file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/RingTheory/GradedAlgebra/HomogeneousIdeal.lean
Ideal.IsHomogeneous.iInf₂
[]
[ 301, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 299, 1 ]
Mathlib/CategoryTheory/Limits/IsLimit.lean
CategoryTheory.Limits.IsColimit.coconePointsIsoOfNatIso_hom_desc
[ { "state_after": "no goals", "state_before": "J : Type u₁\ninst✝² : Category J\nK : Type u₂\ninst✝¹ : Category K\nC : Type u₃\ninst✝ : Category C\nF✝ : J ⥤ C\nt✝ : Cocone F✝\nF G : J ⥤ C\ns : Cocone F\nr t : Cocone G\nP : IsColimit s\nQ : IsColimit t\nw : F ≅ G\n⊢ ∀ (j : J), s.ι.app j ≫ (coconePointsIsoOfNatIso P Q w).hom ≫ desc Q r = s.ι.app j ≫ map P r w.hom", "tactic": "simp" } ]
[ 844, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 841, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
UniqueFactorizationMonoid.mem_normalizedFactors_eq_of_associated
[ { "state_after": "α : Type u_1\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : DecidableEq α\ninst✝¹ : NormalizationMonoid α\ninst✝ : UniqueFactorizationMonoid α\na b c : α\nha : a ∈ normalizedFactors c\nhb : b ∈ normalizedFactors c\nh : a ~ᵤ b\n⊢ a ∣ b ∧ b ∣ a", "state_before": "α : Type u_1\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : DecidableEq α\ninst✝¹ : NormalizationMonoid α\ninst✝ : UniqueFactorizationMonoid α\na b c : α\nha : a ∈ normalizedFactors c\nhb : b ∈ normalizedFactors c\nh : a ~ᵤ b\n⊢ a = b", "tactic": "rw [← normalize_normalized_factor a ha, ← normalize_normalized_factor b hb,\n normalize_eq_normalize_iff]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝³ : CancelCommMonoidWithZero α\ninst✝² : DecidableEq α\ninst✝¹ : NormalizationMonoid α\ninst✝ : UniqueFactorizationMonoid α\na b c : α\nha : a ∈ normalizedFactors c\nhb : b ∈ normalizedFactors c\nh : a ~ᵤ b\n⊢ a ∣ b ∧ b ∣ a", "tactic": "exact Associated.dvd_dvd h" } ]
[ 774, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 770, 1 ]
Mathlib/Algebra/Order/Interval.lean
Interval.length_sub_le
[ { "state_after": "no goals", "state_before": "ι : Type ?u.392141\nα : Type u_1\ninst✝ : OrderedAddCommGroup α\ns t : Interval α\na : α\n⊢ length (s - t) ≤ length s + length t", "tactic": "simpa [sub_eq_add_neg] using length_add_le s (-t)" } ]
[ 717, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 716, 1 ]
Mathlib/Analysis/BoxIntegral/Basic.lean
BoxIntegral.Integrable.of_smul
[ { "state_after": "no goals", "state_before": "ι : Type u\nE : Type v\nF : Type w\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace ℝ E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\nI J : Box ι\nπ : TaggedPrepartition I\ninst✝ : Fintype ι\nl : IntegrationParams\nf g : (ι → ℝ) → E\nvol : ι →ᵇᵃ[⊤] E →L[ℝ] F\ny y' : F\nc : ℝ\nhf : Integrable I l (c • f) vol\nhc : c ≠ 0\n⊢ Integrable I l f vol", "tactic": "simpa [inv_smul_smul₀ hc] using hf.smul c⁻¹" } ]
[ 362, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 360, 1 ]
Mathlib/Data/Polynomial/Degree/Lemmas.lean
Polynomial.coeff_sub_eq_neg_right_of_lt
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nι : Type w\na b : R\nm n : ℕ\ninst✝ : Ring R\np q : R[X]\ndf : natDegree p < n\n⊢ coeff (p - q) n = -coeff q n", "tactic": "rwa [sub_eq_add_neg, coeff_add_eq_right_of_lt, coeff_neg]" } ]
[ 316, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 1 ]
Mathlib/Order/UpperLower/Basic.lean
LowerSet.coe_bot
[]
[ 670, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 669, 1 ]
Mathlib/CategoryTheory/Sites/CoverLifting.lean
CategoryTheory.RanIsSheafOfCoverLifting.getSection_commute
[ { "state_after": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\n⊢ IsAmalgamation (pulledbackFamily ℱ S x Z) (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right)", "state_before": "C D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\n⊢ getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right = getSection hu ℱ hS hx Z", "tactic": "apply getSection_is_unique" }, { "state_after": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV' : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\n⊢ ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map fV'.op (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right) =\n pulledbackFamily ℱ S x Z fV' hV'", "state_before": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\n⊢ IsAmalgamation (pulledbackFamily ℱ S x Z) (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right)", "tactic": "intro V' fV' hV'" }, { "state_after": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV' : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map fV'.op (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right) =\n pulledbackFamily ℱ S x Z fV' hV'", "state_before": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV' : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\n⊢ ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map fV'.op (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right) =\n pulledbackFamily ℱ S x Z fV' hV'", "tactic": "have eq : Z.hom = Y.hom ≫ (G.map f.right.unop).op := by\n convert f.w\n erw [Category.id_comp]" }, { "state_after": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map fV'.op (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right) =\n pulledbackFamily ℱ S x Z fV' hV'✝", "state_before": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV' : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map fV'.op (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right) =\n pulledbackFamily ℱ S x Z fV' hV'", "tactic": "rw [eq] at hV'" }, { "state_after": "case h.e'_2\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map fV'.op (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right) =\n ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map (fV' ≫ f.right.unop).op (getSection hu ℱ hS hx Y)\n\ncase h.e'_3\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ pulledbackFamily ℱ S x Z fV' hV'✝ = pulledbackFamily ℱ S x Y (fV' ≫ f.right.unop) ?H\n\ncase H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ Presieve.functorPullback G (Sieve.pullback Y.hom.unop S).arrows (fV' ≫ f.right.unop)", "state_before": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map fV'.op (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right) =\n pulledbackFamily ℱ S x Z fV' hV'✝", "tactic": "convert getSection_isAmalgamation hu ℱ hS hx Y (fV' ≫ f.right.unop) _ using 1" }, { "state_after": "case h.e'_2.h\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV' : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\ne_1✝ :\n ((Functor.fromPUnit U.op).obj Z.left ⟶ (Functor.op G).obj Z.right) =\n ((Functor.fromPUnit U.op).obj Y.left ⟶ (Functor.op G).obj Z.right)\n⊢ Z.hom = (Functor.fromPUnit U.op).map f.left ≫ Z.hom", "state_before": "C D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV' : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\n⊢ Z.hom = Y.hom ≫ (G.map f.right.unop).op", "tactic": "convert f.w" }, { "state_after": "no goals", "state_before": "case h.e'_2.h\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV' : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\ne_1✝ :\n ((Functor.fromPUnit U.op).obj Z.left ⟶ (Functor.op G).obj Z.right) =\n ((Functor.fromPUnit U.op).obj Y.left ⟶ (Functor.op G).obj Z.right)\n⊢ Z.hom = (Functor.fromPUnit U.op).map f.left ≫ Z.hom", "tactic": "erw [Category.id_comp]" }, { "state_after": "no goals", "state_before": "case h.e'_2\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map fV'.op (getSection hu ℱ hS hx Y ≫ ℱ.val.map f.right) =\n ((𝟭 (Cᵒᵖ ⥤ A)).obj ℱ.val ⋙ coyoneda.obj X.op).map (fV' ≫ f.right.unop).op (getSection hu ℱ hS hx Y)", "tactic": "aesop_cat" }, { "state_after": "case h.e'_3\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ x (G.map fV' ≫ Z.hom.unop) hV'✝ ≫ ((Ran.adjunction A (Functor.op G)).counit.app ℱ.val).app V'.op =\n x (G.map (fV' ≫ f.right.unop) ≫ Y.hom.unop) ?H ≫ ((Ran.adjunction A (Functor.op G)).counit.app ℱ.val).app V'.op\n\ncase H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ Presieve.functorPullback G (Sieve.pullback Y.hom.unop S).arrows (fV' ≫ f.right.unop)\n\ncase H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ Presieve.functorPullback G (Sieve.pullback Y.hom.unop S).arrows (fV' ≫ f.right.unop)", "state_before": "case h.e'_3\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ pulledbackFamily ℱ S x Z fV' hV'✝ = pulledbackFamily ℱ S x Y (fV' ≫ f.right.unop) ?H", "tactic": "rw [pulledbackFamily_apply, pulledbackFamily_apply]" }, { "state_after": "case h.e'_3.e_a.e_f\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ G.map fV' ≫ Z.hom.unop = G.map (fV' ≫ f.right.unop) ≫ Y.hom.unop", "state_before": "case h.e'_3\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ x (G.map fV' ≫ Z.hom.unop) hV'✝ ≫ ((Ran.adjunction A (Functor.op G)).counit.app ℱ.val).app V'.op =\n x (G.map (fV' ≫ f.right.unop) ≫ Y.hom.unop) ?H ≫ ((Ran.adjunction A (Functor.op G)).counit.app ℱ.val).app V'.op", "tactic": "congr 2" }, { "state_after": "no goals", "state_before": "case h.e'_3.e_a.e_f\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ G.map fV' ≫ Z.hom.unop = G.map (fV' ≫ f.right.unop) ≫ Y.hom.unop", "tactic": "simp [eq]" }, { "state_after": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ S.arrows (G.map (fV' ≫ f.right.unop) ≫ Y.hom.unop)", "state_before": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ Presieve.functorPullback G (Sieve.pullback Y.hom.unop S).arrows (fV' ≫ f.right.unop)", "tactic": "change S (G.map _ ≫ Y.hom.unop)" }, { "state_after": "no goals", "state_before": "case H\nC D : Type u\ninst✝³ : Category C\ninst✝² : Category D\nA : Type w\ninst✝¹ : Category A\ninst✝ : HasLimits A\nJ : GrothendieckTopology C\nK : GrothendieckTopology D\nG : C ⥤ D\nhu : CoverLifting J K G\nℱ : Sheaf J A\nX : A\nU : D\nS : Sieve U\nhS : S ∈ GrothendieckTopology.sieves K U\nx : FamilyOfElements ((ran (Functor.op G)).obj ℱ.val ⋙ coyoneda.obj X.op) S.arrows\nhx : Compatible x\nY Z : StructuredArrow U.op (Functor.op G)\nf : Y ⟶ Z\nV' : C\nfV' : V' ⟶ Z.right.unop\nhV'✝ : Presieve.functorPullback G (Sieve.pullback Z.hom.unop S).arrows fV'\nhV' : Presieve.functorPullback G (Sieve.pullback (Y.hom ≫ (G.map f.right.unop).op).unop S).arrows fV'\neq : Z.hom = Y.hom ≫ (G.map f.right.unop).op\n⊢ S.arrows (G.map (fV' ≫ f.right.unop) ≫ Y.hom.unop)", "tactic": "simpa only [Functor.map_comp, Category.assoc] using hV'" } ]
[ 201, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 1 ]
Mathlib/Topology/Separation.lean
t1Space_iff_disjoint_pure_nhds
[]
[ 512, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 511, 1 ]
Mathlib/Algebra/Homology/HomologicalComplex.lean
CochainComplex.prev
[]
[ 147, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 146, 1 ]
Mathlib/Data/Polynomial/Laurent.lean
LaurentPolynomial.T_add
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : Semiring R\nm n : ℤ\n⊢ T (m + n) = T m * T n", "tactic": "simp [T, single_mul_single]" } ]
[ 180, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/Data/Fintype/Basic.lean
Set.toFinset_union
[ { "state_after": "case a\nα : Type u_1\nβ : Type ?u.87559\nγ : Type ?u.87562\ns t : Set α\ninst✝³ : DecidableEq α\ninst✝² : Fintype ↑s\ninst✝¹ : Fintype ↑t\ninst✝ : Fintype ↑(s ∪ t)\na✝ : α\n⊢ a✝ ∈ toFinset (s ∪ t) ↔ a✝ ∈ toFinset s ∪ toFinset t", "state_before": "α : Type u_1\nβ : Type ?u.87559\nγ : Type ?u.87562\ns t : Set α\ninst✝³ : DecidableEq α\ninst✝² : Fintype ↑s\ninst✝¹ : Fintype ↑t\ninst✝ : Fintype ↑(s ∪ t)\n⊢ toFinset (s ∪ t) = toFinset s ∪ toFinset t", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nβ : Type ?u.87559\nγ : Type ?u.87562\ns t : Set α\ninst✝³ : DecidableEq α\ninst✝² : Fintype ↑s\ninst✝¹ : Fintype ↑t\ninst✝ : Fintype ↑(s ∪ t)\na✝ : α\n⊢ a✝ ∈ toFinset (s ∪ t) ↔ a✝ ∈ toFinset s ∪ toFinset t", "tactic": "simp" } ]
[ 705, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 703, 1 ]
Mathlib/Analysis/Calculus/FDerivMeasurable.lean
ContinuousLinearMap.measurable_apply₂
[]
[ 95, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
zpow_bit1
[ { "state_after": "no goals", "state_before": "α : Type ?u.145698\nM : Type u\nN : Type v\nG : Type w\nH : Type x\nA : Type y\nB : Type z\nR : Type u₁\nS : Type u₂\ninst✝ : Group G\na : G\nn : ℤ\n⊢ a ^ bit1 n = a ^ n * a ^ n * a", "tactic": "rw [bit1, zpow_add, zpow_bit0, zpow_one]" } ]
[ 266, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
MeasureTheory.SignedMeasure.rnDeriv_add
[ { "state_after": "α : Type u_1\nβ : Type ?u.653242\nm : MeasurableSpace α\nμ✝ ν : Measure α\ns✝ t✝ s t : SignedMeasure α\nμ : Measure α\ninst✝² : HaveLebesgueDecomposition s μ\ninst✝¹ : HaveLebesgueDecomposition t μ\ninst✝ : HaveLebesgueDecomposition (s + t) μ\n⊢ withDensityᵥ μ (rnDeriv (s + t) μ) = withDensityᵥ μ (rnDeriv s μ + rnDeriv t μ)", "state_before": "α : Type u_1\nβ : Type ?u.653242\nm : MeasurableSpace α\nμ✝ ν : Measure α\ns✝ t✝ s t : SignedMeasure α\nμ : Measure α\ninst✝² : HaveLebesgueDecomposition s μ\ninst✝¹ : HaveLebesgueDecomposition t μ\ninst✝ : HaveLebesgueDecomposition (s + t) μ\n⊢ rnDeriv (s + t) μ =ᶠ[ae μ] rnDeriv s μ + rnDeriv t μ", "tactic": "refine'\n Integrable.ae_eq_of_withDensityᵥ_eq (integrable_rnDeriv _ _)\n ((integrable_rnDeriv _ _).add (integrable_rnDeriv _ _)) _" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.653242\nm : MeasurableSpace α\nμ✝ ν : Measure α\ns✝ t✝ s t : SignedMeasure α\nμ : Measure α\ninst✝² : HaveLebesgueDecomposition s μ\ninst✝¹ : HaveLebesgueDecomposition t μ\ninst✝ : HaveLebesgueDecomposition (s + t) μ\n⊢ withDensityᵥ μ (rnDeriv (s + t) μ) = withDensityᵥ μ (rnDeriv s μ + rnDeriv t μ)", "tactic": "rw [← add_right_inj ((s + t).singularPart μ), singularPart_add_withDensity_rnDeriv_eq,\n withDensityᵥ_add (integrable_rnDeriv _ _) (integrable_rnDeriv _ _), singularPart_add,\n add_assoc, add_comm (t.singularPart μ), add_assoc, add_comm _ (t.singularPart μ),\n singularPart_add_withDensity_rnDeriv_eq, ← add_assoc,\n singularPart_add_withDensity_rnDeriv_eq]" } ]
[ 1177, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1167, 1 ]
Mathlib/Algebra/Hom/Aut.lean
AddAut.one_def
[]
[ 212, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Analysis/LocallyConvex/Basic.lean
Absorbs.mono_right
[]
[ 82, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Analysis/Calculus/Deriv/Linear.lean
ContinuousLinearMap.hasDerivAtFilter
[]
[ 53, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 11 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.isCycle_swap_mul_aux₂
[ { "state_after": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf g : Perm α✝\nx y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℤ\n⊢ ∀ {b x : α} {f : Perm α},\n ↑(swap x (↑f x) * f) b ≠ b → ↑(f ^ n) (↑f x) = b → ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b", "state_before": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf g : Perm α✝\nx y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\n⊢ ∀ (n : ℤ) {b x : α} {f : Perm α},\n ↑(swap x (↑f x) * f) b ≠ b → ↑(f ^ n) (↑f x) = b → ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b", "tactic": "intro n" }, { "state_after": "case ofNat\nι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf g : Perm α✝\nx y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\n⊢ ∀ {b x : α} {f : Perm α},\n ↑(swap x (↑f x) * f) b ≠ b → ↑(f ^ Int.ofNat n) (↑f x) = b → ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b\n\ncase negSucc\nι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf g : Perm α✝\nx y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\n⊢ ∀ {b x : α} {f : Perm α},\n ↑(swap x (↑f x) * f) b ≠ b → ↑(f ^ Int.negSucc n) (↑f x) = b → ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b", "state_before": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf g : Perm α✝\nx y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℤ\n⊢ ∀ {b x : α} {f : Perm α},\n ↑(swap x (↑f x) * f) b ≠ b → ↑(f ^ n) (↑f x) = b → ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b", "tactic": "induction' n with n n" }, { "state_after": "no goals", "state_before": "case ofNat\nι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf g : Perm α✝\nx y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\n⊢ ∀ {b x : α} {f : Perm α},\n ↑(swap x (↑f x) * f) b ≠ b → ↑(f ^ Int.ofNat n) (↑f x) = b → ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b", "tactic": "exact isCycle_swap_mul_aux₁ n" }, { "state_after": "case negSucc\nι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf✝ g : Perm α✝\nx✝ y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\nb x : α\nf : Perm α\nhb : ↑(swap x (↑f x) * f) b ≠ b\nh : ↑(f ^ Int.negSucc n) (↑f x) = b\n⊢ ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b", "state_before": "case negSucc\nι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf g : Perm α✝\nx y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\n⊢ ∀ {b x : α} {f : Perm α},\n ↑(swap x (↑f x) * f) b ≠ b → ↑(f ^ Int.negSucc n) (↑f x) = b → ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b", "tactic": "intro b x f hb h" }, { "state_after": "no goals", "state_before": "case negSucc\nι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf✝ g : Perm α✝\nx✝ y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\nb x : α\nf : Perm α\nhb : ↑(swap x (↑f x) * f) b ≠ b\nh : ↑(f ^ Int.negSucc n) (↑f x) = b\n⊢ ∃ i, ↑((swap x (↑f x) * f) ^ i) (↑f x) = b", "tactic": "exact if hfbx' : f x = b then ⟨0, hfbx'⟩\n else\n have : f b ≠ b ∧ b ≠ x := ne_and_ne_of_swap_mul_apply_ne_self hb\n have hb : (swap x (f⁻¹ x) * f⁻¹) (f⁻¹ b) ≠ f⁻¹ b := by\n rw [mul_apply, swap_apply_def]\n split_ifs <;>\n simp only [inv_eq_iff_eq, Perm.mul_apply, zpow_negSucc,\n Ne.def, Perm.apply_inv_self] at\n * <;> tauto\n let ⟨i, hi⟩ :=\n isCycle_swap_mul_aux₁ n hb\n (show (f⁻¹ ^ n) (f⁻¹ x) = f⁻¹ b by\n rw [← zpow_ofNat, ← h, ← mul_apply, ← mul_apply, ← mul_apply, zpow_negSucc, ← inv_pow,\n pow_succ', mul_assoc, mul_assoc, inv_mul_self, mul_one, zpow_ofNat, ← pow_succ', ←\n pow_succ])\n have h : (swap x (f⁻¹ x) * f⁻¹) (f x) = f⁻¹ x := by\n rw [mul_apply, inv_apply_self, swap_apply_left]\n ⟨-i, by\n rw [← add_sub_cancel i 1, neg_sub, sub_eq_add_neg, zpow_add, zpow_one, zpow_neg,\n ← inv_zpow, mul_inv_rev, swap_inv, mul_swap_eq_swap_mul, inv_apply_self, swap_comm _ x,\n zpow_add, zpow_one, mul_apply, mul_apply (_ ^ i), h, hi, mul_apply, apply_inv_self,\n swap_apply_of_ne_of_ne this.2 (Ne.symm hfbx')]⟩" }, { "state_after": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf✝ g : Perm α✝\nx✝ y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\nb x : α\nf : Perm α\nhb : ↑(swap x (↑f x) * f) b ≠ b\nh : ↑(f ^ Int.negSucc n) (↑f x) = b\nhfbx' : ¬↑f x = b\nthis : ↑f b ≠ b ∧ b ≠ x\n⊢ (if ↑f⁻¹ (↑f⁻¹ b) = x then ↑f⁻¹ x else if ↑f⁻¹ (↑f⁻¹ b) = ↑f⁻¹ x then x else ↑f⁻¹ (↑f⁻¹ b)) ≠ ↑f⁻¹ b", "state_before": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf✝ g : Perm α✝\nx✝ y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\nb x : α\nf : Perm α\nhb : ↑(swap x (↑f x) * f) b ≠ b\nh : ↑(f ^ Int.negSucc n) (↑f x) = b\nhfbx' : ¬↑f x = b\nthis : ↑f b ≠ b ∧ b ≠ x\n⊢ ↑(swap x (↑f⁻¹ x) * f⁻¹) (↑f⁻¹ b) ≠ ↑f⁻¹ b", "tactic": "rw [mul_apply, swap_apply_def]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf✝ g : Perm α✝\nx✝ y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\nb x : α\nf : Perm α\nhb : ↑(swap x (↑f x) * f) b ≠ b\nh : ↑(f ^ Int.negSucc n) (↑f x) = b\nhfbx' : ¬↑f x = b\nthis : ↑f b ≠ b ∧ b ≠ x\n⊢ (if ↑f⁻¹ (↑f⁻¹ b) = x then ↑f⁻¹ x else if ↑f⁻¹ (↑f⁻¹ b) = ↑f⁻¹ x then x else ↑f⁻¹ (↑f⁻¹ b)) ≠ ↑f⁻¹ b", "tactic": "split_ifs <;>\n simp only [inv_eq_iff_eq, Perm.mul_apply, zpow_negSucc,\n Ne.def, Perm.apply_inv_self] at\n * <;> tauto" }, { "state_after": "no goals", "state_before": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf✝ g : Perm α✝\nx✝ y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\nb x : α\nf : Perm α\nhb✝ : ↑(swap x (↑f x) * f) b ≠ b\nh : ↑(f ^ Int.negSucc n) (↑f x) = b\nhfbx' : ¬↑f x = b\nthis : ↑f b ≠ b ∧ b ≠ x\nhb : ↑(swap x (↑f⁻¹ x) * f⁻¹) (↑f⁻¹ b) ≠ ↑f⁻¹ b\n⊢ ↑(f⁻¹ ^ n) (↑f⁻¹ x) = ↑f⁻¹ b", "tactic": "rw [← zpow_ofNat, ← h, ← mul_apply, ← mul_apply, ← mul_apply, zpow_negSucc, ← inv_pow,\n pow_succ', mul_assoc, mul_assoc, inv_mul_self, mul_one, zpow_ofNat, ← pow_succ', ←\n pow_succ]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf✝ g : Perm α✝\nx✝ y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\nb x : α\nf : Perm α\nhb✝ : ↑(swap x (↑f x) * f) b ≠ b\nh : ↑(f ^ Int.negSucc n) (↑f x) = b\nhfbx' : ¬↑f x = b\nthis : ↑f b ≠ b ∧ b ≠ x\nhb : ↑(swap x (↑f⁻¹ x) * f⁻¹) (↑f⁻¹ b) ≠ ↑f⁻¹ b\ni : ℤ\nhi : ↑((swap x (↑f⁻¹ x) * f⁻¹) ^ i) (↑f⁻¹ x) = ↑f⁻¹ b\n⊢ ↑(swap x (↑f⁻¹ x) * f⁻¹) (↑f x) = ↑f⁻¹ x", "tactic": "rw [mul_apply, inv_apply_self, swap_apply_left]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.676454\nα✝ : Type ?u.676457\nβ : Type ?u.676460\nf✝ g : Perm α✝\nx✝ y : α✝\ninst✝² : DecidableEq α✝\ninst✝¹ : Fintype α✝\nα : Type u_1\ninst✝ : DecidableEq α\nn : ℕ\nb x : α\nf : Perm α\nhb✝ : ↑(swap x (↑f x) * f) b ≠ b\nh✝ : ↑(f ^ Int.negSucc n) (↑f x) = b\nhfbx' : ¬↑f x = b\nthis : ↑f b ≠ b ∧ b ≠ x\nhb : ↑(swap x (↑f⁻¹ x) * f⁻¹) (↑f⁻¹ b) ≠ ↑f⁻¹ b\ni : ℤ\nhi : ↑((swap x (↑f⁻¹ x) * f⁻¹) ^ i) (↑f⁻¹ x) = ↑f⁻¹ b\nh : ↑(swap x (↑f⁻¹ x) * f⁻¹) (↑f x) = ↑f⁻¹ x\n⊢ ↑((swap x (↑f x) * f) ^ (-i)) (↑f x) = b", "tactic": "rw [← add_sub_cancel i 1, neg_sub, sub_eq_add_neg, zpow_add, zpow_one, zpow_neg,\n ← inv_zpow, mul_inv_rev, swap_inv, mul_swap_eq_swap_mul, inv_apply_self, swap_comm _ x,\n zpow_add, zpow_one, mul_apply, mul_apply (_ ^ i), h, hi, mul_apply, apply_inv_self,\n swap_apply_of_ne_of_ne this.2 (Ne.symm hfbx')]" } ]
[ 495, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 467, 1 ]
Mathlib/Data/Fintype/Card.lean
Function.Embedding.nonempty_of_card_le
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.50772\ninst✝¹ : Fintype α\ninst✝ : Fintype β\nh : Fintype.card α ≤ Fintype.card β\n⊢ Nonempty (α ↪ β)", "tactic": "classical exact (truncOfCardLe h).nonempty" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.50772\ninst✝¹ : Fintype α\ninst✝ : Fintype β\nh : Fintype.card α ≤ Fintype.card β\n⊢ Nonempty (α ↪ β)", "tactic": "exact (truncOfCardLe h).nonempty" } ]
[ 798, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 797, 1 ]
Mathlib/Data/MvPolynomial/Variables.lean
MvPolynomial.vars_one
[]
[ 369, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Mathlib/NumberTheory/FermatPsp.lean
FermatPsp.psp_from_prime_gt_p
[ { "state_after": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\n⊢ p < (b ^ p - 1) / (b - 1) * ((b ^ p + 1) / (b + 1))", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\n⊢ p < FermatPsp.psp_from_prime b p", "tactic": "unfold psp_from_prime" }, { "state_after": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\n⊢ p < A * ((b ^ p + 1) / (b + 1))", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\n⊢ p < (b ^ p - 1) / (b - 1) * ((b ^ p + 1) / (b + 1))", "tactic": "set A := (b ^ p - 1) / (b - 1)" }, { "state_after": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\n⊢ p < A * B", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\n⊢ p < A * ((b ^ p + 1) / (b + 1))", "tactic": "set B := (b ^ p + 1) / (b + 1)" }, { "state_after": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\n⊢ p < A * B", "tactic": "rw [show A * B = (b ^ (2 * p) - 1) / (b ^ 2 - 1) from\n AB_id_helper _ _ b_ge_two (p_prime.odd_of_ne_two p_gt_two.ne.symm)]" }, { "state_after": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "tactic": "have AB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1 := by\n simpa only [one_pow, pow_mul] using nat_sub_dvd_pow_sub_pow _ 1 p" }, { "state_after": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * (b ^ 2 - 1) < b ^ (2 * p) - 1\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)\n\ncase h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * (b ^ 2 - 1) < b ^ (2 * p) - 1", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "tactic": "suffices h : p * (b ^ 2 - 1) < b ^ (2 * p) - 1" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * b ^ 2 - p < (b ^ 2) ^ p - 1", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * (b ^ 2 - 1) < b ^ (2 * p) - 1", "tactic": "rw [Nat.mul_sub_left_distrib, mul_one, pow_mul]" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * b ^ 2 - p < (b ^ 2) ^ (p - 1 + 1) - 1", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * b ^ 2 - p < (b ^ 2) ^ p - 1", "tactic": "conv_rhs => rw [← Nat.sub_add_cancel (show 1 ≤ p by linarith)]" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * b ^ 2 - p < b ^ 2 * (b ^ 2) ^ (p - 1) - 1", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * b ^ 2 - p < (b ^ 2) ^ (p - 1 + 1) - 1", "tactic": "rw [pow_succ (b ^ 2)]" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ p * b ^ 2 - p < b ^ 2 * (b ^ 2) ^ (p - 1) - 1\n\ncase h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * b ^ 2 - p < b ^ 2 * (b ^ 2) ^ (p - 1) - 1", "tactic": "suffices h : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\n⊢ p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n\ncase h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p < (b ^ 2) ^ (p - 1)", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)", "tactic": "suffices h : p < (b ^ 2) ^ (p - 1)" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p < b ^ (2 * p - 2)", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p < (b ^ 2) ^ (p - 1)", "tactic": "rw [← pow_mul, Nat.mul_sub_left_distrib, mul_one]" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nthis : 2 ≤ 2 * p - 2\n⊢ p < b ^ (2 * p - 2)", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ p < b ^ (2 * p - 2)", "tactic": "have : 2 ≤ 2 * p - 2 := le_tsub_of_add_le_left (show 4 ≤ 2 * p by linarith)" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nthis✝ : 2 ≤ 2 * p - 2\nthis : 2 + p ≤ 2 * p\n⊢ p < b ^ (2 * p - 2)", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nthis : 2 ≤ 2 * p - 2\n⊢ p < b ^ (2 * p - 2)", "tactic": "have : 2 + p ≤ 2 * p := by linarith" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nthis✝¹ : 2 ≤ 2 * p - 2\nthis✝ : 2 + p ≤ 2 * p\nthis : p ≤ 2 * p - 2\n⊢ p < b ^ (2 * p - 2)", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nthis✝ : 2 ≤ 2 * p - 2\nthis : 2 + p ≤ 2 * p\n⊢ p < b ^ (2 * p - 2)", "tactic": "have : p ≤ 2 * p - 2 := le_tsub_of_add_le_left this" }, { "state_after": "no goals", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nthis✝¹ : 2 ≤ 2 * p - 2\nthis✝ : 2 + p ≤ 2 * p\nthis : p ≤ 2 * p - 2\n⊢ p < b ^ (2 * p - 2)", "tactic": "exact Nat.lt_of_le_of_lt this (pow_gt_exponent _ b_ge_two)" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\n⊢ b ^ 2 - 1 ∣ b ^ (2 * p) - 1", "tactic": "simpa only [one_pow, pow_mul] using nat_sub_dvd_pow_sub_pow _ 1 p" }, { "state_after": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * (b ^ 2 - 1) < b ^ (2 * p) - 1\nh₁ : p * (b ^ 2 - 1) / (b ^ 2 - 1) < (b ^ (2 * p) - 1) / (b ^ 2 - 1)\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * (b ^ 2 - 1) < b ^ (2 * p) - 1\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "tactic": "have h₁ : p * (b ^ 2 - 1) / (b ^ 2 - 1) < (b ^ (2 * p) - 1) / (b ^ 2 - 1) :=\n Nat.div_lt_div_of_lt_of_dvd AB_dvd h" }, { "state_after": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * (b ^ 2 - 1) < b ^ (2 * p) - 1\nh₁ : p * (b ^ 2 - 1) / (b ^ 2 - 1) < (b ^ (2 * p) - 1) / (b ^ 2 - 1)\nh₂ : 0 < b ^ 2 - 1\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * (b ^ 2 - 1) < b ^ (2 * p) - 1\nh₁ : p * (b ^ 2 - 1) / (b ^ 2 - 1) < (b ^ (2 * p) - 1) / (b ^ 2 - 1)\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "tactic": "have h₂ : 0 < b ^ 2 - 1 := by\n linarith [show 3 ≤ b ^ 2 - 1 from le_tsub_of_add_le_left (show 4 ≤ b ^ 2 by nlinarith)]" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * (b ^ 2 - 1) < b ^ (2 * p) - 1\nh₁ : p * (b ^ 2 - 1) / (b ^ 2 - 1) < (b ^ (2 * p) - 1) / (b ^ 2 - 1)\nh₂ : 0 < b ^ 2 - 1\n⊢ p < (b ^ (2 * p) - 1) / (b ^ 2 - 1)", "tactic": "rwa [Nat.mul_div_cancel _ h₂] at h₁" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * (b ^ 2 - 1) < b ^ (2 * p) - 1\nh₁ : p * (b ^ 2 - 1) / (b ^ 2 - 1) < (b ^ (2 * p) - 1) / (b ^ 2 - 1)\n⊢ 0 < b ^ 2 - 1", "tactic": "linarith [show 3 ≤ b ^ 2 - 1 from le_tsub_of_add_le_left (show 4 ≤ b ^ 2 by nlinarith)]" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * (b ^ 2 - 1) < b ^ (2 * p) - 1\nh₁ : p * (b ^ 2 - 1) / (b ^ 2 - 1) < (b ^ (2 * p) - 1) / (b ^ 2 - 1)\n⊢ 4 ≤ b ^ 2", "tactic": "nlinarith" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ 1 ≤ p", "tactic": "linarith" }, { "state_after": "case h.h₁\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ b ^ 2 * (b ^ 2) ^ (p - 1) - 1 ≥ ?h.b\n\ncase h.h₂\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ ?h.b > p * b ^ 2 - p\n\ncase h.b\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ ℕ", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ p * b ^ 2 - p < b ^ 2 * (b ^ 2) ^ (p - 1) - 1", "tactic": "apply gt_of_ge_of_gt" }, { "state_after": "no goals", "state_before": "case h.h₁\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ b ^ 2 * (b ^ 2) ^ (p - 1) - 1 ≥ ?h.b", "tactic": "exact tsub_le_tsub_left (show 1 ≤ p by linarith) (b ^ 2 * (b ^ 2) ^ (p - 1))" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ 1 ≤ p", "tactic": "linarith" }, { "state_after": "case h.h₂\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\nthis : p ≤ p * b ^ 2\n⊢ b ^ 2 * (b ^ 2) ^ (p - 1) - p > p * b ^ 2 - p", "state_before": "case h.h₂\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ b ^ 2 * (b ^ 2) ^ (p - 1) - p > p * b ^ 2 - p", "tactic": "have : p ≤ p * b ^ 2 := Nat.le_mul_of_pos_right (show 0 < b ^ 2 by nlinarith)" }, { "state_after": "no goals", "state_before": "case h.h₂\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\nthis : p ≤ p * b ^ 2\n⊢ b ^ 2 * (b ^ 2) ^ (p - 1) - p > p * b ^ 2 - p", "tactic": "exact tsub_lt_tsub_right_of_le this h" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)\n⊢ 0 < b ^ 2", "tactic": "nlinarith" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\n⊢ p * b ^ 2 < (b ^ 2) ^ (p - 1) * b ^ 2", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\n⊢ p * b ^ 2 < b ^ 2 * (b ^ 2) ^ (p - 1)", "tactic": "rw [mul_comm (b ^ 2)]" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\nthis : 4 ≤ b ^ 2\n⊢ p * b ^ 2 < (b ^ 2) ^ (p - 1) * b ^ 2", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\n⊢ p * b ^ 2 < (b ^ 2) ^ (p - 1) * b ^ 2", "tactic": "have : 4 ≤ b ^ 2 := by nlinarith" }, { "state_after": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\nthis✝ : 4 ≤ b ^ 2\nthis : 0 < b ^ 2\n⊢ p * b ^ 2 < (b ^ 2) ^ (p - 1) * b ^ 2", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\nthis : 4 ≤ b ^ 2\n⊢ p * b ^ 2 < (b ^ 2) ^ (p - 1) * b ^ 2", "tactic": "have : 0 < b ^ 2 := by linarith" }, { "state_after": "no goals", "state_before": "case h\nb : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\nthis✝ : 4 ≤ b ^ 2\nthis : 0 < b ^ 2\n⊢ p * b ^ 2 < (b ^ 2) ^ (p - 1) * b ^ 2", "tactic": "exact mul_lt_mul_of_pos_right h this" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\n⊢ 4 ≤ b ^ 2", "tactic": "nlinarith" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nh : p < (b ^ 2) ^ (p - 1)\nthis : 4 ≤ b ^ 2\n⊢ 0 < b ^ 2", "tactic": "linarith" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\n⊢ 4 ≤ 2 * p", "tactic": "linarith" }, { "state_after": "no goals", "state_before": "b : ℕ\nb_ge_two : 2 ≤ b\np : ℕ\np_prime : Nat.Prime p\np_gt_two : 2 < p\nA : ℕ := (b ^ p - 1) / (b - 1)\nB : ℕ := (b ^ p + 1) / (b + 1)\nAB_dvd : b ^ 2 - 1 ∣ b ^ (2 * p) - 1\nthis : 2 ≤ 2 * p - 2\n⊢ 2 + p ≤ 2 * p", "tactic": "linarith" } ]
[ 348, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 9 ]
Std/Data/List/Lemmas.lean
List.singleton_disjoint
[ { "state_after": "no goals", "state_before": "α✝ : Type u_1\na : α✝\nl : List α✝\n⊢ Disjoint [a] l ↔ ¬a ∈ l", "tactic": "simp [Disjoint]" } ]
[ 1378, 87 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1378, 14 ]
Mathlib/LinearAlgebra/Alternating.lean
AlternatingMap.map_perm
[ { "state_after": "case a\nR : Type u_4\ninst✝¹⁶ : Semiring R\nM : Type u_3\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nN : Type ?u.456393\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : Module R N\nP : Type ?u.456423\ninst✝¹¹ : AddCommMonoid P\ninst✝¹⁰ : Module R P\nM' : Type ?u.456453\ninst✝⁹ : AddCommGroup M'\ninst✝⁸ : Module R M'\nN' : Type u_2\ninst✝⁷ : AddCommGroup N'\ninst✝⁶ : Module R N'\nι : Type u_1\nι' : Type ?u.457232\nι'' : Type ?u.457235\nM₂ : Type ?u.457238\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\nM₃ : Type ?u.457268\ninst✝³ : AddCommMonoid M₃\ninst✝² : Module R M₃\nf f' : AlternatingMap R M N ι\ng g₂ : AlternatingMap R M N' ι\ng' : AlternatingMap R M' N' ι\nv✝ : ι → M\nv' : ι → M'\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nv : ι → M\n⊢ ↑g (v ∘ ↑1) = ↑Equiv.Perm.sign 1 • ↑g v\n\ncase a\nR : Type u_4\ninst✝¹⁶ : Semiring R\nM : Type u_3\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nN : Type ?u.456393\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : Module R N\nP : Type ?u.456423\ninst✝¹¹ : AddCommMonoid P\ninst✝¹⁰ : Module R P\nM' : Type ?u.456453\ninst✝⁹ : AddCommGroup M'\ninst✝⁸ : Module R M'\nN' : Type u_2\ninst✝⁷ : AddCommGroup N'\ninst✝⁶ : Module R N'\nι : Type u_1\nι' : Type ?u.457232\nι'' : Type ?u.457235\nM₂ : Type ?u.457238\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\nM₃ : Type ?u.457268\ninst✝³ : AddCommMonoid M₃\ninst✝² : Module R M₃\nf f' : AlternatingMap R M N ι\ng g₂ : AlternatingMap R M N' ι\ng' : AlternatingMap R M' N' ι\nv✝ : ι → M\nv' : ι → M'\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nv : ι → M\ns : Equiv.Perm ι\nx y : ι\nhxy : x ≠ y\nhI : ↑g (v ∘ ↑s) = ↑Equiv.Perm.sign s • ↑g v\n⊢ ↑g (v ∘ ↑(s * Equiv.swap x y)) = ↑Equiv.Perm.sign (s * Equiv.swap x y) • ↑g v", "state_before": "R : Type u_4\ninst✝¹⁶ : Semiring R\nM : Type u_3\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nN : Type ?u.456393\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : Module R N\nP : Type ?u.456423\ninst✝¹¹ : AddCommMonoid P\ninst✝¹⁰ : Module R P\nM' : Type ?u.456453\ninst✝⁹ : AddCommGroup M'\ninst✝⁸ : Module R M'\nN' : Type u_2\ninst✝⁷ : AddCommGroup N'\ninst✝⁶ : Module R N'\nι : Type u_1\nι' : Type ?u.457232\nι'' : Type ?u.457235\nM₂ : Type ?u.457238\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\nM₃ : Type ?u.457268\ninst✝³ : AddCommMonoid M₃\ninst✝² : Module R M₃\nf f' : AlternatingMap R M N ι\ng g₂ : AlternatingMap R M N' ι\ng' : AlternatingMap R M' N' ι\nv✝ : ι → M\nv' : ι → M'\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nv : ι → M\nσ : Equiv.Perm ι\n⊢ ↑g (v ∘ ↑σ) = ↑Equiv.Perm.sign σ • ↑g v", "tactic": "induction' σ using Equiv.Perm.swap_induction_on' with s x y hxy hI" }, { "state_after": "no goals", "state_before": "case a\nR : Type u_4\ninst✝¹⁶ : Semiring R\nM : Type u_3\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nN : Type ?u.456393\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : Module R N\nP : Type ?u.456423\ninst✝¹¹ : AddCommMonoid P\ninst✝¹⁰ : Module R P\nM' : Type ?u.456453\ninst✝⁹ : AddCommGroup M'\ninst✝⁸ : Module R M'\nN' : Type u_2\ninst✝⁷ : AddCommGroup N'\ninst✝⁶ : Module R N'\nι : Type u_1\nι' : Type ?u.457232\nι'' : Type ?u.457235\nM₂ : Type ?u.457238\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\nM₃ : Type ?u.457268\ninst✝³ : AddCommMonoid M₃\ninst✝² : Module R M₃\nf f' : AlternatingMap R M N ι\ng g₂ : AlternatingMap R M N' ι\ng' : AlternatingMap R M' N' ι\nv✝ : ι → M\nv' : ι → M'\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nv : ι → M\n⊢ ↑g (v ∘ ↑1) = ↑Equiv.Perm.sign 1 • ↑g v", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case a\nR : Type u_4\ninst✝¹⁶ : Semiring R\nM : Type u_3\ninst✝¹⁵ : AddCommMonoid M\ninst✝¹⁴ : Module R M\nN : Type ?u.456393\ninst✝¹³ : AddCommMonoid N\ninst✝¹² : Module R N\nP : Type ?u.456423\ninst✝¹¹ : AddCommMonoid P\ninst✝¹⁰ : Module R P\nM' : Type ?u.456453\ninst✝⁹ : AddCommGroup M'\ninst✝⁸ : Module R M'\nN' : Type u_2\ninst✝⁷ : AddCommGroup N'\ninst✝⁶ : Module R N'\nι : Type u_1\nι' : Type ?u.457232\nι'' : Type ?u.457235\nM₂ : Type ?u.457238\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\nM₃ : Type ?u.457268\ninst✝³ : AddCommMonoid M₃\ninst✝² : Module R M₃\nf f' : AlternatingMap R M N ι\ng g₂ : AlternatingMap R M N' ι\ng' : AlternatingMap R M' N' ι\nv✝ : ι → M\nv' : ι → M'\ninst✝¹ : DecidableEq ι\ninst✝ : Fintype ι\nv : ι → M\ns : Equiv.Perm ι\nx y : ι\nhxy : x ≠ y\nhI : ↑g (v ∘ ↑s) = ↑Equiv.Perm.sign s • ↑g v\n⊢ ↑g (v ∘ ↑(s * Equiv.swap x y)) = ↑Equiv.Perm.sign (s * Equiv.swap x y) • ↑g v", "tactic": "simpa [← Function.comp.assoc, g.map_swap (v ∘ s) hxy,\n Equiv.Perm.sign_swap hxy, -Equiv.Perm.sign_swap'] using hI" } ]
[ 714, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 707, 1 ]
Mathlib/Analysis/Convex/Strict.lean
Set.Subsingleton.strictConvex
[]
[ 128, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
inv_pow_anti
[]
[ 648, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 647, 1 ]
Mathlib/Topology/MetricSpace/Holder.lean
holderOnWith_one
[ { "state_after": "no goals", "state_before": "X : Type u_1\nY : Type u_2\nZ : Type ?u.128620\ninst✝² : PseudoEMetricSpace X\ninst✝¹ : PseudoEMetricSpace Y\ninst✝ : PseudoEMetricSpace Z\nC : ℝ≥0\nf : X → Y\ns : Set X\n⊢ HolderOnWith C 1 f s ↔ LipschitzOnWith C f s", "tactic": "simp only [HolderOnWith, LipschitzOnWith, NNReal.coe_one, ENNReal.rpow_one]" } ]
[ 87, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/RingTheory/FiniteType.lean
Algebra.FiniteType.isNoetherianRing
[ { "state_after": "case intro\nR✝ : Type ?u.65970\nA : Type u\nB : Type ?u.65961\nM : Type ?u.65964\nN : Type ?u.65967\ninst✝¹² : CommRing R✝\ninst✝¹¹ : CommRing A\ninst✝¹⁰ : Algebra R✝ A\ninst✝⁹ : CommRing B\ninst✝⁸ : Algebra R✝ B\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R✝ M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R✝ N\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nh : FiniteType R S\ninst✝ : IsNoetherianRing R\ns : Finset S\nhs : adjoin R ↑s = ⊤\n⊢ IsNoetherianRing S", "state_before": "R✝ : Type ?u.65970\nA : Type u\nB : Type ?u.65961\nM : Type ?u.65964\nN : Type ?u.65967\ninst✝¹² : CommRing R✝\ninst✝¹¹ : CommRing A\ninst✝¹⁰ : Algebra R✝ A\ninst✝⁹ : CommRing B\ninst✝⁸ : Algebra R✝ B\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R✝ M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R✝ N\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nh : FiniteType R S\ninst✝ : IsNoetherianRing R\n⊢ IsNoetherianRing S", "tactic": "obtain ⟨s, hs⟩ := h.1" }, { "state_after": "case intro.hf\nR✝ : Type ?u.65970\nA : Type u\nB : Type ?u.65961\nM : Type ?u.65964\nN : Type ?u.65967\ninst✝¹² : CommRing R✝\ninst✝¹¹ : CommRing A\ninst✝¹⁰ : Algebra R✝ A\ninst✝⁹ : CommRing B\ninst✝⁸ : Algebra R✝ B\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R✝ M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R✝ N\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nh : FiniteType R S\ninst✝ : IsNoetherianRing R\ns : Finset S\nhs : adjoin R ↑s = ⊤\n⊢ Surjective ↑↑(MvPolynomial.aeval Subtype.val)", "state_before": "case intro\nR✝ : Type ?u.65970\nA : Type u\nB : Type ?u.65961\nM : Type ?u.65964\nN : Type ?u.65967\ninst✝¹² : CommRing R✝\ninst✝¹¹ : CommRing A\ninst✝¹⁰ : Algebra R✝ A\ninst✝⁹ : CommRing B\ninst✝⁸ : Algebra R✝ B\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R✝ M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R✝ N\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nh : FiniteType R S\ninst✝ : IsNoetherianRing R\ns : Finset S\nhs : adjoin R ↑s = ⊤\n⊢ IsNoetherianRing S", "tactic": "apply\n isNoetherianRing_of_surjective (MvPolynomial s R) S\n (MvPolynomial.aeval (↑) : MvPolynomial s R →ₐ[R] S).toRingHom" }, { "state_after": "case intro.hf\nR✝ : Type ?u.65970\nA : Type u\nB : Type ?u.65961\nM : Type ?u.65964\nN : Type ?u.65967\ninst✝¹² : CommRing R✝\ninst✝¹¹ : CommRing A\ninst✝¹⁰ : Algebra R✝ A\ninst✝⁹ : CommRing B\ninst✝⁸ : Algebra R✝ B\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R✝ M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R✝ N\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nh : FiniteType R S\ninst✝ : IsNoetherianRing R\ns : Finset S\nhs : adjoin R ↑s = ⊤\n⊢ ↑⊤ = Set.univ", "state_before": "case intro.hf\nR✝ : Type ?u.65970\nA : Type u\nB : Type ?u.65961\nM : Type ?u.65964\nN : Type ?u.65967\ninst✝¹² : CommRing R✝\ninst✝¹¹ : CommRing A\ninst✝¹⁰ : Algebra R✝ A\ninst✝⁹ : CommRing B\ninst✝⁸ : Algebra R✝ B\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R✝ M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R✝ N\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nh : FiniteType R S\ninst✝ : IsNoetherianRing R\ns : Finset S\nhs : adjoin R ↑s = ⊤\n⊢ Surjective ↑↑(MvPolynomial.aeval Subtype.val)", "tactic": "erw [← Set.range_iff_surjective, ← AlgHom.coe_range, ←\n Algebra.adjoin_range_eq_range_aeval, Subtype.range_coe_subtype, Finset.setOf_mem, hs]" }, { "state_after": "no goals", "state_before": "case intro.hf\nR✝ : Type ?u.65970\nA : Type u\nB : Type ?u.65961\nM : Type ?u.65964\nN : Type ?u.65967\ninst✝¹² : CommRing R✝\ninst✝¹¹ : CommRing A\ninst✝¹⁰ : Algebra R✝ A\ninst✝⁹ : CommRing B\ninst✝⁸ : Algebra R✝ B\ninst✝⁷ : AddCommGroup M\ninst✝⁶ : Module R✝ M\ninst✝⁵ : AddCommGroup N\ninst✝⁴ : Module R✝ N\nR : Type u_1\nS : Type u_2\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\nh : FiniteType R S\ninst✝ : IsNoetherianRing R\ns : Finset S\nhs : adjoin R ↑s = ⊤\n⊢ ↑⊤ = Set.univ", "tactic": "rfl" } ]
[ 179, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/Combinatorics/SimpleGraph/Clique.lean
SimpleGraph.cliqueFinset_eq_empty_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nG H : SimpleGraph α\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableRel G.Adj\nn : ℕ\na b c : α\ns : Finset α\n⊢ cliqueFinset G n = ∅ ↔ CliqueFree G n", "tactic": "simp_rw [CliqueFree, eq_empty_iff_forall_not_mem, mem_cliqueFinset_iff]" } ]
[ 298, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 297, 1 ]
Mathlib/LinearAlgebra/LinearPMap.lean
LinearPMap.mkSpanSingleton_apply
[]
[ 187, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.mod_eq_zero_of_dvd
[ { "state_after": "m n : Nat\nH✝ : m ∣ n\nz : Nat\nH : n = m * z\n⊢ n % m = 0", "state_before": "m n : Nat\nH : m ∣ n\n⊢ n % m = 0", "tactic": "let ⟨z, H⟩ := H" }, { "state_after": "no goals", "state_before": "m n : Nat\nH✝ : m ∣ n\nz : Nat\nH : n = m * z\n⊢ n % m = 0", "tactic": "rw [H, mul_mod_right]" } ]
[ 724, 41 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 723, 1 ]
src/lean/Init/Control/Lawful.lean
ReaderT.run_monadLift
[]
[ 196, 73 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 195, 9 ]
Mathlib/Data/QPF/Univariate/Basic.lean
Qpf.suppPreservation_iff_liftpPreservation
[ { "state_after": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : SuppPreservation\n⊢ LiftpPreservation\n\ncase mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : LiftpPreservation\n⊢ SuppPreservation", "state_before": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\n⊢ SuppPreservation ↔ LiftpPreservation", "tactic": "constructor <;> intro h" }, { "state_after": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : SuppPreservation\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\n⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }", "state_before": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : SuppPreservation\n⊢ LiftpPreservation", "tactic": "rintro α p ⟨a, f⟩" }, { "state_after": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : SuppPreservation\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : SuppPreservation\n⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }", "state_before": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : SuppPreservation\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\n⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }", "tactic": "have h' := h" }, { "state_after": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : SuppPreservation\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : IsUniform\n⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }", "state_before": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : SuppPreservation\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : SuppPreservation\n⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }", "tactic": "rw [suppPreservation_iff_uniform] at h'" }, { "state_after": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh :\n ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),\n {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : IsUniform\n⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }", "state_before": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : SuppPreservation\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : IsUniform\n⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }", "tactic": "dsimp only [SuppPreservation, supp] at h" }, { "state_after": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh :\n ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),\n {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : IsUniform\n⊢ (∀ (u : α), u ∈ f '' univ → p u) ↔ ∀ (i : PFunctor.B (P F) a), p (f i)", "state_before": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh :\n ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),\n {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : IsUniform\n⊢ Liftp p (abs { fst := a, snd := f }) ↔ Liftp p { fst := a, snd := f }", "tactic": "rw [liftp_iff_of_isUniform h', supp_eq_of_isUniform h', PFunctor.liftp_iff']" }, { "state_after": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh :\n ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),\n {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : IsUniform\n⊢ (∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u) ↔ ∀ (i : PFunctor.B (P F) a), p (f i)", "state_before": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh :\n ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),\n {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : IsUniform\n⊢ (∀ (u : α), u ∈ f '' univ → p u) ↔ ∀ (i : PFunctor.B (P F) a), p (f i)", "tactic": "simp only [image_univ, mem_range, exists_imp]" }, { "state_after": "no goals", "state_before": "case mp.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh :\n ∀ ⦃α : Type u⦄ (x : PFunctor.Obj (P F) α),\n {y | ∀ ⦃p : α → Prop⦄, Liftp p (abs x) → p y} = {y | ∀ ⦃p : α → Prop⦄, Liftp p x → p y}\nα : Type u\np : α → Prop\na : (P F).A\nf : PFunctor.B (P F) a → α\nh' : IsUniform\n⊢ (∀ (u : α) (x : PFunctor.B (P F) a), f x = u → p u) ↔ ∀ (i : PFunctor.B (P F) a), p (f i)", "tactic": "constructor <;> intros <;> subst_vars <;> solve_by_elim" }, { "state_after": "case mpr.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : LiftpPreservation\nα : Type u\na : (P F).A\nf : PFunctor.B (P F) a → α\n⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }", "state_before": "case mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : LiftpPreservation\n⊢ SuppPreservation", "tactic": "rintro α ⟨a, f⟩" }, { "state_after": "case mpr.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : ∀ ⦃α : Type u⦄ (p : α → Prop) (x : PFunctor.Obj (P F) α), Liftp p (abs x) ↔ Liftp p x\nα : Type u\na : (P F).A\nf : PFunctor.B (P F) a → α\n⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }", "state_before": "case mpr.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : LiftpPreservation\nα : Type u\na : (P F).A\nf : PFunctor.B (P F) a → α\n⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }", "tactic": "simp only [LiftpPreservation] at h" }, { "state_after": "no goals", "state_before": "case mpr.mk\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nh : ∀ ⦃α : Type u⦄ (p : α → Prop) (x : PFunctor.Obj (P F) α), Liftp p (abs x) ↔ Liftp p x\nα : Type u\na : (P F).A\nf : PFunctor.B (P F) a → α\n⊢ supp (abs { fst := a, snd := f }) = supp { fst := a, snd := f }", "tactic": "simp only [supp, h]" } ]
[ 724, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 713, 1 ]
Mathlib/CategoryTheory/Functor/Flat.lean
CategoryTheory.cofiltered_of_hasFiniteLimits
[]
[ 186, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Mathlib/CategoryTheory/Limits/HasLimits.lean
CategoryTheory.Limits.hasColimit_of_equivalence_comp
[ { "state_after": "J : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u\ninst✝¹ : Category C\nF : J ⥤ C\ne : K ≌ J\ninst✝ : HasColimit (e.functor ⋙ F)\nthis : HasColimit (e.inverse ⋙ e.functor ⋙ F)\n⊢ HasColimit F", "state_before": "J : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u\ninst✝¹ : Category C\nF : J ⥤ C\ne : K ≌ J\ninst✝ : HasColimit (e.functor ⋙ F)\n⊢ HasColimit F", "tactic": "haveI : HasColimit (e.inverse ⋙ e.functor ⋙ F) := Limits.hasColimit_equivalence_comp e.symm" }, { "state_after": "no goals", "state_before": "J : Type u₁\ninst✝³ : Category J\nK : Type u₂\ninst✝² : Category K\nC : Type u\ninst✝¹ : Category C\nF : J ⥤ C\ne : K ≌ J\ninst✝ : HasColimit (e.functor ⋙ F)\nthis : HasColimit (e.inverse ⋙ e.functor ⋙ F)\n⊢ HasColimit F", "tactic": "apply hasColimitOfIso (e.invFunIdAssoc F).symm" } ]
[ 1081, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1079, 1 ]
Mathlib/GroupTheory/Submonoid/Operations.lean
Submonoid.map_equiv_top
[]
[ 956, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 955, 1 ]
Mathlib/Topology/Covering.lean
IsCoveringMapOn.continuousOn
[]
[ 104, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 11 ]
Mathlib/Data/Set/Finite.lean
Set.Finite.subset
[ { "state_after": "case intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns t : Set α\nht : t ⊆ s\na✝ : Fintype ↑s\n⊢ Set.Finite t", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns : Set α\nhs : Set.Finite s\nt : Set α\nht : t ⊆ s\n⊢ Set.Finite t", "tactic": "cases hs" }, { "state_after": "case intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns t : Set α\nht : t ⊆ s\na✝ : Fintype ↑s\nthis : Finite ↑t\n⊢ Set.Finite t", "state_before": "case intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns t : Set α\nht : t ⊆ s\na✝ : Fintype ↑s\n⊢ Set.Finite t", "tactic": "haveI := Finite.Set.subset _ ht" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ns t : Set α\nht : t ⊆ s\na✝ : Fintype ↑s\nthis : Finite ↑t\n⊢ Set.Finite t", "tactic": "apply toFinite" } ]
[ 763, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 760, 1 ]
Mathlib/Data/Multiset/Bind.lean
Multiset.mem_join
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.2554\nγ : Type ?u.2557\nδ : Type ?u.2560\na : α\nS : Multiset (Multiset α)\n⊢ a ∈ join 0 ↔ ∃ s, s ∈ 0 ∧ a ∈ s", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.2554\nγ : Type ?u.2557\nδ : Type ?u.2560\na : α\nS : Multiset (Multiset α)\n⊢ ∀ ⦃a_1 : Multiset α⦄ {s : Multiset (Multiset α)},\n (a ∈ join s ↔ ∃ s_1, s_1 ∈ s ∧ a ∈ s_1) → (a ∈ join (a_1 ::ₘ s) ↔ ∃ s_1, s_1 ∈ a_1 ::ₘ s ∧ a ∈ s_1)", "tactic": "simp (config := { contextual := true }) [or_and_right, exists_or]" } ]
[ 72, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
HasFDerivAt.continuousAt
[]
[ 728, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 727, 1 ]
Mathlib/Algebra/Quaternion.lean
QuaternionAlgebra.int_cast_im
[]
[ 460, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 459, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.degree_le_iff_coeff_zero
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn✝ m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.702057\nf : R[X]\nn : WithBot ℕ\n⊢ degree f ≤ n ↔ ∀ (m : ℕ), n < ↑m → coeff f m = 0", "tactic": "simp only [degree, Finset.max, Finset.sup_le_iff, mem_support_iff, Ne.def, ← not_le,\n not_imp_comm, Nat.cast_withBot]" } ]
[ 1082, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1078, 1 ]
Mathlib/Topology/Basic.lean
IsOpen.inter_frontier_eq
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\na : α\ns✝ s₁ s₂ t : Set α\np p₁ p₂ : α → Prop\ninst✝ : TopologicalSpace α\ns : Set α\nhs : IsOpen s\n⊢ s ∩ frontier s = ∅", "tactic": "rw [hs.frontier_eq, inter_diff_self]" } ]
[ 765, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 764, 1 ]
Mathlib/Geometry/Manifold/ChartedSpace.lean
chartedSpaceSelf_atlas
[]
[ 531, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 529, 1 ]
Mathlib/Topology/ContinuousOn.lean
nhdsWithin_basis_open
[]
[ 91, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Order/Chain.lean
chainClosure_empty
[ { "state_after": "α : Type u_1\nβ : Type ?u.10878\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\nthis : ChainClosure r (⋃₀ ∅)\n⊢ ChainClosure r ∅", "state_before": "α : Type u_1\nβ : Type ?u.10878\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\n⊢ ChainClosure r ∅", "tactic": "have : ChainClosure r (⋃₀∅) := ChainClosure.union fun a h => False.rec h" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.10878\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\nthis : ChainClosure r (⋃₀ ∅)\n⊢ ChainClosure r ∅", "tactic": "simpa using this" } ]
[ 207, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.liminf_eq_iSup_iInf_of_nat'
[]
[ 763, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 762, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.mem_graph_iff
[ { "state_after": "case mk\nα : Type u_1\nβ : Type ?u.1790\nγ : Type ?u.1793\nι : Type ?u.1796\nM : Type u_2\nM' : Type ?u.1802\nN : Type ?u.1805\nP : Type ?u.1808\nG : Type ?u.1811\nH : Type ?u.1814\nR : Type ?u.1817\nS : Type ?u.1820\ninst✝ : Zero M\nf : α →₀ M\nfst✝ : α\nsnd✝ : M\n⊢ (fst✝, snd✝) ∈ graph f ↔ ↑f (fst✝, snd✝).fst = (fst✝, snd✝).snd ∧ (fst✝, snd✝).snd ≠ 0", "state_before": "α : Type u_1\nβ : Type ?u.1790\nγ : Type ?u.1793\nι : Type ?u.1796\nM : Type u_2\nM' : Type ?u.1802\nN : Type ?u.1805\nP : Type ?u.1808\nG : Type ?u.1811\nH : Type ?u.1814\nR : Type ?u.1817\nS : Type ?u.1820\ninst✝ : Zero M\nc : α × M\nf : α →₀ M\n⊢ c ∈ graph f ↔ ↑f c.fst = c.snd ∧ c.snd ≠ 0", "tactic": "cases c" }, { "state_after": "no goals", "state_before": "case mk\nα : Type u_1\nβ : Type ?u.1790\nγ : Type ?u.1793\nι : Type ?u.1796\nM : Type u_2\nM' : Type ?u.1802\nN : Type ?u.1805\nP : Type ?u.1808\nG : Type ?u.1811\nH : Type ?u.1814\nR : Type ?u.1817\nS : Type ?u.1820\ninst✝ : Zero M\nf : α →₀ M\nfst✝ : α\nsnd✝ : M\n⊢ (fst✝, snd✝) ∈ graph f ↔ ↑f (fst✝, snd✝).fst = (fst✝, snd✝).snd ∧ (fst✝, snd✝).snd ≠ 0", "tactic": "exact mk_mem_graph_iff" } ]
[ 83, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Data/Complex/Exponential.lean
Real.exp_approx_succ
[ { "state_after": "n : ℕ\nx a₁ b₁ : ℝ\nm : ℕ\ne₁ : n + 1 = m\na₂ b₂ : ℝ\ne : abs' (1 + x / ↑m * a₂ - a₁) ≤ b₁ - abs' x / ↑m * b₂\nh : abs' (exp x - expNear m x a₂) ≤ abs' x ^ m / ↑(Nat.factorial m) * b₂\n⊢ abs' x ^ m / ↑(Nat.factorial m) * b₂ + abs' (expNear m x a₂ - expNear n x a₁) ≤ abs' x ^ n / ↑(Nat.factorial n) * b₁", "state_before": "n : ℕ\nx a₁ b₁ : ℝ\nm : ℕ\ne₁ : n + 1 = m\na₂ b₂ : ℝ\ne : abs' (1 + x / ↑m * a₂ - a₁) ≤ b₁ - abs' x / ↑m * b₂\nh : abs' (exp x - expNear m x a₂) ≤ abs' x ^ m / ↑(Nat.factorial m) * b₂\n⊢ abs' (exp x - expNear n x a₁) ≤ abs' x ^ n / ↑(Nat.factorial n) * b₁", "tactic": "refine' (abs_sub_le _ _ _).trans ((add_le_add_right h _).trans _)" }, { "state_after": "n : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂ + abs' (expNear (n + 1) x a₂ - expNear n x a₁) ≤\n abs' x ^ n / ↑(Nat.factorial n) * b₁", "state_before": "n : ℕ\nx a₁ b₁ : ℝ\nm : ℕ\ne₁ : n + 1 = m\na₂ b₂ : ℝ\ne : abs' (1 + x / ↑m * a₂ - a₁) ≤ b₁ - abs' x / ↑m * b₂\nh : abs' (exp x - expNear m x a₂) ≤ abs' x ^ m / ↑(Nat.factorial m) * b₂\n⊢ abs' x ^ m / ↑(Nat.factorial m) * b₂ + abs' (expNear m x a₂ - expNear n x a₁) ≤ abs' x ^ n / ↑(Nat.factorial n) * b₁", "tactic": "subst e₁" }, { "state_after": "n : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂ +\n abs' (x ^ n / ↑(Nat.factorial n)) * abs' (1 + x / (↑n + 1) * a₂ - a₁) ≤\n abs' x ^ n / ↑(Nat.factorial n) * b₁", "state_before": "n : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂ + abs' (expNear (n + 1) x a₂ - expNear n x a₁) ≤\n abs' x ^ n / ↑(Nat.factorial n) * b₁", "tactic": "rw [expNear_succ, expNear_sub, abs_mul]" }, { "state_after": "case h.e'_3\nn : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂ +\n abs' (x ^ n / ↑(Nat.factorial n)) * abs' (1 + x / (↑n + 1) * a₂ - a₁) =\n abs' x ^ n / ↑(Nat.factorial n) * (abs' x / ↑(n + 1) * b₂ + abs' (1 + x / ↑(n + 1) * a₂ - a₁))\n\nn : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ 0 ≤ abs' x ^ n / ↑(Nat.factorial n)", "state_before": "n : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂ +\n abs' (x ^ n / ↑(Nat.factorial n)) * abs' (1 + x / (↑n + 1) * a₂ - a₁) ≤\n abs' x ^ n / ↑(Nat.factorial n) * b₁", "tactic": "convert mul_le_mul_of_nonneg_left (a := abs' x ^ n / ↑(Nat.factorial n))\n (le_sub_iff_add_le'.1 e) ?_ using 1" }, { "state_after": "case h.e'_3\nn : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ abs' x ^ n * abs' x * ((↑(Nat.factorial n))⁻¹ * (↑n + 1)⁻¹) * b₂ =\n abs' x ^ n * (↑(Nat.factorial n))⁻¹ * (abs' x * (↑n + 1)⁻¹ * b₂)", "state_before": "case h.e'_3\nn : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂ +\n abs' (x ^ n / ↑(Nat.factorial n)) * abs' (1 + x / (↑n + 1) * a₂ - a₁) =\n abs' x ^ n / ↑(Nat.factorial n) * (abs' x / ↑(n + 1) * b₂ + abs' (1 + x / ↑(n + 1) * a₂ - a₁))", "tactic": "simp [mul_add, pow_succ', div_eq_mul_inv, abs_mul, abs_inv, ← pow_abs, mul_inv]" }, { "state_after": "no goals", "state_before": "case h.e'_3\nn : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ abs' x ^ n * abs' x * ((↑(Nat.factorial n))⁻¹ * (↑n + 1)⁻¹) * b₂ =\n abs' x ^ n * (↑(Nat.factorial n))⁻¹ * (abs' x * (↑n + 1)⁻¹ * b₂)", "tactic": "ac_rfl" }, { "state_after": "no goals", "state_before": "n : ℕ\nx a₁ b₁ a₂ b₂ : ℝ\ne : abs' (1 + x / ↑(n + 1) * a₂ - a₁) ≤ b₁ - abs' x / ↑(n + 1) * b₂\nh : abs' (exp x - expNear (n + 1) x a₂) ≤ abs' x ^ (n + 1) / ↑(Nat.factorial (n + 1)) * b₂\n⊢ 0 ≤ abs' x ^ n / ↑(Nat.factorial n)", "tactic": "simp [div_nonneg, abs_nonneg]" } ]
[ 1785, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1775, 1 ]
Mathlib/Algebra/GroupPower/Order.lean
min_lt_of_mul_lt_sq
[ { "state_after": "no goals", "state_before": "β : Type ?u.151798\nA : Type ?u.151801\nG : Type ?u.151804\nM : Type u_1\nR : Type ?u.151810\ninst✝³ : Monoid M\ninst✝² : LinearOrder M\ninst✝¹ : CovariantClass M M (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass M M (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c : M\nh : a * b < c ^ 2\n⊢ min a b < c", "tactic": "simpa using min_lt_max_of_mul_lt_mul (h.trans_eq <| pow_two _)" } ]
[ 305, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 304, 1 ]
Mathlib/Algebra/Algebra/Tower.lean
Algebra.lsmul_coe
[]
[ 57, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 57, 1 ]
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.add_le_of_le
[]
[ 760, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 759, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.biUnion_and
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.88687\nγ : Type ?u.88690\nι : Sort u_2\nι' : Sort u_3\nι₂ : Sort ?u.88699\nκ : ι → Sort ?u.88704\nκ₁ : ι → Sort ?u.88709\nκ₂ : ι → Sort ?u.88714\nκ' : ι' → Sort ?u.88719\np : ι → Prop\nq : ι → ι' → Prop\ns : (x : ι) → (y : ι') → p x ∧ q x y → Set α\n⊢ (⋃ (x : ι) (y : ι') (h : p x ∧ q x y), s x y h) = ⋃ (x : ι) (hx : p x) (y : ι') (hy : q x y), s x y (_ : p x ∧ q x y)", "tactic": "simp only [iUnion_and, @iUnion_comm _ ι']" } ]
[ 810, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 807, 1 ]
Mathlib/Analysis/Complex/Conformal.lean
isConformalMap_complex_linear
[ { "state_after": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\n⊢ IsConformalMap (restrictScalars ℝ map)", "state_before": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\n⊢ IsConformalMap (restrictScalars ℝ map)", "tactic": "have minor₁ : ‖map 1‖ ≠ 0 := by simpa only [ext_ring_iff, Ne.def, norm_eq_zero] using nonzero" }, { "state_after": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\n⊢ ∀ (x : ℂ), ‖↑(‖↑map 1‖⁻¹ • ↑ℝ ↑map) x‖ = ‖x‖\n\ncase refine'_2\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\n⊢ restrictScalars ℝ map =\n ‖↑map 1‖ • LinearIsometry.toContinuousLinearMap { toLinearMap := ‖↑map 1‖⁻¹ • ↑ℝ ↑map, norm_map' := ?refine'_1 }", "state_before": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\n⊢ IsConformalMap (restrictScalars ℝ map)", "tactic": "refine' ⟨‖map 1‖, minor₁, ⟨‖map 1‖⁻¹ • ((map : ℂ →ₗ[ℂ] E) : ℂ →ₗ[ℝ] E), _⟩, _⟩" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\n⊢ ‖↑map 1‖ ≠ 0", "tactic": "simpa only [ext_ring_iff, Ne.def, norm_eq_zero] using nonzero" }, { "state_after": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\n⊢ ‖↑(‖↑map 1‖⁻¹ • ↑ℝ ↑map) x‖ = ‖x‖", "state_before": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\n⊢ ∀ (x : ℂ), ‖↑(‖↑map 1‖⁻¹ • ↑ℝ ↑map) x‖ = ‖x‖", "tactic": "intro x" }, { "state_after": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\n⊢ ‖‖↑map 1‖⁻¹ • ↑(↑ℝ ↑map) x‖ = ‖x‖", "state_before": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\n⊢ ‖↑(‖↑map 1‖⁻¹ • ↑ℝ ↑map) x‖ = ‖x‖", "tactic": "simp only [LinearMap.smul_apply]" }, { "state_after": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\nthis : x = x • 1\n⊢ ‖‖↑map 1‖⁻¹ • ↑(↑ℝ ↑map) x‖ = ‖x‖", "state_before": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\n⊢ ‖‖↑map 1‖⁻¹ • ↑(↑ℝ ↑map) x‖ = ‖x‖", "tactic": "have : x = x • (1 : ℂ) := by rw [smul_eq_mul, mul_one]" }, { "state_after": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\nthis : x = x • 1\n⊢ ‖‖↑map 1‖⁻¹ • ↑(↑ℝ ↑map) (x • 1)‖ = ‖x‖", "state_before": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\nthis : x = x • 1\n⊢ ‖‖↑map 1‖⁻¹ • ↑(↑ℝ ↑map) x‖ = ‖x‖", "tactic": "nth_rw 1 [this]" }, { "state_after": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\nthis : x = x • 1\n⊢ ‖‖↑map 1‖⁻¹ • ↑↑map (x • 1)‖ = ‖x‖", "state_before": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\nthis : x = x • 1\n⊢ ‖‖↑map 1‖⁻¹ • ↑(↑ℝ ↑map) (x • 1)‖ = ‖x‖", "tactic": "rw [LinearMap.coe_restrictScalars]" }, { "state_after": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\nthis : x = x • 1\n⊢ ‖↑map 1‖⁻¹ * (‖x‖ * ‖↑map 1‖) = ‖x‖", "state_before": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\nthis : x = x • 1\n⊢ ‖‖↑map 1‖⁻¹ • ↑↑map (x • 1)‖ = ‖x‖", "tactic": "simp only [map.coe_coe, map.map_smul, norm_smul, norm_inv, norm_norm]" }, { "state_after": "no goals", "state_before": "case refine'_1\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\nthis : x = x • 1\n⊢ ‖↑map 1‖⁻¹ * (‖x‖ * ‖↑map 1‖) = ‖x‖", "tactic": "field_simp only [one_mul]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx : ℂ\n⊢ x = x • 1", "tactic": "rw [smul_eq_mul, mul_one]" }, { "state_after": "case refine'_2.h\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx✝ : ℂ\n⊢ ↑(restrictScalars ℝ map) x✝ =\n ↑(‖↑map 1‖ •\n LinearIsometry.toContinuousLinearMap\n { toLinearMap := ‖↑map 1‖⁻¹ • ↑ℝ ↑map, norm_map' := (_ : ∀ (x : ℂ), ‖↑(‖↑map 1‖⁻¹ • ↑ℝ ↑map) x‖ = ‖x‖) })\n x✝", "state_before": "case refine'_2\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\n⊢ restrictScalars ℝ map =\n ‖↑map 1‖ •\n LinearIsometry.toContinuousLinearMap\n { toLinearMap := ‖↑map 1‖⁻¹ • ↑ℝ ↑map, norm_map' := (_ : ∀ (x : ℂ), ‖↑(‖↑map 1‖⁻¹ • ↑ℝ ↑map) x‖ = ‖x‖) }", "tactic": "ext1" }, { "state_after": "no goals", "state_before": "case refine'_2.h\nE : Type u_1\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : NormedSpace ℂ E\nz : ℂ\ng : ℂ →L[ℝ] E\nf : ℂ → E\nmap : ℂ →L[ℂ] E\nnonzero : map ≠ 0\nminor₁ : ‖↑map 1‖ ≠ 0\nx✝ : ℂ\n⊢ ↑(restrictScalars ℝ map) x✝ =\n ↑(‖↑map 1‖ •\n LinearIsometry.toContinuousLinearMap\n { toLinearMap := ‖↑map 1‖⁻¹ • ↑ℝ ↑map, norm_map' := (_ : ∀ (x : ℂ), ‖↑(‖↑map 1‖⁻¹ • ↑ℝ ↑map) x‖ = ‖x‖) })\n x✝", "tactic": "rw [coe_restrictScalars', coe_smul', LinearIsometry.coe_toContinuousLinearMap,\n LinearIsometry.coe_mk, Pi.smul_apply, LinearMap.smul_apply, LinearMap.coe_restrictScalars,\n coe_coe, smul_inv_smul₀ minor₁]" } ]
[ 67, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/LinearAlgebra/Matrix/Dual.lean
Matrix.toLin_transpose
[ { "state_after": "case a\nK : Type u_3\nV₁ : Type u_4\nV₂ : Type u_5\nι₁ : Type u_1\nι₂ : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : AddCommGroup V₁\ninst✝⁶ : Module K V₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module K V₂\ninst✝³ : Fintype ι₁\ninst✝² : Fintype ι₂\ninst✝¹ : DecidableEq ι₁\ninst✝ : DecidableEq ι₂\nB₁ : Basis ι₁ K V₁\nB₂ : Basis ι₂ K V₂\nM : Matrix ι₁ ι₂ K\n⊢ ↑(LinearMap.toMatrix (Basis.dualBasis B₁) (Basis.dualBasis B₂))\n (↑(toLin (Basis.dualBasis B₁) (Basis.dualBasis B₂)) Mᵀ) =\n ↑(LinearMap.toMatrix (Basis.dualBasis B₁) (Basis.dualBasis B₂)) (↑Module.Dual.transpose (↑(toLin B₂ B₁) M))", "state_before": "K : Type u_3\nV₁ : Type u_4\nV₂ : Type u_5\nι₁ : Type u_1\nι₂ : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : AddCommGroup V₁\ninst✝⁶ : Module K V₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module K V₂\ninst✝³ : Fintype ι₁\ninst✝² : Fintype ι₂\ninst✝¹ : DecidableEq ι₁\ninst✝ : DecidableEq ι₂\nB₁ : Basis ι₁ K V₁\nB₂ : Basis ι₂ K V₂\nM : Matrix ι₁ ι₂ K\n⊢ ↑(toLin (Basis.dualBasis B₁) (Basis.dualBasis B₂)) Mᵀ = ↑Module.Dual.transpose (↑(toLin B₂ B₁) M)", "tactic": "apply (LinearMap.toMatrix B₁.dualBasis B₂.dualBasis).injective" }, { "state_after": "no goals", "state_before": "case a\nK : Type u_3\nV₁ : Type u_4\nV₂ : Type u_5\nι₁ : Type u_1\nι₂ : Type u_2\ninst✝⁸ : Field K\ninst✝⁷ : AddCommGroup V₁\ninst✝⁶ : Module K V₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module K V₂\ninst✝³ : Fintype ι₁\ninst✝² : Fintype ι₂\ninst✝¹ : DecidableEq ι₁\ninst✝ : DecidableEq ι₂\nB₁ : Basis ι₁ K V₁\nB₂ : Basis ι₂ K V₂\nM : Matrix ι₁ ι₂ K\n⊢ ↑(LinearMap.toMatrix (Basis.dualBasis B₁) (Basis.dualBasis B₂))\n (↑(toLin (Basis.dualBasis B₁) (Basis.dualBasis B₂)) Mᵀ) =\n ↑(LinearMap.toMatrix (Basis.dualBasis B₁) (Basis.dualBasis B₂)) (↑Module.Dual.transpose (↑(toLin B₂ B₁) M))", "tactic": "rw [LinearMap.toMatrix_toLin, LinearMap.toMatrix_transpose, LinearMap.toMatrix_toLin]" } ]
[ 47, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 44, 1 ]
Mathlib/Data/Seq/WSeq.lean
Stream'.WSeq.ret_bind
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nf : α → WSeq β\n⊢ bind (ret a) f ~ʷ f a", "tactic": "simp [bind]" } ]
[ 1743, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1743, 1 ]
Mathlib/Algebra/Group/UniqueProds.lean
UniqueMul.mulHom_image_iff
[ { "state_after": "case refine'_1\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)\n⊢ UniqueMul A B a0 b0\n\ncase refine'_2\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\n⊢ UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)", "state_before": "G : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\n⊢ UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0) ↔ UniqueMul A B a0 b0", "tactic": "refine' ⟨fun h ↦ _, fun h ↦ _⟩" }, { "state_after": "case refine'_1\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)\na b : G\nha : a ∈ A\nhb : b ∈ B\nab : a * b = a0 * b0\n⊢ a = a0 ∧ b = b0", "state_before": "case refine'_1\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)\n⊢ UniqueMul A B a0 b0", "tactic": "intro a b ha hb ab" }, { "state_after": "case refine'_1\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)\na b : G\nha : a ∈ A\nhb : b ∈ B\nab : a * b = a0 * b0\n⊢ ↑f a = ↑f a0 ∧ ↑f b = ↑f b0", "state_before": "case refine'_1\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)\na b : G\nha : a ∈ A\nhb : b ∈ B\nab : a * b = a0 * b0\n⊢ a = a0 ∧ b = b0", "tactic": "rw [← hf.eq_iff, ← hf.eq_iff]" }, { "state_after": "case refine'_1\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)\na b : G\nha : a ∈ A\nhb : b ∈ B\nab : ↑f a * ↑f b = ↑f a0 * ↑f b0\n⊢ ↑f a = ↑f a0 ∧ ↑f b = ↑f b0", "state_before": "case refine'_1\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)\na b : G\nha : a ∈ A\nhb : b ∈ B\nab : a * b = a0 * b0\n⊢ ↑f a = ↑f a0 ∧ ↑f b = ↑f b0", "tactic": "rw [← hf.eq_iff, map_mul, map_mul] at ab" }, { "state_after": "no goals", "state_before": "case refine'_1\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)\na b : G\nha : a ∈ A\nhb : b ∈ B\nab : ↑f a * ↑f b = ↑f a0 * ↑f b0\n⊢ ↑f a = ↑f a0 ∧ ↑f b = ↑f b0", "tactic": "exact h (Finset.mem_image.mpr ⟨_, ha, rfl⟩) (Finset.mem_image.mpr ⟨_, hb, rfl⟩) ab" }, { "state_after": "case refine'_2\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\na b : H\naA : a ∈ Finset.image (↑f) A\nbB : b ∈ Finset.image (↑f) B\nab : a * b = ↑f a0 * ↑f b0\n⊢ a = ↑f a0 ∧ b = ↑f b0", "state_before": "case refine'_2\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\n⊢ UniqueMul (Finset.image (↑f) A) (Finset.image (↑f) B) (↑f a0) (↑f b0)", "tactic": "intro a b aA bB ab" }, { "state_after": "case refine'_2.intro.intro\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\nb : H\nbB : b ∈ Finset.image (↑f) B\na : G\nha : a ∈ A\naA : ↑f a ∈ Finset.image (↑f) A\nab : ↑f a * b = ↑f a0 * ↑f b0\n⊢ ↑f a = ↑f a0 ∧ b = ↑f b0", "state_before": "case refine'_2\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\na b : H\naA : a ∈ Finset.image (↑f) A\nbB : b ∈ Finset.image (↑f) B\nab : a * b = ↑f a0 * ↑f b0\n⊢ a = ↑f a0 ∧ b = ↑f b0", "tactic": "obtain ⟨a, ha, rfl⟩ : ∃ a' ∈ A, f a' = a := Finset.mem_image.mp aA" }, { "state_after": "case refine'_2.intro.intro.intro.intro\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\na : G\nha : a ∈ A\naA : ↑f a ∈ Finset.image (↑f) A\nb : G\nhb : b ∈ B\nbB : ↑f b ∈ Finset.image (↑f) B\nab : ↑f a * ↑f b = ↑f a0 * ↑f b0\n⊢ ↑f a = ↑f a0 ∧ ↑f b = ↑f b0", "state_before": "case refine'_2.intro.intro\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\nb : H\nbB : b ∈ Finset.image (↑f) B\na : G\nha : a ∈ A\naA : ↑f a ∈ Finset.image (↑f) A\nab : ↑f a * b = ↑f a0 * ↑f b0\n⊢ ↑f a = ↑f a0 ∧ b = ↑f b0", "tactic": "obtain ⟨b, hb, rfl⟩ : ∃ b' ∈ B, f b' = b := Finset.mem_image.mp bB" }, { "state_after": "case refine'_2.intro.intro.intro.intro\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\na : G\nha : a ∈ A\naA : ↑f a ∈ Finset.image (↑f) A\nb : G\nhb : b ∈ B\nbB : ↑f b ∈ Finset.image (↑f) B\nab : ↑f a * ↑f b = ↑f a0 * ↑f b0\n⊢ a = a0 ∧ b = b0", "state_before": "case refine'_2.intro.intro.intro.intro\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\na : G\nha : a ∈ A\naA : ↑f a ∈ Finset.image (↑f) A\nb : G\nhb : b ∈ B\nbB : ↑f b ∈ Finset.image (↑f) B\nab : ↑f a * ↑f b = ↑f a0 * ↑f b0\n⊢ ↑f a = ↑f a0 ∧ ↑f b = ↑f b0", "tactic": "rw [hf.eq_iff, hf.eq_iff]" }, { "state_after": "case refine'_2.intro.intro.intro.intro\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\na : G\nha : a ∈ A\naA : ↑f a ∈ Finset.image (↑f) A\nb : G\nhb : b ∈ B\nbB : ↑f b ∈ Finset.image (↑f) B\nab : a * b = a0 * b0\n⊢ a = a0 ∧ b = b0", "state_before": "case refine'_2.intro.intro.intro.intro\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\na : G\nha : a ∈ A\naA : ↑f a ∈ Finset.image (↑f) A\nb : G\nhb : b ∈ B\nbB : ↑f b ∈ Finset.image (↑f) B\nab : ↑f a * ↑f b = ↑f a0 * ↑f b0\n⊢ a = a0 ∧ b = b0", "tactic": "rw [← map_mul, ← map_mul, hf.eq_iff] at ab" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.intro.intro.intro\nG : Type u_2\nH : Type u_1\ninst✝² : Mul G\ninst✝¹ : Mul H\nA B : Finset G\na0 b0 : G\ninst✝ : DecidableEq H\nf : G →ₙ* H\nhf : Function.Injective ↑f\nh : UniqueMul A B a0 b0\na : G\nha : a ∈ A\naA : ↑f a ∈ Finset.image (↑f) A\nb : G\nhb : b ∈ B\nbB : ↑f b ∈ Finset.image (↑f) B\nab : a * b = a0 * b0\n⊢ a = a0 ∧ b = b0", "tactic": "exact h ha hb ab" } ]
[ 143, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/Analysis/Complex/Basic.lean
Complex.dist_of_im_eq
[ { "state_after": "no goals", "state_before": "E : Type ?u.13792\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nz w : ℂ\nh : z.im = w.im\n⊢ dist z w = dist z.re w.re", "tactic": "rw [dist_eq_re_im, h, sub_self, zero_pow two_pos, add_zero, Real.sqrt_sq_eq_abs, Real.dist_eq]" } ]
[ 119, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.Tape.mk'_right
[]
[ 564, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 563, 1 ]
Mathlib/Topology/MetricSpace/EMetricSpace.lean
EMetric.nhdsWithin_basis_closed_eball
[]
[ 645, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 643, 1 ]
Mathlib/Algebra/Lie/OfAssociative.lean
LinearEquiv.lieConj_apply
[]
[ 334, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 333, 1 ]
Mathlib/Topology/Inseparable.lean
SeparationQuotient.continuousWithinAt_lift₂
[]
[ 619, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 614, 9 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
ciSup_pos
[]
[ 861, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 860, 1 ]
Mathlib/Analysis/SpecialFunctions/Exp.lean
Real.isLittleO_one_exp_comp
[ { "state_after": "no goals", "state_before": "α : Type u_1\nx y z : ℝ\nl : Filter α\nf : α → ℝ\n⊢ ((fun x => 1) =o[l] fun x => exp (f x)) ↔ Tendsto f l atTop", "tactic": "simp only [← exp_zero, isLittleO_exp_comp_exp_comp, sub_zero]" } ]
[ 393, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 391, 1 ]
Mathlib/Order/BooleanAlgebra.lean
sdiff_sdiff_sup_sdiff
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.31125\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\n⊢ z \\ (x \\ y ⊔ y \\ x) = (z \\ x ⊔ z ⊓ x ⊓ y) ⊓ (z \\ y ⊔ z ⊓ y ⊓ x)", "tactic": "rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.31125\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\n⊢ (z \\ x ⊔ z ⊓ x ⊓ y) ⊓ (z \\ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \\ x ⊔ y) ⊓ (z \\ y ⊔ z ⊓ y ⊓ x)", "tactic": "rw [sup_inf_left, sup_comm, sup_inf_sdiff]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.31125\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\n⊢ z ⊓ (z \\ x ⊔ y) ⊓ (z \\ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \\ x ⊔ y) ⊓ (z ⊓ (z \\ y ⊔ x))", "tactic": "rw [sup_inf_left, @sup_comm _ _ (z \\ y), sup_inf_sdiff]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.31125\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\n⊢ z ⊓ (z \\ x ⊔ y) ⊓ (z ⊓ (z \\ y ⊔ x)) = z ⊓ z ⊓ (z \\ x ⊔ y) ⊓ (z \\ y ⊔ x)", "tactic": "ac_rfl" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.31125\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\n⊢ z ⊓ z ⊓ (z \\ x ⊔ y) ⊓ (z \\ y ⊔ x) = z ⊓ (z \\ x ⊔ y) ⊓ (z \\ y ⊔ x)", "tactic": "rw [inf_idem]" } ]
[ 411, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 403, 1 ]
Mathlib/Data/Nat/Basic.lean
Nat.rec_add_one
[]
[ 385, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 383, 1 ]
Mathlib/GroupTheory/FreeGroup.lean
FreeGroup.Red.Step.cons_cons_iff
[ { "state_after": "no goals", "state_before": "α : Type u\nL L₁ L₂ L₃ L₄ : List (α × Bool)\n⊢ ∀ {p : α × Bool}, Step (p :: L₁) (p :: L₂) ↔ Step L₁ L₂", "tactic": "simp (config := { contextual := true }) [Step.cons_left_iff, iff_def, or_imp]" } ]
[ 188, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/Data/Polynomial/RingDivision.lean
Polynomial.rootMultiplicity_add
[ { "state_after": "R : Type u\nS : Type v\nT : Type w\na✝ b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\na : R\nhzero : p + q ≠ 0\n⊢ (X - ↑C a) ^ min (rootMultiplicity a p) (rootMultiplicity a q) ∣ p + q", "state_before": "R : Type u\nS : Type v\nT : Type w\na✝ b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\na : R\nhzero : p + q ≠ 0\n⊢ min (rootMultiplicity a p) (rootMultiplicity a q) ≤ rootMultiplicity a (p + q)", "tactic": "rw [le_rootMultiplicity_iff hzero]" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\na✝ b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\na : R\nhzero : p + q ≠ 0\nhdivp : (X - ↑C a) ^ rootMultiplicity a p ∣ p\n⊢ (X - ↑C a) ^ min (rootMultiplicity a p) (rootMultiplicity a q) ∣ p + q", "state_before": "R : Type u\nS : Type v\nT : Type w\na✝ b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\na : R\nhzero : p + q ≠ 0\n⊢ (X - ↑C a) ^ min (rootMultiplicity a p) (rootMultiplicity a q) ∣ p + q", "tactic": "have hdivp : (X - C a) ^ rootMultiplicity a p ∣ p := pow_rootMultiplicity_dvd p a" }, { "state_after": "R : Type u\nS : Type v\nT : Type w\na✝ b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\na : R\nhzero : p + q ≠ 0\nhdivp : (X - ↑C a) ^ rootMultiplicity a p ∣ p\nhdivq : (X - ↑C a) ^ rootMultiplicity a q ∣ q\n⊢ (X - ↑C a) ^ min (rootMultiplicity a p) (rootMultiplicity a q) ∣ p + q", "state_before": "R : Type u\nS : Type v\nT : Type w\na✝ b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\na : R\nhzero : p + q ≠ 0\nhdivp : (X - ↑C a) ^ rootMultiplicity a p ∣ p\n⊢ (X - ↑C a) ^ min (rootMultiplicity a p) (rootMultiplicity a q) ∣ p + q", "tactic": "have hdivq : (X - C a) ^ rootMultiplicity a q ∣ q := pow_rootMultiplicity_dvd q a" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\na✝ b : R\nn : ℕ\ninst✝ : CommRing R\np q : R[X]\na : R\nhzero : p + q ≠ 0\nhdivp : (X - ↑C a) ^ rootMultiplicity a p ∣ p\nhdivq : (X - ↑C a) ^ rootMultiplicity a q ∣ q\n⊢ (X - ↑C a) ^ min (rootMultiplicity a p) (rootMultiplicity a q) ∣ p + q", "tactic": "exact min_pow_dvd_add hdivp hdivq" } ]
[ 395, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 390, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
LinearMap.splittingOfFinsuppSurjective_splits
[ { "state_after": "R : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ ↑(↑(comp (comp f (splittingOfFinsuppSurjective f s)) (lsingle x)) 1) y = ↑(↑(comp id (lsingle x)) 1) y", "state_before": "R : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\n⊢ comp f (splittingOfFinsuppSurjective f s) = id", "tactic": "refine lhom_ext' fun x => ext_ring <| Finsupp.ext fun y => ?_" }, { "state_after": "R : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ ↑(↑f (sum (Finsupp.single x 1) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1))) y =\n ↑(Finsupp.single x 1) y", "state_before": "R : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ ↑(↑(comp (comp f (splittingOfFinsuppSurjective f s)) (lsingle x)) 1) y = ↑(↑(comp id (lsingle x)) 1) y", "tactic": "dsimp [splittingOfFinsuppSurjective]" }, { "state_after": "case e_a\nR : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ ↑f (sum (Finsupp.single x 1) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1)) = Finsupp.single x 1", "state_before": "R : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ ↑(↑f (sum (Finsupp.single x 1) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1))) y =\n ↑(Finsupp.single x 1) y", "tactic": "congr" }, { "state_after": "case e_a\nR : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ ↑f (Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1)) = Finsupp.single x 1\n\ncase e_a\nR : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ 0 • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1) = 0", "state_before": "case e_a\nR : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ ↑f (sum (Finsupp.single x 1) fun x r => r • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1)) = Finsupp.single x 1", "tactic": "rw [sum_single_index, one_smul]" }, { "state_after": "no goals", "state_before": "case e_a\nR : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ ↑f (Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1)) = Finsupp.single x 1", "tactic": "exact (s (Finsupp.single x 1)).choose_spec" }, { "state_after": "no goals", "state_before": "case e_a\nR : Type u_1\nM : Type u_2\nN : Type ?u.770436\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nα : Type u_3\nf : M →ₗ[R] α →₀ R\ns : Surjective ↑f\nx y : α\n⊢ 0 • Exists.choose (_ : ∃ a, ↑f a = Finsupp.single x 1) = 0", "tactic": "rw [zero_smul]" } ]
[ 1229, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1221, 1 ]
Mathlib/Algebra/Order/Ring/Abs.lean
abs_mul
[ { "state_after": "α : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b✝ c a b : α\n⊢ a * b = abs a * abs b ∨ a * b = -(abs a * abs b)", "state_before": "α : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b✝ c a b : α\n⊢ abs (a * b) = abs a * abs b", "tactic": "rw [abs_eq (mul_nonneg (abs_nonneg a) (abs_nonneg b))]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b✝ c a b : α\n⊢ a * b = abs a * abs b ∨ a * b = -(abs a * abs b)", "tactic": "cases' le_total a 0 with ha ha <;> cases' le_total b 0 with hb hb <;>\n simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul,\n mul_neg, neg_neg, *]" } ]
[ 40, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 36, 1 ]
Mathlib/Analysis/Convex/Between.lean
wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg
[ { "state_after": "no goals", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.554527\nP : Type u_3\nP' : Type ?u.554533\ninst✝³ : LinearOrderedField R\ninst✝² : AddCommGroup V\ninst✝¹ : Module R V\ninst✝ : AddTorsor V P\nx : P\nv : V\nr₁ r₂ : R\nhr₁ : r₁ ≤ 0\nhr₂ : 0 ≤ r₂\n⊢ Wbtw R (r₁ • v +ᵥ x) x (r₂ • v +ᵥ x)", "tactic": "convert wbtw_smul_vadd_smul_vadd_of_nonneg_of_le (r₁ • v +ᵥ x) v (Left.nonneg_neg_iff.2 hr₁)\n (neg_le_sub_iff_le_add.2 ((le_add_iff_nonneg_left r₁).2 hr₂)) using 1 <;>\n simp [sub_smul, ← add_vadd]" } ]
[ 799, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 795, 1 ]
Mathlib/Order/Hom/Lattice.lean
SupHom.symm_dual_comp
[]
[ 1396, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1393, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.lift_comp
[ { "state_after": "case h\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx✝ : M\n⊢ ↑(MonoidHom.comp (lift f hg) (toMap f)) x✝ = ↑g x✝", "state_before": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\n⊢ MonoidHom.comp (lift f hg) (toMap f) = g", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nM : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_2\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nx✝ : M\n⊢ ↑(MonoidHom.comp (lift f hg) (toMap f)) x✝ = ↑g x✝", "tactic": "exact f.lift_eq hg _" } ]
[ 1023, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1023, 1 ]
Mathlib/GroupTheory/Submonoid/Inverses.lean
Submonoid.leftInvEquiv_mul
[ { "state_after": "no goals", "state_before": "M : Type u_1\ninst✝ : CommMonoid M\nS : Submonoid M\nhS : S ≤ IsUnit.submonoid M\nx : { x // x ∈ leftInv S }\n⊢ ↑(↑(leftInvEquiv S hS) x) * ↑x = 1", "tactic": "simpa only [leftInvEquiv_apply, fromCommLeftInv] using fromLeftInv_mul S x" } ]
[ 198, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Data/Finmap.lean
Finmap.not_mem_erase_self
[ { "state_after": "α : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na : α\ns : Finmap β\n⊢ a = a ∨ ¬a ∈ s", "state_before": "α : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na : α\ns : Finmap β\n⊢ ¬a ∈ erase a s", "tactic": "rw [mem_erase, not_and_or, not_not]" }, { "state_after": "case h\nα : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na : α\ns : Finmap β\n⊢ a = a", "state_before": "α : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na : α\ns : Finmap β\n⊢ a = a ∨ ¬a ∈ s", "tactic": "left" }, { "state_after": "no goals", "state_before": "case h\nα : Type u\nβ : α → Type v\ninst✝ : DecidableEq α\na : α\ns : Finmap β\n⊢ a = a", "tactic": "rfl" } ]
[ 445, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 442, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iInter_union_of_antitone
[]
[ 606, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 604, 1 ]
Mathlib/Analysis/Complex/UnitDisc/Basic.lean
Complex.UnitDisc.re_conj
[]
[ 238, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/Logic/Equiv/Option.lean
Equiv.optionSubtype_symm_apply_apply_none
[]
[ 260, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 256, 1 ]
Mathlib/Order/Lattice.lean
le_antisymm'
[]
[ 71, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/RingTheory/Subring/Pointwise.lean
Subring.pointwise_smul_toSubsemiring
[]
[ 74, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/Data/Real/NNReal.lean
NNReal.coe_max
[]
[ 581, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 580, 1 ]
Mathlib/Analysis/Calculus/FDerivAnalytic.lean
HasFPowerSeriesAt.hasFDerivAt
[]
[ 49, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/GroupTheory/Coset.lean
leftCoset_eq_iff
[ { "state_after": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∀ (x_1 : α), x_1 ∈ x *l ↑s ↔ x_1 ∈ y *l ↑s) ↔ x⁻¹ * y ∈ s", "state_before": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ x *l ↑s = y *l ↑s ↔ x⁻¹ * y ∈ s", "tactic": "rw [Set.ext_iff]" }, { "state_after": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s) ↔ x⁻¹ * y ∈ s", "state_before": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∀ (x_1 : α), x_1 ∈ x *l ↑s ↔ x_1 ∈ y *l ↑s) ↔ x⁻¹ * y ∈ s", "tactic": "simp_rw [mem_leftCoset_iff, SetLike.mem_coe]" }, { "state_after": "case mp\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s) → x⁻¹ * y ∈ s\n\ncase mpr\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ x⁻¹ * y ∈ s → ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s", "state_before": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s) ↔ x⁻¹ * y ∈ s", "tactic": "constructor" }, { "state_after": "case mp\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s\n⊢ x⁻¹ * y ∈ s", "state_before": "case mp\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s) → x⁻¹ * y ∈ s", "tactic": "intro h" }, { "state_after": "case mp\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s\n⊢ y⁻¹ * y ∈ s", "state_before": "case mp\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s\n⊢ x⁻¹ * y ∈ s", "tactic": "apply (h y).mpr" }, { "state_after": "case mp\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s\n⊢ 1 ∈ s", "state_before": "case mp\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s\n⊢ y⁻¹ * y ∈ s", "tactic": "rw [mul_left_inv]" }, { "state_after": "no goals", "state_before": "case mp\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s\n⊢ 1 ∈ s", "tactic": "exact s.one_mem" }, { "state_after": "case mpr\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : x⁻¹ * y ∈ s\nz : α\n⊢ x⁻¹ * z ∈ s ↔ y⁻¹ * z ∈ s", "state_before": "case mpr\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ x⁻¹ * y ∈ s → ∀ (x_1 : α), x⁻¹ * x_1 ∈ s ↔ y⁻¹ * x_1 ∈ s", "tactic": "intro h z" }, { "state_after": "case mpr\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : x⁻¹ * y ∈ s\nz : α\n⊢ x⁻¹ * y * y⁻¹ * z ∈ s ↔ y⁻¹ * z ∈ s", "state_before": "case mpr\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : x⁻¹ * y ∈ s\nz : α\n⊢ x⁻¹ * z ∈ s ↔ y⁻¹ * z ∈ s", "tactic": "rw [← mul_inv_cancel_right x⁻¹ y]" }, { "state_after": "case mpr\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : x⁻¹ * y ∈ s\nz : α\n⊢ x⁻¹ * y * (y⁻¹ * z) ∈ s ↔ y⁻¹ * z ∈ s", "state_before": "case mpr\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : x⁻¹ * y ∈ s\nz : α\n⊢ x⁻¹ * y * y⁻¹ * z ∈ s ↔ y⁻¹ * z ∈ s", "tactic": "rw [mul_assoc]" }, { "state_after": "no goals", "state_before": "case mpr\nα : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\nh : x⁻¹ * y ∈ s\nz : α\n⊢ x⁻¹ * y * (y⁻¹ * z) ∈ s ↔ y⁻¹ * z ∈ s", "tactic": "exact s.mul_mem_cancel_left h" } ]
[ 283, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 272, 1 ]
Mathlib/Algebra/Hom/NonUnitalAlg.lean
NonUnitalAlgHom.coe_prod
[]
[ 347, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 346, 1 ]
Mathlib/CategoryTheory/Iso.lean
CategoryTheory.Iso.nonempty_iso_refl
[]
[ 150, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.withDensity_indicator
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1768900\nγ : Type ?u.1768903\nδ : Type ?u.1768906\nm : MeasurableSpace α\nμ ν : Measure α\ns : Set α\nhs : MeasurableSet s\nf : α → ℝ≥0∞\nt : Set α\nht : MeasurableSet t\n⊢ ↑↑(withDensity μ (indicator s f)) t = ↑↑(withDensity (Measure.restrict μ s) f) t", "state_before": "α : Type u_1\nβ : Type ?u.1768900\nγ : Type ?u.1768903\nδ : Type ?u.1768906\nm : MeasurableSpace α\nμ ν : Measure α\ns : Set α\nhs : MeasurableSet s\nf : α → ℝ≥0∞\n⊢ withDensity μ (indicator s f) = withDensity (Measure.restrict μ s) f", "tactic": "ext1 t ht" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1768900\nγ : Type ?u.1768903\nδ : Type ?u.1768906\nm : MeasurableSpace α\nμ ν : Measure α\ns : Set α\nhs : MeasurableSet s\nf : α → ℝ≥0∞\nt : Set α\nht : MeasurableSet t\n⊢ ↑↑(withDensity μ (indicator s f)) t = ↑↑(withDensity (Measure.restrict μ s) f) t", "tactic": "rw [withDensity_apply _ ht, lintegral_indicator _ hs, restrict_comm hs, ←\n withDensity_apply _ ht]" } ]
[ 1640, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1636, 1 ]
Mathlib/RingTheory/WittVector/Teichmuller.lean
WittVector.teichmuller_coeff_pos
[]
[ 120, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/Analysis/NormedSpace/AffineIsometry.lean
AffineIsometry.id_comp
[]
[ 246, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 1 ]
Mathlib/Init/CcLemmas.lean
ne_of_eq_of_ne
[]
[ 119, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/Algebra/Star/Basic.lean
star_neg
[]
[ 296, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 295, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.L1.SimpleFunc.setToL1S_add_left'
[]
[ 742, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 739, 1 ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_atTop
[]
[ 46, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 45, 1 ]
Mathlib/Algebra/GCDMonoid/Finset.lean
Finset.gcd_singleton
[]
[ 179, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/Algebra/Order/Pointwise.lean
LinearOrderedField.smul_Ioi
[ { "state_after": "case h\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ x ∈ r • Ioi a ↔ x ∈ Ioi (r • a)", "state_before": "α : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\n⊢ r • Ioi a = Ioi (r • a)", "tactic": "ext x" }, { "state_after": "case h\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ (∃ y, a < y ∧ r * y = x) ↔ r * a < x", "state_before": "case h\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ x ∈ r • Ioi a ↔ x ∈ Ioi (r • a)", "tactic": "simp only [mem_smul_set, smul_eq_mul, mem_Ioi]" }, { "state_after": "case h.mp\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ (∃ y, a < y ∧ r * y = x) → r * a < x\n\ncase h.mpr\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ r * a < x → ∃ y, a < y ∧ r * y = x", "state_before": "case h\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ (∃ y, a < y ∧ r * y = x) ↔ r * a < x", "tactic": "constructor" }, { "state_after": "case h.mp.intro.intro\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\na_w : K\na_h_left : a < a_w\n⊢ r * a < r * a_w", "state_before": "case h.mp\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ (∃ y, a < y ∧ r * y = x) → r * a < x", "tactic": "rintro ⟨a_w, a_h_left, rfl⟩" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\na_w : K\na_h_left : a < a_w\n⊢ r * a < r * a_w", "tactic": "exact (mul_lt_mul_left hr).mpr a_h_left" }, { "state_after": "case h.mpr\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ ∃ y, a < y ∧ r * y = x", "state_before": "case h.mpr\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ r * a < x → ∃ y, a < y ∧ r * y = x", "tactic": "rintro h" }, { "state_after": "case h.mpr\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ a < x / r ∧ r * (x / r) = x", "state_before": "case h.mpr\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ ∃ y, a < y ∧ r * y = x", "tactic": "use x / r" }, { "state_after": "case h.mpr.left\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ a < x / r\n\ncase h.mpr.right\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ r * (x / r) = x", "state_before": "case h.mpr\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ a < x / r ∧ r * (x / r) = x", "tactic": "constructor" }, { "state_after": "case h.mpr.right\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ r * (x / r) = x", "state_before": "case h.mpr.left\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ a < x / r\n\ncase h.mpr.right\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ r * (x / r) = x", "tactic": "exact (lt_div_iff' hr).mpr h" }, { "state_after": "no goals", "state_before": "case h.mpr.right\nα : Type ?u.61362\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\nh : r * a < x\n⊢ r * (x / r) = x", "tactic": "exact mul_div_cancel' _ (ne_of_gt hr)" } ]
[ 254, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 244, 1 ]
Mathlib/NumberTheory/SumFourSquares.lean
Nat.sum_four_squares_of_two_mul_sum_four_squares
[ { "state_after": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "tactic": "have : ∀ f : Fin 4 → ZMod 2, f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 → ∃ i : Fin 4,\n f i ^ 2 + f (swap i 0 1) ^ 2 = 0 ∧ f (swap i 0 2) ^ 2 + f (swap i 0 3) ^ 2 = 0 := by\n decide" }, { "state_after": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "tactic": "set f : Fin 4 → ℤ := ![a, b, c, d]" }, { "state_after": "case intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nhσ : ↑(f i) ^ 2 + ↑(f (↑(swap i 0) 1)) ^ 2 = 0 ∧ ↑(f (↑(swap i 0) 2)) ^ 2 + ↑(f (↑(swap i 0) 3)) ^ 2 = 0\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "tactic": "obtain ⟨i, hσ⟩ := this (fun x => ↑(f x)) <| by\n rw [← @zero_mul (ZMod 2) _ m, ← show ((2 : ℤ) : ZMod 2) = 0 from rfl, ← Int.cast_mul, ← h]\n simp only [Int.cast_add, Int.cast_pow]\n rfl" }, { "state_after": "case intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "state_before": "case intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nhσ : ↑(f i) ^ 2 + ↑(f (↑(swap i 0) 1)) ^ 2 = 0 ∧ ↑(f (↑(swap i 0) 2)) ^ 2 + ↑(f (↑(swap i 0) 3)) ^ 2 = 0\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "tactic": "set σ := swap i 0" }, { "state_after": "case intro.intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "state_before": "case intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "tactic": "obtain ⟨x, hx⟩ : (2 : ℤ) ∣ f (σ 0) ^ 2 + f (σ 1) ^ 2 :=\n (CharP.int_cast_eq_zero_iff (ZMod 2) 2 _).1 <| by\n simpa only [Int.cast_pow, Int.cast_add, Equiv.swap_apply_right, ZMod.pow_card] using hσ.1" }, { "state_after": "case intro.intro.intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\ny : ℤ\nhy : f (↑σ 2) ^ 2 + f (↑σ 3) ^ 2 = 2 * y\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "state_before": "case intro.intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "tactic": "obtain ⟨y, hy⟩ : (2 : ℤ) ∣ f (σ 2) ^ 2 + f (σ 3) ^ 2 :=\n (CharP.int_cast_eq_zero_iff (ZMod 2) 2 _).1 <| by\n simpa only [Int.cast_pow, Int.cast_add, ZMod.pow_card] using hσ.2" }, { "state_after": "case intro.intro.intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\ny : ℤ\nhy : f (↑σ 2) ^ 2 + f (↑σ 3) ^ 2 = 2 * y\n⊢ ((f (↑σ 0) - f (↑σ 1)) / 2) ^ 2 + ((f (↑σ 0) + f (↑σ 1)) / 2) ^ 2 + ((f (↑σ 2) - f (↑σ 3)) / 2) ^ 2 +\n ((f (↑σ 2) + f (↑σ 3)) / 2) ^ 2 =\n m", "state_before": "case intro.intro.intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\ny : ℤ\nhy : f (↑σ 2) ^ 2 + f (↑σ 3) ^ 2 = 2 * y\n⊢ ∃ w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = m", "tactic": "refine ⟨(f (σ 0) - f (σ 1)) / 2, (f (σ 0) + f (σ 1)) / 2, (f (σ 2) - f (σ 3)) / 2,\n (f (σ 2) + f (σ 3)) / 2, ?_⟩" }, { "state_after": "case intro.intro.intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\ny : ℤ\nhy : f (↑σ 2) ^ 2 + f (↑σ 3) ^ 2 = 2 * y\n⊢ 2 * x + 2 * y = a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2", "state_before": "case intro.intro.intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\ny : ℤ\nhy : f (↑σ 2) ^ 2 + f (↑σ 3) ^ 2 = 2 * y\n⊢ ((f (↑σ 0) - f (↑σ 1)) / 2) ^ 2 + ((f (↑σ 0) + f (↑σ 1)) / 2) ^ 2 + ((f (↑σ 2) - f (↑σ 3)) / 2) ^ 2 +\n ((f (↑σ 2) + f (↑σ 3)) / 2) ^ 2 =\n m", "tactic": "rw [← Int.sq_add_sq_of_two_mul_sq_add_sq hx.symm, add_assoc,\n ← Int.sq_add_sq_of_two_mul_sq_add_sq hy.symm, ← mul_right_inj' two_ne_zero, ← h, mul_add]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nm a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis✝ :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\ny : ℤ\nhy : f (↑σ 2) ^ 2 + f (↑σ 3) ^ 2 = 2 * y\nthis : ∑ x : Fin 4, f (↑σ x) ^ 2 = ∑ x : Fin 4, f x ^ 2\n⊢ 2 * x + 2 * y = a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2", "tactic": "simpa only [← hx, ← hy, Fin.sum_univ_four, add_assoc] using this" }, { "state_after": "no goals", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\n⊢ ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0", "tactic": "decide" }, { "state_after": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\n⊢ (fun x => ↑(f x)) 0 ^ 2 + (fun x => ↑(f x)) 1 ^ 2 + (fun x => ↑(f x)) 2 ^ 2 + (fun x => ↑(f x)) 3 ^ 2 =\n ↑(a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2)", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\n⊢ (fun x => ↑(f x)) 0 ^ 2 + (fun x => ↑(f x)) 1 ^ 2 + (fun x => ↑(f x)) 2 ^ 2 + (fun x => ↑(f x)) 3 ^ 2 = 0", "tactic": "rw [← @zero_mul (ZMod 2) _ m, ← show ((2 : ℤ) : ZMod 2) = 0 from rfl, ← Int.cast_mul, ← h]" }, { "state_after": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\n⊢ ↑(Matrix.vecCons a ![b, c, d] 0) ^ 2 + ↑(Matrix.vecCons a ![b, c, d] 1) ^ 2 + ↑(Matrix.vecCons a ![b, c, d] 2) ^ 2 +\n ↑(Matrix.vecCons a ![b, c, d] 3) ^ 2 =\n ↑a ^ 2 + ↑b ^ 2 + ↑c ^ 2 + ↑d ^ 2", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\n⊢ (fun x => ↑(f x)) 0 ^ 2 + (fun x => ↑(f x)) 1 ^ 2 + (fun x => ↑(f x)) 2 ^ 2 + (fun x => ↑(f x)) 3 ^ 2 =\n ↑(a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2)", "tactic": "simp only [Int.cast_add, Int.cast_pow]" }, { "state_after": "no goals", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\n⊢ ↑(Matrix.vecCons a ![b, c, d] 0) ^ 2 + ↑(Matrix.vecCons a ![b, c, d] 1) ^ 2 + ↑(Matrix.vecCons a ![b, c, d] 2) ^ 2 +\n ↑(Matrix.vecCons a ![b, c, d] 3) ^ 2 =\n ↑a ^ 2 + ↑b ^ 2 + ↑c ^ 2 + ↑d ^ 2", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\n⊢ ↑(f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2) = 0", "tactic": "simpa only [Int.cast_pow, Int.cast_add, Equiv.swap_apply_right, ZMod.pow_card] using hσ.1" }, { "state_after": "no goals", "state_before": "m a b c d : ℤ\nh : a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = 2 * m\nthis :\n ∀ (f : Fin 4 → ZMod 2),\n f 0 ^ 2 + f 1 ^ 2 + f 2 ^ 2 + f 3 ^ 2 = 0 →\n ∃ i, f i ^ 2 + f (↑(swap i 0) 1) ^ 2 = 0 ∧ f (↑(swap i 0) 2) ^ 2 + f (↑(swap i 0) 3) ^ 2 = 0\nf : Fin 4 → ℤ := ![a, b, c, d]\ni : Fin 4\nσ : Perm (Fin 4) := swap i 0\nhσ : ↑(f i) ^ 2 + ↑(f (↑σ 1)) ^ 2 = 0 ∧ ↑(f (↑σ 2)) ^ 2 + ↑(f (↑σ 3)) ^ 2 = 0\nx : ℤ\nhx : f (↑σ 0) ^ 2 + f (↑σ 1) ^ 2 = 2 * x\n⊢ ↑(f (↑σ 2) ^ 2 + f (↑σ 3) ^ 2) = 0", "tactic": "simpa only [Int.cast_pow, Int.cast_add, ZMod.pow_card] using hσ.2" } ]
[ 143, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 9 ]
Mathlib/MeasureTheory/Function/UniformIntegrable.lean
MeasureTheory.Memℒp.snormEssSup_indicator_norm_ge_eq_zero
[ { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ ∃ M, snormEssSup (Set.indicator {x | M ≤ ↑‖f x‖₊} f) μ = 0", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\n⊢ ∃ M, snormEssSup (Set.indicator {x | M ≤ ↑‖f x‖₊} f) μ = 0", "tactic": "have hbdd : snormEssSup f μ < ∞ := hf.snorm_lt_top" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ snormEssSup (Set.indicator {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊} f) μ = 0", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ ∃ M, snormEssSup (Set.indicator {x | M ≤ ↑‖f x‖₊} f) μ = 0", "tactic": "refine' ⟨(snorm f ∞ μ + 1).toReal, _⟩" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ snormEssSup f (Measure.restrict μ {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊}) = 0\n\nα : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ MeasurableSet {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊}", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ snormEssSup (Set.indicator {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊} f) μ = 0", "tactic": "rw [snormEssSup_indicator_eq_snormEssSup_restrict]" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ MeasurableSet {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊}", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : Measure.restrict μ {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊} = 0\n⊢ snormEssSup f (Measure.restrict μ {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊}) = 0\n\nα : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ MeasurableSet {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊}", "tactic": "rw [this, snormEssSup_measure_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ MeasurableSet {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊}", "tactic": "exact measurableSet_le measurable_const hmeas.nnnorm.measurable.subtype_coe" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ ↑↑μ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} = 0", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ Measure.restrict μ {x | ENNReal.toReal (snorm f ⊤ μ + 1) ≤ ↑‖f x‖₊} = 0", "tactic": "simp only [coe_nnnorm, snorm_exponent_top, Measure.restrict_eq_zero]" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\n⊢ ↑↑μ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ≤ 0", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\n⊢ ↑↑μ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} = 0", "tactic": "rw [← nonpos_iff_eq_zero]" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\n⊢ ↑↑μ {x | snormEssSup f μ < ↑‖f x‖₊} ≤ 0", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\n⊢ ↑↑μ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ≤ 0", "tactic": "refine' (measure_mono this).trans _" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\nhle : ∀ᵐ (x : α) ∂μ, ↑‖f x‖₊ ≤ snormEssSup f μ\n⊢ ↑↑μ {x | snormEssSup f μ < ↑‖f x‖₊} ≤ 0", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\n⊢ ↑↑μ {x | snormEssSup f μ < ↑‖f x‖₊} ≤ 0", "tactic": "have hle := coe_nnnorm_ae_le_snormEssSup f μ" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\nhle : ↑↑μ {a | snormEssSup f μ < ↑‖f a‖₊} = 0\n⊢ ↑↑μ {x | snormEssSup f μ < ↑‖f x‖₊} ≤ 0", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\nhle : ∀ᵐ (x : α) ∂μ, ↑‖f x‖₊ ≤ snormEssSup f μ\n⊢ ↑↑μ {x | snormEssSup f μ < ↑‖f x‖₊} ≤ 0", "tactic": "simp_rw [ae_iff, not_le] at hle" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nthis : {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}\nhle : ↑↑μ {a | snormEssSup f μ < ↑‖f a‖₊} = 0\n⊢ ↑↑μ {x | snormEssSup f μ < ↑‖f x‖₊} ≤ 0", "tactic": "exact nonpos_iff_eq_zero.2 hle" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ x ∈ {x | snormEssSup f μ < ↑‖f x‖₊}", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\n⊢ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖} ⊆ {x | snormEssSup f μ < ↑‖f x‖₊}", "tactic": "intro x hx" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ ENNReal.toReal (snormEssSup f μ) < ‖f x‖", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ x ∈ {x | snormEssSup f μ < ↑‖f x‖₊}", "tactic": "rw [Set.mem_setOf_eq, ← ENNReal.toReal_lt_toReal hbdd.ne ENNReal.coe_lt_top.ne,\n ENNReal.coe_toReal, coe_nnnorm]" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ ENNReal.toReal (snormEssSup f μ) < ENNReal.toReal (snormEssSup f μ + 1)", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ ENNReal.toReal (snormEssSup f μ) < ‖f x‖", "tactic": "refine' lt_of_lt_of_le _ hx" }, { "state_after": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ snormEssSup f μ < snormEssSup f μ + 1\n\nα : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ snormEssSup f μ + 1 ≠ ⊤", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ ENNReal.toReal (snormEssSup f μ) < ENNReal.toReal (snormEssSup f μ + 1)", "tactic": "rw [ENNReal.toReal_lt_toReal hbdd.ne]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ snormEssSup f μ < snormEssSup f μ + 1", "tactic": "exact ENNReal.lt_add_right hbdd.ne one_ne_zero" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nι : Type ?u.92822\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : NormedAddCommGroup β\np : ℝ≥0∞\nf : α → β\nhf : Memℒp f ⊤\nhmeas : StronglyMeasurable f\nhbdd : snormEssSup f μ < ⊤\nx : α\nhx : x ∈ {x | ENNReal.toReal (snormEssSup f μ + 1) ≤ ‖f x‖}\n⊢ snormEssSup f μ + 1 ≠ ⊤", "tactic": "exact (ENNReal.add_lt_top.2 ⟨hbdd, ENNReal.one_lt_top⟩).ne" } ]
[ 257, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 234, 1 ]
Mathlib/Data/Finset/Basic.lean
Multiset.toFinset_bind_dedup
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.453885\ninst✝¹ : DecidableEq α\ns t : Multiset α\ninst✝ : DecidableEq β\nm : Multiset α\nf : α → Multiset β\n⊢ toFinset (bind (dedup m) f) = toFinset (bind m f)", "tactic": "simp_rw [toFinset, dedup_bind_dedup]" } ]
[ 3203, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3202, 1 ]
Mathlib/GroupTheory/PGroup.lean
IsPGroup.to_inf_right
[]
[ 281, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/Algebra/Order/Floor.lean
Int.fract_sub_self
[]
[ 869, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 868, 1 ]
Mathlib/Data/Nat/Parity.lean
Nat.odd_iff_not_even
[ { "state_after": "no goals", "state_before": "m n : ℕ\n⊢ Odd n ↔ ¬Even n", "tactic": "rw [not_even_iff, odd_iff]" } ]
[ 64, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]