file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Computability/NFA.lean
NFA.evalFrom_singleton
[]
[ 78, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/Order/CompleteLattice.lean
le_iSup₂_of_le
[]
[ 808, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 806, 1 ]
Mathlib/Algebra/Algebra/Unitization.lean
Unitization.ind
[]
[ 318, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 1 ]
Mathlib/Topology/Sober.lean
isGenericPoint_def
[]
[ 42, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 41, 1 ]
Mathlib/Order/WellFoundedSet.lean
Finset.partiallyWellOrderedOn
[]
[ 545, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 543, 11 ]
Mathlib/LinearAlgebra/Dimension.lean
rank_fun_eq_lift_mul
[ { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.533809\ninst✝¹⁴ : Ring K\ninst✝¹³ : StrongRankCondition K\ninst✝¹² : AddCommGroup V\ninst✝¹¹ : Module K V\ninst✝¹⁰ : Module.Free K V\ninst✝⁹ : AddCommGroup V'\ninst✝⁸ : Module K V'\ninst✝⁷ : Module.Free K V'\ninst✝⁶ : AddCommGroup V₁\ninst✝⁵ : Module K V₁\ninst✝⁴ : Module.Free K V₁\ninst✝³ : (i : η) → AddCommGroup (φ i)\ninst✝² : (i : η) → Module K (φ i)\ninst✝¹ : ∀ (i : η), Module.Free K (φ i)\ninst✝ : Fintype η\n⊢ Module.rank K (η → V) = ↑(Fintype.card η) * lift (Module.rank K V)", "tactic": "rw [rank_pi, Cardinal.sum_const, Cardinal.mk_fintype, Cardinal.lift_natCast]" } ]
[ 1024, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1022, 1 ]
Mathlib/Logic/Equiv/Fintype.lean
Function.Embedding.toEquivRange_eq_ofInjective
[ { "state_after": "case H.a\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Fintype α\ninst✝ : DecidableEq β\ne : Equiv.Perm α\nf : α ↪ β\nx✝ : α\n⊢ ↑(↑(toEquivRange f) x✝) = ↑(↑(Equiv.ofInjective ↑f (_ : Injective ↑f)) x✝)", "state_before": "α : Type u_1\nβ : Type u_2\ninst✝¹ : Fintype α\ninst✝ : DecidableEq β\ne : Equiv.Perm α\nf : α ↪ β\n⊢ toEquivRange f = Equiv.ofInjective ↑f (_ : Injective ↑f)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case H.a\nα : Type u_1\nβ : Type u_2\ninst✝¹ : Fintype α\ninst✝ : DecidableEq β\ne : Equiv.Perm α\nf : α ↪ β\nx✝ : α\n⊢ ↑(↑(toEquivRange f) x✝) = ↑(↑(Equiv.ofInjective ↑f (_ : Injective ↑f)) x✝)", "tactic": "simp" } ]
[ 59, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/RingTheory/Multiplicity.lean
multiplicity.eq_of_associated_left
[]
[ 340, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 337, 1 ]
Mathlib/Topology/SubsetProperties.lean
isClopen_biUnion_finset
[]
[ 1597, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1595, 1 ]
Mathlib/Analysis/NormedSpace/Basic.lean
eventually_nhds_norm_smul_sub_lt
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.15386\nγ : Type ?u.15389\nι : Type ?u.15392\ninst✝⁵ : NormedField α\ninst✝⁴ : SeminormedAddCommGroup β\nE : Type u_1\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace α E\nF : Type ?u.15423\ninst✝¹ : SeminormedAddCommGroup F\ninst✝ : NormedSpace α F\nc : α\nx : E\nε : ℝ\nh : 0 < ε\n⊢ ‖c • (id x - x)‖ = 0", "tactic": "simp" } ]
[ 95, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/Data/Int/Parity.lean
Int.not_even_bit1
[ { "state_after": "no goals", "state_before": "m n✝ n : ℤ\n⊢ ¬Even (bit1 n)", "tactic": "simp [bit1, parity_simps]" } ]
[ 118, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/Computability/Primrec.lean
Primrec₂.unpaired'
[]
[ 445, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 444, 1 ]
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.mk_finsupp_lift_of_infinite
[ { "state_after": "case a\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ (#α →₀ β) ≤ max (lift (#α)) (lift (#β))\n\ncase a\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ max (lift (#α)) (lift (#β)) ≤ (#α →₀ β)", "state_before": "α : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ (#α →₀ β) = max (lift (#α)) (lift (#β))", "tactic": "apply le_antisymm" }, { "state_after": "no goals", "state_before": "case a\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ (#α →₀ β) ≤ max (lift (#α)) (lift (#β))", "tactic": "calc\n (#α →₀ β) ≤ (#Finset (α × β)) := mk_le_of_injective (Finsupp.graph_injective α β)\n _ = (#α × β) := mk_finset_of_infinite _\n _ = max (lift.{v} (#α)) (lift.{u} (#β)) :=\n by rw [mk_prod, mul_eq_max_of_aleph0_le_left] <;> simp" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ (#α × β) = max (lift (#α)) (lift (#β))", "tactic": "rw [mk_prod, mul_eq_max_of_aleph0_le_left] <;> simp" }, { "state_after": "case a.h₁\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ lift (#α) ≤ lift (#α →₀ β)\n\ncase a.h₂\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ lift (#β) ≤ lift (#α →₀ β)", "state_before": "case a\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ max (lift (#α)) (lift (#β)) ≤ (#α →₀ β)", "tactic": "apply max_le <;> rw [← lift_id (#α →₀ β), ← lift_umax]" }, { "state_after": "case a.h₁.intro\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\nb : β\nhb : b ≠ 0\n⊢ lift (#α) ≤ lift (#α →₀ β)", "state_before": "case a.h₁\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ lift (#α) ≤ lift (#α →₀ β)", "tactic": "cases' exists_ne (0 : β) with b hb" }, { "state_after": "no goals", "state_before": "case a.h₁.intro\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\nb : β\nhb : b ≠ 0\n⊢ lift (#α) ≤ lift (#α →₀ β)", "tactic": "exact lift_mk_le.{u, max u v, v}.2 ⟨⟨_, Finsupp.single_left_injective hb⟩⟩" }, { "state_after": "case a.h₂\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\ninhabited_h : Inhabited α\n⊢ lift (#β) ≤ lift (#α →₀ β)", "state_before": "case a.h₂\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\n⊢ lift (#β) ≤ lift (#α →₀ β)", "tactic": "inhabit α" }, { "state_after": "no goals", "state_before": "case a.h₂\nα : Type u\nβ : Type v\ninst✝² : Infinite α\ninst✝¹ : Zero β\ninst✝ : Nontrivial β\ninhabited_h : Inhabited α\n⊢ lift (#β) ≤ lift (#α →₀ β)", "tactic": "exact lift_mk_le.{v, max u v, u}.2 ⟨⟨_, Finsupp.single_injective default⟩⟩" } ]
[ 1046, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1032, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.disjoint_iff_ne
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.45481\nγ : Type ?u.45484\nf : α → β\ns t u : Finset α\na b : α\n⊢ _root_.Disjoint s t ↔ ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → a ≠ b", "tactic": "simp only [disjoint_left, imp_not_comm, forall_eq']" } ]
[ 923, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 922, 1 ]
Mathlib/CategoryTheory/Types.lean
CategoryTheory.Iso.toEquiv_comp
[]
[ 372, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 370, 1 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
IsOpen.exists_iUnion_isClosed
[ { "state_after": "case intro.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\n⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ (⋃ (n : ℕ), F n) = U ∧ Monotone F", "state_before": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\n⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ (⋃ (n : ℕ), F n) = U ∧ Monotone F", "tactic": "obtain ⟨a, a_pos, a_lt_one⟩ : ∃ a : ℝ≥0∞, 0 < a ∧ a < 1 := exists_between zero_lt_one" }, { "state_after": "case intro.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\n⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ (⋃ (n : ℕ), F n) = U ∧ Monotone F", "state_before": "case intro.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\n⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ (⋃ (n : ℕ), F n) = U ∧ Monotone F", "tactic": "let F := fun n : ℕ => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)" }, { "state_after": "case intro.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ (⋃ (n : ℕ), F n) = U ∧ Monotone F", "state_before": "case intro.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\n⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ (⋃ (n : ℕ), F n) = U ∧ Monotone F", "tactic": "have F_subset : ∀ n, F n ⊆ U := fun n x hx ↦ by\n by_contra h\n have : infEdist x (Uᶜ) ≠ 0 := ((ENNReal.pow_pos a_pos _).trans_le hx).ne'\n exact this (infEdist_zero_of_mem h)" }, { "state_after": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ (⋃ (n : ℕ), F n) = U\n\ncase intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ Monotone F", "state_before": "case intro.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ (⋃ (n : ℕ), F n) = U ∧ Monotone F", "tactic": "refine ⟨F, fun n => IsClosed.preimage continuous_infEdist isClosed_Ici, F_subset, ?_, ?_⟩" }, { "state_after": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ (⋃ (n : ℕ), F n) = U\n\ncase intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ Monotone F", "state_before": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ (⋃ (n : ℕ), F n) = U\n\ncase intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ Monotone F", "tactic": "show (⋃ n, F n) = U" }, { "state_after": "case intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ Monotone F", "state_before": "case intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ Monotone F", "tactic": "show Monotone F" }, { "state_after": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nn : ℕ\nx : α\nhx : x ∈ F n\nh : ¬x ∈ U\n⊢ False", "state_before": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nn : ℕ\nx : α\nhx : x ∈ F n\n⊢ x ∈ U", "tactic": "by_contra h" }, { "state_after": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nn : ℕ\nx : α\nhx : x ∈ F n\nh : ¬x ∈ U\nthis : infEdist x (Uᶜ) ≠ 0\n⊢ False", "state_before": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nn : ℕ\nx : α\nhx : x ∈ F n\nh : ¬x ∈ U\n⊢ False", "tactic": "have : infEdist x (Uᶜ) ≠ 0 := ((ENNReal.pow_pos a_pos _).trans_le hx).ne'" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nn : ℕ\nx : α\nhx : x ∈ F n\nh : ¬x ∈ U\nthis : infEdist x (Uᶜ) ≠ 0\n⊢ False", "tactic": "exact this (infEdist_zero_of_mem h)" }, { "state_after": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\n⊢ x ∈ ⋃ (n : ℕ), F n", "state_before": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ (⋃ (n : ℕ), F n) = U", "tactic": "refine' Subset.antisymm (by simp only [iUnion_subset_iff, F_subset, forall_const]) fun x hx => _" }, { "state_after": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis : ¬x ∈ Uᶜ\n⊢ x ∈ ⋃ (n : ℕ), F n", "state_before": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\n⊢ x ∈ ⋃ (n : ℕ), F n", "tactic": "have : ¬x ∈ Uᶜ := by simpa using hx" }, { "state_after": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis : ¬infEdist x (Uᶜ) = 0\n⊢ x ∈ ⋃ (n : ℕ), F n", "state_before": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis : ¬x ∈ Uᶜ\n⊢ x ∈ ⋃ (n : ℕ), F n", "tactic": "rw [mem_iff_infEdist_zero_of_closed hU.isClosed_compl] at this" }, { "state_after": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis : ¬infEdist x (Uᶜ) = 0\nB : 0 < infEdist x (Uᶜ)\n⊢ x ∈ ⋃ (n : ℕ), F n", "state_before": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis : ¬infEdist x (Uᶜ) = 0\n⊢ x ∈ ⋃ (n : ℕ), F n", "tactic": "have B : 0 < infEdist x (Uᶜ) := by simpa [pos_iff_ne_zero] using this" }, { "state_after": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis✝ : ¬infEdist x (Uᶜ) = 0\nB : 0 < infEdist x (Uᶜ)\nthis : Tendsto (fun n => a ^ n) atTop (𝓝 0)\n⊢ x ∈ ⋃ (n : ℕ), F n", "state_before": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis : ¬infEdist x (Uᶜ) = 0\nB : 0 < infEdist x (Uᶜ)\n⊢ x ∈ ⋃ (n : ℕ), F n", "tactic": "have : Filter.Tendsto (fun n => a ^ n) atTop (𝓝 0) :=\n ENNReal.tendsto_pow_atTop_nhds_0_of_lt_1 a_lt_one" }, { "state_after": "case intro.intro.refine_1.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis✝ : ¬infEdist x (Uᶜ) = 0\nB : 0 < infEdist x (Uᶜ)\nthis : Tendsto (fun n => a ^ n) atTop (𝓝 0)\nn : ℕ\nhn : a ^ n < infEdist x (Uᶜ)\n⊢ x ∈ ⋃ (n : ℕ), F n", "state_before": "case intro.intro.refine_1\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis✝ : ¬infEdist x (Uᶜ) = 0\nB : 0 < infEdist x (Uᶜ)\nthis : Tendsto (fun n => a ^ n) atTop (𝓝 0)\n⊢ x ∈ ⋃ (n : ℕ), F n", "tactic": "rcases((tendsto_order.1 this).2 _ B).exists with ⟨n, hn⟩" }, { "state_after": "case intro.intro.refine_1.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis✝ : ¬infEdist x (Uᶜ) = 0\nB : 0 < infEdist x (Uᶜ)\nthis : Tendsto (fun n => a ^ n) atTop (𝓝 0)\nn : ℕ\nhn : a ^ n < infEdist x (Uᶜ)\n⊢ ∃ i, a ^ i ≤ infEdist x (Uᶜ)", "state_before": "case intro.intro.refine_1.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis✝ : ¬infEdist x (Uᶜ) = 0\nB : 0 < infEdist x (Uᶜ)\nthis : Tendsto (fun n => a ^ n) atTop (𝓝 0)\nn : ℕ\nhn : a ^ n < infEdist x (Uᶜ)\n⊢ x ∈ ⋃ (n : ℕ), F n", "tactic": "simp only [mem_iUnion, mem_Ici, mem_preimage]" }, { "state_after": "no goals", "state_before": "case intro.intro.refine_1.intro\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis✝ : ¬infEdist x (Uᶜ) = 0\nB : 0 < infEdist x (Uᶜ)\nthis : Tendsto (fun n => a ^ n) atTop (𝓝 0)\nn : ℕ\nhn : a ^ n < infEdist x (Uᶜ)\n⊢ ∃ i, a ^ i ≤ infEdist x (Uᶜ)", "tactic": "exact ⟨n, hn.le⟩" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ (⋃ (n : ℕ), F n) ⊆ U", "tactic": "simp only [iUnion_subset_iff, F_subset, forall_const]" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\n⊢ ¬x ∈ Uᶜ", "tactic": "simpa using hx" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nx : α\nhx : x ∈ U\nthis : ¬infEdist x (Uᶜ) = 0\n⊢ 0 < infEdist x (Uᶜ)", "tactic": "simpa [pos_iff_ne_zero] using this" }, { "state_after": "case intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nm n : ℕ\nhmn : m ≤ n\nx : α\nhx : x ∈ F m\n⊢ x ∈ F n", "state_before": "case intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\n⊢ Monotone F", "tactic": "intro m n hmn x hx" }, { "state_after": "case intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nm n : ℕ\nhmn : m ≤ n\nx : α\nhx : a ^ m ≤ infEdist x (Uᶜ)\n⊢ a ^ n ≤ infEdist x (Uᶜ)", "state_before": "case intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nm n : ℕ\nhmn : m ≤ n\nx : α\nhx : x ∈ F m\n⊢ x ∈ F n", "tactic": "simp only [mem_Ici, mem_preimage] at hx⊢" }, { "state_after": "no goals", "state_before": "case intro.intro.refine_2\nι : Sort ?u.21246\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nx✝ y : α\ns t : Set α\nΦ : α → β\nU : Set α\nhU : IsOpen U\na : ℝ≥0∞\na_pos : 0 < a\na_lt_one : a < 1\nF : ℕ → Set α := fun n => (fun x => infEdist x (Uᶜ)) ⁻¹' Ici (a ^ n)\nF_subset : ∀ (n : ℕ), F n ⊆ U\nm n : ℕ\nhmn : m ≤ n\nx : α\nhx : a ^ m ≤ infEdist x (Uᶜ)\n⊢ a ^ n ≤ infEdist x (Uᶜ)", "tactic": "apply le_trans (pow_le_pow_of_le_one' a_lt_one.le hmn) hx" } ]
[ 229, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 207, 1 ]
Mathlib/Topology/LocalExtr.lean
IsLocalMin.comp_continuousOn
[]
[ 321, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 319, 1 ]
Mathlib/Analysis/Convex/Segment.lean
openSegment_subset_union
[ { "state_after": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc : 𝕜\n⊢ openSegment 𝕜 x y ⊆\n insert (↑(lineMap x y) c) (openSegment 𝕜 x (↑(lineMap x y) c) ∪ openSegment 𝕜 (↑(lineMap x y) c) y)", "state_before": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z✝ x y z : E\nhz : z ∈ range ↑(lineMap x y)\n⊢ openSegment 𝕜 x y ⊆ insert z (openSegment 𝕜 x z ∪ openSegment 𝕜 z y)", "tactic": "rcases hz with ⟨c, rfl⟩" }, { "state_after": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc : 𝕜\n⊢ MapsTo (fun a => ↑(lineMap x y) a) (Ioo 0 1)\n (insert (↑(lineMap x y) c)\n ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪\n (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1))", "state_before": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc : 𝕜\n⊢ openSegment 𝕜 x y ⊆\n insert (↑(lineMap x y) c) (openSegment 𝕜 x (↑(lineMap x y) c) ∪ openSegment 𝕜 (↑(lineMap x y) c) y)", "tactic": "simp only [openSegment_eq_image_lineMap, ← mapsTo']" }, { "state_after": "case intro.intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n insert (↑(lineMap x y) c)\n ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪\n (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)", "state_before": "case intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc : 𝕜\n⊢ MapsTo (fun a => ↑(lineMap x y) a) (Ioo 0 1)\n (insert (↑(lineMap x y) c)\n ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪\n (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1))", "tactic": "rintro a ⟨h₀, h₁⟩" }, { "state_after": "case intro.intro.inl\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n insert (↑(lineMap x y) c)\n ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪\n (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)\n\ncase intro.intro.inr.inl\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\na : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n insert (↑(lineMap x y) a)\n ((fun a_1 => ↑(lineMap x (↑(lineMap x y) a)) a_1) '' Ioo 0 1 ∪\n (fun a_1 => ↑(lineMap (↑(lineMap x y) a) y) a_1) '' Ioo 0 1)\n\ncase intro.intro.inr.inr\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n insert (↑(lineMap x y) c)\n ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪\n (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)", "state_before": "case intro.intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n insert (↑(lineMap x y) c)\n ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪\n (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)", "tactic": "rcases lt_trichotomy a c with (hac | rfl | hca)" }, { "state_after": "case intro.intro.inl.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1", "state_before": "case intro.intro.inl\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n insert (↑(lineMap x y) c)\n ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪\n (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)", "tactic": "right" }, { "state_after": "case intro.intro.inl.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\n⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1", "state_before": "case intro.intro.inl.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1", "tactic": "left" }, { "state_after": "case intro.intro.inl.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\nhc : 0 < c\n⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1", "state_before": "case intro.intro.inl.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\n⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1", "tactic": "have hc : 0 < c := h₀.trans hac" }, { "state_after": "case intro.intro.inl.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\nhc : 0 < c\n⊢ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) (a / c) = (fun a => ↑(lineMap x y) a) a", "state_before": "case intro.intro.inl.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\nhc : 0 < c\n⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1", "tactic": "refine' ⟨a / c, ⟨div_pos h₀ hc, (div_lt_one hc).2 hac⟩, _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.inl.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhac : a < c\nhc : 0 < c\n⊢ (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) (a / c) = (fun a => ↑(lineMap x y) a) a", "tactic": "simp only [← homothety_eq_lineMap, ← homothety_mul_apply, div_mul_cancel _ hc.ne']" }, { "state_after": "case intro.intro.inr.inl.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\na : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\n⊢ (fun a => ↑(lineMap x y) a) a = ↑(lineMap x y) a", "state_before": "case intro.intro.inr.inl\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\na : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n insert (↑(lineMap x y) a)\n ((fun a_1 => ↑(lineMap x (↑(lineMap x y) a)) a_1) '' Ioo 0 1 ∪\n (fun a_1 => ↑(lineMap (↑(lineMap x y) a) y) a_1) '' Ioo 0 1)", "tactic": "left" }, { "state_after": "no goals", "state_before": "case intro.intro.inr.inl.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\na : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\n⊢ (fun a => ↑(lineMap x y) a) a = ↑(lineMap x y) a", "tactic": "rfl" }, { "state_after": "case intro.intro.inr.inr.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1", "state_before": "case intro.intro.inr.inr\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n insert (↑(lineMap x y) c)\n ((fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪\n (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1)", "tactic": "right" }, { "state_after": "case intro.intro.inr.inr.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\n⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1", "state_before": "case intro.intro.inr.inr.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\n⊢ (fun a => ↑(lineMap x y) a) a ∈\n (fun a => ↑(lineMap x (↑(lineMap x y) c)) a) '' Ioo 0 1 ∪ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1", "tactic": "right" }, { "state_after": "case intro.intro.inr.inr.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\nhc : 0 < 1 - c\n⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1", "state_before": "case intro.intro.inr.inr.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\n⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1", "tactic": "have hc : 0 < 1 - c := sub_pos.2 (hca.trans h₁)" }, { "state_after": "case intro.intro.inr.inr.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\nhc : 0 < 1 - c\n⊢ ↑(lineMap y x) (1 - a) ∈ (fun a => ↑(lineMap y (↑(lineMap y x) (1 - c))) (1 - a)) '' Ioo 0 1", "state_before": "case intro.intro.inr.inr.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\nhc : 0 < 1 - c\n⊢ (fun a => ↑(lineMap x y) a) a ∈ (fun a => ↑(lineMap (↑(lineMap x y) c) y) a) '' Ioo 0 1", "tactic": "simp only [← lineMap_apply_one_sub y]" }, { "state_after": "case intro.intro.inr.inr.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\nhc : 0 < 1 - c\n⊢ (fun a => ↑(lineMap y (↑(lineMap y x) (1 - c))) (1 - a)) ((a - c) / (1 - c)) = ↑(lineMap y x) (1 - a)", "state_before": "case intro.intro.inr.inr.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\nhc : 0 < 1 - c\n⊢ ↑(lineMap y x) (1 - a) ∈ (fun a => ↑(lineMap y (↑(lineMap y x) (1 - c))) (1 - a)) '' Ioo 0 1", "tactic": "refine'\n ⟨(a - c) / (1 - c), ⟨div_pos (sub_pos.2 hca) hc, (div_lt_one hc).2 <| sub_lt_sub_right h₁ _⟩,\n _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.inr.inr.h.h\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.220883\nG : Type ?u.220886\nι : Type ?u.220889\nπ : ι → Type ?u.220894\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\nx✝ y✝ z x y : E\nc a : 𝕜\nh₀ : 0 < a\nh₁ : a < 1\nhca : c < a\nhc : 0 < 1 - c\n⊢ (fun a => ↑(lineMap y (↑(lineMap y x) (1 - c))) (1 - a)) ((a - c) / (1 - c)) = ↑(lineMap y x) (1 - a)", "tactic": "simp only [← homothety_eq_lineMap, ← homothety_mul_apply, sub_mul, one_mul,\n div_mul_cancel _ hc.ne', sub_sub_sub_cancel_right]" } ]
[ 409, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 388, 1 ]
Mathlib/Topology/Algebra/OpenSubgroup.lean
OpenSubgroup.mem_comap
[]
[ 293, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 291, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Cardinal.iSup_lt_of_isRegular
[ { "state_after": "no goals", "state_before": "α : Type ?u.160773\nr : α → α → Prop\nι : Type u_1\nf : ι → Cardinal\nc : Cardinal\nhc : IsRegular c\nhι : (#ι) < c\n⊢ (#ι) < Ordinal.cof (ord c)", "tactic": "rwa [hc.cof_eq]" } ]
[ 1110, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1108, 1 ]
Mathlib/LinearAlgebra/Matrix/IsDiag.lean
Matrix.IsDiag.map
[ { "state_after": "α : Type u_1\nβ : Type u_2\nR : Type ?u.2825\nn : Type u_3\nm : Type ?u.2831\ninst✝¹ : Zero α\ninst✝ : Zero β\nA : Matrix n n α\nha : IsDiag A\nf : α → β\nhf : f 0 = 0\ni j : n\nh : i ≠ j\n⊢ Matrix.map A f i j = 0", "state_before": "α : Type u_1\nβ : Type u_2\nR : Type ?u.2825\nn : Type u_3\nm : Type ?u.2831\ninst✝¹ : Zero α\ninst✝ : Zero β\nA : Matrix n n α\nha : IsDiag A\nf : α → β\nhf : f 0 = 0\n⊢ IsDiag (Matrix.map A f)", "tactic": "intro i j h" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nR : Type ?u.2825\nn : Type u_3\nm : Type ?u.2831\ninst✝¹ : Zero α\ninst✝ : Zero β\nA : Matrix n n α\nha : IsDiag A\nf : α → β\nhf : f 0 = 0\ni j : n\nh : i ≠ j\n⊢ Matrix.map A f i j = 0", "tactic": "simp [ha h, hf]" } ]
[ 82, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/Algebra/Order/Kleene.lean
nsmul_eq_self
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.18224\nι : Type ?u.18227\nπ : ι → Type ?u.18232\ninst✝ : IdemSemiring α\na✝ b c : α\nn : ℕ\nx✝ : n + 2 ≠ 0\na : α\n⊢ (n + 2) • a = a", "tactic": "rw [succ_nsmul, nsmul_eq_self n.succ_ne_zero, add_idem]" } ]
[ 150, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/Analysis/NormedSpace/AffineIsometry.lean
AffineIsometry.map_eq_iff
[]
[ 169, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/LinearAlgebra/Prod.lean
LinearMap.snd_surjective
[]
[ 90, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Mathlib/Algebra/Hom/Centroid.lean
CentroidHom.zero_apply
[]
[ 320, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 319, 1 ]
Mathlib/NumberTheory/Multiplicity.lean
odd_sq_dvd_geom_sum₂_sub
[ { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 : ∀ (i : ℕ), ↑p ^ 2 ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\n⊢ ↑p ^ 2 ∣ ∑ i in range p, (a + ↑p * b) ^ i * a ^ (p - 1 - i) - ↑p * a ^ (p - 1)", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\n⊢ ↑p ^ 2 ∣ ∑ i in range p, (a + ↑p * b) ^ i * a ^ (p - 1 - i) - ↑p * a ^ (p - 1)", "tactic": "have h1 : ∀ (i : ℕ),\n (p : R) ^ 2 ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * i + a ^ i) := by\n intro i\n calc\n ↑p ^ 2 ∣ (↑p * b) ^ 2 := by simp only [mul_pow, dvd_mul_right]\n _ ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i) := by\n simp only [sq_dvd_add_pow_sub_sub (↑p * b) a i, ← sub_sub]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ i in range p, (a + ↑p * b) ^ i * a ^ (p - 1 - i)) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * a ^ (p - 1))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 : ∀ (i : ℕ), ↑p ^ 2 ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\n⊢ ↑p ^ 2 ∣ ∑ i in range p, (a + ↑p * b) ^ i * a ^ (p - 1 - i) - ↑p * a ^ (p - 1)", "tactic": "simp_rw [← mem_span_singleton, ← Ideal.Quotient.eq] at *" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ i in range p, (a + ↑p * b) ^ i * a ^ (p - 1 - i)) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * a ^ (p - 1))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ i in range p, (a + ↑p * b) ^ i * a ^ (p - 1 - i)) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * a ^ (p - 1))", "tactic": "let s : R := (p : R)^2" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\ni : ℕ\n⊢ ↑p ^ 2 ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\n⊢ ∀ (i : ℕ), ↑p ^ 2 ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)", "tactic": "intro i" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\ni : ℕ\n⊢ ↑p ^ 2 ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)", "tactic": "calc\n ↑p ^ 2 ∣ (↑p * b) ^ 2 := by simp only [mul_pow, dvd_mul_right]\n _ ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i) := by\n simp only [sq_dvd_add_pow_sub_sub (↑p * b) a i, ← sub_sub]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\ni : ℕ\n⊢ ↑p ^ 2 ∣ (↑p * b) ^ 2", "tactic": "simp only [mul_pow, dvd_mul_right]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\ni : ℕ\n⊢ (↑p * b) ^ 2 ∣ (a + ↑p * b) ^ i - (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)", "tactic": "simp only [sq_dvd_add_pow_sub_sub (↑p * b) a i, ← sub_sub]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {s})) (∑ i in range p, (a + ↑p * b) ^ i * a ^ (p - 1 - i)) =\n ∑ i in range p, ↑(Ideal.Quotient.mk (span {s})) ((a ^ (i - 1) * (↑p * b) * ↑i + a ^ i) * a ^ (p - 1 - i))", "tactic": "simp_rw [RingHom.map_geom_sum₂, ← map_pow, h1, ← _root_.map_mul]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ∑ x in range p,\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (x - 1) * a ^ (p - 1 - x) * ↑p * b * ↑x + a ^ x * a ^ (p - 1 - x)) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x + (p - 1 - x)))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ∑ i in range p, ↑(Ideal.Quotient.mk (span {s})) ((a ^ (i - 1) * (↑p * b) * ↑i + a ^ i) * a ^ (p - 1 - i)) =\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x + (p - 1 - x)))", "tactic": "ring" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x - 1 + (p - 1 - x)) * ↑p * b * ↑x) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x + (p - 1 - x))) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x + (p - 1 - x)))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ∑ x in range p,\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (x - 1) * a ^ (p - 1 - x) * ↑p * b * ↑x + a ^ x * a ^ (p - 1 - x)) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x + (p - 1 - x)))", "tactic": "simp only [← pow_add, map_add, Finset.sum_add_distrib, ← map_sum]" }, { "state_after": "case e_a.h.e_6.h.e_f\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ (fun x => a ^ (x - 1 + (p - 1 - x)) * ↑p * b * ↑x) = fun x => a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x - 1 + (p - 1 - x)) * ↑p * b * ↑x) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x + (p - 1 - x))) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x + (p - 1 - x)))", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case e_a.h.e_6.h.e_f\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ (fun x => a ^ (x - 1 + (p - 1 - x)) * ↑p * b * ↑x) = fun x => a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))", "tactic": "simp [pow_add a, mul_assoc]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x + (p - 1 - x))) =\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (p - 1))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x + (p - 1 - x))) =\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (p - 1))", "tactic": "rw [add_right_inj]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∀ (x : ℕ), x ∈ range p → a ^ (x + (p - 1 - x)) = a ^ (p - 1)\n⊢ ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x + (p - 1 - x))) =\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (p - 1))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x + (p - 1 - x))) =\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (p - 1))", "tactic": "have : ∀ (x : ℕ), (hx : x ∈ range p) → a ^ (x + (p - 1 - x)) = a ^ (p - 1) := by\n intro x hx\n rw [← Nat.add_sub_assoc _ x, Nat.add_sub_cancel_left]\n exact Nat.le_pred_of_lt (Finset.mem_range.mp hx)" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∀ (x : ℕ), x ∈ range p → a ^ (x + (p - 1 - x)) = a ^ (p - 1)\n⊢ ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x + (p - 1 - x))) =\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (p - 1))", "tactic": "rw [Finset.sum_congr rfl this]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : x ∈ range p\n⊢ a ^ (x + (p - 1 - x)) = a ^ (p - 1)", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ∀ (x : ℕ), x ∈ range p → a ^ (x + (p - 1 - x)) = a ^ (p - 1)", "tactic": "intro x hx" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : x ∈ range p\n⊢ x ≤ p - 1", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : x ∈ range p\n⊢ a ^ (x + (p - 1 - x)) = a ^ (p - 1)", "tactic": "rw [← Nat.add_sub_assoc _ x, Nat.add_sub_cancel_left]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : x ∈ range p\n⊢ x ≤ p - 1", "tactic": "exact Nat.le_pred_of_lt (Finset.mem_range.mp hx)" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (p - 1)) =\n ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1))", "tactic": "simp only [add_right_inj, Finset.sum_const, Finset.card_range, nsmul_eq_mul]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x - 1 + (p - 1 - x)) * ↑p * b * ↑x) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * a ^ (p - 1)) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, ↑p * b * a ^ (p - 2) * ↑x) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * a ^ (p - 1))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {s})) (∑ x in range p, a ^ (x - 1) * (a ^ (p - 1 - x) * (↑p * (b * ↑x)))) +\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1)) =\n ↑(Ideal.Quotient.mk (span {s})) (↑p * b * ∑ x in range p, a ^ (p - 2) * ↑x) +\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1))", "tactic": "simp only [Finset.mul_sum, ← mul_assoc, ← pow_add]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ∀ (x : ℕ), x ∈ range p → a ^ (x - 1 + (p - 1 - x)) * ↑p * b * ↑x = ↑p * b * a ^ (p - 2) * ↑x", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, a ^ (x - 1 + (p - 1 - x)) * ↑p * b * ↑x) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * a ^ (p - 1)) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (∑ x in range p, ↑p * b * a ^ (p - 2) * ↑x) +\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * a ^ (p - 1))", "tactic": "rw [Finset.sum_congr rfl]" }, { "state_after": "case zero\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nhx : Nat.zero ∈ range p\n⊢ a ^ (Nat.zero - 1 + (p - 1 - Nat.zero)) * ↑p * b * ↑Nat.zero = ↑p * b * a ^ (p - 2) * ↑Nat.zero\n\ncase succ\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\n⊢ a ^ (Nat.succ x - 1 + (p - 1 - Nat.succ x)) * ↑p * b * ↑(Nat.succ x) = ↑p * b * a ^ (p - 2) * ↑(Nat.succ x)", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ∀ (x : ℕ), x ∈ range p → a ^ (x - 1 + (p - 1 - x)) * ↑p * b * ↑x = ↑p * b * a ^ (p - 2) * ↑x", "tactic": "rintro (⟨⟩ | ⟨x⟩) hx" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nhx : Nat.zero ∈ range p\n⊢ a ^ (Nat.zero - 1 + (p - 1 - Nat.zero)) * ↑p * b * ↑Nat.zero = ↑p * b * a ^ (p - 2) * ↑Nat.zero", "tactic": "rw [Nat.cast_zero, MulZeroClass.mul_zero, MulZeroClass.mul_zero]" }, { "state_after": "case succ\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\nthis : Nat.succ x - 1 + (p - 1 - Nat.succ x) = p - 2\n⊢ a ^ (Nat.succ x - 1 + (p - 1 - Nat.succ x)) * ↑p * b * ↑(Nat.succ x) = ↑p * b * a ^ (p - 2) * ↑(Nat.succ x)", "state_before": "case succ\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\n⊢ a ^ (Nat.succ x - 1 + (p - 1 - Nat.succ x)) * ↑p * b * ↑(Nat.succ x) = ↑p * b * a ^ (p - 2) * ↑(Nat.succ x)", "tactic": "have : x.succ - 1 + (p - 1 - x.succ) = p - 2 := by\n rw [← Nat.add_sub_assoc (Nat.le_pred_of_lt (Finset.mem_range.mp hx))]\n exact congr_arg Nat.pred (Nat.add_sub_cancel_left _ _)" }, { "state_after": "case succ\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\nthis : Nat.succ x - 1 + (p - 1 - Nat.succ x) = p - 2\n⊢ a ^ (p - 2) * ↑p * b * ↑(Nat.succ x) = ↑p * b * a ^ (p - 2) * ↑(Nat.succ x)", "state_before": "case succ\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\nthis : Nat.succ x - 1 + (p - 1 - Nat.succ x) = p - 2\n⊢ a ^ (Nat.succ x - 1 + (p - 1 - Nat.succ x)) * ↑p * b * ↑(Nat.succ x) = ↑p * b * a ^ (p - 2) * ↑(Nat.succ x)", "tactic": "rw [this]" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\nthis : Nat.succ x - 1 + (p - 1 - Nat.succ x) = p - 2\n⊢ a ^ (p - 2) * ↑p * b * ↑(Nat.succ x) = ↑p * b * a ^ (p - 2) * ↑(Nat.succ x)", "tactic": "ring1" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\n⊢ Nat.succ x - 1 + (p - 1) - Nat.succ x = p - 2", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\n⊢ Nat.succ x - 1 + (p - 1 - Nat.succ x) = p - 2", "tactic": "rw [← Nat.add_sub_assoc (Nat.le_pred_of_lt (Finset.mem_range.mp hx))]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x✝ y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nx : ℕ\nhx : Nat.succ x ∈ range p\n⊢ Nat.succ x - 1 + (p - 1) - Nat.succ x = p - 2", "tactic": "exact congr_arg Nat.pred (Nat.add_sub_cancel_left _ _)" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {s})) (↑p * b * ∑ x in range p, a ^ (p - 2) * ↑x) +\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1)) =\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1))", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ↑(Ideal.Quotient.mk (span {s})) (↑p * b * ∑ x in range p, a ^ (p - 2) * ↑x) +\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1)) =\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1))", "tactic": "have : Finset.sum (range p) (fun (x : ℕ) ↦ (x : R)) =\n ((Finset.sum (range p) (fun (x : ℕ) ↦ (x : ℕ)))) := by simp only [Nat.cast_sum]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * b * (a ^ (p - 2) * ↑(∑ x in range p, x))) = 0", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {s})) (↑p * b * ∑ x in range p, a ^ (p - 2) * ↑x) +\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1)) =\n ↑(Ideal.Quotient.mk (span {s})) (↑p * a ^ (p - 1))", "tactic": "simp only [add_left_eq_self, ← Finset.mul_sum, this]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * b * (a ^ (p - 2) * ↑(∑ x in range p, x))) = 0", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * b * (a ^ (p - 2) * ↑(∑ x in range p, x))) = 0", "tactic": "norm_cast" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * b * (a ^ (p - 2) * ↑(p * (p - 1) / 2))) = 0", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * b * (a ^ (p - 2) * ↑(∑ x in range p, x))) = 0", "tactic": "simp only [Finset.sum_range_id]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * b * (a ^ (p - 2) * ↑(p * (p - 1) / 2))) = 0", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * b * (a ^ (p - 2) * ↑(p * (p - 1) / 2))) = 0", "tactic": "norm_cast" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p * ↑(Ideal.Quotient.mk (span {↑p ^ 2})) b *\n (↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (p - 2)) *\n (↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p * ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑((p - 1) / 2))) =\n 0", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (↑p * b * (a ^ (p - 2) * ↑(p * (p - 1) / 2))) = 0", "tactic": "simp only [Nat.cast_mul, _root_.map_mul,\n Nat.mul_div_assoc p (even_iff_two_dvd.mp (Nat.Odd.sub_odd hp odd_one))]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p ^ 2 * ↑(Ideal.Quotient.mk (span {↑p ^ 2})) b *\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (p - 2)) *\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑((p - 1) / 2) =\n 0", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p * ↑(Ideal.Quotient.mk (span {↑p ^ 2})) b *\n (↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (p - 2)) *\n (↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p * ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑((p - 1) / 2))) =\n 0", "tactic": "ring" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p ^ 2 *\n (↑(Ideal.Quotient.mk (span {↑p ^ 2})) b *\n (↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (p - 2)) * ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑((p - 1) / 2))) =\n 0", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p ^ 2 * ↑(Ideal.Quotient.mk (span {↑p ^ 2})) b *\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (p - 2)) *\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑((p - 1) / 2) =\n 0", "tactic": "rw [mul_assoc, mul_assoc]" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p ^ 2 = 0", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p ^ 2 *\n (↑(Ideal.Quotient.mk (span {↑p ^ 2})) b *\n (↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (p - 2)) * ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑((p - 1) / 2))) =\n 0", "tactic": "refine' mul_eq_zero_of_left _ _" }, { "state_after": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ (fun x => x ^ 2) ↑p ∈ span {↑p ^ 2}", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ↑p ^ 2 = 0", "tactic": "refine' Ideal.Quotient.eq_zero_iff_mem.mpr _" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\nthis : ∑ x in range p, ↑x = ↑(∑ x in range p, x)\n⊢ (fun x => x ^ 2) ↑p ∈ span {↑p ^ 2}", "tactic": "simp [mem_span_singleton]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nn : ℕ\ninst✝ : CommRing R\na b x y : R\np : ℕ\nhp : Odd p\nh1 :\n ∀ (i : ℕ),\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) ((a + ↑p * b) ^ i) =\n ↑(Ideal.Quotient.mk (span {↑p ^ 2})) (a ^ (i - 1) * (↑p * b) * ↑i + a ^ i)\ns : R := ↑p ^ 2\n⊢ ∑ x in range p, ↑x = ↑(∑ x in range p, x)", "tactic": "simp only [Nat.cast_sum]" } ]
[ 152, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/Topology/Constructions.lean
isOpenMap_sigma_map
[]
[ 1555, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1552, 1 ]
Mathlib/RingTheory/Finiteness.lean
Submodule.fg_iff_add_subgroup_fg
[ { "state_after": "no goals", "state_before": "R : Type ?u.2420\nM : Type ?u.2423\ninst✝³ : Semiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\nG : Type u_1\ninst✝ : AddCommGroup G\nP : Submodule ℤ G\nx✝ : FG P\nS : Finset G\nhS : span ℤ ↑S = P\n⊢ AddSubgroup.closure ↑S = toAddSubgroup P", "tactic": "simpa [← span_int_eq_addSubgroup_closure] using hS" }, { "state_after": "no goals", "state_before": "R : Type ?u.2420\nM : Type ?u.2423\ninst✝³ : Semiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\nG : Type u_1\ninst✝ : AddCommGroup G\nP : Submodule ℤ G\nx✝ : AddSubgroup.FG (toAddSubgroup P)\nS : Finset G\nhS : AddSubgroup.closure ↑S = toAddSubgroup P\n⊢ span ℤ ↑S = P", "tactic": "simpa [← span_int_eq_addSubgroup_closure] using hS" } ]
[ 68, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/Data/Set/Basic.lean
Set.monotoneOn_iff_monotone
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns s₁ s₂ t t₁ t₂ u : Set α\ninst✝¹ : Preorder α\ninst✝ : Preorder β\nf : α → β\n⊢ MonotoneOn f s ↔ Monotone fun a => f ↑a", "tactic": "simp [Monotone, MonotoneOn]" } ]
[ 2653, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2651, 1 ]
Mathlib/GroupTheory/GroupAction/Defs.lean
SMul.comp.isScalarTower
[ { "state_after": "M : Type ?u.9269\nN : Type ?u.9272\nG : Type ?u.9275\nA : Type ?u.9278\nB : Type ?u.9281\nα : Type ?u.9284\nβ : Type ?u.9287\nγ : Type ?u.9290\nδ : Type ?u.9293\ninst✝³ : SMul M α\ninst✝² : SMul M β\ninst✝¹ : SMul α β\ninst✝ : IsScalarTower M α β\ng : N → M\nthis : SMul N α\n⊢ Sort ?u.9343", "state_before": "M : Type ?u.9269\nN : Type ?u.9272\nG : Type ?u.9275\nA : Type ?u.9278\nB : Type ?u.9281\nα : Type ?u.9284\nβ : Type ?u.9287\nγ : Type ?u.9290\nδ : Type ?u.9293\ninst✝³ : SMul M α\ninst✝² : SMul M β\ninst✝¹ : SMul α β\ninst✝ : IsScalarTower M α β\ng : N → M\n⊢ Sort ?u.9343", "tactic": "haveI := comp α g" }, { "state_after": "M : Type ?u.9269\nN : Type ?u.9272\nG : Type ?u.9275\nA : Type ?u.9278\nB : Type ?u.9281\nα : Type ?u.9284\nβ : Type ?u.9287\nγ : Type ?u.9290\nδ : Type ?u.9293\ninst✝³ : SMul M α\ninst✝² : SMul M β\ninst✝¹ : SMul α β\ninst✝ : IsScalarTower M α β\ng : N → M\nthis✝ : SMul N α\nthis : SMul N β\n⊢ Sort ?u.9343", "state_before": "M : Type ?u.9269\nN : Type ?u.9272\nG : Type ?u.9275\nA : Type ?u.9278\nB : Type ?u.9281\nα : Type ?u.9284\nβ : Type ?u.9287\nγ : Type ?u.9290\nδ : Type ?u.9293\ninst✝³ : SMul M α\ninst✝² : SMul M β\ninst✝¹ : SMul α β\ninst✝ : IsScalarTower M α β\ng : N → M\nthis : SMul N α\n⊢ Sort ?u.9343", "tactic": "haveI := comp β g" }, { "state_after": "no goals", "state_before": "M : Type ?u.9269\nN : Type ?u.9272\nG : Type ?u.9275\nA : Type ?u.9278\nB : Type ?u.9281\nα : Type ?u.9284\nβ : Type ?u.9287\nγ : Type ?u.9290\nδ : Type ?u.9293\ninst✝³ : SMul M α\ninst✝² : SMul M β\ninst✝¹ : SMul α β\ninst✝ : IsScalarTower M α β\ng : N → M\nthis✝ : SMul N α\nthis : SMul N β\n⊢ Sort ?u.9343", "tactic": "exact IsScalarTower N α β" } ]
[ 370, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 367, 1 ]
Mathlib/LinearAlgebra/Matrix/BilinearForm.lean
Matrix.nondegenerate_toBilin'_iff_nondegenerate_toBilin
[]
[ 548, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 546, 1 ]
Mathlib/CategoryTheory/Subobject/Basic.lean
CategoryTheory.Subobject.pullback_map_self
[ { "state_after": "C : Type u₁\ninst✝³ : Category C\nX Y Z : C\nD : Type u₂\ninst✝² : Category D\ninst✝¹ : HasPullbacks C\nf : X ⟶ Y\ninst✝ : Mono f\n⊢ ∀ (g : Subobject X), (pullback f).obj ((map f).obj g) = g", "state_before": "C : Type u₁\ninst✝³ : Category C\nX Y Z : C\nD : Type u₂\ninst✝² : Category D\ninst✝¹ : HasPullbacks C\nf : X ⟶ Y\ninst✝ : Mono f\ng : Subobject X\n⊢ (pullback f).obj ((map f).obj g) = g", "tactic": "revert g" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝³ : Category C\nX Y Z : C\nD : Type u₂\ninst✝² : Category D\ninst✝¹ : HasPullbacks C\nf : X ⟶ Y\ninst✝ : Mono f\n⊢ ∀ (g : Subobject X), (pullback f).obj ((map f).obj g) = g", "tactic": "exact Quotient.ind (fun g' => Quotient.sound ⟨(MonoOver.pullbackMapSelf f).app _⟩)" } ]
[ 645, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 642, 1 ]
Mathlib/GroupTheory/FreeAbelianGroupFinsupp.lean
Finsupp.toFreeAbelianGroup_comp_toFinsupp
[ { "state_after": "case H\nX : Type u_1\nx✝ : X\n⊢ ↑(AddMonoidHom.comp toFreeAbelianGroup toFinsupp) (of x✝) = ↑(AddMonoidHom.id (FreeAbelianGroup X)) (of x✝)", "state_before": "X : Type u_1\n⊢ AddMonoidHom.comp toFreeAbelianGroup toFinsupp = AddMonoidHom.id (FreeAbelianGroup X)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case H\nX : Type u_1\nx✝ : X\n⊢ ↑(AddMonoidHom.comp toFreeAbelianGroup toFinsupp) (of x✝) = ↑(AddMonoidHom.id (FreeAbelianGroup X)) (of x✝)", "tactic": "rw [toFreeAbelianGroup, toFinsupp, AddMonoidHom.comp_apply, lift.of,\n liftAddHom_apply_single, AddMonoidHom.flip_apply, smulAddHom_apply, one_smul,\n AddMonoidHom.id_apply]" } ]
[ 75, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.NonemptyCompacts.carrier_eq_coe
[]
[ 253, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/GroupTheory/FreeGroup.lean
FreeGroup.inv_mk
[]
[ 610, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 609, 1 ]
Mathlib/Topology/PartitionOfUnity.lean
BumpCovering.exists_isSubordinate_of_locallyFinite
[]
[ 328, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 320, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.Tape.map_move
[ { "state_after": "case mk\nΓ : Type u_1\nΓ' : Type u_2\ninst✝¹ : Inhabited Γ\ninst✝ : Inhabited Γ'\nf : PointedMap Γ Γ'\nd : Dir\nhead✝ : Γ\nleft✝ right✝ : ListBlank Γ\n⊢ map f (move d { head := head✝, left := left✝, right := right✝ }) =\n move d (map f { head := head✝, left := left✝, right := right✝ })", "state_before": "Γ : Type u_1\nΓ' : Type u_2\ninst✝¹ : Inhabited Γ\ninst✝ : Inhabited Γ'\nf : PointedMap Γ Γ'\nT : Tape Γ\nd : Dir\n⊢ map f (move d T) = move d (map f T)", "tactic": "cases T" }, { "state_after": "no goals", "state_before": "case mk\nΓ : Type u_1\nΓ' : Type u_2\ninst✝¹ : Inhabited Γ\ninst✝ : Inhabited Γ'\nf : PointedMap Γ Γ'\nd : Dir\nhead✝ : Γ\nleft✝ right✝ : ListBlank Γ\n⊢ map f (move d { head := head✝, left := left✝, right := right✝ }) =\n move d (map f { head := head✝, left := left✝, right := right✝ })", "tactic": "cases d <;> simp only [Tape.move, Tape.map, ListBlank.head_map, eq_self_iff_true,\n ListBlank.map_cons, and_self_iff, ListBlank.tail_map]" } ]
[ 718, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 714, 1 ]
Mathlib/Algebra/Order/Group/Abs.lean
abs_sub_lt_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\na b c d : α\n⊢ abs (a - b) < c ↔ a - b < c ∧ b - a < c", "tactic": "rw [@abs_lt α, neg_lt_sub_iff_lt_add', sub_lt_iff_lt_add', and_comm, sub_lt_iff_lt_add']" } ]
[ 289, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 288, 1 ]
Mathlib/LinearAlgebra/Matrix/Charpoly/FiniteField.lean
ZMod.charpoly_pow_card
[ { "state_after": "n : Type u_1\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nM : Matrix n n (ZMod p)\nh : charpoly (M ^ Fintype.card (ZMod p)) = charpoly M\n⊢ charpoly (M ^ p) = charpoly M", "state_before": "n : Type u_1\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nM : Matrix n n (ZMod p)\n⊢ charpoly (M ^ p) = charpoly M", "tactic": "have h := FiniteField.Matrix.charpoly_pow_card M" }, { "state_after": "no goals", "state_before": "n : Type u_1\ninst✝² : DecidableEq n\ninst✝¹ : Fintype n\np : ℕ\ninst✝ : Fact (Nat.Prime p)\nM : Matrix n n (ZMod p)\nh : charpoly (M ^ Fintype.card (ZMod p)) = charpoly M\n⊢ charpoly (M ^ p) = charpoly M", "tactic": "rwa [ZMod.card] at h" } ]
[ 53, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 50, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
MeasureTheory.measure_inter_null_of_null_right
[]
[ 344, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 343, 1 ]
Mathlib/Data/List/Lemmas.lean
List.foldl_range_eq_of_range_eq
[]
[ 82, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 78, 1 ]
Mathlib/Order/UpperLower/Basic.lean
UpperSet.prod_le_prod_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.175540\nι : Sort ?u.175543\nκ : ι → Sort ?u.175548\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns s₁ s₂ : UpperSet α\nt t₁ t₂ : UpperSet β\nx : α × β\n⊢ ↑s₂ ⊆ ↑s₁ ∧ ↑t₂ ⊆ ↑t₁ ∨ ↑s₂ = ∅ ∨ ↑t₂ = ∅ ↔ s₁ ≤ s₂ ∧ t₁ ≤ t₂ ∨ s₂ = ⊤ ∨ t₂ = ⊤", "tactic": "simp" } ]
[ 1625, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1624, 1 ]
Mathlib/Data/Seq/WSeq.lean
Stream'.WSeq.exists_get?_of_mem
[ { "state_after": "case h1\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh : a ∈ s\n⊢ ∀ (b : α) (s' : WSeq α), (a = b ∨ ∃ n, some a ∈ get? s' n) → ∃ n, some a ∈ get? (cons b s') n\n\ncase h2\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh : a ∈ s\n⊢ ∀ (s : WSeq α), (∃ n, some a ∈ get? s n) → ∃ n, some a ∈ get? (think s) n", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh : a ∈ s\n⊢ ∃ n, some a ∈ get? s n", "tactic": "apply mem_rec_on h" }, { "state_after": "case h1\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a' ∨ ∃ n, some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (cons a' s') n", "state_before": "case h1\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh : a ∈ s\n⊢ ∀ (b : α) (s' : WSeq α), (a = b ∨ ∃ n, some a ∈ get? s' n) → ∃ n, some a ∈ get? (cons b s') n", "tactic": "intro a' s' h" }, { "state_after": "case h1.inl\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a'\n⊢ ∃ n, some a ∈ get? (cons a' s') n\n\ncase h1.inr\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : ∃ n, some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (cons a' s') n", "state_before": "case h1\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a' ∨ ∃ n, some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (cons a' s') n", "tactic": "cases' h with h h" }, { "state_after": "case h1.inl\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a'\n⊢ some a ∈ get? (cons a' s') 0", "state_before": "case h1.inl\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a'\n⊢ ∃ n, some a ∈ get? (cons a' s') n", "tactic": "exists 0" }, { "state_after": "case h1.inl\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a'\n⊢ some a ∈ Computation.pure (some a')", "state_before": "case h1.inl\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a'\n⊢ some a ∈ get? (cons a' s') 0", "tactic": "simp only [get?, drop, head_cons]" }, { "state_after": "case h1.inl\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a'\n⊢ some a' ∈ Computation.pure (some a')", "state_before": "case h1.inl\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a'\n⊢ some a ∈ Computation.pure (some a')", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case h1.inl\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : a = a'\n⊢ some a' ∈ Computation.pure (some a')", "tactic": "apply ret_mem" }, { "state_after": "case h1.inr.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (cons a' s') n", "state_before": "case h1.inr\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nh : ∃ n, some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (cons a' s') n", "tactic": "cases' h with n h" }, { "state_after": "case h1.inr.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ some a ∈ get? (cons a' s') (n + 1)", "state_before": "case h1.inr.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (cons a' s') n", "tactic": "exists n + 1" }, { "state_after": "no goals", "state_before": "case h1.inr.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\na' : α\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ some a ∈ get? (cons a' s') (n + 1)", "tactic": "simpa [get?]" }, { "state_after": "case h2\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\ns' : WSeq α\nh : ∃ n, some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (think s') n", "state_before": "case h2\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh : a ∈ s\n⊢ ∀ (s : WSeq α), (∃ n, some a ∈ get? s n) → ∃ n, some a ∈ get? (think s) n", "tactic": "intro s' h" }, { "state_after": "case h2.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (think s') n", "state_before": "case h2\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\ns' : WSeq α\nh : ∃ n, some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (think s') n", "tactic": "cases' h with n h" }, { "state_after": "case h2.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ some a ∈ get? (think s') n", "state_before": "case h2.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ ∃ n, some a ∈ get? (think s') n", "tactic": "exists n" }, { "state_after": "case h2.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ some a ∈ Computation.think (head (drop s' n))", "state_before": "case h2.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ some a ∈ get? (think s') n", "tactic": "simp [get?]" }, { "state_after": "no goals", "state_before": "case h2.intro\nα : Type u\nβ : Type v\nγ : Type w\ns : WSeq α\na : α\nh✝ : a ∈ s\ns' : WSeq α\nn : ℕ\nh : some a ∈ get? s' n\n⊢ some a ∈ Computation.think (head (drop s' n))", "tactic": "apply think_mem h" } ]
[ 1021, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1005, 1 ]
Mathlib/Analysis/MeanInequalitiesPow.lean
NNReal.rpow_add_le_mul_rpow_add_rpow
[ { "state_after": "case inl\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\nhp : 1 ≤ 1\n⊢ (z₁ + z₂) ^ 1 ≤ 2 ^ (1 - 1) * (z₁ ^ 1 + z₂ ^ 1)\n\ncase inr\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\n⊢ (z₁ + z₂) ^ p ≤ 2 ^ (p - 1) * (z₁ ^ p + z₂ ^ p)", "state_before": "ι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\n⊢ (z₁ + z₂) ^ p ≤ 2 ^ (p - 1) * (z₁ ^ p + z₂ ^ p)", "tactic": "rcases eq_or_lt_of_le hp with (rfl | h'p)" }, { "state_after": "case h.e'_3\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\n⊢ (z₁ + z₂) ^ p = (1 / 2 * (2 * z₁) + 1 / 2 * (2 * z₂)) ^ p\n\ncase h.e'_4\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\n⊢ 2 ^ (p - 1) * (z₁ ^ p + z₂ ^ p) = 1 / 2 * (2 * z₁) ^ p + 1 / 2 * (2 * z₂) ^ p", "state_before": "case inr\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\n⊢ (z₁ + z₂) ^ p ≤ 2 ^ (p - 1) * (z₁ ^ p + z₂ ^ p)", "tactic": "convert rpow_arith_mean_le_arith_mean2_rpow (1 / 2) (1 / 2) (2 * z₁) (2 * z₂) (add_halves 1) hp\n using 1" }, { "state_after": "case inl\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\nhp : 1 ≤ 1\n⊢ z₁ + z₂ ≤ z₁ + z₂", "state_before": "case inl\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\nhp : 1 ≤ 1\n⊢ (z₁ + z₂) ^ 1 ≤ 2 ^ (1 - 1) * (z₁ ^ 1 + z₂ ^ 1)", "tactic": "simp only [rpow_one, sub_self, rpow_zero, one_mul]" }, { "state_after": "no goals", "state_before": "case inl\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\nhp : 1 ≤ 1\n⊢ z₁ + z₂ ≤ z₁ + z₂", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case h.e'_3\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\n⊢ (z₁ + z₂) ^ p = (1 / 2 * (2 * z₁) + 1 / 2 * (2 * z₂)) ^ p", "tactic": "simp only [one_div, inv_mul_cancel_left₀, Ne.def, mul_eq_zero, two_ne_zero, one_ne_zero,\n not_false_iff]" }, { "state_after": "case h.e'_4\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\nA : p - 1 ≠ 0\n⊢ 2 ^ (p - 1) * (z₁ ^ p + z₂ ^ p) = 1 / 2 * (2 * z₁) ^ p + 1 / 2 * (2 * z₂) ^ p", "state_before": "case h.e'_4\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\n⊢ 2 ^ (p - 1) * (z₁ ^ p + z₂ ^ p) = 1 / 2 * (2 * z₁) ^ p + 1 / 2 * (2 * z₂) ^ p", "tactic": "have A : p - 1 ≠ 0 := ne_of_gt (sub_pos.2 h'p)" }, { "state_after": "case h.e'_4\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\nA : p - 1 ≠ 0\n⊢ 2⁻¹ * 2 ^ p * (z₁ ^ p + z₂ ^ p) = 2⁻¹ * (2 ^ p * z₁ ^ p) + 2⁻¹ * (2 ^ p * z₂ ^ p)", "state_before": "case h.e'_4\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\nA : p - 1 ≠ 0\n⊢ 2 ^ (p - 1) * (z₁ ^ p + z₂ ^ p) = 1 / 2 * (2 * z₁) ^ p + 1 / 2 * (2 * z₂) ^ p", "tactic": "simp only [mul_rpow, rpow_sub' _ A, _root_.div_eq_inv_mul, rpow_one, mul_one]" }, { "state_after": "no goals", "state_before": "case h.e'_4\nι : Type u\ns : Finset ι\nz₁ z₂ : ℝ≥0\np : ℝ\nhp : 1 ≤ p\nh'p : 1 < p\nA : p - 1 ≠ 0\n⊢ 2⁻¹ * 2 ^ p * (z₁ ^ p + z₂ ^ p) = 2⁻¹ * (2 ^ p * z₁ ^ p) + 2⁻¹ * (2 ^ p * z₂ ^ p)", "tactic": "ring" } ]
[ 164, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Std/Data/String/Lemmas.lean
String.valid_next
[ { "state_after": "no goals", "state_before": "s : String\np : Pos\nh : Pos.Valid s p\nh₂ : p < endPos s\n⊢ Pos.Valid s (next s p)", "tactic": "match s, p, h with\n| ⟨_⟩, ⟨_⟩, ⟨cs, [], rfl, rfl⟩ => simp at h₂\n| ⟨_⟩, ⟨_⟩, ⟨cs, c::cs', rfl, rfl⟩ =>\n rw [utf8ByteSize.go_eq, next_of_valid]\n simpa using Pos.Valid.mk (cs ++ [c]) cs'" }, { "state_after": "no goals", "state_before": "s : String\np : Pos\nh : Pos.Valid s p\ncs : List Char\nh₂ : { byteIdx := utf8ByteSize.go cs } < endPos { data := cs ++ [] }\n⊢ Pos.Valid { data := cs ++ [] } (next { data := cs ++ [] } { byteIdx := utf8ByteSize.go cs })", "tactic": "simp at h₂" }, { "state_after": "s : String\np : Pos\nh : Pos.Valid s p\ncs : List Char\nc : Char\ncs' : List Char\nh₂ : { byteIdx := utf8ByteSize.go cs } < endPos { data := cs ++ c :: cs' }\n⊢ Pos.Valid { data := cs ++ c :: cs' } { byteIdx := utf8Len cs + csize c }", "state_before": "s : String\np : Pos\nh : Pos.Valid s p\ncs : List Char\nc : Char\ncs' : List Char\nh₂ : { byteIdx := utf8ByteSize.go cs } < endPos { data := cs ++ c :: cs' }\n⊢ Pos.Valid { data := cs ++ c :: cs' } (next { data := cs ++ c :: cs' } { byteIdx := utf8ByteSize.go cs })", "tactic": "rw [utf8ByteSize.go_eq, next_of_valid]" }, { "state_after": "no goals", "state_before": "s : String\np : Pos\nh : Pos.Valid s p\ncs : List Char\nc : Char\ncs' : List Char\nh₂ : { byteIdx := utf8ByteSize.go cs } < endPos { data := cs ++ c :: cs' }\n⊢ Pos.Valid { data := cs ++ c :: cs' } { byteIdx := utf8Len cs + csize c }", "tactic": "simpa using Pos.Valid.mk (cs ++ [c]) cs'" } ]
[ 270, 45 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 265, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
Fintype.total_apply
[]
[ 1059, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1058, 1 ]
Mathlib/Order/Filter/Pi.lean
Filter.compl_mem_coprodᵢ
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : ι → Type u_2\nf f₁ f₂ : (i : ι) → Filter (α i)\ns✝ : (i : ι) → Set (α i)\ns : Set ((i : ι) → α i)\n⊢ sᶜ ∈ Filter.coprodᵢ f ↔ ∀ (i : ι), (eval i '' s)ᶜ ∈ f i", "tactic": "simp only [Filter.coprodᵢ, mem_iSup, compl_mem_comap]" } ]
[ 210, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.pushoutComparison_map_desc
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW✝ X Y Z : C\nG : C ⥤ D\nf : X ⟶ Y\ng : X ⟶ Z\ninst✝¹ : HasPushout f g\ninst✝ : HasPushout (G.map f) (G.map g)\nW : C\nh : Y ⟶ W\nk : Z ⟶ W\nw : f ≫ h = g ≫ k\n⊢ G.map f ≫ G.map h = G.map g ≫ G.map k", "tactic": "simp only [← G.map_comp, w]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u₂\ninst✝² : Category D\nW✝ X Y Z : C\nG : C ⥤ D\nf : X ⟶ Y\ng : X ⟶ Z\ninst✝¹ : HasPushout f g\ninst✝ : HasPushout (G.map f) (G.map g)\nW : C\nh : Y ⟶ W\nk : Z ⟶ W\nw : f ≫ h = g ≫ k\n⊢ pushoutComparison G f g ≫ G.map (pushout.desc h k w) =\n pushout.desc (G.map h) (G.map k) (_ : G.map f ≫ G.map h = G.map g ≫ G.map k)", "tactic": "ext <;> simp [← G.map_comp]" } ]
[ 1495, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1491, 1 ]
Mathlib/Logic/Equiv/Basic.lean
Equiv.swap_apply_of_ne_of_ne
[ { "state_after": "no goals", "state_before": "α : Sort u_1\ninst✝ : DecidableEq α\na b x : α\n⊢ x ≠ a → x ≠ b → ↑(swap a b) x = x", "tactic": "simp (config := { contextual := true }) [swap_apply_def]" } ]
[ 1573, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1572, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.mk_le_of_injective
[]
[ 273, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 272, 1 ]
Mathlib/MeasureTheory/Measure/ProbabilityMeasure.lean
MeasureTheory.ProbabilityMeasure.continuous_testAgainstNN_eval
[]
[ 256, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/Algebra/Lie/Classical.lean
LieAlgebra.SpecialLinear.sl_bracket
[]
[ 106, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Analysis/Calculus/MeanValue.lean
image_norm_le_of_norm_deriv_right_le_deriv_boundary
[]
[ 335, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 330, 1 ]
Mathlib/Order/Monotone/Basic.lean
Function.monotone_eval
[]
[ 342, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 341, 1 ]
Mathlib/RingTheory/NonUnitalSubsemiring/Basic.lean
NonUnitalSubsemiring.mem_toSubsemigroup
[]
[ 237, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Order/BooleanAlgebra.lean
inf_sdiff_right_comm
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type ?u.39578\nw x y z : α\ninst✝ : GeneralizedBooleanAlgebra α\n⊢ x \\ z ⊓ y = (x ⊓ y) \\ z", "tactic": "rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]" } ]
[ 450, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 449, 1 ]
Std/Data/Int/Lemmas.lean
Int.negOfNat_eq
[]
[ 45, 51 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 45, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.sum_smul_index
[]
[ 1631, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1629, 1 ]
Mathlib/Algebra/ContinuedFractions/ContinuantsRecurrence.lean
GeneralizedContinuedFraction.continuants_recurrence
[ { "state_after": "K : Type u_1\ng : GeneralizedContinuedFraction K\nn : ℕ\ninst✝ : DivisionRing K\ngp ppred pred : Pair K\nsucc_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp\nnth_conts_eq : continuantsAux g (n + 1) = ppred\nsucc_nth_conts_eq : continuantsAux g (n + 1 + 1) = pred\n⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }", "state_before": "K : Type u_1\ng : GeneralizedContinuedFraction K\nn : ℕ\ninst✝ : DivisionRing K\ngp ppred pred : Pair K\nsucc_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp\nnth_conts_eq : continuants g n = ppred\nsucc_nth_conts_eq : continuants g (n + 1) = pred\n⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }", "tactic": "rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq" }, { "state_after": "no goals", "state_before": "K : Type u_1\ng : GeneralizedContinuedFraction K\nn : ℕ\ninst✝ : DivisionRing K\ngp ppred pred : Pair K\nsucc_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp\nnth_conts_eq : continuantsAux g (n + 1) = ppred\nsucc_nth_conts_eq : continuantsAux g (n + 1 + 1) = pred\n⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }", "tactic": "exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq" } ]
[ 49, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 45, 1 ]
Mathlib/Data/List/BigOperators/Basic.lean
List.prod_eq_one
[ { "state_after": "case nil\nι : Type ?u.143653\nα : Type ?u.143656\nM : Type u_1\nN : Type ?u.143662\nP : Type ?u.143665\nM₀ : Type ?u.143668\nG : Type ?u.143671\nR : Type ?u.143674\ninst✝ : Monoid M\nl : List M\nhl✝ : ∀ (x : M), x ∈ l → x = 1\nhl : ∀ (x : M), x ∈ [] → x = 1\n⊢ prod [] = 1\n\ncase cons\nι : Type ?u.143653\nα : Type ?u.143656\nM : Type u_1\nN : Type ?u.143662\nP : Type ?u.143665\nM₀ : Type ?u.143668\nG : Type ?u.143671\nR : Type ?u.143674\ninst✝ : Monoid M\nl✝ : List M\nhl✝ : ∀ (x : M), x ∈ l✝ → x = 1\ni : M\nl : List M\nhil : (∀ (x : M), x ∈ l → x = 1) → prod l = 1\nhl : ∀ (x : M), x ∈ i :: l → x = 1\n⊢ prod (i :: l) = 1", "state_before": "ι : Type ?u.143653\nα : Type ?u.143656\nM : Type u_1\nN : Type ?u.143662\nP : Type ?u.143665\nM₀ : Type ?u.143668\nG : Type ?u.143671\nR : Type ?u.143674\ninst✝ : Monoid M\nl : List M\nhl : ∀ (x : M), x ∈ l → x = 1\n⊢ prod l = 1", "tactic": "induction' l with i l hil" }, { "state_after": "no goals", "state_before": "case cons\nι : Type ?u.143653\nα : Type ?u.143656\nM : Type u_1\nN : Type ?u.143662\nP : Type ?u.143665\nM₀ : Type ?u.143668\nG : Type ?u.143671\nR : Type ?u.143674\ninst✝ : Monoid M\nl✝ : List M\nhl✝ : ∀ (x : M), x ∈ l✝ → x = 1\ni : M\nl : List M\nhil : (∀ (x : M), x ∈ l → x = 1) → prod l = 1\nhl : ∀ (x : M), x ∈ i :: l → x = 1\n⊢ prod (i :: l) = 1", "tactic": "rw [List.prod_cons, hil fun x hx => hl _ (mem_cons_of_mem i hx), hl _ (mem_cons_self i l),\n one_mul]" }, { "state_after": "no goals", "state_before": "case nil\nι : Type ?u.143653\nα : Type ?u.143656\nM : Type u_1\nN : Type ?u.143662\nP : Type ?u.143665\nM₀ : Type ?u.143668\nG : Type ?u.143671\nR : Type ?u.143674\ninst✝ : Monoid M\nl : List M\nhl✝ : ∀ (x : M), x ∈ l → x = 1\nhl : ∀ (x : M), x ∈ [] → x = 1\n⊢ prod [] = 1", "tactic": "rfl" } ]
[ 532, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 528, 1 ]
Mathlib/Data/Sum/Order.lean
Sum.inr_strictMono
[]
[ 197, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
IsUnit.ne_zero
[]
[ 55, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Topology/Algebra/Order/IntermediateValue.lean
intermediate_value_Ico
[]
[ 554, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 549, 1 ]
Mathlib/CategoryTheory/Limits/Constructions/FiniteProductsOfBinaryProducts.lean
CategoryTheory.hasFiniteProducts_of_has_binary_and_terminal
[ { "state_after": "J : Type v\ninst✝⁴ : SmallCategory J\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasBinaryProducts C\ninst✝ : HasTerminal C\nn : ℕ\nK : Discrete (Fin n) ⥤ C\n⊢ HasLimit K", "state_before": "J : Type v\ninst✝⁴ : SmallCategory J\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasBinaryProducts C\ninst✝ : HasTerminal C\n⊢ HasFiniteProducts C", "tactic": "refine' ⟨fun n => ⟨fun K => _⟩⟩" }, { "state_after": "J : Type v\ninst✝⁴ : SmallCategory J\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasBinaryProducts C\ninst✝ : HasTerminal C\nn : ℕ\nK : Discrete (Fin n) ⥤ C\nthis : HasProduct fun n_1 => K.obj { as := n_1 } := CategoryTheory.hasProduct_fin n fun n_1 => K.obj { as := n_1 }\n⊢ HasLimit K", "state_before": "J : Type v\ninst✝⁴ : SmallCategory J\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasBinaryProducts C\ninst✝ : HasTerminal C\nn : ℕ\nK : Discrete (Fin n) ⥤ C\n⊢ HasLimit K", "tactic": "letI := hasProduct_fin n fun n => K.obj ⟨n⟩" }, { "state_after": "J : Type v\ninst✝⁴ : SmallCategory J\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasBinaryProducts C\ninst✝ : HasTerminal C\nn : ℕ\nK : Discrete (Fin n) ⥤ C\nthis : HasProduct fun n_1 => K.obj { as := n_1 } := CategoryTheory.hasProduct_fin n fun n_1 => K.obj { as := n_1 }\nthat : (Discrete.functor fun n_1 => K.obj { as := n_1 }) ≅ K :=\n Discrete.natIso fun x =>\n match x with\n | { as := i } => Iso.refl ((Discrete.functor fun n_1 => K.obj { as := n_1 }).obj { as := i })\n⊢ HasLimit K", "state_before": "J : Type v\ninst✝⁴ : SmallCategory J\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasBinaryProducts C\ninst✝ : HasTerminal C\nn : ℕ\nK : Discrete (Fin n) ⥤ C\nthis : HasProduct fun n_1 => K.obj { as := n_1 } := CategoryTheory.hasProduct_fin n fun n_1 => K.obj { as := n_1 }\n⊢ HasLimit K", "tactic": "let that : (Discrete.functor fun n => K.obj ⟨n⟩) ≅ K := Discrete.natIso fun ⟨i⟩ => Iso.refl _" }, { "state_after": "no goals", "state_before": "J : Type v\ninst✝⁴ : SmallCategory J\nC : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasBinaryProducts C\ninst✝ : HasTerminal C\nn : ℕ\nK : Discrete (Fin n) ⥤ C\nthis : HasProduct fun n_1 => K.obj { as := n_1 } := CategoryTheory.hasProduct_fin n fun n_1 => K.obj { as := n_1 }\nthat : (Discrete.functor fun n_1 => K.obj { as := n_1 }) ≅ K :=\n Discrete.natIso fun x =>\n match x with\n | { as := i } => Iso.refl ((Discrete.functor fun n_1 => K.obj { as := n_1 }).obj { as := i })\n⊢ HasLimit K", "tactic": "apply @hasLimitOfIso _ _ _ _ _ _ this that" } ]
[ 115, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.castAdd_cast
[]
[ 1166, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1164, 1 ]
Mathlib/Data/Polynomial/AlgebraMap.lean
Polynomial.coe_aeval_eq_eval
[]
[ 299, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 298, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.withDensity_add_left
[ { "state_after": "α : Type u_1\nβ : Type ?u.1755617\nγ : Type ?u.1755620\nδ : Type ?u.1755623\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ≥0∞\nhf : Measurable f\ng : α → ℝ≥0∞\ns : Set α\nhs : MeasurableSet s\n⊢ ↑↑(withDensity μ (f + g)) s = ↑↑(withDensity μ f + withDensity μ g) s", "state_before": "α : Type u_1\nβ : Type ?u.1755617\nγ : Type ?u.1755620\nδ : Type ?u.1755623\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ≥0∞\nhf : Measurable f\ng : α → ℝ≥0∞\n⊢ withDensity μ (f + g) = withDensity μ f + withDensity μ g", "tactic": "refine' Measure.ext fun s hs => _" }, { "state_after": "α : Type u_1\nβ : Type ?u.1755617\nγ : Type ?u.1755620\nδ : Type ?u.1755623\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ≥0∞\nhf : Measurable f\ng : α → ℝ≥0∞\ns : Set α\nhs : MeasurableSet s\n⊢ (∫⁻ (a : α) in s, (f + g) a ∂μ) = ∫⁻ (a : α) in s, f a + g a ∂μ", "state_before": "α : Type u_1\nβ : Type ?u.1755617\nγ : Type ?u.1755620\nδ : Type ?u.1755623\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ≥0∞\nhf : Measurable f\ng : α → ℝ≥0∞\ns : Set α\nhs : MeasurableSet s\n⊢ ↑↑(withDensity μ (f + g)) s = ↑↑(withDensity μ f + withDensity μ g) s", "tactic": "rw [withDensity_apply _ hs, Measure.add_apply, withDensity_apply _ hs, withDensity_apply _ hs,\n ← lintegral_add_left hf]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1755617\nγ : Type ?u.1755620\nδ : Type ?u.1755623\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ≥0∞\nhf : Measurable f\ng : α → ℝ≥0∞\ns : Set α\nhs : MeasurableSet s\n⊢ (∫⁻ (a : α) in s, (f + g) a ∂μ) = ∫⁻ (a : α) in s, f a + g a ∂μ", "tactic": "rfl" } ]
[ 1566, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1561, 1 ]
Mathlib/CategoryTheory/Monoidal/Free/Coherence.lean
CategoryTheory.FreeMonoidalCategory.tensorFunc_obj_map
[ { "state_after": "case mk\nC : Type u\nZ : F C\nn' : (Discrete ∘ NormalMonoidalObject) C\nas✝ : NormalMonoidalObject C\nf : { as := as✝ } ⟶ n'\n⊢ ((tensorFunc C).obj Z).map f = inclusion.map f ⊗ 𝟙 Z", "state_before": "C : Type u\nZ : F C\nn n' : (Discrete ∘ NormalMonoidalObject) C\nf : n ⟶ n'\n⊢ ((tensorFunc C).obj Z).map f = inclusion.map f ⊗ 𝟙 Z", "tactic": "cases n" }, { "state_after": "case mk.mk\nC : Type u\nZ : F C\nas✝¹ as✝ : NormalMonoidalObject C\nf : { as := as✝¹ } ⟶ { as := as✝ }\n⊢ ((tensorFunc C).obj Z).map f = inclusion.map f ⊗ 𝟙 Z", "state_before": "case mk\nC : Type u\nZ : F C\nn' : (Discrete ∘ NormalMonoidalObject) C\nas✝ : NormalMonoidalObject C\nf : { as := as✝ } ⟶ n'\n⊢ ((tensorFunc C).obj Z).map f = inclusion.map f ⊗ 𝟙 Z", "tactic": "cases n'" }, { "state_after": "case mk.mk.up.up\nC : Type u\nZ : F C\nas✝¹ as✝ : NormalMonoidalObject C\nh : { as := as✝¹ }.as = { as := as✝ }.as\n⊢ ((tensorFunc C).obj Z).map { down := { down := h } } = inclusion.map { down := { down := h } } ⊗ 𝟙 Z", "state_before": "case mk.mk\nC : Type u\nZ : F C\nas✝¹ as✝ : NormalMonoidalObject C\nf : { as := as✝¹ } ⟶ { as := as✝ }\n⊢ ((tensorFunc C).obj Z).map f = inclusion.map f ⊗ 𝟙 Z", "tactic": "rcases f with ⟨⟨h⟩⟩" }, { "state_after": "case mk.mk.up.up\nC : Type u\nZ : F C\nas✝¹ as✝ : NormalMonoidalObject C\nh : as✝¹ = as✝\n⊢ ((tensorFunc C).obj Z).map { down := { down := h } } = inclusion.map { down := { down := h } } ⊗ 𝟙 Z", "state_before": "case mk.mk.up.up\nC : Type u\nZ : F C\nas✝¹ as✝ : NormalMonoidalObject C\nh : { as := as✝¹ }.as = { as := as✝ }.as\n⊢ ((tensorFunc C).obj Z).map { down := { down := h } } = inclusion.map { down := { down := h } } ⊗ 𝟙 Z", "tactic": "dsimp at h" }, { "state_after": "case mk.mk.up.up\nC : Type u\nZ : F C\nas✝ : NormalMonoidalObject C\n⊢ ((tensorFunc C).obj Z).map { down := { down := (_ : as✝ = as✝) } } =\n inclusion.map { down := { down := (_ : as✝ = as✝) } } ⊗ 𝟙 Z", "state_before": "case mk.mk.up.up\nC : Type u\nZ : F C\nas✝¹ as✝ : NormalMonoidalObject C\nh : as✝¹ = as✝\n⊢ ((tensorFunc C).obj Z).map { down := { down := h } } = inclusion.map { down := { down := h } } ⊗ 𝟙 Z", "tactic": "subst h" }, { "state_after": "no goals", "state_before": "case mk.mk.up.up\nC : Type u\nZ : F C\nas✝ : NormalMonoidalObject C\n⊢ ((tensorFunc C).obj Z).map { down := { down := (_ : as✝ = as✝) } } =\n inclusion.map { down := { down := (_ : as✝ = as✝) } } ⊗ 𝟙 Z", "tactic": "simp" } ]
[ 183, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.uIcc_of_not_ge
[]
[ 1000, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 999, 1 ]
Mathlib/Data/Rat/Lemmas.lean
Rat.num_den_mk
[ { "state_after": "case inl\nq : ℚ\nd : ℤ\nhd : d ≠ 0\nqdf : q = 0 /. d\n⊢ ∃ c, 0 = c * q.num ∧ d = c * ↑q.den\n\ncase inr\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\n⊢ ∃ c, n = c * q.num ∧ d = c * ↑q.den", "state_before": "q : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\n⊢ ∃ c, n = c * q.num ∧ d = c * ↑q.den", "tactic": "obtain rfl | hn := eq_or_ne n 0" }, { "state_after": "case inr\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ ∃ c, n = c * q.num ∧ d = c * ↑q.den", "state_before": "case inr\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\n⊢ ∃ c, n = c * q.num ∧ d = c * ↑q.den", "tactic": "have hqdn : q.num ∣ n := by\n rw [qdf]\n exact Rat.num_dvd _ hd" }, { "state_after": "case inr.refine'_1\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ n = n / q.num * q.num\n\ncase inr.refine'_2\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ d = n / q.num * ↑q.den", "state_before": "case inr\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ ∃ c, n = c * q.num ∧ d = c * ↑q.den", "tactic": "refine' ⟨n / q.num, _, _⟩" }, { "state_after": "no goals", "state_before": "case inl\nq : ℚ\nd : ℤ\nhd : d ≠ 0\nqdf : q = 0 /. d\n⊢ ∃ c, 0 = c * q.num ∧ d = c * ↑q.den", "tactic": "simp [qdf]" }, { "state_after": "case refine'_1\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\n⊢ ↑q.den ≠ 0\n\ncase refine'_2\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\n⊢ q.num /. ↑q.den = n /. d", "state_before": "q : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\n⊢ q.num * d = n * ↑q.den", "tactic": "refine' (divInt_eq_iff _ hd).mp _" }, { "state_after": "no goals", "state_before": "case refine'_1\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\n⊢ ↑q.den ≠ 0", "tactic": "exact Int.coe_nat_ne_zero.mpr (Rat.den_nz _)" }, { "state_after": "no goals", "state_before": "case refine'_2\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\n⊢ q.num /. ↑q.den = n /. d", "tactic": "rwa [num_den]" }, { "state_after": "q : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\n⊢ (n /. d).num ∣ n", "state_before": "q : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\n⊢ q.num ∣ n", "tactic": "rw [qdf]" }, { "state_after": "no goals", "state_before": "q : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\n⊢ (n /. d).num ∣ n", "tactic": "exact Rat.num_dvd _ hd" }, { "state_after": "no goals", "state_before": "case inr.refine'_1\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ n = n / q.num * q.num", "tactic": "rw [Int.ediv_mul_cancel hqdn]" }, { "state_after": "case inr.refine'_2\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ q.num ≠ 0", "state_before": "case inr.refine'_2\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ d = n / q.num * ↑q.den", "tactic": "refine' Int.eq_mul_div_of_mul_eq_mul_of_dvd_left _ hqdn this" }, { "state_after": "case inr.refine'_2\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ (n /. d).num ≠ 0", "state_before": "case inr.refine'_2\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ q.num ≠ 0", "tactic": "rw [qdf]" }, { "state_after": "no goals", "state_before": "case inr.refine'_2\nq : ℚ\nn d : ℤ\nhd : d ≠ 0\nqdf : q = n /. d\nhn : n ≠ 0\nthis : q.num * d = n * ↑q.den\nhqdn : q.num ∣ n\n⊢ (n /. d).num ≠ 0", "tactic": "exact Rat.num_ne_zero_of_ne_zero ((divInt_ne_zero hd).mpr hn)" } ]
[ 57, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Algebra/Associated.lean
Associates.mk_eq_zero
[]
[ 965, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 964, 1 ]
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
WithSeminorms.first_countable
[ { "state_after": "𝕜 : Type u_1\n𝕜₂ : Type ?u.848749\n𝕝 : Type ?u.848752\n𝕝₂ : Type ?u.848755\nE : Type u_2\nF : Type ?u.848761\nG : Type ?u.848764\nι : Type u_3\nι' : Type ?u.848770\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Nonempty ι\ninst✝² : Countable ι\np : SeminormFamily 𝕜 E ι\ninst✝¹ : UniformSpace E\ninst✝ : UniformAddGroup E\nhp : WithSeminorms p\nthis : Filter.IsCountablyGenerated (𝓝 0)\n⊢ FirstCountableTopology E", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.848749\n𝕝 : Type ?u.848752\n𝕝₂ : Type ?u.848755\nE : Type u_2\nF : Type ?u.848761\nG : Type ?u.848764\nι : Type u_3\nι' : Type ?u.848770\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Nonempty ι\ninst✝² : Countable ι\np : SeminormFamily 𝕜 E ι\ninst✝¹ : UniformSpace E\ninst✝ : UniformAddGroup E\nhp : WithSeminorms p\n⊢ FirstCountableTopology E", "tactic": "have : (𝓝 (0 : E)).IsCountablyGenerated := by\n rw [p.withSeminorms_iff_nhds_eq_iInf.mp hp]\n exact Filter.iInf.isCountablyGenerated _" }, { "state_after": "𝕜 : Type u_1\n𝕜₂ : Type ?u.848749\n𝕝 : Type ?u.848752\n𝕝₂ : Type ?u.848755\nE : Type u_2\nF : Type ?u.848761\nG : Type ?u.848764\nι : Type u_3\nι' : Type ?u.848770\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Nonempty ι\ninst✝² : Countable ι\np : SeminormFamily 𝕜 E ι\ninst✝¹ : UniformSpace E\ninst✝ : UniformAddGroup E\nhp : WithSeminorms p\nthis✝ : Filter.IsCountablyGenerated (𝓝 0)\nthis : Filter.IsCountablyGenerated (uniformity E)\n⊢ FirstCountableTopology E", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.848749\n𝕝 : Type ?u.848752\n𝕝₂ : Type ?u.848755\nE : Type u_2\nF : Type ?u.848761\nG : Type ?u.848764\nι : Type u_3\nι' : Type ?u.848770\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Nonempty ι\ninst✝² : Countable ι\np : SeminormFamily 𝕜 E ι\ninst✝¹ : UniformSpace E\ninst✝ : UniformAddGroup E\nhp : WithSeminorms p\nthis : Filter.IsCountablyGenerated (𝓝 0)\n⊢ FirstCountableTopology E", "tactic": "haveI : (uniformity E).IsCountablyGenerated := UniformAddGroup.uniformity_countably_generated" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.848749\n𝕝 : Type ?u.848752\n𝕝₂ : Type ?u.848755\nE : Type u_2\nF : Type ?u.848761\nG : Type ?u.848764\nι : Type u_3\nι' : Type ?u.848770\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Nonempty ι\ninst✝² : Countable ι\np : SeminormFamily 𝕜 E ι\ninst✝¹ : UniformSpace E\ninst✝ : UniformAddGroup E\nhp : WithSeminorms p\nthis✝ : Filter.IsCountablyGenerated (𝓝 0)\nthis : Filter.IsCountablyGenerated (uniformity E)\n⊢ FirstCountableTopology E", "tactic": "exact UniformSpace.firstCountableTopology E" }, { "state_after": "𝕜 : Type u_1\n𝕜₂ : Type ?u.848749\n𝕝 : Type ?u.848752\n𝕝₂ : Type ?u.848755\nE : Type u_2\nF : Type ?u.848761\nG : Type ?u.848764\nι : Type u_3\nι' : Type ?u.848770\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Nonempty ι\ninst✝² : Countable ι\np : SeminormFamily 𝕜 E ι\ninst✝¹ : UniformSpace E\ninst✝ : UniformAddGroup E\nhp : WithSeminorms p\n⊢ Filter.IsCountablyGenerated (⨅ (i : ι), Filter.comap (↑(p i)) (𝓝 0))", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.848749\n𝕝 : Type ?u.848752\n𝕝₂ : Type ?u.848755\nE : Type u_2\nF : Type ?u.848761\nG : Type ?u.848764\nι : Type u_3\nι' : Type ?u.848770\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Nonempty ι\ninst✝² : Countable ι\np : SeminormFamily 𝕜 E ι\ninst✝¹ : UniformSpace E\ninst✝ : UniformAddGroup E\nhp : WithSeminorms p\n⊢ Filter.IsCountablyGenerated (𝓝 0)", "tactic": "rw [p.withSeminorms_iff_nhds_eq_iInf.mp hp]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.848749\n𝕝 : Type ?u.848752\n𝕝₂ : Type ?u.848755\nE : Type u_2\nF : Type ?u.848761\nG : Type ?u.848764\nι : Type u_3\nι' : Type ?u.848770\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Nonempty ι\ninst✝² : Countable ι\np : SeminormFamily 𝕜 E ι\ninst✝¹ : UniformSpace E\ninst✝ : UniformAddGroup E\nhp : WithSeminorms p\n⊢ Filter.IsCountablyGenerated (⨅ (i : ι), Filter.comap (↑(p i)) (𝓝 0))", "tactic": "exact Filter.iInf.isCountablyGenerated _" } ]
[ 770, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 764, 1 ]
Std/Data/String/Lemmas.lean
String.all_iff
[ { "state_after": "no goals", "state_before": "s : String\np : Char → Bool\n⊢ all s p = true ↔ ∀ (c : Char), c ∈ s.data → p c = true", "tactic": "simp [all_eq]" } ]
[ 725, 94 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 725, 1 ]
Mathlib/Topology/Bornology/Basic.lean
Bornology.isCobounded_biInter
[]
[ 264, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Data/List/OfFn.lean
List.ofFn_inj
[]
[ 291, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 290, 1 ]
Mathlib/Order/CompleteLattice.lean
iInf_inf_eq
[]
[ 1238, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1237, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.comp_liftAddHom
[ { "state_after": "no goals", "state_before": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\nδ : Type u_1\ninst✝² : (i : ι) → AddZeroClass (β i)\ninst✝¹ : AddCommMonoid γ\ninst✝ : AddCommMonoid δ\ng : γ →+ δ\nf : (i : ι) → β i →+ γ\na : ι\n⊢ ↑(AddEquiv.symm liftAddHom) (AddMonoidHom.comp g (↑liftAddHom f)) a = AddMonoidHom.comp g (f a)", "tactic": "rw [liftAddHom_symm_apply, AddMonoidHom.comp_assoc, liftAddHom_comp_single]" } ]
[ 2050, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2045, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean
AffineEquiv.linear_mk'
[]
[ 190, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/Topology/Semicontinuous.lean
upperSemicontinuousAt_iInf
[]
[ 1026, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1024, 1 ]
Mathlib/MeasureTheory/Function/SpecialFunctions/Basic.lean
Complex.measurable_arg
[]
[ 124, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/Topology/Filter.lean
Filter.isOpen_Iic_principal
[]
[ 55, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.div_lt_top
[]
[ 1415, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1414, 1 ]
Mathlib/CategoryTheory/Limits/Constructions/Filtered.lean
CategoryTheory.Limits.has_limits_of_finite_and_cofiltered
[]
[ 102, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 1 ]
Mathlib/Algebra/GCDMonoid/Finset.lean
Finset.lcm_congr
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.7148\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizedGCDMonoid α\ns s₁ : Finset β\nf✝ f g : β → α\nhfg : ∀ (a : β), a ∈ s₁ → f a = g a\n⊢ lcm s₁ f = lcm s₁ g", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.7148\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizedGCDMonoid α\ns s₁ s₂ : Finset β\nf✝ f g : β → α\nhs : s₁ = s₂\nhfg : ∀ (a : β), a ∈ s₂ → f a = g a\n⊢ lcm s₁ f = lcm s₂ g", "tactic": "subst hs" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.7148\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizedGCDMonoid α\ns s₁ : Finset β\nf✝ f g : β → α\nhfg : ∀ (a : β), a ∈ s₁ → f a = g a\n⊢ lcm s₁ f = lcm s₁ g", "tactic": "exact Finset.fold_congr hfg" } ]
[ 106, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 1 ]
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
CategoryTheory.NonPreadditiveAbelian.add_assoc
[ { "state_after": "C : Type u\ninst✝¹ : Category C\ninst✝ : NonPreadditiveAbelian C\nX Y : C\na b c : X ⟶ Y\n⊢ a - -b + c = a + (b + c)", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : NonPreadditiveAbelian C\nX Y : C\na b c : X ⟶ Y\n⊢ a + b + c = a + (b + c)", "tactic": "conv_lhs =>\n congr; rw [add_def]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : NonPreadditiveAbelian C\nX Y : C\na b c : X ⟶ Y\n⊢ a - -b + c = a + (b + c)", "tactic": "rw [sub_add, ← add_neg, neg_sub', neg_neg]" } ]
[ 425, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 422, 1 ]
Mathlib/Algebra/Module/Torsion.lean
Module.isTorsionBySet_span_singleton_iff
[]
[ 348, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Std/Data/List/Lemmas.lean
List.diff_append
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nl₁ l₂ l₃ : List α\n⊢ List.diff l₁ (l₂ ++ l₃) = List.diff (List.diff l₁ l₂) l₃", "tactic": "simp only [diff_eq_foldl, foldl_append]" } ]
[ 1523, 42 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1522, 9 ]
Mathlib/Order/Heyting/Hom.lean
map_symmDiff
[ { "state_after": "no goals", "state_before": "F : Type u_3\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.40368\nδ : Type ?u.40371\ninst✝² : CoheytingAlgebra α\ninst✝¹ : CoheytingAlgebra β\ninst✝ : CoheytingHomClass F α β\nf : F\na b : α\n⊢ ↑f (a ∆ b) = ↑f a ∆ ↑f b", "tactic": "simp_rw [symmDiff, map_sup, map_sdiff]" } ]
[ 212, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 212, 1 ]
Mathlib/Algebra/TrivSqZeroExt.lean
TrivSqZeroExt.inl_smul
[]
[ 336, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 334, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.mem_iSup_of_directed
[ { "state_after": "R : Type u\nS✝ : Type v\nT : Type w\ninst✝² : NonAssocSemiring R\nM : Submonoid R\ninst✝¹ : NonAssocSemiring S✝\ninst✝ : NonAssocSemiring T\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subsemiring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\n⊢ (x ∈ ⨆ (i : ι), S i) → ∃ i, x ∈ S i", "state_before": "R : Type u\nS✝ : Type v\nT : Type w\ninst✝² : NonAssocSemiring R\nM : Submonoid R\ninst✝¹ : NonAssocSemiring S✝\ninst✝ : NonAssocSemiring T\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subsemiring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\n⊢ (x ∈ ⨆ (i : ι), S i) ↔ ∃ i, x ∈ S i", "tactic": "refine' ⟨_, fun ⟨i, hi⟩ => (SetLike.le_def.1 <| le_iSup S i) hi⟩" }, { "state_after": "R : Type u\nS✝ : Type v\nT : Type w\ninst✝² : NonAssocSemiring R\nM : Submonoid R\ninst✝¹ : NonAssocSemiring S✝\ninst✝ : NonAssocSemiring T\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subsemiring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\nU : Subsemiring R :=\n Subsemiring.mk' (⋃ (i : ι), ↑(S i)) (⨆ (i : ι), (S i).toSubmonoid)\n (_ : ↑(⨆ (i : ι), (S i).toSubmonoid) = ⋃ (i : ι), ↑(S i).toSubmonoid) (⨆ (i : ι), toAddSubmonoid (S i))\n (_ : ↑(⨆ (i : ι), toAddSubmonoid (S i)) = ⋃ (i : ι), ↑(toAddSubmonoid (S i)))\n⊢ (x ∈ ⨆ (i : ι), S i) → ∃ i, x ∈ S i", "state_before": "R : Type u\nS✝ : Type v\nT : Type w\ninst✝² : NonAssocSemiring R\nM : Submonoid R\ninst✝¹ : NonAssocSemiring S✝\ninst✝ : NonAssocSemiring T\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subsemiring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\n⊢ (x ∈ ⨆ (i : ι), S i) → ∃ i, x ∈ S i", "tactic": "let U : Subsemiring R :=\n Subsemiring.mk' (⋃ i, (S i : Set R)) (⨆ i, (S i).toSubmonoid)\n (Submonoid.coe_iSup_of_directed <| hS.mono_comp _ fun _ _ => id) (⨆ i, (S i).toAddSubmonoid)\n (AddSubmonoid.coe_iSup_of_directed <| hS.mono_comp _ fun _ _ => id)" }, { "state_after": "R : Type u\nS✝ : Type v\nT : Type w\ninst✝² : NonAssocSemiring R\nM : Submonoid R\ninst✝¹ : NonAssocSemiring S✝\ninst✝ : NonAssocSemiring T\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subsemiring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\nU : Subsemiring R :=\n Subsemiring.mk' (⋃ (i : ι), ↑(S i)) (⨆ (i : ι), (S i).toSubmonoid)\n (_ : ↑(⨆ (i : ι), (S i).toSubmonoid) = ⋃ (i : ι), ↑(S i).toSubmonoid) (⨆ (i : ι), toAddSubmonoid (S i))\n (_ : ↑(⨆ (i : ι), toAddSubmonoid (S i)) = ⋃ (i : ι), ↑(toAddSubmonoid (S i)))\n⊢ (⨆ (i : ι), S i) ≤ U", "state_before": "R : Type u\nS✝ : Type v\nT : Type w\ninst✝² : NonAssocSemiring R\nM : Submonoid R\ninst✝¹ : NonAssocSemiring S✝\ninst✝ : NonAssocSemiring T\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subsemiring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\nU : Subsemiring R :=\n Subsemiring.mk' (⋃ (i : ι), ↑(S i)) (⨆ (i : ι), (S i).toSubmonoid)\n (_ : ↑(⨆ (i : ι), (S i).toSubmonoid) = ⋃ (i : ι), ↑(S i).toSubmonoid) (⨆ (i : ι), toAddSubmonoid (S i))\n (_ : ↑(⨆ (i : ι), toAddSubmonoid (S i)) = ⋃ (i : ι), ↑(toAddSubmonoid (S i)))\n⊢ (x ∈ ⨆ (i : ι), S i) → ∃ i, x ∈ S i", "tactic": "suffices h : (⨆ i, S i) ≤ U by simpa using @h x" }, { "state_after": "no goals", "state_before": "R : Type u\nS✝ : Type v\nT : Type w\ninst✝² : NonAssocSemiring R\nM : Submonoid R\ninst✝¹ : NonAssocSemiring S✝\ninst✝ : NonAssocSemiring T\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subsemiring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\nU : Subsemiring R :=\n Subsemiring.mk' (⋃ (i : ι), ↑(S i)) (⨆ (i : ι), (S i).toSubmonoid)\n (_ : ↑(⨆ (i : ι), (S i).toSubmonoid) = ⋃ (i : ι), ↑(S i).toSubmonoid) (⨆ (i : ι), toAddSubmonoid (S i))\n (_ : ↑(⨆ (i : ι), toAddSubmonoid (S i)) = ⋃ (i : ι), ↑(toAddSubmonoid (S i)))\n⊢ (⨆ (i : ι), S i) ≤ U", "tactic": "exact iSup_le fun i x hx => Set.mem_iUnion.2 ⟨i, hx⟩" }, { "state_after": "no goals", "state_before": "R : Type u\nS✝ : Type v\nT : Type w\ninst✝² : NonAssocSemiring R\nM : Submonoid R\ninst✝¹ : NonAssocSemiring S✝\ninst✝ : NonAssocSemiring T\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subsemiring R\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : R\nU : Subsemiring R :=\n Subsemiring.mk' (⋃ (i : ι), ↑(S i)) (⨆ (i : ι), (S i).toSubmonoid)\n (_ : ↑(⨆ (i : ι), (S i).toSubmonoid) = ⋃ (i : ι), ↑(S i).toSubmonoid) (⨆ (i : ι), toAddSubmonoid (S i))\n (_ : ↑(⨆ (i : ι), toAddSubmonoid (S i)) = ⋃ (i : ι), ↑(toAddSubmonoid (S i)))\nh : (⨆ (i : ι), S i) ≤ U\n⊢ (x ∈ ⨆ (i : ι), S i) → ∃ i, x ∈ S i", "tactic": "simpa using @h x" } ]
[ 1098, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1089, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
Commute.units_zpow_left
[]
[ 1146, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1144, 1 ]
Mathlib/ModelTheory/LanguageMap.lean
FirstOrder.Language.withConstants_funMap_sum_inl
[]
[ 512, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 510, 1 ]
Mathlib/Data/List/Nodup.lean
List.count_eq_of_nodup
[ { "state_after": "case inl\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : DecidableEq α\na : α\nl : List α\nd : Nodup l\nh : a ∈ l\n⊢ count a l = 1\n\ncase inr\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : DecidableEq α\na : α\nl : List α\nd : Nodup l\nh : ¬a ∈ l\n⊢ count a l = 0", "state_before": "α : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : DecidableEq α\na : α\nl : List α\nd : Nodup l\n⊢ count a l = if a ∈ l then 1 else 0", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : DecidableEq α\na : α\nl : List α\nd : Nodup l\nh : a ∈ l\n⊢ count a l = 1", "tactic": "exact count_eq_one_of_mem d h" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u\nβ : Type v\nl✝ l₁ l₂ : List α\nr : α → α → Prop\na✝ b : α\ninst✝ : DecidableEq α\na : α\nl : List α\nd : Nodup l\nh : ¬a ∈ l\n⊢ count a l = 0", "tactic": "exact count_eq_zero_of_not_mem h" } ]
[ 207, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 1 ]
Mathlib/Data/Real/Pi/Bounds.lean
Real.pi_lt_sqrtTwoAddSeries
[ { "state_after": "n : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2) =\n 2 ^ (n + 1) * sqrt (2 - sqrtTwoAddSeries 0 n) + 1 / 4 ^ n", "state_before": "n : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ π < 2 ^ (n + 1) * sqrt (2 - sqrtTwoAddSeries 0 n) + 1 / 4 ^ n", "tactic": "apply lt_of_lt_of_le this (le_of_eq _)" }, { "state_after": "n : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ sqrt (2 - sqrtTwoAddSeries 0 n) / 2 * 2 ^ (n + 2) + 1 / (2 ^ n) ^ 3 / 4 * 2 ^ (n + 2) =\n 2 ^ (n + 1) * sqrt (2 - sqrtTwoAddSeries 0 n) + 1 / 4 ^ n", "state_before": "n : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2) =\n 2 ^ (n + 1) * sqrt (2 - sqrtTwoAddSeries 0 n) + 1 / 4 ^ n", "tactic": "rw [add_mul]" }, { "state_after": "case e_a\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ sqrt (2 - sqrtTwoAddSeries 0 n) / 2 * 2 ^ (n + 2) = 2 ^ (n + 1) * sqrt (2 - sqrtTwoAddSeries 0 n)\n\ncase e_a\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 1 / (2 ^ n) ^ 3 / 4 * 2 ^ (n + 2) = 1 / 4 ^ n", "state_before": "n : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ sqrt (2 - sqrtTwoAddSeries 0 n) / 2 * 2 ^ (n + 2) + 1 / (2 ^ n) ^ 3 / 4 * 2 ^ (n + 2) =\n 2 ^ (n + 1) * sqrt (2 - sqrtTwoAddSeries 0 n) + 1 / 4 ^ n", "tactic": "congr 1" }, { "state_after": "case e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 2 ^ n ≠ 0\n\ncase e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 4 ≠ 0", "state_before": "case e_a\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 1 / (2 ^ n) ^ 3 / 4 * 2 ^ (n + 2) = 1 / 4 ^ n", "tactic": "rw [pow_succ, ← pow_mul, mul_comm n 2, pow_mul, show (2 : ℝ) ^ 2 = 4 by norm_num, pow_succ,\n pow_succ, ← mul_assoc (2 : ℝ), show (2 : ℝ) * 2 = 4 by norm_num, ← mul_assoc, div_mul_cancel,\n mul_comm ((2 : ℝ) ^ n), ← div_div, div_mul_cancel]" }, { "state_after": "case e_a.h.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 2 ≠ 0\n\ncase e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 4 ≠ 0", "state_before": "case e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 2 ^ n ≠ 0\n\ncase e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 4 ≠ 0", "tactic": "apply pow_ne_zero" }, { "state_after": "case e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 4 ≠ 0", "state_before": "case e_a.h.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 2 ≠ 0\n\ncase e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 4 ≠ 0", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "case e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 4 ≠ 0", "tactic": "norm_num" }, { "state_after": "n : ℕ\n⊢ π / 2 ^ (n + 2) < sin (π / 2 ^ (n + 2)) + 1 / (2 ^ n) ^ 3 / 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "n : ℕ\n⊢ π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)", "tactic": "rw [← div_lt_iff, ← sin_pi_over_two_pow_succ]" }, { "state_after": "case refine'_1\nn : ℕ\n⊢ 0 < π / 2 ^ (n + 2)\n\ncase refine'_2\nn : ℕ\n⊢ π / 2 ^ (n + 2) ≤ 1\n\ncase refine'_3\nn : ℕ\n⊢ sin (π / 2 ^ (n + 2)) + (π / 2 ^ (n + 2)) ^ 3 / 4 ≤ sin (π / 2 ^ (n + 2)) + 1 / (2 ^ n) ^ 3 / 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "n : ℕ\n⊢ π / 2 ^ (n + 2) < sin (π / 2 ^ (n + 2)) + 1 / (2 ^ n) ^ 3 / 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "refine' lt_of_lt_of_le (lt_add_of_sub_right_lt (sin_gt_sub_cube _ _)) _" }, { "state_after": "case refine'_3.bc\nn : ℕ\n⊢ (π / 2 ^ (n + 2)) ^ 3 / 4 ≤ 1 / (2 ^ n) ^ 3 / 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3\nn : ℕ\n⊢ sin (π / 2 ^ (n + 2)) + (π / 2 ^ (n + 2)) ^ 3 / 4 ≤ sin (π / 2 ^ (n + 2)) + 1 / (2 ^ n) ^ 3 / 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "apply add_le_add_left" }, { "state_after": "case refine'_3.bc\nn : ℕ\n⊢ (π / 2 ^ (n + 2)) ^ 3 ≤ 1 / (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc\nn : ℕ\n⊢ (π / 2 ^ (n + 2)) ^ 3 / 4 ≤ 1 / (2 ^ n) ^ 3 / 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "rw [div_le_div_right]" }, { "state_after": "case refine'_3.bc\nn : ℕ\n⊢ (π / 2 ^ (n + 2) * 2 ^ n) ^ 3 ≤ 1\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc\nn : ℕ\n⊢ (π / 2 ^ (n + 2)) ^ 3 ≤ 1 / (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "rw [le_div_iff, ← mul_pow]" }, { "state_after": "case refine'_3.bc\nn : ℕ\n⊢ (π / 2 ^ (n + 2) * 2 ^ n) ^ 3 ≤ 1 ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc\nn : ℕ\n⊢ (π / 2 ^ (n + 2) * 2 ^ n) ^ 3 ≤ 1\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "refine' le_trans _ (le_of_eq (one_pow 3))" }, { "state_after": "case refine'_3.bc.ha\nn : ℕ\n⊢ 0 ≤ π / 2 ^ (n + 2) * 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ π / 2 ^ (n + 2) * 2 ^ n ≤ 1\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc\nn : ℕ\n⊢ (π / 2 ^ (n + 2) * 2 ^ n) ^ 3 ≤ 1 ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "apply pow_le_pow_of_le_left" }, { "state_after": "case refine'_3.bc.hab\nn : ℕ\n⊢ π / 2 ^ (n + 2) ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc.hab\nn : ℕ\n⊢ π / 2 ^ (n + 2) * 2 ^ n ≤ 1\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "rw [← le_div_iff]" }, { "state_after": "case refine'_3.bc.hab.refine'_1\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)\n\ncase refine'_3.bc.hab.refine'_2\nn : ℕ\n⊢ 4 / 2 ^ (n + 2) ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc.hab\nn : ℕ\n⊢ π / 2 ^ (n + 2) ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "refine' le_trans ((div_le_div_right _).mpr pi_le_four) _" }, { "state_after": "case refine'_3.bc.hab.refine'_1.H\nn : ℕ\n⊢ 0 < 2\n\ncase refine'_3.bc.hab.refine'_2\nn : ℕ\n⊢ 4 / 2 ^ (n + 2) ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc.hab.refine'_1\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)\n\ncase refine'_3.bc.hab.refine'_2\nn : ℕ\n⊢ 4 / 2 ^ (n + 2) ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "apply pow_pos" }, { "state_after": "case refine'_3.bc.hab.refine'_2\nn : ℕ\n⊢ 4 / 2 ^ (n + 2) ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc.hab.refine'_1.H\nn : ℕ\n⊢ 0 < 2\n\ncase refine'_3.bc.hab.refine'_2\nn : ℕ\n⊢ 4 / 2 ^ (n + 2) ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "norm_num" }, { "state_after": "case refine'_3.bc.hab.refine'_2\nn : ℕ\n⊢ 4 / (2 * 2) / 2 ^ n ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_3.bc.hab.refine'_2\nn : ℕ\n⊢ 4 / 2 ^ (n + 2) ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "rw [pow_succ, pow_succ, ← mul_assoc, ← div_div]" }, { "state_after": "no goals", "state_before": "case refine'_3.bc.hab.refine'_2\nn : ℕ\n⊢ 4 / (2 * 2) / 2 ^ n ≤ 1 / 2 ^ n\n\ncase refine'_3.bc.hab\nn : ℕ\n⊢ 0 < 2 ^ n\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < (2 ^ n) ^ 3\n\ncase refine'_3.bc\nn : ℕ\n⊢ 0 < 4\n\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "all_goals (repeat' apply pow_pos); norm_num" }, { "state_after": "case refine'_1\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_1\nn : ℕ\n⊢ 0 < π / 2 ^ (n + 2)", "tactic": "apply div_pos pi_pos" }, { "state_after": "case refine'_1.H\nn : ℕ\n⊢ 0 < 2", "state_before": "case refine'_1\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "apply pow_pos" }, { "state_after": "no goals", "state_before": "case refine'_1.H\nn : ℕ\n⊢ 0 < 2", "tactic": "norm_num" }, { "state_after": "case refine'_2\nn : ℕ\n⊢ π ≤ 2 ^ (n + 2) * 1\n\ncase refine'_2\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "state_before": "case refine'_2\nn : ℕ\n⊢ π / 2 ^ (n + 2) ≤ 1", "tactic": "rw [div_le_iff']" }, { "state_after": "case refine'_2\nn : ℕ\n⊢ 4 ≤ 2 ^ (n + 2) * 1", "state_before": "case refine'_2\nn : ℕ\n⊢ π ≤ 2 ^ (n + 2) * 1", "tactic": "refine' le_trans pi_le_four _" }, { "state_after": "case refine'_2\nn : ℕ\n⊢ 2 ^ 2 ≤ 2 ^ (n + 2)", "state_before": "case refine'_2\nn : ℕ\n⊢ 4 ≤ 2 ^ (n + 2) * 1", "tactic": "simp only [show (4 : ℝ) = (2 : ℝ) ^ 2 by norm_num, mul_one]" }, { "state_after": "case refine'_2.ha\nn : ℕ\n⊢ 1 ≤ 2\n\ncase refine'_2.h\nn : ℕ\n⊢ 2 ≤ n + 2", "state_before": "case refine'_2\nn : ℕ\n⊢ 2 ^ 2 ≤ 2 ^ (n + 2)", "tactic": "apply pow_le_pow" }, { "state_after": "case refine'_2.h\nn : ℕ\n⊢ 2 ≤ n + 2", "state_before": "case refine'_2.ha\nn : ℕ\n⊢ 1 ≤ 2\n\ncase refine'_2.h\nn : ℕ\n⊢ 2 ≤ n + 2", "tactic": "norm_num" }, { "state_after": "case refine'_2.h.h\nn : ℕ\n⊢ 0 ≤ n", "state_before": "case refine'_2.h\nn : ℕ\n⊢ 2 ≤ n + 2", "tactic": "apply le_add_of_nonneg_left" }, { "state_after": "no goals", "state_before": "case refine'_2.h.h\nn : ℕ\n⊢ 0 ≤ n", "tactic": "apply Nat.zero_le" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ 4 = 2 ^ 2", "tactic": "norm_num" }, { "state_after": "case refine'_2.H\nn : ℕ\n⊢ 0 < 2", "state_before": "case refine'_2\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "apply pow_pos" }, { "state_after": "no goals", "state_before": "case refine'_2.H\nn : ℕ\n⊢ 0 < 2", "tactic": "norm_num" }, { "state_after": "case refine'_3.bc.ha.a\nn : ℕ\n⊢ 0 < π / 2 ^ (n + 2) * 2 ^ n", "state_before": "case refine'_3.bc.ha\nn : ℕ\n⊢ 0 ≤ π / 2 ^ (n + 2) * 2 ^ n", "tactic": "apply le_of_lt" }, { "state_after": "case refine'_3.bc.ha.a.ha\nn : ℕ\n⊢ 0 < π / 2 ^ (n + 2)\n\ncase refine'_3.bc.ha.a.hb\nn : ℕ\n⊢ 0 < 2 ^ n", "state_before": "case refine'_3.bc.ha.a\nn : ℕ\n⊢ 0 < π / 2 ^ (n + 2) * 2 ^ n", "tactic": "apply mul_pos" }, { "state_after": "case refine'_3.bc.ha.a.ha\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)\n\ncase refine'_3.bc.ha.a.hb\nn : ℕ\n⊢ 0 < 2 ^ n", "state_before": "case refine'_3.bc.ha.a.ha\nn : ℕ\n⊢ 0 < π / 2 ^ (n + 2)\n\ncase refine'_3.bc.ha.a.hb\nn : ℕ\n⊢ 0 < 2 ^ n", "tactic": "apply div_pos pi_pos" }, { "state_after": "case refine'_3.bc.ha.a.ha.H\nn : ℕ\n⊢ 0 < 2\n\ncase refine'_3.bc.ha.a.hb\nn : ℕ\n⊢ 0 < 2 ^ n", "state_before": "case refine'_3.bc.ha.a.ha\nn : ℕ\n⊢ 0 < 2 ^ (n + 2)\n\ncase refine'_3.bc.ha.a.hb\nn : ℕ\n⊢ 0 < 2 ^ n", "tactic": "apply pow_pos" }, { "state_after": "case refine'_3.bc.ha.a.hb\nn : ℕ\n⊢ 0 < 2 ^ n", "state_before": "case refine'_3.bc.ha.a.ha.H\nn : ℕ\n⊢ 0 < 2\n\ncase refine'_3.bc.ha.a.hb\nn : ℕ\n⊢ 0 < 2 ^ n", "tactic": "norm_num" }, { "state_after": "case refine'_3.bc.ha.a.hb.H\nn : ℕ\n⊢ 0 < 2", "state_before": "case refine'_3.bc.ha.a.hb\nn : ℕ\n⊢ 0 < 2 ^ n", "tactic": "apply pow_pos" }, { "state_after": "no goals", "state_before": "case refine'_3.bc.ha.a.hb.H\nn : ℕ\n⊢ 0 < 2", "tactic": "norm_num" }, { "state_after": "case H\nn : ℕ\n⊢ 0 < 2", "state_before": "n : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "(repeat' apply pow_pos)" }, { "state_after": "no goals", "state_before": "case H\nn : ℕ\n⊢ 0 < 2", "tactic": "norm_num" }, { "state_after": "case H\nn : ℕ\n⊢ 0 < 2", "state_before": "n : ℕ\n⊢ 0 < 2 ^ (n + 2)", "tactic": "repeat' apply pow_pos" }, { "state_after": "case H\nn : ℕ\n⊢ 0 < 2", "state_before": "case H\nn : ℕ\n⊢ 0 < 2", "tactic": "apply pow_pos" }, { "state_after": "case e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 2 ≠ 0", "state_before": "case e_a\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ sqrt (2 - sqrtTwoAddSeries 0 n) / 2 * 2 ^ (n + 2) = 2 ^ (n + 1) * sqrt (2 - sqrtTwoAddSeries 0 n)", "tactic": "rw [pow_succ _ (n + 1), ← mul_assoc, div_mul_cancel, mul_comm]" }, { "state_after": "no goals", "state_before": "case e_a.h\nn : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 2 ≠ 0", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "n : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 2 ^ 2 = 4", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "n : ℕ\nthis : π < (sqrt (2 - sqrtTwoAddSeries 0 n) / 2 + 1 / (2 ^ n) ^ 3 / 4) * 2 ^ (n + 2)\n⊢ 2 * 2 = 4", "tactic": "norm_num" } ]
[ 69, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 41, 1 ]
Mathlib/Analysis/Seminorm.lean
Seminorm.comp_add_le
[]
[ 353, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 352, 1 ]
Mathlib/Probability/Kernel/Basic.lean
ProbabilityTheory.kernel.restrict_univ
[ { "state_after": "case h\nα : Type u_1\nβ : Type u_2\nι : Type ?u.1444502\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\ns t : Set β\na : α\n⊢ ↑(kernel.restrict κ (_ : MeasurableSet Set.univ)) a = ↑κ a", "state_before": "α : Type u_1\nβ : Type u_2\nι : Type ?u.1444502\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\ns t : Set β\n⊢ kernel.restrict κ (_ : MeasurableSet Set.univ) = κ", "tactic": "ext1 a" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type u_2\nι : Type ?u.1444502\nmα : MeasurableSpace α\nmβ : MeasurableSpace β\nκ : { x // x ∈ kernel α β }\ns t : Set β\na : α\n⊢ ↑(kernel.restrict κ (_ : MeasurableSet Set.univ)) a = ↑κ a", "tactic": "rw [kernel.restrict_apply, Measure.restrict_univ]" } ]
[ 506, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 504, 1 ]
Mathlib/AlgebraicTopology/SimplexCategory.lean
SimplexCategory.δ_comp_δ_self'
[ { "state_after": "n : ℕ\ni : Fin (n + 2)\n⊢ δ i ≫ δ (↑Fin.castSucc i) = δ i ≫ δ (Fin.succ i)", "state_before": "n : ℕ\ni : Fin (n + 2)\nj : Fin (n + 3)\nH : j = ↑Fin.castSucc i\n⊢ δ i ≫ δ j = δ i ≫ δ (Fin.succ i)", "tactic": "subst H" }, { "state_after": "no goals", "state_before": "n : ℕ\ni : Fin (n + 2)\n⊢ δ i ≫ δ (↑Fin.castSucc i) = δ i ≫ δ (Fin.succ i)", "tactic": "rw [δ_comp_δ_self]" } ]
[ 255, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometry.coe_mk
[]
[ 169, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.spanCompIso_app_left
[]
[ 344, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 1 ]
Mathlib/Data/Set/Basic.lean
Set.mem_ite_empty_left
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns s₁ s₂ t✝ t₁ t₂ u : Set α\np : Prop\ninst✝ : Decidable p\nt : Set α\nx : α\n⊢ (∃ h, x ∈ t) ↔ ¬p ∧ x ∈ t", "tactic": "simp" } ]
[ 2233, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2231, 1 ]