file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/LinearAlgebra/Projection.lean
Submodule.coe_isComplEquivProj_apply
[]
[ 359, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 358, 1 ]
Mathlib/Algebra/Order/Hom/Ring.lean
OrderRingIso.coe_ringEquiv_refl
[]
[ 447, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 446, 1 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.toLocalizationMap_toMap
[]
[ 173, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 172, 1 ]
Mathlib/RingTheory/Bezout.lean
IsBezout.TFAE
[ { "state_after": "case tfae_1_to_2\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\n⊢ IsNoetherianRing R → IsPrincipalIdealRing R\n\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "tactic": "tfae_have 1 → 2" }, { "state_after": "case tfae_2_to_3\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\n⊢ IsPrincipalIdealRing R → UniqueFactorizationMonoid R\n\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "tactic": "tfae_have 2 → 3" }, { "state_after": "case tfae_3_to_4\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\n⊢ UniqueFactorizationMonoid R → WfDvdMonoid R\n\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "tactic": "tfae_have 3 → 4" }, { "state_after": "case tfae_4_to_1\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\n⊢ WfDvdMonoid R → IsNoetherianRing R\n\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\ntfae_4_to_1 : WfDvdMonoid R → IsNoetherianRing R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "tactic": "tfae_have 4 → 1" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\ntfae_4_to_1 : WfDvdMonoid R → IsNoetherianRing R\n⊢ List.TFAE [IsNoetherianRing R, IsPrincipalIdealRing R, UniqueFactorizationMonoid R, WfDvdMonoid R]", "tactic": "tfae_finish" }, { "state_after": "case tfae_1_to_2\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\nH : IsNoetherianRing R\n⊢ IsPrincipalIdealRing R", "state_before": "case tfae_1_to_2\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\n⊢ IsNoetherianRing R → IsPrincipalIdealRing R", "tactic": "intro H" }, { "state_after": "no goals", "state_before": "case tfae_1_to_2\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\nH : IsNoetherianRing R\n⊢ IsPrincipalIdealRing R", "tactic": "exact ⟨fun I => isPrincipal_of_FG _ (IsNoetherian.noetherian _)⟩" }, { "state_after": "case tfae_2_to_3\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\n✝ : IsPrincipalIdealRing R\n⊢ UniqueFactorizationMonoid R", "state_before": "case tfae_2_to_3\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\n⊢ IsPrincipalIdealRing R → UniqueFactorizationMonoid R", "tactic": "intro" }, { "state_after": "no goals", "state_before": "case tfae_2_to_3\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\n✝ : IsPrincipalIdealRing R\n⊢ UniqueFactorizationMonoid R", "tactic": "infer_instance" }, { "state_after": "case tfae_3_to_4\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\n✝ : UniqueFactorizationMonoid R\n⊢ WfDvdMonoid R", "state_before": "case tfae_3_to_4\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\n⊢ UniqueFactorizationMonoid R → WfDvdMonoid R", "tactic": "intro" }, { "state_after": "no goals", "state_before": "case tfae_3_to_4\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\n✝ : UniqueFactorizationMonoid R\n⊢ WfDvdMonoid R", "tactic": "infer_instance" }, { "state_after": "case tfae_4_to_1.mk\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\n⊢ IsNoetherianRing R", "state_before": "case tfae_4_to_1\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\n⊢ WfDvdMonoid R → IsNoetherianRing R", "tactic": "rintro ⟨h⟩" }, { "state_after": "case tfae_4_to_1.mk\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\n⊢ WellFounded fun x x_1 => x > x_1", "state_before": "case tfae_4_to_1.mk\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\n⊢ IsNoetherianRing R", "tactic": "rw [isNoetherianRing_iff, isNoetherian_iff_fg_wellFounded]" }, { "state_after": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\n⊢ (fun x x_1 => x > x_1) ↪r DvdNotUnit", "state_before": "case tfae_4_to_1.mk\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\n⊢ WellFounded fun x x_1 => x > x_1", "tactic": "apply RelEmbedding.wellFounded _ h" }, { "state_after": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nthis : ∀ (I : { J // Ideal.FG J }), ∃ x, ↑I = Ideal.span {x}\n⊢ (fun x x_1 => x > x_1) ↪r DvdNotUnit", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\n⊢ (fun x x_1 => x > x_1) ↪r DvdNotUnit", "tactic": "have : ∀ I : { J : Ideal R // J.FG }, ∃ x : R, (I : Ideal R) = Ideal.span {x} :=\n fun ⟨I, hI⟩ => (IsBezout.isPrincipal_of_FG I hI).1" }, { "state_after": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\n⊢ (fun x x_1 => x > x_1) ↪r DvdNotUnit", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nthis : ∀ (I : { J // Ideal.FG J }), ∃ x, ↑I = Ideal.span {x}\n⊢ (fun x x_1 => x > x_1) ↪r DvdNotUnit", "tactic": "choose f hf using this" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\n⊢ (fun x x_1 => x > x_1) ↪r DvdNotUnit", "tactic": "exact\n { toFun := f\n inj' := fun x y e => by ext1; rw [hf, hf, e]\n map_rel_iff' := by\n dsimp\n intro a b\n rw [← Ideal.span_singleton_lt_span_singleton, ← hf, ← hf]\n rfl }" }, { "state_after": "case a\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\nx y : { N // Submodule.FG N }\ne : f x = f y\n⊢ ↑x = ↑y", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\nx y : { N // Submodule.FG N }\ne : f x = f y\n⊢ x = y", "tactic": "ext1" }, { "state_after": "no goals", "state_before": "case a\nR : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\nx y : { N // Submodule.FG N }\ne : f x = f y\n⊢ ↑x = ↑y", "tactic": "rw [hf, hf, e]" }, { "state_after": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\n⊢ ∀ {a b : { N // Submodule.FG N }}, DvdNotUnit (f a) (f b) ↔ a > b", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\n⊢ ∀ {a b : { N // Submodule.FG N }},\n DvdNotUnit (↑{ toFun := f, inj' := (_ : ∀ (x y : { N // Submodule.FG N }), f x = f y → x = y) } a)\n (↑{ toFun := f, inj' := (_ : ∀ (x y : { N // Submodule.FG N }), f x = f y → x = y) } b) ↔\n a > b", "tactic": "dsimp" }, { "state_after": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\na b : { N // Submodule.FG N }\n⊢ DvdNotUnit (f a) (f b) ↔ a > b", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\n⊢ ∀ {a b : { N // Submodule.FG N }}, DvdNotUnit (f a) (f b) ↔ a > b", "tactic": "intro a b" }, { "state_after": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\na b : { N // Submodule.FG N }\n⊢ ↑b < ↑a ↔ a > b", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\na b : { N // Submodule.FG N }\n⊢ DvdNotUnit (f a) (f b) ↔ a > b", "tactic": "rw [← Ideal.span_singleton_lt_span_singleton, ← hf, ← hf]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommRing R\ninst✝¹ : IsBezout R\ninst✝ : IsDomain R\ntfae_1_to_2 : IsNoetherianRing R → IsPrincipalIdealRing R\ntfae_2_to_3 : IsPrincipalIdealRing R → UniqueFactorizationMonoid R\ntfae_3_to_4 : UniqueFactorizationMonoid R → WfDvdMonoid R\nh : WellFounded DvdNotUnit\nf : { J // Ideal.FG J } → R\nhf : ∀ (I : { J // Ideal.FG J }), ↑I = Ideal.span {f I}\na b : { N // Submodule.FG N }\n⊢ ↑b < ↑a ↔ a > b", "tactic": "rfl" } ]
[ 146, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Algebra/MonoidAlgebra/Division.lean
AddMonoidAlgebra.of'_dvd_iff_modOf_eq_zero
[ { "state_after": "case mp\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\n⊢ of' k G g ∣ x → x %ᵒᶠ g = 0\n\ncase mpr\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\n⊢ x %ᵒᶠ g = 0 → of' k G g ∣ x", "state_before": "k : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\n⊢ of' k G g ∣ x ↔ x %ᵒᶠ g = 0", "tactic": "constructor" }, { "state_after": "case mp.intro\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\ng : G\nx : AddMonoidAlgebra k G\n⊢ of' k G g * x %ᵒᶠ g = 0", "state_before": "case mp\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\n⊢ of' k G g ∣ x → x %ᵒᶠ g = 0", "tactic": "rintro ⟨x, rfl⟩" }, { "state_after": "no goals", "state_before": "case mp.intro\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\ng : G\nx : AddMonoidAlgebra k G\n⊢ of' k G g * x %ᵒᶠ g = 0", "tactic": "rw [of'_mul_modOf]" }, { "state_after": "case mpr\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\nh : x %ᵒᶠ g = 0\n⊢ of' k G g ∣ x", "state_before": "case mpr\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\n⊢ x %ᵒᶠ g = 0 → of' k G g ∣ x", "tactic": "intro h" }, { "state_after": "case mpr\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\nh : x %ᵒᶠ g = 0\n⊢ of' k G g ∣ of' k G g * (x /ᵒᶠ g)", "state_before": "case mpr\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\nh : x %ᵒᶠ g = 0\n⊢ of' k G g ∣ x", "tactic": "rw [← divOf_add_modOf x g, h, add_zero]" }, { "state_after": "no goals", "state_before": "case mpr\nk : Type u_1\nG : Type u_2\ninst✝¹ : Semiring k\ninst✝ : AddCancelCommMonoid G\nx : AddMonoidAlgebra k G\ng : G\nh : x %ᵒᶠ g = 0\n⊢ of' k G g ∣ of' k G g * (x /ᵒᶠ g)", "tactic": "exact dvd_mul_right _ _" } ]
[ 203, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 196, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.enumOrd_def'_nonempty
[]
[ 2169, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2167, 1 ]
Mathlib/Analysis/Convex/SimplicialComplex/Basic.lean
Geometry.SimplicialComplex.mem_vertices
[]
[ 154, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.mk_finset_of_fintype
[ { "state_after": "no goals", "state_before": "α β : Type u\ninst✝ : Fintype α\n⊢ (#Finset α) = 2 ^ Fintype.card α", "tactic": "simp [Pow.pow]" } ]
[ 1323, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1322, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.natCast_inj
[]
[ 1368, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1367, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
linearIndependent_insert'
[ { "state_after": "ι✝ : Type u'\nι' : Type ?u.1222999\nR : Type ?u.1223002\nK : Type u_2\nM : Type ?u.1223008\nM' : Type ?u.1223011\nM'' : Type ?u.1223014\nV : Type u\nV' : Type ?u.1223019\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι✝ → V\ns✝ t : Set V\nx y z : V\nι : Type u_1\ns : Set ι\na : ι\nf : ι → V\nhas : ¬a ∈ s\n⊢ LinearIndependent K (((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) ∘ some) ∧\n ¬((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) none ∈\n span K\n (range (((fun x => f ↑x) ∘ ↑((Equiv.optionEquivSumPUnit ↑s).trans (Equiv.Set.insert has).symm)) ∘ some)) ↔\n (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s)", "state_before": "ι✝ : Type u'\nι' : Type ?u.1222999\nR : Type ?u.1223002\nK : Type u_2\nM : Type ?u.1223008\nM' : Type ?u.1223011\nM'' : Type ?u.1223014\nV : Type u\nV' : Type ?u.1223019\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι✝ → V\ns✝ t : Set V\nx y z : V\nι : Type u_1\ns : Set ι\na : ι\nf : ι → V\nhas : ¬a ∈ s\n⊢ (LinearIndependent K fun x => f ↑x) ↔ (LinearIndependent K fun x => f ↑x) ∧ ¬f a ∈ span K (f '' s)", "tactic": "rw [← linearIndependent_equiv ((Equiv.optionEquivSumPUnit _).trans (Equiv.Set.insert has).symm),\n linearIndependent_option]" }, { "state_after": "ι✝ : Type u'\nι' : Type ?u.1222999\nR : Type ?u.1223002\nK : Type u_2\nM : Type ?u.1223008\nM' : Type ?u.1223011\nM'' : Type ?u.1223014\nV : Type u\nV' : Type ?u.1223019\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι✝ → V\ns✝ t : Set V\nx y z : V\nι : Type u_1\ns : Set ι\na : ι\nf : ι → V\nhas : ¬a ∈ s\n⊢ (LinearIndependent K fun x => f ↑x) → (¬f a ∈ span K (f '' range Subtype.val) ↔ ¬f a ∈ span K (f '' s))", "state_before": "ι✝ : Type u'\nι' : Type ?u.1222999\nR : Type ?u.1223002\nK : Type u_2\nM : Type ?u.1223008\nM' : Type ?u.1223011\nM'' : Type ?u.1223014\nV : Type u\nV' : Type ?u.1223019\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι✝ → V\ns✝ t : Set V\nx y z : V\nι : Type u_1\ns : Set ι\na : ι\nf : ι → V\nhas : ¬a ∈ s\n⊢ (LinearIndependent K fun x => f ↑x) → (¬f a ∈ span K (range fun x => f ↑x) ↔ ¬f a ∈ span K (f '' s))", "tactic": "erw [range_comp f ((↑) : s → ι)]" }, { "state_after": "no goals", "state_before": "ι✝ : Type u'\nι' : Type ?u.1222999\nR : Type ?u.1223002\nK : Type u_2\nM : Type ?u.1223008\nM' : Type ?u.1223011\nM'' : Type ?u.1223014\nV : Type u\nV' : Type ?u.1223019\ninst✝⁴ : DivisionRing K\ninst✝³ : AddCommGroup V\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V\ninst✝ : Module K V'\nv : ι✝ → V\ns✝ t : Set V\nx y z : V\nι : Type u_1\ns : Set ι\na : ι\nf : ι → V\nhas : ¬a ∈ s\n⊢ (LinearIndependent K fun x => f ↑x) → (¬f a ∈ span K (f '' range Subtype.val) ↔ ¬f a ∈ span K (f '' s))", "tactic": "simp" } ]
[ 1215, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1207, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
one_le_div
[ { "state_after": "no goals", "state_before": "ι : Type ?u.75125\nα : Type u_1\nβ : Type ?u.75131\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nhb : 0 < b\n⊢ 1 ≤ a / b ↔ b ≤ a", "tactic": "rw [le_div_iff hb, one_mul]" } ]
[ 424, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 424, 1 ]
Mathlib/Topology/Instances/Real.lean
Function.Periodic.compact_of_continuous'
[]
[ 213, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/FieldTheory/RatFunc.lean
RatFunc.denom_ne_zero
[]
[ 1207, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1206, 1 ]
Mathlib/Analysis/Calculus/Deriv/Add.lean
hasDerivAt_neg'
[]
[ 255, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/Data/Rel.lean
Set.image_eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.38153\nf : α → β\ns : Set α\n⊢ f '' s = Rel.image (Function.graph f) s", "tactic": "simp [Set.image, Function.graph, Rel.image]" } ]
[ 275, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 274, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nf g : Filter α\n⊢ FiniteAtFilter μ (f ⊓ ae μ) → FiniteAtFilter μ f", "state_before": "α : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nf g : Filter α\n⊢ FiniteAtFilter μ (f ⊓ ae μ) ↔ FiniteAtFilter μ f", "tactic": "refine' ⟨_, fun h => h.filter_mono inf_le_left⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t✝ : Set α\nf g : Filter α\nt : Set α\nht : t ∈ f\nu : Set α\nhu : u ∈ ae μ\nhμ : ↑↑μ (t ∩ u) < ⊤\n⊢ FiniteAtFilter μ f", "state_before": "α : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nf g : Filter α\n⊢ FiniteAtFilter μ (f ⊓ ae μ) → FiniteAtFilter μ f", "tactic": "rintro ⟨s, ⟨t, ht, u, hu, rfl⟩, hμ⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t✝ : Set α\nf g : Filter α\nt : Set α\nht : t ∈ f\nu : Set α\nhu : u ∈ ae μ\nhμ : ↑↑μ (t ∩ u) < ⊤\nthis : ↑↑μ t ≤ ↑↑μ (t ∩ u)\n⊢ FiniteAtFilter μ f\n\ncase this\nα : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t✝ : Set α\nf g : Filter α\nt : Set α\nht : t ∈ f\nu : Set α\nhu : u ∈ ae μ\nhμ : ↑↑μ (t ∩ u) < ⊤\n⊢ ↑↑μ t ≤ ↑↑μ (t ∩ u)", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t✝ : Set α\nf g : Filter α\nt : Set α\nht : t ∈ f\nu : Set α\nhu : u ∈ ae μ\nhμ : ↑↑μ (t ∩ u) < ⊤\n⊢ FiniteAtFilter μ f", "tactic": "suffices : μ t ≤ μ (t ∩ u)" }, { "state_after": "case this\nα : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t✝ : Set α\nf g : Filter α\nt : Set α\nht : t ∈ f\nu : Set α\nhu : u ∈ ae μ\nhμ : ↑↑μ (t ∩ u) < ⊤\n⊢ ↑↑μ t ≤ ↑↑μ (t ∩ u)", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t✝ : Set α\nf g : Filter α\nt : Set α\nht : t ∈ f\nu : Set α\nhu : u ∈ ae μ\nhμ : ↑↑μ (t ∩ u) < ⊤\nthis : ↑↑μ t ≤ ↑↑μ (t ∩ u)\n⊢ FiniteAtFilter μ f\n\ncase this\nα : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t✝ : Set α\nf g : Filter α\nt : Set α\nht : t ∈ f\nu : Set α\nhu : u ∈ ae μ\nhμ : ↑↑μ (t ∩ u) < ⊤\n⊢ ↑↑μ t ≤ ↑↑μ (t ∩ u)", "tactic": "exact ⟨t, ht, this.trans_lt hμ⟩" }, { "state_after": "no goals", "state_before": "case this\nα : Type u_1\nβ : Type ?u.852920\nγ : Type ?u.852923\nδ : Type ?u.852926\nι : Type ?u.852929\nR : Type ?u.852932\nR' : Type ?u.852935\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t✝ : Set α\nf g : Filter α\nt : Set α\nht : t ∈ f\nu : Set α\nhu : u ∈ ae μ\nhμ : ↑↑μ (t ∩ u) < ⊤\n⊢ ↑↑μ t ≤ ↑↑μ (t ∩ u)", "tactic": "exact measure_mono_ae (mem_of_superset hu fun x hu ht => ⟨ht, hu⟩)" } ]
[ 4118, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4114, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
Complex.arg_real_mul
[ { "state_after": "case inl\nr : ℝ\nhr : 0 < r\n⊢ arg (↑r * 0) = arg 0\n\ncase inr\nx : ℂ\nr : ℝ\nhr : 0 < r\nhx : x ≠ 0\n⊢ arg (↑r * x) = arg x", "state_before": "x : ℂ\nr : ℝ\nhr : 0 < r\n⊢ arg (↑r * x) = arg x", "tactic": "rcases eq_or_ne x 0 with (rfl | hx)" }, { "state_after": "no goals", "state_before": "case inr\nx : ℂ\nr : ℝ\nhr : 0 < r\nhx : x ≠ 0\n⊢ arg (↑r * x) = arg x", "tactic": "conv_lhs =>\n rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,\n arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]" }, { "state_after": "no goals", "state_before": "case inl\nr : ℝ\nhr : 0 < r\n⊢ arg (↑r * 0) = arg 0", "tactic": "rw [MulZeroClass.mul_zero]" } ]
[ 185, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 181, 1 ]
Mathlib/Analysis/Calculus/IteratedDeriv.lean
iteratedFDerivWithin_eq_equiv_comp
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type u_2\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type ?u.9982\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nn : ℕ\nf : 𝕜 → F\ns : Set 𝕜\nx : 𝕜\n⊢ iteratedFDerivWithin 𝕜 n f s = ↑(ContinuousMultilinearMap.piFieldEquiv 𝕜 (Fin n) F) ∘ iteratedDerivWithin n f s", "tactic": "rw [iteratedDerivWithin_eq_equiv_comp, ← Function.comp.assoc, LinearIsometryEquiv.self_comp_symm,\n Function.left_id]" } ]
[ 100, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/NumberTheory/Padics/PadicNumbers.lean
padicNormE.norm_p_pow
[ { "state_after": "no goals", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nn : ℕ\n⊢ ‖↑p ^ n‖ = ↑p ^ (-↑n)", "tactic": "rw [← norm_p_zpow, zpow_ofNat]" } ]
[ 862, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 861, 1 ]
Mathlib/Topology/Instances/AddCircle.lean
AddCircle.coe_zsmul
[]
[ 159, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/Algebra/Invertible.lean
invOf_mul_self_assoc
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝¹ : Monoid α\na b : α\ninst✝ : Invertible a\n⊢ ⅟a * (a * b) = b", "tactic": "rw [← mul_assoc, invOf_mul_self, one_mul]" } ]
[ 123, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/MeasureTheory/Function/SimpleFuncDenseLp.lean
MeasureTheory.Lp.simpleFunc.denseRange
[]
[ 796, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 794, 11 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
linearIndependent_unique_iff
[ { "state_after": "ι : Type u'\nι' : Type ?u.1178902\nR : Type u_1\nK : Type ?u.1178908\nM : Type u_2\nM' : Type ?u.1178914\nM'' : Type ?u.1178917\nV : Type u\nV' : Type ?u.1178922\ninst✝⁷ : Ring R\ninst✝⁶ : Nontrivial R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : Module R M\ninst✝² : NoZeroSMulDivisors R M\ninst✝¹ : Module R M'\nv✝ : ι → M\ns t : Set M\nx y z : M\nv : ι → M\ninst✝ : Unique ι\n⊢ (∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0) ↔ v default ≠ 0", "state_before": "ι : Type u'\nι' : Type ?u.1178902\nR : Type u_1\nK : Type ?u.1178908\nM : Type u_2\nM' : Type ?u.1178914\nM'' : Type ?u.1178917\nV : Type u\nV' : Type ?u.1178922\ninst✝⁷ : Ring R\ninst✝⁶ : Nontrivial R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : Module R M\ninst✝² : NoZeroSMulDivisors R M\ninst✝¹ : Module R M'\nv✝ : ι → M\ns t : Set M\nx y z : M\nv : ι → M\ninst✝ : Unique ι\n⊢ LinearIndependent R v ↔ v default ≠ 0", "tactic": "simp only [linearIndependent_iff, Finsupp.total_unique, smul_eq_zero]" }, { "state_after": "ι : Type u'\nι' : Type ?u.1178902\nR : Type u_1\nK : Type ?u.1178908\nM : Type u_2\nM' : Type ?u.1178914\nM'' : Type ?u.1178917\nV : Type u\nV' : Type ?u.1178922\ninst✝⁷ : Ring R\ninst✝⁶ : Nontrivial R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : Module R M\ninst✝² : NoZeroSMulDivisors R M\ninst✝¹ : Module R M'\nv✝ : ι → M\ns t : Set M\nx y z : M\nv : ι → M\ninst✝ : Unique ι\nh : ∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0\nhv : v default = 0\n⊢ False", "state_before": "ι : Type u'\nι' : Type ?u.1178902\nR : Type u_1\nK : Type ?u.1178908\nM : Type u_2\nM' : Type ?u.1178914\nM'' : Type ?u.1178917\nV : Type u\nV' : Type ?u.1178922\ninst✝⁷ : Ring R\ninst✝⁶ : Nontrivial R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : Module R M\ninst✝² : NoZeroSMulDivisors R M\ninst✝¹ : Module R M'\nv✝ : ι → M\ns t : Set M\nx y z : M\nv : ι → M\ninst✝ : Unique ι\n⊢ (∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0) ↔ v default ≠ 0", "tactic": "refine' ⟨fun h hv => _, fun hv l hl => Finsupp.unique_ext <| hl.resolve_right hv⟩" }, { "state_after": "ι : Type u'\nι' : Type ?u.1178902\nR : Type u_1\nK : Type ?u.1178908\nM : Type u_2\nM' : Type ?u.1178914\nM'' : Type ?u.1178917\nV : Type u\nV' : Type ?u.1178922\ninst✝⁷ : Ring R\ninst✝⁶ : Nontrivial R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : Module R M\ninst✝² : NoZeroSMulDivisors R M\ninst✝¹ : Module R M'\nv✝ : ι → M\ns t : Set M\nx y z : M\nv : ι → M\ninst✝ : Unique ι\nh : ∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0\nhv : v default = 0\nthis : Finsupp.single default 1 = 0\n⊢ False", "state_before": "ι : Type u'\nι' : Type ?u.1178902\nR : Type u_1\nK : Type ?u.1178908\nM : Type u_2\nM' : Type ?u.1178914\nM'' : Type ?u.1178917\nV : Type u\nV' : Type ?u.1178922\ninst✝⁷ : Ring R\ninst✝⁶ : Nontrivial R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : Module R M\ninst✝² : NoZeroSMulDivisors R M\ninst✝¹ : Module R M'\nv✝ : ι → M\ns t : Set M\nx y z : M\nv : ι → M\ninst✝ : Unique ι\nh : ∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0\nhv : v default = 0\n⊢ False", "tactic": "have := h (Finsupp.single default 1) (Or.inr hv)" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.1178902\nR : Type u_1\nK : Type ?u.1178908\nM : Type u_2\nM' : Type ?u.1178914\nM'' : Type ?u.1178917\nV : Type u\nV' : Type ?u.1178922\ninst✝⁷ : Ring R\ninst✝⁶ : Nontrivial R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : Module R M\ninst✝² : NoZeroSMulDivisors R M\ninst✝¹ : Module R M'\nv✝ : ι → M\ns t : Set M\nx y z : M\nv : ι → M\ninst✝ : Unique ι\nh : ∀ (l : ι →₀ R), ↑l default = 0 ∨ v default = 0 → l = 0\nhv : v default = 0\nthis : Finsupp.single default 1 = 0\n⊢ False", "tactic": "exact one_ne_zero (Finsupp.single_eq_zero.1 this)" } ]
[ 1121, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1116, 1 ]
Mathlib/Topology/Algebra/Order/IntermediateValue.lean
Set.OrdConnected.isPreconnected
[]
[ 430, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 428, 1 ]
Mathlib/Topology/LocalExtr.lean
Filter.EventuallyEq.isLocalExtrOn_iff
[]
[ 590, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 588, 1 ]
Mathlib/Data/Num/Lemmas.lean
PosNum.cast_to_int
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : AddGroupWithOne α\nn : PosNum\n⊢ ↑↑n = ↑n", "tactic": "rw [← to_nat_to_int, Int.cast_ofNat, cast_to_nat]" } ]
[ 72, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Data/ZMod/Basic.lean
RingHom.ext_zmod
[ { "state_after": "case a\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\na : ZMod n\n⊢ ↑f a = ↑g a", "state_before": "n : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\n⊢ f = g", "tactic": "ext a" }, { "state_after": "case a.intro\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\nk : ℤ\n⊢ ↑f ↑k = ↑g ↑k", "state_before": "case a\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\na : ZMod n\n⊢ ↑f a = ↑g a", "tactic": "obtain ⟨k, rfl⟩ := ZMod.int_cast_surjective a" }, { "state_after": "case a.intro\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\nk : ℤ\nφ : ℤ →+* R := comp f (Int.castRingHom (ZMod n))\n⊢ ↑f ↑k = ↑g ↑k", "state_before": "case a.intro\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\nk : ℤ\n⊢ ↑f ↑k = ↑g ↑k", "tactic": "let φ : ℤ →+* R := f.comp (Int.castRingHom (ZMod n))" }, { "state_after": "case a.intro\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\nk : ℤ\nφ : ℤ →+* R := comp f (Int.castRingHom (ZMod n))\nψ : ℤ →+* R := comp g (Int.castRingHom (ZMod n))\n⊢ ↑f ↑k = ↑g ↑k", "state_before": "case a.intro\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\nk : ℤ\nφ : ℤ →+* R := comp f (Int.castRingHom (ZMod n))\n⊢ ↑f ↑k = ↑g ↑k", "tactic": "let ψ : ℤ →+* R := g.comp (Int.castRingHom (ZMod n))" }, { "state_after": "case a.intro\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\nk : ℤ\nφ : ℤ →+* R := comp f (Int.castRingHom (ZMod n))\nψ : ℤ →+* R := comp g (Int.castRingHom (ZMod n))\n⊢ ↑φ k = ↑ψ k", "state_before": "case a.intro\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\nk : ℤ\nφ : ℤ →+* R := comp f (Int.castRingHom (ZMod n))\nψ : ℤ →+* R := comp g (Int.castRingHom (ZMod n))\n⊢ ↑f ↑k = ↑g ↑k", "tactic": "show φ k = ψ k" }, { "state_after": "no goals", "state_before": "case a.intro\nn : ℕ\nR : Type u_1\ninst✝ : Semiring R\nf g : ZMod n →+* R\nk : ℤ\nφ : ℤ →+* R := comp f (Int.castRingHom (ZMod n))\nψ : ℤ →+* R := comp g (Int.castRingHom (ZMod n))\n⊢ ↑φ k = ↑ψ k", "tactic": "rw [φ.ext_int ψ]" } ]
[ 1145, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1139, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.sSup_eq_sUnion
[]
[ 120, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.isCauSeq_re
[ { "state_after": "no goals", "state_before": "f : CauSeq ℂ ↑abs\nε : ℝ\nε0 : ε > 0\ni : ℕ\nH : ∀ (j : ℕ), j ≥ i → ↑abs (↑f j - ↑f i) < ε\nj : ℕ\nij : j ≥ i\n⊢ abs' ((fun n => (↑f n).re) j - (fun n => (↑f n).re) i) ≤ ↑abs (↑f j - ↑f i)", "tactic": "simpa using abs_re_le_abs (f j - f i)" } ]
[ 1240, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1238, 1 ]
Mathlib/LinearAlgebra/QuotientPi.lean
Submodule.quotientPi_aux.map_add
[]
[ 118, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
UniqueFactorizationMonoid.exists_mem_normalizedFactors
[ { "state_after": "case intro.intro\nα : Type u_1\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : DecidableEq α\ninst✝¹ : NormalizationMonoid α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nhx : x ≠ 0\nh : ¬IsUnit x\np' : α\nhp' : Irreducible p'\nhp'x : p' ∣ x\n⊢ ∃ p, p ∈ normalizedFactors x", "state_before": "α : Type u_1\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : DecidableEq α\ninst✝¹ : NormalizationMonoid α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nhx : x ≠ 0\nh : ¬IsUnit x\n⊢ ∃ p, p ∈ normalizedFactors x", "tactic": "obtain ⟨p', hp', hp'x⟩ := WfDvdMonoid.exists_irreducible_factor h hx" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : DecidableEq α\ninst✝¹ : NormalizationMonoid α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nhx : x ≠ 0\nh : ¬IsUnit x\np' : α\nhp' : Irreducible p'\nhp'x : p' ∣ x\np : α\nhp : p ∈ normalizedFactors x\nright✝ : p' ~ᵤ p\n⊢ ∃ p, p ∈ normalizedFactors x", "state_before": "case intro.intro\nα : Type u_1\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : DecidableEq α\ninst✝¹ : NormalizationMonoid α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nhx : x ≠ 0\nh : ¬IsUnit x\np' : α\nhp' : Irreducible p'\nhp'x : p' ∣ x\n⊢ ∃ p, p ∈ normalizedFactors x", "tactic": "obtain ⟨p, hp, _⟩ := exists_mem_normalizedFactors_of_dvd hx hp' hp'x" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nα : Type u_1\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : DecidableEq α\ninst✝¹ : NormalizationMonoid α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nhx : x ≠ 0\nh : ¬IsUnit x\np' : α\nhp' : Irreducible p'\nhp'x : p' ∣ x\np : α\nhp : p ∈ normalizedFactors x\nright✝ : p' ~ᵤ p\n⊢ ∃ p, p ∈ normalizedFactors x", "tactic": "exact ⟨p, hp⟩" } ]
[ 646, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 642, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurable
[ { "state_after": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\n⊢ (∫⁻ (x : α), f x ∂μ) ≤ C", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\n⊢ (∫⁻ (x : α), f x ∂μ) ≤ C", "tactic": "have : (∫⁻ x in univ, f x ∂μ) = ∫⁻ x, f x ∂μ := by simp only [Measure.restrict_univ]" }, { "state_after": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\n⊢ (∫⁻ (x : α) in univ, f x ∂μ) ≤ C", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\n⊢ (∫⁻ (x : α), f x ∂μ) ≤ C", "tactic": "rw [← this]" }, { "state_after": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (∫⁻ (x : α) in ⋃ (n : ℕ), S n, f x ∂μ) ≤ ⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\n⊢ (∫⁻ (x : α) in univ, f x ∂μ) ≤ C", "tactic": "refine' univ_le_of_forall_fin_meas_le hm C hf fun S hS_meas hS_mono => _" }, { "state_after": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (∫⁻ (a : α), indicator (⋃ (n : ℕ), S n) (fun x => f x) a ∂μ) ≤ ⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ\n\ncase hs\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ MeasurableSet (⋃ (n : ℕ), S n)", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (∫⁻ (x : α) in ⋃ (n : ℕ), S n, f x ∂μ) ≤ ⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ", "tactic": "rw [← lintegral_indicator]" }, { "state_after": "case hs\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ MeasurableSet (⋃ (n : ℕ), S n)\n\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (∫⁻ (a : α), indicator (⋃ (n : ℕ), S n) (fun x => f x) a ∂μ) ≤ ⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (∫⁻ (a : α), indicator (⋃ (n : ℕ), S n) (fun x => f x) a ∂μ) ≤ ⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ\n\ncase hs\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ MeasurableSet (⋃ (n : ℕ), S n)", "tactic": "swap" }, { "state_after": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\n⊢ (∫⁻ (a : α), indicator (⋃ (n : ℕ), S n) (fun x => f x) a ∂μ) ≤ ⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (∫⁻ (a : α), indicator (⋃ (n : ℕ), S n) (fun x => f x) a ∂μ) ≤ ⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ", "tactic": "have h_integral_indicator : (⨆ n, ∫⁻ x in S n, f x ∂μ) = ⨆ n, ∫⁻ x, (S n).indicator f x ∂μ := by\n congr\n ext1 n\n rw [lintegral_indicator _ (hm _ (hS_meas n))]" }, { "state_after": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\n⊢ (∫⁻ (a : α), indicator (⋃ (n : ℕ), S n) (fun x => f x) a ∂μ) ≤ ∫⁻ (a : α), ⨆ (n : ℕ), indicator (S n) f a ∂μ\n\ncase hf\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\n⊢ ∀ (n : ℕ), Measurable fun x => indicator (S n) f x\n\ncase h_mono\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\n⊢ Monotone fun n x => indicator (S n) f x", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\n⊢ (∫⁻ (a : α), indicator (⋃ (n : ℕ), S n) (fun x => f x) a ∂μ) ≤ ⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ", "tactic": "rw [h_integral_indicator, ← lintegral_iSup]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\n⊢ (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ", "tactic": "simp only [Measure.restrict_univ]" }, { "state_after": "no goals", "state_before": "case hs\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ MeasurableSet (⋃ (n : ℕ), S n)", "tactic": "exact hm (⋃ n, S n) (@MeasurableSet.iUnion _ _ m _ _ hS_meas)" }, { "state_after": "case e_s\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (fun n => ∫⁻ (x : α) in S n, f x ∂μ) = fun n => ∫⁻ (x : α), indicator (S n) f x ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ", "tactic": "congr" }, { "state_after": "case e_s.h\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nn : ℕ\n⊢ (∫⁻ (x : α) in S n, f x ∂μ) = ∫⁻ (x : α), indicator (S n) f x ∂μ", "state_before": "case e_s\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\n⊢ (fun n => ∫⁻ (x : α) in S n, f x ∂μ) = fun n => ∫⁻ (x : α), indicator (S n) f x ∂μ", "tactic": "ext1 n" }, { "state_after": "no goals", "state_before": "case e_s.h\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nn : ℕ\n⊢ (∫⁻ (x : α) in S n, f x ∂μ) = ∫⁻ (x : α), indicator (S n) f x ∂μ", "tactic": "rw [lintegral_indicator _ (hm _ (hS_meas n))]" }, { "state_after": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\n⊢ indicator (⋃ (n : ℕ), S n) (fun x => f x) x = ⨆ (n : ℕ), indicator (S n) f x", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\n⊢ (∫⁻ (a : α), indicator (⋃ (n : ℕ), S n) (fun x => f x) a ∂μ) ≤ ∫⁻ (a : α), ⨆ (n : ℕ), indicator (S n) f a ∂μ", "tactic": "refine' le_of_eq (lintegral_congr fun x => _)" }, { "state_after": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\n⊢ (if x ∈ ⋃ (n : ℕ), S n then f x else 0) = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\n⊢ indicator (⋃ (n : ℕ), S n) (fun x => f x) x = ⨆ (n : ℕ), indicator (S n) f x", "tactic": "simp_rw [indicator_apply]" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\n⊢ (if x ∈ ⋃ (n : ℕ), S n then f x else 0) = ⨆ (n : ℕ), if x ∈ S n then f x else 0\n\ncase neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ¬x ∈ iUnion S\n⊢ (if x ∈ ⋃ (n : ℕ), S n then f x else 0) = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "state_before": "α : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\n⊢ (if x ∈ ⋃ (n : ℕ), S n then f x else 0) = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "tactic": "by_cases hx_mem : x ∈ iUnion S" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\n⊢ f x = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\n⊢ (if x ∈ ⋃ (n : ℕ), S n then f x else 0) = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "tactic": "simp only [hx_mem, if_true]" }, { "state_after": "case pos.intro\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\nn : ℕ\nhxn : x ∈ S n\n⊢ f x = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\n⊢ f x = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "tactic": "obtain ⟨n, hxn⟩ := mem_iUnion.mp hx_mem" }, { "state_after": "case pos.intro.refine'_1\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\nn : ℕ\nhxn : x ∈ S n\n⊢ f x ≤ if x ∈ S n then f x else 0\n\ncase pos.intro.refine'_2\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\nn : ℕ\nhxn : x ∈ S n\ni : ℕ\n⊢ (if x ∈ S i then f x else 0) ≤ f x", "state_before": "case pos.intro\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\nn : ℕ\nhxn : x ∈ S n\n⊢ f x = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "tactic": "refine' le_antisymm (_root_.trans _ (le_iSup _ n)) (iSup_le fun i => _)" }, { "state_after": "no goals", "state_before": "case pos.intro.refine'_1\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\nn : ℕ\nhxn : x ∈ S n\n⊢ f x ≤ if x ∈ S n then f x else 0", "tactic": "simp only [hxn, le_refl, if_true]" }, { "state_after": "no goals", "state_before": "case pos.intro.refine'_2\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : x ∈ iUnion S\nn : ℕ\nhxn : x ∈ S n\ni : ℕ\n⊢ (if x ∈ S i then f x else 0) ≤ f x", "tactic": "by_cases hxi : x ∈ S i <;> simp [hxi]" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ¬x ∈ iUnion S\n⊢ 0 = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ¬x ∈ iUnion S\n⊢ (if x ∈ ⋃ (n : ℕ), S n then f x else 0) = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "tactic": "simp only [hx_mem, if_false]" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ¬∃ i, x ∈ S i\n⊢ 0 = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ¬x ∈ iUnion S\n⊢ 0 = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "tactic": "rw [mem_iUnion] at hx_mem" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ∀ (i : ℕ), ¬x ∈ S i\n⊢ 0 = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ¬∃ i, x ∈ S i\n⊢ 0 = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "tactic": "push_neg at hx_mem" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ∀ (i : ℕ), ¬x ∈ S i\nn : ℕ\n⊢ (if x ∈ S n then f x else 0) ≤ 0", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ∀ (i : ℕ), ¬x ∈ S i\n⊢ 0 = ⨆ (n : ℕ), if x ∈ S n then f x else 0", "tactic": "refine' le_antisymm (zero_le _) (iSup_le fun n => _)" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nx : α\nhx_mem : ∀ (i : ℕ), ¬x ∈ S i\nn : ℕ\n⊢ (if x ∈ S n then f x else 0) ≤ 0", "tactic": "simp only [hx_mem n, if_false, nonpos_iff_eq_zero]" }, { "state_after": "no goals", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\n⊢ ∀ (n : ℕ), Measurable fun x => indicator (S n) f x", "tactic": "exact fun n => hf_meas.indicator (hm _ (hS_meas n))" }, { "state_after": "case h_mono\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\n⊢ (fun n x => indicator (S n) f x) n₁ a ≤ (fun n x => indicator (S n) f x) n₂ a", "state_before": "case h_mono\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\n⊢ Monotone fun n x => indicator (S n) f x", "tactic": "intro n₁ n₂ hn₁₂ a" }, { "state_after": "case h_mono\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\n⊢ (if a ∈ S n₁ then f a else 0) ≤ if a ∈ S n₂ then f a else 0", "state_before": "case h_mono\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\n⊢ (fun n x => indicator (S n) f x) n₁ a ≤ (fun n x => indicator (S n) f x) n₂ a", "tactic": "simp_rw [indicator_apply]" }, { "state_after": "case h_mono.inl.inl\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\nh : a ∈ S n₁\nh_1 : a ∈ S n₂\n⊢ f a ≤ f a\n\ncase h_mono.inl.inr\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\nh : a ∈ S n₁\nh_1 : ¬a ∈ S n₂\n⊢ f a ≤ 0\n\ncase h_mono.inr.inl\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\nh : ¬a ∈ S n₁\nh✝ : a ∈ S n₂\n⊢ 0 ≤ f a\n\ncase h_mono.inr.inr\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\nh : ¬a ∈ S n₁\nh✝ : ¬a ∈ S n₂\n⊢ 0 ≤ 0", "state_before": "case h_mono\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\n⊢ (if a ∈ S n₁ then f a else 0) ≤ if a ∈ S n₂ then f a else 0", "tactic": "split_ifs with h h_1" }, { "state_after": "no goals", "state_before": "case h_mono.inl.inl\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\nh : a ∈ S n₁\nh_1 : a ∈ S n₂\n⊢ f a ≤ f a", "tactic": "exact le_rfl" }, { "state_after": "no goals", "state_before": "case h_mono.inl.inr\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\nh : a ∈ S n₁\nh_1 : ¬a ∈ S n₂\n⊢ f a ≤ 0", "tactic": "exact absurd (mem_of_mem_of_subset h (hS_mono hn₁₂)) h_1" }, { "state_after": "no goals", "state_before": "case h_mono.inr.inl\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\nh : ¬a ∈ S n₁\nh✝ : a ∈ S n₂\n⊢ 0 ≤ f a", "tactic": "exact zero_le _" }, { "state_after": "no goals", "state_before": "case h_mono.inr.inr\nα : Type u_1\nβ : Type ?u.1825244\nγ : Type ?u.1825247\nδ : Type ?u.1825250\nm m0 : MeasurableSpace α\nE : Type ?u.1825259\ninst✝³ : NormedAddCommGroup E\ninst✝² : MeasurableSpace E\ninst✝¹ : OpensMeasurableSpace E\nμ : Measure α\nhm : m ≤ m0\ninst✝ : SigmaFinite (Measure.trim μ hm)\nC : ℝ≥0∞\nf : α → ℝ≥0∞\nhf_meas : Measurable f\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, f x ∂μ) ≤ C\nthis : (∫⁻ (x : α) in univ, f x ∂μ) = ∫⁻ (x : α), f x ∂μ\nS : ℕ → Set α\nhS_meas : ∀ (n : ℕ), MeasurableSet (S n)\nhS_mono : Monotone S\nh_integral_indicator : (⨆ (n : ℕ), ∫⁻ (x : α) in S n, f x ∂μ) = ⨆ (n : ℕ), ∫⁻ (x : α), indicator (S n) f x ∂μ\nn₁ n₂ : ℕ\nhn₁₂ : n₁ ≤ n₂\na : α\nh : ¬a ∈ S n₁\nh✝ : ¬a ∈ S n₂\n⊢ 0 ≤ 0", "tactic": "exact le_rfl" } ]
[ 2004, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1970, 1 ]
Mathlib/Data/List/Basic.lean
List.length_modifyNth
[]
[ 1556, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1555, 1 ]
Mathlib/Logic/Encodable/Basic.lean
Encodable.surjective_decode_iget
[ { "state_after": "no goals", "state_before": "α✝ : Type ?u.385\nβ : Type ?u.388\nα : Type u_1\ninst✝¹ : Encodable α\ninst✝ : Inhabited α\nx : α\n⊢ (fun n => iget (decode n)) (encode x) = x", "tactic": "simp_rw [Encodable.encodek]" } ]
[ 83, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Algebra/Module/Submodule/Basic.lean
Submodule.ne_zero_of_ortho
[]
[ 613, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 611, 1 ]
Mathlib/Topology/SubsetProperties.lean
IsCompact.finite
[]
[ 923, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 922, 1 ]
Std/Data/List/Lemmas.lean
List.getLast?_eq_getLast
[]
[ 481, 19 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 479, 1 ]
Mathlib/LinearAlgebra/Matrix/Transvection.lean
Matrix.Pivot.listTransvecCol_mul_mul_listTransvecRow_last_row
[ { "state_after": "n : Type ?u.209504\np : Type ?u.209507\nR : Type u₂\n𝕜 : Type u_1\ninst✝³ : Field 𝕜\ninst✝² : DecidableEq n\ninst✝¹ : DecidableEq p\ninst✝ : CommRing R\nr : ℕ\nM : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜\nhM : M (inr ()) (inr ()) ≠ 0\ni : Fin r\nthis : listTransvecCol M = listTransvecCol (M ⬝ List.prod (listTransvecRow M))\n⊢ (List.prod (listTransvecCol M) ⬝ M ⬝ List.prod (listTransvecRow M)) (inl i) (inr ()) = 0", "state_before": "n : Type ?u.209504\np : Type ?u.209507\nR : Type u₂\n𝕜 : Type u_1\ninst✝³ : Field 𝕜\ninst✝² : DecidableEq n\ninst✝¹ : DecidableEq p\ninst✝ : CommRing R\nr : ℕ\nM : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜\nhM : M (inr ()) (inr ()) ≠ 0\ni : Fin r\n⊢ (List.prod (listTransvecCol M) ⬝ M ⬝ List.prod (listTransvecRow M)) (inl i) (inr ()) = 0", "tactic": "have : listTransvecCol M = listTransvecCol (M ⬝ (listTransvecRow M).prod) := by\n simp [listTransvecCol, mul_listTransvecRow_last_col]" }, { "state_after": "n : Type ?u.209504\np : Type ?u.209507\nR : Type u₂\n𝕜 : Type u_1\ninst✝³ : Field 𝕜\ninst✝² : DecidableEq n\ninst✝¹ : DecidableEq p\ninst✝ : CommRing R\nr : ℕ\nM : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜\nhM : M (inr ()) (inr ()) ≠ 0\ni : Fin r\nthis : listTransvecCol M = listTransvecCol (M ⬝ List.prod (listTransvecRow M))\n⊢ (List.prod (listTransvecCol (M ⬝ List.prod (listTransvecRow M))) ⬝ (M ⬝ List.prod (listTransvecRow M))) (inl i)\n (inr ()) =\n 0", "state_before": "n : Type ?u.209504\np : Type ?u.209507\nR : Type u₂\n𝕜 : Type u_1\ninst✝³ : Field 𝕜\ninst✝² : DecidableEq n\ninst✝¹ : DecidableEq p\ninst✝ : CommRing R\nr : ℕ\nM : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜\nhM : M (inr ()) (inr ()) ≠ 0\ni : Fin r\nthis : listTransvecCol M = listTransvecCol (M ⬝ List.prod (listTransvecRow M))\n⊢ (List.prod (listTransvecCol M) ⬝ M ⬝ List.prod (listTransvecRow M)) (inl i) (inr ()) = 0", "tactic": "rw [this, Matrix.mul_assoc]" }, { "state_after": "case hM\nn : Type ?u.209504\np : Type ?u.209507\nR : Type u₂\n𝕜 : Type u_1\ninst✝³ : Field 𝕜\ninst✝² : DecidableEq n\ninst✝¹ : DecidableEq p\ninst✝ : CommRing R\nr : ℕ\nM : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜\nhM : M (inr ()) (inr ()) ≠ 0\ni : Fin r\nthis : listTransvecCol M = listTransvecCol (M ⬝ List.prod (listTransvecRow M))\n⊢ (M ⬝ List.prod (listTransvecRow M)) (inr ()) (inr ()) ≠ 0", "state_before": "n : Type ?u.209504\np : Type ?u.209507\nR : Type u₂\n𝕜 : Type u_1\ninst✝³ : Field 𝕜\ninst✝² : DecidableEq n\ninst✝¹ : DecidableEq p\ninst✝ : CommRing R\nr : ℕ\nM : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜\nhM : M (inr ()) (inr ()) ≠ 0\ni : Fin r\nthis : listTransvecCol M = listTransvecCol (M ⬝ List.prod (listTransvecRow M))\n⊢ (List.prod (listTransvecCol (M ⬝ List.prod (listTransvecRow M))) ⬝ (M ⬝ List.prod (listTransvecRow M))) (inl i)\n (inr ()) =\n 0", "tactic": "apply listTransvecCol_mul_last_col" }, { "state_after": "no goals", "state_before": "case hM\nn : Type ?u.209504\np : Type ?u.209507\nR : Type u₂\n𝕜 : Type u_1\ninst✝³ : Field 𝕜\ninst✝² : DecidableEq n\ninst✝¹ : DecidableEq p\ninst✝ : CommRing R\nr : ℕ\nM : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜\nhM : M (inr ()) (inr ()) ≠ 0\ni : Fin r\nthis : listTransvecCol M = listTransvecCol (M ⬝ List.prod (listTransvecRow M))\n⊢ (M ⬝ List.prod (listTransvecRow M)) (inr ()) (inr ()) ≠ 0", "tactic": "simpa [mul_listTransvecRow_last_col] using hM" }, { "state_after": "no goals", "state_before": "n : Type ?u.209504\np : Type ?u.209507\nR : Type u₂\n𝕜 : Type u_1\ninst✝³ : Field 𝕜\ninst✝² : DecidableEq n\ninst✝¹ : DecidableEq p\ninst✝ : CommRing R\nr : ℕ\nM : Matrix (Fin r ⊕ Unit) (Fin r ⊕ Unit) 𝕜\nhM : M (inr ()) (inr ()) ≠ 0\ni : Fin r\n⊢ listTransvecCol M = listTransvecCol (M ⬝ List.prod (listTransvecRow M))", "tactic": "simp [listTransvecCol, mul_listTransvecRow_last_col]" } ]
[ 519, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 512, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
aemeasurable_biSup
[ { "state_after": "α : Type u_3\nβ : Type ?u.1526225\nγ : Type ?u.1526228\nγ₂ : Type ?u.1526231\nδ : Type u_2\nι✝ : Sort y\ns✝ t u : Set α\ninst✝¹² : TopologicalSpace α\ninst✝¹¹ : MeasurableSpace α\ninst✝¹⁰ : BorelSpace α\ninst✝⁹ : TopologicalSpace β\ninst✝⁸ : MeasurableSpace β\ninst✝⁷ : BorelSpace β\ninst✝⁶ : TopologicalSpace γ\ninst✝⁵ : MeasurableSpace γ\ninst✝⁴ : BorelSpace γ\ninst✝³ : MeasurableSpace δ\ninst✝² : CompleteLinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : SecondCountableTopology α\nι : Type u_1\nμ : MeasureTheory.Measure δ\ns : Set ι\nf : ι → δ → α\nhs : Set.Countable s\nhf : ∀ (i : ι), AEMeasurable (f i)\nthis : Encodable ↑s\n⊢ AEMeasurable fun b => ⨆ (i : ι) (_ : i ∈ s), f i b", "state_before": "α : Type u_3\nβ : Type ?u.1526225\nγ : Type ?u.1526228\nγ₂ : Type ?u.1526231\nδ : Type u_2\nι✝ : Sort y\ns✝ t u : Set α\ninst✝¹² : TopologicalSpace α\ninst✝¹¹ : MeasurableSpace α\ninst✝¹⁰ : BorelSpace α\ninst✝⁹ : TopologicalSpace β\ninst✝⁸ : MeasurableSpace β\ninst✝⁷ : BorelSpace β\ninst✝⁶ : TopologicalSpace γ\ninst✝⁵ : MeasurableSpace γ\ninst✝⁴ : BorelSpace γ\ninst✝³ : MeasurableSpace δ\ninst✝² : CompleteLinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : SecondCountableTopology α\nι : Type u_1\nμ : MeasureTheory.Measure δ\ns : Set ι\nf : ι → δ → α\nhs : Set.Countable s\nhf : ∀ (i : ι), AEMeasurable (f i)\n⊢ AEMeasurable fun b => ⨆ (i : ι) (_ : i ∈ s), f i b", "tactic": "haveI : Encodable s := hs.toEncodable" }, { "state_after": "α : Type u_3\nβ : Type ?u.1526225\nγ : Type ?u.1526228\nγ₂ : Type ?u.1526231\nδ : Type u_2\nι✝ : Sort y\ns✝ t u : Set α\ninst✝¹² : TopologicalSpace α\ninst✝¹¹ : MeasurableSpace α\ninst✝¹⁰ : BorelSpace α\ninst✝⁹ : TopologicalSpace β\ninst✝⁸ : MeasurableSpace β\ninst✝⁷ : BorelSpace β\ninst✝⁶ : TopologicalSpace γ\ninst✝⁵ : MeasurableSpace γ\ninst✝⁴ : BorelSpace γ\ninst✝³ : MeasurableSpace δ\ninst✝² : CompleteLinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : SecondCountableTopology α\nι : Type u_1\nμ : MeasureTheory.Measure δ\ns : Set ι\nf : ι → δ → α\nhs : Set.Countable s\nhf : ∀ (i : ι), AEMeasurable (f i)\nthis : Encodable ↑s\n⊢ AEMeasurable fun b => ⨆ (x : { i // i ∈ s }), f (↑x) b", "state_before": "α : Type u_3\nβ : Type ?u.1526225\nγ : Type ?u.1526228\nγ₂ : Type ?u.1526231\nδ : Type u_2\nι✝ : Sort y\ns✝ t u : Set α\ninst✝¹² : TopologicalSpace α\ninst✝¹¹ : MeasurableSpace α\ninst✝¹⁰ : BorelSpace α\ninst✝⁹ : TopologicalSpace β\ninst✝⁸ : MeasurableSpace β\ninst✝⁷ : BorelSpace β\ninst✝⁶ : TopologicalSpace γ\ninst✝⁵ : MeasurableSpace γ\ninst✝⁴ : BorelSpace γ\ninst✝³ : MeasurableSpace δ\ninst✝² : CompleteLinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : SecondCountableTopology α\nι : Type u_1\nμ : MeasureTheory.Measure δ\ns : Set ι\nf : ι → δ → α\nhs : Set.Countable s\nhf : ∀ (i : ι), AEMeasurable (f i)\nthis : Encodable ↑s\n⊢ AEMeasurable fun b => ⨆ (i : ι) (_ : i ∈ s), f i b", "tactic": "simp only [iSup_subtype']" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type ?u.1526225\nγ : Type ?u.1526228\nγ₂ : Type ?u.1526231\nδ : Type u_2\nι✝ : Sort y\ns✝ t u : Set α\ninst✝¹² : TopologicalSpace α\ninst✝¹¹ : MeasurableSpace α\ninst✝¹⁰ : BorelSpace α\ninst✝⁹ : TopologicalSpace β\ninst✝⁸ : MeasurableSpace β\ninst✝⁷ : BorelSpace β\ninst✝⁶ : TopologicalSpace γ\ninst✝⁵ : MeasurableSpace γ\ninst✝⁴ : BorelSpace γ\ninst✝³ : MeasurableSpace δ\ninst✝² : CompleteLinearOrder α\ninst✝¹ : OrderTopology α\ninst✝ : SecondCountableTopology α\nι : Type u_1\nμ : MeasureTheory.Measure δ\ns : Set ι\nf : ι → δ → α\nhs : Set.Countable s\nhf : ∀ (i : ι), AEMeasurable (f i)\nthis : Encodable ↑s\n⊢ AEMeasurable fun b => ⨆ (x : { i // i ∈ s }), f (↑x) b", "tactic": "exact aemeasurable_iSup fun i => hf i" } ]
[ 1291, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1287, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Bilinear.lean
ContinuousLinearMap.fderiv_of_bilinear
[]
[ 155, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/Data/Nat/Log.lean
Nat.clog_pos
[ { "state_after": "b n : ℕ\nhb : 1 < b\nhn : 2 ≤ n\n⊢ 0 < clog b ((n + b - 1) / b) + 1", "state_before": "b n : ℕ\nhb : 1 < b\nhn : 2 ≤ n\n⊢ 0 < clog b n", "tactic": "rw [clog_of_two_le hb hn]" }, { "state_after": "no goals", "state_before": "b n : ℕ\nhb : 1 < b\nhn : 2 ≤ n\n⊢ 0 < clog b ((n + b - 1) / b) + 1", "tactic": "exact zero_lt_succ _" } ]
[ 284, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 282, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.filter_apply_pos
[]
[ 914, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 914, 1 ]
Mathlib/Data/Nat/Choose/Sum.lean
Int.alternating_sum_range_choose_of_ne
[ { "state_after": "no goals", "state_before": "R : Type ?u.188221\nn : ℕ\nh0 : n ≠ 0\n⊢ ∑ m in range (n + 1), (-1) ^ m * ↑(Nat.choose n m) = 0", "tactic": "rw [Int.alternating_sum_range_choose, if_neg h0]" } ]
[ 150, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 1 ]
Mathlib/RingTheory/Coprime/Lemmas.lean
IsCoprime.prod_left_iff
[ { "state_after": "no goals", "state_before": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt : Finset I\nx✝ : I\n⊢ x✝ ∈ ∅ → IsCoprime (s x✝) x", "tactic": "simp" }, { "state_after": "no goals", "state_before": "R : Type u\nI : Type v\ninst✝ : CommSemiring R\nx y z : R\ns : I → R\nt✝ : Finset I\nb : I\nt : Finset I\nhbt : ¬b ∈ t\nih : IsCoprime (∏ i in t, s i) x ↔ ∀ (i : I), i ∈ t → IsCoprime (s i) x\n⊢ IsCoprime (∏ i in insert b t, s i) x ↔ ∀ (i : I), i ∈ insert b t → IsCoprime (s i) x", "tactic": "rw [Finset.prod_insert hbt, IsCoprime.mul_left_iff, ih, Finset.forall_mem_insert]" } ]
[ 66, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Algebra/Order/Rearrangement.lean
Monovary.sum_mul_comp_perm_le_sum_mul
[]
[ 457, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 455, 1 ]
Mathlib/Computability/Partrec.lean
Nat.Partrec.some
[]
[ 203, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 11 ]
Mathlib/Algebra/Module/Injective.lean
Module.Baer.ExtensionOfMaxAdjoin.extendIdealTo_wd'
[ { "state_after": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\nthis : r ∈ ideal i f y\n⊢ ↑(extendIdealTo i f h y) r = 0", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\n⊢ ↑(extendIdealTo i f h y) r = 0", "tactic": "have : r ∈ ideal i f y := by\n change (r • y) ∈ (extensionOfMax i f).toLinearPMap.domain\n rw [eq1]\n apply Submodule.zero_mem _" }, { "state_after": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\nthis : r ∈ ideal i f y\n⊢ ↑(idealTo i f y) { val := r, property := this } = 0", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\nthis : r ∈ ideal i f y\n⊢ ↑(extendIdealTo i f h y) r = 0", "tactic": "rw [ExtensionOfMaxAdjoin.extendIdealTo_is_extension i f h y r this]" }, { "state_after": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\nthis : r ∈ ideal i f y\n⊢ ↑(extensionOfMax i f).toLinearPMap { val := r • y, property := (_ : ↑{ val := r, property := this } ∈ ideal i f y) } =\n 0", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\nthis : r ∈ ideal i f y\n⊢ ↑(idealTo i f y) { val := r, property := this } = 0", "tactic": "dsimp [ExtensionOfMaxAdjoin.idealTo]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\nthis : r ∈ ideal i f y\n⊢ ↑(extensionOfMax i f).toLinearPMap { val := r • y, property := (_ : ↑{ val := r, property := this } ∈ ideal i f y) } =\n 0", "tactic": "simp only [LinearMap.coe_mk, eq1, Subtype.coe_mk, ← ZeroMemClass.zero_def,\n (extensionOfMax i f).toLinearPMap.map_zero]" }, { "state_after": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\n⊢ r • y ∈ (extensionOfMax i f).toLinearPMap.domain", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\n⊢ r ∈ ideal i f y", "tactic": "change (r • y) ∈ (extensionOfMax i f).toLinearPMap.domain" }, { "state_after": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\n⊢ 0 ∈ (extensionOfMax i f).toLinearPMap.domain", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\n⊢ r • y ∈ (extensionOfMax i f).toLinearPMap.domain", "tactic": "rw [eq1]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝⁷ : Ring R\nQ : TypeMax\ninst✝⁶ : AddCommGroup Q\ninst✝⁵ : Module R Q\nM N : Type (max u v)\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\ni : M →ₗ[R] N\nf : M →ₗ[R] Q\ninst✝ : Fact (Function.Injective ↑i)\nh : Baer R Q\ny : N\nr : R\neq1 : r • y = 0\n⊢ 0 ∈ (extensionOfMax i f).toLinearPMap.domain", "tactic": "apply Submodule.zero_mem _" } ]
[ 340, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 331, 1 ]
Mathlib/Analysis/Convex/Function.lean
ConcaveOn.left_lt_of_lt_right'
[]
[ 787, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 784, 1 ]
Mathlib/RingTheory/WittVector/Defs.lean
WittVector.wittSub_zero
[ { "state_after": "case a\np : ℕ\nR : Type ?u.60999\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\n⊢ ↑(map (Int.castRingHom ℚ)) (wittSub p 0) = ↑(map (Int.castRingHom ℚ)) (X (0, 0) - X (1, 0))", "state_before": "p : ℕ\nR : Type ?u.60999\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\n⊢ wittSub p 0 = X (0, 0) - X (1, 0)", "tactic": "apply MvPolynomial.map_injective (Int.castRingHom ℚ) Int.cast_injective" }, { "state_after": "no goals", "state_before": "case a\np : ℕ\nR : Type ?u.60999\nhp : Fact (Nat.Prime p)\ninst✝ : CommRing R\n⊢ ↑(map (Int.castRingHom ℚ)) (wittSub p 0) = ↑(map (Int.castRingHom ℚ)) (X (0, 0) - X (1, 0))", "tactic": "simp only [wittSub, wittStructureRat, AlgHom.map_sub, RingHom.map_sub, rename_X,\n xInTermsOfW_zero, map_X, wittPolynomial_zero, bind₁_X_right, map_wittStructureInt]" } ]
[ 276, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
BoxIntegral.Prepartition.inf_def
[]
[ 571, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 571, 1 ]
Mathlib/Data/Set/Pointwise/SMul.lean
Set.Nonempty.of_smul_right
[]
[ 147, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Order/CompleteLattice.lean
iSup₂_le
[]
[ 825, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 824, 1 ]
Mathlib/Data/Set/Basic.lean
Set.diff_diff_cancel_left
[]
[ 2074, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2073, 1 ]
Mathlib/Computability/TMToPartrec.lean
Turing.PartrecToTM2.tr_eval
[ { "state_after": "case intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\n⊢ eval (TM2.step tr) (init c v) = halt <$> Code.eval c v", "state_before": "c : Code\nv : List ℕ\n⊢ eval (TM2.step tr) (init c v) = halt <$> Code.eval c v", "tactic": "obtain ⟨i, h₁, h₂⟩ := tr_init c v" }, { "state_after": "case intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\n⊢ x ∈ eval (TM2.step tr) (init c v) ↔ x ∈ halt <$> Code.eval c v", "state_before": "case intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\n⊢ eval (TM2.step tr) (init c v) = halt <$> Code.eval c v", "tactic": "refine' Part.ext fun x => _" }, { "state_after": "case intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\n⊢ x ∈ eval (fun a => TM2.step tr a) i ↔ x ∈ halt <$> Code.eval c v", "state_before": "case intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\n⊢ x ∈ eval (TM2.step tr) (init c v) ↔ x ∈ halt <$> Code.eval c v", "tactic": "rw [reaches_eval h₂.to_reflTransGen]" }, { "state_after": "case intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\n⊢ x ∈ eval (fun a => TM2.step tr a) i ↔ ∃ a, a ∈ Code.eval c v ∧ halt a = x", "state_before": "case intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\n⊢ x ∈ eval (fun a => TM2.step tr a) i ↔ x ∈ halt <$> Code.eval c v", "tactic": "simp [-TM2.step]" }, { "state_after": "case intro.intro.refine'_1\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\nh : x ∈ eval (fun a => TM2.step tr a) i\n⊢ ∃ a, a ∈ Code.eval c v ∧ halt a = x\n\ncase intro.intro.refine'_2\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\n⊢ (∃ a, a ∈ Code.eval c v ∧ halt a = x) → x ∈ eval (fun a => TM2.step tr a) i", "state_before": "case intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\n⊢ x ∈ eval (fun a => TM2.step tr a) i ↔ ∃ a, a ∈ Code.eval c v ∧ halt a = x", "tactic": "refine' ⟨fun h => _, _⟩" }, { "state_after": "case intro.intro.refine'_1.intro.intro\nc✝ : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c✝ Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c✝ v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\nh : x ∈ eval (fun a => TM2.step tr a) i\nc : Cfg\nhc₁ : TrCfg c x\nhc₂ : c ∈ eval step (stepNormal c✝ Cont.halt v)\n⊢ ∃ a, a ∈ Code.eval c✝ v ∧ halt a = x", "state_before": "case intro.intro.refine'_1\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\nh : x ∈ eval (fun a => TM2.step tr a) i\n⊢ ∃ a, a ∈ Code.eval c v ∧ halt a = x", "tactic": "obtain ⟨c, hc₁, hc₂⟩ := tr_eval_rev tr_respects h₁ h" }, { "state_after": "case intro.intro.refine'_1.intro.intro\nc✝ : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c✝ Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c✝ v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\nh : x ∈ eval (fun a => TM2.step tr a) i\nc : Cfg\nhc₁ : TrCfg c x\nhc₂ : ∃ a, a ∈ Code.eval c✝ v ∧ Cfg.halt a = c\n⊢ ∃ a, a ∈ Code.eval c✝ v ∧ halt a = x", "state_before": "case intro.intro.refine'_1.intro.intro\nc✝ : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c✝ Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c✝ v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\nh : x ∈ eval (fun a => TM2.step tr a) i\nc : Cfg\nhc₁ : TrCfg c x\nhc₂ : c ∈ eval step (stepNormal c✝ Cont.halt v)\n⊢ ∃ a, a ∈ Code.eval c✝ v ∧ halt a = x", "tactic": "simp [stepNormal_eval] at hc₂" }, { "state_after": "case intro.intro.refine'_1.intro.intro.intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\nh : x ∈ eval (fun a => TM2.step tr a) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\nhc₁ : TrCfg (Cfg.halt v') x\n⊢ ∃ a, a ∈ Code.eval c v ∧ halt a = x", "state_before": "case intro.intro.refine'_1.intro.intro\nc✝ : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c✝ Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c✝ v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\nh : x ∈ eval (fun a => TM2.step tr a) i\nc : Cfg\nhc₁ : TrCfg c x\nhc₂ : ∃ a, a ∈ Code.eval c✝ v ∧ Cfg.halt a = c\n⊢ ∃ a, a ∈ Code.eval c✝ v ∧ halt a = x", "tactic": "obtain ⟨v', hv, rfl⟩ := hc₂" }, { "state_after": "no goals", "state_before": "case intro.intro.refine'_1.intro.intro.intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\nh : x ∈ eval (fun a => TM2.step tr a) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\nhc₁ : TrCfg (Cfg.halt v') x\n⊢ ∃ a, a ∈ Code.eval c v ∧ halt a = x", "tactic": "exact ⟨_, hv, hc₁.symm⟩" }, { "state_after": "case intro.intro.refine'_2.intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\n⊢ halt v' ∈ eval (fun a => TM2.step tr a) i", "state_before": "case intro.intro.refine'_2\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nx : TM2.Cfg (fun x => Γ') Λ' (Option Γ')\n⊢ (∃ a, a ∈ Code.eval c v ∧ halt a = x) → x ∈ eval (fun a => TM2.step tr a) i", "tactic": "rintro ⟨v', hv, rfl⟩" }, { "state_after": "case intro.intro.refine'_2.intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\nthis : Cfg.halt v' ∈ eval step (stepNormal c Cont.halt v) → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i\n⊢ halt v' ∈ eval (fun a => TM2.step tr a) i", "state_before": "case intro.intro.refine'_2.intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\n⊢ halt v' ∈ eval (fun a => TM2.step tr a) i", "tactic": "have := Turing.tr_eval (b₁ := Cfg.halt v') tr_respects h₁" }, { "state_after": "case intro.intro.refine'_2.intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\nthis : v' ∈ Code.eval c v → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i\n⊢ halt v' ∈ eval (fun a => TM2.step tr a) i", "state_before": "case intro.intro.refine'_2.intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\nthis : Cfg.halt v' ∈ eval step (stepNormal c Cont.halt v) → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i\n⊢ halt v' ∈ eval (fun a => TM2.step tr a) i", "tactic": "simp [stepNormal_eval, -TM2.step] at this" }, { "state_after": "case intro.intro.refine'_2.intro.intro.intro.intro.refl\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\nthis : v' ∈ Code.eval c v → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i\nh : halt v' ∈ eval (TM2.step tr) i\n⊢ halt v' ∈ eval (fun a => TM2.step tr a) i", "state_before": "case intro.intro.refine'_2.intro.intro\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\nthis : v' ∈ Code.eval c v → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i\n⊢ halt v' ∈ eval (fun a => TM2.step tr a) i", "tactic": "obtain ⟨_, ⟨⟩, h⟩ := this hv" }, { "state_after": "no goals", "state_before": "case intro.intro.refine'_2.intro.intro.intro.intro.refl\nc : Code\nv : List ℕ\ni : Cfg'\nh₁ : TrCfg (stepNormal c Cont.halt v) i\nh₂ : Reaches₁ (TM2.step tr) (init c v) i\nv' : List ℕ\nhv : v' ∈ Code.eval c v\nthis : v' ∈ Code.eval c v → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i\nh : halt v' ∈ eval (TM2.step tr) i\n⊢ halt v' ∈ eval (fun a => TM2.step tr a) i", "tactic": "exact h" } ]
[ 1719, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1706, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.lt_bsup_of_limit
[]
[ 1541, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1538, 1 ]
Mathlib/Topology/ContinuousOn.lean
nhds_bind_nhdsWithin
[]
[ 43, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Algebra/Order/LatticeGroup.lean
LatticeOrderedCommGroup.neg_of_one_le
[]
[ 514, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 513, 1 ]
Mathlib/RingTheory/Coprime/Basic.lean
isCoprime_one_left
[ { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommSemiring R\nx y z : R\n⊢ 1 * 1 + 0 * x = 1", "tactic": "rw [one_mul, zero_mul, add_zero]" } ]
[ 83, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.eval₂_C
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\na b : R\nm n : ℕ\ninst✝¹ : Semiring R\np q r : R[X]\ninst✝ : Semiring S\nf : R →+* S\nx : S\n⊢ eval₂ f x (↑C a) = ↑f a", "tactic": "simp [eval₂_eq_sum]" } ]
[ 73, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Topology/SubsetProperties.lean
isClopen_range_inl
[]
[ 1644, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1643, 1 ]
Mathlib/NumberTheory/Padics/PadicVal.lean
padicValNat.one
[ { "state_after": "p : ℕ\n⊢ (if h : p ≠ 1 ∧ 0 < 1 then Part.get (multiplicity p 1) (_ : multiplicity.Finite p 1) else 0) = 0", "state_before": "p : ℕ\n⊢ padicValNat p 1 = 0", "tactic": "unfold padicValNat" }, { "state_after": "case inl\np : ℕ\nh✝ : p ≠ 1 ∧ 0 < 1\n⊢ Part.get (multiplicity p 1) (_ : multiplicity.Finite p 1) = 0\n\ncase inr\np : ℕ\nh✝ : ¬(p ≠ 1 ∧ 0 < 1)\n⊢ 0 = 0", "state_before": "p : ℕ\n⊢ (if h : p ≠ 1 ∧ 0 < 1 then Part.get (multiplicity p 1) (_ : multiplicity.Finite p 1) else 0) = 0", "tactic": "split_ifs" }, { "state_after": "no goals", "state_before": "case inl\np : ℕ\nh✝ : p ≠ 1 ∧ 0 < 1\n⊢ Part.get (multiplicity p 1) (_ : multiplicity.Finite p 1) = 0", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case inr\np : ℕ\nh✝ : ¬(p ≠ 1 ∧ 0 < 1)\n⊢ 0 = 0", "tactic": "rfl" } ]
[ 77, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 11 ]
Mathlib/Algebra/Ring/Defs.lean
sub_one_mul
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : Type x\ninst✝ : NonAssocRing α\na b : α\n⊢ (a - 1) * b = a * b - b", "tactic": "rw [sub_mul, one_mul]" } ]
[ 410, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 410, 1 ]
Mathlib/Algebra/Category/ModuleCat/Monoidal/Symmetric.lean
ModuleCat.MonoidalCategory.hexagon_reverse
[ { "state_after": "R : Type u\ninst✝ : CommRing R\nX Y Z : ModuleCat R\n⊢ (α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv =\n (α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)", "state_before": "R : Type u\ninst✝ : CommRing R\nX Y Z : ModuleCat R\n⊢ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv =\n (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)", "tactic": "apply (cancel_epi (α_ X Y Z).hom).1" }, { "state_after": "case H\nR : Type u\ninst✝ : CommRing R\nX Y Z : ModuleCat R\n⊢ ∀ (x : ↑X) (y : ↑Y) (z : ↑Z),\n ↑((α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) =\n ↑((α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z)", "state_before": "R : Type u\ninst✝ : CommRing R\nX Y Z : ModuleCat R\n⊢ (α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv =\n (α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)", "tactic": "apply TensorProduct.ext_threefold" }, { "state_after": "case H\nR : Type u\ninst✝ : CommRing R\nX Y Z : ModuleCat R\nx : ↑X\ny : ↑Y\nz : ↑Z\n⊢ ↑((α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) =\n ↑((α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z)", "state_before": "case H\nR : Type u\ninst✝ : CommRing R\nX Y Z : ModuleCat R\n⊢ ∀ (x : ↑X) (y : ↑Y) (z : ↑Z),\n ↑((α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) =\n ↑((α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z)", "tactic": "intro x y z" }, { "state_after": "no goals", "state_before": "case H\nR : Type u\ninst✝ : CommRing R\nX Y Z : ModuleCat R\nx : ↑X\ny : ↑Y\nz : ↑Z\n⊢ ↑((α_ X Y Z).hom ≫ (α_ X Y Z).inv ≫ (braiding (X ⊗ Y) Z).hom ≫ (α_ Z X Y).inv) ((x ⊗ₜ[R] y) ⊗ₜ[R] z) =\n ↑((α_ X Y Z).hom ≫ (𝟙 X ⊗ (braiding Y Z).hom) ≫ (α_ X Z Y).inv ≫ ((braiding X Z).hom ⊗ 𝟙 Y)) ((x ⊗ₜ[R] y) ⊗ₜ[R] z)", "tactic": "rfl" } ]
[ 61, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/Order/Atoms.lean
IsSimpleOrder.bot_ne_top
[ { "state_after": "case intro.intro\nα : Type u_1\nβ : Type ?u.23015\ninst✝² : LE α\ninst✝¹ : BoundedOrder α\ninst✝ : IsSimpleOrder α\na b : α\nh : a ≠ b\n⊢ ⊥ ≠ ⊤", "state_before": "α : Type u_1\nβ : Type ?u.23015\ninst✝² : LE α\ninst✝¹ : BoundedOrder α\ninst✝ : IsSimpleOrder α\n⊢ ⊥ ≠ ⊤", "tactic": "obtain ⟨a, b, h⟩ := exists_pair_ne α" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_1\nβ : Type ?u.23015\ninst✝² : LE α\ninst✝¹ : BoundedOrder α\ninst✝ : IsSimpleOrder α\na b : α\nh : a ≠ b\n⊢ ⊥ ≠ ⊤", "tactic": "rcases eq_bot_or_eq_top a with (rfl | rfl) <;> rcases eq_bot_or_eq_top b with (rfl | rfl) <;>\n first |simpa|simpa using h.symm" }, { "state_after": "no goals", "state_before": "case intro.intro.inr.inr\nα : Type u_1\nβ : Type ?u.23015\ninst✝² : LE α\ninst✝¹ : BoundedOrder α\ninst✝ : IsSimpleOrder α\nh : ⊤ ≠ ⊤\n⊢ ⊥ ≠ ⊤", "tactic": "simpa" }, { "state_after": "no goals", "state_before": "case intro.intro.inr.inr\nα : Type u_1\nβ : Type ?u.23015\ninst✝² : LE α\ninst✝¹ : BoundedOrder α\ninst✝ : IsSimpleOrder α\nh : ⊤ ≠ ⊤\n⊢ ⊥ ≠ ⊤", "tactic": "simpa using h.symm" } ]
[ 448, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 445, 1 ]
Mathlib/CategoryTheory/Sites/Types.lean
CategoryTheory.eval_typesGlue
[ { "state_after": "case h\nS : Type uᵒᵖ ⥤ Type u\nhs : IsSheaf typesGrothendieckTopology S\nα : Type u\nf : α → S.obj PUnit.op\nx : α\n⊢ eval S α (typesGlue S hs α f) x = f x", "state_before": "S : Type uᵒᵖ ⥤ Type u\nhs : IsSheaf typesGrothendieckTopology S\nα : Type u\nf : α → S.obj PUnit.op\n⊢ eval S α (typesGlue S hs α f) = f", "tactic": "funext x" }, { "state_after": "case h\nS : Type uᵒᵖ ⥤ Type u\nhs : IsSheaf typesGrothendieckTopology S\nα : Type u\nf : α → S.obj PUnit.op\nx : α\n⊢ S.map (↾fun x => PUnit.unit).op (f ((↾fun x_1 => x) (Classical.choose (_ : ∃ x, ∀ (y : PUnit), y = x)))) = f x", "state_before": "case h\nS : Type uᵒᵖ ⥤ Type u\nhs : IsSheaf typesGrothendieckTopology S\nα : Type u\nf : α → S.obj PUnit.op\nx : α\n⊢ eval S α (typesGlue S hs α f) x = f x", "tactic": "apply (IsSheafFor.valid_glue _ _ _ <| ⟨PUnit.unit, fun _ => Subsingleton.elim _ _⟩).trans" }, { "state_after": "no goals", "state_before": "case h\nS : Type uᵒᵖ ⥤ Type u\nhs : IsSheaf typesGrothendieckTopology S\nα : Type u\nf : α → S.obj PUnit.op\nx : α\n⊢ S.map (↾fun x => PUnit.unit).op (f ((↾fun x_1 => x) (Classical.choose (_ : ∃ x, ∀ (y : PUnit), y = x)))) = f x", "tactic": "convert FunctorToTypes.map_id_apply S _" } ]
[ 108, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Topology/LocalExtr.lean
IsLocalMinOn.sup
[]
[ 461, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 459, 8 ]
Mathlib/Data/LazyList/Basic.lean
LazyList.append_bind
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nxs : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\n⊢ LazyList.bind (append xs ys) f = append (LazyList.bind xs f) { fn := fun x => LazyList.bind (Thunk.get ys) f }", "tactic": "match xs with\n| LazyList.nil => rfl\n| LazyList.cons x xs =>\n simp only [append, Thunk.get, LazyList.bind]\n have := append_bind xs.get ys f\n simp only [Thunk.get] at this\n rw [this, append_assoc]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nxs : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\n⊢ LazyList.bind (append nil ys) f = append (LazyList.bind nil f) { fn := fun x => LazyList.bind (Thunk.get ys) f }", "tactic": "rfl" }, { "state_after": "α : Type u_1\nβ : Type u_2\nxs✝ : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\nx : α\nxs : Thunk (LazyList α)\n⊢ append (f x) { fn := fun x => LazyList.bind (append (Thunk.fn xs ()) ys) f } =\n append (append (f x) { fn := fun x => LazyList.bind (Thunk.fn xs ()) f })\n { fn := fun x => LazyList.bind (Thunk.fn ys ()) f }", "state_before": "α : Type u_1\nβ : Type u_2\nxs✝ : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\nx : α\nxs : Thunk (LazyList α)\n⊢ LazyList.bind (append (cons x xs) ys) f =\n append (LazyList.bind (cons x xs) f) { fn := fun x => LazyList.bind (Thunk.get ys) f }", "tactic": "simp only [append, Thunk.get, LazyList.bind]" }, { "state_after": "α : Type u_1\nβ : Type u_2\nxs✝ : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\nx : α\nxs : Thunk (LazyList α)\nthis :\n LazyList.bind (append (Thunk.get xs) ys) f =\n append (LazyList.bind (Thunk.get xs) f) { fn := fun x => LazyList.bind (Thunk.get ys) f }\n⊢ append (f x) { fn := fun x => LazyList.bind (append (Thunk.fn xs ()) ys) f } =\n append (append (f x) { fn := fun x => LazyList.bind (Thunk.fn xs ()) f })\n { fn := fun x => LazyList.bind (Thunk.fn ys ()) f }", "state_before": "α : Type u_1\nβ : Type u_2\nxs✝ : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\nx : α\nxs : Thunk (LazyList α)\n⊢ append (f x) { fn := fun x => LazyList.bind (append (Thunk.fn xs ()) ys) f } =\n append (append (f x) { fn := fun x => LazyList.bind (Thunk.fn xs ()) f })\n { fn := fun x => LazyList.bind (Thunk.fn ys ()) f }", "tactic": "have := append_bind xs.get ys f" }, { "state_after": "α : Type u_1\nβ : Type u_2\nxs✝ : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\nx : α\nxs : Thunk (LazyList α)\nthis :\n LazyList.bind (append (Thunk.fn xs ()) ys) f =\n append (LazyList.bind (Thunk.fn xs ()) f) { fn := fun x => LazyList.bind (Thunk.fn ys ()) f }\n⊢ append (f x) { fn := fun x => LazyList.bind (append (Thunk.fn xs ()) ys) f } =\n append (append (f x) { fn := fun x => LazyList.bind (Thunk.fn xs ()) f })\n { fn := fun x => LazyList.bind (Thunk.fn ys ()) f }", "state_before": "α : Type u_1\nβ : Type u_2\nxs✝ : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\nx : α\nxs : Thunk (LazyList α)\nthis :\n LazyList.bind (append (Thunk.get xs) ys) f =\n append (LazyList.bind (Thunk.get xs) f) { fn := fun x => LazyList.bind (Thunk.get ys) f }\n⊢ append (f x) { fn := fun x => LazyList.bind (append (Thunk.fn xs ()) ys) f } =\n append (append (f x) { fn := fun x => LazyList.bind (Thunk.fn xs ()) f })\n { fn := fun x => LazyList.bind (Thunk.fn ys ()) f }", "tactic": "simp only [Thunk.get] at this" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nxs✝ : LazyList α\nys : Thunk (LazyList α)\nf : α → LazyList β\nx : α\nxs : Thunk (LazyList α)\nthis :\n LazyList.bind (append (Thunk.fn xs ()) ys) f =\n append (LazyList.bind (Thunk.fn xs ()) f) { fn := fun x => LazyList.bind (Thunk.fn ys ()) f }\n⊢ append (f x) { fn := fun x => LazyList.bind (append (Thunk.fn xs ()) ys) f } =\n append (append (f x) { fn := fun x => LazyList.bind (Thunk.fn xs ()) f })\n { fn := fun x => LazyList.bind (Thunk.fn ys ()) f }", "tactic": "rw [this, append_assoc]" } ]
[ 190, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Order/Bounded.lean
Set.Unbounded.mono
[]
[ 34, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 32, 1 ]
Mathlib/Probability/Independence/ZeroOne.lean
ProbabilityTheory.indep_limsup_atTop_self
[ { "state_after": "Ω : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\n⊢ Indep (limsup s atTop) (limsup s atTop)", "state_before": "Ω : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\n⊢ Indep (limsup s atTop) (limsup s atTop)", "tactic": "let ns : ι → Set ι := Set.Iic" }, { "state_after": "Ω : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ Indep (limsup s atTop) (limsup s atTop)", "state_before": "Ω : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\n⊢ Indep (limsup s atTop) (limsup s atTop)", "tactic": "have hnsp : ∀ i, BddAbove (ns i) := fun i => bddAbove_Iic" }, { "state_after": "case refine'_1\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ ∀ (t : Set ι), BddAbove t → tᶜ ∈ atTop\n\ncase refine'_2\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ Directed (fun x x_1 => x ≤ x_1) fun a => ns a\n\ncase refine'_3\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ ∀ (n : ι), ∃ a, n ∈ ns a", "state_before": "Ω : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ Indep (limsup s atTop) (limsup s atTop)", "tactic": "refine' indep_limsup_self h_le h_indep _ _ hnsp _" }, { "state_after": "case refine'_1\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ ∀ (t : Set ι), (∃ x, x ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}) → ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t", "state_before": "case refine'_1\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ ∀ (t : Set ι), BddAbove t → tᶜ ∈ atTop", "tactic": "simp only [mem_atTop_sets, ge_iff_le, Set.mem_compl_iff, BddAbove, upperBounds, Set.Nonempty]" }, { "state_after": "case refine'_1.intro\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\n⊢ ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t", "state_before": "case refine'_1\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ ∀ (t : Set ι), (∃ x, x ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}) → ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t", "tactic": "rintro t ⟨a, ha⟩" }, { "state_after": "case refine'_1.intro.intro\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\n⊢ ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t", "state_before": "case refine'_1.intro\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\n⊢ ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t", "tactic": "obtain ⟨b, hb⟩ : ∃ b, a < b := exists_gt a" }, { "state_after": "case refine'_1.intro.intro\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\nc : ι\nhc : b ≤ c\nhct : c ∈ t\n⊢ False", "state_before": "case refine'_1.intro.intro\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\n⊢ ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t", "tactic": "refine' ⟨b, fun c hc hct => _⟩" }, { "state_after": "case refine'_1.intro.intro\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\nc : ι\nhc : b ≤ c\nhct : c ∈ t\nthis : ∀ (i : ι), i ∈ t → i < c\n⊢ False\n\ncase this\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\nc : ι\nhc : b ≤ c\nhct : c ∈ t\n⊢ ∀ (i : ι), i ∈ t → i < c", "state_before": "case refine'_1.intro.intro\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\nc : ι\nhc : b ≤ c\nhct : c ∈ t\n⊢ False", "tactic": "suffices : ∀ i ∈ t, i < c" }, { "state_after": "case this\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\nc : ι\nhc : b ≤ c\nhct : c ∈ t\n⊢ ∀ (i : ι), i ∈ t → i < c", "state_before": "case refine'_1.intro.intro\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\nc : ι\nhc : b ≤ c\nhct : c ∈ t\nthis : ∀ (i : ι), i ∈ t → i < c\n⊢ False\n\ncase this\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\nc : ι\nhc : b ≤ c\nhct : c ∈ t\n⊢ ∀ (i : ι), i ∈ t → i < c", "tactic": "exact lt_irrefl c (this c hct)" }, { "state_after": "no goals", "state_before": "case this\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\nt : Set ι\na : ι\nha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}\nb : ι\nhb : a < b\nc : ι\nhc : b ≤ c\nhct : c ∈ t\n⊢ ∀ (i : ι), i ∈ t → i < c", "tactic": "exact fun i hi => (ha hi).trans_lt (hb.trans_le hc)" }, { "state_after": "no goals", "state_before": "case refine'_2\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ Directed (fun x x_1 => x ≤ x_1) fun a => ns a", "tactic": "exact Monotone.directed_le fun i j hij k hki => le_trans hki hij" }, { "state_after": "no goals", "state_before": "case refine'_3\nΩ : Type u_1\nι : Type u_2\nm m0 : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝³ : IsProbabilityMeasure μ\ns : ι → MeasurableSpace Ω\ninst✝² : SemilatticeSup ι\ninst✝¹ : NoMaxOrder ι\ninst✝ : Nonempty ι\nh_le : ∀ (n : ι), s n ≤ m0\nh_indep : iIndep s\nns : ι → Set ι := Set.Iic\nhnsp : ∀ (i : ι), BddAbove (ns i)\n⊢ ∀ (n : ι), ∃ a, n ∈ ns a", "tactic": "exact fun n => ⟨n, le_rfl⟩" } ]
[ 145, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Algebra/DirectLimit.lean
AddCommGroup.DirectLimit.induction_on
[]
[ 316, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 314, 11 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
derivWithin_inter
[ { "state_after": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\nht : t ∈ 𝓝 x\n⊢ ↑(fderivWithin 𝕜 f (s ∩ t) x) 1 = ↑(fderivWithin 𝕜 f s x) 1", "state_before": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\nht : t ∈ 𝓝 x\n⊢ derivWithin f (s ∩ t) x = derivWithin f s x", "tactic": "unfold derivWithin" }, { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL L₁ L₂ : Filter 𝕜\nht : t ∈ 𝓝 x\n⊢ ↑(fderivWithin 𝕜 f (s ∩ t) x) 1 = ↑(fderivWithin 𝕜 f s x) 1", "tactic": "rw [fderivWithin_inter ht]" } ]
[ 519, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 517, 1 ]
Mathlib/Analysis/Seminorm.lean
Seminorm.ball_subset_closedBall
[]
[ 677, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 676, 1 ]
Mathlib/LinearAlgebra/UnitaryGroup.lean
Matrix.UnitaryGroup.ext
[]
[ 110, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
Left.inv_lt_one_iff
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝² : Group α\ninst✝¹ : LT α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na b c : α\n⊢ a⁻¹ < 1 ↔ 1 < a", "tactic": "rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one]" } ]
[ 169, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/GroupTheory/Commutator.lean
Subgroup.commutator_comm
[]
[ 128, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
tendsto_inv_nhdsWithin_Ici_inv
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝⁶ : TopologicalSpace G\ninst✝⁵ : Group G\ninst✝⁴ : TopologicalGroup G\ninst✝³ : TopologicalSpace α\nf : α → G\ns : Set α\nx : α\ninst✝² : TopologicalSpace H\ninst✝¹ : OrderedCommGroup H\ninst✝ : ContinuousInv H\na : H\n⊢ Tendsto Inv.inv (𝓝[Ici a⁻¹] a⁻¹) (𝓝[Iic a] a)", "tactic": "simpa only [inv_inv] using @tendsto_inv_nhdsWithin_Ici _ _ _ _ a⁻¹" } ]
[ 597, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 596, 1 ]
Mathlib/Order/Hom/Basic.lean
OrderIso.complementedLattice_iff
[ { "state_after": "F : Type ?u.129007\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.129016\nδ : Type ?u.129019\ninst✝³ : Lattice α\ninst✝² : Lattice β\ninst✝¹ : BoundedOrder α\ninst✝ : BoundedOrder β\nf : α ≃o β\na✝ : ComplementedLattice α\n⊢ ComplementedLattice β", "state_before": "F : Type ?u.129007\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.129016\nδ : Type ?u.129019\ninst✝³ : Lattice α\ninst✝² : Lattice β\ninst✝¹ : BoundedOrder α\ninst✝ : BoundedOrder β\nf : α ≃o β\n⊢ ComplementedLattice α → ComplementedLattice β", "tactic": "intro" }, { "state_after": "no goals", "state_before": "F : Type ?u.129007\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.129016\nδ : Type ?u.129019\ninst✝³ : Lattice α\ninst✝² : Lattice β\ninst✝¹ : BoundedOrder α\ninst✝ : BoundedOrder β\nf : α ≃o β\na✝ : ComplementedLattice α\n⊢ ComplementedLattice β", "tactic": "exact f.complementedLattice" }, { "state_after": "F : Type ?u.129007\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.129016\nδ : Type ?u.129019\ninst✝³ : Lattice α\ninst✝² : Lattice β\ninst✝¹ : BoundedOrder α\ninst✝ : BoundedOrder β\nf : α ≃o β\na✝ : ComplementedLattice β\n⊢ ComplementedLattice α", "state_before": "F : Type ?u.129007\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.129016\nδ : Type ?u.129019\ninst✝³ : Lattice α\ninst✝² : Lattice β\ninst✝¹ : BoundedOrder α\ninst✝ : BoundedOrder β\nf : α ≃o β\n⊢ ComplementedLattice β → ComplementedLattice α", "tactic": "intro" }, { "state_after": "no goals", "state_before": "F : Type ?u.129007\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.129016\nδ : Type ?u.129019\ninst✝³ : Lattice α\ninst✝² : Lattice β\ninst✝¹ : BoundedOrder α\ninst✝ : BoundedOrder β\nf : α ≃o β\na✝ : ComplementedLattice β\n⊢ ComplementedLattice α", "tactic": "exact f.symm.complementedLattice" } ]
[ 1385, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1383, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.Ioo_filter_lt
[ { "state_after": "case a\nι : Type ?u.141256\nα : Type u_1\ninst✝¹ : LinearOrder α\ninst✝ : LocallyFiniteOrder α\na✝¹ b✝ a b c a✝ : α\n⊢ a✝ ∈ filter (fun x => x < c) (Ioo a b) ↔ a✝ ∈ Ioo a (min b c)", "state_before": "ι : Type ?u.141256\nα : Type u_1\ninst✝¹ : LinearOrder α\ninst✝ : LocallyFiniteOrder α\na✝ b✝ a b c : α\n⊢ filter (fun x => x < c) (Ioo a b) = Ioo a (min b c)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\nι : Type ?u.141256\nα : Type u_1\ninst✝¹ : LinearOrder α\ninst✝ : LocallyFiniteOrder α\na✝¹ b✝ a b c a✝ : α\n⊢ a✝ ∈ filter (fun x => x < c) (Ioo a b) ↔ a✝ ∈ Ioo a (min b c)", "tactic": "simp [and_assoc]" } ]
[ 804, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 802, 1 ]
Mathlib/CategoryTheory/Monoidal/Opposite.lean
CategoryTheory.unmop_inj
[]
[ 110, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Order/Filter/ENNReal.lean
ENNReal.eventually_le_limsup
[]
[ 28, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 26, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iUnion_plift_up
[]
[ 230, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/CategoryTheory/Subobject/Lattice.lean
CategoryTheory.Subobject.le_sSup
[ { "state_after": "case f\nC : Type u₁\ninst✝⁴ : Category C\nX Y Z : C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasCoproducts C\ninst✝ : HasImages C\nA : C\ns : Set (Subobject A)\nf : Subobject A\nhf : f ∈ s\n⊢ underlying.obj f ⟶ underlying.obj (sSup s)\n\ncase w\nC : Type u₁\ninst✝⁴ : Category C\nX Y Z : C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasCoproducts C\ninst✝ : HasImages C\nA : C\ns : Set (Subobject A)\nf : Subobject A\nhf : f ∈ s\n⊢ ?f ≫ arrow (sSup s) = arrow f", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nX Y Z : C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasCoproducts C\ninst✝ : HasImages C\nA : C\ns : Set (Subobject A)\nf : Subobject A\nhf : f ∈ s\n⊢ f ≤ sSup s", "tactic": "fapply le_of_comm" }, { "state_after": "case f\nC : Type u₁\ninst✝⁴ : Category C\nX Y Z : C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasCoproducts C\ninst✝ : HasImages C\nA : C\ns : Set (Subobject A)\nf : Subobject A\nhf : f ∈ s\n⊢ underlying.obj f =\n underlying.obj\n (↑(equivShrink (Subobject A)).symm\n ↑{ val := ↑(equivShrink (Subobject A)) f,\n property := (_ : ↑(equivShrink (Subobject A)) f ∈ ↑(equivShrink (Subobject A)) '' s) })", "state_before": "case f\nC : Type u₁\ninst✝⁴ : Category C\nX Y Z : C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasCoproducts C\ninst✝ : HasImages C\nA : C\ns : Set (Subobject A)\nf : Subobject A\nhf : f ∈ s\n⊢ underlying.obj f ⟶ underlying.obj (sSup s)", "tactic": "refine' eqToHom _ ≫ Sigma.ι _ ⟨equivShrink (Subobject A) f, by simpa [Set.mem_image] using hf⟩\n ≫ factorThruImage _ ≫ (underlyingIso _).inv" }, { "state_after": "no goals", "state_before": "case f\nC : Type u₁\ninst✝⁴ : Category C\nX Y Z : C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasCoproducts C\ninst✝ : HasImages C\nA : C\ns : Set (Subobject A)\nf : Subobject A\nhf : f ∈ s\n⊢ underlying.obj f =\n underlying.obj\n (↑(equivShrink (Subobject A)).symm\n ↑{ val := ↑(equivShrink (Subobject A)) f,\n property := (_ : ↑(equivShrink (Subobject A)) f ∈ ↑(equivShrink (Subobject A)) '' s) })", "tactic": "exact (congr_arg (fun X : Subobject A => (X : C)) (Equiv.symm_apply_apply _ _).symm)" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nX Y Z : C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasCoproducts C\ninst✝ : HasImages C\nA : C\ns : Set (Subobject A)\nf : Subobject A\nhf : f ∈ s\n⊢ ↑(equivShrink (Subobject A)) f ∈ ↑(equivShrink (Subobject A)) '' s", "tactic": "simpa [Set.mem_image] using hf" }, { "state_after": "no goals", "state_before": "case w\nC : Type u₁\ninst✝⁴ : Category C\nX Y Z : C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasCoproducts C\ninst✝ : HasImages C\nA : C\ns : Set (Subobject A)\nf : Subobject A\nhf : f ∈ s\n⊢ (eqToHom\n (_ :\n underlying.obj f =\n underlying.obj\n (↑(equivShrink (Subobject A)).symm\n ↑{ val := ↑(equivShrink (Subobject A)) f,\n property := (_ : ↑(equivShrink (Subobject A)) f ∈ ↑(equivShrink (Subobject A)) '' s) })) ≫\n Sigma.ι (fun j => underlying.obj (↑(equivShrink (Subobject A)).symm ↑j))\n { val := ↑(equivShrink (Subobject A)) f,\n property := (_ : ↑(equivShrink (Subobject A)) f ∈ ↑(equivShrink (Subobject A)) '' s) } ≫\n factorThruImage (smallCoproductDesc s) ≫ (underlyingIso (image.ι (smallCoproductDesc s))).inv) ≫\n arrow (sSup s) =\n arrow f", "tactic": "simp [sSup, smallCoproductDesc]" } ]
[ 693, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 688, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.isOption_neg_neg
[ { "state_after": "no goals", "state_before": "x y : PGame\n⊢ IsOption (-x) (-y) ↔ IsOption x y", "tactic": "rw [isOption_neg, neg_neg]" } ]
[ 1238, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1237, 1 ]
Mathlib/Topology/Constructions.lean
nhds_prod_eq
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type ?u.32917\nδ : Type ?u.32920\nε : Type ?u.32923\nζ : Type ?u.32926\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : TopologicalSpace ε\ninst✝ : TopologicalSpace ζ\na : α\nb : β\n⊢ 𝓝 (a, b) = Filter.prod (𝓝 a) (𝓝 b)", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.32917\nδ : Type ?u.32920\nε : Type ?u.32923\nζ : Type ?u.32926\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : TopologicalSpace ε\ninst✝ : TopologicalSpace ζ\na : α\nb : β\n⊢ 𝓝 (a, b) = 𝓝 a ×ˢ 𝓝 b", "tactic": "dsimp only [SProd.sprod]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.32917\nδ : Type ?u.32920\nε : Type ?u.32923\nζ : Type ?u.32926\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : TopologicalSpace ε\ninst✝ : TopologicalSpace ζ\na : α\nb : β\n⊢ 𝓝 (a, b) = Filter.prod (𝓝 a) (𝓝 b)", "tactic": "rw [Filter.prod, instTopologicalSpaceProd, nhds_inf (t₁ := TopologicalSpace.induced Prod.fst _)\n (t₂ := TopologicalSpace.induced Prod.snd _), nhds_induced, nhds_induced]" } ]
[ 514, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 511, 1 ]
Mathlib/Topology/Constructions.lean
induced_to_pi
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type ?u.512017\nδ : Type ?u.512020\nε : Type ?u.512023\nζ : Type ?u.512026\nι : Type u_2\nπ : ι → Type u_3\nκ : Type ?u.512037\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf✝ : α → (i : ι) → π i\nX : Type u_1\nf : X → (i : ι) → π i\n⊢ (⨅ (i : ι), induced f (induced (fun f => f i) ((fun a => inst✝ a) i))) =\n ⨅ (i : ι), induced (fun x => f x i) inferInstance", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.512017\nδ : Type ?u.512020\nε : Type ?u.512023\nζ : Type ?u.512026\nι : Type u_2\nπ : ι → Type u_3\nκ : Type ?u.512037\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf✝ : α → (i : ι) → π i\nX : Type u_1\nf : X → (i : ι) → π i\n⊢ induced f Pi.topologicalSpace = ⨅ (i : ι), induced (fun x => f x i) inferInstance", "tactic": "erw [induced_iInf]" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type ?u.512017\nδ : Type ?u.512020\nε : Type ?u.512023\nζ : Type ?u.512026\nι : Type u_2\nπ : ι → Type u_3\nκ : Type ?u.512037\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf✝ : α → (i : ι) → π i\nX : Type u_1\nf : X → (i : ι) → π i\n⊢ (⨅ (i : ι), induced ((fun f => f i) ∘ f) (inst✝ i)) = ⨅ (i : ι), induced (fun x => f x i) inferInstance", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.512017\nδ : Type ?u.512020\nε : Type ?u.512023\nζ : Type ?u.512026\nι : Type u_2\nπ : ι → Type u_3\nκ : Type ?u.512037\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf✝ : α → (i : ι) → π i\nX : Type u_1\nf : X → (i : ι) → π i\n⊢ (⨅ (i : ι), induced f (induced (fun f => f i) ((fun a => inst✝ a) i))) =\n ⨅ (i : ι), induced (fun x => f x i) inferInstance", "tactic": "simp only [induced_compose]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.512017\nδ : Type ?u.512020\nε : Type ?u.512023\nζ : Type ?u.512026\nι : Type u_2\nπ : ι → Type u_3\nκ : Type ?u.512037\ninst✝¹ : TopologicalSpace α\ninst✝ : (i : ι) → TopologicalSpace (π i)\nf✝ : α → (i : ι) → π i\nX : Type u_1\nf : X → (i : ι) → π i\n⊢ (⨅ (i : ι), induced ((fun f => f i) ∘ f) (inst✝ i)) = ⨅ (i : ι), induced (fun x => f x i) inferInstance", "tactic": "rfl" } ]
[ 1415, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1411, 1 ]
Mathlib/Topology/MetricSpace/PiNat.lean
PiNat.iUnion_cylinder_update
[ { "state_after": "case h\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ (y ∈ ⋃ (k : E n), cylinder (update x n k) (n + 1)) ↔ y ∈ cylinder x n", "state_before": "E : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\n⊢ (⋃ (k : E n), cylinder (update x n k) (n + 1)) = cylinder x n", "tactic": "ext y" }, { "state_after": "case h\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ (∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1) ↔ ∀ (i : ℕ), i < n → y i = x i", "state_before": "case h\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ (y ∈ ⋃ (k : E n), cylinder (update x n k) (n + 1)) ↔ y ∈ cylinder x n", "tactic": "simp only [mem_cylinder_iff, mem_iUnion]" }, { "state_after": "case h.mp\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ (∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1) → ∀ (i : ℕ), i < n → y i = x i\n\ncase h.mpr\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ (∀ (i : ℕ), i < n → y i = x i) → ∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1", "state_before": "case h\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ (∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1) ↔ ∀ (i : ℕ), i < n → y i = x i", "tactic": "constructor" }, { "state_after": "case h.mp.intro\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\nk : E n\nhk : ∀ (i : ℕ), i < n + 1 → y i = update x n k i\ni : ℕ\nhi : i < n\n⊢ y i = x i", "state_before": "case h.mp\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ (∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1) → ∀ (i : ℕ), i < n → y i = x i", "tactic": "rintro ⟨k, hk⟩ i hi" }, { "state_after": "no goals", "state_before": "case h.mp.intro\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\nk : E n\nhk : ∀ (i : ℕ), i < n + 1 → y i = update x n k i\ni : ℕ\nhi : i < n\n⊢ y i = x i", "tactic": "simpa [hi.ne] using hk i (Nat.lt_succ_of_lt hi)" }, { "state_after": "case h.mpr\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\nH : ∀ (i : ℕ), i < n → y i = x i\n⊢ ∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1", "state_before": "case h.mpr\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\n⊢ (∀ (i : ℕ), i < n → y i = x i) → ∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1", "tactic": "intro H" }, { "state_after": "case h.mpr\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\nH : ∀ (i : ℕ), i < n → y i = x i\ni : ℕ\nhi : i < n + 1\n⊢ y i = update x n (y n) i", "state_before": "case h.mpr\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\nH : ∀ (i : ℕ), i < n → y i = x i\n⊢ ∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1", "tactic": "refine' ⟨y n, fun i hi => _⟩" }, { "state_after": "case h.mpr.inl\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\nH : ∀ (i : ℕ), i < n → y i = x i\ni : ℕ\nhi : i < n + 1\nh'i : i < n\n⊢ y i = update x n (y n) i\n\ncase h.mpr.inr\nE : ℕ → Type u_1\nx y : (n : ℕ) → E n\ni : ℕ\nH : ∀ (i_1 : ℕ), i_1 < i → y i_1 = x i_1\nhi : i < i + 1\n⊢ y i = update x i (y i) i", "state_before": "case h.mpr\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\nH : ∀ (i : ℕ), i < n → y i = x i\ni : ℕ\nhi : i < n + 1\n⊢ y i = update x n (y n) i", "tactic": "rcases Nat.lt_succ_iff_lt_or_eq.1 hi with (h'i | rfl)" }, { "state_after": "no goals", "state_before": "case h.mpr.inl\nE : ℕ → Type u_1\nx : (n : ℕ) → E n\nn : ℕ\ny : (n : ℕ) → E n\nH : ∀ (i : ℕ), i < n → y i = x i\ni : ℕ\nhi : i < n + 1\nh'i : i < n\n⊢ y i = update x n (y n) i", "tactic": "simp [H i h'i, h'i.ne]" }, { "state_after": "no goals", "state_before": "case h.mpr.inr\nE : ℕ → Type u_1\nx y : (n : ℕ) → E n\ni : ℕ\nH : ∀ (i_1 : ℕ), i_1 < i → y i_1 = x i_1\nhi : i < i + 1\n⊢ y i = update x i (y i) i", "tactic": "simp" } ]
[ 188, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 177, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.normSq_add_mul_I
[ { "state_after": "no goals", "state_before": "x y : ℝ\n⊢ ↑normSq (↑x + ↑y * I) = x ^ 2 + y ^ 2", "tactic": "rw [← mk_eq_add_mul_I, normSq_mk, sq, sq]" } ]
[ 598, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 597, 1 ]
Mathlib/Analysis/Seminorm.lean
Seminorm.mem_closedBall_zero
[ { "state_after": "no goals", "state_before": "R : Type ?u.818815\nR' : Type ?u.818818\n𝕜 : Type u_2\n𝕜₂ : Type ?u.818824\n𝕜₃ : Type ?u.818827\n𝕝 : Type ?u.818830\nE : Type u_1\nE₂ : Type ?u.818836\nE₃ : Type ?u.818839\nF : Type ?u.818842\nG : Type ?u.818845\nι : Type ?u.818848\ninst✝² : SeminormedRing 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : SMul 𝕜 E\np : Seminorm 𝕜 E\nx y : E\nr : ℝ\n⊢ y ∈ closedBall p 0 r ↔ ↑p y ≤ r", "tactic": "rw [mem_closedBall, sub_zero]" } ]
[ 665, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 665, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Mul.lean
DifferentiableWithinAt.smul
[]
[ 199, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Topology/Algebra/UniformRing.lean
UniformSpace.Completion.continuous_mul
[ { "state_after": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\n⊢ Continuous fun p => p.fst * p.snd", "state_before": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\n⊢ Continuous fun p => p.fst * p.snd", "tactic": "let m := (AddMonoidHom.mul : α →+ α →+ α).compr₂ toCompl" }, { "state_after": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\nthis : Continuous fun p => ↑(↑m p.fst) p.snd\n⊢ Continuous fun p => p.fst * p.snd", "state_before": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\n⊢ Continuous fun p => p.fst * p.snd", "tactic": "have : Continuous fun p : α × α => m p.1 p.2 := by\n apply (continuous_coe α).comp _\n simp only [AddMonoidHom.coe_mul, AddMonoidHom.coe_mulLeft]\n exact _root_.continuous_mul" }, { "state_after": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\nthis : Continuous fun p => ↑(↑m p.fst) p.snd\ndi : DenseInducing ↑toCompl\n⊢ Continuous fun p => p.fst * p.snd", "state_before": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\nthis : Continuous fun p => ↑(↑m p.fst) p.snd\n⊢ Continuous fun p => p.fst * p.snd", "tactic": "have di : DenseInducing (toCompl : α → Completion α) := denseInducing_coe" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\nthis : Continuous fun p => ↑(↑m p.fst) p.snd\ndi : DenseInducing ↑toCompl\n⊢ Continuous fun p => p.fst * p.snd", "tactic": "convert di.extend_Z_bilin di this" }, { "state_after": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\n⊢ Continuous fun p => ↑(↑AddMonoidHom.mul p.fst) p.snd", "state_before": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\n⊢ Continuous fun p => ↑(↑m p.fst) p.snd", "tactic": "apply (continuous_coe α).comp _" }, { "state_after": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\n⊢ Continuous fun p => p.fst * p.snd", "state_before": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\n⊢ Continuous fun p => ↑(↑AddMonoidHom.mul p.fst) p.snd", "tactic": "simp only [AddMonoidHom.coe_mul, AddMonoidHom.coe_mulLeft]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : Ring α\ninst✝² : UniformSpace α\ninst✝¹ : TopologicalRing α\ninst✝ : UniformAddGroup α\nm : α →+ α →+ Completion α := AddMonoidHom.compr₂ AddMonoidHom.mul toCompl\n⊢ Continuous fun p => p.fst * p.snd", "tactic": "exact _root_.continuous_mul" } ]
[ 85, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Topology/Order/Basic.lean
Icc_mem_nhdsWithin_Ioi
[]
[ 425, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 424, 1 ]
Mathlib/Data/Rat/NNRat.lean
NNRat.ext_iff
[]
[ 86, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/RingTheory/IsTensorProduct.lean
IsBaseChange.lift_eq
[ { "state_after": "R : Type u_1\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹⁴ : AddCommMonoid M\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : CommRing R\ninst✝¹¹ : CommRing S\ninst✝¹⁰ : Algebra R S\ninst✝⁹ : Module R M\ninst✝⁸ : Module R N\ninst✝⁷ : Module S N\ninst✝⁶ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.200383\nQ : Type u_2\ninst✝⁵ : AddCommMonoid P\ninst✝⁴ : Module R P\ninst✝³ : AddCommMonoid Q\ninst✝² : Module S Q\ninst✝¹ : Module R Q\ninst✝ : IsScalarTower R S Q\ng : M →ₗ[R] Q\nx : M\nhF : ∀ (s : S) (m : M), ↑(lift h g) (s • ↑f m) = s • ↑g m\n⊢ ↑(lift h g) (↑f x) = ↑g x", "state_before": "R : Type u_1\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹⁴ : AddCommMonoid M\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : CommRing R\ninst✝¹¹ : CommRing S\ninst✝¹⁰ : Algebra R S\ninst✝⁹ : Module R M\ninst✝⁸ : Module R N\ninst✝⁷ : Module S N\ninst✝⁶ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.200383\nQ : Type u_2\ninst✝⁵ : AddCommMonoid P\ninst✝⁴ : Module R P\ninst✝³ : AddCommMonoid Q\ninst✝² : Module S Q\ninst✝¹ : Module R Q\ninst✝ : IsScalarTower R S Q\ng : M →ₗ[R] Q\nx : M\n⊢ ↑(lift h g) (↑f x) = ↑g x", "tactic": "have hF : ∀ (s : S) (m : M), h.lift g (s • f m) = s • g m := h.lift_eq _" }, { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type v₁\nN : Type v₂\nS : Type v₃\ninst✝¹⁴ : AddCommMonoid M\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : CommRing R\ninst✝¹¹ : CommRing S\ninst✝¹⁰ : Algebra R S\ninst✝⁹ : Module R M\ninst✝⁸ : Module R N\ninst✝⁷ : Module S N\ninst✝⁶ : IsScalarTower R S N\nf : M →ₗ[R] N\nh : IsBaseChange S f\nP : Type ?u.200383\nQ : Type u_2\ninst✝⁵ : AddCommMonoid P\ninst✝⁴ : Module R P\ninst✝³ : AddCommMonoid Q\ninst✝² : Module S Q\ninst✝¹ : Module R Q\ninst✝ : IsScalarTower R S Q\ng : M →ₗ[R] Q\nx : M\nhF : ∀ (s : S) (m : M), ↑(lift h g) (s • ↑f m) = s • ↑g m\n⊢ ↑(lift h g) (↑f x) = ↑g x", "tactic": "convert hF 1 x <;> rw [one_smul]" } ]
[ 192, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 190, 8 ]
Mathlib/Analysis/Calculus/FDeriv/Bilinear.lean
ContinuousLinearMap.fderivWithin_of_bilinear
[]
[ 148, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Order/SuccPred/LinearLocallyFinite.lean
injective_toZ
[]
[ 363, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 362, 1 ]
Mathlib/RepresentationTheory/Action.lean
Action.associator_hom_hom
[ { "state_after": "V : Type (u + 1)\ninst✝¹ : LargeCategory V\nG : MonCat\ninst✝ : MonoidalCategory V\nX Y Z : Action V G\n⊢ (𝟙 (X.V ⊗ Y.V) ⊗ 𝟙 Z.V) ≫ (α_ X.V Y.V Z.V).hom ≫ (𝟙 X.V ⊗ 𝟙 (Y.V ⊗ Z.V)) = (α_ X.V Y.V Z.V).hom", "state_before": "V : Type (u + 1)\ninst✝¹ : LargeCategory V\nG : MonCat\ninst✝ : MonoidalCategory V\nX Y Z : Action V G\n⊢ (α_ X Y Z).hom.hom = (α_ X.V Y.V Z.V).hom", "tactic": "dsimp [Monoidal.transport_associator]" }, { "state_after": "no goals", "state_before": "V : Type (u + 1)\ninst✝¹ : LargeCategory V\nG : MonCat\ninst✝ : MonoidalCategory V\nX Y Z : Action V G\n⊢ (𝟙 (X.V ⊗ Y.V) ⊗ 𝟙 Z.V) ≫ (α_ X.V Y.V Z.V).hom ≫ (𝟙 X.V ⊗ 𝟙 (Y.V ⊗ Z.V)) = (α_ X.V Y.V Z.V).hom", "tactic": "simp" } ]
[ 514, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 511, 1 ]
Mathlib/Topology/Homeomorph.lean
Homeomorph.comap_cocompact
[]
[ 273, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 270, 1 ]
Mathlib/Data/Nat/Interval.lean
Nat.image_Ico_mod
[ { "state_after": "case inl\na b c n : ℕ\n⊢ image (fun x => x % 0) (Ico n (n + 0)) = range 0\n\ncase inr\na✝ b c n a : ℕ\nha : a ≠ 0\n⊢ image (fun x => x % a) (Ico n (n + a)) = range a", "state_before": "a✝ b c n a : ℕ\n⊢ image (fun x => x % a) (Ico n (n + a)) = range a", "tactic": "obtain rfl | ha := eq_or_ne a 0" }, { "state_after": "case inr.a\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\n⊢ i ∈ image (fun x => x % a) (Ico n (n + a)) ↔ i ∈ range a", "state_before": "case inr\na✝ b c n a : ℕ\nha : a ≠ 0\n⊢ image (fun x => x % a) (Ico n (n + a)) = range a", "tactic": "ext i" }, { "state_after": "case inr.a\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\n⊢ (∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i) ↔ i < a", "state_before": "case inr.a\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\n⊢ i ∈ image (fun x => x % a) (Ico n (n + a)) ↔ i ∈ range a", "tactic": "simp only [mem_image, exists_prop, mem_range, mem_Ico]" }, { "state_after": "case inr.a.mp\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\n⊢ (∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i) → i < a\n\ncase inr.a.mpr\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\n⊢ i < a → ∃ a_2, (n ≤ a_2 ∧ a_2 < n + a) ∧ a_2 % a = i", "state_before": "case inr.a\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\n⊢ (∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i) ↔ i < a", "tactic": "constructor" }, { "state_after": "case inr.a.mpr\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\n⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i", "state_before": "case inr.a.mpr\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\n⊢ i < a → ∃ a_2, (n ≤ a_2 ∧ a_2 < n + a) ∧ a_2 % a = i", "tactic": "intro hia" }, { "state_after": "case inr.a.mpr\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\n⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i", "state_before": "case inr.a.mpr\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\n⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i", "tactic": "have hn := Nat.mod_add_div n a" }, { "state_after": "case inr.a.mpr.inl\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i\n\ncase inr.a.mpr.inr\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i", "state_before": "case inr.a.mpr\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\n⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i", "tactic": "obtain hi | hi := lt_or_le i (n % a)" }, { "state_after": "no goals", "state_before": "case inl\na b c n : ℕ\n⊢ image (fun x => x % 0) (Ico n (n + 0)) = range 0", "tactic": "rw [range_zero, add_zero, Ico_self, image_empty]" }, { "state_after": "case inr.a.mp.intro.intro\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nleft✝ : n ≤ i ∧ i < n + a\n⊢ i % a < a", "state_before": "case inr.a.mp\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\n⊢ (∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i) → i < a", "tactic": "rintro ⟨i, _, rfl⟩" }, { "state_after": "no goals", "state_before": "case inr.a.mp.intro.intro\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nleft✝ : n ≤ i ∧ i < n + a\n⊢ i % a < a", "tactic": "exact mod_lt i ha.bot_lt" }, { "state_after": "case inr.a.mpr.inl.refine'_1\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ n ≤ i + a * (n / a + 1)\n\ncase inr.a.mpr.inl.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ i + a * (n / a + 1) < n + a\n\ncase inr.a.mpr.inl.refine'_3\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ (i + a * (n / a + 1)) % a = i", "state_before": "case inr.a.mpr.inl\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i", "tactic": "refine' ⟨i + a * (n / a + 1), ⟨_, _⟩, _⟩" }, { "state_after": "case inr.a.mpr.inl.refine'_1\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ n ≤ i + a + a * (n / a)", "state_before": "case inr.a.mpr.inl.refine'_1\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ n ≤ i + a * (n / a + 1)", "tactic": "rw [add_comm (n / a), mul_add, mul_one, ← add_assoc]" }, { "state_after": "case inr.a.mpr.inl.refine'_1\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ n % a ≤ i + a", "state_before": "case inr.a.mpr.inl.refine'_1\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ n ≤ i + a + a * (n / a)", "tactic": "refine' hn.symm.le.trans (add_le_add_right _ _)" }, { "state_after": "no goals", "state_before": "case inr.a.mpr.inl.refine'_1\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ n % a ≤ i + a", "tactic": "simpa only [zero_add] using add_le_add (zero_le i) (Nat.mod_lt n ha.bot_lt).le" }, { "state_after": "case inr.a.mpr.inl.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ n % a + a * (n / a + 1) ≤ n + a", "state_before": "case inr.a.mpr.inl.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ i + a * (n / a + 1) < n + a", "tactic": "refine' lt_of_lt_of_le (add_lt_add_right hi (a * (n / a + 1))) _" }, { "state_after": "no goals", "state_before": "case inr.a.mpr.inl.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ n % a + a * (n / a + 1) ≤ n + a", "tactic": "rw [mul_add, mul_one, ← add_assoc, hn]" }, { "state_after": "no goals", "state_before": "case inr.a.mpr.inl.refine'_3\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : i < n % a\n⊢ (i + a * (n / a + 1)) % a = i", "tactic": "rw [Nat.add_mul_mod_self_left, Nat.mod_eq_of_lt hia]" }, { "state_after": "case inr.a.mpr.inr.refine'_1\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ n ≤ i + a * (n / a)\n\ncase inr.a.mpr.inr.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ i + a * (n / a) < n + a\n\ncase inr.a.mpr.inr.refine'_3\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ (i + a * (n / a)) % a = i", "state_before": "case inr.a.mpr.inr\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ ∃ a_1, (n ≤ a_1 ∧ a_1 < n + a) ∧ a_1 % a = i", "tactic": "refine' ⟨i + a * (n / a), ⟨_, _⟩, _⟩" }, { "state_after": "no goals", "state_before": "case inr.a.mpr.inr.refine'_1\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ n ≤ i + a * (n / a)", "tactic": "exact hn.symm.le.trans (add_le_add_right hi _)" }, { "state_after": "case inr.a.mpr.inr.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ i + a * (n / a) < a + n", "state_before": "case inr.a.mpr.inr.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ i + a * (n / a) < n + a", "tactic": "rw [add_comm n a]" }, { "state_after": "case inr.a.mpr.inr.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ a * (n / a) ≤ n % a + a * (n / a)", "state_before": "case inr.a.mpr.inr.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ i + a * (n / a) < a + n", "tactic": "refine' add_lt_add_of_lt_of_le hia (le_trans _ hn.le)" }, { "state_after": "no goals", "state_before": "case inr.a.mpr.inr.refine'_2\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ a * (n / a) ≤ n % a + a * (n / a)", "tactic": "simp only [zero_le, le_add_iff_nonneg_left]" }, { "state_after": "no goals", "state_before": "case inr.a.mpr.inr.refine'_3\na✝ b c n a : ℕ\nha : a ≠ 0\ni : ℕ\nhia : i < a\nhn : n % a + a * (n / a) = n\nhi : n % a ≤ i\n⊢ (i + a * (n / a)) % a = i", "tactic": "rw [Nat.add_mul_mod_self_left, Nat.mod_eq_of_lt hia]" } ]
[ 307, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/Topology/MetricSpace/Kuratowski.lean
kuratowskiEmbedding.isometry
[]
[ 123, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 11 ]
Mathlib/Topology/MetricSpace/Antilipschitz.lean
AntilipschitzWith.to_rightInvOn'
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.8961\ninst✝² : PseudoEMetricSpace α\ninst✝¹ : PseudoEMetricSpace β\ninst✝ : PseudoEMetricSpace γ\nK : ℝ≥0\nf : α → β\ns : Set α\nhf : AntilipschitzWith K (Set.restrict s f)\ng : β → α\nt : Set β\ng_maps : MapsTo g t s\ng_inv : RightInvOn g f t\nx y : ↑t\n⊢ edist (Set.restrict t g x) (Set.restrict t g y) ≤ ↑K * edist x y", "tactic": "simpa only [restrict_apply, g_inv x.mem, g_inv y.mem, Subtype.edist_eq, Subtype.coe_mk] using\n hf ⟨g x, g_maps x.mem⟩ ⟨g y, g_maps y.mem⟩" } ]
[ 151, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]