx = welch(signal[:, start:stop], fs, **kwargs) axis_map_pxx = [(0, aman.dets), (1, "nusamps")] if merge: aman.merge( core.AxisManager(core.OffsetAxis("nusamps", len(freqs)))) if overwrite: if "freqs" in aman._fields: aman.move("freqs", None) if "Pxx" in aman._fields: aman.move("Pxx", None) aman.wrap("freqs", freqs, [(0,"nusamps")]) aman.wrap("Pxx", Pxx, axis_map_pxx) return freqs, Pxx def _calc_psd_subscan(aman, signal=None, freq_spacing=None, **kwargs): """ Calculate the power spectrum density of subscans using signal.welch(). Data defaults to aman.signal. aman.timestamps is used for times. aman.subscan_info is used to identify subscans. See calc_psd for arguments. """ from .flags import get_subscan_signal if signal is None: signal = aman.signal fs = 1 / np.nanmedian(np.diff(aman.timestamps)) if "nperseg" not in kwargs: if freq_spacing is not None: nperseg = int(2 ** (np.around(np.log2(fs / freq_spacing)))) else: duration_samps = np.asarray([np.ptp(x.ranges()) if x.ranges().size > 0 else 0 for x in aman.subscan_info.subscan_flags]) duration_samps = duration_samps[duration_samps > 0] nperseg = int(2 ** (np.around(np.log2(np.median(duration_samps) / 4)))) kwargs["nperseg"] = nperseg Pxx = [] for iss in range(aman.subscan_info.subscans.count): signal_ss = get_subscan_signal(aman, signal, iss) axis = -1 if "axis" not in kwargs else kwargs["axis"] if signal_ss.shape[axis] >= kwargs["nperseg"]: freqs, pxx_sub = welch(signal_ss, fs, **kwargs) Pxx.append(pxx_sub) else: Pxx.append(np.full((signal.shape[0], kwargs["nperseg"]//2+1), np.nan)) # Add nans if subscan is too short Pxx = np.array(Pxx) Pxx = Pxx.transpose(1, 2, 0) # Dets, nusamps, subscans return freqs, Pxx def calc_wn(aman, pxx=None, freqs=None, low_f=5, high_f=10): """ Function that calculates the white noise level as a median PSD value between two frequencies. Defaults to calculation of white noise between 5 and 10Hz. Defaults frequency information to a wrapped "freqs" field in aman. Arguments --------- aman (AxisManager): Uses aman.freq as frequency information associated with the PSD, pxx. pxx (Float array): Psd information to calculate white noise. Defaults to aman.pxx freqs (1d Float array): frequency information related to the psd. Defaults to aman.freqs low_f (Float): low frequency cutoff to calculate median psd value. Defaults to 5Hz high_f (float): high frequency cutoff to calculate median psd value. Defaults to 10Hz Returns ------- wn: Float array of white noise levels for each psd passed into argument. """ if freqs is None: freqs = aman.freqs if pxx is None: pxx = aman.Pxx fmsk = np.all([freqs >= low_f, freqs <= high_f], axis=0) if pxx.ndim == 1: wn2 = np.median(pxx[fmsk]) else: wn2 = np.median(pxx[:, fmsk], axis=1) wn = np.sqrt(wn2) return wn def noise_model(f, p): """ Noise model for power spectrum with white noise, and 1/f noise. """ fknee, w, alpha = p[0], p[1], p[2] return w * (1 + (fknee / f) ** alpha) def neglnlike(params, x, y): model = noise_model(x, params) output = np.sum(np.log(model) + y / model) if not np.isfinite(output): return 1.0e30 return output def fit_noise_model( aman, signal=None, f=None, pxx=None, psdargs={}, fwhite=(10, 100), lowf=1, merge_fit=False, f_max=100, merge_name="noise_fit_stats", merge_psd=True, freq_spacing=None, subscan=False ): """ Fits noise model with white and 1/f noise to the PSD of signal. This uses a MLE method that minimizes a log likelihood. This is better for chi^2 distributed data like the PSD. Reference: http://keatonb.github.io/archivers/powerspectrumfits Args ---- aman : AxisManager Axis manager which has samps axis aligned with signal. signal : nparray Signal sized ndets x nsamps to fit noise model to. Default is None which corresponds to aman.signal. f : nparray Frequency of PSD of signal. Default is None which calculates f, pxx from signal. pxx : nparray PSD sized ndets x len(f) which is fit to with model. Default is None which calculates f, pxx from signal. psdargs : dict Dictionary of optional argument for ``scipy.signal.welch`` fwhite : tuple Low and high frequency used to estimate white noise for initial guess passed to ``scipy.signal.curve_fit``. lowf : tuple Frequency below which estimate of 1/f noise index and knee are estimated for initial guess passed to ``scipy.signal.curve_fit``. merge_fit : bool Merges fit and fit statistics into input axis manager. f_max : float Maximum frequency to include in the fitting. This is particularly important for lowpass filtered data such as that post demodulation if the data is not downsampled after lowpass filtering. merge_name : bool If ``merge_fit`` is True then addes into axis manager with merge_name. merge_psd : bool If ``merg_psd`` is True then adds fres and Pxx to the axis manager. freq_spacing : float The approximate desired frequency spacing of the PSD. Passed to calc_psd. subscan : bool If True, fit noise on subscans. Returns ------- noise_fit_stats : AxisManager If merge_fit is False then axis manager with fit and fit statistics is returned otherwise nothing is returned and axis manager is wrapped into input aman. """ if signal is None: signal = aman.signal if f is None or pxx is None: f, pxx = calc_psd( aman, signal=signal, timestamps=aman.timestamps, freq_spacing=freq_spacing, merge=merge_psd, subscan=subscan, **psdargs, ) if subscan: fitout, covout = _fit_noise_model_subscan(aman, signal, f, pxx, psdargs=psdargs, fwhite=fwhite, lowf=lowf, f_max=f_max, freq_spacing=freq_spacing) axis_map_fit = [(0, "dets"), (1, "noise_model_coeffs"), (2, aman.subscans)] axis_map_cov = [(0, "dets"), (1, "noise_model_coeffs"), (2, "noise_model_coeffs"), (3, aman.subscans)] else: eix = np.argmin(np.abs(f - f_max)) f = f[1:eix] pxx = pxx[:, 1:eix] fitout = np.zeros((aman.dets.count, 3)) # This is equal to np.sqrt(np.diag(cov)) when doing curve_fit covout = np.zeros((aman.dets.count, 3, 3)) for i in range(aman.dets.count): p = pxx[i] wnest = np.median(p[((f > fwhite[0]) & (f < fwhite[1]))]) pfit = np.polyfit(np.log10(f[f < lowf]), np.log10(p[f < lowf]), 1) fidx = np.argmin(np.abs(10 ** np.polyval(pfit, np.log10(f)) - wnest)) p0 = [f[fidx], wnest, -pfit[0]] bounds = [(0, None), (sys.float_info.min, None), (None, None)] res = minimize(neglnlike, p0, args=(f, p), bounds=bounds, method="Nelder-Mead") try: Hfun = ndt.Hessian(lambda params: neglnlike(params, f, p), full_output=True) hessian_ndt, _ = Hfun(res["x"]) # Inverse of the hessian is an estimator of the covariance matrix # sqrt of the diagonals gives you the standard errors. covout[i] = np.linalg.inv(hessian_ndt) except np.linalg.LinAlgError: covout[i] = np.full((3, 3), np.nan) fitout[i] = res.x axis_map_fit = [(0, "dets"), (1, "noise_model_coeffs")] axis_map_cov = [(0, "dets"), (1, "noise_model_coeffs"), (2, "noise_model_coeffs")] noise_model_coeffs = ["fknee", "white_noise", "alpha"] noise_fit_stats = core.AxisManager( aman.dets, core.LabelAxis( name="noise_model_coeffs", vals=np.array(noise_model_coeffs, dtype="<U8") ), ) noise_fit_stats.wrap("fit", fitout, axis_map_fit) noise_fit_stats.wrap("cov", covout, axis_map_cov) if merge_fit: aman.wrap(merge_name, noise_fit_stats) return noise_fit_stats def _fit_noise_model_subscan( aman, signal, f, pxx, psdargs={}, fwhite=(10, 100), lowf=1, f_max=100, freq_spacing=None, ): """ Fits noise model with white and 1/f noise to the PSD of signal subscans. Args are as for fit_noise_model. """ fitout = np.empty((aman.dets.count, 3, aman.subscan_info.subscans.count)) covout = np.empty((aman.dets.count, 3, 3, aman.subscan_info.subscans.count)) for isub in range(aman.subscan_info.subscans.count): if np.all(np.isnan(pxx[...,isub])): # Subscan has been fully cut fitout[..., isub] = np.full((aman.dets.count, 3), np.nan) covout[..., isub] = np.full((aman.dets.count, 3, 3), np.nan) else: noise_model = fit_noise_model(aman, f=f, pxx=pxx[...,isub], fwhite=fwhite, lowf=lowf, merge_fit=False, f_max=f_max, merge_psd=False, subscan=False) fitout[..., isub] = noise_model.fit covout[..., isub] = noise_model.cov return fitout, covout def build_hpf_params_dict( filter_name, noise_fit=None, filter_params=None ): """ Build the filter parameter dictionary from a provided dictionary or from noise fit results. Args ---- filter_name : str Name of the filter to build the parameter dict for. noise_fit: AxisManager AxisManager containing the result of the noise model fit sized nparams x ndets. filter_params: dict Filter parameters dictionary to complement parameters derived from the noise fit (or to be used if noise fit is None). Returns ------- filter_params : dict Returns a dictionary of the median values of the noise model fit parameters if noise_fit is not None, otherwise return the provided filter_params. """ if noise_fit is not None: pars_mapping = { "high_pass_butter4": { "fc": "fknee", }, "counter_1_over_f": { "fk": "fknee", "n": "alpha" }, "high_pass_sine2": { "cutoff": "fknee", "width": None } } if filter_name not in pars_mapping.keys(): raise NotImplementedError( f"{filter_name} params from noise fit is not implemented" ) noise_fit_array = noise_fit.fit noise_fit_params = noise_fit.noise_model_coeffs.vals median_params = np.median(noise_fit_array, axis=0) median_dict = { k: median_params[i] for i, k in enumerate(noise_fit_params) } params_dict = {} for k, v in pars_mapping[filter_name].items(): if v is None: if (filter_params is None) or (k not in filter_params): raise ValueError( f"Required parameters {k} not found in config " "and cannot be derived from noise fit." ) else: params_dict.update({k: filter_params[k]}) else: params_dict[k] = median_dict[v] filter_params = params_dict return filter_params
simonsobsREPO_NAMEsotodlibPATH_START.@sotodlib_extracted@sotodlib-master@sotodlib@tod_ops@fft_ops.py@.PATH_END.py
{ "filename": "multikernelmanager.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/jupyter-client/py3/jupyter_client/multikernelmanager.py", "type": "Python" }
"""A kernel manager for multiple kernels""" # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import annotations import asyncio import json import os import socket import typing as t import uuid from functools import wraps from pathlib import Path import zmq from traitlets import Any, Bool, Dict, DottedObjectName, Instance, Unicode, default, observe from traitlets.config.configurable import LoggingConfigurable from traitlets.utils.importstring import import_item from .connect import KernelConnectionInfo from .kernelspec import NATIVE_KERNEL_NAME, KernelSpecManager from .manager import KernelManager from .utils import ensure_async, run_sync, utcnow class DuplicateKernelError(Exception): pass def kernel_method(f: t.Callable) -> t.Callable: """decorator for proxying MKM.method(kernel_id) to individual KMs by ID""" @wraps(f) def wrapped( self: t.Any, kernel_id: str, *args: t.Any, **kwargs: t.Any ) -> t.Callable | t.Awaitable: # get the kernel km = self.get_kernel(kernel_id) method = getattr(km, f.__name__) # call the kernel's method r = method(*args, **kwargs) # last thing, call anything defined in the actual class method # such as logging messages f(self, kernel_id, *args, **kwargs) # return the method result return r return wrapped class MultiKernelManager(LoggingConfigurable): """A class for managing multiple kernels.""" default_kernel_name = Unicode( NATIVE_KERNEL_NAME, help="The name of the default kernel to start" ).tag(config=True) kernel_spec_manager = Instance(KernelSpecManager, allow_none=True) kernel_manager_class = DottedObjectName( "jupyter_client.ioloop.IOLoopKernelManager", help="""The kernel manager class. This is configurable to allow subclassing of the KernelManager for customized behavior. """, ).tag(config=True) @observe("kernel_manager_class") def _kernel_manager_class_changed(self, change: t.Any) -> None: self.kernel_manager_factory = self._create_kernel_manager_factory() kernel_manager_factory = Any(help="this is kernel_manager_class after import") @default("kernel_manager_factory") def _kernel_manager_factory_default(self) -> t.Callable: return self._create_kernel_manager_factory() def _create_kernel_manager_factory(self) -> t.Callable: kernel_manager_ctor = import_item(self.kernel_manager_class) def create_kernel_manager(*args: t.Any, **kwargs: t.Any) -> KernelManager: if self.shared_context: if self.context.closed: # recreate context if closed self.context = self._context_default() kwargs.setdefault("context", self.context) km = kernel_manager_ctor(*args, **kwargs) return km return create_kernel_manager shared_context = Bool( True, help="Share a single zmq.Context to talk to all my kernels", ).tag(config=True) context = Instance("zmq.Context") _created_context = Bool(False) _pending_kernels = Dict() @property def _starting_kernels(self) -> dict: """A shim for backwards compatibility.""" return self._pending_kernels @default("context") def _context_default(self) -> zmq.Context: self._created_context = True return zmq.Context() connection_dir = Unicode("") external_connection_dir = Unicode(None, allow_none=True) _kernels = Dict() def __init__(self, *args: t.Any, **kwargs: t.Any) -> None: super().__init__(*args, **kwargs) self.kernel_id_to_connection_file: dict[str, Path] = {} def __del__(self) -> None: """Handle garbage collection. Destroy context if applicable.""" if self._created_context and self.context and not self.context.closed: if self.log: self.log.debug("Destroying zmq context for %s", self) self.context.destroy() try: super_del = super().__del__ # type:ignore[misc] except AttributeError: pass else: super_del() def list_kernel_ids(self) -> list[str]: """Return a list of the kernel ids of the active kernels.""" if self.external_connection_dir is not None: external_connection_dir = Path(self.external_connection_dir) if external_connection_dir.is_dir(): connection_files = [p for p in external_connection_dir.iterdir() if p.is_file()] # remove kernels (whose connection file has disappeared) from our list k = list(self.kernel_id_to_connection_file.keys()) v = list(self.kernel_id_to_connection_file.values()) for connection_file in list(self.kernel_id_to_connection_file.values()): if connection_file not in connection_files: kernel_id = k[v.index(connection_file)] del self.kernel_id_to_connection_file[kernel_id] del self._kernels[kernel_id] # add kernels (whose connection file appeared) to our list for connection_file in connection_files: if connection_file in self.kernel_id_to_connection_file.values(): continue try: connection_info: KernelConnectionInfo = json.loads( connection_file.read_text() ) except Exception: # noqa: S112 continue self.log.debug("Loading connection file %s", connection_file) if not ("kernel_name" in connection_info and "key" in connection_info): continue # it looks like a connection file kernel_id = self.new_kernel_id() self.kernel_id_to_connection_file[kernel_id] = connection_file km = self.kernel_manager_factory( parent=self, log=self.log, owns_kernel=False, ) km.load_connection_info(connection_info) km.last_activity = utcnow() km.execution_state = "idle" km.connections = 1 km.kernel_id = kernel_id km.kernel_name = connection_info["kernel_name"] km.ready.set_result(None) self._kernels[kernel_id] = km # Create a copy so we can iterate over kernels in operations # that delete keys. return list(self._kernels.keys()) def __len__(self) -> int: """Return the number of running kernels.""" return len(self.list_kernel_ids()) def __contains__(self, kernel_id: str) -> bool: return kernel_id in self._kernels def pre_start_kernel( self, kernel_name: str | None, kwargs: t.Any ) -> tuple[KernelManager, str, str]: # kwargs should be mutable, passing it as a dict argument. kernel_id = kwargs.pop("kernel_id", self.new_kernel_id(**kwargs)) if kernel_id in self: raise DuplicateKernelError("Kernel already exists: %s" % kernel_id) if kernel_name is None: kernel_name = self.default_kernel_name # kernel_manager_factory is the constructor for the KernelManager # subclass we are using. It can be configured as any Configurable, # including things like its transport and ip. constructor_kwargs = {} if self.kernel_spec_manager: constructor_kwargs["kernel_spec_manager"] = self.kernel_spec_manager km = self.kernel_manager_factory( connection_file=os.path.join(self.connection_dir, "kernel-%s.json" % kernel_id), parent=self, log=self.log, kernel_name=kernel_name, **constructor_kwargs, ) return km, kernel_name, kernel_id def update_env(self, *, kernel_id: str, env: t.Dict[str, str]) -> None: """ Allow to update the environment of the given kernel. Forward the update env request to the corresponding kernel. .. version-added: 8.5 """ if kernel_id in self: self._kernels[kernel_id].update_env(env=env) async def _add_kernel_when_ready( self, kernel_id: str, km: KernelManager, kernel_awaitable: t.Awaitable ) -> None: try: await kernel_awaitable self._kernels[kernel_id] = km self._pending_kernels.pop(kernel_id, None) except Exception as e: self.log.exception(e) async def _remove_kernel_when_ready( self, kernel_id: str, kernel_awaitable: t.Awaitable ) -> None: try: await kernel_awaitable self.remove_kernel(kernel_id) self._pending_kernels.pop(kernel_id, None) except Exception as e: self.log.exception(e) def _using_pending_kernels(self) -> bool: """Returns a boolean; a clearer method for determining if this multikernelmanager is using pending kernels or not """ return getattr(self, "use_pending_kernels", False) async def _async_start_kernel(self, *, kernel_name: str | None = None, **kwargs: t.Any) -> str: """Start a new kernel. The caller can pick a kernel_id by passing one in as a keyword arg, otherwise one will be generated using new_kernel_id(). The kernel ID for the newly started kernel is returned. """ km, kernel_name, kernel_id = self.pre_start_kernel(kernel_name, kwargs) if not isinstance(km, KernelManager): self.log.warning( # type:ignore[unreachable] "Kernel manager class ({km_class}) is not an instance of 'KernelManager'!".format( km_class=self.kernel_manager_class.__class__ ) ) kwargs["kernel_id"] = kernel_id # Make kernel_id available to manager and provisioner starter = ensure_async(km.start_kernel(**kwargs)) task = asyncio.create_task(self._add_kernel_when_ready(kernel_id, km, starter)) self._pending_kernels[kernel_id] = task # Handling a Pending Kernel if self._using_pending_kernels(): # If using pending kernels, do not block # on the kernel start. self._kernels[kernel_id] = km else: await task # raise an exception if one occurred during kernel startup. if km.ready.exception(): raise km.ready.exception() # type: ignore[misc] return kernel_id start_kernel = run_sync(_async_start_kernel) async def _async_shutdown_kernel( self, kernel_id: str, now: bool | None = False, restart: bool | None = False, ) -> None: """Shutdown a kernel by its kernel uuid. Parameters ========== kernel_id : uuid The id of the kernel to shutdown. now : bool Should the kernel be shutdown forcibly using a signal. restart : bool Will the kernel be restarted? """ self.log.info("Kernel shutdown: %s", kernel_id) # If the kernel is still starting, wait for it to be ready. if kernel_id in self._pending_kernels: task = self._pending_kernels[kernel_id] try: await task km = self.get_kernel(kernel_id) await t.cast(asyncio.Future, km.ready) except asyncio.CancelledError: pass except Exception: self.remove_kernel(kernel_id) return km = self.get_kernel(kernel_id) # If a pending kernel raised an exception, remove it. if not km.ready.cancelled() and km.ready.exception(): self.remove_kernel(kernel_id) return stopper = ensure_async(km.shutdown_kernel(now, restart)) fut = asyncio.ensure_future(self._remove_kernel_when_ready(kernel_id, stopper)) self._pending_kernels[kernel_id] = fut # Await the kernel if not using pending kernels. if not self._using_pending_kernels(): await fut # raise an exception if one occurred during kernel shutdown. if km.ready.exception(): raise km.ready.exception() # type: ignore[misc] shutdown_kernel = run_sync(_async_shutdown_kernel) @kernel_method def request_shutdown(self, kernel_id: str, restart: bool | None = False) -> None: """Ask a kernel to shut down by its kernel uuid""" @kernel_method def finish_shutdown( self, kernel_id: str, waittime: float | None = None, pollinterval: float | None = 0.1, ) -> None: """Wait for a kernel to finish shutting down, and kill it if it doesn't""" self.log.info("Kernel shutdown: %s", kernel_id) @kernel_method def cleanup_resources(self, kernel_id: str, restart: bool = False) -> None: """Clean up a kernel's resources""" def remove_kernel(self, kernel_id: str) -> KernelManager: """remove a kernel from our mapping. Mainly so that a kernel can be removed if it is already dead, without having to call shutdown_kernel. The kernel object is returned, or `None` if not found. """ return self._kernels.pop(kernel_id, None) async def _async_shutdown_all(self, now: bool = False) -> None: """Shutdown all kernels.""" kids = self.list_kernel_ids() kids += list(self._pending_kernels) kms = list(self._kernels.values()) futs = [self._async_shutdown_kernel(kid, now=now) for kid in set(kids)] await asyncio.gather(*futs) # If using pending kernels, the kernels will not have been fully shut down. if self._using_pending_kernels(): for km in kms: try: await km.ready except asyncio.CancelledError: self._pending_kernels[km.kernel_id].cancel() except Exception: # Will have been logged in _add_kernel_when_ready pass shutdown_all = run_sync(_async_shutdown_all) def interrupt_kernel(self, kernel_id: str) -> None: """Interrupt (SIGINT) the kernel by its uuid. Parameters ========== kernel_id : uuid The id of the kernel to interrupt. """ kernel = self.get_kernel(kernel_id) if not kernel.ready.done(): msg = "Kernel is in a pending state. Cannot interrupt." raise RuntimeError(msg) out = kernel.interrupt_kernel() self.log.info("Kernel interrupted: %s", kernel_id) return out @kernel_method def signal_kernel(self, kernel_id: str, signum: int) -> None: """Sends a signal to the kernel by its uuid. Note that since only SIGTERM is supported on Windows, this function is only useful on Unix systems. Parameters ========== kernel_id : uuid The id of the kernel to signal. signum : int Signal number to send kernel. """ self.log.info("Signaled Kernel %s with %s", kernel_id, signum) async def _async_restart_kernel(self, kernel_id: str, now: bool = False) -> None: """Restart a kernel by its uuid, keeping the same ports. Parameters ========== kernel_id : uuid The id of the kernel to interrupt. now : bool, optional If True, the kernel is forcefully restarted *immediately*, without having a chance to do any cleanup action. Otherwise the kernel is given 1s to clean up before a forceful restart is issued. In all cases the kernel is restarted, the only difference is whether it is given a chance to perform a clean shutdown or not. """ kernel = self.get_kernel(kernel_id) if self._using_pending_kernels() and not kernel.ready.done(): msg = "Kernel is in a pending state. Cannot restart." raise RuntimeError(msg) await ensure_async(kernel.restart_kernel(now=now)) self.log.info("Kernel restarted: %s", kernel_id) restart_kernel = run_sync(_async_restart_kernel) @kernel_method def is_alive(self, kernel_id: str) -> bool: # type:ignore[empty-body] """Is the kernel alive. This calls KernelManager.is_alive() which calls Popen.poll on the actual kernel subprocess. Parameters ========== kernel_id : uuid The id of the kernel. """ def _check_kernel_id(self, kernel_id: str) -> None: """check that a kernel id is valid""" if kernel_id not in self: raise KeyError("Kernel with id not found: %s" % kernel_id) def get_kernel(self, kernel_id: str) -> KernelManager: """Get the single KernelManager object for a kernel by its uuid. Parameters ========== kernel_id : uuid The id of the kernel. """ self._check_kernel_id(kernel_id) return self._kernels[kernel_id] @kernel_method def add_restart_callback( self, kernel_id: str, callback: t.Callable, event: str = "restart" ) -> None: """add a callback for the KernelRestarter""" @kernel_method def remove_restart_callback( self, kernel_id: str, callback: t.Callable, event: str = "restart" ) -> None: """remove a callback for the KernelRestarter""" @kernel_method def get_connection_info(self, kernel_id: str) -> dict[str, t.Any]: # type:ignore[empty-body] """Return a dictionary of connection data for a kernel. Parameters ========== kernel_id : uuid The id of the kernel. Returns ======= connection_dict : dict A dict of the information needed to connect to a kernel. This includes the ip address and the integer port numbers of the different channels (stdin_port, iopub_port, shell_port, hb_port). """ @kernel_method def connect_iopub( # type:ignore[empty-body] self, kernel_id: str, identity: bytes | None = None ) -> socket.socket: """Return a zmq Socket connected to the iopub channel. Parameters ========== kernel_id : uuid The id of the kernel identity : bytes (optional) The zmq identity of the socket Returns ======= stream : zmq Socket or ZMQStream """ @kernel_method def connect_shell( # type:ignore[empty-body] self, kernel_id: str, identity: bytes | None = None ) -> socket.socket: """Return a zmq Socket connected to the shell channel. Parameters ========== kernel_id : uuid The id of the kernel identity : bytes (optional) The zmq identity of the socket Returns ======= stream : zmq Socket or ZMQStream """ @kernel_method def connect_control( # type:ignore[empty-body] self, kernel_id: str, identity: bytes | None = None ) -> socket.socket: """Return a zmq Socket connected to the control channel. Parameters ========== kernel_id : uuid The id of the kernel identity : bytes (optional) The zmq identity of the socket Returns ======= stream : zmq Socket or ZMQStream """ @kernel_method def connect_stdin( # type:ignore[empty-body] self, kernel_id: str, identity: bytes | None = None ) -> socket.socket: """Return a zmq Socket connected to the stdin channel. Parameters ========== kernel_id : uuid The id of the kernel identity : bytes (optional) The zmq identity of the socket Returns ======= stream : zmq Socket or ZMQStream """ @kernel_method def connect_hb( # type:ignore[empty-body] self, kernel_id: str, identity: bytes | None = None ) -> socket.socket: """Return a zmq Socket connected to the hb channel. Parameters ========== kernel_id : uuid The id of the kernel identity : bytes (optional) The zmq identity of the socket Returns ======= stream : zmq Socket or ZMQStream """ def new_kernel_id(self, **kwargs: t.Any) -> str: """ Returns the id to associate with the kernel for this request. Subclasses may override this method to substitute other sources of kernel ids. :param kwargs: :return: string-ized version 4 uuid """ return str(uuid.uuid4()) class AsyncMultiKernelManager(MultiKernelManager): kernel_manager_class = DottedObjectName( "jupyter_client.ioloop.AsyncIOLoopKernelManager", config=True, help="""The kernel manager class. This is configurable to allow subclassing of the AsyncKernelManager for customized behavior. """, ) use_pending_kernels = Bool( False, help="""Whether to make kernels available before the process has started. The kernel has a `.ready` future which can be awaited before connecting""", ).tag(config=True) context = Instance("zmq.asyncio.Context") @default("context") def _context_default(self) -> zmq.asyncio.Context: self._created_context = True return zmq.asyncio.Context() start_kernel: t.Callable[..., t.Awaitable] = MultiKernelManager._async_start_kernel # type:ignore[assignment] restart_kernel: t.Callable[..., t.Awaitable] = MultiKernelManager._async_restart_kernel # type:ignore[assignment] shutdown_kernel: t.Callable[..., t.Awaitable] = MultiKernelManager._async_shutdown_kernel # type:ignore[assignment] shutdown_all: t.Callable[..., t.Awaitable] = MultiKernelManager._async_shutdown_all # type:ignore[assignment]
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@jupyter-client@py3@jupyter_client@multikernelmanager.py@.PATH_END.py
{ "filename": "_value.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/bar/error_x/_value.py", "type": "Python" }
import _plotly_utils.basevalidators class ValueValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="value", parent_name="bar.error_x", **kwargs): super(ValueValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@bar@error_x@_value.py@.PATH_END.py
{ "filename": "design.md", "repo_name": "jax-ml/jax", "repo_path": "jax_extracted/jax-main/docs/pallas/design/design.md", "type": "Markdown" }
# Pallas Design <!--* freshness: { reviewed: '2024-04-15' } *--> In this document, we explain the initial Pallas design. This is a snapshot of some of the earlier design decisions made and Pallas's specific APIs might have changed since. ## Introduction JAX is being used for a diverse set of workloads, from large scale machine learning to scientific computing. JAX’s success story is as much a success story for XLA, the primary compiler that JAX targets – XLA compiles JAX programs for accelerators and has enabled JAX to scale to the largest ML models. JAX describes logical computations in XLA’s representation, HLO. HLO describes how computations happen logically but not physically. Given a logical HLO computation, XLA decides how that computation is to be executed physically. For a wide variety of ML applications, XLA does a good job of compiling user programs but inevitably some users hit XLA's limitations. In these cases, we need to provide an “escape hatch” to allow experts to write hand-tuned kernels that outperform XLA at that point in time. Furthermore, advances in ML systems research take some time to be incorporated into XLA and users often want to run ahead with them. Over time, the compiler can incorporate the optimizations that were proven out experimentally through hand-tuned kernels. XLA does offer the `CustomCall` mechanism as an escape hatch, but it requires users to write C++ and on GPU it requires users to learn the CUDA programming model. The CUDA programming model is arguably too low-level for many machine learning GPU kernels, like matrix multiplication, and even expert users will have trouble using CUDA to implement efficient matrix multiplication or multi-headed attention. Not only this, JAX users are usually familiar with Python and NumPy-style array programming which doesn’t involve writing any C++ or thinking about GPU parallelism. All popular machine learning frameworks share this idea: manipulating (usually) arrays with high level operations like `matmul` or `convolution`. Unfortunately, this means implementing a custom operation via `CustomCall` is a big investment, involving potentially learning C++ and/or GPU programming. [Triton](https://triton-lang.org/main/index.html), a GPU compiler built and maintained by OpenAI, has taken the ML compiler world by storm. Triton offers the best of both worlds: an array-based programming model for GPU kernels. Triton is the primary code generation route for `torch.compile` in PyTorch 2.0, via the Torch Inductor library. Triton actively hides some aspects of GPU programming in the name of a more accessible programming model that can be used from Python and to generate optimized code from a higher-level representation. While GPUs are more flexible than what Triton offers, in the ML domain, Triton seems to be expressive enough for many applications. In this document, we describe Pallas, an extension to JAX that enables kernel programming for both GPUs and TPUs using a Triton-like model. A JAX-based kernel language offers several advantages: * Although Triton exposes a TPU-like programming model to users, i.e. writing programs for tiles of arrays in L1-cache, it is specialized enough to GPU that we cannot directly compile Triton for TPU. For example, Triton offers atomic operations specifically meant to handle parallel writes that don’t necessarily make sense on TPU. A higher level front end can abstract away details of the platform while surfacing just that tile-based programming model. The kernels will thus be portable across different hardware platforms. * JAX as a tracing-based frontend for numerical computing is both mature and well-used. By embedding the kernel programming language in JAX itself, we can re-use JAX’s tracing infrastructure and provide a NumPy-like frontend that’s already familiar to users. * JAX transformations are key to its success, allowing users to express simple programs but transform them to achieve complex functionality. We can leverage the same transformations (vmap, jvp, etc.) to transform user-written kernels. The open question is: is JAX a good fit for a kernel language at all? We think so. Triton demonstrates that an array programming language can be practical for writing GPU kernels and JAX is just that. JAX has also proven to be a flexible front-end for compilers and for program transformations. We describe Pallas as follows: we first describe the ways in which we extend JAX to support writing custom kernels. We then show how we can lower Pallas to both Triton and Mosaic. We conclude by describing existing and potential ways to transform Pallas kernels via JAX transformations. <center> ![Pallas lowering path](../../_static/pallas/pallas_flow.png) Visualization of Pallas lowering paths </center> ## Pallas: Extending JAX for kernels The key point we’d like to make is that Pallas is just JAX, with some extensions: 1. Users now use reference types called `Ref`s in their JAX code. This gives users more precise control over memory access and layout in JAX will more closely resemble physical layout. 2. Users write their JAX programs using a subset of JAX primitives, along with a set of Pallas-specific primitives. 3. Users embed their Pallas kernels in an outer JAX program via a special `pallas_call` higher-order function, that executes the kernel in a map. It is analogous to `pmap` or `shard_map`, except with references to shared memory. We’ll go over these three extensions one at a time, by example. Note that these APIs are still experimental and subject to change. ### Reference types Let’s look at an example Pallas program for adding two vectors: ```python import jax import jax.numpy as jnp from jax.experimental import pallas as pl def add_kernel(x_ref, y_ref, o_ref): # In this code, `x_ref`, `y_ref` and `o_ref` are (8,)-shaped `Ref`s x = x_ref[:] y = y_ref[:] o_ref[:] = x + y x, y = jnp.arange(8), jnp.arange(8, 16) add = pl.pallas_call(add_kernel, out_shape=jax.ShapeDtypeStruct((8,), jnp.int32)) add(x, y) ``` Unlike a regular JAX program, `add_kernel` does not receive immutable array arguments. Instead, it’s provided with references that can be read from and updated in-place using NumPy-like syntax. `Ref`s are not a Pallas-specific concept – they were introduced to JAX to represent stateful computations. However, we can leverage them when writing kernels that operate on mutable memory too. Pallas kernels not only receive `Ref`s corresponding to the inputs to the kernel, but also receive `Ref`s for the outputs as well (specified in `pallas_call` via `out_shape`). `Ref`s are special types that cannot be passed into the usual set of JAX primitives without being read from first. When you read from a `Ref` you get a JAX `Array` type out, and you must write an `Array` into a `Ref`. #### Reading from/writing into Refs Reading from a `Ref` corresponds to loading an array into the lowest level of the memory hierarchy (L1-cache on GPU and vector registers on TPU). Writing into a `Ref` is analogous. ```python def f(x_ref, o_ref): # Using vanilla Python indexing x = x_ref[0, 2:5, :] # Or via Numpy advanced int indexing o_ref[jnp.arange(3), :] = x # Note that in order to use NumPy advanced int indexing, you need to broadcast the indices against each other into the desired multidimensional shape: def f(x_ref): # Assume x_ref is (8, 4) and we want to read out a (2, 3) slice x = x_ref[jnp.arange(2)[..., None], jnp.arange(3)[None, ...]] ``` Writing to `Ref`s can be done via analogous `__setitem__` style indexing. Other forms of indexing (for example, dynamic slicing) can be done via `pallas.load` and `pallas.store`, new JAX primitives designed to make loading from/storing into memory easier. We’ll discuss these new primitives later. ### Extending JAX with new Pallas primitives Because JAX was designed with HLO in mind, the set of JAX primitives closely mirrors the set of HLO operations. Targeting a new compiler (e.g. Triton or Mosaic) means we might need to supplement JAX’s primitives with new ones specific to the new compiler. At the same time, we may not be able to lower all JAX primitives, so we need to restrict it to a subset. Because Pallas was initially designed with Triton in mind, we offer a set of new primitives targeting the Triton programming model. As we’ll show later, we can lower these primitives to Mosaic as well. #### `pallas.load` and `pallas.store` `pallas.load` and `pallas.store` are primitives that allow loading from memory and storing into memory. Unlike `__getitem__` and `__setitem__` they are more flexible at the cost of being more verbose. Specifically, you can use the `pallas.dynamic_slice` (`pallas.ds` for short) construct (which should maybe be upstreamed into JAX to be used with Ref `__getitem__` and `__setitem__`). ```python def f(x_ref, o_ref): # Reading from memory via pallas.load x = pl.load(x_ref, (0, slice(2, 5), slice(None))) # Using integer indexing automatically broadcasts x = pl.load(x_ref, (0, 2 + jnp.arange(3), slice(None))) # You can also use `pl.dynamic_slice` (`pl.ds` for short) objects as well pl.store(o_ref, (0, pl.ds(start=2, size=3), slice(None)), x) ``` `pallas.load` and `pallas.store` also support masking via the mask argument. ```python def f(x_ref, o_ref): # Reading from memory via pallas.load idx = jnp.arange(8) mask = idx < 5 x = pl.load(x_ref, (idx,), mask=mask, other=float('-inf')) ``` Masking is important when doing out-of-bounds loads/stores. The operational semantics of masking can be compiler-determined (if we understand the documentation properly, Triton avoids the read from/write to memory if it’s masked). #### `pallas.program_id` and `pallas.num_programs` As we’ll soon see, we’ll be executing the same Pallas kernels many times (either in parallel or in a pipeline depending on the backend). These new primitives tell us “where” we are in the execution of the kernel. `pallas.program_id` takes in an axis argument, which tells us which index in an axis of a multidimensional grid this kernel is currently executing in (analogous to `threadId` from CUDA programming or `lax.axis_index` in `jax.pmap`). Note that we are currently borrowing the “program” terminology from Triton and in the future we might want to change it to something more familiar to JAX users. ```python def f(x_ref, o_ref): i = pl.program_id(axis=0) # execution index in the first axis of the grid o_ref[i] = jnp.exp(x_ref[i]) ``` `pallas.num_programs` also takes in an axis and returns the grid size for that axis. Note that while `program_id` and `num_programs` are Triton-specific terminology they are easily generalized to make sense on TPU as well. #### Using a subset of JAX primitives in Pallas Because we’re writing kernels, not high-level HLO programs, some JAX primitives may not be able to be represented in our underlying substrate efficiently. However, we know we can support most elementwise operations, simple dot products, and JAX control flow. While we haven’t yet mapped out exactly all the JAX primitives that we can support in Pallas kernels, we can certainly identify some that are not easy to lower or are unlikely to be useful: * `conv_general` - convolution usually isn’t offered as primitive in the underlying hardware. * `gather/scatter` - the underlying compiler may not support noncontiguous memory reads and writes ### Executing Pallas kernels with `pallas_call` Now that we’ve written our Pallas kernels (a.k.a. JAX with `Ref`s and the extra Pallas primitives), how do we execute them on a GPU or TPU? We use `pallas_call`, a higher order function (akin to `jax.jit` and `jax.pmap`) that executes the kernel. The signature of `pallas_call` is as follows: ```python def pallas_call( kernel: Callable, out_shape: Sequence[jax.ShapeDtypeStruct], *, in_specs: Sequence[Spec], out_specs: Sequence[Spec], grid: Optional[Tuple[int, ...]] = None) -> Callable: ... ``` When we provide a kernel to `pallas_call` we provide additional information. The first is `out_shape` which tells the kernel what the outputs look like (`pallas_call` will pass a `Ref` corresponding to these into the kernel to be written to). The rest of the information (`in_specs`, `out_specs`, and `grid`) are information about how the kernel will be scheduled on the accelerator. The (rough) semantics for `pallas_call` are as follows: ```python def pallas_call(kernel, out_shape, *, in_specs, out_specs, grid): def execute(*args): outputs = map(empty_ref, out_shape) grid_indices = map(range, grid) for indices in itertools.product(*grid_indices): # Could run in parallel! local_inputs = [in_spec.transform(arg, indices) for arg, in_spec in zip(args, in_specs)] local_outputs = [out_spec.transform(arg, indices) for arg, out_spec in zip(outputs, out_specs)] kernel(*local_inputs, *local_outputs) # writes to outputs return execute ``` Specifically, `pallas_call` will “loop” over grid iteration space, applying a transformation to the inputs and outputs specified via the `in_specs` and `out_specs`. In each iteration, the kernel will be called on the transformed inputs and outputs. Note that the “loop” over the iteration space could be executed in parallel (e.g. on GPU). `pallas_call` also provides no guarantees on the order of loop iterations over the iteration space, just that every member of the iteration space will be looped over. Compilers like Triton and Mosaic will have more specific operational semantics associated with the grid. #### Transformation functions The `in_specs` and `out_specs` arguments to `pallas_call` allow inputs and outputs to be transformed in some way. The two options that Pallas offers right now are an identity transformation (where inputs and outputs are left unchanged), and `BlockSpec`s, take fixed-size slices of `Ref`s determined by the loop index. A `BlockSpec` takes an `index_map` function and a `block_shape`. Logically, it takes an array and slices it along each axis into `block_shape` sizes blocks. The `index_map` function takes loop indices (from the grid index set) and maps them to block indices. The transform function converts `Ref`s into logical views of the `Ref` at the corresponding block. When we specify `None` in an entry in block_shape, that corresponds to “mapping” over that dimension, removing it from the block within the kernel. ```python class BlockSpec: index_map: Callable[[Tuple[Int, ...]], Tuple[Int, ...]] block_shape: Tuple[Optional[int], ...] def transform(self, ref, *loop_indices): block_indices = self.transform_function(loop_indices) # Returns a view of `ref` starting at `block_indices` of shape self.block_shape ... ``` We could also imagine other `Spec`s that are used with `pallas_call`, for example a `Spec` that corresponds to overlapping windows to, say, implement convolutions. ### Immediate benefits of Pallas as a front-end By offering a JAX front-end for kernel writing, we can immediately reap some benefits. #### More flexible front end The first is that JAX users are already accustomed to the benefits (and limitations) of programming with JAX and its tracing-based transformations. This means users can use closures and other familiar Python constructs when writing Pallas kernels. This is unlike the existing AST-parsing-based Triton front end or the MLIR builders for Mosaic. For example, this makes Pallas far more amenable to templating than Triton. See this example of how we can use higher-order functions in Python to template a kernel. ```python def make_kernel(eltwise_kernel): def add(x_ref, y_ref, o_ref): x = pl.load(x_ref, ()) y = pl.load(y_ref, ()) pl.store(o_ref, (), eltwise_kernel(x + y)) return add kernel1 = make_kernel(lambda x: x * 2) kernel2 = make_kernel(jnp.exp) pl.pallas_call(kernel1, out_shape=x, grid=1)(1., 1.) pl.pallas_call(kernel2, out_shape=x, grid=1)(1., 1.) ``` #### Emulation mode By representing kernels as programs with JAX primitives and some new Pallas primitives, we can also lower Pallas programs to StableHLO directly and compile/execute them with XLA. Specifically, a `pallas_call` can be implemented as a `lax.scan` over the grid. This enables us to develop GPU or TPU kernels on any XLA-supported platform (even CPU!) and debug them using JAX/XLA debugging tools (like `jax.debug.print`). We can also use the more reliable and better tested XLA numerics to verify the correctness of the Triton and Mosaic compilers. One could also imagine perturbing the `scan` ordering to simulate the parallel reads and writes that happen on GPU. ### GPU Examples Note all the following examples are for GPU only. They will require tweaks to the block sizes to work on TPUs. #### `add` We modify our `add_kernel` example to operate over (2,)-sized blocks using `BlockSpec`s. ```python def add_kernel(x_ref, y_ref, o_ref): # In this code, `x_ref`, `y_ref` and `o_ref` are (2,)-shaped `Ref`s x = x_ref[:] y = y_ref[:] o_ref[:] = x + y x, y = jnp.arange(8), jnp.arange(8, 16) add = pl.pallas_call( add_kernel, out_shape=jax.ShapeDtypeStruct((8,), jnp.int32), in_specs=[ pl.BlockSpec((2,), lambda i: i), pl.BlockSpec((2,), lambda i: i) ], out_specs=pl.BlockSpec((2,), lambda i: i), grid=(4,)) add(x, y) ``` #### Templated matmul In this example, we compute tiles of the output by doing an unrolled accumulation over blocks of rows and columns from our input arrays. We inline an activation function into the body of the kernel using a higher order function so we can emit a fused kernel. ```python def matmul_kernel(x_ref, y_ref, o_ref, *, activation, block_k): acc = jnp.zeros((x_ref.shape[0], y_ref.shape[1]), jnp.float32) for k in range(x_ref.shape[1] // block_k): x = x_ref[:, k*block_k:(k+1)*block_k] y = y_ref[k*block_k:(k+1)*block_k, :] acc += x @ y o_ref[:, :] = activation(acc).astype(o_ref.dtype) x, y = jnp.ones((512, 256)), jnp.ones((256, 1024)) block_shape = 128, 256, 128 @partial(jax.jit, static_argnames=["block_shape", "activation"]) def matmul(x, y, *, block_shape, activation): block_m, block_n, block_k = block_shape fused_matmul = pl.pallas_call( partial(matmul_kernel, block_k=block_k, activation=activation), out_shape=jax.ShapeDtypeStruct((x.shape[0], y.shape[1],), jnp.float32), in_specs=[ pl.BlockSpec((block_m, x.shape[1]), lambda i, j: (i, 0)), pl.BlockSpec((y.shape[0], block_n), lambda i, j: (0, j)) ], out_specs=pl.BlockSpec((block_m, block_n), lambda i, j: (i, j)), grid=(4, 4), ) return fused_matmul(x, y) z = matmul(x, y, block_shape=block_shape, activation=jax.nn.gelu) ``` ### Lowering Pallas After users express their Pallas kernels, we lower them to different representations depending on the target backend. On GPUs, we lower Pallas to Triton IR, and on TPU we lower Pallas to Mosaic. #### Lowering Pallas to Triton for GPU Lowering Pallas to Triton is easy because Pallas was designed with Triton as a target language in mind. The main differences between Pallas and Triton is that Triton doesn’t have a notion of `BlockSpec`s and also uses pointers when doing memory loads and stores as opposed to indices. Triton supports pointers as an array element type in its language and in Triton you can load from and store to arrays of pointers. In Pallas, when given a `(4, 5)`-shaped `Ref`, `x_ref`, and then do like `x_ref[3, 2]`, we need to lower this to computing a Triton pointer to the appropriate row-major position in `x_ref` (that is, doing 5 * 3 + 2 * 1). Similarly, when we lower slices to Triton, e.g. `x_ref[4, :]` we need to produce an array of pointers `5 * 4 + jnp.arange(3)`. Other than that, lowering to Triton is fairly straightforward. JAX dot products can be lowered to Triton dot products and JAX unary primitives are lowered to their Triton equivalents. Triton’s atomic operations are lowered via new Pallas atomic primitives. #### Lowering Pallas to Mosaic for TPU Mosaic consumes (mostly) standard dialect MLIR and emits LLO to be compiled for TPU. Pallas can be lowered to Mosaic via translating JAX primitives to MLIR (mostly the `vector` and `arith` dialects). The `BlockSpec`s can be converted into pipeline schedules (i.e. the `transform_func`s in Mosaic). ### Transforming Pallas A natural question is how do JAX transformations interact with Pallas kernels? There are two main ways: transformations inside Pallas kernels and transformations outside Pallas kernels. Transformation inside Pallas kernels should actually “just work”, so long as we are able to lower the transformed code. For example, we could use `jax.grad(jnp.sin)(...)` inside of a JAX kernel because we can lower a `cos` to both Triton and Mosaic. However, we might not be able to lower a `jax.vmap(lax.dynamic_slice)` because it could turn into a gather that we cannot lower. Transformations of Pallas kernels from the outer JAX programs is perhaps the more interesting case. How do we handle things like `vmap(pallas_call)` and `grad(pallas_call)`? #### `vmap-of-pallas_call` vmap automatically vectorizes JAX programs. While kernel writers might want precise control over how a batched kernel will behave differently from its unbatched variant, we can offer a reasonable default `vmap` rule for `pallas_call` while offering the `jax.custom_vmap` customization mechanism. When `pallas_call` is `vmap`-ed, we augment the `pallas_call` to have an extra grid dimension corresponding to the new batch dimension and transform the `BlockSpec`s to handle indexing along that dimension. #### `grad-of-pallas_call` `grad` of `pallas_call` enables automatic differentiation of kernels. `jax.grad` breaks down into applications of three distinct transforms: `jvp`, `partial_eval` and `transpose`. In principle, we can re-use most of JAX’s infrastructure when implementing these rules for `pallas_call` (since it behaves much like existing JAX higher order primitives). However, automatic differentiation of kernels can result in a performance hit due to how memory access is transposed. If we write a GPU kernel with overlapping-and-parallel reads and disjoint-but-parallel writes, we automatically transpose it into a kernel that has overlapping-but-parallel writes (which are slow when done atomically) and disjoint-and-parallel reads. To emit a kernel that better uses parallelism with shared memory, we would need to reorder loops and change how the kernel is vectorized. Unfortunately, we do not have a program representation amenable to that in Pallas. A potential direction to automatically differentiating kernels efficiently is to explore a different representation, perhaps one like that in Dex. We could also look at how Enzyme approaches this problem. However, AD of Pallas kernels may still be useful for a class of kernels that does transpose efficiently (for example elementwise kernels). In general, though, `jax.custom_vjp` is a viable escape hatch to express Pallas kernels that work with `jax.grad`. #### Other transformations We could imagine other JAX transformations applying to Pallas kernels that we haven’t explicitly explored yet. For example, `checkify` is a JAX transformation that does functional error handling. We could imagine using `checkify` with pallas_call to allow plumbing out error codes from GPU kernels that indicate if OOB access or NaNs were produced. Another potential transformation to integrate with is custom_partitioning to enable automatically partitionable kernels to be used with pjit.
jax-mlREPO_NAMEjaxPATH_START.@jax_extracted@jax-main@docs@pallas@design@design.md@.PATH_END.py
{ "filename": "test_commands.py", "repo_name": "simonsobs/sorunlib", "repo_path": "sorunlib_extracted/sorunlib-main/tests/test_commands.py", "type": "Python" }
import os os.environ["OCS_CONFIG_DIR"] = "./test_util/" import pytest import datetime as dt from unittest.mock import MagicMock, patch from sorunlib.commands import wait_until def mkts(offset): """Make timestamp. Args: offset (int): Offset from current time in seconds. Returns: str: ISO formatted timestamp 'offset' seconds from now, i.e. '2023-04-22T00:59:56.264293+00:00' Examples: An example called at '2023-04-24T21:14:27.790440+00:00': >>> mkts(1) '2023-04-24T21:14:28.790440+00:00' """ now = dt.datetime.now(dt.timezone.utc) delta = dt.timedelta(seconds=offset) ts = now + delta return ts.isoformat() # patch out time.sleep so we don't actually sleep during testing @patch('sorunlib.commands.time.sleep', MagicMock()) @pytest.mark.parametrize("timestamp,tolerance", [ # timestamp in past, not high enough tolerance (mkts(-10), 5), # timestamp in future, but past tolerance timestamp (mkts(1), mkts(-1))]) def test_wait_until_past_tolerance(timestamp, tolerance): with pytest.raises(ValueError): wait_until(timestamp, tolerance) @patch('sorunlib.commands.time.sleep', MagicMock()) def test_wait_until_unsupported_tolerance(): with pytest.raises(ValueError): wait_until(mkts(1), tolerance=[1, 2]) def test_wait_until_unsupported_tz(): with pytest.raises(ValueError): tz = dt.timezone(offset=dt.timedelta(hours=5)) t = dt.datetime.now(tz).isoformat() # i.e. '2023-04-22T00:59:56.264293+05:00' wait_until(t) @patch('sorunlib.commands.time.sleep', MagicMock()) @pytest.mark.parametrize("timestamp,tolerance", [ # timestamps in future, future or no tolerance (mkts(1), None), (mkts(1), 5), (mkts(1), mkts(10)), # timestamps in past, high enough or no tolerance (mkts(-1), None), (mkts(-1), 5), (mkts(-1), mkts(10)), # test mix of tz aware timestamp, naive tolerance timestamp (mkts(0), mkts(10)[:-6]), (mkts(0)[:-6], mkts(10)), # testing TZ detection w/past timestamps, no tolerance ("2020-01-01T00:00:00", None), ("2020-01-01T00:00:00+00:00", None)]) def test_wait_until(timestamp, tolerance): wait_until(timestamp, tolerance)
simonsobsREPO_NAMEsorunlibPATH_START.@sorunlib_extracted@sorunlib-main@tests@test_commands.py@.PATH_END.py
{ "filename": "setup.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/numpy/py3/numpy/_typing/setup.py", "type": "Python" }
def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('_typing', parent_package, top_path) config.add_data_files('*.pyi') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(configuration=configuration)
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@numpy@py3@numpy@_typing@setup.py@.PATH_END.py
{ "filename": "README.md", "repo_name": "EranOfek/AstroPack", "repo_path": "AstroPack_extracted/AstroPack-main/matlab/doc/README.md", "type": "Markdown" }
# MATLAB Doc Folder
EranOfekREPO_NAMEAstroPackPATH_START.@AstroPack_extracted@AstroPack-main@matlab@doc@README.md@.PATH_END.py
{ "filename": "test_tolerancing.py", "repo_name": "chandra-marx/marxs", "repo_path": "marxs_extracted/marxs-main/marxs/design/tests/test_tolerancing.py", "type": "Python" }
import os import tempfile import numpy as np import pytest import astropy.units as u from astropy.table import Table from astropy.coordinates import SkyCoord from astropy.utils.data import get_pkg_data_filename from marxs.design.tolerancing import (oneormoreelements, wiggle, moveglobal, moveindividual, moveelem, varyperiod, varyorderselector, varyattribute, run_tolerances, generate_6d_wigglelist, select_1dof_changed, DispersedWigglePlotter, run_tolerances_for_energies, run_tolerances_for_energies2, ) from marxs.optics import (FlatGrating, OrderSelector, RadialMirrorScatter, RectangleAperture, ThinLens, FlatDetector) from marxs.design import RowlandTorus, GratingArrayStructure from marxs.utils import generate_test_photons from marxs.source import PointSource, FixedPointing from marxs.simulator import Sequence from marxs.analysis.gratings import CaptureResAeff try: import matplotlib.pyplot as plt HAS_MPL = True except ImportError: HAS_MPL = False mytorus = RowlandTorus(0.5, 0.5, position=[1.5, 0, -3]) def gsa(elem_class=FlatGrating): '''make a parallel structure - fresh for every test''' g = GratingArrayStructure(rowland=mytorus, d_element=[0.1, 0.1], radius=[0.1,.2], elem_class=elem_class, elem_args={'zoom':0.2, 'd':0.002, 'order_selector': OrderSelector([1]) }) return g elempos = np.stack([e.pos4d for e in gsa().elements]) def test_oneormore(): @oneormoreelements def func(a, b, c): a.value += 1 class HoldData(): def __init__(self, value): self.value = value obj1 = HoldData(2) obj2 = HoldData(4) obj3 = HoldData(6) listin = [obj2, obj3] # First, make sure that func works, otherwise the remaining test is useless. func(obj1, 2, c=4) assert obj1.value == 3 func(listin, 'a', None) assert listin[0].value == 5 assert listin[1].value == 7 @pytest.mark.parametrize('function', [wiggle, moveglobal, moveindividual]) def test_change_parallel_elements(function): '''Check that parameters work and elements are in fact changed. More detailed checks that the type of change is correct are implemented as separate tests, but those tests don't check out every parameter. ''' g = gsa() function(g, 0., 0., 0.) assert np.all(np.stack([e.pos4d for e in g.elements]) == elempos) for key in ['dx', 'dy', 'dz', 'rx', 'ry', 'rz']: d = {key: 1.23} function(g, **d) assert not np.all(np.stack([e.pos4d for e in g.elements]) == elempos) def test_moveelements_translate(): '''Check that the element movers work. If the whole structure is translated or individual elements are translated by the same amount, the positions should be the same.''' g0 = gsa() g1 = gsa() g2 = gsa() moveglobal(g1, dy=-20) moveindividual(g2, dy=-20) assert np.allclose(np.stack([e.pos4d for e in g1.elements]), np.stack([e.pos4d for e in g2.elements])) assert not np.allclose(np.stack([e.pos4d for e in g0.elements]), np.stack([e.pos4d for e in g2.elements])) def test_moveelements_rotate(): '''Check that the element movers work. Unlike test_moveelements_translate we expect different results because there are different center of the rotation. This test does not check that the rotation is correct, only that its different because the validity of the rotation matrix itself is already covered by the tests in the transforms3d package. ''' g1 = gsa() g2 = gsa() moveglobal(g1, rz=-1, ry=.2) moveindividual(g2, rz=-1, ry=.2) assert not np.allclose(np.stack([e.pos4d for e in g1.elements]), np.stack([e.pos4d for e in g2.elements])) def test_moveelem(): '''Move an individual element''' det = FlatDetector(zoom=[1, 100, 100]) assert det.geometry['center'][2] == 0 moveelem(det, dz=5) assert det.geometry['center'][2] == 5 assert np.all(det.geometry.pos4d[:3, :3] == np.eye(3) * [1, 100, 100]) def test_wiggle(): '''Check wiggle function''' g = gsa() wiggle(g, dx=10, dy=.1) diff = elempos - np.stack([e.pos4d for e in g.elements]) # Given the numbers, wiggle in x must be larger than y # This also tests that not all diff numbers are the same # (as they would be with move). assert np.std(diff[:, 0, 3]) > np.std(diff[:, 1, 3]) @pytest.mark.parametrize('function', [varyperiod, varyorderselector]) def test_errormessage(function): '''Check that check is performed for right type of object. Some function just set an attribute and there is no function call after that that would fail or do anything if called with the wrong type of object. Thus, it's very simple to call these with an object where it does not make any sense to apply them. So, they have some error check. Here, we check this check. ''' with pytest.raises(ValueError) as e: # All functions accept two parameters. # Error should be raised before they are used, so the value does not # matter function(gsa, 1., 2.) assert 'does not have' in str(e.value) def test_gratings_d(): '''Change the grating constant.''' g = gsa() varyperiod(g.elements, 1., .1) periods = [e._d for e in g.elements] assert np.std(periods) > 0.01 assert np.std(periods) < 5. assert np.mean(periods) > .5 def test_scatter(): '''Check that the right properties are set.''' scat = RadialMirrorScatter(inplanescatter=1. * u.arcmin, perpplanescatter=.1 * u.arcmin) varyattribute(scat, inplanescatter=2. * u.arcsec, perpplanescatter=.2 * u.degree) assert scat.inplanescatter == 2. * u.arcsec assert scat.perpplanescatter == .2 * u.degree def test_errormessage_attribute(): '''Test error message for generic attributechanger''' with pytest.raises(ValueError) as e: # All functions accept two parameters. # Error should be raised before they are used, so the value does not # matter varyattribute(gsa, attributenotpresent=1., notpresenteither=2.) assert 'does not have' in str(e.value) def test_orderselector(): '''Test setting the order selector properties.''' photons = generate_test_photons(5) grat = FlatGrating(d=1., order_selector=OrderSelector([1])) p = grat(photons.copy()) assert np.all(p['order'] == 1) varyorderselector(grat, OrderSelector, [2]) p = grat(photons.copy()) assert np.all(p['order'] == 2) def test_runtolerances(): '''Test the loop with mock functions. This is not a complete functional test, just making sure all calling signatures work. ''' photons = generate_test_photons(20) grat = FlatGrating(d=1., order_selector=OrderSelector([1])) parameters =[{'order_selector': OrderSelector, 'orderlist': [2]}, {'order_selector': OrderSelector, 'orderlist': [1, 2], 'p': [.8, 0.]}] def afunc(photons): return {'meanorder': np.nanmean(photons['order'])} out = run_tolerances(photons, grat, varyorderselector, grat, parameters, afunc) assert out[0]['meanorder'] == 2 assert out[1]['meanorder'] == 1 # check parameters are in output assert out[1]['orderlist'] == [1, 2] # check original parameter is still intact and can be used again # Regression test: If results are inserted into the same dict # 'meanorder' will appear which is not valid for varyorderselector assert 'meanorder' not in parameters[0] def test_run_tolerances_for_energies(): '''For this test, we need to define an instrument. The instrument is not very realistic (an X-ray mirror with r=0 won't work), but the point here is just to check the tolerancing for several energies. To make that calculation reasonably fast, we need to keep the number of elements in the optical system small. ''' coords = SkyCoord(12. * u.deg, -45 * u.deg) src = PointSource(coords=coords) pnt = FixedPointing(coords=coords) aper = RectangleAperture(position=[5000, 0, 0], zoom=[1, 10, 10]) lens = ThinLens(position=[4900, 0, 0], zoom=[1, 10, 10], focallength=4900) grat = FlatGrating(d=.002, order_selector=OrderSelector([0, 1]), position=[4800, 0, 0], zoom=[1, 10, 10]) det = FlatDetector(zoom=[1, 100, 100]) instrum = Sequence(elements=[pnt, aper, lens, grat, det]) parameters = [{'period_mean': 0.003, 'period_sigma': 0.}, {'period_mean': 0.004, 'period_sigma': 0.}] res = run_tolerances_for_energies(src, [.1, 1] * u.keV, Sequence(elements=[pnt, aper, lens]), Sequence(elements=[grat, det]), varyperiod, grat, parameters, CaptureResAeff(orders=[0, 1, 2]), reset={'period_mean': 0.005, 'period_sigma': 0.}, t_source=1. * u.ks) # Check the reset worked assert grat._d == 0.005 # Check both energy have been calculated assert 1 in res['energy'] assert .1 in res['energy'] assert len(res) == 4 # check results are reasonable assert np.all(res['R'].data[:, 0] == 0) assert not np.any(np.isfinite(res['R'].data[:, 2])) assert res['R'].data[2, 1] > res['R'].data[0, 1] def test_run_tolerances_for_energies2(): '''Same, as above, but with different calling sequence ''' coords = SkyCoord(12. * u.deg, -45 * u.deg) src = PointSource(coords=coords) pnt = FixedPointing(coords=coords) aper = RectangleAperture(position=[5000, 0, 0], zoom=[1, 10, 10]) lens = ThinLens(position=[4900, 0, 0], zoom=[1, 10, 10], focallength=4900) grat = FlatGrating(d=.002, order_selector=OrderSelector([0, 1]), position=[4800, 0, 0], zoom=[1, 10, 10]) det = FlatDetector(zoom=[1, 100, 100]) instrum = Sequence(elements=[pnt, aper, lens, grat, det]) parameters = [{'period_mean': 0.003, 'period_sigma': 0.}, {'period_mean': 0.004, 'period_sigma': 0.}] res = run_tolerances_for_energies2(src, [.1, 1] * u.keV, instrum, FlatGrating, varyperiod, parameters, CaptureResAeff(orders=[0, 1, 2]), reset={'period_mean': 0.005, 'period_sigma': 0.}, t_source=1. * u.ks) # Check the reset worked assert grat._d == 0.005 # Check both energy have been calculated assert 1 in res['energy'] assert .1 in res['energy'] assert len(res) == 4 # check results are reasonable assert np.all(res['R'].data[:, 0] == 0) assert not np.any(np.isfinite(res['R'].data[:, 2])) assert res['R'].data[2, 1] > res['R'].data[0, 1] def test_6dlist(): '''Check the list of dicts in 3 translations dof and 3 rotations''' cglob, cind = generate_6d_wigglelist([0, 1.] * u.cm, [0., 1.] * u.degree, names=['x', 'y', 'z', 'rx', 'ry', 'rz']) assert len(cind) == 7 assert len(cglob) == 13 assert set(cind[5].keys()) == set(['x', 'y', 'z', 'rx', 'ry', 'rz']) tab = Table(cind) for col in ['x', 'y', 'z']: assert np.max(tab[col]) == 10 assert np.min(tab[col]) == 0 for col in ['x', 'y', 'z']: assert np.max(tab[col]) == 10 assert np.min(tab[col]) == 0 tab = Table(cglob) for col in tab.colnames: assert - np.min(tab[col]) == np.max(tab[col]) def test_6d_warning(): with pytest.warns(UserWarning): cglob, cind = generate_6d_wigglelist([1.] * u.cm, [0., 1.] * u.degree) def test_find_changed(): '''Test that we find the row where only one parameter was changed.''' tab = Table({'par1': [-1, -1, 0, 0, 0, 1], 'par2': [-1, 0, 0, 3, 0, 0], 'id': [ 0, 1, 2, 3, 4, 5]}) t = select_1dof_changed(tab, 'par1', parlist=['par1', 'par2']) assert set(t['id']) == set([1, 2, 4, 5]) def test_plot_wiggle(): '''Test that wiggle plot works. This does not test that the result looks correct, only that running through the plot function does not raise any errors. This is one of the few plotting functions in the entire package, so setting up the infrastructure to compare output pixel-by-pixel does not seem worth it as this point. ''' plt = pytest.importorskip("matplotlib.pyplot") fig, ax = plt.subplots() tab = Table({'wave': [1, 1], 'dd': [0, 1], 'Rgrat': [500, 500], 'Aeff': [20, 50]}) wiggle_plotter = DispersedWigglePlotter() wiggle_plotter.plot_wiggle(tab, 'dd', ['dd'], ax, Aeff_col='Aeff') @pytest.mark.skipif('not HAS_MPL') def test_plot_6dof(): tab = Table({'wave': [1, 1, 2, 2, 1, 1, 1, 1], 'dd': [0, 1, 0, 2, 0, 0, 0, 0], 'rr': [0, 0, 0, 0, 2, 4, 6, 8], 'R': np.random.rand(8), 'Aeffgrat': np.arange(8)}) wiggle_plotter = DispersedWigglePlotter() with tempfile.TemporaryDirectory() as tmpdirname: name = os.path.join(tmpdirname, 'var_global.fits') tab.write(name) fig, ax = wiggle_plotter.load_and_plot(name, ['dd', 'rr'], R_col='R') @pytest.mark.skipif('not HAS_MPL') def test_plot_6dof_real_file(): '''Repeat previous test with static data file. This is a more realistic file but it takes too long to generate every time. This file is used in the docs in design/tolerancing (see docs/pyplot/chandra_tolerancing) so if this test breaks, the docs will likely have to be changed, too. ''' wiggle_plotter = DispersedWigglePlotter() filename = get_pkg_data_filename('data/wiggle_global.fits', 'marxs.design.tests') fig, ax = wiggle_plotter.load_and_plot(filename)
chandra-marxREPO_NAMEmarxsPATH_START.@marxs_extracted@marxs-main@marxs@design@tests@test_tolerancing.py@.PATH_END.py
{ "filename": "fitting.py", "repo_name": "jpierel14/sntd", "repo_path": "sntd_extracted/sntd-master/sntd/fitting.py", "type": "Python" }
import warnings import sncosmo import os import sys import pyParz import pickle import subprocess import glob import math import time import tarfile import numpy as np import matplotlib.pyplot as plt from copy import copy from scipy import stats from astropy.table import Table import nestle from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF import scipy import itertools from sncosmo import nest_lc from itertools import combinations from collections import OrderedDict from .util import * from .util import _filedir_, _current_dir_ from .curve_io import _sntd_deepcopy from .models import BazinSource from .ml import * __all__ = ['fit_data'] _thetaSN_ = ['z', 'hostebv', 'screenz', 'rise', 'fall', 'sigma', 'k', 'x1', 'c'] _thetaL_ = ['t0', 'amplitude', 'screenebv', 'dt0', 'A', 'B', 't1', 'psi', 'phi', 's', 'x0'] _needs_bounds = {'z'} def fit_data(curves=None, snType='Ia', bands=None, models=None, params=None, bounds={}, ignore=None, constants={}, ignore_models=[], method='parallel', t0_guess=None, effect_names=[], effect_frames=[], batch_init=None, cut_time=None, force_positive_param=[], dust=None, microlensing=None, fitOrder=None, color_bands=None, color_param_ignore=[], min_points_per_band=3, identify_micro=False, min_n_bands=1, max_n_bands=None, n_cores_per_node=1, npar_cores=4, max_batch_jobs=199, max_cadence=None, fit_colors=None, fit_prior=None, par_or_batch='parallel', batch_partition=None, nbatch_jobs=None, batch_python_path=None, n_per_node=None, fast_model_selection=True, wait_for_batch=False, band_order=None, set_from_simMeta={}, guess_amplitude=True, trial_fit=False, clip_data=False, use_MLE=False, kernel='RBF', refImage='image_1', nMicroSamples=100, color_curve=None, warning_supress=True, micro_fit_bands='all', verbose=True, **kwargs): """The main high-level fitting function. Parameters ---------- curves: :class:`~sntd.curve_io.MISN` The MISN object containing the multiple images to fit. snType: str The supernova classification bands: :class:`~list` of :class:`~sncosmo.Bandpass` or :class:`~str`, or :class:`~sncosmo.Bandpass` or :class:`~str` The band(s) to be fit models: :class:`~list` of :class:`~sncosmo.Model` or str, or :class:`~sncosmo.Model` or :class:`~str` The model(s) to be used for fitting to the data params: :class:`~list` of :class:`~str` The parameters to be fit for the models inside of the parameter models bounds: :class:`dict` A dictionary with parameters in params as keys and a tuple of bounds as values ignore: :class:`~list` of :class:`~str` List of parameters to ignore constants: :class:`dict` Dictionary with parameters as keys and the constant value you want to set them to as values ignore_models: class:`~list` List of model names to ignore, usually used if you did not specify the "models" parameter and let all models for a given SN type be chosen, but you want to ignore one or more. method: :class:`~str` or :class:`~list` Needs to be 'parallel', 'series', or 'color', or a list containting one or more of these t0_guess: :class:`dict` Dictionary with image names (i.e. 'image_1','image_2') as keys and a guess for time of peak as values effect_names: :class:`~list` of :class:`~str` List of effect names if model contains a :class:`~sncosmo.PropagationEffect`. effect_frames: :class:`~list` of :class:`~str` List of the frames (e.g. obs or rest) that correspond to the effects in effect_names batch_init: :class:`~str` A string to be pasted into the batch python file (e.g. extra imports or filters added to sncosmo.) cut_time: :class:`~list` The start and end (rest frame) phase that you want to fit in, default accept all phases. force_positive_param: :class:`~list` Optional list of parameters to always make positive. dust: :class:`sncosmo.PropagationEffect` An sncosmo dust propagation effect to include in the model microlensing: str If None microlensing is ignored, otherwise should be str (e.g. achromatic, chromatic) fitOrder: :class:`~list` The order you want to fit the images if using parallel method (default chooses by npoints/SNR) color_bands: :class:`~list` If using multiple methods (in batch mode), the subset of bands to use for color fitting. color_param_ignore: :class:`~list` If using multiple methods, parameters you may want to fit for one method but not for color method (e.g. stretch) min_points_per_band: int Only accept bands to fit with this number of points fitting other criterion (e.g. minsnr) identify_micro: bool If True, function is run to attempt to identify bands where microlensing is least problematic. min_n_bands: int Checks the SN to make sure it has this number of bands (with min_points_per_band in each) max_n_bands: int The best n bands are chosen from the data. n_cores_per_node: int The number of cores to run parallelization on per node npar_cores: int The number of cores to devote to parallelization max_batch_jobs: int The maximum number of jobs allowed by your slurm task manager. max_cadence: int To clip each image of a MISN to this cadence fit_colors: list List of colors to use in color fitting (e.g. ['bessellb-bessellv','bessellb-bessellr']) fit_prior: :class:`~sntd.curve_io.MISN` or bool if implementing parallel method alongside others and fit_prior is True, will use output of parallel as prior for series/color. If SNTD MISN object, used as prior for series or color. par_or_batch: str if providing a list of SNe, par means multiprocessing and batch means sbatch. Must supply other batch parameters if batch is chosen, so parallel is default. batch_partition: str The name of the partition for sbatch command nbatch_jobs: int number of jobs (10 jobs for 100 light curves is 10 light curves per job) batch_python_path: str path to python you want to use for batch mode (if different from current) n_per_node: int Number of SNe to fit per node (in series) in batch mode. If none, just distributes all SNe across the number of jobs you have by default. fast_model_selection: bool If you are providing a list of models and want the best fit, turning this on will make the fitter choose based on a simple minuit fit before moving to the full sntd fitting. If false, each model will be fitted with the full sntd fitting and the best will be chosen. wait_for_batch: bool if false, submits job in the background. If true, waits for job to finish (shows progress bar) and returns output. band_order: :class:`~list` If you want colors to be fit in a specific order (e.g. B-V instead of V-B depending on band order) set_from_simMeta: :class:`~dict` Dictionary where keys are model parameters and values are the corresponding key in the :class:`~sntd.curve_io.MISN`.images.simMeta dictionary (e.g. {'z':'sim_redshift'} if you want to set the model redshift based on a simulated redshift in simMeta called 'sim_redshfit') guess_amplitude: bool If True, the amplitude parameter for the model is estimated, as well as its bounds trial_fit: bool If true, a simple minuit fit is performed to locate the parameter space for nestle fits, otherwise the full parameter range in bounds is used. clip_data: bool If true, criterion like minsnr and cut_time actually will remove data from the light curve, as opposed to simply not fitting those data points. use_MLE: bool If true, uses MLE as the parameter estimator instead of the median of the nested sampling samples kernel: str The kernel to use for microlensing GPR refImage: str The name of the image you want to be the reference image (i.e. image_1,image_2, etc.) nMicroSamples: int The number of pulls from the GPR posterior you want to use for microlensing uncertainty estimation color_curve: :class:`astropy.Table` A color curve to define the relationship between bands for parameterized light curve model. warning_supress: bool Turns on or off warnings micro_fit_bands: str or list of str The band(s) to fit microlensing. All assumes achromatic, and will fit all bands together. verbose: bool Turns on/off the verbosity flag Returns ------- fitted_MISN: :class:`~sntd.curve_io.MISN` or :class:`~list` The same MISN that was passed to fit_data, but with new fits and time delay measurements included. List if list was provided. Examples -------- >>> fitCurves=sntd.fit_data(myMISN,snType='Ia', models='salt2-extended',bands=['F110W','F125W'], params=['x0','x1','t0','c'],constants={'z':1.33},bounds={'t0':(-15,15),'x1':(-2,2),'c':(0,1)}, method='parallel',microlensing=None) """ # get together user arguments locs = locals() args = copy(locs) for k in kwargs.keys(): args[k] = kwargs[k] if isinstance(curves, (list, tuple, np.ndarray)): if isinstance(curves[0], str): # then its a filename list filelist = True else: filelist = False args['curves'] = [] for i in range(len(curves)): temp = _sntd_deepcopy(curves[i]) temp.nsn = i+1 args['curves'].append(temp) args['parlist'] = True else: args['curves'] = _sntd_deepcopy(curves) args['parlist'] = False if method != 'color' or identify_micro: args['bands'] = [bands] if bands is not None and not isinstance( bands, (tuple, list, np.ndarray)) else bands args['bands'] = list(set(bands)) if bands is not None else None # sets the bands to user's if defined (set, so that they're unique), otherwise to all the bands that exist in curves if args['bands'] is None: args['bands'] = list(curves.bands) if not isinstance( curves, (list, tuple, np.ndarray)) and not isinstance(args['curves'][0], str) else None args['bands'] = _bandCheck(args['curves'],args['bands']) # get together the model(s) needed for fitting models = [models] if models is not None and not isinstance( models, (tuple, list, np.ndarray)) else models if models is None: mod, types = np.loadtxt(os.path.join( _filedir_, 'data', 'sncosmo', 'models.ref'), dtype='str', unpack=True) modDict = {mod[i]: types[i] for i in range(len(mod))} if isinstance(snType, str): if snType != 'Ia': mods = [x[0] for x in sncosmo.models._SOURCES._loaders.keys( ) if x[0] in modDict.keys() and modDict[x[0]][:len(snType)] == snType] elif snType == 'Ia': mods = [x[0] for x in sncosmo.models._SOURCES._loaders.keys() if 'salt2' in x[0]] else: mods = [] for t in snType: if t != 'Ia': mods = np.append(mods, [x[0] for x in sncosmo.models._SOURCES._loaders.keys( ) if x[0] in modDict.keys() and modDict[x[0]][:len(t)] == t]) elif t == 'Ia': mods = np.append( mods, [x[0] for x in sncosmo.models._SOURCES._loaders.keys() if 'salt2' in x[0]]) else: mods = models mods = np.unique(mods) for ig_mod in ignore_models: if ig_mod not in mods: temp = snana_to_sncosmo(ig_mod) if temp is not None: mods = [x for x in mods if x != temp[1]] else: mods = [x for x in mods if x != ig_mod] args['models'] = mods if warning_supress: warnings.simplefilter('ignore') if identify_micro and not args['parlist']: all_bands, color_bands = identify_micro_func(args) args['color_bands'] = color_bands args['bands'] = all_bands args['curves'].micro_bands = all_bands args['curves'].micro_color_bands = color_bands if fit_prior is False: args['fit_prior'] = None if args['parlist'] and n_per_node is None and par_or_batch == 'batch': if nbatch_jobs is None: print('Must set n_per_node node and/or nbatch_jobs') n_per_node = math.ceil(len(args['curves'])/nbatch_jobs) if isinstance(method, (list, np.ndarray, tuple)): if len(method) == 1: method = method[0] elif 'parallel' in method and fit_prior == True: # Run parallel first if using as prior method = np.append( ['parallel'], [x for x in method if x != 'parallel']) if args['parlist']: if par_or_batch == 'parallel': print('Have not yet set up parallelized multi-fit processing') sys.exit(1) else: if n_cores_per_node > 1: parallelize = n_cores_per_node n_per_node = max(n_per_node, n_cores_per_node) micro_par = None elif microlensing is not None: parallelize = None micro_par = npar_cores else: parallelize = None micro_par = None total_jobs = math.ceil(len(args['curves'])/n_per_node) if nbatch_jobs is None: nbatch_jobs = min(total_jobs, max_batch_jobs) script_name_init, folder_name = make_sbatch(partition=batch_partition, njobs=min(total_jobs, nbatch_jobs), njobstotal=min(total_jobs, max_batch_jobs), python_path=batch_python_path, init=True, parallelize=parallelize, microlensing_cores=micro_par) script_name, folder_name = make_sbatch(partition=batch_partition, folder=folder_name, njobs=min(total_jobs, nbatch_jobs), python_path=batch_python_path, init=False, parallelize=parallelize, microlensing_cores=micro_par) pickle.dump(constants, open(os.path.join( folder_name, 'sntd_constants.pkl'), 'wb')) pickle.dump(args['curves'], open( os.path.join(folder_name, 'sntd_data.pkl'), 'wb')) pyfiles = ['run_sntd_init.py', 'run_sntd.py'] if parallelize is None else [ 'run_sntd_init_par.py', 'run_sntd_par.py'] for pyfile in pyfiles: with open(os.path.join(_filedir_, 'batch', pyfile)) as f: batch_py = f.read() if 'init' in pyfile: batch_py = batch_py.replace('nlcsreplace', str( min(int(n_per_node*min(total_jobs, max_batch_jobs)), len(args['curves'])))) batch_py = batch_py.replace( 'njobsreplace', str(min(total_jobs, max_batch_jobs))) else: batch_py = batch_py.replace( 'nlcsreplace', str(n_per_node)) if batch_init is None: batch_py = batch_py.replace( 'batchinitreplace', 'print("Nothing to initialize...")') else: batch_py = batch_py.replace( 'batchinitreplace', batch_init) batch_py = batch_py.replace( 'ncores', str(n_cores_per_node)) indent1 = batch_py.find('fitCurves=') indent = batch_py.find('try:')+len('try:')+1 sntd_command = '' for i in range(len(method)): fit_method = method[i] sntd_command += 'sntd.fit_data(' for par, val in locs.items(): if par == 'curves': if i == 0: if parallelize is None: sntd_command += 'curves=all_dat[i],' else: sntd_command += 'curves=all_input,' else: sntd_command += 'curves=fitCurves,' elif par == 'constants': if parallelize is None: sntd_command += 'constants=all_dat[i].constants,' else: sntd_command += 'constants={'+'},' elif par == 'batch_init': sntd_command += 'batch_init=None,' elif par == 'identify_micro' and identify_micro: if i > 0: sntd_command += 'identify_micro=False,' else: sntd_command += 'identify_micro=True,' elif par == 'bands' and identify_micro: if i > 0: if parallelize is None: if fit_method != 'color': sntd_command += 'bands=fitCurves.micro_bands,' else: sntd_command += 'bands=fitCurves.micro_color_bands,' else: print('Have not implemented this yet.') sys.exit(1) else: sntd_command += 'bands=None,' elif fit_method == 'color' and par == 'bands': if color_bands is not None: sntd_command += 'bands=' + \ str(color_bands)+',' else: sntd_command += 'bands='+str(val)+',' elif par == 'method': sntd_command += 'method="'+fit_method+'",' elif par == 'fit_prior' and fit_method != 'parallel' and (fit_prior is not None and fit_prior is not False): if parallelize is None: sntd_command += 'fit_prior=fitCurves,' else: sntd_command += 'fit_prior=True,' elif par == 'par_or_batch' and parallelize is not None: sntd_command += 'par_or_batch="parallel",' elif par == 'npar_cores' and parallelize is not None: sntd_command += 'npar_cores=%i,' % n_cores_per_node elif isinstance(val, str): sntd_command += str(par)+'="'+str(val)+'",' elif par == 'kwargs': for par2, val2 in val.items(): if isinstance(val, str): sntd_command += str(par2) + \ '="'+str(val2)+'",' else: sntd_command += str(par2) + \ '='+str(val2)+',' else: sntd_command += str(par)+'='+str(val)+',' sntd_command = sntd_command[:-1]+')\n' if i < len(method)-1: sntd_command += ' '*(indent1-indent)+'fitCurves=' batch_py = batch_py.replace( 'sntdcommandreplace', sntd_command) with open(os.path.join(os.path.abspath(folder_name), pyfile), 'w') as f: f.write(batch_py) return run_sbatch(folder_name, script_name_init, script_name, total_jobs, max_batch_jobs, n_per_node, wait_for_batch, parallelize, len(args['curves']), verbose) else: initBounds = copy(args['bounds']) if 'parallel' in method: if verbose: print('Starting parallel method...') curves = _fitparallel(args) if args['fit_prior'] == True: args['fit_prior'] = curves args['curves'] = curves args['bounds'] = copy(initBounds) if 'series' in method: if verbose: print('Starting series method...') if 'td' not in args['bounds']: if verbose: print( 'td not in bounds for series method, choosing based on parallel bounds...') args['bounds']['td'] = args['bounds']['t0'] if 'mu' not in args['bounds']: if verbose: print( 'mu not in bounds for series method, choosing defaults...') args['bounds']['mu'] = [0, 10] curves = _fitseries(args) args['curves'] = curves args['bounds'] = copy(initBounds) if 'color' in method: if verbose: print('Starting color method...') if 'td' not in args['bounds']: if verbose: print( 'td not in bounds for color method, choosing based on parallel bounds...') args['bounds']['td'] = args['bounds']['t0'] curves = _fitColor(args) elif method not in ['parallel', 'series', 'color']: raise RuntimeError( 'Parameter "method" must be "parallel","series", or "color".') elif method == 'parallel': if args['parlist']: if par_or_batch == 'parallel': par_arg_vals = [] for i in range(len(args['curves'])): temp_args = {} for par_key in ['snType', 'bounds', 'constants', 't0_guess']: if isinstance(args[par_key], (list, tuple, np.ndarray)): try: temp_args[par_key] = args[par_key][i] except: pass for par_key in ['bands', 'models', 'ignore', 'params']: if isinstance(args[par_key], (list, tuple, np.ndarray)) and np.any([isinstance(x, (list, tuple, np.ndarray)) for x in args[par_key]]): try: temp_args[par_key] = args[par_key][i] except: pass par_arg_vals.append([args['curves'][i], temp_args]) curves = pyParz.foreach(par_arg_vals, _fitparallel, [ args], numThreads=min(npar_cores, len(par_arg_vals))) else: if n_cores_per_node > 1: parallelize = n_cores_per_node n_per_node = max(n_per_node, n_cores_per_node) micro_par = None elif microlensing is not None: parallelize = None micro_par = npar_cores else: parallelize = None micro_par = None total_jobs = math.ceil(len(args['curves'])/n_per_node) if nbatch_jobs is None: nbatch_jobs = min(total_jobs, max_batch_jobs) script_name_init, folder_name = make_sbatch(partition=batch_partition, njobs=min(total_jobs, nbatch_jobs), njobstotal=min(total_jobs, max_batch_jobs), python_path=batch_python_path, init=True, parallelize=parallelize, microlensing_cores=micro_par) script_name, folder_name = make_sbatch(partition=batch_partition, folder=folder_name, njobs=min(total_jobs, nbatch_jobs), python_path=batch_python_path, init=False, parallelize=parallelize, microlensing_cores=micro_par) pickle.dump(constants, open(os.path.join( folder_name, 'sntd_constants.pkl'), 'wb')) pickle.dump(args['curves'], open( os.path.join(folder_name, 'sntd_data.pkl'), 'wb')) pyfiles = ['run_sntd_init.py', 'run_sntd.py'] if parallelize is None else [ 'run_sntd_init_par.py', 'run_sntd_par.py'] for pyfile in pyfiles: with open(os.path.join(_filedir_, 'batch', pyfile)) as f: batch_py = f.read() if 'init' in pyfile: batch_py = batch_py.replace('nlcsreplace', str( min(int(n_per_node*min(total_jobs, max_batch_jobs)), len(args['curves'])))) batch_py = batch_py.replace( 'njobsreplace', str(min(total_jobs, max_batch_jobs))) else: batch_py = batch_py.replace( 'nlcsreplace', str(n_per_node)) if batch_init is None: batch_py = batch_py.replace( 'batchinitreplace', 'print("Nothing to initialize...")') else: batch_py = batch_py.replace( 'batchinitreplace', batch_init) batch_py = batch_py.replace( 'ncores', str(n_cores_per_node)) indent1 = batch_py.find('fitCurves=') indent = batch_py.find('try:')+len('try:')+1 sntd_command = 'sntd.fit_data(' for par, val in locs.items(): if par == 'curves': if parallelize is None: sntd_command += 'curves=all_dat[i],' else: sntd_command += 'curves=all_input,' elif par == 'batch_init': sntd_command += 'batch_init=None,' elif par == 'constants': if parallelize is None: sntd_command += 'constants=all_dat[i].constants,' else: sntd_command += 'constants=const_list,' elif par == 'method': sntd_command += 'method="parallel",' elif par == 'par_or_batch' and parallelize is not None: sntd_command += 'par_or_batch="parallel",' elif par == 'npar_cores' and parallelize is not None: sntd_command += 'npar_cores=%i,' % n_cores_per_node elif isinstance(val, str): sntd_command += str(par)+'="'+str(val)+'",' elif par == 'kwargs': for par2, val2 in val.items(): if isinstance(val, str): sntd_command += str(par2) + \ '="'+str(val2)+'",' else: sntd_command += str(par2)+'='+str(val2)+',' else: sntd_command += str(par)+'='+str(val)+',' sntd_command = sntd_command[:-1]+')' batch_py = batch_py.replace( 'sntdcommandreplace', sntd_command) with open(os.path.join(os.path.abspath(folder_name), pyfile), 'w') as f: f.write(batch_py) return run_sbatch(folder_name, script_name_init, script_name, total_jobs, max_batch_jobs, n_per_node, wait_for_batch, parallelize, len(args['curves']), verbose) else: curves = _fitparallel(args) elif method == 'series': if args['parlist']: if par_or_batch == 'parallel': par_arg_vals = [] for i in range(len(args['curves'])): temp_args = {} try: for par_key in ['snType', 'bounds', 'constants', 't0_guess']: if isinstance(args[par_key], (list, tuple, np.ndarray)): temp_args[par_key] = args[par_key][i] for par_key in ['bands', 'models', 'ignore', 'params']: if isinstance(args[par_key], (list, tuple, np.ndarray)) and np.any([isinstance(x, (list, tuple, np.ndarray)) for x in args[par_key]]): temp_args[par_key] = args[par_key][i] except: pass par_arg_vals.append([args['curves'][i], temp_args]) curves = pyParz.foreach(par_arg_vals, _fitseries, [ args], numThreads=min(npar_cores, len(par_arg_vals))) else: if n_cores_per_node > 1: parallelize = n_cores_per_node n_per_node = max(n_per_node, n_cores_per_node) micro_par = None elif microlensing is not None: parallelize = None micro_par = npar_cores else: parallelize = None micro_par = None total_jobs = math.ceil(len(args['curves'])/n_per_node) if nbatch_jobs is None: nbatch_jobs = min(total_jobs, max_batch_jobs) script_name_init, folder_name = make_sbatch(partition=batch_partition, njobs=min(total_jobs, nbatch_jobs), njobstotal=min(total_jobs, max_batch_jobs), python_path=batch_python_path, init=True, parallelize=parallelize, microlensing_cores=micro_par) script_name, folder_name = make_sbatch(partition=batch_partition, folder=folder_name, njobs=min(total_jobs, nbatch_jobs), python_path=batch_python_path, init=False, parallelize=parallelize, microlensing_cores=micro_par) pickle.dump(constants, open(os.path.join( folder_name, 'sntd_constants.pkl'), 'wb')) pickle.dump(args['curves'], open( os.path.join(folder_name, 'sntd_data.pkl'), 'wb')) pyfiles = ['run_sntd_init.py', 'run_sntd.py'] if parallelize is None else [ 'run_sntd_init_par.py', 'run_sntd_par.py'] for pyfile in pyfiles: with open(os.path.join(_filedir_, 'batch', pyfile)) as f: batch_py = f.read() if 'init' in pyfile: batch_py = batch_py.replace('nlcsreplace', str( min(int(n_per_node*min(total_jobs, max_batch_jobs)), len(args['curves'])))) batch_py = batch_py.replace( 'njobsreplace', str(min(total_jobs, max_batch_jobs))) else: batch_py = batch_py.replace( 'nlcsreplace', str(n_per_node)) if batch_init is None: batch_py = batch_py.replace( 'batchinitreplace', 'print("Nothing to initialize...")') else: batch_py = batch_py.replace( 'batchinitreplace', batch_init) batch_py = batch_py.replace( 'ncores', str(n_cores_per_node)) indent1 = batch_py.find('fitCurves=') indent = batch_py.find('try:')+len('try:')+1 sntd_command = 'sntd.fit_data(' for par, val in locs.items(): if par == 'curves': if parallelize is None: sntd_command += 'curves=all_dat[i],' else: sntd_command += 'curves=all_input,' elif par == 'batch_init': sntd_command += 'batch_init=None,' elif par == 'constants': if parallelize is None: sntd_command += 'constants=all_dat[i].constants,' else: sntd_command += 'constants={'+'},' elif par == 'method': sntd_command += 'method="series",' elif par == 'par_or_batch' and parallelize is not None: sntd_command += 'par_or_batch="parallel",' elif par == 'npar_cores' and parallelize is not None: sntd_command += 'npar_cores=%i,' % n_cores_per_node elif isinstance(val, str): sntd_command += str(par)+'="'+str(val)+'",' elif par == 'kwargs': for par2, val2 in val.items(): if isinstance(val, str): sntd_command += str(par2) + \ '="'+str(val2)+'",' else: sntd_command += str(par2)+'='+str(val2)+',' else: sntd_command += str(par)+'='+str(val)+',' sntd_command = sntd_command[:-1]+')' batch_py = batch_py.replace( 'sntdcommandreplace', sntd_command) with open(os.path.join(os.path.abspath(folder_name), pyfile), 'w') as f: f.write(batch_py) return run_sbatch(folder_name, script_name_init, script_name, total_jobs, max_batch_jobs, n_per_node, wait_for_batch, parallelize, len(args['curves']), verbose) else: curves = _fitseries(args) elif method == 'color': if args['parlist']: if par_or_batch == 'parallel': par_arg_vals = [] for i in range(len(args['curves'])): temp_args = {} try: for par_key in ['snType', 'bounds', 'constants', 't0_guess']: if isinstance(args[par_key], (list, tuple, np.ndarray)): temp_args[par_key] = args[par_key][i] for par_key in ['bands', 'models', 'ignore', 'params']: if isinstance(args[par_key], (list, tuple, np.ndarray)) and np.any([isinstance(x, (list, tuple, np.ndarray)) for x in args[par_key]]): temp_args[par_key] = args[par_key][i] except: pass par_arg_vals.append([args['curves'][i], temp_args]) curves = pyParz.foreach(par_arg_vals, _fitColor, [ args], numThreads=min(npar_cores, len(par_arg_vals))) else: if n_cores_per_node > 1: parallelize = n_cores_per_node n_per_node = max(n_per_node, n_cores_per_node) micro_par = None elif microlensing is not None: parallelize = None micro_par = npar_cores else: parallelize = None micro_par = None total_jobs = math.ceil(len(args['curves'])/n_per_node) if nbatch_jobs is None: nbatch_jobs = min(total_jobs, max_batch_jobs) script_name_init, folder_name = make_sbatch(partition=batch_partition, njobs=min(total_jobs, nbatch_jobs), njobstotal=min(total_jobs, max_batch_jobs), python_path=batch_python_path, init=True, parallelize=parallelize, microlensing_cores=micro_par) script_name, folder_name = make_sbatch(partition=batch_partition, folder=folder_name, njobs=min(total_jobs, nbatch_jobs), python_path=batch_python_path, init=False, parallelize=parallelize, microlensing_cores=micro_par) pickle.dump(constants, open(os.path.join( folder_name, 'sntd_constants.pkl'), 'wb')) pickle.dump(args['curves'], open( os.path.join(folder_name, 'sntd_data.pkl'), 'wb')) pyfiles = ['run_sntd_init.py', 'run_sntd.py'] if parallelize is None else [ 'run_sntd_init_par.py', 'run_sntd_par.py'] for pyfile in pyfiles: with open(os.path.join(_filedir_, 'batch', pyfile)) as f: batch_py = f.read() if 'init' in pyfile: batch_py = batch_py.replace('nlcsreplace', str( min(int(n_per_node*min(total_jobs, max_batch_jobs)), len(args['curves'])))) batch_py = batch_py.replace( 'njobsreplace', str(min(total_jobs, max_batch_jobs))) else: batch_py = batch_py.replace( 'nlcsreplace', str(n_per_node)) if batch_init is None: batch_py = batch_py.replace( 'batchinitreplace', 'print("Nothing to initialize...")') else: batch_py = batch_py.replace( 'batchinitreplace', batch_init) batch_py = batch_py.replace( 'ncores', str(n_cores_per_node)) indent1 = batch_py.find('fitCurves=') indent = batch_py.find('try:')+len('try:')+1 sntd_command = 'sntd.fit_data(' for par, val in locs.items(): if par == 'curves': if parallelize is None: sntd_command += 'curves=all_dat[i],' else: sntd_command += 'curves=all_input,' elif par == 'batch_init': sntd_command += 'batch_init=None,' elif par == 'constants': if parallelize is None: sntd_command += 'constants=all_dat[i].constants,' else: sntd_command += 'constants={'+'},' elif par == 'method': sntd_command += 'method="color",' elif par == 'par_or_batch' and parallelize is not None: sntd_command += 'par_or_batch="parallel",' elif par == 'npar_cores' and parallelize is not None: sntd_command += 'npar_cores=%i,' % n_cores_per_node elif isinstance(val, str): sntd_command += str(par)+'="'+str(val)+'",' elif par == 'kwargs': for par2, val2 in val.items(): if isinstance(val, str): sntd_command += str(par2) + \ '="'+str(val2)+'",' else: sntd_command += str(par2)+'='+str(val2)+',' else: sntd_command += str(par)+'='+str(val)+',' sntd_command = sntd_command[:-1]+')' batch_py = batch_py.replace( 'sntdcommandreplace', sntd_command) with open(os.path.join(os.path.abspath(folder_name), pyfile), 'w') as f: f.write(batch_py) return run_sbatch(folder_name, script_name_init, script_name, total_jobs, max_batch_jobs, n_per_node, wait_for_batch, parallelize, len(args['curves']), verbose) else: if args['color_bands'] is not None: args['bands'] = args['color_bands'] curves = _fitColor(args) return curves def _bandCheck(curves,bands): final_bands = [] for b in bands: for im in curves.images.keys(): if b in curves.images[im].table['band']: final_bands.append(b) break elif b.upper() in curves.images[im].table['band']: final_bands.append(b.upper()) break elif b.lower() in curves.images[im].table['band']: final_bands.append(b.lower()) break return final_bands def _fitColor(all_args): fit_start = time.time() # Check if parallelized or single fit if isinstance(all_args, (list, tuple, np.ndarray)): curves, args = all_args if isinstance(args, list): args = args[0] if isinstance(curves, list): curves, single_par_vars = curves for key in single_par_vars: args[key] = single_par_vars[key] if isinstance(curves, str): args['curves'] = pickle.load(open(curves, 'rb')) else: args['curves'] = curves if args['verbose']: print('Fitting MISN number %i...' % curves.nsn) else: args = all_args for p in args['curves'].constants.keys(): if p not in args['constants'].keys(): args['constants'][p] = args['curves'].constants[p] if args['clip_data']: for im in args['curves'].images.keys(): args['curves'].clip_data(im=im, minsnr=args.get( 'minsnr', 0), max_cadence=args['max_cadence']) else: for im in args['curves'].images.keys(): args['curves'].clip_data(im=im, rm_NaN=True) args['bands'] = list(args['bands']) _, band_SNR, _ = getBandSNR( args['curves'], args['bands'], args['min_points_per_band']) if len(args['bands']) < 2: raise RuntimeError( "If you want to analyze color curves, you need two bands!") else: if args['fit_colors'] is None: # Try and determine the best bands to use in the fit final_bands = [] for band in np.unique(args['curves'].images[args['refImage']].table['band']): to_add = True for im in args['curves'].images.keys(): if len(np.where(args['curves'].images[im].table['band'] == band)[0]) < args['min_points_per_band']: to_add = False if to_add: final_bands.append(band) if np.any([x not in final_bands for x in args['bands']]): all_SNR = [] for band in final_bands: ims = [] for d in args['curves'].images.keys(): inds = np.where( args['curves'].images[d].table['band'] == band)[0] if len(inds) == 0: ims.append(0) else: ims.append(np.sum(args['curves'].images[d].table['flux'][inds]/args['curves'].images[d].table['fluxerr'][inds]) * np.sqrt(len(inds))) all_SNR.append(np.sum(ims)) sorted = np.flip(np.argsort(all_SNR)) args['bands'] = np.array(final_bands)[sorted] if args['max_n_bands'] is not None: args['bands'] = args['bands'][:args['max_n_bands']] colors_to_fit = [x for x in combinations(args['bands'], 2)] if args['color_bands'] is not None: for i in range(len(colors_to_fit)): colors_to_fit[i] = [ x for x in args['color_bands'] if x in colors_to_fit[i]] else: colors_to_fit = [x.split('-') for x in args['fit_colors']] imnums = [x[-1] for x in args['curves'].images.keys()] if args['fit_prior'] is not None: if args['fit_prior'] == True: args['fit_prior'] = args['curves'] ref = args['fit_prior'].parallel.fitOrder[0] refnum = ref[-1] else: ref = args['refImage'] refnum = ref[-1] inds = np.arange(0, len(args['curves'].images[ref].table), 1).astype(int) nimage = len(imnums) snParams = ['dt_%s' % i for i in imnums if i != refnum] all_vparam_names = np.append(args['params'], snParams).flatten() if 'td' in args['constants'].keys(): all_vparam_names = np.array( [x for x in all_vparam_names if 'dt_' not in x]) ims = list(args['curves'].images.keys()) for param in all_vparam_names: if param in args['color_param_ignore'] and args['fit_prior'] is not None and param not in args['constants']: par_ref = args['fit_prior'].parallel.fitOrder[0] args['constants'][param] = args['fit_prior'].images[par_ref].param_quantiles[param][1] if param in all_vparam_names: all_vparam_names = np.array( [x for x in all_vparam_names if x != param]) if param not in args['bounds'].keys(): if param.startswith('dt_'): if args['fit_prior'] is not None: im = [x for x in ims if x[-1] == param[-1]][0] args['bounds'][param] = np.array([-1, 1])*3*np.sqrt(args['fit_prior'].parallel.time_delay_errors[im]**2 + args['fit_prior'].parallel.time_delay_errors[ref]**2) +\ (args['fit_prior'].parallel.time_delays[im] - args['fit_prior'].parallel.time_delays[ref]) else: args['bounds'][param] = np.array( args['bounds']['td']) elif args['fit_prior'] is not None: par_ref = args['fit_prior'].parallel.fitOrder[0] if param not in args['fit_prior'].images[par_ref].param_quantiles.keys(): continue args['bounds'][param] = 3*np.array([args['fit_prior'].images[par_ref].param_quantiles[param][0] - args['fit_prior'].images[par_ref].param_quantiles[param][1], args['fit_prior'].images[par_ref].param_quantiles[param][2] - args['fit_prior'].images[par_ref].param_quantiles[param][1]]) + \ args['fit_prior'].images[par_ref].param_quantiles[param][1] if args['dust'] is not None: if isinstance(args['dust'], str): dust_dict = {'CCM89Dust': sncosmo.CCM89Dust, 'OD94Dust': sncosmo.OD94Dust, 'F99Dust': sncosmo.F99Dust} dust = dust_dict[args['dust']]() else: dust = args['dust'] else: dust = [] effect_names = args['effect_names'] effect_frames = args['effect_frames'] effects = [dust for i in range(len(effect_names))] if effect_names else [] effect_names = effect_names if effect_names else [] effect_frames = effect_frames if effect_frames else [] if not isinstance(effect_names, (list, tuple)): effects = [effect_names] if not isinstance(effect_frames, (list, tuple)): effects = [effect_frames] if 'ignore_models' in args['set_from_simMeta'].keys(): to_ignore = args['curves'].images[ref].simMeta[args['set_from_simMeta'] ['ignore_models']] if isinstance(to_ignore, str): to_ignore = [to_ignore] args['models'] = [x for x in np.array( args['models']).flatten() if x not in to_ignore] if args['fit_prior'] is not None and args['fit_prior'].images[args['fit_prior'].parallel.fitOrder[0]].fits.model._source.name not in args['models']: print('Wanted to use a fit prior but do not have the same model as an option.') raise RuntimeError elif args['fit_prior'] is not None: args['models'] = args['fit_prior'].images[args['fit_prior'].parallel.fitOrder[0] ].fits.model._source.name if not args['curves'].quality_check(min_n_bands=2, min_n_points_per_band=args['min_points_per_band'], clip=False, method='parallel'): if args['verbose']: print("Curve(s) not passing quality check.") return all_fit_dict = {} if args['fast_model_selection'] and len(np.array(args['models']).flatten()) > 1: for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) minchisq = np.inf init_inds = copy(inds) for mod in np.array(args['models']).flatten(): inds = copy(init_inds) if isinstance(mod, str): if mod.upper() in ['BAZIN', 'BAZINSOURCE']: mod = 'BAZINSOURCE' if len(np.unique(args['curves'].images[ref].table['band'])) > 1 and args['color_curve'] is None: best_band = band_SNR[args['fitOrder'][0]][0] inds = np.where( args['curves'].images[ref].table['band'] == best_band)[0] source = BazinSource( data=args['curves'].images[ref].table[inds], colorCurve=args['color_curve']) else: source = sncosmo.get_source(mod) tempMod = sncosmo.Model( source=source, effects=effects, effect_names=effect_names, effect_frames=effect_frames) else: tempMod = copy(mod) tempMod.set(**{k: args['constants'][k] for k in args['constants'].keys() if k in tempMod.param_names}) tempMod.set(**{k: args['curves'].images[args['refImage']].simMeta[args['set_from_simMeta'][k]] for k in args['set_from_simMeta'].keys() if k in tempMod.param_names}) if mod == 'BAZINSOURCE': tempMod.set(z=0) try: res, fit = sncosmo.fit_lc(args['curves'].images[ref].table[inds], tempMod, [x for x in args['params'] if x in tempMod.param_names], bounds={b: args['bounds'][b] for b in args['bounds'] if b not in [ 't0', tempMod.param_names[2]]}, minsnr=args.get('minsnr', 0)) except: if args['verbose']: print('Issue with %s, skipping...' % mod) continue tempchisq = res.chisq / \ (len(inds)+len([x for x in args['params'] if x in tempMod.param_names])-1) if tempchisq < minchisq: minchisq = tempchisq bestres = copy(res) bestfit = copy(fit) bestmodname = copy(mod) all_fit_dict[mod] = [copy(fit), copy(res)] try: args['models'] = [bestmodname] except: print('Every model had an error.') sys.exit(1) finallogz = -np.inf for mod in np.array(args['models']).flatten(): if isinstance(mod, str): source = sncosmo.get_source(mod) tempMod = sncosmo.Model(source=source, effects=effects, effect_names=effect_names, effect_frames=effect_frames) else: tempMod = copy(mod) tempMod.set(**{k: args['constants'][k] for k in args['constants'].keys() if k in tempMod.param_names}) tempMod.set(**{k: args['curves'].images[args['refImage']].simMeta[args['set_from_simMeta'][k]] for k in args['set_from_simMeta'].keys() if k in tempMod.param_names}) if args['fit_prior'] is not None: par_ref = args['fit_prior'].parallel.fitOrder[0] if mod != args['fit_prior'].images[par_ref].fits.model._source.name: continue temp_delays = {k: args['fit_prior'].parallel.time_delays[k]-args['fit_prior'].parallel.time_delays[par_ref] for k in args['fit_prior'].parallel.fitOrder} args['curves'].color_table([x[0] for x in colors_to_fit], [x[1] for x in colors_to_fit], time_delays={im: 0 for im in args['curves'].images.keys()}, minsnr=args.get('minsnr', 0)) args['curves'].color.meta['reft0'] = args['fit_prior'].images[par_ref].fits.model.get( 't0') args['curves'].color.meta['td'] = temp_delays else: par_ref = args['refImage'] im_name = args['refImage'][:-1] if args['trial_fit']: for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) best_bands = band_SNR[args['refImage']][:min( len(band_SNR[args['refImage']]), 2)] temp_delays = {} temp_mags = {} fit_order = np.flip(args['fitOrder']) if args['fitOrder'] is not None else \ [x for x in args['curves'].images.keys( ) if x != args['refImage']]+[args['refImage']] for im in fit_order: temp_bands = [] for b in best_bands: temp_bands = np.append(temp_bands, np.where( args['curves'].images[im].table['band'] == b)[0]) temp_inds = temp_bands.astype(int) res, fit = sncosmo.fit_lc(copy(args['curves'].images[im].table[temp_inds]), tempMod, [x for x in args['params'] if x in tempMod.param_names and x in args['bounds'].keys()] + [tempMod.param_names[2]], bounds={b: args['bounds'][b] for b in args['bounds'].keys() if b not in [ 't0', tempMod.param_names[2]]}, minsnr=args.get('minsnr', 0)) temp_delays[im] = fit.get('t0') for param in args['color_param_ignore']: if param not in args['constants']: args['constants'][param] = fit.get(param) if param in all_vparam_names: all_vparam_names = np.array( [x for x in all_vparam_names if x != param]) tempMod.set(**{k: args['constants'][k] for k in args['constants'].keys() if k in tempMod.param_names}) args['curves'].color.meta['reft0'] = temp_delays[args['refImage']] temp_delays = { im: temp_delays[im]-temp_delays[args['refImage']] for im in temp_delays.keys()} for b in args['bounds']: if b in list(res.errors.keys()): if b not in all_vparam_names: tempMod.set(**{b: fit.get(b)}) elif b != 't0': args['bounds'][b] = np.array([np.max([args['bounds'][b][0], (args['bounds'][b][0]-np.median(args['bounds'][b]))/2+fit.get(b)]), np.min([args['bounds'][b][1], (args['bounds'][b][1]-np.median(args['bounds'][b]))/2+fit.get(b)])]) else: args['bounds'][b] = (np.array( args['bounds'][b])-np.median(args['bounds'][b]))/2+args['curves'].color.meta['reft0'] elif b.startswith('dt_'): args['bounds'][b] = np.array( args['bounds']['td'])/2+temp_delays[im_name+b[-1]] if 't0' not in args['bounds'].keys(): args['bounds']['t0'] = np.array( args['bounds']['td'])/2+args['curves'].color.meta['reft0'] args['curves'].color_table([x[0] for x in colors_to_fit], [x[1] for x in colors_to_fit], time_delays={im: 0 for im in args['curves'].images.keys()}, minsnr=args.get('minsnr', 0)) args['curves'].color.meta['td'] = temp_delays else: if args['t0_guess'] is not None: args['curves'].color_table([x[0] for x in colors_to_fit], [x[1] for x in colors_to_fit], referenceImage=args['refImage'], static=True, model=tempMod, minsnr=args.get('minsnr', 0), time_delays={im: args['t0_guess'][im]-args['t0_guess'][args['refImage']] for im in args['t0_guess'].keys()}) args['curves'].color.meta['reft0'] = args['t0_guess'][args['refImage']] else: args['curves'].color_table([x[0] for x in colors_to_fit], [x[1] for x in colors_to_fit], referenceImage=args['refImage'], static=True, model=tempMod, minsnr=args.get('minsnr', 0)) for b in args['bounds']: if b.startswith('dt_'): args['bounds'][b] = np.array( args['bounds']['td'])+args['curves'].color.meta['td'][im_name+b[-1]] elif b == 't0': args['bounds'][b] = np.array( args['bounds'][b])+args['curves'].color.meta['reft0'] if 't0' not in args['bounds'].keys(): args['bounds']['t0'] = np.array( args['bounds']['td'])+args['curves'].color.meta['reft0'] # if td is constant, overwrite here if 'td' in args['constants'].keys(): args['curves'].color_table([x[0] for x in colors_to_fit], [x[1] for x in colors_to_fit], referenceImage=args['refImage'], static=False, model=tempMod, minsnr=args.get('minsnr', 0), time_delays=args['constants']['td']) if args['cut_time'] is not None: for im in args['curves'].images.keys(): args['curves'].color.table = args['curves'].color.table[np.where(np.logical_or(args['curves'].color.table['image'] != im, np.logical_and(args['curves'].color.table['time'] >= args['cut_time'][0]*(1+tempMod.get('z'))+args['curves'].color.meta['reft0'] + args['curves'].color.meta['td'][im], args['curves'].color.table['time'] <= args['cut_time'][1]*(1+tempMod.get('z'))+args['curves'].color.meta['reft0'] + args['curves'].color.meta['td'][im])))[0]] all_vparam_names = np.array( [x for x in all_vparam_names if x != tempMod.param_names[2]]) if args['band_order'] is not None: args['bands'] = [x for x in args['band_order'] if x in args['bands']] for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) if not args['curves'].quality_check(min_n_bands=args['min_n_bands'], min_n_points_per_band=args['min_points_per_band'], clip=args['clip_data'], method='color'): print("Error: Did not pass quality check.") return params, res, model = nest_color_lc(args['curves'].color.table, tempMod, nimage, colors=colors_to_fit, bounds=args['bounds'], use_MLE=args['use_MLE'], vparam_names=[x for x in all_vparam_names if x in tempMod.param_names or x in snParams], ref=par_ref, minsnr=args.get('minsnr', 5.), priors=args.get('priors', None), ppfs=args.get('ppfs', None), method=args.get('nest_method', 'single'), maxcall=args.get('maxcall', None), modelcov=args.get('modelcov', None), rstate=args.get('rstate', None), maxiter=args.get('maxiter', None), npoints=args.get('npoints', 100)) if finallogz < res.logz: finallogz = res.logz finalres, finalmodel = res, model time_delays = args['curves'].color.meta['td'] final_param_quantiles = params args['curves'].color.time_delays = dict([]) args['curves'].color.time_delay_errors = dict([]) args['curves'].color.t_peaks = dict([]) finalres_max = finalres.logl.argmax() if 'td' in args['constants'].keys(): args['curves'].color.time_delays = args['constants']['td'] args['curves'].color.time_delay_errors = { im: 0 for im in args['curves'].color.time_delays.keys()} args['curves'].color.meta['fit_colors'] = colors_to_fit args['curves'].color.refImage = args['refImage'] args['curves'].color.priorImage = par_ref args['curves'].color.bands = args['bands'] args['curves'].color.fits = newDict() args['curves'].color.fits['model'] = finalmodel args['curves'].color.fits['res'] = finalres return args['curves'] if par_ref == args['refImage']: args['curves'].color.time_delays[par_ref] = 0 args['curves'].color.time_delay_errors[par_ref] = np.array([0, 0]) if not args['use_MLE']: args['curves'].color.t_peaks[par_ref] = weighted_quantile( finalres.samples[:, finalres.vparam_names.index('t0')], .5, finalres.weights) else: args['curves'].color.t_peaks[par_ref] = finalres.samples[finalres_max, finalres.vparam_names.index('t0')] for k in args['curves'].images.keys(): if k == par_ref: continue else: if not args['use_MLE']: args['curves'].color.t_peaks[k] = weighted_quantile(finalres.samples[:, finalres.vparam_names.index('dt_'+k[-1])] + finalres.samples[:, finalres.vparam_names.index( 't0')], .5, finalres.weights) dt_quant = weighted_quantile(finalres.samples[:, finalres.vparam_names.index( 'dt_'+k[-1])], [.16, .5, .84], finalres.weights) else: args['curves'].color.t_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])] +\ finalres.samples[finalres_max, finalres.vparam_names.index('t0')] dt_quant = [finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])]-finalres.errors['dt_'+k[-1]], finalres.samples[finalres_max, finalres.vparam_names.index( 'dt_'+k[-1])], finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])]+finalres.errors['dt_'+k[-1]]] args['curves'].color.time_delays[k] = dt_quant[1] args['curves'].color.time_delay_errors[k] = np.array( [dt_quant[0]-dt_quant[1], dt_quant[2]-dt_quant[1]]) else: args['curves'].color.time_delays[args['refImage']] = 0 args['curves'].color.time_delay_errors[args['refImage']] = np.array([ 0, 0]) trefSamples = finalres.samples[:, finalres.vparam_names.index( 'dt_'+args['refImage'][-1])] if not args['use_MLE']: args['curves'].color.t_peaks[args['refImage']] = weighted_quantile( trefSamples+finalres.samples[:, finalres.vparam_names.index('t0')], .5, finalres.weights) else: args['curves'].color.t_peaks[args['refImage']] = trefSamples[finalres_max] + \ finalres.samples[finalres_max, finalres.vparam_names.index('t0')] for k in args['curves'].images.keys(): if k == args['refImage']: continue elif k == par_ref: if not args['use_MLE']: args['curves'].color.t_peaks[k] = weighted_quantile( finalres.samples[:, finalres.vparam_names.index('t0')], .5, finalres.weights) dt_quant = weighted_quantile(-1*trefSamples, [.16, .5, .84], finalres.weights) else: args['curves'].color.t_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index('t0')] dt_quant = [-1*trefSamples[finalres_max]-finalres.errors['t0'], -1*trefSamples[finalres_max], -1*trefSamples[finalres_max]+finalres.errors['t0']] args['curves'].color.time_delays[k] = dt_quant[1] args['curves'].color.time_delay_errors[k] = np.array( [dt_quant[0]-dt_quant[1], dt_quant[2]-dt_quant[1]]) else: if not args['use_MLE']: args['curves'].color.t_peaks[k] = weighted_quantile(finalres.samples[:, finalres.vparam_names.index('dt_'+k[-1])] + finalres.samples[:, finalres.vparam_names.index( 't0')], .5, finalres.weights) dt_quant = weighted_quantile(finalres.samples[:, finalres.vparam_names.index( 'dt_'+k[-1])]-trefSamples, [.16, .5, .84], finalres.weights) else: args['curves'].color.t_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])] +\ finalres.samples[finalres_max, finalres.vparam_names.index('t0')] dt_quant = [finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])]-trefSamples[finalres_max]-finalres.errors['dt_'+k[-1]], finalres.samples[finalres_max, finalres.vparam_names.index( 'dt_'+k[-1])]-trefSamples[finalres_max], finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])]-trefSamples[finalres_max]+finalres.errors['dt_'+k[-1]]] args['curves'].color.time_delays[k] = dt_quant[1] args['curves'].color.time_delay_errors[k] = np.array( [dt_quant[0]-dt_quant[1], dt_quant[2]-dt_quant[1]]) finalmodel.set(t0=args['curves'].color.t_peaks[args['refImage']]) args['curves'].color_table([x[0] for x in colors_to_fit], [x[1] for x in colors_to_fit], time_delays=args['curves'].color.time_delays, minsnr=args.get('minsnr', 0)) args['curves'].color.meta['td'] = time_delays args['curves'].color.meta['fit_colors'] = colors_to_fit args['curves'].color.refImage = args['refImage'] args['curves'].color.priorImage = par_ref args['curves'].color.bands = args['bands'] args['curves'].color.fits = newDict() args['curves'].color.fits['model'] = finalmodel args['curves'].color.fits['res'] = finalres fit_end = time.time() args['curves'].color.fit_time = fit_end - fit_start return args['curves'] def nest_color_lc(data, model, nimage, colors, vparam_names, bounds, ref='image_1', use_MLE=False, minsnr=5., priors=None, ppfs=None, npoints=100, method='single', maxiter=None, maxcall=None, modelcov=False, rstate=None, verbose=False, warn=True, **kwargs): # Taken from SNCosmo nest_lc # experimental parameters tied = kwargs.get("tied", None) vparam_names = list(vparam_names) if ppfs is None: ppfs = {} if tied is None: tied = {} # Convert bounds/priors combinations into ppfs if bounds is not None: for key, val in bounds.items(): if key in ppfs: continue # ppfs take priority over bounds/priors a, b = val if priors is not None and key in priors: # solve ppf at discrete points and return interpolating # function x_samples = np.linspace(0., 1., 101) ppf_samples = sncosmo.utils.ppf(priors[key], x_samples, a, b) f = sncosmo.utils.Interp1D(0., 1., ppf_samples) else: f = sncosmo.utils.Interp1D(0., 1., np.array([a, b])) ppfs[key] = f # NOTE: It is important that iparam_names is in the same order # every time, otherwise results will not be reproducible, even # with same random seed. This is because iparam_names[i] is # matched to u[i] below and u will be in a reproducible order, # so iparam_names must also be. iparam_names = [key for key in vparam_names if key in ppfs] ppflist = [ppfs[key] for key in iparam_names] npdim = len(iparam_names) # length of u ndim = len(vparam_names) # length of v # Check that all param_names either have a direct prior or are tied. for name in vparam_names: if name in iparam_names: continue if name in tied: continue raise ValueError("Must supply ppf or bounds or tied for parameter '{}'" .format(name)) def prior_transform(u): d = {} for i in range(npdim): d[iparam_names[i]] = ppflist[i](u[i]) v = np.empty(ndim, dtype=np.float) for i in range(ndim): key = vparam_names[i] if key in d: v[i] = d[key] else: v[i] = tied[key](d) return v if np.any(['dt_' in x for x in vparam_names]): doTd = True nTdParam = nimage-1 else: doTd = False nTdParam = 0 model_param_names = [ x for x in vparam_names[:len(vparam_names)-nTdParam]] model_idx = np.array([vparam_names.index(name) for name in model_param_names]) td_params = [x for x in vparam_names[len( vparam_names)-nimage:] if x.startswith('dt')] td_idx = np.array([vparam_names.index(name) for name in td_params]) im_indices = [np.where(data['image'] == i)[0] for i in np.unique(data['image']) if i != ref] obs_dict = {} err_dict = {} zp_dict = {} time_dict = {} im_dict = {} for color in colors: col_inds = np.where(~np.isnan(data[color[0]+'-'+color[1]]))[0] time_dict[color[0]+'-'+color[1]] = np.array(data['time'][col_inds]) im_dict[color[0]+'-'+color[1]] = {i[i.find('_')+1:]: np.where(data[col_inds]['image'] == i)[0] for i in np.unique(data[col_inds]['image']) if i != ref} obs_dict[color[0]+'-'+color[1] ] = np.array(data[color[0]+'-'+color[1]][col_inds]) err_dict[color[0]+'-'+color[1] ] = np.array(data[color[0]+'-'+color[1]+'_err'][col_inds]) zpsys = data['zpsys'][0] def chisq_likelihood(parameters): model.set(**{model_param_names[k]: parameters[model_idx[k]] for k in range(len(model_idx))}) mod_dict = {} cov_dict = {} chisq = 0 for color in colors: obs = obs_dict[color[0]+'-'+color[1]] err = err_dict[color[0]+'-'+color[1]] time = copy(time_dict[color[0]+'-'+color[1]]) if doTd: for i in range(len(td_idx)): time[im_dict[color[0]+'-'+color[1]] [td_params[i][-1]]] -= parameters[td_idx[i]] timesort = np.argsort(time) mod_color = model.color(color[0], color[1], zpsys, time[timesort]) if np.any(np.isnan(mod_color)): return(-np.inf) if modelcov: for b in color: _, mcov = model.bandfluxcov(b, time[timesort], zp=zp_dict[b], zpsys=zpsys) cov_dict[b] = mcov cov = np.diag(err[timesort]) mcov1 = cov_dict[color[0]][:, np.array(color_inds1)[timesort]] mcov1 = mcov1[np.array(color_inds1)[timesort], :] mcov2 = cov_dict[color[1]][:, np.array(color_inds2)[timesort]] mcov2 = mcov2[np.array(color_inds2)[timesort], :] cov = cov + np.sqrt(mcov1**2+mcov2**2) invcov = np.linalg.pinv(cov) diff = obs-model_observations chisq += np.dot(np.dot(diff, invcov), diff) else: chi = (obs[timesort]-mod_color)/err[timesort] chisq += np.dot(chi, chi) return chisq def loglike(parameters): chisq = chisq_likelihood(parameters) if not np.isfinite(chisq): return -np.inf return(-.5*chisq) res = nestle.sample(loglike, prior_transform, ndim, npdim=npdim, npoints=npoints, method=method, maxiter=maxiter, maxcall=maxcall, rstate=rstate, callback=(nestle.print_progress if verbose else None)) vparameters, cov = nestle.mean_and_cov(res.samples, res.weights) res = sncosmo.utils.Result(niter=res.niter, ncall=res.ncall, logz=res.logz, logzerr=res.logzerr, h=res.h, samples=res.samples, weights=res.weights, logvol=res.logvol, logl=res.logl, errors=OrderedDict(zip(vparam_names, np.sqrt(np.diagonal(cov)))), vparam_names=copy(vparam_names), bounds=bounds) if use_MLE: best_ind = res.logl.argmax() params = [[res.samples[best_ind, i]-res.errors[vparam_names[i]], res.samples[best_ind, i], res.samples[best_ind, i]+res.errors[vparam_names[i]]] for i in range(len(vparam_names))] else: params = [weighted_quantile( res.samples[:, i], [.16, .5, .84], res.weights) for i in range(len(vparam_names))] model.set(**{model_param_names[k]: params[model_idx[k]][1] for k in range(len(model_idx))}) return params, res, model def _fitseries(all_args): fit_start = time.time() if isinstance(all_args, (list, tuple, np.ndarray)): curves, args = all_args if isinstance(args, list): args = args[0] if isinstance(curves, list): curves, single_par_vars = curves for key in single_par_vars: args[key] = single_par_vars[key] if isinstance(curves, str): args['curves'] = pickle.load(open(curves, 'rb')) else: args['curves'] = curves if args['verbose']: print('Fitting MISN number %i...' % curves.nsn) else: args = all_args for p in args['curves'].constants.keys(): if p not in args['constants'].keys(): args['constants'][p] = args['curves'].constants[p] if args['clip_data']: for im in args['curves'].images.keys(): args['curves'].clip_data(im=im, minsnr=args.get( 'minsnr', 0), max_cadence=args['max_cadence']) else: for im in args['curves'].images.keys(): args['curves'].clip_data(im=im, rm_NaN=True) args['bands'], band_SNR, _ = getBandSNR( args['curves'], args['bands'], args['min_points_per_band']) args['curves'].series.bands = args['bands'][:args['max_n_bands'] ]if args['max_n_bands'] is not None else args['bands'] imnums = [x[-1] for x in args['curves'].images.keys()] if args['fit_prior'] is not None: if args['fit_prior'] == True: args['fit_prior'] = args['curves'] ref = args['fit_prior'].parallel.fitOrder[0] refnum = ref[-1] else: ref = args['refImage'] refnum = ref[-1] nimage = len(imnums) snParams = [['dt_%s' % i, 'mu_%s' % i] for i in imnums if i != refnum] all_vparam_names = np.append(args['params'], snParams).flatten() if 'mu' in args['constants'].keys(): all_vparam_names = [x for x in all_vparam_names if 'mu_' not in x] if 'td' in args['constants'].keys(): all_vparam_names = [x for x in all_vparam_names if 'dt_' not in x] ims = list(args['curves'].images.keys()) for param in all_vparam_names: if param not in args['bounds'].keys(): if param.startswith('dt_'): if args['fit_prior'] is not None: im = [x for x in ims if x[-1] == param[-1]][0] args['bounds'][param] = np.array([-1, 1])*3*np.sqrt(args['fit_prior'].parallel.time_delay_errors[im]**2 + args['fit_prior'].parallel.time_delay_errors[ref]**2) +\ (args['fit_prior'].parallel.time_delays[im] - args['fit_prior'].parallel.time_delays[ref]) else: args['bounds'][param] = np.array( args['bounds']['td']) # +time_delays[im] elif param.startswith('mu_'): if args['fit_prior'] is not None: im = [x for x in ims if x[-1] == param[-1]][0] args['bounds'][param] = np.array([-1, 1])*3*(args['fit_prior'].parallel.magnifications[im]/args['fit_prior'].parallel.magnifications[ref]) *\ np.sqrt((args['fit_prior'].parallel.magnification_errors[im]/args['fit_prior'].parallel.magnifications[im])**2 + (args['fit_prior'].parallel.magnification_errors[ref]/args['fit_prior'].parallel.magnifications[ref])**2)\ + (args['fit_prior'].parallel.magnifications[im] / args['fit_prior'].parallel.magnifications[ref]) else: args['bounds'][param] = np.array( args['bounds']['mu']) # *magnifications[im] elif args['fit_prior'] is not None: par_ref = args['fit_prior'].parallel.fitOrder[0] if param not in args['fit_prior'].images[par_ref].param_quantiles.keys(): continue args['bounds'][param] = 3*np.array([args['fit_prior'].images[par_ref].param_quantiles[param][0] - args['fit_prior'].images[par_ref].param_quantiles[param][1], args['fit_prior'].images[par_ref].param_quantiles[param][2] - args['fit_prior'].images[par_ref].param_quantiles[param][1]]) + \ args['fit_prior'].images[par_ref].param_quantiles[param][1] elif args['fit_prior'] is not None: par_ref = args['fit_prior'].parallel.fitOrder[0] if param not in args['fit_prior'].images[par_ref].param_quantiles.keys(): continue args['bounds'][param] = 3*np.array([args['fit_prior'].images[par_ref].param_quantiles[param][0] - args['fit_prior'].images[par_ref].param_quantiles[param][1], args['fit_prior'].images[par_ref].param_quantiles[param][2] - args['fit_prior'].images[par_ref].param_quantiles[param][1]]) + \ args['fit_prior'].images[par_ref].param_quantiles[param][1] finallogz = -np.inf if args['dust'] is not None: if isinstance(args['dust'], str): dust_dict = {'CCM89Dust': sncosmo.CCM89Dust, 'OD94Dust': sncosmo.OD94Dust, 'F99Dust': sncosmo.F99Dust} dust = dust_dict[args['dust']]() else: dust = args['dust'] else: dust = [] effect_names = args['effect_names'] effect_frames = args['effect_frames'] effects = [dust for i in range(len(effect_names))] if effect_names else [] effect_names = effect_names if effect_names else [] effect_frames = effect_frames if effect_frames else [] if not isinstance(effect_names, (list, tuple)): effects = [effect_names] if not isinstance(effect_frames, (list, tuple)): effects = [effect_frames] if args['fit_prior'] is not None and args['fit_prior'].images[args['fit_prior'].parallel.fitOrder[0]].fits.model._source.name not in args['models']: print('Wanted to use a fit prior but do not have the same model as an option.') raise RuntimeError elif args['fit_prior'] is not None: args['models'] = args['fit_prior'].images[args['fit_prior'].parallel.fitOrder[0] ].fits.model._source.name if args['max_n_bands'] is not None: best_bands = band_SNR[ref][:min( len(band_SNR[ref]), args['max_n_bands'])] temp_bands = [] for b in best_bands: temp_bands = np.append(temp_bands, np.where( args['curves'].images[ref].table['band'] == b)[0]) inds = temp_bands.astype(int) else: best_bands = args['bands'] inds = np.arange( 0, len(args['curves'].images[ref].table), 1).astype(int) if 'ignore_models' in args['set_from_simMeta'].keys(): to_ignore = args['curves'].images[ref].simMeta[args['set_from_simMeta'] ['ignore_models']] if isinstance(to_ignore, str): to_ignore = [to_ignore] args['models'] = [x for x in np.array( args['models']).flatten() if x not in to_ignore] all_fit_dict = {} if not args['curves'].quality_check(min_n_bands=args['min_n_bands'], min_n_points_per_band=args['min_points_per_band'], clip=False, method='parallel'): return if args['fast_model_selection'] and len(np.array(args['models']).flatten()) > 1: for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) minchisq = np.inf init_inds = copy(inds) for mod in np.array(args['models']).flatten(): inds = copy(init_inds) if isinstance(mod, str): if mod.upper() in ['BAZIN', 'BAZINSOURCE']: mod = 'BAZINSOURCE' if len(np.unique(args['curves'].images[ref].table['band'])) > 1 and args['color_curve'] is None: best_band = band_SNR[args['fitOrder'][0]][0] inds = np.where( args['curves'].images[ref].table['band'] == best_band)[0] source = BazinSource( data=args['curves'].images[ref].table[inds], colorCurve=args['color_curve']) else: source = sncosmo.get_source(mod) tempMod = sncosmo.Model( source=source, effects=effects, effect_names=effect_names, effect_frames=effect_frames) else: tempMod = copy(mod) tempMod.set(**{k: args['constants'][k] for k in args['constants'].keys() if k in tempMod.param_names}) tempMod.set(**{k: args['curves'].images[args['refImage']].simMeta[args['set_from_simMeta'][k]] for k in args['set_from_simMeta'].keys() if k in tempMod.param_names}) if not np.all([tempMod.bandoverlap(x) for x in best_bands]): if args['verbose']: print('Skipping %s because it does not cover the bands...') continue if mod == 'BAZINSOURCE': tempMod.set(z=0) try: res, fit = sncosmo.fit_lc(args['curves'].images[ref].table[inds], tempMod, [x for x in args['params'] if x in tempMod.param_names], bounds={b: args['bounds'][b] for b in args['bounds'] if b not in [ 't0', tempMod.param_names[2]]}, minsnr=args.get('minsnr', 0)) except: if args['verbose']: print('Issue with %s, skipping...' % mod) continue tempchisq = res.chisq / \ (len(inds)+len([x for x in args['params'] if x in tempMod.param_names])-1) if tempchisq < minchisq: minchisq = tempchisq bestres = copy(res) bestfit = copy(fit) bestmodname = copy(mod) all_fit_dict[mod] = [copy(fit), copy(res)] try: args['models'] = [bestmodname] except: print('Every model had an error.') sys.exit(1) for mod in np.array(args['models']).flatten(): if isinstance(mod, str): if mod.upper() in ['BAZIN', 'BAZINSOURCE']: source = BazinSource( data=args['curves'].images[args['fitOrder'][0]].table) else: source = sncosmo.get_source(mod) tempMod = sncosmo.Model(source=source, effects=effects, effect_names=effect_names, effect_frames=effect_frames) else: tempMod = copy(mod) tempMod.set(**{k: args['constants'][k] for k in args['constants'].keys() if k in tempMod.param_names}) tempMod.set(**{k: args['curves'].images[args['refImage']].simMeta[args['set_from_simMeta'][k]] for k in args['set_from_simMeta'].keys() if k in tempMod.param_names}) if args['fit_prior'] is not None: par_ref = args['fit_prior'].parallel.fitOrder[0] if mod != args['fit_prior'].images[par_ref].fits.model._source.name: continue temp_delays = {k: args['fit_prior'].parallel.time_delays[k]-args['fit_prior'].parallel.time_delays[par_ref] for k in args['fit_prior'].parallel.fitOrder} temp_mags = {k: args['fit_prior'].parallel.magnifications[k]/args['fit_prior'].parallel.magnifications[par_ref] for k in args['fit_prior'].parallel.fitOrder} args['curves'].combine_curves(time_delays={im: 0 for im in args['curves'].images.keys()}, magnifications={im: 1 for im in args['curves'].images.keys()}, minsnr=args.get('minsnr', 0)) args['curves'].series.meta['reft0'] = args['fit_prior'].images[par_ref].fits.model.get( 't0') args['curves'].series.meta['refamp'] = args['fit_prior'].images[par_ref].fits.model.get( tempMod.param_names[2]) args['curves'].series.meta['td'] = temp_delays args['curves'].series.meta['mu'] = temp_mags else: par_ref = args['refImage'] im_name = args['refImage'][:-1] if args['trial_fit']: for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) nbands = args['max_n_bands'] if args['max_n_bands'] is not None else 2 best_bands = band_SNR[args['refImage']][:min( len(band_SNR[args['refImage']]), nbands)] temp_delays = {} temp_mags = {} fit_order = np.flip(args['fitOrder']) if args['fitOrder'] is not None else \ [x for x in args['curves'].images.keys( ) if x != args['refImage']]+[args['refImage']] for im in fit_order: temp_bands = [] for b in best_bands: temp_bands = np.append(temp_bands, np.where( args['curves'].images[im].table['band'] == b)[0]) temp_inds = temp_bands.astype(int) res, fit = sncosmo.fit_lc(copy(args['curves'].images[im].table[temp_inds]), tempMod, [x for x in args['params'] if x in tempMod.param_names], bounds={b: args['bounds'][b] for b in args['bounds'].keys() if b not in [ 't0', tempMod.param_names[2]]}, minsnr=args.get('minsnr', 0)) temp_delays[im] = fit.get('t0') temp_mags[im] = fit.parameters[2] args['curves'].series.meta['reft0'] = temp_delays[args['refImage']] args['curves'].series.meta['refamp'] = temp_mags[args['refImage']] temp_delays = { im: temp_delays[im]-temp_delays[args['refImage']] for im in temp_delays.keys()} temp_mags = { im: temp_mags[im]/temp_mags[args['refImage']] for im in temp_mags} for b in args['bounds']: if b in list(res.errors.keys()): if b not in ['t0', tempMod.param_names[2]]: args['bounds'][b] = np.array([np.max([args['bounds'][b][0], (args['bounds'][b][0]-np.median(args['bounds'][b]))/2+fit.get(b)]), np.min([args['bounds'][b][1], (args['bounds'][b][1]-np.median(args['bounds'][b]))/2+fit.get(b)])]) elif b == 't0': args['bounds'][b] = (np.array( args['bounds'][b])-np.median(args['bounds'][b]))/2+args['curves'].series.meta['reft0'] else: args['bounds'][b] = (np.array( args['bounds'][b])-np.median(args['bounds'][b]))/2+args['curves'].series.meta['refamp'] elif b.startswith('dt_'): args['bounds'][b] = np.array( args['bounds']['td'])/2+temp_delays[im_name+b[-1]] elif b.startswith('mu_'): args['bounds'][b] = (np.array( args['bounds']['mu'])*temp_mags[im_name+b[-1]]+temp_mags[im_name+b[-1]])/2 if tempMod.param_names[2] not in args['bounds'].keys(): if 'mu' in args['bounds'].keys(): args['bounds'][tempMod.param_names[2]] = (np.array( args['bounds']['mu'])*args['curves'].series.meta['refamp']+args['curves'].series.meta['refamp'])/2 else: args['bounds'][tempMod.param_names[2]] = (np.array( [.1, 10])*args['curves'].series.meta['refamp']+args['curves'].series.meta['refamp'])/2 if 't0' not in args['bounds'].keys(): args['bounds']['t0'] = np.array( args['bounds']['td'])/2+args['curves'].series.meta['reft0'] if args['curves'].series.table is None: args['curves'].combine_curves(time_delays={im: 0 for im in args['curves'].images.keys()}, magnifications={im: 1 for im in args['curves'].images.keys()}, minsnr=args.get('minsnr', 0)) args['curves'].series.meta['td'] = temp_delays args['curves'].series.meta['mu'] = temp_mags else: if args['curves'].series.table is None: args['curves'].combine_curves( referenceImage=args['refImage'], static=True, model=tempMod, minsnr=args.get('minsnr', 0)) if args['t0_guess'] is not None: args['curves'].series.meta['td'] = { im: args['t0_guess'][im]-args['t0_guess'][args['refImage']] for im in args['t0_guess'].keys()} if 'reft0' not in args['curves'].series.meta.keys(): args['curves'].series.meta['reft0'] = args['t0_guess'][args['refImage']] elif 'reft0' not in args['curves'].series.meta.keys(): guess_t0, guess_amp = sncosmo.fitting.guess_t0_and_amplitude(sncosmo.photdata.photometric_data( args['curves'].series.table), tempMod, args.get('minsnr', 0)) args['curves'].series.meta['reft0'] = guess_t0 if 'refamp' not in args['curves'].series.meta.keys(): args['curves'].series.meta['refamp'] = guess_amp for b in args['bounds']: if b.startswith('dt_'): args['bounds'][b] = np.array( args['bounds']['td'])+args['curves'].series.meta['td'][im_name+b[-1]] elif b.startswith('mu_'): args['bounds'][b] = np.array( args['bounds']['mu'])*args['curves'].series.meta['mu'][im_name+b[-1]] elif b == 't0': args['bounds'][b] = np.array( args['bounds'][b])+args['curves'].series.meta['reft0'] if tempMod.param_names[2] not in args['bounds'].keys(): args['bounds'][tempMod.param_names[2]] = (np.array( [.1, 10])*args['curves'].series.meta['refamp']+args['curves'].series.meta['refamp'])/2 if 't0' not in args['bounds'].keys(): args['bounds']['t0'] = np.array( args['bounds']['td'])+args['curves'].series.meta['reft0'] # if constant td/mag, overwrite previous sets if 'td' in args['constants'].keys() or 'mu' in args['constants'].keys(): if 'td' in args['constants'].keys(): args['curves'].series.meta['td'] = args['constants']['td'] temp_delays = args['constants']['td'] else: temp_delays = { im: 0 for im in args['curves'].series.meta['td'].keys()} if 'mu' in args['constants'].keys(): args['curves'].series.meta['mu'] = args['constants']['mu'] temp_mags = args['constants']['mu'] else: temp_mags = { im: 1 for im in args['curves'].series.meta['mu'].keys()} args['curves'].combine_curves( referenceImage=args['refImage'], static=False, model=tempMod, minsnr=args.get('minsnr', 0), time_delays=temp_delays, magnifications=temp_mags) if args['cut_time'] is not None: for im in args['curves'].images.keys(): args['curves'].series.table = args['curves'].series.table[np.where(np.logical_or(args['curves'].series.table['image'] != im, np.logical_and(args['curves'].series.table['time'] >= args['cut_time'][0]*(1+tempMod.get('z'))+args['curves'].series.meta['reft0'] + args['curves'].series.meta['td'][im], args['curves'].series.table['time'] <= args['cut_time'][1]*(1+tempMod.get('z'))+args['curves'].series.meta['reft0'] + args['curves'].series.meta['td'][im])))[0]] for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) for b in [x for x in np.unique(args['curves'].series.table['band']) if x not in args['curves'].series.bands]: args['curves'].series.table = args['curves'].series.table[args['curves'].series.table['band'] != b] if not args['curves'].quality_check(min_n_bands=args['min_n_bands'], min_n_points_per_band=args['min_points_per_band'], clip=args['clip_data'], method='series'): print('Error: Did not pass quality check.') return vparam_names_final = [ x for x in all_vparam_names if x in tempMod.param_names or x in np.array(snParams).flatten()] params, res, model = nest_series_lc(args['curves'].series.table, tempMod, nimage, bounds=args['bounds'], use_MLE=args['use_MLE'], vparam_names=vparam_names_final, ref=par_ref, minsnr=args.get('minsnr', 5.), priors=args.get('priors', None), ppfs=args.get('ppfs', None), method=args.get('nest_method', 'single'), maxcall=args.get('maxcall', None), modelcov=args.get('modelcov', None), rstate=args.get('rstate', None), maxiter=args.get('maxiter', None), npoints=args.get('npoints', 100)) if finallogz < res.logz: finallogz = res.logz final_param_quantiles, finalres, finalmodel = params, res, model time_delays = args['curves'].series.meta['td'] magnifications = args['curves'].series.meta['mu'] args['curves'].series.param_quantiles = {d: final_param_quantiles[finalres.vparam_names.index(d)] for d in finalres.vparam_names} if 'td' in args['constants'].keys(): args['curves'].series.time_delays = args['constants']['td'] else: args['curves'].series.time_delays = { im: 0 for im in args['curves'].images.keys()} if 'mu' in args['constants'].keys(): args['curves'].series.magnifications = args['constants']['mu'] else: args['curves'].series.magnifications = { im: 1 for im in args['curves'].images.keys()} args['curves'].series.magnification_errors = { im: 1 for im in args['curves'].images.keys()} args['curves'].series.time_delay_errors = { im: np.array([0, 0]) for im in args['curves'].images.keys()} args['curves'].series.t_peaks = dict([]) args['curves'].series.a_peaks = dict([]) finalres_max = finalres.logl.argmax() if not np.any(['mu' in x for x in vparam_names_final]): doMu = False else: doMu = True if not np.any(['dt' in x for x in vparam_names_final]): doTd = False else: doTd = True if not doMu and not doTd: args['curves'].series.refImage = args['refImage'] args['curves'].series.priorImage = par_ref args['curves'].series.fits = newDict() args['curves'].series.fits['model'] = finalmodel args['curves'].series.fits['res'] = finalres return args['curves'] if par_ref == args['refImage']: if not args['use_MLE']: args['curves'].series.t_peaks[par_ref] = weighted_quantile( finalres.samples[:, finalres.vparam_names.index('t0')], .5, finalres.weights) args['curves'].series.a_peaks[par_ref] = weighted_quantile(finalres.samples[:, finalres.vparam_names.index(finalmodel.param_names[2])], .5, finalres.weights) else: args['curves'].series.t_peaks[par_ref] = finalres.samples[finalres_max, finalres.vparam_names.index('t0')] args['curves'].series.a_peaks[par_ref] = finalres.samples[finalres_max, finalres.vparam_names.index(finalmodel.param_names[2])] for k in args['curves'].images.keys(): if k == par_ref: continue else: if not args['use_MLE']: if doTd: args['curves'].series.t_peaks[k] = weighted_quantile(finalres.samples[:, finalres.vparam_names.index('dt_'+k[-1])] + finalres.samples[:, finalres.vparam_names.index( 't0')], .5, finalres.weights) if doMu: args['curves'].series.a_peaks[k] = weighted_quantile(finalres.samples[:, finalres.vparam_names.index('mu_'+k[-1])] * finalres.samples[:, finalres.vparam_names.index( finalmodel.param_names[2])], .5, finalres.weights) if doTd: dt_quant = weighted_quantile(finalres.samples[:, finalres.vparam_names.index( 'dt_'+k[-1])], [.16, .5, .84], finalres.weights) if doMu: mu_quant = weighted_quantile(finalres.samples[:, finalres.vparam_names.index( 'mu_'+k[-1])], [.16, .5, .84], finalres.weights) else: if doTd: args['curves'].series.t_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])] +\ finalres.samples[finalres_max, finalres.vparam_names.index('t0')] if doMu: args['curves'].series.a_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index('mu_'+k[-1])] *\ finalres.samples[finalres_max, finalres.vparam_names.index( finalmodel.param_names[2])] if doTd: dt_quant = [finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])]-finalres.errors['dt_'+k[-1]], finalres.samples[finalres_max, finalres.vparam_names.index( 'dt_'+k[-1])], finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])]+finalres.errors['dt_'+k[-1]]] if doMu: mu_quant = [finalres.samples[finalres_max, finalres.vparam_names.index('mu_'+k[-1])]-finalres.errors['mu_'+k[-1]], finalres.samples[finalres_max, finalres.vparam_names.index( 'mu_'+k[-1])], finalres.samples[finalres_max, finalres.vparam_names.index('mu_'+k[-1])]+finalres.errors['mu_'+k[-1]]] if doTd: args['curves'].series.time_delays[k] = dt_quant[1] args['curves'].series.time_delay_errors[k] = np.array( [dt_quant[0]-dt_quant[1], dt_quant[2]-dt_quant[1]]) if doMu: args['curves'].series.magnifications[k] = mu_quant[1] args['curves'].series.magnification_errors[k] = np.array( [mu_quant[0]-mu_quant[1], mu_quant[2]-mu_quant[1]]) else: args['curves'].series.time_delays[args['refImage']] = 0 args['curves'].series.time_delay_errors[args['refImage']] = np.array([ 0, 0]) args['curves'].series.magnifications[args['refImage']] = 1 args['curves'].series.magnification_errors[args['refImage']] = np.array([ 0, 0]) if doTd: trefSamples = finalres.samples[:, finalres.vparam_names.index( 'dt_'+args['refImage'][-1])] if doMu: arefSamples = finalres.samples[:, finalres.vparam_names.index( 'mu_'+args['refImage'][-1])] if not args['use_MLE']: if doTd: args['curves'].series.t_peaks[args['refImage']] = weighted_quantile( trefSamples+finalres.samples[:, finalres.vparam_names.index('t0')], .5, finalres.weights) if doMu: args['curves'].series.a_peaks[args['refImage']] = weighted_quantile(arefSamples*finalres.samples[:, finalres.vparam_names.index(finalmodel.param_names[2])], .5, finalres.weights) else: if doTd: args['curves'].series.t_peaks[args['refImage']] = trefSamples[finalres_max] + \ finalres.samples[finalres_max, finalres.vparam_names.index('t0')] if doMu: args['curves'].series.a_peaks[args['refImage']] = arefSamples[finalres_max] * \ finalres.samples[finalres_max, finalres.vparam_names.index( finalmodel.param_names[2])] for k in args['curves'].images.keys(): if k == args['refImage']: continue elif k == par_ref: if not args['use_MLE']: if doTd: args['curves'].series.t_peaks[k] = weighted_quantile( finalres.samples[:, finalres.vparam_names.index('t0')], .5, finalres.weights) if doMu: args['curves'].series.a_peaks[k] = weighted_quantile(finalres.samples[:, finalres.vparam_names.index(finalmodel.param_names[2])], .5, finalres.weights) if doTd: dt_quant = weighted_quantile(-1*trefSamples, [.16, .5, .84], finalres.weights) if doMu: mu_quant = weighted_quantile( 1./arefSamples, [.16, .5, .84], finalres.weights) else: if doTd: args['curves'].series.t_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index('t0')] if doMu: args['curves'].series.a_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index(finalmodel.param_names[2])] if doTd: dt_quant = [-1*trefSamples[finalres_max]-finalres.errors['dt_'+args['refImage'][-1]], -1*trefSamples[finalres_max], -1*trefSamples[finalres_max]+finalres.errors['dt_'+args['refImage'][-1]]] if doMu: mu_quant = [1./arefSamples-finalres.errors['mu_'+args['refImage'][-1]], 1./arefSamples, 1./arefSamples+finalres.errors['mu_'+args['refImage'][-1]]] if doTd: args['curves'].series.time_delays[k] = dt_quant[1] args['curves'].series.time_delay_errors[k] = np.array( [dt_quant[0]-dt_quant[1], dt_quant[2]-dt_quant[1]]) if doMu: args['curves'].series.magnifications[k] = mu_quant[1] args['curves'].series.magnification_errors[k] = np.array( [mu_quant[0]-mu_quant[1], mu_quant[2]-mu_quant[1]]) else: if not args['use_MLE']: if doTd: args['curves'].series.t_peaks[k] = weighted_quantile(finalres.samples[:, finalres.vparam_names.index('dt_'+k[-1])] + finalres.samples[:, finalres.vparam_names.index( 't0')], .5, finalres.weights) if doMu: args['curves'].series.a_peaks[k] = weighted_quantile(finalres.samples[:, finalres.vparam_names.index('mu_'+k[-1])] * finalres.samples[:, finalres.vparam_names.index( finalmodel.param_names[2])], .5, finalres.weights) if doTd: dt_quant = weighted_quantile(finalres.samples[:, finalres.vparam_names.index( 'dt_'+k[-1])]-trefSamples, [.16, .5, .84], finalres.weights) if doMu: mu_quant = weighted_quantile(finalres.samples[:, finalres.vparam_names.index( 'mu_'+k[-1])]/arefSamples, [.16, .5, .84], finalres.weights) else: if doTd: args['curves'].series.t_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])] +\ finalres.samples[finalres_max, finalres.vparam_names.index('t0')] if doMu: args['curves'].series.a_peaks[k] = finalres.samples[finalres_max, finalres.vparam_names.index('mu_'+k[-1])] *\ finalres.samples[finalres_max, finalres.vparam_names.index( finalmodel.param_names[2])] if doTd: terr = np.sqrt( finalres.errors['dt_'+k[-1]]**2+finalres.errors['dt_'+args['refImage'][-1]]**2) dt_quant = [finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])]-trefSamples[finalres_max]-terr, finalres.samples[finalres_max, finalres.vparam_names.index( 'dt_'+k[-1])]-trefSamples[finalres_max], finalres.samples[finalres_max, finalres.vparam_names.index('dt_'+k[-1])]-trefSamples[finalres_max]+terr] if doMu: m = finalres.samples[finalres_max, finalres.vparam_names.index( 'mu_'+k[-1])]/arefSamples[finalres_max] merr = m*np.sqrt((finalres.errors['mu_'+k[-1]]/finalres.samples[finalres_max, finalres.vparam_names.index('mu_'+k[-1])])**2 + (finalres.errors['mu_'+args['refImage'][-1]]/arefSamples[finalres_max])**2) if doTd: args['curves'].series.time_delays[k] = dt_quant[1] args['curves'].series.time_delay_errors[k] = np.array( [dt_quant[0]-dt_quant[1], dt_quant[2]-dt_quant[1]]) if doMu: args['curves'].series.magnifications[k] = mu_quant[1] args['curves'].series.magnification_errors[k] = np.array( [mu_quant[0]-mu_quant[1], mu_quant[2]-mu_quant[1]]) args['curves'].combine_curves(time_delays=args['curves'].series.time_delays, magnifications=args['curves'].series.magnifications, referenceImage=args['refImage']) args['curves'].series.meta['td'] = time_delays args['curves'].series.meta['mu'] = magnifications finalmodel.set(t0=args['curves'].series.t_peaks[args['refImage']]) finalmodel.parameters[2] = args['curves'].series.a_peaks[args['refImage']] args['curves'].series.refImage = args['refImage'] args['curves'].series.priorImage = par_ref args['curves'].series.fits = newDict() args['curves'].series.fits['model'] = finalmodel args['curves'].series.fits['res'] = finalres if args['microlensing'] is not None: tempTable = copy(args['curves'].series.table) micro, sigma, x_pred, y_pred, samples, x_resid, y_resid, err_resid = fit_micro(args['curves'].series.fits.model, tempTable, tempTable['zpsys'][0], args['nMicroSamples'], micro_type=args['microlensing'], kernel=args['kernel']) temp_vparam_names = args['curves'].series.fits.res.vparam_names + \ [finalmodel.param_names[2]]+['t0'] for im in args['curves'].images.keys(): try: temp_vparam_names.remove('dt_'+str(im[-1])) temp_vparam_names.remove('mu_'+str(im[-1])) except: pass temp_bounds = {p: args['curves'].series.param_quantiles[p][[0, 2]] for p in args['curves'].series.fits.res.vparam_names} temp_bounds['t0'] = args['bounds']['td'] + \ args['curves'].series.t_peaks[args['refImage']] temp_bounds = {b: temp_bounds[b] for b in temp_bounds.keys( ) if b != args['curves'].series.fits.model.param_names[2]} args['curves'].series.microlensing = newDict() args['curves'].series.microlensing.micro_propagation_effect = micro args['curves'].series.microlensing.micro_x = x_pred args['curves'].series.microlensing.micro_y = y_pred args['curves'].series.microlensing.samples_y = samples args['curves'].series.microlensing.sigma = sigma args['curves'].series.microlensing.resid_x = x_resid args['curves'].series.microlensing.resid_y = y_resid args['curves'].series.microlensing.resid_err = err_resid try: t0s = pyParz.foreach(samples.T, _micro_uncertainty, [args['curves'].series.fits.model, np.array(tempTable), tempTable.colnames, x_pred, temp_vparam_names, temp_bounds, None, args.get('minsnr', 0), args.get('maxcall', None), args['npoints']]) except: if args['verbose']: print('Issue with series microlensing identification, skipping...') return args['curves'] t0s = np.array(t0s) t0s = t0s[np.isfinite(t0s)] mu, sigma = scipy.stats.norm.fit(t0s) args['curves'].series.param_quantiles['micro'] = np.sqrt((args['curves'].series.fits.model.get('t0')-mu)**2 + sigma**2) fit_end = time.time() args['curves'].series.fit_time = fit_end - fit_start return args['curves'] def nest_series_lc(data, model, nimage, vparam_names, bounds, ref='image_1', use_MLE=False, minsnr=5., priors=None, ppfs=None, npoints=100, method='single', maxiter=None, maxcall=None, modelcov=False, rstate=None, verbose=False, warn=True, **kwargs): # Taken from SNCosmo nest_lc # experimental parameters tied = kwargs.get("tied", None) vparam_names = list(vparam_names) if ppfs is None: ppfs = {} if tied is None: tied = {} # Convert bounds/priors combinations into ppfs if bounds is not None: for key, val in bounds.items(): if key in ppfs: continue # ppfs take priority over bounds/priors a, b = val if priors is not None and key in priors: # solve ppf at discrete points and return interpolating # function x_samples = np.linspace(0., 1., 101) ppf_samples = sncosmo.utils.ppf(priors[key], x_samples, a, b) f = sncosmo.utils.Interp1D(0., 1., ppf_samples) else: f = sncosmo.utils.Interp1D(0., 1., np.array([a, b])) ppfs[key] = f # NOTE: It is important that iparam_names is in the same order # every time, otherwise results will not be reproducible, even # with same random seed. This is because iparam_names[i] is # matched to u[i] below and u will be in a reproducible order, # so iparam_names must also be. iparam_names = [key for key in vparam_names if key in ppfs] ppflist = [ppfs[key] for key in iparam_names] npdim = len(iparam_names) # length of u ndim = len(vparam_names) # length of v # Check that all param_names either have a direct prior or are tied. for name in vparam_names: if name in iparam_names: continue if name in tied: continue raise ValueError("Must supply ppf or bounds or tied for parameter '{}'" .format(name)) def prior_transform(u): d = {} for i in range(npdim): d[iparam_names[i]] = ppflist[i](u[i]) v = np.empty(ndim, dtype=np.float) for i in range(ndim): key = vparam_names[i] if key in d: v[i] = d[key] else: v[i] = tied[key](d) return v if np.any(['mu_' in x for x in vparam_names]): doMu = True nParams = 2 else: doMu = False nParams = 1 if np.any(['dt_' in x for x in vparam_names]): doTd = True else: doTd = False nParams -= 1 model_param_names = [ x for x in vparam_names[:len(vparam_names)-(nimage-1)*nParams]] model_idx = np.array([vparam_names.index(name) for name in model_param_names]) td_params = [x for x in vparam_names[len( vparam_names)-nimage*nParams:] if x.startswith('dt')] td_idx = np.array([vparam_names.index(name) for name in td_params]) amp_params = [x for x in vparam_names[len( vparam_names)-nimage*nParams:] if x.startswith('mu')] amp_idx = np.array([vparam_names.index(name) for name in amp_params]) model_param_index = [model.param_names.index( name) for name in model_param_names] # mindat=model.mintime() # maxdat=model.maxtime() # data=data[np.where(np.logical_and(data['time']>=mindat,data['time']<=maxdat))] im_indices = [np.where(data['image'] == i)[0] for i in np.unique(data['image']) if i != ref] cov = np.diag(data['fluxerr']**2) zp = np.array(data['zp']) zpsys = np.array(data['zpsys']) time = np.array(data['time']) flux = np.array(data['flux']) fluxerr = np.array(data['fluxerr']) band = np.array(data['band']) def chisq_likelihood(parameters): model.parameters[model_param_index] = parameters[model_idx] tempTime = copy(time) tempFlux = copy(flux) for i in range(len(im_indices)): if doTd: tempTime[im_indices[i]] -= parameters[td_idx[i]] if doMu: tempFlux[im_indices[i]] /= parameters[amp_idx[i]] timesort = np.argsort(tempTime) model_observations = model.bandflux(band, tempTime[timesort], zp=zp, zpsys=zpsys) if modelcov: _, mcov = model.bandfluxcov(band, tempTime[timesort], zp=zp, zpsys=zpsys) cov = cov[timesort,timesort] + mcov invcov = np.linalg.pinv(cov) diff = tempFlux[timesort]-model_observations chisq = np.dot(np.dot(diff, invcov), diff) else: chi = (tempFlux[timesort]-model_observations)/np.array(fluxerr[timesort]) chisq = np.dot(chi, chi) return chisq def loglike(parameters): chisq = chisq_likelihood(parameters) return(-.5*chisq) res = nestle.sample(loglike, prior_transform, ndim, npdim=npdim, npoints=npoints, method=method, maxiter=maxiter, maxcall=maxcall, rstate=rstate, callback=(nestle.print_progress if verbose else None)) vparameters, cov = nestle.mean_and_cov(res.samples, res.weights) res = sncosmo.utils.Result(niter=res.niter, ncall=res.ncall, logz=res.logz, logzerr=res.logzerr, h=res.h, samples=res.samples, weights=res.weights, logvol=res.logvol, logl=res.logl, errors=OrderedDict(zip(vparam_names, np.sqrt(np.diagonal(cov)))), vparam_names=copy(vparam_names), bounds=bounds) if use_MLE: best_ind = res.logl.argmax() params = [[res.samples[best_ind, i]-res.errors[vparam_names[i]], res.samples[best_ind, i], res.samples[best_ind, i]+res.errors[vparam_names[i]]] for i in range(len(vparam_names))] else: params = [weighted_quantile( res.samples[:, i], [.16, .5, .84], res.weights) for i in range(len(vparam_names))] model.set(**{model_param_names[k]: params[model_idx[k]][1] for k in range(len(model_idx))}) return params, res, model def getBandSNR(curves, bands, min_points_per_band): final_bands = [] band_dict = {im: [] for im in curves.images.keys()} for band in list(bands): to_add = True for im in curves.images.keys(): if len(np.where(curves.images[im].table['band'] == band)[0]) < min_points_per_band: to_add = False else: band_dict[im].append(band) if to_add: final_bands.append(band) all_SNR = [] band_SNR = {im: [] for im in curves.images.keys()} for d in curves.images.keys(): for band in final_bands: inds = np.where(curves.images[d].table['band'] == band)[0] if len(inds) == 0: band_SNR[d].append(0) else: band_SNR[d].append(np.sum(curves.images[d].table['flux'][inds]/curves.images[d].table['fluxerr'][inds]) * np.sqrt(len(inds))) band_SNR = {k: np.array(final_bands)[np.flip( np.argsort(band_SNR[k]))] for k in band_SNR.keys()} return(np.array(final_bands), band_SNR, band_dict) def _fitparallel(all_args): fit_start = time.time() if isinstance(all_args, (list, tuple, np.ndarray)): curves, args = all_args if isinstance(args, list): args = args[0] if isinstance(curves, list): curves, single_par_vars = curves for key in single_par_vars: args[key] = single_par_vars[key] if isinstance(curves, str): args['curves'] = pickle.load(open(curves, 'rb')) else: args['curves'] = curves if args['verbose']: print('Fitting MISN number %i...' % curves.nsn) else: args = all_args for p in args['curves'].constants.keys(): if p not in args['constants'].keys(): args['constants'][p] = args['curves'].constants[p] if 't0' in args['bounds']: t0Bounds = copy(args['bounds']['t0']) if args['clip_data']: for im in args['curves'].images.keys(): args['curves'].clip_data(im=im, minsnr=args.get( 'minsnr', 0), max_cadence=args['max_cadence']) else: for im in args['curves'].images.keys(): args['curves'].clip_data(im=im, rm_NaN=True) args['bands'], band_SNR, band_dict = getBandSNR( args['curves'], args['bands'], args['min_points_per_band']) args['curves'].bands = args['bands'] if len(args['bands']) == 0: if args['verbose']: print('Not enough data based on cuts.') return(None) for d in args['curves'].images.keys(): for b in [x for x in np.unique(args['curves'].images[d].table['band']) if x not in band_dict[d]]: args['curves'].images[d].table = args['curves'].images[d].table[args['curves'].images[d].table['band'] != b] if 'amplitude' in args['bounds']: args['guess_amplitude'] = False if args['fitOrder'] is None: all_SNR = [np.sum(args['curves'].images[d].table['flux']/args['curves'].images[d].table['fluxerr']) for d in np.sort(list(args['curves'].images.keys()))] sorted = np.flip(np.argsort(all_SNR)) args['fitOrder'] = np.sort(list(args['curves'].images.keys()))[sorted] args['curves'].parallel.fitOrder = args['fitOrder'] if args['t0_guess'] is not None: if 't0' in args['bounds']: args['bounds']['t0'] = (t0Bounds[0]+args['t0_guess'][args['fitOrder'][0]], t0Bounds[1]+args['t0_guess'][args['fitOrder'][0]]) guess_t0 = args['t0_guess'] else: print('If you supply a t0 guess, you must also supply bounds.') sys.exit(1) if args['max_n_bands'] is not None: best_bands = band_SNR[args['fitOrder'][0]][:min( len(band_SNR[args['fitOrder'][0]]), args['max_n_bands'])] temp_bands = [] for b in best_bands: temp_bands = np.append(temp_bands, np.where( args['curves'].images[args['fitOrder'][0]].table['band'] == b)[0]) inds = temp_bands.astype(int) else: best_bands = args['bands'] inds = np.arange( 0, len(args['curves'].images[args['fitOrder'][0]].table), 1).astype(int) initial_bounds = copy(args['bounds']) finallogz = -np.inf if args['dust'] is not None: if isinstance(args['dust'], str): dust_dict = {'CCM89Dust': sncosmo.CCM89Dust, 'OD94Dust': sncosmo.OD94Dust, 'F99Dust': sncosmo.F99Dust} dust = dust_dict[args['dust']]() else: dust = args['dust'] else: dust = [] effect_names = args['effect_names'] effect_frames = args['effect_frames'] effects = [dust for i in range(len(effect_names))] if effect_names else [] effect_names = effect_names if effect_names else [] effect_frames = effect_frames if effect_frames else [] if not isinstance(effect_names, (list, tuple)): effects = [effect_names] if not isinstance(effect_frames, (list, tuple)): effects = [effect_frames] if 'ignore_models' in args['set_from_simMeta'].keys(): to_ignore = args['curves'].images[args['fitOrder'][0] ].simMeta[args['set_from_simMeta']['ignore_models']] if isinstance(to_ignore, str): to_ignore = [to_ignore] args['models'] = [x for x in np.array( args['models']).flatten() if x not in to_ignore] if not args['curves'].quality_check(min_n_bands=args['min_n_bands'], min_n_points_per_band=args['min_points_per_band'], clip=args['clip_data']): return all_fit_dict = {} if args['fast_model_selection'] and len(np.array(args['models']).flatten()) > 1: for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) minchisq = np.inf init_inds = copy(inds) for mod in np.array(args['models']).flatten(): inds = copy(init_inds) if isinstance(mod, str): if mod.upper() in ['BAZIN', 'BAZINSOURCE']: mod = 'BAZINSOURCE' if len(np.unique(args['curves'].images[args['fitOrder'][0]].table['band'])) > 1: if args['color_curve'] is None: best_band = band_SNR[args['fitOrder'][0]][0] inds = np.where( args['curves'].images[args['fitOrder'][0]].table['band'] == best_band)[0] else: inds = np.arange( 0, len(args['curves'].images[args['fitOrder'][0]].table), 1) else: best_band = band_SNR[args['fitOrder'][0]][0] inds = np.arange( 0, len(args['curves'].images[args['fitOrder'][0]].table), 1) source = BazinSource( data=args['curves'].images[args['fitOrder'][0]].table[inds], colorCurve=args['color_curve']) else: source = sncosmo.get_source(mod) tempMod = sncosmo.Model( source=source, effects=effects, effect_names=effect_names, effect_frames=effect_frames) else: tempMod = copy(mod) tempMod.set(**{k: args['constants'][k] for k in args['constants'].keys() if k in tempMod.param_names}) tempMod.set(**{k: args['curves'].images[args['refImage']].simMeta[args['set_from_simMeta'][k]] for k in args['set_from_simMeta'].keys() if k in tempMod.param_names}) if not np.all([tempMod.bandoverlap(x) for x in best_bands]): if args['verbose']: print('Skipping %s because it does not cover the bands...' % mod) continue if mod == 'BAZINSOURCE': tempMod.set(z=0) try: res, fit = sncosmo.fit_lc(args['curves'].images[args['fitOrder'][0]].table[inds], tempMod, [x for x in args['params'] if x in tempMod.param_names], bounds={b: args['bounds'][b] for b in args['bounds'] if b not in [ 't0', tempMod.param_names[2]]}, minsnr=args.get('minsnr', 0)) except: if args['verbose']: print('Issue with %s, skipping...' % mod) continue tempchisq = res.chisq / \ (len(inds)+len([x for x in args['params'] if x in tempMod.param_names])-1) if tempchisq < minchisq: minchisq = tempchisq bestres = copy(res) bestfit = copy(fit) bestmodname = copy(mod) all_fit_dict[mod] = [copy(fit), copy(res)] try: args['models'] = [bestmodname] except: print('Every model had an error.') return None for mod in np.array(args['models']).flatten(): if isinstance(mod, str): if mod.upper() in ['BAZIN', 'BAZINSOURCE']: mod = 'BAZINSOURCE' if len(np.unique(args['curves'].images[args['fitOrder'][0]].table['band'])) > 1: if args['color_curve'] is None: best_band = band_SNR[args['fitOrder'][0]][0] inds = np.where( args['curves'].images[args['fitOrder'][0]].table['band'] == best_band)[0] else: inds = np.arange( 0, len(args['curves'].images[args['fitOrder'][0]].table), 1) else: best_band = band_SNR[args['fitOrder'][0]][0] inds = np.arange( 0, len(args['curves'].images[args['fitOrder'][0]].table), 1) source = BazinSource( data=args['curves'].images[args['fitOrder'][0]].table[inds], colorCurve=args['color_curve']) else: source = sncosmo.get_source(mod) tempMod = sncosmo.Model(source=source, effects=effects, effect_names=effect_names, effect_frames=effect_frames) else: tempMod = copy(mod) tempMod.set(**{k: args['constants'][k] for k in args['constants'].keys() if k in tempMod.param_names}) if args['set_from_simMeta'] is not None: tempMod.set(**{k: args['curves'].images[args['refImage']].simMeta[args['set_from_simMeta'][k]] for k in args['set_from_simMeta'].keys() if k in tempMod.param_names}) if mod == 'BAZINSOURCE': tempMod.set(z=0) if args['trial_fit'] and args['t0_guess'] is None: for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) if args['max_n_bands'] is None: best_bands = band_SNR[args['fitOrder'][0]][:min( len(band_SNR[args['fitOrder'][0]]), 2)] temp_bands = [] for b in best_bands: temp_bands = np.append(temp_bands, np.where( args['curves'].images[args['fitOrder'][0]].table['band'] == b)[0]) temp_inds = temp_bands.astype(int) else: temp_inds = copy(inds) res, fit = sncosmo.fit_lc(args['curves'].images[args['fitOrder'][0]].table[temp_inds], tempMod, [x for x in args['params'] if x in tempMod.param_names], bounds={b: args['bounds'][b]+(args['bounds'][b]-np.median( args['bounds'][b]))*2 for b in args['bounds'].keys() if b not in ['t0', tempMod.param_names[2]]}, minsnr=args.get('minsnr', 0)) for b in args['bounds'].keys(): if b in res.param_names: if b != 't0': if args['bounds'][b][0] <= fit.get(b) <= args['bounds'][b][1]: args['bounds'][b] = np.array([np.max([args['bounds'][b][0], (args['bounds'][b][0]-np.median(args['bounds'][b]))/2+fit.get(b)]), np.min([args['bounds'][b][1], (args['bounds'][b][1]-np.median(args['bounds'][b]))/2+fit.get(b)])]) else: args['bounds'][b] = np.array([(args['bounds'][b][0]-np.median(args['bounds'][b]))/2+fit.get(b), (args['bounds'][b][1]-np.median(args['bounds'][b]))/2+fit.get(b)]) else: args['bounds'][b] = args['bounds'][b]+fit.get('t0') if tempMod.param_names[2] not in args['bounds'].keys(): args['bounds'][tempMod.param_names[2]] = np.array( [.1, 10])*fit.parameters[2] guess_t0 = fit.get('t0') elif args['guess_amplitude']: guess_t0, guess_amp = sncosmo.fitting.guess_t0_and_amplitude( sncosmo.photdata.photometric_data( args['curves'].images[args['fitOrder'][0]].table[inds]), tempMod, args.get('minsnr', 5.)) if args['t0_guess'] is None: args['bounds']['t0'] = np.array(initial_bounds['t0'])+guess_t0 if tempMod.param_names[2] in args['bounds']: args['bounds'][tempMod.param_names[2]] = np.array(args['bounds'][tempMod.param_names[2]]) *\ guess_amp else: args['bounds'][tempMod.param_names[2] ] = [.1*guess_amp, 10*guess_amp] if args['clip_data']: args['curves'].images[args['fitOrder'][0] ].table = args['curves'].images[args['fitOrder'][0]].table[inds] if args['cut_time'] is not None: args['curves'].clip_data(im=args['fitOrder'][0], minsnr=args.get('minsnr', 0), mintime=args['cut_time'][0]*(1+tempMod.get('z')), maxtime=args['cut_time'][1]*(1+tempMod.get('z')), peak=guess_t0) else: args['curves'].clip_data( im=args['fitOrder'][0], minsnr=args.get('minsnr', 0)) fit_table = args['curves'].images[args['fitOrder'][0]].table elif args['cut_time'] is not None: fit_table = copy( args['curves'].images[args['fitOrder'][0]].table) fit_table = fit_table[inds] fit_table = fit_table[fit_table['time'] >= guess_t0+(args['cut_time'][0]*(1+tempMod.get('z')))] fit_table = fit_table[fit_table['time'] <= guess_t0+(args['cut_time'][1]*(1+tempMod.get('z')))] fit_table = fit_table[fit_table['flux'] / fit_table['fluxerr'] >= args.get('minsnr', 0)] else: fit_table = copy( args['curves'].images[args['fitOrder'][0]].table) fit_table = fit_table[inds] for b in args['force_positive_param']: if b in args['bounds'].keys(): args['bounds'][b] = np.array( [max([args['bounds'][b][0], 0]), max([args['bounds'][b][1], 0])]) else: args['bounds'][b] = np.array([0, np.inf]) res, fit = sncosmo.nest_lc(fit_table, tempMod, [x for x in args['params'] if x in tempMod.param_names], bounds=args['bounds'], priors=args.get('priors', None), ppfs=args.get('ppfs', None), minsnr=args.get('minsnr', 5.0), method=args.get('nest_method', 'single'), maxcall=args.get('maxcall', None), modelcov=args.get('modelcov', False), rstate=args.get('rstate', None), guess_amplitude_bound=False, zpsys=args['curves'].images[args['fitOrder'][0]].zpsys, maxiter=args.get('maxiter', None), npoints=args.get('npoints', 100)) all_fit_dict[mod] = [copy(fit), copy(res)] if finallogz < res.logz: first_res = [args['fitOrder'][0], copy(fit), copy(res)] finallogz = res.logz if not args['use_MLE']: first_params = [weighted_quantile(first_res[2].samples[:, i], [.16, .5, .84], first_res[2].weights) for i in range(len(first_res[2].vparam_names))] else: best_ind = first_res[2].logl.argmax() first_params = [[first_res[2].samples[best_ind, i]-first_res[2].errors[first_res[2].vparam_names[i]], first_res[2].samples[best_ind, i], first_res[2].samples[best_ind, i]+first_res[2].errors[first_res[2].vparam_names[i]]] for i in range(len(first_res[2].vparam_names))] first_res[1].set(**{first_res[2].vparam_names[k]: first_params[k][1] for k in range(len(first_res[2].vparam_names))}) args['curves'].images[args['fitOrder'][0]].fits = newDict() args['curves'].images[args['fitOrder'][0]].fits['model'] = first_res[1] args['curves'].images[args['fitOrder'][0]].fits['res'] = first_res[2] t0ind = first_res[2].vparam_names.index('t0') ampind = first_res[2].vparam_names.index(first_res[1].param_names[2]) args['curves'].images[args['fitOrder'][0]].param_quantiles = {k: first_params[first_res[2].vparam_names.index(k)] for k in first_res[2].vparam_names} # for i in range(len(first_res[2].vparam_names)): # if first_res[2].vparam_names[i]==first_res[1].param_names[2] or first_res[2].vparam_names[i]=='t0': # continue # initial_bounds[first_res[2].vparam_names[i]]=3*np.array([first_params[i][0],first_params[i][2]])-2*first_params[i][1] for d in args['fitOrder'][1:]: if args['max_n_bands'] is not None: best_bands = band_SNR[d][:min( len(band_SNR[d]), args['max_n_bands'])] temp_bands = [] for b in best_bands: temp_bands = np.append(temp_bands, np.where( args['curves'].images[d].table['band'] == b)[0]) inds = temp_bands.astype(int) else: inds = np.arange( 0, len(args['curves'].images[d].table), 1).astype(int) args['curves'].images[d].fits = newDict() initial_bounds['t0'] = copy(t0Bounds) if args['t0_guess'] is not None: if 't0' in args['bounds']: initial_bounds['t0'] = ( t0Bounds[0]+args['t0_guess'][d], t0Bounds[1]+args['t0_guess'][d]) guess_t0_start = False else: best_bands = band_SNR[d][:min(len(band_SNR[d]), 2)] temp_bands = [] for b in best_bands: temp_bands = np.append(temp_bands, np.where( args['curves'].images[d].table['band'] == b)[0]) inds = temp_bands.astype(int) if mod == 'BAZINSOURCE': minds = np.where( args['curves'].images[d].table['band'] == best_band)[0] inds = None else: minds = np.arange( 0, len(args['curves'].images[d].table), 1).astype(int) if args['clip_data']: fit_table = args['curves'].images[d].table[minds] else: fit_table = copy(args['curves'].images[d].table) fit_table = fit_table[minds] if args['trial_fit'] and args['t0_guess'] is None: if args['max_n_bands'] is None: best_bands = band_SNR[d][:min(len(band_SNR[d]), 2)] temp_bands = [] for b in best_bands: temp_bands = np.append(temp_bands, np.where( args['curves'].images[d].table['band'] == b)[0]) temp_inds = temp_bands.astype(int) else: temp_inds = copy(inds) res, fit = sncosmo.fit_lc(args['curves'].images[d].table[temp_inds], args['curves'].images[args['fitOrder'][0]].fits['model'], ['t0', args['curves'].images[args['fitOrder'] [0]].fits['model'].param_names[2]], minsnr=args.get('minsnr', 0)) image_bounds = {b: initial_bounds[b] if b != 't0' else initial_bounds['t0']+fit.get( 't0') for b in initial_bounds.keys()} guess_t0_start = False else: image_bounds = copy(initial_bounds) if args['t0_guess'] is None: guess_t0_start = True else: guess_t0_start = False par_output = nest_parallel_lc(fit_table, first_res[1], first_res[2], image_bounds, min_n_bands=args['min_n_bands'], min_n_points_per_band=args[ 'min_points_per_band'], guess_t0_start=guess_t0_start, use_MLE=args['use_MLE'], guess_amplitude_bound=True, priors=args.get('priors', None), ppfs=args.get('None'), method=args.get('nest_method', 'single'), cut_time=args['cut_time'], snr_band_inds=inds, maxcall=args.get('maxcall', None), modelcov=args.get('modelcov', False), rstate=args.get('rstate', None), minsnr=args.get('minsnr', 5), maxiter=args.get('maxiter', None), npoints=args.get('npoints', 1000)) if par_output is None: return params, args['curves'].images[d].fits['model'], args['curves'].images[d].fits['res'] = par_output sample_dict = {args['fitOrder'][0]: [ first_res[2].samples[:, t0ind], first_res[2].samples[:, ampind]]} arg_max_dict = {args['fitOrder'][0]: first_res[2].logl.argmax()} for k in args['fitOrder'][1:]: sample_dict[k] = [args['curves'].images[k].fits['res'].samples[:, t0ind], args['curves'].images[k].fits['res'].samples[:, ampind]] args['curves'].images[k].param_quantiles = {d: params[args['curves'].images[k].fits['res'].vparam_names.index(d)] for d in args['curves'].images[k].fits['res'].vparam_names} arg_max_dict[k] = args['curves'].images[k].fits['res'].logl.argmax() trefSamples, arefSamples = sample_dict[args['refImage']] refWeights = args['curves'].images[args['refImage']].fits['res'].weights args['curves'].parallel.time_delays = {args['refImage']: 0} args['curves'].parallel.magnifications = {args['refImage']: 1} args['curves'].parallel.time_delay_errors = { args['refImage']: np.array([0, 0])} args['curves'].parallel.magnification_errors = { args['refImage']: np.array([0, 0])} for k in args['curves'].images.keys(): if k == args['refImage']: continue else: ttempSamples, atempSamples = sample_dict[k] if not args['use_MLE']: if len(ttempSamples) > len(trefSamples): inds = np.flip(np.argsort(args['curves'].images[k].fits['res'].weights)[ len(ttempSamples)-len(trefSamples):]) inds_ref = np.flip(np.argsort(refWeights)) else: inds_ref = np.flip(np.argsort(refWeights)[ len(trefSamples)-len(ttempSamples):]) inds = np.flip(np.argsort( args['curves'].images[k].fits['res'].weights)) t_quant = weighted_quantile(ttempSamples[inds]-trefSamples[inds_ref], [.16, .5, .84], refWeights[inds_ref] * args['curves'].images[k].fits['res'].weights[inds]) a_quant = weighted_quantile(atempSamples[inds]/arefSamples[inds_ref], [.16, .5, .84], refWeights[inds_ref] * args['curves'].images[k].fits['res'].weights[inds]) else: terr = np.sqrt((args['curves'].images[k].param_quantiles['t0'][1]-args['curves'].images[k].param_quantiles['t0'][0])**2 + (args['curves'].images[args['refImage']].param_quantiles['t0'][1]-args['curves'].images[args['refImage']].param_quantiles['t0'][0])**2) a = atempSamples[arg_max_dict[k]] / \ arefSamples[arg_max_dict[args['refImage']]] aname = args['curves'].images[k].fits.model.param_names[2] aerr = a*np.sqrt(((args['curves'].images[k].param_quantiles[aname][1]-args['curves'].images[k].param_quantiles[aname][0]) / atempSamples[arg_max_dict[k]])**2 + ((args['curves'].images[args['refImage']].param_quantiles[aname][1]-args['curves'].images[args['refImage']].param_quantiles[aname][0]) / arefSamples[arg_max_dict[args['refImage']]])**2) t_quant = [ttempSamples[arg_max_dict[k]]-trefSamples[arg_max_dict[args['refImage']]]-terr, ttempSamples[arg_max_dict[k]] - trefSamples[arg_max_dict[args['refImage']]], ttempSamples[arg_max_dict[k]]-trefSamples[arg_max_dict[args['refImage']]]+terr] a_quant = [atempSamples[arg_max_dict[k]]/arefSamples[arg_max_dict[args['refImage']]]-aerr, atempSamples[arg_max_dict[k]] / arefSamples[arg_max_dict[args['refImage']]], atempSamples[arg_max_dict[k]]/arefSamples[arg_max_dict[args['refImage']]]+aerr] args['curves'].parallel.time_delays[k] = t_quant[1] args['curves'].parallel.magnifications[k] = a_quant[1] args['curves'].parallel.time_delay_errors[k] = np.array( [t_quant[0]-t_quant[1], t_quant[2]-t_quant[1]]) args['curves'].parallel.magnification_errors[k] = \ np.array([a_quant[0]-a_quant[1], a_quant[2]-a_quant[1]]) if args['clip_data']: if args['cut_time'] is not None: args['curves'].clip_data(im=k, minsnr=args.get('minsnr', 0), mintime=args['cut_time'][0]*(1+args['curves'].images[k].fits.model.get('z')), maxtime=args['cut_time'][1] * (1+args['curves'].images[k].fits.model.get('z')), peak=args['curves'].images[k].fits.model.get('t0')) else: args['curves'].clip_data(im=k, minsnr=args.get('minsnr', 0)) if args['microlensing'] is not None: for k in args['curves'].images.keys(): tempTable = copy(args['curves'].images[k].table) micro, sigma, x_pred, y_pred, samples, x_resid, y_resid, err_resid = fit_micro(args['curves'].images[k].fits.model, tempTable, args['curves'].images[ k].zpsys, args['nMicroSamples'], micro_type=args[ 'microlensing'], kernel=args['kernel'], bands=args['micro_fit_bands']) args['curves'].images[k].microlensing.micro_propagation_effect = micro args['curves'].images[k].microlensing.micro_x = x_pred args['curves'].images[k].microlensing.micro_y = y_pred args['curves'].images[k].microlensing.samples_y = samples args['curves'].images[k].microlensing.sigma = sigma args['curves'].images[k].microlensing.resid_x = x_resid args['curves'].images[k].microlensing.resid_y = y_resid args['curves'].images[k].microlensing.resid_err = err_resid try: t0s = pyParz.foreach(samples.T, _micro_uncertainty, [args['curves'].images[k].fits.model, np.array(tempTable), tempTable.colnames, x_pred, args['curves'].images[k].fits.res.vparam_names, {p: args['curves'].images[k].param_quantiles[p][[0, 2]] for p in args['curves'].images[k].fits.res.vparam_names if p != args['curves'].images[k].fits.model.param_names[2]}, None, args.get('minsnr', 0), args.get('maxcall', None), args['npoints']], numThreads=args['npar_cores']) except RuntimeError: if args['verbose']: print('Issue with microlensing identification, skipping...') return args['curves'] t0s = np.array(t0s) t0s = t0s[np.isfinite(t0s)] mu, sigma = scipy.stats.norm.fit(t0s) args['curves'].images[k].param_quantiles['micro'] = np.sqrt((args['curves'].images[k].fits.model.get('t0')-mu)**2 + sigma**2) fit_end = time.time() args['curves'].parallel.fit_time = fit_end - fit_start return args['curves'] def nest_parallel_lc(data, model, prev_res, bounds, guess_amplitude_bound=False, guess_t0_start=True, cut_time=None, snr_band_inds=None, vparam_names=None, use_MLE=False, min_n_bands=1, min_n_points_per_band=3, minsnr=5., priors=None, ppfs=None, npoints=100, method='single', maxiter=None, maxcall=None, modelcov=False, rstate=None, verbose=False, warn=True, **kwargs): # Taken from SNCosmo nest_lc # experimental parameters tied = kwargs.get("tied", None) if prev_res is not None: vparam_names = list(prev_res.vparam_names) if ppfs is None: ppfs = {} if tied is None: tied = {} model = copy(model) if guess_amplitude_bound: if snr_band_inds is None: snr_band_inds = np.arange(0, len(data), 1).astype(int) guess_t0, guess_amp = sncosmo.fitting.guess_t0_and_amplitude(sncosmo.photdata.photometric_data(data[snr_band_inds]), model, minsnr) if guess_t0_start: model.set(t0=guess_t0) bounds['t0'] = np.array(bounds['t0'])+guess_t0 else: model.set(t0=np.median(bounds['t0'])) model.parameters[2] = guess_amp bounds[model.param_names[2]] = (0, 10*guess_amp) if cut_time is not None and (guess_amplitude_bound or not guess_t0_start): data = data[data['time'] >= cut_time[0]*(1+model.get('z'))+guess_t0] data = data[data['time'] <= cut_time[1]*(1+model.get('z'))+guess_t0] if prev_res is not None: data, quality = check_table_quality( data, min_n_bands=min_n_bands, min_n_points_per_band=min_n_points_per_band, clip=True) if not quality: return # Convert bounds/priors combinations into ppfs if bounds is not None: for key, val in bounds.items(): if key in ppfs: continue # ppfs take priority over bounds/priors a, b = val if priors is not None and key in priors: # solve ppf at discrete points and return interpolating # function x_samples = np.linspace(0., 1., 101) ppf_samples = sncosmo.utils.ppf(priors[key], x_samples, a, b) f = sncosmo.utils.Interp1D(0., 1., ppf_samples) else: f = sncosmo.utils.Interp1D(0., 1., np.array([a, b])) ppfs[key] = f # NOTE: It is important that iparam_names is in the same order # every time, otherwise results will not be reproducible, even # with same random seed. This is because iparam_names[i] is # matched to u[i] below and u will be in a reproducible order, # so iparam_names must also be. if prev_res is not None: prior_inds = [i for i in range( len(vparam_names)) if vparam_names[i] in _thetaSN_] if len(prior_inds) == 0: doPrior = False else: doPrior = True prior_dist = NDposterior('temp') prior_func = prior_dist._logpdf([tuple(prev_res.samples[i, prior_inds]) for i in range(prev_res.samples.shape[0])], prev_res.weights) else: doPrior = False iparam_names = [key for key in vparam_names if key in ppfs] ppflist = [ppfs[key] for key in iparam_names] npdim = len(iparam_names) # length of u ndim = len(vparam_names) # length of v # Check that all param_names either have a direct prior or are tied. for name in vparam_names: if name in iparam_names: continue if name in tied: continue raise ValueError("Must supply ppf or bounds or tied for parameter '{}'" .format(name)) def prior_transform(u): d = {} for i in range(npdim): d[iparam_names[i]] = ppflist[i](u[i]) v = np.empty(ndim, dtype=np.float) for i in range(ndim): key = vparam_names[i] if key in d: v[i] = d[key] else: v[i] = tied[key](d) return v model_idx = np.array([model.param_names.index(name) for name in vparam_names]) flux = np.array(data['flux']) fluxerr = np.array(data['fluxerr']) zp = np.array(data['zp']) zpsys = np.array(data['zpsys']) chi1 = flux/fluxerr def chisq_likelihood(parameters): model.parameters[model_idx] = parameters model_observations = model.bandflux(data['band'], data['time'], zp=zp, zpsys=zpsys) if modelcov: cov = np.diag(data['fluxerr']*data['fluxerr']) _, mcov = model.bandfluxcov(data['band'], data['time'], zp=zp, zpsys=zpsys) cov = cov + mcov invcov = np.linalg.pinv(cov) diff = flux-model_observations chisq = np.dot(np.dot(diff, invcov), diff) else: chi = chi1-model_observations/fluxerr chisq = np.dot(chi, chi) return chisq def loglike(parameters): if doPrior: prior_val = prior_func(*parameters[prior_inds]) else: prior_val = 0 chisq = chisq_likelihood(parameters) return(prior_val-.5*chisq) res = nestle.sample(loglike, prior_transform, ndim, npdim=npdim, npoints=npoints, method=method, maxiter=maxiter, maxcall=maxcall, rstate=rstate, callback=(nestle.print_progress if verbose else None)) vparameters, cov = nestle.mean_and_cov(res.samples, res.weights) res = sncosmo.utils.Result(niter=res.niter, ncall=res.ncall, logz=res.logz, logzerr=res.logzerr, h=res.h, samples=res.samples, weights=res.weights, logvol=res.logvol, logl=res.logl, errors=OrderedDict(zip(vparam_names, np.sqrt(np.diagonal(cov)))), vparam_names=copy(vparam_names), bounds=bounds) if use_MLE: best_ind = res.logl.argmax() params = [[res.samples[best_ind, i]-res.errors[vparam_names[i]], res.samples[best_ind, i], res.samples[best_ind, i]+res.errors[vparam_names[i]]] for i in range(len(vparam_names))] else: params = [weighted_quantile( res.samples[:, i], [.16, .5, .84], res.weights) for i in range(len(vparam_names))] model.set(**{vparam_names[k]: params[k][1] for k in range(len(vparam_names))}) return params, model, res def _micro_uncertainty(args): sample, other = args nest_fit, data, colnames, x_pred, vparam_names, bounds, priors, minsnr, maxcall, npoints = other data = Table(data, names=colnames) tempMicro = AchromaticMicrolensing( x_pred/(1+nest_fit.get('z')), sample, magformat='multiply') # Assumes achromatic temp = tempMicro.propagate((data['time']-nest_fit.get('t0'))/(1+nest_fit.get('z')), [], np.atleast_2d(np.array(data['flux']))) data['flux'] = temp[0] try: tempRes, tempMod = nest_lc(data, nest_fit, vparam_names=vparam_names, bounds=bounds, minsnr=minsnr, maxcall=maxcall, guess_amplitude_bound=True, maxiter=None, npoints=npoints, priors=priors) except: return(np.nan) return float(tempMod.get('t0')) def fit_micro(fit, dat, zpsys, nsamples, micro_type='achromatic', kernel='RBF', bands='all'): t0 = fit.get('t0') fit.set(t0=t0) data = copy(dat) data['time'] -= t0 if len(data) == 0: data = copy(dat) achromatic = micro_type.lower() == 'achromatic' if achromatic: allResid = [] allErr = [] allTime = [] else: allResid = dict([]) allErr = dict([]) allTime = dict([]) if bands == 'all': bands = np.unique(data['band']) elif isinstance(bands, str): bands = [bands] for b in bands: tempData = data[data['band'] == b] tempData = tempData[tempData['flux'] > 0] tempTime = copy(tempData['time']) mod = fit.bandflux(b, tempTime+t0, zpsys=zpsys, zp=tempData['zp']) residual = tempData['flux']/mod tempData = tempData[~np.isnan(residual)] residual = residual[~np.isnan(residual)] tempTime = tempTime[~np.isnan(residual)] _, mcov = fit.bandfluxcov(b, tempTime, zp=tempData['zp'], zpsys=zpsys) if achromatic: allResid = np.append(allResid, residual) totalErr = np.abs(residual*np.sqrt((tempData['fluxerr']/tempData['flux'])**2 + np.array([mcov[i][i] for i in range(len(tempData))])/mod**2)) allErr = np.append( allErr, residual*tempData['fluxerr']/tempData['flux']) allTime = np.append(allTime, tempTime) else: allResid[b] = residual allErr[b] = residual*tempData['fluxerr']/tempData['flux'] allTime[b] = tempTime if kernel == 'RBF': kernel = RBF(0.1, (.001, 20.)) good_inds = np.where(np.logical_and(np.isfinite(allResid), np.logical_and(np.isfinite(allErr), np.isfinite(allTime)))) allResid = allResid[good_inds] allErr = allErr[good_inds] allTime = allTime[good_inds] if achromatic: gp = GaussianProcessRegressor(kernel=kernel, alpha=allErr ** 2, n_restarts_optimizer=100) try: gp.fit(np.atleast_2d(allTime).T, allResid.ravel()) except RuntimeError: temp = np.atleast_2d(allTime).T temp2 = allResid.ravel() temp = temp[np.isfinite(temp2)] temp2 = temp2[np.isfinite(temp2)] gp.fit(temp, temp2) X = np.atleast_2d(np.linspace( np.min(allTime), np.max(allTime), 1000)).T y_pred, sigma = gp.predict(X, return_std=True) samples = gp.sample_y(X, nsamples) tempX = X[:, 0] tempX = np.append([fit._source._phase[0]*(1+fit.get('z'))], np.append(tempX, [fit._source._phase[-1]*(1+fit.get('z'))])) temp_y_pred = np.append([1.], np.append(y_pred, [1.])) temp_sigma = np.append([0.], np.append(sigma, [0.])) result = AchromaticMicrolensing( tempX/(1+fit.get('z')), temp_y_pred, magformat='multiply') else: pass # TODO make chromatic microlensing a thing return result, sigma, X[:, 0], y_pred, samples, allTime, allResid, allErr def param_fit(args, modName, fit=False): sources = {'BazinSource': BazinSource} source = sources[modName]( args['curve'].table, colorCurve=args['color_curve']) mod = sncosmo.Model(source) if args['constants']: mod.set(**args['constants']) if not fit: res = sncosmo.utils.Result() res.vparam_names = args['params'] else: #res,mod=sncosmo.fit_lc(args['curve'].table,mod,args['params'], bounds=args['bounds'],guess_amplitude=True,guess_t0=True,maxcall=1) if 'amplitude' in args['bounds']: guess_amp_bound = False else: guess_amp_bound = True res, mod = nest_lc(args['curve'].table, mod, vparam_names=args['params'], bounds=args['bounds'], guess_amplitude_bound=guess_amp_bound, maxiter=1000, npoints=200) return({'res': res, 'model': mod}) def identify_micro_func(args): print('Only a development function for now!') return args['bands'], args['bands'] if len(args['bands']) <= 2: return args['bands'], args['bands'] res_dict = {} original_args = copy(args) combos = [] for r in range(len(args['bands'])-1): temp = [x for x in itertools.combinations(original_args['bands'], r)] for t in temp: combos.append(t) if 'td' not in args['bounds'].keys(): args['bounds']['td'] = args['bounds']['t0'] for bands in itertools.combinations(args['bands'], 2): good = True for b in bands: if not np.all([len(np.where(original_args['curves'].images[im].table['band'] == b)[0]) >= 3 for im in original_args['curves'].images.keys()]): good = False if not good: continue temp_args = copy(original_args) temp_args['bands'] = [x for x in bands] temp_args['npoints'] = 200 temp_args['fit_prior'] = None fitCurves = _fitColor(temp_args) if np.all([np.isfinite(fitCurves.color.time_delays[x]) for x in fitCurves.images.keys()]): res_dict[bands[0]+'-'+bands[1]] = copy(fitCurves.color.fits.res) if len(list(res_dict.keys())) == 0: print('No good fitting.', args['bands']) return(args['bands'], args['bands']) ind = res_dict[list(res_dict.keys())[0]].vparam_names.index('c') print([(x, weighted_quantile(res_dict[x].samples[:, ind], [.16, .5, .84], res_dict[x].weights)) for x in res_dict.keys()]) dev_dict = {} for bs in combos: dev_dict[','.join(list(bs))] = (np.average([weighted_quantile(res_dict[x].samples[:, ind], .5, res_dict[x].weights) for x in res_dict.keys() if np.all([b not in x for b in bs])], weights=1/np.abs([res_dict[x].logz for x in res_dict.keys() if np.all([b not in x for b in bs])])), np.std([weighted_quantile(res_dict[x].samples[:, ind], .5, res_dict[x].weights) for x in res_dict.keys() if np.all([b not in x for b in bs])])) print(dev_dict) to_remove = None best_std = dev_dict[''][1]/np.sqrt(len(args['bands'])) if len(args['bands']) > 3: for bands in dev_dict.keys(): # len(args['bands'])-len(bands.split(','))==2: if dev_dict[bands][1] != 0: print(bands, dev_dict[bands]) if dev_dict[bands][1]/np.sqrt(len(args['bands'])-len(bands.split(','))) < best_std: to_remove = bands.split(',') best_std = dev_dict[bands][1] / \ np.sqrt(len(args['bands'])-len(to_remove)) print(to_remove, best_std) sys.exit() final_color_bands = None best_logz = -np.inf best_logzerr = 0 for bands in res_dict.keys(): logz, logzerr = calc_ev(res_dict[bands], args['npoints']) if logz > best_logz: final_color_bands = bands best_logz = logz best_logzerr = logzerr print(bands, best_logz, best_logzerr) final_all_bands = [] for bands in res_dict.keys(): logz, logzerr = calc_ev(res_dict[bands], args['npoints']) print(bands, logz, logzerr) if logz+3*logzerr >= best_logz-3*best_logzerr: final_all_bands = np.append(final_all_bands, bands.split('-')) print(np.unique(final_all_bands), np.array(final_color_bands.split('-'))) sys.exit() return(np.unique(final_all_bands), np.array(final_color_bands.split('-'))) # else: # print([[x for x in args['bands'] if x not in to_remove]]*2) # sys.exit() # return [[x for x in args['bands'] if x not in to_remove]]*2 # else: # best_bands=None # best_logz=-np.inf # for bands in res_dict.keys(): # # if res_dict[bands].logz>best_logz: # best_bands=bands # best_logz=res_dict[bands].logz # # return [best_bands.split('-')]*2 def calc_ev(res, nlive): logZnestle = res.logz # value of logZ # value of the information gain in nats infogainnestle = res.h if not np.isfinite(infogainnestle): infogainnestle = .1*logZnestle # /nlive) # estimate of the statistcal uncertainty on logZ logZerrnestle = np.sqrt(infogainnestle) return logZnestle, logZerrnestle
jpierel14REPO_NAMEsntdPATH_START.@sntd_extracted@sntd-master@sntd@fitting.py@.PATH_END.py
{ "filename": "plot_disk_fit.py", "repo_name": "mkenworthy/exorings", "repo_path": "exorings_extracted/exorings-master/plot_disk_fit.py", "type": "Python" }
import sys, getopt import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import exorings from astropy.io import ascii # set sensible imshow defaults mpl.rc('image', interpolation='nearest', origin='lower', cmap='gray') mpl.rc('axes.formatter', limits=(-7, 7)) def plot_gradient_fit(t, f, fn, xt, yt, p): # f = gradient of fit at points of measurement p.plot(xt, yt, lw=3.0, color='black', zorder=1) p.scatter(t, f, facecolor='1.0', s=60, color='black', zorder=2, lw=1) p.scatter(t, f, facecolor='None', s=60, color='black', zorder=3, lw=1) p.scatter(t, fn, facecolor='0.0', s=60, zorder=4, lw=1) p.vlines(t, f, fn, zorder=1, lw=2, color='0.5', linestyles='dotted') p.set_xlabel('HJD - 2450000 [Days]') p.set_ylabel('Light curve gradient [$L_\star/day$]') ################################################################################ # BEGIN main program ################################################################################ def helpme(): print ('plot_disk_fit.py -d <disk input FITS> -o <output plot file>') print ('Example: ') print (' plot_disk_fit.py -d 54220.65.try3.fits -o disk_fit.pdf') sys.exit() # parse command line options try: opts, args = getopt.getopt(sys.argv[1:], "hd:o:", ["dfile=", "ofile="]) except getopt.GetoptError: helpme() sys.exit(2) for opt, arg in opts: if opt == '-h': help() elif opt in ("-d", "--dfile"): fitsin_disk = arg read_in_disk_parameters = True elif opt in ("-o", "--ofile"): plotfileout = arg # get light curve gradients grad = ascii.read("gradients.txt") grad_time = grad['col1'] + 54222. grad_mag = np.abs(grad['col2']) # read in or create the ring system tau and radii print ('Reading in disk parameters from %s' % fitsin_disk) (res, taun_ringsxx, rad_ringsxx, dstar) = exorings.read_ring_fits(fitsin_disk) # make the radius and projected gradient for the measured gradient points (ring_disk_fit, grad_disk_fit) = \ exorings.make_ring_grad_line(grad_time, res[0], res[1], res[2], res[3]) # produce fine grained gradient and ring values samp_t = np.arange(-100, 100, 0.001) + 54222. (samp_r, samp_g) = exorings.make_ring_grad_line(samp_t, res[0], res[1], res[2], res[3]) hjd_minr = samp_t[np.argmin(samp_g)] exorings.print_disk_parameters(res, hjd_minr, samp_r) # plotting fit of gradients from ellipse curve to J1407 gradients plt.rc('font', **{'family':'sans-serif', 'sans-serif':['Helvetica']}) plt.rc('text', usetex=True) figfit = plt.figure(figsize=(10, 6)) f2 = figfit.add_subplot(111) f2.set_ylim([0, 1.1*np.max(grad_mag)]) f2.set_xlim([np.min(samp_t), np.max(samp_t)]) plot_gradient_fit(grad_time, grad_disk_fit * np.max(grad_mag), grad_mag, \ samp_t, samp_g*np.max(grad_mag), f2) # make ticks thicker for ax in figfit.axes: # go over all the subplots in the figure fig for i in ax.spines.itervalues(): # ... and go over all the axes too... i.set_linewidth(2) ax.minorticks_on() # switch on the minor ticks # set the tick lengths and tick widths ax.tick_params('both', length=15, width=2, which='major') ax.tick_params('both', length=6, width=1, which='minor') # adjust text size on the axes f2.tick_params(axis='both', which='major', labelsize=14) print ('writing plot out to file %s' % plotfileout) plt.savefig(plotfileout)
mkenworthyREPO_NAMEexoringsPATH_START.@exorings_extracted@exorings-master@plot_disk_fit.py@.PATH_END.py
{ "filename": "dataset.py", "repo_name": "facebookresearch/faiss", "repo_path": "faiss_extracted/faiss-main/demos/offline_ivf/dataset.py", "type": "Python" }
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import faiss from typing import List import random import logging from functools import lru_cache def create_dataset_from_oivf_config(cfg, ds_name): normalise = cfg["normalise"] if "normalise" in cfg else False return MultiFileVectorDataset( cfg["datasets"][ds_name]["root"], [ FileDescriptor( f["name"], f["format"], np.dtype(f["dtype"]), f["size"] ) for f in cfg["datasets"][ds_name]["files"] ], cfg["d"], normalise, cfg["datasets"][ds_name]["size"], ) @lru_cache(maxsize=100) def _memmap_vecs( file_name: str, format: str, dtype: np.dtype, size: int, d: int ) -> np.array: """ If the file is in raw format, the file size will be divisible by the dimensionality and by the size of the data type. Otherwise,the file contains a header and we assume it is of .npy type. It the returns the memmapped file. """ assert os.path.exists(file_name), f"file does not exist {file_name}" if format == "raw": fl = os.path.getsize(file_name) nb = fl // d // dtype.itemsize assert nb == size, f"{nb} is different than config's {size}" assert fl == d * dtype.itemsize * nb # no header return np.memmap(file_name, shape=(nb, d), dtype=dtype, mode="r") elif format == "npy": vecs = np.load(file_name, mmap_mode="r") assert vecs.shape[0] == size, f"size:{size},shape {vecs.shape[0]}" assert vecs.shape[1] == d assert vecs.dtype == dtype return vecs else: ValueError("The file cannot be loaded in the current format.") class FileDescriptor: def __init__(self, name: str, format: str, dtype: np.dtype, size: int): self.name = name self.format = format self.dtype = dtype self.size = size class MultiFileVectorDataset: def __init__( self, root: str, file_descriptors: List[FileDescriptor], d: int, normalize: bool, size: int, ): assert os.path.exists(root) self.root = root self.file_descriptors = file_descriptors self.d = d self.normalize = normalize self.size = size self.file_offsets = [0] t = 0 for f in self.file_descriptors: xb = _memmap_vecs( f"{self.root}/{f.name}", f.format, f.dtype, f.size, self.d ) t += xb.shape[0] self.file_offsets.append(t) assert ( t == self.size ), "the sum of num of embeddings per file!=total num of embeddings" def iterate(self, start: int, batch_size: int, dt: np.dtype): buffer = np.empty(shape=(batch_size, self.d), dtype=dt) rem = 0 for f in self.file_descriptors: if start >= f.size: start -= f.size continue logging.info(f"processing: {f.name}...") xb = _memmap_vecs( f"{self.root}/{f.name}", f.format, f.dtype, f.size, self.d, ) if start > 0: xb = xb[start:] start = 0 req = min(batch_size - rem, xb.shape[0]) buffer[rem:rem + req] = xb[:req] rem += req if rem == batch_size: if self.normalize: faiss.normalize_L2(buffer) yield buffer.copy() rem = 0 for i in range(req, xb.shape[0], batch_size): j = i + batch_size if j <= xb.shape[0]: tmp = xb[i:j].astype(dt) if self.normalize: faiss.normalize_L2(tmp) yield tmp else: rem = xb.shape[0] - i buffer[:rem] = xb[i:j] if rem > 0: tmp = buffer[:rem] if self.normalize: faiss.normalize_L2(tmp) yield tmp def get(self, idx: List[int]): n = len(idx) fidx = np.searchsorted(self.file_offsets, idx, "right") res = np.empty(shape=(len(idx), self.d), dtype=np.float32) for r, id, fid in zip(range(n), idx, fidx): assert fid > 0 and fid <= len(self.file_descriptors), f"{fid}" f = self.file_descriptors[fid - 1] # deferring normalization until after reading the vec vecs = _memmap_vecs( f"{self.root}/{f.name}", f.format, f.dtype, f.size, self.d ) i = id - self.file_offsets[fid - 1] assert i >= 0 and i < vecs.shape[0] res[r, :] = vecs[i] # TODO: find a faster way if self.normalize: faiss.normalize_L2(res) return res def sample(self, n, idx_fn, vecs_fn): if vecs_fn and os.path.exists(vecs_fn): vecs = np.load(vecs_fn) assert vecs.shape == (n, self.d) return vecs if idx_fn and os.path.exists(idx_fn): idx = np.load(idx_fn) assert idx.size == n else: idx = np.array(sorted(random.sample(range(self.size), n))) if idx_fn: np.save(idx_fn, idx) vecs = self.get(idx) if vecs_fn: np.save(vecs_fn, vecs) return vecs def get_first_n(self, n, dt): assert n <= self.size return next(self.iterate(0, n, dt))
facebookresearchREPO_NAMEfaissPATH_START.@faiss_extracted@faiss-main@demos@offline_ivf@dataset.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "Keck-DataReductionPipelines/KPF-Pipeline", "repo_path": "KPF-Pipeline_extracted/KPF-Pipeline-master/modules/var_exts/src/__init__.py", "type": "Python" }
Keck-DataReductionPipelinesREPO_NAMEKPF-PipelinePATH_START.@KPF-Pipeline_extracted@KPF-Pipeline-master@modules@var_exts@src@__init__.py@.PATH_END.py
{ "filename": "gen_qa_models.py", "repo_name": "triton-inference-server/server", "repo_path": "server_extracted/server-main/qa/common/gen_qa_models.py", "type": "Python" }
#!/usr/bin/env python3 # Copyright 2018-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import os from builtins import range import gen_ensemble_model_utils as emu import numpy as np from gen_common import ( np_dtype_bfloat16, np_to_model_dtype, np_to_onnx_dtype, np_to_tf_dtype, np_to_torch_dtype, np_to_trt_dtype, ) FLAGS = None np_dtype_string = np.dtype(object) from typing import List, Tuple def create_graphdef_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap=False, ): if not tu.validate_for_tf_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): return tf_input_dtype = np_to_tf_dtype(input_dtype) tf_output0_dtype = np_to_tf_dtype(output0_dtype) tf_output1_dtype = np_to_tf_dtype(output1_dtype) # Create the model. If non-batching then don't include the batch # dimension. tf.compat.v1.reset_default_graph() if max_batch == 0: in0 = tf.compat.v1.placeholder( tf_input_dtype, tu.shape_to_tf_shape(input_shape), "INPUT0" ) in1 = tf.compat.v1.placeholder( tf_input_dtype, tu.shape_to_tf_shape(input_shape), "INPUT1" ) else: in0 = tf.compat.v1.placeholder( tf_input_dtype, [ None, ] + tu.shape_to_tf_shape(input_shape), "INPUT0", ) in1 = tf.compat.v1.placeholder( tf_input_dtype, [ None, ] + tu.shape_to_tf_shape(input_shape), "INPUT1", ) # If the input is a string, then convert each string to the # equivalent int32 value. if tf_input_dtype == tf.string: in0 = tf.strings.to_number(in0, tf.int32) in1 = tf.strings.to_number(in1, tf.int32) add = tf.add(in0, in1, "ADD") sub = tf.subtract(in0, in1, "SUB") # Cast or convert result to the output dtype. if tf_output0_dtype == tf.string: cast0 = tf.strings.as_string(add if not swap else sub, name="TOSTR0") else: cast0 = tf.cast(add if not swap else sub, tf_output0_dtype, "CAST0") if tf_output1_dtype == tf.string: cast1 = tf.strings.as_string(sub if not swap else add, name="TOSTR1") else: cast1 = tf.cast(sub if not swap else add, tf_output1_dtype, "CAST1") out0 = tf.identity(cast0, "OUTPUT0") out1 = tf.identity(cast1, "OUTPUT1") # Use a different model name for the non-batching variant model_name = tu.get_model_name( "graphdef_nobatch" if max_batch == 0 else "graphdef", input_dtype, output0_dtype, output1_dtype, ) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir with tf.compat.v1.Session() as sess: graph_io.write_graph( sess.graph.as_graph_def(), model_version_dir, "model.graphdef", as_text=False, ) def create_graphdef_modelconfig( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ): if not tu.validate_for_tf_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): return # Unpack version policy version_policy_str = "{ latest { num_versions: 1 }}" if version_policy is not None: type, val = version_policy if type == "latest": version_policy_str = "{{ latest {{ num_versions: {} }}}}".format(val) elif type == "specific": version_policy_str = "{{ specific {{ versions: {} }}}}".format(val) else: version_policy_str = "{ all { }}" # Use a different model name for the non-batching variant model_name = tu.get_model_name( "graphdef_nobatch" if max_batch == 0 else "graphdef", input_dtype, output0_dtype, output1_dtype, ) config_dir = models_dir + "/" + model_name config = """ name: "{}" platform: "tensorflow_graphdef" max_batch_size: {} version_policy: {} input [ {{ name: "INPUT0" data_type: {} dims: [ {} ] }}, {{ name: "INPUT1" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT0" data_type: {} dims: [ {} ] label_filename: "output0_labels.txt" }}, {{ name: "OUTPUT1" data_type: {} dims: [ {} ] }} ] """.format( model_name, max_batch, version_policy_str, np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(output0_dtype), tu.shape_to_dims_str(output0_shape), np_to_model_dtype(output1_dtype), tu.shape_to_dims_str(output1_shape), ) try: os.makedirs(config_dir) except OSError as ex: pass # ignore existing dir with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) with open(config_dir + "/output0_labels.txt", "w") as lfile: for l in range(output0_label_cnt): lfile.write("label" + str(l) + "\n") def create_savedmodel_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap=False, ): if not tu.validate_for_tf_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): return tf_input_dtype = np_to_tf_dtype(input_dtype) tf_output0_dtype = np_to_tf_dtype(output0_dtype) tf_output1_dtype = np_to_tf_dtype(output1_dtype) # Create the model. If non-batching then don't include the batch # dimension. tf.compat.v1.reset_default_graph() if max_batch == 0: in0 = tf.compat.v1.placeholder( tf_input_dtype, tu.shape_to_tf_shape(input_shape), "TENSOR_INPUT0" ) in1 = tf.compat.v1.placeholder( tf_input_dtype, tu.shape_to_tf_shape(input_shape), "TENSOR_INPUT1" ) else: in0 = tf.compat.v1.placeholder( tf_input_dtype, [ None, ] + tu.shape_to_tf_shape(input_shape), "TENSOR_INPUT0", ) in1 = tf.compat.v1.placeholder( tf_input_dtype, [ None, ] + tu.shape_to_tf_shape(input_shape), "TENSOR_INPUT1", ) # If the input is a string, then convert each string to the # equivalent float value. if tf_input_dtype == tf.string: in0 = tf.strings.to_number(in0, tf.int32) in1 = tf.strings.to_number(in1, tf.int32) add = tf.add(in0, in1, "ADD") sub = tf.subtract(in0, in1, "SUB") # Cast or convert result to the output dtype. if tf_output0_dtype == tf.string: cast0 = tf.strings.as_string(add if not swap else sub, name="TOSTR0") else: cast0 = tf.cast(add if not swap else sub, tf_output0_dtype, "CAST0") if tf_output1_dtype == tf.string: cast1 = tf.strings.as_string(sub if not swap else add, name="TOSTR1") else: cast1 = tf.cast(sub if not swap else add, tf_output1_dtype, "CAST1") tf.identity(cast0, "TENSOR_OUTPUT0") tf.identity(cast1, "TENSOR_OUTPUT1") # Use a different model name for the non-batching variant model_name = tu.get_model_name( "savedmodel_nobatch" if max_batch == 0 else "savedmodel", input_dtype, output0_dtype, output1_dtype, ) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir with tf.compat.v1.Session() as sess: input0_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name( "TENSOR_INPUT0:0" ) input1_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name( "TENSOR_INPUT1:0" ) output0_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name( "TENSOR_OUTPUT0:0" ) output1_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name( "TENSOR_OUTPUT1:0" ) tf.compat.v1.saved_model.simple_save( sess, model_version_dir + "/model.savedmodel", inputs={"INPUT0": input0_tensor, "INPUT1": input1_tensor}, outputs={"OUTPUT0": output0_tensor, "OUTPUT1": output1_tensor}, ) def create_savedmodel_modelconfig( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ): if not tu.validate_for_tf_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): return # Unpack version policy version_policy_str = "{ latest { num_versions: 1 }}" if version_policy is not None: type, val = version_policy if type == "latest": version_policy_str = "{{ latest {{ num_versions: {} }}}}".format(val) elif type == "specific": version_policy_str = "{{ specific {{ versions: {} }}}}".format(val) else: version_policy_str = "{ all { }}" # Use a different model name for the non-batching variant model_name = tu.get_model_name( "savedmodel_nobatch" if max_batch == 0 else "savedmodel", input_dtype, output0_dtype, output1_dtype, ) config_dir = models_dir + "/" + model_name config = """ name: "{}" platform: "tensorflow_savedmodel" max_batch_size: {} version_policy: {} input [ {{ name: "INPUT0" data_type: {} dims: [ {} ] }}, {{ name: "INPUT1" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT0" data_type: {} dims: [ {} ] label_filename: "output0_labels.txt" }}, {{ name: "OUTPUT1" data_type: {} dims: [ {} ] }} ] """.format( model_name, max_batch, version_policy_str, np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(output0_dtype), tu.shape_to_dims_str(output0_shape), np_to_model_dtype(output1_dtype), tu.shape_to_dims_str(output1_shape), ) try: os.makedirs(config_dir) except OSError as ex: pass # ignore existing dir with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) with open(config_dir + "/output0_labels.txt", "w") as lfile: for l in range(output0_label_cnt): lfile.write("label" + str(l) + "\n") def create_plan_dynamic_rf_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, min_dim, max_dim, ): trt_input_dtype = np_to_trt_dtype(input_dtype) trt_output0_dtype = np_to_trt_dtype(output0_dtype) trt_output1_dtype = np_to_trt_dtype(output1_dtype) trt_memory_format = trt.TensorFormat.LINEAR # Create the model TRT_LOGGER = trt.Logger(trt.Logger.INFO) builder = trt.Builder(TRT_LOGGER) network = builder.create_network() if max_batch == 0: input_with_batchsize = [i for i in input_shape] else: input_with_batchsize = [-1] + [i for i in input_shape] in0 = network.add_input("INPUT0", trt_input_dtype, input_with_batchsize) in1 = network.add_input("INPUT1", trt_input_dtype, input_with_batchsize) # TRT uint8 cannot be used to represent quantized floating-point value yet # uint8 must be converted to float16 or float32 before any operation # FIXME: Remove support check when jetson supports TRT 8.5 (DLIS-4256) if tu.support_trt_uint8(): if trt_input_dtype == trt.uint8: in0_cast = network.add_identity(in0) in0_cast.set_output_type(0, trt.float32) in0 = in0_cast.get_output(0) in1_cast = network.add_identity(in1) in1_cast.set_output_type(0, trt.float32) in1 = in1_cast.get_output(0) add = network.add_elementwise(in0, in1, trt.ElementWiseOperation.SUM) sub = network.add_elementwise(in0, in1, trt.ElementWiseOperation.SUB) out0 = add if not swap else sub out1 = sub if not swap else add # uint8 conversion after operations # FIXME: Remove support check when jetson supports TRT 8.5 (DLIS-4256) if tu.support_trt_uint8(): if trt_output0_dtype == trt.uint8: out0 = network.add_identity(out0.get_output(0)) out0.set_output_type(0, trt.uint8) if trt_output1_dtype == trt.uint8: out1 = network.add_identity(out1.get_output(0)) out1.set_output_type(0, trt.uint8) out0.get_output(0).name = "OUTPUT0" out1.get_output(0).name = "OUTPUT1" network.mark_output(out0.get_output(0)) network.mark_output(out1.get_output(0)) out0.get_output(0).dtype = trt_output0_dtype out1.get_output(0).dtype = trt_output1_dtype in0.allowed_formats = 1 << int(trt_memory_format) in1.allowed_formats = 1 << int(trt_memory_format) out0.get_output(0).allowed_formats = 1 << int(trt_memory_format) out1.get_output(0).allowed_formats = 1 << int(trt_memory_format) if trt_input_dtype == trt.int8: in0.dynamic_range = (-128.0, 127.0) in1.dynamic_range = (-128.0, 127.0) if trt_output0_dtype == trt.int8: out0.get_output(0).dynamic_range = (-128.0, 127.0) if trt_output1_dtype == trt.int8: out1.get_output(0).dynamic_range = (-128.0, 127.0) min_shape = [] opt_shape = [] max_shape = [] if max_batch != 0: min_shape = min_shape + [1] opt_shape = opt_shape + [max(1, max_batch)] max_shape = max_shape + [max(1, max_batch)] for i in input_shape: if i == -1: min_shape = min_shape + [min_dim] opt_shape = opt_shape + [int((max_dim + min_dim) / 2)] max_shape = max_shape + [max_dim] else: min_shape = min_shape + [i] opt_shape = opt_shape + [i] max_shape = max_shape + [i] profile = builder.create_optimization_profile() profile.set_shape("INPUT0", min_shape, opt_shape, max_shape) profile.set_shape("INPUT1", min_shape, opt_shape, max_shape) flags = 1 << int(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS) flags |= 1 << int(trt.BuilderFlag.REJECT_EMPTY_ALGORITHMS) datatype_set = set([trt_input_dtype, trt_output0_dtype, trt_output1_dtype]) for dt in datatype_set: if dt == trt.int8: flags |= 1 << int(trt.BuilderFlag.INT8) elif dt == trt.float16: flags |= 1 << int(trt.BuilderFlag.FP16) config = builder.create_builder_config() config.flags = flags config.add_optimization_profile(profile) config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) try: engine_bytes = builder.build_serialized_network(network, config) except AttributeError: engine = builder.build_engine(network, config) engine_bytes = engine.serialize() del engine # Use a different model name for different kinds of models model_name = tu.get_model_name( "plan_nobatch" if max_batch == 0 else "plan", input_dtype, output0_dtype, output1_dtype, ) if min_dim != 1 or max_dim != 32: model_name = "{}-{}-{}".format(model_name, min_dim, max_dim) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir with open(model_version_dir + "/model.plan", "wb") as f: f.write(engine_bytes) def create_plan_dynamic_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, min_dim, max_dim, ): trt_input_dtype = np_to_trt_dtype(input_dtype) trt_output0_dtype = np_to_trt_dtype(output0_dtype) trt_output1_dtype = np_to_trt_dtype(output1_dtype) # Create the model TRT_LOGGER = trt.Logger(trt.Logger.INFO) builder = trt.Builder(TRT_LOGGER) network = builder.create_network() if max_batch == 0: input_with_batchsize = [i for i in input_shape] else: input_with_batchsize = [-1] + [i for i in input_shape] in0 = network.add_input("INPUT0", trt_input_dtype, input_with_batchsize) in1 = network.add_input("INPUT1", trt_input_dtype, input_with_batchsize) add = network.add_elementwise(in0, in1, trt.ElementWiseOperation.SUM) sub = network.add_elementwise(in0, in1, trt.ElementWiseOperation.SUB) out0 = add if not swap else sub out1 = sub if not swap else add out0.get_output(0).name = "OUTPUT0" out1.get_output(0).name = "OUTPUT1" network.mark_output(out0.get_output(0)) network.mark_output(out1.get_output(0)) min_shape = [] opt_shape = [] max_shape = [] for i in input_shape: if i == -1: min_shape = min_shape + [min_dim] opt_shape = opt_shape + [int((max_dim + min_dim) / 2)] max_shape = max_shape + [max_dim] else: min_shape = min_shape + [i] opt_shape = opt_shape + [i] max_shape = max_shape + [i] config = builder.create_builder_config() # create multiple profiles with same shape for testing # with decreasing batch sizes profile = [] for i in range(4): profile.append(builder.create_optimization_profile()) if max_batch == 0: profile[i].set_shape("INPUT0", min_shape, opt_shape, max_shape) profile[i].set_shape("INPUT1", min_shape, opt_shape, max_shape) else: bs = [max_batch - i if max_batch > i else 1] opt_bs = [1 + i if 1 + i < max_batch - 1 else max_batch - 1] # Hardcoded 'max_shape[0] += 1' in default profile for # L0_trt_dynamic_shape, to differentiate whether default profile # is used if no profile is specified max_shape_override = max_shape if i == 0 and (min_dim == 1 and max_dim == 32): max_shape_override[0] += 1 profile[i].set_shape( "INPUT0", [1] + min_shape, opt_bs + opt_shape, bs + max_shape_override ) profile[i].set_shape( "INPUT1", [1] + min_shape, opt_bs + opt_shape, bs + max_shape_override ) config.add_optimization_profile(profile[i]) # some profiles with non-one min shape for first dim to test autofiller for i in range(2): profile.append(builder.create_optimization_profile()) if max_batch == 0: profile[i + 4].set_shape("INPUT0", min_shape, opt_shape, max_shape) profile[i + 4].set_shape("INPUT1", min_shape, opt_shape, max_shape) else: profile[i + 4].set_shape( "INPUT0", [5 + i] + min_shape, [6] + opt_shape, [max_batch] + max_shape ) profile[i + 4].set_shape( "INPUT1", [5 + i] + min_shape, [6] + opt_shape, [max_batch] + max_shape ) config.add_optimization_profile(profile[i + 4]) # Will repeat another profile with same min and max shapes as the first profile to test non-zero profile # for infer_variable test. profile.append(builder.create_optimization_profile()) if max_batch == 0: profile[6].set_shape("INPUT0", min_shape, opt_shape, max_shape) profile[6].set_shape("INPUT1", min_shape, opt_shape, max_shape) else: profile[6].set_shape( "INPUT0", [1] + min_shape, [1] + opt_shape, [max_batch] + max_shape ) profile[6].set_shape( "INPUT1", [1] + min_shape, [1] + opt_shape, [max_batch] + max_shape ) config.add_optimization_profile(profile[6]) # Will add some profiles with static shapes to test the cases where min_shape=opt_shape=max_shape for i in range(3): profile.append(builder.create_optimization_profile()) if max_batch == 0: static_shape = max_shape profile[7 + i].set_shape("INPUT0", static_shape, static_shape, static_shape) profile[7 + i].set_shape("INPUT1", static_shape, static_shape, static_shape) else: # Skipping alternate batch sizes for testing unsupported batches in L0_trt_dynamic_shape. full_static_shape = [1 + (2 * i)] + max_shape profile[7 + i].set_shape( "INPUT0", full_static_shape, full_static_shape, full_static_shape ) profile[7 + i].set_shape( "INPUT1", full_static_shape, full_static_shape, full_static_shape ) config.add_optimization_profile(profile[7 + i]) # Add profiles where each profile supports a specific batch size if max_batch != 0: for i in range(max_batch): profile.append(builder.create_optimization_profile()) profile[10 + i].set_shape( "INPUT0", [1 + i] + min_shape, [1 + i] + opt_shape, [1 + i] + max_shape ) profile[10 + i].set_shape( "INPUT1", [1 + i] + min_shape, [1 + i] + opt_shape, [1 + i] + max_shape ) config.add_optimization_profile(profile[10 + i]) config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) try: engine_bytes = builder.build_serialized_network(network, config) except AttributeError: engine = builder.build_engine(network, config) engine_bytes = engine.serialize() del engine # Use a different model name for different kinds of models model_name = tu.get_model_name( "plan_nobatch" if max_batch == 0 else "plan", input_dtype, output0_dtype, output1_dtype, ) if min_dim != 1 or max_dim != 32: model_name = "{}-{}-{}".format(model_name, min_dim, max_dim) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir with open(model_version_dir + "/model.plan", "wb") as f: f.write(engine_bytes) def create_plan_fixed_rf_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, ): trt_input_dtype = np_to_trt_dtype(input_dtype) trt_output0_dtype = np_to_trt_dtype(output0_dtype) trt_output1_dtype = np_to_trt_dtype(output1_dtype) trt_memory_format = trt.TensorFormat.LINEAR # Create the model TRT_LOGGER = trt.Logger(trt.Logger.INFO) builder = trt.Builder(TRT_LOGGER) network = builder.create_network() if max_batch == 0: input_with_batchsize = [i for i in input_shape] else: input_with_batchsize = [-1] + [i for i in input_shape] in0 = network.add_input("INPUT0", trt_input_dtype, input_with_batchsize) in1 = network.add_input("INPUT1", trt_input_dtype, input_with_batchsize) add = network.add_elementwise(in0, in1, trt.ElementWiseOperation.SUM) sub = network.add_elementwise(in0, in1, trt.ElementWiseOperation.SUB) out0 = add if not swap else sub out1 = sub if not swap else add out0.get_output(0).name = "OUTPUT0" out1.get_output(0).name = "OUTPUT1" network.mark_output(out0.get_output(0)) network.mark_output(out1.get_output(0)) out0.get_output(0).dtype = trt_output0_dtype out1.get_output(0).dtype = trt_output1_dtype in0.allowed_formats = 1 << int(trt_memory_format) in1.allowed_formats = 1 << int(trt_memory_format) out0.get_output(0).allowed_formats = 1 << int(trt_memory_format) out1.get_output(0).allowed_formats = 1 << int(trt_memory_format) if trt_input_dtype == trt.int8: in0.dynamic_range = (-128.0, 127.0) in1.dynamic_range = (-128.0, 127.0) if trt_output0_dtype == trt.int8: out0.get_output(0).dynamic_range = (-128.0, 127.0) if trt_output1_dtype == trt.int8: out1.get_output(0).dynamic_range = (-128.0, 127.0) config = builder.create_builder_config() min_shape = [] opt_shape = [] max_shape = [] if max_batch != 0: min_shape = min_shape + [1] opt_shape = opt_shape + [max(1, max_batch)] max_shape = max_shape + [max(1, max_batch)] for i in input_shape: min_shape = min_shape + [i] opt_shape = opt_shape + [i] max_shape = max_shape + [i] profile = builder.create_optimization_profile() profile.set_shape("INPUT0", min_shape, opt_shape, max_shape) profile.set_shape("INPUT1", min_shape, opt_shape, max_shape) flags = 1 << int(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS) flags |= 1 << int(trt.BuilderFlag.REJECT_EMPTY_ALGORITHMS) datatype_set = set([trt_input_dtype, trt_output0_dtype, trt_output1_dtype]) for dt in datatype_set: if dt == trt.int8: flags |= 1 << int(trt.BuilderFlag.INT8) elif dt == trt.float16: flags |= 1 << int(trt.BuilderFlag.FP16) config = builder.create_builder_config() config.flags = flags config.add_optimization_profile(profile) config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) try: engine_bytes = builder.build_serialized_network(network, config) except AttributeError: engine = builder.build_engine(network, config) engine_bytes = engine.serialize() del engine model_name = tu.get_model_name( "plan_nobatch" if max_batch == 0 else "plan", input_dtype, output0_dtype, output1_dtype, ) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir with open(model_version_dir + "/model.plan", "wb") as f: f.write(engine_bytes) def create_plan_fixed_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, ): trt_input_dtype = np_to_trt_dtype(input_dtype) trt_output0_dtype = np_to_trt_dtype(output0_dtype) trt_output1_dtype = np_to_trt_dtype(output1_dtype) # Create the model TRT_LOGGER = trt.Logger(trt.Logger.INFO) builder = trt.Builder(TRT_LOGGER) network = builder.create_network() if max_batch == 0: input_with_batchsize = [i for i in input_shape] else: input_with_batchsize = [-1] + [i for i in input_shape] in0 = network.add_input("INPUT0", trt_input_dtype, input_with_batchsize) in1 = network.add_input("INPUT1", trt_input_dtype, input_with_batchsize) add = network.add_elementwise(in0, in1, trt.ElementWiseOperation.SUM) sub = network.add_elementwise(in0, in1, trt.ElementWiseOperation.SUB) out0 = add if not swap else sub out1 = sub if not swap else add out0.get_output(0).name = "OUTPUT0" out1.get_output(0).name = "OUTPUT1" network.mark_output(out0.get_output(0)) network.mark_output(out1.get_output(0)) config = builder.create_builder_config() min_shape = [] opt_shape = [] max_shape = [] if max_batch != 0: min_shape = min_shape + [1] opt_shape = opt_shape + [max(1, max_batch)] max_shape = max_shape + [max(1, max_batch)] for i in input_shape: min_shape = min_shape + [i] opt_shape = opt_shape + [i] max_shape = max_shape + [i] profile = builder.create_optimization_profile() profile.set_shape("INPUT0", min_shape, opt_shape, max_shape) profile.set_shape("INPUT1", min_shape, opt_shape, max_shape) config.add_optimization_profile(profile) config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) try: engine_bytes = builder.build_serialized_network(network, config) except AttributeError: engine = builder.build_engine(network, config) engine_bytes = engine.serialize() del engine del network model_name = tu.get_model_name( "plan_nobatch" if max_batch == 0 else "plan", input_dtype, output0_dtype, output1_dtype, ) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir with open(model_version_dir + "/model.plan", "wb") as f: f.write(engine_bytes) def create_plan_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap=False, min_dim=1, max_dim=32, ): if not tu.validate_for_trt_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): return if ( input_dtype == np.uint8 or output0_dtype == np.uint8 or output1_dtype == np.uint8 ): # TRT uint8 cannot be used to represent quantized floating-point value yet create_plan_dynamic_rf_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, min_dim, max_dim, ) elif ( input_dtype != np.float32 or output0_dtype != np.float32 or output1_dtype != np.float32 ): if ( not tu.shape_is_fixed(input_shape) or not tu.shape_is_fixed(output0_shape) or not tu.shape_is_fixed(output1_shape) ): create_plan_dynamic_rf_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, min_dim, max_dim, ) else: create_plan_fixed_rf_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, ) else: if ( not tu.shape_is_fixed(input_shape) or not tu.shape_is_fixed(output0_shape) or not tu.shape_is_fixed(output1_shape) ): create_plan_dynamic_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, min_dim, max_dim, ) else: create_plan_fixed_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap, ) def create_plan_modelconfig( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, min_dim=1, max_dim=32, ): if not tu.validate_for_trt_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): return # Unpack version policy version_policy_str = "{ latest { num_versions: 1 }}" if version_policy is not None: type, val = version_policy if type == "latest": version_policy_str = "{{ latest {{ num_versions: {} }}}}".format(val) elif type == "specific": version_policy_str = "{{ specific {{ versions: {} }}}}".format(val) else: version_policy_str = "{ all { }}" # Use a different model name for different kinds of models model_name = tu.get_model_name( "plan_nobatch" if max_batch == 0 else "plan", input_dtype, output0_dtype, output1_dtype, ) if min_dim != 1 or max_dim != 32: model_name = "{}-{}-{}".format(model_name, min_dim, max_dim) config_dir = models_dir + "/" + model_name if -1 in input_shape: # Selects the sixth profile for FP32 datatype # Note the min and max shapes of first and sixth # profile are identical. profile_index = 6 if input_dtype == np.float32 else 0 config = """ name: "{}" platform: "tensorrt_plan" max_batch_size: {} version_policy: {} input [ {{ name: "INPUT0" data_type: {} dims: [ {} ] }}, {{ name: "INPUT1" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT0" data_type: {} dims: [ {} ] label_filename: "output0_labels.txt" }}, {{ name: "OUTPUT1" data_type: {} dims: [ {} ] }} ] instance_group [ {{ profile:"{}" }} ] """.format( model_name, max_batch, version_policy_str, np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(output0_dtype), tu.shape_to_dims_str(output0_shape), np_to_model_dtype(output1_dtype), tu.shape_to_dims_str(output1_shape), profile_index, ) else: config = """ name: "{}" platform: "tensorrt_plan" max_batch_size: {} version_policy: {} input [ {{ name: "INPUT0" data_type: {} dims: [ {} ] }}, {{ name: "INPUT1" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT0" data_type: {} dims: [ {} ] label_filename: "output0_labels.txt" }}, {{ name: "OUTPUT1" data_type: {} dims: [ {} ] }} ] """.format( model_name, max_batch, version_policy_str, np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(output0_dtype), tu.shape_to_dims_str(output0_shape), np_to_model_dtype(output1_dtype), tu.shape_to_dims_str(output1_shape), ) try: os.makedirs(config_dir) except OSError as ex: pass # ignore existing dir with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) with open(config_dir + "/output0_labels.txt", "w") as lfile: for l in range(output0_label_cnt): lfile.write("label" + str(l) + "\n") def create_onnx_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap=False, ): if not tu.validate_for_onnx_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): return onnx_input_dtype = np_to_onnx_dtype(input_dtype) onnx_output0_dtype = np_to_onnx_dtype(output0_dtype) onnx_output1_dtype = np_to_onnx_dtype(output1_dtype) onnx_input_shape, idx = tu.shape_to_onnx_shape(input_shape, 0) onnx_output0_shape, idx = tu.shape_to_onnx_shape(input_shape, idx) onnx_output1_shape, idx = tu.shape_to_onnx_shape(input_shape, idx) # Create the model model_name = tu.get_model_name( "onnx_nobatch" if max_batch == 0 else "onnx", input_dtype, output0_dtype, output1_dtype, ) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) batch_dim = [] if max_batch == 0 else [None] in0 = onnx.helper.make_tensor_value_info( "INPUT0", onnx_input_dtype, batch_dim + onnx_input_shape ) in1 = onnx.helper.make_tensor_value_info( "INPUT1", onnx_input_dtype, batch_dim + onnx_input_shape ) out0 = onnx.helper.make_tensor_value_info( "OUTPUT0", onnx_output0_dtype, batch_dim + onnx_output0_shape ) out1 = onnx.helper.make_tensor_value_info( "OUTPUT1", onnx_output1_dtype, batch_dim + onnx_output1_shape ) internal_in0 = onnx.helper.make_node("Identity", ["INPUT0"], ["_INPUT0"]) internal_in1 = onnx.helper.make_node("Identity", ["INPUT1"], ["_INPUT1"]) # cast int8, int16 input to higher precision int as Onnx Add/Sub operator doesn't support those type # Also casting String data type to int32 if ( (onnx_input_dtype == onnx.TensorProto.INT8) or (onnx_input_dtype == onnx.TensorProto.INT16) or (onnx_input_dtype == onnx.TensorProto.STRING) ): internal_in0 = onnx.helper.make_node( "Cast", ["INPUT0"], ["_INPUT0"], to=onnx.TensorProto.INT32 ) internal_in1 = onnx.helper.make_node( "Cast", ["INPUT1"], ["_INPUT1"], to=onnx.TensorProto.INT32 ) add = onnx.helper.make_node( "Add", ["_INPUT0", "_INPUT1"], ["CAST0" if not swap else "CAST1"] ) sub = onnx.helper.make_node( "Sub", ["_INPUT0", "_INPUT1"], ["CAST1" if not swap else "CAST0"] ) cast0 = onnx.helper.make_node("Cast", ["CAST0"], ["OUTPUT0"], to=onnx_output0_dtype) cast1 = onnx.helper.make_node("Cast", ["CAST1"], ["OUTPUT1"], to=onnx_output1_dtype) # Avoid cast from float16 to float16 # (bug in Onnx Runtime, cast from float16 to float16 will become cast from float16 to float32) if onnx_input_dtype == onnx.TensorProto.FLOAT16: if onnx_output0_dtype == onnx_input_dtype: cast0 = onnx.helper.make_node("Identity", ["CAST0"], ["OUTPUT0"]) if onnx_output1_dtype == onnx_input_dtype: cast1 = onnx.helper.make_node("Identity", ["CAST1"], ["OUTPUT1"]) onnx_nodes = [internal_in0, internal_in1, add, sub, cast0, cast1] onnx_inputs = [in0, in1] onnx_outputs = [out0, out1] graph_proto = onnx.helper.make_graph( onnx_nodes, model_name, onnx_inputs, onnx_outputs ) if FLAGS.onnx_opset > 0: model_opset = onnx.helper.make_operatorsetid("", FLAGS.onnx_opset) model_def = onnx.helper.make_model( graph_proto, producer_name="triton", opset_imports=[model_opset] ) else: model_def = onnx.helper.make_model(graph_proto, producer_name="triton") try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir onnx.save(model_def, model_version_dir + "/model.onnx") def create_onnx_modelconfig( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ): if not tu.validate_for_onnx_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): return # Use a different model name for the non-batching variant model_name = tu.get_model_name( "onnx_nobatch" if max_batch == 0 else "onnx", input_dtype, output0_dtype, output1_dtype, ) config_dir = models_dir + "/" + model_name # [TODO] move create_general_modelconfig() out of emu as it is general # enough for all backends to use config = emu.create_general_modelconfig( model_name, "onnxruntime_onnx", max_batch, emu.repeat(input_dtype, 2), emu.repeat(input_shape, 2), emu.repeat(None, 2), [output0_dtype, output1_dtype], [output0_shape, output1_shape], emu.repeat(None, 2), ["output0_labels.txt", None], version_policy=version_policy, force_tensor_number_suffix=True, ) try: os.makedirs(config_dir) except OSError as ex: pass # ignore existing dir with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) with open(config_dir + "/output0_labels.txt", "w") as lfile: for l in range(output0_label_cnt): lfile.write("label" + str(l) + "\n") def create_libtorch_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap=False, ): if not tu.validate_for_libtorch_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, max_batch, ): return torch_output0_dtype = np_to_torch_dtype(output0_dtype) torch_output1_dtype = np_to_torch_dtype(output1_dtype) model_name = tu.get_model_name( "libtorch_nobatch" if max_batch == 0 else "libtorch", input_dtype, output0_dtype, output1_dtype, ) # handle for -1 (when variable) since can't create tensor with shape of [-1] input_shape = [abs(ips) for ips in input_shape] # Create the model if ( (input_dtype == np_dtype_string) and (output0_dtype != np_dtype_string) and (output1_dtype != np_dtype_string) ): class AddSubNet(nn.Module): def __init__(self, *args): self.output0_dtype = args[0][0] self.output1_dtype = args[0][1] self.swap = args[0][2] super(AddSubNet, self).__init__() def forward(self, INPUT0: List[str], INPUT1: List[str]): input0_int = torch.tensor([int(i) for i in INPUT0]) input1_int = torch.tensor([int(i) for i in INPUT1]) op0 = ( input0_int + input1_int if not self.swap else input0_int - input1_int ) op1 = ( input0_int - input1_int if not self.swap else input0_int + input1_int ) return op0.to(self.output0_dtype), op1.to(self.output1_dtype) elif ( (input_dtype == np_dtype_string) and (output0_dtype == np_dtype_string) and (output1_dtype == np_dtype_string) ): class AddSubNet(nn.Module): def __init__(self, *args): self.output0_dtype = args[0][0] self.output1_dtype = args[0][1] self.swap = args[0][2] super(AddSubNet, self).__init__() def forward( self, INPUT0: List[str], INPUT1: List[str] ) -> Tuple[List[str], List[str]]: input0_int = torch.tensor([int(i) for i in INPUT0]) input1_int = torch.tensor([int(i) for i in INPUT1]) op0 = [ str(i.item()) for i in ( input0_int + input1_int if not self.swap else input0_int - input1_int ) ] op1 = [ str(i.item()) for i in ( input0_int - input1_int if not self.swap else input0_int + input1_int ) ] return op0, op1 elif ( (input_dtype == np_dtype_string) and (output0_dtype == np_dtype_string) and (output1_dtype != np_dtype_string) ): class AddSubNet(nn.Module): def __init__(self, *args): self.output0_dtype = args[0][0] self.output1_dtype = args[0][1] self.swap = args[0][2] super(AddSubNet, self).__init__() def forward( self, INPUT0: List[str], INPUT1: List[str] ) -> Tuple[List[str], torch.Tensor]: input0_int = torch.tensor([int(i) for i in INPUT0]) input1_int = torch.tensor([int(i) for i in INPUT1]) op0 = [ str(i.item()) for i in ( input0_int + input1_int if not self.swap else input0_int - input1_int ) ] op1 = ( input0_int - input1_int if not self.swap else input0_int + input1_int ).to(self.output1_dtype) return op0, op1 elif ( (input_dtype == np_dtype_string) and (output0_dtype != np_dtype_string) and (output1_dtype == np_dtype_string) ): class AddSubNet(nn.Module): def __init__(self, *args): self.output0_dtype = args[0][0] self.output1_dtype = args[0][1] self.swap = args[0][2] super(AddSubNet, self).__init__() def forward( self, INPUT0: List[str], INPUT1: List[str] ) -> Tuple[torch.Tensor, List[str]]: input0_int = torch.tensor([int(i) for i in INPUT0]) input1_int = torch.tensor([int(i) for i in INPUT1]) op0 = ( input0_int + input1_int if not self.swap else input0_int - input1_int ).to(self.output0_dtype) op1 = [ str(i.item()) for i in ( input0_int - input1_int if not self.swap else input0_int + input1_int ) ] return op0, op1 elif ( (input_dtype != np_dtype_string) and (output0_dtype == np_dtype_string) and (output1_dtype == np_dtype_string) ): class AddSubNet(nn.Module): def __init__(self, *args): self.output0_dtype = args[0][0] self.output1_dtype = args[0][1] self.swap = args[0][2] super(AddSubNet, self).__init__() def forward(self, INPUT0, INPUT1) -> Tuple[List[str], List[str]]: op0 = [ str(i.item()) for i in (INPUT0 + INPUT1 if not self.swap else INPUT0 - INPUT1) ] op1 = [ str(i.item()) for i in (INPUT0 - INPUT1 if not self.swap else INPUT0 + INPUT1) ] return op0, op1 elif ( (input_dtype != np_dtype_string) and (output0_dtype != np_dtype_string) and (output1_dtype == np_dtype_string) ): class AddSubNet(nn.Module): def __init__(self, *args): self.output0_dtype = args[0][0] self.output1_dtype = args[0][1] self.swap = args[0][2] super(AddSubNet, self).__init__() def forward(self, INPUT0, INPUT1) -> Tuple[torch.Tensor, List[str]]: op0 = (INPUT0 + INPUT1 if not self.swap else INPUT0 - INPUT1).to( self.output0_dtype ) op1 = [ str(i.item()) for i in (INPUT0 - INPUT1 if not self.swap else INPUT0 + INPUT1) ] return op0, op1 elif ( (input_dtype != np_dtype_string) and (output0_dtype == np_dtype_string) and (output1_dtype != np_dtype_string) ): class AddSubNet(nn.Module): def __init__(self, *args): self.output0_dtype = args[0][0] self.output1_dtype = args[0][1] self.swap = args[0][2] super(AddSubNet, self).__init__() def forward(self, INPUT0, INPUT1) -> Tuple[List[str], torch.Tensor]: op0 = [ str(i.item()) for i in (INPUT0 + INPUT1 if not self.swap else INPUT0 - INPUT1) ] op1 = (INPUT0 - INPUT1 if not self.swap else INPUT0 + INPUT1).to( self.output1_dtype ) return op0, op1 else: class AddSubNet(nn.Module): def __init__(self, *args): self.output0_dtype = args[0][0] self.output1_dtype = args[0][1] self.swap = args[0][2] super(AddSubNet, self).__init__() def forward(self, INPUT0, INPUT1): op0 = (INPUT0 + INPUT1 if not self.swap else INPUT0 - INPUT1).to( self.output0_dtype ) op1 = (INPUT0 - INPUT1 if not self.swap else INPUT0 + INPUT1).to( self.output1_dtype ) return op0, op1 addSubModel = AddSubNet((torch_output0_dtype, torch_output1_dtype, swap)) traced = torch.jit.script(addSubModel) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir traced.save(model_version_dir + "/model.pt") def create_libtorch_modelconfig( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ): if not tu.validate_for_libtorch_model( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, max_batch, ): return # Unpack version policy version_policy_str = "{ latest { num_versions: 1 }}" if version_policy is not None: type, val = version_policy if type == "latest": version_policy_str = "{{ latest {{ num_versions: {} }}}}".format(val) elif type == "specific": version_policy_str = "{{ specific {{ versions: {} }}}}".format(val) else: version_policy_str = "{ all { }}" # Use a different model name for the non-batching variant model_name = tu.get_model_name( "libtorch_nobatch" if max_batch == 0 else "libtorch", input_dtype, output0_dtype, output1_dtype, ) config_dir = models_dir + "/" + model_name config = """ name: "{}" platform: "pytorch_libtorch" max_batch_size: {} version_policy: {} input [ {{ name: "INPUT0" data_type: {} dims: [ {} ] }}, {{ name: "INPUT1" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT__0" data_type: {} dims: [ {} ] label_filename: "output0_labels.txt" }}, {{ name: "OUTPUT__1" data_type: {} dims: [ {} ] }} ] """.format( model_name, max_batch, version_policy_str, np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(output0_dtype), tu.shape_to_dims_str(output0_shape), np_to_model_dtype(output1_dtype), tu.shape_to_dims_str(output1_shape), ) try: os.makedirs(config_dir) except OSError as ex: pass # ignore existing dir with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) with open(config_dir + "/output0_labels.txt", "w") as lfile: for l in range(output0_label_cnt): lfile.write("label" + str(l) + "\n") def create_openvino_modelfile( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, swap=False, ): batch_dim = () if max_batch == 0 else (max_batch,) if not tu.validate_for_openvino_model( input_dtype, output0_dtype, output1_dtype, batch_dim + input_shape, batch_dim + output0_shape, batch_dim + output1_shape, ): return # Create the model model_name = tu.get_model_name( "openvino_nobatch" if max_batch == 0 else "openvino", input_dtype, output0_dtype, output1_dtype, ) model_version_dir = models_dir + "/" + model_name + "/" + str(model_version) in0 = ov.opset1.parameter( shape=batch_dim + input_shape, dtype=input_dtype, name="INPUT0" ) in1 = ov.opset1.parameter( shape=batch_dim + input_shape, dtype=input_dtype, name="INPUT1" ) r0 = ov.opset1.add(in0, in1) if not swap else ov.opset1.subtract(in0, in1) r1 = ov.opset1.subtract(in0, in1) if not swap else ov.opset1.add(in0, in1) result0 = ov.opset1.reshape(r0, batch_dim + output0_shape, special_zero=False) result1 = ov.opset1.reshape(r1, batch_dim + output1_shape, special_zero=False) op0 = ov.opset1.convert(result0, destination_type=output0_dtype, name="OUTPUT0") op1 = ov.opset1.convert(result1, destination_type=output1_dtype, name="OUTPUT1") model = ov.Model([op0, op1], [in0, in1], model_name) try: os.makedirs(model_version_dir) except OSError as ex: pass # ignore existing dir ov.serialize( model, model_version_dir + "/model.xml", model_version_dir + "/model.bin" ) def create_openvino_modelconfig( models_dir, max_batch, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ): batch_dim = () if max_batch == 0 else (max_batch,) if not tu.validate_for_openvino_model( input_dtype, output0_dtype, output1_dtype, batch_dim + input_shape, batch_dim + output0_shape, batch_dim + output1_shape, ): return # Unpack version policy version_policy_str = "{ latest { num_versions: 1 }}" if version_policy is not None: type, val = version_policy if type == "latest": version_policy_str = "{{ latest {{ num_versions: {} }}}}".format(val) elif type == "specific": version_policy_str = "{{ specific {{ versions: {} }}}}".format(val) else: version_policy_str = "{ all { }}" # Use a different model name for the non-batching variant model_name = tu.get_model_name( "openvino_nobatch" if max_batch == 0 else "openvino", input_dtype, output0_dtype, output1_dtype, ) config_dir = models_dir + "/" + model_name # platform is empty and backend is 'openvino' for openvino model config = """ name: "{}" backend: "openvino" max_batch_size: {} version_policy: {} input [ {{ name: "INPUT0" data_type: {} dims: [ {} ] }}, {{ name: "INPUT1" data_type: {} dims: [ {} ] }} ] output [ {{ name: "OUTPUT0" data_type: {} dims: [ {} ] label_filename: "output0_labels.txt" }}, {{ name: "OUTPUT1" data_type: {} dims: [ {} ] }} ] """.format( model_name, max_batch, version_policy_str, np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(input_dtype), tu.shape_to_dims_str(input_shape), np_to_model_dtype(output0_dtype), tu.shape_to_dims_str(output0_shape), np_to_model_dtype(output1_dtype), tu.shape_to_dims_str(output1_shape), ) try: os.makedirs(config_dir) except OSError as ex: pass # ignore existing dir with open(config_dir + "/config.pbtxt", "w") as cfile: cfile.write(config) with open(config_dir + "/output0_labels.txt", "w") as lfile: for l in range(output0_label_cnt): lfile.write("label" + str(l) + "\n") def create_models( models_dir, input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, output0_label_cnt, version_policy=None, ): model_version = 1 # Create two models, one that supports batching with a max-batch # of 8, and one that does not with a max-batch of 0 if FLAGS.graphdef: # max-batch 8 create_graphdef_modelconfig( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_graphdef_modelfile( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) # max-batch 0 create_graphdef_modelconfig( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_graphdef_modelfile( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) if FLAGS.savedmodel: # max-batch 8 create_savedmodel_modelconfig( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_savedmodel_modelfile( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) # max-batch 0 create_savedmodel_modelconfig( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_savedmodel_modelfile( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) if FLAGS.tensorrt: # max-batch 8 suffix = () if ( input_dtype == np.int8 or output0_dtype == np.int8 or output1_dtype == np.int8 ): suffix = (1, 1) create_plan_modelconfig( models_dir, 8, model_version, input_shape + suffix, output0_shape + suffix, output1_shape + suffix, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_plan_modelfile( models_dir, 8, model_version, input_shape + suffix, output0_shape + suffix, output1_shape + suffix, input_dtype, output0_dtype, output1_dtype, ) # max-batch 0 create_plan_modelconfig( models_dir, 0, model_version, input_shape + suffix, output0_shape + suffix, output1_shape + suffix, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_plan_modelfile( models_dir, 0, model_version, input_shape + suffix, output0_shape + suffix, output1_shape + suffix, input_dtype, output0_dtype, output1_dtype, ) if -1 in input_shape: # models for testing optimization profiles create_plan_modelconfig( models_dir, 8, model_version, input_shape + suffix, output0_shape + suffix, output1_shape + suffix, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, min_dim=4, max_dim=32, ) create_plan_modelfile( models_dir, 8, model_version, input_shape + suffix, output0_shape + suffix, output1_shape + suffix, input_dtype, output0_dtype, output1_dtype, min_dim=4, max_dim=32, ) if FLAGS.onnx: # max-batch 8 create_onnx_modelconfig( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_onnx_modelfile( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) # max-batch 0 create_onnx_modelconfig( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_onnx_modelfile( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) if FLAGS.libtorch: # max-batch 8 create_libtorch_modelconfig( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_libtorch_modelfile( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) # max-batch 0 create_libtorch_modelconfig( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_libtorch_modelfile( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) if FLAGS.openvino: # max-batch 8 create_openvino_modelconfig( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_openvino_modelfile( models_dir, 8, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) # max-batch 0 create_openvino_modelconfig( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) create_openvino_modelfile( models_dir, 0, model_version, input_shape, output0_shape, output1_shape, input_dtype, output0_dtype, output1_dtype, ) if FLAGS.ensemble: for pair in emu.platform_types_and_validation(): if not pair[1]( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, ): continue config_input_shape = input_shape config_output0_shape = output0_shape config_output1_shape = output1_shape if pair[0] == "plan": if len(input_shape) == 1 and input_dtype == np.int8: config_input_shape = (input_shape[0], 1, 1) if len(output0_shape) == 1 and output0_dtype == np.int8: config_output0_shape = (output0_shape[0], 1, 1) if len(output1_shape) == 1 and output1_dtype == np.int8: config_output1_shape = (output1_shape[0], 1, 1) # max-batch 0 emu.create_ensemble_modelconfig( pair[0], models_dir, 0, model_version, config_input_shape, config_output0_shape, config_output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) emu.create_ensemble_modelfile( pair[0], models_dir, 0, model_version, config_input_shape, config_output0_shape, config_output1_shape, input_dtype, output0_dtype, output1_dtype, ) # max-batch 8 (Skip for PyTorch models with String I/O) if (pair[0] == "libtorch") and not pair[1]( input_dtype, output0_dtype, output1_dtype, input_shape, output0_shape, output1_shape, 8, ): continue emu.create_ensemble_modelconfig( pair[0], models_dir, 8, model_version, config_input_shape, config_output0_shape, config_output1_shape, input_dtype, output0_dtype, output1_dtype, output0_label_cnt, version_policy, ) emu.create_ensemble_modelfile( pair[0], models_dir, 8, model_version, config_input_shape, config_output0_shape, config_output1_shape, input_dtype, output0_dtype, output1_dtype, ) def create_fixed_models( models_dir, input_dtype, output0_dtype, output1_dtype, version_policy=None ): input_size = 16 create_models( models_dir, input_dtype, output0_dtype, output1_dtype, (input_size,), (input_size,), (input_size,), input_size, version_policy, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--models_dir", type=str, required=True, help="Top-level model directory" ) parser.add_argument( "--graphdef", required=False, action="store_true", help="Generate GraphDef models", ) parser.add_argument( "--savedmodel", required=False, action="store_true", help="Generate SavedModel models", ) parser.add_argument( "--tensorrt", required=False, action="store_true", help="Generate TensorRT PLAN models", ) parser.add_argument( "--onnx", required=False, action="store_true", help="Generate Onnx Runtime Onnx models", ) parser.add_argument( "--onnx_opset", type=int, required=False, default=0, help="Opset used for Onnx models. Default is to use ONNXRT default", ) parser.add_argument( "--libtorch", required=False, action="store_true", help="Generate Pytorch LibTorch models", ) parser.add_argument( "--openvino", required=False, action="store_true", help="Generate Openvino models", ) parser.add_argument( "--variable", required=False, action="store_true", help="Used variable-shape tensors for input/output", ) parser.add_argument( "--ensemble", required=False, action="store_true", help="Generate ensemble models against the models" + " in all platforms. Note that the models generated" + " are not completed.", ) FLAGS, unparsed = parser.parse_known_args() if FLAGS.graphdef or FLAGS.savedmodel: import tensorflow as tf from tensorflow.python.framework import graph_io tf.compat.v1.disable_eager_execution() if FLAGS.tensorrt: import tensorrt as trt if FLAGS.onnx: import onnx if FLAGS.libtorch: import torch from torch import nn if FLAGS.openvino: import openvino.runtime as ov import test_util as tu # Tests with models that accept fixed-shape input/output tensors if not FLAGS.variable: create_fixed_models( FLAGS.models_dir, np.uint8, np.uint8, np.uint8, ("latest", 3) ) create_fixed_models(FLAGS.models_dir, np.int8, np.int8, np.int8, ("latest", 1)) create_fixed_models( FLAGS.models_dir, np.int16, np.int16, np.int16, ("latest", 2) ) create_fixed_models( FLAGS.models_dir, np.int32, np.int32, np.int32, ("all", None) ) create_fixed_models(FLAGS.models_dir, np.int64, np.int64, np.int64) create_fixed_models( FLAGS.models_dir, np.float16, np.float16, np.float16, ( "specific", [ 1, ], ), ) create_fixed_models( FLAGS.models_dir, np.float32, np.float32, np.float32, ("specific", [1, 3]) ) create_fixed_models(FLAGS.models_dir, np.float16, np.float32, np.float32) create_fixed_models(FLAGS.models_dir, np.int32, np.int8, np.int8) create_fixed_models(FLAGS.models_dir, np.int8, np.int32, np.int32) create_fixed_models(FLAGS.models_dir, np.int32, np.int8, np.int16) create_fixed_models(FLAGS.models_dir, np.float32, np.uint8, np.uint8) create_fixed_models(FLAGS.models_dir, np.uint8, np.float32, np.float32) create_fixed_models(FLAGS.models_dir, np.float32, np.uint8, np.float16) create_fixed_models(FLAGS.models_dir, np.int32, np.float32, np.float32) create_fixed_models(FLAGS.models_dir, np.float32, np.int32, np.int32) create_fixed_models(FLAGS.models_dir, np.int32, np.float16, np.int16) create_fixed_models(FLAGS.models_dir, np_dtype_string, np.int32, np.int32) create_fixed_models( FLAGS.models_dir, np_dtype_string, np_dtype_string, np_dtype_string ) create_fixed_models( FLAGS.models_dir, np_dtype_string, np.int32, np_dtype_string ) create_fixed_models( FLAGS.models_dir, np_dtype_string, np_dtype_string, np.int32 ) create_fixed_models( FLAGS.models_dir, np.int32, np_dtype_string, np_dtype_string ) create_fixed_models(FLAGS.models_dir, np.int32, np.int32, np_dtype_string) create_fixed_models(FLAGS.models_dir, np.int32, np_dtype_string, np.int32) # Make multiple versions of some models for version testing # (they use different version policies when created above) if FLAGS.graphdef: for vt in [np.float16, np.float32, np.int8, np.int16, np.int32]: create_graphdef_modelfile( FLAGS.models_dir, 8, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_graphdef_modelfile( FLAGS.models_dir, 8, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_graphdef_modelfile( FLAGS.models_dir, 0, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_graphdef_modelfile( FLAGS.models_dir, 0, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) if FLAGS.savedmodel: for vt in [np.float16, np.float32, np.int8, np.int16, np.int32]: create_savedmodel_modelfile( FLAGS.models_dir, 8, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_savedmodel_modelfile( FLAGS.models_dir, 8, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_savedmodel_modelfile( FLAGS.models_dir, 0, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_savedmodel_modelfile( FLAGS.models_dir, 0, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) if FLAGS.tensorrt: if tu.check_gpus_compute_capability(min_capability=8.0): create_fixed_models( FLAGS.models_dir, np_dtype_bfloat16, np_dtype_bfloat16, np_dtype_bfloat16, ) else: print( "Skipping the generation of TensorRT PLAN models for the BF16 datatype!" ) for vt in [np.float32, np.float16, np.int32, np.uint8]: create_plan_modelfile( FLAGS.models_dir, 8, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_plan_modelfile( FLAGS.models_dir, 8, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_plan_modelfile( FLAGS.models_dir, 0, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_plan_modelfile( FLAGS.models_dir, 0, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) vt = np.int8 # handle INT8 separately as it doesn't allow 1d tensors create_plan_modelfile( FLAGS.models_dir, 8, 2, (16, 1, 1), (16, 1, 1), (16, 1, 1), vt, vt, vt, swap=True, ) create_plan_modelfile( FLAGS.models_dir, 8, 3, (16, 1, 1), (16, 1, 1), (16, 1, 1), vt, vt, vt, swap=True, ) create_plan_modelfile( FLAGS.models_dir, 0, 2, (16, 1, 1), (16, 1, 1), (16, 1, 1), vt, vt, vt, swap=True, ) create_plan_modelfile( FLAGS.models_dir, 0, 3, (16, 1, 1), (16, 1, 1), (16, 1, 1), vt, vt, vt, swap=True, ) if FLAGS.onnx: for vt in [np.float16, np.float32, np.int8, np.int16, np.int32]: create_onnx_modelfile( FLAGS.models_dir, 8, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_onnx_modelfile( FLAGS.models_dir, 8, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_onnx_modelfile( FLAGS.models_dir, 0, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_onnx_modelfile( FLAGS.models_dir, 0, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) if FLAGS.libtorch: for vt in [np.float32, np.int32, np.int16, np.int8]: create_libtorch_modelfile( FLAGS.models_dir, 8, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_libtorch_modelfile( FLAGS.models_dir, 8, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_libtorch_modelfile( FLAGS.models_dir, 0, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_libtorch_modelfile( FLAGS.models_dir, 0, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) if FLAGS.openvino: for vt in [np.float16, np.float32, np.int8, np.int16, np.int32]: create_openvino_modelfile( FLAGS.models_dir, 8, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_openvino_modelfile( FLAGS.models_dir, 8, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_openvino_modelfile( FLAGS.models_dir, 0, 2, (16,), (16,), (16,), vt, vt, vt, swap=True ) create_openvino_modelfile( FLAGS.models_dir, 0, 3, (16,), (16,), (16,), vt, vt, vt, swap=True ) if FLAGS.ensemble: for pair in emu.platform_types_and_validation(): for vt in [np.float16, np.float32, np.int8, np.int16, np.int32]: shape = ( (16, 1, 1) if (pair[0] == "plan" and vt == np.int8) else (16,) ) if not pair[1](vt, vt, vt, shape, shape, shape): continue emu.create_ensemble_modelfile( pair[0], FLAGS.models_dir, 8, 2, shape, shape, shape, vt, vt, vt, swap=True, ) emu.create_ensemble_modelfile( pair[0], FLAGS.models_dir, 8, 3, shape, shape, shape, vt, vt, vt, swap=True, ) emu.create_ensemble_modelfile( pair[0], FLAGS.models_dir, 0, 2, shape, shape, shape, vt, vt, vt, swap=True, ) emu.create_ensemble_modelfile( pair[0], FLAGS.models_dir, 0, 3, shape, shape, shape, vt, vt, vt, swap=True, ) # Tests with models that accept variable-shape input/output tensors if FLAGS.variable: create_models( FLAGS.models_dir, np.float32, np.float32, np.float32, (-1,), (-1,), (-1,), 16, ) create_models( FLAGS.models_dir, np.float32, np.int32, np.int32, (-1, -1), (-1, -1), (-1, -1), 16, ) create_models( FLAGS.models_dir, np.float32, np.int64, np.int64, (8, -1), (8, -1), (8, -1), 32, ) create_models( FLAGS.models_dir, np.float32, np.int32, np.int64, (-1, 8, -1), (-1, 8, -1), (-1, 8, -1), 32, ) create_models( FLAGS.models_dir, np.float32, np.float32, np.int32, (-1,), (-1,), (-1,), 16 ) create_models( FLAGS.models_dir, np.int32, np.int32, np.int32, (-1, -1), (-1, -1), (-1, -1), 16, ) create_models( FLAGS.models_dir, np.int32, np.int32, np.float32, (-1, 8, -1), (-1, 8, -1), (-1, 8, -1), 32, ) create_models( FLAGS.models_dir, np_dtype_string, np_dtype_string, np_dtype_string, (-1,), (-1,), (-1,), 16, ) create_models( FLAGS.models_dir, np_dtype_string, np.int32, np.int32, (-1, -1), (-1, -1), (-1, -1), 16, ) create_models( FLAGS.models_dir, np_dtype_string, np_dtype_string, np.int32, (8, -1), (8, -1), (8, -1), 32, ) create_models( FLAGS.models_dir, np_dtype_string, np.int32, np_dtype_string, (-1, 8, -1), (-1, 8, -1), (-1, 8, -1), 32, ) if FLAGS.tensorrt: if tu.check_gpus_compute_capability(min_capability=8.0): create_models( FLAGS.models_dir, np_dtype_bfloat16, np_dtype_bfloat16, np_dtype_bfloat16, (-1, -1), (-1, -1), (-1, -1), 0, ) else: print( "Skipping the generation of TensorRT PLAN models for the BF16 datatype!" ) if FLAGS.ensemble: # Create utility models used in ensemble # nop (only creates model config, should add model file before use) model_dtypes = ["TYPE_BOOL", "TYPE_STRING"] for s in [8, 16, 32, 64]: for t in ["INT", "UINT", "FP"]: if t == "FP" and s == 8: continue model_dtypes.append("TYPE_{}{}".format(t, s)) for model_dtype in model_dtypes: # Use variable size to handle all shape. Note: piping variable size output # to fixed size model is not safe but doable for model_shape in [(-1,), (-1, -1), (-1, -1, -1)]: emu.create_nop_modelconfig(FLAGS.models_dir, model_shape, model_dtype)
triton-inference-serverREPO_NAMEserverPATH_START.@server_extracted@server-main@qa@common@gen_qa_models.py@.PATH_END.py
{ "filename": "LICENSE.md", "repo_name": "martinjameswhite/litemangle", "repo_path": "litemangle_extracted/litemangle-master/LICENSE.md", "type": "Markdown" }
The MIT License (MIT) Copyright (c) 2015 Martin White Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
martinjameswhiteREPO_NAMElitemanglePATH_START.@litemangle_extracted@litemangle-master@LICENSE.md@.PATH_END.py
{ "filename": "asciidata-checkpoint.py", "repo_name": "davidharvey1986/pyRRG", "repo_path": "pyRRG_extracted/pyRRG-master/lib/asciidata/.ipynb_checkpoints/asciidata-checkpoint.py", "type": "Python" }
""" Main class of the asciidata module @author: Martin Kuemmel, Jonas Haase @organization: Space Telescope - European Coordinating Facility (ST-ECF) @license: Gnu Public Licence @contact: mkuemmel@eso.org @since: 2005/09/13 $LastChangedBy: mkuemmel $ $LastChangedDate: 2008-01-08 18:17:08 +0100 (Tue, 08 Jan 2008) $ $LastChangedRevision: $ $HeadURL: $ """ __version__ = "Version 1.1 $LastChangedRevision: 330 $" import string, sys, os, types,copy from .asciiheader import * from .asciicolumn import * from .asciisorter import * from .asciierror import * from .asciiutils import * class NullData(object): """ Null class as a parent class for the AsciiData class This parent classs of the AsciiData class offers to create a new AsciiData instance without a file to read from. All elements are set to None, but of course can later be filled by the user. """ def __init__(self, ncols, nrows, null=None): """ Constructor for the NullData Class Creates an empty AsciiData instance with columns and rows as specified. All entries are 'None'. @param ncols: the number of columns to be created @type ncols: integer @param nrows: the number of rows to be created @type nrows: integer @param null: string to be interpretet as NULL @type null: string """ # set the default null string if null: self._null = [null.strip()] else: self._null = ['Null'] # create the colum list self.columns = [] for index in range(ncols): # get the column name colname = self._def_colname(index) # create and append an empty column self.columns.append(AsciiColumn(nrows=nrows, colname=colname, null=self._null)) def _def_colname(self, index): """ Gives the default column name. The method composes and returns the default column name for a column at a given index. @param index: the index of the column @type index: integer """ return 'column'+str(index+1) class AsciiData(NullData): """ Basic class in the AstroAsciiData project This class and its methods forms the complete API for the for the """ def __init__(self, filename=None, ncols=0, nrows=0, null=None, delimiter=None, comment_char=None, columnInfo=0, headerComment=1): """ Constructor for the AsciiData Class The data is taken from a file specified in the input. As addition, a NULL string, a delimiter string and a comment_char string can be specified. The ascii data is read in from the file and stored in a list of Columns @param filename: the filename to create the AsciiData from @type filename: string @param ncols: the number of columns to be created @type ncols: integer @param nrows: the number of rows to be created @type nrows: integer @param null: string to be interpretet as NULL @type null: string @param delimiter: string to be used as delimiter @type delimiter: string @param comment_char: string to be used as comment character @type comment: string """ self.ncols = 0 self.nrows = 0 # set the default comment_char if comment_char: self._comment_char = comment_char else: self._comment_char = '#' # set the default null string if null: self._null = [null.strip()] else: self._null = ['Null', 'NULL', 'None', '*'] # set the delimiter self._delimiter = delimiter # set the separator self._separator = Separator(delimiter) # create the header self.header = Header(filename, self._comment_char) # check whether a filename is given if filename != None: # check whether the file exists if os.path.exists(filename): self.filename = filename else: err_msg = "Filename: " + filename + " does not exist!" raise Exception(err_msg) # set public output flags if self.header.SExtractorFlag: self.columnInfo = 1 self.headerComment = 1 else: self.columnInfo = 0 self.headerComment = 1 # load in all data from the files self.columns = self._load_columns(filename, self._null, self._comment_char, self._separator) else: # set the filename to none self.filename = None # check whether valid numbers where given if nrows > 0 and ncols > 0: # create the empty instance super(AsciiData, self).__init__(ncols, nrows, null) else: err_msg = "Number of columns, rows: " \ + str(ncols) + str(nrows) + " are not reasonable!" raise Exception(err_msg) # set the public output flags # as the corresponding parameters self.columnInfo = columnInfo self.headerComment = headerComment # find the number of undefined columns self._undef_cols = self._find_undefined_cols(self.columns) # find the number of columns and rows self.ncols = len(self.columns) if self.ncols: self.nrows = self.columns[0].get_nrows() def __getitem__(self, element): """ Defines the list operator for indexing This method returns the index or indices as specified in the input. In the current class therefore returns either a column or a column slice as specified in the input. @param element: either column index or slice or name @type element: string/integer @return: a column @rtype: AsciiColumn(s) """ # this part deals with slices if type(element) == slice: # FIXME this must be possible to do more elegantly start,stop,step = element.indices(self.ncols) newAD = copy.deepcopy(self) all = list(range(self.ncols)) inclusive = [x for x in all[start:stop:step]] while all: idx = all.pop() if not idx in inclusive: del newAD[idx] return newAD # this part deals with individual # columns, specified by index or name try: index = self._loc_column(element) except ColumnError: index = self.append(element) # return the desired column return self.columns[index] def __setitem__(self, element, column): """ Defines the list operator for indexed assignement The method inserts a column to the class at the specified index. As of now, it is not possible to create extra columns with this method, only existing columns can be overwritten. @param element: either column index or name @type element: string/integer @param column: the column to assign to an index @type column: AsciiColumn """ index = self._loc_column(element) # check whether the column does have the same number # of rows as the class # raise an error if not if column.get_nrows() != self.nrows: err_msg = 'Nrows: '+str(column.get_nrows())+' different than nrows: '\ +str(self.nrows)+'!!' raise Exception(err_msg) # check whether the column has a name if not column.colname: # give it a default name column.colname = self._def_colname(index) # assign the new column self.columns[index] = column.copy() # transfer the null element to the new column self.columns[index]._null[0] = self._null[0] def __delitem__(self, element): """ Deletes an index. The method deletes a column specified in the input. The column can be specified either by the column name or the index. @param element: either column index or name @type element: string/integer """ # get the index from the input index = self._loc_column(element) # delete the column del self.columns[index] # adjust the number of columns self.ncols -= 1 def __iter__(self): """ Provide an iterator object. The function provides and returns an interator object for the AstroAsciiData class. Due to this iterator object sequences like: for column in ascii_data_object: <do something with column> are possible. """ return AsciiLenGetIter(self) def __len__(self): """ Defines a length method for the object @return: the length of the object @rtype: integer """ return self.ncols def str(self): """ Defines a string method for the object. Gives a simple string method such that str(AsciiData) does work. The formatting is close to the formatting for the output to files. @return: the string representation of the object @rtype: string """ bigstring = '' # take the object delimiter or ' ' if not self._delimiter: delim = ' ' else: delim = self._delimiter # add the header to the string bigstring = bigstring + str(self.header) # go over each row for ii in range(self.nrows): # create the string list strlist = self._row_tostring(ii) # treat the first line different if ii: # transform the listing to one string and append it # put a linefeed at the beginning bigstring = bigstring + '\n' + delim.join(strlist) else: # transform the listing to one string and append it bigstring = bigstring + delim.join(strlist) return bigstring def __str__(self): """ Defines a string method for the object. Gives a simple string method such that str(AsciiData) does work. The formatting is close to the formatting for the output to files. @return: the string representation of the object @rtype: string """ bigstring = '' # take the object delimiter or ' ' if not self._delimiter: delim = ' ' else: delim = self._delimiter # print the column information if self.columnInfo: for n, col in enumerate(self.columns): bigstring += str(col.collheader(n,self._comment_char)) # print the header if self.headerComment: bigstring += str(self.header) # go over each row for ii in range(self.nrows): # create the string list strlist = self._row_tostring(ii) # treat the first line different if ii: # transform the listing to one string and append it # put a linefeed at the beginning bigstring = bigstring + '\n' + delim.join(strlist) else: # transform the listing to one string and append it bigstring = bigstring + delim.join(strlist) # return the string return bigstring def flush(self): """ Prints the current status to the file. The methods gives the opportunity to replace the data in the AsciiData with the current version in memory. """ if self.filename != None: # well, that an easy job self.writeto(self.filename) else: raise Exception('No filename given. Use "writeto()" instead.') def writeto(self, filename, colInfo=None, headComment=None): """ Prints the AsciiData to a new file. The method prints the current status of the object to a new file. The name of the file is given in the input. An already existing file is replaced. @param filename: the filename to write the object to @type filename: string """ # check whether the parameter is set if colInfo==None: # if not, take the class variable colInfo = self.columnInfo # check whether the parameter is set if headComment == None: # if not, take the class calue headComment = self.headerComment # open the file fstream = open(filename,'w+') # open a printstream nprinter = NicePrinter(fstream, delimiter=self._delimiter) # print everything to the stream self._print_tostream(nprinter, colInfo, headComment) #close the file fstream.close() # use the given name as class filename # if no one is yet defined if self.filename == None: self.filename = filename def tofits(self): """ Transforms the AsciiData object to fits @return: pointer to the fits object @rtype: binary table HDU """ from . import asciifits # create an AsciiFits object asciiFits = asciifits.AsciiFits(self) # return the table HDU return asciiFits.tabhdu def writetofits(self, fits_name=None): """ Prints the AsciiData to a new file. @param fits_name: the name for the fits file @type fits_name: string @return: the name of the fits file @rtype: string """ from . import asciifits # check whether a file name is given if fits_name == None: # check wheter the instance has a filename if self.filename == None: # no automatic filename possible; raise error raise Exception('Please specify a name for the fits-file!') else: # determine a filename for the fits fits_name = self._get_fitsname(self.filename) # create an AsciiFits object asciiFits = asciifits.AsciiFits(self) # write out the object onto disk asciiFits.flush(fits_name) # return the name of the fits object return fits_name def writetohtml(self, html_name=None, tr_attr=None, td_attr=None): """ Prints the AsciiData object as table in a html-file @param filename: the filename to write the object to @type filename: string @param tr_attr: the attributes for the tr-tag @type tr_att: string @param td_attr: the attributes for the td-tag @type td_att: string @return: the name of the html-file @rtype: string """ # check whether a file name is given if html_name == None: # check wheter the instance has a filename if self.filename == None: # no automatic filename possible; raise error raise Exception('Please specify a name for the html-file!') else: # determine a filename for the html-file html_name = self._get_htmlname(self.filename) # determine the line start, element delimiter and the line end l_start, l_delim, l_end = self._get_lineparams(tr_attr, td_attr) # open the file fstream = open(html_name,'w+') # open a printstream nprinter = NicePrinter(fstream, delimiter=l_delim, linestart=l_start, linend=l_end) # print the data # go over each row for ii in range(self.nrows): # create the string list strlist = self._row_tostring(ii) # send the list to the printer nprinter.print_list(strlist) #close the file fstream.close() # return the filename return html_name def writetolatex(self, latex_name=None): """ Prints the AsciiData object as table in a latex-file @param filename: the filename to write the object to @type filename: string @return: the name of the latex-file @rtype: string """ # check whether a file name is given if latex_name == None: # check wheter the instance has a filename if self.filename == None: # no automatic filename possible; raise error raise Exception('Please specify a name for the latex-file!') else: # determine a filename for the latex-file latex_name = self._get_latexname(self.filename) # open the file fstream = open(latex_name,'w+') # open a printstream with the correct parameters # please note that each '\' must be protected by # another '\' to be interpreted as string nprinter = NicePrinter(fstream, delimiter='&', linend='\\\\\n') # print the data # go over each row for ii in range(self.nrows): # create the string list strlist = self._row_tostring(ii) # send the list to the printer nprinter.print_list(strlist) #close the file fstream.close() # return the filename return latex_name def info(self): """ Print class info to the screen. The method gives some basic information on the class. The output is directly written onto the screen. @return: the string representing the information @rtype: string """ # define the return string bigstring = '' # assemble the basic table information bigstring += 'File: ' + str(self.filename) +'\n' bigstring += 'Ncols: ' + str(self.ncols) + '\n' bigstring += 'Nrows: ' + str(self.nrows) + '\n' bigstring += 'Delimiter: ' + str(self._delimiter) + '\n' bigstring += 'Null value: ' + str(self._null) + '\n' bigstring += 'comment_char: ' + str(self._comment_char) + '\n' # go over each column and add # the individual column info for col in self.columns: bigstring += col.info() # return the result return bigstring def append(self, colname): """ Appends a new column to the object. This method creates and appends a new column to the object. The new column must be specified with a name. The new column doe have only Null entries. @param colname: the name of the column @type colname: string """ # check whether the column name does exist # raise a warning if yes if self.find(colname) > -1: err_msg = 'Column with name: '+colname+' does just exist!' raise Exception(err_msg) # get the index of the new column index = self.ncols # create and append the new column self.columns.append(AsciiColumn(nrows=self.nrows, colname=colname, null=self._null)) # adjust the number of columns self.ncols +=1 #return the index of the column return index def find(self, colname): """ Finds the column number for a name. The method looks through all columns of the instance for a matching column name. In case the column name exists, the column index is returned. If the column name does not exist, -1 is returned. @param colname: the name of the column @type colname: string @return: the index of the column, or -1 @rtype: integer """ for index in range(len(self.columns)): if self.columns[index].colname == colname: return index return -1 def delete(self, start, end=None): """ Deletes a row slice or element from all columns. The method deletes one or several rows from all columns. It uses the __delelte__ or __delitem__ operators in the AsciiColumn class. @param start: the starting row index @type start: integer @param end: the end row index @type end: integer """ if end: if start < self.nrows: # go over each column for col in self.columns: # delete the row del col[start: end] # adjust the number of rows self.nrows -= end-start else: # go over each column for col in self.columns: # delete the row del col[start] # adjust the number of rows self.nrows -= 1 # make a lower limit to the number of rows if self.nrows < 0: self.nrows = 0 def newcomment_char(self, comment_char): """ Define a new comment_char string @param comment_char: the new null string @type comment_char: string """ # store the new null element self._comment_char = comment_char self.header.set_comment_char(comment_char) def newnull(self, newnull): """ Define a new null string @param newnull: the new null string @type newnull: string """ # store the new null element self._null[0] = newnull # store the new null in the columns for column in self.columns: column._null[0] = newnull def newdelimiter(self, delimiter): """ Set a new delimiter string @param delimiter: the new delimiter string @type delimiter: string """ # set the new delimiter self._delimiter = delimiter # set the separator self._separator = Separator(delimiter) def insert(self, nrows, start=0): """ Inserts one or several rows The method inserts one or several rows into all columns of the class instance. The number of rows as well as the positioning of the new rows are specified in the input. The parameter 'start' gives the index which the first inserted row will have. Setting "start=-1" means appending the rows at the end of the columns @param nrows: the number of rows to add @type nrows: integer @param start: the position of the inserted rows @type start: integer """ # go over all columns for col in self.columns: # add none elements at the end for ii in range(nrows): col.add_element(None) # check whether the new rows are inserted inside # the old rows, then the elements must be moved if start < self.nrows and start != -1: # go over all columns for col in self.columns: # repeat over rows to be inserted for ii in range(self.nrows-start): # reorder the column elements index = self.nrows - ii - 1 col[index+nrows] = col[index] # repeat over rows to be inserted for ii in range(nrows): # insert None in the new rows index = ii + start col[index] = None # update the number of rows self.nrows = self.columns[0].get_nrows() def sort(self, colname, descending=0, ordered=0): """ Sorts the entries along the values in one column The method sorts all columns of the AsciiData object according to the order in one specified column. Both, sorting in ascending and descending order is possible. @param colname: the column to use for sorting @type colname: string/integer @param descending: indicates ascending (=0) or descending (=1) sorting @type descending: integer @param ordered: indicates ordered (1) or non-ordered sorting @type ordered: integer """ # initialize a temporary array sort_data = [] # transfer the data from the sort column # to the temporary array for index in range(self.nrows): sort_data.append(self[colname][index]) # create the sorting index sorter = ColumnIndex() # sort according to the data in the temporary array sorter.sort(sort_data, descending, ordered) # go over all colums for index in range(self.ncols): # reorder the data in the column according # to the sorting order self[index]._data = sorter.enindex(self[index]._data) def rstrip(self,x=None): ''' Removes trailing rows which contain the value of x null is default (and the only value which really works) syntactic sugar for _strip(-1,x) @param x: Data value in rows to strip of - defaults to Null @type x: any legal asciidata type ''' self._strip(-1,x) def lstrip(self,x=None): ''' Removes leading rows which contain the value of x null is default (and the only value which really works) syntactic sugar for _strip(0,x) @param x: Data value in rows to strip of - defaults to Null @type x: any legal asciidata type ''' self._strip(0,x) def strip(self,x=None): ''' Removes both leading and trailing rows which contain the value of x null is default (and the only value which really works) syntactic sugar for _strip @param x: Data value in rows to strip of - defaults to Null @type x: any legal asciidata type ''' self._strip(-1,x) self._strip(0,x) def toSExtractor(self): """ convenience function to set the ouput to be in SEextractor style """ self.headerComment = 1 self.columnInfo = 1 self.newcomment_char('#') self.newdelimiter(' ') def toplain(self): """ convenience procedure to toggle to plain ACSII output delimiters are not changed """ self.headerComment = 1 self.columnInfo = 0 def _get_fitsname(self, filename): """ Determines the fitsname for a given file name @param filename: the input filename @type filename: string @return: the name of the fits file @rtype: string """ # search for the extension dot_pos = filename.rfind('.') # if an extension exists if dot_pos > -1: # replace the old extension with '.fits' fits_name = filename[:dot_pos] + '.fits' else: # append the extension '.fits' fits_name = filename + '.fits' # return the fits name return fits_name def _get_htmlname(self, filename): """ Determines the html name for a given file name @param filename: the input filename @type filename: string @return: the name for the html file @rtype: string """ # search for the extension dot_pos = filename.rfind('.') # if an extension exists if dot_pos > -1: # replace the old extension with '.html' html_name = filename[:dot_pos] + '.html' else: # append the extension '.html' html_name = filename + '.html' # return the html name return html_name def _get_latexname(self, filename): """ Determines the latex filename for a given file name @param filename: the input filename @type filename: string @return: the name for the latex file @rtype: string """ # search for the extension dot_pos = filename.rfind('.') # if an extension exists if dot_pos > -1: # replace the old extension with '.html' latex_name = filename[:dot_pos] + '.tex' else: # append the extension '.html' latex_name = filename + '.tex' # return the html name return latex_name def _get_lineparams(self, tr_attr=None, td_attr=None): """ Prints the AsciiData object as table in html-file @param tr_attr: attributes for the tr-tag @type tr_attr: string @param td_attr: attributes for the td-tag @type td_attr: string @return: the html-table linestart, delimiter and lineend @rtype: string, string, string """ # form the string for the tr-attributes if tr_attr == None: str_tr_add = '' else: str_tr_add = ' ' + tr_attr # form the string for the td-attributes if td_attr == None: str_td_add = '' else: str_td_add = ' ' + td_attr # compose linestart, delimiter and lineend lstart = '<tr'+str_tr_add+'><td'+str_td_add+'>' delim = '</td><td'+str_td_add+'>' lend = '</td></tr>\n' # return linestart, delimiter, lineend return lstart, delim, lend def _loc_column(self, element): """ Localizes a column The method localizes the column from any possible input. Possible input is either the column name or column index. Basic checks are done whether the column exists. @param element: either column index or name @type element: string/integer @return: the column index @rtype: integer """ # create an element elem = Element(element) # check the types and derive the column index if elem.get_type() == int: # check for -1, which indicates the last column if element == -1: # set the index of the last column index = self.ncols-1 else: # set the index to the input index index = element elif elem.get_type() == bytes: index = self.find(element) # check whether the column index exists # raise an error if not if index > self.ncols-1: err_msg = 'Index: '+str(index)+' is larger than ncols: ' +str(self.ncols)+'!!' raise Exception(err_msg) elif index < 0: raise ColumnError('Column name: "'+element+'" does not exist!') # return the index return index def _load_columns(self, filename, null, comment_char, separator): """ Transforms the content of a file into columns Opens the file, defines the columns, adds all data rows, and returns the columns. @param filename: the filename to create the AsciiData from @type filename: string @param null: string to be interpreted as NULL @type null: string @param separator: string to be used as delimiter @type separator: string @param comment_char: string to be used as comment character @type comment_char: string @return: the columns loaded @rtype: [AsciiColumn] """ undef_cols = [] collist = [] # open the file, and parse through all rows for line in open(filename, 'r'): # throw away trailing and leading whitespaces str_line = line.strip() if len(str_line) < 1 or str_line[0] == comment_char: continue # if collumns exist, add a row if collist: self._add_row(collist, line, null, separator) # if columns do not exist, define them else: collist = self._define_cols(line, null, separator) # return the column list return collist def _find_undefined_cols(self, collist): """ Finds undefined columns The method finds undefined columns in a column list. An undefined column is a column with the flag "self._defined" not set. This means that column type and column format are not specified, and the column elements are Null. The indices of the undefined columns is returned as a list @param collist: the list of existing columns @type collist: list of AsciiColumns @return: a list with the indices of undefined columns @rtype: [integer] """ undefined = [] # go over each column index=0 for col in collist: # check whether the column is defined # append the index to the list if not if not col.get_defined(): undefined.append(index) # increment the index index = index+1 # return the list return undefined def _add_row(self, collist, line, null, separator): """ Adds a line from the file to the column list. The method gets a line from the input file. The line is split up into its items. Then each item is added to the column it belongs to. Items matching the NULL string are added as "None". A delimiter is taken into account in the splitting, if specified. @param collist: the list of existing columns @type collist: list of AsciiColumns @param line: the line to be added to the columns @type line: string @param null: string to be interpretet as NULL @type null: string @param separator: string to be used as delimiter @type separator: string """ # split the line, either according toa whitespace, # or according to a specified delimiter items = separator.separate(line) # check whether there is an item for each column if len(collist) != len(items): err_msg = "Number of columns does not fit to number of items in " + line raise Exception(err_msg) # go over each item index = 0 for item in items: # check whether the item is NULL. # add the item to the column, # using 'None' for NULL items if null.count(item.strip) > 0: collist[index].add_element(None) else: collist[index].add_element(item) # increment the index index += 1 def _define_cols(self, line, null, separator): """ Defines the columns from an input line. The method splits an ascii line from the input file into its items. For each item a new column is created and added to a column list. The column list is finally returned. @param line: the line to be added to the columns @type line: string @param null: string to be interpretet as NULL @type null: string @param separator: string to be used as delimiter @type separator: string @return: the columns created @rtype: [AsciiColumn] """ collist = [] # split the line, either according toa whitespace, # or according to a specified delimiter items = separator.separate(line) # go over each item, and create a column # for each. NULL items are transformed to 'None' index = 0 for item in items: # set the default column unit and comment colunit = '' colcomment = '' # check whether there is column # information from the header if self.header.SExtractorFlag: # extract the header information colname,colunit,colcomment = self.header.getCollInfo(index) else: # make the default column name colname = self._def_colname(index) # check whether the element is a NULL-value if null.count(item.strip()) > 0: # append an undefined column collist.append(AsciiColumn(element=[None], colname=colname, null=null)) else: # append a defined column collist.append(AsciiColumn(element=[item], colname=colname, null=null)) # transfer the resto of the column information if colunit: collist[-1].set_unit(colunit) if colcomment: collist[-1].set_colcomment(colcomment) # increment the index index += 1 # return the column list return collist def _print_tostream(self, nprinter, colInfo, headComment): """ Prints the AsciiData to a stream The method forms for each row in the AsciiData a list with formated strings, each list element representing one element. The list is sent to a printing stream which is responsible for the output. @param nprinter: the NicePrinter object with the stream @type nprinter: NicePrinter """ # print the column information if colInfo: for n, col in enumerate(self.columns): nprinter.print_string(col.collheader(n,self._comment_char)) # print the header if headComment: nprinter.print_string(str(self.header)) # print the data # go over each row for ii in range(self.nrows): # create the string list strlist = self._row_tostring(ii) # send the list to the printer nprinter.print_list(strlist) def _row_tostring(self, index): """ Creates the formatted string list for one row. The method extracts from each column the formatted string representation of the element in a specified row. The list of strings is returned. @param index: @type index: integer @return: the list with formatted strings @rtype: [string] """ # initialize the list strlist = [] # go over each column for jj in range(self.ncols): # append the string of the requested # element to the list strlist.append(self.columns[jj].fprint_elem(index)) # return the list return strlist def _strip(self,rowindex, x=None): ''' Removes rows which contain the value of x null is default (and the only value which really works) @param rowindex: select if it is lstrip (0) or rstrip (-1) @type rowindex: int ''' while self.nrows>0: equal = True for col in self.columns: equal = equal and (col[rowindex] == x) if equal: self.delete(rowindex) else: break
davidharvey1986REPO_NAMEpyRRGPATH_START.@pyRRG_extracted@pyRRG-master@lib@asciidata@.ipynb_checkpoints@asciidata-checkpoint.py@.PATH_END.py
{ "filename": "parameters_f2_image.py", "repo_name": "GeminiDRSoftware/DRAGONS", "repo_path": "DRAGONS_extracted/DRAGONS-master/geminidr/f2/parameters_f2_image.py", "type": "Python" }
# This parameter file contains the parameters related to the primitives located # in the primitives_f2.py file, in alphabetical order. from gempy.library import config from astrodata import AstroData from geminidr.core import parameters_photometry, parameters_stack, parameters_nearIR class addDQConfig(parameters_nearIR.addDQConfig): def setDefaults(self): self.add_illum_mask = True class detectSourcesConfig(parameters_photometry.detectSourcesConfig): def setDefaults(self): self.mask = True #class makeLampFlatConfig(parameters_nearIR.makeLampFlatConfig): # dark = config.Field("Name of dark frame (for K-band flats)", (str, AstroData), None, optional=True) class makeBPMConfig(parameters_nearIR.makeBPMConfig): def setDefaults(self): self.dark_lo_thresh = -150. self.dark_hi_thresh = 650. self.flat_lo_thresh = 0.68 self.flat_hi_thresh = 1.28
GeminiDRSoftwareREPO_NAMEDRAGONSPATH_START.@DRAGONS_extracted@DRAGONS-master@geminidr@f2@parameters_f2_image.py@.PATH_END.py
{ "filename": "Obiwan_fibflux.ipynb", "repo_name": "desihub/LSS", "repo_path": "LSS_extracted/LSS-main/Sandbox/Obiwan_fibflux.ipynb", "type": "Jupyter Notebook" }
```python import fitsio import numpy as np from matplotlib import pyplot as plt ``` ```python params = {'legend.fontsize': 'x-large', 'axes.labelsize': 'x-large', 'axes.titlesize':'x-large', 'xtick.labelsize':'x-large', 'ytick.labelsize':'x-large', 'figure.facecolor':'w'} plt.rcParams.update(params) ``` ```python fs = fitsio.read('/global/cscratch1/sd/adematti/legacysim/dr9/ebv1000shaper/south/file0_rs0_skip0/merged/matched_input.fits') #obiwan outputs in DECaLS ``` ```python seld = fs['flux_g']*0 == 0 #select detected seld &= fs['flux_g'] > 0.2 #also select within this relevant gflux range seld &= fs['flux_g'] < 2 ``` ```python fsd = fs[seld] ``` ```python a = plt.hist(fsd['fiberflux_g']/fsd['flux_g'],bins=30) plt.xlabel('output fiberflux_g/flux_g') plt.ylabel('# in bin') plt.title('Obiwan outputs with 0.2 < flux_g < 2') plt.show() ``` ![png](output_5_0.png) The spike is for type PSF, take a look at what the histograms look like by type: ```python for tp in np.unique(fsd['type']): wt = fsd['type'] == tp if tp != 'PSF': plt.hist(fsd[wt]['fiberflux_g']/fsd[wt]['flux_g'],bins=a[1],density=True,label=tp,histtype='step',linewidth=3) plt.legend(loc='upper left') plt.xlabel('output fiberflux_g/flux_g') plt.ylabel('relative fraction in bin') plt.title('Obiwan outputs with 0.2 < flux_g < 2') plt.show() ``` ![png](output_7_0.png) Generally, this makes sense. The more complex the type, the more extended it is and the smaller the fraction of within the fiber. What happens if we now look at the recovered fiberflux vs input? ```python b = plt.hist(fsd['fiberflux_g']/fsd['input_flux_g'],bins=30,range=(0,1.5)) plt.xlabel('output fiberflux_g / input flux_g') plt.ylabel('# in bin') plt.title('Obiwan outputs with 0.2 < flux_g < 2') plt.show() ``` ![png](output_9_0.png) ```python for tp in np.unique(fsd['type']): wt = fsd['type'] == tp #if tp != 'PSF': plt.hist(fsd[wt]['fiberflux_g']/fsd[wt]['input_flux_g'],bins=b[1],density=True,label=tp,histtype='step',linewidth=3) plt.legend(loc='upper left') plt.xlabel('output fiberflux_g / input flux_g') plt.ylabel('relative fraction in bin') plt.title('Obiwan outputs with 0.2 < flux_g < 2') plt.show() ``` ![png](output_10_0.png) ```python a = plt.hist(fsd['input_galdepth_g'],range=(200,3000)) b = plt.hist(fsd['input_galdepth_g'],weights=fsd['fiberflux_g']/fsd['input_flux_g'],bins=a[1]) c = plt.hist(fsd['input_galdepth_g'],weights=fsd['flux_g']/fsd['input_flux_g'],bins=a[1]) plt.clf() plt.plot(a[1][:-1],b[0]/a[0],label='fiberflux_g / input_flux_g') plt.plot(a[1][:-1],c[0]/a[0]*.56,label='0.56 x flux_g / input_flux_g') plt.legend() plt.xlabel('galdepth_g') plt.ylabel('ratio to input flux') plt.title('Obiwan outputs with 0.2 < flux_g < 2') plt.grid(alpha=0.5) plt.show() ``` ![png](output_11_0.png) ```python ```
desihubREPO_NAMELSSPATH_START.@LSS_extracted@LSS-main@Sandbox@Obiwan_fibflux.ipynb@.PATH_END.py
{ "filename": "test_peakfinder.py", "repo_name": "astropy/photutils", "repo_path": "photutils_extracted/photutils-main/photutils/detection/tests/test_peakfinder.py", "type": "Python" }
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for the peakfinder module. """ import astropy.units as u import numpy as np import pytest from astropy.tests.helper import assert_quantity_allclose from numpy.testing import assert_array_equal, assert_equal from photutils.centroids import centroid_com from photutils.datasets import make_gwcs, make_wcs from photutils.detection import find_peaks from photutils.utils._optional_deps import HAS_GWCS from photutils.utils.exceptions import NoDetectionsWarning class TestFindPeaks: def test_box_size(self, data): """ Test with box_size. """ tbl = find_peaks(data, 0.1, box_size=3) assert tbl['id'][0] == 1 assert len(tbl) == 25 columns = ['id', 'x_peak', 'y_peak', 'peak_value'] assert all(column in tbl.colnames for column in columns) assert np.min(tbl['x_peak']) > 0 assert np.max(tbl['x_peak']) < 101 assert np.min(tbl['y_peak']) > 0 assert np.max(tbl['y_peak']) < 101 assert np.max(tbl['peak_value']) < 13.2 # test with units unit = u.Jy tbl2 = find_peaks(data << unit, 0.1 << unit, box_size=3) columns = ['id', 'x_peak', 'y_peak'] for column in columns: assert_equal(tbl[column], tbl2[column]) col = 'peak_value' assert tbl2[col].unit == unit assert_equal(tbl[col], tbl2[col].value) def test_footprint(self, data): """ Test with footprint. """ tbl0 = find_peaks(data, 0.1, box_size=3) tbl1 = find_peaks(data, 0.1, footprint=np.ones((3, 3))) assert_array_equal(tbl0, tbl1) def test_mask(self, data): """ Test with mask. """ mask = np.zeros(data.shape, dtype=bool) mask[0:50, :] = True tbl0 = find_peaks(data, 0.1, box_size=3) tbl1 = find_peaks(data, 0.1, box_size=3, mask=mask) assert len(tbl1) < len(tbl0) def test_maskshape(self, data): """ Test if make shape doesn't match data shape. """ match = 'data and mask must have the same shape' with pytest.raises(ValueError, match=match): find_peaks(data, 0.1, mask=np.ones((5, 5))) def test_thresholdshape(self, data): """ Test if threshold shape doesn't match data shape. """ match = 'threshold array must have the same shape as the input data' with pytest.raises(ValueError, match=match): find_peaks(data, np.ones((2, 2))) def test_npeaks(self, data): """ Test npeaks. """ tbl = find_peaks(data, 0.1, box_size=3, npeaks=1) assert len(tbl) == 1 def test_border_width(self, data): """ Test border exclusion. """ tbl0 = find_peaks(data, 0.1, box_size=3) tbl1 = find_peaks(data, 0.1, box_size=3, border_width=0) tbl2 = find_peaks(data, 0.1, box_size=3, border_width=(0, 0)) assert len(tbl0) == len(tbl1) assert len(tbl1) == len(tbl2) tbl3 = find_peaks(data, 0.1, box_size=3, border_width=25) tbl4 = find_peaks(data, 0.1, box_size=3, border_width=(25, 25)) assert len(tbl3) == len(tbl4) assert len(tbl3) < len(tbl0) tbl0 = find_peaks(data, 0.1, box_size=3, border_width=(34, 0)) tbl1 = find_peaks(data, 0.1, box_size=3, border_width=(0, 36)) assert np.min(tbl0['y_peak']) >= 34 assert np.min(tbl1['x_peak']) >= 36 match = 'border_width must be >= 0' with pytest.raises(ValueError, match=match): find_peaks(data, 0.1, box_size=3, border_width=-1) match = 'border_width must have integer values' with pytest.raises(ValueError, match=match): find_peaks(data, 0.1, box_size=3, border_width=3.1) def test_box_size_int(self, data): """ Test non-integer box_size. """ tbl1 = find_peaks(data, 0.1, box_size=5.0) tbl2 = find_peaks(data, 0.1, box_size=5.5) assert_array_equal(tbl1, tbl2) def test_centroid_func_callable(self, data): """ Test that centroid_func is callable. """ match = 'centroid_func must be a callable object' with pytest.raises(TypeError, match=match): find_peaks(data, 0.1, box_size=2, centroid_func=True) def test_wcs(self, data): """ Test with astropy WCS. """ columns = ['skycoord_peak', 'skycoord_centroid'] fits_wcs = make_wcs(data.shape) tbl = find_peaks(data, 1, wcs=fits_wcs, centroid_func=centroid_com) for column in columns: assert column in tbl.colnames assert tbl.colnames == ['id', 'x_peak', 'y_peak', 'skycoord_peak', 'peak_value', 'x_centroid', 'y_centroid', 'skycoord_centroid'] @pytest.mark.skipif(not HAS_GWCS, reason='gwcs is required') def test_gwcs(self, data): """ Test with gwcs. """ columns = ['skycoord_peak', 'skycoord_centroid'] gwcs_obj = make_gwcs(data.shape) tbl = find_peaks(data, 1, wcs=gwcs_obj, centroid_func=centroid_com) for column in columns: assert column in tbl.colnames @pytest.mark.skipif(not HAS_GWCS, reason='gwcs is required') def test_wcs_values(self, data): fits_wcs = make_wcs(data.shape) gwcs_obj = make_gwcs(data.shape) tbl1 = find_peaks(data, 1, wcs=fits_wcs, centroid_func=centroid_com) tbl2 = find_peaks(data, 1, wcs=gwcs_obj, centroid_func=centroid_com) columns = ['skycoord_peak', 'skycoord_centroid'] for column in columns: assert_quantity_allclose(tbl1[column].ra, tbl2[column].ra) assert_quantity_allclose(tbl1[column].dec, tbl2[column].dec) def test_constant_array(self): """ Test for empty output table when data is constant. """ data = np.ones((10, 10)) match = 'Input data is constant' with pytest.warns(NoDetectionsWarning, match=match): tbl = find_peaks(data, 0.0) assert tbl is None def test_no_peaks(self, data): """ Tests for when no peaks are found. """ fits_wcs = make_wcs(data.shape) match = 'No local peaks were found' with pytest.warns(NoDetectionsWarning, match=match): tbl = find_peaks(data, 10000) assert tbl is None with pytest.warns(NoDetectionsWarning, match=match): tbl = find_peaks(data, 100000, centroid_func=centroid_com) assert tbl is None with pytest.warns(NoDetectionsWarning, match=match): tbl = find_peaks(data, 100000, wcs=fits_wcs) assert tbl is None with pytest.warns(NoDetectionsWarning, match=match): tbl = find_peaks(data, 100000, wcs=fits_wcs, centroid_func=centroid_com) assert tbl is None def test_data_nans(self, data): """ Test that data with NaNs does not issue Runtime warning. """ data = np.copy(data) data[50:, :] = np.nan find_peaks(data, 0.1)
astropyREPO_NAMEphotutilsPATH_START.@photutils_extracted@photutils-main@photutils@detection@tests@test_peakfinder.py@.PATH_END.py
{ "filename": "_title.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/histogram2dcontour/colorbar/_title.py", "type": "Python" }
import _plotly_utils.basevalidators class TitleValidator(_plotly_utils.basevalidators.TitleValidator): def __init__( self, plotly_name="title", parent_name="histogram2dcontour.colorbar", **kwargs ): super(TitleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Title"), data_docs=kwargs.pop( "data_docs", """ font Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. side Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". Note that the title's location used to be set by the now deprecated `titleside` attribute. text Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. """, ), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@histogram2dcontour@colorbar@_title.py@.PATH_END.py
{ "filename": "act_dr6_lenslike.py", "repo_name": "ACTCollaboration/act_dr6_lenslike", "repo_path": "act_dr6_lenslike_extracted/act_dr6_lenslike-main/act_dr6_lenslike/act_dr6_lenslike.py", "type": "Python" }
import numpy as np import warnings from scipy.interpolate import interp1d try: from cobaya.likelihoods.base_classes import InstallableLikelihood except: InstallableLikelihood = object import os default_version = "v1.2" variants =[x.strip() for x in ''' act_baseline, act_extended, actplanck_baseline, actplanck_extended, act_polonly, act_cibdeproj, act_cinpaint '''.strip().replace('\n','').split(',')] # ================ # HELPER FUNCTIONS # ================ def download(url, filename): # thanks to https://stackoverflow.com/a/63831344 # this function can be considered CC-BY-SA 4.0 import functools import pathlib import shutil import requests from tqdm.auto import tqdm r = requests.get(url, stream=True, allow_redirects=True) if r.status_code != 200: r.raise_for_status() # Will only raise for 4xx codes, so... raise RuntimeError(f"Request to {url} returned status code {r.status_code}") file_size = int(r.headers.get('Content-Length', 0)) path = pathlib.Path(filename).expanduser().resolve() path.parent.mkdir(parents=True, exist_ok=True) desc = "(Unknown total file size)" if file_size == 0 else "" r.raw.read = functools.partial(r.raw.read, decode_content=True) # Decompress if needed with tqdm.wrapattr(r.raw, "read", total=file_size, desc=desc) as r_raw: with path.open("wb") as f: shutil.copyfileobj(r_raw, f) return path def get_data(data_url="https://lambda.gsfc.nasa.gov/data/suborbital/ACT/ACT_dr6/likelihood/data/", data_filename_root="ACT_dr6_likelihood",version=None): if version is None: version = default_version data_filename = f"f{data_filename_root}_{version}.tgz" file_dir = os.path.abspath(os.path.dirname(__file__)) data_dir = f"{file_dir}/data/{version}/" if os.path.exists(os.path.join(file_dir, data_dir)): print('Data already exists at {}, not downloading again.'.format(os.path.join(file_dir, data_dir))) else: import tarfile orig_cwd = os.getcwd() os.mkdir(os.path.join(file_dir, data_dir)) os.chdir(os.path.join(file_dir, data_dir)) print('Downloading data {} and placing it in likelihood folder.'.format(data_filename)) download(data_url+data_filename, data_filename) tar = tarfile.open(data_filename) tar.extractall(path=os.path.join(file_dir, data_dir).rstrip(f'{version}/')) # this is not great tar.close() os.remove(data_filename) os.chdir(orig_cwd) def pp_to_kk(clpp,ell): return clpp * (ell*(ell+1.))**2. / 4. def get_corrected_clkk(data_dict,clkk,cltt,clte,clee,clbb,suff='', do_norm_corr=True, do_N1kk_corr=True, do_N1cmb_corr=True, act_calib=False, no_like_cmb_corrections=False): if no_like_cmb_corrections: do_norm_corr = False do_N1cmb_corr = False clkk_fid = data_dict['fiducial_cl_kk'] cl_dict = {'tt':cltt,'te':clte,'ee':clee,'bb':clbb} if do_N1kk_corr: N1_kk_corr = data_dict[f'dN1_kk{suff}'] @ (clkk-clkk_fid) else: N1_kk_corr = 0 dNorm = data_dict[f'dAL_dC{suff}'] fid_norm = data_dict[f'fAL{suff}'] N1_cmb_corr = 0. norm_corr = 0. if act_calib and not('planck' in suff): ocl = cl_dict['tt'] fcl = data_dict[f'fiducial_cl_tt'] ols = np.arange(ocl.size) cal_ell_min = 1000 cal_ell_max = 2000 sel = np.s_[np.logical_and(ols>cal_ell_min,ols<cal_ell_max)] cal_fact = (ocl[sel]/fcl[sel]).mean() else: cal_fact = 1.0 for i,s in enumerate(['tt','ee','bb','te']): icl = cl_dict[s] cldiff = ((icl/cal_fact)-data_dict[f'fiducial_cl_{s}']) if do_N1cmb_corr: N1_cmb_corr = N1_cmb_corr + (data_dict[f'dN1_{s}{suff}']@cldiff) if do_norm_corr: c = - 2. * (dNorm[i] @ cldiff) if i==0: ls = np.arange(c.size) c[ls>=2] = c[ls>=2] / fid_norm[ls>=2] norm_corr = norm_corr + c nclkk = clkk + norm_corr*clkk_fid + N1_kk_corr + N1_cmb_corr return nclkk def standardize(ls,cls,trim_lmax,lbuffer=2,extra_dims="y"): cstart = int(ls[0]) diffs = np.diff(ls) if not(np.all(np.isclose(diffs,1.))): raise ValueError("Multipoles are not spaced by 1") if not(cstart<=2): raise ValueError("Multipoles start at value greater than 2") nlen = trim_lmax+lbuffer cend = nlen - cstart if extra_dims=="xyy": out = np.zeros((cls.shape[0],nlen,nlen)) out[:,cstart:,cstart:] = cls[:,:cend,:cend] elif extra_dims=="yy": out = np.zeros((nlen,nlen)) out[cstart:,cstart:] = cls[:cend,:cend] elif extra_dims=="xy": out = np.zeros((cls.shape[0],nlen)) out[:,cstart:] = cls[:,:cend] elif extra_dims=="y": out = np.zeros(nlen) out[cstart:] = cls[:cend] else: raise ValueError return out def get_limber_clkk_flat_universe(results,Pfunc,lmax,kmax,nz,zsrc=None): # Adapting code from Antony Lewis' CAMB notebook if zsrc is None: chistar = results.conformal_time(0)- results.tau_maxvis else: chistar = results.comoving_radial_distance(zsrc) chis = np.linspace(0,chistar,nz) zs=results.redshift_at_comoving_radial_distance(chis) dchis = (chis[2:]-chis[:-2])/2 chis = chis[1:-1] zs = zs[1:-1] #Get lensing window function (flat universe) win = ((chistar-chis)/(chis**2*chistar))**2 #Do integral over chi ls = np.arange(0,lmax+2, dtype=np.float64) cl_kappa=np.zeros(ls.shape) w = np.ones(chis.shape) #this is just used to set to zero k values out of range of interpolation for i, l in enumerate(ls[2:]): k=(l+0.5)/chis w[:]=1 w[k<1e-4]=0 w[k>=kmax]=0 cl_kappa[i+2] = np.dot(dchis, w*Pfunc.P(zs, k, grid=False)*win/k**4) cl_kappa*= (ls*(ls+1))**2 return cl_kappa def get_camb_lens_obj(nz,kmax,zmax=None): import camb pars = camb.CAMBparams() # This cosmology is purely to go from chis->zs for limber integration; # the details do not matter pars.set_cosmology(H0=67.5, ombh2=0.022, omch2=0.122) pars.InitPower.set_params(ns=0.965) results= camb.get_background(pars) nz = nz if zmax is None: chistar = results.conformal_time(0)- results.tau_maxvis else: chistar = results.comoving_radial_distance(zmax) chis = np.linspace(0,chistar,nz) zs=results.redshift_at_comoving_radial_distance(chis) cobj = {"CAMBdata": None, "Pk_interpolator": { "z": zs, "k_max": kmax, "nonlinear": True, "vars_pairs": ([["Weyl", "Weyl"]])}} return cobj def parse_variant(variant): variant = variant.lower().strip() if variant not in variants: raise ValueError v = None if '_extended' in variant: baseline = False else: baseline = True if '_baseline' not in variant: v = variant.split('_')[-1] include_planck = True if 'actplanck' in variant else False return v,baseline,include_planck # ================== # Generic likelihood # ================== """ data_dict = load_data(data_directory) # pre-load data # for each predicted spectra in chain # cl_kk is CMB lensing convergence power spectrum (dimensionless, # no ell or 2pi factors) # cl_tt, cl_ee, cl_te, cl_bb are lensed CMB power spectra # (muK^2 units, no ell or 2pi factors) lnlike = generic_lnlike(data_dict,cl_kk,cl_tt,cl_ee,cl_te,cl_bb) This returns ln(Likelihood) so for example, chi_square = -2 lnlike """ def load_data(variant, ddir=None, lens_only=False, apply_hartlap=True,like_corrections=True,mock=False, nsims_act=796,nsims_planck=400,trim_lmax=2998,scale_cov=None, version=None, act_cmb_rescale=False, act_calib=False): """ Given a data directory path, this function loads into a dictionary the data products necessary for evaluating the DR6 lensing likelihood. This includes: 1. the ACT lensing bandpowers. Planck lensing bandpowers will be appended if include_planck is True. 2. the associated binning matrix to be applied to a theory curve 3. the associated covariance matrix 4. data products associated with applying likelihood corrections All these products will be standardized so that they apply to theory curves specified from L=0 to trim_lmax. A Hartlap correction will be applied to the covariance matrix corresponding to the lower of the number of simulations involved. """ # TODO: review defaults if version is None: version = default_version if ddir is None: file_dir = os.path.abspath(os.path.dirname(__file__)) ddir = f"{file_dir}/data/{version}/" if not os.path.exists(ddir): raise FileNotFoundError("Requested data directory {} does not exist.\ Please place the data there. Default data can \ be downloaded to the default location \ with the act_dr6_lenslike.get_data() function.".format(ddir)) print(f"Loading ACT DR6 lensing likelihood {version}...") v,baseline,include_planck = parse_variant(variant) if include_planck and act_cmb_rescale: raise ValueError # output data d = {} if lens_only and like_corrections: raise ValueError("Likelihood corrections should not be used in lens_only runs.") if not(lens_only) and not(like_corrections): warnings.warn("Neither using CMB-marginalized covariance matrix nor including likelihood corrections. Effective covariance may be underestimated.") d['include_planck'] = include_planck d['likelihood_corrections'] = like_corrections # Fiducial spectra if like_corrections: f_ls, f_tt, f_ee, f_bb, f_te = np.loadtxt(f"{ddir}/like_corrs/cosmo2017_10K_acc3_lensedCls.dat",unpack=True) f_tt = f_tt / (f_ls * (f_ls+1.)) * 2. * np.pi f_ee = f_ee / (f_ls * (f_ls+1.)) * 2. * np.pi f_bb = f_bb / (f_ls * (f_ls+1.)) * 2. * np.pi f_te = f_te / (f_ls * (f_ls+1.)) * 2. * np.pi fd_ls, f_dd = np.loadtxt(f"{ddir}/like_corrs/cosmo2017_10K_acc3_lenspotentialCls.dat",unpack=True,usecols=[0,5]) f_kk = f_dd * 2. * np.pi / 4. d['fiducial_cl_tt'] = standardize(f_ls,f_tt,trim_lmax) d['fiducial_cl_te'] = standardize(f_ls,f_te,trim_lmax) d['fiducial_cl_ee'] = standardize(f_ls,f_ee,trim_lmax) d['fiducial_cl_bb'] = standardize(f_ls,f_bb,trim_lmax) d['fiducial_cl_kk'] = standardize(fd_ls,f_kk,trim_lmax) # Return data bandpowers, covariance matrix and binning matrix if baseline: start = 2 end = -6 else: start = 2 end = -3 if v is None: y = np.loadtxt(f'{ddir}/clkk_bandpowers_act.txt') elif v=='cinpaint': y = np.loadtxt(f'{ddir}/clkk_bandpowers_act_cinpaint.txt') elif v=='polonly': y = np.loadtxt(f'{ddir}/clkk_bandpowers_act_polonly.txt') elif v=='cibdeproj': y = np.loadtxt(f'{ddir}/clkk_bandpowers_act_cibdeproj.txt') nbins_tot_act = y.size d['full_data_binned_clkk_act'] = y.copy() data_act = y[start:end].copy() d['data_binned_clkk'] = data_act nbins_act = data_act.size binmat = np.loadtxt(f'{ddir}/binning_matrix_act.txt') d['full_binmat_act'] = binmat.copy() pells = np.arange(binmat.shape[1]) bcents = binmat@pells ls = np.arange(binmat.shape[1]) d['binmat_act'] = standardize(ls,binmat[start:end,:],trim_lmax,extra_dims="xy") d['bcents_act'] = bcents[start:end].copy() if act_cmb_rescale: # load A_L_fid / A_L_ACT and standardize it r = np.loadtxt("ratio_fid_over_act_wmap.txt") rls = np.arange(r.size) r[rls<2] = 0 rs = standardize(rls,r,trim_lmax) # bin it rb = d['binmat_act'] @ rs # correct data print("Binned ACT rescaling corrections: ", rb) d['data_binned_clkk'] = d['data_binned_clkk'] / rb**2 if lens_only: if act_cmb_rescale: raise ValueError if act_calib: raise ValueError if include_planck: if v not in [None,'cinpaint']: raise ValueError(f"Combination of {v} with Planck is not available") fcov = np.loadtxt(f'{ddir}/covmat_actplanck_cmbmarg.txt') else: if v=='cibdeproj': fcov = np.loadtxt(f"{ddir}/covmat_act_cibdeproj_cmbmarg.txt") elif v=='pol': fcov = np.loadtxt(f"{ddir}/covmat_act_polonly_cmbmarg.txt") else: fcov = np.loadtxt(f"{ddir}/covmat_act_cmbmarg.txt") else: if v not in [None,'cinpaint']: raise ValueError(f"Covmat for {v} without CMB marginalization is not available") if include_planck: fcov = np.loadtxt(f'{ddir}/covmat_actplanck.txt') else: fcov = np.loadtxt(f'{ddir}/covmat_act.txt') d['full_act_cov'] = fcov.copy() # Remove trailing bins from ACT part sel = np.s_[nbins_tot_act+end:nbins_tot_act] cov = np.delete(np.delete(fcov,sel,0),sel,1) # Remove leading bins from ACT part sel = np.s_[:start] cov = np.delete(np.delete(cov,sel,0),sel,1) # Test covmat = np.loadtxt(f'{ddir}/covmat_act.txt') covmat1 = covmat[start:end,start:end] cdiff = cov[:nbins_act,:nbins_act] - covmat1 if not(np.all(np.isclose(cdiff,0))): raise ValueError if include_planck: data_planck = np.loadtxt(f'{ddir}/clkk_bandpowers_planck.txt') d['data_binned_clkk'] = np.append(d['data_binned_clkk'],data_planck) binmat = np.loadtxt(f'{ddir}/binning_matrix_planck.txt') pells = np.arange(binmat.shape[1]) bcents = binmat@pells ls = np.arange(binmat.shape[1]) d['binmat_planck'] = standardize(ls,binmat,trim_lmax,extra_dims="xy") d['bcents_planck'] = bcents.copy() if like_corrections: # Load matrices cmat = np.load(f"{ddir}/like_corrs/norm_correction_matrix_Lmin0_Lmax4000.npy") ls = np.arange(cmat.shape[1]) d['dAL_dC'] = standardize(ls,cmat,trim_lmax,extra_dims="xyy") if include_planck: cmat = np.load(f"{ddir}/like_corrs/P18_norm_correction_matrix_Lmin0_Lmax3000.npy") ls = np.arange(cmat.shape[1]) d['dAL_dC_planck'] = standardize(ls,cmat,trim_lmax,extra_dims="xyy") fAL_ls,fAL = np.loadtxt(f"{ddir}/like_corrs/n0mv_fiducial_lmin600_lmax3000_Lmin0_Lmax4000.txt") d['fAL'] = standardize(fAL_ls,fAL,trim_lmax,extra_dims="y") if include_planck: fAL_ls,fAL = np.loadtxt(f"{ddir}/like_corrs/PLANCK_n0mv_fiducial_lmin600_lmax3000_Lmin0_Lmax3000.txt") d['fAL_planck'] = standardize(fAL_ls,fAL,trim_lmax,extra_dims="y") for spec in ['kk','tt','ee','bb','te']: n1mat = np.loadtxt(f"{ddir}/like_corrs/N1der_{spec.upper()}_lmin600_lmax3000_full.txt") d[f'dN1_{spec}'] = standardize(fAL_ls,n1mat,trim_lmax,extra_dims="yy") if include_planck: n1mat = np.loadtxt(f"{ddir}/like_corrs/N1_planck_der_{spec.upper()}_lmin100_lmax2048.txt") d[f'dN1_{spec}_planck'] = standardize(fAL_ls,n1mat,trim_lmax,extra_dims="yy") nbins = d['data_binned_clkk'].size nsims = min(nsims_act,nsims_planck) if include_planck else nsims_act hartlap_correction = (nsims-nbins-2.)/(nsims-1.) if apply_hartlap: warnings.warn(f"Hartlap correction to cinv: {hartlap_correction}") else: warnings.warn(f"Disabled Hartlap correction to cinv: {hartlap_correction}") hartlap_correction = 1.0 if scale_cov is not None: warnings.warn(f"Covariance has been artificially scaled by: {scale_cov}") cov = cov * scale_cov d['cov'] = cov cinv = np.linalg.inv(cov) * hartlap_correction d['cinv'] = cinv if mock: mclpp = np.loadtxt(f"{ddir}/cls_default_dr6_accuracy.txt",usecols=[5]) ls = np.arange(mclpp.size) mclkk = mclpp * 2. * np.pi / 4. self.clkk_data = self.binning_matrix @ mclkk[:self.kLmax] return d def generic_lnlike(data_dict,ell_kk,cl_kk,ell_cmb,cl_tt,cl_ee,cl_te,cl_bb,trim_lmax=2998, return_theory=False,do_norm_corr=True,act_calib=False,no_actlike_cmb_corrections=False): cl_kk = standardize(ell_kk,cl_kk,trim_lmax) cl_tt = standardize(ell_cmb,cl_tt,trim_lmax) cl_ee = standardize(ell_cmb,cl_ee,trim_lmax) cl_bb = standardize(ell_cmb,cl_bb,trim_lmax) cl_te = standardize(ell_cmb,cl_te,trim_lmax) d = data_dict cinv = d['cinv'] clkk_act = get_corrected_clkk(data_dict,cl_kk,cl_tt,cl_te,cl_ee,cl_bb, do_norm_corr=do_norm_corr,act_calib=act_calib, no_like_cmb_corrections=no_actlike_cmb_corrections) if d['likelihood_corrections'] else cl_kk bclkk = d['binmat_act'] @ clkk_act if d['include_planck']: clkk_planck = get_corrected_clkk(data_dict,cl_kk,cl_tt,cl_te,cl_ee,cl_bb,'_planck') if d['likelihood_corrections'] else cl_kk bclkk = np.append(bclkk, d['binmat_planck'] @ clkk_planck) delta = d['data_binned_clkk'] - bclkk lnlike = -0.5 * np.dot(delta,np.dot(cinv,delta)) if return_theory: return lnlike, bclkk else: return lnlike # ================= # Cobaya likelihood # ================= class ACTDR6LensLike(InstallableLikelihood): lmax: int = 4000 mock = False nsims_act = 792. # Number of sims used for covmat; used in Hartlap correction nsims_planck = 400. # Number of sims used for covmat; used in Hartlap correction no_like_corrections = False no_actlike_cmb_corrections = False lens_only = False # Any ells above this will be discarded; likelihood must at least request ells up to this trim_lmax = 2998 variant = "act_baseline" apply_hartlap = True # Limber integral parameters limber = False nz = 100 kmax = 10 zmax = None scale_cov = None varying_cmb_alens = False # Whether to divide the theory spectrum by Alens version = None act_cmb_rescale = False act_calib = False def initialize(self): if self.lens_only: self.no_like_corrections = True if self.lmax<self.trim_lmax: raise ValueError(f"An lmax of at least {self.trim_lmax} is required.") self.data = load_data(variant=self.variant,lens_only=self.lens_only, like_corrections=not(self.no_like_corrections),apply_hartlap=self.apply_hartlap, mock=self.mock,nsims_act=self.nsims_act,nsims_planck=self.nsims_planck, trim_lmax=self.trim_lmax,scale_cov=self.scale_cov,version=self.version, act_cmb_rescale=self.act_cmb_rescale,act_calib=self.act_calib) if self.no_like_corrections: self.requested_cls = ["pp"] else: self.requested_cls = ["tt", "te", "ee", "bb", "pp"] def get_requirements(self): if self.no_like_corrections: ret = {'Cl': {'tt': self.lmax,'te': self.lmax,'ee': self.lmax,'pp':self.lmax}} else: ret = {'Cl': {'pp':self.lmax}} if self.limber: cobj = get_camb_lens_obj(self.nz,self.kmax,self.zmax) ret.update(cobj) return ret def logp(self, **params_values): cl = self.provider.get_Cl(ell_factor=False, units='FIRASmuK2') return self.loglike(cl, **params_values) def get_limber_clkk(self,**params_values): Pfunc = self.provider.get_Pk_interpolator(var_pair=("Weyl", "Weyl"), nonlinear=True, extrap_kmax=30.) results = self.provider.get_CAMBdata() return get_limber_clkk_flat_universe(results,Pfunc,self.trim_lmax,self.kmax,nz,zstar=None) def loglike(self, cl, **params_values): ell = cl['ell'] Alens = 1 if self.varying_cmb_alens: Alens = self.provider.get_param('Alens') clpp = cl['pp'] / Alens if self.limber: cl_kk = self.get_limber_clkk( **params_values) else: cl_kk = pp_to_kk(clpp,ell) logp = generic_lnlike(self.data,ell,cl_kk,ell,cl['tt'],cl['ee'],cl['te'],cl['bb'],self.trim_lmax, do_norm_corr=not(self.act_cmb_rescale),act_calib=self.act_calib, no_actlike_cmb_corrections=self.no_actlike_cmb_corrections) self.log.debug( f"ACT-DR6-lensing-like lnLike value = {logp} (chisquare = {-2 * logp})") return logp
ACTCollaborationREPO_NAMEact_dr6_lenslikePATH_START.@act_dr6_lenslike_extracted@act_dr6_lenslike-main@act_dr6_lenslike@act_dr6_lenslike.py@.PATH_END.py
{ "filename": "bls.py", "repo_name": "RadioAstronomySoftwareGroup/pyuvdata", "repo_path": "pyuvdata_extracted/pyuvdata-main/src/pyuvdata/utils/bls.py", "type": "Python" }
# Copyright (c) 2024 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Utilities for baseline numbers.""" import copy import re import warnings import numpy as np from . import _bls from .pol import conj_pol, polnum2str, polstr2num __all__ = ["baseline_to_antnums", "antnums_to_baseline"] def baseline_to_antnums(baseline, *, Nants_telescope): # noqa: N803 """ Get the antenna numbers corresponding to a given baseline number. Parameters ---------- baseline : int or array_like of ints baseline number Nants_telescope : int number of antennas Returns ------- int or array_like of int first antenna number(s) int or array_like of int second antenna number(s) """ if Nants_telescope > 2147483648: raise ValueError(f"error Nants={Nants_telescope}>2147483648 not supported") if np.any(np.asarray(baseline) < 0): raise ValueError("negative baseline numbers are not supported") if np.any(np.asarray(baseline) > 4611686018498691072): raise ValueError("baseline numbers > 4611686018498691072 are not supported") return_array = isinstance(baseline, np.ndarray | list | tuple) ant1, ant2 = _bls.baseline_to_antnums( np.ascontiguousarray(baseline, dtype=np.uint64) ) if return_array: return ant1.astype(int), ant2.astype(int) else: return int(ant1.item(0)), int(ant2.item(0)) def antnums_to_baseline( ant1, ant2, *, Nants_telescope, # noqa: N803 attempt256=False, use_miriad_convention=False, ): """ Get the baseline number corresponding to two given antenna numbers. Parameters ---------- ant1 : int or array_like of int first antenna number ant2 : int or array_like of int second antenna number Nants_telescope : int number of antennas attempt256 : bool Option to try to use the older 256 standard used in many uvfits files. If there are antenna numbers >= 256, the 2048 standard will be used unless there are antenna numbers >= 2048 or Nants_telescope > 2048. In that case, the 2147483648 standard will be used. Default is False. use_miriad_convention : bool Option to use the MIRIAD convention where BASELINE id is `bl = 256 * ant1 + ant2` if `ant2 < 256`, otherwise `bl = 2048 * ant1 + ant2 + 2**16`. Note antennas should be 1-indexed (start at 1, not 0) Returns ------- int or array of int baseline number corresponding to the two antenna numbers. """ if Nants_telescope is not None and Nants_telescope > 2147483648: raise ValueError( "cannot convert ant1, ant2 to a baseline index " f"with Nants={Nants_telescope}>2147483648." ) if np.any(np.concatenate((np.unique(ant1), np.unique(ant2))) >= 2147483648): raise ValueError( "cannot convert ant1, ant2 to a baseline index " "with antenna numbers greater than 2147483647." ) if np.any(np.concatenate((np.unique(ant1), np.unique(ant2))) < 0): raise ValueError( "cannot convert ant1, ant2 to a baseline index " "with antenna numbers less than zero." ) nants_less2048 = True if Nants_telescope is not None and Nants_telescope > 2048: nants_less2048 = False return_array = isinstance(ant1, np.ndarray | list | tuple) baseline = _bls.antnums_to_baseline( np.ascontiguousarray(ant1, dtype=np.uint64), np.ascontiguousarray(ant2, dtype=np.uint64), attempt256=attempt256, nants_less2048=nants_less2048, use_miriad_convention=use_miriad_convention, ) if return_array: return baseline else: return baseline.item(0) def baseline_index_flip(baseline, *, Nants_telescope): # noqa: N803 """Change baseline number to reverse antenna order.""" ant1, ant2 = baseline_to_antnums(baseline, Nants_telescope=Nants_telescope) return antnums_to_baseline(ant2, ant1, Nants_telescope=Nants_telescope) def parse_ants(uv, ant_str, *, print_toggle=False, x_orientation=None): """ Get antpair and polarization from parsing an aipy-style ant string. Used to support the select function. Generates two lists of antenna pair tuples and polarization indices based on parsing of the string ant_str. If no valid polarizations (pseudo-Stokes params, or combinations of [lr] or [xy]) or antenna numbers are found in ant_str, ant_pairs_nums and polarizations are returned as None. Parameters ---------- uv : UVBase Object A UVBased object that supports the following functions and parameters: - get_ants - get_antpairs - get_pols These are used to construct the baseline ant_pair_nums and polarizations returned. ant_str : str String containing antenna information to parse. Can be 'all', 'auto', 'cross', or combinations of antenna numbers and polarization indicators 'l' and 'r' or 'x' and 'y'. Minus signs can also be used in front of an antenna number or baseline to exclude it from being output in ant_pairs_nums. If ant_str has a minus sign as the first character, 'all,' will be appended to the beginning of the string. See the tutorial for examples of valid strings and their behavior. print_toggle : bool Boolean for printing parsed baselines for a visual user check. x_orientation : str, optional Orientation of the physical dipole corresponding to what is labelled as the x polarization ("east" or "north") to allow for converting from E/N strings. If input uv object has an `x_orientation` parameter and the input to this function is `None`, the value from the object will be used. Any input given to this function will override the value on the uv object. See corresonding parameter on UVData for more details. Returns ------- ant_pairs_nums : list of tuples of int or None List of tuples containing the parsed pairs of antenna numbers, or None if ant_str is 'all' or a pseudo-Stokes polarizations. polarizations : list of int or None List of desired polarizations or None if ant_str does not contain a polarization specification. """ required_attrs = ["get_ants", "get_antpairs", "get_pols"] if not all(hasattr(uv, attr) for attr in required_attrs): raise ValueError( "UVBased objects must have all the following attributes in order " f"to call 'parse_ants': {required_attrs}." ) if x_orientation is None and ( hasattr(uv.telescope, "x_orientation") and uv.telescope.x_orientation is not None ): x_orientation = uv.telescope.x_orientation ant_re = r"(\(((-?\d+[lrxy]?,?)+)\)|-?\d+[lrxy]?)" bl_re = f"(^({ant_re}_{ant_re}|{ant_re}),?)" str_pos = 0 ant_pairs_nums = [] polarizations = [] ants_data = uv.get_ants() ant_pairs_data = uv.get_antpairs() pols_data = uv.get_pols() warned_ants = [] warned_pols = [] if ant_str.startswith("-"): ant_str = "all," + ant_str while str_pos < len(ant_str): m = re.search(bl_re, ant_str[str_pos:]) if m is None: if ant_str[str_pos:].upper().startswith("ALL"): if len(ant_str[str_pos:].split(",")) > 1: ant_pairs_nums = uv.get_antpairs() elif ant_str[str_pos:].upper().startswith("AUTO"): for pair in ant_pairs_data: if pair[0] == pair[1] and pair not in ant_pairs_nums: ant_pairs_nums.append(pair) elif ant_str[str_pos:].upper().startswith("CROSS"): for pair in ant_pairs_data: if not (pair[0] == pair[1] or pair in ant_pairs_nums): ant_pairs_nums.append(pair) elif ant_str[str_pos:].upper().startswith("PI"): polarizations.append(polstr2num("pI")) elif ant_str[str_pos:].upper().startswith("PQ"): polarizations.append(polstr2num("pQ")) elif ant_str[str_pos:].upper().startswith("PU"): polarizations.append(polstr2num("pU")) elif ant_str[str_pos:].upper().startswith("PV"): polarizations.append(polstr2num("pV")) else: raise ValueError(f"Unparsable argument {ant_str}") comma_cnt = ant_str[str_pos:].find(",") if comma_cnt >= 0: str_pos += comma_cnt + 1 else: str_pos = len(ant_str) else: m = m.groups() str_pos += len(m[0]) if m[2] is None: ant_i_list = [m[8]] ant_j_list = list(uv.get_ants()) else: if m[3] is None: ant_i_list = [m[2]] else: ant_i_list = m[3].split(",") if m[6] is None: ant_j_list = [m[5]] else: ant_j_list = m[6].split(",") for ant_i in ant_i_list: include_i = True if isinstance(ant_i, str) and ant_i.startswith("-"): ant_i = ant_i[1:] # nibble the - off the string include_i = False for ant_j in ant_j_list: include_j = True if isinstance(ant_j, str) and ant_j.startswith("-"): ant_j = ant_j[1:] include_j = False pols = None ant_i, ant_j = str(ant_i), str(ant_j) if not ant_i.isdigit(): ai = re.search(r"(\d+)([x,y,l,r])", ant_i).groups() if not ant_j.isdigit(): aj = re.search(r"(\d+)([x,y,l,r])", ant_j).groups() if ant_i.isdigit() and ant_j.isdigit(): ai = [ant_i, ""] aj = [ant_j, ""] elif ant_i.isdigit() and not ant_j.isdigit(): if "x" in ant_j or "y" in ant_j: pols = ["x" + aj[1], "y" + aj[1]] else: pols = ["l" + aj[1], "r" + aj[1]] ai = [ant_i, ""] elif not ant_i.isdigit() and ant_j.isdigit(): if "x" in ant_i or "y" in ant_i: pols = [ai[1] + "x", ai[1] + "y"] else: pols = [ai[1] + "l", ai[1] + "r"] aj = [ant_j, ""] elif not ant_i.isdigit() and not ant_j.isdigit(): pols = [ai[1] + aj[1]] ant_tuple = (abs(int(ai[0])), abs(int(aj[0]))) # Order tuple according to order in object if ant_tuple in ant_pairs_data: pass elif ant_tuple[::-1] in ant_pairs_data: ant_tuple = ant_tuple[::-1] else: if not ( ant_tuple[0] in ants_data or ant_tuple[0] in warned_ants ): warned_ants.append(ant_tuple[0]) if not ( ant_tuple[1] in ants_data or ant_tuple[1] in warned_ants ): warned_ants.append(ant_tuple[1]) if pols is not None: for pol in pols: if not (pol.lower() in pols_data or pol in warned_pols): warned_pols.append(pol) continue if include_i and include_j: if ant_tuple not in ant_pairs_nums: ant_pairs_nums.append(ant_tuple) if pols is not None: for pol in pols: if ( pol.lower() in pols_data and polstr2num(pol, x_orientation=x_orientation) not in polarizations ): polarizations.append( polstr2num(pol, x_orientation=x_orientation) ) elif not ( pol.lower() in pols_data or pol in warned_pols ): warned_pols.append(pol) else: if pols is not None: for pol in pols: if pol.lower() in pols_data: if uv.Npols == 1 and [pol.lower()] == pols_data: ant_pairs_nums.remove(ant_tuple) if ( polstr2num(pol, x_orientation=x_orientation) in polarizations ): polarizations.remove( polstr2num(pol, x_orientation=x_orientation) ) elif not ( pol.lower() in pols_data or pol in warned_pols ): warned_pols.append(pol) elif ant_tuple in ant_pairs_nums: ant_pairs_nums.remove(ant_tuple) if ( ant_str.upper() == "ALL" or len(ant_pairs_nums) == 0 and ant_str.upper() not in ["AUTO", "CROSS"] ): ant_pairs_nums = None if len(polarizations) == 0: polarizations = None else: polarizations.sort(reverse=True) if print_toggle: print("\nParsed antenna pairs:") if ant_pairs_nums is not None: for pair in ant_pairs_nums: print(pair) print("\nParsed polarizations:") if polarizations is not None: for pol in polarizations: print(polnum2str(pol, x_orientation=x_orientation)) if len(warned_ants) > 0: warnings.warn( "Warning: Antenna number {a} passed, but not present " "in the ant_1_array or ant_2_array".format( a=(",").join(map(str, warned_ants)) ) ) if len(warned_pols) > 0: warnings.warn( "Warning: Polarization {p} is not present in the polarization_array".format( p=(",").join(warned_pols).upper() ) ) return ant_pairs_nums, polarizations def _extract_bls_pol( *, bls, polarizations, baseline_array, ant_1_array, ant_2_array, nants_telescope ): if isinstance(bls, list) and all( isinstance(bl_ind, int | np.integer) for bl_ind in bls ): for bl_ind in bls: if bl_ind not in baseline_array: raise ValueError( f"Baseline number {bl_ind} is not present in the baseline_array" ) bls = list( zip(*baseline_to_antnums(bls, Nants_telescope=nants_telescope), strict=True) ) elif isinstance(bls, tuple) and (len(bls) == 2 or len(bls) == 3): bls = [bls] if len(bls) == 0 or not all(isinstance(item, tuple) for item in bls): raise ValueError( "bls must be a list of tuples of antenna numbers " "(optionally with polarization) or a list of baseline numbers." ) if not all( [isinstance(item[0], int | np.integer) for item in bls] + [isinstance(item[1], int | np.integer) for item in bls] ): raise ValueError( "bls must be a list of tuples of antenna numbers " "(optionally with polarization) or a list of baseline numbers." ) if any(len(item) == 3 for item in bls): if polarizations is not None: raise ValueError( "Cannot provide any length-3 tuples and also specify polarizations." ) bls_2 = copy.deepcopy(bls) bl_pols = set() for bl_i, bl in enumerate(bls): if len(bl) != 3: raise ValueError("If some bls are 3-tuples, all bls must be 3-tuples.") if not isinstance(bl[2], str): raise ValueError( "The third element in a bl tuple must be a polarization string" ) wh1 = np.where(np.logical_and(ant_1_array == bl[0], ant_2_array == bl[1]))[ 0 ] if len(wh1) > 0: bls_2[bl_i] = (bl[0], bl[1]) bl_pols.add(bl[2]) else: wh2 = np.where( np.logical_and(ant_1_array == bl[1], ant_2_array == bl[0]) )[0] if len(wh2) > 0: bls_2[bl_i] = (bl[1], bl[0]) # find conjugate polarization bl_pols.add(conj_pol(bl[2])) else: raise ValueError( f"Antenna pair {bl} does not have any data " "associated with it." ) polarizations = list(bl_pols) bls = bls_2 return bls, polarizations
RadioAstronomySoftwareGroupREPO_NAMEpyuvdataPATH_START.@pyuvdata_extracted@pyuvdata-main@src@pyuvdata@utils@bls.py@.PATH_END.py
{ "filename": "inkpot.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/Pygments/py2/pygments/styles/inkpot.py", "type": "Python" }
# -*- coding: utf-8 -*- """ pygments.styles.inkpot ~~~~~~~~~~~~~~~~~~~~~~ A highlighting style for Pygments, inspired by the Inkpot theme for VIM. :copyright: Copyright 2006-2019 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.style import Style from pygments.token import Text, Other, Keyword, Name, Comment, String, \ Error, Number, Operator, Generic, Whitespace, Punctuation class InkPotStyle(Style): background_color = "#1e1e27" default_style = "" styles = { Text: "#cfbfad", Other: "#cfbfad", Whitespace: "#434357", Comment: "#cd8b00", Comment.Preproc: "#409090", Comment.PreprocFile: "bg:#404040 #ffcd8b", Comment.Special: "#808bed", Keyword: "#808bed", Keyword.Pseudo: "nobold", Keyword.Type: "#ff8bff", Operator: "#666666", Punctuation: "#cfbfad", Name: "#cfbfad", Name.Attribute: "#cfbfad", Name.Builtin.Pseudo: '#ffff00', Name.Builtin: "#808bed", Name.Class: "#ff8bff", Name.Constant: "#409090", Name.Decorator: "#409090", Name.Exception: "#ff0000", Name.Function: "#c080d0", Name.Label: "#808bed", Name.Namespace: "#ff0000", Name.Variable: "#cfbfad", String: "bg:#404040 #ffcd8b", String.Doc: "#808bed", Number: "#f0ad6d", Generic.Heading: "bold #000080", Generic.Subheading: "bold #800080", Generic.Deleted: "#A00000", Generic.Inserted: "#00A000", Generic.Error: "#FF0000", Generic.Emph: "italic", Generic.Strong: "bold", Generic.Prompt: "bold #000080", Generic.Output: "#888", Generic.Traceback: "#04D", Error: "bg:#6e2e2e #ffffff" }
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@Pygments@py2@pygments@styles@inkpot.py@.PATH_END.py
{ "filename": "_nticks.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/contourcarpet/colorbar/_nticks.py", "type": "Python" }
import _plotly_utils.basevalidators class NticksValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__( self, plotly_name="nticks", parent_name="contourcarpet.colorbar", **kwargs ): super(NticksValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), min=kwargs.pop("min", 0), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@contourcarpet@colorbar@_nticks.py@.PATH_END.py
{ "filename": "thermalFlags.py", "repo_name": "barentsen/dave", "repo_path": "dave_extracted/dave-master/susanplay/thermalFlags.py", "type": "Python" }
# -*- coding: utf-8 -*- """ Created on Mon Mar 7 16:58:43 2016 @author: smullall """ import dave.susanplay.mainSusan as mS import dave.pipeline.pipeline as pipe import numpy as np import dave.pipeline.clipboard as c def countThermFlags(clip): thermal=dict() #Create the light curves. clip['config']['dataStorePath']='/home/smullall/Science/datastore' clip=pipe.serveTask(clip) clip=pipe.trapezoidFitTask(clip) #Get just the interesting flags thruster=2**20; safemode=2**1; desat=2**5 isbad=np.bitwise_and(clip.serve.flags,thruster+safemode+desat) != 0 thermal['isBad'] = isbad time=clip.serve.time period=clip.trapFit.period_days epoch=clip.trapFit.epoch_bkjd #phi = np.fmod(time-epoch + .25*period, period) phiorig = (time-epoch + .25*period) % period phi = phiorig[np.isfinite(phiorig)] dur=clip.trapFit.duration_hrs/24; #Calculate the phase range of the folded transit model. phi1=0.25*period - 0.5*dur; phi2=0.25*period + 0.5*dur; thermal['phimin']=phi1; thermal['phimax']=phi2; thermal['inTransCadTot'] = len( phi[[phi>phi1] and [phi<phi2]] ) #How many isbads exist in that phase range. phiisbad=phiorig[isbad] countBad=0 for (i,v) in enumerate(phiisbad): if v > phi1 and v< phi2: countBad=countBad+1 thermal['inTransCadBad'] = countBad thermal['numTrans']=np.floor((time[-1]-time[0])/period) clip['thermal']=thermal return clip def getFractionThermal(clip): clip=countThermFlags(clip) if clip.thermal.numTrans >= 2: frac=clip.thermal.inTransCadBad/clip.thermal.numTrans else: frac=0; return frac;
barentsenREPO_NAMEdavePATH_START.@dave_extracted@dave-master@susanplay@thermalFlags.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/graph_objs/isosurface/caps/__init__.py", "type": "Python" }
import sys if sys.version_info < (3, 7): from ._x import X from ._y import Y from ._z import Z else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [], ["._x.X", "._y.Y", "._z.Z"] )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@graph_objs@isosurface@caps@__init__.py@.PATH_END.py
{ "filename": "test_sigma_clip.py", "repo_name": "RuthAngus/starspot", "repo_path": "starspot_extracted/starspot-master/tests/test_sigma_clip.py", "type": "Python" }
# import numpy as np # import matplotlib.pyplot as plt # from starspot.rotation_tools import filter_sigma_clip, sigma_clip # def test_sigma_clip(): # np.random.seed(42) # N, Nout = 1000, 20 # t0 = np.linspace(0, 100, N) # p = 10 # w = 2*np.pi/p # y0 = np.sin(w*t0) + np.random.randn(N)*.1 # inds = np.random.choice(np.arange(len(y0)), Nout) # y0[inds] += np.random.randn(Nout)*10. # # Initial removal of extreme outliers. # m = sigma_clip(y0, nsigma=7) # t, y = t0[m], y0[m] # # Sigma clip # smooth, mask = filter_sigma_clip(t, y, polyorder=2) # resids = y - smooth # # Plot results # plt.figure(figsize=(16, 9)) # plt.subplot(2, 1, 1) # plt.plot(t0, y0, ".", label="Original") # plt.plot(t, y, ".", label="initial clip") # plt.plot(t, smooth, label="smoothed") # plt.legend() # plt.subplot(2, 1, 2) # plt.plot(t, resids, ".", label="Whole lc") # plt.plot(t[~mask], resids[~mask], ".", label="Detected outliers") # plt.legend() # plt.savefig("test.png") # if __name__ == "__main__": # test_sigma_clip()
RuthAngusREPO_NAMEstarspotPATH_START.@starspot_extracted@starspot-master@tests@test_sigma_clip.py@.PATH_END.py
{ "filename": "plot.py", "repo_name": "Q3D/q3dfit", "repo_path": "q3dfit_extracted/q3dfit-main/q3dfit/plot.py", "type": "Python" }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import math import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np from q3dfit.q3dmath import cmplin from q3dfit.q3dutil import lmlabel from q3dfit.exceptions import InitializationError from q3dfit.questfitfcn import readcf from matplotlib import rcParams from matplotlib import pyplot as plt def plotcont(q3do, savefig=False, outfile=None, ct_coeff=None, q3di=None, compspec=None, comptitles=None, ps=None, title=None, fitran=None, yranminmax=None, IR=False, compcols=None, xstyle='log', ystyle='log', waveunit_in='micron', waveunit_out='micron', figsize=(10, 5), fluxunit_in='flambda', fluxunit_out='flambda', mode='light' ): ''' Created on Tue Jun 1 13:32:37 2021 @author: annamurphree Plots continuum fit of optical data (fit by fitqsohost or ppxf) or IR data (fit by questfit). Init file optional parameters ('argscontplot'): xstyle = log or lin (linear), ystyle = log or lin (linear), waveunit_in = micron or Angstrom, waveunit_out = micron or Angstrom, fluxunit_in = flambda, lambdaflambda (= nufnu), or fnu, fluxunit_out = flambda, lambdaflambda (= nufnu), or fnu, mode = light or dark The first options are the defaults. ''' # dark mode just for fun: if mode == 'dark': pltstyle = 'dark_background' dcolor = 'w' else: pltstyle = 'seaborn-v0_8-ticks' dcolor = 'k' wave = q3do.wave specstars = q3do.cont_dat modstars = q3do.cont_fit # for optical spectra fit by fitqsohost or ppxf: if not IR: if compspec is not None: if len(compspec) > 1: ncomp = len(compspec) else: ncomp = 1 compcolors = ['c', 'plum', 'm'] complabels = ['QSO', 'Host', 'Wind'] if comptitles is not None: complabels = comptitles if compcols is not None: compcolors = compcols else: ncomp = 0 if fitran is not None: xran = fitran else: xran = q3do.fitrange if waveunit_in == 'Angstrom' and waveunit_out == 'micron': # convert angstrom to microns xran = list(np.divide(xran, 10**4)) wave = list(np.divide(wave, 10**4)) # speed of light in microns/s c = 2.998e+14 elif waveunit_in == 'micron' and waveunit_out == 'Angstrom': # convert microns to angstroms xran = list(np.multiply(xran, 10**4)) wave = list(np.multiply(wave, 10**4)) # speed of light in angstroms/s c = 2.998e+18 if fluxunit_in == 'flambda' and fluxunit_out == 'lambdaflambda': # multiply the flux by wavelength specstars = list(np.multiply(specstars, wave)) modstars = list(np.multiply(modstars, wave)) if ncomp > 0: for i in range(0, ncomp): compspec[i] = list(np.multiply(compspec[i], wave)) ytit = '$\lambda$F$_\lambda$' elif fluxunit_in == 'flambda' and fluxunit_out == 'fnu': # multiply the flux by wavelength^2/c specstars = \ list(np.multiply(specstars, np.divide(np.multiply(wave, wave), c))) modstars = \ list(np.multiply(modstars, np.divide(np.multiply(wave, wave), c))) if ncomp > 0: for i in range(0, ncomp): compspec[i] = \ list(np.multiply(compspec[i], np.divide(np.multiply(wave, wave), c))) ytit = 'F$_\u03BD$' else: ytit = 'F$_\lambda$' # plot on a log scale: if xstyle == 'log' or ystyle == 'log': plt.style.use(pltstyle) # CB: Otherwise the background becomes black and the axes ticks # unreadable when saving the figure if mode == 'light': rcParams['savefig.facecolor'] = 'white' fig = plt.figure(figsize=figsize) # fig = plt.figure() plt.axis('off') # so the subplots don't share a y-axis fig.add_subplot(1, 1, 1) ydat = specstars ymod = modstars # plotting plt.xlim(xran[0], xran[1]) fig.axes[0].axis('off') # so the subplots don't share a y-axis fig.axes[1].axis('off') # so the subplots don't share a y-axis gs = fig.add_gridspec(4, 1) ax1 = fig.add_subplot(gs[:3, :]) # ax1.legend(ncol=2) if xstyle == 'log': ax1.set_xscale('log') # ax1.set_xticklabels([]) if ystyle == 'log': ax1.set_yscale('log') ax1.set_ylabel(ytit, fontsize=20) if title == 'QSO': ax1.set_ylim(10e-7) # actually plotting plt.plot(wave, ydat, dcolor, linewidth=1) plt.plot(wave, ymod, 'r', linewidth=3, label='Total') if ncomp > 0: for i in range(0, ncomp): plt.plot(wave, compspec[i], compcolors[i], linewidth=3, label=complabels[i]) # tick formatting yticks_used = ax1.get_yticks() ylim_used = ax1.get_ylim() yticks_used = np.append(np.append(ylim_used[0], yticks_used), ylim_used[1]) ax1.set_yticks(yticks_used) ax1.set_ylim(ylim_used) ax1.minorticks_on() ax1.tick_params(which='major', length=20, pad=10, labelsize=20) ax1.tick_params(which='minor', length=7, labelsize=17) l = ax1.legend(loc='upper right', fontsize=16) for text in l.get_texts(): text.set_color(dcolor) ax2 = fig.add_subplot(gs[-1, :], sharex=ax1) ax2.plot(wave, np.divide(specstars, modstars), color=dcolor) ax2.axhline(1, color='grey', linestyle='--', alpha=0.7, zorder=0) ax2.set_ylabel('Data/Model', fontsize=19) ax2.tick_params(which='major', length=20, pad=20, labelsize=18) ax2.tick_params(which='minor', length=7, labelsize=17) if waveunit_out == 'micron': ax2.set_xlabel('Wavelength ($\mu$m)', fontsize=20) elif waveunit_out == 'Angstrom': ax2.set_xlabel('Wavelength ($\AA$)', fontsize=20) gs.update(wspace=0.0, hspace=0.05) plt.gcf().subplots_adjust(bottom=0.1) if title is not None: plt.suptitle(title, fontsize=30) if savefig and outfile is not None: plt.savefig(outfile[0] + '.jpg') elif xstyle == 'lin' or ystyle == 'lin': dxran = xran[1] - xran[0] xran1 = [xran[0], xran[0] + np.around(dxran/3.0, 3)] xran2 = [xran[0] + np.around(dxran/3.0, 3), xran[0] + 2.0 * np.around(dxran/3.0, 3)] xran3 = [xran[0] + 2.0 * np.around(dxran/3.0, 3), xran[1]] i1 = [None] i2 = [None] i3 = [None] i1.pop(0) i2.pop(0) i3.pop(0) ydat = specstars ymod = modstars for i in range(0, len(wave)): if wave[i] > xran1[0] and wave[i] < xran1[1]: i1.append(i) if wave[i] > xran2[0] and wave[i] < xran2[1]: i2.append(i) if wave[i] > xran3[0] and wave[i] < xran3[1]: i3.append(i) maxthresh = 0.2 ntop = 20 nbottom = 20 if len(wave) < 100: ntop = 10 nbottom = 10 ++ntop --nbottom if waveunit_out == 'micron': xtit = 'Observed Wavelength ($\mu$m)' elif waveunit_out == 'Angstrom': xtit = 'Observed Wavelength ($\AA$)' plt.style.use(pltstyle) fig = plt.figure(figsize=figsize) plt.axis('off') # so the subplots don't share a y-axis maximum = 0 minimum = 0 '' idict = {1: i1, 2: i2, 3: i3} xrans = {1: xran1, 2: xran2, 3: xran3} for group in range(1, 4): if len(idict[group]) > 0: fig.add_subplot(3, 1, group) # finding min/max values at indices from idict dat_et_mod = np.concatenate((ydat[idict[group]], ymod[idict[group]])) maximum = np.nanmax(dat_et_mod) minimum = np.nanmin(dat_et_mod) # set min and max in yran if yranminmax is not None: yran = [minimum, maximum] else: yran = [0, maximum] # finding yran[1] aka max ydi = np.zeros(len(idict[group])) ydi = np.array(ydat)[idict[group]] ymodi = np.zeros(len(idict[group])) ymodi = np.array(ymod)[idict[group]] y = np.array(ydi - ymodi) ny = len(y) iysort = np.argsort(y) ysort = np.array(y)[iysort] ymodisort = ymodi[iysort] if ysort[ny - ntop] < ysort[ny - 1] * maxthresh: yran[1] = np.nanmax(ysort[0:ny - ntop] + ymodisort[0:ny - ntop]) # plotting plt.xlim(xrans[group][0], xrans[group][1]) plt.ylim(yran[0], yran[1]) plt.ylabel(ytit, fontsize=15) if group == 3: plt.xlabel(xtit, fontsize=15, labelpad=10) if ystyle == 'log': plt.yscale('log') # tick formatting plt.minorticks_on() plt.tick_params(which='major', length=10, pad=5) plt.tick_params(which='minor', length=5) if waveunit_out == 'micron': xticks = np.arange(np.around(xrans[group][0],1)-0.025, np.around(xrans[group][1],1), 0.025)[:-1] plt.xticks(xticks, fontsize=10) elif waveunit_out == 'Angstrom': xticks = np.arange(math.floor(xrans[group][0]/100.0)*100, (math.floor(xrans[group][1]/100)*100)+100, 100) plt.xticks(xticks, fontsize=10) if np.nanmin(ydat) > 1e-10: # this will fail if fluxes are very low (<~1e-10) plt.yticks(np.arange(yran[0], yran[1], np.around((yran[1] - yran[0])/5., decimals=2)), fontsize=10) else: plt.yticks() # actually plotting plt.plot(wave, ydat, dcolor, linewidth=1) if ncomp > 0: for i in range(0, ncomp): plt.plot(wave, compspec[i], compcolors[i], linewidth=3, label=complabels[i]) plt.plot(wave, ymod, 'r', linewidth=4, label=title) if group == 1: plt.legend(loc='upper right') # more formatting plt.subplots_adjust(hspace=0.25) #plt.tight_layout(pad=5) #plt.gcf().subplots_adjust(bottom=0.1) if title is not None: plt.suptitle(title, fontsize=40) if savefig and outfile is not None: if len(outfile[0])>1: plt.savefig(outfile[0] + '.jpg') else: plt.savefig(outfile + '.jpg') # for IR spectra fit with questfit: else: comp_best_fit = q3do.ct_coeff['comp_best_fit'] if xstyle == 'log' or ystyle == 'log': if IR: fig = plt.figure(figsize=figsize) gs = fig.add_gridspec(4,1) ax1 = fig.add_subplot(gs[:3, :]) MIRgdlambda = wave #[q3do.ct_indx] MIRgdflux = q3do.spec #[q3do.ct_indx] MIRcontinuum = modstars #[q3do.ct_indx] if waveunit_in =='micron' and waveunit_out == 'Angstrom': # convert microns to angstroms MIRgdlambda = list(np.multiply(MIRgdlambda, 10**4)) elif waveunit_in =='Angstrom' and waveunit_out == 'micron': # convert angstroms to microns MIRgdlambda = list(np.divide(MIRgdlambda, 10**4)) if fluxunit_in == 'flambda' and fluxunit_out == 'lambdaflambda': # multiply the flux by wavelength MIRgdflux = list(np.multiply(MIRgdflux, MIRgdlambda)) MIRcontinuum = list(np.multiply(MIRcontinuum, MIRgdlambda)) if len(comp_best_fit.keys()) > 0: for i in range(0, len(comp_best_fit.keys())): comp_best_fit[list(comp_best_fit.keys())[i]] = \ np.multiply(comp_best_fit[list(comp_best_fit.keys())[i]], MIRgdlambda) ytit = '$\lambda$F$_\lambda$' elif fluxunit_in == 'flambda' and fluxunit_out == 'fnu': # multiply the flux by wavelength^2/c MIRgdflux = list(np.multiply(MIRgdflux, MIRgdlambda)) MIRcontinuum = list(np.multiply(MIRgdflux, MIRgdlambda)) ytit = 'F$_\u03BD$' else: ytit = 'F$_\lambda$' plt.style.use(pltstyle) ax1.plot(MIRgdlambda, MIRgdflux, label='Data',color=dcolor) ax1.plot(MIRgdlambda, MIRcontinuum, label='Model', color='r') if 'global_ext_model' in q3di.argscontfit: for i in np.arange(0,len(comp_best_fit.keys())-2,1): ax1.plot(MIRgdlambda, np.multiply(comp_best_fit[list(comp_best_fit.keys())[i]], np.multiply(comp_best_fit[list(comp_best_fit.keys())[-2]], comp_best_fit[list(comp_best_fit.keys())[-1]])), label=list(comp_best_fit.keys())[i], linestyle='--',alpha=0.5) else: for i in np.arange(0,len(comp_best_fit.keys()),3): ax1.plot(MIRgdlambda, np.multiply(comp_best_fit[list(comp_best_fit.keys())[i]], np.multiply(comp_best_fit[list(comp_best_fit.keys())[i+1]], comp_best_fit[list(comp_best_fit.keys())[i+2]])), label=list(comp_best_fit.keys())[i], linestyle='--',alpha=0.5) for comp_i in comp_best_fit.keys(): if 'ext' not in comp_i and 'abs' not in comp_i: spec_out = comp_best_fit[comp_i] if comp_i+'_ext' in comp_best_fit.keys(): spec_out *= comp_best_fit[comp_i+'_ext'] if comp_i+'_abs' in comp_best_fit.keys(): spec_out *= comp_best_fit[comp_i+'_abs'] plt.plot(MIRgdlambda, spec_out, label=comp_i,linestyle='--',alpha=0.5) #ax1.legend(ncol=2) ax1.legend(loc='upper right',bbox_to_anchor=(1.15, 1),prop={'size': 10}) if xstyle == 'log': ax1.set_xscale('log') if ystyle == 'log': ax1.set_yscale('log') ax1.set_ylim(1e-4) ax1.set_ylabel(ytit, fontsize=12) ax2 = fig.add_subplot(gs[-1, :], sharex=ax1) ax2.plot(MIRgdlambda,np.divide(MIRgdflux,MIRcontinuum),color=dcolor) ax2.axhline(1, color='grey', linestyle='--', alpha=0.7, zorder=0) ax2.set_ylabel('Data/Model', fontsize=12) if waveunit_out == 'Angstrom': ax2.set_xlabel('Wavelength ($\AA$)', fontsize=12) elif waveunit_out == 'micron': ax2.set_xlabel('Wavelength ($\mu$m)', fontsize=12) gs.update(wspace=0.0, hspace=0.05) plt.suptitle('Total', fontsize=30) elif xstyle == 'lin' or ystyle == 'lin': if fitran is not None: xran = fitran else: xran = q3do.fitran MIRgdlambda = wave #[q3do.ct_indx] MIRgdflux = q3do.spec #[q3do.ct_indx] MIRcontinuum = modstars #[q3do.ct_indx] xtit = '' if waveunit_in == 'microns' and waveunit_out == 'Angstrom': # convert wave list from microns to angstroms MIRgdlambda = list(np.multiply(MIRgdlambda, 10**4)) xtit = 'Observed Wavelength ($\AA$)' elif waveunit_in == 'Angstrom' and waveunit_out == 'micron': # convert wave list from angstroms to microns MIRgdlambda = list(np.divide(MIRgdlambda, 10**4)) xtit = 'Observed Wavelength ($\mu$m)' if fluxunit_in == 'flambda' and fluxunit_out == 'lambdaflambda': # multiply the flux by wavelength MIRgdflux = list(np.multiply(MIRgdflux, MIRgdlambda)) MIRcontinuum = list(np.multiply(MIRcontinuum, MIRgdlambda)) if len(comp_best_fit.keys()) > 0: for i in range(0, len(comp_best_fit.keys())): comp_best_fit[list(comp_best_fit.keys())[i]] = \ list(np.multiply(comp_best_fit[list(comp_best_fit.keys())[i]], MIRgdlambda)) ytit = '$\lambda$F$_\lambda$' elif fluxunit_in == 'flambda' and fluxunit_out == 'fnu': # multiply the flux by wavelength MIRgdflux = list(np.multiply(MIRgdflux, MIRgdlambda)) MIRcontinuum = list(np.multiply(MIRgdflux, MIRgdlambda)) ytit = 'F$_\u03BD$' else: ytit = 'F$_\lambda$' wave = MIRgdlambda ydat = MIRgdflux ymod = MIRcontinuum dxran = xran[1] - xran[0] xran1 = [xran[0], xran[0] + np.around(dxran/3.0,3)] xran2 = [xran[0] + np.around(dxran/3.0,3), xran[0] + 2.0 * np.around(dxran/3.0,3)] xran3 = [xran[0] + 2.0 * np.around(dxran/3.0,3), xran[1]] i1 = [None] i2 = [None] i3 = [None] i1.pop(0) i2.pop(0) i3.pop(0) for i in range(0, len(wave)): if wave[i] > xran1[0] and wave[i] < xran1[1]: i1.append(i) if wave[i] > xran2[0] and wave[i] < xran2[1]: i2.append(i) if wave[i] > xran3[0] and wave[i] < xran3[1]: i3.append(i) maxthresh = 0.2 ntop = 20 nbottom = 20 if len(wave) < 100: ntop = 10 nbottom = 10 ++ntop --nbottom plt.style.use(pltstyle) fig = plt.figure(figsize=figsize) #fig = plt.figure() plt.axis('off') # so the subplots don't share a y-axis maximum = 0 minimum = 0 idict = {1:i1, 2:i2, 3:i3} xrans = {1:xran1, 2:xran2, 3:xran3} for group in range(1,4): if len(idict[group]) > 0: fig.add_subplot(3, 1, group) ax = plt.subplot(3, 1, group) # shrink current axis by 10% to fit legend on side box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) # finding max value between ydat and ymod at indices from i1 for i in idict[group]: bigboy = np.nanmax([ydat[i], ymod[i]]) if bigboy > maximum: maximum = bigboy # finding min for i in idict[group]: smallboy = np.nanmin([ydat[i], ymod[i]]) if smallboy < minimum: minimum = smallboy # set min and max in yran if yranminmax is not None: yran = [minimum, maximum] else: yran = [0, maximum] # finding yran[1] aka max ydi = np.zeros(len(idict[group])) ydi = np.array(ydat)[idict[group]] ymodi = np.zeros(len(idict[group])) ymodi = np.array(ymod)[idict[group]] y = np.array(ydi - ymodi) ny = len(y) iysort = np.argsort(y) ysort = np.array(y)[iysort] ymodisort = ymodi[iysort] if ysort[ny - ntop] < ysort[ny - 1] * maxthresh: yran[1] = np.nanmax(ysort[0:ny - ntop] + ymodisort[0:ny - ntop]) # plotting plt.xlim(xrans[group][0], xrans[group][1]) plt.ylim(yran[0], yran[1]) plt.ylabel(ytit, fontsize=15) if group == 3: plt.xlabel(xtit, fontsize=15, labelpad=10) if ystyle == 'log': plt.yscale('log') # tick formatting plt.minorticks_on() plt.tick_params(which='major', length=10, pad=5) plt.tick_params(which='minor', length=5) if waveunit_out == 'micron': xticks = np.arange(np.around(xrans[group][0]), np.around(xrans[group][1]), 1) plt.xticks(xticks, fontsize=10) elif waveunit_out == 'Angstrom': xticks = np.arange(math.floor(xrans[group][0]/1000.0)*1000, (math.floor(xrans[group][1]/1000.0)*1000)+1000, 10000) plt.xticks(xticks, fontsize=10) if fluxunit_out != 'fnu': # this will fail if fluxes are very low (<~1e-10) plt.yticks(np.arange(yran[0], yran[1], np.around((yran[1] - yran[0])/5., decimals=2)), fontsize=10) else: plt.yticks() # actually plotting plt.plot(MIRgdlambda, MIRgdflux, label='Data', color=dcolor) plt.plot(MIRgdlambda, MIRcontinuum, label='Model', color='red') if 'global_ext_model' in q3di.argscontfit: for i in np.arange(0,len(comp_best_fit.keys())-2,1): plt.plot(MIRgdlambda, np.multiply(comp_best_fit[list(comp_best_fit.keys())[i]], np.multiply(comp_best_fit[list(comp_best_fit.keys())[-2]], comp_best_fit[list(comp_best_fit.keys())[-1]])), label=list(comp_best_fit.keys())[i],linestyle='--',alpha=0.5) else: for comp_i in comp_best_fit.keys(): if 'ext' not in comp_i and 'abs' not in comp_i: spec_out = comp_best_fit[comp_i] if comp_i+'_ext' in comp_best_fit.keys(): spec_out *= comp_best_fit[comp_i+'_ext'] if comp_i+'_abs' in comp_best_fit.keys(): spec_out *= comp_best_fit[comp_i+'_abs'] plt.plot(MIRgdlambda, spec_out, label=comp_i,linestyle='--',alpha=0.5) if group == 1: ax.legend(loc='upper right',bbox_to_anchor=(1.22, 1),prop={'size': 10}) # more formatting plt.subplots_adjust(hspace=0.25) plt.tight_layout(pad=15) plt.gcf().subplots_adjust(bottom=0.1) plt.gcf().subplots_adjust(right=0.85) if title is not None: plt.suptitle(title, fontsize=30) if savefig and outfile is not None: if len(outfile[0])>1: plt.savefig(outfile[0] + '.jpg') else: plt.savefig(outfile + '.jpg') def plotline(q3do, nx=1, ny=1, figsize=(16,13), line=None, center_obs=None, center_rest=None, size=300., savefig=False, outfile=None, specConv=None): """ Plot emission line fit and output to JPG Parameters ---------- q3do : dict contains results of fit label=np.arrange(Nlines) label= str(label) line labels for plot wave= np.arrange((Nlines), float) rest wavelengths of lines lineoth= np.arrange((Notherlines, Ncomp), float) wavelengths of other lines to plot nx # of plot columns ny # of plot rows outfile : str Full path and name of output plot. """ ncomp = q3do.maxncomp colors = ['Magenta', 'Green', 'Orange', 'Teal'] wave = q3do.wave spectot = q3do.spec specstars = q3do.cont_dat modstars = q3do.cont_fit modlines = q3do.line_fit modtot = modstars + modlines # To-do: Allow output wavelengths in Angstrom #'waveunit_out' = 'micron' # if 'waveunit_out' in pltpar: # if pltpar['waveunit_out = 'Angstrom': # waveunit_out = 'Angstrom' # To-do: Get masking code from pltcont # lines linelist = q3do.linelist['lines'] linelabel = q3do.linelist['name'] linetext = q3do.linelist['linelab'] # Sort in wavelength order isortlam = np.argsort(linelist) linelist = linelist[isortlam] linelabel = linelabel[isortlam] linetext = linetext[isortlam] # # Plotting parameters # # Look for line list, then determine center of plot window from fitted # wavelength if line is not None: sub_linlab = line linwav = np.empty(len(sub_linlab), dtype='float32') for i in range(0, len(sub_linlab)): # Get wavelength from zeroth component if sub_linlab[i] != '': lmline = lmlabel(sub_linlab[i]) # if ncomp > 0 if f'{lmline.lmlabel}_0_cwv' in q3do.param.keys(): linwav[i] = q3do.param[f'{lmline.lmlabel}_0_cwv'] # otherwise else: idx = np.where(q3do.linelist['name'] == sub_linlab[i]) if len(idx) > 0: linwav[i] = q3do.linelist['lines'][idx] * \ (1. + q3do.zstar) else: raise InitializationError(f'Line {sub_linlab[i]} not fit.') else: linwav[i] = 0. # If linelist not present, get cwavelength enter of plot window from list # first option: wavelength center specified in observed (plotted) frame elif center_obs is not None: linwav = np.array(center_obs) # second option: wavelength center specified in rest frame, then converted # to observed (plotted) frame elif center_rest is not None: linwav = np.array(center_rest) * q3do.zstar else: raise InitializationError('LINE, CENTER_OBS, or CENTER_REST ' + 'list not given in ARGSPLTLIN dictionary') nlin = len(linwav) # Size of plot in wavelength, in observed frame # case of single size for all panels if isinstance(size, float): size = np.full(nlin, size) # default size currently 300 A ... fix for # case of array of sizes else: size = np.array(size) # other units! off = np.array([-1.*size/2., size/2.]) off = off.transpose() plt.style.use('dark_background') fig = plt.figure(figsize=figsize) for i in range(0, nlin): outer = gridspec.GridSpec(ny, nx, wspace=0.2, hspace=0.2) inner = \ gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=outer[i], wspace=0.1, hspace=0, height_ratios=[4, 2], width_ratios=None) # create xran and ind linwavtmp = linwav[i] offtmp = off[i, :] xran = linwavtmp + offtmp ind = np.array([0]) for h in range(0, len(wave)): if wave[h] > xran[0] and wave[h] < xran[1]: ind = np.append(ind, h) ind = np.delete(ind, [0]) ct = len(ind) if ct > 0: # create subplots ax0 = plt.Subplot(fig, inner[0]) ax1 = plt.Subplot(fig, inner[1]) fig.add_subplot(ax0) fig.add_subplot(ax1) # create x-ticks xticks = np.linspace(xran[0],xran[1],num=5,endpoint=False) xticks = np.delete(xticks, [0]) # if waveunit_out == 'Angstrom': # xticks = xticks * 1.E4 # create minor x-ticks xmticks = np.linspace(xran[0],xran[1],num=25,endpoint=False) xmticks = np.delete(xmticks, [0]) # if waveunit_out == 'Angstrom': # xmticks = xticks * 1.E4 # set ticks ax0.set_xticks(xticks) ax1.set_xticks(xticks) ax0.set_xticks(xmticks, minor=True) ax1.set_xticks(xmticks, minor=True) ax0.tick_params('x', which='major', direction='in', length=7, width=2, color='white') ax0.tick_params('x', which='minor', direction='in', length=5, width=1, color='white') ax1.tick_params('x', which='major', direction='in', length=7, width=2, color='white') ax1.tick_params('x', which='minor', direction='in', length=5, width=1, color='white') # create yran ydat = spectot ymod = modtot ydattmp = np.zeros((ct), dtype=float) ymodtmp = np.zeros((ct), dtype=float) for j in range(0, len(ind)): ydattmp[j] = ydat[(ind[j])] ymodtmp[j] = ymod[(ind[j])] ydatmin = min(ydattmp) ymodmin = min(ymodtmp) if ydatmin <= ymodmin: yranmin = ydatmin else: yranmin = ymodmin ydatmax = max(ydattmp) ymodmax = max(ymodtmp) if ydatmax >= ymodmax: yranmax = ydatmax else: yranmax = ymodmax yran = [yranmin, yranmax] icol = (float(i))/(float(nx)) if icol % 1 == 0: ytit = 'Fit' else: ytit = '' ax0.set(ylabel=ytit) ax0.set_xlim([xran[0], xran[1]]) ax0.set_ylim([yran[0], yran[1]]) # plots on ax0 ax0.plot(wave, ydat, color='White', linewidth=1) xtit = 'Observed Wavelength ($\mu$m)' # if waveunit_out == 'Angstrom': # xtit = 'Observed Wavelength ($\AA$)' ytit = '' ax0.plot(wave, ymod, color='Red', linewidth=2) # Plot all lines visible in plot range for j in range(0, ncomp): ylaboff = 0.07 for k, line in enumerate(linelabel): lmline = lmlabel(line) if f'{lmline.lmlabel}_{j}_cwv' in q3do.param.keys(): refwav = q3do.param[f'{lmline.lmlabel}_{j}_cwv'] else: irefwav = np.where(q3do.linelist['name'] == line) refwav = q3do.linelist['lines'][irefwav] * \ (1. + q3do.zstar) if refwav >= xran[0] and refwav <= xran[1]: if f'{lmline.lmlabel}_{j}_cwv' in \ q3do.param.keys(): flux = cmplin(q3do, line, j, velsig=True) if specConv is not None: conv = specConv.spect_convolver(wave, flux, refwav) else: conv = flux ax0.plot(wave, yran[0] + conv, color=colors[j], linewidth=2, linestyle='dashed') ax0.annotate(linetext[k], (0.05, 1. - ylaboff), xycoords='axes fraction', va='center', fontsize=15) ylaboff += 0.07 # if nmasked > 0: # for r in range(0,nmasked): # ax0.plot([masklam[r,0], masklam[r,1]], [yran[0], yran[0]],linewidth=8, color='Cyan') # set new value for yran ydat = specstars ymod = modstars ydattmp = np.zeros((len(ind)), dtype=float) ymodtmp = np.zeros((len(ind)), dtype=float) for j in range(0, len(ind)): ydattmp[j] = ydat[(ind[j])] ymodtmp[j] = ymod[(ind[j])] ydatmin = min(ydattmp) ymodmin = min(ymodtmp) if ydatmin <= ymodmin: yranmin = ydatmin else: yranmin = ymodmin ydatmax = max(ydattmp) ymodmax = max(ymodtmp) if ydatmax >= ymodmax: yranmax = ydatmax else: yranmax = ymodmax yran = [yranmin, yranmax] if icol % 1 == 0: ytit = 'Residual' else: ytit = '' ax1.set(ylabel=ytit) # plots on ax1 ax1.set_xlim([xran[0], xran[1]]) ax1.set_ylim([yran[0], yran[1]]) ax1.plot(wave, ydat, linewidth=1) ax1.plot(wave, ymod, color='Red') # title xtit = 'Observed Wavelength ($\mu$m)' # if waveunit_out == 'Angstrom': # xtit = 'Observed Wavelength ($\AA$)' fig.suptitle(xtit, fontsize=25) if savefig and outfile is not None: if len(outfile[0])>1: fig.savefig(outfile[0] + '.jpg') else: fig.savefig(outfile + '.jpg') def adjust_ax(ax, fig, fs=20, minor=False): '''CB: Function defined to adjust the sizes of xlabel, ylabel, and the ticklabels (in an inelegant way for the latter) Parameters ----- ax: matplotlib axis object ax object of the plot you want to adjust fig: matplotlib fig object fig object that contains the ax object returns ------- Nothing ''' fig.canvas.draw() xlabel = ax.get_xlabel() ylabel = ax.get_ylabel() ax.set_xlabel(xlabel, fontsize=fs) ax.set_ylabel(ylabel, fontsize=fs) ax.tick_params(labelsize=fs-3) # -- Trying to prune xtickslabels if increasing the fontsize made them overlap xticks_old = ax.get_xticks() if minor: xticks_old = ax.get_xticks(minor=True) xfigsize = fig.get_size_inches()[0] # in inches textstrlen = len(ax.get_xticklabels()[0]._text.replace('\\mathdefault', '')) # length of tick labels depends on nr of decimals specified textwidth_inch = textstrlen * (fs-3)*0.7 / 72. # Assume width of number in text = 0.7* height. Matplotlib uses 72 Points per inch (ppi): https://stackoverflow.com/questions/47633546/relationship-between-dpi-and-figure-size if (len(xticks_old)+1)*textwidth_inch > 0.9* xfigsize * ax.get_position().width: xticks_new = np.array([]) for i in range(len(xticks_old)): if i%2==1: xticks_new = np.append(xticks_new, xticks_old[i]) if not minor: ax.set_xticks(xticks_new, fontsize=fs-3) else: ax.set_xticks(xticks_new, fontsize=fs-3, minor=True) ax.set_xticklabels(ax.get_xticks(), fontsize=fs-3) ax.tick_params(axis='x', which='both', labelsize=fs-3) fig.tight_layout() def plotdecomp(q3do, q3di, savefig=True, outfile=None, templ_mask=[], do_lines=False, show=False, mode='light', ymin=-1, ymax=-1, try_adjust_ax=True): wave = q3do.wave specstars = q3do.cont_dat modstars = q3do.cont_fit MIRgdlambda = wave MIRgdflux = q3do.spec MIRcontinuum = modstars if outfile is None: outfile=q3do.filelab + '_decomp' if do_lines: plotquest(q3do.wave, q3do.spec, q3do.cont_fit, q3do.ct_coeff, q3di, zstar=q3do.zstar, savefig=savefig, outfile=outfile, templ_mask=templ_mask, lines=q3do.linelist['lines'], linespec=q3do.line_fit, show=show, mode=mode, ymin=ymin, ymax=ymax, try_adjust_ax=try_adjust_ax, row=q3do.row, col=q3do.col) else: plotquest(q3do.wave, q3do.spec, q3do.cont_fit, q3do.ct_coeff, q3di, zstar=q3do.zstar, savefig=savefig, outfile=outfile, templ_mask=templ_mask, show=show, mode=mode, ymin=ymin, ymax=ymax, try_adjust_ax=try_adjust_ax, row=q3do.row, col=q3do.col) def plotquest(MIRgdlambda, MIRgdflux, MIRcontinuum, ct_coeff, q3di, zstar=0., savefig=True, outfile=None, templ_mask=[], lines=[], linespec=[], show=False, mode='light', ymin=-1, ymax=-1, try_adjust_ax=True, row=-1, col=-1): # dark mode just for fun: if mode == 'dark': pltstyle = 'dark_background' dcolor = 'w' else: pltstyle = 'seaborn-v0_8-ticks' dcolor = 'k' plt.style.use(pltstyle) # CB: Otherwise the background becomes black and the axes ticks # unreadable when saving the figure if mode == 'light': rcParams['savefig.facecolor'] = 'white' comp_best_fit = ct_coeff['comp_best_fit'] plot_noext = False # Remove dust contribution and plot intrinstic components if 'plot_decomp' in q3di.argscontfit: config_file = readcf(q3di.argscontfit['config_file']) global_extinction = False for key in config_file: try: if 'global' in config_file[key][3]: global_extinction = True except: continue fig = plt.figure(figsize=(6, 9)) gs = fig.add_gridspec(6,1, top=0.95, bottom=0.08, left=0.2) ax1 = fig.add_subplot(gs[:5, :]) ax1.plot(MIRgdlambda, MIRgdflux,color='black') if len(lines)==0: ax1.plot(MIRgdlambda, MIRcontinuum, color='r') else: ax1.plot(MIRgdlambda, MIRcontinuum + linespec, color='darkorange') if len(templ_mask)>0: MIRgdlambda_temp = MIRgdlambda[templ_mask] else: MIRgdlambda_temp = MIRgdlambda if len(lines)>0: for line_i in lines: ax1.axvline(line_i * (1. + zstar), color='grey', linestyle='--', alpha=0.7, zorder=0) #ax1.axvspan(line_i-max(q3di.siglim_gas), line_i+max(q3di.siglim_gas)) ax1.plot(MIRgdlambda, linespec, color='r', linestyle='-', alpha=0.7, linewidth=1.5) colour_list = ['dodgerblue', 'mediumblue', 'salmon', 'palegreen', 'orange', 'purple', 'forestgreen', 'darkgoldenrod', 'mediumblue', 'magenta', 'plum', 'yellowgreen'] if global_extinction: str_global_ext = list(comp_best_fit.keys())[-2] str_global_ice = list(comp_best_fit.keys())[-1] # global_ext is a multi-dimensional array if len(comp_best_fit[str_global_ext].shape) > 1: comp_best_fit[str_global_ext] = comp_best_fit[str_global_ext] [:,0,0] # global_ice is a multi-dimensional array if len(comp_best_fit[str_global_ice].shape) > 1: comp_best_fit[str_global_ice] = comp_best_fit[str_global_ice] [:,0,0] count = 0 for i, el in enumerate(comp_best_fit): if (el != str_global_ext) and (el != str_global_ice): if len(comp_best_fit[el].shape) > 1: # component is a multi-dimensional array comp_best_fit[el] = comp_best_fit[el] [:,0,0] if plot_noext: if count>len(colour_list)-1: ax1.plot(MIRgdlambda_temp, comp_best_fit[el]/comp_best_fit[str_global_ext]/comp_best_fit[str_global_ice], label=el,linestyle='--',alpha=0.5) else: ax1.plot(MIRgdlambda_temp, comp_best_fit[el]/comp_best_fit[str_global_ext]/comp_best_fit[str_global_ice], color=colour_list[count], label=el,linestyle='--',alpha=0.5) else: if count>len(colour_list)-1: ax1.plot(MIRgdlambda_temp, comp_best_fit[el], label=el,linestyle='--',alpha=0.5) else: ax1.plot(MIRgdlambda_temp, comp_best_fit[el], color=colour_list[count], label=el,linestyle='--',alpha=0.5) count += 1 else: count = 0 for i, el in enumerate(comp_best_fit): if len(comp_best_fit[el].shape) > 1: comp_best_fit[el] = comp_best_fit[el] [:,0,0] if not ('_ext' in el or '_abs' in el): spec_i = comp_best_fit[el] label_i = el if not plot_noext: if el+'_ext' in comp_best_fit.keys(): spec_i = spec_i*comp_best_fit[el+'_ext'] if el+'_abs' in comp_best_fit.keys(): spec_i = spec_i*comp_best_fit[el+'_abs'] if count>len(colour_list)-1: ax1.plot(MIRgdlambda_temp, spec_i, label=label_i,linestyle='--',alpha=0.5) else: ax1.plot(MIRgdlambda_temp, spec_i, label=label_i, color=colour_list[i], linestyle='--',alpha=0.5) count += 1 ax1.legend(ncol=2) ax1.set_xscale('log') ax1.set_yscale('log') #ax1.set_ylim(1e-5,1e2) ax1.set_ylabel('Flux') if try_adjust_ax: adjust_ax(ax1, fig, minor=True) ax1.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) # turn off major & minor ticks on the x-axis ax2 = fig.add_subplot(gs[5:6, :], sharex=ax1) if len(lines)>=1: ax1.set_ylim(min(MIRcontinuum)/1e3, 3*max(MIRcontinuum + linespec)) ax2.plot(MIRgdlambda,MIRgdflux/(MIRcontinuum + linespec),color='black') else: ax1.set_ylim(min(MIRcontinuum)/1e3, 3*max(max(MIRgdflux), max(MIRcontinuum))) ax2.plot(MIRgdlambda,MIRgdflux/MIRcontinuum,color='black') if ymin>0.: ax1.set_ylim(bottom=ymin) if ymax>0.: ax1.set_ylim(top=ymax) ax2.axhline(1, color='grey', linestyle='--', alpha=0.7, zorder=0) ax2.set_ylabel('Data/Model') ax2.set_xlabel('Wavelength [micron]') from matplotlib.ticker import ScalarFormatter ax2.xaxis.set_major_formatter(ScalarFormatter()) ax2.xaxis.set_minor_formatter(ScalarFormatter()) ax2.ticklabel_format(style='plain') if row>-1 and col>-1: ax1.set_title('Spaxel [{}, {}]'.format(col, row), fontsize=20) gs.update(wspace=0.0, hspace=0.05) adjust_ax(ax2, fig) if savefig and outfile is not None: if len(outfile[0])>1: plt.savefig(outfile[0]+'.jpg') else: plt.savefig(outfile+'.jpg') else: fig.savefig(outfile + '.jpg') if show: plt.show()
Q3DREPO_NAMEq3dfitPATH_START.@q3dfit_extracted@q3dfit-main@q3dfit@plot.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "LSSTDESC/Spectractor", "repo_path": "Spectractor_extracted/Spectractor-master/spectractor/__init__.py", "type": "Python" }
LSSTDESCREPO_NAMESpectractorPATH_START.@Spectractor_extracted@Spectractor-master@spectractor@__init__.py@.PATH_END.py
{ "filename": "GalRotpy-checkpoint.ipynb", "repo_name": "andresGranadosC/GalRotpy", "repo_path": "GalRotpy_extracted/GalRotpy-master/notebook/.ipynb_checkpoints/GalRotpy-checkpoint.ipynb", "type": "Jupyter Notebook" }
```python from matplotlib.widgets import Slider, Button, RadioButtons, CheckButtons, TextBox # Matplotlib widgets import matplotlib.pylab as plt # Plotting interface import numpy as np from galpy.potential import MiyamotoNagaiPotential, NFWPotential, RazorThinExponentialDiskPotential, BurkertPotential # GALPY potentials from galpy.potential import calcRotcurve # composed rotation curve calculation for plotting from astropy import units # Physical/real units data managing from astropy import table as Table # For fast and easy reading / writing with tables using numpy library import emcee import corner import time import pandas as pd import multiprocessing as mp from scipy.optimize import fsolve import ipywidgets as widgets ``` galpyWarning: libgalpy C extension module not loaded, because of error 'dlopen(/Library/Python/3.7/site-packages/libgalpy.cpython-37m-darwin.so, 6): Library not loaded: @rpath/libgsl.25.dylib Referenced from: /Library/Python/3.7/site-packages/libgalpy.cpython-37m-darwin.so Reason: image not found' ```python def boolString_to_bool(boolString): if boolString == 'True': return True elif boolString == 'False': return False else: return None ``` ```python init_guess_params = Table.Table.read('../M33_guess_params.txt', format='ascii.tab') ``` ```python init_guess_params ``` <i>Table length=6</i> <table id="table4790125960" class="table-striped table-bordered table-condensed"> <thead><tr><th>component</th><th>mass</th><th>a (kpc)</th><th>b (kpc)</th><th>checked</th></tr></thead> <thead><tr><th>str12</th><th>float64</th><th>float64</th><th>float64</th><th>str5</th></tr></thead> <tr><td>BULGE</td><td>110000000.0</td><td>0.0</td><td>0.495</td><td>False</td></tr> <tr><td>THIN DISC</td><td>38837296969.03567</td><td>10.069858729947157</td><td>2.499954901776149</td><td>True</td></tr> <tr><td>THICK DISC</td><td>39000000000.0</td><td>2.6</td><td>0.8</td><td>False</td></tr> <tr><td>EXP. DISC</td><td>500.0</td><td>5.3</td><td>0.0</td><td>False</td></tr> <tr><td>DARK HALO</td><td>1196921394849.7383</td><td>18.682199726086495</td><td>0.0</td><td>True</td></tr> <tr><td>BURKERT HALO</td><td>8000000.0</td><td>20.0</td><td>0.0</td><td>False</td></tr> </table> ```python c_bulge, amp1, a1, b1, include_bulge = init_guess_params[0] c_tn, amp2, a2, b2, include_tn = init_guess_params[1] c_tk, amp3, a3, b3, include_tk = init_guess_params[2] c_ex, amp4, h_r, vertical_ex, include_ex = init_guess_params[3] c_dh, amp5, a5, b5, include_dh = init_guess_params[4] c_bh, amp6, a6, b6, include_bh = init_guess_params[5] ``` ```python visibility = [ boolString_to_bool(include_bulge), boolString_to_bool(include_tn), boolString_to_bool(include_tk), boolString_to_bool(include_ex), boolString_to_bool(include_dh), boolString_to_bool(include_bh)] ``` ```python input_params=Table.Table.read('../input_params.txt', format='ascii.tab') # Initial parameters input_params ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) <ipython-input-2-2b535d68edb6> in <module> ----> 1 input_params=Table.Table.read('../input_params.txt', format='ascii.tab') # Initial parameters 2 input_params /Library/Python/3.7/site-packages/astropy/table/connect.py in __call__(self, *args, **kwargs) 50 def __call__(self, *args, **kwargs): 51 cls = self._cls ---> 52 out = registry.read(cls, *args, **kwargs) 53 54 # For some readers (e.g., ascii.ecsv), the returned `out` class is not /Library/Python/3.7/site-packages/astropy/io/registry.py in read(cls, format, *args, **kwargs) 521 522 reader = get_reader(format, cls) --> 523 data = reader(*args, **kwargs) 524 525 if not isinstance(data, cls): /Library/Python/3.7/site-packages/astropy/io/ascii/connect.py in io_read(format, filename, **kwargs) 16 format = re.sub(r'^ascii\.', '', format) 17 kwargs['format'] = format ---> 18 return read(filename, **kwargs) 19 20 /Library/Python/3.7/site-packages/astropy/io/ascii/ui.py in read(table, guess, **kwargs) 285 # through below to the non-guess way so that any problems result in a 286 # more useful traceback. --> 287 dat = _guess(table, new_kwargs, format, fast_reader) 288 if dat is None: 289 guess = False /Library/Python/3.7/site-packages/astropy/io/ascii/ui.py in _guess(table, read_kwargs, format, fast_reader) 445 446 reader.guessing = True --> 447 dat = reader.read(table) 448 _read_trace.append({'kwargs': copy.deepcopy(guess_kwargs), 449 'Reader': reader.__class__, /Library/Python/3.7/site-packages/astropy/io/ascii/fastbasic.py in read(self, table) 115 data_start=self.data_start, 116 fill_extra_cols=self.fill_extra_cols, --> 117 **self.kwargs) 118 conversion_info = self._read_header() 119 self.check_header() astropy/io/ascii/cparser.pyx in astropy.io.ascii.cparser.CParser.__cinit__() astropy/io/ascii/cparser.pyx in astropy.io.ascii.cparser.CParser.setup_tokenizer() astropy/io/ascii/cparser.pyx in astropy.io.ascii.cparser.FileString.__cinit__() FileNotFoundError: [Errno 2] No such file or directory: '../input_params.txt' ```python tt=Table.Table.read('../M31_rot_curve.txt', format='ascii.tab') # Rotation curve x_offset = 0.0 # It defines a radial coordinate offset as user input r_0=1*units.kpc # units v_0=220*units.km/units.s # units # Real data: r_data=tt['r']-x_offset # The txt file must contain the radial coordinate values in kpc v_c_data=tt['vel'] # velocity in km/s v_c_err_data = tt['e_vel'] # and velocity error in km/s # This loop is needed since galpy fails when r=0 or very close to 0 for i in range(len(r_data)): if r_data[i]<1e-3: r_data[i]=1e-3 ``` ```python tt ``` <i>Table length=28</i> <table id="table4731257240" class="table-striped table-bordered table-condensed"> <thead><tr><th>r</th><th>r2</th><th>vel</th><th>e_vel</th></tr></thead> <thead><tr><th>float64</th><th>float64</th><th>float64</th><th>float64</th></tr></thead> <tr><td>25.0</td><td>5.68</td><td>235.5</td><td>17.8</td></tr> <tr><td>30.0</td><td>6.81</td><td>242.9</td><td>0.8</td></tr> <tr><td>35.0</td><td>7.95</td><td>251.1</td><td>0.7</td></tr> <tr><td>40.0</td><td>9.08</td><td>262.0</td><td>2.1</td></tr> <tr><td>45.0</td><td>10.22</td><td>258.9</td><td>6.9</td></tr> <tr><td>50.0</td><td>11.35</td><td>255.1</td><td>5.7</td></tr> <tr><td>55.0</td><td>12.49</td><td>251.8</td><td>17.1</td></tr> <tr><td>60.0</td><td>13.62</td><td>252.1</td><td>7.4</td></tr> <tr><td>65.0</td><td>14.76</td><td>251.0</td><td>18.6</td></tr> <tr><td>70.0</td><td>15.89</td><td>245.5</td><td>28.8</td></tr> <tr><td>...</td><td>...</td><td>...</td><td>...</td></tr> <tr><td>112.5</td><td>25.54</td><td>227.4</td><td>28.8</td></tr> <tr><td>117.0</td><td>26.56</td><td>225.6</td><td>28.8</td></tr> <tr><td>121.5</td><td>27.58</td><td>224.4</td><td>28.8</td></tr> <tr><td>126.0</td><td>28.6</td><td>222.3</td><td>28.8</td></tr> <tr><td>130.5</td><td>29.62</td><td>222.1</td><td>28.8</td></tr> <tr><td>135.0</td><td>30.65</td><td>224.9</td><td>28.8</td></tr> <tr><td>139.5</td><td>31.67</td><td>228.1</td><td>28.8</td></tr> <tr><td>144.0</td><td>32.69</td><td>231.1</td><td>28.8</td></tr> <tr><td>148.5</td><td>33.71</td><td>230.4</td><td>28.8</td></tr> <tr><td>153.0</td><td>34.73</td><td>226.8</td><td>28.8</td></tr> </table> ```python lista=np.linspace(0.001, 1.02*np.max(r_data), 10*len(r_data)) # radial coordinate for the rotation curve calculation lista ``` array([1.00000000e-03, 5.60351254e-01, 1.11970251e+00, 1.67905376e+00, 2.23840502e+00, 2.79775627e+00, 3.35710753e+00, 3.91645878e+00, 4.47581004e+00, 5.03516129e+00, 5.59451254e+00, 6.15386380e+00, 6.71321505e+00, 7.27256631e+00, 7.83191756e+00, 8.39126882e+00, 8.95062007e+00, 9.50997133e+00, 1.00693226e+01, 1.06286738e+01, 1.11880251e+01, 1.17473763e+01, 1.23067276e+01, 1.28660789e+01, 1.34254301e+01, 1.39847814e+01, 1.45441326e+01, 1.51034839e+01, 1.56628351e+01, 1.62221864e+01, 1.67815376e+01, 1.73408889e+01, 1.79002401e+01, 1.84595914e+01, 1.90189427e+01, 1.95782939e+01, 2.01376452e+01, 2.06969964e+01, 2.12563477e+01, 2.18156989e+01, 2.23750502e+01, 2.29344014e+01, 2.34937527e+01, 2.40531039e+01, 2.46124552e+01, 2.51718065e+01, 2.57311577e+01, 2.62905090e+01, 2.68498602e+01, 2.74092115e+01, 2.79685627e+01, 2.85279140e+01, 2.90872652e+01, 2.96466165e+01, 3.02059677e+01, 3.07653190e+01, 3.13246703e+01, 3.18840215e+01, 3.24433728e+01, 3.30027240e+01, 3.35620753e+01, 3.41214265e+01, 3.46807778e+01, 3.52401290e+01, 3.57994803e+01, 3.63588315e+01, 3.69181828e+01, 3.74775341e+01, 3.80368853e+01, 3.85962366e+01, 3.91555878e+01, 3.97149391e+01, 4.02742903e+01, 4.08336416e+01, 4.13929928e+01, 4.19523441e+01, 4.25116953e+01, 4.30710466e+01, 4.36303978e+01, 4.41897491e+01, 4.47491004e+01, 4.53084516e+01, 4.58678029e+01, 4.64271541e+01, 4.69865054e+01, 4.75458566e+01, 4.81052079e+01, 4.86645591e+01, 4.92239104e+01, 4.97832616e+01, 5.03426129e+01, 5.09019642e+01, 5.14613154e+01, 5.20206667e+01, 5.25800179e+01, 5.31393692e+01, 5.36987204e+01, 5.42580717e+01, 5.48174229e+01, 5.53767742e+01, 5.59361254e+01, 5.64954767e+01, 5.70548280e+01, 5.76141792e+01, 5.81735305e+01, 5.87328817e+01, 5.92922330e+01, 5.98515842e+01, 6.04109355e+01, 6.09702867e+01, 6.15296380e+01, 6.20889892e+01, 6.26483405e+01, 6.32076918e+01, 6.37670430e+01, 6.43263943e+01, 6.48857455e+01, 6.54450968e+01, 6.60044480e+01, 6.65637993e+01, 6.71231505e+01, 6.76825018e+01, 6.82418530e+01, 6.88012043e+01, 6.93605556e+01, 6.99199068e+01, 7.04792581e+01, 7.10386093e+01, 7.15979606e+01, 7.21573118e+01, 7.27166631e+01, 7.32760143e+01, 7.38353656e+01, 7.43947168e+01, 7.49540681e+01, 7.55134194e+01, 7.60727706e+01, 7.66321219e+01, 7.71914731e+01, 7.77508244e+01, 7.83101756e+01, 7.88695269e+01, 7.94288781e+01, 7.99882294e+01, 8.05475806e+01, 8.11069319e+01, 8.16662832e+01, 8.22256344e+01, 8.27849857e+01, 8.33443369e+01, 8.39036882e+01, 8.44630394e+01, 8.50223907e+01, 8.55817419e+01, 8.61410932e+01, 8.67004444e+01, 8.72597957e+01, 8.78191470e+01, 8.83784982e+01, 8.89378495e+01, 8.94972007e+01, 9.00565520e+01, 9.06159032e+01, 9.11752545e+01, 9.17346057e+01, 9.22939570e+01, 9.28533082e+01, 9.34126595e+01, 9.39720108e+01, 9.45313620e+01, 9.50907133e+01, 9.56500645e+01, 9.62094158e+01, 9.67687670e+01, 9.73281183e+01, 9.78874695e+01, 9.84468208e+01, 9.90061720e+01, 9.95655233e+01, 1.00124875e+02, 1.00684226e+02, 1.01243577e+02, 1.01802928e+02, 1.02362280e+02, 1.02921631e+02, 1.03480982e+02, 1.04040333e+02, 1.04599685e+02, 1.05159036e+02, 1.05718387e+02, 1.06277738e+02, 1.06837090e+02, 1.07396441e+02, 1.07955792e+02, 1.08515143e+02, 1.09074495e+02, 1.09633846e+02, 1.10193197e+02, 1.10752548e+02, 1.11311900e+02, 1.11871251e+02, 1.12430602e+02, 1.12989953e+02, 1.13549305e+02, 1.14108656e+02, 1.14668007e+02, 1.15227358e+02, 1.15786710e+02, 1.16346061e+02, 1.16905412e+02, 1.17464763e+02, 1.18024115e+02, 1.18583466e+02, 1.19142817e+02, 1.19702168e+02, 1.20261520e+02, 1.20820871e+02, 1.21380222e+02, 1.21939573e+02, 1.22498925e+02, 1.23058276e+02, 1.23617627e+02, 1.24176978e+02, 1.24736330e+02, 1.25295681e+02, 1.25855032e+02, 1.26414384e+02, 1.26973735e+02, 1.27533086e+02, 1.28092437e+02, 1.28651789e+02, 1.29211140e+02, 1.29770491e+02, 1.30329842e+02, 1.30889194e+02, 1.31448545e+02, 1.32007896e+02, 1.32567247e+02, 1.33126599e+02, 1.33685950e+02, 1.34245301e+02, 1.34804652e+02, 1.35364004e+02, 1.35923355e+02, 1.36482706e+02, 1.37042057e+02, 1.37601409e+02, 1.38160760e+02, 1.38720111e+02, 1.39279462e+02, 1.39838814e+02, 1.40398165e+02, 1.40957516e+02, 1.41516867e+02, 1.42076219e+02, 1.42635570e+02, 1.43194921e+02, 1.43754272e+02, 1.44313624e+02, 1.44872975e+02, 1.45432326e+02, 1.45991677e+02, 1.46551029e+02, 1.47110380e+02, 1.47669731e+02, 1.48229082e+02, 1.48788434e+02, 1.49347785e+02, 1.49907136e+02, 1.50466487e+02, 1.51025839e+02, 1.51585190e+02, 1.52144541e+02, 1.52703892e+02, 1.53263244e+02, 1.53822595e+02, 1.54381946e+02, 1.54941297e+02, 1.55500649e+02, 1.56060000e+02]) ```python class MiyamotoNagaiP: def __init__(self, dict_params): self.amp = dict_params['amp'] self.a = dict_params['a'] self.b = dict_params['b'] def __str__(self): return f"amp={self.amp}, a={self.a}, b={self.b}" def __repr__(self): return f"amp={self.amp}, a={self.a}, b={self.b}" class MassScaleP: def __init__(self, dict_params): self.amp = dict_params['amp'] self.a = dict_params['a'] def __str__(self): return f"amp={self.amp}, a={self.a}" def __repr__(self): return f"amp={self.amp}, a={self.a}" ``` ```python amp1 = widgets.FloatSlider(min=110000000.0*10**(-1), max=110000000.0*10**(1), step=110000000.0*0.1) b1 = widgets.FloatSlider(min=0.495*(100-70)/100, max=0.495*(100+70)/100, step=0.495*0.1) ui = widgets.HBox([amp1, b1]) def f(amp1, b1): global bulge_potential bulge_dict = {'amp': amp1, 'a':0, 'b': b1 } bulge_potential = MiyamotoNagaiP(bulge_dict) print((amp1, b1)) bulge_params = widgets.interactive_output(f, {'amp1': amp1, 'b1': b1}) display(ui, bulge_params) ``` HBox(children=(FloatSlider(value=11000000.0, max=1100000000.0, min=11000000.0, step=11000000.0), FloatSlider(v… Output() ```python amp2 = widgets.FloatSlider(min=3900000000.0*10**(-1), max=3900000000.0*10**(1), step=3900000000.0*0.1) a2 = widgets.FloatSlider(min=5.3*(100-90)/100, max=5.3*(100+90)/100, step=5.3*0.1) b2 = widgets.FloatSlider(min=0.25*(100-90)/100, max=0.25*(100+90)/100, step=0.25*0.1) ui = widgets.HBox([amp2, a2, b2]) def f(amp2, a2, b2): global thin_disk_potential thin_disk_dict = {'amp': amp2, 'a':a2, 'b': b2 } thin_disk_potential = MiyamotoNagaiP(thin_disk_dict) print((amp2, a2, b2)) thin_disk_params = widgets.interactive_output(f, {'amp2': amp2, 'a2': a2, 'b2': b2}) display(ui, thin_disk_params) ``` HBox(children=(FloatSlider(value=390000000.0, max=39000000000.0, min=390000000.0, step=390000000.0), FloatSlid… Output() ```python amp3 = widgets.FloatSlider(min=39000000000.0*10**(-0.5), max=39000000000.0*10**(0.5), step=39000000000.0*0.1) a3 = widgets.FloatSlider(min=2.6*(100-20)/100, max=2.6*(100+20)/100, step=2.6*0.1) b3 = widgets.FloatSlider(min=0.8*(100-90)/100, max=0.8*(100+90)/100, step=0.8*0.1) ui = widgets.HBox([amp3, a3, b3]) def f(amp3, a3, b3): global thick_disk_potential thick_disk_dict = {'amp': amp3, 'a':a3, 'b': b3 } thick_disk_potential = MiyamotoNagaiP(thick_disk_dict) print((amp3, a3, b3)) thick_disk_params = widgets.interactive_output(f, {'amp3': amp3, 'a3': a3, 'b3': b3}) display(ui, thin_disk_params) ``` HBox(children=(FloatSlider(value=12332882874.65668, max=123328828746.5668, min=12332882874.65668, step=3900000… Output(outputs=({'output_type': 'stream', 'text': '(390000000.0, 0.53, 0.025)\n', 'name': 'stdout'},)) ```python amp4 = widgets.FloatSlider(min=500.0*10**(-0.5), max=500.0*10**(0.5), step=500.0*0.1) h_r = widgets.FloatSlider(min=5.3*(100-90)/100, max=5.3*(100+90)/100, step=5.3*0.1) ui = widgets.HBox([amp4, h_r ]) def f(amp4, h_r): global exp_disk_potential exp_disk_dict = {'amp': amp4, 'a': h_r} exp_disk_potential = MassScaleP(exp_disk_dict) print((amp4, h_r)) exp_disk_params = widgets.interactive_output(f, {'amp4': amp4, 'h_r': h_r}) display(ui, exp_disk_params) ``` HBox(children=(FloatSlider(value=158.11388300841898, max=1581.1388300841897, min=158.11388300841898, step=50.0… Output() ```python amp5 = widgets.FloatSlider(min=140000000000.0*10**(-1), max=140000000000.0*10**(1), step=140000000000.0*0.1) a5 = widgets.FloatSlider(min=13*(100-90)/100, max=13*(100+90)/100, step=13*0.1) ui = widgets.HBox([amp5, a5 ]) def f(amp5, a5): global dark_halo_potential dark_halo_dict = {'amp': amp5, 'a': a5} dark_halo_potential = MassScaleP(dark_halo_dict) print((amp5, a5)) dark_halo_params = widgets.interactive_output(f, {'amp5': amp5, 'a5': a5}) display(ui, dark_halo_params) ``` HBox(children=(FloatSlider(value=14000000000.0, max=1400000000000.0, min=14000000000.0, step=14000000000.0), F… Output() ```python amp6 = widgets.FloatSlider(min=8000000.0*10**(-1), max=8000000.0*10**(1), step=8000000.0*0.1) a6 = widgets.FloatSlider(min=20*(100-90)/100, max=20*(100+90)/100, step=20*0.1) ui = widgets.HBox([amp6, a6 ]) def f(amp6, a6): global burkert_halo_potential burkert_halo_dict = {'amp': amp6, 'a': a6} burkert_halo_potential = MassScaleP(burkert_halo_dict) print((amp6, a6)) burkert_halo_params = widgets.interactive_output(f, {'amp6': amp6, 'a6': a6}) display(ui, burkert_halo_params) ``` HBox(children=(FloatSlider(value=800000.0, max=80000000.0, min=800000.0, step=800000.0), FloatSlider(value=2.0… Output() ```python lista=np.linspace(0.001, 1.02*np.max(r_data), 10*len(r_data)) ``` ```python bulge_potential, thin_disk_potential, thick_disk_potential, exp_disk_potential, dark_halo_potential, burkert_halo_potential ``` (amp=11000000.0, a=0, b=0.1485, amp=390000000.0, a=0.53, b=0.025, amp=12332882874.65668, a=2.08, b=0.08, amp=158.11388300841898, a=0.53, amp=14000000000.0, a=1.3, amp=800000.0, a=2.0) ```python data_rows = [('BULGE', 110000000.0, 1.0, 0.0, 20, 0.495, 70), ('THIN DISK', 3900000000.0, 1.0, 5.3, 90, 0.25, 1), ('THICK DISK', 39000000000.0, 0.5, 2.6, 20, 0.8, 1), ('EXP DISK', 500.0, 0.5, 5.3, 90, 0.0, 0), ('DARK HALO', 140000000000.0, 1.0, 13.0, 90, 0.0, 0), ('BURKERT HALO', 8000000.0, 1.0, 20.0, 90, 0.0, 0)] input_params = Table.Table(rows=data_rows, names=('component', 'mass', 'threshold_mass', 'a (kpc)', 'threshold_a', 'b (kpc)', 'threshold_b')) def input_component(component, guess_mass, guess_a, guess_b): component_mass, component_scale_a, component_scale_b = guess_mass, guess_a, guess_b print('Set the guess parameters for', component) try: component_mass = float(input('Mass (in M_sun):')) except: print('No valid Mass for', component, '. It will be taken the default mass:', component_mass, 'M_sun') try: component_scale_a = float(input('Radial Scale Length (in kpc):')) except: print('No valid Radial Scale Length for', component, '. It will be taken the default Radial Scale Lenght:', component_scale_a, 'kpc') if component not in ['EXP DISK', 'DARK HALO', 'BURKERT HALO' ]: try: component_scale_b = float(input('Vertical Scale Length (in kpc):')) except: print('No valid Vertical Scale Length for', component, '. It will be taken the default Vertical Scale Lenght:', component_scale_b, 'kpc') return component_mass, component_scale_a, component_scale_b #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x_offset = 0.0 # It defines a radial coordinate offset as user input r_0=1*units.kpc # units v_0=220*units.km/units.s # units # Real data: r_data=tt['r']-x_offset # The txt file must contain the radial coordinate values in kpc v_c_data=tt['vel'] # velocity in km/s v_c_err_data = tt['e_vel'] # and velocity error in km/s # This loop is needed since galpy fails when r=0 or very close to 0 for i in range(len(r_data)): if r_data[i]<1e-3: r_data[i]=1e-3 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initial parameters: c_bulge, amp1, delta_mass_bulge, a1, delta_radial_bulge, b1, delta_vertical_bulge = input_params[0] amp1, a1, b1 = input_component(c_bulge, amp1, a1, b1) #print(mass, radial, vertical) c_tn, amp2, delta_mass_tn, a2, delta_radial_tn, b2, delta_vertical_tn = input_params[1] amp2, a2, b2 = input_component(c_tn, amp2, a2, b2) #print(mass, radial, vertical) c_tk, amp3, delta_mass_tk, a3, delta_radial_tk, b3, delta_vertical_tk = input_params[2] amp3, a3, b3 = input_component(c_tk, amp3, a3, b3) #print(mass, radial, vertical) c_ex, amp4, delta_mass_ex, h_r, delta_radial_ex, vertical_ex, delta_vertical_ex = input_params[3] amp4, h_r, vertical_ex = input_component(c_ex, amp4, h_r, vertical_ex) #print(mass, radial, vertical) c_dh, amp5, delta_mass_dh, a5, delta_radial_dh, b5, delta_vertical_dh = input_params[4] amp5, a5, b5 = input_component(c_dh, amp5, a5, b5) #print(mass, radial, vertical) c_bh, amp6, delta_mass_bh, a6, delta_radial_bh, b6, delta_vertical_bh = input_params[5] amp6, a6, b6 = input_component(c_bh, amp6, a6, b6) ``` Set the guess parameters for BULGE Mass (in M_sun): No valid Mass for BULGE . It will be taken the default mass: 110000000.0 M_sun Radial Scale Length (in kpc): No valid Radial Scale Length for BULGE . It will be taken the default Radial Scale Lenght: 0.0 kpc Vertical Scale Length (in kpc): No valid Vertical Scale Length for BULGE . It will be taken the default Vertical Scale Lenght: 0.495 kpc Set the guess parameters for THIN DISK Mass (in M_sun): No valid Mass for THIN DISK . It will be taken the default mass: 3900000000.0 M_sun Radial Scale Length (in kpc): No valid Radial Scale Length for THIN DISK . It will be taken the default Radial Scale Lenght: 5.3 kpc Vertical Scale Length (in kpc): No valid Vertical Scale Length for THIN DISK . It will be taken the default Vertical Scale Lenght: 0.25 kpc Set the guess parameters for THICK DISK Mass (in M_sun): No valid Mass for THICK DISK . It will be taken the default mass: 39000000000.0 M_sun Radial Scale Length (in kpc): No valid Radial Scale Length for THICK DISK . It will be taken the default Radial Scale Lenght: 2.6 kpc Vertical Scale Length (in kpc): No valid Vertical Scale Length for THICK DISK . It will be taken the default Vertical Scale Lenght: 0.8 kpc Set the guess parameters for EXP DISK Mass (in M_sun): No valid Mass for EXP DISK . It will be taken the default mass: 500.0 M_sun Radial Scale Length (in kpc): No valid Radial Scale Length for EXP DISK . It will be taken the default Radial Scale Lenght: 5.3 kpc Set the guess parameters for DARK HALO Mass (in M_sun): No valid Mass for DARK HALO . It will be taken the default mass: 140000000000.0 M_sun Radial Scale Length (in kpc): No valid Radial Scale Length for DARK HALO . It will be taken the default Radial Scale Lenght: 13.0 kpc Set the guess parameters for BURKERT HALO Mass (in M_sun): No valid Mass for BURKERT HALO . It will be taken the default mass: 8000000.0 M_sun Radial Scale Length (in kpc): No valid Radial Scale Length for BURKERT HALO . It will be taken the default Radial Scale Lenght: 20.0 kpc ```python MN_Bulge_p= MiyamotoNagaiPotential(amp=bulge_potential.amp*units.Msun, a=bulge_potential.a*units.kpc, b=bulge_potential.b*units.kpc, normalize=False, ro=r_0, vo=v_0) MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=thin_disk_potential.amp*units.Msun, a=thin_disk_potential.a*units.kpc, b=thin_disk_potential.b*units.kpc, normalize=False, ro=r_0, vo=v_0) MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=thick_disk_potential.amp*units.Msun, a=thick_disk_potential.a*units.kpc, b=thick_disk_potential.b*units.kpc, normalize=False, ro=r_0, vo=v_0) EX_Disk_p = RazorThinExponentialDiskPotential(amp=exp_disk_potential.amp*(units.Msun/(units.pc**2)), hr=exp_disk_potential.a*units.kpc, maxiter=20, tol=0.001, normalize=False, ro=r_0, vo=v_0, new=True, glorder=100) NFW_p = NFWPotential(amp=dark_halo_potential.amp*units.Msun, a=dark_halo_potential.a*units.kpc, normalize=False, ro=r_0, vo=v_0) BK_p = BurkertPotential(amp=burkert_halo_potential.amp*units.Msun/(units.kpc)**3, a=burkert_halo_potential.a*units.kpc, normalize=False, ro=r_0, vo=v_0) # Circular velocities in km/s MN_Bulge = calcRotcurve(MN_Bulge_p, lista, phi=None)*220 MN_Thin_Disk = calcRotcurve(MN_Thin_Disk_p, lista, phi=None)*220 MN_Thick_Disk = calcRotcurve(MN_Thick_Disk_p, lista, phi=None)*220 EX_Disk = calcRotcurve(EX_Disk_p, lista, phi=None)*220 NFW = calcRotcurve(NFW_p, lista, phi=None)*220 BK = calcRotcurve(BK_p, lista, phi=None)*220 # Circular velocity for the composition of 5 potentials in km/s v_circ_comp = calcRotcurve([MN_Bulge_p,MN_Thin_Disk_p,MN_Thick_Disk_p, EX_Disk_p, NFW_p, BK_p], lista, phi=None)*220 ``` ```python bulge_potential ``` amp=11000000.0, a=0, b=0.1485 ```python c_bulge, amp1, delta_mass_bulge, a1, delta_radial_bulge, b1, delta_vertical_bulge ``` ('BULGE', 110000000.0, 1.0, 0.0, 20, 0.495, 70) ```python c_dh, amp5, delta_mass_dh, a5, delta_radial_dh, b5, delta_vertical_dh ``` ('DARK HALO', 140000000000.0, 1.0, 13.0, 90, 0.0, 0) ```python from scipy.optimize import curve_fit ``` # Bulge_NFW_potentials ```python def Bulge_NFW_potentials( r, delta_r, bulge_amp, bulge_a, bulge_b, dark_halo_amp, dark_halo_a ): r_0=1*units.kpc # units v_0=220*units.km/units.s # units MN_Bulge_p= MiyamotoNagaiPotential(amp=bulge_amp*units.Msun, a=bulge_a*units.kpc, b=bulge_b*units.kpc, normalize=False, ro=r_0, vo=v_0) NFW_p = NFWPotential(amp=dark_halo_amp*units.Msun, a=dark_halo_a*units.kpc, normalize=False, ro=r_0, vo=v_0) v_circ_comp = calcRotcurve([MN_Bulge_p, NFW_p], r-delta_r , phi=None)*220 return v_circ_comp bounds = (( -10, amp1/(10**delta_mass_bulge), a1, b1*(1-0.01*delta_vertical_bulge), amp5/(10*delta_mass_dh), a5*(1-0.01*delta_radial_dh) ), ( 10, amp1*(10**delta_mass_bulge), 0.1*delta_radial_bulge, b1*(1+0.01*delta_vertical_bulge), amp5*(10**delta_mass_dh), a5*(1+0.01*delta_radial_dh) ) ) bounds ``` ((-10, 11000000.0, 0.0, 0.14849999999999997, 14000000000.0, 1.2999999999999998), (10, 1100000000.0, 2.0, 0.8415, 1400000000000.0, 24.7)) ```python popt, pcov = curve_fit(Bulge_NFW_potentials, r_data, v_c_data.data, p0=[0, amp1, a1, b1, amp5, a5 ], bounds=bounds ) print(popt, np.sqrt(np.diag(pcov))) plt.scatter( r_data, v_c_data.data ) plt.plot( r_data, Bulge_NFW_potentials( r_data, *popt ) ) ``` [-3.52351441e-01 1.73198523e+08 8.56968382e-01 5.44170287e-01 1.87733502e+11 1.09055832e+01] [3.00891852e-01 9.65470703e+08 2.41854286e+03 2.41447933e+03 3.41114598e+10 1.85516675e+00] [<matplotlib.lines.Line2D at 0x1229b5c88>] ![png](output_27_2.png) # Bulge_ThinDisk_NFW_potentials ```python c_tn, amp2, delta_mass_tn, a2, delta_radial_tn, b2, delta_vertical_tn ``` ('THIN DISK', 3900000000.0, 1.0, 5.3, 90, 0.25, 1) ```python def Bulge_ThinDisk_NFW_potentials( r, delta_r, bulge_amp, bulge_a, bulge_b, tn_amp, tn_a, tn_b, dark_halo_amp, dark_halo_a ): r_0=1*units.kpc # units v_0=220*units.km/units.s # units MN_Bulge_p= MiyamotoNagaiPotential(amp=bulge_amp*units.Msun, a=bulge_a*units.kpc, b=bulge_b*units.kpc, normalize=False, ro=r_0, vo=v_0) MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=tn_amp*units.Msun, a=tn_a*units.kpc, b=tn_b*units.kpc, normalize=False, ro=r_0, vo=v_0) NFW_p = NFWPotential(amp=dark_halo_amp*units.Msun, a=dark_halo_a*units.kpc, normalize=False, ro=r_0, vo=v_0) v_circ_comp = calcRotcurve([MN_Bulge_p, MN_Thin_Disk_p, NFW_p], r-delta_r , phi=None)*220 return v_circ_comp bounds = (( -10, amp1/(10**delta_mass_bulge), a1, b1*(1-0.01*delta_vertical_bulge), amp2/(10**delta_mass_tn), a2*(1-0.01*delta_radial_tn), b2/(10**delta_vertical_tn), amp5/(10*delta_mass_dh), a5*(1-0.01*delta_radial_dh) ), ( 10, amp1*(10**delta_mass_bulge), 0.1*delta_radial_bulge, b1*(1+0.01*delta_vertical_bulge), amp2*(10**delta_mass_tn), a2*(1+0.01*delta_radial_tn), b2*(10**delta_vertical_tn), amp5*(10**delta_mass_dh), a5*(1+0.01*delta_radial_dh) ) ) bounds ``` ((-10, 11000000.0, 0.0, 0.14849999999999997, 390000000.0, 0.5299999999999999, 0.025, 14000000000.0, 1.2999999999999998), (10, 1100000000.0, 2.0, 0.8415, 39000000000.0, 10.069999999999999, 2.5, 1400000000000.0, 24.7)) ```python popt, pcov = curve_fit(Bulge_ThinDisk_NFW_potentials, r_data, v_c_data.data, p0=[0, amp1, a1, b1, amp2, a2, b2, amp5, a5 ], bounds=bounds ) print(popt, np.sqrt(np.diag(pcov))) plt.scatter( r_data, v_c_data.data ) plt.plot( r_data, Bulge_ThinDisk_NFW_potentials( r_data, *popt ) ) ``` [-2.78902447e-01 1.24430536e+07 1.46675591e+00 7.61836853e-01 7.13107384e+09 2.68408162e+00 1.71493848e-01 2.57425690e+11 1.62738596e+01] [2.38046289e-01 2.88592063e+11 7.18582305e+05 7.18997942e+05 2.81004025e+11 8.08245548e+05 8.08244419e+05 1.49677219e+11 9.47114773e+00] [<matplotlib.lines.Line2D at 0x120e158d0>] ![png](output_31_2.png) ```python ``` # ThinDisk_NFW_potentials ```python def ThinDisk_NFW_potentials( r, delta_r, tn_amp, tn_a, tn_b, dark_halo_amp, dark_halo_a ): r_0=1*units.kpc # units v_0=220*units.km/units.s # units MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=tn_amp*units.Msun, a=tn_a*units.kpc, b=tn_b*units.kpc, normalize=False, ro=r_0, vo=v_0) NFW_p = NFWPotential(amp=dark_halo_amp*units.Msun, a=dark_halo_a*units.kpc, normalize=False, ro=r_0, vo=v_0) v_circ_comp = calcRotcurve([ MN_Thin_Disk_p, NFW_p], r-delta_r , phi=None)*220 return v_circ_comp bounds = (( -10, amp2/(10**delta_mass_tn), a2*(1-0.01*delta_radial_tn), b2/(10**delta_vertical_tn), amp5/(10*delta_mass_dh), a5*(1-0.01*delta_radial_dh) ), ( 10, amp2*(10**delta_mass_tn), a2*(1+0.01*delta_radial_tn), b2*(10**delta_vertical_tn), amp5*(10**delta_mass_dh), a5*(1+0.01*delta_radial_dh) ) ) bounds ``` ((-10, 390000000.0, 0.5299999999999999, 0.025, 14000000000.0, 1.2999999999999998), (10, 39000000000.0, 10.069999999999999, 2.5, 1400000000000.0, 24.7)) ```python popt, pcov = curve_fit(ThinDisk_NFW_potentials, r_data, v_c_data.data, p0=[0, amp2, a2, b2, amp5, a5 ], bounds=bounds ) print(popt, np.sqrt(np.diag(pcov))) plt.scatter( r_data, v_c_data.data ) plt.plot( r_data, ThinDisk_NFW_potentials( r_data, *popt ) ) ``` [-2.78025944e-01 7.11898506e+09 2.74051174e+00 1.07097147e-01 2.57638242e+11 1.62771507e+01] [1.08072512e-01 2.90526942e+09 6.63797844e+05 6.63797792e+05 7.57432197e+10 4.37991102e+00] [<matplotlib.lines.Line2D at 0x120d19e80>] ![png](output_35_2.png) ```python ``` ```python True and False ``` False ```python run args_input.py a b ``` 3 ['args_input.py', 'a', 'b'] ('a', 'is delicious. Would you like to try some?\n') Or would you rather have the b ? ```python args = [1, 2, 3] flag = True for i in args: if i not in [1, 2, 4, 5]: flag = False ``` ```python flag ``` False ```python ``` ```python fig = plt.figure(1) ax = fig.add_axes((0.41, 0.1, 0.55, 0.85)) #ax.yaxis.set_ticks_position('both') #ax.tick_params(axis='y', which='both', labelleft=True, labelright=True) # Data CV_galaxy = ax.errorbar(r_data, v_c_data, v_c_err_data, c='k', fmt='', ls='none') CV_galaxy_dot = ax.scatter(r_data, v_c_data, c='k') # A plot for each rotation curve with the colors indicated below MN_b_plot, = ax.plot(lista, MN_Bulge, linestyle='--', c='gray') MN_td_plot, = ax.plot(lista, MN_Thin_Disk, linestyle='--', c='purple') MN_tkd_plot, = ax.plot(lista, MN_Thick_Disk, linestyle='--', c='blue') EX_d_plot, = ax.plot(lista, EX_Disk, linestyle='--', c='cyan') NFW_plot, = ax.plot(lista, NFW, linestyle='--', c='green') BK_plot, = ax.plot(lista, BK, linestyle='--', c='orange') # Composed rotation curve v_circ_comp_plot, = ax.plot(lista, v_circ_comp, c='k') ax.set_xlabel(r'$R(kpc)$', fontsize=20) ax.set_ylabel(r'$v_c(km/s)$', fontsize=20) ax.tick_params(axis='both', which='both', labelsize=15) ``` ![png](output_42_0.png) ```python rax = plt.axes((0.07, 0.8, 0.21, 0.15)) check = CheckButtons(rax, ('MN Bulge (GRAY)', 'MN Thin Disc (PURPLE)', 'MN Thick Disc (BLUE)', 'Exp. Disc (CYAN)', 'NFW - Halo (GREEN)', 'Burkert - Halo (ORANGE)'), (True, True, True, True, True, True)) for r in check.rectangles: # Checkbox options-colors r.set_facecolor("lavender") r.set_edgecolor("black") #r.set_alpha(0.2) [ll.set_color("black") for l in check.lines for ll in l] [ll.set_linewidth(2) for l in check.lines for ll in l] ``` [None, None, None, None, None, None, None, None, None, None, None, None] ![png](output_43_1.png) ```python MN_b_amp_ax = fig.add_axes((0.09,0.75,0.17,0.03)) MN_b_amp_s = Slider(MN_b_amp_ax, r"$M$($M_\odot$)", input_params['mass'][0]/(10**input_params['threshold_mass'][0]), input_params['mass'][0]*(10**input_params['threshold_mass'][0]), valinit=input_params['mass'][0], color='gray', valfmt='%1.3E') MN_b_a_ax = fig.add_axes((0.09,0.72,0.17,0.03)) MN_b_a_s = Slider(MN_b_a_ax, "$a$ ($kpc$)", 0, 0.1*input_params['threshold_a'][0], valinit=input_params['a (kpc)'][0], color='gray') MN_b_b_ax = fig.add_axes((0.09,0.69,0.17,0.03)) MN_b_b_s = Slider(MN_b_b_ax, "$b$ ($kpc$)", input_params['b (kpc)'][0]*(1-0.01*input_params['threshold_b'][0]), input_params['b (kpc)'][0]*(1+0.01*input_params['threshold_b'][0]), valinit=input_params['b (kpc)'][0], color='gray') # Thin disk - purple MN_td_amp_ax = fig.add_axes((0.09,0.63,0.17,0.03)) MN_td_amp_s = Slider(MN_td_amp_ax, r"$M$($M_\odot$)", input_params['mass'][1]/(10**input_params['threshold_mass'][1]), input_params['mass'][1]*(10**input_params['threshold_mass'][1]), valinit=input_params['mass'][1], color='purple', valfmt='%1.3E') MN_td_a_ax = fig.add_axes((0.09,0.60,0.17,0.03)) MN_td_a_s = Slider(MN_td_a_ax, "$a$ ($kpc$)", input_params['a (kpc)'][1]*(1-0.01*input_params['threshold_a'][1]), input_params['a (kpc)'][1]*(1+0.01*input_params['threshold_a'][1]), valinit=input_params['a (kpc)'][1], color='purple') MN_td_b_ax = fig.add_axes((0.09,0.57,0.17,0.03)) MN_td_b_s = Slider(MN_td_b_ax, "$b$ ($kpc$)", input_params['b (kpc)'][1]/(10**input_params['threshold_b'][1]), input_params['b (kpc)'][1]*(10**input_params['threshold_b'][1]), valinit=input_params['b (kpc)'][1], color='purple') # Thick disk - Blue MN_tkd_amp_ax = fig.add_axes((0.09,0.51,0.17,0.03)) MN_tkd_amp_s = Slider(MN_tkd_amp_ax, r"$M$($M_\odot$)", input_params['mass'][2]/(10**input_params['threshold_mass'][2]), input_params['mass'][2]*(10**input_params['threshold_mass'][2]), valinit=input_params['mass'][2], color='blue', valfmt='%1.3E') MN_tkd_a_ax = fig.add_axes((0.09,0.48,0.17,0.03)) MN_tkd_a_s = Slider(MN_tkd_a_ax, "$a$ ($kpc$)", input_params['a (kpc)'][2]*(1-0.01*input_params['threshold_a'][2]), input_params['a (kpc)'][2]*(1+0.01*input_params['threshold_a'][2]), valinit=input_params['a (kpc)'][2], color='blue') MN_tkd_b_ax = fig.add_axes((0.09,0.45,0.17,0.03)) MN_tkd_b_s = Slider(MN_tkd_b_ax, "$b$ ($kpc$)", input_params['b (kpc)'][2]/(10**input_params['threshold_b'][2]), input_params['b (kpc)'][2]*(10**input_params['threshold_b'][2]), valinit=input_params['b (kpc)'][2], color='blue') # Exponential disk - Cyan MN_ed_amp_ax = fig.add_axes((0.09,0.39,0.17,0.03)) MN_ed_amp_s = Slider(MN_ed_amp_ax, r"$\Sigma_0$($M_\odot/pc^2$)", input_params['mass'][3]/(10**input_params['threshold_mass'][3]), input_params['mass'][3]*(10**input_params['threshold_mass'][3]), valinit=input_params['mass'][3], color='cyan', valfmt='%1.3E') MN_ed_a_ax = fig.add_axes((0.09,0.36,0.17,0.03)) MN_ed_a_s = Slider(MN_ed_a_ax, "$h_r$ ($kpc$)", input_params['a (kpc)'][3]*(1-0.01*input_params['threshold_a'][3]), input_params['a (kpc)'][3]*(1+0.01*input_params['threshold_a'][3]), valinit=input_params['a (kpc)'][3], color='cyan') # NFW Halo - green NFW_amp_ax = fig.add_axes((0.09,0.30,0.17,0.03)) NFW_amp_s = Slider(NFW_amp_ax, r"$M_0$($M_\odot$)", input_params['mass'][4]/(10*input_params['threshold_mass'][4]), input_params['mass'][4]*(10**input_params['threshold_mass'][4]), valinit=input_params['mass'][4], color='green', valfmt='%1.3E') NFW_a_ax = fig.add_axes((0.09,0.27,0.17,0.03)) NFW_a_s = Slider(NFW_a_ax, "$a$ ($kpc$)", input_params['a (kpc)'][4]*(1-0.01*input_params['threshold_a'][4]), input_params['a (kpc)'][4]*(1+0.01*input_params['threshold_a'][4]), valinit=input_params['a (kpc)'][4], color='green') # Burkert Halo - orange BK_amp_ax = fig.add_axes((0.09,0.21,0.17,0.03)) BK_amp_s = Slider(BK_amp_ax, r"$\rho_0$($M_\odot/kpc^3$)", input_params['mass'][5]/(10*input_params['threshold_mass'][5]), input_params['mass'][5]*(10**input_params['threshold_mass'][5]), valinit=input_params['mass'][5], color='orange', valfmt='%1.3E') BK_a_ax = fig.add_axes((0.09,0.18,0.17,0.03)) BK_a_s = Slider(BK_a_ax, "$a$ ($kpc$)", input_params['a (kpc)'][5]*(1-0.01*input_params['threshold_a'][5]), input_params['a (kpc)'][5]*(1+0.01*input_params['threshold_a'][5]), valinit=input_params['a (kpc)'][5], color='orange') ``` ```python # Bulge def MN_b_amp_s_func(val): if MN_b_plot.get_visible() == True: global MN_Bulge_p, amp1, a1, b1 amp1=val*1 MN_Bulge_p = MiyamotoNagaiPotential(amp=val*units.Msun,a=a1*units.kpc,b=b1*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() def MN_b_a_s_func(val): if MN_b_plot.get_visible() == True: global MN_Bulge_p, amp1, a1, b1 a1=val*1 MN_Bulge_p = MiyamotoNagaiPotential(amp=amp1*units.Msun,a=val*units.kpc,b=b1*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() def MN_b_b_s_func(val): if MN_b_plot.get_visible() == True: global MN_Bulge_p, amp1, a1, b1 b1=val*1 MN_Bulge_p = MiyamotoNagaiPotential(amp=amp1*units.Msun,a=a1*units.kpc,b=val*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() # Thin disk def MN_td_amp_s_func(val): if MN_td_plot.get_visible() == True: global MN_Thin_Disk_p, amp2, a2, b2 amp2=val*1 MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=val*units.Msun,a=a2*units.kpc,b=b2*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() def MN_td_a_s_func(val): if MN_td_plot.get_visible() == True: global MN_Thin_Disk_p, amp2, a2, b2 a2=val*1 MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=amp2*units.Msun,a=val*units.kpc,b=b2*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() def MN_td_b_s_func(val): if MN_td_plot.get_visible() == True: global MN_Thin_Disk_p, amp2, a2, b2 b2=val*1 MN_Thin_Disk_p= MiyamotoNagaiPotential(amp=amp2*units.Msun,a=a2*units.kpc,b=val*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() # Thick disk def MN_tkd_amp_s_func(val): if MN_tkd_plot.get_visible() == True: global MN_Thick_Disk_p, amp3, a3, b3 amp3=val*1 MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=val*units.Msun,a=a3*units.kpc,b=b3*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() def MN_tkd_a_s_func(val): if MN_tkd_plot.get_visible() == True: global MN_Thick_Disk_p, amp3, a3, b3 a3=val*1 MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=amp3*units.Msun,a=val*units.kpc,b=b3*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() def MN_tkd_b_s_func(val): if MN_tkd_plot.get_visible() == True: global MN_Thick_Disk_p, amp3, a3, b3 b3=val*1 MN_Thick_Disk_p= MiyamotoNagaiPotential(amp=amp3*units.Msun,a=a3*units.kpc,b=val*units.kpc,normalize=False,ro=r_0, vo=v_0) update_rot_curve() # Exponential disk def MN_ed_amp_s_func(val): if EX_d_plot.get_visible() == True: global EX_Disk_p, amp4,h_r amp4=val*1 EX_Disk_p = RazorThinExponentialDiskPotential(amp=val*(units.Msun/(units.pc**2)), hr=h_r*units.kpc, maxiter=20, tol=0.001, normalize=False, ro=r_0, vo=v_0, new=True, glorder=100) update_rot_curve() def MN_ed_a_s_func(val): if EX_d_plot.get_visible() == True: global EX_Disk_p, amp4,h_r h_r=val*1 EX_Disk_p = RazorThinExponentialDiskPotential(amp=amp4*(units.Msun/(units.pc**2)), hr=val*units.kpc, maxiter=20, tol=0.001, normalize=False, ro=r_0, vo=v_0, new=True, glorder=100) update_rot_curve() # NFW Halo def NFW_amp_s_func(val): if NFW_plot.get_visible() == True: global NFW_p, amp5,a5 amp5=val*1 NFW_p = NFWPotential(amp=val*units.Msun, a=a5*units.kpc, normalize=False, ro=r_0, vo=v_0) update_rot_curve() def NFW_a_s_func(val): if NFW_plot.get_visible() == True: global NFW_p, amp5,a5 a5=val*1 NFW_p = NFWPotential(amp=amp5*units.Msun, a=val*units.kpc, normalize=False, ro=r_0, vo=v_0) update_rot_curve() # Burkert Halo def BK_amp_s_func(val): if BK_plot.get_visible() == True: global BK_p, amp6,a6 amp6=val*1 BK_p = BurkertPotential(amp=val*units.Msun/(units.kpc)**3, a=a6*units.kpc, normalize=False, ro=r_0, vo=v_0) update_rot_curve() def BK_a_s_func(val): if BK_plot.get_visible() == True: global BK_p, amp6,a6 a6=val*1 BK_p = BurkertPotential(amp=amp6*units.Msun/(units.kpc)**3, a=val*units.kpc, normalize=False, ro=r_0, vo=v_0) update_rot_curve() ``` ```python def update_rot_curve(): ax.clear() global MN_b_plot, MN_Bulge_p, MN_Thin_Disk_p,MN_Thick_Disk_p, MN_td_plot,MN_tkd_plot, NFW_p, NFW_plot, EX_d_plot, EX_Disk_p, CV_galaxy, CV_galaxy_dot, BK_p, BK_plot composite_pot_array=[] ax.set_xlabel(r'$R(kpc)$', fontsize=20) ax.set_ylabel(r'$v_c(km/s)$', fontsize=20) ax.tick_params(axis='both', which='both', labelsize=15) #ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) ax.set_xlim([0, 1.02*r_data[-1]]) ax.set_ylim([0,np.max(v_c_data)*1.2]) if MN_b_plot.get_visible() == True: MN_Bulge = calcRotcurve(MN_Bulge_p, lista, phi=None)*220 MN_b_plot, = ax.plot(lista, MN_Bulge, linestyle='--', c='gray') composite_pot_array.append(MN_Bulge_p) if MN_td_plot.get_visible() == True: MN_Thin_Disk = calcRotcurve(MN_Thin_Disk_p, lista, phi=None)*220 MN_td_plot, = ax.plot(lista, MN_Thin_Disk, linestyle='--', c='purple') composite_pot_array.append(MN_Thin_Disk_p) if MN_tkd_plot.get_visible() == True: MN_Thick_Disk = calcRotcurve(MN_Thick_Disk_p, lista, phi=None)*220 MN_tkd_plot, = ax.plot(lista, MN_Thick_Disk, linestyle='--', c='blue') composite_pot_array.append(MN_Thick_Disk_p) if NFW_plot.get_visible() == True: NFW = calcRotcurve(NFW_p, lista, phi=None)*220 NFW_plot, = ax.plot(lista, NFW, linestyle='--', c='green') composite_pot_array.append(NFW_p) if EX_d_plot.get_visible() == True: EX_Disk = calcRotcurve(EX_Disk_p, lista, phi=None)*220 EX_d_plot, = ax.plot(lista, EX_Disk, linestyle='--', c='cyan') composite_pot_array.append(EX_Disk_p) if BK_plot.get_visible() == True: BK = calcRotcurve(BK_p, lista, phi=None)*220 BK_plot, = ax.plot(lista, BK, linestyle='--', c='orange') composite_pot_array.append(BK_p) CV_galaxy = ax.errorbar(r_data, v_c_data, v_c_err_data, c='k', fmt='', ls='none') CV_galaxy_dot = ax.scatter(r_data, v_c_data, c='k') v_circ_comp = calcRotcurve(composite_pot_array, lista, phi=None)*220 v_circ_comp_plot, = ax.plot(lista, v_circ_comp, c='k') #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Here we define the sliders update functions MN_b_amp_s.on_changed(MN_b_amp_s_func) MN_b_a_s.on_changed(MN_b_a_s_func) MN_b_b_s.on_changed(MN_b_b_s_func) MN_td_amp_s.on_changed(MN_td_amp_s_func) MN_td_a_s.on_changed(MN_td_a_s_func) MN_td_b_s.on_changed(MN_td_b_s_func) MN_tkd_amp_s.on_changed(MN_tkd_amp_s_func) MN_tkd_a_s.on_changed(MN_tkd_a_s_func) MN_tkd_b_s.on_changed(MN_tkd_b_s_func) NFW_amp_s.on_changed(NFW_amp_s_func) NFW_a_s.on_changed(NFW_a_s_func) BK_amp_s.on_changed(BK_amp_s_func) BK_a_s.on_changed(BK_a_s_func) MN_ed_amp_s.on_changed(MN_ed_amp_s_func) MN_ed_a_s.on_changed(MN_ed_a_s_func) ``` 0 ```python def reset(event): MN_b_amp_s.reset() MN_b_a_s.reset() MN_b_b_s.reset() MN_td_amp_s.reset() MN_td_a_s.reset() MN_td_b_s.reset() MN_tkd_amp_s.reset() MN_tkd_a_s.reset() MN_tkd_b_s.reset() MN_ed_amp_s.reset() MN_ed_a_s.reset() NFW_amp_s.reset() NFW_a_s.reset() BK_amp_s.reset() BK_a_s.reset() axcolor="lavender" resetax = fig.add_axes((0.07, 0.08, 0.08, 0.05)) button_reset = Button(resetax, 'Reset', color=axcolor) button_reset.on_clicked(reset) ``` 0 ```python def check_on_clicked(label): if label == 'MN Bulge (GRAY)': MN_b_plot.set_visible(not MN_b_plot.get_visible()) update_rot_curve() elif label == 'MN Thin Disc (PURPLE)': MN_td_plot.set_visible(not MN_td_plot.get_visible()) update_rot_curve() elif label == 'MN Thick Disc (BLUE)': MN_tkd_plot.set_visible(not MN_tkd_plot.get_visible()) update_rot_curve() elif label == 'Exp. Disc (CYAN)': EX_d_plot.set_visible(not EX_d_plot.get_visible()) update_rot_curve() elif label == 'NFW - Halo (GREEN)': NFW_plot.set_visible(not NFW_plot.get_visible()) update_rot_curve() elif label == 'Burkert - Halo (ORANGE)': BK_plot.set_visible(not BK_plot.get_visible()) update_rot_curve() plt.draw() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Plotting all the curves ax.set_xlabel(r'$R(kpc)$', fontsize=20) ax.set_ylabel(r'$v_c(km/s)$', fontsize=20) ax.tick_params(axis='both', which='both', labelsize=15) #ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) #ax.set_xlim([0, np.max(lista)]) #ax.set_ylim([0,np.max(v_c_data)*1.2]) check.on_clicked(check_on_clicked) ``` 0 ```python ax ``` <matplotlib.axes._axes.Axes at 0x120acb748> ```python from matplotlib.widgets import Slider, Button, RadioButtons, CheckButtons, TextBox # Matplotlib widgets ``` ```python CheckButtons? ``` ```python %matplotlib t = np.arange(0.0, 2.0, 0.01) s0 = np.sin(2*np.pi*t) s1 = np.sin(4*np.pi*t) s2 = np.sin(6*np.pi*t) fig, ax = plt.subplots() l0, = ax.plot(t, s0, visible=False, lw=2, color='k', label='2 Hz') l1, = ax.plot(t, s1, lw=2, color='r', label='4 Hz') l2, = ax.plot(t, s2, lw=2, color='g', label='6 Hz') plt.subplots_adjust(left=0.2) lines = [l0, l1, l2] # Make checkbuttons with all plotted lines with correct visibility rax = plt.axes([0.05, 0.4, 0.1, 0.15]) labels = [str(line.get_label()) for line in lines] visibility = [line.get_visible() for line in lines] check = CheckButtons(rax, labels, visibility) def func(label): index = labels.index(label) lines[index].set_visible(not lines[index].get_visible()) plt.draw() check.on_clicked(func) ``` Using matplotlib backend: MacOSX 0 ```python visibility ``` [False, True, True] ```python check.get_status() ``` [True, False, False] ```python l1.set_visible? ``` ```python print( check.get_status() ) check_visibility = check.get_status() MN_b_plot.set_visible(check_visibility[0]) MN_td_plot.set_visible(check_visibility[1]) MN_tkd_plot.set_visible(check_visibility[2]) EX_d_plot.set_visible(check_visibility[3]) NFW_plot.set_visible(check_visibility[4]) BK_plot.set_visible(check_visibility[5]) ```
andresGranadosCREPO_NAMEGalRotpyPATH_START.@GalRotpy_extracted@GalRotpy-master@notebook@.ipynb_checkpoints@GalRotpy-checkpoint.ipynb@.PATH_END.py
{ "filename": "pretty_printer.py", "repo_name": "google/jax", "repo_path": "jax_extracted/jax-main/jax/_src/pretty_printer.py", "type": "Python" }
# Copyright 2021 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Wadler-Lindig pretty printer. # # References: # Wadler, P., 1998. A prettier printer. Journal of Functional Programming, # pp.223-244. # # Lindig, C. 2000. Strictly Pretty. # https://lindig.github.io/papers/strictly-pretty-2000.pdf # # Hafiz, A. 2021. Strictly Annotated: A Pretty-Printer With Support for # Annotations. https://ayazhafiz.com/articles/21/strictly-annotated # from __future__ import annotations from collections.abc import Sequence import enum from functools import partial import sys from typing import Any, NamedTuple from jax._src import config from jax._src import util try: import colorama # pytype: disable=import-error except ImportError: colorama = None _PPRINT_USE_COLOR = config.bool_flag( 'jax_pprint_use_color', config.bool_env('JAX_PPRINT_USE_COLOR', True), help='Enable jaxpr pretty-printing with colorful syntax highlighting.' ) def _can_use_color() -> bool: try: # Check if we're in IPython or Colab ipython = get_ipython() # type: ignore[name-defined] shell = ipython.__class__.__name__ if shell == "ZMQInteractiveShell": # Jupyter Notebook return True elif "colab" in str(ipython.__class__): # Google Colab (external or internal) return True except NameError: pass # Otherwise check if we're in a terminal return hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() CAN_USE_COLOR = _can_use_color() class Doc(util.StrictABC): __slots__ = () def format( self, width: int = 80, *, use_color: bool | None = None, annotation_prefix: str = " # ", source_map: list[list[tuple[int, int, Any]]] | None = None ) -> str: """ Formats a pretty-printer document as a string. Args: source_map: for each line in the output, contains a list of (start column, end column, source) tuples. Each tuple associates a region of output text with a source. """ if use_color is None: use_color = CAN_USE_COLOR and _PPRINT_USE_COLOR.value return _format(self, width, use_color=use_color, annotation_prefix=annotation_prefix, source_map=source_map) def __str__(self): return self.format() def __add__(self, other: Doc) -> Doc: return concat([self, other]) class _NilDoc(Doc): def __repr__(self): return "nil" _nil = _NilDoc() class _TextDoc(Doc): __slots__ = ("text", "annotation") text: str annotation: str | None def __init__(self, text: str, annotation: str | None = None): assert isinstance(text, str), text assert annotation is None or isinstance(annotation, str), annotation self.text = text self.annotation = annotation def __repr__(self): if self.annotation is not None: return f"text(\"{self.text}\", annotation=\"{self.annotation}\")" else: return f"text(\"{self.text}\")" class _ConcatDoc(Doc): __slots__ = ("children",) children: list[Doc] def __init__(self, children: Sequence[Doc]): self.children = list(children) assert all(isinstance(doc, Doc) for doc in self.children), self.children def __repr__(self): return f"concat({self.children})" class _BreakDoc(Doc): __slots__ = ("text",) text: str def __init__(self, text: str): assert isinstance(text, str), text self.text = text def __repr__(self): return f"break({self.text})" class _GroupDoc(Doc): __slots__ = ("child",) child: Doc def __init__(self, child: Doc): assert isinstance(child, Doc), child self.child = child def __repr__(self): return f"group({self.child})" class _NestDoc(Doc): __slots__ = ("n", "child",) n: int child: Doc def __init__(self, n: int, child: Doc): assert isinstance(child, Doc), child self.n = n self.child = child def __repr__(self): return f"nest({self.n, self.child})" _NO_SOURCE = object() class _SourceMapDoc(Doc): __slots__ = ("child", "source") child: Doc source: Any def __init__(self, child: Doc, source: Any): assert isinstance(child, Doc), child self.child = child self.source = source def __repr__(self): return f"source({self.child}, {self.source})" Color = enum.Enum("Color", ["BLACK", "RED", "GREEN", "YELLOW", "BLUE", "MAGENTA", "CYAN", "WHITE", "RESET"]) Intensity = enum.Enum("Intensity", ["DIM", "NORMAL", "BRIGHT"]) class _ColorDoc(Doc): __slots__ = ("foreground", "background", "intensity", "child") foreground: Color | None background: Color | None intensity: Intensity | None child: Doc def __init__(self, child: Doc, *, foreground: Color | None = None, background: Color | None = None, intensity: Intensity | None = None): assert isinstance(child, Doc), child self.child = child self.foreground = foreground self.background = background self.intensity = intensity _BreakMode = enum.Enum("_BreakMode", ["FLAT", "BREAK"]) # In Lindig's paper fits() and format() are defined recursively. This is a # non-recursive formulation using an explicit stack, necessary because Python # doesn't have a tail recursion optimization. def _fits(doc: Doc, width: int, agenda: list[tuple[int, _BreakMode, Doc]] ) -> bool: while width >= 0 and len(agenda) > 0: i, m, doc = agenda.pop() if isinstance(doc, _NilDoc): pass elif isinstance(doc, _TextDoc): width -= len(doc.text) elif isinstance(doc, _ConcatDoc): agenda.extend((i, m, d) for d in reversed(doc.children)) elif isinstance(doc, _BreakDoc): if m == _BreakMode.BREAK: return True width -= len(doc.text) elif isinstance(doc, _NestDoc): agenda.append((i + doc.n, m, doc.child)) elif isinstance(doc, _GroupDoc): agenda.append((i, _BreakMode.FLAT, doc.child)) elif isinstance(doc, _ColorDoc) or isinstance(doc, _SourceMapDoc): agenda.append((i, m, doc.child)) else: raise ValueError("Invalid document ", doc) return width >= 0 # Annotation layout: A flat group is sparse if there are no breaks between # annotations. def _sparse(doc: Doc) -> bool: agenda = [doc] num_annotations = 0 seen_break = False while len(agenda) > 0: doc = agenda.pop() if isinstance(doc, _NilDoc): pass elif isinstance(doc, _TextDoc): if doc.annotation is not None: if num_annotations >= 1 and seen_break: return False num_annotations += 1 elif isinstance(doc, _ConcatDoc): agenda.extend(reversed(doc.children)) elif isinstance(doc, _BreakDoc): seen_break = True elif isinstance(doc, _NestDoc): agenda.append(doc.child) elif isinstance(doc, _GroupDoc): agenda.append(doc.child) elif isinstance(doc, _ColorDoc) or isinstance(doc, _SourceMapDoc): agenda.append(doc.child) else: raise ValueError("Invalid document ", doc) return True class _ColorState(NamedTuple): foreground: Color background: Color intensity: Intensity class _State(NamedTuple): indent: int mode: _BreakMode doc: Doc color: _ColorState source_map: Any class _Line(NamedTuple): text: str width: int annotations: str | None | list[str] def _update_color(use_color: bool, state: _ColorState, update: _ColorState ) -> tuple[_ColorState, str]: if not use_color or colorama is None: return update, "" color_str = "" if state.foreground != update.foreground: color_str += getattr(colorama.Fore, str(update.foreground.name)) if state.background != update.background: color_str += getattr(colorama.Back, str(update.background.name)) if state.intensity != update.intensity: color_str += colorama.Style.NORMAL # pytype: disable=unsupported-operands color_str += getattr(colorama.Style, str(update.intensity.name)) return update, color_str def _align_annotations(lines): # TODO: Hafiz also implements a local alignment mode, where groups of lines # with annotations are aligned together. maxlen = max(l.width for l in lines) out = [] for l in lines: if len(l.annotations) == 0: out.append(l._replace(annotations=None)) elif len(l.annotations) == 1: out.append(l._replace(text=l.text + " " * (maxlen - l.width), annotations=l.annotations[0])) else: out.append(l._replace(text=l.text + " " * (maxlen - l.width), annotations=l.annotations[0])) for a in l.annotations[1:]: out.append(_Line(text=" " * maxlen, width=l.width, annotations=a)) return out def _format( doc: Doc, width: int, *, use_color: bool, annotation_prefix: str, source_map: list[list[tuple[int, int, Any]]] | None ) -> str: lines = [] default_colors = _ColorState(Color.RESET, Color.RESET, Intensity.NORMAL) annotation_colors = _ColorState(Color.RESET, Color.RESET, Intensity.DIM) color_state = default_colors source_start = 0 # The column at which the current source region starts. source = _NO_SOURCE # The currently active source region. line_source_map = [] # Source maps for the current line of text. agenda = [_State(0, _BreakMode.BREAK, doc, default_colors, source)] k = 0 line_text = "" line_annotations = [] while len(agenda) > 0: i, m, doc, color, agenda_source = agenda.pop() if source_map is not None and agenda_source != source: pos = len(line_text) if source_start != pos and source is not _NO_SOURCE: line_source_map.append((source_start, pos, source)) source = agenda_source source_start = pos if isinstance(doc, _NilDoc): pass elif isinstance(doc, _TextDoc): color_state, color_str = _update_color(use_color, color_state, color) line_text += color_str line_text += doc.text if doc.annotation is not None: line_annotations.append(doc.annotation) k += len(doc.text) elif isinstance(doc, _ConcatDoc): agenda.extend(_State(i, m, d, color, source) for d in reversed(doc.children)) elif isinstance(doc, _BreakDoc): if m == _BreakMode.BREAK: if len(line_annotations) > 0: color_state, color_str = _update_color(use_color, color_state, annotation_colors) line_text += color_str lines.append(_Line(line_text, k, line_annotations)) if source_map is not None: pos = len(line_text) if source_start != pos and source is not _NO_SOURCE: line_source_map.append((source_start, pos, source)) source_map.append(line_source_map) line_source_map = [] source_start = i line_text = " " * i line_annotations = [] k = i else: color_state, color_str = _update_color(use_color, color_state, color) line_text += color_str line_text += doc.text k += len(doc.text) elif isinstance(doc, _NestDoc): agenda.append(_State(i + doc.n, m, doc.child, color, source)) elif isinstance(doc, _GroupDoc): # In Lindig's paper, _fits is passed the remainder of the document. # I'm pretty sure that's a bug and we care only if the current group fits! if (_sparse(doc) and _fits(doc, width - k, [(i, _BreakMode.FLAT, doc.child)])): agenda.append(_State(i, _BreakMode.FLAT, doc.child, color, source)) else: agenda.append(_State(i, _BreakMode.BREAK, doc.child, color, source)) elif isinstance(doc, _ColorDoc): color = _ColorState(doc.foreground or color.foreground, doc.background or color.background, doc.intensity or color.intensity) agenda.append(_State(i, m, doc.child, color, source)) elif isinstance(doc, _SourceMapDoc): agenda.append(_State(i, m, doc.child, color, doc.source)) else: raise ValueError("Invalid document ", doc) if len(line_annotations) > 0: color_state, color_str = _update_color(use_color, color_state, annotation_colors) line_text += color_str if source_map is not None: pos = len(line_text) if source_start != pos and source is not _NO_SOURCE: line_source_map.append((source_start, pos, source)) source_map.append(line_source_map) lines.append(_Line(line_text, k, line_annotations)) lines = _align_annotations(lines) out = "\n".join( l.text if l.annotations is None else f"{l.text}{annotation_prefix}{l.annotations}" for l in lines) color_state, color_str = _update_color(use_color, color_state, default_colors) return out + color_str # Public API. def nil() -> Doc: """An empty document.""" return _nil def text(s: str, annotation: str | None = None) -> Doc: """Literal text.""" return _TextDoc(s, annotation) def concat(docs: Sequence[Doc]) -> Doc: """Concatenation of documents.""" docs = list(docs) if len(docs) == 1: return docs[0] return _ConcatDoc(docs) def brk(text: str = " ") -> Doc: """A break. Prints either as a newline or as `text`, depending on the enclosing group. """ return _BreakDoc(text) def group(doc: Doc) -> Doc: """Layout alternative groups. Prints the group with its breaks as their text (typically spaces) if the entire group would fit on the line when printed that way. Otherwise, breaks inside the group as printed as newlines. """ return _GroupDoc(doc) def nest(n: int, doc: Doc) -> Doc: """Increases the indentation level by `n`.""" return _NestDoc(n, doc) def color(doc: Doc, *, foreground: Color | None = None, background: Color | None = None, intensity: Intensity | None = None): """ANSI colors. Overrides the foreground/background/intensity of the text for the child doc. Requires use_colors=True to be set when printing and the `colorama` package to be installed; otherwise does nothing. """ return _ColorDoc(doc, foreground=foreground, background=background, intensity=intensity) def source_map(doc: Doc, source: Any): """Source mapping. A source map associates a region of the pretty-printer's text output with a source location that produced it. For the purposes of the pretty printer a ``source`` may be any object: we require only that we can compare sources for equality. A text region to source object mapping can be populated as a side output of the ``format`` method. """ return _SourceMapDoc(doc, source) type_annotation = partial(color, intensity=Intensity.NORMAL, foreground=Color.MAGENTA) keyword = partial(color, intensity=Intensity.BRIGHT, foreground=Color.BLUE) def join(sep: Doc, docs: Sequence[Doc]) -> Doc: """Concatenates `docs`, separated by `sep`.""" docs = list(docs) if len(docs) == 0: return nil() xs = [docs[0]] for doc in docs[1:]: xs.append(sep) xs.append(doc) return concat(xs)
googleREPO_NAMEjaxPATH_START.@jax_extracted@jax-main@jax@_src@pretty_printer.py@.PATH_END.py
{ "filename": "__init__.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/data/__init__.py", "type": "Python" }
""" Built-in datasets for demonstration, educational and test purposes. """ def gapminder(datetimes=False, centroids=False, year=None, pretty_names=False): """ Each row represents a country on a given year. https://www.gapminder.org/data/ Returns: A `pandas.DataFrame` with 1704 rows and the following columns: `['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap', 'iso_alpha', 'iso_num']`. If `datetimes` is True, the 'year' column will be a datetime column If `centroids` is True, two new columns are added: ['centroid_lat', 'centroid_lon'] If `year` is an integer, the dataset will be filtered for that year """ df = _get_dataset("gapminder") if year: df = df[df["year"] == year] if datetimes: df["year"] = (df["year"].astype(str) + "-01-01").astype("datetime64[ns]") if not centroids: df = df.drop(["centroid_lat", "centroid_lon"], axis=1) if pretty_names: df.rename( mapper=dict( country="Country", continent="Continent", year="Year", lifeExp="Life Expectancy", gdpPercap="GDP per Capita", pop="Population", iso_alpha="ISO Alpha Country Code", iso_num="ISO Numeric Country Code", centroid_lat="Centroid Latitude", centroid_lon="Centroid Longitude", ), axis="columns", inplace=True, ) return df def tips(pretty_names=False): """ Each row represents a restaurant bill. https://vincentarelbundock.github.io/Rdatasets/doc/reshape2/tips.html Returns: A `pandas.DataFrame` with 244 rows and the following columns: `['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size']`.""" df = _get_dataset("tips") if pretty_names: df.rename( mapper=dict( total_bill="Total Bill", tip="Tip", sex="Payer Gender", smoker="Smokers at Table", day="Day of Week", time="Meal", size="Party Size", ), axis="columns", inplace=True, ) return df def iris(): """ Each row represents a flower. https://en.wikipedia.org/wiki/Iris_flower_data_set Returns: A `pandas.DataFrame` with 150 rows and the following columns: `['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species', 'species_id']`.""" return _get_dataset("iris") def wind(): """ Each row represents a level of wind intensity in a cardinal direction, and its frequency. Returns: A `pandas.DataFrame` with 128 rows and the following columns: `['direction', 'strength', 'frequency']`.""" return _get_dataset("wind") def election(): """ Each row represents voting results for an electoral district in the 2013 Montreal mayoral election. Returns: A `pandas.DataFrame` with 58 rows and the following columns: `['district', 'Coderre', 'Bergeron', 'Joly', 'total', 'winner', 'result', 'district_id']`.""" return _get_dataset("election") def election_geojson(): """ Each feature represents an electoral district in the 2013 Montreal mayoral election. Returns: A GeoJSON-formatted `dict` with 58 polygon or multi-polygon features whose `id` is an electoral district numerical ID and whose `district` property is the ID and district name.""" import gzip import json import os path = os.path.join( os.path.dirname(os.path.dirname(__file__)), "package_data", "datasets", "election.geojson.gz", ) with gzip.GzipFile(path, "r") as f: result = json.loads(f.read().decode("utf-8")) return result def carshare(): """ Each row represents the availability of car-sharing services near the centroid of a zone in Montreal over a month-long period. Returns: A `pandas.DataFrame` with 249 rows and the following columns: `['centroid_lat', 'centroid_lon', 'car_hours', 'peak_hour']`.""" return _get_dataset("carshare") def stocks(indexed=False, datetimes=False): """ Each row in this wide dataset represents closing prices from 6 tech stocks in 2018/2019. Returns: A `pandas.DataFrame` with 100 rows and the following columns: `['date', 'GOOG', 'AAPL', 'AMZN', 'FB', 'NFLX', 'MSFT']`. If `indexed` is True, the 'date' column is used as the index and the column index If `datetimes` is True, the 'date' column will be a datetime column is named 'company'""" df = _get_dataset("stocks") if datetimes: df["date"] = df["date"].astype("datetime64[ns]") if indexed: df = df.set_index("date") df.columns.name = "company" return df def experiment(indexed=False): """ Each row in this wide dataset represents the results of 100 simulated participants on three hypothetical experiments, along with their gender and control/treatment group. Returns: A `pandas.DataFrame` with 100 rows and the following columns: `['experiment_1', 'experiment_2', 'experiment_3', 'gender', 'group']`. If `indexed` is True, the data frame index is named "participant" """ df = _get_dataset("experiment") if indexed: df.index.name = "participant" return df def medals_wide(indexed=False): """ This dataset represents the medal table for Olympic Short Track Speed Skating for the top three nations as of 2020. Returns: A `pandas.DataFrame` with 3 rows and the following columns: `['nation', 'gold', 'silver', 'bronze']`. If `indexed` is True, the 'nation' column is used as the index and the column index is named 'medal'""" df = _get_dataset("medals") if indexed: df = df.set_index("nation") df.columns.name = "medal" return df def medals_long(indexed=False): """ This dataset represents the medal table for Olympic Short Track Speed Skating for the top three nations as of 2020. Returns: A `pandas.DataFrame` with 9 rows and the following columns: `['nation', 'medal', 'count']`. If `indexed` is True, the 'nation' column is used as the index.""" df = _get_dataset("medals").melt( id_vars=["nation"], value_name="count", var_name="medal" ) if indexed: df = df.set_index("nation") return df def _get_dataset(d): import pandas import os return pandas.read_csv( os.path.join( os.path.dirname(os.path.dirname(__file__)), "package_data", "datasets", d + ".csv.gz", ) )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@data@__init__.py@.PATH_END.py
{ "filename": "grid_parameters.py", "repo_name": "dmvandamt/beyonce", "repo_path": "beyonce_extracted/beyonce-main/beyonce/shallot/grid_parameters.py", "type": "Python" }
""" This module contains the parameter class used to hold grid information and instantiate new shallot grids. """ from __future__ import annotations import os import numpy as np import beyonce.validate as validate from beyonce.shallot.errors import LoadError, InvalidBoundsError, OriginMissingError class Parameters: """ This class contains all the information pertaining to the grid: dx (x-coordinate of disk centre w.r.t. eclipse centre [t_ecl]) dy (y-coordinate of disk centre w.r.t. eclipse centre [t_ecl]) rf (extent of rf_array in one-direction) rf_array (radius factor that compares with the smallest disk at a given point) grid_shape (shape of the total grid) slice_shape (shape of dy, dx slice) extendable (whether the grid contains point (0, 0)) It also contains methods to save and load the grid parameters. """ def __init__(self, min_x: float, max_x: float, num_x: int, min_y: float, max_y: float, num_y: int, max_rf: float, num_rf: int ) -> None: """ This is the constructor for the disk grid parameter class Parameters ---------- num_xy : integer This is the resolution of the grid in the dx and dy directions. maximum_radius : float This is the maximum radius of the disk [t_ecl]. num_rf : integer This is the resolution of the grid in the rf direction. Note that the size of this grid dimension is then (2 * num_rf - 1). maximum_rf : float This is the maximum rf value. """ self.dx = self._determine_dx(min_x, max_x, num_x) self.dy = self._determine_dy(min_y, max_y, num_y) self.rf, self.rf_array = self._determine_rf(max_rf, num_rf) self.grid_shape, self.slice_shape = self._determine_grid_and_slice_shape() self.extendable = self._determine_extendable() def __str__(self) -> str: """ This returns the string representation of the class. Returns ------- str_string : str String representation of the Parameters class. """ return self.__repr__() def __repr__(self) -> str: """ This generates a string representation of the grid parameters object. Returns ------- repr_string : str Representation string of the grid parameters class. """ dy, dx, rf_array = self.get_vectors() lines: list[str] = [""] lines.append("Grid Parameters") lines.append(28 * "-") dx_min = f'{f"{dx[0]:.2f}":>6}' dx_max = f'{f"{dx[-1]:.2f}":>6}' lines.append(f"dx: {dx_min} -> {dx_max} ({len(dx)})") dy_min = f'{f"{dy[0]:.2f}":>6}' dy_max = f'{f"{dy[-1]:.2f}":>6}' lines.append(f"dy: {dy_min} -> {dy_max} ({len(dy)})") rf_min = f'{f"{1:.2f}":>6}' rf_max = f'{f"{rf_array[0]:.2f}":>6}' rf_num = len(rf_array) lines.append(f"rf: {rf_max} -> {rf_min} -> {rf_max} ({rf_num})") lines.append(f"grid_shape: {self.grid_shape}") repr_string = "\n".join(lines) return repr_string def __eq__(self, other: Parameters) -> bool: """ This method is used to determine whether or not two instances are equal to each other ` Returns ------- equal : bool Whether two class instances contain the same information. """ dx_equal = np.all(self.dx == other.dx) dy_equal = np.all(self.dy == other.dy) rf_equal = np.all(self.rf == other.rf) equal = dx_equal and dy_equal and rf_equal return equal def _generate_vector(self, min_value : float, max_value : float, num_points : int, name_vector : str ) -> np.ndarray: """ This method generates a linspace array defined by the input parameters Parameters ---------- min_value : float The minimum value of the vector. max_value : float The maximum value of the vector. num_points : int The length of the vector. name_vector : str The name of the vector attached to error messages. """ name_vector = validate.string(name_vector, "name_vector") min_value = validate.number(min_value, "min_value") max_value = validate.number(max_value, "max_value") if min_value >= max_value: raise InvalidBoundsError( f"min_{name_vector}", min_value, f"max_{name_vector}", max_value ) num_points = validate.number(num_points, "num_points", check_integer=True, lower_bound=1) return np.linspace(min_value, max_value, num_points) def _determine_dx(self, min_x: float, max_x: float, num_x: int ) -> np.ndarray: """ This method is used to determine the dx vector Parameters ---------- min_x : float The minimum value of x [t_ecl]. max_x : float The maximum value of x [t_ecl]. num_x : int The number of dx elements. Returns ------- dx : np.ndarray Grid dx dimension vector. """ return self._generate_vector(min_x, max_x, num_x, "x")[None, :, None] def _determine_dy(self, min_y: float, max_y: float, num_y: int ) -> np.ndarray: """ This method is used to determine the dx vector Parameters ---------- min_y : float The minimum value of y [t_ecl]. max_y : float The maximum value of y [t_ecl]. num_y : int The number of dy elements. Returns ------- dy : np.ndarray Grid dy dimension vector. """ return self._generate_vector(min_y, max_y, num_y, "y")[:, None, None] def _determine_rf(self, max_rf: float, num_rf: int ) -> tuple[np.ndarray, np.ndarray]: """ This method is used to determine the dx vector Parameters ---------- max_rf : float The maximum value of rf [-]. num_rf : int The number of rf elements (in one direction). Returns ------- rf : np.ndarray Rf range from 1 to max_rf in num_rf. rf_array : np.ndarray Grid rf dimension vector. """ rf = self._generate_vector(1, max_rf, num_rf, "rf") rf_array = np.concatenate((np.flip(rf), rf[1:]), 0) return rf, rf_array def _determine_grid_and_slice_shape(self) -> tuple[ tuple[int, int, int], tuple[int, int] ]: """ This method sets useful grid parameters (grid shape and slice shape). Returns ------- grid_shape : tuple """ dy, dx, rf_array = self.get_vectors() grid_shape = (len(dy), len(dx), len(rf_array)) slice_shape = (len(dy), len(dx)) return grid_shape, slice_shape def _determine_extendable(self) -> bool: """ This method is used to determine whether this particular set of grid parameters can be extended. Returns ------- extendable : bool Whether the parameters object can be pe """ dy, dx, _ = self.get_vectors() extendable = dy[0] == 0 and dx[0] == 0 return extendable def extend_grid(self) -> None: """ This method is used to reflect the grid parameters about the x and y axes. """ if not self.extendable: raise OriginMissingError("grid") num_y, num_x = self.slice_shape max_y = self.dy[-1, 0, 0] max_x = self.dx[0, -1, 0] self.dx = self._determine_dx(-max_x, max_x, 2 * num_x - 1) self.dy = self._determine_dy(-max_y, max_y, 2 * num_y - 1) self.grid_shape, self.slice_shape = self._determine_grid_and_slice_shape() self.extendable = self._determine_extendable() def get_vectors(self) -> tuple[np.ndarray, np.ndarray, np.ndarray]: """ This method returns the flattened dy, dx, and rf grid vectors. Returns ------- dy : np.ndarray The y coordinates of the centre of the ellipse [t_ecl] dx : np.ndarray The x coordinates of the centre of the ellipse [t_ecl] rf_array : np.ndarray The rf radius stretch factors of the ellipse [-] """ return self.dy.flatten(), self.dx.flatten(), self.rf_array def save(self, directory: str) -> None: """ This method saves all the information of this object to a specified directory. Parameters ---------- directory : str File path for the saved information. """ directory = validate.string(directory, "directory") if not os.path.exists(directory): os.mkdir(directory) np.save(f"{directory}/dx", self.dx) np.save(f"{directory}/dy", self.dy) np.save(f"{directory}/rf", self.rf) np.save(f"{directory}/rf_array", self.rf_array) @classmethod def load(cls, directory: str) -> Parameters: """ This method loads all the information of this object from a specified directory. Parameters ---------- directory : str File path for the saved information. Returns ------- parameters : Parameters This is the loaded object. """ directory = validate.string(directory, "directory") try: parameters = cls(0, 1, 1, 0, 1, 1, 2, 1) parameters.dx = np.load(f"{directory}/dx.npy") parameters.dy = np.load(f"{directory}/dy.npy") parameters.rf = np.load(f"{directory}/rf.npy") parameters.rf_array = np.load(f"{directory}/rf_array.npy") parameters.grid_shape, parameters.slice_shape = ( parameters._determine_grid_and_slice_shape() ) parameters.extendable = parameters._determine_extendable() except Exception: raise LoadError("parameters", directory) return parameters
dmvandamtREPO_NAMEbeyoncePATH_START.@beyonce_extracted@beyonce-main@beyonce@shallot@grid_parameters.py@.PATH_END.py
{ "filename": "_linepositionsrc.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/scattersmith/hoverlabel/font/_linepositionsrc.py", "type": "Python" }
import _plotly_utils.basevalidators class LinepositionsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="linepositionsrc", parent_name="scattersmith.hoverlabel.font", **kwargs, ): super(LinepositionsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@scattersmith@hoverlabel@font@_linepositionsrc.py@.PATH_END.py
{ "filename": "ChangeLog.md", "repo_name": "PhaseTracer/PhaseTracer", "repo_path": "PhaseTracer_extracted/PhaseTracer-master/ChangeLog.md", "type": "Markdown" }
## PhaseTracer-1.0.0 [March 4, 2020] * Initial release ## PhaseTracer-1.0.1 [April 10, 2020] * Setup automatic build & tests etc * BugFix: calculate_sm_masses setting in FlexibleSUSY should be set to 1 or 0. * Fix cmake building of FS example to always use tagged version v2.4.1 of the code. ## PhaseTracer-1.0.2 [April 11, 2020] * Specify axis limits for phase_plotter * Update FS version used to 2.4.2, avoids compilation complaining about an unused Mathematica interafce problem on Mac OS with Mathamatica 12. ## PhaseTracer-1.0.3 [April 15, 2020] * Many thanks to Jingwei Lian for pointing out a bug in THDMIISNMSSMBCsimple.hpp. get_vector_debye_sq() returns two W boson masses, instead of one W boson mass and one Z boson mass. ## PhaseTracer-1.1.0 [January 4, 2021] * Update BSMPT used in PhaseTracer to version 2 * Add requirement on cmake version, >=3.9, because of OpenMP support * Add a setting about BOOST in cmake to fix compiling problem with BOOST.1.72 * Add functions, 'get_minima_at_t_low' and 'get_minima_at_t_high', to get minima at lowest and highest temperature. * Add function, 'get_deepest_phase_at_T', to get the deepest phase at T. * Change 'V1' function in 'one_loop_potential' class to virtual function * Fix a bug that counter_term is not added to zero-temperature potential ## PhaseTracer-2.0 [November 5, 2021] * Added xi to OneLoopPotential class, as well as the relevant contributions to V1 * Add high-temperature expansions into the one-loop potential class * Add On-shell like scheme example * Add covariant gauge example * Add h_bar_expansion method to obtain TC * Merge interface with TransitionSlover * Modify the one-loop potential class to interface with DRalgo * Add calculation of action, and relevant outputs * Add calculation of nucleation temperature * Add calculation of alpha, beta * Add calculation of GW spectrum, and relevant outputs * Add calculation of GW SNR, and relevant outputs
PhaseTracerREPO_NAMEPhaseTracerPATH_START.@PhaseTracer_extracted@PhaseTracer-master@ChangeLog.md@.PATH_END.py
{ "filename": "plot_P_Pdot_search.py", "repo_name": "nhurleywalker/GPMTransient", "repo_path": "GPMTransient_extracted/GPMTransient-main/P_Pdot_diagram/plot_P_Pdot_search.py", "type": "Python" }
#from astropy.table import Table #from astropy.coordinates import SkyCoord #from astropy import unit as u #import scipy.ndimage #from scipy.ndimage.filters import gaussian_filter import numpy as np from matplotlib import pyplot as plt from matplotlib import markers from matplotlib.path import Path from matplotlib.colors import LogNorm import matplotlib.font_manager from matplotlib import rc import pandas as pd import scipy.stats from matplotlib.ticker import FormatStrFormatter SOURCE_CSV = "chi2_grid.csv" def P(f0): return 1/f0 def Pdot(f0, f1): return - f1 / (f0**2) # https://www.cv.nrao.edu/~sransom/web/Ch6.html def Edot(P, Pdot, I=1.e45): return 4 * np.pi**2 * I * Pdot / P**3 def B(P, Pdot): return 3.2e19 * np.sqrt(P*Pdot) def tau(P, Pdot): return P / (2*Pdot) def s_to_Myr(t): return t / (60 * 60 * 24 * 365.25 * 1.e6) # Nature requires sans-serif fonts plt.rcParams.update({ "font.size": 7, "font.sans-serif": ["Helvetica"]}) cm = 1/2.54 # centimeters in inches arrowprops = dict(arrowstyle="->", lw=0.5, shrinkA=0.0) DOF = 57 # 59 TOAs minus 2 fitted parameters df = pd.read_csv(SOURCE_CSV, delimiter=",") #df.columns = ["Name", "RA", "Dec"] print(df.keys()) xsize = len(np.unique(df['F0'])) ysize = len(np.unique(df['F1'])) arr = np.array(df['chi2']).reshape((ysize, xsize)) F0 = np.array(df['F0']).reshape((ysize, xsize)) F1 = np.array(df['F1']).reshape((ysize, xsize)) # First island: minimum chi^2 in main ellipse: best_f0 = df['F0'][np.argmin(arr)] best_f1 = df['F1'][np.argmin(arr)] best_P = P(best_f0) best_Pdot = Pdot(best_f0, best_f1) bestfit = np.min(arr) # Second island: minimum chi^2 in lower-left ellipse: # 1, 2, and 3 sigma confidence limits nsigma = np.arange(1, 4) # These are the CDFs going from -infinity to nsigma. So subtract away 0.5 and double for the 2-sided values CIs = (scipy.stats.norm().cdf(nsigma) - 0.5) * 2 print(f"Confidence intervals for {nsigma} sigma: {CIs}") # chi^2 random variable for 2 parameters rv = scipy.stats.chi2(2) # The ppf = Percent point function is the inverse of the CDF contour_levels = rv.ppf(CIs) print(f"Contour levels for {nsigma} sigma and 2 parameters: {contour_levels}") # Do the same for a 1 parameter case #CIs = (scipy.stats.norm().cdf(nsigma) - 0.5) * 2 #print(f"Confidence intervals for {nsigma} sigma: {CIs}") # chi^2 random variable for 1 parameters #rv = scipy.stats.chi2(1) #contour_levels_1param = rv.ppf(CIs) #print(f"Contour levels for {nsigma} sigma and 1 parameter: {contour_levels_1param}") # Plot the grid/contour results #fig, ax = plt.subplots(figsize=(16, 9)) # Just plot the values offset from the best-fit values #https://www.nature.com/nature/for-authors/final-submission#:~:text=For%20guidance%2C%20Nature's%20standard%20figure,(120%E2%80%93136%20mm). fig = plt.figure(figsize=(8.9*cm,7.8*cm)) ax = fig.add_subplot(111) twod = ax.contour( 1.e9*(F0 - best_f0), 1.e18*F1, arr - bestfit, levels=contour_levels, colors="b", linewidths=[0.5], ) fmt = {} strs = ['$1\\sigma$', '$2\\sigma$', '$3\\sigma$'] for l, s in zip(twod.levels, strs): fmt[l] = s ax.clabel(twod, twod.levels, inline=True, fmt=fmt, fontsize=5) xy = twod.collections[2].get_paths()[0].vertices sig3_f0, sig3_f1 = xy[np.argmin(xy.T[1])] sig3_P = P(sig3_f0/1.e9 + best_f0) sig3_Pdot = Pdot(sig3_f0/1.e9 + best_f0, sig3_f1/1.e18) sig3_B = B(sig3_P, sig3_Pdot) sig3_Edot = Edot(sig3_P, sig3_Pdot) sig3_tau = s_to_Myr(tau(sig3_P, sig3_Pdot)) xy = twod.collections[1].get_paths()[0].vertices sig2_f0, sig2_f1 = xy[np.argmin(xy.T[1])] sig2_P = P(sig2_f0/1.e9 + best_f0) sig2_Pdot = Pdot(sig2_f0/1.e9 + best_f0, sig2_f1/1.e18) sig2_B = B(sig2_P, sig2_Pdot) sig2_Edot = Edot(sig2_P, sig2_Pdot) sig2_tau = s_to_Myr(tau(sig2_P, sig2_Pdot)) xy = twod.collections[0].get_paths()[0].vertices sig1_f0, sig1_f1 = xy[np.argmin(xy.T[1])] sig1_P = P(sig1_f0/1.e9 + best_f0) sig1_Pdot = Pdot(sig1_f0/1.e9 + best_f0, sig1_f1/1.e18) sig1_B = B(sig1_P, sig1_Pdot) sig1_Edot = Edot(sig1_P, sig1_Pdot) sig1_tau = s_to_Myr(tau(sig1_P, sig1_Pdot)) im = ax.imshow(arr/DOF, origin="lower", extent=[1.e9*(np.nanmin(df['F0'])- best_f0), 1.e9*(np.nanmax(df['F0'])-best_f0), 1.e18*np.nanmin(df['F1']), 1.e18*np.nanmax(df['F1'])], interpolation="none", aspect="auto", cmap="bone_r", norm=LogNorm(vmin=1, vmax=10)) ax.set_ylim([-1.5, 1.5]) ax.set_xlim([-0.2, 0.2]) ax.set_xlabel(r'$\Delta f$ / nHz') ax.set_ylabel(r'$\Delta \dot{f}$ / $10^{-18}$') ax.axvline(0, lw=0.5, ls="--", color="k", alpha=0.5) ax.axhline(0, lw=0.5, ls="--", color="k", alpha=0.5) ax.scatter(best_f0 - best_f0, 1.e18*best_f1, marker="o", zorder=30, lw=0.5, s=10) #ax.errorbar(sig1_f0 - best_f0/1.e9, sig1_f1, color='magenta', **errargs) arrowlength = 0.15 ax.annotate("", xy=(sig1_f0 - best_f0/1.e9, sig1_f1 + arrowlength), xytext=(sig1_f0 - best_f0/1.e9, sig1_f1), arrowprops = {'color' : 'magenta', **arrowprops}) ax.annotate("", xy=(sig2_f0 - best_f0/1.e9, sig2_f1 + arrowlength), xytext=(sig2_f0 - best_f0/1.e9, sig2_f1), arrowprops = {'color' : 'violet', **arrowprops}) ax.annotate("", xy=(sig3_f0 - best_f0/1.e9, sig3_f1 + arrowlength), xytext=(sig3_f0 - best_f0/1.e9, sig3_f1), arrowprops = {'color' : 'thistle', **arrowprops}) #ax.errorbar(sig2_f0 - best_f0/1.e9, sig2_f1, color='violet', **errargs) #ax.errorbar(sig3_f0 - best_f0/1.e9, sig3_f1, color='thistle', **errargs) cb = plt.colorbar(im, label=r"reduced $\chi^2$", format=FormatStrFormatter('%2.0f')) cb.ax.yaxis.set_minor_formatter(FormatStrFormatter('%2.0f')) fig.savefig("Ppdot_search.pdf", bbox_inches="tight", dpi=300) fig.savefig("Ppdot_search.eps", bbox_inches="tight", dpi=300) print(f"Best F0 = {best_f0}, Best F1 = {best_f1}") print(f"Best P = {best_P}, Best Pdot = {best_Pdot}") print(f"1-sigma limit F0 = {sig1_f0/1.e9 + best_f0}, 1-sigma limit F1 = {sig1_f1/1.e18}") print(f"1-sigma limit P = {sig1_P}, 1-sigma limit Pdot = {sig1_Pdot}") print(f"1-sigma limit Edot = {sig1_Edot:2.2g} erg/s, B = {sig1_B:2.2g} G, tau = {sig1_tau:2.2g} Myr") print(f"2-sigma limit F0 = {sig2_f0/1.e9 + best_f0}, 2-sigma limit F1 = {sig2_f1/1.e18}") print(f"2-sigma limit P = {sig2_P}, 2-sigma limit Pdot = {sig2_Pdot}") print(f"2-sigma limit Edot = {sig2_Edot:2.2g} erg/s, B = {sig2_B:2.2g} G, tau = {sig2_tau:2.2g} Myr") print(f"3-sigma limit F0 = {sig3_f0/1.e9 + best_f0}, 3-sigma limit F1 = {sig3_f1/1.e18}") print(f"3-sigma limit P = {sig3_P}, 3-sigma limit Pdot = {sig3_Pdot}") print(f"3-sigma limit Edot = {sig3_Edot:2.2g} erg/s, B = {sig3_B:2.2g} G, tau = {sig3_tau:2.2g} Myr") print(f"Reduced chi^2 of fit = {bestfit/DOF}") #fig.savefig("P_Pdot.pdf", bbox_inches="tight", dpi=300) #fig.savefig("P_Pdot.pdf", bbox_inches="tight", dpi=300) #fig.savefig("P_Pdot.pdf", bbox_inches="tight", dpi=300) #fig.savefig("P_Pdot.png", bbox_inches="tight", dpi=300) #fig.savefig("P_Pdot.eps", bbox_inches="tight", dpi=300)
nhurleywalkerREPO_NAMEGPMTransientPATH_START.@GPMTransient_extracted@GPMTransient-main@P_Pdot_diagram@plot_P_Pdot_search.py@.PATH_END.py
{ "filename": "README.md", "repo_name": "EranOfek/AstroPack", "repo_path": "AstroPack_extracted/AstroPack-main/matlab/apps/app_snr/README.md", "type": "Markdown" }
# SNR Applications
EranOfekREPO_NAMEAstroPackPATH_START.@AstroPack_extracted@AstroPack-main@matlab@apps@app_snr@README.md@.PATH_END.py
{ "filename": "makeMassFunctionPlotsCCL_recovered.py", "repo_name": "simonsobs/nemo", "repo_path": "nemo_extracted/nemo-main/examples/SOSims/validationScripts/makeMassFunctionPlotsCCL_recovered.py", "type": "Python" }
""" Plot the mass function in z bins. Range adjusted to drop the last bin, which is more incomplete in the sense that it may not cover that full mass bin (whereas all other bins are guaranteed to by definition). """ import os import sys import astropy.table as atpy import astropy.io.fits as pyfits import IPython import numpy as np from nemo import plotSettings, completeness, signals import pylab as plt from scipy import stats from astLib import * import pyccl as ccl from colossus.lss import mass_function #------------------------------------------------------------------------------------------------------------ # Options SNRCut=4.0 selFnDir="../MFMF_SOSim_3freq_tiles/selFn" footprintLabel=None massCol='M200m' zBinEdges=[0.2, 0.5, 0.9, 1.2] zMin=min(zBinEdges) zMax=max(zBinEdges) log10MBinEdges=np.linspace(13.8, 15.5, 18) symbs=['D', 's', 'o'] # Handling different mass definitions if massCol == 'M500c': delta=500 rhoType="critical" elif massCol == 'M200m': delta=200 rhoType="matter" else: raise Exception("Unsupported massCol - should be M500c or M200m") deltaLabel="%d%s" % (delta, rhoType[0]) log10MBinCentres=(log10MBinEdges[1:]+log10MBinEdges[:-1])/2 # Set up Websky cosmology H0, Om0, Ob0, sigma_8, ns = 68.0, 0.31, 0.049, 0.81, 0.965 selFn=completeness.SelFn(selFnDir, SNRCut, footprintLabel = footprintLabel, zStep = 0.02, delta = delta, rhoType = rhoType) scalingRelationDict=selFn.scalingRelationDict selFn.update(H0, Om0, Ob0, sigma_8, ns, scalingRelationDict = scalingRelationDict) print("Total area = %.3f square degrees" % (selFn.totalAreaDeg2)) # Load Nemo catalog tab=atpy.Table().read('../MFMF_SOSim_3freq_tiles/MFMF_SOSim_3freq_tiles_M500.fits') tab.rename_column("M500", "M500c") # All the analysis first ------------------------------------------------------------------------------------ # WARNING: We're using halo catalogs, so disabled completeness correction results={} predMz=selFn.mockSurvey.clusterCount for i in range(len(zBinEdges)-1): zMin=zBinEdges[i] zMax=zBinEdges[i+1] label='%.1f < z < %.1f' % (zMin, zMax) fSky=selFn.mockSurvey.areaDeg2/(4*np.pi*(180/np.pi)**2) shellVolumeMpc3=fSky*(selFn.mockSurvey._comovingVolume(zMax)-selFn.mockSurvey._comovingVolume(zMin)) zMask=np.logical_and(selFn.mockSurvey.z >= zMin, selFn.mockSurvey.z < zMax) countsByMass=predMz[zMask, :].sum(axis = 0) predCounts=np.zeros(len(log10MBinEdges)-1) predNumDensity=np.zeros(len(log10MBinEdges)-1) obsCounts=np.zeros(len(log10MBinEdges)-1) obsCountsErr=np.zeros(len(log10MBinEdges)-1) obsNumDensity=np.zeros(len(log10MBinEdges)-1) obsNumDensityErr=np.zeros(len(log10MBinEdges)-1) complCorr=np.zeros(len(log10MBinEdges)-1) # Holds average completeness in each mass bin h=H0/100. binTab=tab[np.logical_and(tab['redshift'] >= zMin, tab['redshift'] < zMax)] obsLog10Ms=np.log10(binTab[massCol]*1e14) for j in range(len(log10MBinEdges)-1): mMin=log10MBinEdges[j] mMax=log10MBinEdges[j+1] mMask=np.logical_and(selFn.mockSurvey.log10M >= mMin, selFn.mockSurvey.log10M < mMax) predCounts[j]=countsByMass[mMask].sum() obsMask=np.logical_and(obsLog10Ms >= mMin, obsLog10Ms < mMax) obsCounts[j]=obsMask.sum() obsCountsErr[j]=np.sqrt(obsCounts[j]) predNumDensity[j]=predCounts[j]/shellVolumeMpc3 obsNumDensity[j]=obsCounts[j]/shellVolumeMpc3 complCorr[j]=selFn.compMz[zMask, :].mean(axis = 0)[mMask].mean() validMask=(obsCounts > 0) fracErr=obsCountsErr[validMask]/obsCounts[validMask] results[label]={'log10MBinCentres': log10MBinCentres[validMask], 'predCounts': predCounts[validMask], 'obsCounts': obsCounts[validMask], 'obsCountsErr': obsCountsErr[validMask], 'predNumDensity': predNumDensity[validMask], 'obsNumDensity': obsNumDensity[validMask], 'obsNumDensityErr': fracErr*obsNumDensity[validMask], # Completeness corrected 'corr_obsCounts': obsCounts[validMask]/complCorr[validMask], 'corr_obsCountsErr': fracErr*(obsCounts[validMask]/complCorr[validMask]), 'corr_obsNumDensity': obsNumDensity[validMask]/complCorr[validMask], 'corr_obsNumDensityErr': fracErr*(obsNumDensity[validMask]/complCorr[validMask]), } # Counts comparison plot (just N as a function of mass) ----------------------------------------------------- plotSettings.update_rcParams() plt.figure(figsize=(9,6.5)) ax=plt.axes([0.15, 0.12, 0.84, 0.85]) for key, symb in zip(results.keys(), symbs): plotLog10MBinCentres=results[key]['log10MBinCentres'] pred=results[key]['predCounts'] obs=results[key]['obsCounts'] obsErr=results[key]['obsCountsErr'] corr_obs=results[key]['corr_obsCounts'] corr_obsErr=results[key]['corr_obsCountsErr'] plt.errorbar(plotLog10MBinCentres, obs, yerr = obsErr, color = 'none', markeredgecolor = 'k', elinewidth = 3, fmt = symb, ms = 6, zorder = 900) plt.errorbar(plotLog10MBinCentres, corr_obs, yerr = corr_obsErr, elinewidth = 3, fmt = symb, ms = 6, zorder = 900, label = key) plt.plot(plotLog10MBinCentres, pred, 'k-') plt.semilogy() plt.ylim(0.1, 5e5) plt.xlim(14.0, log10MBinEdges.max()) plt.xlabel("log$_{10}$($M_{\\rm %s}$ / $M_{\odot}$)" % (deltaLabel)) plt.ylabel("$N$") plt.legend() plt.savefig("Recovered_%s_counts.png" % (massCol)) plt.close() # Counts per unit volume (N per Mpc^3) ---------------------------------------------------------------------- plotSettings.update_rcParams() plt.figure(figsize=(9,6.5)) ax=plt.axes([0.15, 0.12, 0.84, 0.85]) for key, symb in zip(results.keys(), symbs): plotLog10MBinCentres=results[key]['log10MBinCentres'] pred=results[key]['predNumDensity'] obs=results[key]['obsNumDensity'] obsErr=results[key]['obsNumDensityErr'] corr_obs=results[key]['corr_obsNumDensity'] corr_obsErr=results[key]['corr_obsNumDensityErr'] plt.errorbar(plotLog10MBinCentres, obs, yerr = obsErr, color = 'none', markeredgecolor = 'k', elinewidth = 3, fmt = symb, ms = 6, zorder = 900) plt.errorbar(plotLog10MBinCentres, corr_obs, yerr = corr_obsErr, elinewidth = 3, fmt = symb, ms = 6, zorder = 900, label = key) plt.plot(plotLog10MBinCentres, pred, 'k-') plt.semilogy() #plt.ylim(0.1, 5e5) plt.xlim(14.0, log10MBinEdges.max()) plt.xlabel("log$_{10}$($M_{\\rm %s}$ / $M_{\odot}$)" % (deltaLabel)) plt.ylabel("$N$ (Mpc$^{-3}$)") plt.legend() plt.savefig("Recovered_%s_numDensity.png" % (massCol)) plt.close() IPython.embed() sys.exit()
simonsobsREPO_NAMEnemoPATH_START.@nemo_extracted@nemo-main@examples@SOSims@validationScripts@makeMassFunctionPlotsCCL_recovered.py@.PATH_END.py
{ "filename": "ryota_plot.py", "repo_name": "grzeimann/Remedy", "repo_path": "Remedy_extracted/Remedy-master/ryota_plot.py", "type": "Python" }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Sep 13 09:29:15 2019 @author: gregz """ from astroquery.sdss import SDSS from astropy.table import Table import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import seaborn as sns import numpy as np import matplotlib from tables import open_file from astropy.io import fits sns.set_context('talk') ML = MultipleLocator(500) ml = MultipleLocator(100) MLy = MultipleLocator(1) mly = MultipleLocator(0.2) ncat = Table.read('ryota.dat', format='ascii.fixed_width_two_line') sp = SDSS.get_spectra(matches=ncat) index = -5 out_pdf = 'ryota_hetdex.pdf' F = fits.open('ryota_hetdex_spectra.fits') pdf = matplotlib.backends.backend_pdf.PdfPages(out_pdf) hdfile = open_file('survey_hdr1.h5') t = Table(hdfile.root.Survey[:]) cnt = 0 for index in np.arange(len(ncat)): if (cnt % 3) == 0: plot_num = 311 fig = plt.figure(figsize=(8.5, 11)) # inches plt.subplot(plot_num) plt.plot(10**(sp[index][1].data['loglam']), sp[index][1].data['flux'], lw=1, alpha=0.5, label='SDSS') flam = 10**(-0.4 * (ncat[index]['g']-23.9)) * 1e-29 * 3e18 / 5000.**2 * 1e17 plt.scatter(5000., flam, marker='x', color='k', s=150) for ind in np.where(ncat['specobjid'][index] == F[1].data['source_id'])[0]: st = str(F[1].data['obs_id'][ind]) sel1 = np.where((t['date'] == int(st[:8])) * (t['obsid'] == int(st[-3:])))[0] x = t[sel1[0]] sel = F[4].data[ind] < 0.8 data = F[2].data[ind] * 1. data[sel] = np.nan plt.plot(np.linspace(3470, 5540, 1036), data, 'r-', alpha=0.4, label=st) plt.xlim([3450, 5550]) plt.xlabel(r'Wavelength ($\AA$)') plt.ylabel(r'F$_{\lambda}$ (1e-17 ergs/s/cm^2/$\AA$)') if (cnt % 3) == 2: pdf.savefig(fig) if index == (len(ncat)-1): pdf.savefig(fig) plot_num +=1 cnt += 1 pdf.close()
grzeimannREPO_NAMERemedyPATH_START.@Remedy_extracted@Remedy-master@ryota_plot.py@.PATH_END.py
{ "filename": "quickguide.py", "repo_name": "exosports/BART", "repo_path": "BART_extracted/BART-master/scripts/quickguide.py", "type": "Python" }
# ::: Frequently-Used Scripts ::: # ------------------------------- # Index: # ( 0) Make a log-scaled pressure profile. # ( 1) Make a Temperature profile. # ( 2) Make an atmospheric file with uniform abundances. # ( 3) Read and plot a transit spectrum. # ( 4) Calculate the minimum and maximum line-profile widths. # ( 5) Plot the posterior TP profiles. # :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # Preamble: import sys import numpy as np import matplotlib.pyplot as plt import scipy.constants as sc # Assuming that the current working directory is /home/.../BART/scripts/ sys.path.append("../code/") # :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # ( 0) Make a log-scaled pressure profile: import makeP as mp # Output pressure file: pfile = "layers.press" # Pressure variables: nlayers = 100 ptop = 1e-5 # bar pbottom = 1e2 # bar # Write the pressure to file: mp.makeP(nlayers, ptop, pbottom, pfile, log=True) # :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # ( 1) Make a Temperature profile using model from Line et al. (2013): import PT as PT # [Run script ( 0) to make a pressure profile file] # Read the pressure file to an array: press = PT.read_press_file(pfile) # System parameters: Rplanet = 1.0*6.995e8 # m Tstar = 5700.0 # K Tint = 100.0 # K gplanet = 2200.0 # cm s-2 smaxis = 0.050*sc.au # m # Fitting parameters: [log10(kappa), log10(g1), log10(g2), alpha, beta] params = np.asarray( [-2.0, -0.55, -0.8, 0.5, 1.0]) # Calculate the temperature profile: temp = PT.PT_line(press, params, Rplanet, Tstar, Tint, smaxis, gplanet) # :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # ( 2) Make an atmospheric file with uniform abundances: import makeatm as ma # Output filename: atmfile = "uniform.atm" # Elemental abundances file: elemabun = "../inputs/abundances_Asplund2009.txt" # Transiting extrasolar planet filename: tep = "../inputs/tep/HD209458b.tep" # Atmospheric species: species = "He H2 CO CO2 CH4 H2O NH3 C2H2 C2H4" # Abundances (mole mixing ratio): abundances = "0.15 0.85 1e-4 1e-4 1e-4 1e-4 1e-10 1e-10 1e-10" # [Run script ( 2) to make a temperature profile] # Make the atmospheric file: ma.uniform(atmfile, pfile, elemabun, tep, species, abundances, temp) # :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # ( 3) Read and plot a transit spectrum: import readtransit as rt wl, spectrum = rt.readspectrum("eclipse_out.dat.-Flux", 0) plt.figure(1) plt.clf() plt.semilogx(wl, spectrum, "b", label="Planet spectrum") plt.xlim(wl[-1], wl[0]) plt.legend(loc="best") # :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # ( 4) Calculate the minimum and maximum line-profile widths: # TBD # :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # ( 5) Plot the posterior TP profiles: # TBD
exosportsREPO_NAMEBARTPATH_START.@BART_extracted@BART-master@scripts@quickguide.py@.PATH_END.py
{ "filename": "readCoREAS.py", "repo_name": "nu-radio/NuRadioMC", "repo_path": "NuRadioMC_extracted/NuRadioMC-master/NuRadioReco/modules/io/coreas/readCoREAS.py", "type": "Python" }
from NuRadioReco.modules.base.module import register_run import h5py import NuRadioReco.framework.event import NuRadioReco.framework.station import NuRadioReco.framework.radio_shower from radiotools import coordinatesystems as cstrafo from NuRadioReco.modules.io.coreas import coreas from NuRadioReco.utilities import units import numpy as np import numpy.random import logging import time import os class readCoREAS: def __init__(self): self.__t = 0 self.__t_event_structure = 0 self.__t_per_event = 0 self.__input_files = None self.__station_id = None self.__n_cores = None self.__max_distace = None self.__current_input_file = None self.__random_generator = None self.logger = logging.getLogger('NuRadioReco.readCoREAS') def begin(self, input_files, station_id, n_cores=10, max_distance=2 * units.km, seed=None): """ begin method initialize readCoREAS module Parameters ---------- input_files: input files list of coreas hdf5 files station_id: station id id number of the station n_cores: number of cores (integer) the number of random core positions to generate for each input file max_distance: radius of random cores (double or None) if None: max distance is set to the maximum ground distance of the star pattern simulation seed: int (default: None) Seed for the random number generation. If None is passed, no seed is set """ self.__input_files = input_files self.__station_id = station_id self.__n_cores = n_cores self.__max_distace = max_distance self.__current_input_file = 0 self.__random_generator = numpy.random.RandomState(seed) @register_run() def run(self, detector, output_mode=0): """ Read in a random sample of stations from a CoREAS file. A number of random positions is selected within a certain radius. For each position the closest observer is selected and a simulated event is created for that observer. Parameters ---------- detector: Detector object Detector description of the detector that shall be simulated output_mode: integer (default 0) * 0: only the event object is returned * 1: the function reuturns the event object, the current inputfilename, the distance between the choosen station and the requested core position, and the area in which the core positions are randomly distributed """ while (self.__current_input_file < len(self.__input_files)): t = time.time() t_per_event = time.time() filesize = os.path.getsize(self.__input_files[self.__current_input_file]) if(filesize < 18456 * 2): # based on the observation that a file with such a small filesize is corrupt self.logger.warning("file {} seems to be corrupt, skipping to next file".format(self.__input_files[self.__current_input_file])) self.__current_input_file += 1 continue corsika = h5py.File(self.__input_files[self.__current_input_file], "r") self.logger.info( "using coreas simulation {} with E={:2g} theta = {:.0f}".format( self.__input_files[self.__current_input_file], corsika['inputs'].attrs["ERANGE"][0] * units.GeV, corsika['inputs'].attrs["THETAP"][0] ) ) positions = [] for i, observer in enumerate(corsika['CoREAS']['observers'].values()): position = observer.attrs['position'] positions.append(np.array([-position[1], position[0], 0]) * units.cm) self.logger.debug("({:.0f}, {:.0f})".format(position[0], position[1])) positions = np.array(positions) max_distance = self.__max_distace if(max_distance is None): max_distance = np.max(np.abs(positions[:, 0:2])) area = np.pi * max_distance ** 2 if(output_mode == 0): n_cores = self.__n_cores * 100 # for output mode 1 we want always n_cores in star pattern. Therefore we generate more core positions to be able to select n_cores in the star pattern afterwards elif(output_mode == 1): n_cores = self.__n_cores else: raise ValueError('output mode {} not defined.'.format(output_mode)) theta = self.__random_generator.rand(n_cores) * 2 * np.pi r = (self.__random_generator.rand(n_cores)) ** 0.5 * max_distance cores = np.array([r * np.cos(theta), r * np.sin(theta), np.zeros(n_cores)]).T zenith, azimuth, magnetic_field_vector = coreas.get_angles(corsika) cs = cstrafo.cstrafo(zenith, azimuth, magnetic_field_vector) positions_vBvvB = cs.transform_from_magnetic_to_geographic(positions.T) positions_vBvvB = cs.transform_to_vxB_vxvxB(positions_vBvvB).T dd = (positions_vBvvB[:, 0] ** 2 + positions_vBvvB[:, 1] ** 2) ** 0.5 ddmax = dd.max() self.logger.info("star shape from: {} - {}".format(-dd.max(), dd.max())) cores_vBvvB = cs.transform_from_magnetic_to_geographic(cores.T) cores_vBvvB = cs.transform_to_vxB_vxvxB(cores_vBvvB).T dcores = (cores_vBvvB[:, 0] ** 2 + cores_vBvvB[:, 1] ** 2) ** 0.5 mask_cores_in_starpattern = dcores <= ddmax if((not np.sum(mask_cores_in_starpattern)) and (output_mode == 1)): # handle special case of no core position being generated within star pattern observer = corsika['CoREAS']['observers'].values()[0] evt = NuRadioReco.framework.event.Event(corsika['inputs'].attrs['RUNNR'], corsika['inputs'].attrs['EVTNR']) # create empty event station = NuRadioReco.framework.station.Station(self.__station_id) sim_station = coreas.make_sim_station(self.__station_id, corsika, observer, detector.get_channel_ids(self.__station_id)) station.set_sim_station(sim_station) evt.set_station(station) yield evt, self.__current_input_file, None, area cores_to_iterate = cores_vBvvB[mask_cores_in_starpattern] if(output_mode == 0): # select first n_cores that are in star pattern if(np.sum(mask_cores_in_starpattern) < self.__n_cores): self.logger.warning("only {0} cores contained in star pattern, returning {0} cores instead of {1} cores that were requested".format(np.sum(mask_cores_in_starpattern), self.__n_cores)) else: cores_to_iterate = cores_vBvvB[mask_cores_in_starpattern][:self.__n_cores] self.__t_per_event += time.time() - t_per_event self.__t += time.time() - t for iCore, core in enumerate(cores_to_iterate): t = time.time() # check if out of bounds distances = np.linalg.norm(core[:2] - positions_vBvvB[:, :2], axis=1) index = np.argmin(distances) distance = distances[index] key = list(corsika['CoREAS']['observers'].keys())[index] self.logger.info( "generating core at ground ({:.0f}, {:.0f}), vBvvB({:.0f}, {:.0f}), nearest simulated station is {:.0f}m away at ground ({:.0f}, {:.0f}), vBvvB({:.0f}, {:.0f})".format( cores[iCore][0], cores[iCore][1], core[0], core[1], distance / units.m, positions[index][0], positions[index][1], positions_vBvvB[index][0], positions_vBvvB[index][1] ) ) t_event_structure = time.time() observer = corsika['CoREAS']['observers'].get(key) evt = NuRadioReco.framework.event.Event(self.__current_input_file, iCore) # create empty event station = NuRadioReco.framework.station.Station(self.__station_id) channel_ids = detector.get_channel_ids(self.__station_id) sim_station = coreas.make_sim_station(self.__station_id, corsika, observer, channel_ids) station.set_sim_station(sim_station) evt.set_station(station) sim_shower = coreas.make_sim_shower(corsika, observer, detector, self.__station_id) evt.add_sim_shower(sim_shower) rd_shower = NuRadioReco.framework.radio_shower.RadioShower(station_ids=[station.get_id()]) evt.add_shower(rd_shower) if(output_mode == 0): self.__t += time.time() - t self.__t_event_structure += time.time() - t_event_structure yield evt elif(output_mode == 1): self.__t += time.time() - t self.__t_event_structure += time.time() - t_event_structure yield evt, self.__current_input_file, distance, area else: self.logger.debug("output mode > 1 not implemented") raise NotImplementedError self.__current_input_file += 1 def end(self): from datetime import timedelta self.logger.setLevel(logging.INFO) dt = timedelta(seconds=self.__t) self.logger.info("total time used by this module is {}".format(dt)) self.logger.info("\tcreate event structure {}".format(timedelta(seconds=self.__t_event_structure))) self.logger.info("per event {}".format(timedelta(seconds=self.__t_per_event))) return dt
nu-radioREPO_NAMENuRadioMCPATH_START.@NuRadioMC_extracted@NuRadioMC-master@NuRadioReco@modules@io@coreas@readCoREAS.py@.PATH_END.py
{ "filename": "_family.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/cone/legendgrouptitle/font/_family.py", "type": "Python" }
import _plotly_utils.basevalidators class FamilyValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name="family", parent_name="cone.legendgrouptitle.font", **kwargs ): super(FamilyValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "style"), no_blank=kwargs.pop("no_blank", True), strict=kwargs.pop("strict", True), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@cone@legendgrouptitle@font@_family.py@.PATH_END.py
{ "filename": "_ticktextsrc.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py3/plotly/validators/scattermap/marker/colorbar/_ticktextsrc.py", "type": "Python" }
import _plotly_utils.basevalidators class TicktextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="ticktextsrc", parent_name="scattermap.marker.colorbar", **kwargs, ): super(TicktextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py3@plotly@validators@scattermap@marker@colorbar@_ticktextsrc.py@.PATH_END.py
{ "filename": "puntopi-checkpoint.ipynb", "repo_name": "Monsalves-Gonzalez-N/Paper_OGLE", "repo_path": "Paper_OGLE_extracted/Paper_OGLE-main/.ipynb_checkpoints/puntopi-checkpoint.ipynb", "type": "Jupyter Notebook" }
```python from CNN_2dhist_function import * ``` 2024-01-11 18:04:18.640756: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2024-01-11 18:04:18.677020: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2024-01-11 18:04:18.677050: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2024-01-11 18:04:18.678017: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2024-01-11 18:04:18.683542: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. INFO: Pandarallel will run on 24 workers. INFO: Pandarallel will use Memory file system to transfer data between the main process and workers. ```python # Establecer la semilla para TensorFlow tf.random.set_seed(42) # Obtén el número de CPUs num_cpus = psutil.cpu_count(logical=False) path_data = "/home/nicolas/nico/Data/data_Paper_OGLE/" datos = f"{path_data}Data/datos_ogle/datos" path_datos_4 = datos + "/datos_ogle_4/I" path_datos_3 = datos + "/datos_ogle_3/I" path_datos = ["_","_","_",path_datos_3,path_datos_4] rng = np.random.default_rng(42) gyr = ["#ffa600", '#003f5c', "#58508d", "#ff6361", "#ffd380", "#bc5090", "#129675" ] palet = sns.palplot(sns.color_palette(gyr)) sns.set_context("paper") path = "/home/nicolas/nico/Data/data_Paper_OGLE/7_01_2024/" ``` ![png](output_1_0.png) ```python train_number_ELL = pd.read_csv(f"{path}/train_number_ELL.csv") train_number_DST = pd.read_csv(f"{path}/train_number_DST.csv") train_number_M = pd.read_csv(f"{path}/train_number_M.csv") prueba_8mil = pd.read_csv(f"{path}/prueba_8mil.csv") ``` ```python data = h5py.File(f"{path}/Data.hdf5", 'r+') ``` ```python df_lista = [prueba_8mil,train_number_ELL,train_number_DST,train_number_M] keys_lista = ['Number_CEP','Number_ELL','Number_DST', 'Number_M'] ``` ```python train_models(df_lista, keys_lista, data, prueba_8mil,path,epochs=1000, use_balanced_generator=False) ``` Use balanced Generator [False] Data: 67232 ----------------------------------------------------------------------------------- Epoch 1/1000 2024-01-11 18:05:38.745700: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.809019: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.809163: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.813242: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.813522: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.813698: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.927569: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.927657: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.927722: I external/local_xla/xla/stream_executor/cuda/cuda_executor.cc:901] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 2024-01-11 18:05:38.927769: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 5943 MB memory: -> device: 0, name: NVIDIA GeForce RTX 4060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.9 2024-01-11 18:05:39.874701: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:454] Loaded cuDNN version 8906 2024-01-11 18:05:40.783496: I external/local_xla/xla/service/service.cc:168] XLA service 0x4b7d110 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: 2024-01-11 18:05:40.783514: I external/local_xla/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce RTX 4060 Laptop GPU, Compute Capability 8.9 2024-01-11 18:05:40.788351: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable. WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1704996340.856163 570820 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process. 701/701 [==============================] - ETA: 0s - loss: 2.0800 - acc: 0.1382 Epoch 1: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 9s 8ms/step - loss: 2.0800 - acc: 0.1382 - val_loss: 2.0772 - val_acc: 0.2170 Epoch 2/1000 699/701 [============================>.] - ETA: 0s - loss: 2.0758 - acc: 0.1713 Epoch 2: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 2.0758 - acc: 0.1713 - val_loss: 2.0722 - val_acc: 0.2659 Epoch 3/1000 700/701 [============================>.] - ETA: 0s - loss: 2.0703 - acc: 0.1958 Epoch 3: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 2.0703 - acc: 0.1958 - val_loss: 2.0648 - val_acc: 0.2593 Epoch 4/1000 693/701 [============================>.] - ETA: 0s - loss: 2.0614 - acc: 0.2044 Epoch 4: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 2.0613 - acc: 0.2045 - val_loss: 2.0506 - val_acc: 0.2616 Epoch 5/1000 695/701 [============================>.] - ETA: 0s - loss: 2.0419 - acc: 0.2207 Epoch 5: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 2.0417 - acc: 0.2206 - val_loss: 2.0183 - val_acc: 0.2845 Epoch 6/1000 700/701 [============================>.] - ETA: 0s - loss: 1.9969 - acc: 0.2462 Epoch 6: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 1.9968 - acc: 0.2462 - val_loss: 1.9443 - val_acc: 0.3626 Epoch 7/1000 694/701 [============================>.] - ETA: 0s - loss: 1.9038 - acc: 0.3092 Epoch 7: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 1.9032 - acc: 0.3094 - val_loss: 1.7959 - val_acc: 0.4407 Epoch 8/1000 696/701 [============================>.] - ETA: 0s - loss: 1.7345 - acc: 0.3711 Epoch 8: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 1.7338 - acc: 0.3713 - val_loss: 1.5590 - val_acc: 0.5006 Epoch 9/1000 696/701 [============================>.] - ETA: 0s - loss: 1.5584 - acc: 0.4250 Epoch 9: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 1.5579 - acc: 0.4250 - val_loss: 1.3741 - val_acc: 0.5638 Epoch 10/1000 694/701 [============================>.] - ETA: 0s - loss: 1.4129 - acc: 0.4905 Epoch 10: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 6s 8ms/step - loss: 1.4123 - acc: 0.4910 - val_loss: 1.2110 - val_acc: 0.6057 Epoch 11/1000 690/701 [============================>.] - ETA: 0s - loss: 1.2605 - acc: 0.5510 Epoch 11: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 6s 8ms/step - loss: 1.2602 - acc: 0.5510 - val_loss: 1.0563 - val_acc: 0.6435 Epoch 12/1000 695/701 [============================>.] - ETA: 0s - loss: 1.1200 - acc: 0.6013 Epoch 12: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 1.1200 - acc: 0.6012 - val_loss: 0.9307 - val_acc: 0.6770 Epoch 13/1000 700/701 [============================>.] - ETA: 0s - loss: 1.0101 - acc: 0.6358 Epoch 13: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 1.0097 - acc: 0.6359 - val_loss: 0.8406 - val_acc: 0.7089 Epoch 14/1000 697/701 [============================>.] - ETA: 0s - loss: 0.9312 - acc: 0.6634 Epoch 14: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.9313 - acc: 0.6633 - val_loss: 0.7775 - val_acc: 0.7290 Epoch 15/1000 697/701 [============================>.] - ETA: 0s - loss: 0.8759 - acc: 0.6818 Epoch 15: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.8758 - acc: 0.6819 - val_loss: 0.7354 - val_acc: 0.7441 Epoch 16/1000 699/701 [============================>.] - ETA: 0s - loss: 0.8354 - acc: 0.6966 Epoch 16: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.8356 - acc: 0.6967 - val_loss: 0.7024 - val_acc: 0.7543 Epoch 17/1000 701/701 [==============================] - ETA: 0s - loss: 0.8025 - acc: 0.7093 Epoch 17: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.8025 - acc: 0.7093 - val_loss: 0.6813 - val_acc: 0.7593 Epoch 18/1000 700/701 [============================>.] - ETA: 0s - loss: 0.7752 - acc: 0.7190 Epoch 18: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.7753 - acc: 0.7189 - val_loss: 0.6584 - val_acc: 0.7697 Epoch 19/1000 695/701 [============================>.] - ETA: 0s - loss: 0.7509 - acc: 0.7265 Epoch 19: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.7507 - acc: 0.7266 - val_loss: 0.6390 - val_acc: 0.7788 Epoch 20/1000 701/701 [==============================] - ETA: 0s - loss: 0.7359 - acc: 0.7330 Epoch 20: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.7359 - acc: 0.7330 - val_loss: 0.6253 - val_acc: 0.7807 Epoch 21/1000 699/701 [============================>.] - ETA: 0s - loss: 0.7169 - acc: 0.7422 Epoch 21: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.7170 - acc: 0.7421 - val_loss: 0.6112 - val_acc: 0.7877 Epoch 22/1000 701/701 [==============================] - ETA: 0s - loss: 0.7028 - acc: 0.7457 Epoch 22: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.7028 - acc: 0.7457 - val_loss: 0.6002 - val_acc: 0.7900 Epoch 23/1000 700/701 [============================>.] - ETA: 0s - loss: 0.6875 - acc: 0.7495 Epoch 23: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.6874 - acc: 0.7496 - val_loss: 0.5929 - val_acc: 0.7904 Epoch 24/1000 697/701 [============================>.] - ETA: 0s - loss: 0.6749 - acc: 0.7557 Epoch 24: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.6749 - acc: 0.7556 - val_loss: 0.5811 - val_acc: 0.7949 Epoch 25/1000 698/701 [============================>.] - ETA: 0s - loss: 0.6645 - acc: 0.7595 Epoch 25: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.6649 - acc: 0.7595 - val_loss: 0.5724 - val_acc: 0.7947 Epoch 26/1000 693/701 [============================>.] - ETA: 0s - loss: 0.6533 - acc: 0.7631 Epoch 26: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.6540 - acc: 0.7628 - val_loss: 0.5657 - val_acc: 0.7978 Epoch 27/1000 694/701 [============================>.] - ETA: 0s - loss: 0.6459 - acc: 0.7653 Epoch 27: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.6452 - acc: 0.7655 - val_loss: 0.5604 - val_acc: 0.8030 Epoch 28/1000 695/701 [============================>.] - ETA: 0s - loss: 0.6342 - acc: 0.7710 Epoch 28: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.6340 - acc: 0.7712 - val_loss: 0.5530 - val_acc: 0.8048 Epoch 29/1000 701/701 [==============================] - ETA: 0s - loss: 0.6286 - acc: 0.7718 Epoch 29: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.6286 - acc: 0.7718 - val_loss: 0.5486 - val_acc: 0.8022 Epoch 30/1000 697/701 [============================>.] - ETA: 0s - loss: 0.6217 - acc: 0.7754 Epoch 30: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.6214 - acc: 0.7756 - val_loss: 0.5409 - val_acc: 0.8052 Epoch 31/1000 696/701 [============================>.] - ETA: 0s - loss: 0.6164 - acc: 0.7760 Epoch 31: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.6163 - acc: 0.7761 - val_loss: 0.5367 - val_acc: 0.8067 Epoch 32/1000 695/701 [============================>.] - ETA: 0s - loss: 0.6077 - acc: 0.7811 Epoch 32: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.6081 - acc: 0.7810 - val_loss: 0.5300 - val_acc: 0.8128 Epoch 33/1000 693/701 [============================>.] - ETA: 0s - loss: 0.6024 - acc: 0.7821 Epoch 33: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.6027 - acc: 0.7819 - val_loss: 0.5283 - val_acc: 0.8124 Epoch 34/1000 696/701 [============================>.] - ETA: 0s - loss: 0.5949 - acc: 0.7831 Epoch 34: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 6s 8ms/step - loss: 0.5948 - acc: 0.7831 - val_loss: 0.5268 - val_acc: 0.8128 Epoch 35/1000 698/701 [============================>.] - ETA: 0s - loss: 0.5908 - acc: 0.7862 Epoch 35: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5908 - acc: 0.7861 - val_loss: 0.5177 - val_acc: 0.8168 Epoch 36/1000 700/701 [============================>.] - ETA: 0s - loss: 0.5838 - acc: 0.7874 Epoch 36: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5840 - acc: 0.7873 - val_loss: 0.5157 - val_acc: 0.8180 Epoch 37/1000 698/701 [============================>.] - ETA: 0s - loss: 0.5764 - acc: 0.7923 Epoch 37: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5764 - acc: 0.7922 - val_loss: 0.5111 - val_acc: 0.8185 Epoch 38/1000 693/701 [============================>.] - ETA: 0s - loss: 0.5729 - acc: 0.7935 Epoch 38: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5727 - acc: 0.7935 - val_loss: 0.5074 - val_acc: 0.8190 Epoch 39/1000 699/701 [============================>.] - ETA: 0s - loss: 0.5694 - acc: 0.7941 Epoch 39: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.5697 - acc: 0.7940 - val_loss: 0.5071 - val_acc: 0.8221 Epoch 40/1000 700/701 [============================>.] - ETA: 0s - loss: 0.5643 - acc: 0.7968 Epoch 40: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.5642 - acc: 0.7968 - val_loss: 0.5014 - val_acc: 0.8243 Epoch 41/1000 695/701 [============================>.] - ETA: 0s - loss: 0.5614 - acc: 0.7967 Epoch 41: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.5611 - acc: 0.7969 - val_loss: 0.5013 - val_acc: 0.8238 Epoch 42/1000 698/701 [============================>.] - ETA: 0s - loss: 0.5601 - acc: 0.7982 Epoch 42: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5602 - acc: 0.7981 - val_loss: 0.4951 - val_acc: 0.8257 Epoch 43/1000 694/701 [============================>.] - ETA: 0s - loss: 0.5546 - acc: 0.7981 Epoch 43: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5544 - acc: 0.7982 - val_loss: 0.4931 - val_acc: 0.8259 Epoch 44/1000 697/701 [============================>.] - ETA: 0s - loss: 0.5486 - acc: 0.8015 Epoch 44: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.5492 - acc: 0.8014 - val_loss: 0.4943 - val_acc: 0.8260 Epoch 45/1000 694/701 [============================>.] - ETA: 0s - loss: 0.5464 - acc: 0.8030 Epoch 45: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5468 - acc: 0.8028 - val_loss: 0.4900 - val_acc: 0.8291 Epoch 46/1000 700/701 [============================>.] - ETA: 0s - loss: 0.5436 - acc: 0.8041 Epoch 46: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5436 - acc: 0.8041 - val_loss: 0.4871 - val_acc: 0.8274 Epoch 47/1000 700/701 [============================>.] - ETA: 0s - loss: 0.5396 - acc: 0.8041 Epoch 47: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5397 - acc: 0.8040 - val_loss: 0.4843 - val_acc: 0.8275 Epoch 48/1000 690/701 [============================>.] - ETA: 0s - loss: 0.5350 - acc: 0.8084 Epoch 48: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5352 - acc: 0.8084 - val_loss: 0.4847 - val_acc: 0.8283 Epoch 49/1000 700/701 [============================>.] - ETA: 0s - loss: 0.5310 - acc: 0.8090 Epoch 49: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5313 - acc: 0.8089 - val_loss: 0.4809 - val_acc: 0.8295 Epoch 50/1000 699/701 [============================>.] - ETA: 0s - loss: 0.5311 - acc: 0.8097 Epoch 50: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5310 - acc: 0.8097 - val_loss: 0.4786 - val_acc: 0.8294 Epoch 51/1000 698/701 [============================>.] - ETA: 0s - loss: 0.5271 - acc: 0.8092 Epoch 51: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.5274 - acc: 0.8090 - val_loss: 0.4769 - val_acc: 0.8319 Epoch 52/1000 695/701 [============================>.] - ETA: 0s - loss: 0.5241 - acc: 0.8115 Epoch 52: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5244 - acc: 0.8115 - val_loss: 0.4736 - val_acc: 0.8319 Epoch 53/1000 695/701 [============================>.] - ETA: 0s - loss: 0.5218 - acc: 0.8124 Epoch 53: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5220 - acc: 0.8123 - val_loss: 0.4726 - val_acc: 0.8335 Epoch 54/1000 693/701 [============================>.] - ETA: 0s - loss: 0.5197 - acc: 0.8130 Epoch 54: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5194 - acc: 0.8131 - val_loss: 0.4688 - val_acc: 0.8362 Epoch 55/1000 692/701 [============================>.] - ETA: 0s - loss: 0.5153 - acc: 0.8141 Epoch 55: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.5158 - acc: 0.8141 - val_loss: 0.4702 - val_acc: 0.8332 Epoch 56/1000 698/701 [============================>.] - ETA: 0s - loss: 0.5132 - acc: 0.8156 Epoch 56: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.5133 - acc: 0.8156 - val_loss: 0.4685 - val_acc: 0.8354 Epoch 57/1000 699/701 [============================>.] - ETA: 0s - loss: 0.5151 - acc: 0.8152 Epoch 57: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.5149 - acc: 0.8153 - val_loss: 0.4653 - val_acc: 0.8380 Epoch 58/1000 699/701 [============================>.] - ETA: 0s - loss: 0.5102 - acc: 0.8168 Epoch 58: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.5103 - acc: 0.8167 - val_loss: 0.4632 - val_acc: 0.8375 Epoch 59/1000 695/701 [============================>.] - ETA: 0s - loss: 0.5075 - acc: 0.8182 Epoch 59: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5072 - acc: 0.8183 - val_loss: 0.4648 - val_acc: 0.8357 Epoch 60/1000 701/701 [==============================] - ETA: 0s - loss: 0.5044 - acc: 0.8189 Epoch 60: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5044 - acc: 0.8189 - val_loss: 0.4627 - val_acc: 0.8371 Epoch 61/1000 693/701 [============================>.] - ETA: 0s - loss: 0.5030 - acc: 0.8197 Epoch 61: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.5028 - acc: 0.8198 - val_loss: 0.4595 - val_acc: 0.8391 Epoch 62/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4997 - acc: 0.8193 Epoch 62: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.5000 - acc: 0.8192 - val_loss: 0.4580 - val_acc: 0.8372 Epoch 63/1000 699/701 [============================>.] - ETA: 0s - loss: 0.4974 - acc: 0.8206 Epoch 63: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4972 - acc: 0.8206 - val_loss: 0.4570 - val_acc: 0.8398 Epoch 64/1000 700/701 [============================>.] - ETA: 0s - loss: 0.4954 - acc: 0.8214 Epoch 64: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4954 - acc: 0.8215 - val_loss: 0.4539 - val_acc: 0.8419 Epoch 65/1000 691/701 [============================>.] - ETA: 0s - loss: 0.4926 - acc: 0.8246 Epoch 65: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4923 - acc: 0.8245 - val_loss: 0.4541 - val_acc: 0.8399 Epoch 66/1000 700/701 [============================>.] - ETA: 0s - loss: 0.4918 - acc: 0.8222 Epoch 66: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4919 - acc: 0.8222 - val_loss: 0.4542 - val_acc: 0.8406 Epoch 67/1000 692/701 [============================>.] - ETA: 0s - loss: 0.4882 - acc: 0.8242 Epoch 67: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4886 - acc: 0.8240 - val_loss: 0.4519 - val_acc: 0.8439 Epoch 68/1000 692/701 [============================>.] - ETA: 0s - loss: 0.4898 - acc: 0.8241 Epoch 68: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4901 - acc: 0.8240 - val_loss: 0.4535 - val_acc: 0.8418 Epoch 69/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4832 - acc: 0.8264 Epoch 69: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4832 - acc: 0.8262 - val_loss: 0.4479 - val_acc: 0.8436 Epoch 70/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4834 - acc: 0.8261 Epoch 70: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4834 - acc: 0.8261 - val_loss: 0.4511 - val_acc: 0.8436 Epoch 71/1000 701/701 [==============================] - ETA: 0s - loss: 0.4810 - acc: 0.8277 Epoch 71: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.4810 - acc: 0.8277 - val_loss: 0.4488 - val_acc: 0.8421 Epoch 72/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4787 - acc: 0.8280 Epoch 72: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4785 - acc: 0.8279 - val_loss: 0.4471 - val_acc: 0.8431 Epoch 73/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4800 - acc: 0.8273 Epoch 73: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4799 - acc: 0.8272 - val_loss: 0.4465 - val_acc: 0.8457 Epoch 74/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4761 - acc: 0.8282 Epoch 74: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4763 - acc: 0.8281 - val_loss: 0.4459 - val_acc: 0.8447 Epoch 75/1000 697/701 [============================>.] - ETA: 0s - loss: 0.4742 - acc: 0.8296 Epoch 75: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4745 - acc: 0.8295 - val_loss: 0.4423 - val_acc: 0.8470 Epoch 76/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4746 - acc: 0.8292 Epoch 76: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4741 - acc: 0.8293 - val_loss: 0.4418 - val_acc: 0.8474 Epoch 77/1000 699/701 [============================>.] - ETA: 0s - loss: 0.4733 - acc: 0.8302 Epoch 77: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4733 - acc: 0.8302 - val_loss: 0.4387 - val_acc: 0.8483 Epoch 78/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4663 - acc: 0.8307 Epoch 78: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4663 - acc: 0.8306 - val_loss: 0.4432 - val_acc: 0.8467 Epoch 79/1000 695/701 [============================>.] - ETA: 0s - loss: 0.4674 - acc: 0.8310 Epoch 79: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4674 - acc: 0.8311 - val_loss: 0.4369 - val_acc: 0.8480 Epoch 80/1000 695/701 [============================>.] - ETA: 0s - loss: 0.4667 - acc: 0.8336 Epoch 80: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.4672 - acc: 0.8334 - val_loss: 0.4367 - val_acc: 0.8506 Epoch 81/1000 699/701 [============================>.] - ETA: 0s - loss: 0.4650 - acc: 0.8334 Epoch 81: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 3s 5ms/step - loss: 0.4650 - acc: 0.8335 - val_loss: 0.4365 - val_acc: 0.8468 Epoch 82/1000 701/701 [==============================] - ETA: 0s - loss: 0.4634 - acc: 0.8345 Epoch 82: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4634 - acc: 0.8345 - val_loss: 0.4394 - val_acc: 0.8468 Epoch 83/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4601 - acc: 0.8344 Epoch 83: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4600 - acc: 0.8342 - val_loss: 0.4341 - val_acc: 0.8499 Epoch 84/1000 699/701 [============================>.] - ETA: 0s - loss: 0.4595 - acc: 0.8351 Epoch 84: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4595 - acc: 0.8352 - val_loss: 0.4387 - val_acc: 0.8482 Epoch 85/1000 701/701 [==============================] - ETA: 0s - loss: 0.4573 - acc: 0.8348 Epoch 85: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4573 - acc: 0.8348 - val_loss: 0.4317 - val_acc: 0.8522 Epoch 86/1000 694/701 [============================>.] - ETA: 0s - loss: 0.4564 - acc: 0.8357 Epoch 86: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4561 - acc: 0.8357 - val_loss: 0.4309 - val_acc: 0.8504 Epoch 87/1000 700/701 [============================>.] - ETA: 0s - loss: 0.4555 - acc: 0.8382 Epoch 87: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4555 - acc: 0.8382 - val_loss: 0.4336 - val_acc: 0.8499 Epoch 88/1000 690/701 [============================>.] - ETA: 0s - loss: 0.4537 - acc: 0.8373 Epoch 88: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4531 - acc: 0.8375 - val_loss: 0.4334 - val_acc: 0.8491 Epoch 89/1000 700/701 [============================>.] - ETA: 0s - loss: 0.4526 - acc: 0.8384 Epoch 89: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4525 - acc: 0.8385 - val_loss: 0.4321 - val_acc: 0.8488 Epoch 90/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4513 - acc: 0.8385 Epoch 90: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4513 - acc: 0.8386 - val_loss: 0.4289 - val_acc: 0.8520 Epoch 91/1000 701/701 [==============================] - ETA: 0s - loss: 0.4502 - acc: 0.8378 Epoch 91: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.4502 - acc: 0.8378 - val_loss: 0.4295 - val_acc: 0.8521 Epoch 92/1000 697/701 [============================>.] - ETA: 0s - loss: 0.4493 - acc: 0.8384 Epoch 92: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4493 - acc: 0.8384 - val_loss: 0.4263 - val_acc: 0.8523 Epoch 93/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4470 - acc: 0.8385 Epoch 93: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4474 - acc: 0.8381 - val_loss: 0.4243 - val_acc: 0.8536 Epoch 94/1000 695/701 [============================>.] - ETA: 0s - loss: 0.4459 - acc: 0.8396 Epoch 94: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4460 - acc: 0.8396 - val_loss: 0.4248 - val_acc: 0.8546 Epoch 95/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4436 - acc: 0.8402 Epoch 95: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4440 - acc: 0.8400 - val_loss: 0.4253 - val_acc: 0.8537 Epoch 96/1000 692/701 [============================>.] - ETA: 0s - loss: 0.4430 - acc: 0.8419 Epoch 96: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4434 - acc: 0.8415 - val_loss: 0.4254 - val_acc: 0.8540 Epoch 97/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4420 - acc: 0.8420 Epoch 97: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4421 - acc: 0.8420 - val_loss: 0.4228 - val_acc: 0.8551 Epoch 98/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4403 - acc: 0.8424 Epoch 98: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4407 - acc: 0.8424 - val_loss: 0.4236 - val_acc: 0.8531 Epoch 99/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4386 - acc: 0.8436 Epoch 99: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4387 - acc: 0.8436 - val_loss: 0.4215 - val_acc: 0.8571 Epoch 100/1000 699/701 [============================>.] - ETA: 0s - loss: 0.4376 - acc: 0.8443 Epoch 100: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4374 - acc: 0.8443 - val_loss: 0.4227 - val_acc: 0.8555 Epoch 101/1000 699/701 [============================>.] - ETA: 0s - loss: 0.4368 - acc: 0.8440 Epoch 101: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4366 - acc: 0.8441 - val_loss: 0.4188 - val_acc: 0.8565 Epoch 102/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4353 - acc: 0.8444 Epoch 102: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4356 - acc: 0.8443 - val_loss: 0.4154 - val_acc: 0.8590 Epoch 103/1000 695/701 [============================>.] - ETA: 0s - loss: 0.4346 - acc: 0.8436 Epoch 103: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4344 - acc: 0.8437 - val_loss: 0.4205 - val_acc: 0.8578 Epoch 104/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4376 - acc: 0.8435 Epoch 104: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4373 - acc: 0.8437 - val_loss: 0.4149 - val_acc: 0.8583 Epoch 105/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4320 - acc: 0.8453 Epoch 105: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4322 - acc: 0.8452 - val_loss: 0.4155 - val_acc: 0.8580 Epoch 106/1000 694/701 [============================>.] - ETA: 0s - loss: 0.4289 - acc: 0.8463 Epoch 106: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.4296 - acc: 0.8463 - val_loss: 0.4166 - val_acc: 0.8555 Epoch 107/1000 694/701 [============================>.] - ETA: 0s - loss: 0.4302 - acc: 0.8468 Epoch 107: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.4301 - acc: 0.8468 - val_loss: 0.4134 - val_acc: 0.8600 Epoch 108/1000 701/701 [==============================] - ETA: 0s - loss: 0.4305 - acc: 0.8457 Epoch 108: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.4305 - acc: 0.8457 - val_loss: 0.4137 - val_acc: 0.8573 Epoch 109/1000 697/701 [============================>.] - ETA: 0s - loss: 0.4279 - acc: 0.8469 Epoch 109: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 6s 8ms/step - loss: 0.4283 - acc: 0.8468 - val_loss: 0.4118 - val_acc: 0.8591 Epoch 110/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4293 - acc: 0.8464 Epoch 110: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4285 - acc: 0.8467 - val_loss: 0.4114 - val_acc: 0.8594 Epoch 111/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4265 - acc: 0.8476 Epoch 111: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4262 - acc: 0.8475 - val_loss: 0.4148 - val_acc: 0.8575 Epoch 112/1000 694/701 [============================>.] - ETA: 0s - loss: 0.4222 - acc: 0.8508 Epoch 112: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.4222 - acc: 0.8507 - val_loss: 0.4079 - val_acc: 0.8603 Epoch 113/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4220 - acc: 0.8497 Epoch 113: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4223 - acc: 0.8496 - val_loss: 0.4076 - val_acc: 0.8603 Epoch 114/1000 697/701 [============================>.] - ETA: 0s - loss: 0.4237 - acc: 0.8485 Epoch 114: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4240 - acc: 0.8484 - val_loss: 0.4113 - val_acc: 0.8589 Epoch 115/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4200 - acc: 0.8490 Epoch 115: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4201 - acc: 0.8489 - val_loss: 0.4086 - val_acc: 0.8608 Epoch 116/1000 699/701 [============================>.] - ETA: 0s - loss: 0.4202 - acc: 0.8508 Epoch 116: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4202 - acc: 0.8507 - val_loss: 0.4065 - val_acc: 0.8604 Epoch 117/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4186 - acc: 0.8495 Epoch 117: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.4187 - acc: 0.8496 - val_loss: 0.4079 - val_acc: 0.8591 Epoch 118/1000 694/701 [============================>.] - ETA: 0s - loss: 0.4166 - acc: 0.8519 Epoch 118: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4161 - acc: 0.8521 - val_loss: 0.4062 - val_acc: 0.8609 Epoch 119/1000 700/701 [============================>.] - ETA: 0s - loss: 0.4177 - acc: 0.8506 Epoch 119: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4176 - acc: 0.8507 - val_loss: 0.4086 - val_acc: 0.8588 Epoch 120/1000 695/701 [============================>.] - ETA: 0s - loss: 0.4149 - acc: 0.8517 Epoch 120: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4151 - acc: 0.8515 - val_loss: 0.4052 - val_acc: 0.8617 Epoch 121/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4174 - acc: 0.8512 Epoch 121: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4171 - acc: 0.8512 - val_loss: 0.4044 - val_acc: 0.8608 Epoch 122/1000 694/701 [============================>.] - ETA: 0s - loss: 0.4134 - acc: 0.8537 Epoch 122: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4134 - acc: 0.8538 - val_loss: 0.4026 - val_acc: 0.8620 Epoch 123/1000 695/701 [============================>.] - ETA: 0s - loss: 0.4116 - acc: 0.8524 Epoch 123: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4115 - acc: 0.8524 - val_loss: 0.4052 - val_acc: 0.8619 Epoch 124/1000 699/701 [============================>.] - ETA: 0s - loss: 0.4119 - acc: 0.8531 Epoch 124: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4117 - acc: 0.8533 - val_loss: 0.4035 - val_acc: 0.8622 Epoch 125/1000 696/701 [============================>.] - ETA: 0s - loss: 0.4090 - acc: 0.8551 Epoch 125: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4087 - acc: 0.8551 - val_loss: 0.4008 - val_acc: 0.8620 Epoch 126/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4087 - acc: 0.8526 Epoch 126: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.4089 - acc: 0.8525 - val_loss: 0.4035 - val_acc: 0.8632 Epoch 127/1000 692/701 [============================>.] - ETA: 0s - loss: 0.4066 - acc: 0.8563 Epoch 127: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4067 - acc: 0.8563 - val_loss: 0.4006 - val_acc: 0.8637 Epoch 128/1000 700/701 [============================>.] - ETA: 0s - loss: 0.4081 - acc: 0.8538 Epoch 128: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4080 - acc: 0.8538 - val_loss: 0.4030 - val_acc: 0.8630 Epoch 129/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4085 - acc: 0.8534 Epoch 129: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4085 - acc: 0.8534 - val_loss: 0.4012 - val_acc: 0.8625 Epoch 130/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4072 - acc: 0.8556 Epoch 130: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4071 - acc: 0.8555 - val_loss: 0.3986 - val_acc: 0.8646 Epoch 131/1000 695/701 [============================>.] - ETA: 0s - loss: 0.4055 - acc: 0.8554 Epoch 131: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4052 - acc: 0.8554 - val_loss: 0.4019 - val_acc: 0.8640 Epoch 132/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4037 - acc: 0.8567 Epoch 132: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.4038 - acc: 0.8565 - val_loss: 0.3972 - val_acc: 0.8650 Epoch 133/1000 693/701 [============================>.] - ETA: 0s - loss: 0.4038 - acc: 0.8559 Epoch 133: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4038 - acc: 0.8561 - val_loss: 0.3999 - val_acc: 0.8610 Epoch 134/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4030 - acc: 0.8554 Epoch 134: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.4030 - acc: 0.8554 - val_loss: 0.3959 - val_acc: 0.8652 Epoch 135/1000 694/701 [============================>.] - ETA: 0s - loss: 0.4015 - acc: 0.8568 Epoch 135: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.4017 - acc: 0.8566 - val_loss: 0.3997 - val_acc: 0.8651 Epoch 136/1000 698/701 [============================>.] - ETA: 0s - loss: 0.4006 - acc: 0.8571 Epoch 136: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.4004 - acc: 0.8571 - val_loss: 0.3958 - val_acc: 0.8639 Epoch 137/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3996 - acc: 0.8578 Epoch 137: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3991 - acc: 0.8580 - val_loss: 0.3958 - val_acc: 0.8662 Epoch 138/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3962 - acc: 0.8589 Epoch 138: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3963 - acc: 0.8588 - val_loss: 0.3965 - val_acc: 0.8657 Epoch 139/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3971 - acc: 0.8579 Epoch 139: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3970 - acc: 0.8578 - val_loss: 0.3921 - val_acc: 0.8669 Epoch 140/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3967 - acc: 0.8578 Epoch 140: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3973 - acc: 0.8577 - val_loss: 0.3903 - val_acc: 0.8678 Epoch 141/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3950 - acc: 0.8604 Epoch 141: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 6s 8ms/step - loss: 0.3950 - acc: 0.8604 - val_loss: 0.3967 - val_acc: 0.8632 Epoch 142/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3967 - acc: 0.8581 Epoch 142: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3968 - acc: 0.8580 - val_loss: 0.3960 - val_acc: 0.8646 Epoch 143/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3967 - acc: 0.8606 Epoch 143: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3967 - acc: 0.8604 - val_loss: 0.3917 - val_acc: 0.8673 Epoch 144/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3946 - acc: 0.8593 Epoch 144: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3947 - acc: 0.8592 - val_loss: 0.3923 - val_acc: 0.8649 Epoch 145/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3911 - acc: 0.8614 Epoch 145: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3910 - acc: 0.8614 - val_loss: 0.3913 - val_acc: 0.8681 Epoch 146/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3916 - acc: 0.8608 Epoch 146: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3918 - acc: 0.8608 - val_loss: 0.3914 - val_acc: 0.8673 Epoch 147/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3875 - acc: 0.8613 Epoch 147: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3877 - acc: 0.8611 - val_loss: 0.3882 - val_acc: 0.8667 Epoch 148/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3885 - acc: 0.8615 Epoch 148: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3885 - acc: 0.8613 - val_loss: 0.3905 - val_acc: 0.8677 Epoch 149/1000 701/701 [==============================] - ETA: 0s - loss: 0.3886 - acc: 0.8622 Epoch 149: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3886 - acc: 0.8622 - val_loss: 0.3901 - val_acc: 0.8666 Epoch 150/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3853 - acc: 0.8617 Epoch 150: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3854 - acc: 0.8616 - val_loss: 0.3864 - val_acc: 0.8683 Epoch 151/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3853 - acc: 0.8620 Epoch 151: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3853 - acc: 0.8620 - val_loss: 0.3886 - val_acc: 0.8674 Epoch 152/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3853 - acc: 0.8630 Epoch 152: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3853 - acc: 0.8630 - val_loss: 0.3877 - val_acc: 0.8691 Epoch 153/1000 701/701 [==============================] - ETA: 0s - loss: 0.3833 - acc: 0.8635 Epoch 153: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3833 - acc: 0.8635 - val_loss: 0.3883 - val_acc: 0.8679 Epoch 154/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3865 - acc: 0.8623 Epoch 154: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3866 - acc: 0.8624 - val_loss: 0.3890 - val_acc: 0.8662 Epoch 155/1000 691/701 [============================>.] - ETA: 0s - loss: 0.3821 - acc: 0.8645 Epoch 155: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3821 - acc: 0.8646 - val_loss: 0.3864 - val_acc: 0.8673 Epoch 156/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3835 - acc: 0.8628 Epoch 156: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3831 - acc: 0.8630 - val_loss: 0.3857 - val_acc: 0.8701 Epoch 157/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3822 - acc: 0.8639 Epoch 157: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3821 - acc: 0.8639 - val_loss: 0.3873 - val_acc: 0.8699 Epoch 158/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3798 - acc: 0.8659 Epoch 158: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3798 - acc: 0.8659 - val_loss: 0.3835 - val_acc: 0.8706 Epoch 159/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3781 - acc: 0.8658 Epoch 159: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3780 - acc: 0.8657 - val_loss: 0.3860 - val_acc: 0.8707 Epoch 160/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3782 - acc: 0.8654 Epoch 160: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3781 - acc: 0.8654 - val_loss: 0.3829 - val_acc: 0.8700 Epoch 161/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3795 - acc: 0.8649 Epoch 161: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3794 - acc: 0.8649 - val_loss: 0.3842 - val_acc: 0.8679 Epoch 162/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3811 - acc: 0.8647 Epoch 162: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3814 - acc: 0.8647 - val_loss: 0.3819 - val_acc: 0.8678 Epoch 163/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3772 - acc: 0.8655 Epoch 163: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3770 - acc: 0.8655 - val_loss: 0.3799 - val_acc: 0.8704 Epoch 164/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3743 - acc: 0.8668 Epoch 164: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3739 - acc: 0.8667 - val_loss: 0.3833 - val_acc: 0.8688 Epoch 165/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3734 - acc: 0.8675 Epoch 165: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3732 - acc: 0.8676 - val_loss: 0.3828 - val_acc: 0.8702 Epoch 166/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3747 - acc: 0.8673 Epoch 166: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3751 - acc: 0.8673 - val_loss: 0.3818 - val_acc: 0.8682 Epoch 167/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3769 - acc: 0.8660 Epoch 167: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3764 - acc: 0.8663 - val_loss: 0.3820 - val_acc: 0.8706 Epoch 168/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3728 - acc: 0.8675 Epoch 168: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3729 - acc: 0.8675 - val_loss: 0.3863 - val_acc: 0.8679 Epoch 169/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3704 - acc: 0.8678 Epoch 169: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3704 - acc: 0.8676 - val_loss: 0.3792 - val_acc: 0.8701 Epoch 170/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3710 - acc: 0.8681 Epoch 170: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3709 - acc: 0.8681 - val_loss: 0.3808 - val_acc: 0.8710 Epoch 171/1000 691/701 [============================>.] - ETA: 0s - loss: 0.3691 - acc: 0.8676 Epoch 171: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3689 - acc: 0.8678 - val_loss: 0.3805 - val_acc: 0.8709 Epoch 172/1000 691/701 [============================>.] - ETA: 0s - loss: 0.3701 - acc: 0.8667 Epoch 172: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 8ms/step - loss: 0.3707 - acc: 0.8668 - val_loss: 0.3779 - val_acc: 0.8706 Epoch 173/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3669 - acc: 0.8692 Epoch 173: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3670 - acc: 0.8692 - val_loss: 0.3792 - val_acc: 0.8739 Epoch 174/1000 692/701 [============================>.] - ETA: 0s - loss: 0.3697 - acc: 0.8699 Epoch 174: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3697 - acc: 0.8699 - val_loss: 0.3798 - val_acc: 0.8695 Epoch 175/1000 690/701 [============================>.] - ETA: 0s - loss: 0.3696 - acc: 0.8680 Epoch 175: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.3689 - acc: 0.8681 - val_loss: 0.3789 - val_acc: 0.8719 Epoch 176/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3661 - acc: 0.8704 Epoch 176: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.3660 - acc: 0.8705 - val_loss: 0.3774 - val_acc: 0.8697 Epoch 177/1000 701/701 [==============================] - ETA: 0s - loss: 0.3663 - acc: 0.8693 Epoch 177: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 3s 5ms/step - loss: 0.3663 - acc: 0.8693 - val_loss: 0.3800 - val_acc: 0.8694 Epoch 178/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3657 - acc: 0.8696 Epoch 178: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3652 - acc: 0.8697 - val_loss: 0.3780 - val_acc: 0.8714 Epoch 179/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3669 - acc: 0.8696 Epoch 179: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3669 - acc: 0.8696 - val_loss: 0.3764 - val_acc: 0.8735 Epoch 180/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3656 - acc: 0.8707 Epoch 180: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3655 - acc: 0.8706 - val_loss: 0.3733 - val_acc: 0.8726 Epoch 181/1000 701/701 [==============================] - ETA: 0s - loss: 0.3655 - acc: 0.8701 Epoch 181: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3655 - acc: 0.8701 - val_loss: 0.3784 - val_acc: 0.8703 Epoch 182/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3642 - acc: 0.8706 Epoch 182: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3643 - acc: 0.8707 - val_loss: 0.3741 - val_acc: 0.8722 Epoch 183/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3619 - acc: 0.8699 Epoch 183: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3621 - acc: 0.8699 - val_loss: 0.3740 - val_acc: 0.8746 Epoch 184/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3614 - acc: 0.8718 Epoch 184: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3609 - acc: 0.8720 - val_loss: 0.3741 - val_acc: 0.8740 Epoch 185/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3620 - acc: 0.8708 Epoch 185: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.3618 - acc: 0.8709 - val_loss: 0.3723 - val_acc: 0.8744 Epoch 186/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3598 - acc: 0.8736 Epoch 186: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3599 - acc: 0.8736 - val_loss: 0.3759 - val_acc: 0.8715 Epoch 187/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3589 - acc: 0.8711 Epoch 187: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3581 - acc: 0.8715 - val_loss: 0.3727 - val_acc: 0.8736 Epoch 188/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3570 - acc: 0.8728 Epoch 188: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3568 - acc: 0.8729 - val_loss: 0.3715 - val_acc: 0.8746 Epoch 189/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3582 - acc: 0.8727 Epoch 189: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3583 - acc: 0.8727 - val_loss: 0.3743 - val_acc: 0.8746 Epoch 190/1000 701/701 [==============================] - ETA: 0s - loss: 0.3545 - acc: 0.8737 Epoch 190: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3545 - acc: 0.8737 - val_loss: 0.3748 - val_acc: 0.8743 Epoch 191/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3559 - acc: 0.8733 Epoch 191: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3554 - acc: 0.8735 - val_loss: 0.3747 - val_acc: 0.8745 Epoch 192/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3568 - acc: 0.8719 Epoch 192: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3568 - acc: 0.8721 - val_loss: 0.3720 - val_acc: 0.8741 Epoch 193/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3580 - acc: 0.8724 Epoch 193: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3582 - acc: 0.8723 - val_loss: 0.3717 - val_acc: 0.8760 Epoch 194/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3546 - acc: 0.8747 Epoch 194: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.3547 - acc: 0.8747 - val_loss: 0.3689 - val_acc: 0.8760 Epoch 195/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3540 - acc: 0.8741 Epoch 195: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3540 - acc: 0.8741 - val_loss: 0.3726 - val_acc: 0.8736 Epoch 196/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3533 - acc: 0.8747 Epoch 196: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3534 - acc: 0.8746 - val_loss: 0.3730 - val_acc: 0.8736 Epoch 197/1000 690/701 [============================>.] - ETA: 0s - loss: 0.3541 - acc: 0.8743 Epoch 197: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3539 - acc: 0.8743 - val_loss: 0.3733 - val_acc: 0.8742 Epoch 198/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3504 - acc: 0.8750 Epoch 198: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3504 - acc: 0.8749 - val_loss: 0.3686 - val_acc: 0.8756 Epoch 199/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3502 - acc: 0.8766 Epoch 199: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3502 - acc: 0.8766 - val_loss: 0.3718 - val_acc: 0.8747 Epoch 200/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3501 - acc: 0.8750 Epoch 200: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3502 - acc: 0.8749 - val_loss: 0.3665 - val_acc: 0.8748 Epoch 201/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3511 - acc: 0.8752 Epoch 201: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3511 - acc: 0.8753 - val_loss: 0.3694 - val_acc: 0.8763 Epoch 202/1000 692/701 [============================>.] - ETA: 0s - loss: 0.3511 - acc: 0.8747 Epoch 202: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3514 - acc: 0.8747 - val_loss: 0.3669 - val_acc: 0.8773 Epoch 203/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3489 - acc: 0.8756 Epoch 203: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3487 - acc: 0.8756 - val_loss: 0.3710 - val_acc: 0.8747 Epoch 204/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3494 - acc: 0.8759 Epoch 204: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3494 - acc: 0.8759 - val_loss: 0.3662 - val_acc: 0.8768 Epoch 205/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3468 - acc: 0.8777 Epoch 205: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3471 - acc: 0.8775 - val_loss: 0.3685 - val_acc: 0.8756 Epoch 206/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3465 - acc: 0.8771 Epoch 206: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3465 - acc: 0.8771 - val_loss: 0.3657 - val_acc: 0.8770 Epoch 207/1000 692/701 [============================>.] - ETA: 0s - loss: 0.3443 - acc: 0.8775 Epoch 207: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3443 - acc: 0.8775 - val_loss: 0.3648 - val_acc: 0.8774 Epoch 208/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3461 - acc: 0.8777 Epoch 208: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3461 - acc: 0.8776 - val_loss: 0.3669 - val_acc: 0.8764 Epoch 209/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3449 - acc: 0.8774 Epoch 209: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3450 - acc: 0.8774 - val_loss: 0.3703 - val_acc: 0.8758 Epoch 210/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3440 - acc: 0.8773 Epoch 210: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3438 - acc: 0.8774 - val_loss: 0.3648 - val_acc: 0.8763 Epoch 211/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3425 - acc: 0.8793 Epoch 211: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3424 - acc: 0.8793 - val_loss: 0.3687 - val_acc: 0.8742 Epoch 212/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3418 - acc: 0.8782 Epoch 212: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3417 - acc: 0.8782 - val_loss: 0.3667 - val_acc: 0.8777 Epoch 213/1000 701/701 [==============================] - ETA: 0s - loss: 0.3427 - acc: 0.8804 Epoch 213: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3427 - acc: 0.8804 - val_loss: 0.3663 - val_acc: 0.8774 Epoch 214/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3396 - acc: 0.8799 Epoch 214: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3397 - acc: 0.8800 - val_loss: 0.3674 - val_acc: 0.8774 Epoch 215/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3384 - acc: 0.8793 Epoch 215: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3384 - acc: 0.8791 - val_loss: 0.3632 - val_acc: 0.8777 Epoch 216/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3402 - acc: 0.8788 Epoch 216: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.3401 - acc: 0.8788 - val_loss: 0.3649 - val_acc: 0.8763 Epoch 217/1000 701/701 [==============================] - ETA: 0s - loss: 0.3388 - acc: 0.8796 Epoch 217: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3388 - acc: 0.8796 - val_loss: 0.3676 - val_acc: 0.8758 Epoch 218/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3377 - acc: 0.8805 Epoch 218: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3378 - acc: 0.8804 - val_loss: 0.3642 - val_acc: 0.8764 Epoch 219/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3376 - acc: 0.8794 Epoch 219: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.3378 - acc: 0.8793 - val_loss: 0.3651 - val_acc: 0.8778 Epoch 220/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3353 - acc: 0.8815 Epoch 220: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3348 - acc: 0.8815 - val_loss: 0.3653 - val_acc: 0.8769 Epoch 221/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3356 - acc: 0.8813 Epoch 221: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3355 - acc: 0.8813 - val_loss: 0.3703 - val_acc: 0.8747 Epoch 222/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3377 - acc: 0.8798 Epoch 222: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3379 - acc: 0.8798 - val_loss: 0.3613 - val_acc: 0.8774 Epoch 223/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3342 - acc: 0.8812 Epoch 223: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3347 - acc: 0.8812 - val_loss: 0.3618 - val_acc: 0.8785 Epoch 224/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3330 - acc: 0.8817 Epoch 224: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3329 - acc: 0.8817 - val_loss: 0.3632 - val_acc: 0.8770 Epoch 225/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3325 - acc: 0.8815 Epoch 225: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.3322 - acc: 0.8817 - val_loss: 0.3710 - val_acc: 0.8745 Epoch 226/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3351 - acc: 0.8806 Epoch 226: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3349 - acc: 0.8806 - val_loss: 0.3632 - val_acc: 0.8769 Epoch 227/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3342 - acc: 0.8818 Epoch 227: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3342 - acc: 0.8818 - val_loss: 0.3604 - val_acc: 0.8796 Epoch 228/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3319 - acc: 0.8823 Epoch 228: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3319 - acc: 0.8822 - val_loss: 0.3623 - val_acc: 0.8776 Epoch 229/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3287 - acc: 0.8827 Epoch 229: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3291 - acc: 0.8827 - val_loss: 0.3609 - val_acc: 0.8779 Epoch 230/1000 691/701 [============================>.] - ETA: 0s - loss: 0.3310 - acc: 0.8829 Epoch 230: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3310 - acc: 0.8830 - val_loss: 0.3612 - val_acc: 0.8787 Epoch 231/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3312 - acc: 0.8822 Epoch 231: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3312 - acc: 0.8822 - val_loss: 0.3633 - val_acc: 0.8774 Epoch 232/1000 701/701 [==============================] - ETA: 0s - loss: 0.3314 - acc: 0.8823 Epoch 232: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3314 - acc: 0.8823 - val_loss: 0.3578 - val_acc: 0.8799 Epoch 233/1000 692/701 [============================>.] - ETA: 0s - loss: 0.3290 - acc: 0.8833 Epoch 233: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3283 - acc: 0.8836 - val_loss: 0.3586 - val_acc: 0.8793 Epoch 234/1000 691/701 [============================>.] - ETA: 0s - loss: 0.3291 - acc: 0.8817 Epoch 234: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3290 - acc: 0.8817 - val_loss: 0.3589 - val_acc: 0.8791 Epoch 235/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3257 - acc: 0.8843 Epoch 235: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3261 - acc: 0.8840 - val_loss: 0.3599 - val_acc: 0.8802 Epoch 236/1000 692/701 [============================>.] - ETA: 0s - loss: 0.3271 - acc: 0.8842 Epoch 236: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3267 - acc: 0.8844 - val_loss: 0.3581 - val_acc: 0.8801 Epoch 237/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3244 - acc: 0.8848 Epoch 237: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3244 - acc: 0.8848 - val_loss: 0.3572 - val_acc: 0.8799 Epoch 238/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3246 - acc: 0.8830 Epoch 238: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.3245 - acc: 0.8829 - val_loss: 0.3605 - val_acc: 0.8776 Epoch 239/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3269 - acc: 0.8845 Epoch 239: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3265 - acc: 0.8847 - val_loss: 0.3605 - val_acc: 0.8791 Epoch 240/1000 701/701 [==============================] - ETA: 0s - loss: 0.3258 - acc: 0.8840 Epoch 240: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3258 - acc: 0.8840 - val_loss: 0.3667 - val_acc: 0.8770 Epoch 241/1000 688/701 [============================>.] - ETA: 0s - loss: 0.3248 - acc: 0.8852 Epoch 241: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3251 - acc: 0.8851 - val_loss: 0.3595 - val_acc: 0.8796 Epoch 242/1000 692/701 [============================>.] - ETA: 0s - loss: 0.3216 - acc: 0.8865 Epoch 242: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3217 - acc: 0.8865 - val_loss: 0.3592 - val_acc: 0.8795 Epoch 243/1000 701/701 [==============================] - ETA: 0s - loss: 0.3230 - acc: 0.8847 Epoch 243: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3230 - acc: 0.8847 - val_loss: 0.3573 - val_acc: 0.8797 Epoch 244/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3197 - acc: 0.8870 Epoch 244: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3196 - acc: 0.8871 - val_loss: 0.3569 - val_acc: 0.8794 Epoch 245/1000 701/701 [==============================] - ETA: 0s - loss: 0.3201 - acc: 0.8863 Epoch 245: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3201 - acc: 0.8863 - val_loss: 0.3606 - val_acc: 0.8793 Epoch 246/1000 691/701 [============================>.] - ETA: 0s - loss: 0.3202 - acc: 0.8856 Epoch 246: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3200 - acc: 0.8858 - val_loss: 0.3618 - val_acc: 0.8784 Epoch 247/1000 690/701 [============================>.] - ETA: 0s - loss: 0.3205 - acc: 0.8850 Epoch 247: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.3201 - acc: 0.8852 - val_loss: 0.3568 - val_acc: 0.8789 Epoch 248/1000 701/701 [==============================] - ETA: 0s - loss: 0.3235 - acc: 0.8848 Epoch 248: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.3235 - acc: 0.8848 - val_loss: 0.3573 - val_acc: 0.8790 Epoch 249/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3204 - acc: 0.8865 Epoch 249: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3202 - acc: 0.8866 - val_loss: 0.3581 - val_acc: 0.8804 Epoch 250/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3173 - acc: 0.8880 Epoch 250: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3179 - acc: 0.8879 - val_loss: 0.3556 - val_acc: 0.8811 Epoch 251/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3169 - acc: 0.8877 Epoch 251: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3165 - acc: 0.8877 - val_loss: 0.3570 - val_acc: 0.8795 Epoch 252/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3164 - acc: 0.8874 Epoch 252: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.3163 - acc: 0.8875 - val_loss: 0.3549 - val_acc: 0.8808 Epoch 253/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3179 - acc: 0.8876 Epoch 253: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3177 - acc: 0.8876 - val_loss: 0.3605 - val_acc: 0.8792 Epoch 254/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3148 - acc: 0.8880 Epoch 254: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3146 - acc: 0.8881 - val_loss: 0.3573 - val_acc: 0.8789 Epoch 255/1000 690/701 [============================>.] - ETA: 0s - loss: 0.3167 - acc: 0.8878 Epoch 255: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3167 - acc: 0.8879 - val_loss: 0.3606 - val_acc: 0.8805 Epoch 256/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3152 - acc: 0.8881 Epoch 256: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3153 - acc: 0.8882 - val_loss: 0.3529 - val_acc: 0.8820 Epoch 257/1000 701/701 [==============================] - ETA: 0s - loss: 0.3158 - acc: 0.8889 Epoch 257: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3158 - acc: 0.8889 - val_loss: 0.3561 - val_acc: 0.8797 Epoch 258/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3122 - acc: 0.8898 Epoch 258: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3129 - acc: 0.8896 - val_loss: 0.3538 - val_acc: 0.8787 Epoch 259/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3148 - acc: 0.8871 Epoch 259: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 6ms/step - loss: 0.3145 - acc: 0.8872 - val_loss: 0.3540 - val_acc: 0.8809 Epoch 260/1000 696/701 [============================>.] - ETA: 0s - loss: 0.3132 - acc: 0.8895 Epoch 260: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3133 - acc: 0.8894 - val_loss: 0.3578 - val_acc: 0.8791 Epoch 261/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3109 - acc: 0.8904 Epoch 261: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3107 - acc: 0.8903 - val_loss: 0.3548 - val_acc: 0.8817 Epoch 262/1000 693/701 [============================>.] - ETA: 0s - loss: 0.3116 - acc: 0.8887 Epoch 262: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3115 - acc: 0.8887 - val_loss: 0.3538 - val_acc: 0.8807 Epoch 263/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3102 - acc: 0.8903 Epoch 263: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3104 - acc: 0.8902 - val_loss: 0.3552 - val_acc: 0.8811 Epoch 264/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3142 - acc: 0.8889 Epoch 264: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3142 - acc: 0.8888 - val_loss: 0.3542 - val_acc: 0.8804 Epoch 265/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3122 - acc: 0.8893 Epoch 265: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3121 - acc: 0.8894 - val_loss: 0.3544 - val_acc: 0.8807 Epoch 266/1000 700/701 [============================>.] - ETA: 0s - loss: 0.3092 - acc: 0.8900 Epoch 266: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3093 - acc: 0.8901 - val_loss: 0.3550 - val_acc: 0.8812 Epoch 267/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3090 - acc: 0.8901 Epoch 267: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3093 - acc: 0.8901 - val_loss: 0.3548 - val_acc: 0.8813 Epoch 268/1000 701/701 [==============================] - ETA: 0s - loss: 0.3074 - acc: 0.8901 Epoch 268: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3074 - acc: 0.8901 - val_loss: 0.3537 - val_acc: 0.8824 Epoch 269/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3059 - acc: 0.8905 Epoch 269: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3058 - acc: 0.8907 - val_loss: 0.3539 - val_acc: 0.8815 Epoch 270/1000 695/701 [============================>.] - ETA: 0s - loss: 0.3070 - acc: 0.8906 Epoch 270: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3069 - acc: 0.8907 - val_loss: 0.3510 - val_acc: 0.8831 Epoch 271/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3066 - acc: 0.8913 Epoch 271: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.3063 - acc: 0.8913 - val_loss: 0.3539 - val_acc: 0.8822 Epoch 272/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3059 - acc: 0.8919 Epoch 272: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3060 - acc: 0.8919 - val_loss: 0.3523 - val_acc: 0.8814 Epoch 273/1000 692/701 [============================>.] - ETA: 0s - loss: 0.3033 - acc: 0.8936 Epoch 273: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3040 - acc: 0.8934 - val_loss: 0.3533 - val_acc: 0.8820 Epoch 274/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3040 - acc: 0.8924 Epoch 274: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.3039 - acc: 0.8925 - val_loss: 0.3532 - val_acc: 0.8823 Epoch 275/1000 699/701 [============================>.] - ETA: 0s - loss: 0.3068 - acc: 0.8910 Epoch 275: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3065 - acc: 0.8910 - val_loss: 0.3509 - val_acc: 0.8811 Epoch 276/1000 698/701 [============================>.] - ETA: 0s - loss: 0.3045 - acc: 0.8921 Epoch 276: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3046 - acc: 0.8921 - val_loss: 0.3507 - val_acc: 0.8822 Epoch 277/1000 692/701 [============================>.] - ETA: 0s - loss: 0.3038 - acc: 0.8923 Epoch 277: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3034 - acc: 0.8926 - val_loss: 0.3558 - val_acc: 0.8813 Epoch 278/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3015 - acc: 0.8930 Epoch 278: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.3018 - acc: 0.8930 - val_loss: 0.3516 - val_acc: 0.8819 Epoch 279/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3032 - acc: 0.8915 Epoch 279: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 3s 5ms/step - loss: 0.3030 - acc: 0.8915 - val_loss: 0.3493 - val_acc: 0.8840 Epoch 280/1000 700/701 [============================>.] - ETA: 0s - loss: 0.2987 - acc: 0.8935 Epoch 280: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 3s 4ms/step - loss: 0.2988 - acc: 0.8935 - val_loss: 0.3551 - val_acc: 0.8806 Epoch 281/1000 698/701 [============================>.] - ETA: 0s - loss: 0.2998 - acc: 0.8932 Epoch 281: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2999 - acc: 0.8931 - val_loss: 0.3520 - val_acc: 0.8833 Epoch 282/1000 694/701 [============================>.] - ETA: 0s - loss: 0.3005 - acc: 0.8917 Epoch 282: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2998 - acc: 0.8919 - val_loss: 0.3498 - val_acc: 0.8834 Epoch 283/1000 691/701 [============================>.] - ETA: 0s - loss: 0.2980 - acc: 0.8928 Epoch 283: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2985 - acc: 0.8926 - val_loss: 0.3514 - val_acc: 0.8827 Epoch 284/1000 699/701 [============================>.] - ETA: 0s - loss: 0.2985 - acc: 0.8946 Epoch 284: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2982 - acc: 0.8946 - val_loss: 0.3509 - val_acc: 0.8805 Epoch 285/1000 697/701 [============================>.] - ETA: 0s - loss: 0.3000 - acc: 0.8931 Epoch 285: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2998 - acc: 0.8932 - val_loss: 0.3527 - val_acc: 0.8831 Epoch 286/1000 699/701 [============================>.] - ETA: 0s - loss: 0.2996 - acc: 0.8929 Epoch 286: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2995 - acc: 0.8929 - val_loss: 0.3507 - val_acc: 0.8841 Epoch 287/1000 698/701 [============================>.] - ETA: 0s - loss: 0.2985 - acc: 0.8927 Epoch 287: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2983 - acc: 0.8928 - val_loss: 0.3511 - val_acc: 0.8827 Epoch 288/1000 701/701 [==============================] - ETA: 0s - loss: 0.2947 - acc: 0.8963 Epoch 288: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2947 - acc: 0.8963 - val_loss: 0.3494 - val_acc: 0.8843 Epoch 289/1000 696/701 [============================>.] - ETA: 0s - loss: 0.2990 - acc: 0.8936 Epoch 289: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2992 - acc: 0.8935 - val_loss: 0.3490 - val_acc: 0.8836 Epoch 290/1000 697/701 [============================>.] - ETA: 0s - loss: 0.2957 - acc: 0.8937 Epoch 290: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2957 - acc: 0.8938 - val_loss: 0.3535 - val_acc: 0.8827 Epoch 291/1000 694/701 [============================>.] - ETA: 0s - loss: 0.2957 - acc: 0.8946 Epoch 291: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2954 - acc: 0.8946 - val_loss: 0.3522 - val_acc: 0.8819 Epoch 292/1000 693/701 [============================>.] - ETA: 0s - loss: 0.2943 - acc: 0.8946 Epoch 292: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2940 - acc: 0.8947 - val_loss: 0.3511 - val_acc: 0.8830 Epoch 293/1000 700/701 [============================>.] - ETA: 0s - loss: 0.2945 - acc: 0.8946 Epoch 293: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2947 - acc: 0.8945 - val_loss: 0.3492 - val_acc: 0.8838 Epoch 294/1000 689/701 [============================>.] - ETA: 0s - loss: 0.2933 - acc: 0.8957 Epoch 294: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2932 - acc: 0.8958 - val_loss: 0.3481 - val_acc: 0.8839 Epoch 295/1000 696/701 [============================>.] - ETA: 0s - loss: 0.2924 - acc: 0.8951 Epoch 295: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2925 - acc: 0.8950 - val_loss: 0.3495 - val_acc: 0.8841 Epoch 296/1000 692/701 [============================>.] - ETA: 0s - loss: 0.2934 - acc: 0.8963 Epoch 296: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 3s 5ms/step - loss: 0.2931 - acc: 0.8964 - val_loss: 0.3491 - val_acc: 0.8832 Epoch 297/1000 696/701 [============================>.] - ETA: 0s - loss: 0.2923 - acc: 0.8953 Epoch 297: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2919 - acc: 0.8953 - val_loss: 0.3516 - val_acc: 0.8836 Epoch 298/1000 695/701 [============================>.] - ETA: 0s - loss: 0.2922 - acc: 0.8957 Epoch 298: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2923 - acc: 0.8957 - val_loss: 0.3494 - val_acc: 0.8840 Epoch 299/1000 693/701 [============================>.] - ETA: 0s - loss: 0.2906 - acc: 0.8967 Epoch 299: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.2909 - acc: 0.8966 - val_loss: 0.3480 - val_acc: 0.8837 Epoch 300/1000 691/701 [============================>.] - ETA: 0s - loss: 0.2893 - acc: 0.8966 Epoch 300: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2893 - acc: 0.8965 - val_loss: 0.3496 - val_acc: 0.8827 Epoch 301/1000 700/701 [============================>.] - ETA: 0s - loss: 0.2872 - acc: 0.8983 Epoch 301: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2873 - acc: 0.8982 - val_loss: 0.3482 - val_acc: 0.8843 Epoch 302/1000 692/701 [============================>.] - ETA: 0s - loss: 0.2883 - acc: 0.8978 Epoch 302: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2887 - acc: 0.8976 - val_loss: 0.3491 - val_acc: 0.8844 Epoch 303/1000 692/701 [============================>.] - ETA: 0s - loss: 0.2892 - acc: 0.8967 Epoch 303: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.2892 - acc: 0.8967 - val_loss: 0.3477 - val_acc: 0.8826 Epoch 304/1000 699/701 [============================>.] - ETA: 0s - loss: 0.2883 - acc: 0.8968 Epoch 304: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2883 - acc: 0.8968 - val_loss: 0.3507 - val_acc: 0.8842 Epoch 305/1000 700/701 [============================>.] - ETA: 0s - loss: 0.2887 - acc: 0.8965 Epoch 305: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2887 - acc: 0.8965 - val_loss: 0.3517 - val_acc: 0.8840 Epoch 306/1000 694/701 [============================>.] - ETA: 0s - loss: 0.2882 - acc: 0.8967 Epoch 306: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2882 - acc: 0.8970 - val_loss: 0.3482 - val_acc: 0.8845 Epoch 307/1000 695/701 [============================>.] - ETA: 0s - loss: 0.2879 - acc: 0.8968 Epoch 307: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2878 - acc: 0.8968 - val_loss: 0.3484 - val_acc: 0.8847 Epoch 308/1000 697/701 [============================>.] - ETA: 0s - loss: 0.2853 - acc: 0.8975 Epoch 308: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2854 - acc: 0.8974 - val_loss: 0.3514 - val_acc: 0.8852 Epoch 309/1000 697/701 [============================>.] - ETA: 0s - loss: 0.2845 - acc: 0.8982 Epoch 309: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2846 - acc: 0.8982 - val_loss: 0.3475 - val_acc: 0.8834 Epoch 310/1000 698/701 [============================>.] - ETA: 0s - loss: 0.2841 - acc: 0.8991 Epoch 310: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2845 - acc: 0.8990 - val_loss: 0.3490 - val_acc: 0.8831 Epoch 311/1000 698/701 [============================>.] - ETA: 0s - loss: 0.2840 - acc: 0.8982 Epoch 311: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2842 - acc: 0.8980 - val_loss: 0.3461 - val_acc: 0.8841 Epoch 312/1000 693/701 [============================>.] - ETA: 0s - loss: 0.2844 - acc: 0.8980 Epoch 312: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2845 - acc: 0.8980 - val_loss: 0.3484 - val_acc: 0.8851 Epoch 313/1000 696/701 [============================>.] - ETA: 0s - loss: 0.2846 - acc: 0.8998 Epoch 313: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2848 - acc: 0.8998 - val_loss: 0.3503 - val_acc: 0.8842 Epoch 314/1000 697/701 [============================>.] - ETA: 0s - loss: 0.2852 - acc: 0.8987 Epoch 314: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2851 - acc: 0.8988 - val_loss: 0.3466 - val_acc: 0.8848 Epoch 315/1000 699/701 [============================>.] - ETA: 0s - loss: 0.2826 - acc: 0.8985 Epoch 315: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2829 - acc: 0.8985 - val_loss: 0.3501 - val_acc: 0.8825 Epoch 316/1000 691/701 [============================>.] - ETA: 0s - loss: 0.2817 - acc: 0.8992 Epoch 316: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2817 - acc: 0.8993 - val_loss: 0.3488 - val_acc: 0.8837 Epoch 317/1000 692/701 [============================>.] - ETA: 0s - loss: 0.2821 - acc: 0.8988 Epoch 317: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2817 - acc: 0.8989 - val_loss: 0.3478 - val_acc: 0.8842 Epoch 318/1000 701/701 [==============================] - ETA: 0s - loss: 0.2810 - acc: 0.8992 Epoch 318: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 3s 5ms/step - loss: 0.2810 - acc: 0.8992 - val_loss: 0.3492 - val_acc: 0.8859 Epoch 319/1000 700/701 [============================>.] - ETA: 0s - loss: 0.2815 - acc: 0.9006 Epoch 319: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2813 - acc: 0.9006 - val_loss: 0.3458 - val_acc: 0.8867 Epoch 320/1000 701/701 [==============================] - ETA: 0s - loss: 0.2801 - acc: 0.8999 Epoch 320: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2801 - acc: 0.8999 - val_loss: 0.3492 - val_acc: 0.8829 Epoch 321/1000 701/701 [==============================] - ETA: 0s - loss: 0.2814 - acc: 0.8997 Epoch 321: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2814 - acc: 0.8997 - val_loss: 0.3454 - val_acc: 0.8840 Epoch 322/1000 697/701 [============================>.] - ETA: 0s - loss: 0.2784 - acc: 0.9002 Epoch 322: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.2785 - acc: 0.9002 - val_loss: 0.3518 - val_acc: 0.8836 Epoch 323/1000 699/701 [============================>.] - ETA: 0s - loss: 0.2762 - acc: 0.9012 Epoch 323: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2762 - acc: 0.9012 - val_loss: 0.3491 - val_acc: 0.8844 Epoch 324/1000 698/701 [============================>.] - ETA: 0s - loss: 0.2758 - acc: 0.9019 Epoch 324: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2758 - acc: 0.9019 - val_loss: 0.3480 - val_acc: 0.8849 Epoch 325/1000 688/701 [============================>.] - ETA: 0s - loss: 0.2765 - acc: 0.9009 Epoch 325: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2764 - acc: 0.9010 - val_loss: 0.3471 - val_acc: 0.8849 Epoch 326/1000 696/701 [============================>.] - ETA: 0s - loss: 0.2761 - acc: 0.9015 Epoch 326: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2759 - acc: 0.9016 - val_loss: 0.3507 - val_acc: 0.8850 Epoch 327/1000 698/701 [============================>.] - ETA: 0s - loss: 0.2758 - acc: 0.9015 Epoch 327: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.2759 - acc: 0.9015 - val_loss: 0.3502 - val_acc: 0.8841 Epoch 328/1000 699/701 [============================>.] - ETA: 0s - loss: 0.2762 - acc: 0.9016 Epoch 328: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 5s 7ms/step - loss: 0.2761 - acc: 0.9016 - val_loss: 0.3464 - val_acc: 0.8844 Epoch 329/1000 696/701 [============================>.] - ETA: 0s - loss: 0.2733 - acc: 0.9029 Epoch 329: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2738 - acc: 0.9026 - val_loss: 0.3473 - val_acc: 0.8846 Epoch 330/1000 690/701 [============================>.] - ETA: 0s - loss: 0.2746 - acc: 0.9026 Epoch 330: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2744 - acc: 0.9028 - val_loss: 0.3474 - val_acc: 0.8836 Epoch 331/1000 694/701 [============================>.] - ETA: 0s - loss: 0.2739 - acc: 0.9021 Epoch 331: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2745 - acc: 0.9019 - val_loss: 0.3470 - val_acc: 0.8853 Epoch 332/1000 701/701 [==============================] - ETA: 0s - loss: 0.2761 - acc: 0.9018 Epoch 332: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2761 - acc: 0.9018 - val_loss: 0.3496 - val_acc: 0.8853 Epoch 333/1000 700/701 [============================>.] - ETA: 0s - loss: 0.2730 - acc: 0.9013 Epoch 333: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2731 - acc: 0.9013 - val_loss: 0.3462 - val_acc: 0.8865 Epoch 334/1000 691/701 [============================>.] - ETA: 0s - loss: 0.2715 - acc: 0.9029 Epoch 334: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 5ms/step - loss: 0.2716 - acc: 0.9031 - val_loss: 0.3458 - val_acc: 0.8855 Epoch 335/1000 695/701 [============================>.] - ETA: 0s - loss: 0.2751 - acc: 0.9028 Epoch 335: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2752 - acc: 0.9028 - val_loss: 0.3460 - val_acc: 0.8866 Epoch 336/1000 699/701 [============================>.] - ETA: 0s - loss: 0.2695 - acc: 0.9042 Epoch 336: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_CEP/cp.ckpt 701/701 [==============================] - 4s 6ms/step - loss: 0.2695 - acc: 0.9042 - val_loss: 0.3469 - val_acc: 0.8854 Epoch 336: early stopping Use balanced Generator [False] Data: 179632 ----------------------------------------------------------------------------------- Epoch 1/1000 1867/1872 [============================>.] - ETA: 0s - loss: 2.0787 - acc: 0.1411 Epoch 1: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 11s 5ms/step - loss: 2.0787 - acc: 0.1411 - val_loss: 2.0715 - val_acc: 0.1812 Epoch 2/1000 1872/1872 [==============================] - ETA: 0s - loss: 2.0628 - acc: 0.1758 Epoch 2: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 2.0628 - acc: 0.1758 - val_loss: 2.0421 - val_acc: 0.2249 Epoch 3/1000 1862/1872 [============================>.] - ETA: 0s - loss: 1.9864 - acc: 0.2432 Epoch 3: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 1.9858 - acc: 0.2435 - val_loss: 1.8454 - val_acc: 0.3950 Epoch 4/1000 1872/1872 [==============================] - ETA: 0s - loss: 1.6097 - acc: 0.4198 Epoch 4: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 6ms/step - loss: 1.6097 - acc: 0.4198 - val_loss: 1.2439 - val_acc: 0.5860 Epoch 5/1000 1869/1872 [============================>.] - ETA: 0s - loss: 1.1678 - acc: 0.5826 Epoch 5: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 1.1675 - acc: 0.5828 - val_loss: 0.8820 - val_acc: 0.6827 Epoch 6/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.9135 - acc: 0.6696 Epoch 6: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.9135 - acc: 0.6696 - val_loss: 0.7367 - val_acc: 0.7438 Epoch 7/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.8048 - acc: 0.7091 Epoch 7: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.8048 - acc: 0.7091 - val_loss: 0.6685 - val_acc: 0.7660 Epoch 8/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.7413 - acc: 0.7327 Epoch 8: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.7413 - acc: 0.7327 - val_loss: 0.6281 - val_acc: 0.7789 Epoch 9/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.6990 - acc: 0.7483 Epoch 9: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 6ms/step - loss: 0.6991 - acc: 0.7482 - val_loss: 0.5980 - val_acc: 0.7871 Epoch 10/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.6671 - acc: 0.7598 Epoch 10: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.6669 - acc: 0.7598 - val_loss: 0.5718 - val_acc: 0.7987 Epoch 11/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.6417 - acc: 0.7684 Epoch 11: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.6415 - acc: 0.7685 - val_loss: 0.5551 - val_acc: 0.8053 Epoch 12/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.6224 - acc: 0.7765 Epoch 12: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 5ms/step - loss: 0.6227 - acc: 0.7763 - val_loss: 0.5422 - val_acc: 0.8077 Epoch 13/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.6045 - acc: 0.7823 Epoch 13: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.6045 - acc: 0.7823 - val_loss: 0.5303 - val_acc: 0.8096 Epoch 14/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.5885 - acc: 0.7882 Epoch 14: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.5884 - acc: 0.7883 - val_loss: 0.5196 - val_acc: 0.8154 Epoch 15/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.5773 - acc: 0.7930 Epoch 15: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.5773 - acc: 0.7930 - val_loss: 0.5136 - val_acc: 0.8196 Epoch 16/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.5669 - acc: 0.7960 Epoch 16: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.5668 - acc: 0.7960 - val_loss: 0.5046 - val_acc: 0.8199 Epoch 17/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.5550 - acc: 0.8004 Epoch 17: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.5550 - acc: 0.8004 - val_loss: 0.4967 - val_acc: 0.8251 Epoch 18/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.5468 - acc: 0.8030 Epoch 18: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.5470 - acc: 0.8031 - val_loss: 0.4907 - val_acc: 0.8251 Epoch 19/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.5361 - acc: 0.8077 Epoch 19: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 6ms/step - loss: 0.5360 - acc: 0.8077 - val_loss: 0.4831 - val_acc: 0.8310 Epoch 20/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.5304 - acc: 0.8100 Epoch 20: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 11s 6ms/step - loss: 0.5303 - acc: 0.8100 - val_loss: 0.4799 - val_acc: 0.8319 Epoch 21/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.5236 - acc: 0.8125 Epoch 21: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 6ms/step - loss: 0.5236 - acc: 0.8126 - val_loss: 0.4741 - val_acc: 0.8357 Epoch 22/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.5169 - acc: 0.8152 Epoch 22: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.5169 - acc: 0.8153 - val_loss: 0.4731 - val_acc: 0.8337 Epoch 23/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.5104 - acc: 0.8180 Epoch 23: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.5103 - acc: 0.8181 - val_loss: 0.4653 - val_acc: 0.8364 Epoch 24/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.5063 - acc: 0.8202 Epoch 24: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.5061 - acc: 0.8202 - val_loss: 0.4589 - val_acc: 0.8407 Epoch 25/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.4988 - acc: 0.8217 Epoch 25: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.4989 - acc: 0.8217 - val_loss: 0.4582 - val_acc: 0.8396 Epoch 26/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.4941 - acc: 0.8236 Epoch 26: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4941 - acc: 0.8236 - val_loss: 0.4524 - val_acc: 0.8420 Epoch 27/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.4913 - acc: 0.8252 Epoch 27: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4915 - acc: 0.8251 - val_loss: 0.4517 - val_acc: 0.8422 Epoch 28/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.4854 - acc: 0.8267 Epoch 28: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4854 - acc: 0.8267 - val_loss: 0.4449 - val_acc: 0.8447 Epoch 29/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.4798 - acc: 0.8285 Epoch 29: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.4800 - acc: 0.8284 - val_loss: 0.4411 - val_acc: 0.8461 Epoch 30/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.4769 - acc: 0.8306 Epoch 30: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.4769 - acc: 0.8306 - val_loss: 0.4387 - val_acc: 0.8469 Epoch 31/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.4726 - acc: 0.8324 Epoch 31: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4726 - acc: 0.8324 - val_loss: 0.4377 - val_acc: 0.8473 Epoch 32/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.4684 - acc: 0.8346 Epoch 32: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4682 - acc: 0.8347 - val_loss: 0.4380 - val_acc: 0.8490 Epoch 33/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.4649 - acc: 0.8356 Epoch 33: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4648 - acc: 0.8357 - val_loss: 0.4330 - val_acc: 0.8486 Epoch 34/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.4624 - acc: 0.8347 Epoch 34: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4624 - acc: 0.8347 - val_loss: 0.4279 - val_acc: 0.8512 Epoch 35/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.4585 - acc: 0.8378 Epoch 35: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4584 - acc: 0.8378 - val_loss: 0.4250 - val_acc: 0.8548 Epoch 36/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.4532 - acc: 0.8388 Epoch 36: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.4532 - acc: 0.8388 - val_loss: 0.4241 - val_acc: 0.8534 Epoch 37/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.4507 - acc: 0.8402 Epoch 37: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 11s 6ms/step - loss: 0.4507 - acc: 0.8402 - val_loss: 0.4273 - val_acc: 0.8507 Epoch 38/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.4488 - acc: 0.8407 Epoch 38: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.4485 - acc: 0.8408 - val_loss: 0.4254 - val_acc: 0.8508 Epoch 39/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.4452 - acc: 0.8425 Epoch 39: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4450 - acc: 0.8425 - val_loss: 0.4172 - val_acc: 0.8544 Epoch 40/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.4421 - acc: 0.8437 Epoch 40: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4421 - acc: 0.8437 - val_loss: 0.4148 - val_acc: 0.8573 Epoch 41/1000 1858/1872 [============================>.] - ETA: 0s - loss: 0.4388 - acc: 0.8443 Epoch 41: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.4389 - acc: 0.8444 - val_loss: 0.4121 - val_acc: 0.8588 Epoch 42/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.4371 - acc: 0.8445 Epoch 42: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.4371 - acc: 0.8444 - val_loss: 0.4157 - val_acc: 0.8582 Epoch 43/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.4333 - acc: 0.8469 Epoch 43: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.4332 - acc: 0.8470 - val_loss: 0.4099 - val_acc: 0.8578 Epoch 44/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.4314 - acc: 0.8466 Epoch 44: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.4315 - acc: 0.8466 - val_loss: 0.4078 - val_acc: 0.8587 Epoch 45/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.4291 - acc: 0.8488 Epoch 45: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4291 - acc: 0.8488 - val_loss: 0.4068 - val_acc: 0.8593 Epoch 46/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.4259 - acc: 0.8495 Epoch 46: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.4259 - acc: 0.8495 - val_loss: 0.4063 - val_acc: 0.8609 Epoch 47/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.4235 - acc: 0.8503 Epoch 47: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.4236 - acc: 0.8502 - val_loss: 0.4068 - val_acc: 0.8587 Epoch 48/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.4215 - acc: 0.8514 Epoch 48: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4213 - acc: 0.8515 - val_loss: 0.4069 - val_acc: 0.8601 Epoch 49/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.4191 - acc: 0.8522 Epoch 49: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4189 - acc: 0.8523 - val_loss: 0.4007 - val_acc: 0.8610 Epoch 50/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.4177 - acc: 0.8520 Epoch 50: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 6ms/step - loss: 0.4177 - acc: 0.8521 - val_loss: 0.4043 - val_acc: 0.8608 Epoch 51/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.4159 - acc: 0.8529 Epoch 51: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.4159 - acc: 0.8529 - val_loss: 0.3963 - val_acc: 0.8635 Epoch 52/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.4138 - acc: 0.8545 Epoch 52: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.4139 - acc: 0.8545 - val_loss: 0.3943 - val_acc: 0.8631 Epoch 53/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.4111 - acc: 0.8557 Epoch 53: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4111 - acc: 0.8557 - val_loss: 0.3944 - val_acc: 0.8635 Epoch 54/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.4100 - acc: 0.8555 Epoch 54: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4099 - acc: 0.8555 - val_loss: 0.3899 - val_acc: 0.8676 Epoch 55/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.4079 - acc: 0.8562 Epoch 55: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.4080 - acc: 0.8562 - val_loss: 0.3892 - val_acc: 0.8651 Epoch 56/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.4067 - acc: 0.8568 Epoch 56: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.4068 - acc: 0.8567 - val_loss: 0.3879 - val_acc: 0.8674 Epoch 57/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.4032 - acc: 0.8576 Epoch 57: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4033 - acc: 0.8576 - val_loss: 0.3878 - val_acc: 0.8659 Epoch 58/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.4006 - acc: 0.8590 Epoch 58: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.4007 - acc: 0.8591 - val_loss: 0.3853 - val_acc: 0.8688 Epoch 59/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.3990 - acc: 0.8600 Epoch 59: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3991 - acc: 0.8600 - val_loss: 0.3854 - val_acc: 0.8667 Epoch 60/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.3981 - acc: 0.8599 Epoch 60: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3980 - acc: 0.8599 - val_loss: 0.3848 - val_acc: 0.8691 Epoch 61/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.3966 - acc: 0.8597 Epoch 61: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3965 - acc: 0.8598 - val_loss: 0.3811 - val_acc: 0.8694 Epoch 62/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3938 - acc: 0.8611 Epoch 62: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3940 - acc: 0.8610 - val_loss: 0.3815 - val_acc: 0.8688 Epoch 63/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.3923 - acc: 0.8620 Epoch 63: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3924 - acc: 0.8621 - val_loss: 0.3777 - val_acc: 0.8701 Epoch 64/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.3926 - acc: 0.8621 Epoch 64: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 6ms/step - loss: 0.3924 - acc: 0.8621 - val_loss: 0.3798 - val_acc: 0.8705 Epoch 65/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.3904 - acc: 0.8632 Epoch 65: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3905 - acc: 0.8631 - val_loss: 0.3810 - val_acc: 0.8699 Epoch 66/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.3876 - acc: 0.8630 Epoch 66: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3875 - acc: 0.8630 - val_loss: 0.3790 - val_acc: 0.8703 Epoch 67/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3863 - acc: 0.8637 Epoch 67: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3863 - acc: 0.8637 - val_loss: 0.3736 - val_acc: 0.8723 Epoch 68/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.3841 - acc: 0.8645 Epoch 68: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3841 - acc: 0.8645 - val_loss: 0.3738 - val_acc: 0.8713 Epoch 69/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3825 - acc: 0.8659 Epoch 69: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3825 - acc: 0.8659 - val_loss: 0.3714 - val_acc: 0.8739 Epoch 70/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3804 - acc: 0.8662 Epoch 70: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3804 - acc: 0.8662 - val_loss: 0.3706 - val_acc: 0.8735 Epoch 71/1000 1857/1872 [============================>.] - ETA: 0s - loss: 0.3804 - acc: 0.8665 Epoch 71: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3803 - acc: 0.8666 - val_loss: 0.3703 - val_acc: 0.8729 Epoch 72/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.3783 - acc: 0.8667 Epoch 72: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3780 - acc: 0.8669 - val_loss: 0.3731 - val_acc: 0.8738 Epoch 73/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3773 - acc: 0.8676 Epoch 73: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3774 - acc: 0.8675 - val_loss: 0.3689 - val_acc: 0.8736 Epoch 74/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.3755 - acc: 0.8684 Epoch 74: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3755 - acc: 0.8684 - val_loss: 0.3671 - val_acc: 0.8754 Epoch 75/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.3735 - acc: 0.8683 Epoch 75: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 5ms/step - loss: 0.3735 - acc: 0.8683 - val_loss: 0.3700 - val_acc: 0.8753 Epoch 76/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.3733 - acc: 0.8697 Epoch 76: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3734 - acc: 0.8697 - val_loss: 0.3655 - val_acc: 0.8776 Epoch 77/1000 1860/1872 [============================>.] - ETA: 0s - loss: 0.3718 - acc: 0.8690 Epoch 77: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3719 - acc: 0.8690 - val_loss: 0.3658 - val_acc: 0.8766 Epoch 78/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.3705 - acc: 0.8702 Epoch 78: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3705 - acc: 0.8702 - val_loss: 0.3612 - val_acc: 0.8764 Epoch 79/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3684 - acc: 0.8709 Epoch 79: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3684 - acc: 0.8709 - val_loss: 0.3613 - val_acc: 0.8771 Epoch 80/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3685 - acc: 0.8707 Epoch 80: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3685 - acc: 0.8708 - val_loss: 0.3613 - val_acc: 0.8777 Epoch 81/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.3663 - acc: 0.8720 Epoch 81: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3664 - acc: 0.8719 - val_loss: 0.3592 - val_acc: 0.8779 Epoch 82/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3645 - acc: 0.8719 Epoch 82: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3645 - acc: 0.8719 - val_loss: 0.3578 - val_acc: 0.8785 Epoch 83/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.3632 - acc: 0.8732 Epoch 83: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 11s 6ms/step - loss: 0.3633 - acc: 0.8731 - val_loss: 0.3628 - val_acc: 0.8758 Epoch 84/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3617 - acc: 0.8731 Epoch 84: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3617 - acc: 0.8731 - val_loss: 0.3592 - val_acc: 0.8780 Epoch 85/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.3604 - acc: 0.8746 Epoch 85: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3604 - acc: 0.8746 - val_loss: 0.3567 - val_acc: 0.8790 Epoch 86/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.3604 - acc: 0.8735 Epoch 86: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3602 - acc: 0.8736 - val_loss: 0.3586 - val_acc: 0.8782 Epoch 87/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.3590 - acc: 0.8748 Epoch 87: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3590 - acc: 0.8748 - val_loss: 0.3562 - val_acc: 0.8778 Epoch 88/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3571 - acc: 0.8751 Epoch 88: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3571 - acc: 0.8751 - val_loss: 0.3567 - val_acc: 0.8782 Epoch 89/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.3559 - acc: 0.8756 Epoch 89: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3559 - acc: 0.8756 - val_loss: 0.3549 - val_acc: 0.8798 Epoch 90/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.3545 - acc: 0.8760 Epoch 90: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3546 - acc: 0.8760 - val_loss: 0.3521 - val_acc: 0.8782 Epoch 91/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.3543 - acc: 0.8760 Epoch 91: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3542 - acc: 0.8760 - val_loss: 0.3514 - val_acc: 0.8804 Epoch 92/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.3532 - acc: 0.8762 Epoch 92: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3532 - acc: 0.8762 - val_loss: 0.3518 - val_acc: 0.8824 Epoch 93/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.3496 - acc: 0.8774 Epoch 93: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3497 - acc: 0.8774 - val_loss: 0.3508 - val_acc: 0.8806 Epoch 94/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.3492 - acc: 0.8775 Epoch 94: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3491 - acc: 0.8775 - val_loss: 0.3518 - val_acc: 0.8803 Epoch 95/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.3485 - acc: 0.8781 Epoch 95: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3485 - acc: 0.8781 - val_loss: 0.3470 - val_acc: 0.8819 Epoch 96/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.3478 - acc: 0.8779 Epoch 96: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3478 - acc: 0.8779 - val_loss: 0.3509 - val_acc: 0.8801 Epoch 97/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3463 - acc: 0.8792 Epoch 97: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3463 - acc: 0.8792 - val_loss: 0.3515 - val_acc: 0.8800 Epoch 98/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3465 - acc: 0.8787 Epoch 98: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3463 - acc: 0.8787 - val_loss: 0.3473 - val_acc: 0.8818 Epoch 99/1000 1858/1872 [============================>.] - ETA: 0s - loss: 0.3450 - acc: 0.8792 Epoch 99: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3447 - acc: 0.8793 - val_loss: 0.3438 - val_acc: 0.8824 Epoch 100/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3428 - acc: 0.8800 Epoch 100: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3428 - acc: 0.8800 - val_loss: 0.3501 - val_acc: 0.8790 Epoch 101/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3415 - acc: 0.8801 Epoch 101: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3414 - acc: 0.8801 - val_loss: 0.3457 - val_acc: 0.8820 Epoch 102/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3409 - acc: 0.8803 Epoch 102: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3408 - acc: 0.8803 - val_loss: 0.3445 - val_acc: 0.8804 Epoch 103/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.3411 - acc: 0.8802 Epoch 103: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3411 - acc: 0.8802 - val_loss: 0.3454 - val_acc: 0.8832 Epoch 104/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3393 - acc: 0.8820 Epoch 104: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3394 - acc: 0.8819 - val_loss: 0.3475 - val_acc: 0.8831 Epoch 105/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3388 - acc: 0.8813 Epoch 105: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3388 - acc: 0.8814 - val_loss: 0.3443 - val_acc: 0.8823 Epoch 106/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3380 - acc: 0.8817 Epoch 106: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3382 - acc: 0.8816 - val_loss: 0.3434 - val_acc: 0.8830 Epoch 107/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.3351 - acc: 0.8832 Epoch 107: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.3352 - acc: 0.8831 - val_loss: 0.3399 - val_acc: 0.8851 Epoch 108/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.3339 - acc: 0.8827 Epoch 108: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3339 - acc: 0.8827 - val_loss: 0.3423 - val_acc: 0.8843 Epoch 109/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3354 - acc: 0.8828 Epoch 109: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3353 - acc: 0.8828 - val_loss: 0.3390 - val_acc: 0.8853 Epoch 110/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.3322 - acc: 0.8839 Epoch 110: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3321 - acc: 0.8839 - val_loss: 0.3382 - val_acc: 0.8866 Epoch 111/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.3311 - acc: 0.8843 Epoch 111: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3311 - acc: 0.8843 - val_loss: 0.3397 - val_acc: 0.8854 Epoch 112/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.3316 - acc: 0.8839 Epoch 112: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3319 - acc: 0.8839 - val_loss: 0.3397 - val_acc: 0.8843 Epoch 113/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.3304 - acc: 0.8849 Epoch 113: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3305 - acc: 0.8848 - val_loss: 0.3404 - val_acc: 0.8851 Epoch 114/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.3293 - acc: 0.8857 Epoch 114: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3293 - acc: 0.8856 - val_loss: 0.3415 - val_acc: 0.8838 Epoch 115/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.3289 - acc: 0.8850 Epoch 115: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3289 - acc: 0.8850 - val_loss: 0.3376 - val_acc: 0.8848 Epoch 116/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.3270 - acc: 0.8862 Epoch 116: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3271 - acc: 0.8861 - val_loss: 0.3385 - val_acc: 0.8830 Epoch 117/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.3262 - acc: 0.8852 Epoch 117: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3262 - acc: 0.8852 - val_loss: 0.3340 - val_acc: 0.8867 Epoch 118/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3264 - acc: 0.8862 Epoch 118: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3264 - acc: 0.8862 - val_loss: 0.3346 - val_acc: 0.8860 Epoch 119/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.3235 - acc: 0.8870 Epoch 119: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3237 - acc: 0.8870 - val_loss: 0.3354 - val_acc: 0.8870 Epoch 120/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.3243 - acc: 0.8868 Epoch 120: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3242 - acc: 0.8868 - val_loss: 0.3337 - val_acc: 0.8872 Epoch 121/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.3235 - acc: 0.8869 Epoch 121: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3234 - acc: 0.8869 - val_loss: 0.3321 - val_acc: 0.8877 Epoch 122/1000 1860/1872 [============================>.] - ETA: 0s - loss: 0.3210 - acc: 0.8885 Epoch 122: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3208 - acc: 0.8885 - val_loss: 0.3340 - val_acc: 0.8872 Epoch 123/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.3214 - acc: 0.8881 Epoch 123: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3213 - acc: 0.8881 - val_loss: 0.3323 - val_acc: 0.8866 Epoch 124/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.3211 - acc: 0.8876 Epoch 124: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3210 - acc: 0.8876 - val_loss: 0.3292 - val_acc: 0.8890 Epoch 125/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.3208 - acc: 0.8876 Epoch 125: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3206 - acc: 0.8876 - val_loss: 0.3317 - val_acc: 0.8876 Epoch 126/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.3188 - acc: 0.8892 Epoch 126: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3185 - acc: 0.8893 - val_loss: 0.3321 - val_acc: 0.8874 Epoch 127/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.3198 - acc: 0.8886 Epoch 127: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3199 - acc: 0.8886 - val_loss: 0.3337 - val_acc: 0.8869 Epoch 128/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3161 - acc: 0.8897 Epoch 128: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3161 - acc: 0.8897 - val_loss: 0.3299 - val_acc: 0.8886 Epoch 129/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.3169 - acc: 0.8892 Epoch 129: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3170 - acc: 0.8892 - val_loss: 0.3271 - val_acc: 0.8885 Epoch 130/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3152 - acc: 0.8905 Epoch 130: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3151 - acc: 0.8906 - val_loss: 0.3290 - val_acc: 0.8882 Epoch 131/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.3148 - acc: 0.8901 Epoch 131: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 5ms/step - loss: 0.3151 - acc: 0.8900 - val_loss: 0.3273 - val_acc: 0.8897 Epoch 132/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.3143 - acc: 0.8907 Epoch 132: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3143 - acc: 0.8907 - val_loss: 0.3270 - val_acc: 0.8897 Epoch 133/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3127 - acc: 0.8907 Epoch 133: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3127 - acc: 0.8907 - val_loss: 0.3294 - val_acc: 0.8881 Epoch 134/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.3123 - acc: 0.8907 Epoch 134: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3124 - acc: 0.8907 - val_loss: 0.3265 - val_acc: 0.8892 Epoch 135/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.3117 - acc: 0.8915 Epoch 135: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3118 - acc: 0.8915 - val_loss: 0.3263 - val_acc: 0.8902 Epoch 136/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.3098 - acc: 0.8915 Epoch 136: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3099 - acc: 0.8915 - val_loss: 0.3251 - val_acc: 0.8901 Epoch 137/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.3100 - acc: 0.8916 Epoch 137: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3098 - acc: 0.8916 - val_loss: 0.3258 - val_acc: 0.8888 Epoch 138/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.3097 - acc: 0.8924 Epoch 138: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3097 - acc: 0.8923 - val_loss: 0.3248 - val_acc: 0.8901 Epoch 139/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3095 - acc: 0.8921 Epoch 139: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3095 - acc: 0.8921 - val_loss: 0.3255 - val_acc: 0.8891 Epoch 140/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3074 - acc: 0.8929 Epoch 140: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3073 - acc: 0.8929 - val_loss: 0.3223 - val_acc: 0.8916 Epoch 141/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3062 - acc: 0.8937 Epoch 141: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3060 - acc: 0.8938 - val_loss: 0.3227 - val_acc: 0.8921 Epoch 142/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.3060 - acc: 0.8926 Epoch 142: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3059 - acc: 0.8926 - val_loss: 0.3289 - val_acc: 0.8896 Epoch 143/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.3047 - acc: 0.8940 Epoch 143: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3046 - acc: 0.8940 - val_loss: 0.3229 - val_acc: 0.8915 Epoch 144/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3042 - acc: 0.8940 Epoch 144: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 5ms/step - loss: 0.3042 - acc: 0.8940 - val_loss: 0.3202 - val_acc: 0.8923 Epoch 145/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.3040 - acc: 0.8946 Epoch 145: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3040 - acc: 0.8946 - val_loss: 0.3249 - val_acc: 0.8896 Epoch 146/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3033 - acc: 0.8939 Epoch 146: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.3033 - acc: 0.8939 - val_loss: 0.3215 - val_acc: 0.8917 Epoch 147/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.3017 - acc: 0.8954 Epoch 147: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.3016 - acc: 0.8954 - val_loss: 0.3172 - val_acc: 0.8906 Epoch 148/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.3004 - acc: 0.8948 Epoch 148: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.3004 - acc: 0.8948 - val_loss: 0.3188 - val_acc: 0.8913 Epoch 149/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2990 - acc: 0.8959 Epoch 149: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2990 - acc: 0.8959 - val_loss: 0.3235 - val_acc: 0.8877 Epoch 150/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2991 - acc: 0.8956 Epoch 150: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2992 - acc: 0.8956 - val_loss: 0.3191 - val_acc: 0.8921 Epoch 151/1000 1857/1872 [============================>.] - ETA: 0s - loss: 0.2986 - acc: 0.8960 Epoch 151: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2984 - acc: 0.8960 - val_loss: 0.3246 - val_acc: 0.8889 Epoch 152/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2969 - acc: 0.8968 Epoch 152: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2968 - acc: 0.8969 - val_loss: 0.3156 - val_acc: 0.8924 Epoch 153/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2974 - acc: 0.8960 Epoch 153: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2975 - acc: 0.8960 - val_loss: 0.3166 - val_acc: 0.8919 Epoch 154/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2971 - acc: 0.8963 Epoch 154: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2973 - acc: 0.8963 - val_loss: 0.3201 - val_acc: 0.8908 Epoch 155/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2958 - acc: 0.8966 Epoch 155: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2958 - acc: 0.8965 - val_loss: 0.3188 - val_acc: 0.8902 Epoch 156/1000 1858/1872 [============================>.] - ETA: 0s - loss: 0.2963 - acc: 0.8968 Epoch 156: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2961 - acc: 0.8970 - val_loss: 0.3166 - val_acc: 0.8921 Epoch 157/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.2935 - acc: 0.8977 Epoch 157: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2935 - acc: 0.8977 - val_loss: 0.3162 - val_acc: 0.8931 Epoch 158/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2950 - acc: 0.8982 Epoch 158: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2950 - acc: 0.8982 - val_loss: 0.3162 - val_acc: 0.8913 Epoch 159/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2943 - acc: 0.8970 Epoch 159: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2943 - acc: 0.8970 - val_loss: 0.3167 - val_acc: 0.8918 Epoch 160/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.2923 - acc: 0.8984 Epoch 160: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2924 - acc: 0.8984 - val_loss: 0.3155 - val_acc: 0.8912 Epoch 161/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2924 - acc: 0.8985 Epoch 161: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2926 - acc: 0.8984 - val_loss: 0.3175 - val_acc: 0.8931 Epoch 162/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2916 - acc: 0.8984 Epoch 162: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2914 - acc: 0.8985 - val_loss: 0.3140 - val_acc: 0.8928 Epoch 163/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2897 - acc: 0.8985 Epoch 163: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2897 - acc: 0.8985 - val_loss: 0.3156 - val_acc: 0.8918 Epoch 164/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.2887 - acc: 0.8999 Epoch 164: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2888 - acc: 0.8999 - val_loss: 0.3158 - val_acc: 0.8918 Epoch 165/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2885 - acc: 0.8993 Epoch 165: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2885 - acc: 0.8993 - val_loss: 0.3153 - val_acc: 0.8931 Epoch 166/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2871 - acc: 0.9003 Epoch 166: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2870 - acc: 0.9003 - val_loss: 0.3156 - val_acc: 0.8927 Epoch 167/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2868 - acc: 0.8997 Epoch 167: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2867 - acc: 0.8997 - val_loss: 0.3128 - val_acc: 0.8934 Epoch 168/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2854 - acc: 0.9000 Epoch 168: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2854 - acc: 0.9000 - val_loss: 0.3124 - val_acc: 0.8945 Epoch 169/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2862 - acc: 0.9000 Epoch 169: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 5ms/step - loss: 0.2860 - acc: 0.9001 - val_loss: 0.3129 - val_acc: 0.8929 Epoch 170/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2847 - acc: 0.9002 Epoch 170: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2847 - acc: 0.9002 - val_loss: 0.3124 - val_acc: 0.8940 Epoch 171/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2851 - acc: 0.9011 Epoch 171: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2852 - acc: 0.9011 - val_loss: 0.3116 - val_acc: 0.8954 Epoch 172/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.2836 - acc: 0.9009 Epoch 172: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2837 - acc: 0.9009 - val_loss: 0.3123 - val_acc: 0.8954 Epoch 173/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2842 - acc: 0.9006 Epoch 173: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2841 - acc: 0.9007 - val_loss: 0.3118 - val_acc: 0.8939 Epoch 174/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.2823 - acc: 0.9009 Epoch 174: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2822 - acc: 0.9009 - val_loss: 0.3115 - val_acc: 0.8942 Epoch 175/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2825 - acc: 0.9015 Epoch 175: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2825 - acc: 0.9015 - val_loss: 0.3127 - val_acc: 0.8934 Epoch 176/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2801 - acc: 0.9018 Epoch 176: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2802 - acc: 0.9018 - val_loss: 0.3109 - val_acc: 0.8941 Epoch 177/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2806 - acc: 0.9020 Epoch 177: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2806 - acc: 0.9020 - val_loss: 0.3109 - val_acc: 0.8935 Epoch 178/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.2791 - acc: 0.9028 Epoch 178: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2791 - acc: 0.9028 - val_loss: 0.3131 - val_acc: 0.8924 Epoch 179/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2778 - acc: 0.9033 Epoch 179: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2780 - acc: 0.9032 - val_loss: 0.3106 - val_acc: 0.8935 Epoch 180/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2781 - acc: 0.9033 Epoch 180: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2781 - acc: 0.9033 - val_loss: 0.3120 - val_acc: 0.8938 Epoch 181/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2769 - acc: 0.9034 Epoch 181: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2767 - acc: 0.9035 - val_loss: 0.3090 - val_acc: 0.8944 Epoch 182/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2773 - acc: 0.9031 Epoch 182: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2773 - acc: 0.9030 - val_loss: 0.3108 - val_acc: 0.8941 Epoch 183/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2767 - acc: 0.9035 Epoch 183: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2766 - acc: 0.9036 - val_loss: 0.3080 - val_acc: 0.8950 Epoch 184/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2752 - acc: 0.9036 Epoch 184: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2752 - acc: 0.9036 - val_loss: 0.3073 - val_acc: 0.8969 Epoch 185/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2735 - acc: 0.9042 Epoch 185: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2735 - acc: 0.9042 - val_loss: 0.3056 - val_acc: 0.8962 Epoch 186/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2738 - acc: 0.9045 Epoch 186: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2739 - acc: 0.9045 - val_loss: 0.3043 - val_acc: 0.8986 Epoch 187/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2735 - acc: 0.9039 Epoch 187: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2736 - acc: 0.9039 - val_loss: 0.3065 - val_acc: 0.8953 Epoch 188/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2728 - acc: 0.9048 Epoch 188: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2726 - acc: 0.9049 - val_loss: 0.3063 - val_acc: 0.8969 Epoch 189/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2721 - acc: 0.9047 Epoch 189: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2723 - acc: 0.9046 - val_loss: 0.3076 - val_acc: 0.8956 Epoch 190/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2719 - acc: 0.9046 Epoch 190: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2720 - acc: 0.9046 - val_loss: 0.3066 - val_acc: 0.8956 Epoch 191/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2695 - acc: 0.9055 Epoch 191: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2694 - acc: 0.9056 - val_loss: 0.3053 - val_acc: 0.8962 Epoch 192/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2688 - acc: 0.9058 Epoch 192: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2688 - acc: 0.9058 - val_loss: 0.3045 - val_acc: 0.8980 Epoch 193/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2688 - acc: 0.9067 Epoch 193: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2687 - acc: 0.9067 - val_loss: 0.3077 - val_acc: 0.8958 Epoch 194/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2680 - acc: 0.9065 Epoch 194: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2679 - acc: 0.9065 - val_loss: 0.3057 - val_acc: 0.8955 Epoch 195/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.2670 - acc: 0.9067 Epoch 195: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2669 - acc: 0.9067 - val_loss: 0.3036 - val_acc: 0.8974 Epoch 196/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2676 - acc: 0.9061 Epoch 196: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2679 - acc: 0.9061 - val_loss: 0.3047 - val_acc: 0.8976 Epoch 197/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2649 - acc: 0.9076 Epoch 197: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2649 - acc: 0.9076 - val_loss: 0.3040 - val_acc: 0.8962 Epoch 198/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2649 - acc: 0.9074 Epoch 198: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2650 - acc: 0.9074 - val_loss: 0.3038 - val_acc: 0.8985 Epoch 199/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2647 - acc: 0.9075 Epoch 199: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2647 - acc: 0.9075 - val_loss: 0.3024 - val_acc: 0.8969 Epoch 200/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2637 - acc: 0.9077 Epoch 200: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2638 - acc: 0.9077 - val_loss: 0.3051 - val_acc: 0.8967 Epoch 201/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2636 - acc: 0.9078 Epoch 201: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2636 - acc: 0.9077 - val_loss: 0.3022 - val_acc: 0.8976 Epoch 202/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2632 - acc: 0.9077 Epoch 202: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2631 - acc: 0.9077 - val_loss: 0.3032 - val_acc: 0.8972 Epoch 203/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2633 - acc: 0.9076 Epoch 203: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2634 - acc: 0.9076 - val_loss: 0.3042 - val_acc: 0.8972 Epoch 204/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2614 - acc: 0.9089 Epoch 204: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2613 - acc: 0.9089 - val_loss: 0.3056 - val_acc: 0.8961 Epoch 205/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2613 - acc: 0.9094 Epoch 205: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2613 - acc: 0.9094 - val_loss: 0.3019 - val_acc: 0.8994 Epoch 206/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2598 - acc: 0.9097 Epoch 206: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2598 - acc: 0.9097 - val_loss: 0.3008 - val_acc: 0.8986 Epoch 207/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2598 - acc: 0.9096 Epoch 207: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2598 - acc: 0.9096 - val_loss: 0.3005 - val_acc: 0.8993 Epoch 208/1000 1857/1872 [============================>.] - ETA: 0s - loss: 0.2590 - acc: 0.9091 Epoch 208: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2591 - acc: 0.9091 - val_loss: 0.3014 - val_acc: 0.8980 Epoch 209/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2582 - acc: 0.9089 Epoch 209: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2581 - acc: 0.9089 - val_loss: 0.3015 - val_acc: 0.8975 Epoch 210/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2571 - acc: 0.9102 Epoch 210: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2571 - acc: 0.9102 - val_loss: 0.2978 - val_acc: 0.8993 Epoch 211/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2571 - acc: 0.9102 Epoch 211: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2571 - acc: 0.9102 - val_loss: 0.3006 - val_acc: 0.8986 Epoch 212/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2558 - acc: 0.9110 Epoch 212: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2558 - acc: 0.9109 - val_loss: 0.2982 - val_acc: 0.9010 Epoch 213/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2565 - acc: 0.9107 Epoch 213: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2563 - acc: 0.9109 - val_loss: 0.2980 - val_acc: 0.9011 Epoch 214/1000 1857/1872 [============================>.] - ETA: 0s - loss: 0.2546 - acc: 0.9115 Epoch 214: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2546 - acc: 0.9116 - val_loss: 0.2994 - val_acc: 0.8988 Epoch 215/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2544 - acc: 0.9107 Epoch 215: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2544 - acc: 0.9107 - val_loss: 0.3016 - val_acc: 0.8990 Epoch 216/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2539 - acc: 0.9114 Epoch 216: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2538 - acc: 0.9114 - val_loss: 0.3009 - val_acc: 0.8983 Epoch 217/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2543 - acc: 0.9114 Epoch 217: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2542 - acc: 0.9115 - val_loss: 0.2992 - val_acc: 0.8986 Epoch 218/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2536 - acc: 0.9112 Epoch 218: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2536 - acc: 0.9113 - val_loss: 0.2971 - val_acc: 0.9014 Epoch 219/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2521 - acc: 0.9120 Epoch 219: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2523 - acc: 0.9120 - val_loss: 0.2966 - val_acc: 0.9007 Epoch 220/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2519 - acc: 0.9121 Epoch 220: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2520 - acc: 0.9121 - val_loss: 0.3002 - val_acc: 0.8988 Epoch 221/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2514 - acc: 0.9126 Epoch 221: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2516 - acc: 0.9125 - val_loss: 0.3001 - val_acc: 0.8997 Epoch 222/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2518 - acc: 0.9119 Epoch 222: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2519 - acc: 0.9119 - val_loss: 0.3000 - val_acc: 0.9009 Epoch 223/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2514 - acc: 0.9123 Epoch 223: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2513 - acc: 0.9123 - val_loss: 0.3009 - val_acc: 0.9004 Epoch 224/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2497 - acc: 0.9125 Epoch 224: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2497 - acc: 0.9125 - val_loss: 0.3000 - val_acc: 0.8998 Epoch 225/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2495 - acc: 0.9127 Epoch 225: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2493 - acc: 0.9128 - val_loss: 0.2971 - val_acc: 0.9012 Epoch 226/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2482 - acc: 0.9135 Epoch 226: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2481 - acc: 0.9136 - val_loss: 0.2987 - val_acc: 0.9004 Epoch 227/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2469 - acc: 0.9133 Epoch 227: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2470 - acc: 0.9132 - val_loss: 0.2965 - val_acc: 0.9014 Epoch 228/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2472 - acc: 0.9136 Epoch 228: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2470 - acc: 0.9136 - val_loss: 0.2968 - val_acc: 0.8993 Epoch 229/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2469 - acc: 0.9135 Epoch 229: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2468 - acc: 0.9135 - val_loss: 0.2991 - val_acc: 0.8993 Epoch 230/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2470 - acc: 0.9142 Epoch 230: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2469 - acc: 0.9142 - val_loss: 0.2939 - val_acc: 0.9025 Epoch 231/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2457 - acc: 0.9142 Epoch 231: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 5ms/step - loss: 0.2456 - acc: 0.9142 - val_loss: 0.2993 - val_acc: 0.9000 Epoch 232/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2442 - acc: 0.9146 Epoch 232: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2441 - acc: 0.9146 - val_loss: 0.2975 - val_acc: 0.8998 Epoch 233/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2442 - acc: 0.9148 Epoch 233: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2442 - acc: 0.9148 - val_loss: 0.2951 - val_acc: 0.9002 Epoch 234/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2445 - acc: 0.9146 Epoch 234: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2446 - acc: 0.9146 - val_loss: 0.2955 - val_acc: 0.9009 Epoch 235/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2436 - acc: 0.9145 Epoch 235: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2437 - acc: 0.9145 - val_loss: 0.2952 - val_acc: 0.9018 Epoch 236/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2430 - acc: 0.9146 Epoch 236: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2429 - acc: 0.9146 - val_loss: 0.2964 - val_acc: 0.9017 Epoch 237/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2412 - acc: 0.9159 Epoch 237: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2409 - acc: 0.9160 - val_loss: 0.3019 - val_acc: 0.9009 Epoch 238/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2413 - acc: 0.9157 Epoch 238: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2415 - acc: 0.9157 - val_loss: 0.2963 - val_acc: 0.9023 Epoch 239/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2399 - acc: 0.9165 Epoch 239: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2399 - acc: 0.9165 - val_loss: 0.2938 - val_acc: 0.9024 Epoch 240/1000 1858/1872 [============================>.] - ETA: 0s - loss: 0.2413 - acc: 0.9153 Epoch 240: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2411 - acc: 0.9154 - val_loss: 0.2931 - val_acc: 0.9011 Epoch 241/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2387 - acc: 0.9164 Epoch 241: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2388 - acc: 0.9163 - val_loss: 0.2947 - val_acc: 0.9019 Epoch 242/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2400 - acc: 0.9161 Epoch 242: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2400 - acc: 0.9161 - val_loss: 0.2935 - val_acc: 0.9031 Epoch 243/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2402 - acc: 0.9158 Epoch 243: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2402 - acc: 0.9158 - val_loss: 0.2986 - val_acc: 0.8989 Epoch 244/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2384 - acc: 0.9167 Epoch 244: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2384 - acc: 0.9167 - val_loss: 0.2938 - val_acc: 0.9027 Epoch 245/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2379 - acc: 0.9164 Epoch 245: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2382 - acc: 0.9163 - val_loss: 0.2941 - val_acc: 0.9025 Epoch 246/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2362 - acc: 0.9167 Epoch 246: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2362 - acc: 0.9167 - val_loss: 0.2969 - val_acc: 0.9016 Epoch 247/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2352 - acc: 0.9178 Epoch 247: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2353 - acc: 0.9177 - val_loss: 0.2930 - val_acc: 0.9035 Epoch 248/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.2371 - acc: 0.9173 Epoch 248: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2371 - acc: 0.9173 - val_loss: 0.2920 - val_acc: 0.9035 Epoch 249/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.2364 - acc: 0.9174 Epoch 249: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2362 - acc: 0.9174 - val_loss: 0.2927 - val_acc: 0.9032 Epoch 250/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.2352 - acc: 0.9176 Epoch 250: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 10s 5ms/step - loss: 0.2350 - acc: 0.9177 - val_loss: 0.2920 - val_acc: 0.9040 Epoch 251/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2336 - acc: 0.9184 Epoch 251: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2338 - acc: 0.9183 - val_loss: 0.2956 - val_acc: 0.9016 Epoch 252/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2336 - acc: 0.9183 Epoch 252: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2336 - acc: 0.9183 - val_loss: 0.2945 - val_acc: 0.9024 Epoch 253/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.2339 - acc: 0.9187 Epoch 253: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2338 - acc: 0.9188 - val_loss: 0.2923 - val_acc: 0.9025 Epoch 254/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2317 - acc: 0.9183 Epoch 254: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2316 - acc: 0.9183 - val_loss: 0.2973 - val_acc: 0.9017 Epoch 255/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2330 - acc: 0.9179 Epoch 255: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2330 - acc: 0.9180 - val_loss: 0.2936 - val_acc: 0.9028 Epoch 256/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2305 - acc: 0.9191 Epoch 256: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2306 - acc: 0.9190 - val_loss: 0.2925 - val_acc: 0.9023 Epoch 257/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.2315 - acc: 0.9190 Epoch 257: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2315 - acc: 0.9191 - val_loss: 0.2920 - val_acc: 0.9021 Epoch 258/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2309 - acc: 0.9189 Epoch 258: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2310 - acc: 0.9189 - val_loss: 0.2945 - val_acc: 0.9035 Epoch 259/1000 1860/1872 [============================>.] - ETA: 0s - loss: 0.2305 - acc: 0.9191 Epoch 259: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2304 - acc: 0.9191 - val_loss: 0.2919 - val_acc: 0.9017 Epoch 260/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2293 - acc: 0.9200 Epoch 260: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2293 - acc: 0.9200 - val_loss: 0.2920 - val_acc: 0.9036 Epoch 261/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2292 - acc: 0.9198 Epoch 261: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2294 - acc: 0.9198 - val_loss: 0.2915 - val_acc: 0.9025 Epoch 262/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2273 - acc: 0.9203 Epoch 262: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2273 - acc: 0.9203 - val_loss: 0.2919 - val_acc: 0.9035 Epoch 263/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2277 - acc: 0.9201 Epoch 263: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2277 - acc: 0.9201 - val_loss: 0.2921 - val_acc: 0.9047 Epoch 264/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2280 - acc: 0.9204 Epoch 264: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2278 - acc: 0.9204 - val_loss: 0.2918 - val_acc: 0.9020 Epoch 265/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2279 - acc: 0.9203 Epoch 265: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2281 - acc: 0.9202 - val_loss: 0.2902 - val_acc: 0.9029 Epoch 266/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2267 - acc: 0.9203 Epoch 266: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2269 - acc: 0.9203 - val_loss: 0.2893 - val_acc: 0.9052 Epoch 267/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2262 - acc: 0.9212 Epoch 267: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2262 - acc: 0.9212 - val_loss: 0.2906 - val_acc: 0.9030 Epoch 268/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2260 - acc: 0.9212 Epoch 268: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2260 - acc: 0.9212 - val_loss: 0.2945 - val_acc: 0.9020 Epoch 269/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2246 - acc: 0.9212 Epoch 269: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2248 - acc: 0.9212 - val_loss: 0.2916 - val_acc: 0.9030 Epoch 270/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.2245 - acc: 0.9217 Epoch 270: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2247 - acc: 0.9217 - val_loss: 0.2908 - val_acc: 0.9043 Epoch 271/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2246 - acc: 0.9205 Epoch 271: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2246 - acc: 0.9205 - val_loss: 0.2909 - val_acc: 0.9034 Epoch 272/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2233 - acc: 0.9221 Epoch 272: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2234 - acc: 0.9221 - val_loss: 0.2906 - val_acc: 0.9042 Epoch 273/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2233 - acc: 0.9220 Epoch 273: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2234 - acc: 0.9220 - val_loss: 0.2909 - val_acc: 0.9043 Epoch 274/1000 1860/1872 [============================>.] - ETA: 0s - loss: 0.2236 - acc: 0.9211 Epoch 274: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2235 - acc: 0.9211 - val_loss: 0.2922 - val_acc: 0.9036 Epoch 275/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.2218 - acc: 0.9215 Epoch 275: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2218 - acc: 0.9215 - val_loss: 0.2889 - val_acc: 0.9052 Epoch 276/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2219 - acc: 0.9220 Epoch 276: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2220 - acc: 0.9220 - val_loss: 0.2936 - val_acc: 0.9051 Epoch 277/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.2218 - acc: 0.9218 Epoch 277: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2218 - acc: 0.9218 - val_loss: 0.2933 - val_acc: 0.9041 Epoch 278/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2194 - acc: 0.9234 Epoch 278: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2193 - acc: 0.9234 - val_loss: 0.2910 - val_acc: 0.9045 Epoch 279/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2196 - acc: 0.9230 Epoch 279: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2197 - acc: 0.9230 - val_loss: 0.2908 - val_acc: 0.9039 Epoch 280/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2188 - acc: 0.9228 Epoch 280: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2188 - acc: 0.9229 - val_loss: 0.2888 - val_acc: 0.9047 Epoch 281/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.2194 - acc: 0.9230 Epoch 281: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2193 - acc: 0.9230 - val_loss: 0.2908 - val_acc: 0.9046 Epoch 282/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2175 - acc: 0.9239 Epoch 282: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2177 - acc: 0.9239 - val_loss: 0.2893 - val_acc: 0.9036 Epoch 283/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.2168 - acc: 0.9237 Epoch 283: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2169 - acc: 0.9236 - val_loss: 0.2908 - val_acc: 0.9027 Epoch 284/1000 1869/1872 [============================>.] - ETA: 0s - loss: 0.2193 - acc: 0.9224 Epoch 284: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2193 - acc: 0.9223 - val_loss: 0.2889 - val_acc: 0.9041 Epoch 285/1000 1862/1872 [============================>.] - ETA: 0s - loss: 0.2177 - acc: 0.9231 Epoch 285: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2177 - acc: 0.9231 - val_loss: 0.2912 - val_acc: 0.9040 Epoch 286/1000 1871/1872 [============================>.] - ETA: 0s - loss: 0.2174 - acc: 0.9241 Epoch 286: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2173 - acc: 0.9241 - val_loss: 0.2910 - val_acc: 0.9032 Epoch 287/1000 1860/1872 [============================>.] - ETA: 0s - loss: 0.2157 - acc: 0.9246 Epoch 287: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2156 - acc: 0.9246 - val_loss: 0.2909 - val_acc: 0.9045 Epoch 288/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2177 - acc: 0.9236 Epoch 288: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2177 - acc: 0.9236 - val_loss: 0.2885 - val_acc: 0.9057 Epoch 289/1000 1859/1872 [============================>.] - ETA: 0s - loss: 0.2151 - acc: 0.9245 Epoch 289: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2152 - acc: 0.9245 - val_loss: 0.2877 - val_acc: 0.9058 Epoch 290/1000 1867/1872 [============================>.] - ETA: 0s - loss: 0.2150 - acc: 0.9249 Epoch 290: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2151 - acc: 0.9248 - val_loss: 0.2875 - val_acc: 0.9057 Epoch 291/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2139 - acc: 0.9248 Epoch 291: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2139 - acc: 0.9248 - val_loss: 0.2924 - val_acc: 0.9040 Epoch 292/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2137 - acc: 0.9248 Epoch 292: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2137 - acc: 0.9248 - val_loss: 0.2886 - val_acc: 0.9041 Epoch 293/1000 1864/1872 [============================>.] - ETA: 0s - loss: 0.2131 - acc: 0.9248 Epoch 293: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2131 - acc: 0.9248 - val_loss: 0.2902 - val_acc: 0.9050 Epoch 294/1000 1865/1872 [============================>.] - ETA: 0s - loss: 0.2139 - acc: 0.9250 Epoch 294: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2138 - acc: 0.9250 - val_loss: 0.2916 - val_acc: 0.9041 Epoch 295/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2135 - acc: 0.9251 Epoch 295: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2135 - acc: 0.9251 - val_loss: 0.2931 - val_acc: 0.9016 Epoch 296/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2108 - acc: 0.9258 Epoch 296: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2108 - acc: 0.9258 - val_loss: 0.2915 - val_acc: 0.9046 Epoch 297/1000 1870/1872 [============================>.] - ETA: 0s - loss: 0.2120 - acc: 0.9258 Epoch 297: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2120 - acc: 0.9258 - val_loss: 0.2896 - val_acc: 0.9053 Epoch 298/1000 1866/1872 [============================>.] - ETA: 0s - loss: 0.2102 - acc: 0.9262 Epoch 298: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 9s 5ms/step - loss: 0.2102 - acc: 0.9262 - val_loss: 0.2938 - val_acc: 0.9035 Epoch 299/1000 1863/1872 [============================>.] - ETA: 0s - loss: 0.2102 - acc: 0.9264 Epoch 299: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2103 - acc: 0.9263 - val_loss: 0.2898 - val_acc: 0.9044 Epoch 300/1000 1858/1872 [============================>.] - ETA: 0s - loss: 0.2101 - acc: 0.9265 Epoch 300: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2104 - acc: 0.9264 - val_loss: 0.2942 - val_acc: 0.9046 Epoch 301/1000 1872/1872 [==============================] - ETA: 0s - loss: 0.2100 - acc: 0.9263 Epoch 301: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2100 - acc: 0.9263 - val_loss: 0.2919 - val_acc: 0.9047 Epoch 302/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2105 - acc: 0.9259 Epoch 302: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 8s 4ms/step - loss: 0.2106 - acc: 0.9258 - val_loss: 0.2902 - val_acc: 0.9054 Epoch 303/1000 1857/1872 [============================>.] - ETA: 0s - loss: 0.2087 - acc: 0.9266 Epoch 303: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2084 - acc: 0.9267 - val_loss: 0.2888 - val_acc: 0.9060 Epoch 304/1000 1868/1872 [============================>.] - ETA: 0s - loss: 0.2094 - acc: 0.9260 Epoch 304: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2094 - acc: 0.9260 - val_loss: 0.2897 - val_acc: 0.9054 Epoch 305/1000 1861/1872 [============================>.] - ETA: 0s - loss: 0.2083 - acc: 0.9273 Epoch 305: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_ELL/cp.ckpt 1872/1872 [==============================] - 7s 4ms/step - loss: 0.2082 - acc: 0.9273 - val_loss: 0.2951 - val_acc: 0.9035 Epoch 305: early stopping Use balanced Generator [False] Data: 296360 ----------------------------------------------------------------------------------- Epoch 1/1000 3079/3088 [============================>.] - ETA: 0s - loss: 2.0492 - acc: 0.1693 Epoch 1: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 14s 4ms/step - loss: 2.0490 - acc: 0.1695 - val_loss: 1.9645 - val_acc: 0.2918 Epoch 2/1000 3081/3088 [============================>.] - ETA: 0s - loss: 1.6388 - acc: 0.3918 Epoch 2: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 1.6378 - acc: 0.3922 - val_loss: 1.0857 - val_acc: 0.6336 Epoch 3/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.9874 - acc: 0.6419 Epoch 3: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.9870 - acc: 0.6420 - val_loss: 0.7262 - val_acc: 0.7524 Epoch 4/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.7830 - acc: 0.7172 Epoch 4: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.7830 - acc: 0.7172 - val_loss: 0.6310 - val_acc: 0.7800 Epoch 5/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.7012 - acc: 0.7463 Epoch 5: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.7010 - acc: 0.7464 - val_loss: 0.5850 - val_acc: 0.7960 Epoch 6/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.6492 - acc: 0.7661 Epoch 6: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.6493 - acc: 0.7661 - val_loss: 0.5553 - val_acc: 0.8044 Epoch 7/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.6177 - acc: 0.7770 Epoch 7: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.6176 - acc: 0.7771 - val_loss: 0.5359 - val_acc: 0.8122 Epoch 8/1000 3088/3088 [==============================] - ETA: 0s - loss: 0.5930 - acc: 0.7863 Epoch 8: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.5930 - acc: 0.7863 - val_loss: 0.5215 - val_acc: 0.8181 Epoch 9/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.5734 - acc: 0.7940 Epoch 9: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.5735 - acc: 0.7940 - val_loss: 0.5070 - val_acc: 0.8245 Epoch 10/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.5562 - acc: 0.8003 Epoch 10: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.5561 - acc: 0.8003 - val_loss: 0.4987 - val_acc: 0.8255 Epoch 11/1000 3088/3088 [==============================] - ETA: 0s - loss: 0.5450 - acc: 0.8046 Epoch 11: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.5450 - acc: 0.8046 - val_loss: 0.4855 - val_acc: 0.8317 Epoch 12/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.5331 - acc: 0.8082 Epoch 12: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.5331 - acc: 0.8082 - val_loss: 0.4780 - val_acc: 0.8352 Epoch 13/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.5225 - acc: 0.8132 Epoch 13: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.5225 - acc: 0.8132 - val_loss: 0.4740 - val_acc: 0.8349 Epoch 14/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.5124 - acc: 0.8162 Epoch 14: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.5123 - acc: 0.8162 - val_loss: 0.4706 - val_acc: 0.8382 Epoch 15/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.5041 - acc: 0.8201 Epoch 15: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.5041 - acc: 0.8201 - val_loss: 0.4657 - val_acc: 0.8390 Epoch 16/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.4965 - acc: 0.8226 Epoch 16: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.4965 - acc: 0.8226 - val_loss: 0.4622 - val_acc: 0.8374 Epoch 17/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.4874 - acc: 0.8267 Epoch 17: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4874 - acc: 0.8267 - val_loss: 0.4553 - val_acc: 0.8424 Epoch 18/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.4826 - acc: 0.8275 Epoch 18: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4826 - acc: 0.8275 - val_loss: 0.4471 - val_acc: 0.8454 Epoch 19/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.4754 - acc: 0.8314 Epoch 19: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4754 - acc: 0.8314 - val_loss: 0.4436 - val_acc: 0.8480 Epoch 20/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.4704 - acc: 0.8326 Epoch 20: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4704 - acc: 0.8326 - val_loss: 0.4383 - val_acc: 0.8502 Epoch 21/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.4629 - acc: 0.8353 Epoch 21: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4629 - acc: 0.8353 - val_loss: 0.4387 - val_acc: 0.8478 Epoch 22/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.4586 - acc: 0.8375 Epoch 22: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 14s 4ms/step - loss: 0.4587 - acc: 0.8374 - val_loss: 0.4353 - val_acc: 0.8516 Epoch 23/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.4540 - acc: 0.8392 Epoch 23: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4539 - acc: 0.8392 - val_loss: 0.4275 - val_acc: 0.8546 Epoch 24/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.4501 - acc: 0.8402 Epoch 24: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4503 - acc: 0.8402 - val_loss: 0.4251 - val_acc: 0.8547 Epoch 25/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.4446 - acc: 0.8427 Epoch 25: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4446 - acc: 0.8427 - val_loss: 0.4254 - val_acc: 0.8522 Epoch 26/1000 3074/3088 [============================>.] - ETA: 0s - loss: 0.4406 - acc: 0.8439 Epoch 26: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4406 - acc: 0.8438 - val_loss: 0.4187 - val_acc: 0.8558 Epoch 27/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.4370 - acc: 0.8453 Epoch 27: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4370 - acc: 0.8453 - val_loss: 0.4142 - val_acc: 0.8583 Epoch 28/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.4310 - acc: 0.8470 Epoch 28: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 14s 4ms/step - loss: 0.4311 - acc: 0.8470 - val_loss: 0.4151 - val_acc: 0.8577 Epoch 29/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.4285 - acc: 0.8490 Epoch 29: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4285 - acc: 0.8490 - val_loss: 0.4101 - val_acc: 0.8591 Epoch 30/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.4258 - acc: 0.8496 Epoch 30: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4258 - acc: 0.8496 - val_loss: 0.4096 - val_acc: 0.8593 Epoch 31/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.4214 - acc: 0.8507 Epoch 31: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4214 - acc: 0.8507 - val_loss: 0.4069 - val_acc: 0.8612 Epoch 32/1000 3075/3088 [============================>.] - ETA: 0s - loss: 0.4199 - acc: 0.8516 Epoch 32: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4200 - acc: 0.8515 - val_loss: 0.4039 - val_acc: 0.8629 Epoch 33/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.4146 - acc: 0.8534 Epoch 33: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.4146 - acc: 0.8534 - val_loss: 0.4011 - val_acc: 0.8640 Epoch 34/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.4130 - acc: 0.8539 Epoch 34: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4132 - acc: 0.8538 - val_loss: 0.4046 - val_acc: 0.8598 Epoch 35/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.4099 - acc: 0.8552 Epoch 35: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4100 - acc: 0.8551 - val_loss: 0.3972 - val_acc: 0.8650 Epoch 36/1000 3088/3088 [==============================] - ETA: 0s - loss: 0.4058 - acc: 0.8569 Epoch 36: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4058 - acc: 0.8569 - val_loss: 0.3935 - val_acc: 0.8664 Epoch 37/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.4040 - acc: 0.8576 Epoch 37: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.4040 - acc: 0.8576 - val_loss: 0.3917 - val_acc: 0.8670 Epoch 38/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.4017 - acc: 0.8587 Epoch 38: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.4016 - acc: 0.8587 - val_loss: 0.3906 - val_acc: 0.8680 Epoch 39/1000 3074/3088 [============================>.] - ETA: 0s - loss: 0.3994 - acc: 0.8589 Epoch 39: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3996 - acc: 0.8588 - val_loss: 0.3888 - val_acc: 0.8680 Epoch 40/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.3950 - acc: 0.8602 Epoch 40: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3950 - acc: 0.8602 - val_loss: 0.3864 - val_acc: 0.8687 Epoch 41/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.3936 - acc: 0.8608 Epoch 41: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3936 - acc: 0.8608 - val_loss: 0.3841 - val_acc: 0.8715 Epoch 42/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.3903 - acc: 0.8621 Epoch 42: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3903 - acc: 0.8621 - val_loss: 0.3822 - val_acc: 0.8703 Epoch 43/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.3879 - acc: 0.8638 Epoch 43: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.3879 - acc: 0.8638 - val_loss: 0.3809 - val_acc: 0.8697 Epoch 44/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.3852 - acc: 0.8642 Epoch 44: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3853 - acc: 0.8642 - val_loss: 0.3795 - val_acc: 0.8705 Epoch 45/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.3843 - acc: 0.8649 Epoch 45: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3842 - acc: 0.8649 - val_loss: 0.3775 - val_acc: 0.8724 Epoch 46/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.3798 - acc: 0.8661 Epoch 46: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.3798 - acc: 0.8662 - val_loss: 0.3761 - val_acc: 0.8731 Epoch 47/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.3785 - acc: 0.8667 Epoch 47: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3785 - acc: 0.8667 - val_loss: 0.3746 - val_acc: 0.8741 Epoch 48/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.3760 - acc: 0.8680 Epoch 48: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3760 - acc: 0.8680 - val_loss: 0.3701 - val_acc: 0.8755 Epoch 49/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.3741 - acc: 0.8686 Epoch 49: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 14s 4ms/step - loss: 0.3741 - acc: 0.8686 - val_loss: 0.3681 - val_acc: 0.8769 Epoch 50/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.3732 - acc: 0.8692 Epoch 50: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.3732 - acc: 0.8692 - val_loss: 0.3684 - val_acc: 0.8758 Epoch 51/1000 3074/3088 [============================>.] - ETA: 0s - loss: 0.3705 - acc: 0.8697 Epoch 51: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3704 - acc: 0.8698 - val_loss: 0.3698 - val_acc: 0.8745 Epoch 52/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.3678 - acc: 0.8705 Epoch 52: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3678 - acc: 0.8705 - val_loss: 0.3675 - val_acc: 0.8758 Epoch 53/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.3668 - acc: 0.8710 Epoch 53: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3669 - acc: 0.8710 - val_loss: 0.3638 - val_acc: 0.8769 Epoch 54/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.3648 - acc: 0.8715 Epoch 54: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3648 - acc: 0.8715 - val_loss: 0.3708 - val_acc: 0.8731 Epoch 55/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.3629 - acc: 0.8726 Epoch 55: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3629 - acc: 0.8726 - val_loss: 0.3610 - val_acc: 0.8785 Epoch 56/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.3602 - acc: 0.8742 Epoch 56: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3602 - acc: 0.8742 - val_loss: 0.3597 - val_acc: 0.8769 Epoch 57/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.3588 - acc: 0.8749 Epoch 57: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 14s 4ms/step - loss: 0.3588 - acc: 0.8749 - val_loss: 0.3573 - val_acc: 0.8782 Epoch 58/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.3558 - acc: 0.8754 Epoch 58: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3556 - acc: 0.8755 - val_loss: 0.3574 - val_acc: 0.8793 Epoch 59/1000 3088/3088 [==============================] - ETA: 0s - loss: 0.3556 - acc: 0.8756 Epoch 59: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.3556 - acc: 0.8756 - val_loss: 0.3580 - val_acc: 0.8772 Epoch 60/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.3532 - acc: 0.8764 Epoch 60: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3531 - acc: 0.8764 - val_loss: 0.3565 - val_acc: 0.8803 Epoch 61/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.3512 - acc: 0.8769 Epoch 61: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3511 - acc: 0.8770 - val_loss: 0.3557 - val_acc: 0.8793 Epoch 62/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.3493 - acc: 0.8776 Epoch 62: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3494 - acc: 0.8775 - val_loss: 0.3512 - val_acc: 0.8816 Epoch 63/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.3470 - acc: 0.8783 Epoch 63: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3471 - acc: 0.8783 - val_loss: 0.3518 - val_acc: 0.8809 Epoch 64/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.3464 - acc: 0.8789 Epoch 64: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3463 - acc: 0.8789 - val_loss: 0.3511 - val_acc: 0.8813 Epoch 65/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.3450 - acc: 0.8788 Epoch 65: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3450 - acc: 0.8789 - val_loss: 0.3491 - val_acc: 0.8827 Epoch 66/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.3424 - acc: 0.8802 Epoch 66: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3425 - acc: 0.8802 - val_loss: 0.3481 - val_acc: 0.8848 Epoch 67/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.3411 - acc: 0.8805 Epoch 67: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.3412 - acc: 0.8805 - val_loss: 0.3456 - val_acc: 0.8825 Epoch 68/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.3386 - acc: 0.8814 Epoch 68: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3388 - acc: 0.8813 - val_loss: 0.3452 - val_acc: 0.8838 Epoch 69/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.3377 - acc: 0.8825 Epoch 69: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3376 - acc: 0.8825 - val_loss: 0.3441 - val_acc: 0.8848 Epoch 70/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.3366 - acc: 0.8827 Epoch 70: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.3366 - acc: 0.8827 - val_loss: 0.3434 - val_acc: 0.8838 Epoch 71/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.3345 - acc: 0.8834 Epoch 71: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.3345 - acc: 0.8834 - val_loss: 0.3402 - val_acc: 0.8863 Epoch 72/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.3331 - acc: 0.8839 Epoch 72: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3332 - acc: 0.8839 - val_loss: 0.3409 - val_acc: 0.8863 Epoch 73/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.3316 - acc: 0.8846 Epoch 73: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3316 - acc: 0.8845 - val_loss: 0.3401 - val_acc: 0.8867 Epoch 74/1000 3073/3088 [============================>.] - ETA: 0s - loss: 0.3295 - acc: 0.8853 Epoch 74: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3296 - acc: 0.8853 - val_loss: 0.3389 - val_acc: 0.8866 Epoch 75/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.3270 - acc: 0.8859 Epoch 75: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3270 - acc: 0.8859 - val_loss: 0.3354 - val_acc: 0.8871 Epoch 76/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.3257 - acc: 0.8867 Epoch 76: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3258 - acc: 0.8867 - val_loss: 0.3383 - val_acc: 0.8876 Epoch 77/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.3244 - acc: 0.8866 Epoch 77: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3244 - acc: 0.8866 - val_loss: 0.3320 - val_acc: 0.8903 Epoch 78/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.3226 - acc: 0.8873 Epoch 78: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3226 - acc: 0.8873 - val_loss: 0.3375 - val_acc: 0.8855 Epoch 79/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.3218 - acc: 0.8883 Epoch 79: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3218 - acc: 0.8883 - val_loss: 0.3328 - val_acc: 0.8875 Epoch 80/1000 3073/3088 [============================>.] - ETA: 0s - loss: 0.3198 - acc: 0.8891 Epoch 80: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3197 - acc: 0.8891 - val_loss: 0.3292 - val_acc: 0.8901 Epoch 81/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.3195 - acc: 0.8882 Epoch 81: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3196 - acc: 0.8882 - val_loss: 0.3290 - val_acc: 0.8878 Epoch 82/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.3172 - acc: 0.8900 Epoch 82: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3171 - acc: 0.8900 - val_loss: 0.3322 - val_acc: 0.8876 Epoch 83/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.3155 - acc: 0.8901 Epoch 83: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3156 - acc: 0.8901 - val_loss: 0.3317 - val_acc: 0.8894 Epoch 84/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.3146 - acc: 0.8901 Epoch 84: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3147 - acc: 0.8901 - val_loss: 0.3264 - val_acc: 0.8918 Epoch 85/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.3132 - acc: 0.8909 Epoch 85: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3132 - acc: 0.8909 - val_loss: 0.3277 - val_acc: 0.8894 Epoch 86/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.3122 - acc: 0.8907 Epoch 86: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.3122 - acc: 0.8907 - val_loss: 0.3284 - val_acc: 0.8890 Epoch 87/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.3101 - acc: 0.8920 Epoch 87: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3101 - acc: 0.8921 - val_loss: 0.3228 - val_acc: 0.8915 Epoch 88/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.3078 - acc: 0.8925 Epoch 88: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3078 - acc: 0.8925 - val_loss: 0.3214 - val_acc: 0.8916 Epoch 89/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.3069 - acc: 0.8934 Epoch 89: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.3069 - acc: 0.8933 - val_loss: 0.3245 - val_acc: 0.8917 Epoch 90/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.3067 - acc: 0.8933 Epoch 90: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3066 - acc: 0.8933 - val_loss: 0.3203 - val_acc: 0.8949 Epoch 91/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.3046 - acc: 0.8936 Epoch 91: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3045 - acc: 0.8936 - val_loss: 0.3226 - val_acc: 0.8938 Epoch 92/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.3028 - acc: 0.8945 Epoch 92: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3028 - acc: 0.8945 - val_loss: 0.3194 - val_acc: 0.8942 Epoch 93/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.3029 - acc: 0.8946 Epoch 93: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.3029 - acc: 0.8946 - val_loss: 0.3200 - val_acc: 0.8951 Epoch 94/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.3002 - acc: 0.8957 Epoch 94: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3002 - acc: 0.8957 - val_loss: 0.3191 - val_acc: 0.8942 Epoch 95/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.2999 - acc: 0.8957 Epoch 95: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.3000 - acc: 0.8957 - val_loss: 0.3183 - val_acc: 0.8933 Epoch 96/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.2984 - acc: 0.8962 Epoch 96: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2984 - acc: 0.8962 - val_loss: 0.3178 - val_acc: 0.8957 Epoch 97/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.2978 - acc: 0.8966 Epoch 97: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2978 - acc: 0.8966 - val_loss: 0.3159 - val_acc: 0.8929 Epoch 98/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2956 - acc: 0.8976 Epoch 98: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2956 - acc: 0.8977 - val_loss: 0.3134 - val_acc: 0.8945 Epoch 99/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.2958 - acc: 0.8971 Epoch 99: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2957 - acc: 0.8971 - val_loss: 0.3123 - val_acc: 0.8981 Epoch 100/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.2936 - acc: 0.8977 Epoch 100: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2935 - acc: 0.8978 - val_loss: 0.3162 - val_acc: 0.8929 Epoch 101/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.2926 - acc: 0.8984 Epoch 101: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2925 - acc: 0.8985 - val_loss: 0.3142 - val_acc: 0.8956 Epoch 102/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.2903 - acc: 0.8989 Epoch 102: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2903 - acc: 0.8989 - val_loss: 0.3160 - val_acc: 0.8951 Epoch 103/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.2899 - acc: 0.8997 Epoch 103: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2899 - acc: 0.8997 - val_loss: 0.3123 - val_acc: 0.8964 Epoch 104/1000 3075/3088 [============================>.] - ETA: 0s - loss: 0.2891 - acc: 0.8996 Epoch 104: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2891 - acc: 0.8995 - val_loss: 0.3118 - val_acc: 0.8948 Epoch 105/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.2880 - acc: 0.9001 Epoch 105: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2880 - acc: 0.9001 - val_loss: 0.3072 - val_acc: 0.8976 Epoch 106/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2858 - acc: 0.9004 Epoch 106: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2857 - acc: 0.9005 - val_loss: 0.3097 - val_acc: 0.8977 Epoch 107/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.2864 - acc: 0.9007 Epoch 107: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2864 - acc: 0.9007 - val_loss: 0.3056 - val_acc: 0.8982 Epoch 108/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2857 - acc: 0.9008 Epoch 108: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2857 - acc: 0.9008 - val_loss: 0.3131 - val_acc: 0.8947 Epoch 109/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.2842 - acc: 0.9007 Epoch 109: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2843 - acc: 0.9007 - val_loss: 0.3099 - val_acc: 0.8974 Epoch 110/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.2831 - acc: 0.9017 Epoch 110: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2831 - acc: 0.9018 - val_loss: 0.3091 - val_acc: 0.8985 Epoch 111/1000 3074/3088 [============================>.] - ETA: 0s - loss: 0.2828 - acc: 0.9021 Epoch 111: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2830 - acc: 0.9021 - val_loss: 0.3131 - val_acc: 0.8962 Epoch 112/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.2818 - acc: 0.9019 Epoch 112: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2818 - acc: 0.9019 - val_loss: 0.3115 - val_acc: 0.8972 Epoch 113/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.2807 - acc: 0.9021 Epoch 113: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2806 - acc: 0.9021 - val_loss: 0.3043 - val_acc: 0.8996 Epoch 114/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.2803 - acc: 0.9030 Epoch 114: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2802 - acc: 0.9030 - val_loss: 0.3116 - val_acc: 0.8961 Epoch 115/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.2789 - acc: 0.9034 Epoch 115: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2788 - acc: 0.9034 - val_loss: 0.3080 - val_acc: 0.8995 Epoch 116/1000 3088/3088 [==============================] - ETA: 0s - loss: 0.2777 - acc: 0.9034 Epoch 116: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2777 - acc: 0.9034 - val_loss: 0.3026 - val_acc: 0.8993 Epoch 117/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.2775 - acc: 0.9036 Epoch 117: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2774 - acc: 0.9036 - val_loss: 0.3067 - val_acc: 0.8978 Epoch 118/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.2752 - acc: 0.9043 Epoch 118: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2752 - acc: 0.9043 - val_loss: 0.3006 - val_acc: 0.8986 Epoch 119/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.2749 - acc: 0.9043 Epoch 119: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2749 - acc: 0.9044 - val_loss: 0.2998 - val_acc: 0.9011 Epoch 120/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.2743 - acc: 0.9049 Epoch 120: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2743 - acc: 0.9048 - val_loss: 0.2978 - val_acc: 0.9015 Epoch 121/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2723 - acc: 0.9052 Epoch 121: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2723 - acc: 0.9052 - val_loss: 0.2997 - val_acc: 0.9005 Epoch 122/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2728 - acc: 0.9059 Epoch 122: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2729 - acc: 0.9059 - val_loss: 0.3009 - val_acc: 0.9016 Epoch 123/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.2714 - acc: 0.9061 Epoch 123: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2714 - acc: 0.9061 - val_loss: 0.3076 - val_acc: 0.8976 Epoch 124/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.2723 - acc: 0.9052 Epoch 124: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2722 - acc: 0.9052 - val_loss: 0.3021 - val_acc: 0.8991 Epoch 125/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.2696 - acc: 0.9066 Epoch 125: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2695 - acc: 0.9066 - val_loss: 0.3063 - val_acc: 0.8984 Epoch 126/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.2688 - acc: 0.9066 Epoch 126: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2688 - acc: 0.9066 - val_loss: 0.3003 - val_acc: 0.8998 Epoch 127/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.2679 - acc: 0.9065 Epoch 127: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2679 - acc: 0.9065 - val_loss: 0.2964 - val_acc: 0.9014 Epoch 128/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.2668 - acc: 0.9074 Epoch 128: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2667 - acc: 0.9075 - val_loss: 0.3043 - val_acc: 0.8996 Epoch 129/1000 3074/3088 [============================>.] - ETA: 0s - loss: 0.2664 - acc: 0.9077 Epoch 129: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2665 - acc: 0.9077 - val_loss: 0.3010 - val_acc: 0.8988 Epoch 130/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2650 - acc: 0.9078 Epoch 130: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 10s 3ms/step - loss: 0.2650 - acc: 0.9078 - val_loss: 0.3009 - val_acc: 0.8990 Epoch 131/1000 3075/3088 [============================>.] - ETA: 0s - loss: 0.2658 - acc: 0.9071 Epoch 131: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2657 - acc: 0.9072 - val_loss: 0.2992 - val_acc: 0.9009 Epoch 132/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.2636 - acc: 0.9084 Epoch 132: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2635 - acc: 0.9084 - val_loss: 0.2981 - val_acc: 0.8998 Epoch 133/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2629 - acc: 0.9082 Epoch 133: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2629 - acc: 0.9082 - val_loss: 0.2938 - val_acc: 0.9025 Epoch 134/1000 3074/3088 [============================>.] - ETA: 0s - loss: 0.2619 - acc: 0.9091 Epoch 134: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2619 - acc: 0.9091 - val_loss: 0.2968 - val_acc: 0.9017 Epoch 135/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.2615 - acc: 0.9097 Epoch 135: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2614 - acc: 0.9097 - val_loss: 0.2964 - val_acc: 0.9027 Epoch 136/1000 3075/3088 [============================>.] - ETA: 0s - loss: 0.2621 - acc: 0.9087 Epoch 136: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2621 - acc: 0.9087 - val_loss: 0.2946 - val_acc: 0.9014 Epoch 137/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2601 - acc: 0.9104 Epoch 137: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2600 - acc: 0.9104 - val_loss: 0.2941 - val_acc: 0.9031 Epoch 138/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2589 - acc: 0.9103 Epoch 138: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2589 - acc: 0.9103 - val_loss: 0.2918 - val_acc: 0.9038 Epoch 139/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.2575 - acc: 0.9102 Epoch 139: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2576 - acc: 0.9102 - val_loss: 0.2929 - val_acc: 0.9030 Epoch 140/1000 3076/3088 [============================>.] - ETA: 0s - loss: 0.2571 - acc: 0.9102 Epoch 140: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2574 - acc: 0.9101 - val_loss: 0.2972 - val_acc: 0.9013 Epoch 141/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2575 - acc: 0.9104 Epoch 141: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2576 - acc: 0.9103 - val_loss: 0.2938 - val_acc: 0.9012 Epoch 142/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2563 - acc: 0.9113 Epoch 142: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2564 - acc: 0.9113 - val_loss: 0.2923 - val_acc: 0.9042 Epoch 143/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2556 - acc: 0.9115 Epoch 143: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2557 - acc: 0.9115 - val_loss: 0.2912 - val_acc: 0.9037 Epoch 144/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.2544 - acc: 0.9116 Epoch 144: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2543 - acc: 0.9116 - val_loss: 0.2923 - val_acc: 0.9025 Epoch 145/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.2542 - acc: 0.9120 Epoch 145: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2541 - acc: 0.9120 - val_loss: 0.2952 - val_acc: 0.9028 Epoch 146/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2541 - acc: 0.9112 Epoch 146: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2540 - acc: 0.9113 - val_loss: 0.2934 - val_acc: 0.9038 Epoch 147/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.2533 - acc: 0.9122 Epoch 147: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2531 - acc: 0.9122 - val_loss: 0.2976 - val_acc: 0.9017 Epoch 148/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.2531 - acc: 0.9122 Epoch 148: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2531 - acc: 0.9122 - val_loss: 0.2954 - val_acc: 0.9028 Epoch 149/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2510 - acc: 0.9134 Epoch 149: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2511 - acc: 0.9134 - val_loss: 0.2960 - val_acc: 0.9029 Epoch 150/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.2490 - acc: 0.9131 Epoch 150: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2491 - acc: 0.9131 - val_loss: 0.2945 - val_acc: 0.9018 Epoch 151/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.2502 - acc: 0.9132 Epoch 151: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 13s 4ms/step - loss: 0.2503 - acc: 0.9132 - val_loss: 0.2895 - val_acc: 0.9041 Epoch 152/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.2488 - acc: 0.9133 Epoch 152: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2488 - acc: 0.9133 - val_loss: 0.2906 - val_acc: 0.9030 Epoch 153/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2491 - acc: 0.9132 Epoch 153: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2491 - acc: 0.9132 - val_loss: 0.2917 - val_acc: 0.9037 Epoch 154/1000 3077/3088 [============================>.] - ETA: 0s - loss: 0.2476 - acc: 0.9141 Epoch 154: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2476 - acc: 0.9141 - val_loss: 0.2940 - val_acc: 0.9009 Epoch 155/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.2478 - acc: 0.9136 Epoch 155: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2479 - acc: 0.9136 - val_loss: 0.2900 - val_acc: 0.9047 Epoch 156/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.2461 - acc: 0.9146 Epoch 156: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2461 - acc: 0.9146 - val_loss: 0.2908 - val_acc: 0.9036 Epoch 157/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.2457 - acc: 0.9149 Epoch 157: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2456 - acc: 0.9149 - val_loss: 0.2853 - val_acc: 0.9064 Epoch 158/1000 3088/3088 [==============================] - ETA: 0s - loss: 0.2455 - acc: 0.9147 Epoch 158: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 10s 3ms/step - loss: 0.2455 - acc: 0.9147 - val_loss: 0.2878 - val_acc: 0.9040 Epoch 159/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.2445 - acc: 0.9150 Epoch 159: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2446 - acc: 0.9149 - val_loss: 0.2914 - val_acc: 0.9036 Epoch 160/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2447 - acc: 0.9151 Epoch 160: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2447 - acc: 0.9151 - val_loss: 0.2920 - val_acc: 0.9025 Epoch 161/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.2445 - acc: 0.9150 Epoch 161: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2446 - acc: 0.9150 - val_loss: 0.2823 - val_acc: 0.9065 Epoch 162/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2425 - acc: 0.9161 Epoch 162: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2425 - acc: 0.9161 - val_loss: 0.2876 - val_acc: 0.9057 Epoch 163/1000 3081/3088 [============================>.] - ETA: 0s - loss: 0.2418 - acc: 0.9158 Epoch 163: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2418 - acc: 0.9158 - val_loss: 0.2856 - val_acc: 0.9060 Epoch 164/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.2410 - acc: 0.9163 Epoch 164: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2411 - acc: 0.9163 - val_loss: 0.2921 - val_acc: 0.9030 Epoch 165/1000 3080/3088 [============================>.] - ETA: 0s - loss: 0.2410 - acc: 0.9161 Epoch 165: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2409 - acc: 0.9161 - val_loss: 0.2917 - val_acc: 0.9053 Epoch 166/1000 3084/3088 [============================>.] - ETA: 0s - loss: 0.2406 - acc: 0.9163 Epoch 166: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2406 - acc: 0.9163 - val_loss: 0.2914 - val_acc: 0.9033 Epoch 167/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2399 - acc: 0.9168 Epoch 167: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2399 - acc: 0.9168 - val_loss: 0.2902 - val_acc: 0.9033 Epoch 168/1000 3085/3088 [============================>.] - ETA: 0s - loss: 0.2401 - acc: 0.9160 Epoch 168: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2402 - acc: 0.9160 - val_loss: 0.2840 - val_acc: 0.9083 Epoch 169/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.2380 - acc: 0.9170 Epoch 169: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2381 - acc: 0.9170 - val_loss: 0.2839 - val_acc: 0.9068 Epoch 170/1000 3079/3088 [============================>.] - ETA: 0s - loss: 0.2374 - acc: 0.9176 Epoch 170: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2374 - acc: 0.9176 - val_loss: 0.2875 - val_acc: 0.9054 Epoch 171/1000 3072/3088 [============================>.] - ETA: 0s - loss: 0.2368 - acc: 0.9172 Epoch 171: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 3ms/step - loss: 0.2367 - acc: 0.9172 - val_loss: 0.2862 - val_acc: 0.9064 Epoch 172/1000 3083/3088 [============================>.] - ETA: 0s - loss: 0.2365 - acc: 0.9181 Epoch 172: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2365 - acc: 0.9181 - val_loss: 0.2873 - val_acc: 0.9051 Epoch 173/1000 3078/3088 [============================>.] - ETA: 0s - loss: 0.2351 - acc: 0.9182 Epoch 173: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2351 - acc: 0.9182 - val_loss: 0.2900 - val_acc: 0.9051 Epoch 174/1000 3082/3088 [============================>.] - ETA: 0s - loss: 0.2349 - acc: 0.9185 Epoch 174: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2349 - acc: 0.9185 - val_loss: 0.2855 - val_acc: 0.9066 Epoch 175/1000 3087/3088 [============================>.] - ETA: 0s - loss: 0.2353 - acc: 0.9184 Epoch 175: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 12s 4ms/step - loss: 0.2352 - acc: 0.9184 - val_loss: 0.2909 - val_acc: 0.9036 Epoch 176/1000 3086/3088 [============================>.] - ETA: 0s - loss: 0.2339 - acc: 0.9185 Epoch 176: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_DST/cp.ckpt 3088/3088 [==============================] - 11s 4ms/step - loss: 0.2338 - acc: 0.9186 - val_loss: 0.2864 - val_acc: 0.9062 Epoch 176: early stopping Use balanced Generator [False] Data: 482544 ----------------------------------------------------------------------------------- Epoch 1/1000 5019/5027 [============================>.] - ETA: 0s - loss: 2.0362 - acc: 0.1799 Epoch 1: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 20s 4ms/step - loss: 2.0359 - acc: 0.1801 - val_loss: 1.8234 - val_acc: 0.3845 Epoch 2/1000 5025/5027 [============================>.] - ETA: 0s - loss: 1.3299 - acc: 0.5214 Epoch 2: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 1.3298 - acc: 0.5215 - val_loss: 0.7968 - val_acc: 0.7256 Epoch 3/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.8058 - acc: 0.7099 Epoch 3: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.8057 - acc: 0.7100 - val_loss: 0.6354 - val_acc: 0.7735 Epoch 4/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.6783 - acc: 0.7549 Epoch 4: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.6783 - acc: 0.7549 - val_loss: 0.5769 - val_acc: 0.7926 Epoch 5/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.6183 - acc: 0.7762 Epoch 5: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.6182 - acc: 0.7763 - val_loss: 0.5393 - val_acc: 0.8032 Epoch 6/1000 5016/5027 [============================>.] - ETA: 0s - loss: 0.5805 - acc: 0.7907 Epoch 6: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.5804 - acc: 0.7907 - val_loss: 0.5247 - val_acc: 0.8105 Epoch 7/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.5533 - acc: 0.8005 Epoch 7: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.5533 - acc: 0.8005 - val_loss: 0.5043 - val_acc: 0.8186 Epoch 8/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.5330 - acc: 0.8076 Epoch 8: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.5330 - acc: 0.8077 - val_loss: 0.4947 - val_acc: 0.8229 Epoch 9/1000 5021/5027 [============================>.] - ETA: 0s - loss: 0.5145 - acc: 0.8151 Epoch 9: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.5145 - acc: 0.8151 - val_loss: 0.4850 - val_acc: 0.8296 Epoch 10/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.4998 - acc: 0.8207 Epoch 10: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.4998 - acc: 0.8207 - val_loss: 0.4754 - val_acc: 0.8292 Epoch 11/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.4876 - acc: 0.8243 Epoch 11: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.4876 - acc: 0.8243 - val_loss: 0.4601 - val_acc: 0.8386 Epoch 12/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.4752 - acc: 0.8291 Epoch 12: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.4752 - acc: 0.8291 - val_loss: 0.4607 - val_acc: 0.8385 Epoch 13/1000 5026/5027 [============================>.] - ETA: 0s - loss: 0.4666 - acc: 0.8332 Epoch 13: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.4666 - acc: 0.8333 - val_loss: 0.4534 - val_acc: 0.8427 Epoch 14/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.4574 - acc: 0.8363 Epoch 14: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.4573 - acc: 0.8363 - val_loss: 0.4459 - val_acc: 0.8462 Epoch 15/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.4502 - acc: 0.8391 Epoch 15: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.4501 - acc: 0.8391 - val_loss: 0.4372 - val_acc: 0.8502 Epoch 16/1000 5012/5027 [============================>.] - ETA: 0s - loss: 0.4441 - acc: 0.8416 Epoch 16: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.4439 - acc: 0.8417 - val_loss: 0.4346 - val_acc: 0.8503 Epoch 17/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.4369 - acc: 0.8448 Epoch 17: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.4369 - acc: 0.8448 - val_loss: 0.4307 - val_acc: 0.8500 Epoch 18/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.4309 - acc: 0.8473 Epoch 18: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.4309 - acc: 0.8473 - val_loss: 0.4206 - val_acc: 0.8564 Epoch 19/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.4237 - acc: 0.8497 Epoch 19: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.4238 - acc: 0.8497 - val_loss: 0.4211 - val_acc: 0.8566 Epoch 20/1000 5021/5027 [============================>.] - ETA: 0s - loss: 0.4192 - acc: 0.8515 Epoch 20: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.4192 - acc: 0.8514 - val_loss: 0.4135 - val_acc: 0.8589 Epoch 21/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.4135 - acc: 0.8536 Epoch 21: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.4135 - acc: 0.8536 - val_loss: 0.4111 - val_acc: 0.8614 Epoch 22/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.4092 - acc: 0.8552 Epoch 22: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.4092 - acc: 0.8552 - val_loss: 0.4078 - val_acc: 0.8610 Epoch 23/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.4054 - acc: 0.8566 Epoch 23: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.4054 - acc: 0.8566 - val_loss: 0.4063 - val_acc: 0.8617 Epoch 24/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.4003 - acc: 0.8586 Epoch 24: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.4003 - acc: 0.8586 - val_loss: 0.4003 - val_acc: 0.8612 Epoch 25/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.3964 - acc: 0.8601 Epoch 25: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.3964 - acc: 0.8600 - val_loss: 0.4008 - val_acc: 0.8646 Epoch 26/1000 5021/5027 [============================>.] - ETA: 0s - loss: 0.3919 - acc: 0.8615 Epoch 26: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3919 - acc: 0.8615 - val_loss: 0.3982 - val_acc: 0.8662 Epoch 27/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.3884 - acc: 0.8631 Epoch 27: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3884 - acc: 0.8631 - val_loss: 0.3944 - val_acc: 0.8660 Epoch 28/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.3848 - acc: 0.8644 Epoch 28: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3849 - acc: 0.8644 - val_loss: 0.3905 - val_acc: 0.8665 Epoch 29/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.3815 - acc: 0.8658 Epoch 29: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.3815 - acc: 0.8658 - val_loss: 0.3857 - val_acc: 0.8691 Epoch 30/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.3768 - acc: 0.8675 Epoch 30: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3767 - acc: 0.8675 - val_loss: 0.3850 - val_acc: 0.8688 Epoch 31/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.3748 - acc: 0.8686 Epoch 31: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3748 - acc: 0.8686 - val_loss: 0.3833 - val_acc: 0.8681 Epoch 32/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.3709 - acc: 0.8697 Epoch 32: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.3709 - acc: 0.8697 - val_loss: 0.3829 - val_acc: 0.8697 Epoch 33/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.3681 - acc: 0.8713 Epoch 33: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3681 - acc: 0.8713 - val_loss: 0.3771 - val_acc: 0.8734 Epoch 34/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.3653 - acc: 0.8721 Epoch 34: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3653 - acc: 0.8721 - val_loss: 0.3756 - val_acc: 0.8737 Epoch 35/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.3629 - acc: 0.8724 Epoch 35: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3628 - acc: 0.8724 - val_loss: 0.3714 - val_acc: 0.8759 Epoch 36/1000 5016/5027 [============================>.] - ETA: 0s - loss: 0.3588 - acc: 0.8743 Epoch 36: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3588 - acc: 0.8743 - val_loss: 0.3733 - val_acc: 0.8723 Epoch 37/1000 5014/5027 [============================>.] - ETA: 0s - loss: 0.3567 - acc: 0.8749 Epoch 37: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3567 - acc: 0.8749 - val_loss: 0.3735 - val_acc: 0.8706 Epoch 38/1000 5020/5027 [============================>.] - ETA: 0s - loss: 0.3550 - acc: 0.8756 Epoch 38: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3550 - acc: 0.8756 - val_loss: 0.3611 - val_acc: 0.8779 Epoch 39/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.3522 - acc: 0.8769 Epoch 39: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3522 - acc: 0.8770 - val_loss: 0.3640 - val_acc: 0.8759 Epoch 40/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.3496 - acc: 0.8784 Epoch 40: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.3496 - acc: 0.8784 - val_loss: 0.3678 - val_acc: 0.8747 Epoch 41/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.3465 - acc: 0.8792 Epoch 41: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3466 - acc: 0.8792 - val_loss: 0.3594 - val_acc: 0.8763 Epoch 42/1000 5013/5027 [============================>.] - ETA: 0s - loss: 0.3441 - acc: 0.8799 Epoch 42: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3441 - acc: 0.8799 - val_loss: 0.3598 - val_acc: 0.8775 Epoch 43/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.3408 - acc: 0.8811 Epoch 43: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3407 - acc: 0.8811 - val_loss: 0.3537 - val_acc: 0.8817 Epoch 44/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.3385 - acc: 0.8822 Epoch 44: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.3386 - acc: 0.8821 - val_loss: 0.3571 - val_acc: 0.8783 Epoch 45/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.3361 - acc: 0.8831 Epoch 45: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3361 - acc: 0.8831 - val_loss: 0.3517 - val_acc: 0.8787 Epoch 46/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.3345 - acc: 0.8833 Epoch 46: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3345 - acc: 0.8833 - val_loss: 0.3492 - val_acc: 0.8822 Epoch 47/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.3308 - acc: 0.8854 Epoch 47: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3308 - acc: 0.8854 - val_loss: 0.3452 - val_acc: 0.8822 Epoch 48/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.3281 - acc: 0.8860 Epoch 48: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.3281 - acc: 0.8860 - val_loss: 0.3414 - val_acc: 0.8854 Epoch 49/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.3266 - acc: 0.8866 Epoch 49: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3266 - acc: 0.8866 - val_loss: 0.3401 - val_acc: 0.8847 Epoch 50/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.3238 - acc: 0.8878 Epoch 50: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3237 - acc: 0.8878 - val_loss: 0.3438 - val_acc: 0.8853 Epoch 51/1000 5020/5027 [============================>.] - ETA: 0s - loss: 0.3211 - acc: 0.8885 Epoch 51: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3212 - acc: 0.8885 - val_loss: 0.3424 - val_acc: 0.8847 Epoch 52/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.3188 - acc: 0.8893 Epoch 52: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3187 - acc: 0.8893 - val_loss: 0.3460 - val_acc: 0.8814 Epoch 53/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.3158 - acc: 0.8904 Epoch 53: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3158 - acc: 0.8904 - val_loss: 0.3332 - val_acc: 0.8875 Epoch 54/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.3133 - acc: 0.8916 Epoch 54: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.3133 - acc: 0.8916 - val_loss: 0.3361 - val_acc: 0.8861 Epoch 55/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.3112 - acc: 0.8916 Epoch 55: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3112 - acc: 0.8916 - val_loss: 0.3334 - val_acc: 0.8876 Epoch 56/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.3097 - acc: 0.8925 Epoch 56: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3097 - acc: 0.8925 - val_loss: 0.3304 - val_acc: 0.8897 Epoch 57/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.3079 - acc: 0.8933 Epoch 57: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3080 - acc: 0.8932 - val_loss: 0.3254 - val_acc: 0.8906 Epoch 58/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.3054 - acc: 0.8945 Epoch 58: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.3054 - acc: 0.8945 - val_loss: 0.3340 - val_acc: 0.8878 Epoch 59/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.3042 - acc: 0.8948 Epoch 59: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3042 - acc: 0.8948 - val_loss: 0.3238 - val_acc: 0.8904 Epoch 60/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.3020 - acc: 0.8956 Epoch 60: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.3020 - acc: 0.8956 - val_loss: 0.3229 - val_acc: 0.8909 Epoch 61/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.3004 - acc: 0.8961 Epoch 61: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.3004 - acc: 0.8961 - val_loss: 0.3261 - val_acc: 0.8905 Epoch 62/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2988 - acc: 0.8967 Epoch 62: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2988 - acc: 0.8967 - val_loss: 0.3234 - val_acc: 0.8934 Epoch 63/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.2969 - acc: 0.8972 Epoch 63: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2969 - acc: 0.8972 - val_loss: 0.3204 - val_acc: 0.8941 Epoch 64/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2951 - acc: 0.8978 Epoch 64: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2951 - acc: 0.8978 - val_loss: 0.3179 - val_acc: 0.8929 Epoch 65/1000 5014/5027 [============================>.] - ETA: 0s - loss: 0.2931 - acc: 0.8987 Epoch 65: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2930 - acc: 0.8987 - val_loss: 0.3237 - val_acc: 0.8893 Epoch 66/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.2924 - acc: 0.8989 Epoch 66: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2923 - acc: 0.8990 - val_loss: 0.3198 - val_acc: 0.8941 Epoch 67/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2915 - acc: 0.8993 Epoch 67: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2915 - acc: 0.8993 - val_loss: 0.3197 - val_acc: 0.8934 Epoch 68/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2898 - acc: 0.8999 Epoch 68: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2898 - acc: 0.8999 - val_loss: 0.3125 - val_acc: 0.8956 Epoch 69/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2875 - acc: 0.9008 Epoch 69: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2875 - acc: 0.9008 - val_loss: 0.3188 - val_acc: 0.8897 Epoch 70/1000 5013/5027 [============================>.] - ETA: 0s - loss: 0.2865 - acc: 0.9009 Epoch 70: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2865 - acc: 0.9009 - val_loss: 0.3158 - val_acc: 0.8961 Epoch 71/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.2845 - acc: 0.9018 Epoch 71: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2846 - acc: 0.9018 - val_loss: 0.3166 - val_acc: 0.8941 Epoch 72/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2837 - acc: 0.9018 Epoch 72: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2837 - acc: 0.9018 - val_loss: 0.3128 - val_acc: 0.8958 Epoch 73/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2819 - acc: 0.9031 Epoch 73: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2819 - acc: 0.9031 - val_loss: 0.3118 - val_acc: 0.8970 Epoch 74/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2809 - acc: 0.9028 Epoch 74: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2809 - acc: 0.9028 - val_loss: 0.3199 - val_acc: 0.8937 Epoch 75/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2805 - acc: 0.9029 Epoch 75: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2805 - acc: 0.9029 - val_loss: 0.3142 - val_acc: 0.8949 Epoch 76/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2787 - acc: 0.9037 Epoch 76: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2787 - acc: 0.9037 - val_loss: 0.3080 - val_acc: 0.8979 Epoch 77/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2779 - acc: 0.9037 Epoch 77: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2780 - acc: 0.9036 - val_loss: 0.3109 - val_acc: 0.8967 Epoch 78/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2762 - acc: 0.9043 Epoch 78: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.2762 - acc: 0.9043 - val_loss: 0.3175 - val_acc: 0.8919 Epoch 79/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2754 - acc: 0.9047 Epoch 79: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2754 - acc: 0.9047 - val_loss: 0.3084 - val_acc: 0.8976 Epoch 80/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2747 - acc: 0.9049 Epoch 80: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.2747 - acc: 0.9049 - val_loss: 0.3086 - val_acc: 0.8970 Epoch 81/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2730 - acc: 0.9051 Epoch 81: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2730 - acc: 0.9051 - val_loss: 0.3056 - val_acc: 0.8996 Epoch 82/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2720 - acc: 0.9064 Epoch 82: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2720 - acc: 0.9064 - val_loss: 0.3052 - val_acc: 0.8988 Epoch 83/1000 5021/5027 [============================>.] - ETA: 0s - loss: 0.2716 - acc: 0.9061 Epoch 83: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2716 - acc: 0.9061 - val_loss: 0.3043 - val_acc: 0.8978 Epoch 84/1000 5016/5027 [============================>.] - ETA: 0s - loss: 0.2701 - acc: 0.9063 Epoch 84: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.2701 - acc: 0.9063 - val_loss: 0.3014 - val_acc: 0.8982 Epoch 85/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.2699 - acc: 0.9069 Epoch 85: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2698 - acc: 0.9069 - val_loss: 0.3059 - val_acc: 0.8988 Epoch 86/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.2680 - acc: 0.9074 Epoch 86: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2681 - acc: 0.9074 - val_loss: 0.3071 - val_acc: 0.8967 Epoch 87/1000 5014/5027 [============================>.] - ETA: 0s - loss: 0.2670 - acc: 0.9076 Epoch 87: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2670 - acc: 0.9076 - val_loss: 0.3038 - val_acc: 0.8997 Epoch 88/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2665 - acc: 0.9079 Epoch 88: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2666 - acc: 0.9079 - val_loss: 0.3015 - val_acc: 0.8995 Epoch 89/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2651 - acc: 0.9084 Epoch 89: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 20s 4ms/step - loss: 0.2652 - acc: 0.9084 - val_loss: 0.3022 - val_acc: 0.8997 Epoch 90/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2639 - acc: 0.9091 Epoch 90: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2638 - acc: 0.9091 - val_loss: 0.3008 - val_acc: 0.8998 Epoch 91/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2638 - acc: 0.9087 Epoch 91: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2639 - acc: 0.9087 - val_loss: 0.3022 - val_acc: 0.8987 Epoch 92/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2626 - acc: 0.9096 Epoch 92: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2626 - acc: 0.9096 - val_loss: 0.2980 - val_acc: 0.9003 Epoch 93/1000 5021/5027 [============================>.] - ETA: 0s - loss: 0.2626 - acc: 0.9091 Epoch 93: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2626 - acc: 0.9091 - val_loss: 0.3093 - val_acc: 0.8956 Epoch 94/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.2614 - acc: 0.9098 Epoch 94: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2614 - acc: 0.9098 - val_loss: 0.2963 - val_acc: 0.9020 Epoch 95/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.2596 - acc: 0.9104 Epoch 95: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2596 - acc: 0.9104 - val_loss: 0.3097 - val_acc: 0.8957 Epoch 96/1000 5014/5027 [============================>.] - ETA: 0s - loss: 0.2585 - acc: 0.9106 Epoch 96: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2587 - acc: 0.9105 - val_loss: 0.2966 - val_acc: 0.9016 Epoch 97/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.2581 - acc: 0.9108 Epoch 97: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2581 - acc: 0.9108 - val_loss: 0.2976 - val_acc: 0.9006 Epoch 98/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2576 - acc: 0.9114 Epoch 98: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2576 - acc: 0.9114 - val_loss: 0.2977 - val_acc: 0.9018 Epoch 99/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2565 - acc: 0.9113 Epoch 99: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2564 - acc: 0.9114 - val_loss: 0.2956 - val_acc: 0.9012 Epoch 100/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2551 - acc: 0.9118 Epoch 100: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2551 - acc: 0.9118 - val_loss: 0.2999 - val_acc: 0.8982 Epoch 101/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2550 - acc: 0.9119 Epoch 101: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2550 - acc: 0.9119 - val_loss: 0.2994 - val_acc: 0.8995 Epoch 102/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2536 - acc: 0.9123 Epoch 102: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2536 - acc: 0.9123 - val_loss: 0.2928 - val_acc: 0.9015 Epoch 103/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.2530 - acc: 0.9124 Epoch 103: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2530 - acc: 0.9124 - val_loss: 0.2986 - val_acc: 0.9007 Epoch 104/1000 5013/5027 [============================>.] - ETA: 0s - loss: 0.2530 - acc: 0.9129 Epoch 104: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2529 - acc: 0.9129 - val_loss: 0.3019 - val_acc: 0.8993 Epoch 105/1000 5016/5027 [============================>.] - ETA: 0s - loss: 0.2516 - acc: 0.9128 Epoch 105: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2516 - acc: 0.9128 - val_loss: 0.2952 - val_acc: 0.9004 Epoch 106/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.2509 - acc: 0.9131 Epoch 106: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2509 - acc: 0.9131 - val_loss: 0.2936 - val_acc: 0.9016 Epoch 107/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2504 - acc: 0.9136 Epoch 107: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2503 - acc: 0.9136 - val_loss: 0.2924 - val_acc: 0.9045 Epoch 108/1000 5016/5027 [============================>.] - ETA: 0s - loss: 0.2495 - acc: 0.9138 Epoch 108: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2495 - acc: 0.9137 - val_loss: 0.3039 - val_acc: 0.8988 Epoch 109/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.2489 - acc: 0.9137 Epoch 109: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2488 - acc: 0.9137 - val_loss: 0.2957 - val_acc: 0.9012 Epoch 110/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2473 - acc: 0.9145 Epoch 110: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2473 - acc: 0.9145 - val_loss: 0.2953 - val_acc: 0.9010 Epoch 111/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.2472 - acc: 0.9146 Epoch 111: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2472 - acc: 0.9146 - val_loss: 0.2950 - val_acc: 0.9009 Epoch 112/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.2460 - acc: 0.9152 Epoch 112: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2460 - acc: 0.9152 - val_loss: 0.2907 - val_acc: 0.9022 Epoch 113/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2461 - acc: 0.9150 Epoch 113: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2461 - acc: 0.9150 - val_loss: 0.2944 - val_acc: 0.9014 Epoch 114/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2455 - acc: 0.9152 Epoch 114: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2455 - acc: 0.9152 - val_loss: 0.2894 - val_acc: 0.9030 Epoch 115/1000 5013/5027 [============================>.] - ETA: 0s - loss: 0.2446 - acc: 0.9155 Epoch 115: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2446 - acc: 0.9155 - val_loss: 0.2921 - val_acc: 0.9014 Epoch 116/1000 5020/5027 [============================>.] - ETA: 0s - loss: 0.2442 - acc: 0.9156 Epoch 116: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2442 - acc: 0.9156 - val_loss: 0.2875 - val_acc: 0.9050 Epoch 117/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2428 - acc: 0.9162 Epoch 117: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2428 - acc: 0.9162 - val_loss: 0.2947 - val_acc: 0.8998 Epoch 118/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2422 - acc: 0.9165 Epoch 118: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2422 - acc: 0.9165 - val_loss: 0.2885 - val_acc: 0.9040 Epoch 119/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2418 - acc: 0.9160 Epoch 119: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2418 - acc: 0.9161 - val_loss: 0.2885 - val_acc: 0.9038 Epoch 120/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2406 - acc: 0.9168 Epoch 120: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2406 - acc: 0.9168 - val_loss: 0.2895 - val_acc: 0.9030 Epoch 121/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2401 - acc: 0.9168 Epoch 121: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2401 - acc: 0.9168 - val_loss: 0.2840 - val_acc: 0.9048 Epoch 122/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2400 - acc: 0.9172 Epoch 122: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2400 - acc: 0.9173 - val_loss: 0.2916 - val_acc: 0.9039 Epoch 123/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2387 - acc: 0.9175 Epoch 123: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2387 - acc: 0.9175 - val_loss: 0.2918 - val_acc: 0.9019 Epoch 124/1000 5013/5027 [============================>.] - ETA: 0s - loss: 0.2388 - acc: 0.9174 Epoch 124: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2388 - acc: 0.9175 - val_loss: 0.2921 - val_acc: 0.9025 Epoch 125/1000 5026/5027 [============================>.] - ETA: 0s - loss: 0.2378 - acc: 0.9179 Epoch 125: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2379 - acc: 0.9179 - val_loss: 0.2860 - val_acc: 0.9041 Epoch 126/1000 5026/5027 [============================>.] - ETA: 0s - loss: 0.2372 - acc: 0.9180 Epoch 126: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2372 - acc: 0.9180 - val_loss: 0.2903 - val_acc: 0.9023 Epoch 127/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2373 - acc: 0.9178 Epoch 127: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2372 - acc: 0.9178 - val_loss: 0.2907 - val_acc: 0.9011 Epoch 128/1000 5016/5027 [============================>.] - ETA: 0s - loss: 0.2356 - acc: 0.9187 Epoch 128: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2356 - acc: 0.9187 - val_loss: 0.2845 - val_acc: 0.9055 Epoch 129/1000 5025/5027 [============================>.] - ETA: 0s - loss: 0.2363 - acc: 0.9187 Epoch 129: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2363 - acc: 0.9187 - val_loss: 0.2865 - val_acc: 0.9042 Epoch 130/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.2349 - acc: 0.9187 Epoch 130: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.2349 - acc: 0.9187 - val_loss: 0.2923 - val_acc: 0.9041 Epoch 131/1000 5014/5027 [============================>.] - ETA: 0s - loss: 0.2336 - acc: 0.9190 Epoch 131: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2336 - acc: 0.9190 - val_loss: 0.2822 - val_acc: 0.9063 Epoch 132/1000 5011/5027 [============================>.] - ETA: 0s - loss: 0.2337 - acc: 0.9194 Epoch 132: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2337 - acc: 0.9194 - val_loss: 0.2867 - val_acc: 0.9048 Epoch 133/1000 5020/5027 [============================>.] - ETA: 0s - loss: 0.2327 - acc: 0.9197 Epoch 133: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2327 - acc: 0.9197 - val_loss: 0.2875 - val_acc: 0.9038 Epoch 134/1000 5026/5027 [============================>.] - ETA: 0s - loss: 0.2319 - acc: 0.9198 Epoch 134: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2319 - acc: 0.9198 - val_loss: 0.2818 - val_acc: 0.9052 Epoch 135/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2320 - acc: 0.9200 Epoch 135: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2319 - acc: 0.9200 - val_loss: 0.2826 - val_acc: 0.9078 Epoch 136/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.2314 - acc: 0.9199 Epoch 136: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2314 - acc: 0.9199 - val_loss: 0.2849 - val_acc: 0.9049 Epoch 137/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2308 - acc: 0.9202 Epoch 137: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2308 - acc: 0.9202 - val_loss: 0.2818 - val_acc: 0.9054 Epoch 138/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.2301 - acc: 0.9203 Epoch 138: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2301 - acc: 0.9203 - val_loss: 0.2835 - val_acc: 0.9047 Epoch 139/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2299 - acc: 0.9207 Epoch 139: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2299 - acc: 0.9207 - val_loss: 0.2799 - val_acc: 0.9047 Epoch 140/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2293 - acc: 0.9210 Epoch 140: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2293 - acc: 0.9210 - val_loss: 0.2951 - val_acc: 0.8989 Epoch 141/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2286 - acc: 0.9208 Epoch 141: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2286 - acc: 0.9208 - val_loss: 0.2819 - val_acc: 0.9052 Epoch 142/1000 5018/5027 [============================>.] - ETA: 0s - loss: 0.2279 - acc: 0.9212 Epoch 142: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2279 - acc: 0.9212 - val_loss: 0.2803 - val_acc: 0.9071 Epoch 143/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.2277 - acc: 0.9212 Epoch 143: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2277 - acc: 0.9212 - val_loss: 0.2936 - val_acc: 0.8995 Epoch 144/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2267 - acc: 0.9219 Epoch 144: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2267 - acc: 0.9219 - val_loss: 0.2952 - val_acc: 0.9001 Epoch 145/1000 5014/5027 [============================>.] - ETA: 0s - loss: 0.2261 - acc: 0.9217 Epoch 145: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2260 - acc: 0.9217 - val_loss: 0.2848 - val_acc: 0.9052 Epoch 146/1000 5019/5027 [============================>.] - ETA: 0s - loss: 0.2262 - acc: 0.9218 Epoch 146: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2263 - acc: 0.9218 - val_loss: 0.2797 - val_acc: 0.9062 Epoch 147/1000 5026/5027 [============================>.] - ETA: 0s - loss: 0.2251 - acc: 0.9222 Epoch 147: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2251 - acc: 0.9222 - val_loss: 0.2792 - val_acc: 0.9073 Epoch 148/1000 5020/5027 [============================>.] - ETA: 0s - loss: 0.2249 - acc: 0.9221 Epoch 148: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2249 - acc: 0.9221 - val_loss: 0.2829 - val_acc: 0.9057 Epoch 149/1000 5014/5027 [============================>.] - ETA: 0s - loss: 0.2236 - acc: 0.9225 Epoch 149: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2235 - acc: 0.9225 - val_loss: 0.2788 - val_acc: 0.9069 Epoch 150/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2235 - acc: 0.9227 Epoch 150: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2235 - acc: 0.9227 - val_loss: 0.2824 - val_acc: 0.9053 Epoch 151/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2233 - acc: 0.9228 Epoch 151: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2233 - acc: 0.9228 - val_loss: 0.2796 - val_acc: 0.9072 Epoch 152/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2229 - acc: 0.9228 Epoch 152: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2229 - acc: 0.9228 - val_loss: 0.2798 - val_acc: 0.9059 Epoch 153/1000 5013/5027 [============================>.] - ETA: 0s - loss: 0.2214 - acc: 0.9231 Epoch 153: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2214 - acc: 0.9231 - val_loss: 0.2886 - val_acc: 0.9037 Epoch 154/1000 5020/5027 [============================>.] - ETA: 0s - loss: 0.2222 - acc: 0.9232 Epoch 154: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2223 - acc: 0.9232 - val_loss: 0.2820 - val_acc: 0.9045 Epoch 155/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2210 - acc: 0.9235 Epoch 155: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2210 - acc: 0.9235 - val_loss: 0.2854 - val_acc: 0.9025 Epoch 156/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2206 - acc: 0.9236 Epoch 156: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 16s 3ms/step - loss: 0.2206 - acc: 0.9237 - val_loss: 0.2771 - val_acc: 0.9076 Epoch 157/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2200 - acc: 0.9237 Epoch 157: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 3ms/step - loss: 0.2200 - acc: 0.9237 - val_loss: 0.2941 - val_acc: 0.8996 Epoch 158/1000 5012/5027 [============================>.] - ETA: 0s - loss: 0.2195 - acc: 0.9239 Epoch 158: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2196 - acc: 0.9239 - val_loss: 0.2828 - val_acc: 0.9050 Epoch 159/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2183 - acc: 0.9243 Epoch 159: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2182 - acc: 0.9243 - val_loss: 0.2758 - val_acc: 0.9092 Epoch 160/1000 5012/5027 [============================>.] - ETA: 0s - loss: 0.2182 - acc: 0.9248 Epoch 160: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2181 - acc: 0.9249 - val_loss: 0.2854 - val_acc: 0.9046 Epoch 161/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2176 - acc: 0.9245 Epoch 161: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2176 - acc: 0.9245 - val_loss: 0.2806 - val_acc: 0.9050 Epoch 162/1000 5012/5027 [============================>.] - ETA: 0s - loss: 0.2181 - acc: 0.9246 Epoch 162: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2180 - acc: 0.9246 - val_loss: 0.2804 - val_acc: 0.9055 Epoch 163/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2170 - acc: 0.9247 Epoch 163: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2170 - acc: 0.9247 - val_loss: 0.2793 - val_acc: 0.9056 Epoch 164/1000 5022/5027 [============================>.] - ETA: 0s - loss: 0.2160 - acc: 0.9251 Epoch 164: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2160 - acc: 0.9251 - val_loss: 0.2815 - val_acc: 0.9071 Epoch 165/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2156 - acc: 0.9254 Epoch 165: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2156 - acc: 0.9254 - val_loss: 0.2825 - val_acc: 0.9064 Epoch 166/1000 5016/5027 [============================>.] - ETA: 0s - loss: 0.2156 - acc: 0.9253 Epoch 166: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 18s 4ms/step - loss: 0.2156 - acc: 0.9253 - val_loss: 0.2776 - val_acc: 0.9068 Epoch 167/1000 5023/5027 [============================>.] - ETA: 0s - loss: 0.2148 - acc: 0.9252 Epoch 167: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2148 - acc: 0.9252 - val_loss: 0.2882 - val_acc: 0.9022 Epoch 168/1000 5015/5027 [============================>.] - ETA: 0s - loss: 0.2143 - acc: 0.9256 Epoch 168: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2143 - acc: 0.9256 - val_loss: 0.2813 - val_acc: 0.9038 Epoch 169/1000 5024/5027 [============================>.] - ETA: 0s - loss: 0.2139 - acc: 0.9259 Epoch 169: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2138 - acc: 0.9259 - val_loss: 0.2798 - val_acc: 0.9065 Epoch 170/1000 5027/5027 [==============================] - ETA: 0s - loss: 0.2138 - acc: 0.9260 Epoch 170: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2138 - acc: 0.9260 - val_loss: 0.2797 - val_acc: 0.9070 Epoch 171/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2124 - acc: 0.9262 Epoch 171: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2124 - acc: 0.9262 - val_loss: 0.2811 - val_acc: 0.9073 Epoch 172/1000 5014/5027 [============================>.] - ETA: 0s - loss: 0.2132 - acc: 0.9260 Epoch 172: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 17s 3ms/step - loss: 0.2131 - acc: 0.9261 - val_loss: 0.2848 - val_acc: 0.9030 Epoch 173/1000 5016/5027 [============================>.] - ETA: 0s - loss: 0.2123 - acc: 0.9266 Epoch 173: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2123 - acc: 0.9266 - val_loss: 0.2779 - val_acc: 0.9056 Epoch 174/1000 5017/5027 [============================>.] - ETA: 0s - loss: 0.2119 - acc: 0.9264 Epoch 174: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_Number_M/cp.ckpt 5027/5027 [==============================] - 19s 4ms/step - loss: 0.2120 - acc: 0.9264 - val_loss: 0.2810 - val_acc: 0.9064 Epoch 174: early stopping ```python #train_models(df_lista, keys_lista, data, prueba_8mil,path,epochs=1000, use_balanced_generator=True) ``` Use balanced Generator [True] Data: 253128 ----------------------------------------------------------------------------------- Epoch 1/1000 694/696 [============================>.] - ETA: 0s - loss: 2.0791 - acc: 0.1325 Epoch 1: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 13s 17ms/step - loss: 2.0790 - acc: 0.1325 - val_loss: 2.0752 - val_acc: 0.2019 Epoch 2/1000 693/696 [============================>.] - ETA: 0s - loss: 2.0728 - acc: 0.1709 Epoch 2: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 2.0727 - acc: 0.1710 - val_loss: 2.0670 - val_acc: 0.2440 Epoch 3/1000 696/696 [==============================] - ETA: 0s - loss: 2.0633 - acc: 0.1981 Epoch 3: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 2.0633 - acc: 0.1981 - val_loss: 2.0533 - val_acc: 0.2113 Epoch 4/1000 693/696 [============================>.] - ETA: 0s - loss: 2.0447 - acc: 0.2089 Epoch 4: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 2.0446 - acc: 0.2089 - val_loss: 2.0224 - val_acc: 0.2134 Epoch 5/1000 693/696 [============================>.] - ETA: 0s - loss: 1.9999 - acc: 0.2277 Epoch 5: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.9997 - acc: 0.2278 - val_loss: 1.9476 - val_acc: 0.2638 Epoch 6/1000 696/696 [==============================] - ETA: 0s - loss: 1.8992 - acc: 0.2873 Epoch 6: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 1.8992 - acc: 0.2873 - val_loss: 1.7757 - val_acc: 0.4219 Epoch 7/1000 693/696 [============================>.] - ETA: 0s - loss: 1.7046 - acc: 0.3744 Epoch 7: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.7041 - acc: 0.3745 - val_loss: 1.4922 - val_acc: 0.5204 Epoch 8/1000 696/696 [==============================] - ETA: 0s - loss: 1.4922 - acc: 0.4542 Epoch 8: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.4922 - acc: 0.4542 - val_loss: 1.2614 - val_acc: 0.5868 Epoch 9/1000 694/696 [============================>.] - ETA: 0s - loss: 1.2991 - acc: 0.5307 Epoch 9: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.2988 - acc: 0.5308 - val_loss: 1.0698 - val_acc: 0.6365 Epoch 10/1000 695/696 [============================>.] - ETA: 0s - loss: 1.1317 - acc: 0.5917 Epoch 10: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.1316 - acc: 0.5917 - val_loss: 0.9281 - val_acc: 0.6793 Epoch 11/1000 696/696 [==============================] - ETA: 0s - loss: 1.0136 - acc: 0.6334 Epoch 11: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.0136 - acc: 0.6334 - val_loss: 0.8354 - val_acc: 0.7110 Epoch 12/1000 696/696 [==============================] - ETA: 0s - loss: 0.9319 - acc: 0.6636 Epoch 12: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.9319 - acc: 0.6636 - val_loss: 0.7737 - val_acc: 0.7321 Epoch 13/1000 696/696 [==============================] - ETA: 0s - loss: 0.8760 - acc: 0.6842 Epoch 13: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.8760 - acc: 0.6842 - val_loss: 0.7304 - val_acc: 0.7460 Epoch 14/1000 694/696 [============================>.] - ETA: 0s - loss: 0.8335 - acc: 0.6997 Epoch 14: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.8336 - acc: 0.6996 - val_loss: 0.6979 - val_acc: 0.7566 Epoch 15/1000 694/696 [============================>.] - ETA: 0s - loss: 0.8015 - acc: 0.7112 Epoch 15: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.8014 - acc: 0.7112 - val_loss: 0.6735 - val_acc: 0.7672 Epoch 16/1000 693/696 [============================>.] - ETA: 0s - loss: 0.7728 - acc: 0.7220 Epoch 16: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7727 - acc: 0.7220 - val_loss: 0.6529 - val_acc: 0.7747 Epoch 17/1000 695/696 [============================>.] - ETA: 0s - loss: 0.7516 - acc: 0.7298 Epoch 17: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7516 - acc: 0.7298 - val_loss: 0.6354 - val_acc: 0.7794 Epoch 18/1000 693/696 [============================>.] - ETA: 0s - loss: 0.7305 - acc: 0.7368 Epoch 18: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7305 - acc: 0.7368 - val_loss: 0.6199 - val_acc: 0.7838 Epoch 19/1000 694/696 [============================>.] - ETA: 0s - loss: 0.7128 - acc: 0.7435 Epoch 19: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7128 - acc: 0.7435 - val_loss: 0.6086 - val_acc: 0.7859 Epoch 20/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6978 - acc: 0.7487 Epoch 20: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.6977 - acc: 0.7487 - val_loss: 0.5969 - val_acc: 0.7914 Epoch 21/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6842 - acc: 0.7542 Epoch 21: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.6841 - acc: 0.7542 - val_loss: 0.5860 - val_acc: 0.7927 Epoch 22/1000 695/696 [============================>.] - ETA: 0s - loss: 0.6711 - acc: 0.7589 Epoch 22: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6710 - acc: 0.7589 - val_loss: 0.5767 - val_acc: 0.7974 Epoch 23/1000 696/696 [==============================] - ETA: 0s - loss: 0.6596 - acc: 0.7633 Epoch 23: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6596 - acc: 0.7633 - val_loss: 0.5688 - val_acc: 0.7997 Epoch 24/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6502 - acc: 0.7662 Epoch 24: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6502 - acc: 0.7663 - val_loss: 0.5609 - val_acc: 0.8023 Epoch 25/1000 695/696 [============================>.] - ETA: 0s - loss: 0.6391 - acc: 0.7704 Epoch 25: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6392 - acc: 0.7704 - val_loss: 0.5541 - val_acc: 0.8040 Epoch 26/1000 695/696 [============================>.] - ETA: 0s - loss: 0.6312 - acc: 0.7728 Epoch 26: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6312 - acc: 0.7728 - val_loss: 0.5470 - val_acc: 0.8083 Epoch 27/1000 694/696 [============================>.] - ETA: 0s - loss: 0.6249 - acc: 0.7762 Epoch 27: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6248 - acc: 0.7762 - val_loss: 0.5412 - val_acc: 0.8094 Epoch 28/1000 694/696 [============================>.] - ETA: 0s - loss: 0.6166 - acc: 0.7786 Epoch 28: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6166 - acc: 0.7786 - val_loss: 0.5350 - val_acc: 0.8113 Epoch 29/1000 695/696 [============================>.] - ETA: 0s - loss: 0.6110 - acc: 0.7810 Epoch 29: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6109 - acc: 0.7810 - val_loss: 0.5314 - val_acc: 0.8140 Epoch 30/1000 694/696 [============================>.] - ETA: 0s - loss: 0.6041 - acc: 0.7833 Epoch 30: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6041 - acc: 0.7833 - val_loss: 0.5256 - val_acc: 0.8142 Epoch 31/1000 696/696 [==============================] - ETA: 0s - loss: 0.5978 - acc: 0.7860 Epoch 31: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5978 - acc: 0.7860 - val_loss: 0.5212 - val_acc: 0.8170 Epoch 32/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5907 - acc: 0.7887 Epoch 32: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5907 - acc: 0.7887 - val_loss: 0.5160 - val_acc: 0.8186 Epoch 33/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5855 - acc: 0.7905 Epoch 33: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5855 - acc: 0.7905 - val_loss: 0.5137 - val_acc: 0.8191 Epoch 34/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5810 - acc: 0.7916 Epoch 34: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5811 - acc: 0.7915 - val_loss: 0.5092 - val_acc: 0.8218 Epoch 35/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5759 - acc: 0.7941 Epoch 35: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5759 - acc: 0.7940 - val_loss: 0.5058 - val_acc: 0.8231 Epoch 36/1000 695/696 [============================>.] - ETA: 0s - loss: 0.5718 - acc: 0.7950 Epoch 36: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5717 - acc: 0.7951 - val_loss: 0.5021 - val_acc: 0.8251 Epoch 37/1000 695/696 [============================>.] - ETA: 0s - loss: 0.5667 - acc: 0.7970 Epoch 37: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5667 - acc: 0.7970 - val_loss: 0.4986 - val_acc: 0.8248 Epoch 38/1000 696/696 [==============================] - ETA: 0s - loss: 0.5629 - acc: 0.7984 Epoch 38: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5629 - acc: 0.7984 - val_loss: 0.4957 - val_acc: 0.8262 Epoch 39/1000 695/696 [============================>.] - ETA: 0s - loss: 0.5577 - acc: 0.8006 Epoch 39: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5577 - acc: 0.8006 - val_loss: 0.4922 - val_acc: 0.8271 Epoch 40/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5539 - acc: 0.8019 Epoch 40: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5540 - acc: 0.8018 - val_loss: 0.4895 - val_acc: 0.8266 Epoch 41/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5495 - acc: 0.8032 Epoch 41: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5496 - acc: 0.8032 - val_loss: 0.4865 - val_acc: 0.8308 Epoch 42/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5474 - acc: 0.8046 Epoch 42: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5475 - acc: 0.8046 - val_loss: 0.4834 - val_acc: 0.8304 Epoch 43/1000 696/696 [==============================] - ETA: 0s - loss: 0.5420 - acc: 0.8057 Epoch 43: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5420 - acc: 0.8057 - val_loss: 0.4801 - val_acc: 0.8329 Epoch 44/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5394 - acc: 0.8074 Epoch 44: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5394 - acc: 0.8074 - val_loss: 0.4791 - val_acc: 0.8318 Epoch 45/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5360 - acc: 0.8083 Epoch 45: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5360 - acc: 0.8083 - val_loss: 0.4761 - val_acc: 0.8340 Epoch 46/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5345 - acc: 0.8083 Epoch 46: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5345 - acc: 0.8084 - val_loss: 0.4723 - val_acc: 0.8346 Epoch 47/1000 696/696 [==============================] - ETA: 0s - loss: 0.5301 - acc: 0.8098 Epoch 47: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5301 - acc: 0.8098 - val_loss: 0.4706 - val_acc: 0.8362 Epoch 48/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5271 - acc: 0.8117 Epoch 48: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5270 - acc: 0.8117 - val_loss: 0.4678 - val_acc: 0.8364 Epoch 49/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5245 - acc: 0.8126 Epoch 49: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5243 - acc: 0.8126 - val_loss: 0.4654 - val_acc: 0.8374 Epoch 50/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5219 - acc: 0.8135 Epoch 50: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.5219 - acc: 0.8134 - val_loss: 0.4633 - val_acc: 0.8383 Epoch 51/1000 695/696 [============================>.] - ETA: 0s - loss: 0.5189 - acc: 0.8153 Epoch 51: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5189 - acc: 0.8153 - val_loss: 0.4619 - val_acc: 0.8400 Epoch 52/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5152 - acc: 0.8158 Epoch 52: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5152 - acc: 0.8158 - val_loss: 0.4576 - val_acc: 0.8405 Epoch 53/1000 695/696 [============================>.] - ETA: 0s - loss: 0.5120 - acc: 0.8173 Epoch 53: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5120 - acc: 0.8173 - val_loss: 0.4580 - val_acc: 0.8403 Epoch 54/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5100 - acc: 0.8182 Epoch 54: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5099 - acc: 0.8183 - val_loss: 0.4554 - val_acc: 0.8413 Epoch 55/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5072 - acc: 0.8189 Epoch 55: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5072 - acc: 0.8189 - val_loss: 0.4529 - val_acc: 0.8420 Epoch 56/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5045 - acc: 0.8202 Epoch 56: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5046 - acc: 0.8201 - val_loss: 0.4513 - val_acc: 0.8430 Epoch 57/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5028 - acc: 0.8211 Epoch 57: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5028 - acc: 0.8211 - val_loss: 0.4493 - val_acc: 0.8434 Epoch 58/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4996 - acc: 0.8218 Epoch 58: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4997 - acc: 0.8218 - val_loss: 0.4471 - val_acc: 0.8438 Epoch 59/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4974 - acc: 0.8217 Epoch 59: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4974 - acc: 0.8218 - val_loss: 0.4464 - val_acc: 0.8448 Epoch 60/1000 696/696 [==============================] - ETA: 0s - loss: 0.4963 - acc: 0.8231 Epoch 60: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4963 - acc: 0.8231 - val_loss: 0.4438 - val_acc: 0.8448 Epoch 61/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4934 - acc: 0.8239 Epoch 61: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4934 - acc: 0.8239 - val_loss: 0.4423 - val_acc: 0.8454 Epoch 62/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4910 - acc: 0.8251 Epoch 62: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4910 - acc: 0.8250 - val_loss: 0.4404 - val_acc: 0.8463 Epoch 63/1000 696/696 [==============================] - ETA: 0s - loss: 0.4892 - acc: 0.8253 Epoch 63: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4892 - acc: 0.8253 - val_loss: 0.4389 - val_acc: 0.8475 Epoch 64/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4866 - acc: 0.8267 Epoch 64: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4866 - acc: 0.8268 - val_loss: 0.4372 - val_acc: 0.8480 Epoch 65/1000 696/696 [==============================] - ETA: 0s - loss: 0.4844 - acc: 0.8271 Epoch 65: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4844 - acc: 0.8271 - val_loss: 0.4351 - val_acc: 0.8489 Epoch 66/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4834 - acc: 0.8282 Epoch 66: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4833 - acc: 0.8283 - val_loss: 0.4336 - val_acc: 0.8493 Epoch 67/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4813 - acc: 0.8285 Epoch 67: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4813 - acc: 0.8285 - val_loss: 0.4333 - val_acc: 0.8493 Epoch 68/1000 696/696 [==============================] - ETA: 0s - loss: 0.4797 - acc: 0.8285 Epoch 68: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.4797 - acc: 0.8285 - val_loss: 0.4317 - val_acc: 0.8506 Epoch 69/1000 696/696 [==============================] - ETA: 0s - loss: 0.4765 - acc: 0.8303 Epoch 69: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4765 - acc: 0.8303 - val_loss: 0.4307 - val_acc: 0.8513 Epoch 70/1000 696/696 [==============================] - ETA: 0s - loss: 0.4756 - acc: 0.8304 Epoch 70: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4756 - acc: 0.8304 - val_loss: 0.4282 - val_acc: 0.8508 Epoch 71/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4725 - acc: 0.8321 Epoch 71: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4725 - acc: 0.8321 - val_loss: 0.4272 - val_acc: 0.8525 Epoch 72/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4721 - acc: 0.8319 Epoch 72: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4721 - acc: 0.8319 - val_loss: 0.4257 - val_acc: 0.8531 Epoch 73/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4693 - acc: 0.8329 Epoch 73: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4694 - acc: 0.8328 - val_loss: 0.4248 - val_acc: 0.8532 Epoch 74/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4689 - acc: 0.8327 Epoch 74: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4689 - acc: 0.8327 - val_loss: 0.4230 - val_acc: 0.8518 Epoch 75/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4675 - acc: 0.8340 Epoch 75: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4674 - acc: 0.8340 - val_loss: 0.4218 - val_acc: 0.8537 Epoch 76/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4658 - acc: 0.8342 Epoch 76: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4658 - acc: 0.8342 - val_loss: 0.4210 - val_acc: 0.8541 Epoch 77/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4638 - acc: 0.8350 Epoch 77: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4638 - acc: 0.8350 - val_loss: 0.4210 - val_acc: 0.8539 Epoch 78/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4628 - acc: 0.8354 Epoch 78: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4628 - acc: 0.8354 - val_loss: 0.4177 - val_acc: 0.8550 Epoch 79/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4603 - acc: 0.8363 Epoch 79: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4604 - acc: 0.8363 - val_loss: 0.4176 - val_acc: 0.8559 Epoch 80/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4599 - acc: 0.8359 Epoch 80: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4599 - acc: 0.8358 - val_loss: 0.4159 - val_acc: 0.8549 Epoch 81/1000 696/696 [==============================] - ETA: 0s - loss: 0.4577 - acc: 0.8377 Epoch 81: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4577 - acc: 0.8377 - val_loss: 0.4150 - val_acc: 0.8566 Epoch 82/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4565 - acc: 0.8374 Epoch 82: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4564 - acc: 0.8374 - val_loss: 0.4142 - val_acc: 0.8562 Epoch 83/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4551 - acc: 0.8383 Epoch 83: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4551 - acc: 0.8383 - val_loss: 0.4125 - val_acc: 0.8571 Epoch 84/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4526 - acc: 0.8387 Epoch 84: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4526 - acc: 0.8387 - val_loss: 0.4107 - val_acc: 0.8577 Epoch 85/1000 696/696 [==============================] - ETA: 0s - loss: 0.4512 - acc: 0.8396 Epoch 85: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4512 - acc: 0.8396 - val_loss: 0.4108 - val_acc: 0.8571 Epoch 86/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4503 - acc: 0.8400 Epoch 86: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4503 - acc: 0.8400 - val_loss: 0.4092 - val_acc: 0.8589 Epoch 87/1000 696/696 [==============================] - ETA: 0s - loss: 0.4486 - acc: 0.8401 Epoch 87: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4486 - acc: 0.8401 - val_loss: 0.4093 - val_acc: 0.8586 Epoch 88/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4471 - acc: 0.8410 Epoch 88: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4471 - acc: 0.8411 - val_loss: 0.4068 - val_acc: 0.8591 Epoch 89/1000 696/696 [==============================] - ETA: 0s - loss: 0.4478 - acc: 0.8411 Epoch 89: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4478 - acc: 0.8411 - val_loss: 0.4069 - val_acc: 0.8601 Epoch 90/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4448 - acc: 0.8421 Epoch 90: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4447 - acc: 0.8421 - val_loss: 0.4061 - val_acc: 0.8594 Epoch 91/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4451 - acc: 0.8422 Epoch 91: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4451 - acc: 0.8422 - val_loss: 0.4040 - val_acc: 0.8599 Epoch 92/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4415 - acc: 0.8432 Epoch 92: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4414 - acc: 0.8432 - val_loss: 0.4046 - val_acc: 0.8615 Epoch 93/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4420 - acc: 0.8435 Epoch 93: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4420 - acc: 0.8434 - val_loss: 0.4039 - val_acc: 0.8610 Epoch 94/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4406 - acc: 0.8436 Epoch 94: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4408 - acc: 0.8436 - val_loss: 0.4015 - val_acc: 0.8625 Epoch 95/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4390 - acc: 0.8441 Epoch 95: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4390 - acc: 0.8441 - val_loss: 0.4007 - val_acc: 0.8620 Epoch 96/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4371 - acc: 0.8454 Epoch 96: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4372 - acc: 0.8454 - val_loss: 0.4009 - val_acc: 0.8622 Epoch 97/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4369 - acc: 0.8451 Epoch 97: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4367 - acc: 0.8452 - val_loss: 0.3998 - val_acc: 0.8616 Epoch 98/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4348 - acc: 0.8456 Epoch 98: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.4348 - acc: 0.8456 - val_loss: 0.3987 - val_acc: 0.8626 Epoch 99/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4339 - acc: 0.8459 Epoch 99: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4339 - acc: 0.8460 - val_loss: 0.3969 - val_acc: 0.8632 Epoch 100/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4325 - acc: 0.8465 Epoch 100: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4324 - acc: 0.8466 - val_loss: 0.3973 - val_acc: 0.8626 Epoch 101/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4319 - acc: 0.8473 Epoch 101: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4319 - acc: 0.8473 - val_loss: 0.3951 - val_acc: 0.8649 Epoch 102/1000 696/696 [==============================] - ETA: 0s - loss: 0.4307 - acc: 0.8474 Epoch 102: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4307 - acc: 0.8474 - val_loss: 0.3943 - val_acc: 0.8644 Epoch 103/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4299 - acc: 0.8480 Epoch 103: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.4299 - acc: 0.8480 - val_loss: 0.3941 - val_acc: 0.8645 Epoch 104/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4289 - acc: 0.8483 Epoch 104: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4290 - acc: 0.8483 - val_loss: 0.3930 - val_acc: 0.8651 Epoch 105/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4269 - acc: 0.8490 Epoch 105: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4269 - acc: 0.8489 - val_loss: 0.3930 - val_acc: 0.8662 Epoch 106/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4255 - acc: 0.8497 Epoch 106: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4255 - acc: 0.8497 - val_loss: 0.3919 - val_acc: 0.8653 Epoch 107/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4260 - acc: 0.8495 Epoch 107: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4260 - acc: 0.8495 - val_loss: 0.3908 - val_acc: 0.8660 Epoch 108/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4243 - acc: 0.8501 Epoch 108: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4243 - acc: 0.8500 - val_loss: 0.3903 - val_acc: 0.8674 Epoch 109/1000 696/696 [==============================] - ETA: 0s - loss: 0.4228 - acc: 0.8503 Epoch 109: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4228 - acc: 0.8503 - val_loss: 0.3887 - val_acc: 0.8671 Epoch 110/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4218 - acc: 0.8504 Epoch 110: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4218 - acc: 0.8504 - val_loss: 0.3902 - val_acc: 0.8666 Epoch 111/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4211 - acc: 0.8510 Epoch 111: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4210 - acc: 0.8510 - val_loss: 0.3886 - val_acc: 0.8671 Epoch 112/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4209 - acc: 0.8511 Epoch 112: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4208 - acc: 0.8512 - val_loss: 0.3868 - val_acc: 0.8667 Epoch 113/1000 696/696 [==============================] - ETA: 0s - loss: 0.4188 - acc: 0.8517 Epoch 113: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4188 - acc: 0.8517 - val_loss: 0.3863 - val_acc: 0.8682 Epoch 114/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4179 - acc: 0.8523 Epoch 114: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4179 - acc: 0.8523 - val_loss: 0.3862 - val_acc: 0.8680 Epoch 115/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4178 - acc: 0.8522 Epoch 115: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4179 - acc: 0.8521 - val_loss: 0.3854 - val_acc: 0.8682 Epoch 116/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4168 - acc: 0.8527 Epoch 116: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4168 - acc: 0.8528 - val_loss: 0.3850 - val_acc: 0.8681 Epoch 117/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4147 - acc: 0.8537 Epoch 117: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4147 - acc: 0.8537 - val_loss: 0.3832 - val_acc: 0.8695 Epoch 118/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4150 - acc: 0.8530 Epoch 118: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4150 - acc: 0.8530 - val_loss: 0.3824 - val_acc: 0.8696 Epoch 119/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4130 - acc: 0.8539 Epoch 119: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4130 - acc: 0.8539 - val_loss: 0.3824 - val_acc: 0.8696 Epoch 120/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4123 - acc: 0.8541 Epoch 120: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4122 - acc: 0.8541 - val_loss: 0.3817 - val_acc: 0.8691 Epoch 121/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4106 - acc: 0.8554 Epoch 121: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4107 - acc: 0.8553 - val_loss: 0.3820 - val_acc: 0.8701 Epoch 122/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4105 - acc: 0.8552 Epoch 122: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4106 - acc: 0.8552 - val_loss: 0.3812 - val_acc: 0.8694 Epoch 123/1000 696/696 [==============================] - ETA: 0s - loss: 0.4105 - acc: 0.8552 Epoch 123: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4105 - acc: 0.8552 - val_loss: 0.3802 - val_acc: 0.8707 Epoch 124/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4091 - acc: 0.8555 Epoch 124: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4090 - acc: 0.8555 - val_loss: 0.3793 - val_acc: 0.8697 Epoch 125/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4077 - acc: 0.8558 Epoch 125: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4077 - acc: 0.8558 - val_loss: 0.3793 - val_acc: 0.8709 Epoch 126/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4068 - acc: 0.8565 Epoch 126: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.4068 - acc: 0.8566 - val_loss: 0.3773 - val_acc: 0.8721 Epoch 127/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4065 - acc: 0.8568 Epoch 127: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4065 - acc: 0.8568 - val_loss: 0.3773 - val_acc: 0.8705 Epoch 128/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4061 - acc: 0.8569 Epoch 128: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4061 - acc: 0.8569 - val_loss: 0.3771 - val_acc: 0.8707 Epoch 129/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4055 - acc: 0.8570 Epoch 129: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4055 - acc: 0.8570 - val_loss: 0.3769 - val_acc: 0.8699 Epoch 130/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4034 - acc: 0.8576 Epoch 130: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4033 - acc: 0.8576 - val_loss: 0.3753 - val_acc: 0.8730 Epoch 131/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4028 - acc: 0.8573 Epoch 131: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4028 - acc: 0.8574 - val_loss: 0.3753 - val_acc: 0.8721 Epoch 132/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4017 - acc: 0.8588 Epoch 132: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4017 - acc: 0.8588 - val_loss: 0.3744 - val_acc: 0.8721 Epoch 133/1000 696/696 [==============================] - ETA: 0s - loss: 0.4013 - acc: 0.8587 Epoch 133: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4013 - acc: 0.8587 - val_loss: 0.3732 - val_acc: 0.8729 Epoch 134/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4012 - acc: 0.8584 Epoch 134: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4011 - acc: 0.8585 - val_loss: 0.3726 - val_acc: 0.8742 Epoch 135/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3999 - acc: 0.8592 Epoch 135: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4000 - acc: 0.8591 - val_loss: 0.3730 - val_acc: 0.8719 Epoch 136/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3981 - acc: 0.8599 Epoch 136: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3982 - acc: 0.8599 - val_loss: 0.3714 - val_acc: 0.8732 Epoch 137/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3972 - acc: 0.8598 Epoch 137: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3973 - acc: 0.8598 - val_loss: 0.3718 - val_acc: 0.8725 Epoch 138/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3963 - acc: 0.8605 Epoch 138: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3962 - acc: 0.8606 - val_loss: 0.3700 - val_acc: 0.8733 Epoch 139/1000 696/696 [==============================] - ETA: 0s - loss: 0.3963 - acc: 0.8604 Epoch 139: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3963 - acc: 0.8604 - val_loss: 0.3697 - val_acc: 0.8747 Epoch 140/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3956 - acc: 0.8606 Epoch 140: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3956 - acc: 0.8605 - val_loss: 0.3710 - val_acc: 0.8737 Epoch 141/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3948 - acc: 0.8605 Epoch 141: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3948 - acc: 0.8605 - val_loss: 0.3694 - val_acc: 0.8740 Epoch 142/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3942 - acc: 0.8614 Epoch 142: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3943 - acc: 0.8615 - val_loss: 0.3677 - val_acc: 0.8741 Epoch 143/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3930 - acc: 0.8617 Epoch 143: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3930 - acc: 0.8617 - val_loss: 0.3682 - val_acc: 0.8734 Epoch 144/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3924 - acc: 0.8613 Epoch 144: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3924 - acc: 0.8614 - val_loss: 0.3683 - val_acc: 0.8749 Epoch 145/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3916 - acc: 0.8620 Epoch 145: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3916 - acc: 0.8620 - val_loss: 0.3675 - val_acc: 0.8747 Epoch 146/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3904 - acc: 0.8623 Epoch 146: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3903 - acc: 0.8624 - val_loss: 0.3669 - val_acc: 0.8752 Epoch 147/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3896 - acc: 0.8627 Epoch 147: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3896 - acc: 0.8627 - val_loss: 0.3651 - val_acc: 0.8748 Epoch 148/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3894 - acc: 0.8627 Epoch 148: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3892 - acc: 0.8628 - val_loss: 0.3651 - val_acc: 0.8757 Epoch 149/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3887 - acc: 0.8629 Epoch 149: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3887 - acc: 0.8629 - val_loss: 0.3646 - val_acc: 0.8750 Epoch 150/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3875 - acc: 0.8630 Epoch 150: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3875 - acc: 0.8630 - val_loss: 0.3643 - val_acc: 0.8751 Epoch 151/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3867 - acc: 0.8640 Epoch 151: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3867 - acc: 0.8639 - val_loss: 0.3644 - val_acc: 0.8767 Epoch 152/1000 696/696 [==============================] - ETA: 0s - loss: 0.3879 - acc: 0.8637 Epoch 152: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3879 - acc: 0.8637 - val_loss: 0.3626 - val_acc: 0.8756 Epoch 153/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3866 - acc: 0.8637 Epoch 153: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3866 - acc: 0.8637 - val_loss: 0.3641 - val_acc: 0.8745 Epoch 154/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3847 - acc: 0.8642 Epoch 154: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3847 - acc: 0.8642 - val_loss: 0.3626 - val_acc: 0.8759 Epoch 155/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3846 - acc: 0.8645 Epoch 155: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3846 - acc: 0.8645 - val_loss: 0.3618 - val_acc: 0.8776 Epoch 156/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3839 - acc: 0.8651 Epoch 156: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3839 - acc: 0.8651 - val_loss: 0.3604 - val_acc: 0.8779 Epoch 157/1000 696/696 [==============================] - ETA: 0s - loss: 0.3835 - acc: 0.8657 Epoch 157: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3835 - acc: 0.8657 - val_loss: 0.3608 - val_acc: 0.8767 Epoch 158/1000 696/696 [==============================] - ETA: 0s - loss: 0.3827 - acc: 0.8655 Epoch 158: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3827 - acc: 0.8655 - val_loss: 0.3597 - val_acc: 0.8760 Epoch 159/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3827 - acc: 0.8658 Epoch 159: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3825 - acc: 0.8658 - val_loss: 0.3594 - val_acc: 0.8758 Epoch 160/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3808 - acc: 0.8656 Epoch 160: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3808 - acc: 0.8656 - val_loss: 0.3591 - val_acc: 0.8775 Epoch 161/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3802 - acc: 0.8660 Epoch 161: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.3802 - acc: 0.8660 - val_loss: 0.3593 - val_acc: 0.8776 Epoch 162/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3800 - acc: 0.8660 Epoch 162: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3801 - acc: 0.8660 - val_loss: 0.3584 - val_acc: 0.8770 Epoch 163/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3790 - acc: 0.8665 Epoch 163: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3792 - acc: 0.8664 - val_loss: 0.3582 - val_acc: 0.8791 Epoch 164/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3776 - acc: 0.8671 Epoch 164: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3776 - acc: 0.8671 - val_loss: 0.3581 - val_acc: 0.8788 Epoch 165/1000 696/696 [==============================] - ETA: 0s - loss: 0.3775 - acc: 0.8670 Epoch 165: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3775 - acc: 0.8670 - val_loss: 0.3576 - val_acc: 0.8763 Epoch 166/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3776 - acc: 0.8674 Epoch 166: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3777 - acc: 0.8674 - val_loss: 0.3578 - val_acc: 0.8767 Epoch 167/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3757 - acc: 0.8679 Epoch 167: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3757 - acc: 0.8679 - val_loss: 0.3563 - val_acc: 0.8772 Epoch 168/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3759 - acc: 0.8677 Epoch 168: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3760 - acc: 0.8677 - val_loss: 0.3559 - val_acc: 0.8779 Epoch 169/1000 696/696 [==============================] - ETA: 0s - loss: 0.3746 - acc: 0.8679 Epoch 169: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3746 - acc: 0.8679 - val_loss: 0.3550 - val_acc: 0.8801 Epoch 170/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3744 - acc: 0.8682 Epoch 170: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3745 - acc: 0.8682 - val_loss: 0.3543 - val_acc: 0.8803 Epoch 171/1000 696/696 [==============================] - ETA: 0s - loss: 0.3742 - acc: 0.8688 Epoch 171: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3742 - acc: 0.8688 - val_loss: 0.3549 - val_acc: 0.8795 Epoch 172/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3731 - acc: 0.8690 Epoch 172: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3731 - acc: 0.8690 - val_loss: 0.3543 - val_acc: 0.8776 Epoch 173/1000 696/696 [==============================] - ETA: 0s - loss: 0.3724 - acc: 0.8690 Epoch 173: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3724 - acc: 0.8690 - val_loss: 0.3535 - val_acc: 0.8785 Epoch 174/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3714 - acc: 0.8695 Epoch 174: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3715 - acc: 0.8694 - val_loss: 0.3528 - val_acc: 0.8790 Epoch 175/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3707 - acc: 0.8695 Epoch 175: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3707 - acc: 0.8695 - val_loss: 0.3523 - val_acc: 0.8797 Epoch 176/1000 696/696 [==============================] - ETA: 0s - loss: 0.3710 - acc: 0.8699 Epoch 176: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3710 - acc: 0.8699 - val_loss: 0.3525 - val_acc: 0.8789 Epoch 177/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3701 - acc: 0.8701 Epoch 177: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3701 - acc: 0.8701 - val_loss: 0.3525 - val_acc: 0.8791 Epoch 178/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3698 - acc: 0.8702 Epoch 178: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3698 - acc: 0.8701 - val_loss: 0.3512 - val_acc: 0.8806 Epoch 179/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3691 - acc: 0.8703 Epoch 179: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3692 - acc: 0.8702 - val_loss: 0.3517 - val_acc: 0.8785 Epoch 180/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3690 - acc: 0.8705 Epoch 180: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3690 - acc: 0.8705 - val_loss: 0.3505 - val_acc: 0.8797 Epoch 181/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3682 - acc: 0.8706 Epoch 181: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3682 - acc: 0.8706 - val_loss: 0.3502 - val_acc: 0.8785 Epoch 182/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3666 - acc: 0.8709 Epoch 182: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3667 - acc: 0.8709 - val_loss: 0.3502 - val_acc: 0.8796 Epoch 183/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3663 - acc: 0.8715 Epoch 183: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3664 - acc: 0.8714 - val_loss: 0.3487 - val_acc: 0.8811 Epoch 184/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3664 - acc: 0.8714 Epoch 184: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3666 - acc: 0.8713 - val_loss: 0.3483 - val_acc: 0.8804 Epoch 185/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3648 - acc: 0.8718 Epoch 185: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3648 - acc: 0.8719 - val_loss: 0.3481 - val_acc: 0.8798 Epoch 186/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3646 - acc: 0.8719 Epoch 186: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3646 - acc: 0.8719 - val_loss: 0.3486 - val_acc: 0.8795 Epoch 187/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3646 - acc: 0.8726 Epoch 187: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3645 - acc: 0.8726 - val_loss: 0.3466 - val_acc: 0.8811 Epoch 188/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3638 - acc: 0.8726 Epoch 188: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3639 - acc: 0.8725 - val_loss: 0.3479 - val_acc: 0.8794 Epoch 189/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3630 - acc: 0.8721 Epoch 189: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3629 - acc: 0.8721 - val_loss: 0.3470 - val_acc: 0.8794 Epoch 190/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3627 - acc: 0.8729 Epoch 190: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3627 - acc: 0.8729 - val_loss: 0.3463 - val_acc: 0.8805 Epoch 191/1000 696/696 [==============================] - ETA: 0s - loss: 0.3624 - acc: 0.8728 Epoch 191: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3624 - acc: 0.8728 - val_loss: 0.3460 - val_acc: 0.8812 Epoch 192/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3620 - acc: 0.8729 Epoch 192: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3620 - acc: 0.8729 - val_loss: 0.3467 - val_acc: 0.8803 Epoch 193/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3610 - acc: 0.8733 Epoch 193: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3610 - acc: 0.8733 - val_loss: 0.3451 - val_acc: 0.8809 Epoch 194/1000 696/696 [==============================] - ETA: 0s - loss: 0.3606 - acc: 0.8734 Epoch 194: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3606 - acc: 0.8734 - val_loss: 0.3462 - val_acc: 0.8807 Epoch 195/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3588 - acc: 0.8746 Epoch 195: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3588 - acc: 0.8746 - val_loss: 0.3451 - val_acc: 0.8800 Epoch 196/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3600 - acc: 0.8738 Epoch 196: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3601 - acc: 0.8738 - val_loss: 0.3454 - val_acc: 0.8823 Epoch 197/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3588 - acc: 0.8742 Epoch 197: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3587 - acc: 0.8742 - val_loss: 0.3444 - val_acc: 0.8805 Epoch 198/1000 696/696 [==============================] - ETA: 0s - loss: 0.3582 - acc: 0.8742 Epoch 198: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3582 - acc: 0.8742 - val_loss: 0.3443 - val_acc: 0.8815 Epoch 199/1000 696/696 [==============================] - ETA: 0s - loss: 0.3581 - acc: 0.8742 Epoch 199: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3581 - acc: 0.8742 - val_loss: 0.3437 - val_acc: 0.8812 Epoch 200/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3572 - acc: 0.8747 Epoch 200: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3571 - acc: 0.8747 - val_loss: 0.3422 - val_acc: 0.8822 Epoch 201/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3569 - acc: 0.8752 Epoch 201: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3570 - acc: 0.8752 - val_loss: 0.3418 - val_acc: 0.8811 Epoch 202/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3562 - acc: 0.8753 Epoch 202: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3562 - acc: 0.8753 - val_loss: 0.3410 - val_acc: 0.8822 Epoch 203/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3552 - acc: 0.8753 Epoch 203: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3553 - acc: 0.8753 - val_loss: 0.3419 - val_acc: 0.8826 Epoch 204/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3541 - acc: 0.8757 Epoch 204: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3542 - acc: 0.8756 - val_loss: 0.3417 - val_acc: 0.8818 Epoch 205/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3549 - acc: 0.8759 Epoch 205: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3549 - acc: 0.8759 - val_loss: 0.3415 - val_acc: 0.8834 Epoch 206/1000 696/696 [==============================] - ETA: 0s - loss: 0.3546 - acc: 0.8755 Epoch 206: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3546 - acc: 0.8755 - val_loss: 0.3425 - val_acc: 0.8817 Epoch 207/1000 696/696 [==============================] - ETA: 0s - loss: 0.3527 - acc: 0.8767 Epoch 207: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3527 - acc: 0.8767 - val_loss: 0.3404 - val_acc: 0.8830 Epoch 208/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3528 - acc: 0.8763 Epoch 208: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3529 - acc: 0.8762 - val_loss: 0.3418 - val_acc: 0.8808 Epoch 209/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3527 - acc: 0.8759 Epoch 209: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3527 - acc: 0.8759 - val_loss: 0.3401 - val_acc: 0.8831 Epoch 210/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3531 - acc: 0.8763 Epoch 210: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3531 - acc: 0.8763 - val_loss: 0.3397 - val_acc: 0.8831 Epoch 211/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3518 - acc: 0.8770 Epoch 211: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3518 - acc: 0.8769 - val_loss: 0.3392 - val_acc: 0.8834 Epoch 212/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3510 - acc: 0.8769 Epoch 212: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3511 - acc: 0.8768 - val_loss: 0.3382 - val_acc: 0.8837 Epoch 213/1000 696/696 [==============================] - ETA: 0s - loss: 0.3508 - acc: 0.8775 Epoch 213: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3508 - acc: 0.8775 - val_loss: 0.3379 - val_acc: 0.8831 Epoch 214/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3494 - acc: 0.8780 Epoch 214: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3495 - acc: 0.8780 - val_loss: 0.3378 - val_acc: 0.8820 Epoch 215/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3502 - acc: 0.8772 Epoch 215: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3503 - acc: 0.8772 - val_loss: 0.3370 - val_acc: 0.8847 Epoch 216/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3486 - acc: 0.8780 Epoch 216: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3486 - acc: 0.8779 - val_loss: 0.3388 - val_acc: 0.8834 Epoch 217/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3491 - acc: 0.8776 Epoch 217: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3491 - acc: 0.8777 - val_loss: 0.3368 - val_acc: 0.8837 Epoch 218/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3478 - acc: 0.8787 Epoch 218: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3478 - acc: 0.8787 - val_loss: 0.3370 - val_acc: 0.8836 Epoch 219/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3477 - acc: 0.8785 Epoch 219: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3477 - acc: 0.8785 - val_loss: 0.3362 - val_acc: 0.8838 Epoch 220/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3470 - acc: 0.8784 Epoch 220: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3470 - acc: 0.8784 - val_loss: 0.3364 - val_acc: 0.8820 Epoch 221/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3459 - acc: 0.8787 Epoch 221: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3459 - acc: 0.8787 - val_loss: 0.3356 - val_acc: 0.8842 Epoch 222/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3465 - acc: 0.8787 Epoch 222: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3465 - acc: 0.8787 - val_loss: 0.3352 - val_acc: 0.8842 Epoch 223/1000 696/696 [==============================] - ETA: 0s - loss: 0.3456 - acc: 0.8788 Epoch 223: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3456 - acc: 0.8788 - val_loss: 0.3352 - val_acc: 0.8839 Epoch 224/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3461 - acc: 0.8790 Epoch 224: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3460 - acc: 0.8790 - val_loss: 0.3340 - val_acc: 0.8842 Epoch 225/1000 696/696 [==============================] - ETA: 0s - loss: 0.3437 - acc: 0.8797 Epoch 225: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3437 - acc: 0.8797 - val_loss: 0.3336 - val_acc: 0.8838 Epoch 226/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3442 - acc: 0.8791 Epoch 226: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3442 - acc: 0.8791 - val_loss: 0.3346 - val_acc: 0.8841 Epoch 227/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3434 - acc: 0.8799 Epoch 227: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3434 - acc: 0.8799 - val_loss: 0.3338 - val_acc: 0.8843 Epoch 228/1000 696/696 [==============================] - ETA: 0s - loss: 0.3435 - acc: 0.8792 Epoch 228: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3435 - acc: 0.8792 - val_loss: 0.3337 - val_acc: 0.8850 Epoch 229/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3425 - acc: 0.8802 Epoch 229: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3425 - acc: 0.8802 - val_loss: 0.3342 - val_acc: 0.8849 Epoch 230/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3424 - acc: 0.8801 Epoch 230: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3425 - acc: 0.8801 - val_loss: 0.3338 - val_acc: 0.8845 Epoch 231/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3420 - acc: 0.8805 Epoch 231: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3419 - acc: 0.8805 - val_loss: 0.3334 - val_acc: 0.8850 Epoch 232/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3399 - acc: 0.8811 Epoch 232: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3400 - acc: 0.8811 - val_loss: 0.3339 - val_acc: 0.8850 Epoch 233/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3406 - acc: 0.8803 Epoch 233: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3406 - acc: 0.8803 - val_loss: 0.3338 - val_acc: 0.8837 Epoch 234/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3396 - acc: 0.8812 Epoch 234: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3396 - acc: 0.8813 - val_loss: 0.3318 - val_acc: 0.8861 Epoch 235/1000 696/696 [==============================] - ETA: 0s - loss: 0.3395 - acc: 0.8810 Epoch 235: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3395 - acc: 0.8810 - val_loss: 0.3316 - val_acc: 0.8853 Epoch 236/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3388 - acc: 0.8812 Epoch 236: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3387 - acc: 0.8813 - val_loss: 0.3307 - val_acc: 0.8851 Epoch 237/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3388 - acc: 0.8817 Epoch 237: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3389 - acc: 0.8817 - val_loss: 0.3311 - val_acc: 0.8863 Epoch 238/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3386 - acc: 0.8820 Epoch 238: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3386 - acc: 0.8819 - val_loss: 0.3310 - val_acc: 0.8863 Epoch 239/1000 696/696 [==============================] - ETA: 0s - loss: 0.3382 - acc: 0.8814 Epoch 239: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3382 - acc: 0.8814 - val_loss: 0.3318 - val_acc: 0.8838 Epoch 240/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3379 - acc: 0.8819 Epoch 240: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3379 - acc: 0.8819 - val_loss: 0.3301 - val_acc: 0.8854 Epoch 241/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3372 - acc: 0.8826 Epoch 241: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3372 - acc: 0.8826 - val_loss: 0.3308 - val_acc: 0.8851 Epoch 242/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3366 - acc: 0.8822 Epoch 242: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3366 - acc: 0.8822 - val_loss: 0.3288 - val_acc: 0.8867 Epoch 243/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3364 - acc: 0.8821 Epoch 243: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3364 - acc: 0.8821 - val_loss: 0.3286 - val_acc: 0.8865 Epoch 244/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3356 - acc: 0.8827 Epoch 244: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3356 - acc: 0.8827 - val_loss: 0.3289 - val_acc: 0.8855 Epoch 245/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3351 - acc: 0.8825 Epoch 245: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3351 - acc: 0.8825 - val_loss: 0.3284 - val_acc: 0.8854 Epoch 246/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3345 - acc: 0.8831 Epoch 246: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3345 - acc: 0.8831 - val_loss: 0.3286 - val_acc: 0.8860 Epoch 247/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3341 - acc: 0.8827 Epoch 247: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3341 - acc: 0.8827 - val_loss: 0.3293 - val_acc: 0.8860 Epoch 248/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3334 - acc: 0.8834 Epoch 248: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3334 - acc: 0.8834 - val_loss: 0.3270 - val_acc: 0.8871 Epoch 249/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3320 - acc: 0.8842 Epoch 249: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3321 - acc: 0.8841 - val_loss: 0.3269 - val_acc: 0.8861 Epoch 250/1000 696/696 [==============================] - ETA: 0s - loss: 0.3327 - acc: 0.8837 Epoch 250: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3327 - acc: 0.8837 - val_loss: 0.3276 - val_acc: 0.8876 Epoch 251/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3326 - acc: 0.8839 Epoch 251: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3325 - acc: 0.8839 - val_loss: 0.3281 - val_acc: 0.8865 Epoch 252/1000 696/696 [==============================] - ETA: 0s - loss: 0.3317 - acc: 0.8843 Epoch 252: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3317 - acc: 0.8843 - val_loss: 0.3270 - val_acc: 0.8876 Epoch 253/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3320 - acc: 0.8837 Epoch 253: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3320 - acc: 0.8837 - val_loss: 0.3272 - val_acc: 0.8877 Epoch 254/1000 696/696 [==============================] - ETA: 0s - loss: 0.3315 - acc: 0.8844 Epoch 254: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3315 - acc: 0.8844 - val_loss: 0.3257 - val_acc: 0.8878 Epoch 255/1000 696/696 [==============================] - ETA: 0s - loss: 0.3311 - acc: 0.8848 Epoch 255: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3311 - acc: 0.8848 - val_loss: 0.3245 - val_acc: 0.8880 Epoch 256/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3304 - acc: 0.8845 Epoch 256: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3304 - acc: 0.8845 - val_loss: 0.3252 - val_acc: 0.8865 Epoch 257/1000 696/696 [==============================] - ETA: 0s - loss: 0.3288 - acc: 0.8853 Epoch 257: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3288 - acc: 0.8853 - val_loss: 0.3247 - val_acc: 0.8872 Epoch 258/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3293 - acc: 0.8853 Epoch 258: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3292 - acc: 0.8853 - val_loss: 0.3261 - val_acc: 0.8872 Epoch 259/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3285 - acc: 0.8851 Epoch 259: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3287 - acc: 0.8851 - val_loss: 0.3252 - val_acc: 0.8883 Epoch 260/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3285 - acc: 0.8851 Epoch 260: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3285 - acc: 0.8850 - val_loss: 0.3243 - val_acc: 0.8889 Epoch 261/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3289 - acc: 0.8853 Epoch 261: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3289 - acc: 0.8852 - val_loss: 0.3243 - val_acc: 0.8886 Epoch 262/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3278 - acc: 0.8856 Epoch 262: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3278 - acc: 0.8856 - val_loss: 0.3241 - val_acc: 0.8885 Epoch 263/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3272 - acc: 0.8857 Epoch 263: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3270 - acc: 0.8857 - val_loss: 0.3230 - val_acc: 0.8890 Epoch 264/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3276 - acc: 0.8856 Epoch 264: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3275 - acc: 0.8856 - val_loss: 0.3226 - val_acc: 0.8891 Epoch 265/1000 696/696 [==============================] - ETA: 0s - loss: 0.3267 - acc: 0.8863 Epoch 265: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.3267 - acc: 0.8863 - val_loss: 0.3231 - val_acc: 0.8887 Epoch 266/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3265 - acc: 0.8861 Epoch 266: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3265 - acc: 0.8861 - val_loss: 0.3234 - val_acc: 0.8889 Epoch 267/1000 696/696 [==============================] - ETA: 0s - loss: 0.3248 - acc: 0.8868 Epoch 267: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3248 - acc: 0.8868 - val_loss: 0.3229 - val_acc: 0.8891 Epoch 268/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3263 - acc: 0.8861 Epoch 268: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3263 - acc: 0.8861 - val_loss: 0.3236 - val_acc: 0.8884 Epoch 269/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3257 - acc: 0.8862 Epoch 269: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3257 - acc: 0.8862 - val_loss: 0.3226 - val_acc: 0.8896 Epoch 270/1000 696/696 [==============================] - ETA: 0s - loss: 0.3247 - acc: 0.8869 Epoch 270: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3247 - acc: 0.8869 - val_loss: 0.3221 - val_acc: 0.8892 Epoch 271/1000 696/696 [==============================] - ETA: 0s - loss: 0.3251 - acc: 0.8867 Epoch 271: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3251 - acc: 0.8867 - val_loss: 0.3218 - val_acc: 0.8904 Epoch 272/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3241 - acc: 0.8869 Epoch 272: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3241 - acc: 0.8869 - val_loss: 0.3206 - val_acc: 0.8898 Epoch 273/1000 696/696 [==============================] - ETA: 0s - loss: 0.3234 - acc: 0.8869 Epoch 273: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3234 - acc: 0.8869 - val_loss: 0.3201 - val_acc: 0.8911 Epoch 274/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3231 - acc: 0.8871 Epoch 274: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3232 - acc: 0.8871 - val_loss: 0.3208 - val_acc: 0.8904 Epoch 275/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3226 - acc: 0.8873 Epoch 275: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3224 - acc: 0.8873 - val_loss: 0.3211 - val_acc: 0.8902 Epoch 276/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3229 - acc: 0.8871 Epoch 276: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3229 - acc: 0.8871 - val_loss: 0.3192 - val_acc: 0.8904 Epoch 277/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3221 - acc: 0.8881 Epoch 277: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3221 - acc: 0.8881 - val_loss: 0.3197 - val_acc: 0.8903 Epoch 278/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3213 - acc: 0.8880 Epoch 278: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3212 - acc: 0.8880 - val_loss: 0.3200 - val_acc: 0.8899 Epoch 279/1000 696/696 [==============================] - ETA: 0s - loss: 0.3214 - acc: 0.8877 Epoch 279: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3214 - acc: 0.8877 - val_loss: 0.3195 - val_acc: 0.8904 Epoch 280/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3203 - acc: 0.8880 Epoch 280: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3203 - acc: 0.8880 - val_loss: 0.3190 - val_acc: 0.8902 Epoch 281/1000 696/696 [==============================] - ETA: 0s - loss: 0.3203 - acc: 0.8882 Epoch 281: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3203 - acc: 0.8882 - val_loss: 0.3186 - val_acc: 0.8920 Epoch 282/1000 696/696 [==============================] - ETA: 0s - loss: 0.3199 - acc: 0.8883 Epoch 282: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3199 - acc: 0.8883 - val_loss: 0.3191 - val_acc: 0.8902 Epoch 283/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3190 - acc: 0.8888 Epoch 283: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3189 - acc: 0.8889 - val_loss: 0.3182 - val_acc: 0.8911 Epoch 284/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3177 - acc: 0.8893 Epoch 284: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3177 - acc: 0.8893 - val_loss: 0.3182 - val_acc: 0.8900 Epoch 285/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3188 - acc: 0.8887 Epoch 285: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3190 - acc: 0.8887 - val_loss: 0.3177 - val_acc: 0.8911 Epoch 286/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3182 - acc: 0.8893 Epoch 286: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3181 - acc: 0.8893 - val_loss: 0.3183 - val_acc: 0.8898 Epoch 287/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3178 - acc: 0.8888 Epoch 287: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3177 - acc: 0.8888 - val_loss: 0.3184 - val_acc: 0.8904 Epoch 288/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3174 - acc: 0.8892 Epoch 288: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3174 - acc: 0.8892 - val_loss: 0.3180 - val_acc: 0.8912 Epoch 289/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3173 - acc: 0.8895 Epoch 289: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3172 - acc: 0.8895 - val_loss: 0.3180 - val_acc: 0.8902 Epoch 290/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3167 - acc: 0.8895 Epoch 290: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3167 - acc: 0.8895 - val_loss: 0.3170 - val_acc: 0.8907 Epoch 291/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3162 - acc: 0.8900 Epoch 291: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3163 - acc: 0.8899 - val_loss: 0.3152 - val_acc: 0.8913 Epoch 292/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3145 - acc: 0.8904 Epoch 292: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3145 - acc: 0.8904 - val_loss: 0.3161 - val_acc: 0.8914 Epoch 293/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3145 - acc: 0.8904 Epoch 293: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3145 - acc: 0.8904 - val_loss: 0.3166 - val_acc: 0.8910 Epoch 294/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3143 - acc: 0.8903 Epoch 294: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3144 - acc: 0.8903 - val_loss: 0.3165 - val_acc: 0.8904 Epoch 295/1000 696/696 [==============================] - ETA: 0s - loss: 0.3142 - acc: 0.8900 Epoch 295: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3142 - acc: 0.8900 - val_loss: 0.3156 - val_acc: 0.8914 Epoch 296/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3143 - acc: 0.8903 Epoch 296: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3143 - acc: 0.8902 - val_loss: 0.3151 - val_acc: 0.8930 Epoch 297/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3139 - acc: 0.8904 Epoch 297: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3140 - acc: 0.8904 - val_loss: 0.3157 - val_acc: 0.8917 Epoch 298/1000 696/696 [==============================] - ETA: 0s - loss: 0.3127 - acc: 0.8907 Epoch 298: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.3127 - acc: 0.8907 - val_loss: 0.3155 - val_acc: 0.8916 Epoch 299/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3133 - acc: 0.8908 Epoch 299: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3133 - acc: 0.8908 - val_loss: 0.3139 - val_acc: 0.8916 Epoch 300/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3119 - acc: 0.8915 Epoch 300: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3119 - acc: 0.8915 - val_loss: 0.3154 - val_acc: 0.8932 Epoch 301/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3111 - acc: 0.8914 Epoch 301: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3111 - acc: 0.8915 - val_loss: 0.3140 - val_acc: 0.8940 Epoch 302/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3122 - acc: 0.8906 Epoch 302: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3121 - acc: 0.8906 - val_loss: 0.3151 - val_acc: 0.8934 Epoch 303/1000 696/696 [==============================] - ETA: 0s - loss: 0.3115 - acc: 0.8913 Epoch 303: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3115 - acc: 0.8913 - val_loss: 0.3141 - val_acc: 0.8924 Epoch 304/1000 696/696 [==============================] - ETA: 0s - loss: 0.3112 - acc: 0.8915 Epoch 304: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3112 - acc: 0.8915 - val_loss: 0.3128 - val_acc: 0.8924 Epoch 305/1000 696/696 [==============================] - ETA: 0s - loss: 0.3106 - acc: 0.8916 Epoch 305: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3106 - acc: 0.8916 - val_loss: 0.3151 - val_acc: 0.8929 Epoch 306/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3104 - acc: 0.8922 Epoch 306: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3105 - acc: 0.8922 - val_loss: 0.3135 - val_acc: 0.8923 Epoch 307/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3101 - acc: 0.8918 Epoch 307: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3102 - acc: 0.8918 - val_loss: 0.3128 - val_acc: 0.8932 Epoch 308/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3093 - acc: 0.8920 Epoch 308: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3093 - acc: 0.8920 - val_loss: 0.3132 - val_acc: 0.8931 Epoch 309/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3086 - acc: 0.8924 Epoch 309: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3086 - acc: 0.8924 - val_loss: 0.3141 - val_acc: 0.8916 Epoch 310/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3090 - acc: 0.8923 Epoch 310: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3090 - acc: 0.8923 - val_loss: 0.3114 - val_acc: 0.8937 Epoch 311/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3076 - acc: 0.8927 Epoch 311: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3077 - acc: 0.8926 - val_loss: 0.3111 - val_acc: 0.8938 Epoch 312/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3078 - acc: 0.8926 Epoch 312: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3078 - acc: 0.8926 - val_loss: 0.3126 - val_acc: 0.8936 Epoch 313/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3071 - acc: 0.8931 Epoch 313: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3072 - acc: 0.8930 - val_loss: 0.3131 - val_acc: 0.8929 Epoch 314/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3077 - acc: 0.8932 Epoch 314: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3077 - acc: 0.8932 - val_loss: 0.3124 - val_acc: 0.8917 Epoch 315/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3066 - acc: 0.8931 Epoch 315: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3066 - acc: 0.8931 - val_loss: 0.3109 - val_acc: 0.8934 Epoch 316/1000 696/696 [==============================] - ETA: 0s - loss: 0.3067 - acc: 0.8933 Epoch 316: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3067 - acc: 0.8933 - val_loss: 0.3124 - val_acc: 0.8934 Epoch 317/1000 696/696 [==============================] - ETA: 0s - loss: 0.3074 - acc: 0.8933 Epoch 317: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3074 - acc: 0.8933 - val_loss: 0.3101 - val_acc: 0.8940 Epoch 318/1000 696/696 [==============================] - ETA: 0s - loss: 0.3061 - acc: 0.8933 Epoch 318: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3061 - acc: 0.8933 - val_loss: 0.3108 - val_acc: 0.8929 Epoch 319/1000 696/696 [==============================] - ETA: 0s - loss: 0.3060 - acc: 0.8939 Epoch 319: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3060 - acc: 0.8939 - val_loss: 0.3104 - val_acc: 0.8929 Epoch 320/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3060 - acc: 0.8937 Epoch 320: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3060 - acc: 0.8937 - val_loss: 0.3096 - val_acc: 0.8935 Epoch 321/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3040 - acc: 0.8942 Epoch 321: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3039 - acc: 0.8942 - val_loss: 0.3091 - val_acc: 0.8955 Epoch 322/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3041 - acc: 0.8937 Epoch 322: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3041 - acc: 0.8937 - val_loss: 0.3099 - val_acc: 0.8950 Epoch 323/1000 696/696 [==============================] - ETA: 0s - loss: 0.3041 - acc: 0.8937 Epoch 323: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3041 - acc: 0.8937 - val_loss: 0.3084 - val_acc: 0.8960 Epoch 324/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3034 - acc: 0.8947 Epoch 324: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3035 - acc: 0.8947 - val_loss: 0.3094 - val_acc: 0.8949 Epoch 325/1000 696/696 [==============================] - ETA: 0s - loss: 0.3022 - acc: 0.8948 Epoch 325: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3022 - acc: 0.8948 - val_loss: 0.3089 - val_acc: 0.8948 Epoch 326/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3032 - acc: 0.8945 Epoch 326: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3032 - acc: 0.8945 - val_loss: 0.3082 - val_acc: 0.8937 Epoch 327/1000 696/696 [==============================] - ETA: 0s - loss: 0.3026 - acc: 0.8945 Epoch 327: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3026 - acc: 0.8945 - val_loss: 0.3086 - val_acc: 0.8940 Epoch 328/1000 696/696 [==============================] - ETA: 0s - loss: 0.3021 - acc: 0.8950 Epoch 328: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3021 - acc: 0.8950 - val_loss: 0.3094 - val_acc: 0.8940 Epoch 329/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3033 - acc: 0.8945 Epoch 329: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3032 - acc: 0.8946 - val_loss: 0.3102 - val_acc: 0.8933 Epoch 330/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3018 - acc: 0.8949 Epoch 330: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3018 - acc: 0.8949 - val_loss: 0.3082 - val_acc: 0.8953 Epoch 331/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3018 - acc: 0.8950 Epoch 331: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3019 - acc: 0.8950 - val_loss: 0.3065 - val_acc: 0.8946 Epoch 332/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3014 - acc: 0.8951 Epoch 332: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3014 - acc: 0.8951 - val_loss: 0.3081 - val_acc: 0.8945 Epoch 333/1000 696/696 [==============================] - ETA: 0s - loss: 0.3004 - acc: 0.8956 Epoch 333: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3004 - acc: 0.8956 - val_loss: 0.3071 - val_acc: 0.8943 Epoch 334/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3001 - acc: 0.8958 Epoch 334: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3001 - acc: 0.8958 - val_loss: 0.3071 - val_acc: 0.8948 Epoch 335/1000 696/696 [==============================] - ETA: 0s - loss: 0.2997 - acc: 0.8957 Epoch 335: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2997 - acc: 0.8957 - val_loss: 0.3066 - val_acc: 0.8961 Epoch 336/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3002 - acc: 0.8955 Epoch 336: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3001 - acc: 0.8956 - val_loss: 0.3060 - val_acc: 0.8950 Epoch 337/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2994 - acc: 0.8963 Epoch 337: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2995 - acc: 0.8962 - val_loss: 0.3074 - val_acc: 0.8954 Epoch 338/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2992 - acc: 0.8962 Epoch 338: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2993 - acc: 0.8962 - val_loss: 0.3062 - val_acc: 0.8961 Epoch 339/1000 696/696 [==============================] - ETA: 0s - loss: 0.2991 - acc: 0.8962 Epoch 339: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2991 - acc: 0.8962 - val_loss: 0.3065 - val_acc: 0.8954 Epoch 340/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2972 - acc: 0.8966 Epoch 340: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2972 - acc: 0.8966 - val_loss: 0.3064 - val_acc: 0.8940 Epoch 341/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2977 - acc: 0.8965 Epoch 341: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2976 - acc: 0.8965 - val_loss: 0.3057 - val_acc: 0.8956 Epoch 342/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2973 - acc: 0.8964 Epoch 342: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2974 - acc: 0.8963 - val_loss: 0.3053 - val_acc: 0.8961 Epoch 343/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2976 - acc: 0.8963 Epoch 343: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2977 - acc: 0.8963 - val_loss: 0.3055 - val_acc: 0.8951 Epoch 344/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2967 - acc: 0.8969 Epoch 344: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2967 - acc: 0.8969 - val_loss: 0.3048 - val_acc: 0.8956 Epoch 345/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2964 - acc: 0.8968 Epoch 345: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2963 - acc: 0.8968 - val_loss: 0.3051 - val_acc: 0.8953 Epoch 346/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2959 - acc: 0.8969 Epoch 346: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2959 - acc: 0.8969 - val_loss: 0.3056 - val_acc: 0.8950 Epoch 347/1000 696/696 [==============================] - ETA: 0s - loss: 0.2956 - acc: 0.8971 Epoch 347: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2956 - acc: 0.8971 - val_loss: 0.3067 - val_acc: 0.8958 Epoch 348/1000 696/696 [==============================] - ETA: 0s - loss: 0.2948 - acc: 0.8978 Epoch 348: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2948 - acc: 0.8978 - val_loss: 0.3037 - val_acc: 0.8961 Epoch 349/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2955 - acc: 0.8973 Epoch 349: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2955 - acc: 0.8972 - val_loss: 0.3032 - val_acc: 0.8974 Epoch 350/1000 696/696 [==============================] - ETA: 0s - loss: 0.2947 - acc: 0.8973 Epoch 350: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2947 - acc: 0.8973 - val_loss: 0.3045 - val_acc: 0.8970 Epoch 351/1000 696/696 [==============================] - ETA: 0s - loss: 0.2938 - acc: 0.8977 Epoch 351: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2938 - acc: 0.8977 - val_loss: 0.3046 - val_acc: 0.8957 Epoch 352/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2933 - acc: 0.8979 Epoch 352: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2933 - acc: 0.8978 - val_loss: 0.3040 - val_acc: 0.8956 Epoch 353/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2931 - acc: 0.8981 Epoch 353: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2930 - acc: 0.8981 - val_loss: 0.3034 - val_acc: 0.8965 Epoch 354/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2931 - acc: 0.8985 Epoch 354: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2931 - acc: 0.8985 - val_loss: 0.3028 - val_acc: 0.8976 Epoch 355/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2939 - acc: 0.8977 Epoch 355: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2939 - acc: 0.8977 - val_loss: 0.3030 - val_acc: 0.8962 Epoch 356/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2925 - acc: 0.8982 Epoch 356: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.2926 - acc: 0.8982 - val_loss: 0.3038 - val_acc: 0.8961 Epoch 357/1000 696/696 [==============================] - ETA: 0s - loss: 0.2928 - acc: 0.8980 Epoch 357: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2928 - acc: 0.8980 - val_loss: 0.3030 - val_acc: 0.8973 Epoch 358/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2923 - acc: 0.8981 Epoch 358: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2923 - acc: 0.8981 - val_loss: 0.3037 - val_acc: 0.8953 Epoch 359/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2911 - acc: 0.8989 Epoch 359: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2913 - acc: 0.8988 - val_loss: 0.3038 - val_acc: 0.8962 Epoch 360/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2913 - acc: 0.8988 Epoch 360: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2912 - acc: 0.8988 - val_loss: 0.3028 - val_acc: 0.8984 Epoch 361/1000 696/696 [==============================] - ETA: 0s - loss: 0.2914 - acc: 0.8983 Epoch 361: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2914 - acc: 0.8983 - val_loss: 0.3024 - val_acc: 0.8976 Epoch 362/1000 696/696 [==============================] - ETA: 0s - loss: 0.2903 - acc: 0.8991 Epoch 362: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2903 - acc: 0.8991 - val_loss: 0.3009 - val_acc: 0.8966 Epoch 363/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2895 - acc: 0.8993 Epoch 363: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2895 - acc: 0.8992 - val_loss: 0.3014 - val_acc: 0.8967 Epoch 364/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2900 - acc: 0.8986 Epoch 364: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2901 - acc: 0.8986 - val_loss: 0.3018 - val_acc: 0.8958 Epoch 365/1000 696/696 [==============================] - ETA: 0s - loss: 0.2898 - acc: 0.8992 Epoch 365: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2898 - acc: 0.8992 - val_loss: 0.3027 - val_acc: 0.8972 Epoch 366/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2900 - acc: 0.8998 Epoch 366: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2900 - acc: 0.8998 - val_loss: 0.3014 - val_acc: 0.8970 Epoch 367/1000 696/696 [==============================] - ETA: 0s - loss: 0.2891 - acc: 0.8994 Epoch 367: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2891 - acc: 0.8994 - val_loss: 0.3017 - val_acc: 0.8967 Epoch 368/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2888 - acc: 0.8995 Epoch 368: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2888 - acc: 0.8995 - val_loss: 0.3015 - val_acc: 0.8981 Epoch 369/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2879 - acc: 0.8994 Epoch 369: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2879 - acc: 0.8994 - val_loss: 0.3017 - val_acc: 0.8987 Epoch 370/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2879 - acc: 0.8999 Epoch 370: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2879 - acc: 0.8999 - val_loss: 0.3004 - val_acc: 0.8970 Epoch 371/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2874 - acc: 0.9002 Epoch 371: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2874 - acc: 0.9002 - val_loss: 0.3018 - val_acc: 0.8959 Epoch 372/1000 696/696 [==============================] - ETA: 0s - loss: 0.2873 - acc: 0.9002 Epoch 372: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2873 - acc: 0.9002 - val_loss: 0.3004 - val_acc: 0.8978 Epoch 373/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2869 - acc: 0.9005 Epoch 373: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2869 - acc: 0.9005 - val_loss: 0.3003 - val_acc: 0.8970 Epoch 374/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2871 - acc: 0.9000 Epoch 374: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2871 - acc: 0.9000 - val_loss: 0.2991 - val_acc: 0.8990 Epoch 375/1000 696/696 [==============================] - ETA: 0s - loss: 0.2879 - acc: 0.9000 Epoch 375: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2879 - acc: 0.9000 - val_loss: 0.3003 - val_acc: 0.8976 Epoch 376/1000 696/696 [==============================] - ETA: 0s - loss: 0.2868 - acc: 0.9005 Epoch 376: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2868 - acc: 0.9005 - val_loss: 0.2990 - val_acc: 0.8970 Epoch 377/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2858 - acc: 0.9009 Epoch 377: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2857 - acc: 0.9009 - val_loss: 0.2972 - val_acc: 0.8998 Epoch 378/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2861 - acc: 0.9004 Epoch 378: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2861 - acc: 0.9004 - val_loss: 0.2991 - val_acc: 0.8977 Epoch 379/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2855 - acc: 0.9009 Epoch 379: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2855 - acc: 0.9009 - val_loss: 0.2991 - val_acc: 0.8984 Epoch 380/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2848 - acc: 0.9010 Epoch 380: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2847 - acc: 0.9010 - val_loss: 0.3005 - val_acc: 0.8970 Epoch 381/1000 696/696 [==============================] - ETA: 0s - loss: 0.2849 - acc: 0.9009 Epoch 381: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2849 - acc: 0.9009 - val_loss: 0.2997 - val_acc: 0.8982 Epoch 382/1000 696/696 [==============================] - ETA: 0s - loss: 0.2845 - acc: 0.9008 Epoch 382: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2845 - acc: 0.9008 - val_loss: 0.2994 - val_acc: 0.8988 Epoch 383/1000 696/696 [==============================] - ETA: 0s - loss: 0.2840 - acc: 0.9012 Epoch 383: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2840 - acc: 0.9012 - val_loss: 0.2990 - val_acc: 0.8987 Epoch 384/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2846 - acc: 0.9011 Epoch 384: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2846 - acc: 0.9011 - val_loss: 0.2992 - val_acc: 0.8975 Epoch 385/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2840 - acc: 0.9010 Epoch 385: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2841 - acc: 0.9009 - val_loss: 0.2986 - val_acc: 0.8987 Epoch 386/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2823 - acc: 0.9021 Epoch 386: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2824 - acc: 0.9021 - val_loss: 0.2985 - val_acc: 0.8999 Epoch 387/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2829 - acc: 0.9019 Epoch 387: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2829 - acc: 0.9018 - val_loss: 0.2977 - val_acc: 0.8989 Epoch 388/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2828 - acc: 0.9017 Epoch 388: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2829 - acc: 0.9017 - val_loss: 0.2970 - val_acc: 0.8995 Epoch 389/1000 696/696 [==============================] - ETA: 0s - loss: 0.2824 - acc: 0.9020 Epoch 389: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2824 - acc: 0.9020 - val_loss: 0.2979 - val_acc: 0.8980 Epoch 390/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2823 - acc: 0.9017 Epoch 390: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2823 - acc: 0.9017 - val_loss: 0.2983 - val_acc: 0.8982 Epoch 391/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2816 - acc: 0.9020 Epoch 391: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2817 - acc: 0.9020 - val_loss: 0.2975 - val_acc: 0.8983 Epoch 392/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2816 - acc: 0.9021 Epoch 392: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2816 - acc: 0.9020 - val_loss: 0.2959 - val_acc: 0.8998 Epoch 393/1000 696/696 [==============================] - ETA: 0s - loss: 0.2818 - acc: 0.9023 Epoch 393: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2818 - acc: 0.9023 - val_loss: 0.2975 - val_acc: 0.8984 Epoch 394/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2804 - acc: 0.9021 Epoch 394: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2804 - acc: 0.9021 - val_loss: 0.2983 - val_acc: 0.8979 Epoch 395/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2805 - acc: 0.9027 Epoch 395: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2804 - acc: 0.9027 - val_loss: 0.2975 - val_acc: 0.8977 Epoch 396/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2806 - acc: 0.9023 Epoch 396: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2806 - acc: 0.9023 - val_loss: 0.2967 - val_acc: 0.8979 Epoch 397/1000 696/696 [==============================] - ETA: 0s - loss: 0.2801 - acc: 0.9026 Epoch 397: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2801 - acc: 0.9026 - val_loss: 0.2967 - val_acc: 0.8979 Epoch 398/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2792 - acc: 0.9030 Epoch 398: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2791 - acc: 0.9030 - val_loss: 0.2963 - val_acc: 0.8992 Epoch 399/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2792 - acc: 0.9030 Epoch 399: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2792 - acc: 0.9030 - val_loss: 0.2961 - val_acc: 0.8989 Epoch 400/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2793 - acc: 0.9029 Epoch 400: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2793 - acc: 0.9029 - val_loss: 0.2978 - val_acc: 0.8988 Epoch 401/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2791 - acc: 0.9028 Epoch 401: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2790 - acc: 0.9028 - val_loss: 0.2989 - val_acc: 0.8975 Epoch 402/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2787 - acc: 0.9033 Epoch 402: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2787 - acc: 0.9033 - val_loss: 0.2958 - val_acc: 0.8988 Epoch 403/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2772 - acc: 0.9038 Epoch 403: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2771 - acc: 0.9038 - val_loss: 0.2963 - val_acc: 0.8993 Epoch 404/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2784 - acc: 0.9032 Epoch 404: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2784 - acc: 0.9031 - val_loss: 0.2955 - val_acc: 0.8984 Epoch 405/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2783 - acc: 0.9033 Epoch 405: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2783 - acc: 0.9033 - val_loss: 0.2962 - val_acc: 0.9009 Epoch 406/1000 696/696 [==============================] - ETA: 0s - loss: 0.2774 - acc: 0.9034 Epoch 406: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2774 - acc: 0.9034 - val_loss: 0.2941 - val_acc: 0.9004 Epoch 407/1000 696/696 [==============================] - ETA: 0s - loss: 0.2768 - acc: 0.9040 Epoch 407: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2768 - acc: 0.9040 - val_loss: 0.2948 - val_acc: 0.9014 Epoch 408/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2770 - acc: 0.9039 Epoch 408: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2770 - acc: 0.9039 - val_loss: 0.2950 - val_acc: 0.9003 Epoch 409/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2773 - acc: 0.9035 Epoch 409: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2772 - acc: 0.9035 - val_loss: 0.2955 - val_acc: 0.8990 Epoch 410/1000 696/696 [==============================] - ETA: 0s - loss: 0.2767 - acc: 0.9037 Epoch 410: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2767 - acc: 0.9037 - val_loss: 0.2954 - val_acc: 0.8993 Epoch 411/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2758 - acc: 0.9041 Epoch 411: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2758 - acc: 0.9041 - val_loss: 0.2968 - val_acc: 0.8987 Epoch 412/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2756 - acc: 0.9043 Epoch 412: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2756 - acc: 0.9044 - val_loss: 0.2960 - val_acc: 0.8998 Epoch 413/1000 696/696 [==============================] - ETA: 0s - loss: 0.2763 - acc: 0.9041 Epoch 413: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2763 - acc: 0.9041 - val_loss: 0.2935 - val_acc: 0.9009 Epoch 414/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2756 - acc: 0.9043 Epoch 414: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2757 - acc: 0.9043 - val_loss: 0.2930 - val_acc: 0.9018 Epoch 415/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2752 - acc: 0.9042 Epoch 415: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2752 - acc: 0.9042 - val_loss: 0.2941 - val_acc: 0.8996 Epoch 416/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2750 - acc: 0.9044 Epoch 416: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2750 - acc: 0.9044 - val_loss: 0.2934 - val_acc: 0.8999 Epoch 417/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2742 - acc: 0.9048 Epoch 417: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2743 - acc: 0.9048 - val_loss: 0.2939 - val_acc: 0.9006 Epoch 418/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2747 - acc: 0.9047 Epoch 418: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2747 - acc: 0.9047 - val_loss: 0.2934 - val_acc: 0.9020 Epoch 419/1000 696/696 [==============================] - ETA: 0s - loss: 0.2735 - acc: 0.9046 Epoch 419: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2735 - acc: 0.9046 - val_loss: 0.2947 - val_acc: 0.9010 Epoch 420/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2736 - acc: 0.9052 Epoch 420: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2736 - acc: 0.9052 - val_loss: 0.2934 - val_acc: 0.9004 Epoch 421/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2735 - acc: 0.9051 Epoch 421: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2735 - acc: 0.9051 - val_loss: 0.2935 - val_acc: 0.9017 Epoch 422/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2724 - acc: 0.9053 Epoch 422: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2723 - acc: 0.9053 - val_loss: 0.2934 - val_acc: 0.9008 Epoch 423/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2725 - acc: 0.9049 Epoch 423: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2725 - acc: 0.9049 - val_loss: 0.2936 - val_acc: 0.9006 Epoch 424/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2721 - acc: 0.9050 Epoch 424: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2721 - acc: 0.9050 - val_loss: 0.2934 - val_acc: 0.9014 Epoch 425/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2720 - acc: 0.9055 Epoch 425: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2720 - acc: 0.9056 - val_loss: 0.2926 - val_acc: 0.9007 Epoch 426/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2717 - acc: 0.9058 Epoch 426: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2717 - acc: 0.9058 - val_loss: 0.2925 - val_acc: 0.9022 Epoch 427/1000 696/696 [==============================] - ETA: 0s - loss: 0.2712 - acc: 0.9058 Epoch 427: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2712 - acc: 0.9058 - val_loss: 0.2922 - val_acc: 0.9021 Epoch 428/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2718 - acc: 0.9054 Epoch 428: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2718 - acc: 0.9054 - val_loss: 0.2936 - val_acc: 0.9011 Epoch 429/1000 696/696 [==============================] - ETA: 0s - loss: 0.2702 - acc: 0.9058 Epoch 429: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2702 - acc: 0.9058 - val_loss: 0.2922 - val_acc: 0.9020 Epoch 430/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2705 - acc: 0.9060 Epoch 430: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2705 - acc: 0.9060 - val_loss: 0.2915 - val_acc: 0.9003 Epoch 431/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2704 - acc: 0.9060 Epoch 431: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2704 - acc: 0.9060 - val_loss: 0.2919 - val_acc: 0.9006 Epoch 432/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2697 - acc: 0.9064 Epoch 432: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2696 - acc: 0.9065 - val_loss: 0.2940 - val_acc: 0.8995 Epoch 433/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2697 - acc: 0.9064 Epoch 433: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2697 - acc: 0.9064 - val_loss: 0.2916 - val_acc: 0.9014 Epoch 434/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2695 - acc: 0.9061 Epoch 434: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2694 - acc: 0.9062 - val_loss: 0.2922 - val_acc: 0.9009 Epoch 435/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2684 - acc: 0.9064 Epoch 435: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2684 - acc: 0.9064 - val_loss: 0.2917 - val_acc: 0.9020 Epoch 436/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2691 - acc: 0.9063 Epoch 436: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2690 - acc: 0.9063 - val_loss: 0.2932 - val_acc: 0.9012 Epoch 437/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2692 - acc: 0.9061 Epoch 437: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2691 - acc: 0.9061 - val_loss: 0.2923 - val_acc: 0.9016 Epoch 438/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2683 - acc: 0.9064 Epoch 438: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2683 - acc: 0.9064 - val_loss: 0.2908 - val_acc: 0.9005 Epoch 439/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2687 - acc: 0.9066 Epoch 439: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2687 - acc: 0.9067 - val_loss: 0.2930 - val_acc: 0.9003 Epoch 440/1000 696/696 [==============================] - ETA: 0s - loss: 0.2677 - acc: 0.9071 Epoch 440: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2677 - acc: 0.9071 - val_loss: 0.2922 - val_acc: 0.9024 Epoch 441/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2684 - acc: 0.9069 Epoch 441: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2684 - acc: 0.9069 - val_loss: 0.2907 - val_acc: 0.9018 Epoch 442/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2675 - acc: 0.9070 Epoch 442: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2675 - acc: 0.9069 - val_loss: 0.2912 - val_acc: 0.9004 Epoch 443/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2674 - acc: 0.9071 Epoch 443: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2674 - acc: 0.9071 - val_loss: 0.2907 - val_acc: 0.9004 Epoch 444/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2672 - acc: 0.9069 Epoch 444: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2673 - acc: 0.9068 - val_loss: 0.2902 - val_acc: 0.9019 Epoch 445/1000 696/696 [==============================] - ETA: 0s - loss: 0.2661 - acc: 0.9077 Epoch 445: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2661 - acc: 0.9077 - val_loss: 0.2901 - val_acc: 0.9041 Epoch 446/1000 696/696 [==============================] - ETA: 0s - loss: 0.2650 - acc: 0.9080 Epoch 446: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2650 - acc: 0.9080 - val_loss: 0.2912 - val_acc: 0.9038 Epoch 447/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2660 - acc: 0.9078 Epoch 447: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2660 - acc: 0.9077 - val_loss: 0.2908 - val_acc: 0.9013 Epoch 448/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2659 - acc: 0.9077 Epoch 448: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2658 - acc: 0.9077 - val_loss: 0.2902 - val_acc: 0.9017 Epoch 449/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2660 - acc: 0.9073 Epoch 449: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2661 - acc: 0.9073 - val_loss: 0.2900 - val_acc: 0.9011 Epoch 450/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2656 - acc: 0.9077 Epoch 450: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2657 - acc: 0.9077 - val_loss: 0.2906 - val_acc: 0.9035 Epoch 451/1000 696/696 [==============================] - ETA: 0s - loss: 0.2641 - acc: 0.9079 Epoch 451: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2641 - acc: 0.9079 - val_loss: 0.2898 - val_acc: 0.9024 Epoch 452/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2659 - acc: 0.9074 Epoch 452: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2659 - acc: 0.9074 - val_loss: 0.2904 - val_acc: 0.9027 Epoch 453/1000 696/696 [==============================] - ETA: 0s - loss: 0.2642 - acc: 0.9082 Epoch 453: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2642 - acc: 0.9082 - val_loss: 0.2893 - val_acc: 0.9019 Epoch 454/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2639 - acc: 0.9079 Epoch 454: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2638 - acc: 0.9080 - val_loss: 0.2889 - val_acc: 0.9027 Epoch 455/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2642 - acc: 0.9077 Epoch 455: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2642 - acc: 0.9077 - val_loss: 0.2885 - val_acc: 0.9036 Epoch 456/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2635 - acc: 0.9083 Epoch 456: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2636 - acc: 0.9083 - val_loss: 0.2882 - val_acc: 0.9031 Epoch 457/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2642 - acc: 0.9085 Epoch 457: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2642 - acc: 0.9085 - val_loss: 0.2886 - val_acc: 0.9024 Epoch 458/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2641 - acc: 0.9080 Epoch 458: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2640 - acc: 0.9080 - val_loss: 0.2892 - val_acc: 0.9050 Epoch 459/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2632 - acc: 0.9082 Epoch 459: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2633 - acc: 0.9082 - val_loss: 0.2892 - val_acc: 0.9024 Epoch 460/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2623 - acc: 0.9089 Epoch 460: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2623 - acc: 0.9089 - val_loss: 0.2890 - val_acc: 0.9023 Epoch 461/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2620 - acc: 0.9088 Epoch 461: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2621 - acc: 0.9087 - val_loss: 0.2894 - val_acc: 0.9027 Epoch 462/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2630 - acc: 0.9079 Epoch 462: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2631 - acc: 0.9078 - val_loss: 0.2913 - val_acc: 0.9028 Epoch 463/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2617 - acc: 0.9091 Epoch 463: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2617 - acc: 0.9091 - val_loss: 0.2888 - val_acc: 0.9030 Epoch 464/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2608 - acc: 0.9095 Epoch 464: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2607 - acc: 0.9095 - val_loss: 0.2892 - val_acc: 0.9038 Epoch 465/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2619 - acc: 0.9089 Epoch 465: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2618 - acc: 0.9089 - val_loss: 0.2880 - val_acc: 0.9038 Epoch 466/1000 696/696 [==============================] - ETA: 0s - loss: 0.2611 - acc: 0.9088 Epoch 466: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2611 - acc: 0.9088 - val_loss: 0.2873 - val_acc: 0.9037 Epoch 467/1000 696/696 [==============================] - ETA: 0s - loss: 0.2612 - acc: 0.9092 Epoch 467: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2612 - acc: 0.9092 - val_loss: 0.2870 - val_acc: 0.9050 Epoch 468/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2610 - acc: 0.9089 Epoch 468: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2611 - acc: 0.9089 - val_loss: 0.2889 - val_acc: 0.9025 Epoch 469/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2601 - acc: 0.9094 Epoch 469: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2601 - acc: 0.9094 - val_loss: 0.2881 - val_acc: 0.9030 Epoch 470/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2605 - acc: 0.9098 Epoch 470: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2605 - acc: 0.9098 - val_loss: 0.2887 - val_acc: 0.9042 Epoch 471/1000 696/696 [==============================] - ETA: 0s - loss: 0.2611 - acc: 0.9092 Epoch 471: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2611 - acc: 0.9092 - val_loss: 0.2877 - val_acc: 0.9026 Epoch 472/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2598 - acc: 0.9096 Epoch 472: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2598 - acc: 0.9096 - val_loss: 0.2871 - val_acc: 0.9052 Epoch 473/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2594 - acc: 0.9098 Epoch 473: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2594 - acc: 0.9098 - val_loss: 0.2882 - val_acc: 0.9046 Epoch 474/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2588 - acc: 0.9099 Epoch 474: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2589 - acc: 0.9099 - val_loss: 0.2872 - val_acc: 0.9046 Epoch 475/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2587 - acc: 0.9099 Epoch 475: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2586 - acc: 0.9099 - val_loss: 0.2880 - val_acc: 0.9026 Epoch 476/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2589 - acc: 0.9100 Epoch 476: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2589 - acc: 0.9100 - val_loss: 0.2860 - val_acc: 0.9054 Epoch 477/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2587 - acc: 0.9101 Epoch 477: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2586 - acc: 0.9101 - val_loss: 0.2878 - val_acc: 0.9025 Epoch 478/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2584 - acc: 0.9100 Epoch 478: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2584 - acc: 0.9100 - val_loss: 0.2876 - val_acc: 0.9034 Epoch 479/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2576 - acc: 0.9104 Epoch 479: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2577 - acc: 0.9103 - val_loss: 0.2881 - val_acc: 0.9032 Epoch 480/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2583 - acc: 0.9103 Epoch 480: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2583 - acc: 0.9103 - val_loss: 0.2870 - val_acc: 0.9037 Epoch 481/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2574 - acc: 0.9104 Epoch 481: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2574 - acc: 0.9104 - val_loss: 0.2891 - val_acc: 0.9032 Epoch 482/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2573 - acc: 0.9104 Epoch 482: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2574 - acc: 0.9104 - val_loss: 0.2871 - val_acc: 0.9033 Epoch 483/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2568 - acc: 0.9107 Epoch 483: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2568 - acc: 0.9107 - val_loss: 0.2863 - val_acc: 0.9036 Epoch 484/1000 696/696 [==============================] - ETA: 0s - loss: 0.2568 - acc: 0.9110 Epoch 484: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2568 - acc: 0.9110 - val_loss: 0.2866 - val_acc: 0.9045 Epoch 485/1000 696/696 [==============================] - ETA: 0s - loss: 0.2571 - acc: 0.9104 Epoch 485: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2571 - acc: 0.9104 - val_loss: 0.2855 - val_acc: 0.9037 Epoch 486/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2560 - acc: 0.9107 Epoch 486: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2561 - acc: 0.9107 - val_loss: 0.2867 - val_acc: 0.9052 Epoch 487/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2560 - acc: 0.9107 Epoch 487: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2560 - acc: 0.9107 - val_loss: 0.2844 - val_acc: 0.9046 Epoch 488/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2557 - acc: 0.9111 Epoch 488: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2556 - acc: 0.9111 - val_loss: 0.2853 - val_acc: 0.9048 Epoch 489/1000 696/696 [==============================] - ETA: 0s - loss: 0.2557 - acc: 0.9111 Epoch 489: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2557 - acc: 0.9111 - val_loss: 0.2858 - val_acc: 0.9046 Epoch 490/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2555 - acc: 0.9112 Epoch 490: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2555 - acc: 0.9111 - val_loss: 0.2856 - val_acc: 0.9039 Epoch 491/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2556 - acc: 0.9108 Epoch 491: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2556 - acc: 0.9108 - val_loss: 0.2869 - val_acc: 0.9054 Epoch 492/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2549 - acc: 0.9108 Epoch 492: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2550 - acc: 0.9107 - val_loss: 0.2871 - val_acc: 0.9046 Epoch 493/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2552 - acc: 0.9114 Epoch 493: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2551 - acc: 0.9114 - val_loss: 0.2843 - val_acc: 0.9057 Epoch 494/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2534 - acc: 0.9120 Epoch 494: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2534 - acc: 0.9120 - val_loss: 0.2858 - val_acc: 0.9041 Epoch 495/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2540 - acc: 0.9114 Epoch 495: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2539 - acc: 0.9114 - val_loss: 0.2860 - val_acc: 0.9037 Epoch 496/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2532 - acc: 0.9119 Epoch 496: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2531 - acc: 0.9120 - val_loss: 0.2843 - val_acc: 0.9054 Epoch 497/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2536 - acc: 0.9116 Epoch 497: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2535 - acc: 0.9116 - val_loss: 0.2853 - val_acc: 0.9051 Epoch 498/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2536 - acc: 0.9118 Epoch 498: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2536 - acc: 0.9118 - val_loss: 0.2839 - val_acc: 0.9057 Epoch 499/1000 696/696 [==============================] - ETA: 0s - loss: 0.2532 - acc: 0.9118 Epoch 499: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2532 - acc: 0.9118 - val_loss: 0.2848 - val_acc: 0.9052 Epoch 500/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2531 - acc: 0.9115 Epoch 500: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2531 - acc: 0.9115 - val_loss: 0.2849 - val_acc: 0.9044 Epoch 501/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2524 - acc: 0.9121 Epoch 501: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2524 - acc: 0.9121 - val_loss: 0.2856 - val_acc: 0.9046 Epoch 502/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2519 - acc: 0.9119 Epoch 502: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2519 - acc: 0.9119 - val_loss: 0.2854 - val_acc: 0.9053 Epoch 503/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2521 - acc: 0.9123 Epoch 503: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2521 - acc: 0.9123 - val_loss: 0.2862 - val_acc: 0.9047 Epoch 504/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2521 - acc: 0.9121 Epoch 504: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2522 - acc: 0.9121 - val_loss: 0.2850 - val_acc: 0.9054 Epoch 505/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2518 - acc: 0.9125 Epoch 505: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2519 - acc: 0.9124 - val_loss: 0.2845 - val_acc: 0.9050 Epoch 506/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2518 - acc: 0.9125 Epoch 506: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2518 - acc: 0.9125 - val_loss: 0.2845 - val_acc: 0.9052 Epoch 507/1000 696/696 [==============================] - ETA: 0s - loss: 0.2520 - acc: 0.9122 Epoch 507: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2520 - acc: 0.9122 - val_loss: 0.2837 - val_acc: 0.9051 Epoch 508/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2509 - acc: 0.9130 Epoch 508: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2509 - acc: 0.9130 - val_loss: 0.2840 - val_acc: 0.9058 Epoch 509/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2509 - acc: 0.9126 Epoch 509: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2509 - acc: 0.9126 - val_loss: 0.2824 - val_acc: 0.9068 Epoch 510/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2504 - acc: 0.9127 Epoch 510: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2506 - acc: 0.9127 - val_loss: 0.2862 - val_acc: 0.9052 Epoch 511/1000 696/696 [==============================] - ETA: 0s - loss: 0.2505 - acc: 0.9129 Epoch 511: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2505 - acc: 0.9129 - val_loss: 0.2851 - val_acc: 0.9062 Epoch 512/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2506 - acc: 0.9130 Epoch 512: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2505 - acc: 0.9130 - val_loss: 0.2860 - val_acc: 0.9055 Epoch 513/1000 696/696 [==============================] - ETA: 0s - loss: 0.2505 - acc: 0.9129 Epoch 513: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2505 - acc: 0.9129 - val_loss: 0.2849 - val_acc: 0.9041 Epoch 514/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2494 - acc: 0.9130 Epoch 514: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2494 - acc: 0.9130 - val_loss: 0.2836 - val_acc: 0.9052 Epoch 515/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2505 - acc: 0.9128 Epoch 515: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2505 - acc: 0.9127 - val_loss: 0.2858 - val_acc: 0.9062 Epoch 516/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2495 - acc: 0.9131 Epoch 516: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2495 - acc: 0.9131 - val_loss: 0.2842 - val_acc: 0.9063 Epoch 517/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2491 - acc: 0.9129 Epoch 517: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2491 - acc: 0.9129 - val_loss: 0.2828 - val_acc: 0.9061 Epoch 518/1000 696/696 [==============================] - ETA: 0s - loss: 0.2488 - acc: 0.9132 Epoch 518: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2488 - acc: 0.9132 - val_loss: 0.2841 - val_acc: 0.9045 Epoch 519/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2490 - acc: 0.9132 Epoch 519: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2490 - acc: 0.9132 - val_loss: 0.2833 - val_acc: 0.9061 Epoch 520/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2485 - acc: 0.9134 Epoch 520: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2486 - acc: 0.9134 - val_loss: 0.2833 - val_acc: 0.9062 Epoch 521/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2473 - acc: 0.9140 Epoch 521: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2474 - acc: 0.9139 - val_loss: 0.2843 - val_acc: 0.9046 Epoch 522/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2479 - acc: 0.9136 Epoch 522: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2480 - acc: 0.9136 - val_loss: 0.2837 - val_acc: 0.9047 Epoch 523/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2471 - acc: 0.9136 Epoch 523: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2471 - acc: 0.9136 - val_loss: 0.2810 - val_acc: 0.9059 Epoch 524/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2471 - acc: 0.9135 Epoch 524: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2471 - acc: 0.9135 - val_loss: 0.2850 - val_acc: 0.9056 Epoch 525/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2478 - acc: 0.9137 Epoch 525: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2478 - acc: 0.9137 - val_loss: 0.2818 - val_acc: 0.9056 Epoch 526/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2474 - acc: 0.9135 Epoch 526: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2473 - acc: 0.9136 - val_loss: 0.2834 - val_acc: 0.9050 Epoch 527/1000 696/696 [==============================] - ETA: 0s - loss: 0.2467 - acc: 0.9138 Epoch 527: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2467 - acc: 0.9138 - val_loss: 0.2826 - val_acc: 0.9062 Epoch 528/1000 696/696 [==============================] - ETA: 0s - loss: 0.2466 - acc: 0.9143 Epoch 528: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2466 - acc: 0.9143 - val_loss: 0.2829 - val_acc: 0.9040 Epoch 529/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2462 - acc: 0.9142 Epoch 529: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2462 - acc: 0.9142 - val_loss: 0.2851 - val_acc: 0.9046 Epoch 530/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2460 - acc: 0.9145 Epoch 530: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2460 - acc: 0.9145 - val_loss: 0.2822 - val_acc: 0.9068 Epoch 531/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2462 - acc: 0.9143 Epoch 531: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2461 - acc: 0.9143 - val_loss: 0.2816 - val_acc: 0.9061 Epoch 532/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2456 - acc: 0.9144 Epoch 532: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2456 - acc: 0.9144 - val_loss: 0.2818 - val_acc: 0.9056 Epoch 533/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2457 - acc: 0.9143 Epoch 533: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2457 - acc: 0.9144 - val_loss: 0.2821 - val_acc: 0.9071 Epoch 534/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2461 - acc: 0.9145 Epoch 534: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2461 - acc: 0.9145 - val_loss: 0.2811 - val_acc: 0.9076 Epoch 535/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2443 - acc: 0.9151 Epoch 535: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2444 - acc: 0.9151 - val_loss: 0.2821 - val_acc: 0.9068 Epoch 536/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2437 - acc: 0.9154 Epoch 536: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2438 - acc: 0.9154 - val_loss: 0.2817 - val_acc: 0.9071 Epoch 537/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2448 - acc: 0.9146 Epoch 537: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2448 - acc: 0.9147 - val_loss: 0.2836 - val_acc: 0.9068 Epoch 538/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2446 - acc: 0.9149 Epoch 538: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_DST/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2446 - acc: 0.9149 - val_loss: 0.2822 - val_acc: 0.9074 Epoch 538: early stopping Use balanced Generator [True] Data: 369493 ----------------------------------------------------------------------------------- Epoch 1/1000 693/696 [============================>.] - ETA: 0s - loss: 2.0794 - acc: 0.1420 Epoch 1: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 13s 17ms/step - loss: 2.0794 - acc: 0.1421 - val_loss: 2.0770 - val_acc: 0.1858 Epoch 2/1000 696/696 [==============================] - ETA: 0s - loss: 2.0755 - acc: 0.1734 Epoch 2: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 2.0755 - acc: 0.1734 - val_loss: 2.0718 - val_acc: 0.2193 Epoch 3/1000 696/696 [==============================] - ETA: 0s - loss: 2.0697 - acc: 0.2090 Epoch 3: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 2.0697 - acc: 0.2090 - val_loss: 2.0635 - val_acc: 0.2772 Epoch 4/1000 696/696 [==============================] - ETA: 0s - loss: 2.0596 - acc: 0.2379 Epoch 4: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 2.0596 - acc: 0.2379 - val_loss: 2.0476 - val_acc: 0.3085 Epoch 5/1000 694/696 [============================>.] - ETA: 0s - loss: 2.0372 - acc: 0.2632 Epoch 5: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 2.0372 - acc: 0.2632 - val_loss: 2.0091 - val_acc: 0.3455 Epoch 6/1000 695/696 [============================>.] - ETA: 0s - loss: 1.9771 - acc: 0.2946 Epoch 6: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.9770 - acc: 0.2946 - val_loss: 1.9000 - val_acc: 0.4137 Epoch 7/1000 695/696 [============================>.] - ETA: 0s - loss: 1.8226 - acc: 0.3425 Epoch 7: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.8225 - acc: 0.3425 - val_loss: 1.6592 - val_acc: 0.4609 Epoch 8/1000 695/696 [============================>.] - ETA: 0s - loss: 1.6128 - acc: 0.3987 Epoch 8: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.6127 - acc: 0.3988 - val_loss: 1.4250 - val_acc: 0.5397 Epoch 9/1000 693/696 [============================>.] - ETA: 0s - loss: 1.4453 - acc: 0.4693 Epoch 9: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.4451 - acc: 0.4694 - val_loss: 1.2469 - val_acc: 0.5849 Epoch 10/1000 696/696 [==============================] - ETA: 0s - loss: 1.2892 - acc: 0.5364 Epoch 10: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.2892 - acc: 0.5364 - val_loss: 1.0850 - val_acc: 0.6285 Epoch 11/1000 695/696 [============================>.] - ETA: 0s - loss: 1.1413 - acc: 0.5891 Epoch 11: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.1412 - acc: 0.5892 - val_loss: 0.9506 - val_acc: 0.6642 Epoch 12/1000 693/696 [============================>.] - ETA: 0s - loss: 1.0219 - acc: 0.6287 Epoch 12: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 1.0217 - acc: 0.6289 - val_loss: 0.8516 - val_acc: 0.6973 Epoch 13/1000 696/696 [==============================] - ETA: 0s - loss: 0.9365 - acc: 0.6577 Epoch 13: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.9365 - acc: 0.6577 - val_loss: 0.7835 - val_acc: 0.7225 Epoch 14/1000 696/696 [==============================] - ETA: 0s - loss: 0.8773 - acc: 0.6788 Epoch 14: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.8773 - acc: 0.6788 - val_loss: 0.7365 - val_acc: 0.7398 Epoch 15/1000 693/696 [============================>.] - ETA: 0s - loss: 0.8329 - acc: 0.6949 Epoch 15: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.8328 - acc: 0.6950 - val_loss: 0.7024 - val_acc: 0.7516 Epoch 16/1000 693/696 [============================>.] - ETA: 0s - loss: 0.7999 - acc: 0.7085 Epoch 16: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7998 - acc: 0.7086 - val_loss: 0.6761 - val_acc: 0.7620 Epoch 17/1000 693/696 [============================>.] - ETA: 0s - loss: 0.7718 - acc: 0.7181 Epoch 17: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7716 - acc: 0.7182 - val_loss: 0.6544 - val_acc: 0.7704 Epoch 18/1000 693/696 [============================>.] - ETA: 0s - loss: 0.7477 - acc: 0.7273 Epoch 18: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7475 - acc: 0.7273 - val_loss: 0.6359 - val_acc: 0.7745 Epoch 19/1000 695/696 [============================>.] - ETA: 0s - loss: 0.7287 - acc: 0.7349 Epoch 19: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7287 - acc: 0.7349 - val_loss: 0.6199 - val_acc: 0.7807 Epoch 20/1000 694/696 [============================>.] - ETA: 0s - loss: 0.7100 - acc: 0.7416 Epoch 20: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.7100 - acc: 0.7416 - val_loss: 0.6056 - val_acc: 0.7857 Epoch 21/1000 696/696 [==============================] - ETA: 0s - loss: 0.6951 - acc: 0.7477 Epoch 21: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6951 - acc: 0.7477 - val_loss: 0.5937 - val_acc: 0.7902 Epoch 22/1000 695/696 [============================>.] - ETA: 0s - loss: 0.6799 - acc: 0.7528 Epoch 22: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6799 - acc: 0.7529 - val_loss: 0.5835 - val_acc: 0.7932 Epoch 23/1000 695/696 [============================>.] - ETA: 0s - loss: 0.6679 - acc: 0.7571 Epoch 23: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6678 - acc: 0.7571 - val_loss: 0.5728 - val_acc: 0.7973 Epoch 24/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6554 - acc: 0.7618 Epoch 24: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6554 - acc: 0.7618 - val_loss: 0.5652 - val_acc: 0.8000 Epoch 25/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6453 - acc: 0.7664 Epoch 25: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6455 - acc: 0.7663 - val_loss: 0.5569 - val_acc: 0.8038 Epoch 26/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6351 - acc: 0.7701 Epoch 26: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6351 - acc: 0.7701 - val_loss: 0.5484 - val_acc: 0.8040 Epoch 27/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6262 - acc: 0.7732 Epoch 27: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6263 - acc: 0.7732 - val_loss: 0.5412 - val_acc: 0.8082 Epoch 28/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6193 - acc: 0.7756 Epoch 28: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6192 - acc: 0.7757 - val_loss: 0.5357 - val_acc: 0.8109 Epoch 29/1000 694/696 [============================>.] - ETA: 0s - loss: 0.6104 - acc: 0.7791 Epoch 29: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6104 - acc: 0.7791 - val_loss: 0.5291 - val_acc: 0.8128 Epoch 30/1000 693/696 [============================>.] - ETA: 0s - loss: 0.6046 - acc: 0.7813 Epoch 30: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.6047 - acc: 0.7813 - val_loss: 0.5232 - val_acc: 0.8154 Epoch 31/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5961 - acc: 0.7846 Epoch 31: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5961 - acc: 0.7846 - val_loss: 0.5178 - val_acc: 0.8162 Epoch 32/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5900 - acc: 0.7864 Epoch 32: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5899 - acc: 0.7864 - val_loss: 0.5136 - val_acc: 0.8194 Epoch 33/1000 696/696 [==============================] - ETA: 0s - loss: 0.5840 - acc: 0.7896 Epoch 33: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5840 - acc: 0.7896 - val_loss: 0.5090 - val_acc: 0.8188 Epoch 34/1000 696/696 [==============================] - ETA: 0s - loss: 0.5778 - acc: 0.7918 Epoch 34: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5778 - acc: 0.7918 - val_loss: 0.5037 - val_acc: 0.8218 Epoch 35/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5740 - acc: 0.7926 Epoch 35: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5738 - acc: 0.7927 - val_loss: 0.5008 - val_acc: 0.8232 Epoch 36/1000 696/696 [==============================] - ETA: 0s - loss: 0.5679 - acc: 0.7958 Epoch 36: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5679 - acc: 0.7958 - val_loss: 0.4963 - val_acc: 0.8245 Epoch 37/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5638 - acc: 0.7967 Epoch 37: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.5639 - acc: 0.7966 - val_loss: 0.4933 - val_acc: 0.8277 Epoch 38/1000 696/696 [==============================] - ETA: 0s - loss: 0.5589 - acc: 0.7985 Epoch 38: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5589 - acc: 0.7985 - val_loss: 0.4894 - val_acc: 0.8281 Epoch 39/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5550 - acc: 0.8004 Epoch 39: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5551 - acc: 0.8003 - val_loss: 0.4870 - val_acc: 0.8290 Epoch 40/1000 696/696 [==============================] - ETA: 0s - loss: 0.5511 - acc: 0.8017 Epoch 40: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.5511 - acc: 0.8017 - val_loss: 0.4827 - val_acc: 0.8310 Epoch 41/1000 696/696 [==============================] - ETA: 0s - loss: 0.5461 - acc: 0.8038 Epoch 41: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5461 - acc: 0.8038 - val_loss: 0.4809 - val_acc: 0.8315 Epoch 42/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5426 - acc: 0.8051 Epoch 42: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5426 - acc: 0.8051 - val_loss: 0.4777 - val_acc: 0.8313 Epoch 43/1000 696/696 [==============================] - ETA: 0s - loss: 0.5392 - acc: 0.8056 Epoch 43: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5392 - acc: 0.8056 - val_loss: 0.4745 - val_acc: 0.8332 Epoch 44/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5361 - acc: 0.8075 Epoch 44: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5359 - acc: 0.8076 - val_loss: 0.4711 - val_acc: 0.8339 Epoch 45/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5318 - acc: 0.8094 Epoch 45: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5317 - acc: 0.8094 - val_loss: 0.4689 - val_acc: 0.8363 Epoch 46/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5288 - acc: 0.8101 Epoch 46: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5289 - acc: 0.8101 - val_loss: 0.4672 - val_acc: 0.8355 Epoch 47/1000 695/696 [============================>.] - ETA: 0s - loss: 0.5259 - acc: 0.8109 Epoch 47: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5259 - acc: 0.8108 - val_loss: 0.4647 - val_acc: 0.8373 Epoch 48/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5241 - acc: 0.8126 Epoch 48: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5239 - acc: 0.8126 - val_loss: 0.4627 - val_acc: 0.8378 Epoch 49/1000 694/696 [============================>.] - ETA: 0s - loss: 0.5197 - acc: 0.8140 Epoch 49: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5197 - acc: 0.8140 - val_loss: 0.4599 - val_acc: 0.8385 Epoch 50/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5164 - acc: 0.8146 Epoch 50: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5164 - acc: 0.8146 - val_loss: 0.4582 - val_acc: 0.8392 Epoch 51/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5152 - acc: 0.8157 Epoch 51: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5151 - acc: 0.8157 - val_loss: 0.4573 - val_acc: 0.8388 Epoch 52/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5108 - acc: 0.8176 Epoch 52: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5108 - acc: 0.8175 - val_loss: 0.4542 - val_acc: 0.8416 Epoch 53/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5087 - acc: 0.8174 Epoch 53: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5088 - acc: 0.8173 - val_loss: 0.4515 - val_acc: 0.8437 Epoch 54/1000 693/696 [============================>.] - ETA: 0s - loss: 0.5060 - acc: 0.8194 Epoch 54: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5059 - acc: 0.8194 - val_loss: 0.4502 - val_acc: 0.8436 Epoch 55/1000 696/696 [==============================] - ETA: 0s - loss: 0.5044 - acc: 0.8199 Epoch 55: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5044 - acc: 0.8199 - val_loss: 0.4478 - val_acc: 0.8443 Epoch 56/1000 695/696 [============================>.] - ETA: 0s - loss: 0.5017 - acc: 0.8209 Epoch 56: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.5018 - acc: 0.8210 - val_loss: 0.4464 - val_acc: 0.8445 Epoch 57/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4990 - acc: 0.8215 Epoch 57: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4990 - acc: 0.8215 - val_loss: 0.4448 - val_acc: 0.8445 Epoch 58/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4982 - acc: 0.8220 Epoch 58: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4982 - acc: 0.8220 - val_loss: 0.4428 - val_acc: 0.8446 Epoch 59/1000 696/696 [==============================] - ETA: 0s - loss: 0.4942 - acc: 0.8234 Epoch 59: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4942 - acc: 0.8234 - val_loss: 0.4419 - val_acc: 0.8455 Epoch 60/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4928 - acc: 0.8240 Epoch 60: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4928 - acc: 0.8241 - val_loss: 0.4397 - val_acc: 0.8473 Epoch 61/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4909 - acc: 0.8248 Epoch 61: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4909 - acc: 0.8248 - val_loss: 0.4387 - val_acc: 0.8467 Epoch 62/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4887 - acc: 0.8249 Epoch 62: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4886 - acc: 0.8250 - val_loss: 0.4366 - val_acc: 0.8465 Epoch 63/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4863 - acc: 0.8268 Epoch 63: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4864 - acc: 0.8268 - val_loss: 0.4353 - val_acc: 0.8472 Epoch 64/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4855 - acc: 0.8268 Epoch 64: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4856 - acc: 0.8267 - val_loss: 0.4332 - val_acc: 0.8495 Epoch 65/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4831 - acc: 0.8282 Epoch 65: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4831 - acc: 0.8282 - val_loss: 0.4322 - val_acc: 0.8487 Epoch 66/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4805 - acc: 0.8290 Epoch 66: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4804 - acc: 0.8289 - val_loss: 0.4309 - val_acc: 0.8501 Epoch 67/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4786 - acc: 0.8292 Epoch 67: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4786 - acc: 0.8293 - val_loss: 0.4298 - val_acc: 0.8496 Epoch 68/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4773 - acc: 0.8306 Epoch 68: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4774 - acc: 0.8306 - val_loss: 0.4289 - val_acc: 0.8496 Epoch 69/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4750 - acc: 0.8310 Epoch 69: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4750 - acc: 0.8310 - val_loss: 0.4273 - val_acc: 0.8502 Epoch 70/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4733 - acc: 0.8317 Epoch 70: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4733 - acc: 0.8317 - val_loss: 0.4260 - val_acc: 0.8518 Epoch 71/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4711 - acc: 0.8330 Epoch 71: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4711 - acc: 0.8330 - val_loss: 0.4247 - val_acc: 0.8513 Epoch 72/1000 696/696 [==============================] - ETA: 0s - loss: 0.4703 - acc: 0.8326 Epoch 72: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.4703 - acc: 0.8326 - val_loss: 0.4232 - val_acc: 0.8512 Epoch 73/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4686 - acc: 0.8331 Epoch 73: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4686 - acc: 0.8330 - val_loss: 0.4219 - val_acc: 0.8522 Epoch 74/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4665 - acc: 0.8344 Epoch 74: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.4665 - acc: 0.8344 - val_loss: 0.4221 - val_acc: 0.8528 Epoch 75/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4654 - acc: 0.8346 Epoch 75: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4654 - acc: 0.8346 - val_loss: 0.4208 - val_acc: 0.8535 Epoch 76/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4644 - acc: 0.8351 Epoch 76: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4644 - acc: 0.8351 - val_loss: 0.4180 - val_acc: 0.8543 Epoch 77/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4616 - acc: 0.8362 Epoch 77: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4616 - acc: 0.8363 - val_loss: 0.4174 - val_acc: 0.8546 Epoch 78/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4607 - acc: 0.8363 Epoch 78: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4608 - acc: 0.8363 - val_loss: 0.4161 - val_acc: 0.8560 Epoch 79/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4609 - acc: 0.8363 Epoch 79: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4609 - acc: 0.8364 - val_loss: 0.4157 - val_acc: 0.8565 Epoch 80/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4581 - acc: 0.8374 Epoch 80: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4581 - acc: 0.8374 - val_loss: 0.4153 - val_acc: 0.8566 Epoch 81/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4558 - acc: 0.8388 Epoch 81: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4557 - acc: 0.8388 - val_loss: 0.4130 - val_acc: 0.8571 Epoch 82/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4553 - acc: 0.8388 Epoch 82: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4553 - acc: 0.8388 - val_loss: 0.4112 - val_acc: 0.8586 Epoch 83/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4552 - acc: 0.8388 Epoch 83: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4551 - acc: 0.8388 - val_loss: 0.4112 - val_acc: 0.8576 Epoch 84/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4525 - acc: 0.8393 Epoch 84: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4526 - acc: 0.8393 - val_loss: 0.4103 - val_acc: 0.8582 Epoch 85/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4519 - acc: 0.8401 Epoch 85: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4519 - acc: 0.8402 - val_loss: 0.4098 - val_acc: 0.8581 Epoch 86/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4500 - acc: 0.8398 Epoch 86: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4501 - acc: 0.8399 - val_loss: 0.4081 - val_acc: 0.8600 Epoch 87/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4488 - acc: 0.8412 Epoch 87: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4488 - acc: 0.8412 - val_loss: 0.4072 - val_acc: 0.8587 Epoch 88/1000 696/696 [==============================] - ETA: 0s - loss: 0.4471 - acc: 0.8418 Epoch 88: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4471 - acc: 0.8418 - val_loss: 0.4065 - val_acc: 0.8590 Epoch 89/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4454 - acc: 0.8422 Epoch 89: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4455 - acc: 0.8422 - val_loss: 0.4052 - val_acc: 0.8598 Epoch 90/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4449 - acc: 0.8424 Epoch 90: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4448 - acc: 0.8425 - val_loss: 0.4046 - val_acc: 0.8604 Epoch 91/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4438 - acc: 0.8431 Epoch 91: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4437 - acc: 0.8431 - val_loss: 0.4033 - val_acc: 0.8603 Epoch 92/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4423 - acc: 0.8437 Epoch 92: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4423 - acc: 0.8436 - val_loss: 0.4028 - val_acc: 0.8615 Epoch 93/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4424 - acc: 0.8431 Epoch 93: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4422 - acc: 0.8432 - val_loss: 0.4009 - val_acc: 0.8625 Epoch 94/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4397 - acc: 0.8447 Epoch 94: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4397 - acc: 0.8448 - val_loss: 0.4017 - val_acc: 0.8621 Epoch 95/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4394 - acc: 0.8451 Epoch 95: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.4394 - acc: 0.8451 - val_loss: 0.4000 - val_acc: 0.8620 Epoch 96/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4370 - acc: 0.8455 Epoch 96: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4371 - acc: 0.8455 - val_loss: 0.3991 - val_acc: 0.8629 Epoch 97/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4365 - acc: 0.8460 Epoch 97: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4365 - acc: 0.8460 - val_loss: 0.3975 - val_acc: 0.8633 Epoch 98/1000 696/696 [==============================] - ETA: 0s - loss: 0.4350 - acc: 0.8465 Epoch 98: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4350 - acc: 0.8465 - val_loss: 0.3975 - val_acc: 0.8627 Epoch 99/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4354 - acc: 0.8465 Epoch 99: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4353 - acc: 0.8466 - val_loss: 0.3975 - val_acc: 0.8635 Epoch 100/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4340 - acc: 0.8466 Epoch 100: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4339 - acc: 0.8467 - val_loss: 0.3961 - val_acc: 0.8647 Epoch 101/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4317 - acc: 0.8474 Epoch 101: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4316 - acc: 0.8474 - val_loss: 0.3943 - val_acc: 0.8663 Epoch 102/1000 696/696 [==============================] - ETA: 0s - loss: 0.4308 - acc: 0.8483 Epoch 102: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4308 - acc: 0.8483 - val_loss: 0.3946 - val_acc: 0.8638 Epoch 103/1000 696/696 [==============================] - ETA: 0s - loss: 0.4293 - acc: 0.8484 Epoch 103: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4293 - acc: 0.8484 - val_loss: 0.3939 - val_acc: 0.8650 Epoch 104/1000 696/696 [==============================] - ETA: 0s - loss: 0.4288 - acc: 0.8482 Epoch 104: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4288 - acc: 0.8482 - val_loss: 0.3920 - val_acc: 0.8660 Epoch 105/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4285 - acc: 0.8492 Epoch 105: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.4285 - acc: 0.8492 - val_loss: 0.3915 - val_acc: 0.8661 Epoch 106/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4282 - acc: 0.8491 Epoch 106: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4282 - acc: 0.8491 - val_loss: 0.3911 - val_acc: 0.8657 Epoch 107/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4246 - acc: 0.8503 Epoch 107: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4246 - acc: 0.8503 - val_loss: 0.3915 - val_acc: 0.8654 Epoch 108/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4239 - acc: 0.8505 Epoch 108: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4241 - acc: 0.8504 - val_loss: 0.3902 - val_acc: 0.8653 Epoch 109/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4246 - acc: 0.8504 Epoch 109: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4244 - acc: 0.8504 - val_loss: 0.3904 - val_acc: 0.8649 Epoch 110/1000 694/696 [============================>.] - ETA: 0s - loss: 0.4227 - acc: 0.8510 Epoch 110: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4226 - acc: 0.8510 - val_loss: 0.3889 - val_acc: 0.8644 Epoch 111/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4215 - acc: 0.8512 Epoch 111: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4216 - acc: 0.8512 - val_loss: 0.3866 - val_acc: 0.8664 Epoch 112/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4208 - acc: 0.8515 Epoch 112: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4207 - acc: 0.8515 - val_loss: 0.3862 - val_acc: 0.8672 Epoch 113/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4204 - acc: 0.8519 Epoch 113: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4203 - acc: 0.8519 - val_loss: 0.3868 - val_acc: 0.8683 Epoch 114/1000 696/696 [==============================] - ETA: 0s - loss: 0.4189 - acc: 0.8525 Epoch 114: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4189 - acc: 0.8525 - val_loss: 0.3851 - val_acc: 0.8672 Epoch 115/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4172 - acc: 0.8529 Epoch 115: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4173 - acc: 0.8528 - val_loss: 0.3838 - val_acc: 0.8680 Epoch 116/1000 696/696 [==============================] - ETA: 0s - loss: 0.4164 - acc: 0.8537 Epoch 116: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4164 - acc: 0.8537 - val_loss: 0.3832 - val_acc: 0.8676 Epoch 117/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4152 - acc: 0.8535 Epoch 117: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4153 - acc: 0.8535 - val_loss: 0.3828 - val_acc: 0.8673 Epoch 118/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4140 - acc: 0.8544 Epoch 118: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4139 - acc: 0.8545 - val_loss: 0.3832 - val_acc: 0.8677 Epoch 119/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4141 - acc: 0.8544 Epoch 119: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4141 - acc: 0.8544 - val_loss: 0.3822 - val_acc: 0.8673 Epoch 120/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4136 - acc: 0.8547 Epoch 120: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4135 - acc: 0.8547 - val_loss: 0.3817 - val_acc: 0.8682 Epoch 121/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4124 - acc: 0.8546 Epoch 121: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4124 - acc: 0.8547 - val_loss: 0.3800 - val_acc: 0.8681 Epoch 122/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4111 - acc: 0.8555 Epoch 122: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.4111 - acc: 0.8555 - val_loss: 0.3794 - val_acc: 0.8694 Epoch 123/1000 696/696 [==============================] - ETA: 0s - loss: 0.4097 - acc: 0.8558 Epoch 123: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4097 - acc: 0.8558 - val_loss: 0.3785 - val_acc: 0.8691 Epoch 124/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4096 - acc: 0.8563 Epoch 124: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4095 - acc: 0.8563 - val_loss: 0.3780 - val_acc: 0.8698 Epoch 125/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4088 - acc: 0.8561 Epoch 125: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4088 - acc: 0.8562 - val_loss: 0.3767 - val_acc: 0.8702 Epoch 126/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4097 - acc: 0.8557 Epoch 126: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4097 - acc: 0.8557 - val_loss: 0.3772 - val_acc: 0.8703 Epoch 127/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4070 - acc: 0.8570 Epoch 127: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4071 - acc: 0.8570 - val_loss: 0.3763 - val_acc: 0.8697 Epoch 128/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4067 - acc: 0.8568 Epoch 128: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4066 - acc: 0.8569 - val_loss: 0.3766 - val_acc: 0.8693 Epoch 129/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4056 - acc: 0.8575 Epoch 129: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4057 - acc: 0.8575 - val_loss: 0.3757 - val_acc: 0.8705 Epoch 130/1000 696/696 [==============================] - ETA: 0s - loss: 0.4029 - acc: 0.8589 Epoch 130: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4029 - acc: 0.8589 - val_loss: 0.3749 - val_acc: 0.8710 Epoch 131/1000 696/696 [==============================] - ETA: 0s - loss: 0.4039 - acc: 0.8581 Epoch 131: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4039 - acc: 0.8581 - val_loss: 0.3741 - val_acc: 0.8715 Epoch 132/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4024 - acc: 0.8589 Epoch 132: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4025 - acc: 0.8588 - val_loss: 0.3734 - val_acc: 0.8709 Epoch 133/1000 696/696 [==============================] - ETA: 0s - loss: 0.4007 - acc: 0.8591 Epoch 133: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4007 - acc: 0.8591 - val_loss: 0.3721 - val_acc: 0.8716 Epoch 134/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4010 - acc: 0.8593 Epoch 134: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4011 - acc: 0.8593 - val_loss: 0.3717 - val_acc: 0.8708 Epoch 135/1000 695/696 [============================>.] - ETA: 0s - loss: 0.4013 - acc: 0.8593 Epoch 135: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4013 - acc: 0.8593 - val_loss: 0.3714 - val_acc: 0.8722 Epoch 136/1000 693/696 [============================>.] - ETA: 0s - loss: 0.4008 - acc: 0.8593 Epoch 136: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.4007 - acc: 0.8593 - val_loss: 0.3715 - val_acc: 0.8716 Epoch 137/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3983 - acc: 0.8601 Epoch 137: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3983 - acc: 0.8601 - val_loss: 0.3707 - val_acc: 0.8711 Epoch 138/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3997 - acc: 0.8595 Epoch 138: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3997 - acc: 0.8595 - val_loss: 0.3708 - val_acc: 0.8724 Epoch 139/1000 696/696 [==============================] - ETA: 0s - loss: 0.3968 - acc: 0.8605 Epoch 139: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3968 - acc: 0.8605 - val_loss: 0.3683 - val_acc: 0.8738 Epoch 140/1000 696/696 [==============================] - ETA: 0s - loss: 0.3962 - acc: 0.8613 Epoch 140: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3962 - acc: 0.8613 - val_loss: 0.3684 - val_acc: 0.8726 Epoch 141/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3947 - acc: 0.8617 Epoch 141: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3947 - acc: 0.8617 - val_loss: 0.3686 - val_acc: 0.8726 Epoch 142/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3950 - acc: 0.8614 Epoch 142: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3950 - acc: 0.8614 - val_loss: 0.3675 - val_acc: 0.8726 Epoch 143/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3946 - acc: 0.8612 Epoch 143: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3947 - acc: 0.8612 - val_loss: 0.3666 - val_acc: 0.8729 Epoch 144/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3940 - acc: 0.8620 Epoch 144: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3939 - acc: 0.8620 - val_loss: 0.3661 - val_acc: 0.8734 Epoch 145/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3935 - acc: 0.8620 Epoch 145: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3936 - acc: 0.8620 - val_loss: 0.3651 - val_acc: 0.8746 Epoch 146/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3926 - acc: 0.8622 Epoch 146: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3927 - acc: 0.8622 - val_loss: 0.3654 - val_acc: 0.8736 Epoch 147/1000 696/696 [==============================] - ETA: 0s - loss: 0.3915 - acc: 0.8629 Epoch 147: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3915 - acc: 0.8629 - val_loss: 0.3642 - val_acc: 0.8740 Epoch 148/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3906 - acc: 0.8626 Epoch 148: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3906 - acc: 0.8626 - val_loss: 0.3637 - val_acc: 0.8734 Epoch 149/1000 696/696 [==============================] - ETA: 0s - loss: 0.3902 - acc: 0.8633 Epoch 149: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3902 - acc: 0.8633 - val_loss: 0.3637 - val_acc: 0.8742 Epoch 150/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3898 - acc: 0.8635 Epoch 150: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3898 - acc: 0.8635 - val_loss: 0.3622 - val_acc: 0.8749 Epoch 151/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3877 - acc: 0.8646 Epoch 151: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3876 - acc: 0.8646 - val_loss: 0.3620 - val_acc: 0.8750 Epoch 152/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3878 - acc: 0.8643 Epoch 152: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3877 - acc: 0.8643 - val_loss: 0.3624 - val_acc: 0.8744 Epoch 153/1000 696/696 [==============================] - ETA: 0s - loss: 0.3867 - acc: 0.8645 Epoch 153: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3867 - acc: 0.8645 - val_loss: 0.3612 - val_acc: 0.8753 Epoch 154/1000 695/696 [============================>.] - ETA: 0s - loss: 0.3863 - acc: 0.8647 Epoch 154: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3863 - acc: 0.8647 - val_loss: 0.3615 - val_acc: 0.8742 Epoch 155/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3849 - acc: 0.8655 Epoch 155: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3850 - acc: 0.8654 - val_loss: 0.3598 - val_acc: 0.8754 Epoch 156/1000 696/696 [==============================] - ETA: 0s - loss: 0.3849 - acc: 0.8651 Epoch 156: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3849 - acc: 0.8651 - val_loss: 0.3590 - val_acc: 0.8756 Epoch 157/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3846 - acc: 0.8652 Epoch 157: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3847 - acc: 0.8652 - val_loss: 0.3592 - val_acc: 0.8768 Epoch 158/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3845 - acc: 0.8654 Epoch 158: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3845 - acc: 0.8654 - val_loss: 0.3590 - val_acc: 0.8756 Epoch 159/1000 696/696 [==============================] - ETA: 0s - loss: 0.3835 - acc: 0.8653 Epoch 159: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3835 - acc: 0.8653 - val_loss: 0.3587 - val_acc: 0.8757 Epoch 160/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3828 - acc: 0.8657 Epoch 160: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3829 - acc: 0.8656 - val_loss: 0.3585 - val_acc: 0.8763 Epoch 161/1000 694/696 [============================>.] - ETA: 0s - loss: 0.3816 - acc: 0.8667 Epoch 161: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3816 - acc: 0.8666 - val_loss: 0.3579 - val_acc: 0.8767 Epoch 162/1000 696/696 [==============================] - ETA: 0s - loss: 0.3807 - acc: 0.8667 Epoch 162: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 18ms/step - loss: 0.3807 - acc: 0.8667 - val_loss: 0.3584 - val_acc: 0.8759 Epoch 163/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3798 - acc: 0.8670 Epoch 163: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3798 - acc: 0.8670 - val_loss: 0.3576 - val_acc: 0.8758 Epoch 164/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3800 - acc: 0.8665 Epoch 164: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3799 - acc: 0.8665 - val_loss: 0.3562 - val_acc: 0.8765 Epoch 165/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3799 - acc: 0.8666 Epoch 165: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3800 - acc: 0.8666 - val_loss: 0.3566 - val_acc: 0.8772 Epoch 166/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3795 - acc: 0.8670 Epoch 166: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3796 - acc: 0.8670 - val_loss: 0.3548 - val_acc: 0.8779 Epoch 167/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3784 - acc: 0.8674 Epoch 167: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3783 - acc: 0.8674 - val_loss: 0.3551 - val_acc: 0.8766 Epoch 168/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3772 - acc: 0.8675 Epoch 168: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3774 - acc: 0.8674 - val_loss: 0.3552 - val_acc: 0.8767 Epoch 169/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3771 - acc: 0.8677 Epoch 169: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3772 - acc: 0.8677 - val_loss: 0.3534 - val_acc: 0.8774 Epoch 170/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3762 - acc: 0.8683 Epoch 170: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3762 - acc: 0.8683 - val_loss: 0.3533 - val_acc: 0.8778 Epoch 171/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3753 - acc: 0.8686 Epoch 171: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3753 - acc: 0.8686 - val_loss: 0.3536 - val_acc: 0.8779 Epoch 172/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3753 - acc: 0.8683 Epoch 172: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3754 - acc: 0.8683 - val_loss: 0.3523 - val_acc: 0.8780 Epoch 173/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3754 - acc: 0.8686 Epoch 173: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3753 - acc: 0.8687 - val_loss: 0.3519 - val_acc: 0.8775 Epoch 174/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3741 - acc: 0.8696 Epoch 174: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3741 - acc: 0.8695 - val_loss: 0.3518 - val_acc: 0.8775 Epoch 175/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3733 - acc: 0.8693 Epoch 175: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3732 - acc: 0.8694 - val_loss: 0.3507 - val_acc: 0.8795 Epoch 176/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3717 - acc: 0.8698 Epoch 176: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3717 - acc: 0.8698 - val_loss: 0.3502 - val_acc: 0.8784 Epoch 177/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3714 - acc: 0.8698 Epoch 177: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3713 - acc: 0.8698 - val_loss: 0.3504 - val_acc: 0.8806 Epoch 178/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3714 - acc: 0.8698 Epoch 178: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3714 - acc: 0.8699 - val_loss: 0.3507 - val_acc: 0.8779 Epoch 179/1000 696/696 [==============================] - ETA: 0s - loss: 0.3708 - acc: 0.8703 Epoch 179: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3708 - acc: 0.8703 - val_loss: 0.3504 - val_acc: 0.8776 Epoch 180/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3701 - acc: 0.8708 Epoch 180: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3700 - acc: 0.8708 - val_loss: 0.3491 - val_acc: 0.8799 Epoch 181/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3702 - acc: 0.8700 Epoch 181: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3701 - acc: 0.8701 - val_loss: 0.3479 - val_acc: 0.8804 Epoch 182/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3691 - acc: 0.8713 Epoch 182: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3691 - acc: 0.8713 - val_loss: 0.3495 - val_acc: 0.8785 Epoch 183/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3687 - acc: 0.8709 Epoch 183: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3687 - acc: 0.8709 - val_loss: 0.3500 - val_acc: 0.8790 Epoch 184/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3687 - acc: 0.8712 Epoch 184: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3686 - acc: 0.8712 - val_loss: 0.3483 - val_acc: 0.8812 Epoch 185/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3673 - acc: 0.8714 Epoch 185: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3673 - acc: 0.8714 - val_loss: 0.3473 - val_acc: 0.8802 Epoch 186/1000 696/696 [==============================] - ETA: 0s - loss: 0.3670 - acc: 0.8714 Epoch 186: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3670 - acc: 0.8714 - val_loss: 0.3479 - val_acc: 0.8806 Epoch 187/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3671 - acc: 0.8715 Epoch 187: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3670 - acc: 0.8716 - val_loss: 0.3484 - val_acc: 0.8795 Epoch 188/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3664 - acc: 0.8718 Epoch 188: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3665 - acc: 0.8717 - val_loss: 0.3461 - val_acc: 0.8808 Epoch 189/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3657 - acc: 0.8721 Epoch 189: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3657 - acc: 0.8721 - val_loss: 0.3460 - val_acc: 0.8802 Epoch 190/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3646 - acc: 0.8723 Epoch 190: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3647 - acc: 0.8723 - val_loss: 0.3464 - val_acc: 0.8800 Epoch 191/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3641 - acc: 0.8732 Epoch 191: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3644 - acc: 0.8731 - val_loss: 0.3455 - val_acc: 0.8806 Epoch 192/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3646 - acc: 0.8730 Epoch 192: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3646 - acc: 0.8730 - val_loss: 0.3450 - val_acc: 0.8810 Epoch 193/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3635 - acc: 0.8728 Epoch 193: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3636 - acc: 0.8728 - val_loss: 0.3447 - val_acc: 0.8820 Epoch 194/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3629 - acc: 0.8729 Epoch 194: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3629 - acc: 0.8729 - val_loss: 0.3447 - val_acc: 0.8813 Epoch 195/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3627 - acc: 0.8732 Epoch 195: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3627 - acc: 0.8733 - val_loss: 0.3429 - val_acc: 0.8823 Epoch 196/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3613 - acc: 0.8737 Epoch 196: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3615 - acc: 0.8736 - val_loss: 0.3435 - val_acc: 0.8830 Epoch 197/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3613 - acc: 0.8735 Epoch 197: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3613 - acc: 0.8735 - val_loss: 0.3438 - val_acc: 0.8813 Epoch 198/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3604 - acc: 0.8738 Epoch 198: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3603 - acc: 0.8738 - val_loss: 0.3431 - val_acc: 0.8827 Epoch 199/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3603 - acc: 0.8735 Epoch 199: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3604 - acc: 0.8735 - val_loss: 0.3419 - val_acc: 0.8828 Epoch 200/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3603 - acc: 0.8741 Epoch 200: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3602 - acc: 0.8742 - val_loss: 0.3430 - val_acc: 0.8822 Epoch 201/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3599 - acc: 0.8744 Epoch 201: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3599 - acc: 0.8744 - val_loss: 0.3417 - val_acc: 0.8818 Epoch 202/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3586 - acc: 0.8750 Epoch 202: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3586 - acc: 0.8750 - val_loss: 0.3413 - val_acc: 0.8820 Epoch 203/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3581 - acc: 0.8750 Epoch 203: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3580 - acc: 0.8750 - val_loss: 0.3411 - val_acc: 0.8827 Epoch 204/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3575 - acc: 0.8752 Epoch 204: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3574 - acc: 0.8752 - val_loss: 0.3406 - val_acc: 0.8828 Epoch 205/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3571 - acc: 0.8754 Epoch 205: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3571 - acc: 0.8754 - val_loss: 0.3396 - val_acc: 0.8828 Epoch 206/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3562 - acc: 0.8760 Epoch 206: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3562 - acc: 0.8760 - val_loss: 0.3405 - val_acc: 0.8824 Epoch 207/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3557 - acc: 0.8754 Epoch 207: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3558 - acc: 0.8754 - val_loss: 0.3404 - val_acc: 0.8831 Epoch 208/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3560 - acc: 0.8759 Epoch 208: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3560 - acc: 0.8759 - val_loss: 0.3390 - val_acc: 0.8833 Epoch 209/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3555 - acc: 0.8760 Epoch 209: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3555 - acc: 0.8760 - val_loss: 0.3386 - val_acc: 0.8842 Epoch 210/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3548 - acc: 0.8758 Epoch 210: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3548 - acc: 0.8758 - val_loss: 0.3387 - val_acc: 0.8838 Epoch 211/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3535 - acc: 0.8765 Epoch 211: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3534 - acc: 0.8766 - val_loss: 0.3385 - val_acc: 0.8832 Epoch 212/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3532 - acc: 0.8767 Epoch 212: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3532 - acc: 0.8767 - val_loss: 0.3377 - val_acc: 0.8833 Epoch 213/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3522 - acc: 0.8769 Epoch 213: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3524 - acc: 0.8768 - val_loss: 0.3372 - val_acc: 0.8854 Epoch 214/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3523 - acc: 0.8767 Epoch 214: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3523 - acc: 0.8767 - val_loss: 0.3369 - val_acc: 0.8839 Epoch 215/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3524 - acc: 0.8771 Epoch 215: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3524 - acc: 0.8771 - val_loss: 0.3374 - val_acc: 0.8842 Epoch 216/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3517 - acc: 0.8774 Epoch 216: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3517 - acc: 0.8774 - val_loss: 0.3368 - val_acc: 0.8834 Epoch 217/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3517 - acc: 0.8773 Epoch 217: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3517 - acc: 0.8773 - val_loss: 0.3370 - val_acc: 0.8846 Epoch 218/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3509 - acc: 0.8771 Epoch 218: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3508 - acc: 0.8771 - val_loss: 0.3354 - val_acc: 0.8851 Epoch 219/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3506 - acc: 0.8775 Epoch 219: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3507 - acc: 0.8775 - val_loss: 0.3365 - val_acc: 0.8843 Epoch 220/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3493 - acc: 0.8774 Epoch 220: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3493 - acc: 0.8775 - val_loss: 0.3361 - val_acc: 0.8839 Epoch 221/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3495 - acc: 0.8779 Epoch 221: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3496 - acc: 0.8778 - val_loss: 0.3347 - val_acc: 0.8843 Epoch 222/1000 696/696 [==============================] - ETA: 0s - loss: 0.3488 - acc: 0.8775 Epoch 222: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3488 - acc: 0.8775 - val_loss: 0.3354 - val_acc: 0.8851 Epoch 223/1000 696/696 [==============================] - ETA: 0s - loss: 0.3491 - acc: 0.8784 Epoch 223: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3491 - acc: 0.8784 - val_loss: 0.3350 - val_acc: 0.8838 Epoch 224/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3486 - acc: 0.8780 Epoch 224: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3486 - acc: 0.8780 - val_loss: 0.3340 - val_acc: 0.8846 Epoch 225/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3473 - acc: 0.8782 Epoch 225: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3473 - acc: 0.8782 - val_loss: 0.3336 - val_acc: 0.8855 Epoch 226/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3476 - acc: 0.8783 Epoch 226: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3477 - acc: 0.8783 - val_loss: 0.3337 - val_acc: 0.8859 Epoch 227/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3472 - acc: 0.8792 Epoch 227: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3472 - acc: 0.8792 - val_loss: 0.3336 - val_acc: 0.8846 Epoch 228/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3462 - acc: 0.8791 Epoch 228: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3462 - acc: 0.8791 - val_loss: 0.3330 - val_acc: 0.8851 Epoch 229/1000 696/696 [==============================] - ETA: 0s - loss: 0.3463 - acc: 0.8790 Epoch 229: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3463 - acc: 0.8790 - val_loss: 0.3327 - val_acc: 0.8868 Epoch 230/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3453 - acc: 0.8795 Epoch 230: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3452 - acc: 0.8796 - val_loss: 0.3325 - val_acc: 0.8852 Epoch 231/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3452 - acc: 0.8791 Epoch 231: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3454 - acc: 0.8791 - val_loss: 0.3319 - val_acc: 0.8851 Epoch 232/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3443 - acc: 0.8798 Epoch 232: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3444 - acc: 0.8797 - val_loss: 0.3327 - val_acc: 0.8849 Epoch 233/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3442 - acc: 0.8796 Epoch 233: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3443 - acc: 0.8796 - val_loss: 0.3305 - val_acc: 0.8868 Epoch 234/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3440 - acc: 0.8798 Epoch 234: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3440 - acc: 0.8798 - val_loss: 0.3313 - val_acc: 0.8854 Epoch 235/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3429 - acc: 0.8805 Epoch 235: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3429 - acc: 0.8806 - val_loss: 0.3302 - val_acc: 0.8877 Epoch 236/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3427 - acc: 0.8807 Epoch 236: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3427 - acc: 0.8808 - val_loss: 0.3303 - val_acc: 0.8865 Epoch 237/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3425 - acc: 0.8806 Epoch 237: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3426 - acc: 0.8806 - val_loss: 0.3301 - val_acc: 0.8868 Epoch 238/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3424 - acc: 0.8808 Epoch 238: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3423 - acc: 0.8808 - val_loss: 0.3302 - val_acc: 0.8854 Epoch 239/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3415 - acc: 0.8809 Epoch 239: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3414 - acc: 0.8809 - val_loss: 0.3297 - val_acc: 0.8870 Epoch 240/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3413 - acc: 0.8808 Epoch 240: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3412 - acc: 0.8809 - val_loss: 0.3297 - val_acc: 0.8861 Epoch 241/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3400 - acc: 0.8815 Epoch 241: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3400 - acc: 0.8815 - val_loss: 0.3292 - val_acc: 0.8873 Epoch 242/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3404 - acc: 0.8813 Epoch 242: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3404 - acc: 0.8813 - val_loss: 0.3299 - val_acc: 0.8863 Epoch 243/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3403 - acc: 0.8815 Epoch 243: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3404 - acc: 0.8814 - val_loss: 0.3298 - val_acc: 0.8860 Epoch 244/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3399 - acc: 0.8815 Epoch 244: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3398 - acc: 0.8814 - val_loss: 0.3287 - val_acc: 0.8869 Epoch 245/1000 696/696 [==============================] - ETA: 0s - loss: 0.3383 - acc: 0.8819 Epoch 245: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3383 - acc: 0.8819 - val_loss: 0.3280 - val_acc: 0.8876 Epoch 246/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3384 - acc: 0.8819 Epoch 246: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3385 - acc: 0.8819 - val_loss: 0.3270 - val_acc: 0.8886 Epoch 247/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3382 - acc: 0.8823 Epoch 247: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3383 - acc: 0.8822 - val_loss: 0.3277 - val_acc: 0.8872 Epoch 248/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3378 - acc: 0.8823 Epoch 248: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3378 - acc: 0.8823 - val_loss: 0.3264 - val_acc: 0.8885 Epoch 249/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3370 - acc: 0.8824 Epoch 249: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3370 - acc: 0.8824 - val_loss: 0.3275 - val_acc: 0.8862 Epoch 250/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3368 - acc: 0.8826 Epoch 250: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3369 - acc: 0.8825 - val_loss: 0.3273 - val_acc: 0.8886 Epoch 251/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3360 - acc: 0.8827 Epoch 251: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3359 - acc: 0.8827 - val_loss: 0.3271 - val_acc: 0.8887 Epoch 252/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3365 - acc: 0.8824 Epoch 252: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3365 - acc: 0.8824 - val_loss: 0.3270 - val_acc: 0.8880 Epoch 253/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3354 - acc: 0.8828 Epoch 253: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3354 - acc: 0.8828 - val_loss: 0.3259 - val_acc: 0.8877 Epoch 254/1000 696/696 [==============================] - ETA: 0s - loss: 0.3363 - acc: 0.8834 Epoch 254: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3363 - acc: 0.8834 - val_loss: 0.3269 - val_acc: 0.8881 Epoch 255/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3339 - acc: 0.8833 Epoch 255: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3340 - acc: 0.8833 - val_loss: 0.3251 - val_acc: 0.8882 Epoch 256/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3345 - acc: 0.8838 Epoch 256: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3344 - acc: 0.8838 - val_loss: 0.3246 - val_acc: 0.8886 Epoch 257/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3337 - acc: 0.8835 Epoch 257: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3337 - acc: 0.8836 - val_loss: 0.3244 - val_acc: 0.8877 Epoch 258/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3331 - acc: 0.8839 Epoch 258: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3331 - acc: 0.8839 - val_loss: 0.3243 - val_acc: 0.8892 Epoch 259/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3330 - acc: 0.8845 Epoch 259: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3329 - acc: 0.8845 - val_loss: 0.3241 - val_acc: 0.8900 Epoch 260/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3319 - acc: 0.8842 Epoch 260: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3318 - acc: 0.8843 - val_loss: 0.3249 - val_acc: 0.8887 Epoch 261/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3321 - acc: 0.8842 Epoch 261: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3321 - acc: 0.8842 - val_loss: 0.3229 - val_acc: 0.8893 Epoch 262/1000 696/696 [==============================] - ETA: 0s - loss: 0.3318 - acc: 0.8845 Epoch 262: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3318 - acc: 0.8845 - val_loss: 0.3245 - val_acc: 0.8893 Epoch 263/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3310 - acc: 0.8846 Epoch 263: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3310 - acc: 0.8846 - val_loss: 0.3237 - val_acc: 0.8896 Epoch 264/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3310 - acc: 0.8849 Epoch 264: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3311 - acc: 0.8849 - val_loss: 0.3225 - val_acc: 0.8890 Epoch 265/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3313 - acc: 0.8850 Epoch 265: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3313 - acc: 0.8850 - val_loss: 0.3225 - val_acc: 0.8896 Epoch 266/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3304 - acc: 0.8848 Epoch 266: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3304 - acc: 0.8848 - val_loss: 0.3223 - val_acc: 0.8900 Epoch 267/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3303 - acc: 0.8845 Epoch 267: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3303 - acc: 0.8845 - val_loss: 0.3224 - val_acc: 0.8895 Epoch 268/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3292 - acc: 0.8858 Epoch 268: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3292 - acc: 0.8857 - val_loss: 0.3238 - val_acc: 0.8877 Epoch 269/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3292 - acc: 0.8855 Epoch 269: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3292 - acc: 0.8855 - val_loss: 0.3230 - val_acc: 0.8894 Epoch 270/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3290 - acc: 0.8857 Epoch 270: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3291 - acc: 0.8856 - val_loss: 0.3212 - val_acc: 0.8907 Epoch 271/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3285 - acc: 0.8858 Epoch 271: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3284 - acc: 0.8859 - val_loss: 0.3206 - val_acc: 0.8906 Epoch 272/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3283 - acc: 0.8857 Epoch 272: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3282 - acc: 0.8857 - val_loss: 0.3213 - val_acc: 0.8903 Epoch 273/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3271 - acc: 0.8859 Epoch 273: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3271 - acc: 0.8859 - val_loss: 0.3203 - val_acc: 0.8903 Epoch 274/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3281 - acc: 0.8860 Epoch 274: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3280 - acc: 0.8860 - val_loss: 0.3202 - val_acc: 0.8909 Epoch 275/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3273 - acc: 0.8865 Epoch 275: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3275 - acc: 0.8864 - val_loss: 0.3210 - val_acc: 0.8897 Epoch 276/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3265 - acc: 0.8866 Epoch 276: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3265 - acc: 0.8866 - val_loss: 0.3206 - val_acc: 0.8901 Epoch 277/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3261 - acc: 0.8862 Epoch 277: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3261 - acc: 0.8862 - val_loss: 0.3200 - val_acc: 0.8908 Epoch 278/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3257 - acc: 0.8865 Epoch 278: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3258 - acc: 0.8865 - val_loss: 0.3203 - val_acc: 0.8909 Epoch 279/1000 696/696 [==============================] - ETA: 0s - loss: 0.3241 - acc: 0.8873 Epoch 279: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3241 - acc: 0.8873 - val_loss: 0.3184 - val_acc: 0.8902 Epoch 280/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3253 - acc: 0.8868 Epoch 280: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3252 - acc: 0.8867 - val_loss: 0.3194 - val_acc: 0.8915 Epoch 281/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3246 - acc: 0.8868 Epoch 281: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3246 - acc: 0.8868 - val_loss: 0.3189 - val_acc: 0.8914 Epoch 282/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3243 - acc: 0.8872 Epoch 282: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3243 - acc: 0.8872 - val_loss: 0.3196 - val_acc: 0.8906 Epoch 283/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3238 - acc: 0.8875 Epoch 283: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3238 - acc: 0.8875 - val_loss: 0.3179 - val_acc: 0.8916 Epoch 284/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3227 - acc: 0.8877 Epoch 284: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3226 - acc: 0.8877 - val_loss: 0.3180 - val_acc: 0.8919 Epoch 285/1000 696/696 [==============================] - ETA: 0s - loss: 0.3234 - acc: 0.8875 Epoch 285: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3234 - acc: 0.8875 - val_loss: 0.3191 - val_acc: 0.8903 Epoch 286/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3229 - acc: 0.8875 Epoch 286: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3229 - acc: 0.8875 - val_loss: 0.3182 - val_acc: 0.8918 Epoch 287/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3216 - acc: 0.8883 Epoch 287: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3217 - acc: 0.8884 - val_loss: 0.3176 - val_acc: 0.8930 Epoch 288/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3215 - acc: 0.8882 Epoch 288: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3215 - acc: 0.8882 - val_loss: 0.3170 - val_acc: 0.8920 Epoch 289/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3212 - acc: 0.8882 Epoch 289: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3213 - acc: 0.8881 - val_loss: 0.3173 - val_acc: 0.8926 Epoch 290/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3206 - acc: 0.8882 Epoch 290: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3206 - acc: 0.8882 - val_loss: 0.3175 - val_acc: 0.8910 Epoch 291/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3197 - acc: 0.8885 Epoch 291: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3197 - acc: 0.8885 - val_loss: 0.3170 - val_acc: 0.8928 Epoch 292/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3204 - acc: 0.8884 Epoch 292: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3204 - acc: 0.8884 - val_loss: 0.3173 - val_acc: 0.8915 Epoch 293/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3203 - acc: 0.8890 Epoch 293: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3202 - acc: 0.8890 - val_loss: 0.3160 - val_acc: 0.8919 Epoch 294/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3185 - acc: 0.8892 Epoch 294: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3185 - acc: 0.8892 - val_loss: 0.3168 - val_acc: 0.8928 Epoch 295/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3197 - acc: 0.8888 Epoch 295: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3196 - acc: 0.8888 - val_loss: 0.3155 - val_acc: 0.8919 Epoch 296/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3190 - acc: 0.8892 Epoch 296: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3189 - acc: 0.8892 - val_loss: 0.3148 - val_acc: 0.8934 Epoch 297/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3192 - acc: 0.8888 Epoch 297: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3192 - acc: 0.8889 - val_loss: 0.3156 - val_acc: 0.8925 Epoch 298/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3177 - acc: 0.8895 Epoch 298: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3177 - acc: 0.8895 - val_loss: 0.3150 - val_acc: 0.8927 Epoch 299/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3176 - acc: 0.8894 Epoch 299: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3175 - acc: 0.8895 - val_loss: 0.3146 - val_acc: 0.8937 Epoch 300/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3171 - acc: 0.8899 Epoch 300: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3170 - acc: 0.8899 - val_loss: 0.3148 - val_acc: 0.8924 Epoch 301/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3173 - acc: 0.8895 Epoch 301: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3173 - acc: 0.8895 - val_loss: 0.3162 - val_acc: 0.8921 Epoch 302/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3167 - acc: 0.8904 Epoch 302: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3166 - acc: 0.8904 - val_loss: 0.3126 - val_acc: 0.8946 Epoch 303/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3165 - acc: 0.8901 Epoch 303: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3165 - acc: 0.8901 - val_loss: 0.3142 - val_acc: 0.8938 Epoch 304/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3159 - acc: 0.8900 Epoch 304: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3159 - acc: 0.8900 - val_loss: 0.3140 - val_acc: 0.8935 Epoch 305/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3155 - acc: 0.8905 Epoch 305: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3155 - acc: 0.8905 - val_loss: 0.3147 - val_acc: 0.8923 Epoch 306/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3151 - acc: 0.8907 Epoch 306: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3151 - acc: 0.8907 - val_loss: 0.3132 - val_acc: 0.8928 Epoch 307/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3151 - acc: 0.8902 Epoch 307: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3151 - acc: 0.8902 - val_loss: 0.3135 - val_acc: 0.8935 Epoch 308/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3150 - acc: 0.8908 Epoch 308: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3150 - acc: 0.8908 - val_loss: 0.3137 - val_acc: 0.8931 Epoch 309/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3150 - acc: 0.8905 Epoch 309: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3150 - acc: 0.8905 - val_loss: 0.3146 - val_acc: 0.8926 Epoch 310/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3135 - acc: 0.8910 Epoch 310: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3134 - acc: 0.8910 - val_loss: 0.3118 - val_acc: 0.8944 Epoch 311/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3140 - acc: 0.8909 Epoch 311: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3140 - acc: 0.8909 - val_loss: 0.3114 - val_acc: 0.8932 Epoch 312/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3135 - acc: 0.8913 Epoch 312: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3135 - acc: 0.8914 - val_loss: 0.3124 - val_acc: 0.8934 Epoch 313/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3122 - acc: 0.8916 Epoch 313: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3122 - acc: 0.8916 - val_loss: 0.3109 - val_acc: 0.8933 Epoch 314/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3116 - acc: 0.8918 Epoch 314: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3116 - acc: 0.8918 - val_loss: 0.3119 - val_acc: 0.8940 Epoch 315/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3122 - acc: 0.8917 Epoch 315: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3121 - acc: 0.8917 - val_loss: 0.3117 - val_acc: 0.8944 Epoch 316/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3114 - acc: 0.8918 Epoch 316: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3115 - acc: 0.8918 - val_loss: 0.3112 - val_acc: 0.8945 Epoch 317/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3113 - acc: 0.8920 Epoch 317: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3113 - acc: 0.8920 - val_loss: 0.3100 - val_acc: 0.8953 Epoch 318/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3112 - acc: 0.8921 Epoch 318: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3114 - acc: 0.8920 - val_loss: 0.3113 - val_acc: 0.8946 Epoch 319/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3104 - acc: 0.8921 Epoch 319: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3104 - acc: 0.8921 - val_loss: 0.3090 - val_acc: 0.8950 Epoch 320/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3100 - acc: 0.8924 Epoch 320: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3101 - acc: 0.8924 - val_loss: 0.3106 - val_acc: 0.8943 Epoch 321/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3096 - acc: 0.8925 Epoch 321: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3097 - acc: 0.8924 - val_loss: 0.3103 - val_acc: 0.8930 Epoch 322/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3102 - acc: 0.8923 Epoch 322: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3102 - acc: 0.8922 - val_loss: 0.3104 - val_acc: 0.8952 Epoch 323/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3086 - acc: 0.8929 Epoch 323: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3086 - acc: 0.8929 - val_loss: 0.3097 - val_acc: 0.8949 Epoch 324/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3079 - acc: 0.8932 Epoch 324: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3079 - acc: 0.8932 - val_loss: 0.3093 - val_acc: 0.8950 Epoch 325/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3081 - acc: 0.8928 Epoch 325: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3081 - acc: 0.8928 - val_loss: 0.3094 - val_acc: 0.8950 Epoch 326/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3079 - acc: 0.8930 Epoch 326: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3080 - acc: 0.8930 - val_loss: 0.3077 - val_acc: 0.8950 Epoch 327/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3082 - acc: 0.8932 Epoch 327: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3081 - acc: 0.8932 - val_loss: 0.3095 - val_acc: 0.8952 Epoch 328/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3067 - acc: 0.8935 Epoch 328: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3067 - acc: 0.8935 - val_loss: 0.3083 - val_acc: 0.8968 Epoch 329/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3080 - acc: 0.8933 Epoch 329: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3079 - acc: 0.8933 - val_loss: 0.3088 - val_acc: 0.8962 Epoch 330/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3072 - acc: 0.8934 Epoch 330: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3072 - acc: 0.8934 - val_loss: 0.3075 - val_acc: 0.8956 Epoch 331/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3073 - acc: 0.8931 Epoch 331: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3072 - acc: 0.8931 - val_loss: 0.3076 - val_acc: 0.8954 Epoch 332/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3054 - acc: 0.8941 Epoch 332: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3055 - acc: 0.8941 - val_loss: 0.3071 - val_acc: 0.8956 Epoch 333/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3052 - acc: 0.8940 Epoch 333: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3052 - acc: 0.8939 - val_loss: 0.3073 - val_acc: 0.8966 Epoch 334/1000 696/696 [==============================] - ETA: 0s - loss: 0.3055 - acc: 0.8941 Epoch 334: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3055 - acc: 0.8941 - val_loss: 0.3079 - val_acc: 0.8961 Epoch 335/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3047 - acc: 0.8941 Epoch 335: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3047 - acc: 0.8941 - val_loss: 0.3080 - val_acc: 0.8948 Epoch 336/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3040 - acc: 0.8943 Epoch 336: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3040 - acc: 0.8943 - val_loss: 0.3062 - val_acc: 0.8963 Epoch 337/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3048 - acc: 0.8941 Epoch 337: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3046 - acc: 0.8941 - val_loss: 0.3057 - val_acc: 0.8959 Epoch 338/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3037 - acc: 0.8943 Epoch 338: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3037 - acc: 0.8942 - val_loss: 0.3069 - val_acc: 0.8959 Epoch 339/1000 696/696 [==============================] - ETA: 0s - loss: 0.3031 - acc: 0.8951 Epoch 339: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3031 - acc: 0.8951 - val_loss: 0.3066 - val_acc: 0.8953 Epoch 340/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3037 - acc: 0.8946 Epoch 340: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3037 - acc: 0.8946 - val_loss: 0.3055 - val_acc: 0.8968 Epoch 341/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3032 - acc: 0.8948 Epoch 341: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3032 - acc: 0.8948 - val_loss: 0.3080 - val_acc: 0.8956 Epoch 342/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3031 - acc: 0.8950 Epoch 342: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3031 - acc: 0.8950 - val_loss: 0.3062 - val_acc: 0.8950 Epoch 343/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3025 - acc: 0.8948 Epoch 343: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3025 - acc: 0.8947 - val_loss: 0.3045 - val_acc: 0.8974 Epoch 344/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3017 - acc: 0.8950 Epoch 344: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3016 - acc: 0.8951 - val_loss: 0.3060 - val_acc: 0.8966 Epoch 345/1000 696/696 [==============================] - ETA: 0s - loss: 0.3013 - acc: 0.8956 Epoch 345: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3013 - acc: 0.8956 - val_loss: 0.3055 - val_acc: 0.8965 Epoch 346/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3008 - acc: 0.8951 Epoch 346: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.3008 - acc: 0.8951 - val_loss: 0.3052 - val_acc: 0.8964 Epoch 347/1000 696/696 [==============================] - ETA: 0s - loss: 0.3012 - acc: 0.8958 Epoch 347: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3012 - acc: 0.8958 - val_loss: 0.3037 - val_acc: 0.8979 Epoch 348/1000 693/696 [============================>.] - ETA: 0s - loss: 0.3006 - acc: 0.8960 Epoch 348: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.3005 - acc: 0.8960 - val_loss: 0.3040 - val_acc: 0.8966 Epoch 349/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2998 - acc: 0.8961 Epoch 349: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2997 - acc: 0.8962 - val_loss: 0.3069 - val_acc: 0.8960 Epoch 350/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2996 - acc: 0.8961 Epoch 350: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2997 - acc: 0.8961 - val_loss: 0.3036 - val_acc: 0.8982 Epoch 351/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2993 - acc: 0.8968 Epoch 351: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2992 - acc: 0.8968 - val_loss: 0.3032 - val_acc: 0.8971 Epoch 352/1000 696/696 [==============================] - ETA: 0s - loss: 0.2990 - acc: 0.8964 Epoch 352: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2990 - acc: 0.8964 - val_loss: 0.3043 - val_acc: 0.8964 Epoch 353/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2979 - acc: 0.8971 Epoch 353: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2979 - acc: 0.8972 - val_loss: 0.3037 - val_acc: 0.8976 Epoch 354/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2982 - acc: 0.8965 Epoch 354: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2982 - acc: 0.8965 - val_loss: 0.3035 - val_acc: 0.8973 Epoch 355/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2988 - acc: 0.8966 Epoch 355: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2989 - acc: 0.8965 - val_loss: 0.3023 - val_acc: 0.8973 Epoch 356/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2985 - acc: 0.8964 Epoch 356: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2985 - acc: 0.8964 - val_loss: 0.3026 - val_acc: 0.8966 Epoch 357/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2984 - acc: 0.8962 Epoch 357: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2985 - acc: 0.8962 - val_loss: 0.3021 - val_acc: 0.8970 Epoch 358/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2972 - acc: 0.8969 Epoch 358: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2972 - acc: 0.8969 - val_loss: 0.3033 - val_acc: 0.8984 Epoch 359/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2975 - acc: 0.8969 Epoch 359: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2975 - acc: 0.8969 - val_loss: 0.3020 - val_acc: 0.8970 Epoch 360/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2973 - acc: 0.8968 Epoch 360: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2972 - acc: 0.8969 - val_loss: 0.3012 - val_acc: 0.8976 Epoch 361/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2965 - acc: 0.8975 Epoch 361: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2964 - acc: 0.8975 - val_loss: 0.3025 - val_acc: 0.8993 Epoch 362/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2967 - acc: 0.8972 Epoch 362: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2967 - acc: 0.8972 - val_loss: 0.3021 - val_acc: 0.8972 Epoch 363/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2966 - acc: 0.8971 Epoch 363: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2966 - acc: 0.8971 - val_loss: 0.3017 - val_acc: 0.8981 Epoch 364/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2957 - acc: 0.8978 Epoch 364: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2957 - acc: 0.8978 - val_loss: 0.3000 - val_acc: 0.8982 Epoch 365/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2957 - acc: 0.8976 Epoch 365: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2958 - acc: 0.8975 - val_loss: 0.3002 - val_acc: 0.8979 Epoch 366/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2950 - acc: 0.8976 Epoch 366: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2950 - acc: 0.8976 - val_loss: 0.3035 - val_acc: 0.8963 Epoch 367/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2937 - acc: 0.8980 Epoch 367: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2936 - acc: 0.8979 - val_loss: 0.2989 - val_acc: 0.8989 Epoch 368/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2947 - acc: 0.8979 Epoch 368: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2947 - acc: 0.8979 - val_loss: 0.2996 - val_acc: 0.8982 Epoch 369/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2927 - acc: 0.8984 Epoch 369: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2927 - acc: 0.8984 - val_loss: 0.2998 - val_acc: 0.8979 Epoch 370/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2934 - acc: 0.8978 Epoch 370: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2934 - acc: 0.8978 - val_loss: 0.2994 - val_acc: 0.8989 Epoch 371/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2930 - acc: 0.8983 Epoch 371: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2929 - acc: 0.8984 - val_loss: 0.2997 - val_acc: 0.8990 Epoch 372/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2926 - acc: 0.8984 Epoch 372: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2926 - acc: 0.8984 - val_loss: 0.2989 - val_acc: 0.8972 Epoch 373/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2929 - acc: 0.8986 Epoch 373: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2927 - acc: 0.8986 - val_loss: 0.2999 - val_acc: 0.8981 Epoch 374/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2916 - acc: 0.8989 Epoch 374: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2914 - acc: 0.8989 - val_loss: 0.3007 - val_acc: 0.8981 Epoch 375/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2921 - acc: 0.8990 Epoch 375: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2921 - acc: 0.8990 - val_loss: 0.3001 - val_acc: 0.8993 Epoch 376/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2915 - acc: 0.8990 Epoch 376: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2915 - acc: 0.8990 - val_loss: 0.2992 - val_acc: 0.8983 Epoch 377/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2917 - acc: 0.8990 Epoch 377: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2916 - acc: 0.8990 - val_loss: 0.2986 - val_acc: 0.8991 Epoch 378/1000 696/696 [==============================] - ETA: 0s - loss: 0.2915 - acc: 0.8989 Epoch 378: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2915 - acc: 0.8989 - val_loss: 0.2987 - val_acc: 0.8986 Epoch 379/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2900 - acc: 0.8997 Epoch 379: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2901 - acc: 0.8997 - val_loss: 0.2977 - val_acc: 0.8993 Epoch 380/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2907 - acc: 0.8991 Epoch 380: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2908 - acc: 0.8991 - val_loss: 0.2983 - val_acc: 0.8972 Epoch 381/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2900 - acc: 0.8997 Epoch 381: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2899 - acc: 0.8998 - val_loss: 0.2969 - val_acc: 0.8999 Epoch 382/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2895 - acc: 0.8999 Epoch 382: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2895 - acc: 0.8999 - val_loss: 0.2970 - val_acc: 0.8997 Epoch 383/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2891 - acc: 0.8995 Epoch 383: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2890 - acc: 0.8995 - val_loss: 0.2966 - val_acc: 0.9004 Epoch 384/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2883 - acc: 0.9002 Epoch 384: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2884 - acc: 0.9001 - val_loss: 0.2977 - val_acc: 0.8982 Epoch 385/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2889 - acc: 0.9000 Epoch 385: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2890 - acc: 0.9000 - val_loss: 0.2962 - val_acc: 0.8998 Epoch 386/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2886 - acc: 0.9002 Epoch 386: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2885 - acc: 0.9002 - val_loss: 0.2979 - val_acc: 0.8990 Epoch 387/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2884 - acc: 0.9002 Epoch 387: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2884 - acc: 0.9002 - val_loss: 0.2955 - val_acc: 0.8989 Epoch 388/1000 696/696 [==============================] - ETA: 0s - loss: 0.2878 - acc: 0.9002 Epoch 388: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2878 - acc: 0.9002 - val_loss: 0.2973 - val_acc: 0.8989 Epoch 389/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2885 - acc: 0.9004 Epoch 389: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2885 - acc: 0.9004 - val_loss: 0.2957 - val_acc: 0.9001 Epoch 390/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2879 - acc: 0.8999 Epoch 390: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2878 - acc: 0.9000 - val_loss: 0.2958 - val_acc: 0.8990 Epoch 391/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2876 - acc: 0.9003 Epoch 391: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2878 - acc: 0.9002 - val_loss: 0.2963 - val_acc: 0.8987 Epoch 392/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2874 - acc: 0.9006 Epoch 392: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2873 - acc: 0.9006 - val_loss: 0.2957 - val_acc: 0.8985 Epoch 393/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2865 - acc: 0.9004 Epoch 393: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2865 - acc: 0.9004 - val_loss: 0.2955 - val_acc: 0.8996 Epoch 394/1000 696/696 [==============================] - ETA: 0s - loss: 0.2864 - acc: 0.9008 Epoch 394: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2864 - acc: 0.9008 - val_loss: 0.2956 - val_acc: 0.8989 Epoch 395/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2852 - acc: 0.9012 Epoch 395: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2852 - acc: 0.9012 - val_loss: 0.2957 - val_acc: 0.8984 Epoch 396/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2871 - acc: 0.9006 Epoch 396: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2871 - acc: 0.9006 - val_loss: 0.2939 - val_acc: 0.9000 Epoch 397/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2860 - acc: 0.9008 Epoch 397: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2860 - acc: 0.9008 - val_loss: 0.2951 - val_acc: 0.8993 Epoch 398/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2846 - acc: 0.9014 Epoch 398: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2847 - acc: 0.9014 - val_loss: 0.2957 - val_acc: 0.8992 Epoch 399/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2843 - acc: 0.9010 Epoch 399: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2843 - acc: 0.9010 - val_loss: 0.2941 - val_acc: 0.9007 Epoch 400/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2845 - acc: 0.9014 Epoch 400: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2845 - acc: 0.9014 - val_loss: 0.2935 - val_acc: 0.9009 Epoch 401/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2842 - acc: 0.9016 Epoch 401: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2841 - acc: 0.9016 - val_loss: 0.2947 - val_acc: 0.8987 Epoch 402/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2837 - acc: 0.9020 Epoch 402: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2837 - acc: 0.9020 - val_loss: 0.2949 - val_acc: 0.8993 Epoch 403/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2837 - acc: 0.9020 Epoch 403: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2836 - acc: 0.9020 - val_loss: 0.2942 - val_acc: 0.8998 Epoch 404/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2837 - acc: 0.9017 Epoch 404: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2837 - acc: 0.9017 - val_loss: 0.2940 - val_acc: 0.9001 Epoch 405/1000 696/696 [==============================] - ETA: 0s - loss: 0.2828 - acc: 0.9020 Epoch 405: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2828 - acc: 0.9020 - val_loss: 0.2944 - val_acc: 0.8988 Epoch 406/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2824 - acc: 0.9020 Epoch 406: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2824 - acc: 0.9020 - val_loss: 0.2938 - val_acc: 0.8996 Epoch 407/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2830 - acc: 0.9018 Epoch 407: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2829 - acc: 0.9018 - val_loss: 0.2936 - val_acc: 0.9004 Epoch 408/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2817 - acc: 0.9019 Epoch 408: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2817 - acc: 0.9019 - val_loss: 0.2943 - val_acc: 0.9009 Epoch 409/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2828 - acc: 0.9021 Epoch 409: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2828 - acc: 0.9022 - val_loss: 0.2943 - val_acc: 0.8997 Epoch 410/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2823 - acc: 0.9021 Epoch 410: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2822 - acc: 0.9021 - val_loss: 0.2951 - val_acc: 0.8998 Epoch 411/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2816 - acc: 0.9022 Epoch 411: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2817 - acc: 0.9021 - val_loss: 0.2928 - val_acc: 0.9000 Epoch 412/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2810 - acc: 0.9030 Epoch 412: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2810 - acc: 0.9030 - val_loss: 0.2938 - val_acc: 0.9007 Epoch 413/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2813 - acc: 0.9023 Epoch 413: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2814 - acc: 0.9023 - val_loss: 0.2916 - val_acc: 0.9015 Epoch 414/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2800 - acc: 0.9035 Epoch 414: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2800 - acc: 0.9035 - val_loss: 0.2927 - val_acc: 0.8993 Epoch 415/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2799 - acc: 0.9027 Epoch 415: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2798 - acc: 0.9027 - val_loss: 0.2921 - val_acc: 0.9005 Epoch 416/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2805 - acc: 0.9027 Epoch 416: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2805 - acc: 0.9027 - val_loss: 0.2918 - val_acc: 0.9014 Epoch 417/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2796 - acc: 0.9032 Epoch 417: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2795 - acc: 0.9032 - val_loss: 0.2939 - val_acc: 0.8995 Epoch 418/1000 696/696 [==============================] - ETA: 0s - loss: 0.2798 - acc: 0.9030 Epoch 418: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2798 - acc: 0.9030 - val_loss: 0.2930 - val_acc: 0.9008 Epoch 419/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2785 - acc: 0.9034 Epoch 419: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2785 - acc: 0.9035 - val_loss: 0.2908 - val_acc: 0.9020 Epoch 420/1000 696/696 [==============================] - ETA: 0s - loss: 0.2785 - acc: 0.9037 Epoch 420: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2785 - acc: 0.9037 - val_loss: 0.2916 - val_acc: 0.9005 Epoch 421/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2781 - acc: 0.9038 Epoch 421: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2780 - acc: 0.9039 - val_loss: 0.2918 - val_acc: 0.9010 Epoch 422/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2786 - acc: 0.9034 Epoch 422: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2786 - acc: 0.9035 - val_loss: 0.2904 - val_acc: 0.9016 Epoch 423/1000 696/696 [==============================] - ETA: 0s - loss: 0.2785 - acc: 0.9031 Epoch 423: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2785 - acc: 0.9031 - val_loss: 0.2900 - val_acc: 0.9012 Epoch 424/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2781 - acc: 0.9038 Epoch 424: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2781 - acc: 0.9038 - val_loss: 0.2910 - val_acc: 0.8999 Epoch 425/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2777 - acc: 0.9041 Epoch 425: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2776 - acc: 0.9041 - val_loss: 0.2904 - val_acc: 0.9025 Epoch 426/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2773 - acc: 0.9037 Epoch 426: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2773 - acc: 0.9037 - val_loss: 0.2919 - val_acc: 0.9006 Epoch 427/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2774 - acc: 0.9039 Epoch 427: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2774 - acc: 0.9040 - val_loss: 0.2899 - val_acc: 0.9015 Epoch 428/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2765 - acc: 0.9040 Epoch 428: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2765 - acc: 0.9039 - val_loss: 0.2921 - val_acc: 0.8999 Epoch 429/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2762 - acc: 0.9045 Epoch 429: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2762 - acc: 0.9045 - val_loss: 0.2906 - val_acc: 0.9009 Epoch 430/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2754 - acc: 0.9044 Epoch 430: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2753 - acc: 0.9044 - val_loss: 0.2905 - val_acc: 0.9008 Epoch 431/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2750 - acc: 0.9049 Epoch 431: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2750 - acc: 0.9048 - val_loss: 0.2899 - val_acc: 0.9009 Epoch 432/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2747 - acc: 0.9049 Epoch 432: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2746 - acc: 0.9049 - val_loss: 0.2900 - val_acc: 0.9006 Epoch 433/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2755 - acc: 0.9047 Epoch 433: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2755 - acc: 0.9047 - val_loss: 0.2885 - val_acc: 0.9006 Epoch 434/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2750 - acc: 0.9042 Epoch 434: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2750 - acc: 0.9042 - val_loss: 0.2894 - val_acc: 0.8997 Epoch 435/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2746 - acc: 0.9052 Epoch 435: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2748 - acc: 0.9052 - val_loss: 0.2905 - val_acc: 0.9011 Epoch 436/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2743 - acc: 0.9051 Epoch 436: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2744 - acc: 0.9050 - val_loss: 0.2909 - val_acc: 0.9013 Epoch 437/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2747 - acc: 0.9047 Epoch 437: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2747 - acc: 0.9047 - val_loss: 0.2901 - val_acc: 0.9007 Epoch 438/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2737 - acc: 0.9051 Epoch 438: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2737 - acc: 0.9051 - val_loss: 0.2895 - val_acc: 0.9025 Epoch 439/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2743 - acc: 0.9050 Epoch 439: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2742 - acc: 0.9049 - val_loss: 0.2893 - val_acc: 0.9015 Epoch 440/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2726 - acc: 0.9056 Epoch 440: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2727 - acc: 0.9056 - val_loss: 0.2895 - val_acc: 0.9015 Epoch 441/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2728 - acc: 0.9053 Epoch 441: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2729 - acc: 0.9052 - val_loss: 0.2884 - val_acc: 0.9025 Epoch 442/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2728 - acc: 0.9055 Epoch 442: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2730 - acc: 0.9054 - val_loss: 0.2889 - val_acc: 0.9011 Epoch 443/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2723 - acc: 0.9056 Epoch 443: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2723 - acc: 0.9057 - val_loss: 0.2872 - val_acc: 0.9030 Epoch 444/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2721 - acc: 0.9057 Epoch 444: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2721 - acc: 0.9057 - val_loss: 0.2876 - val_acc: 0.9025 Epoch 445/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2726 - acc: 0.9057 Epoch 445: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2726 - acc: 0.9057 - val_loss: 0.2887 - val_acc: 0.9020 Epoch 446/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2720 - acc: 0.9054 Epoch 446: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2720 - acc: 0.9054 - val_loss: 0.2882 - val_acc: 0.9014 Epoch 447/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2722 - acc: 0.9059 Epoch 447: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2721 - acc: 0.9060 - val_loss: 0.2878 - val_acc: 0.9020 Epoch 448/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2719 - acc: 0.9058 Epoch 448: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2719 - acc: 0.9058 - val_loss: 0.2884 - val_acc: 0.9013 Epoch 449/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2713 - acc: 0.9058 Epoch 449: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2714 - acc: 0.9058 - val_loss: 0.2874 - val_acc: 0.9023 Epoch 450/1000 696/696 [==============================] - ETA: 0s - loss: 0.2706 - acc: 0.9062 Epoch 450: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2706 - acc: 0.9062 - val_loss: 0.2885 - val_acc: 0.9022 Epoch 451/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2703 - acc: 0.9062 Epoch 451: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2703 - acc: 0.9062 - val_loss: 0.2886 - val_acc: 0.9005 Epoch 452/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2707 - acc: 0.9066 Epoch 452: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2707 - acc: 0.9066 - val_loss: 0.2883 - val_acc: 0.9004 Epoch 453/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2702 - acc: 0.9065 Epoch 453: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2702 - acc: 0.9065 - val_loss: 0.2878 - val_acc: 0.9025 Epoch 454/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2704 - acc: 0.9065 Epoch 454: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2704 - acc: 0.9065 - val_loss: 0.2867 - val_acc: 0.9030 Epoch 455/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2695 - acc: 0.9071 Epoch 455: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2695 - acc: 0.9071 - val_loss: 0.2889 - val_acc: 0.9003 Epoch 456/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2699 - acc: 0.9063 Epoch 456: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2700 - acc: 0.9062 - val_loss: 0.2878 - val_acc: 0.9013 Epoch 457/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2693 - acc: 0.9071 Epoch 457: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2692 - acc: 0.9071 - val_loss: 0.2874 - val_acc: 0.9021 Epoch 458/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2686 - acc: 0.9067 Epoch 458: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2687 - acc: 0.9067 - val_loss: 0.2879 - val_acc: 0.9024 Epoch 459/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2696 - acc: 0.9066 Epoch 459: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2695 - acc: 0.9066 - val_loss: 0.2864 - val_acc: 0.9024 Epoch 460/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2683 - acc: 0.9069 Epoch 460: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2683 - acc: 0.9069 - val_loss: 0.2873 - val_acc: 0.9030 Epoch 461/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2677 - acc: 0.9073 Epoch 461: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2678 - acc: 0.9073 - val_loss: 0.2875 - val_acc: 0.9030 Epoch 462/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2679 - acc: 0.9071 Epoch 462: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2678 - acc: 0.9072 - val_loss: 0.2876 - val_acc: 0.9020 Epoch 463/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2679 - acc: 0.9071 Epoch 463: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2680 - acc: 0.9072 - val_loss: 0.2869 - val_acc: 0.9017 Epoch 464/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2676 - acc: 0.9072 Epoch 464: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2676 - acc: 0.9072 - val_loss: 0.2861 - val_acc: 0.9026 Epoch 465/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2660 - acc: 0.9078 Epoch 465: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2661 - acc: 0.9078 - val_loss: 0.2861 - val_acc: 0.9021 Epoch 466/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2676 - acc: 0.9072 Epoch 466: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2675 - acc: 0.9072 - val_loss: 0.2853 - val_acc: 0.9033 Epoch 467/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2669 - acc: 0.9077 Epoch 467: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2669 - acc: 0.9077 - val_loss: 0.2869 - val_acc: 0.9022 Epoch 468/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2663 - acc: 0.9076 Epoch 468: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2663 - acc: 0.9077 - val_loss: 0.2865 - val_acc: 0.9011 Epoch 469/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2666 - acc: 0.9076 Epoch 469: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2665 - acc: 0.9076 - val_loss: 0.2855 - val_acc: 0.9041 Epoch 470/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2657 - acc: 0.9079 Epoch 470: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2658 - acc: 0.9079 - val_loss: 0.2848 - val_acc: 0.9034 Epoch 471/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2660 - acc: 0.9074 Epoch 471: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2659 - acc: 0.9074 - val_loss: 0.2842 - val_acc: 0.9030 Epoch 472/1000 696/696 [==============================] - ETA: 0s - loss: 0.2657 - acc: 0.9076 Epoch 472: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2657 - acc: 0.9076 - val_loss: 0.2859 - val_acc: 0.9034 Epoch 473/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2649 - acc: 0.9086 Epoch 473: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2648 - acc: 0.9086 - val_loss: 0.2843 - val_acc: 0.9046 Epoch 474/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2649 - acc: 0.9078 Epoch 474: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2650 - acc: 0.9077 - val_loss: 0.2864 - val_acc: 0.9011 Epoch 475/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2642 - acc: 0.9082 Epoch 475: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2643 - acc: 0.9081 - val_loss: 0.2853 - val_acc: 0.9030 Epoch 476/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2648 - acc: 0.9080 Epoch 476: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2649 - acc: 0.9080 - val_loss: 0.2843 - val_acc: 0.9030 Epoch 477/1000 696/696 [==============================] - ETA: 0s - loss: 0.2639 - acc: 0.9082 Epoch 477: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2639 - acc: 0.9082 - val_loss: 0.2871 - val_acc: 0.9011 Epoch 478/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2641 - acc: 0.9085 Epoch 478: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2641 - acc: 0.9085 - val_loss: 0.2857 - val_acc: 0.9038 Epoch 479/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2643 - acc: 0.9085 Epoch 479: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2643 - acc: 0.9085 - val_loss: 0.2834 - val_acc: 0.9041 Epoch 480/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2635 - acc: 0.9086 Epoch 480: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2635 - acc: 0.9087 - val_loss: 0.2850 - val_acc: 0.9037 Epoch 481/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2627 - acc: 0.9091 Epoch 481: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2627 - acc: 0.9091 - val_loss: 0.2846 - val_acc: 0.9038 Epoch 482/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2629 - acc: 0.9087 Epoch 482: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 15ms/step - loss: 0.2629 - acc: 0.9087 - val_loss: 0.2845 - val_acc: 0.9019 Epoch 483/1000 696/696 [==============================] - ETA: 0s - loss: 0.2631 - acc: 0.9084 Epoch 483: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2631 - acc: 0.9084 - val_loss: 0.2848 - val_acc: 0.9026 Epoch 484/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2627 - acc: 0.9091 Epoch 484: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2628 - acc: 0.9091 - val_loss: 0.2849 - val_acc: 0.9023 Epoch 485/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2621 - acc: 0.9087 Epoch 485: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2620 - acc: 0.9088 - val_loss: 0.2851 - val_acc: 0.9020 Epoch 486/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2626 - acc: 0.9089 Epoch 486: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2626 - acc: 0.9089 - val_loss: 0.2879 - val_acc: 0.9025 Epoch 487/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2630 - acc: 0.9088 Epoch 487: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2630 - acc: 0.9089 - val_loss: 0.2860 - val_acc: 0.9002 Epoch 488/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2616 - acc: 0.9093 Epoch 488: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2616 - acc: 0.9093 - val_loss: 0.2860 - val_acc: 0.9020 Epoch 489/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2609 - acc: 0.9096 Epoch 489: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2608 - acc: 0.9096 - val_loss: 0.2847 - val_acc: 0.9023 Epoch 490/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2610 - acc: 0.9095 Epoch 490: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2610 - acc: 0.9094 - val_loss: 0.2863 - val_acc: 0.9026 Epoch 491/1000 696/696 [==============================] - ETA: 0s - loss: 0.2601 - acc: 0.9094 Epoch 491: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2601 - acc: 0.9094 - val_loss: 0.2840 - val_acc: 0.9031 Epoch 492/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2610 - acc: 0.9095 Epoch 492: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2611 - acc: 0.9095 - val_loss: 0.2830 - val_acc: 0.9036 Epoch 493/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2604 - acc: 0.9098 Epoch 493: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2604 - acc: 0.9098 - val_loss: 0.2819 - val_acc: 0.9038 Epoch 494/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2596 - acc: 0.9098 Epoch 494: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2595 - acc: 0.9098 - val_loss: 0.2846 - val_acc: 0.9030 Epoch 495/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2607 - acc: 0.9097 Epoch 495: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2607 - acc: 0.9098 - val_loss: 0.2838 - val_acc: 0.9029 Epoch 496/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2601 - acc: 0.9101 Epoch 496: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2600 - acc: 0.9101 - val_loss: 0.2838 - val_acc: 0.9026 Epoch 497/1000 696/696 [==============================] - ETA: 0s - loss: 0.2594 - acc: 0.9099 Epoch 497: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2594 - acc: 0.9099 - val_loss: 0.2832 - val_acc: 0.9042 Epoch 498/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2596 - acc: 0.9098 Epoch 498: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2596 - acc: 0.9098 - val_loss: 0.2832 - val_acc: 0.9035 Epoch 499/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2585 - acc: 0.9102 Epoch 499: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2585 - acc: 0.9102 - val_loss: 0.2828 - val_acc: 0.9041 Epoch 500/1000 696/696 [==============================] - ETA: 0s - loss: 0.2590 - acc: 0.9101 Epoch 500: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2590 - acc: 0.9101 - val_loss: 0.2853 - val_acc: 0.9020 Epoch 501/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2582 - acc: 0.9107 Epoch 501: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2583 - acc: 0.9106 - val_loss: 0.2837 - val_acc: 0.9021 Epoch 502/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2577 - acc: 0.9106 Epoch 502: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2577 - acc: 0.9106 - val_loss: 0.2830 - val_acc: 0.9028 Epoch 503/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2587 - acc: 0.9099 Epoch 503: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2586 - acc: 0.9099 - val_loss: 0.2866 - val_acc: 0.9004 Epoch 504/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2582 - acc: 0.9105 Epoch 504: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2583 - acc: 0.9104 - val_loss: 0.2838 - val_acc: 0.9029 Epoch 505/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2581 - acc: 0.9104 Epoch 505: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2581 - acc: 0.9104 - val_loss: 0.2826 - val_acc: 0.9041 Epoch 506/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2578 - acc: 0.9107 Epoch 506: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2577 - acc: 0.9107 - val_loss: 0.2828 - val_acc: 0.9043 Epoch 507/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2577 - acc: 0.9105 Epoch 507: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2577 - acc: 0.9105 - val_loss: 0.2816 - val_acc: 0.9036 Epoch 508/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2573 - acc: 0.9109 Epoch 508: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2573 - acc: 0.9108 - val_loss: 0.2825 - val_acc: 0.9032 Epoch 509/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2581 - acc: 0.9106 Epoch 509: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2581 - acc: 0.9106 - val_loss: 0.2841 - val_acc: 0.9017 Epoch 510/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2567 - acc: 0.9108 Epoch 510: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2567 - acc: 0.9108 - val_loss: 0.2823 - val_acc: 0.9051 Epoch 511/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2563 - acc: 0.9111 Epoch 511: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2562 - acc: 0.9111 - val_loss: 0.2822 - val_acc: 0.9031 Epoch 512/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2559 - acc: 0.9112 Epoch 512: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2560 - acc: 0.9112 - val_loss: 0.2828 - val_acc: 0.9051 Epoch 513/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2562 - acc: 0.9111 Epoch 513: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2561 - acc: 0.9111 - val_loss: 0.2811 - val_acc: 0.9034 Epoch 514/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2559 - acc: 0.9113 Epoch 514: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2559 - acc: 0.9113 - val_loss: 0.2821 - val_acc: 0.9042 Epoch 515/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2563 - acc: 0.9112 Epoch 515: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2563 - acc: 0.9112 - val_loss: 0.2828 - val_acc: 0.9041 Epoch 516/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2558 - acc: 0.9112 Epoch 516: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2558 - acc: 0.9112 - val_loss: 0.2819 - val_acc: 0.9041 Epoch 517/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2547 - acc: 0.9114 Epoch 517: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2548 - acc: 0.9114 - val_loss: 0.2823 - val_acc: 0.9037 Epoch 518/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2553 - acc: 0.9114 Epoch 518: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2553 - acc: 0.9114 - val_loss: 0.2816 - val_acc: 0.9039 Epoch 519/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2542 - acc: 0.9117 Epoch 519: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2542 - acc: 0.9118 - val_loss: 0.2809 - val_acc: 0.9042 Epoch 520/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2544 - acc: 0.9118 Epoch 520: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2544 - acc: 0.9118 - val_loss: 0.2807 - val_acc: 0.9052 Epoch 521/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2548 - acc: 0.9114 Epoch 521: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2548 - acc: 0.9114 - val_loss: 0.2814 - val_acc: 0.9038 Epoch 522/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2542 - acc: 0.9115 Epoch 522: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2541 - acc: 0.9115 - val_loss: 0.2834 - val_acc: 0.9025 Epoch 523/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2547 - acc: 0.9118 Epoch 523: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2548 - acc: 0.9118 - val_loss: 0.2829 - val_acc: 0.9016 Epoch 524/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2537 - acc: 0.9120 Epoch 524: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2538 - acc: 0.9119 - val_loss: 0.2807 - val_acc: 0.9045 Epoch 525/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2543 - acc: 0.9117 Epoch 525: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2543 - acc: 0.9117 - val_loss: 0.2814 - val_acc: 0.9034 Epoch 526/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2532 - acc: 0.9121 Epoch 526: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2532 - acc: 0.9121 - val_loss: 0.2809 - val_acc: 0.9048 Epoch 527/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2528 - acc: 0.9123 Epoch 527: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2527 - acc: 0.9123 - val_loss: 0.2811 - val_acc: 0.9034 Epoch 528/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2529 - acc: 0.9119 Epoch 528: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2529 - acc: 0.9119 - val_loss: 0.2819 - val_acc: 0.9046 Epoch 529/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2525 - acc: 0.9124 Epoch 529: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2524 - acc: 0.9124 - val_loss: 0.2809 - val_acc: 0.9052 Epoch 530/1000 696/696 [==============================] - ETA: 0s - loss: 0.2523 - acc: 0.9128 Epoch 530: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2523 - acc: 0.9128 - val_loss: 0.2807 - val_acc: 0.9041 Epoch 531/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2520 - acc: 0.9125 Epoch 531: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2519 - acc: 0.9125 - val_loss: 0.2814 - val_acc: 0.9042 Epoch 532/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2520 - acc: 0.9125 Epoch 532: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2521 - acc: 0.9124 - val_loss: 0.2807 - val_acc: 0.9041 Epoch 533/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2518 - acc: 0.9122 Epoch 533: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2519 - acc: 0.9122 - val_loss: 0.2797 - val_acc: 0.9054 Epoch 534/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2525 - acc: 0.9122 Epoch 534: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2524 - acc: 0.9123 - val_loss: 0.2821 - val_acc: 0.9035 Epoch 535/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2510 - acc: 0.9130 Epoch 535: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2509 - acc: 0.9131 - val_loss: 0.2803 - val_acc: 0.9046 Epoch 536/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2512 - acc: 0.9127 Epoch 536: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2512 - acc: 0.9127 - val_loss: 0.2804 - val_acc: 0.9056 Epoch 537/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2507 - acc: 0.9133 Epoch 537: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2507 - acc: 0.9133 - val_loss: 0.2812 - val_acc: 0.9052 Epoch 538/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2499 - acc: 0.9133 Epoch 538: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2499 - acc: 0.9133 - val_loss: 0.2809 - val_acc: 0.9042 Epoch 539/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2516 - acc: 0.9128 Epoch 539: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2515 - acc: 0.9128 - val_loss: 0.2825 - val_acc: 0.9020 Epoch 540/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2508 - acc: 0.9128 Epoch 540: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2507 - acc: 0.9128 - val_loss: 0.2806 - val_acc: 0.9031 Epoch 541/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2495 - acc: 0.9132 Epoch 541: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2495 - acc: 0.9132 - val_loss: 0.2819 - val_acc: 0.9036 Epoch 542/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2500 - acc: 0.9133 Epoch 542: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2500 - acc: 0.9133 - val_loss: 0.2809 - val_acc: 0.9040 Epoch 543/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2491 - acc: 0.9135 Epoch 543: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2491 - acc: 0.9135 - val_loss: 0.2823 - val_acc: 0.9040 Epoch 544/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2493 - acc: 0.9134 Epoch 544: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2492 - acc: 0.9135 - val_loss: 0.2798 - val_acc: 0.9044 Epoch 545/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2490 - acc: 0.9137 Epoch 545: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2489 - acc: 0.9137 - val_loss: 0.2804 - val_acc: 0.9047 Epoch 546/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2483 - acc: 0.9138 Epoch 546: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2482 - acc: 0.9139 - val_loss: 0.2794 - val_acc: 0.9047 Epoch 547/1000 696/696 [==============================] - ETA: 0s - loss: 0.2488 - acc: 0.9139 Epoch 547: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2488 - acc: 0.9139 - val_loss: 0.2796 - val_acc: 0.9053 Epoch 548/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2490 - acc: 0.9133 Epoch 548: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2490 - acc: 0.9133 - val_loss: 0.2782 - val_acc: 0.9052 Epoch 549/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2485 - acc: 0.9140 Epoch 549: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2484 - acc: 0.9140 - val_loss: 0.2789 - val_acc: 0.9051 Epoch 550/1000 694/696 [============================>.] - ETA: 0s - loss: 0.2479 - acc: 0.9140 Epoch 550: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2479 - acc: 0.9141 - val_loss: 0.2804 - val_acc: 0.9056 Epoch 551/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2475 - acc: 0.9138 Epoch 551: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2476 - acc: 0.9138 - val_loss: 0.2798 - val_acc: 0.9056 Epoch 552/1000 695/696 [============================>.] - ETA: 0s - loss: 0.2479 - acc: 0.9142 Epoch 552: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2478 - acc: 0.9142 - val_loss: 0.2787 - val_acc: 0.9045 Epoch 553/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2477 - acc: 0.9137 Epoch 553: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2476 - acc: 0.9138 - val_loss: 0.2809 - val_acc: 0.9051 Epoch 554/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2478 - acc: 0.9142 Epoch 554: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2477 - acc: 0.9142 - val_loss: 0.2795 - val_acc: 0.9054 Epoch 555/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2475 - acc: 0.9138 Epoch 555: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2475 - acc: 0.9138 - val_loss: 0.2785 - val_acc: 0.9044 Epoch 556/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2464 - acc: 0.9146 Epoch 556: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2464 - acc: 0.9146 - val_loss: 0.2809 - val_acc: 0.9042 Epoch 557/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2468 - acc: 0.9141 Epoch 557: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2467 - acc: 0.9141 - val_loss: 0.2795 - val_acc: 0.9046 Epoch 558/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2469 - acc: 0.9144 Epoch 558: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2469 - acc: 0.9144 - val_loss: 0.2796 - val_acc: 0.9057 Epoch 559/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2465 - acc: 0.9146 Epoch 559: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2465 - acc: 0.9146 - val_loss: 0.2792 - val_acc: 0.9047 Epoch 560/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2468 - acc: 0.9142 Epoch 560: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2468 - acc: 0.9142 - val_loss: 0.2804 - val_acc: 0.9055 Epoch 561/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2458 - acc: 0.9149 Epoch 561: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2458 - acc: 0.9149 - val_loss: 0.2794 - val_acc: 0.9054 Epoch 562/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2463 - acc: 0.9147 Epoch 562: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2463 - acc: 0.9147 - val_loss: 0.2805 - val_acc: 0.9042 Epoch 563/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2457 - acc: 0.9147 Epoch 563: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2457 - acc: 0.9146 - val_loss: 0.2780 - val_acc: 0.9054 Epoch 564/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2458 - acc: 0.9150 Epoch 564: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2458 - acc: 0.9149 - val_loss: 0.2810 - val_acc: 0.9054 Epoch 565/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2458 - acc: 0.9146 Epoch 565: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2458 - acc: 0.9146 - val_loss: 0.2794 - val_acc: 0.9057 Epoch 566/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2454 - acc: 0.9149 Epoch 566: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2454 - acc: 0.9149 - val_loss: 0.2776 - val_acc: 0.9064 Epoch 567/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2445 - acc: 0.9150 Epoch 567: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2445 - acc: 0.9150 - val_loss: 0.2773 - val_acc: 0.9044 Epoch 568/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2445 - acc: 0.9154 Epoch 568: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2444 - acc: 0.9154 - val_loss: 0.2798 - val_acc: 0.9055 Epoch 569/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2442 - acc: 0.9155 Epoch 569: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2443 - acc: 0.9154 - val_loss: 0.2798 - val_acc: 0.9056 Epoch 570/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2442 - acc: 0.9150 Epoch 570: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2442 - acc: 0.9150 - val_loss: 0.2774 - val_acc: 0.9064 Epoch 571/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2434 - acc: 0.9157 Epoch 571: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2435 - acc: 0.9157 - val_loss: 0.2795 - val_acc: 0.9057 Epoch 572/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2436 - acc: 0.9154 Epoch 572: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2437 - acc: 0.9154 - val_loss: 0.2792 - val_acc: 0.9049 Epoch 573/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2442 - acc: 0.9153 Epoch 573: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2443 - acc: 0.9153 - val_loss: 0.2777 - val_acc: 0.9068 Epoch 574/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2442 - acc: 0.9153 Epoch 574: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2442 - acc: 0.9153 - val_loss: 0.2794 - val_acc: 0.9053 Epoch 575/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2441 - acc: 0.9153 Epoch 575: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2441 - acc: 0.9154 - val_loss: 0.2776 - val_acc: 0.9053 Epoch 576/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2434 - acc: 0.9153 Epoch 576: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2434 - acc: 0.9153 - val_loss: 0.2778 - val_acc: 0.9072 Epoch 577/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2428 - acc: 0.9158 Epoch 577: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2427 - acc: 0.9159 - val_loss: 0.2773 - val_acc: 0.9070 Epoch 578/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2419 - acc: 0.9160 Epoch 578: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2419 - acc: 0.9160 - val_loss: 0.2799 - val_acc: 0.9057 Epoch 579/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2431 - acc: 0.9156 Epoch 579: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2431 - acc: 0.9155 - val_loss: 0.2791 - val_acc: 0.9043 Epoch 580/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2420 - acc: 0.9157 Epoch 580: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2419 - acc: 0.9157 - val_loss: 0.2780 - val_acc: 0.9059 Epoch 581/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2418 - acc: 0.9160 Epoch 581: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2418 - acc: 0.9160 - val_loss: 0.2785 - val_acc: 0.9055 Epoch 582/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2422 - acc: 0.9160 Epoch 582: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2422 - acc: 0.9160 - val_loss: 0.2770 - val_acc: 0.9065 Epoch 583/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2416 - acc: 0.9160 Epoch 583: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2416 - acc: 0.9160 - val_loss: 0.2773 - val_acc: 0.9062 Epoch 584/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2417 - acc: 0.9164 Epoch 584: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2418 - acc: 0.9164 - val_loss: 0.2772 - val_acc: 0.9062 Epoch 585/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2415 - acc: 0.9156 Epoch 585: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2415 - acc: 0.9156 - val_loss: 0.2755 - val_acc: 0.9062 Epoch 586/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2417 - acc: 0.9159 Epoch 586: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2416 - acc: 0.9159 - val_loss: 0.2766 - val_acc: 0.9058 Epoch 587/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2405 - acc: 0.9162 Epoch 587: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2406 - acc: 0.9161 - val_loss: 0.2785 - val_acc: 0.9064 Epoch 588/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2407 - acc: 0.9165 Epoch 588: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2406 - acc: 0.9165 - val_loss: 0.2764 - val_acc: 0.9070 Epoch 589/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2405 - acc: 0.9163 Epoch 589: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2405 - acc: 0.9162 - val_loss: 0.2788 - val_acc: 0.9063 Epoch 590/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2402 - acc: 0.9168 Epoch 590: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2403 - acc: 0.9168 - val_loss: 0.2767 - val_acc: 0.9065 Epoch 591/1000 696/696 [==============================] - ETA: 0s - loss: 0.2400 - acc: 0.9167 Epoch 591: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2400 - acc: 0.9167 - val_loss: 0.2786 - val_acc: 0.9059 Epoch 592/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2407 - acc: 0.9165 Epoch 592: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2406 - acc: 0.9165 - val_loss: 0.2784 - val_acc: 0.9056 Epoch 593/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2409 - acc: 0.9164 Epoch 593: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2408 - acc: 0.9165 - val_loss: 0.2784 - val_acc: 0.9047 Epoch 594/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2387 - acc: 0.9172 Epoch 594: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2387 - acc: 0.9172 - val_loss: 0.2757 - val_acc: 0.9062 Epoch 595/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2400 - acc: 0.9164 Epoch 595: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2399 - acc: 0.9163 - val_loss: 0.2782 - val_acc: 0.9055 Epoch 596/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2385 - acc: 0.9171 Epoch 596: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2386 - acc: 0.9171 - val_loss: 0.2761 - val_acc: 0.9068 Epoch 597/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2388 - acc: 0.9172 Epoch 597: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2389 - acc: 0.9172 - val_loss: 0.2779 - val_acc: 0.9062 Epoch 598/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2384 - acc: 0.9171 Epoch 598: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 12s 17ms/step - loss: 0.2384 - acc: 0.9171 - val_loss: 0.2770 - val_acc: 0.9066 Epoch 599/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2389 - acc: 0.9171 Epoch 599: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2388 - acc: 0.9171 - val_loss: 0.2784 - val_acc: 0.9062 Epoch 600/1000 693/696 [============================>.] - ETA: 0s - loss: 0.2373 - acc: 0.9175 Epoch 600: saving model to /project/nico/Data/data_Paper_OGLE/7_01_2024/training_softmax_batchBalanced_Number_M/cp.ckpt 696/696 [==============================] - 11s 16ms/step - loss: 0.2373 - acc: 0.9175 - val_loss: 0.2761 - val_acc: 0.9060 Epoch 600: early stopping
Monsalves-Gonzalez-NREPO_NAMEPaper_OGLEPATH_START.@Paper_OGLE_extracted@Paper_OGLE-main@.ipynb_checkpoints@puntopi-checkpoint.ipynb@.PATH_END.py
{ "filename": "test_scene.py", "repo_name": "rennehan/yt-swift", "repo_path": "yt-swift_extracted/yt-swift-main/yt/visualization/volume_rendering/tests/test_scene.py", "type": "Python" }
import os import shutil import tempfile from unittest import TestCase import numpy as np from yt.testing import assert_fname, fake_random_ds, fake_vr_orientation_test_ds from yt.visualization.volume_rendering.api import ( create_scene, create_volume_source, volume_render, ) def setup(): """Test specific setup.""" from yt.config import ytcfg ytcfg["yt", "internals", "within_testing"] = True class RotationTest(TestCase): # This toggles using a temporary directory. Turn off to examine images. use_tmpdir = True def setUp(self): if self.use_tmpdir: self.curdir = os.getcwd() # Perform I/O in safe place instead of yt main dir self.tmpdir = tempfile.mkdtemp() os.chdir(self.tmpdir) else: self.curdir, self.tmpdir = None, None def tearDown(self): if self.use_tmpdir: os.chdir(self.curdir) shutil.rmtree(self.tmpdir) def test_rotation(self): ds = fake_random_ds(32) ds2 = fake_random_ds(32) dd = ds.sphere(ds.domain_center, ds.domain_width[0] / 2) dd2 = ds2.sphere(ds2.domain_center, ds2.domain_width[0] / 2) im, sc = volume_render(dd, field=("gas", "density")) im.write_png("test.png") vol = sc.get_source(0) tf = vol.transfer_function tf.clear() mi, ma = dd.quantities.extrema(("gas", "density")) mi = np.log10(mi) ma = np.log10(ma) mi_bound = ((ma - mi) * (0.10)) + mi ma_bound = ((ma - mi) * (0.90)) + mi tf.map_to_colormap(mi_bound, ma_bound, scale=0.01, colormap="Blues_r") vol2 = create_volume_source(dd2, field=("gas", "density")) sc.add_source(vol2) tf = vol2.transfer_function tf.clear() mi, ma = dd2.quantities.extrema(("gas", "density")) mi = np.log10(mi) ma = np.log10(ma) mi_bound = ((ma - mi) * (0.10)) + mi ma_bound = ((ma - mi) * (0.90)) + mi tf.map_to_colormap(mi_bound, ma_bound, scale=0.01, colormap="Reds_r") fname = "test_scene.pdf" sc.save(fname, sigma_clip=6.0) assert_fname(fname) fname = "test_rot.png" sc.camera.pitch(np.pi) sc.render() sc.save(fname, sigma_clip=6.0, render=False) assert_fname(fname) def test_annotations(): from matplotlib.image import imread curdir = os.getcwd() tmpdir = tempfile.mkdtemp() os.chdir(tmpdir) ds = fake_vr_orientation_test_ds(N=16) sc = create_scene(ds) sc.annotate_axes() sc.annotate_domain(ds) sc.render() # ensure that there are actually red, green, blue, and white pixels # in the image. see Issue #1595 im = sc._last_render for c in ([1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [1, 1, 1, 1]): assert np.where((im == c).all(axis=-1))[0].shape[0] > 0 sc[0].tfh.tf.add_layers(10, colormap="cubehelix") sc.save_annotated( "test_scene_annotated.png", text_annotate=[[(0.1, 1.05), "test_string"]], ) image = imread("test_scene_annotated.png") assert image.shape == sc.camera.resolution + (4,) os.chdir(curdir) shutil.rmtree(tmpdir)
rennehanREPO_NAMEyt-swiftPATH_START.@yt-swift_extracted@yt-swift-main@yt@visualization@volume_rendering@tests@test_scene.py@.PATH_END.py
{ "filename": "test_wap.py", "repo_name": "crossbario/crossbar", "repo_path": "crossbar_extracted/crossbar-master/crossbar/webservice/test/test_wap.py", "type": "Python" }
##################################################################################### # # Copyright (c) typedef int GmbH # SPDX-License-Identifier: EUPL-1.2 # ##################################################################################### import os from twisted.trial.unittest import TestCase from werkzeug.routing import Map, Rule from jinja2 import Environment, FileSystemLoader from jinja2.environment import Template from crossbar.webservice.wap import WapResource class WapTestCase(TestCase): """ Tests for :class:`crossbar.webservice.wap.WapResource`. """ _WAP1 = { "type": "wap", "templates": "../templates", "sandbox": True, "routes": [{ "path": "/greeting/<name>", "method": "GET", "call": "com.example.greeting", "render": "greeting.html" }, { "path": "/product/<int:product_id>/<report>/<int:year>/<int:month>", "method": "GET", "call": "com.example.get_product_report", "render": "product_report.html" }], "wamp": { "realm": "realm1", "authrole": "anonymous" } } def setUp(self): self._templates_dir = os.path.join(os.path.dirname(__file__), 'templates') self._jinja_env = Environment(loader=FileSystemLoader(self._templates_dir), autoescape=True) def test_map_adapter(self): # https://werkzeug.palletsprojects.com/en/2.1.x/routing/#werkzeug.routing.MapAdapter.match test_map = Map() url = '/reports/product/<int:product_id>/<report>/<int:year>/<int:month>' endpoint = 'endpoint1' rule = Rule(url, methods=['GET'], endpoint=endpoint) test_map.add(rule) test_adapter = test_map.bind('localhost', '/') test_url = '/reports/product/123/total/2016/12' test_data = {'product_id': 123, 'report': 'total', 'year': 2016, 'month': 12} _endpoint, _kwargs = test_adapter.match(test_url, method='GET', query_args={}) self.assertEqual(_endpoint, endpoint) self.assertEqual(_kwargs, test_data) def test_map_adapter_factory(self): map_adapter = WapResource._create_map_adapter(self._jinja_env, self._WAP1, 'localhost', 'reports') test_url = '/reports/product/123/total/2016/12' test_data = {'product_id': 123, 'report': 'total', 'year': 2016, 'month': 12} _endpoint, _kwargs = map_adapter.match(test_url, method='GET', query_args={}) # ('com.example.get_product_report', <Template 'product_report.html'>) != 'localhost' self.assertEqual(_endpoint[0], 'com.example.get_product_report') self.assertIsInstance(_endpoint[1], Template) self.assertEqual(_kwargs, test_data)
crossbarioREPO_NAMEcrossbarPATH_START.@crossbar_extracted@crossbar-master@crossbar@webservice@test@test_wap.py@.PATH_END.py
{ "filename": "Plots.ipynb", "repo_name": "ricardoclandim/NIRVANA", "repo_path": "NIRVANA_extracted/NIRVANA-master/Plots.ipynb", "type": "Jupyter Notebook" }
```python import matplotlib.pyplot as plt import numpy as np import multiprocessing as mp from glob import glob from tqdm import tqdm_notebook as tqdm from nirvana.data.manga import MaNGAGasKinematics, MaNGAStellarKinematics from nirvana.models.higher_order import bisym_model from nirvana.util.fits_prep import fileprep from nirvana.models.geometry import projected_polar from nirvana.util.fits_prep import makealltable from mpl_toolkits.axes_grid1 import make_axes_locatable as mal from matplotlib.lines import Line2D from matplotlib.cm import ScalarMappable from matplotlib.colors import Normalize, LinearSegmentedColormap from scipy.signal import savgol_filter %matplotlib notebook ``` ```python args, resdict = fileprep('/media/brian/bdigiorg/nirvana/lux/barred/sample/nirvana_8078-12703_Gas.fits', rootdir='/media/brian/bdigiorg/manga/spectro/') ``` UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/8078/images/12703.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/redux/DR17/8078/stack/manga-8078-12703-LOGCUBE.fits.gz ... Done Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/8078/12703/manga-8078-12703-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 7.5 +/- 0.0 Inclination: 30.5 +/- 0.1 Systemic Velocity: 3.3 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 159.3 +/- 0.1 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 2773 Velocity chi-square: 145872.16459275514 Reduced chi-square: 52.737586620663464 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 7.5 +/- 0.0 Inclination: 30.5 +/- 0.1 Systemic Velocity: 3.3 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 159.3 +/- 0.1 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 2772 Velocity chi-square: 145870.79628685315 Reduced chi-square: 52.756165022370034 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: 7.5 +/- 0.0 Inclination: 28.4 +/- 0.1 Systemic Velocity: 2.1 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 159.3 +/- 0.1 RC: Scale: 3.7 +/- 0.0 ---------- Velocity measurements: 2261 Velocity chi-square: 121157.43749039598 Reduced chi-square: 53.75219054587222 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide ```python resdict['pa'] = 0 pabs = [0,45,90,180] plt.figure(figsize=(4,5.5)) for i in range(len(pabs)): plt.subplot(2,2,i+1) resdict['pab'] = pabs[i] velmodel, sigmodel = bisym_model(args,resdict) im = plt.imshow(args.kin.remap(velmodel), cmap='Spectral') plt.title(f'$\phi - \phi_b = {{{pabs[i]}}}^\circ$') plt.tick_params(left=False, labelleft=False, bottom=False, labelbottom=False) cax = mal(plt.gca()).append_axes('bottom', size='5%', pad=0) plt.colorbar(im, cax=cax, orientation='horizontal',label='km/s') plt.tight_layout() plt.savefig('relpabcomparison.pdf',format='pdf') ``` --------------------------------------------------------------------------- NameError Traceback (most recent call last) /tmp/ipykernel_188833/544502730.py in <module> ----> 1 resdict['pa'] = 0 2 pabs = [0,45,90,180] 3 plt.figure(figsize=(4,5.5)) 4 for i in range(len(pabs)): 5 plt.subplot(2,2,i+1) NameError: name 'resdict' is not defined ```python def projectedpab(pab, pa, inc, degrees=True, relpab=False): _pab, _pa, _inc = np.radians((pab, pa, inc)) if degrees else (pab, pa, inc) adjust = _pab > np.pi if not relpab: _pab -= _pa projpab = np.arctan(np.tan(_pab) * np.cos(_inc)) + _pa return (np.degrees(projpab) % 180 + 180*adjust) % 360 angs = [] pabs = [] pabes = [] deprojs = [] vts = [] v2ts = [] v2rs = [] #margs, mresdict = fileprep('data/lux/fullrun/nirvana_8078-12703_Gas.fits') for i,ang in enumerate(np.arange(0,181,15)): try: f = fits.open(f'/media/brian/bdigiorg/nirvana/lux/mocks/pabbias/807812703fixednewpab{ang}.fits') pabs += [f[1].data['pab'][0]] pabes += [f[1].data['pabu'][0] - f[1].data['pabl'][0]] angs += [ang] vts += [f[1].data['vt'][~f[1].data['velmask']]] v2ts += [f[1].data['v2t'][~f[1].data['velmask']]] v2rs += [f[1].data['v2r'][~f[1].data['velmask']]] pab = projectedpab(f[1].data['pab'][0], f[1].data['pa'][0], f[1].data['inc'][0], relpab=True) deprojs += [pab] print(f'{ang}: deproj: {pab} proj: {f[1].data["pab"]} pa: {f[1].data["pa"]} inc: {f[1].data["inc"]}') #plt.figure(figsize=(12,4)) #plt.subplot(131) #plt.suptitle(ang) #plt.imshow(f['vel'].data, cmap = 'RdBu') #plt.subplot(132) #plt.imshow(f['vel_model'].data, cmap='RdBu') #plt.subplot(133) #plt.imshow(f['vel'].data - f['vel_model'].data, cmap='RdBu') #plt.colorbar() #plt.tight_layout() except Exception: print(f'{ang}: failed') ``` 0: deproj: 149.84148597717285 proj: [141.84021] pa: [0.34956843] inc: [41.4212] 15: deproj: 23.820663452148438 proj: [26.746199] pa: [3.4751008] inc: [42.624626] 30: deproj: 46.19218444824219 proj: [50.402943] pa: [3.7508006] inc: [40.850357] 45: deproj: 62.48583984375 proj: [65.26833] pa: [3.465709] inc: [39.89614] 60: deproj: 73.7020034790039 proj: [74.75807] pa: [3.0712361] inc: [39.18797] 75: deproj: 82.3406753540039 proj: [81.878075] pa: [2.679419] inc: [38.529835] 90: deproj: 89.67969512939453 proj: [87.88167] pa: [2.3622835] inc: [37.866306] 105: deproj: 95.81602478027344 proj: [92.96744] pa: [2.0931454] inc: [37.186337] 120: deproj: 102.56729125976562 proj: [98.67598] pa: [1.8057312] inc: [36.597397] 135: deproj: 109.554931640625 proj: [104.88458] pa: [1.349601] inc: [36.083893] 150: failed 165: deproj: 143.36630249023438 proj: [137.54152] pa: [359.7944] inc: [36.236855] 180: deproj: 179.38037538528442 proj: [179.01633] pa: [0.08559021] inc: [44.202393] ```python plt.figure(figsize=(3.5,3.5)) #plt.errorbar(angs, pabs, yerr=pabes, marker='.', ls='-', c='olivedrab', label='In plane') plt.errorbar(angs, deprojs, yerr=pabes, marker='.', ls='-', c='olivedrab', label='In plane') #plt.legend() plt.plot(angs, angs, 'k:', lw=1) plt.xlabel('Input Relative PA (deg)') plt.ylabel('Output Relative PA (deg)') plt.gca().set_aspect(1) plt.xlim((-5,185)) plt.ylim((-5,185)) plt.tight_layout() plt.savefig('pabbias.pdf', format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="350"> ```python fs = glob('/media/brian/bdigiorg/nirvana/lux/barred/sample/*Gas*fits') pas = np.zeros(len(fs)) pabs = np.zeros(len(fs)) pabus = np.zeros(len(fs)) pabes = np.zeros(len(fs)) pabls = np.zeros(len(fs)) incs = np.zeros(len(fs)) deprojs = np.zeros(len(fs)) vts = [] v2ts = [] v2rs = [] pis = [] ids = [] for i in tqdm(range(len(fs))): with fits.open(fs[i]) as f: pas[i] = f[1].data['pa'] pabs[i] = f[1].data['pab'] pabus[i] = f[1].data['pabu'] pabls[i] = f[1].data['pabl'] pabes += [f[1].data['pabu'][0] - f[1].data['pabl'][0]] incs[i] = f[1].data['inc'] deprojs[i] = projectedpab(pabs[i], pas[i], incs[i], relpab=False) pis += [f[0].header['plateifu']] ids += [f[0].header['mangaid']] vts += [f[1].data['vt'][~f[1].data['velmask']]] v2ts += [f[1].data['v2t'][~f[1].data['velmask']]] v2rs += [f[1].data['v2r'][~f[1].data['velmask']]] ``` TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0 Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook` 0%| | 0/1118 [00:00<?, ?it/s] ```python plt.figure(figsize=(3.5,2)) diffs = (np.array(deprojs)) % 360 hist, bins, plot = plt.hist(np.abs(180-diffs), bins=30, density=True, range=(0,180), color='olivedrab') #[plt.axvline(v, c='k', ls='--', lw=1) for v in [0,90,180,270,360]] plt.xticks([0,45,90,135,180]) plt.xlabel('Relative PA (deg)') plt.tight_layout() plt.savefig('relpabhist.pdf', format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="350"> ```python incbins = [15,30,45,60,75] plt.figure(figsize=(3.5,5)) for i in range(len(incbins)-1): plt.subplot(4,1,i+1) cut = (incs > incbins[i]) & (incs < incbins[i+1]) print(f'{incbins[i]}-{incbins[i+1]}: {cut.sum()}') absdiffs = np.abs(180 - ((deprojs[cut]) % 360)) plt.hist(absdiffs, bins=30, density=True, range=(0,180), color='olivedrab') #plt.hist(relgz[cut], bins=30, histtype='step', color='k', density=True, label='GZ') #[plt.axvline(v, c='.5', ls='--', lw=1) for v in [0,90,180]] plt.text(.74,.8,f'$i={{{incbins[i]}}}-{{{incbins[i+1]}}}^\circ$', transform=plt.gca().transAxes, horizontalalignment='center', fontsize=12) plt.xticks([0,45,90,135,180]) plt.tick_params(labelbottom=False, direction='in') plt.ylim((0,.018)) plt.tick_params(labelbottom=True, direction='in') plt.xlabel('Relative PA (deg)') plt.tight_layout(h_pad=-1) plt.savefig('relpabinchists.pdf', format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="350"> 15-30: 82 30-45: 319 45-60: 423 60-75: 278 ```python def gzbarang(gz,plot=False, returncen=False): bar = gz[4].data xx = np.linspace(0,bar.shape[0],bar.shape[0]) yy = np.linspace(0,bar.shape[1],bar.shape[1]) x,y = np.meshgrid(xx,yy) xcen = np.average(x, weights=bar) ycen = np.average(y, weights=bar) x -= xcen y -= ycen r = np.sqrt(x**2 + y**2) th = (np.degrees(np.arctan2(y,x))) % 180 degs = np.linspace(0,180,181) tots = np.zeros(180) for i in range(180): cut = (th > degs[i]) & (th < degs[i+1]) tots[i] = np.sum(bar[cut]) smoothtots = savgol_filter(tots, 19, 2) maxbin = degs[np.argmax(smoothtots)] centtots = np.zeros(180) centdegs = (degs-maxbin) for i in range(180): cut = ((th-maxbin)%180 > degs[i]) & ((th-maxbin)%180 < degs[i+1]) centtots[i] = np.sum(bar[cut]) cen = (np.average((degs[:-1]+90)%180 - 90, weights=centtots)) pab = (maxbin + cen + 90) % 180 r = np.sqrt(x**2 + y**2) th = np.degrees(np.arctan2(y,x)) #plt.figure(figsize=(8,8)) #plt.subplot(221) #plt.imshow(r) #plt.subplot(222) #plt.imshow(th) major = ((th-95)%180 < pab) & ((th-85)%180 > pab) * (bar > .2*len(gz[10].data)) minor = ((th-5)%180 < pab) & ((th+5)%180 > pab) * (bar > .2*len(gz[10].data)) #plt.subplot(223) #plt.imshow(major) #plt.subplot(224) #plt.imshow(minor) barlength = np.max(r[major]) barwidth = np.max(r[minor]) if returncen: return pab, (xcen, ycen), barlength, barwidth return pab, (xcen, ycen), tots, smoothtots, maxbin, centtots, cen def prepfiles(plate, ifu, stellar=False,dir='barred',root='/media/brian/bdigiorg/'): vftype = 'Stars' if stellar else 'Gas' f = fits.open(f'/media/brian/bdigiorg/nirvana/lux/{dir}/nirvana_{plate}-{ifu}_{vftype}.fits') maps = fits.open(f'{root}/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/{plate}/{ifu}/manga-{plate}-{ifu}-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz') projpab = projectedpab(f[1].data['pab'], f[1].data['pa'], f[1].data['inc']) gz = fits.open(glob(f'{root}/GZ3D/gz3d_{f[0].header["mangaid"]}*.fits.gz')[0]) drpall = fits.open(f'{root}/manga/spectro/redux/DR17/drpall-v3_1_1.fits')[1].data drp = drpall[drpall['plateifu'] == f'{plate}-{ifu}'] d = {} for k in ['f','maps','gz','projpab','drp']: exec(f'd["{k}"] = {k}') return d plate, ifu, vftype = (8078,12703,'Gas') fname = f'data/lux/{dir}/nirvana_{plate}-{ifu}_{vftype}.fits' d = prepfiles(plate,ifu,vftype=='Stars',dir='barred/sample/') for i in range(len(d['gz'])): d['gz'][i].data = np.flip(d['gz'][i].data, 0) drpall = fits.open('/media/brian/bdigiorg/manga/spectro/redux/DR17/drpall-v3_1_1.fits')[1].data drp = drpall[drpall['plateifu']==f'{plate}-{ifu}'] vel = np.ma.array(d['maps']['emline_gvel'].data[0], mask=d['maps']['emline_gvel_mask'].data[0]) nang = d['f'][1].data['pab'] ncen = (d['f'][1].data['xc'], d['f'][1].data['yc']) ppa = drp['nsa_elpetro_phi'] f = plt.figure(figsize=(3.5,6)) gs = f.add_gridspec(3,1,height_ratios=[2,1,1], hspace=.1, top=1, bottom=.07) #plt.subplot(211) ax1 = f.add_subplot(gs[0]) plt.imshow(d['gz'][0].data, origin='lower') plt.tick_params(left=None, bottom=None, labelleft=None, labelbottom=None) bar = d['gz'][4].data xx = np.linspace(0,bar.shape[0],bar.shape[0]) yy = np.linspace(0,bar.shape[1],bar.shape[1]) x,y = np.meshgrid(xx,yy) if bar.any(): gzang, gzcen, tots, smoothtots, maxbin, centtots, cen = gzbarang(d['gz'])#, returncen=True) xcen = np.average(x, weights=bar) ycen = np.average(y, weights=bar) x -= xcen y -= ycen gzpab = gzang npab = d['projpab'] gzpa = ppa npa = d['f'][1].data['pa'] plt.contour(d['gz'][4].data,cmap='Greens',levels=2, linestyles=':', alpha=1, linewidths=1) plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(gzpab - 90)) + gzcen[1], 'olivedrab', label='GZ:3D') plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(npab - 90)) + gzcen[1], 'w--', label='Nirvana') plt.plot(*gzcen, 'o', c='olivedrab') else: xcen, ycen = (0,0) plt.xlim((0,d['gz'][0].data.shape[0])) plt.ylim((0,d['gz'][0].data.shape[1])) handles, labels = plt.gca().get_legend_handles_labels() handles.append(Line2D([0], [0], label='Bar', color='g', ls=':')) handles.append(Line2D([0], [0], label='MaNGA IFU', color='m', ls='-')) plt.legend(handles=handles) plt.axis('off') #plt.subplot(413) f.add_subplot(gs[1]) degs = np.linspace(0,181,180) plt.plot(degs, tots, '--', c='k', lw=1, label='Bar votes') plt.plot(degs, smoothtots, '-', c='olivedrab', label='Smoothed') plt.axvline(maxbin, c='r', ls=':', label='Max votes') plt.tick_params(direction='in') plt.legend() plt.ylabel('Number of Votes') #plt.subplot(414) f.add_subplot(gs[2]) plt.plot((degs+90)%180 - 90, centtots, 'k--', lw=1)#, label='Recentered votes') plt.axvline(cen, c='r', ls=':', label='Center\nof Mass') plt.xlabel('Position Angle (deg)') plt.legend() plt.tick_params(direction='in') plt.ylabel('Number of Votes') #plt.tight_layout(h_pad=0) plt.savefig('gzbarang.pdf', format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="350"> ```python def gzbarang(gz,plot=False, returncen=False): #bar = gz[4].data #xx = np.arange(bar.shape[0]) #yy = np.arange(bar.shape[0]) #x,y = np.meshgrid(xx,yy) #fit = np.polyfit(x.flatten(),y.flatten(),1,w=bar.flatten()) #return np.degrees(np.arctan(fit[0])) % 180, fit[0] bar = gz[4].data xx = np.linspace(0,bar.shape[0],bar.shape[0]) yy = np.linspace(0,bar.shape[1],bar.shape[1]) x,y = np.meshgrid(xx,yy) xcen = np.average(x, weights=bar) ycen = np.average(y, weights=bar) x -= xcen y -= ycen r = np.sqrt(x**2 + y**2) th = (np.degrees(np.arctan2(y,x))) % 180 degs = np.linspace(0,180,181) tots = np.zeros(180) for i in range(180): cut = (th > degs[i]) & (th < degs[i+1]) tots[i] = np.sum(bar[cut]) smoothtots = savgol_filter(tots, 19, 2) pab = degs[np.argmax(smoothtots)] centtots = np.zeros(180) centdegs = (degs-pab) for i in range(180): cut = ((th-pab)%180 > degs[i]) & ((th-pab)%180 < degs[i+1]) centtots[i] = np.sum(bar[cut]) cen = (np.average((degs[:-1]+90)%180 - 90, weights=centtots)) if returncen: return pab+cen, (xcen, ycen) return (pab + cen + 90) % 180 def barangparallel(mangaid): try: f = glob(f'/media/brian/bdigiorg/GZ3D/gz3d_{mangaid}*.fits.gz')[0] with fits.open(f) as gz: for i in range(len(gz)): gz[i].data = np.flip(gz[i].data, 0) return gzbarang(gz, returncen=False) except ZeroDivisionError as e: print(mangaid, 'failed', e) return np.nan #barids = drp['mangaid'][bars2] with mp.Pool(6) as p: barangsmp = p.map(barangparallel, ids) barangs90 = np.array(barangsmp) ``` 1-837 failed Weights sum to zero, can't be normalized 1-411 failed Weights sum to zero, can't be normalized 1-380 failed Weights sum to zero, can't be normalized 1-54815 failed Weights sum to zero, can't be normalized 1-50480 failed Weights sum to zero, can't be normalized 1-50537 failed Weights sum to zero, can't be normalized 1-2333 failed Weights sum to zero, can't be normalized 1-2431 failed Weights sum to zero, can't be normalized 1-36456 failed Weights sum to zero, can't be normalized 1-36457 failed Weights sum to zero, can't be normalized 1-53488 failed Weights sum to zero, can't be normalized 1-207 failed Weights sum to zero, can't be normalized 1-323 failed Weights sum to zero, can't be normalized 1-277 failed Weights sum to zero, can't be normalized 1-46266 failed Weights sum to zero, can't be normalized 1-60709 failed Weights sum to zero, can't be normalized 1-27404 failed Weights sum to zero, can't be normalized 1-27654 failed Weights sum to zero, can't be normalized 1-34106 failed Weights sum to zero, can't be normalized 1-4109 failed Weights sum to zero, can't be normalized 1-38802 failed Weights sum to zero, can't be normalized 1-35900 failed Weights sum to zero, can't be normalized 1-36382 failed Weights sum to zero, can't be normalized 1-92 failed Weights sum to zero, can't be normalized 1-40700 failed Weights sum to zero, can't be normalized 1-2511 failed Weights sum to zero, can't be normalized 1-23929 failed Weights sum to zero, can't be normalized 1-36832 failed Weights sum to zero, can't be normalized 1-36899 failed Weights sum to zero, can't be normalized 1-37908 failed Weights sum to zero, can't be normalized 1-46562 failed Weights sum to zero, can't be normalized 1-37996 failed Weights sum to zero, can't be normalized 1-38380 failed Weights sum to zero, can't be normalized 1-26611 failed Weights sum to zero, can't be normalized 1-51668 failed Weights sum to zero, can't be normalized 1-31996 failed Weights sum to zero, can't be normalized 1-46428 failed Weights sum to zero, can't be normalized 1-24416 failed Weights sum to zero, can't be normalized 1-51523 failed Weights sum to zero, can't be normalized 1-51378 failed Weights sum to zero, can't be normalized 1-42030 failed Weights sum to zero, can't be normalized 1-45581 failed Weights sum to zero, can't be normalized --------------------------------------------------------------------------- NameError Traceback (most recent call last) /tmp/ipykernel_188833/2157326586.py in <module> 48 barangsmp = p.map(barangparallel, ids) 49 barangs90 = np.array(barangsmp) ---> 50 np.save('GZ3Dbarpas2', barangs) NameError: name 'barangs' is not defined ```python np.save('GZ3Dbarpas2', barangs90) ``` ```python drp = fits.open('drpall-v3_1_1.fits')[1].data ppas = np.zeros(len(fs)) indexes = np.zeros(len(fs)) for i,pi in enumerate(pis): indexes[i] = np.where(drp['plateifu'] == pi)[0][0] ppas[i] = drp['nsa_elpetro_phi'][drp['plateifu'] == pi] ppabs = projectedpab(pabs, pas, incs, relpab=False) barangs90 = np.load('GZ3Dbarpas2.npy') diffs = (barangs90 - ppabs)%180 relgz = (barangs90 - ppas)%180 reln = (ppabs-90 - pas)%180 vtmaxs = np.array([np.max(v) for v in vts]) v2tmaxs = np.array([np.max(v) for v in v2ts]) v2rmaxs = np.array([np.max(v) for v in v2rs]) strong = (v2rmaxs/vtmaxs > .1) & (pabus-pabls < 30) ``` RuntimeWarning: invalid value encountered in remainder RuntimeWarning: invalid value encountered in remainder ```python def recenter(arr, mod=180): return (arr - mod/2) % mod - mod/2 plt.figure(figsize=(3.5,6)) plt.subplot(5,1,1) hist, bins, plot = plt.hist(recenter(relgz), bins=30, density=True, range=(-90,90), color='olivedrab', label='GZ:3D') plt.hist(recenter(np.abs(180-deprojs)), bins=30, density=True, range=(-90,90), color='k', histtype='step', label='Nirvana') #[plt.axvline(v, c='k', ls='--', lw=1) for v in [-90,0,90]] plt.tick_params(labelbottom=False, direction='in') plt.text(.58,.8,'All', transform=plt.gca().transAxes, fontsize=12) plt.legend(loc=2) plt.ylim((0,.05)) incbins = [15,30,45,60,75] for i in range(len(incbins)-1): plt.subplot(5,1,i+2) cut = (incs > incbins[i]) & (incs < incbins[i+1]) print(f'{incbins[i]}-{incbins[i+1]}: {cut.sum()}') absdiffs = np.abs(180 - ((deprojs[cut]) % 360)) plt.hist(recenter(relgz[cut]), bins=30, density=True, range=(-90,90), color='olivedrab') plt.hist(recenter(absdiffs), bins=30, density=True, range=(-90,90), color='k', histtype='step') #[plt.axvline(v, c='k', ls='--', lw=1) for v in [-90,0,90]] plt.text(.74,.8,f'$i={{{incbins[i]}}}-{{{incbins[i+1]}}}^\circ$', transform=plt.gca().transAxes, horizontalalignment='center', fontsize=12) plt.xticks([-90,-45,0,45,90]) plt.tick_params(labelbottom=False, direction='in') plt.ylim((0,.05)) plt.tick_params(labelbottom=True, direction='in') plt.xlabel('Relative PA (deg)') plt.tight_layout(h_pad=-1) plt.savefig('allrelpabhists.pdf', format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="350"> RuntimeWarning: invalid value encountered in remainder RuntimeWarning: invalid value encountered in remainder RuntimeWarning: invalid value encountered in remainder RuntimeWarning: invalid value encountered in remainder RuntimeWarning: invalid value encountered in remainder 15-30: 82 30-45: 319 45-60: 423 60-75: 278 ```python apis = np.array(pis) relgz[apis=='8078-12703'] reln[apis=='8078-12703'] ``` array([152.30773823]) ```python def recenter(arr, mod=180): return (arr - mod/2) % mod - mod/2 plt.figure(figsize=(3.5,2)) plt.hist(recenter(diffs), bins=20, color='olivedrab', density=True) plt.xticks([-90,-45,0,45,90]) #plt.axvline(np.nanmedian(recenter(diffs)), c='k', ls='--', label='Median') #plt.legend() plt.xlabel(r'GZ:3D Bar PA - Nirvana $\phi_b$ (deg)') plt.tight_layout() print(np.nanmedian(recenter(diffs))) plt.savefig('gzdiffshist.pdf',format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="350"> -1.5418951400969974 RuntimeWarning: invalid value encountered in remainder ```python def projectedpab(pab, pa, inc, degrees=True, relpab=False): _pab, _pa, _inc = np.radians((pab, pa, inc)) if degrees else (pab, pa, inc) adjust = _pab > np.pi if not relpab: _pab -= _pa projpab = np.arctan(np.tan(_pab) * np.cos(_inc)) + _pa return (np.degrees(projpab) % 180 + 180*adjust) % 360 def prepfiles(plate, ifu, stellar=False,dir='barred'): vftype = 'Stars' if stellar else 'Gas' f = fits.open(f'/media/brian/bdigiorg/nirvana/lux/{dir}/nirvana_{plate}-{ifu}_{vftype}.fits') maps = fits.open(f'/media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/{plate}/{ifu}/manga-{plate}-{ifu}-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz') projpab = projectedpab(f[1].data['pab'], f[1].data['pa'], f[1].data['inc']) gz = fits.open(glob(f'/media/brian/bdigiorg/GZ3D/gz3d_{f[0].header["mangaid"]}*.fits.gz')[0]) drpall = fits.open('drpall-v3_1_1.fits')[1].data drp = drpall[drpall['plateifu'] == f'{plate}-{ifu}'] d = {} for k in ['f','maps','gz','projpab','drp']: exec(f'd["{k}"] = {k}') return d def plotpabs(plate,ifu,vftype='Gas', dir='barred/sample', minus=False): fname = f'/media/brian/bdigiorg/nirvana/lux/{dir}/nirvana_{plate}-{ifu}_{vftype}.fits' d = prepfiles(plate,ifu,vftype=='Stars',dir=dir) if minus: d['projpab'] *= -1 for i in range(len(d['gz'])): d['gz'][i].data = np.flip(d['gz'][i].data, 0) drpall = fits.open('drpall-v3_1_1.fits')[1].data drp = drpall[drpall['plateifu']==f'{plate}-{ifu}'] vel = np.ma.array(d['maps']['emline_gvel'].data[0], mask=d['maps']['emline_gvel_mask'].data[0]) nang = d['f'][1].data['pab'] ncen = (d['f'][1].data['xc'], d['f'][1].data['yc']) ppa = drp['nsa_elpetro_phi'] plt.figure(figsize=(12,4)) plt.subplot(131) plt.imshow(d['gz'][0].data, origin='lower') bar = d['gz'][4].data xx = np.linspace(0,bar.shape[0],bar.shape[0]) yy = np.linspace(0,bar.shape[1],bar.shape[1]) x,y = np.meshgrid(xx,yy) if bar.any(): gzang, gzcen, l, w = gzbaranglw(d['gz'], returncen=True) xcen = np.average(x, weights=bar) ycen = np.average(y, weights=bar) x -= xcen y -= ycen gzpab = gzang npab = d['projpab'] gzpa = ppa npa = d['f'][1].data['pa'] plt.contour(d['gz'][4].data,colors='w',levels=1, linestyles='--', alpha=.5) plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(gzpab - 90)) + gzcen[1], 'g', label='GZ') plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(npab - 90)) + gzcen[1], 'w', label='N pab') else: xcen, ycen = (0,0) plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(npa - 90)) + gzcen[1], 'w--', label='N pa') plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(gzpa - 90)) + gzcen[1], 'g--', label='pPA') plt.xlim((0,d['gz'][0].data.shape[0])) plt.ylim((0,d['gz'][0].data.shape[1])) plt.legend() plt.axis('off') #return plt.subplot(132) x = d['maps']['spx_skycoo'].data[0] xcen = x.shape[0]//2 plt.imshow(vel, cmap='RdBu', origin='lower') args, resdict = fileprep(fname, rootdir='/media/brian/bdigiorg/manga/spectro') z = np.zeros(len(resdict['vt'])) vtdict, v2tdict, v2rdict = [resdict.copy(), resdict.copy(), resdict.copy()] vtdict['v2t'] = z vtdict['v2r'] = z v2tdict['vt'] = z v2tdict['v2r'] = z v2rdict['vt'] = z v2rdict['v2t'] = z velmodel, sigmodel = bisym_model(args, resdict, plot=True) vtmodel, sigmodel = bisym_model(args, vtdict, plot=True) v2tmodel, sigmodel = bisym_model(args, v2tdict, plot=True) v2rmodel, sigmodel = bisym_model(args, v2rdict, plot=True) plt.axis('off') if bar.any(): plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(gzpab - 90)) + xcen, 'g', label='GZ') plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(npab - 90)) + xcen, 'k', label='N pab') plt.plot(x[0]+xcen, x[0]*np.tan(np.radians(npa - 90)) + xcen, 'k--', label='N pa') plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(gzpa - 90)) + xcen, 'g--', label='pPA') plt.contour(velmodel-vtmodel-v2tmodel,colors='k',levels=5, linestyles='--', alpha=.5) plt.xlim((0,x.shape[0])) plt.ylim((0,x.shape[1])) plt.legend() plt.subplot(133) plt.imshow(velmodel-vtmodel-v2tmodel,cmap='RdBu', origin='lower') if bar.any(): plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(gzpab - 90)) + xcen, 'g', label='GZ') plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(npab - 90)) + xcen, 'k', label='Nirv') plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(gzpa - 90)) + xcen, 'g--', label='pPA') plt.plot(x[0]+xcen, x[0]*np.tan(np.radians(npa - 90)) + xcen, 'k--', label='N pa') plt.xlim((0,x.shape[0])) plt.ylim((0,x.shape[1])) plt.legend() plt.tight_layout() print(gzpab, npab) def gzbaranglw(gz,plot=False, returncen=False): bar = gz[4].data xx = np.linspace(0,bar.shape[0],bar.shape[0]) yy = np.linspace(0,bar.shape[1],bar.shape[1]) x,y = np.meshgrid(xx,yy) xcen = np.average(x, weights=bar) ycen = np.average(y, weights=bar) x -= xcen y -= ycen r = np.sqrt(x**2 + y**2) th = (np.degrees(np.arctan2(y,x))) % 180 degs = np.linspace(0,180,181) tots = np.zeros(180) for i in range(180): cut = (th > degs[i]) & (th < degs[i+1]) tots[i] = np.sum(bar[cut]) smoothtots = savgol_filter(tots, 19, 2) maxbin = degs[np.argmax(smoothtots)] centtots = np.zeros(180) centdegs = (degs-maxbin) for i in range(180): cut = ((th-maxbin)%180 > degs[i]) & ((th-maxbin)%180 < degs[i+1]) centtots[i] = np.sum(bar[cut]) cen = (np.average((degs[:-1]+90)%180 - 90, weights=centtots)) pab = (maxbin + cen + 90) % 180 r = np.sqrt(x**2 + y**2) th = np.degrees(np.arctan2(y,x)) #plt.figure(figsize=(8,8)) #plt.subplot(221) #plt.imshow(r) #plt.subplot(222) #plt.imshow(th) major = ((th-95)%180 < pab) & ((th-85)%180 > pab) * (bar > .2*len(gz[10].data)) minor = ((th-5)%180 < pab) & ((th+5)%180 > pab) * (bar > .2*len(gz[10].data)) #plt.subplot(223) #plt.imshow(major) #plt.subplot(224) #plt.imshow(minor) barlength = np.max(r[major]) barwidth = np.max(r[minor]) if returncen: return pab, (xcen, ycen), barlength, barwidth return pab plate,ifu = (8078, 12703) plotpabs(plate, ifu) print(barangs[apis==f'{plate}-{ifu}'], ppabs[apis==f'{plate}-{ifu}']) ``` <IPython.core.display.Javascript object> <img src="" width="1200"> UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/8078/images/12703.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/redux/DR17/8078/stack/manga-8078-12703-LOGCUBE.fits.gz ... Done Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/8078/12703/manga-8078-12703-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 7.5 +/- 0.0 Inclination: 30.5 +/- 0.1 Systemic Velocity: 3.3 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 159.3 +/- 0.1 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 2773 Velocity chi-square: 145872.16459275514 Reduced chi-square: 52.737586620663464 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 7.5 +/- 0.0 Inclination: 30.5 +/- 0.1 Systemic Velocity: 3.3 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 159.3 +/- 0.1 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 2772 Velocity chi-square: 145870.79628685315 Reduced chi-square: 52.756165022370034 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: 7.5 +/- 0.0 Inclination: 28.4 +/- 0.1 Systemic Velocity: 2.1 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 159.3 +/- 0.1 RC: Scale: 3.7 +/- 0.0 ---------- Velocity measurements: 2261 Velocity chi-square: 121157.43749039598 Reduced chi-square: 53.75219054587222 ---------------------------------------------------------------------- 72.35009562551227 [76.97776031] RuntimeWarning: divide by zero encountered in true_divide --------------------------------------------------------------------------- NameError Traceback (most recent call last) /tmp/ipykernel_192962/3189066527.py in <module> 156 plate,ifu = (8078, 12703) 157 plotpabs(plate, ifu) --> 158 print(barangs[apis==f'{plate}-{ifu}'], ppabs[apis==f'{plate}-{ifu}']) NameError: name 'barangs' is not defined ```python def gzbarang3(gz,plot=False, returncen=False): bar = gz[4].data xx = np.linspace(0,bar.shape[0],bar.shape[0]) yy = np.linspace(0,bar.shape[1],bar.shape[1]) x,y = np.meshgrid(xx,yy) xcen = np.average(x, weights=bar) ycen = np.average(y, weights=bar) x -= xcen y -= ycen r = np.sqrt(x**2 + y**2) th = (np.degrees(np.arctan2(y,x))) % 180 degs = np.linspace(0,180,181) tots = np.zeros(180) for i in range(180): cut = (th > degs[i]) & (th < degs[i+1]) tots[i] = np.sum(bar[cut]) smoothtots = savgol_filter(tots, 19, 2) maxbin = degs[np.argmax(smoothtots)] centtots = np.zeros(180) centdegs = (degs-maxbin) for i in range(180): cut = ((th-maxbin)%180 > degs[i]) & ((th-maxbin)%180 < degs[i+1]) centtots[i] = np.sum(bar[cut]) cen = (np.average((degs[:-1]+90)%180 - 90, weights=centtots)) pab = (maxbin + cen + 90) % 180 r = np.sqrt(x**2 + y**2) th = np.degrees(np.arctan2(y,x)) #plt.figure(figsize=(8,8)) #plt.subplot(221) #plt.imshow(r) #plt.subplot(222) #plt.imshow(th) major = ((th-95)%180 < pab) & ((th-85)%180 > pab) * (bar > .2*len(gz[10].data)) minor = ((th-5)%180 < pab) & ((th+5)%180 > pab) * (bar > .2*len(gz[10].data)) #plt.subplot(223) #plt.imshow(major) #plt.subplot(224) #plt.imshow(minor) barlength = np.max(r[major]) barwidth = np.max(r[minor]) if returncen: return pab, (xcen, ycen), barlength, barwidth return pab, (xcen, ycen), tots, smoothtots, maxbin, centtots, cen plt.figure(figsize=(9,3)) drpall = fits.open('/media/brian/bdigiorg/manga/spectro/redux/DR17/drpall-v3_1_1.fits')[1].data n = 0 while n < 12: try: pi = np.random.choice(pis) plt.subplot(2,6,n+1) plate,ifu,vftype = (*pi.split('-'), 'Gas') d = prepfiles(plate,ifu,vftype=='Stars',dir='barred/sample/') for i in range(len(d['gz'])): d['gz'][i].data = np.flip(d['gz'][i].data, 0) drp = drpall[drpall['plateifu']==f'{plate}-{ifu}'] vel = np.ma.array(d['maps']['emline_gvel'].data[0], mask=d['maps']['emline_gvel_mask'].data[0]) nang = d['f'][1].data['pab'] ncen = (d['f'][1].data['xc'], d['f'][1].data['yc']) ppa = drp['nsa_elpetro_phi'] plt.imshow(d['gz'][0].data, origin='lower') plt.tick_params(left=None, bottom=None, labelleft=None, labelbottom=None) bar = d['gz'][4].data xx = np.linspace(0,bar.shape[0],bar.shape[0]) yy = np.linspace(0,bar.shape[1],bar.shape[1]) x,y = np.meshgrid(xx,yy) if bar.any(): gzang, gzcen, tots, smoothtots, maxbin, centtots, cen = gzbarang3(d['gz'])#, returncen=True) xcen = np.average(x, weights=bar) ycen = np.average(y, weights=bar) x -= xcen y -= ycen gzpab = gzang npab = d['projpab'] gzpa = ppa npa = d['f'][1].data['pa'] plt.contour(d['gz'][4].data,cmap='Greens',levels=2, linestyles=':', alpha=1, linewidths=1) plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(gzpab - 90)) + gzcen[1], 'olivedrab', label='GZ:3D') plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(npab - 90)) + gzcen[1], 'w--', label='Nirvana') plt.plot(*gzcen, 'o', c='olivedrab') else: xcen, ycen = (0,0) plt.xlim((0,d['gz'][0].data.shape[0])) plt.ylim((0,d['gz'][0].data.shape[1])) handles, labels = plt.gca().get_legend_handles_labels() handles.append(Line2D([0], [0], label='Bar', color='g', ls=':')) handles.append(Line2D([0], [0], label='MaNGA\nIFU', color='m', ls='-')) plt.axis('off') plt.text(.5,.05,pi,transform=plt.gca().transAxes,horizontalalignment='center',fontsize=12,c='w') n += 1 except: print('failed') plt.cla() plt.axis('off') plt.legend(handles=handles, facecolor='.7', loc=4) plt.tight_layout(pad=0, h_pad=-.5, w_pad=-.5) #plt.savefig('imagemosaic.pdf', format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="900"> ```python def prepfiles(plate, ifu, stellar=False,dir='barred',root='/media/brian/bdigiorg/'): vftype = 'Stars' if stellar else 'Gas' f = fits.open(f'/media/brian/bdigiorg/nirvana/lux/{dir}/nirvana_{plate}-{ifu}_{vftype}.fits') maps = fits.open(f'{root}/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/{plate}/{ifu}/manga-{plate}-{ifu}-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz') projpab = projectedpab(f[1].data['pab'], f[1].data['pa'], f[1].data['inc']) gz = fits.open(glob(f'{root}/GZ3D/gz3d_{f[0].header["mangaid"]}*.fits.gz')[0]) drpall = fits.open(f'{root}/manga/spectro/redux/DR17/drpall-v3_1_1.fits')[1].data drp = drpall[drpall['plateifu'] == f'{plate}-{ifu}'] d = {} for k in ['f','maps','gz','projpab','drp']: exec(f'd["{k}"] = {k}') return d plt.figure(figsize=(6,8)) drpall = fits.open('/media/brian/bdigiorg/manga/spectro/redux/DR17/drpall-v3_1_1.fits')[1].data n = 0 pabes = pabus - pabls good = pabes < 20 pis = np.array(pis) while n < 5: #try: pi = np.random.choice(pis[good]) plt.subplot(5,3,3*n+1) plate,ifu,vftype = (*pi.split('-'), 'Gas') d = prepfiles(plate,ifu,vftype=='Stars',dir='barred/sample/') for i in range(len(d['gz'])): d['gz'][i].data = np.flip(d['gz'][i].data, 0) drp = drpall[drpall['plateifu']==f'{plate}-{ifu}'] vel = np.ma.array(d['maps']['emline_gvel'].data[0], mask=d['maps']['emline_gvel_mask'].data[0]) - d['f'][1].data['vsys'] nang = d['f'][1].data['pab'] ncen = (d['f'][1].data['xc'], d['f'][1].data['yc']) ppa = drp['nsa_elpetro_phi'] plt.imshow(d['gz'][0].data, origin='lower') plt.tick_params(left=None, bottom=None, labelleft=None, labelbottom=None) bar = d['gz'][4].data xx = np.linspace(0,bar.shape[0],bar.shape[0]) yy = np.linspace(0,bar.shape[1],bar.shape[1]) x,y = np.meshgrid(xx,yy) if bar.any(): gzang, gzcen, tots, smoothtots, maxbin, centtots, cen = gzbarang3(d['gz'])#, returncen=True) xcen = np.average(x, weights=bar) ycen = np.average(y, weights=bar) x -= xcen y -= ycen gzpab = gzang npab = d['projpab'] gzpa = ppa npa = d['f'][1].data['pa'] plt.contour(d['gz'][4].data,cmap='Greens',levels=2, linestyles=':', alpha=.5, linewidths=1) plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(gzpab - 90)) + gzcen[1], 'olivedrab', label='GZ:3D') plt.plot(x[0]+gzcen[0], x[0]*np.tan(np.radians(npab - 90)) + gzcen[1], 'w--', label='Nirvana') plt.plot(*gzcen, 'o', c='olivedrab') else: xcen, ycen = (0,0) plt.xlim((0,d['gz'][0].data.shape[0])) plt.ylim((0,d['gz'][0].data.shape[1])) handles, labels = plt.gca().get_legend_handles_labels() handles.append(Line2D([0], [0], label='Bar', color='g', ls=':')) handles.append(Line2D([0], [0], label='MaNGA\nIFU', color='m', ls='-')) plt.axis('off') plt.text(.5,.05,pi,transform=plt.gca().transAxes,horizontalalignment='center',fontsize=12,c='w') plt.subplot(5,3,3*n+2) x = d['maps']['spx_skycoo'].data[0] xcen = x.shape[0]//2 vmax = np.max(np.abs(vel)) plt.imshow(vel, cmap='RdBu_r', origin='lower', vmin=-vmax, vmax=vmax) fname = f'/media/brian/bdigiorg/nirvana/lux/barred/sample/nirvana_{plate}-{ifu}_{vftype}.fits' args, resdict = fileprep(fname, rootdir='/media/brian/bdigiorg/manga/spectro') args.clip() z = np.zeros(len(resdict['vt'])) vtdict, v2tdict, v2rdict = [resdict.copy(), resdict.copy(), resdict.copy()] vtdict['v2t'] = z vtdict['v2r'] = z v2tdict['vt'] = z v2tdict['v2r'] = z v2rdict['vt'] = z v2rdict['v2t'] = z velmodel, sigmodel = bisym_model(args, resdict, plot=True) vtmodel, sigmodel = bisym_model(args, vtdict, plot=True) v2tmodel, sigmodel = bisym_model(args, v2tdict, plot=True) v2rmodel, sigmodel = bisym_model(args, v2rdict, plot=True) plt.axis('off') if bar.any(): plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(gzpab - 90)) + xcen, 'olivedrab', label='GZ') plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(npab - 90)) + xcen, 'k--', label='N pab') #plt.plot(x[0]+xcen, x[0]*np.tan(np.radians(npa - 90)) + xcen, 'k--', label='N pa') #plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(gzpa - 90)) + xcen, 'g--', label='pPA') plt.contour(velmodel-vtmodel-v2tmodel-d['f'][1].data['vsys'],colors='k',levels=5, linestyles='--', alpha=.5) plt.xlim((0,x.shape[0])) plt.ylim((0,x.shape[1])) #plt.legend() plt.subplot(5,3,3*n+3) plt.imshow(velmodel-vtmodel,cmap='RdBu_r', origin='lower', vmin=-vmax, vmax=vmax) if bar.any(): plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(gzpab - 90)) + xcen, 'olivedrab', label='GZ') plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(npab - 90)) + xcen, 'k--', label='Nirv') #plt.plot(x[xcen]+xcen, x[xcen]*np.tan(np.radians(gzpa - 90)) + xcen, 'g--', label='pPA') #plt.plot(x[0]+xcen, x[0]*np.tan(np.radians(npa - 90)) + xcen, 'k--', label='N pa') plt.xlim((0,x.shape[0])) plt.ylim((0,x.shape[1])) plt.axis('off') #plt.legend() n += 1 #except: # print('failed') #plt.cla() #plt.axis('off') #plt.legend(handles=handles, facecolor='.7', loc=4) plt.tight_layout(pad=0, h_pad=-.5, w_pad=-.5) #plt.savefig('imagemosaic.pdf', format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="600"> UserWarning: Datacube file /media/brian/bdigiorg/manga/spectro/redux/DR17/9095/stack/manga-9095-12703-LOGCUBE.fits.gz does not exist! UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/9095/images/12703.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/9095/12703/manga-9095-12703-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -83.6 +/- 0.0 Inclination: 48.1 +/- 0.1 Systemic Velocity: -4.8 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 237.5 +/- 0.2 RC: Scale: 1.8 +/- 0.0 ---------- Velocity measurements: 2642 Velocity chi-square: 62555.89972739115 Reduced chi-square: 23.740379403184498 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -83.4 +/- 0.0 Inclination: 49.3 +/- 0.1 Systemic Velocity: -4.9 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 237.6 +/- 0.2 RC: Scale: 1.8 +/- 0.0 ---------- Velocity measurements: 1490 Velocity chi-square: 28293.130027035702 Reduced chi-square: 19.078307503058465 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -83.3 +/- 0.0 Inclination: 49.4 +/- 0.1 Systemic Velocity: -4.3 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 238.2 +/- 0.2 RC: Scale: 1.8 +/- 0.0 ---------- Velocity measurements: 1327 Velocity chi-square: 26696.024008459586 Reduced chi-square: 20.224260612469383 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -83.3 +/- 0.0 Inclination: 49.4 +/- 0.1 Systemic Velocity: -4.3 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 238.2 +/- 0.2 RC: Scale: 1.8 +/- 0.0 ---------- Velocity measurements: 1327 Velocity chi-square: 26696.024008459586 Reduced chi-square: 20.224260612469383 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -83.3 +/- 0.0 Inclination: 49.4 +/- 0.1 Systemic Velocity: -4.3 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 238.2 +/- 0.2 RC: Scale: 1.8 +/- 0.0 ---------- Velocity measurements: 1327 Velocity chi-square: 26696.024008459586 Reduced chi-square: 20.224260612469383 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -83.3 +/- 0.0 Inclination: 49.4 +/- 0.1 Systemic Velocity: -4.3 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 238.2 +/- 0.2 RC: Scale: 1.8 +/- 0.0 ---------- Velocity measurements: 1327 Velocity chi-square: 26696.024008459586 Reduced chi-square: 20.224260612469383 ---------------------------------------------------------------------- UserWarning: Datacube file /media/brian/bdigiorg/manga/spectro/redux/DR17/12490/stack/manga-12490-3701-LOGCUBE.fits.gz does not exist! UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/12490/images/3701.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/12490/3701/manga-12490-3701-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.3 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -7.3 +/- 0.1 Inclination: 46.0 +/- 0.4 Systemic Velocity: -7.9 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 132.9 +/- 0.5 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 748 Velocity chi-square: 10132.521528733405 Reduced chi-square: 13.67411812244724 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.3 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -7.4 +/- 0.1 Inclination: 45.7 +/- 0.4 Systemic Velocity: -7.8 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 132.6 +/- 0.5 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 724 Velocity chi-square: 9863.788925040588 Reduced chi-square: 13.757027789456886 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.3 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -7.3 +/- 0.1 Inclination: 45.7 +/- 0.4 Systemic Velocity: -8.1 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 133.2 +/- 0.5 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 660 Velocity chi-square: 9371.163053856972 Reduced chi-square: 14.350938826733493 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.3 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -7.3 +/- 0.1 Inclination: 45.7 +/- 0.4 Systemic Velocity: -8.1 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 133.2 +/- 0.5 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 660 Velocity chi-square: 9371.163053856972 Reduced chi-square: 14.350938826733493 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.3 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -7.3 +/- 0.1 Inclination: 45.7 +/- 0.4 Systemic Velocity: -8.1 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 133.2 +/- 0.5 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 660 Velocity chi-square: 9371.163053856972 Reduced chi-square: 14.350938826733493 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.3 +/- 0.0 Y center: -0.1 +/- 0.0 Position Angle: -7.3 +/- 0.1 Inclination: 45.7 +/- 0.4 Systemic Velocity: -8.1 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 133.2 +/- 0.5 RC: Scale: 3.4 +/- 0.0 ---------- Velocity measurements: 660 Velocity chi-square: 9371.163053856972 Reduced chi-square: 14.350938826733493 ---------------------------------------------------------------------- UserWarning: Datacube file /media/brian/bdigiorg/manga/spectro/redux/DR17/11951/stack/manga-11951-12704-LOGCUBE.fits.gz does not exist! UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/11951/images/12704.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/11951/12704/manga-11951-12704-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.1 +/- 0.0 Y center: -0.0 +/- 0.0 Position Angle: 134.3 +/- 0.0 Inclination: 56.3 +/- 0.1 Systemic Velocity: -0.2 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 252.7 +/- 0.3 RC: Scale: 5.3 +/- 0.0 ---------- Velocity measurements: 2507 Velocity chi-square: 28259.761785590323 Reduced chi-square: 11.303904714236129 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.1 +/- 0.0 Y center: -0.0 +/- 0.0 Position Angle: 134.3 +/- 0.0 Inclination: 55.9 +/- 0.1 Systemic Velocity: 0.2 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 253.1 +/- 0.3 RC: Scale: 5.4 +/- 0.0 ---------- Velocity measurements: 1924 Velocity chi-square: 15793.687604825063 Reduced chi-square: 8.238752010863362 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.1 +/- 0.0 Y center: -0.0 +/- 0.0 Position Angle: 134.3 +/- 0.0 Inclination: 55.9 +/- 0.1 Systemic Velocity: 0.1 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 253.0 +/- 0.3 RC: Scale: 5.4 +/- 0.0 ---------- Velocity measurements: 1923 Velocity chi-square: 15551.154877331146 Reduced chi-square: 8.116469142657174 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.1 +/- 0.0 Y center: -0.0 +/- 0.0 Position Angle: 133.9 +/- 0.0 Inclination: 55.4 +/- 0.1 Systemic Velocity: 0.9 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 253.8 +/- 0.3 RC: Scale: 5.4 +/- 0.0 ---------- Velocity measurements: 1540 Velocity chi-square: 12221.464925170296 Reduced chi-square: 7.972253702002802 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.1 +/- 0.0 Y center: -0.0 +/- 0.0 Position Angle: 133.9 +/- 0.0 Inclination: 55.4 +/- 0.1 Systemic Velocity: 0.9 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 253.8 +/- 0.3 RC: Scale: 5.4 +/- 0.0 ---------- Velocity measurements: 1540 Velocity chi-square: 12221.464925170296 Reduced chi-square: 7.972253702002802 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.1 +/- 0.0 Y center: -0.0 +/- 0.0 Position Angle: 133.9 +/- 0.0 Inclination: 55.4 +/- 0.1 Systemic Velocity: 0.9 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 253.8 +/- 0.3 RC: Scale: 5.4 +/- 0.0 ---------- Velocity measurements: 1540 Velocity chi-square: 12221.464925170296 Reduced chi-square: 7.972253702002802 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.1 +/- 0.0 Y center: -0.0 +/- 0.0 Position Angle: 133.9 +/- 0.0 Inclination: 55.4 +/- 0.1 Systemic Velocity: 0.9 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 253.8 +/- 0.3 RC: Scale: 5.4 +/- 0.0 ---------- Velocity measurements: 1540 Velocity chi-square: 12221.464925170296 Reduced chi-square: 7.972253702002802 ---------------------------------------------------------------------- UserWarning: Datacube file /media/brian/bdigiorg/manga/spectro/redux/DR17/8440/stack/manga-8440-12704-LOGCUBE.fits.gz does not exist! UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/8440/images/12704.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/8440/12704/manga-8440-12704-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: The maximum number of function evaluations is exceeded. Fit status: 0 Fit success: False ---------- Base parameters: X center: 11.2 +/- 0.0 Y center: 3.5 +/- 0.0 Position Angle: 217.6 +/- 0.0 Inclination: 54.7 +/- 0.0 Systemic Velocity: -285.1 +/- 0.2 ---------- Rotation curve parameters: RC: Asymptotic value: 475.6 +/- 0.2 RC: Scale: 0.1 +/- 0.0 ---------- Velocity measurements: 2602 Velocity chi-square: 1321879.323401892 Reduced chi-square: 509.3947296346405 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.0 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 148.1 +/- 0.0 Inclination: 44.0 +/- 0.2 Systemic Velocity: 22.9 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 162.4 +/- 0.2 RC: Scale: 3.1 +/- 0.0 ---------- Velocity measurements: 1734 Velocity chi-square: 10331.143700377066 Reduced chi-square: 5.982133005429685 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.0 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 148.0 +/- 0.0 Inclination: 43.6 +/- 0.2 Systemic Velocity: 22.8 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 162.0 +/- 0.2 RC: Scale: 3.0 +/- 0.0 ---------- Velocity measurements: 1471 Velocity chi-square: 9193.437063079866 Reduced chi-square: 6.279670125054553 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.0 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 148.0 +/- 0.0 Inclination: 43.6 +/- 0.2 Systemic Velocity: 22.8 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 162.0 +/- 0.2 RC: Scale: 3.0 +/- 0.0 ---------- Velocity measurements: 1471 Velocity chi-square: 9193.437063079866 Reduced chi-square: 6.279670125054553 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.0 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 148.0 +/- 0.0 Inclination: 43.6 +/- 0.2 Systemic Velocity: 22.8 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 162.0 +/- 0.2 RC: Scale: 3.0 +/- 0.0 ---------- Velocity measurements: 1471 Velocity chi-square: 9193.437063079866 Reduced chi-square: 6.279670125054553 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: -0.0 +/- 0.0 Y center: 0.0 +/- 0.0 Position Angle: 148.0 +/- 0.0 Inclination: 43.6 +/- 0.2 Systemic Velocity: 22.8 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 162.0 +/- 0.2 RC: Scale: 3.0 +/- 0.0 ---------- Velocity measurements: 1471 Velocity chi-square: 9193.437063079866 Reduced chi-square: 6.279670125054553 ---------------------------------------------------------------------- UserWarning: Datacube file /media/brian/bdigiorg/manga/spectro/redux/DR17/10213/stack/manga-10213-12705-LOGCUBE.fits.gz does not exist! UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/10213/images/12705.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/10213/12705/manga-10213-12705-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.4 +/- 0.0 Position Angle: -28.1 +/- 0.0 Inclination: 36.6 +/- 0.2 Systemic Velocity: 7.6 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 144.1 +/- 0.1 RC: Scale: 6.0 +/- 0.0 ---------- Velocity measurements: 2711 Velocity chi-square: 99952.28713550561 Reduced chi-square: 36.9646032305864 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.2 +/- 0.0 Y center: -0.4 +/- 0.0 Position Angle: -28.2 +/- 0.0 Inclination: 35.8 +/- 0.2 Systemic Velocity: 7.2 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 144.6 +/- 0.1 RC: Scale: 6.1 +/- 0.0 ---------- Velocity measurements: 2450 Velocity chi-square: 95571.73211080642 Reduced chi-square: 39.12064351649874 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.3 +/- 0.0 Y center: -0.5 +/- 0.0 Position Angle: -28.2 +/- 0.0 Inclination: 36.0 +/- 0.2 Systemic Velocity: 5.5 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 145.7 +/- 0.2 RC: Scale: 6.3 +/- 0.0 ---------- Velocity measurements: 2436 Velocity chi-square: 80037.13807998202 Reduced chi-square: 32.950653799910256 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.4 +/- 0.0 Y center: -0.6 +/- 0.0 Position Angle: -28.4 +/- 0.0 Inclination: 35.0 +/- 0.2 Systemic Velocity: 4.7 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 146.5 +/- 0.2 RC: Scale: 6.4 +/- 0.0 ---------- Velocity measurements: 2433 Velocity chi-square: 77306.84051750305 Reduced chi-square: 31.865968886027638 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.5 +/- 0.0 Y center: -0.7 +/- 0.0 Position Angle: -28.5 +/- 0.0 Inclination: 34.3 +/- 0.2 Systemic Velocity: 3.4 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 146.8 +/- 0.2 RC: Scale: 6.5 +/- 0.0 ---------- Velocity measurements: 2427 Velocity chi-square: 72234.15124755514 Reduced chi-square: 29.848822829568242 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.5 +/- 0.0 Y center: -0.7 +/- 0.0 Position Angle: -28.6 +/- 0.0 Inclination: 34.2 +/- 0.2 Systemic Velocity: 3.2 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 146.6 +/- 0.2 RC: Scale: 6.4 +/- 0.0 ---------- Velocity measurements: 2425 Velocity chi-square: 70746.76115063585 Reduced chi-square: 29.258379301338234 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.5 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -28.6 +/- 0.0 Inclination: 33.9 +/- 0.2 Systemic Velocity: 2.8 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 146.7 +/- 0.2 RC: Scale: 6.5 +/- 0.0 ---------- Velocity measurements: 2422 Velocity chi-square: 68802.47711665143 Reduced chi-square: 28.48963855761964 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.6 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -29.5 +/- 0.0 Inclination: 28.5 +/- 0.3 Systemic Velocity: 1.3 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 145.2 +/- 0.2 RC: Scale: 6.4 +/- 0.0 ---------- Velocity measurements: 1784 Velocity chi-square: 61322.422533600744 Reduced chi-square: 34.50896034530149 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.6 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -29.5 +/- 0.0 Inclination: 28.5 +/- 0.3 Systemic Velocity: 1.3 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 145.2 +/- 0.2 RC: Scale: 6.4 +/- 0.0 ---------- Velocity measurements: 1784 Velocity chi-square: 61322.422533600744 Reduced chi-square: 34.50896034530149 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.6 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -29.5 +/- 0.0 Inclination: 28.5 +/- 0.3 Systemic Velocity: 1.3 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 145.2 +/- 0.2 RC: Scale: 6.4 +/- 0.0 ---------- Velocity measurements: 1784 Velocity chi-square: 61322.422533600744 Reduced chi-square: 34.50896034530149 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.6 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -29.5 +/- 0.0 Inclination: 28.5 +/- 0.3 Systemic Velocity: 1.3 +/- 0.1 ---------- Rotation curve parameters: RC: Asymptotic value: 145.2 +/- 0.2 RC: Scale: 6.4 +/- 0.0 ---------- Velocity measurements: 1784 Velocity chi-square: 61322.422533600744 Reduced chi-square: 34.50896034530149 ---------------------------------------------------------------------- ```python datadir='/media/brian/bdigiorg/nirvana/lux/marchrun/' mgas = makealltable('nirvana_',datadir=datadir,vftype='Gas', mangadir='/media/brian/bdigiorg/manga/') #stars = makealltable('nirvana_',datadir=datadir,vftype='Stars', mangadir='/media/brian/bdigiorg/manga/') mgpi = [f"{mgas['plate'][i]}-{mgas['ifu'][i]}" for i in range(len(mgas))] #spi = [f"{stars['plate'][i]}-{stars['ifu'][i]}" for i in range(len(stars))] ``` 2392 files found... 100%|█████████████████████████████████████████████████████████████████| 2392/2392 [00:39<00:00, 60.06it/s] ```python datadir='/media/brian/bdigiorg/nirvana/lux/christmasrun/' cgas = makealltable('nirvana_',datadir=datadir,vftype='Gas', mangadir='/media/brian/bdigiorg/manga/') #stars = makealltable('nirvana_',datadir=datadir,vftype='Stars', mangadir='/media/brian/bdigiorg/manga/') cgpi = [f"{cgas['plate'][i]}-{cgas['ifu'][i]}" for i in range(len(cgas))] #spi = [f"{stars['plate'][i]}-{stars['ifu'][i]}" for i in range(len(stars))] ``` 5357 files found... 100%|█████████████████████████████████████████████████████████████████| 5357/5357 [01:34<00:00, 56.68it/s] ```python def makeplot(xdata, ydata, color, alpha=.7): plt.scatter(xdata, ydata, c=color, s=5,alpha=alpha, cmap='jet') ax = plt.gca() ax.set_aspect(1) xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() line = np.linspace(min(xmin,ymin),max(xmax,ymax)) plt.plot(line,line,'k--') drp = fits.open('/media/brian/bdigiorg/manga/spectro/redux/DR17/drpall-v3_1_1.fits')[1].data ppi = [f"{drp['plate'][i]}-{drp['ifudsgn'][i]}" for i in range(len(drp))] ppa = drp['nsa_elpetro_phi'] #pinc = np.degrees(np.arccos(drp['nsa_elpetro_ba'])) q0 = .2 pinc = np.degrees(np.arccos(np.sqrt((drp['nsa_elpetro_ba']**2-q0**2) / (1 - q0**2)))) pinc[q < q0] = 90 plt.figure(figsize=(3,5)) a = ((mgas,mgpi,'Unif.'), (cgas,cgpi, 'Gauss.')) for j in range(2): gas, gpi, prior = a[j] pmatch = np.zeros(len(gpi),dtype=int) for i in range(len(gpi)): try: pmatch[i] = ppi.index(gpi[i]) except: pass good = (pmatch != 0) & (ppa[pmatch] > -1000) plt.subplot(211+j) print(len(pinc[pmatch][good]), len(gas['inc'])) plt.hist2d(pinc[pmatch][good], gas['inc'][good], cmap='Greens',range=((0,90),(0,90)),bins=30) plt.plot(np.linspace(0,90,90), np.linspace(0,90,90), 'k--') plt.xlabel('Photometric inc. (deg)') plt.ylabel('Nirvana gas inc. (deg)') if j==0: plt.tick_params(direction='in', labelbottom=False) plt.plot(np.linspace(0,90,90), np.linspace(0,90,90)+20, 'k:',label='Prior\nbound') plt.plot(np.linspace(0,90,90), np.linspace(0,90,90)-20, 'k:') plt.legend(loc=4) plt.gca().set_aspect(1) plt.text(.1,.85,f'{prior} prior', transform=plt.gca().transAxes, horizontalalignment='left', fontsize=12) plt.tick_params(direction='in', labelbottom=True) plt.tight_layout(h_pad=-1.3) plt.gcf().subplots_adjust(hspace=0) plt.savefig('incpriors.pdf', format='pdf') ``` RuntimeWarning: invalid value encountered in sqrt RuntimeWarning: invalid value encountered in arccos <IPython.core.display.Javascript object> <img src="" width="300"> 2183 2392 5206 5357 ```python datadir='/media/brian/bdigiorg/nirvana/lux/barred/sample/' sgas = makealltable('nirvana_',datadir=datadir,vftype='Gas', mangadir='/media/brian/bdigiorg/manga/') #stars = makealltable('nirvana_',datadir=datadir,vftype='Stars', mangadir='/media/brian/bdigiorg/manga/') sgpi = [f"{mgas['plate'][i]}-{mgas['ifu'][i]}" for i in range(len(mgas))] ``` 1118 files found... 100%|██████████████████████████████████████| 1118/1118 [00:47<00:00, 23.49it/s] ```python drp = fits.open('/media/brian/bdigiorg/manga/spectro/redux/DR17/drpall-v3_1_1.fits')[1].data ppi = [f"{drp['plate'][i]}-{drp['ifudsgn'][i]}" for i in range(len(drp))] ppa = drp['nsa_elpetro_phi'] #pinc = np.degrees(np.arccos(drp['nsa_elpetro_ba'])) q0 = .2 pinc = np.degrees(np.arccos(np.sqrt((drp['nsa_elpetro_ba']**2-q0**2) / (1 - q0**2)))) pinc[q < q0] = 90 plt.figure(figsize=(3,5)) pmatch = np.zeros(len(gpi),dtype=int) for i in range(len(gpi)): try: pmatch[i] = ppi.index(gpi[i]) except: pass good = (pmatch != 0) & (ppa[pmatch] > -1000) xdata = pinc[pmatch][good] ydata = gas['inc'][good] plt.subplot(211) plt.hist2d(xdata, ydata, cmap='Greens',range=((0,90),(0,90)),bins=30) plt.plot(np.linspace(0,90,90), np.linspace(0,90,90), 'k--') plt.xlabel('Photometric inc. (deg)') plt.ylabel('Nirvana gas inc. (deg)') plt.tick_params(direction='in', labelbottom=False) plt.gca().set_aspect(1) plt.subplot(212) plt.hist2d(xdata, ydata-xdata, cmap='Greens',range=((0,90),(-23,23)),bins=30) plt.axhline(0, c='k', ls='--') plt.axhline(np.nanmedian(ydata-xdata), c='r', ls=':', label='Median') plt.xlabel('Photometric inc. (deg)') plt.ylabel('Nirvana - Photometric (deg)') plt.tick_params(direction='in', labelbottom=True) plt.legend(loc=4) plt.tight_layout(h_pad=-1.3) plt.gcf().subplots_adjust(hspace=0) print(np.nanmedian(ydata-xdata)) plt.savefig('incbias.pdf', format='pdf') ``` RuntimeWarning: invalid value encountered in sqrt RuntimeWarning: invalid value encountered in arccos <IPython.core.display.Javascript object> <img src="" width="300"> 4.393298603476385 ```python q = drp[pmatch][good]['nsa_elpetro_ba'] q0 = .2 pinc = np.degrees(np.arccos(np.sqrt((q**2-q0**2) / (1 - q0**2)))) pinc[q < q0] = 90 ``` RuntimeWarning: invalid value encountered in sqrt ```python plt.figure() plt.hist(pinc) ``` <IPython.core.display.Javascript object> <img src="" width="640"> (array([ 43., 230., 543., 778., 886., 909., 789., 626., 335., 67.]), array([ 5.54670606, 13.99203546, 22.43736485, 30.88269424, 39.32802364, 47.77335303, 56.21868242, 64.66401182, 73.10934121, 81.55467061, 90. ]), <BarContainer object of 10 artists>) ```python def one2oneplot(plate,ifu,priordir='gaussprior',color=None): fs = glob(f'/media/brian/bdigiorg/nirvana/lux/mocks/{priordir}/nirvana_{plate}-{ifu}_Gas_mock_i??_r*.fits') for fi in fs: inc = int(fi[fi.find('_i')+2:fi.find('_r')]) with fits.open(fi) as f: if color is not None: if color == 'vsig': c = np.log10(np.max(f[1].data['vt'])/np.max(f[1].data['sig'])) plt.scatter(inc, f[1].data['inc'], c=c, cmap='jet',s=5,vmin=-1, vmax=1) if color == 'v2r': c = np.max(f[1].data['v2r']) plt.scatter(inc, f[1].data['inc'], c=c, cmap='jet',s=5, vmin=0, vmax=200) else: plt.plot(inc, f[1].data['inc'], 'k.') plt.xlabel('Input Inc. (deg)') plt.ylabel('Output Inc. (deg)') x = np.linspace(10,80,100) plt.plot(x,x,'k--') plt.gca().set_aspect(1) plt.tight_layout() plt.figure(figsize=(12,8)) color = 'v2r' plt.subplot(231) one2oneplot(7965,3704,'500pen',color) plt.title('Regular, High Penalty') plt.subplot(232) one2oneplot(7965,3704,'gaussprior',color) plt.title('Regular, Gaussian') plt.subplot(233) one2oneplot(7965,3704,'unifprior',color) plt.title('Regular, Uniform') plt.subplot(234) one2oneplot(11021,3703,'500pen',color) plt.title('Irregular, High Penalty') plt.subplot(235) one2oneplot(11021,3703,'gaussprior',color) plt.title('Irregular, Gaussian') plt.subplot(236) one2oneplot(11021,3703,'unifprior',color) plt.title('Irregular, Uniform') plt.tight_layout() ``` <IPython.core.display.Javascript object> <img src="" width="1200"> ```python plt.figure(figsize=(3,4.5)) cmap = 'viridis' plt.subplot(211) fs = glob(f'/media/brian/bdigiorg/nirvana/lux/mocks/500pen/nirvana_7965-3704_Gas_mock_i??_r*.fits') cs1 = [] cs2 = [] vmin, vmax = (0,75) x = np.linspace(0,90,100) plt.plot(x,x,'k--') for fi in fs: inc = int(fi[fi.find('_i')+2:fi.find('_r')]) with fits.open(fi) as f: c = np.max(f[1].data['v2r']) cs1 += [c] plt.scatter(inc+2, f[1].data['inc'], c=c, cmap=cmap,s=10, vmin=vmin, vmax=vmax) fs = glob(f'/media/brian/bdigiorg/nirvana/lux/mocks/gaussprior/nirvana_7965-3704_Gas_mock_i??_r*.fits') for fi in fs: inc = int(fi[fi.find('_i')+2:fi.find('_r')]) with fits.open(fi) as f: c = np.max(f[1].data['v2r']) cs2 += [c] plt.scatter(inc-2, f[1].data['inc'], c=c, cmap=cmap,s=30, marker='+', vmin=vmin, vmax=vmax) plt.ylabel('Output Inc. (deg)') plt.gca().set_aspect(1) plt.xticks([0,15,30,45,60,75,90]) plt.yticks([0,15,30,45,60,75,90]) plt.xlim(0,90) plt.ylim(0,90) plt.tick_params(direction='in', labelbottom=False) plt.text(.1,.8,f'7965-3704\n(unbarred)', transform=plt.gca().transAxes, horizontalalignment='left', fontsize=12) #csmax = max((np.max(cs1),np.max(cs2))) #cm = plt.get_cmap(cmap) #colors = cm(np.linspace(1.-csmax/float(csmax), 1, cm.N)) #color_map = LinearSegmentedColormap.from_list('cut_'+cmap, colors) cax = mal(plt.gca()).append_axes('right', size='5%', pad=0) #plt.colorbar(ScalarMappable(plt.Normalize(0,max((np.max(cs1),np.max(cs2)))), cmap), plt.colorbar(ScalarMappable(plt.Normalize(vmin,vmax), cmap), cax=cax, orientation='vertical',label=r'$V_{2r}$ (km/s)') plt.tick_params(direction='in') plt.subplot(212) fs = glob(f'/media/brian/bdigiorg/nirvana/lux/mocks/500pen/nirvana_11021-3703_Gas_mock_i??_r*.fits') cs1 = [] cs2 = [] vmin, vmax = (0,120) x = np.linspace(0,90,100) plt.plot(x,x,'k--') for fi in fs: inc = int(fi[fi.find('_i')+2:fi.find('_r')]) with fits.open(fi) as f: c = np.max(f[1].data['v2r']) cs1 += [c] if fi == fs[-1]: plt.scatter(inc+2, f[1].data['inc'], c=c, cmap=cmap,s=10, vmin=vmin, vmax=vmax, label='Penalty') else: plt.scatter(inc+2, f[1].data['inc'], c=c, cmap=cmap,s=10, vmin=vmin, vmax=vmax) fs = glob(f'/media/brian/bdigiorg/nirvana/lux/mocks/gaussprior/nirvana_7965-3704_Gas_mock_i??_r*.fits') for fi in fs: inc = int(fi[fi.find('_i')+2:fi.find('_r')]) with fits.open(fi) as f: c = np.max(f[1].data['v2r']) cs2 += [c] if fi == fs[-1]: plt.scatter(inc-2, f[1].data['inc'], c=c, cmap=cmap,s=30, marker='+', vmin=vmin, vmax=vmax, label='No Penalty') else: plt.scatter(inc-2, f[1].data['inc'], c=c, cmap=cmap,s=30, marker='+', vmin=vmin, vmax=vmax) plt.xlabel('Input Inc. (deg)') plt.ylabel('Output Inc. (deg)') plt.gca().set_aspect(1) plt.xticks([0,15,30,45,60,75,90]) plt.yticks([0,15,30,45,60,75]) plt.xlim(0,90) plt.ylim(0,90) plt.tick_params(direction='in') plt.text(.1,.8,f'11021-3703\n(barred)', transform=plt.gca().transAxes, horizontalalignment='left', fontsize=12) plt.legend(loc=4) cax = mal(plt.gca()).append_axes('right', size='5%', pad=0) plt.colorbar(ScalarMappable(plt.Normalize(0,max((np.max(cs1),np.max(cs2)))),cmap), cax=cax, orientation='vertical',label=r'$V_{2r}$ (km/s)') plt.tick_params(direction='in') plt.tight_layout(rect=(.04,0,.96,1)) plt.gcf().subplots_adjust(hspace=0) plt.savefig('penaltybias.pdf', format='pdf') ``` <IPython.core.display.Javascript object> <img src="" width="300"> ```python plt.figure() cut = np.abs(90-relgz) < 45 print(cut.sum()) plt.hist(pabes[cut], bins=30, density=True) plt.hist(pabes, bins=30, density=True, histtype='step') ``` <IPython.core.display.Javascript object> <img src="" width="640"> 100 (array([4.30545809e-02, 1.59489143e-02, 3.81875413e-03, 2.39608102e-03, 1.19804051e-03, 6.73897788e-04, 7.48775320e-04, 2.99510128e-04, 3.74387660e-04, 1.49755064e-04, 3.74387660e-04, 5.24142724e-04, 4.49265192e-04, 8.98530384e-04, 9.73407916e-04, 1.27291804e-03, 2.17144843e-03, 2.17144843e-03, 1.64730570e-03, 1.72218324e-03, 1.04828545e-03, 5.99020256e-04, 7.48775320e-05, 7.48775320e-05, 1.49755064e-04, 7.48775320e-05, 1.49755064e-04, 0.00000000e+00, 7.48775320e-05, 5.99020256e-04]), array([1.42414622e-01, 1.20879791e+01, 2.40335435e+01, 3.59791079e+01, 4.79246724e+01, 5.98702368e+01, 7.18158012e+01, 8.37613657e+01, 9.57069301e+01, 1.07652495e+02, 1.19598059e+02, 1.31543623e+02, 1.43489188e+02, 1.55434752e+02, 1.67380317e+02, 1.79325881e+02, 1.91271446e+02, 2.03217010e+02, 2.15162574e+02, 2.27108139e+02, 2.39053703e+02, 2.50999268e+02, 2.62944832e+02, 2.74890397e+02, 2.86835961e+02, 2.98781526e+02, 3.10727090e+02, 3.22672654e+02, 3.34618219e+02, 3.46563783e+02, 3.58509348e+02]), [<matplotlib.patches.Polygon at 0x7fca60ccde50>]) ```python pabes = pabus-pabls print(np.sum(pabes < 50)) ``` 877 ```python def recenter(arr, mod=180): return (arr - mod/2) % mod - mod/2 def recoveryplot(plate,ifu,param): fs = glob(f'/media/brian/bdigiorg/nirvana/lux/mocks/newmocks/penalty/nirvana_{plate}-{ifu}_Gas_mock_i??_r*.fits') recoveries = np.zeros(len(fs)) for i in range(len(fs)): with fits.open(fs[i]) as f: recoveries[i] = f[1].data[param] - resdict[param] plt.hist(recoveries, bins=20, color='olivedrab',density=True) plt.tick_params(direction='in', labelleft=False) plt.text(.1,.8,param,fontsize=14,transform=plt.gca().transAxes) plt.axvline(0, c='k', ls='--') plate, ifu = (11021,3703) if plate == 11021: args, resdict = fileprep(f'/media/brian/bdigiorg/nirvana/lux/barred/sample/nirvana_{plate}-{ifu}_Gas.fits', rootdir='/media/brian/bdigiorg/manga/spectro/') elif plate == 7965: args, resdict = fileprep(f'/media/brian/bdigiorg/nirvana/lux/mocks/newmocks/nirvana_{plate}-{ifu}_Gas.fits', rootdir='/media/brian/bdigiorg/manga/spectro/') params = ['inc','xc','pa','yc','pab'] plt.figure(figsize=(3,4)) for i in range(len(params)): plt.subplot(3,2,i+1) recoveryplot(plate,ifu,params[i]) plt.tight_layout() ``` UserWarning: Datacube file /media/brian/bdigiorg/manga/spectro/redux/DR17/11021/stack/manga-11021-3703-LOGCUBE.fits.gz does not exist! UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/11021/images/3703.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/11021/3703/manga-11021-3703-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.9 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -110.7 +/- 0.1 Inclination: 1.0 +/- 21.8 Systemic Velocity: -88.0 +/- 1.0 ---------- Rotation curve parameters: RC: Asymptotic value: 183.5 +/- 1.3 RC: Scale: 4.5 +/- 0.0 ---------- Velocity measurements: 742 Velocity chi-square: 69096.61087255078 Reduced chi-square: 94.00899438442283 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.8 +/- 0.0 Y center: -0.7 +/- 0.0 Position Angle: -110.8 +/- 0.1 Inclination: 1.0 +/- 21.9 Systemic Velocity: -85.7 +/- 0.9 ---------- Rotation curve parameters: RC: Asymptotic value: 178.6 +/- 1.2 RC: Scale: 4.3 +/- 0.0 ---------- Velocity measurements: 696 Velocity chi-square: 68680.2853778356 Reduced chi-square: 99.68111085317213 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.5 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -111.8 +/- 0.1 Inclination: 1.0 +/- 23.6 Systemic Velocity: -77.0 +/- 0.8 ---------- Rotation curve parameters: RC: Asymptotic value: 176.7 +/- 1.2 RC: Scale: 4.4 +/- 0.0 ---------- Velocity measurements: 692 Velocity chi-square: 58428.32197484034 Reduced chi-square: 85.29682040122678 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.2 +/- 0.0 Y center: -0.7 +/- 0.0 Position Angle: -112.4 +/- 0.1 Inclination: 1.0 +/- 24.9 Systemic Velocity: -71.4 +/- 0.7 ---------- Rotation curve parameters: RC: Asymptotic value: 176.4 +/- 1.2 RC: Scale: 4.5 +/- 0.0 ---------- Velocity measurements: 689 Velocity chi-square: 51771.26572446772 Reduced chi-square: 75.91094681006997 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.2 +/- 0.0 Y center: -0.7 +/- 0.0 Position Angle: -112.5 +/- 0.1 Inclination: 1.0 +/- 25.4 Systemic Velocity: -72.1 +/- 0.8 ---------- Rotation curve parameters: RC: Asymptotic value: 177.1 +/- 1.2 RC: Scale: 4.5 +/- 0.0 ---------- Velocity measurements: 654 Velocity chi-square: 51566.84140597743 Reduced chi-square: 79.70145503242261 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide <IPython.core.display.Javascript object> <img src="" width="300"> ```python plate, ifu = (7965,3704) if plate == 11021: args, resdict = fileprep(f'/media/brian/bdigiorg/nirvana/lux/barred/sample/nirvana_{plate}-{ifu}_Gas.fits', rootdir='/media/brian/bdigiorg/manga/spectro/') elif plate == 7965: args, resdict = fileprep(f'/media/brian/bdigiorg/nirvana/lux/mocks/newmocks/nirvana_{plate}-{ifu}_Gas.fits', rootdir='/media/brian/bdigiorg/manga/spectro/') fs = glob(f'/media/brian/bdigiorg/nirvana/lux/mocks/newmocks/penalty/nirvana_{plate}-{ifu}_Gas_mock_i??_r*.fits') plt.figure(figsize=(10,18)) for i in range(len(fs)): with fits.open(fs[i]) as f: plt.subplot(9,5,i+1) plt.imshow(f['vel_model'].data-f['vel'].data, cmap='RdBu', origin='lower',vmin=-20,vmax=20) plt.axis('off') plt.tick_params(left=False,bottom=False,labelleft=False,labelbottom=False) plt.tight_layout(h_pad=0,w_pad=0) ``` UserWarning: Datacube file /media/brian/bdigiorg/manga/spectro/redux/DR17/7965/stack/manga-7965-3704-LOGCUBE.fits.gz does not exist! UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/7965/images/3704.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/7965/3704/manga-7965-3704-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.0 +/- 0.0 Y center: 0.1 +/- 0.0 Position Angle: -77.3 +/- 0.1 Inclination: 21.4 +/- 1.0 Systemic Velocity: 1.7 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 28.9 +/- 0.1 RC: Scale: 3.9 +/- 0.0 ---------- Velocity measurements: 818 Velocity chi-square: 9074.859985890593 Reduced chi-square: 11.18971638210924 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.0 +/- 0.0 Y center: 0.1 +/- 0.0 Position Angle: -77.3 +/- 0.1 Inclination: 21.4 +/- 1.0 Systemic Velocity: 1.7 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 28.9 +/- 0.1 RC: Scale: 3.9 +/- 0.0 ---------- Velocity measurements: 818 Velocity chi-square: 9074.859985890593 Reduced chi-square: 11.18971638210924 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 0.0 +/- 0.0 Y center: 0.1 +/- 0.0 Position Angle: -77.1 +/- 0.1 Inclination: 20.9 +/- 1.0 Systemic Velocity: 1.8 +/- 0.0 ---------- Rotation curve parameters: RC: Asymptotic value: 28.6 +/- 0.1 RC: Scale: 3.8 +/- 0.0 ---------- Velocity measurements: 741 Velocity chi-square: 8287.02771951823 Reduced chi-square: 11.290228500706036 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide <IPython.core.display.Javascript object> <img src="" width="1000"> ```python plate, ifu = (11021,3703) if plate == 11021: args, resdict = fileprep(f'/media/brian/bdigiorg/nirvana/lux/barred/sample/nirvana_{plate}-{ifu}_Gas.fits', rootdir='/media/brian/bdigiorg/manga/spectro/') elif plate == 7965: args, resdict = fileprep(f'/media/brian/bdigiorg/nirvana/lux/mocks/newmocks/nirvana_{plate}-{ifu}_Gas.fits', rootdir='/media/brian/bdigiorg/manga/spectro/') fs = glob(f'/media/brian/bdigiorg/nirvana/lux/mocks/newmocks/penalty/nirvana_{plate}-{ifu}_Gas_mock_i??_r*.fits') plt.figure(figsize=(10,18)) for i in range(len(fs)): with fits.open(fs[i]) as f: plt.subplot(9,5,i+1) plt.imshow(f['vel_model'].data-f['vel'].data, cmap='RdBu', origin='lower',vmin=-20,vmax=20) plt.axis('off') plt.tick_params(left=False,bottom=False,labelleft=False,labelbottom=False) plt.tight_layout(h_pad=0,w_pad=0) ``` UserWarning: Datacube file /media/brian/bdigiorg/manga/spectro/redux/DR17/11021/stack/manga-11021-3703-LOGCUBE.fits.gz does not exist! UserWarning: Image file /media/brian/bdigiorg/manga/spectro/redux/DR17/11021/images/3703.png does not exist! Reading /media/brian/bdigiorg/manga/spectro/analysis/DR17/HYB10-MILESHC-MASTARHC2/11021/3703/manga-11021-3703-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz ... Done ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.9 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -110.7 +/- 0.1 Inclination: 1.0 +/- 21.8 Systemic Velocity: -88.0 +/- 1.0 ---------- Rotation curve parameters: RC: Asymptotic value: 183.5 +/- 1.3 RC: Scale: 4.5 +/- 0.0 ---------- Velocity measurements: 742 Velocity chi-square: 69096.61087255078 Reduced chi-square: 94.00899438442283 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.8 +/- 0.0 Y center: -0.7 +/- 0.0 Position Angle: -110.8 +/- 0.1 Inclination: 1.0 +/- 21.9 Systemic Velocity: -85.7 +/- 0.9 ---------- Rotation curve parameters: RC: Asymptotic value: 178.6 +/- 1.2 RC: Scale: 4.3 +/- 0.0 ---------- Velocity measurements: 696 Velocity chi-square: 68680.2853778356 Reduced chi-square: 99.68111085317213 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.5 +/- 0.0 Y center: -0.8 +/- 0.0 Position Angle: -111.8 +/- 0.1 Inclination: 1.0 +/- 23.6 Systemic Velocity: -77.0 +/- 0.8 ---------- Rotation curve parameters: RC: Asymptotic value: 176.7 +/- 1.2 RC: Scale: 4.4 +/- 0.0 ---------- Velocity measurements: 692 Velocity chi-square: 58428.32197484034 Reduced chi-square: 85.29682040122678 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.2 +/- 0.0 Y center: -0.7 +/- 0.0 Position Angle: -112.4 +/- 0.1 Inclination: 1.0 +/- 24.9 Systemic Velocity: -71.4 +/- 0.7 ---------- Rotation curve parameters: RC: Asymptotic value: 176.4 +/- 1.2 RC: Scale: 4.5 +/- 0.0 ---------- Velocity measurements: 689 Velocity chi-square: 51771.26572446772 Reduced chi-square: 75.91094681006997 ---------------------------------------------------------------------- ---------------------------------------------------------------------- Fit Result ---------------------------------------------------------------------- Fit status message: `ftol` termination condition is satisfied. Fit status: 2 Fit success: True ---------- Base parameters: X center: 3.2 +/- 0.0 Y center: -0.7 +/- 0.0 Position Angle: -112.5 +/- 0.1 Inclination: 1.0 +/- 25.4 Systemic Velocity: -72.1 +/- 0.8 ---------- Rotation curve parameters: RC: Asymptotic value: 177.1 +/- 1.2 RC: Scale: 4.5 +/- 0.0 ---------- Velocity measurements: 654 Velocity chi-square: 51566.84140597743 Reduced chi-square: 79.70145503242261 ---------------------------------------------------------------------- RuntimeWarning: divide by zero encountered in true_divide <IPython.core.display.Javascript object> <img src="" width="1000"> ```python ```
ricardoclandimREPO_NAMENIRVANAPATH_START.@NIRVANA_extracted@NIRVANA-master@Plots.ipynb@.PATH_END.py
{ "filename": "core.py", "repo_name": "riogroup/SORA", "repo_path": "SORA_extracted/SORA-master/sora/body/core.py", "type": "Python" }
import warnings import astropy.constants as const import astropy.units as u import numpy as np from astropy.coordinates import SkyCoord, Longitude, Latitude from astropy.time import Time from sora.config import input_tests from .frame import get_archinal_frame from .meta import BaseBody, PhysicalData from .utils import search_sbdb, search_satdb, apparent_magnitude __all__ = ['Body'] class Body(BaseBody): """Class that contains and manages the information of the body. Attributes ---------- name : `str`, required The name of the object. It can be the used `spkid` or `designation number` to query the SBDB (Small-Body DataBase). In this case, the name is case insensitive. database : `str`, optional, default='auto' The database to query the object. It can be ``satdb`` for our temporary hardcoded satellite database, or ``'sbdb'`` to query on the SBDB. If database is set as ``auto`` it will try first with ``satdb``, then ``sbdb``. If the user wants to use their own information, database must be given as ``None``. In this case, `spkid` parameter must be given. ephem : `sora.EphemKernel`, `sora.EphemHorizons`, `sora.EphemJPL`, `sora.EphemPlanete` An Ephem Class that contains information about the ephemeris. It can be "horizons" to automatically defined an EphemHorizons object or a list of kernels to automatically define an EphemKernel object. orbit_class : `str` It defines the Orbital class of the body. It can be ``TNO``, ``Satellite``, ``Centaur``, ``comet``, ``asteroid``, ``trojan``, ``neo``, and ``planet``. It is important for a better characterization of the object. If a different value is given, it will be defined as ``unclassified``. spkid : `str`, `int`, `float` If ``database=None``, the user must give a `spkid` or an `ephem` which has the `spkid` parameter. shape : `str`, `sora.body.shape.Shape3D` It defines the input shape of the body. It can be a body.shape object or the path to OBJ file. albedo : `float`, `int` The albedo of the object. H : `float`, `int` The absolute magnitude. G : `float`, `int` The phase slope. diameter : `float`, `int`, `astropy.quantity.Quantity` The diameter of the object, in km. density : `float`, `int`, `astropy.quantity.Quantity` The density of the object, in g/cm³. GM : `float`, `int`, `astropy.quantity.Quantity` The Standard Gravitational Parameter, in km³/s². rotation : `float`, `int`, `astropy.quantity.Quantity` The Rotation of the object, in hours. pole : `str`, `astropy.coordinates.SkyCoord` The Pole coordinates of the object. It can be a `SkyCoord object` or a string in the format ``'hh mm ss.ss +dd mm ss.ss'``. BV : `float`, `int` The B-V color. UB : `float`, `int` The U-B color. smass : `str` The spectral type in SMASS classification. tholen : `str` The spectral type in Tholen classification. Note ---- The following attributes are are returned from the Small-Body DataBase when ``database='sbdb'`` or from our temporary hardcoded Satellite DataBase when ``database='satdb'``: `orbit_class`, `spkid`, `albedo`, `H`, `G`, `diameter`, `density`, `GM`, `rotation`, `pole`, `BV`, `UB`, `smass`, and `tholen`. These are physical parameters the user can give to the object. If a query is made and user gives a parameter, the parameter given by the user is defined in the *Body* object. """ def __init__(self, name, database='auto', **kwargs): allowed_kwargs = ["albedo", "H", "G", "diameter", "density", "GM", "rotation", "pole", "BV", "UB", "smass", "orbit_class", "spkid", "tholen", "ephem", "frame", "shape"] input_tests.check_kwargs(kwargs, allowed_kwargs=allowed_kwargs) self._shared_with = {'ephem': {}, 'occultation': {}} if database not in ['auto', 'satdb', 'sbdb', None]: raise ValueError(f'{database} is not a valid database argument.') if database is None: self.__from_local(name=name, spkid=kwargs.get('spkid')) if database in ['auto', 'satdb']: try: self.__from_satdb(name=name) except ValueError: pass else: database = 'satdb' if database in ['auto', 'sbdb']: try: self.__from_sbdb(name=name) except ValueError: pass else: database = 'sbdb' if database == 'auto': raise ValueError('Object was not located on satdb or sbdb.') # set the physical parameters based on the kwarg name. if 'smass' in kwargs: self.spectral_type['SMASS']['value'] = kwargs.pop('smass') if 'tholen' in kwargs: self.spectral_type['Tholen']['value'] = kwargs.pop('tholen') for key in kwargs: setattr(self, key, kwargs[key]) try: shape = self.shape except AttributeError: self.shape = self.radius.value self._shared_with['ephem']['search_name'] = self._search_name self._shared_with['ephem']['id_type'] = self._id_type if getattr(self, "frame", None) is None: try: self.frame = get_archinal_frame(self.spkid) except ValueError: if not np.isnan(self.pole.ra) and not np.isnan(self.rotation): from .frame import PlanetocentricFrame self.frame = PlanetocentricFrame(epoch='J2000', pole=self.pole, alphap=0, deltap=0, prime_angle=0, rotation_velocity=360*u.deg / self.rotation, right_hand=True, reference="") if 'ephem' not in kwargs: self.ephem = 'horizons' def __from_sbdb(self, name): """Searches the object in the SBDB and defines its physical parameters. Parameters ---------- name : `str` The `name`, `spkid` or `designation number` of the Small Body. """ sbdb = search_sbdb(name) self.meta_sbdb = sbdb self.name = sbdb['object']['fullname'] self.shortname = sbdb['object'].get('shortname', self.name) self.orbit_class = sbdb['object']['orbit_class']['name'] pp = sbdb['phys_par'] # get the physical parameters (pp) of the sbdb if 'extent' in pp: extent = np.array(pp['extent'].split('x'), dtype=float)/2 self.shape = extent self.albedo = PhysicalData('Albedo', pp.get('albedo'), pp.get('albedo_sig'), pp.get('albedo_ref'), pp.get('albedo_note')) self.H = PhysicalData('Absolute Magnitude', pp.get('H'), pp.get('H_sig'), pp.get('H_ref'), pp.get('H_note'), unit=u.mag) self.G = PhysicalData('Phase Slope', pp.get('G'), pp.get('G_sig'), pp.get('G_ref'), pp.get('G_note')) self.diameter = PhysicalData('Diameter', pp.get('diameter'), pp.get('diameter_sig'), pp.get('diameter_ref'), pp.get('diameter_note'), unit=u.km) self.density = PhysicalData('Density', pp.get('density'), pp.get('density_sig'), pp.get('density_ref'), pp.get('density_note'), unit=u.g/u.cm**3) self.GM = PhysicalData('Standard Gravitational Parameter', pp.get('GM'), pp.get('GM_sig'), pp.get('GM_ref'), pp.get('GM_note'), unit=u.km**3/u.s**2) self.rotation = PhysicalData('Rotation', pp.get('rot_per'), pp.get('rot_per_sig'), pp.get('rot_per_ref'), pp.get('rot_per_note'), unit=u.h) self.BV = PhysicalData('B-V color', pp.get('BV'), pp.get('BV_sig'), pp.get('BV_ref'), pp.get('BV_note')) self.UB = PhysicalData('U-B color', pp.get('UB'), pp.get('UB_sig'), pp.get('UB_ref'), pp.get('UB_note')) if 'pole' in pp: delimiters = [",", "|", ";", "/"] pole = pp['pole'] for delimiter in delimiters: pole = pole.replace(delimiter, " ") if len(pole.split()) == 2: self.pole = SkyCoord(pole, unit=('deg', 'deg')) # Removed uncertainty due to different SBDB formats. # pole_err = pp['pole_sig'].split('/') # self.pole.ra.uncertainty = Longitude(pole_err[0], unit=u.deg) # self.pole.dec.uncertainty = Latitude(pole_err[0] if len(pole_err) == 1 else pole_err[1], unit=u.deg) self.pole.reference = pp['pole_ref'] or "" self.pole.notes = pp['pole_note'] or "" else: self.pole = None else: self.pole = None self.spectral_type = { "SMASS": {"value": pp.get('spec_B'), "reference": pp.get('spec_B_ref'), "notes": pp.get('spec_B_note')}, "Tholen": {"value": pp.get('spec_T'), "reference": pp.get('spec_T_ref'), "notes": pp.get('spec_T_note')}} self.spkid = sbdb['object']['spkid'] self._des_name = sbdb['object']['des'] self.discovery = "Discovered {} by {} at {}".format(sbdb['discovery'].get('date'), sbdb['discovery'].get('who'), sbdb['discovery'].get('location')) def __from_satdb(self, name): satdb = search_satdb(name) self.name = name.capitalize() self.shortname = name.capitalize() self.orbit_class = satdb['class'] self.albedo = PhysicalData('Albedo', *satdb.get('albedo', [None, None, None])) self.H = PhysicalData('Absolute Magnitude', *satdb.get('H', [None, None, None]), unit=u.mag) self.G = PhysicalData('Phase Slope', *satdb.get('G', [None, None, None])) self.diameter = PhysicalData('Diameter', *satdb.get('diameter', [None, None, None]), unit=u.km) self.density = PhysicalData('Density', *satdb.get('density', [None, None, None]), unit=u.g / u.cm ** 3) self.GM = PhysicalData('Standard Gravitational Parameter', *satdb.get('GM', [None, None, None]), unit=u.km ** 3 / u.s ** 2) self.rotation = PhysicalData('Rotation', *satdb.get('rotation', [None, None, None]), unit=u.h) if 'pole' in satdb: self.pole = SkyCoord(satdb['pole'][0].replace('/', ' '), unit=('deg', 'deg')) self.pole.ra.uncertainty = Longitude(satdb['pole'][1].split('/')[0], unit=u.deg) self.pole.dec.uncertainty = Latitude(satdb['pole'][1].split('/')[1], unit=u.deg) self.pole.reference = satdb['pole'][2] or "" self.pole.notes = "" else: self.pole = None self.BV = None self.UB = None self.spectral_type = { "SMASS": {"value": None, "reference": "", "notes": ""}, "Tholen": {"value": None, "reference": "", "notes": ""}} self.spkid = satdb['spkid'] self._des_name = name self.discovery = "" def __from_local(self, name, spkid): """Defines Body object with default values for mode='local'. """ self.name = name self.shortname = name self.orbit_class = None if not spkid: raise ValueError("'spkid' must be given.") self.spkid = spkid self.albedo = None self.H = None self.G = None self.diameter = None self.density = None self.GM = None self.rotation = None self.pole = None self.BV = None self.UB = None self.spectral_type = {"SMASS": {"value": None, "reference": None, "notes": None}, "Tholen": {"value": None, "reference": None, "notes": None}} self.discovery = "" def get_position(self, time, observer='geocenter'): """Returns the object position as seen by an observer Parameters ---------- time : `str`, `astropy.time.Time` Reference time to calculate the object position. It can be a string in the ISO format (yyyy-mm-dd hh:mm:ss.s) or an astropy Time object. observer : `str`, `sora.Observer`, `sora.Spacecraft` IAU code of the observer (must be present in given list of kernels), a SORA observer object or a string: ['geocenter', 'barycenter'] Returns ------- coord : `astropy.coordinates.SkyCoord` Astropy SkyCoord object with the object coordinates at the given time. """ return self.ephem.get_position(time=time, observer=observer) def get_pole_position_angle(self, time, observer='geocenter'): """Returns the pole position angle and the aperture angle relative to the geocenter. Parameters ---------- time : `str`, `astropy.time.Time` Time from which to calculate the position. It can be a string in the ISO format (yyyy-mm-dd hh:mm:ss.s) or an astropy Time object. observer : `str`, `sora.Observer`, `sora.Spacecraft` IAU code of the observer (must be present in given list of kernels), a SORA observer object or a string: ['geocenter', 'barycenter'] Returns ------- position_angle, aperture_angle : `float` array Position angle and aperture angle of the object's pole, in degrees. """ time = Time(time) pole = self.pole if np.isnan(pole.ra): raise ValueError("Pole coordinates are not defined") obj = self.ephem.get_position(time, observer=observer) position_angle = obj.position_angle(pole).rad*u.rad aperture_angle = np.arcsin( -(np.sin(pole.dec)*np.sin(obj.dec) + np.cos(pole.dec)*np.cos(obj.dec)*np.cos(pole.ra-obj.ra)) ) return position_angle.to('deg'), aperture_angle.to('deg') def apparent_magnitude(self, time, observer='geocenter'): """Calculates the object's apparent magnitude. Parameters ---------- time : `str`, `astropy.time.Time` Reference time to calculate the object's apparent magnitude. It can be a string in the ISO format (yyyy-mm-dd hh:mm:ss.s) or an astropy Time object. observer : `str`, `sora.Observer`, `sora.Spacecraft` IAU code of the observer (must be present in given list of kernels), a SORA observer object or a string: ['geocenter', 'barycenter'] Returns ------- ap_mag : `float` Object apparent magnitude. """ from astroquery.jplhorizons import Horizons time = Time(time) if np.isnan(self.H) or np.isnan(self.G): from sora.observer import Observer, Spacecraft warnings.warn('H and/or G is not defined for {}. Searching into JPL Horizons service'.format(self.shortname)) origins = {'geocenter': '@399', 'barycenter': '@0'} location = origins.get(observer) if not location and isinstance(observer, str): location = observer if isinstance(observer, (Observer, Spacecraft)): location = f'{getattr(observer, "code", "")}@{getattr(observer, "spkid", "")}' if not location: raise ValueError("observer must be 'geocenter', 'barycenter' or an observer object.") obj = Horizons(id=self._search_name, id_type=self._id_type, location=location, epochs=time.jd) eph = obj.ephemerides(extra_precision=True) if 'H' in eph.keys(): self.H = eph['H'][0] self.H.reference = "JPL Horizons" self.G = eph['G'][0] self.G.reference = "JPL Horizons" if len(eph['V']) == 1: return eph['V'][0] else: return eph['V'].tolist() else: obs_obj = self.ephem.get_position(time, observer=observer) sun_obj = self.ephem.get_position(time, observer='10') # Calculates the phase angle between the 2-vectors unit_vector_1 = -obs_obj.cartesian.xyz / np.linalg.norm(obs_obj.cartesian.xyz) unit_vector_2 = -sun_obj.cartesian.xyz / np.linalg.norm(sun_obj.cartesian.xyz) dot_product = np.dot(unit_vector_1, unit_vector_2) phase = np.arccos(dot_product).to(u.deg).value return apparent_magnitude(self.H.value, self.G.value, obs_obj.distance.to(u.AU).value, sun_obj.distance.to(u.AU).value, phase) def to_log(self, namefile): """Saves the body log to a file. Parameters ---------- namefile : `str` Filename to save the log. """ f = open(namefile, 'w') f.write(self.__str__()) f.close() def get_orientation(self, time, observer='geocenter'): """Returns the object orientation as seen by an observer. Parameters ---------- time : `str`, `astropy.time.Time` Epoch of observation to calculate the object orientation. It can be a string in the ISO format (yyyy-mm-dd hh:mm:ss.s) or an astropy Time object. observer : `str`, `sora.Observer`, `sora.Spacecraft` IAU code of the observer (must be present in given list of kernels), a SORA observer object or a string: ['geocenter', 'barycenter'] to compute ephemeris. Returns ------- orientation : `dict` A dictionary with the following orientation parameters: - `sub_observer`: `str` the longitude and latitude of the body in the direction of the observer. - `sub_solar` : `str` The sub-solar coordinate. - `pole_position_angle` : `astropy.coordinates.Angle` Apparent position angle of the pole. - `pole_aperture_angle` : `astropy.coordinates.Angle` Apparent aperture angle of the pole. """ time = Time(time) pos = self.ephem.get_position(time=time, observer=observer) orientation = {} try: epoch = time - pos.spherical.distance / const.c frame = self.frame.frame_at(epoch=epoch) pole = frame.pole subobs = SkyCoord(-pos.cartesian).transform_to(frame=frame) orientation['sub_observer'] = subobs.to_string('decimal') # TODO(subsun is technically wrong. We must correct to an observer on the body.) pos_sun = self.ephem.get_position(time=time, observer='10') subsun = SkyCoord(-pos_sun.cartesian).transform_to(frame=frame) orientation['sub_solar'] = subsun.to_string('decimal') except AttributeError: warnings.warn('Frame attribute is not defined') pole = self.pole if not np.isnan(pole.ra): position_angle = pos.position_angle(pole).rad * u.rad aperture_angle = np.arcsin( -(np.sin(pole.dec) * np.sin(pos.dec) + np.cos(pole.dec) * np.cos(pos.dec) * np.cos(pole.ra - pos.ra)) ) orientation['pole_position_angle'] = position_angle.to('deg') orientation['pole_aperture_angle'] = aperture_angle.to('deg') else: warnings.warn("Pole coordinates are not defined") return orientation def plot(self, time=None, observer='geocenter', center_f=0, center_g=0, contour=False, ax=None, plot_pole=True, **kwargs): """Plots the body shape as viewed by observer at some time given the body orientation. If the user wants to dictate the orientation, please use `shape.plot()` instead. Parameters ---------- time : `str`, `astropy.time.Time` Reference time to calculate the object's apparent magnitude. It can be a string in the ISO format (yyyy-mm-dd hh:mm:ss.s) or an astropy Time object. It must be only one value. observer : `str`, `sora.Observer`, `sora.Spacecraft` IAU code of the observer (must be present in given list of kernels), a SORA observer object or a string: ['geocenter', 'barycenter'] center_f : `int`, `float` Offset of the center of the body in the East direction, in km center_g : `int`, `float` Offset of the center of the body in the North direction, in km radial_offset : `int`, `float` Offset of the center of the body in the direction of observation, in km ax : `matplotlib.pyplot.Axes` The axes where to make the plot. If None, it will use the default axes. contour : `bool` If True, it plots the limb of the projected shape. If False, it plots the 3D shape. Default: False. plot_pole : `bool` If True, the direction of the pole is plotted. Ignored if `contour=True` """ if not hasattr(self, 'shape'): raise ValueError('{} does not have a shape or size to be plotted'.format(self.__class__.__name__)) if time is None or getattr(self, 'frame', None) is None: warnings.warn('No time is giving or frame is not defined. Plotting without computing orientation. ' 'To provide orientation, please plot from shape directly.') orientation = {} else: time = Time(time) if not time.isscalar and len(time) > 1: raise ValueError('time keyword must refer to only one instant') orientation = self.get_orientation(time=time, observer=observer) orientation.pop('pole_aperture_angle') if 'pole_aperture_angle' in kwargs: kwargs.pop('pole_aperture_angle') if contour: orientation.pop('sub_solar') self.shape.get_limb(**orientation).plot(center_f=center_f, center_g=center_g, ax=ax, **kwargs) else: self.shape.plot(**orientation, center_f=center_f, center_g=center_g, ax=ax, plot_pole=plot_pole, **kwargs) def __str__(self): from .values import smass, tholen out = ['#' * 79 + '\n{:^79s}\n'.format(self.name) + '#' * 79 + '\n', 'Object Orbital Class: {}\n'.format(self.orbit_class)] if self.spectral_type['Tholen']['value'] or self.spectral_type['SMASS']['value']: out += 'Spectral Type:\n' value = self.spectral_type['SMASS']['value'] if value: out.append(' SMASS: {} [Reference: {}]\n'.format(value, self.spectral_type['SMASS']['reference'])) value = self.spectral_type['Tholen']['value'] if value: out.append(' Tholen: {} [Reference: {}]\n'.format(value, self.spectral_type['Tholen']['reference'])) out += " "*7 + (smass.get(self.spectral_type['SMASS']['value']) or tholen.get(self.spectral_type['Tholen']['value'])) + "\n" out.append(self.discovery) out.append('\n\nPhysical parameters:\n') out.append(self.diameter.__str__()) out.append(self.mass.__str__()) out.append(self.density.__str__()) out.append(self.rotation.__str__()) if not np.isnan(self.pole.ra): out.append('Pole\n RA:{} +/- {}\n DEC:{} +/- {}\n Reference: {}, {}\n'.format( self.pole.ra.__str__(), self.pole.ra.uncertainty.__str__(), self.pole.dec.__str__(), self.pole.dec.uncertainty.__str__(), self.pole.reference, self.pole.notes)) out.append(self.H.__str__()) out.append(self.G.__str__()) out.append(self.albedo.__str__()) out.append(self.BV.__str__()) out.append(self.UB.__str__()) if hasattr(self, 'frame'): out.append('\n' + self.frame.__str__() + '\n') if hasattr(self, 'shape'): out.append('\n' + self.shape.__str__() + '\n') if hasattr(self, 'ephem'): out.append('\n' + self.ephem.__str__() + '\n') return ''.join(out)
riogroupREPO_NAMESORAPATH_START.@SORA_extracted@SORA-master@sora@body@core.py@.PATH_END.py
{ "filename": "lock.py", "repo_name": "sdss/idlspec2d", "repo_path": "idlspec2d_extracted/idlspec2d-master/python/boss_drp/utils/lock.py", "type": "Python" }
import os import time def lock(file, pause=5, niter=None): """Attempt to acquire a file lock by creating a symlink. Retry on failure.""" i = 0 while True: if niter is not None and i == niter: break i += 1 try: os.symlink(file, file + '.lock') return True except FileExistsError: print(f"Lock already acquired ({file}). Retrying in {pause} seconds...") time.sleep(pause) except Exception as e: print(f"An error occurred: {e}") return False return False def unlock(file): """Release the file lock by removing the symlink.""" try: os.unlink(file + '.lock') return(True) except FileNotFoundError: return(True) except Exception as e: print(f"An error occurred while releasing the lock: {e}") return(False) return(False) """ # Example usage file = 'path/to/your/file.txt' if lock(file): try: # Perform your file operations here print("Performing file operations.") time.sleep(10) # Simulate long-running task finally: unlock(file) else: print("Could not acquire lock. Exiting.") """
sdssREPO_NAMEidlspec2dPATH_START.@idlspec2d_extracted@idlspec2d-master@python@boss_drp@utils@lock.py@.PATH_END.py
{ "filename": "_token.py", "repo_name": "plotly/plotly.py", "repo_path": "plotly.py_extracted/plotly.py-master/packages/python/plotly/plotly/validators/carpet/stream/_token.py", "type": "Python" }
import _plotly_utils.basevalidators class TokenValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="token", parent_name="carpet.stream", **kwargs): super(TokenValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), no_blank=kwargs.pop("no_blank", True), strict=kwargs.pop("strict", True), **kwargs, )
plotlyREPO_NAMEplotly.pyPATH_START.@plotly.py_extracted@plotly.py-master@packages@python@plotly@plotly@validators@carpet@stream@_token.py@.PATH_END.py
{ "filename": "theoretical_lf.py", "repo_name": "cylammarco/WDPhotTools", "repo_path": "WDPhotTools_extracted/WDPhotTools-main/src/WDPhotTools/theoretical_lf.py", "type": "Python" }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """For computing theorectical WDLFs""" import warnings import os import numpy as np from scipy import optimize, integrate from scipy.interpolate import interp1d from matplotlib import pyplot as plt from .atmosphere_model_reader import AtmosphereModelReader from .cooling_model_reader import CoolingModelReader from .util import load_ms_lifetime_datatable class WDLF(AtmosphereModelReader, CoolingModelReader): """ Computing the theoretical WDLFs based on the input IFMR, WD cooling and MS lifetime models. We are using little m for WD mass and big M for MS mass throughout this package. All the models are reporting in different set of units. They are all converted by the formatter to this set of units: (1) mass is in solar mass, (2) luminosity is in erg/s, (3) time/age is in year. For conversion, we use (1) M_sun = 1.98847E30 and (2) L_sun = 3.826E33. """ def __init__( self, imf_model="C03", ifmr_model="C08", low_mass_cooling_model="montreal_co_da_20", intermediate_mass_cooling_model="montreal_co_da_20", high_mass_cooling_model="montreal_co_da_20", ms_model="PARSECz0017", ): super(WDLF, self).__init__() self.cooling_interpolator = None self.wdlf_params = { "imf_model": None, "ifmr_model": None, "sfr_mode": None, "ms_model": None, } self.imf_model_list = ["K01", "C03", "C03b", "manual"] self.ifmr_model_list = [ "C08", "C08b", "S09", "S09b", "W09", "K09", "K09b", "C18", "EB18", "manual", ] self.sfr_mode_list = ["constant", "burst", "decay", "manual"] self.ms_model_list = [ "PARSECz00001", "PARSECz00002", "PARSECz00005", "PARSECz0001", "PARSECz0002", "PARSECz0004", "PARSECz0006", "PARSECz0008", "PARSECz001", "PARSECz0014", "PARSECz0017", "PARSECz002", "PARSECz003", "PARSECz004", "PARSECz006", "GENEVAz002", "GENEVAz006", "GENEVAz014", "MISTFem400", "MISTFem350", "MISTFem300", "MISTFem250", "MISTFem200", "MISTFem175", "MISTFem150", "MISTFem125", "MISTFem100", "MISTFem075", "MISTFem050", "MISTFem025", "MISTFe000", "MISTFe025", "MISTFe050", "manual", ] # The IFMR, WD cooling and MS lifetime models are required to # initialise the object. self.set_imf_model(imf_model) self.set_ifmr_model(ifmr_model) self.set_low_mass_cooling_model(low_mass_cooling_model) self.set_intermediate_mass_cooling_model( intermediate_mass_cooling_model ) self.set_high_mass_cooling_model(high_mass_cooling_model) self.set_ms_model(ms_model) self.set_sfr_model() self._update_filename() self.mag = None self.mag_to_mbol_itp = None self.number_density = None def _update_filename(self): self._filename_middle = ( f"_{self.wdlf_params['sfr_mode']}" f"_{self.wdlf_params['ms_model']}" f"_{self.wdlf_params['ifmr_model']}" f"_{self.cooling_models['low_mass_cooling_model']}" f"_{self.cooling_models['intermediate_mass_cooling_model']}" f"_{self.cooling_models['high_mass_cooling_model']}." ) def _imf(self, mass_ms): """ Compute the initial mass function based on the pre-selected initial mass_function model and the given mass (mass_ms). See set_imf_model() for more details. Parameters ---------- M: float, list of float or array of float Input MS mass Returns ------- mass_function: array Array of mass_function, normalised to 1 at 1 M_sun. """ mass_ms = np.asarray(mass_ms).reshape(-1) if self.wdlf_params["imf_model"] == "K01": mass_function = mass_ms**-2.3 # mass lower than 0.08 is impossible, so that range is ignored. if (mass_ms < 0.5).any(): m_mask = mass_ms < 0.5 # (0.5**-2.3) / (0.5**-1.3) = 2.0 mass_function[m_mask] = mass_ms[m_mask] ** -1.3 * 2.0 elif self.wdlf_params["imf_model"] == "C03": mass_function = mass_ms**-2.3 if (mass_ms < 1).any(): m_mask = np.array(mass_ms < 1.0) # 0.158 / (ln(10) * mass_ms) = 0.06861852814 / mass_ms # log(0.079) = -1.1023729087095586 # 2 * 0.69**2. = 0.9522 # Normalisation factor (at mass_ms=1) is 0.01915058 mass_function[m_mask] = ( (0.06861852814 / mass_ms[m_mask]) * np.exp( -( (np.log10(mass_ms[m_mask]) + 1.1023729087095586) ** 2.0 ) / 0.9522 ) / 0.01915058 ) elif self.wdlf_params["imf_model"] == "C03b": mass_function = mass_ms**-2.3 if (mass_ms <= 1).any(): m_mask = np.array(mass_ms <= 1.0) # 0.086 * 1. / (ln(10) * M) = 0.03734932544 / M # log(0.22) = -0.65757731917 # 2 * 0.57**2. = 0.6498 # Normalisation factor (at M=1) is 0.01919917 mass_function[m_mask] = ( (0.03734932544 / mass_ms[m_mask]) * np.exp( -((np.log10(mass_ms[m_mask]) + 0.65757731917) ** 2.0) / 0.6498 ) / 0.01919917 ) else: mass_function = self.imf_function(mass_ms) return mass_function def _ms_age(self, mass_ms): """ Compute the main sequence lifetime based on the pre-selected MS model and the given solar mass (mass_ms). See set_ms_model() for more details. Parameters ---------- M: float, list of float or array of float Input MS mass Returns ------- age: array Array of total MS lifetime, same size as M. """ mass_ms = np.asarray(mass_ms).reshape(-1) age = None if self.wdlf_params["ms_model"] == "PARSECz00001": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz00001.csv") elif self.wdlf_params["ms_model"] == "PARSECz00002": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz00002.csv") elif self.wdlf_params["ms_model"] == "PARSECz00005": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz00005.csv") elif self.wdlf_params["ms_model"] == "PARSECz0001": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz0001.csv") elif self.wdlf_params["ms_model"] == "PARSECz0002": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz0002.csv") elif self.wdlf_params["ms_model"] == "PARSECz0004": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz0004.csv") elif self.wdlf_params["ms_model"] == "PARSECz0006": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz0006.csv") elif self.wdlf_params["ms_model"] == "PARSECz0008": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz0008.csv") elif self.wdlf_params["ms_model"] == "PARSECz001": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz001.csv") elif self.wdlf_params["ms_model"] == "PARSECz0014": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz0014.csv") elif self.wdlf_params["ms_model"] == "PARSECz0017": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz0017.csv") elif self.wdlf_params["ms_model"] == "PARSECz002": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz002.csv") elif self.wdlf_params["ms_model"] == "PARSECz003": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz003.csv") elif self.wdlf_params["ms_model"] == "PARSECz004": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz004.csv") elif self.wdlf_params["ms_model"] == "PARSECz006": # https://people.sissa.it/~sbressan/parsec.html datatable = load_ms_lifetime_datatable("PARSECz006.csv") elif self.wdlf_params["ms_model"] == "GENEVAz014": # https://obswww.unige.ch/Research/evol/tables_grids2011/ datatable = load_ms_lifetime_datatable("geneva2011z014.csv") elif self.wdlf_params["ms_model"] == "GENEVAz006": # https://obswww.unige.ch/Research/evol/tables_grids2011/ datatable = load_ms_lifetime_datatable("geneva2011z006.csv") elif self.wdlf_params["ms_model"] == "GENEVAz002": # https://obswww.unige.ch/Research/evol/tables_grids2011/ datatable = load_ms_lifetime_datatable("geneva2011z002.csv") elif self.wdlf_params["ms_model"] == "MISTFe050": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fe050.csv") elif self.wdlf_params["ms_model"] == "MISTFe025": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fe025.csv") elif self.wdlf_params["ms_model"] == "MISTFe000": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fe000.csv") elif self.wdlf_params["ms_model"] == "MISTFem025": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem025.csv") elif self.wdlf_params["ms_model"] == "MISTFem050": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem050.csv") elif self.wdlf_params["ms_model"] == "MISTFem075": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem075.csv") elif self.wdlf_params["ms_model"] == "MISTFem100": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem100.csv") elif self.wdlf_params["ms_model"] == "MISTFem125": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem125.csv") elif self.wdlf_params["ms_model"] == "MISTFem150": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem150.csv") elif self.wdlf_params["ms_model"] == "MISTFem175": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem175.csv") elif self.wdlf_params["ms_model"] == "MISTFem200": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem200.csv") elif self.wdlf_params["ms_model"] == "MISTFem250": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem250.csv") elif self.wdlf_params["ms_model"] == "MISTFem300": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem300.csv") elif self.wdlf_params["ms_model"] == "MISTFem350": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem350.csv") elif self.wdlf_params["ms_model"] == "MISTFem400": # http://waps.cfa.harvard.edu/MIST/ datatable = load_ms_lifetime_datatable("MISTv1p2Fem400.csv") else: age = self.ms_function(mass_ms) if age is None: massi = np.array(datatable[:, 0]).astype(np.float64) time = np.array(datatable[:, 1]).astype(np.float64) age = interp1d( massi, time, kind="cubic", fill_value="extrapolate" )(mass_ms) return age def _ifmr(self, mass_ms): """ Compute the final mass (i.e. WD mass) based on the pre-selected IFMR model and the zero-age MS mass (M). See set_ifmr_model() for more details. Parameters ---------- M: float, list of float or array of float Input MS mass Returns ------- mass: array Array of WD mass, same size as M. """ mass_ms = np.asarray(mass_ms).reshape(-1) if self.wdlf_params["ifmr_model"] == "C08": mass = 0.117 * mass_ms + 0.384 if (mass < 0.4349).any(): mass[mass < 0.4349] = 0.4349 elif self.wdlf_params["ifmr_model"] == "C08b": mass = 0.096 * mass_ms + 0.429 if (mass_ms >= 2.7).any(): mass[mass_ms >= 2.7] = 0.137 * mass_ms[mass_ms >= 2.7] + 0.318 if (mass < 0.4746).any(): mass[mass < 0.4746] = 0.4746 elif self.wdlf_params["ifmr_model"] == "S09": mass = 0.084 * mass_ms + 0.466 if (mass < 0.5088).any(): mass[mass < 0.5088] = 0.5088 elif self.wdlf_params["ifmr_model"] == "S09b": mass = 0.134 * mass_ms[mass_ms < 4.0] + 0.331 if (mass_ms >= 4.0).any(): mass = 0.047 * mass_ms[mass_ms >= 4.0] + 0.679 if (mass < 0.3823).any(): mass[mass < 0.3823] = 0.3823 elif self.wdlf_params["ifmr_model"] == "W09": mass = 0.129 * mass_ms + 0.339 if (mass < 0.3893).any(): mass[mass < 0.3893] = 0.3893 elif self.wdlf_params["ifmr_model"] == "K09": mass = 0.109 * mass_ms + 0.428 if (mass < 0.4804).any(): mass[mass < 0.4804] = 0.4804 elif self.wdlf_params["ifmr_model"] == "K09b": mass = 0.101 * mass_ms + 0.463 if (mass < 0.4804).any(): mass[mass < 0.4804] = 0.4804 elif self.wdlf_params["ifmr_model"] == "C18": mass = interp1d( (0.83, 2.85, 3.60, 7.20), (0.5554, 0.71695, 0.8572, 1.2414), fill_value="extrapolate", bounds_error=False, )(mass_ms) elif self.wdlf_params["ifmr_model"] == "EB18": mass = interp1d( (0.95, 2.75, 3.54, 5.21, 8.0), (0.5, 0.67, 0.81, 0.91, 1.37), fill_value="extrapolate", bounds_error=False, )(mass_ms) else: mass = self.ifmr_function(mass_ms) return mass def _find_mass_ms_min(self, mass_ms, mag): """ A function to be minimised to find the minimum mass limit that a MS star could have turned into a WD in the given age of the population (which is given by the SFR). Parameters ---------- mass_ms: float MS mass. logL: float log WD luminosity. Return ------ The difference between the total time and the sum of the cooling time and main sequence lifetime. """ # Get the WD mass mass = self._ifmr(mass_ms) # Get the bolometric magnitude mbol = self.mag_to_mbol_itp(mass, mag) if mbol == -np.inf: return np.inf logL = (4.75 - mbol) / 2.5 + 33.582744965691276 # Get the cooling age from the WD mass and the luminosity t_cool = self.cooling_interpolator(logL, mass) if t_cool <= 0.0: return np.inf # Get the MS life time t_ms = self._ms_age(mass_ms) if t_ms <= 0.0: return np.inf # Time since star formation time = self.t_start - t_cool - t_ms if time < 0.0: return np.inf else: return mass_ms**2.0 def _integrand(self, mass_ms, mag): """ The integrand of the number density computation based on the pre-selected (1) MS lifetime model, (2) initial mass function, (3) initial-final mass relation, and (4) WD cooling model. Parameters ---------- M: float Main sequence stellar mass mag: float Absolute magnitude in a given passband T0: float Look-back time passband: str (Default: mbol) passband to be integrated in Return ------ The product for integrating to the number density. """ # Get the WD mass mass = self._ifmr(mass_ms) # Get the mass function mass_function = self._imf(mass_ms) mbol = self.mag_to_mbol_itp(mass, mag) if (mbol < -2.0) or (mbol > 20.0) or (not np.isfinite(mbol)): return 0.0 logL = (4.75 - mbol) / 2.5 + 33.582744965691276 # Get the WD cooling time t_cool = self.cooling_interpolator(logL, mass) if t_cool < 0.0: return 0.0 # Get the MS lifetime t_ms = self._ms_age(mass_ms) if t_ms < 0: return 0.0 # Get the time since star formation # and then the SFR sfr = self.sfr(t_cool + t_ms) if sfr < 0.0: return 0.0 # Get the cooling rate dLdt = -self.cooling_rate_interpolator(logL, mass) total_contribution = mass_function * sfr * dLdt if np.isfinite(total_contribution): if total_contribution < 0.0: return 0.0 return total_contribution else: return 0.0 def set_sfr_model( self, mode="constant", age=10e9, duration=1e9, mean_lifetime=3e9, sfr_model=None, ): """ Set the SFR scenario, we only provide a few basic forms, free format can be supplied as a callable function through sfr_model. The SFR function accepts the time in unit of year, which is the lookback time (i.e. today is 0, age of the university is ~13.8E9). For burst and constant SFH, tophat functions are used: - t1 is the beginning of the star burst - t2 is the end - t0 and t3 are tiny deviations from t1 and t2 required for interpolation >>> SFR >>> ^ x-------x >>> | | | >>> | | | >>> | x-----------x x-----------------x >>> -30E9 0 t3/t2 t1/t0 13.8E9 30E9 >>> Lookback Time Parameters ---------- mode: str (Default: 'constant') Choice of SFR mode: 1. constant 2. burst 3. decay 4. manual age: float (Default: 10E9) Lookback time in unit of years. duration: float (Default: 1E9) Duration of the starburst, only used if mode is 'burst'. mean_lifetime: float (Default: 3E9) Only used if mode is 'decay'. The default value has a SFR mean lifetime of 3 Gyr (SFR dropped by a factor of e after 3 Gyr). sfr_model: callable function (Default: None) The free-form star formation rate, in unit of years. If not callable, it reverts to using a constant star formation rate. It is necessary to fill in the age argument. """ if mode not in self.sfr_mode_list: raise ValueError("Please provide a valid SFR mode.") else: if mode == "manual": if callable(sfr_model): self.sfr = sfr_model else: warnings.warn( "The sfr_model provided is not callable, " "None is applied, i.e. constant star fomration." ) mode = "constant" elif mode == "constant": t_1 = age t_0 = t_1 * 1.00001 # current time = 0. t_2 = 0.0 t_3 = t_2 * 0.99999 self.sfr = interp1d( np.array((30e9, t_0, t_1, t_2, t_3, -30e9)), np.array((0.0, 0.0, 1.0, 1.0, 0.0, 0.0)), fill_value="extrapolate", ) elif mode == "burst": t_1 = age t_0 = t_1 * 1.00001 t_2 = t_1 - duration t_3 = t_2 * 0.99999 self.sfr = interp1d( np.array((30e9, t_0, t_1, t_2, t_3, -30e9)), np.array((0.0, 0.0, 1.0, 1.0, 0.0, 0.0)), fill_value="extrapolate", ) else: _t = 10.0 ** np.linspace(0, np.log10(age), 10000) _sfr = np.exp((_t - age) / mean_lifetime) self.sfr = interp1d( _t, _sfr, bounds_error=False, fill_value=0.0 ) self.t_start = age self.wdlf_params["sfr_mode"] = mode self._update_filename() def set_imf_model(self, model, imf_function=None): """ Set the initial mass function. Parameters ---------- model: str (Default: 'C03') Choice of IFMR model: 1. K01 - Kroupa 2001 2. C03 - Charbrier 2003 3. C03b - Charbrier 2003 (including binary) 4. manual imf_function: callable function (Default: None) A callable imf function, only used if model is 'manual'. """ if model in self.imf_model_list: self.wdlf_params["imf_model"] = model else: raise ValueError("Please provide a valid Imass_function model.") self.imf_function = imf_function self._update_filename() def set_ms_model(self, model, ms_function=None): """ Set the total stellar evolution lifetime model. Parameters ---------- model: str (Default: 'PARSECz0017') Choice of MS model are from the PARSEC, Geneva and MIST stellar evolution models. The complete list of available models is as follow: 1. PARSECz00001 - Z = 0.0001, Y = 0.249 2. PARSECz00002 - Z = 0.0002, Y = 0.249 3. PARSECz00005 - Z = 0.0005, Y = 0.249 4. PARSECz0001 - Z = 0.001, Y = 0.25 5. PARSECz0002 - Z = 0.002, Y = 0.252 6. PARSECz0004 - Z = 0.004, Y = 0.256 7. PARSECz0006 - Z = 0.006, Y = 0.259 8. PARSECz0008 - Z = 0.008, Y = 0.263 9. PARSECz001 - Z = 0.01, Y = 0.267 10. PARSECz0014 - Z = 0.014, Y = 0.273 11. PARSECz0017 - Z = 0.017, Y = 0.279 12. PARSECz002 - Z = 0.02, Y = 0.284 13. PARSECz003 - Z = 0.03, Y = 0.302 14. PARSECz004 - Z = 0.04, Y = 0.321 15. PARSECz006 - Z = 0.06, Y = 0.356 16. GENEVAz002 - Z = 0.002 17. GENEVAz006 - Z = 0.006 18. GENEVAz014 - Z = 0.014 19. MISTFem400 - [Fe/H] = -4.0 20. MISTFem350 - [Fe/H] = -3.5 21. MISTFem300 - [Fe/H] = -3.0 22. MISTFem250 - [Fe/H] = -2.5 23. MISTFem200 - [Fe/H] = -2.0 24. MISTFem175 - [Fe/H] = -1.75 25. MISTFem150 - [Fe/H] = -1.5 26. MISTFem125 - [Fe/H] = -1.25 27. MISTFem100 - [Fe/H] = -1.0 28. MISTFem075 - [Fe/H] = -0.75 29. MISTFem050 - [Fe/H] = -0.5 30. MISTFem025 - [Fe/H] = -0.25 31. MISTFe000 - [Fe/H] = 0.0 32. MISTFe025 - [Fe/H] = 0.25 33. MISTFe050 - [Fe/H] = 0.5 ms_function: callable function (Default: None) A callable MS lifetime function, only used if model is 'manual'. """ if model in self.ms_model_list: self.wdlf_params["ms_model"] = model else: raise ValueError("Please provide a valid MS model.") self.ms_function = ms_function self._update_filename() def set_ifmr_model(self, model, ifmr_function=None): """ Set the initial-final mass relation (IFMR). Parameters ---------- model: str (Default: 'EB18') Choice of IFMR model: 1. C08 - Catalan et al. 2008 2. C08b - Catalan et al. 2008 (two-part) 3. S09 - Salaris et al. 2009 4. S09b - Salaris et al. 2009 (two-part) 5. W09 - Williams, Bolte & Koester 2009 6. K09 - Kalirai et al. 2009 7. K09b - Kalirai et al. 2009 (two-part) 8. C18 - Cummings et al. 2018 9. EB18 - El-Badry et al. 2018 10. manual ifmr_function: callable function (Default: None) A callable ifmr function, only used if model is 'manual'. """ if model in self.ifmr_model_list: self.wdlf_params["ifmr_model"] = model else: raise ValueError("Please provide a valid IFMR mode.") self.ifmr_function = ifmr_function self._update_filename() def compute_density( self, mag, passband="Mbol", atmosphere="H", interpolator="CT", mass_ms_max=8.0, limit=10000, n_points=100, epsabs=1e-6, epsrel=1e-6, normed=True, save_csv=False, folder=None, filename=None, ): """ Compute the density based on the pre-selected models: (1) MS lifetime model, (2) initial mass function, (3) initial-final mass relation, and (4) WD cooling model. It integrates over the function _integrand(). Parameters ---------- mag: float or array of float Absolute magnitude in the given passband passband: str (Default: "Mbol") The passband to be integrated in. atmosphere: str (Default: H) The atmosphere type. interpolator: str (Default: CT) Choose between 'CT' and 'RBF.' mass_ms_max: float (Deafult: 8.0) The upper limit of the main sequence stellar mass. This may not be used if it exceeds the upper bound of the IFMR model. limit: int (Default: 10000) The maximum number of steps of integration n_points: int (Default: 100) The number of points for initial integration sampling, too small a value will lead to failed integration because the integrato can underestimate the density if the star formation periods are short. While too large a value will lead to low performance due to oversampling, though the accuracy is guaranteed. The default value is sufficient to compute WDLF for star burst as short as 1E8 years. For burst as short as 1E7, we recommand an n_points of 1000 or larger. epsabs: float (Default: 1e-6) The absolute tolerance of the integration step. For star burst, we recommend a step smaller than 1e-8. epsrel: float (Default: 1e-6) The relative tolerance of the integration step. For star burst, we recommend a step smaller than 1e-8. normed: boolean (Default: True) Set to True to return a WDLF sum to 1. Otherwise, it is arbitrary to the integrator. save_csv: boolean (Default: False) Set to True to save the WDLF as CSV files. One CSV per T0. folder: str (Default: None) The relative or absolute path to destination, the current working directory will be used if None. filename: str (Default: None) The filename of the csv. The default filename will be used if None. Returns ------- mag: array of float The magnitude at which the number density is computed. number_density: array of float The (arbitrary) number density at that magnitude. """ if self.cooling_interpolator is None: self.compute_cooling_age_interpolator() mag = np.asarray(mag).reshape(-1) number_density = np.zeros_like(mag) self.mag_to_mbol_itp = self.interp_am( dependent="Mbol", atmosphere=atmosphere, independent=["mass", passband], interpolator=interpolator, ) mass_ms_upper_bound = mass_ms_max for i, mag_i in enumerate(mag): mass_ms_min = optimize.fminbound( self._find_mass_ms_min, 0.5, mass_ms_upper_bound, args=[mag_i], xtol=1e-8, maxfun=10000, ) points = 10.0 ** np.linspace( np.log10(mass_ms_min), np.log10(mass_ms_max), n_points ) # Note that the points are needed because it can fail to # integrate if the star burst is too short number_density[i] = integrate.quad( self._integrand, mass_ms_min, mass_ms_max, args=[mag_i], limit=limit, points=points, epsabs=epsabs, epsrel=epsrel, )[0] mass_ms_upper_bound = mass_ms_min number_density[ np.isnan(number_density) | (number_density <= 0.0) ] = +0.0 # Normalise the WDLF only if the function returned is not all zero if normed & (number_density > 0.0).any(): number_density /= np.nansum(number_density) self.mag = mag self.number_density = number_density if save_csv: if folder is None: _folder = os.getcwd() else: _folder = os.path.abspath(folder) if filename is None: _filename = ( f"{self.t_start / 1e9:.2f}Gyr" f"{self._filename_middle}csv" ) else: _filename = filename np.savetxt( os.path.join(_folder, _filename), np.column_stack((mag, number_density)), delimiter=",", ) return mag, number_density def plot_input_models( self, figsize=(15, 15), title=None, display=True, savefig=False, folder=None, filename=None, ext=["png"], sfh_log=False, imf_log=True, ms_time_log=True, cooling_model_use_mag=True, **kwargs, ): """ Plot the input cooling model. Parameters ---------- use_mag: bool (Default: True) Set to use magnitude instead of luminosity figsize: array of size 2 (Default: (12, 8)) Set the dimension of the figure. title: str (Default: None) Set the title of the figure. display: bool (Default: True) Set to display the figure. savefig: bool (Default: False) Set to save the figure. folder: str (Default: None) The relative or absolute path to destination, the current working directory will be used if None. filename: str (Default: None) The filename of the figure. The default filename will be used if None. ext: str (Default: ['png']) Image type to be saved, multiple extensions can be provided. The supported types are those available in `matplotlib.pyplot.savefig`. sfh_log: bool (Default: False) Set to plot the SFH in logarithmic space imf_log: bool (Default: False) Set to plot the Imass_function in logarithmic space ms_time_log: bool (Default: True) Set to plot the MS lifetime in logarithmic space cooling_model_use_mag: bool (Default: True) Set to plot the Cooling model in logarithmic space fig: matplotlib.figure.Figure (Default: None) Overplotting on an existing Figure. kwargs: dict (Default: {}) Keyword arguments for the colorbar() """ fig, axs = plt.subplots(nrows=3, ncols=2, figsize=figsize) # top row ax1 = axs[0, 0] # Initial Mass Function ax2 = axs[0, 1] # Star Formation History # middle row ax3 = axs[1, 0] # MS lifetime ax4 = axs[1, 1] # Initial-Final Mass Relation # bottom row ax5 = axs[2, 0] # Cooling Model: Mobl(t) or L(t) ax6 = axs[2, 1] # Cooling Model: d(Mobl)/d(t) or d(L)/d(t) # # Initial Mass Function # mass = np.linspace(0.25, 8.25, 1000) if imf_log: ax1.plot(mass, np.log10(self._imf(mass))) ax1.set_ylabel("log(Imass_function)") else: ax1.plot(mass, self._imf(mass)) ax1.set_ylabel("Imass_function") ax1.set_xlabel(r"Mass / M$_\odot$") ax1.set_xlim(0.25, 8.25) ax1.grid() ax1.set_title("Initial Mass Function") # # Star formation History # _t = np.linspace(0, self.t_start, 1000) ax2.plot(_t / 1e9, self.sfr(_t)) if sfh_log: ax2.set_yscale("log") ax2.set_ylabel("log(Relative SFR)") else: ax2.set_ylabel("Relative SFR") ax2.set_xlabel("Look-back Time / Gyr") ax2.set_title("Star Formation History") ax2.grid() # # Main Sequence Lifetime # ax3.plot(mass, self._ms_age(mass)) if ms_time_log: ax3.set_yscale("log") ax3.set_ylabel("log(MS Lifetime / yr)") else: ax3.set_ylabel("MS Lifetime / yr") ax3.set_xlabel(r"ZAMS Mass / M$_\odot$") ax3.set_title("MS Lifetime") ax3.grid() # # Initial-Final Mass Relation # ax4.plot(mass, self._ifmr(mass)) ax4.set_ylabel(r"Final Mass / M$_\odot$") ax4.set_xlabel(r"Initial Mass / M$_\odot$") ax4.set_xlim(0.25, 8.25) ax4.grid() ax4.set_title("Initial-Final Mass Relation") # # Cooling Model : Mobl(t) or L(t) # if cooling_model_use_mag: # Get absolute magnitude from the bolometric luminosity brightness = ( 4.75 - (np.log10(self.luminosity) - 33.582744965691276) * 2.5 ) else: brightness = self.luminosity sc5 = ax5.scatter(self.age / 1e9, brightness, c=self.mass, s=5) # colorbar cbar5 = plt.colorbar(mappable=sc5, ax=ax5, **kwargs) cbar5.ax.set_ylabel("Solar Mass", rotation=270, labelpad=15) # y axis if cooling_model_use_mag: ax5.set_ylabel(r"M$_{\mathrm{bol}}$ / mag") else: ax5.set_ylabel(r"L$_{\mathrm{bol}}$") ax5.set_yscale("log") ax5.set_ylim(np.nanmin(brightness), np.nanmax(brightness)) # x axis ax5.set_xlabel(r"Age / Gyr") ax5.set_xlim(0.0, 16.0) ax5.grid() ax5.set_title("Cooling Model") # # Cooling Model: d(mbol)/d(t) or d(L)/d(t) # if cooling_model_use_mag: # 2.5 * 1e9 * (365.25 * 24. * 60. * 60.) / np.log(10) = # 3.426322886e16 rate_of_change = -3.426322886e16 / self.luminosity * self.dLdt else: rate_of_change = self.dLdt * -1.0 rate_of_change[np.isnan(rate_of_change)] = 0.0 rate_of_change[~np.isfinite(rate_of_change)] = 0.0 sc6 = ax6.scatter(self.age / 1e9, rate_of_change, c=self.mass, s=5) cbar6 = plt.colorbar(mappable=sc6, ax=ax6, **kwargs) cbar6.ax.set_ylabel("Solar Mass", rotation=270, labelpad=15) # y axis if cooling_model_use_mag: ax6.set_ylabel(r"d(M$_{\mathrm{bol}})/dt (Gyr)$") ax6.set_ylim(-0.005, np.nanmax(rate_of_change) * 0.6) else: ax6.set_ylabel(r"-d(L$_{\mathrm{bol}})/dt (s)$") ax6.set_yscale("log") ax6.set_ylim(np.nanmin(rate_of_change), np.nanmax(rate_of_change)) # x axis ax6.set_xlabel(r"Age / Gyr") ax6.set_xlim(0.0, 16.0) ax6.grid() ax6.set_title("Cooling Rate") plt.subplots_adjust( top=0.95, bottom=0.075, left=0.075, right=0.99, hspace=0.4, wspace=0.225, ) if title is not None: plt.suptitle(title) if savefig: if isinstance(ext, str): ext = [ext] if folder is None: _folder = os.getcwd() else: _folder = os.path.abspath(folder) if not os.path.exists(_folder): os.makedirs(_folder) # Loop through the ext list to save figure into each image type for _e in ext: if filename is None: _filename = "input_model." + _e else: _filename = filename + "." + _e plt.savefig(os.path.join(_folder, _filename)) if display: plt.show() return fig def plot_wdlf( self, log=True, figsize=(12, 8), title=None, display=True, savefig=False, folder=None, filename=None, ext=["png"], fig=None, ): """ Plot the input Initial-Final Mass Relation. Parameters ---------- log: bool (Default: True) Set to plot the WDLF in logarithmic space figsize: array of size 2 (Default: (12, 8)) Set the dimension of the figure. title: str (Default: None) Set the title of the figure. display: bool (Default: True) Set to display the figure. savefig: bool (Default: False) Set to save the figure. folder: str (Default: None) The relative or absolute path to destination, the current working directory will be used if None. filename: str (Default: None) The filename of the figure. The default filename will be used if None. ext: str (Default: ['png']) Image type to be saved, multiple extensions can be provided. The supported types are those available in `matplotlib.pyplot.savefig`. fig: matplotlib.figure.Figure (Default: None) Overplotting on an existing Figure. """ if fig is None: fig = plt.figure(figsize=figsize) _density = self.number_density plt.plot( self.mag, _density, label=f"{self.t_start / 1e90:.2f} Gyr", ) plt.xlim(0, 20) plt.xlabel(r"M$_{\mathrm{bol}}$ / mag") _density_finite = _density[np.isfinite(_density)] # If there is nothing to plot... if (len(_density_finite) == 0) or (_density_finite == 0.0).all(): return 0 ymin = np.floor(np.nanmin(_density_finite)) ymax = np.ceil(np.nanmax(_density_finite)) plt.ylim(ymin, ymax) plt.ylabel(r"$\log{(N)}$") if log: plt.yscale("log") plt.grid() plt.legend() if title is None: title = f"WDLF: {self.t_start / 1e9:.2f} Gyr" plt.title(title) plt.tight_layout() if savefig: if isinstance(ext, str): ext = [ext] if folder is None: _folder = os.getcwd() else: _folder = os.path.abspath(folder) if not os.path.exists(_folder): os.makedirs(_folder) # Loop through the ext list to save figure into each image type for _e in ext: if filename is None: _filename = ( f"{self.t_start / 1e9:.2f}Gyr" f"{self._filename_middle}{_e}" ) else: _filename = filename + "." + _e plt.savefig(os.path.join(_folder, _filename)) if display: plt.show() return fig
cylammarcoREPO_NAMEWDPhotToolsPATH_START.@WDPhotTools_extracted@WDPhotTools-main@src@WDPhotTools@theoretical_lf.py@.PATH_END.py
{ "filename": "analysis.py", "repo_name": "Samreay/ChainConsumer", "repo_path": "ChainConsumer_extracted/ChainConsumer-master/src/chainconsumer/analysis.py", "type": "Python" }
from __future__ import annotations import logging from collections.abc import Callable from pathlib import Path import numpy as np from pydantic import Field from scipy.integrate import simpson as simps from scipy.interpolate import interp1d from scipy.ndimage import gaussian_filter from .base import BetterBase from .chain import Chain, ChainName, ColumnName, MaxPosterior, Named2DMatrix from .helpers import get_bins, get_grid_bins, get_latex_table_frame, get_smoothed_bins from .kde import MegKDE from .statistics import SummaryStatistic class Bound(BetterBase): lower: float | None = Field(default=None) center: float | None = Field(default=None) upper: float | None = Field(default=None) @property def array(self) -> np.ndarray: return np.array( [ self.lower if self.lower is not None else np.nan, self.center if self.center is not None else np.nan, self.upper if self.upper is not None else np.nan, ] ) @property def all_none(self) -> bool: return self.lower is None and self.center is None and self.upper is None @classmethod def from_array(cls, array: np.ndarray | list[float]) -> Bound: assert len(array) == 3, "Array must have 3 elements" lower, center, upper = array return cls(lower=lower, center=center, upper=upper) class Analysis: def __init__(self, parent: ChainConsumer): self.parent = parent self._logger = logging.getLogger("chainconsumer") self._summaries: dict[SummaryStatistic, Callable[[Chain, ColumnName], Bound | None]] = { SummaryStatistic.MAX: self.get_parameter_summary_max, SummaryStatistic.MEAN: self.get_parameter_summary_mean, SummaryStatistic.CUMULATIVE: self.get_parameter_summary_cumulative, SummaryStatistic.MAX_CENTRAL: self.get_parameter_summary_max_central, } def get_latex_table( self, chains: list[ChainName | Chain] | None = None, columns: list[ColumnName] | None = None, transpose: bool = False, caption: str | None = None, label: str = "tab:model_params", hlines: bool = True, blank_fill: str = "--", filename: str | Path | None = None, ) -> str: # pragma: no cover """Generates a LaTeX table from parameter summaries. Args: chains: Used to specify which chain to show if more than one chain is loaded in. Can be an integer, specifying the chain index, or a str, specifying the chain name. columns: If set, only creates a plot for those specific parameters (if list). If an integer is given, only plots the fist so many parameters. transpose : bool, optional Defaults to False, which gives each column as a parameter, each chain (framework) as a row. You can swap it so that you have a parameter each row and a framework each column by setting this to True caption : str, optional If you want to generate a caption for the table through Python, use this. Defaults to an empty string label : str, optional If you want to generate a label for the table through Python, use this. Defaults to an empty string hlines : bool, optional Inserts ``\\hline`` before and after the header, and at the end of table. blank_fill : str, optional If a framework does not have a particular parameter, will fill that cell of the table with this string. filename : str | Path, optional The file to save the output string to Returns: str: the LaTeX table. """ final_chains = self.parent.plotter._sanitise_chains(chains) final_columns = self.parent.plotter._sanitise_columns(columns, final_chains) blind = self.parent.plotter._sanitise_blinds(self.parent.plotter.config.blind, final_columns) final_columns = [c for c in final_columns if c not in blind] num_chains = len(final_chains) num_parameters = len(final_columns) fit_values = self.get_summary(chains=final_chains) if label is None: label = "" if caption is None: caption = "" end_text = " \\\\ \n" column_text = "c" * (num_chains + 1) if transpose else "c" * (num_parameters + 1) center_text = "" hline_text = "\\hline\n" if hlines: center_text += hline_text + "\t\t" if transpose: center_text += " & ".join(["Parameter"] + [c.name for c in final_chains]) + end_text if hlines: center_text += "\t\t" + hline_text for p in final_columns: arr = ["\t\t" + self.parent.plotter.config.get_label(p)] for _, column_results in fit_values.items(): if p in column_results: arr.append(self.get_parameter_text(column_results[p], wrap=True)) else: arr.append(blank_fill) center_text += " & ".join(arr) + end_text else: center_text += ( " & ".join(["Model", *[self.parent.plotter.config.get_label(c) for c in final_columns]]) + end_text ) if hlines: center_text += "\t\t" + hline_text for name, chain_res in fit_values.items(): arr = ["\t\t" + name] for p in final_columns: if p in chain_res: arr.append(self.get_parameter_text(chain_res[p], wrap=True)) else: arr.append(blank_fill) center_text += " & ".join(arr) + end_text if hlines: center_text += "\t\t" + hline_text final_text = get_latex_table_frame(caption, label) % (column_text, center_text) if filename is not None: if isinstance(filename, str): filename = Path(filename) with Path.open(filename, "w") as f: f.write(final_text) return final_text def get_summary( self, chains: list[Chain] | None = None, columns: list[ColumnName] | None = None, ) -> dict[ChainName, dict[ColumnName, Bound]]: """Gets a summary of the marginalised parameter distributions. Args: parameters (list[str], optional): A list of parameters which to generate summaries for. chains (dict[str, Chain] | list[str], optional): A list of chains to generate summaries for. Returns: dict[ChainName, dict[ColumnName, Bound]]: A map from chain name to column name to bound. """ results = {} if chains is None: chains = self.parent.plotter._sanitise_chains(None, include_skip=True) if columns is None: columns = self.parent.plotter._sanitise_columns(None, chains) for chain in chains: res = {} params_to_find = columns if columns is not None else chain.data_columns for p in params_to_find: if p not in chain.samples: continue summary = self.get_parameter_summary(chain, p) res[p] = summary results[chain.name] = res return results def get_max_posteriors(self, chains: dict[str, Chain] | list[str] | None = None) -> dict[ChainName, MaxPosterior]: """Gets the maximum posterior point in parameter space from the passed parameters. Requires the chains to have set `posterior` values. Args: chains (dict[str, Chain] | list[str], optional): A list of chains to generate summaries for. Returns: dict[ChainName, MaxPosterior]: A map from chain name to max posterior point. """ results = {} if chains is None: chains = self.parent._chains if isinstance(chains, list): chains = {c: self.parent._chains[c] for c in chains} for chain_name, chain in chains.items(): max_posterior = chain.get_max_posterior_point() if max_posterior is None: continue results[chain_name] = max_posterior return results def get_parameter_summary(self, chain: Chain, column: ColumnName) -> Bound | None: callback = self._summaries[chain.statistics] return callback(chain, column) def get_correlation_table( self, chain: str | Chain, columns: list[str] | None = None, caption: str = "Parameter Correlations", label: str = "tab:parameter_correlations", ) -> str: """ Gets a LaTeX table of parameter correlations. Args: chain (str|Chain, optional_: The chain index or name. Defaults to first chain. columns (list[str], optional): The list of parameters to compute correlations. Defaults to all columns caption (str, optional): The LaTeX table caption. label (str, optional): The LaTeX table label. Returns: str: The LaTeX table ready to go! """ if isinstance(chain, str): assert chain in self.parent._chains, f"Chain {chain} not found!" chain = self.parent._chains[chain] if chain is None: assert len(self.parent._chains) == 1, "You must specify a chain if there are multiple chains" chain = next(iter(self.parent._chains.values())) correlations = chain.get_correlation(columns=columns) return self._get_2d_latex_table(correlations, caption, label) def get_covariance_table( self, chain: str | Chain, columns: list[str] | None = None, caption: str = "Parameter Covariance", label: str = "tab:parameter_covariance", ) -> str: """ Gets a LaTeX table of parameter covariances. Args: chain (str|Chain, optional_: The chain index or name. Defaults to first chain. columns (list[str], optional): The list of parameters to compute covariances on. Defaults to all columns caption (str, optional): The LaTeX table caption. label (str, optional): The LaTeX table label. Returns: str: The LaTeX table ready to go! """ if isinstance(chain, str): assert chain in self.parent._chains, f"Chain {chain} not found!" chain = self.parent._chains[chain] if chain is None: assert len(self.parent._chains) == 1, "You must specify a chain if there are multiple chains" chain = next(iter(self.parent._chains.values())) covariance = chain.get_covariance(columns=columns) return self._get_2d_latex_table(covariance, caption, label) def _get_smoothed_histogram( self, chain: Chain, column: ColumnName, pad: bool = False ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: data = chain.get_data(column) if chain.grid: bins = get_grid_bins(data) else: bins, _ = get_smoothed_bins(chain.smooth, get_bins(chain), data, chain.weights, pad=pad) hist, edges = np.histogram(data, bins=bins, density=True, weights=chain.weights) if chain.power is not None: hist = hist**chain.power edge_centers = 0.5 * (edges[1:] + edges[:-1]) xs = np.linspace(edge_centers[0], edge_centers[-1], 10000) if chain.smooth: hist = gaussian_filter(hist, chain.smooth, mode="reflect") if chain.kde: kde_xs = np.linspace(edge_centers[0], edge_centers[-1], max(200, int(bins.max()))) factor = chain.kde if isinstance(chain.kde, int | float) else 1.0 ys = MegKDE(data.to_numpy(), chain.weights, factor=factor).evaluate(kde_xs) area = simps(ys, x=kde_xs) ys = ys / area ys = interp1d(kde_xs, ys, kind="linear")(xs) else: ys = interp1d(edge_centers, hist, kind="linear")(xs) cs = ys.cumsum() cs /= cs.max() return xs, ys, cs def _get_2d_latex_table(self, named_matrix: Named2DMatrix, caption: str, label: str) -> str: parameters = [self.parent.plotter.config.get_label(c) for c in named_matrix.columns] matrix = named_matrix.matrix latex_table = get_latex_table_frame(caption=caption, label=label) column_def = "c|%s" % ("c" * len(parameters)) hline_text = " \\hline\n" table = "" table += " & ".join(["", *parameters]) + "\\\\ \n" table += hline_text max_len = max([len(s) for s in parameters]) format_string = " %%%ds" % max_len for p, row in zip(parameters, matrix): table += format_string % p for r in row: table += f" & {r:5.2f}" table += " \\\\ \n" table += hline_text return latex_table % (column_def, table) def get_parameter_text(self, bound: Bound, wrap: bool = False): """Generates LaTeX appropriate text from marginalised parameter bounds. Parameters ---------- lower : float The lower bound on the parameter maximum : float The value of the parameter with maximum probability upper : float The upper bound on the parameter wrap : bool Wrap output text in dollar signs for LaTeX Returns ------- str The formatted text given the parameter bounds """ if bound.lower is None or bound.upper is None or bound.center is None: return "" upper_error = bound.upper - bound.center lower_error = bound.center - bound.lower if upper_error != 0 and lower_error != 0: resolution = min(np.floor(np.log10(np.abs(upper_error))), np.floor(np.log10(np.abs(lower_error)))) elif upper_error == 0 and lower_error != 0: resolution = np.floor(np.log10(np.abs(lower_error))) elif upper_error != 0 and lower_error == 0: resolution = np.floor(np.log10(np.abs(upper_error))) else: resolution = np.floor(np.log10(np.abs(bound.center))) factor = 0 fmt = "%0.1f" r = 1 if np.abs(resolution) > 2: factor = -resolution if resolution == 2: fmt = "%0.0f" factor = -1 r = 0 if resolution == 1: fmt = "%0.0f" if resolution == -1: fmt = "%0.2f" r = 2 elif resolution == -2: fmt = "%0.3f" r = 3 upper_error *= 10**factor lower_error *= 10**factor maximum = bound.center * 10**factor upper_error = round(upper_error, r) lower_error = round(lower_error, r) maximum = round(maximum, r) if maximum == -0.0: maximum = 0.0 if resolution == 2: upper_error *= 10**-factor lower_error *= 10**-factor maximum *= 10**-factor factor = 0 fmt = "%0.0f" upper_error_text = fmt % upper_error lower_error_text = fmt % lower_error if upper_error_text == lower_error_text: text = r"{}\pm {}".format(fmt, "%s") % (maximum, lower_error_text) else: text = r"{}^{{+{}}}_{{-{}}}".format(fmt, "%s", "%s") % (maximum, upper_error_text, lower_error_text) if factor != 0: text = r"\left( %s \right) \times 10^{%d}" % (text, -factor) if wrap: text = f"${text}$" return text def get_parameter_summary_mean(self, chain: Chain, column: ColumnName) -> Bound | None: xs, _, cs = self._get_smoothed_histogram(chain, column) vals = [0.5 - chain.summary_area / 2, 0.5, 0.5 + chain.summary_area / 2] bounds = interp1d(cs, xs)(vals) bounds[1] = 0.5 * (bounds[0] + bounds[2]) return Bound(lower=bounds[0], center=bounds[1], upper=bounds[2]) def get_parameter_summary_cumulative(self, chain: Chain, column: ColumnName) -> Bound | None: xs, _, cs = self._get_smoothed_histogram(chain, column) vals = [0.5 - chain.summary_area / 2, 0.5, 0.5 + chain.summary_area / 2] bounds = interp1d(cs, xs)(vals) return Bound(lower=bounds[0], center=bounds[1], upper=bounds[2]) def get_parameter_summary_max(self, chain: Chain, column: ColumnName) -> Bound | None: xs, ys, cs = self._get_smoothed_histogram(chain, column) n_pad = 1000 x_start = xs[0] * np.ones(n_pad) x_end = xs[-1] * np.ones(n_pad) y_start = np.linspace(0, ys[0], n_pad) y_end = np.linspace(ys[-1], 0, n_pad) xs = np.concatenate((x_start, xs, x_end)) ys = np.concatenate((y_start, ys, y_end)) cs = ys.cumsum() cs = cs / cs.max() start_index = ys.argmax() max_val = ys[start_index] min_val = 0 threshold = 0.003 x1 = None x2 = None count = 0 while x1 is None: mid = (max_val + min_val) / 2.0 count += 1 try: if count > 50: raise ValueError("Failed to converge") # noqa: TRY301 i1 = start_index - np.where(ys[:start_index][::-1] < mid)[0][0] i2 = start_index + np.where(ys[start_index:] < mid)[0][0] area = cs[i2] - cs[i1] deviation = np.abs(area - chain.summary_area) if deviation < threshold: x1 = float(xs[i1]) x2 = float(xs[i2]) elif area < chain.summary_area: max_val = mid elif area > chain.summary_area: min_val = mid except ValueError: self._logger.warning(f"Parameter {column} in chain {chain.name} is not constrained") return Bound(lower=None, center=float(xs[start_index]), upper=None) return Bound(lower=x1, center=float(xs[start_index]), upper=x2) def get_parameter_summary_max_central(self, chain, parameter): xs, ys, cs = self._get_smoothed_histogram(chain, parameter) c_to_x = interp1d(cs, xs) max_index = ys.argmax() x = xs[max_index] vals = [0.5 - 0.5 * chain.summary_area, 0.5 + 0.5 * chain.summary_area] xvals = c_to_x(vals) return Bound(lower=xvals[0], center=x, upper=xvals[1]) if __name__ == "__main__": from .chainconsumer import ChainConsumer
SamreayREPO_NAMEChainConsumerPATH_START.@ChainConsumer_extracted@ChainConsumer-master@src@chainconsumer@analysis.py@.PATH_END.py
{ "filename": "cadence_metrics.py", "repo_name": "lsst/rubin_sim", "repo_path": "rubin_sim_extracted/rubin_sim-main/rubin_sim/maf/metrics/cadence_metrics.py", "type": "Python" }
__all__ = ( "TemplateExistsMetric", "UniformityMetric", "GeneralUniformityMetric", "RapidRevisitUniformityMetric", "RapidRevisitMetric", "NRevisitsMetric", "IntraNightGapsMetric", "InterNightGapsMetric", "VisitGapMetric", ) import numpy as np from .base_metric import BaseMetric class FSMetric(BaseMetric): """Calculate the fS value (Nvisit-weighted delta(M5-M5srd)).""" def __init__(self, filter_col="filter", metric_name="fS", **kwargs): self.filter_col = filter_col cols = [self.filter_col] super().__init__(cols=cols, metric_name=metric_name, units="fS", **kwargs) def run(self, data_slice, slice_point=None): # We could import this from the m5_flat_sed values, # but it makes sense to calculate the m5 # directly from the throughputs. This is easy enough to do and # will allow variation of # the throughput curves and readnoise and visit length, etc. pass class TemplateExistsMetric(BaseMetric): """Calculate the fraction of images with a previous template image of desired quality.""" def __init__( self, seeing_col="seeingFwhmGeom", observation_start_mjd_col="observationStartMJD", metric_name="TemplateExistsMetric", **kwargs, ): cols = [seeing_col, observation_start_mjd_col] super(TemplateExistsMetric, self).__init__( col=cols, metric_name=metric_name, units="fraction", **kwargs ) self.seeing_col = seeing_col self.observation_start_mjd_col = observation_start_mjd_col def run(self, data_slice, slice_point=None): # Check that data is sorted in observationStartMJD order data_slice.sort(order=self.observation_start_mjd_col) # Find the minimum seeing up to a given time seeing_mins = np.minimum.accumulate(data_slice[self.seeing_col]) # Find the difference between the seeing and the minimum seeing # at the previous visit seeing_diff = data_slice[self.seeing_col] - np.roll(seeing_mins, 1) # First image never has a template; check how many others do good = np.where(seeing_diff[1:] >= 0.0)[0] frac = (good.size) / float(data_slice[self.seeing_col].size) return frac class UniformityMetric(BaseMetric): """Calculate how uniformly the observations are spaced in time. This is based on how a KS-test works: look at the cumulative distribution of observation dates, and compare to a perfectly uniform cumulative distribution. Perfectly uniform observations = 0, perfectly non-uniform = 1. Parameters ---------- mjd_col : `str`, optional The column containing time for each observation. Default "observationStartMJD". survey_length : `float`, optional The overall duration of the survey. Default 10. """ def __init__(self, mjd_col="observationStartMJD", units="", survey_length=10.0, **kwargs): """survey_length = time span of survey (years)""" self.mjd_col = mjd_col super(UniformityMetric, self).__init__(col=self.mjd_col, units=units, **kwargs) self.survey_length = survey_length def run(self, data_slice, slice_point=None): # If only one observation, there is no uniformity if data_slice[self.mjd_col].size == 1: return 1 # Scale dates to lie between 0 and 1, # where 0 is the first observation date and 1 is surveyLength dates = (data_slice[self.mjd_col] - data_slice[self.mjd_col].min()) / (self.survey_length * 365.25) dates.sort() # Just to be sure n_cum = np.arange(1, dates.size + 1) / float(dates.size) d_max = np.max(np.abs(n_cum - dates - dates[1])) return d_max class GeneralUniformityMetric(BaseMetric): """Calculate how uniformly any values are distributed. This is based on how a KS-test works: look at the cumulative distribution of data, and compare to a perfectly uniform cumulative distribution. Perfectly uniform observations = 0, perfectly non-uniform = 1. To be "perfectly uniform" here, the endpoints need to be included. Parameters ---------- col : `str`, optional The column of data to use for the metric. The default is "observationStartMJD" as this is most typically used with time. min_value : `float`, optional The minimum value expected for the data. Default None will calculate use the minimum value in this dataslice (which may not cover the full range). max_value : `float`, optional The maximum value expected for the data. Default None will calculate use the maximum value in this dataslice (which may not cover the full range). """ def __init__(self, col="observationStartMJD", units="", min_value=None, max_value=None, **kwargs): self.col = col super().__init__(col=self.col, units=units, **kwargs) self.min_value = min_value self.max_value = max_value def run(self, data_slice, slice_point=None): # If only one observation, there is no uniformity if data_slice[self.col].size == 1: return 1 # Scale values to lie between 0 and 1, # where 0 is the min_value and 1 is max_value if self.min_value is None: min_value = data_slice[self.col].min() else: min_value = self.min_value if self.max_value is None: max_value = data_slice[self.col].max() else: max_value = self.max_value scaled_values = (data_slice[self.col] - min_value) / max_value scaled_values.sort() # Just to be sure n_cum = np.arange(0, scaled_values.size) / float(scaled_values.size - 1) d_max = np.max(np.abs(n_cum - scaled_values)) return d_max class RapidRevisitUniformityMetric(BaseMetric): """Calculate uniformity of time between consecutive visits on short timescales (for RAV1). Uses the same 'uniformity' calculation as the UniformityMetric, based on the KS-test. A value of 0 is perfectly uniform; a value of 1 is purely non-uniform. Parameters ---------- mjd_col : `str`, optional The column containing the 'time' value. Default observationStartMJD. min_nvisits : `int`, optional The minimum number of visits required within the time interval (d_tmin to d_tmax). Default 100. d_tmin : `float`, optional The minimum dTime to consider (in days). Default 40 seconds. d_tmax : `float`, optional The maximum dTime to consider (in days). Default 30 minutes. """ def __init__( self, mjd_col="observationStartMJD", min_nvisits=100, d_tmin=40.0 / 60.0 / 60.0 / 24.0, d_tmax=30.0 / 60.0 / 24.0, metric_name="RapidRevisitUniformity", **kwargs, ): self.mjd_col = mjd_col self.min_nvisits = min_nvisits self.d_tmin = d_tmin self.d_tmax = d_tmax super().__init__(col=self.mjd_col, metric_name=metric_name, **kwargs) # Update min_nvisits, as 0 visits will crash algorithm # and 1 is nonuniform by definition. if self.min_nvisits <= 1: self.min_nvisits = 2 def run(self, data_slice, slice_point=None): # Calculate consecutive visit time intervals dtimes = np.diff(np.sort(data_slice[self.mjd_col])) # Identify dtimes within interval from dTmin/dTmax. good = np.where((dtimes >= self.d_tmin) & (dtimes <= self.d_tmax))[0] # If there are not enough visits in this time range, return bad value. if good.size < self.min_nvisits: return self.badval # Throw out dtimes outside desired range, and sort, then scale to 0-1. dtimes = np.sort(dtimes[good]) dtimes = (dtimes - dtimes.min()) / float(self.d_tmax - self.d_tmin) # Set up a uniform distribution between 0-1 (to match dtimes). uniform_dtimes = np.arange(1, dtimes.size + 1, 1) / float(dtimes.size) # Look at the differences between our times and the uniform times. dmax = np.max(np.abs(uniform_dtimes - dtimes - dtimes[1])) return dmax class RapidRevisitMetric(BaseMetric): def __init__( self, mjd_col="observationStartMJD", metric_name="RapidRevisit", d_tmin=40.0 / 60.0 / 60.0 / 24.0, d_tpairs=20.0 / 60.0 / 24.0, d_tmax=30.0 / 60.0 / 24.0, min_n1=28, min_n2=82, **kwargs, ): self.mjd_col = mjd_col self.d_tmin = d_tmin self.d_tpairs = d_tpairs self.d_tmax = d_tmax self.min_n1 = min_n1 self.min_n2 = min_n2 super().__init__(col=self.mjd_col, metric_name=metric_name, **kwargs) def run(self, data_slice, slice_point=None): dtimes = np.diff(np.sort(data_slice[self.mjd_col])) n1 = len(np.where((dtimes >= self.d_tmin) & (dtimes <= self.d_tpairs))[0]) n2 = len(np.where((dtimes >= self.d_tmin) & (dtimes <= self.d_tmax))[0]) if (n1 >= self.min_n1) and (n2 >= self.min_n2): val = 1 else: val = 0 return val class NRevisitsMetric(BaseMetric): """Calculate the number of consecutive visits with time differences less than d_t. Parameters ---------- d_t : `float`, optional The time interval to consider (in minutes). Default 30. normed : `bool`, optional Flag to indicate whether to return the total number of consecutive visits with time differences less than d_t (False), or the fraction of overall visits (True). Note that we would expect (if all visits occur in pairs within d_t) this fraction would be 0.5! """ def __init__(self, mjd_col="observationStartMJD", d_t=30.0, normed=False, metric_name=None, **kwargs): units = "" if metric_name is None: if normed: metric_name = "Fraction of revisits faster than %.1f minutes" % (d_t) else: metric_name = "Number of revisits faster than %.1f minutes" % (d_t) units = "#" self.mjd_col = mjd_col self.d_t = d_t / 60.0 / 24.0 # convert to days self.normed = normed super(NRevisitsMetric, self).__init__( col=self.mjd_col, units=units, metric_name=metric_name, **kwargs ) def run(self, data_slice, slice_point=None): dtimes = np.diff(np.sort(data_slice[self.mjd_col])) n_fast_revisits = np.size(np.where(dtimes <= self.d_t)[0]) if self.normed: n_fast_revisits = n_fast_revisits / float(np.size(data_slice[self.mjd_col])) return n_fast_revisits class IntraNightGapsMetric(BaseMetric): """ Calculate the (reduce_func) of the gap between consecutive observations within a night, in hours. Parameters ---------- reduce_func : function, optional Function that can operate on array-like structures. Typically numpy function. Default np.median. """ def __init__( self, mjd_col="observationStartMJD", night_col="night", reduce_func=np.median, metric_name="Median Intra-Night Gap", **kwargs, ): units = "hours" self.mjd_col = mjd_col self.night_col = night_col self.reduce_func = reduce_func super(IntraNightGapsMetric, self).__init__( col=[self.mjd_col, self.night_col], units=units, metric_name=metric_name, **kwargs ) def run(self, data_slice, slice_point=None): data_slice.sort(order=self.mjd_col) dt = np.diff(data_slice[self.mjd_col]) dn = np.diff(data_slice[self.night_col]) good = np.where(dn == 0) if np.size(good[0]) == 0: result = self.badval else: result = self.reduce_func(dt[good]) * 24 return result class InterNightGapsMetric(BaseMetric): """Calculate the (reduce_func) of the gap between consecutive observations in different nights, in days. Parameters ---------- reduce_func : function, optional Function that can operate on array-like structures. Typically numpy function. Default np.median. """ def __init__( self, mjd_col="observationStartMJD", night_col="night", reduce_func=np.median, metric_name="Median Inter-Night Gap", **kwargs, ): units = "days" self.mjd_col = mjd_col self.night_col = night_col self.reduce_func = reduce_func super().__init__(col=[self.mjd_col, self.night_col], units=units, metric_name=metric_name, **kwargs) def run(self, data_slice, slice_point=None): data_slice.sort(order=self.mjd_col) unights = np.unique(data_slice[self.night_col]) if np.size(unights) < 2: result = self.badval else: # Find the first and last observation of each night first_of_night = np.searchsorted(data_slice[self.night_col], unights) last_of_night = np.searchsorted(data_slice[self.night_col], unights, side="right") - 1 diff = data_slice[self.mjd_col][first_of_night[1:]] - data_slice[self.mjd_col][last_of_night[:-1]] result = self.reduce_func(diff) return result class VisitGapMetric(BaseMetric): """Calculate the (reduce_func) of the gap between any consecutive observations, in hours, regardless of night boundaries. Different from inter-night and intra-night gaps, because this is really just counting all of the times between consecutive observations (not time between nights or time within a night). Parameters ---------- reduce_func : function, optional Function that can operate on array-like structures. Typically numpy function. Default np.median. """ def __init__( self, mjd_col="observationStartMJD", night_col="night", reduce_func=np.median, metric_name="VisitGap", **kwargs, ): units = "hours" self.mjd_col = mjd_col self.night_col = night_col self.reduce_func = reduce_func super().__init__(col=[self.mjd_col, self.night_col], units=units, metric_name=metric_name, **kwargs) def run(self, data_slice, slice_point=None): data_slice.sort(order=self.mjd_col) diff = np.diff(data_slice[self.mjd_col]) result = self.reduce_func(diff) * 24.0 return result
lsstREPO_NAMErubin_simPATH_START.@rubin_sim_extracted@rubin_sim-main@rubin_sim@maf@metrics@cadence_metrics.py@.PATH_END.py
{ "filename": "_histogram2d.py", "repo_name": "catboost/catboost", "repo_path": "catboost_extracted/catboost-master/contrib/python/plotly/py2/plotly/graph_objs/_histogram2d.py", "type": "Python" }
from plotly.basedatatypes import BaseTraceType as _BaseTraceType import copy as _copy class Histogram2d(_BaseTraceType): # class properties # -------------------- _parent_path_str = "" _path_str = "histogram2d" _valid_props = { "autobinx", "autobiny", "autocolorscale", "bingroup", "coloraxis", "colorbar", "colorscale", "customdata", "customdatasrc", "histfunc", "histnorm", "hoverinfo", "hoverinfosrc", "hoverlabel", "hovertemplate", "hovertemplatesrc", "ids", "idssrc", "legendgroup", "marker", "meta", "metasrc", "name", "nbinsx", "nbinsy", "opacity", "reversescale", "showlegend", "showscale", "stream", "type", "uid", "uirevision", "visible", "x", "xaxis", "xbingroup", "xbins", "xcalendar", "xgap", "xsrc", "y", "yaxis", "ybingroup", "ybins", "ycalendar", "ygap", "ysrc", "z", "zauto", "zhoverformat", "zmax", "zmid", "zmin", "zsmooth", "zsrc", } # autobinx # -------- @property def autobinx(self): """ Obsolete: since v1.42 each bin attribute is auto-determined separately and `autobinx` is not needed. However, we accept `autobinx: true` or `false` and will update `xbins` accordingly before deleting `autobinx` from the trace. The 'autobinx' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["autobinx"] @autobinx.setter def autobinx(self, val): self["autobinx"] = val # autobiny # -------- @property def autobiny(self): """ Obsolete: since v1.42 each bin attribute is auto-determined separately and `autobiny` is not needed. However, we accept `autobiny: true` or `false` and will update `ybins` accordingly before deleting `autobiny` from the trace. The 'autobiny' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["autobiny"] @autobiny.setter def autobiny(self, val): self["autobiny"] = val # autocolorscale # -------------- @property def autocolorscale(self): """ Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `colorscale`. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. The 'autocolorscale' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["autocolorscale"] @autocolorscale.setter def autocolorscale(self, val): self["autocolorscale"] = val # bingroup # -------- @property def bingroup(self): """ Set the `xbingroup` and `ybingroup` default prefix For example, setting a `bingroup` of 1 on two histogram2d traces will make them their x-bins and y-bins match separately. The 'bingroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["bingroup"] @bingroup.setter def bingroup(self, val): self["bingroup"] = val # coloraxis # --------- @property def coloraxis(self): """ Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. The 'coloraxis' property is an identifier of a particular subplot, of type 'coloraxis', that may be specified as the string 'coloraxis' optionally followed by an integer >= 1 (e.g. 'coloraxis', 'coloraxis1', 'coloraxis2', 'coloraxis3', etc.) Returns ------- str """ return self["coloraxis"] @coloraxis.setter def coloraxis(self, val): self["coloraxis"] = val # colorbar # -------- @property def colorbar(self): """ The 'colorbar' property is an instance of ColorBar that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2d.ColorBar` - A dict of string/value properties that will be passed to the ColorBar constructor Supported dict properties: bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. minexponent Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format And for dates see: https://github.com/d3/d3-time- format#locale_format We add one item to d3's date formatter: "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.histogr am2d.colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.dat a.histogram2d.colorbar.tickformatstopdefaults), sets the default property values to use for elements of histogram2d.colorbar.tickformatstops ticklabelposition Determines where tick labels are drawn. ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on Chart Studio Cloud for tickvals . tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.histogram2d.colorb ar.Title` instance or dict with compatible properties titlefont Deprecated: Please use histogram2d.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use histogram2d.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. Returns ------- plotly.graph_objs.histogram2d.ColorBar """ return self["colorbar"] @colorbar.setter def colorbar(self, val): self["colorbar"] = val # colorscale # ---------- @property def colorscale(self): """ Sets the colorscale. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`zmin` and `zmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrRd,Bluered,RdBu,Reds,Bl ues,Picnic,Rainbow,Portland,Jet,Hot,Blackbody,Earth,Electric,Vi ridis,Cividis. The 'colorscale' property is a colorscale and may be specified as: - A list of colors that will be spaced evenly to create the colorscale. Many predefined colorscale lists are included in the sequential, diverging, and cyclical modules in the plotly.colors package. - A list of 2-element lists where the first element is the normalized color level value (starting at 0 and ending at 1), and the second item is a valid color string. (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']]) - One of the following named colorscales: ['aggrnyl', 'agsunset', 'algae', 'amp', 'armyrose', 'balance', 'blackbody', 'bluered', 'blues', 'blugrn', 'bluyl', 'brbg', 'brwnyl', 'bugn', 'bupu', 'burg', 'burgyl', 'cividis', 'curl', 'darkmint', 'deep', 'delta', 'dense', 'earth', 'edge', 'electric', 'emrld', 'fall', 'geyser', 'gnbu', 'gray', 'greens', 'greys', 'haline', 'hot', 'hsv', 'ice', 'icefire', 'inferno', 'jet', 'magenta', 'magma', 'matter', 'mint', 'mrybm', 'mygbm', 'oranges', 'orrd', 'oryel', 'oxy', 'peach', 'phase', 'picnic', 'pinkyl', 'piyg', 'plasma', 'plotly3', 'portland', 'prgn', 'pubu', 'pubugn', 'puor', 'purd', 'purp', 'purples', 'purpor', 'rainbow', 'rdbu', 'rdgy', 'rdpu', 'rdylbu', 'rdylgn', 'redor', 'reds', 'solar', 'spectral', 'speed', 'sunset', 'sunsetdark', 'teal', 'tealgrn', 'tealrose', 'tempo', 'temps', 'thermal', 'tropic', 'turbid', 'turbo', 'twilight', 'viridis', 'ylgn', 'ylgnbu', 'ylorbr', 'ylorrd']. Appending '_r' to a named colorscale reverses it. Returns ------- str """ return self["colorscale"] @colorscale.setter def colorscale(self, val): self["colorscale"] = val # customdata # ---------- @property def customdata(self): """ Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements The 'customdata' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["customdata"] @customdata.setter def customdata(self, val): self["customdata"] = val # customdatasrc # ------------- @property def customdatasrc(self): """ Sets the source reference on Chart Studio Cloud for customdata . The 'customdatasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["customdatasrc"] @customdatasrc.setter def customdatasrc(self, val): self["customdatasrc"] = val # histfunc # -------- @property def histfunc(self): """ Specifies the binning function used for this histogram trace. If "count", the histogram values are computed by counting the number of values lying inside each bin. If "sum", "avg", "min", "max", the histogram values are computed using the sum, the average, the minimum or the maximum of the values lying inside each bin respectively. The 'histfunc' property is an enumeration that may be specified as: - One of the following enumeration values: ['count', 'sum', 'avg', 'min', 'max'] Returns ------- Any """ return self["histfunc"] @histfunc.setter def histfunc(self, val): self["histfunc"] = val # histnorm # -------- @property def histnorm(self): """ Specifies the type of normalization used for this histogram trace. If "", the span of each bar corresponds to the number of occurrences (i.e. the number of data points lying inside the bins). If "percent" / "probability", the span of each bar corresponds to the percentage / fraction of occurrences with respect to the total number of sample points (here, the sum of all bin HEIGHTS equals 100% / 1). If "density", the span of each bar corresponds to the number of occurrences in a bin divided by the size of the bin interval (here, the sum of all bin AREAS equals the total number of sample points). If *probability density*, the area of each bar corresponds to the probability that an event will fall into the corresponding bin (here, the sum of all bin AREAS equals 1). The 'histnorm' property is an enumeration that may be specified as: - One of the following enumeration values: ['', 'percent', 'probability', 'density', 'probability density'] Returns ------- Any """ return self["histnorm"] @histnorm.setter def histnorm(self, val): self["histnorm"] = val # hoverinfo # --------- @property def hoverinfo(self): """ Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. The 'hoverinfo' property is a flaglist and may be specified as a string containing: - Any combination of ['x', 'y', 'z', 'text', 'name'] joined with '+' characters (e.g. 'x+y') OR exactly one of ['all', 'none', 'skip'] (e.g. 'skip') - A list or array of the above Returns ------- Any|numpy.ndarray """ return self["hoverinfo"] @hoverinfo.setter def hoverinfo(self, val): self["hoverinfo"] = val # hoverinfosrc # ------------ @property def hoverinfosrc(self): """ Sets the source reference on Chart Studio Cloud for hoverinfo . The 'hoverinfosrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hoverinfosrc"] @hoverinfosrc.setter def hoverinfosrc(self, val): self["hoverinfosrc"] = val # hoverlabel # ---------- @property def hoverlabel(self): """ The 'hoverlabel' property is an instance of Hoverlabel that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2d.Hoverlabel` - A dict of string/value properties that will be passed to the Hoverlabel constructor Supported dict properties: align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . Returns ------- plotly.graph_objs.histogram2d.Hoverlabel """ return self["hoverlabel"] @hoverlabel.setter def hoverlabel(self, val): self["hoverlabel"] = val # hovertemplate # ------------- @property def hovertemplate(self): """ Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time- format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event-data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variable `z` Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. The 'hovertemplate' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["hovertemplate"] @hovertemplate.setter def hovertemplate(self, val): self["hovertemplate"] = val # hovertemplatesrc # ---------------- @property def hovertemplatesrc(self): """ Sets the source reference on Chart Studio Cloud for hovertemplate . The 'hovertemplatesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertemplatesrc"] @hovertemplatesrc.setter def hovertemplatesrc(self, val): self["hovertemplatesrc"] = val # ids # --- @property def ids(self): """ Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. The 'ids' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["ids"] @ids.setter def ids(self, val): self["ids"] = val # idssrc # ------ @property def idssrc(self): """ Sets the source reference on Chart Studio Cloud for ids . The 'idssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["idssrc"] @idssrc.setter def idssrc(self, val): self["idssrc"] = val # legendgroup # ----------- @property def legendgroup(self): """ Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. The 'legendgroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["legendgroup"] @legendgroup.setter def legendgroup(self, val): self["legendgroup"] = val # marker # ------ @property def marker(self): """ The 'marker' property is an instance of Marker that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2d.Marker` - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: color Sets the aggregation data. colorsrc Sets the source reference on Chart Studio Cloud for color . Returns ------- plotly.graph_objs.histogram2d.Marker """ return self["marker"] @marker.setter def marker(self, val): self["marker"] = val # meta # ---- @property def meta(self): """ Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. The 'meta' property accepts values of any type Returns ------- Any|numpy.ndarray """ return self["meta"] @meta.setter def meta(self, val): self["meta"] = val # metasrc # ------- @property def metasrc(self): """ Sets the source reference on Chart Studio Cloud for meta . The 'metasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["metasrc"] @metasrc.setter def metasrc(self, val): self["metasrc"] = val # name # ---- @property def name(self): """ Sets the trace name. The trace name appear as the legend item and on hover. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val # nbinsx # ------ @property def nbinsx(self): """ Specifies the maximum number of desired bins. This value will be used in an algorithm that will decide the optimal bin size such that the histogram best visualizes the distribution of the data. Ignored if `xbins.size` is provided. The 'nbinsx' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self["nbinsx"] @nbinsx.setter def nbinsx(self, val): self["nbinsx"] = val # nbinsy # ------ @property def nbinsy(self): """ Specifies the maximum number of desired bins. This value will be used in an algorithm that will decide the optimal bin size such that the histogram best visualizes the distribution of the data. Ignored if `ybins.size` is provided. The 'nbinsy' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self["nbinsy"] @nbinsy.setter def nbinsy(self, val): self["nbinsy"] = val # opacity # ------- @property def opacity(self): """ Sets the opacity of the trace. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["opacity"] @opacity.setter def opacity(self, val): self["opacity"] = val # reversescale # ------------ @property def reversescale(self): """ Reverses the color mapping if true. If true, `zmin` will correspond to the last color in the array and `zmax` will correspond to the first color. The 'reversescale' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["reversescale"] @reversescale.setter def reversescale(self, val): self["reversescale"] = val # showlegend # ---------- @property def showlegend(self): """ Determines whether or not an item corresponding to this trace is shown in the legend. The 'showlegend' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["showlegend"] @showlegend.setter def showlegend(self, val): self["showlegend"] = val # showscale # --------- @property def showscale(self): """ Determines whether or not a colorbar is displayed for this trace. The 'showscale' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["showscale"] @showscale.setter def showscale(self, val): self["showscale"] = val # stream # ------ @property def stream(self): """ The 'stream' property is an instance of Stream that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2d.Stream` - A dict of string/value properties that will be passed to the Stream constructor Supported dict properties: maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart- studio.plotly.com/settings for more details. Returns ------- plotly.graph_objs.histogram2d.Stream """ return self["stream"] @stream.setter def stream(self, val): self["stream"] = val # uid # --- @property def uid(self): """ Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. The 'uid' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["uid"] @uid.setter def uid(self, val): self["uid"] = val # uirevision # ---------- @property def uirevision(self): """ Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. The 'uirevision' property accepts values of any type Returns ------- Any """ return self["uirevision"] @uirevision.setter def uirevision(self, val): self["uirevision"] = val # visible # ------- @property def visible(self): """ Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). The 'visible' property is an enumeration that may be specified as: - One of the following enumeration values: [True, False, 'legendonly'] Returns ------- Any """ return self["visible"] @visible.setter def visible(self, val): self["visible"] = val # x # - @property def x(self): """ Sets the sample data to be binned on the x axis. The 'x' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["x"] @x.setter def x(self, val): self["x"] = val # xaxis # ----- @property def xaxis(self): """ Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. The 'xaxis' property is an identifier of a particular subplot, of type 'x', that may be specified as the string 'x' optionally followed by an integer >= 1 (e.g. 'x', 'x1', 'x2', 'x3', etc.) Returns ------- str """ return self["xaxis"] @xaxis.setter def xaxis(self, val): self["xaxis"] = val # xbingroup # --------- @property def xbingroup(self): """ Set a group of histogram traces which will have compatible x-bin settings. Using `xbingroup`, histogram2d and histogram2dcontour traces (on axes of the same axis type) can have compatible x-bin settings. Note that the same `xbingroup` value can be used to set (1D) histogram `bingroup` The 'xbingroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["xbingroup"] @xbingroup.setter def xbingroup(self, val): self["xbingroup"] = val # xbins # ----- @property def xbins(self): """ The 'xbins' property is an instance of XBins that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2d.XBins` - A dict of string/value properties that will be passed to the XBins constructor Supported dict properties: end Sets the end value for the x axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. size Sets the size of each x axis bin. Default behavior: If `nbinsx` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsx` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). start Sets the starting value for the x axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. Returns ------- plotly.graph_objs.histogram2d.XBins """ return self["xbins"] @xbins.setter def xbins(self, val): self["xbins"] = val # xcalendar # --------- @property def xcalendar(self): """ Sets the calendar system to use with `x` date data. The 'xcalendar' property is an enumeration that may be specified as: - One of the following enumeration values: ['gregorian', 'chinese', 'coptic', 'discworld', 'ethiopian', 'hebrew', 'islamic', 'julian', 'mayan', 'nanakshahi', 'nepali', 'persian', 'jalali', 'taiwan', 'thai', 'ummalqura'] Returns ------- Any """ return self["xcalendar"] @xcalendar.setter def xcalendar(self, val): self["xcalendar"] = val # xgap # ---- @property def xgap(self): """ Sets the horizontal gap (in pixels) between bricks. The 'xgap' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["xgap"] @xgap.setter def xgap(self, val): self["xgap"] = val # xsrc # ---- @property def xsrc(self): """ Sets the source reference on Chart Studio Cloud for x . The 'xsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["xsrc"] @xsrc.setter def xsrc(self, val): self["xsrc"] = val # y # - @property def y(self): """ Sets the sample data to be binned on the y axis. The 'y' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["y"] @y.setter def y(self, val): self["y"] = val # yaxis # ----- @property def yaxis(self): """ Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. The 'yaxis' property is an identifier of a particular subplot, of type 'y', that may be specified as the string 'y' optionally followed by an integer >= 1 (e.g. 'y', 'y1', 'y2', 'y3', etc.) Returns ------- str """ return self["yaxis"] @yaxis.setter def yaxis(self, val): self["yaxis"] = val # ybingroup # --------- @property def ybingroup(self): """ Set a group of histogram traces which will have compatible y-bin settings. Using `ybingroup`, histogram2d and histogram2dcontour traces (on axes of the same axis type) can have compatible y-bin settings. Note that the same `ybingroup` value can be used to set (1D) histogram `bingroup` The 'ybingroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["ybingroup"] @ybingroup.setter def ybingroup(self, val): self["ybingroup"] = val # ybins # ----- @property def ybins(self): """ The 'ybins' property is an instance of YBins that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2d.YBins` - A dict of string/value properties that will be passed to the YBins constructor Supported dict properties: end Sets the end value for the y axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. size Sets the size of each y axis bin. Default behavior: If `nbinsy` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsy` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M<n>" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). start Sets the starting value for the y axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. Returns ------- plotly.graph_objs.histogram2d.YBins """ return self["ybins"] @ybins.setter def ybins(self, val): self["ybins"] = val # ycalendar # --------- @property def ycalendar(self): """ Sets the calendar system to use with `y` date data. The 'ycalendar' property is an enumeration that may be specified as: - One of the following enumeration values: ['gregorian', 'chinese', 'coptic', 'discworld', 'ethiopian', 'hebrew', 'islamic', 'julian', 'mayan', 'nanakshahi', 'nepali', 'persian', 'jalali', 'taiwan', 'thai', 'ummalqura'] Returns ------- Any """ return self["ycalendar"] @ycalendar.setter def ycalendar(self, val): self["ycalendar"] = val # ygap # ---- @property def ygap(self): """ Sets the vertical gap (in pixels) between bricks. The 'ygap' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["ygap"] @ygap.setter def ygap(self, val): self["ygap"] = val # ysrc # ---- @property def ysrc(self): """ Sets the source reference on Chart Studio Cloud for y . The 'ysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["ysrc"] @ysrc.setter def ysrc(self, val): self["ysrc"] = val # z # - @property def z(self): """ Sets the aggregation data. The 'z' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["z"] @z.setter def z(self, val): self["z"] = val # zauto # ----- @property def zauto(self): """ Determines whether or not the color domain is computed with respect to the input data (here in `z`) or the bounds set in `zmin` and `zmax` Defaults to `false` when `zmin` and `zmax` are set by the user. The 'zauto' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["zauto"] @zauto.setter def zauto(self, val): self["zauto"] = val # zhoverformat # ------------ @property def zhoverformat(self): """ Sets the hover text formatting rule using d3 formatting mini- languages which are very similar to those in Python. See: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format The 'zhoverformat' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["zhoverformat"] @zhoverformat.setter def zhoverformat(self, val): self["zhoverformat"] = val # zmax # ---- @property def zmax(self): """ Sets the upper bound of the color domain. Value should have the same units as in `z` and if set, `zmin` must be set as well. The 'zmax' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["zmax"] @zmax.setter def zmax(self, val): self["zmax"] = val # zmid # ---- @property def zmid(self): """ Sets the mid-point of the color domain by scaling `zmin` and/or `zmax` to be equidistant to this point. Value should have the same units as in `z`. Has no effect when `zauto` is `false`. The 'zmid' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["zmid"] @zmid.setter def zmid(self, val): self["zmid"] = val # zmin # ---- @property def zmin(self): """ Sets the lower bound of the color domain. Value should have the same units as in `z` and if set, `zmax` must be set as well. The 'zmin' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["zmin"] @zmin.setter def zmin(self, val): self["zmin"] = val # zsmooth # ------- @property def zsmooth(self): """ Picks a smoothing algorithm use to smooth `z` data. The 'zsmooth' property is an enumeration that may be specified as: - One of the following enumeration values: ['fast', 'best', False] Returns ------- Any """ return self["zsmooth"] @zsmooth.setter def zsmooth(self, val): self["zsmooth"] = val # zsrc # ---- @property def zsrc(self): """ Sets the source reference on Chart Studio Cloud for z . The 'zsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["zsrc"] @zsrc.setter def zsrc(self, val): self["zsrc"] = val # type # ---- @property def type(self): return self._props["type"] # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ autobinx Obsolete: since v1.42 each bin attribute is auto- determined separately and `autobinx` is not needed. However, we accept `autobinx: true` or `false` and will update `xbins` accordingly before deleting `autobinx` from the trace. autobiny Obsolete: since v1.42 each bin attribute is auto- determined separately and `autobiny` is not needed. However, we accept `autobiny: true` or `false` and will update `ybins` accordingly before deleting `autobiny` from the trace. autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `colorscale`. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. bingroup Set the `xbingroup` and `ybingroup` default prefix For example, setting a `bingroup` of 1 on two histogram2d traces will make them their x-bins and y-bins match separately. coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorbar :class:`plotly.graph_objects.histogram2d.ColorBar` instance or dict with compatible properties colorscale Sets the colorscale. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`zmin` and `zmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrR d,Bluered,RdBu,Reds,Blues,Picnic,Rainbow,Portland,Jet,H ot,Blackbody,Earth,Electric,Viridis,Cividis. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . histfunc Specifies the binning function used for this histogram trace. If "count", the histogram values are computed by counting the number of values lying inside each bin. If "sum", "avg", "min", "max", the histogram values are computed using the sum, the average, the minimum or the maximum of the values lying inside each bin respectively. histnorm Specifies the type of normalization used for this histogram trace. If "", the span of each bar corresponds to the number of occurrences (i.e. the number of data points lying inside the bins). If "percent" / "probability", the span of each bar corresponds to the percentage / fraction of occurrences with respect to the total number of sample points (here, the sum of all bin HEIGHTS equals 100% / 1). If "density", the span of each bar corresponds to the number of occurrences in a bin divided by the size of the bin interval (here, the sum of all bin AREAS equals the total number of sample points). If *probability density*, the area of each bar corresponds to the probability that an event will fall into the corresponding bin (here, the sum of all bin AREAS equals 1). hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.histogram2d.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-format#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variable `z` Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . legendgroup Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. marker :class:`plotly.graph_objects.histogram2d.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . name Sets the trace name. The trace name appear as the legend item and on hover. nbinsx Specifies the maximum number of desired bins. This value will be used in an algorithm that will decide the optimal bin size such that the histogram best visualizes the distribution of the data. Ignored if `xbins.size` is provided. nbinsy Specifies the maximum number of desired bins. This value will be used in an algorithm that will decide the optimal bin size such that the histogram best visualizes the distribution of the data. Ignored if `ybins.size` is provided. opacity Sets the opacity of the trace. reversescale Reverses the color mapping if true. If true, `zmin` will correspond to the last color in the array and `zmax` will correspond to the first color. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. showscale Determines whether or not a colorbar is displayed for this trace. stream :class:`plotly.graph_objects.histogram2d.Stream` instance or dict with compatible properties uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). x Sets the sample data to be binned on the x axis. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. xbingroup Set a group of histogram traces which will have compatible x-bin settings. Using `xbingroup`, histogram2d and histogram2dcontour traces (on axes of the same axis type) can have compatible x-bin settings. Note that the same `xbingroup` value can be used to set (1D) histogram `bingroup` xbins :class:`plotly.graph_objects.histogram2d.XBins` instance or dict with compatible properties xcalendar Sets the calendar system to use with `x` date data. xgap Sets the horizontal gap (in pixels) between bricks. xsrc Sets the source reference on Chart Studio Cloud for x . y Sets the sample data to be binned on the y axis. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. ybingroup Set a group of histogram traces which will have compatible y-bin settings. Using `ybingroup`, histogram2d and histogram2dcontour traces (on axes of the same axis type) can have compatible y-bin settings. Note that the same `ybingroup` value can be used to set (1D) histogram `bingroup` ybins :class:`plotly.graph_objects.histogram2d.YBins` instance or dict with compatible properties ycalendar Sets the calendar system to use with `y` date data. ygap Sets the vertical gap (in pixels) between bricks. ysrc Sets the source reference on Chart Studio Cloud for y . z Sets the aggregation data. zauto Determines whether or not the color domain is computed with respect to the input data (here in `z`) or the bounds set in `zmin` and `zmax` Defaults to `false` when `zmin` and `zmax` are set by the user. zhoverformat Sets the hover text formatting rule using d3 formatting mini-languages which are very similar to those in Python. See: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format zmax Sets the upper bound of the color domain. Value should have the same units as in `z` and if set, `zmin` must be set as well. zmid Sets the mid-point of the color domain by scaling `zmin` and/or `zmax` to be equidistant to this point. Value should have the same units as in `z`. Has no effect when `zauto` is `false`. zmin Sets the lower bound of the color domain. Value should have the same units as in `z` and if set, `zmax` must be set as well. zsmooth Picks a smoothing algorithm use to smooth `z` data. zsrc Sets the source reference on Chart Studio Cloud for z . """ def __init__( self, arg=None, autobinx=None, autobiny=None, autocolorscale=None, bingroup=None, coloraxis=None, colorbar=None, colorscale=None, customdata=None, customdatasrc=None, histfunc=None, histnorm=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, ids=None, idssrc=None, legendgroup=None, marker=None, meta=None, metasrc=None, name=None, nbinsx=None, nbinsy=None, opacity=None, reversescale=None, showlegend=None, showscale=None, stream=None, uid=None, uirevision=None, visible=None, x=None, xaxis=None, xbingroup=None, xbins=None, xcalendar=None, xgap=None, xsrc=None, y=None, yaxis=None, ybingroup=None, ybins=None, ycalendar=None, ygap=None, ysrc=None, z=None, zauto=None, zhoverformat=None, zmax=None, zmid=None, zmin=None, zsmooth=None, zsrc=None, **kwargs ): """ Construct a new Histogram2d object The sample data from which statistics are computed is set in `x` and `y` (where `x` and `y` represent marginal distributions, binning is set in `xbins` and `ybins` in this case) or `z` (where `z` represent the 2D distribution and binning set, binning is set by `x` and `y` in this case). The resulting distribution is visualized as a heatmap. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.Histogram2d` autobinx Obsolete: since v1.42 each bin attribute is auto- determined separately and `autobinx` is not needed. However, we accept `autobinx: true` or `false` and will update `xbins` accordingly before deleting `autobinx` from the trace. autobiny Obsolete: since v1.42 each bin attribute is auto- determined separately and `autobiny` is not needed. However, we accept `autobiny: true` or `false` and will update `ybins` accordingly before deleting `autobiny` from the trace. autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `colorscale`. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. bingroup Set the `xbingroup` and `ybingroup` default prefix For example, setting a `bingroup` of 1 on two histogram2d traces will make them their x-bins and y-bins match separately. coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorbar :class:`plotly.graph_objects.histogram2d.ColorBar` instance or dict with compatible properties colorscale Sets the colorscale. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`zmin` and `zmax`. Alternatively, `colorscale` may be a palette name string of the following list: Greys,YlGnBu,Greens,YlOrR d,Bluered,RdBu,Reds,Blues,Picnic,Rainbow,Portland,Jet,H ot,Blackbody,Earth,Electric,Viridis,Cividis. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . histfunc Specifies the binning function used for this histogram trace. If "count", the histogram values are computed by counting the number of values lying inside each bin. If "sum", "avg", "min", "max", the histogram values are computed using the sum, the average, the minimum or the maximum of the values lying inside each bin respectively. histnorm Specifies the type of normalization used for this histogram trace. If "", the span of each bar corresponds to the number of occurrences (i.e. the number of data points lying inside the bins). If "percent" / "probability", the span of each bar corresponds to the percentage / fraction of occurrences with respect to the total number of sample points (here, the sum of all bin HEIGHTS equals 100% / 1). If "density", the span of each bar corresponds to the number of occurrences in a bin divided by the size of the bin interval (here, the sum of all bin AREAS equals the total number of sample points). If *probability density*, the area of each bar corresponds to the probability that an event will fall into the corresponding bin (here, the sum of all bin AREAS equals 1). hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.histogram2d.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-format#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variable `z` Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . legendgroup Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. marker :class:`plotly.graph_objects.histogram2d.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . name Sets the trace name. The trace name appear as the legend item and on hover. nbinsx Specifies the maximum number of desired bins. This value will be used in an algorithm that will decide the optimal bin size such that the histogram best visualizes the distribution of the data. Ignored if `xbins.size` is provided. nbinsy Specifies the maximum number of desired bins. This value will be used in an algorithm that will decide the optimal bin size such that the histogram best visualizes the distribution of the data. Ignored if `ybins.size` is provided. opacity Sets the opacity of the trace. reversescale Reverses the color mapping if true. If true, `zmin` will correspond to the last color in the array and `zmax` will correspond to the first color. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. showscale Determines whether or not a colorbar is displayed for this trace. stream :class:`plotly.graph_objects.histogram2d.Stream` instance or dict with compatible properties uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). x Sets the sample data to be binned on the x axis. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. xbingroup Set a group of histogram traces which will have compatible x-bin settings. Using `xbingroup`, histogram2d and histogram2dcontour traces (on axes of the same axis type) can have compatible x-bin settings. Note that the same `xbingroup` value can be used to set (1D) histogram `bingroup` xbins :class:`plotly.graph_objects.histogram2d.XBins` instance or dict with compatible properties xcalendar Sets the calendar system to use with `x` date data. xgap Sets the horizontal gap (in pixels) between bricks. xsrc Sets the source reference on Chart Studio Cloud for x . y Sets the sample data to be binned on the y axis. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. ybingroup Set a group of histogram traces which will have compatible y-bin settings. Using `ybingroup`, histogram2d and histogram2dcontour traces (on axes of the same axis type) can have compatible y-bin settings. Note that the same `ybingroup` value can be used to set (1D) histogram `bingroup` ybins :class:`plotly.graph_objects.histogram2d.YBins` instance or dict with compatible properties ycalendar Sets the calendar system to use with `y` date data. ygap Sets the vertical gap (in pixels) between bricks. ysrc Sets the source reference on Chart Studio Cloud for y . z Sets the aggregation data. zauto Determines whether or not the color domain is computed with respect to the input data (here in `z`) or the bounds set in `zmin` and `zmax` Defaults to `false` when `zmin` and `zmax` are set by the user. zhoverformat Sets the hover text formatting rule using d3 formatting mini-languages which are very similar to those in Python. See: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format zmax Sets the upper bound of the color domain. Value should have the same units as in `z` and if set, `zmin` must be set as well. zmid Sets the mid-point of the color domain by scaling `zmin` and/or `zmax` to be equidistant to this point. Value should have the same units as in `z`. Has no effect when `zauto` is `false`. zmin Sets the lower bound of the color domain. Value should have the same units as in `z` and if set, `zmax` must be set as well. zsmooth Picks a smoothing algorithm use to smooth `z` data. zsrc Sets the source reference on Chart Studio Cloud for z . Returns ------- Histogram2d """ super(Histogram2d, self).__init__("histogram2d") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.Histogram2d constructor must be a dict or an instance of :class:`plotly.graph_objs.Histogram2d`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("autobinx", None) _v = autobinx if autobinx is not None else _v if _v is not None: self["autobinx"] = _v _v = arg.pop("autobiny", None) _v = autobiny if autobiny is not None else _v if _v is not None: self["autobiny"] = _v _v = arg.pop("autocolorscale", None) _v = autocolorscale if autocolorscale is not None else _v if _v is not None: self["autocolorscale"] = _v _v = arg.pop("bingroup", None) _v = bingroup if bingroup is not None else _v if _v is not None: self["bingroup"] = _v _v = arg.pop("coloraxis", None) _v = coloraxis if coloraxis is not None else _v if _v is not None: self["coloraxis"] = _v _v = arg.pop("colorbar", None) _v = colorbar if colorbar is not None else _v if _v is not None: self["colorbar"] = _v _v = arg.pop("colorscale", None) _v = colorscale if colorscale is not None else _v if _v is not None: self["colorscale"] = _v _v = arg.pop("customdata", None) _v = customdata if customdata is not None else _v if _v is not None: self["customdata"] = _v _v = arg.pop("customdatasrc", None) _v = customdatasrc if customdatasrc is not None else _v if _v is not None: self["customdatasrc"] = _v _v = arg.pop("histfunc", None) _v = histfunc if histfunc is not None else _v if _v is not None: self["histfunc"] = _v _v = arg.pop("histnorm", None) _v = histnorm if histnorm is not None else _v if _v is not None: self["histnorm"] = _v _v = arg.pop("hoverinfo", None) _v = hoverinfo if hoverinfo is not None else _v if _v is not None: self["hoverinfo"] = _v _v = arg.pop("hoverinfosrc", None) _v = hoverinfosrc if hoverinfosrc is not None else _v if _v is not None: self["hoverinfosrc"] = _v _v = arg.pop("hoverlabel", None) _v = hoverlabel if hoverlabel is not None else _v if _v is not None: self["hoverlabel"] = _v _v = arg.pop("hovertemplate", None) _v = hovertemplate if hovertemplate is not None else _v if _v is not None: self["hovertemplate"] = _v _v = arg.pop("hovertemplatesrc", None) _v = hovertemplatesrc if hovertemplatesrc is not None else _v if _v is not None: self["hovertemplatesrc"] = _v _v = arg.pop("ids", None) _v = ids if ids is not None else _v if _v is not None: self["ids"] = _v _v = arg.pop("idssrc", None) _v = idssrc if idssrc is not None else _v if _v is not None: self["idssrc"] = _v _v = arg.pop("legendgroup", None) _v = legendgroup if legendgroup is not None else _v if _v is not None: self["legendgroup"] = _v _v = arg.pop("marker", None) _v = marker if marker is not None else _v if _v is not None: self["marker"] = _v _v = arg.pop("meta", None) _v = meta if meta is not None else _v if _v is not None: self["meta"] = _v _v = arg.pop("metasrc", None) _v = metasrc if metasrc is not None else _v if _v is not None: self["metasrc"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("nbinsx", None) _v = nbinsx if nbinsx is not None else _v if _v is not None: self["nbinsx"] = _v _v = arg.pop("nbinsy", None) _v = nbinsy if nbinsy is not None else _v if _v is not None: self["nbinsy"] = _v _v = arg.pop("opacity", None) _v = opacity if opacity is not None else _v if _v is not None: self["opacity"] = _v _v = arg.pop("reversescale", None) _v = reversescale if reversescale is not None else _v if _v is not None: self["reversescale"] = _v _v = arg.pop("showlegend", None) _v = showlegend if showlegend is not None else _v if _v is not None: self["showlegend"] = _v _v = arg.pop("showscale", None) _v = showscale if showscale is not None else _v if _v is not None: self["showscale"] = _v _v = arg.pop("stream", None) _v = stream if stream is not None else _v if _v is not None: self["stream"] = _v _v = arg.pop("uid", None) _v = uid if uid is not None else _v if _v is not None: self["uid"] = _v _v = arg.pop("uirevision", None) _v = uirevision if uirevision is not None else _v if _v is not None: self["uirevision"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v _v = arg.pop("x", None) _v = x if x is not None else _v if _v is not None: self["x"] = _v _v = arg.pop("xaxis", None) _v = xaxis if xaxis is not None else _v if _v is not None: self["xaxis"] = _v _v = arg.pop("xbingroup", None) _v = xbingroup if xbingroup is not None else _v if _v is not None: self["xbingroup"] = _v _v = arg.pop("xbins", None) _v = xbins if xbins is not None else _v if _v is not None: self["xbins"] = _v _v = arg.pop("xcalendar", None) _v = xcalendar if xcalendar is not None else _v if _v is not None: self["xcalendar"] = _v _v = arg.pop("xgap", None) _v = xgap if xgap is not None else _v if _v is not None: self["xgap"] = _v _v = arg.pop("xsrc", None) _v = xsrc if xsrc is not None else _v if _v is not None: self["xsrc"] = _v _v = arg.pop("y", None) _v = y if y is not None else _v if _v is not None: self["y"] = _v _v = arg.pop("yaxis", None) _v = yaxis if yaxis is not None else _v if _v is not None: self["yaxis"] = _v _v = arg.pop("ybingroup", None) _v = ybingroup if ybingroup is not None else _v if _v is not None: self["ybingroup"] = _v _v = arg.pop("ybins", None) _v = ybins if ybins is not None else _v if _v is not None: self["ybins"] = _v _v = arg.pop("ycalendar", None) _v = ycalendar if ycalendar is not None else _v if _v is not None: self["ycalendar"] = _v _v = arg.pop("ygap", None) _v = ygap if ygap is not None else _v if _v is not None: self["ygap"] = _v _v = arg.pop("ysrc", None) _v = ysrc if ysrc is not None else _v if _v is not None: self["ysrc"] = _v _v = arg.pop("z", None) _v = z if z is not None else _v if _v is not None: self["z"] = _v _v = arg.pop("zauto", None) _v = zauto if zauto is not None else _v if _v is not None: self["zauto"] = _v _v = arg.pop("zhoverformat", None) _v = zhoverformat if zhoverformat is not None else _v if _v is not None: self["zhoverformat"] = _v _v = arg.pop("zmax", None) _v = zmax if zmax is not None else _v if _v is not None: self["zmax"] = _v _v = arg.pop("zmid", None) _v = zmid if zmid is not None else _v if _v is not None: self["zmid"] = _v _v = arg.pop("zmin", None) _v = zmin if zmin is not None else _v if _v is not None: self["zmin"] = _v _v = arg.pop("zsmooth", None) _v = zsmooth if zsmooth is not None else _v if _v is not None: self["zsmooth"] = _v _v = arg.pop("zsrc", None) _v = zsrc if zsrc is not None else _v if _v is not None: self["zsrc"] = _v # Read-only literals # ------------------ self._props["type"] = "histogram2d" arg.pop("type", None) # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
catboostREPO_NAMEcatboostPATH_START.@catboost_extracted@catboost-master@contrib@python@plotly@py2@plotly@graph_objs@_histogram2d.py@.PATH_END.py