file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/CategoryTheory/Types.lean
CategoryTheory.epi_iff_surjective
[ { "state_after": "case mp\nX Y : Type u\nf : X ⟶ Y\n⊢ Epi f → Function.Surjective f\n\ncase mpr\nX Y : Type u\nf : X ⟶ Y\n⊢ Function.Surjective f → Epi f", "state_before": "X Y : Type u\nf : X ⟶ Y\n⊢ Epi f ↔ Function.Surjective f", "tactic": "constructor" }, { "state_after": "case mp.mk\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\n⊢ Function.Surjective f", "state_before": "case mp\nX Y : Type u\nf : X ⟶ Y\n⊢ Epi f → Function.Surjective f", "tactic": "rintro ⟨H⟩" }, { "state_after": "case mp.mk\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\ng₁ g₂ : Y → Prop\nhg : g₁ ∘ f = g₂ ∘ f\n⊢ g₁ = g₂", "state_before": "case mp.mk\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\n⊢ Function.Surjective f", "tactic": "refine' Function.surjective_of_right_cancellable_Prop fun g₁ g₂ hg => _" }, { "state_after": "case mp.mk\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\ng₁ g₂ : Y → Prop\nhg : g₁ ∘ f = g₂ ∘ f\n⊢ (fun x x_1 => x ∘ x_1) (↑Equiv.ulift.symm) g₁ = (fun x x_1 => x ∘ x_1) (↑Equiv.ulift.symm) g₂", "state_before": "case mp.mk\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\ng₁ g₂ : Y → Prop\nhg : g₁ ∘ f = g₂ ∘ f\n⊢ g₁ = g₂", "tactic": "rw [← Equiv.ulift.symm.injective.comp_left.eq_iff]" }, { "state_after": "case mp.mk.a\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\ng₁ g₂ : Y → Prop\nhg : g₁ ∘ f = g₂ ∘ f\n⊢ f ≫ (fun x x_1 => x ∘ x_1) (↑Equiv.ulift.symm) g₁ = f ≫ (fun x x_1 => x ∘ x_1) (↑Equiv.ulift.symm) g₂", "state_before": "case mp.mk\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\ng₁ g₂ : Y → Prop\nhg : g₁ ∘ f = g₂ ∘ f\n⊢ (fun x x_1 => x ∘ x_1) (↑Equiv.ulift.symm) g₁ = (fun x x_1 => x ∘ x_1) (↑Equiv.ulift.symm) g₂", "tactic": "apply H" }, { "state_after": "case mp.mk.a\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\ng₁ g₂ : Y → Prop\nhg : g₁ ∘ f = g₂ ∘ f\n⊢ ULift.up ∘ g₁ ∘ f = ULift.up ∘ g₂ ∘ f", "state_before": "case mp.mk.a\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\ng₁ g₂ : Y → Prop\nhg : g₁ ∘ f = g₂ ∘ f\n⊢ f ≫ (fun x x_1 => x ∘ x_1) (↑Equiv.ulift.symm) g₁ = f ≫ (fun x x_1 => x ∘ x_1) (↑Equiv.ulift.symm) g₂", "tactic": "change ULift.up ∘ g₁ ∘ f = ULift.up ∘ g₂ ∘ f" }, { "state_after": "no goals", "state_before": "case mp.mk.a\nX Y : Type u\nf : X ⟶ Y\nH : ∀ {Z : Type u} (g h : Y ⟶ Z), f ≫ g = f ≫ h → g = h\ng₁ g₂ : Y → Prop\nhg : g₁ ∘ f = g₂ ∘ f\n⊢ ULift.up ∘ g₁ ∘ f = ULift.up ∘ g₂ ∘ f", "tactic": "rw [hg]" }, { "state_after": "no goals", "state_before": "case mpr\nX Y : Type u\nf : X ⟶ Y\n⊢ Function.Surjective f → Epi f", "tactic": "exact fun H => ⟨fun g g' h => H.injective_comp_right h⟩" } ]
[ 268, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.map_subtype_coe_factors'
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na : α\n⊢ map Subtype.val (factors' a) = map Associates.mk (factors a)", "tactic": "simp [factors', Multiset.map_pmap, Multiset.pmap_eq_map]" } ]
[ 1405, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1403, 1 ]
Mathlib/Topology/Order/Basic.lean
Monotone.map_iSup_of_continuousAt'
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ninst✝⁷ : CompleteLinearOrder α\ninst✝⁶ : TopologicalSpace α\ninst✝⁵ : OrderTopology α\ninst✝⁴ : CompleteLinearOrder β\ninst✝³ : TopologicalSpace β\ninst✝² : OrderClosedTopology β\ninst✝¹ : Nonempty γ\nι : Sort u_1\ninst✝ : Nonempty ι\nf : α → β\ng : ι → α\nCf : ContinuousAt f (iSup g)\nMf : Monotone f\n⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i))", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝⁷ : CompleteLinearOrder α\ninst✝⁶ : TopologicalSpace α\ninst✝⁵ : OrderTopology α\ninst✝⁴ : CompleteLinearOrder β\ninst✝³ : TopologicalSpace β\ninst✝² : OrderClosedTopology β\ninst✝¹ : Nonempty γ\nι : Sort u_1\ninst✝ : Nonempty ι\nf : α → β\ng : ι → α\nCf : ContinuousAt f (iSup g)\nMf : Monotone f\n⊢ f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)", "tactic": "rw [iSup, Mf.map_sSup_of_continuousAt' Cf (range_nonempty g), ← range_comp, iSup]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝⁷ : CompleteLinearOrder α\ninst✝⁶ : TopologicalSpace α\ninst✝⁵ : OrderTopology α\ninst✝⁴ : CompleteLinearOrder β\ninst✝³ : TopologicalSpace β\ninst✝² : OrderClosedTopology β\ninst✝¹ : Nonempty γ\nι : Sort u_1\ninst✝ : Nonempty ι\nf : α → β\ng : ι → α\nCf : ContinuousAt f (iSup g)\nMf : Monotone f\n⊢ sSup (range (f ∘ g)) = sSup (range fun i => f (g i))", "tactic": "rfl" } ]
[ 2666, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2664, 1 ]
Mathlib/Order/Cover.lean
Prod.mk_wcovby_mk_iff_right
[]
[ 525, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 524, 1 ]
Mathlib/LinearAlgebra/LinearPMap.lean
LinearPMap.map_zero
[]
[ 81, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/Topology/UniformSpace/Basic.lean
uniformity_subtype
[]
[ 1476, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1474, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.preimage_mul_left_one
[ { "state_after": "no goals", "state_before": "F : Type ?u.676324\nα : Type u_1\nβ : Type ?u.676330\nγ : Type ?u.676333\ninst✝ : Group α\ns t : Finset α\na b : α\n⊢ preimage 1 ((fun x x_1 => x * x_1) a) (_ : Set.InjOn ((fun x x_1 => x * x_1) a) ((fun x x_1 => x * x_1) a ⁻¹' ↑1)) =\n {a⁻¹}", "tactic": "classical rw [← image_mul_left', image_one, mul_one]" }, { "state_after": "no goals", "state_before": "F : Type ?u.676324\nα : Type u_1\nβ : Type ?u.676330\nγ : Type ?u.676333\ninst✝ : Group α\ns t : Finset α\na b : α\n⊢ preimage 1 ((fun x x_1 => x * x_1) a) (_ : Set.InjOn ((fun x x_1 => x * x_1) a) ((fun x x_1 => x * x_1) a ⁻¹' ↑1)) =\n {a⁻¹}", "tactic": "rw [← image_mul_left', image_one, mul_one]" } ]
[ 1227, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1226, 1 ]
Mathlib/FieldTheory/Subfield.lean
SubfieldClass.coe_rat_cast
[]
[ 103, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/CategoryTheory/Limits/Constructions/Over/Connected.lean
CategoryTheory.Over.CreatesConnected.raised_cone_lowers_to_original
[ { "state_after": "no goals", "state_before": "J : Type v\ninst✝² : SmallCategory J\nC : Type u\ninst✝¹ : Category C\nX : C\ninst✝ : IsConnected J\nB : C\nF : J ⥤ Over B\nc : Cone (F ⋙ forget B)\n⊢ (forget B).mapCone (raiseCone c) = c", "tactic": "aesop_cat" } ]
[ 67, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/LinearAlgebra/Multilinear/Basic.lean
MultilinearMap.coe_currySumEquiv
[]
[ 1514, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1513, 1 ]
Mathlib/Algebra/Order/Monoid/Lemmas.lean
mulLECancellable_one
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.83868\ninst✝¹ : Monoid α\ninst✝ : LE α\na b : α\n⊢ 1 * a ≤ 1 * b → a ≤ b", "tactic": "simpa only [one_mul] using id" } ]
[ 1595, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1594, 1 ]
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
QuadraticForm.associated_isSymm
[ { "state_after": "no goals", "state_before": "S : Type u_3\nR : Type u_1\nR₁ : Type ?u.403144\nM : Type u_2\ninst✝⁷ : Ring R\ninst✝⁶ : CommRing R₁\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : Module R M\ninst✝³ : Module R₁ M\ninst✝² : CommSemiring S\ninst✝¹ : Algebra S R\ninst✝ : Invertible 2\nB₁ : BilinForm R M\nQ : QuadraticForm R M\nx y : M\n⊢ bilin (↑(associatedHom S) Q) x y = bilin (↑(associatedHom S) Q) y x", "tactic": "simp only [associated_apply, add_comm, add_left_comm, sub_eq_add_neg, add_assoc]" } ]
[ 786, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 785, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
Real.differentiable_cosh
[]
[ 667, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 667, 1 ]
Mathlib/GroupTheory/Coset.lean
QuotientGroup.leftRel_apply
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∃ a, y * ↑a = x) ↔ ∃ a, x⁻¹ * y = ↑a⁻¹", "tactic": "simp only [inv_mul_eq_iff_eq_mul, Subgroup.coe_inv, eq_mul_inv_iff_mul_eq]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : Group α\ns : Subgroup α\nx y : α\n⊢ (∃ a, x⁻¹ * y = ↑a⁻¹) ↔ x⁻¹ * y ∈ s", "tactic": "simp [exists_inv_mem_iff_exists_mem]" } ]
[ 330, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 324, 1 ]
Mathlib/Algebra/FreeAlgebra.lean
FreeAlgebra.algebraMap_inj
[]
[ 423, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 421, 1 ]
Mathlib/Data/MvPolynomial/Variables.lean
MvPolynomial.eval₂Hom_congr'
[ { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\n⊢ ↑(eval₂Hom f₁ g₁) p₁ = ↑(eval₂Hom f₁ g₂) p₁", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ f₂ : R →+* S\ng₁ g₂ : σ → S\np₁ p₂ : MvPolynomial σ R\n⊢ f₁ = f₂ → (∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₂ → g₁ i = g₂ i) → p₁ = p₂ → ↑(eval₂Hom f₁ g₁) p₁ = ↑(eval₂Hom f₂ g₂) p₂", "tactic": "rintro rfl h rfl" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\n⊢ ↑(eval₂Hom f₁ g₁) (∑ v in support p₁, ↑(monomial v) (coeff v p₁)) =\n ↑(eval₂Hom f₁ g₂) (∑ v in support p₁, ↑(monomial v) (coeff v p₁))", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\n⊢ ↑(eval₂Hom f₁ g₁) p₁ = ↑(eval₂Hom f₁ g₂) p₁", "tactic": "rw [p₁.as_sum]" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\n⊢ (∑ x in support p₁, ↑f₁ (coeff x p₁) * Finsupp.prod x fun i k => g₁ i ^ k) =\n ∑ x in support p₁, ↑f₁ (coeff x p₁) * Finsupp.prod x fun i k => g₂ i ^ k", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\n⊢ ↑(eval₂Hom f₁ g₁) (∑ v in support p₁, ↑(monomial v) (coeff v p₁)) =\n ↑(eval₂Hom f₁ g₂) (∑ v in support p₁, ↑(monomial v) (coeff v p₁))", "tactic": "simp only [map_sum, eval₂Hom_monomial]" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\n⊢ ∀ (x : σ →₀ ℕ),\n x ∈ support p₁ →\n (↑f₁ (coeff x p₁) * Finsupp.prod x fun i k => g₁ i ^ k) = ↑f₁ (coeff x p₁) * Finsupp.prod x fun i k => g₂ i ^ k", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\n⊢ (∑ x in support p₁, ↑f₁ (coeff x p₁) * Finsupp.prod x fun i k => g₁ i ^ k) =\n ∑ x in support p₁, ↑f₁ (coeff x p₁) * Finsupp.prod x fun i k => g₂ i ^ k", "tactic": "apply Finset.sum_congr rfl" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\n⊢ (↑f₁ (coeff d p₁) * Finsupp.prod d fun i k => g₁ i ^ k) = ↑f₁ (coeff d p₁) * Finsupp.prod d fun i k => g₂ i ^ k", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\n⊢ ∀ (x : σ →₀ ℕ),\n x ∈ support p₁ →\n (↑f₁ (coeff x p₁) * Finsupp.prod x fun i k => g₁ i ^ k) = ↑f₁ (coeff x p₁) * Finsupp.prod x fun i k => g₂ i ^ k", "tactic": "intro d hd" }, { "state_after": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\n⊢ (Finsupp.prod d fun i k => g₁ i ^ k) = Finsupp.prod d fun i k => g₂ i ^ k", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\n⊢ (↑f₁ (coeff d p₁) * Finsupp.prod d fun i k => g₁ i ^ k) = ↑f₁ (coeff d p₁) * Finsupp.prod d fun i k => g₂ i ^ k", "tactic": "congr 1" }, { "state_after": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\n⊢ ∏ x in d.support, g₁ x ^ ↑d x = ∏ x in d.support, g₂ x ^ ↑d x", "state_before": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\n⊢ (Finsupp.prod d fun i k => g₁ i ^ k) = Finsupp.prod d fun i k => g₂ i ^ k", "tactic": "simp only [Finsupp.prod]" }, { "state_after": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\n⊢ ∀ (x : σ), x ∈ d.support → g₁ x ^ ↑d x = g₂ x ^ ↑d x", "state_before": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\n⊢ ∏ x in d.support, g₁ x ^ ↑d x = ∏ x in d.support, g₂ x ^ ↑d x", "tactic": "apply Finset.prod_congr rfl" }, { "state_after": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\ni : σ\nhi : i ∈ d.support\n⊢ g₁ i ^ ↑d i = g₂ i ^ ↑d i", "state_before": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\n⊢ ∀ (x : σ), x ∈ d.support → g₁ x ^ ↑d x = g₂ x ^ ↑d x", "tactic": "intro i hi" }, { "state_after": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\ni : σ\nhi : i ∈ d.support\nthis : i ∈ vars p₁\n⊢ g₁ i ^ ↑d i = g₂ i ^ ↑d i", "state_before": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\ni : σ\nhi : i ∈ d.support\n⊢ g₁ i ^ ↑d i = g₂ i ^ ↑d i", "tactic": "have : i ∈ p₁.vars := by\n rw [mem_vars]\n exact ⟨d, hd, hi⟩" }, { "state_after": "no goals", "state_before": "case e_a\nR : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\ni : σ\nhi : i ∈ d.support\nthis : i ∈ vars p₁\n⊢ g₁ i ^ ↑d i = g₂ i ^ ↑d i", "tactic": "rw [h i this this]" }, { "state_after": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\ni : σ\nhi : i ∈ d.support\n⊢ ∃ d x, i ∈ d.support", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\ni : σ\nhi : i ∈ d.support\n⊢ i ∈ vars p₁", "tactic": "rw [mem_vars]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nσ : Type u_1\nτ : Type ?u.629877\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\ninst✝ : CommSemiring S\nf₁ : R →+* S\ng₁ g₂ : σ → S\np₁ : MvPolynomial σ R\nh : ∀ (i : σ), i ∈ vars p₁ → i ∈ vars p₁ → g₁ i = g₂ i\nd : σ →₀ ℕ\nhd : d ∈ support p₁\ni : σ\nhi : i ∈ d.support\n⊢ ∃ d x, i ∈ d.support", "tactic": "exact ⟨d, hd, hi⟩" } ]
[ 857, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 841, 1 ]
Mathlib/Topology/VectorBundle/Basic.lean
Trivialization.mk_coordChangeL
[ { "state_after": "case h₁\nR : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ (b, ↑(coordChangeL R e e' b) y).fst = (↑e' (totalSpaceMk b (Trivialization.symm e b y))).fst\n\ncase h₂\nR : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ (b, ↑(coordChangeL R e e' b) y).snd = (↑e' (totalSpaceMk b (Trivialization.symm e b y))).snd", "state_before": "R : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ (b, ↑(coordChangeL R e e' b) y) = ↑e' (totalSpaceMk b (Trivialization.symm e b y))", "tactic": "ext" }, { "state_after": "case h₁\nR : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ TotalSpace.proj (↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, y)) ∈ e'.baseSet", "state_before": "case h₁\nR : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ (b, ↑(coordChangeL R e e' b) y).fst = (↑e' (totalSpaceMk b (Trivialization.symm e b y))).fst", "tactic": "rw [e.mk_symm hb.1 y, e'.coe_fst', e.proj_symm_apply' hb.1]" }, { "state_after": "case h₁\nR : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ b ∈ e'.baseSet", "state_before": "case h₁\nR : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ TotalSpace.proj (↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, y)) ∈ e'.baseSet", "tactic": "rw [e.proj_symm_apply' hb.1]" }, { "state_after": "no goals", "state_before": "case h₁\nR : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ b ∈ e'.baseSet", "tactic": "exact hb.2" }, { "state_after": "no goals", "state_before": "case h₂\nR : Type u_4\nB : Type u_1\nF : Type u_2\nE : B → Type u_3\ninst✝⁹ : Semiring R\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : TopologicalSpace B\ninst✝⁶ : TopologicalSpace (TotalSpace E)\ne✝ : Trivialization F TotalSpace.proj\nx : TotalSpace E\nb✝ : B\ny✝ : E b✝\ninst✝⁵ : AddCommMonoid F\ninst✝⁴ : Module R F\ninst✝³ : (x : B) → AddCommMonoid (E x)\ninst✝² : (x : B) → Module R (E x)\ne e' : Trivialization F TotalSpace.proj\ninst✝¹ : Trivialization.IsLinear R e\ninst✝ : Trivialization.IsLinear R e'\nb : B\nhb : b ∈ e.baseSet ∩ e'.baseSet\ny : F\n⊢ (b, ↑(coordChangeL R e e' b) y).snd = (↑e' (totalSpaceMk b (Trivialization.symm e b y))).snd", "tactic": "exact e.coordChangeL_apply e' hb y" } ]
[ 342, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 335, 1 ]
Mathlib/Topology/Order/LowerTopology.lean
WithLowerTopology.of_withLowerTopology_symm_eq
[]
[ 82, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/RingTheory/Localization/Integral.lean
IsLocalization.integerNormalization_spec
[ { "state_after": "R : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\n⊢ ∀ (i : ℕ),\n ↑(algebraMap R S) (coeff (integerNormalization M p) i) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "state_before": "R : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\n⊢ ∃ b, ∀ (i : ℕ), ↑(algebraMap R S) (coeff (integerNormalization M p) i) = ↑b • coeff p i", "tactic": "use Classical.choose (exist_integer_multiples_of_finset M (p.support.image p.coeff))" }, { "state_after": "R : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\n⊢ ↑(algebraMap R S) (coeff (integerNormalization M p) i) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "state_before": "R : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\n⊢ ∀ (i : ℕ),\n ↑(algebraMap R S) (coeff (integerNormalization M p) i) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "tactic": "intro i" }, { "state_after": "R : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\n⊢ ↑(algebraMap R S)\n (if hi : i ∈ support p then\n choose\n (_ :\n IsInteger R\n (↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) •\n coeff p i))\n else 0) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "state_before": "R : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\n⊢ ↑(algebraMap R S) (coeff (integerNormalization M p) i) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "tactic": "rw [integerNormalization_coeff, coeffIntegerNormalization]" }, { "state_after": "case inl\nR : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\nhi : i ∈ support p\n⊢ ↑(algebraMap R S)\n (if hi : i ∈ support p then\n choose\n (_ :\n IsInteger R\n (↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) •\n coeff p i))\n else 0) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i\n\ncase inr\nR : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\nhi : ¬i ∈ support p\n⊢ ↑(algebraMap R S)\n (if hi : i ∈ support p then\n choose\n (_ :\n IsInteger R\n (↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) •\n coeff p i))\n else 0) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "state_before": "R : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\n⊢ ↑(algebraMap R S)\n (if hi : i ∈ support p then\n choose\n (_ :\n IsInteger R\n (↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) •\n coeff p i))\n else 0) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "tactic": "split_ifs with hi" }, { "state_after": "case inl\nR : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\nhi : i ∈ support p\n⊢ ↑(algebraMap R S)\n (choose\n (_ :\n IsInteger R\n (↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) •\n coeff p i))) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "state_before": "case inl\nR : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\nhi : i ∈ support p\n⊢ ↑(algebraMap R S)\n (if hi : i ∈ support p then\n choose\n (_ :\n IsInteger R\n (↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) •\n coeff p i))\n else 0) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "tactic": "rw [dif_pos hi]" }, { "state_after": "no goals", "state_before": "case inl\nR : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\nhi : i ∈ support p\n⊢ ↑(algebraMap R S)\n (choose\n (_ :\n IsInteger R\n (↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) •\n coeff p i))) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "tactic": "exact\n Classical.choose_spec\n (Classical.choose_spec (exist_integer_multiples_of_finset M (p.support.image p.coeff))\n (p.coeff i) (Finset.mem_image.mpr ⟨i, hi, rfl⟩))" }, { "state_after": "case inr\nR : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\nhi : ¬i ∈ support p\n⊢ ↑(algebraMap R S) 0 =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "state_before": "case inr\nR : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\nhi : ¬i ∈ support p\n⊢ ↑(algebraMap R S)\n (if hi : i ∈ support p then\n choose\n (_ :\n IsInteger R\n (↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) •\n coeff p i))\n else 0) =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "tactic": "rw [dif_neg hi]" }, { "state_after": "no goals", "state_before": "case inr\nR : Type u_2\ninst✝⁴ : CommRing R\nM : Submonoid R\nS : Type u_1\ninst✝³ : CommRing S\ninst✝² : Algebra R S\nP : Type ?u.15519\ninst✝¹ : CommRing P\ninst✝ : IsLocalization M S\np : S[X]\ni : ℕ\nhi : ¬i ∈ support p\n⊢ ↑(algebraMap R S) 0 =\n ↑(choose (_ : ∃ b, ∀ (a : S), a ∈ Finset.image (coeff p) (support p) → IsInteger R (↑b • a))) • coeff p i", "tactic": "rw [RingHom.map_zero, not_mem_support_iff.mp hi, smul_zero]" } ]
[ 96, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/ArctanDeriv.lean
Real.hasStrictDerivAt_tan
[ { "state_after": "no goals", "state_before": "x : ℝ\nh : cos x ≠ 0\n⊢ HasStrictDerivAt tan (↑1 / cos x ^ 2) x", "tactic": "exact_mod_cast (Complex.hasStrictDerivAt_tan (by exact_mod_cast h)).real_of_complex" }, { "state_after": "no goals", "state_before": "x : ℝ\nh : cos x ≠ 0\n⊢ Complex.cos ↑x ≠ 0", "tactic": "exact_mod_cast h" } ]
[ 32, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 31, 1 ]
Mathlib/Data/Set/Basic.lean
Set.mem_inter_iff
[]
[ 895, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 894, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.top_mul_of_neg
[ { "state_after": "x : EReal\nh : x < 0\n⊢ x * ⊤ = ⊥", "state_before": "x : EReal\nh : x < 0\n⊢ ⊤ * x = ⊥", "tactic": "rw [EReal.mul_comm]" }, { "state_after": "no goals", "state_before": "x : EReal\nh : x < 0\n⊢ x * ⊤ = ⊥", "tactic": "exact mul_top_of_neg h" } ]
[ 941, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 939, 1 ]
Mathlib/Analysis/Convex/Strict.lean
StrictConvex.add_left
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\n𝕝 : Type ?u.85155\nE : Type u_2\nF : Type ?u.85161\nβ : Type ?u.85164\ninst✝⁷ : OrderedSemiring 𝕜\ninst✝⁶ : TopologicalSpace E\ninst✝⁵ : TopologicalSpace F\ninst✝⁴ : AddCommGroup E\ninst✝³ : AddCommGroup F\ninst✝² : Module 𝕜 E\ninst✝¹ : Module 𝕜 F\ninst✝ : ContinuousAdd E\ns t : Set E\nhs : StrictConvex 𝕜 s\nz : E\n⊢ StrictConvex 𝕜 ((fun x => z + x) '' s)", "tactic": "simpa only [singleton_add] using (strictConvex_singleton z).add hs" } ]
[ 264, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.nonempty_Ico_subtype
[]
[ 314, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 313, 1 ]
Mathlib/Data/PNat/Defs.lean
PNat.succPNat_natPred
[]
[ 97, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/SetTheory/Ordinal/Basic.lean
Ordinal.bot_eq_zero
[]
[ 396, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 395, 1 ]
Mathlib/Order/Filter/Bases.lean
Filter.HasBasis.sup
[]
[ 597, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 594, 1 ]
Mathlib/Data/Complex/Exponential.lean
Real.exp_sub_sinh
[]
[ 1417, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1416, 1 ]
Mathlib/Algebra/Module/Submodule/Basic.lean
Submodule.injective_subtype
[]
[ 381, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 380, 1 ]
Mathlib/MeasureTheory/Integral/Bochner.lean
MeasureTheory.integral_add_measure
[ { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\n⊢ (∫ (x : α), f x ∂μ + ν) = (∫ (x : α), f x ∂μ) + ∫ (x : α), f x ∂ν", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\n⊢ (∫ (x : α), f x ∂μ + ν) = (∫ (x : α), f x ∂μ) + ∫ (x : α), f x ∂ν", "tactic": "have hfi := hμ.add_measure hν" }, { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\n⊢ (setToFun (μ + ν) (weightedSMul (μ + ν)) (_ : DominatedFinMeasAdditive (μ + ν) (weightedSMul (μ + ν)) 1) fun a =>\n f a) =\n (setToFun μ (weightedSMul μ) (_ : DominatedFinMeasAdditive μ (weightedSMul μ) 1) fun a => f a) +\n setToFun ν (weightedSMul ν) (_ : DominatedFinMeasAdditive ν (weightedSMul ν) 1) fun a => f a", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\n⊢ (∫ (x : α), f x ∂μ + ν) = (∫ (x : α), f x ∂μ) + ∫ (x : α), f x ∂ν", "tactic": "simp_rw [integral_eq_setToFun]" }, { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\n⊢ (setToFun (μ + ν) (weightedSMul (μ + ν)) (_ : DominatedFinMeasAdditive (μ + ν) (weightedSMul (μ + ν)) 1) fun a =>\n f a) =\n (setToFun μ (weightedSMul μ) (_ : DominatedFinMeasAdditive μ (weightedSMul μ) 1) fun a => f a) +\n setToFun ν (weightedSMul ν) (_ : DominatedFinMeasAdditive ν (weightedSMul ν) 1) fun a => f a", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\n⊢ (setToFun (μ + ν) (weightedSMul (μ + ν)) (_ : DominatedFinMeasAdditive (μ + ν) (weightedSMul (μ + ν)) 1) fun a =>\n f a) =\n (setToFun μ (weightedSMul μ) (_ : DominatedFinMeasAdditive μ (weightedSMul μ) 1) fun a => f a) +\n setToFun ν (weightedSMul ν) (_ : DominatedFinMeasAdditive ν (weightedSMul ν) 1) fun a => f a", "tactic": "have hμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ : Set α → E →L[ℝ] E) 1 :=\n DominatedFinMeasAdditive.add_measure_right μ ν (dominatedFinMeasAdditive_weightedSMul μ)\n zero_le_one" }, { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\nhν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν) 1\n⊢ (setToFun (μ + ν) (weightedSMul (μ + ν)) (_ : DominatedFinMeasAdditive (μ + ν) (weightedSMul (μ + ν)) 1) fun a =>\n f a) =\n (setToFun μ (weightedSMul μ) (_ : DominatedFinMeasAdditive μ (weightedSMul μ) 1) fun a => f a) +\n setToFun ν (weightedSMul ν) (_ : DominatedFinMeasAdditive ν (weightedSMul ν) 1) fun a => f a", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\n⊢ (setToFun (μ + ν) (weightedSMul (μ + ν)) (_ : DominatedFinMeasAdditive (μ + ν) (weightedSMul (μ + ν)) 1) fun a =>\n f a) =\n (setToFun μ (weightedSMul μ) (_ : DominatedFinMeasAdditive μ (weightedSMul μ) 1) fun a => f a) +\n setToFun ν (weightedSMul ν) (_ : DominatedFinMeasAdditive ν (weightedSMul ν) 1) fun a => f a", "tactic": "have hν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν : Set α → E →L[ℝ] E) 1 :=\n DominatedFinMeasAdditive.add_measure_left μ ν (dominatedFinMeasAdditive_weightedSMul ν)\n zero_le_one" }, { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\nhν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν) 1\n⊢ (setToFun (μ + ν) (weightedSMul (μ + ν)) (_ : DominatedFinMeasAdditive (μ + ν) (weightedSMul (μ + ν)) 1) fun a =>\n f a) =\n setToFun (μ + ν) (weightedSMul μ) hμ_dfma f + setToFun (μ + ν) (weightedSMul ν) hν_dfma f", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\nhν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν) 1\n⊢ (setToFun (μ + ν) (weightedSMul (μ + ν)) (_ : DominatedFinMeasAdditive (μ + ν) (weightedSMul (μ + ν)) 1) fun a =>\n f a) =\n (setToFun μ (weightedSMul μ) (_ : DominatedFinMeasAdditive μ (weightedSMul μ) 1) fun a => f a) +\n setToFun ν (weightedSMul ν) (_ : DominatedFinMeasAdditive ν (weightedSMul ν) 1) fun a => f a", "tactic": "rw [← setToFun_congr_measure_of_add_right hμ_dfma (dominatedFinMeasAdditive_weightedSMul μ) f hfi,\n ← setToFun_congr_measure_of_add_left hν_dfma (dominatedFinMeasAdditive_weightedSMul ν) f hfi]" }, { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\nhν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν) 1\ns : Set α\nx✝ : MeasurableSet s\nhμνs : ↑↑(μ + ν) s < ⊤\n⊢ weightedSMul (μ + ν) s = weightedSMul μ s + weightedSMul ν s", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\nhν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν) 1\n⊢ (setToFun (μ + ν) (weightedSMul (μ + ν)) (_ : DominatedFinMeasAdditive (μ + ν) (weightedSMul (μ + ν)) 1) fun a =>\n f a) =\n setToFun (μ + ν) (weightedSMul μ) hμ_dfma f + setToFun (μ + ν) (weightedSMul ν) hν_dfma f", "tactic": "refine' setToFun_add_left' _ _ _ (fun s _ hμνs => _) f" }, { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\nhν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν) 1\ns : Set α\nx✝ : MeasurableSet s\nhμνs : ↑↑μ s < ⊤ ∧ ↑↑ν s < ⊤\n⊢ weightedSMul (μ + ν) s = weightedSMul μ s + weightedSMul ν s", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\nhν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν) 1\ns : Set α\nx✝ : MeasurableSet s\nhμνs : ↑↑(μ + ν) s < ⊤\n⊢ weightedSMul (μ + ν) s = weightedSMul μ s + weightedSMul ν s", "tactic": "rw [Measure.coe_add, Pi.add_apply, add_lt_top] at hμνs" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1290399\n𝕜 : Type ?u.1290402\ninst✝¹⁰ : NormedAddCommGroup E\ninst✝⁹ : NormedSpace ℝ E\ninst✝⁸ : CompleteSpace E\ninst✝⁷ : NontriviallyNormedField 𝕜\ninst✝⁶ : NormedSpace 𝕜 E\ninst✝⁵ : SMulCommClass ℝ 𝕜 E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\ninst✝² : CompleteSpace F\nf✝ g : α → E\nm : MeasurableSpace α\nμ : Measure α\nX : Type ?u.1293093\ninst✝¹ : TopologicalSpace X\ninst✝ : FirstCountableTopology X\nν : Measure α\nf : α → E\nhμ : Integrable f\nhν : Integrable f\nhfi : Integrable f\nhμ_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul μ) 1\nhν_dfma : DominatedFinMeasAdditive (μ + ν) (weightedSMul ν) 1\ns : Set α\nx✝ : MeasurableSet s\nhμνs : ↑↑μ s < ⊤ ∧ ↑↑ν s < ⊤\n⊢ weightedSMul (μ + ν) s = weightedSMul μ s + weightedSMul ν s", "tactic": "rw [weightedSMul, weightedSMul, weightedSMul, ← add_smul, Measure.coe_add, Pi.add_apply,\n toReal_add hμνs.1.ne hμνs.2.ne]" } ]
[ 1418, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1403, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.NormNoninc.neg_iff
[ { "state_after": "no goals", "state_before": "V : Type ?u.497709\nW : Type ?u.497712\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.497721\ninst✝⁴ : SeminormedAddCommGroup V\ninst✝³ : SeminormedAddCommGroup W\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ : NormedAddGroupHom V W\nf : NormedAddGroupHom V₁ V₂\nh : NormNoninc (-f)\nx : V₁\n⊢ ‖↑f x‖ ≤ ‖x‖", "tactic": "simpa using h x" } ]
[ 847, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 846, 1 ]
Mathlib/Data/List/Basic.lean
List.reduceOption_length_lt_iff
[ { "state_after": "ι : Type ?u.354270\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nl : List (Option α)\n⊢ (¬∀ (x : Option α), x ∈ l → Option.isSome x = true) ↔ none ∈ l", "state_before": "ι : Type ?u.354270\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nl : List (Option α)\n⊢ length (reduceOption l) < length l ↔ none ∈ l", "tactic": "rw [(reduceOption_length_le l).lt_iff_ne, Ne, reduceOption_length_eq_iff]" }, { "state_after": "case cons\nι : Type ?u.354270\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nhead✝ : Option α\ntail✝ : List (Option α)\ntail_ih✝ : (¬∀ (x : Option α), x ∈ tail✝ → Option.isSome x = true) ↔ none ∈ tail✝\n⊢ (Option.isSome head✝ = true → ∃ x, x ∈ tail✝ ∧ Option.isNone x = true) ↔ none = head✝ ∨ none ∈ tail✝", "state_before": "ι : Type ?u.354270\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nl : List (Option α)\n⊢ (¬∀ (x : Option α), x ∈ l → Option.isSome x = true) ↔ none ∈ l", "tactic": "induction l <;> simp [*]" }, { "state_after": "case cons\nι : Type ?u.354270\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nhead✝ : Option α\ntail✝ : List (Option α)\ntail_ih✝ : (¬∀ (x : Option α), x ∈ tail✝ → Option.isSome x = true) ↔ none ∈ tail✝\n⊢ (¬Option.isSome head✝ = true ∨ ∃ x, x ∈ tail✝ ∧ Option.isNone x = true) ↔ ¬Option.isSome head✝ = true ∨ none ∈ tail✝", "state_before": "case cons\nι : Type ?u.354270\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nhead✝ : Option α\ntail✝ : List (Option α)\ntail_ih✝ : (¬∀ (x : Option α), x ∈ tail✝ → Option.isSome x = true) ↔ none ∈ tail✝\n⊢ (Option.isSome head✝ = true → ∃ x, x ∈ tail✝ ∧ Option.isNone x = true) ↔ none = head✝ ∨ none ∈ tail✝", "tactic": "rw [@eq_comm _ none, ← Option.not_isSome_iff_eq_none, Decidable.imp_iff_not_or]" }, { "state_after": "no goals", "state_before": "case cons\nι : Type ?u.354270\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\nhead✝ : Option α\ntail✝ : List (Option α)\ntail_ih✝ : (¬∀ (x : Option α), x ∈ tail✝ → Option.isSome x = true) ↔ none ∈ tail✝\n⊢ (¬Option.isSome head✝ = true ∨ ∃ x, x ∈ tail✝ ∧ Option.isNone x = true) ↔ ¬Option.isSome head✝ = true ∨ none ∈ tail✝", "tactic": "simp [Option.isNone_iff_eq_none]" } ]
[ 3477, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3472, 1 ]
Mathlib/RingTheory/PowerBasis.lean
PowerBasis.equivOfMinpoly_map
[]
[ 496, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 494, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.smul_coeff
[]
[ 503, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 502, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.imLm_coe
[]
[ 910, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 909, 1 ]
Mathlib/CategoryTheory/Subobject/FactorThru.lean
CategoryTheory.Subobject.factors_of_le
[ { "state_after": "C : Type u₁\ninst✝¹ : Category C\nX Y✝ Z✝ : C\nD : Type u₂\ninst✝ : Category D\nY Z : C\nP Q : Subobject Y\nf : Z ⟶ Y\nh : P ≤ Q\n⊢ MonoOver.Factors (representative.obj P) f → MonoOver.Factors (representative.obj Q) f", "state_before": "C : Type u₁\ninst✝¹ : Category C\nX Y✝ Z✝ : C\nD : Type u₂\ninst✝ : Category D\nY Z : C\nP Q : Subobject Y\nf : Z ⟶ Y\nh : P ≤ Q\n⊢ Factors P f → Factors Q f", "tactic": "simp only [factors_iff]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nX Y✝ Z✝ : C\nD : Type u₂\ninst✝ : Category D\nY Z : C\nP Q : Subobject Y\nf : Z ⟶ Y\nh : P ≤ Q\n⊢ MonoOver.Factors (representative.obj P) f → MonoOver.Factors (representative.obj Q) f", "tactic": "exact fun ⟨u, hu⟩ => ⟨u ≫ ofLE _ _ h, by simp [← hu]⟩" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nX Y✝ Z✝ : C\nD : Type u₂\ninst✝ : Category D\nY Z : C\nP Q : Subobject Y\nf : Z ⟶ Y\nh : P ≤ Q\nx✝ : MonoOver.Factors (representative.obj P) f\nu : Z ⟶ (representative.obj P).obj.left\nhu : u ≫ MonoOver.arrow (representative.obj P) = f\n⊢ (u ≫ ofLE P Q h) ≫ MonoOver.arrow (representative.obj Q) = f", "tactic": "simp [← hu]" } ]
[ 114, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/LinearAlgebra/FiniteDimensional.lean
Module.finrank_le_one_iff_top_isPrincipal
[ { "state_after": "no goals", "state_before": "K : Type u\nV : Type v\ninst✝³ : DivisionRing K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : FiniteDimensional K V\n⊢ finrank K V ≤ 1 ↔ IsPrincipal ⊤", "tactic": "rw [← Module.rank_le_one_iff_top_isPrincipal, ← finrank_eq_rank, ← Cardinal.natCast_le,\n Nat.cast_one]" } ]
[ 1316, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1313, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.withDensity_tsum
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\ns : Set α\nhs : MeasurableSet s\n⊢ ↑↑(withDensity μ (∑' (n : ℕ), f n)) s = ↑↑(sum fun n => withDensity μ (f n)) s", "state_before": "α : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\n⊢ withDensity μ (∑' (n : ℕ), f n) = sum fun n => withDensity μ (f n)", "tactic": "ext1 s hs" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\ns : Set α\nhs : MeasurableSet s\n⊢ (∫⁻ (a : α) in s, tsum (fun n => f n) a ∂μ) = ∑' (i : ℕ), ∫⁻ (a : α) in s, f i a ∂μ", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\ns : Set α\nhs : MeasurableSet s\n⊢ ↑↑(withDensity μ (∑' (n : ℕ), f n)) s = ↑↑(sum fun n => withDensity μ (f n)) s", "tactic": "simp_rw [sum_apply _ hs, withDensity_apply _ hs]" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\ns : Set α\nhs : MeasurableSet s\n⊢ (∫⁻ (x : α) in s, tsum (fun n => f n) x ∂μ) = ∑' (i : ℕ), ∫⁻ (x : α) in s, f i x ∂μ", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\ns : Set α\nhs : MeasurableSet s\n⊢ (∫⁻ (a : α) in s, tsum (fun n => f n) a ∂μ) = ∑' (i : ℕ), ∫⁻ (a : α) in s, f i a ∂μ", "tactic": "change (∫⁻ x in s, (∑' n, f n) x ∂μ) = ∑' i : ℕ, ∫⁻ x, f i x ∂μ.restrict s" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\ns : Set α\nhs : MeasurableSet s\n⊢ (∫⁻ (x : α) in s, tsum (fun n => f n) x ∂μ) = ∫⁻ (a : α) in s, ∑' (i : ℕ), f i a ∂μ", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\ns : Set α\nhs : MeasurableSet s\n⊢ (∫⁻ (x : α) in s, tsum (fun n => f n) x ∂μ) = ∑' (i : ℕ), ∫⁻ (x : α) in s, f i x ∂μ", "tactic": "rw [← lintegral_tsum fun i => (h i).aemeasurable]" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1767013\nγ : Type ?u.1767016\nδ : Type ?u.1767019\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\nh : ∀ (i : ℕ), Measurable (f i)\ns : Set α\nhs : MeasurableSet s\n⊢ (∫⁻ (x : α) in s, tsum (fun n => f n) x ∂μ) = ∫⁻ (a : α) in s, ∑' (i : ℕ), f i a ∂μ", "tactic": "refine' lintegral_congr fun x => tsum_apply (Pi.summable.2 fun _ => ENNReal.summable)" } ]
[ 1633, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1627, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.toNat_congr
[ { "state_after": "no goals", "state_before": "α β✝ : Type u\nβ : Type v\ne : α ≃ β\n⊢ ↑toNat (#α) = ↑toNat (#β)", "tactic": "rw [← toNat_lift, (lift_mk_eq.{_,_,v}).mpr ⟨e⟩, toNat_lift]" } ]
[ 1788, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1786, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
Real.abs_rpow_le_exp_log_mul
[ { "state_after": "x y : ℝ\n⊢ abs x ^ y ≤ exp (log x * y)", "state_before": "x y : ℝ\n⊢ abs (x ^ y) ≤ exp (log x * y)", "tactic": "refine' (abs_rpow_le_abs_rpow x y).trans _" }, { "state_after": "case pos\nx y : ℝ\nhx : x = 0\n⊢ abs x ^ y ≤ exp (log x * y)\n\ncase neg\nx y : ℝ\nhx : ¬x = 0\n⊢ abs x ^ y ≤ exp (log x * y)", "state_before": "x y : ℝ\n⊢ abs x ^ y ≤ exp (log x * y)", "tactic": "by_cases hx : x = 0" }, { "state_after": "no goals", "state_before": "case pos\nx y : ℝ\nhx : x = 0\n⊢ abs x ^ y ≤ exp (log x * y)", "tactic": "by_cases hy : y = 0 <;> simp [hx, hy, zero_le_one]" }, { "state_after": "no goals", "state_before": "case neg\nx y : ℝ\nhx : ¬x = 0\n⊢ abs x ^ y ≤ exp (log x * y)", "tactic": "rw [rpow_def_of_pos (abs_pos.2 hx), log_abs]" } ]
[ 166, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 162, 1 ]
Mathlib/GroupTheory/Index.lean
Subgroup.index_mul_card
[ { "state_after": "G : Type u_1\ninst✝¹ : Group G\nH K L : Subgroup G\ninst✝ : Fintype G\nhH : Fintype { x // x ∈ H }\n⊢ relindex ⊥ H * index H = index ⊥", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH K L : Subgroup G\ninst✝ : Fintype G\nhH : Fintype { x // x ∈ H }\n⊢ index H * Fintype.card { x // x ∈ H } = Fintype.card G", "tactic": "rw [← relindex_bot_left_eq_card, ← index_bot_eq_card, mul_comm]" }, { "state_after": "no goals", "state_before": "G : Type u_1\ninst✝¹ : Group G\nH K L : Subgroup G\ninst✝ : Fintype G\nhH : Fintype { x // x ∈ H }\n⊢ relindex ⊥ H * index H = index ⊥", "tactic": "exact relindex_mul_index bot_le" } ]
[ 367, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 364, 1 ]
Mathlib/Data/Set/Sups.lean
Set.sups_singleton
[]
[ 153, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.equivOfEq_trans
[]
[ 208, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 206, 1 ]
Mathlib/Algebra/Hom/Units.lean
IsUnit.inv_mul_cancel_right
[]
[ 309, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 308, 11 ]
Mathlib/GroupTheory/Subsemigroup/Operations.lean
Subsemigroup.le_comap_map
[]
[ 294, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
zpow_le_zpow_iff
[]
[ 361, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 360, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.SurjectiveOnWith.exists_pos
[ { "state_after": "case refine'_1\nV : Type ?u.219726\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.219735\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g f : NormedAddGroupHom V₁ V₂\nK : AddSubgroup V₂\nC : ℝ\nh : SurjectiveOnWith f K C\n⊢ abs C + 1 > 0\n\ncase refine'_2\nV : Type ?u.219726\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.219735\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g f : NormedAddGroupHom V₁ V₂\nK : AddSubgroup V₂\nC : ℝ\nh : SurjectiveOnWith f K C\n⊢ SurjectiveOnWith f K (abs C + 1)", "state_before": "V : Type ?u.219726\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.219735\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g f : NormedAddGroupHom V₁ V₂\nK : AddSubgroup V₂\nC : ℝ\nh : SurjectiveOnWith f K C\n⊢ ∃ C', C' > 0 ∧ SurjectiveOnWith f K C'", "tactic": "refine' ⟨|C| + 1, _, _⟩" }, { "state_after": "no goals", "state_before": "case refine'_1\nV : Type ?u.219726\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.219735\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g f : NormedAddGroupHom V₁ V₂\nK : AddSubgroup V₂\nC : ℝ\nh : SurjectiveOnWith f K C\n⊢ abs C + 1 > 0", "tactic": "linarith [abs_nonneg C]" }, { "state_after": "case refine'_2\nV : Type ?u.219726\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.219735\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g f : NormedAddGroupHom V₁ V₂\nK : AddSubgroup V₂\nC : ℝ\nh : SurjectiveOnWith f K C\n⊢ C ≤ abs C + 1", "state_before": "case refine'_2\nV : Type ?u.219726\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.219735\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g f : NormedAddGroupHom V₁ V₂\nK : AddSubgroup V₂\nC : ℝ\nh : SurjectiveOnWith f K C\n⊢ SurjectiveOnWith f K (abs C + 1)", "tactic": "apply h.mono" }, { "state_after": "no goals", "state_before": "case refine'_2\nV : Type ?u.219726\nV₁ : Type u_1\nV₂ : Type u_2\nV₃ : Type ?u.219735\ninst✝³ : SeminormedAddCommGroup V\ninst✝² : SeminormedAddCommGroup V₁\ninst✝¹ : SeminormedAddCommGroup V₂\ninst✝ : SeminormedAddCommGroup V₃\nf✝ g f : NormedAddGroupHom V₁ V₂\nK : AddSubgroup V₂\nC : ℝ\nh : SurjectiveOnWith f K C\n⊢ C ≤ abs C + 1", "tactic": "linarith [le_abs_self C]" } ]
[ 200, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/Data/Rat/Cast.lean
Rat.cast_comm
[]
[ 74, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Combinatorics/Additive/Behrend.lean
Behrend.mem_box
[ { "state_after": "no goals", "state_before": "α : Type ?u.474\nβ : Type ?u.477\nn d k N : ℕ\nx : Fin n → ℕ\n⊢ x ∈ box n d ↔ ∀ (i : Fin n), x i < d", "tactic": "simp only [box, Fintype.mem_piFinset, mem_range]" } ]
[ 77, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.algebraMap_apply'
[]
[ 1319, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1317, 1 ]
Mathlib/Data/Prod/Basic.lean
Prod.forall
[]
[ 34, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 33, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.coe_compRingHom
[]
[ 1092, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1091, 1 ]
Mathlib/Order/GaloisConnection.lean
GaloisCoinsertion.u_l_leftInverse
[]
[ 777, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 775, 1 ]
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
WithSeminorms.toLocallyConvexSpace
[ { "state_after": "case hbasis\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\n⊢ Filter.HasBasis (𝓝 0) (fun s => s ∈ SeminormFamily.basisSets p) id\n\ncase hconvex\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\n⊢ ∀ (i : Set E), i ∈ SeminormFamily.basisSets p → Convex ℝ (id i)", "state_before": "𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\n⊢ LocallyConvexSpace ℝ E", "tactic": "apply ofBasisZero ℝ E id fun s => s ∈ p.basisSets" }, { "state_after": "case hbasis\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\n⊢ Filter.HasBasis (FilterBasis.filter AddGroupFilterBasis.toFilterBasis) (fun s => s ∈ SeminormFamily.basisSets p) id", "state_before": "case hbasis\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\n⊢ Filter.HasBasis (𝓝 0) (fun s => s ∈ SeminormFamily.basisSets p) id", "tactic": "rw [hp.1, AddGroupFilterBasis.nhds_eq _, AddGroupFilterBasis.N_zero]" }, { "state_after": "no goals", "state_before": "case hbasis\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\n⊢ Filter.HasBasis (FilterBasis.filter AddGroupFilterBasis.toFilterBasis) (fun s => s ∈ SeminormFamily.basisSets p) id", "tactic": "exact FilterBasis.hasBasis _" }, { "state_after": "case hconvex\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\ns : Set E\nhs : s ∈ SeminormFamily.basisSets p\n⊢ Convex ℝ (id s)", "state_before": "case hconvex\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\n⊢ ∀ (i : Set E), i ∈ SeminormFamily.basisSets p → Convex ℝ (id i)", "tactic": "intro s hs" }, { "state_after": "case hconvex\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\ns : Set E\nhs : s ∈ ⋃ (s : Finset ι) (r : ℝ) (_ : 0 < r), {ball (Finset.sup s p) 0 r}\n⊢ Convex ℝ (id s)", "state_before": "case hconvex\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\ns : Set E\nhs : s ∈ SeminormFamily.basisSets p\n⊢ Convex ℝ (id s)", "tactic": "change s ∈ Set.iUnion _ at hs" }, { "state_after": "case hconvex\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\ns : Set E\nhs : ∃ i i_1 h, s = ball (Finset.sup i p) 0 i_1\n⊢ Convex ℝ (id s)", "state_before": "case hconvex\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\ns : Set E\nhs : s ∈ ⋃ (s : Finset ι) (r : ℝ) (_ : 0 < r), {ball (Finset.sup s p) 0 r}\n⊢ Convex ℝ (id s)", "tactic": "simp_rw [Set.mem_iUnion, Set.mem_singleton_iff] at hs" }, { "state_after": "case hconvex.intro.intro.intro\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\nI : Finset ι\nr : ℝ\nw✝ : 0 < r\n⊢ Convex ℝ (id (ball (Finset.sup I p) 0 r))", "state_before": "case hconvex\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\ns : Set E\nhs : ∃ i i_1 h, s = ball (Finset.sup i p) 0 i_1\n⊢ Convex ℝ (id s)", "tactic": "rcases hs with ⟨I, r, _, rfl⟩" }, { "state_after": "no goals", "state_before": "case hconvex.intro.intro.intro\n𝕜 : Type u_1\n𝕜₂ : Type ?u.678312\n𝕝 : Type ?u.678315\n𝕝₂ : Type ?u.678318\nE : Type u_2\nF : Type ?u.678324\nG : Type ?u.678327\nι : Type u_3\nι' : Type ?u.678333\ninst✝⁸ : Nonempty ι\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : NormedSpace ℝ 𝕜\ninst✝⁵ : AddCommGroup E\ninst✝⁴ : Module 𝕜 E\ninst✝³ : Module ℝ E\ninst✝² : IsScalarTower ℝ 𝕜 E\ninst✝¹ : TopologicalSpace E\ninst✝ : TopologicalAddGroup E\np : SeminormFamily 𝕜 E ι\nhp : WithSeminorms p\nI : Finset ι\nr : ℝ\nw✝ : 0 < r\n⊢ Convex ℝ (id (ball (Finset.sup I p) 0 r))", "tactic": "exact convex_ball _ _ _" } ]
[ 684, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 675, 1 ]
Mathlib/GroupTheory/Subsemigroup/Operations.lean
Subsemigroup.comap_equiv_eq_map_symm
[]
[ 718, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 716, 1 ]
Mathlib/Algebra/Order/Pointwise.lean
LinearOrderedField.smul_Ico
[ { "state_after": "case h\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ x ∈ r • Ico a b ↔ x ∈ Ico (r • a) (r • b)", "state_before": "α : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\n⊢ r • Ico a b = Ico (r • a) (r • b)", "tactic": "ext x" }, { "state_after": "case h\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ (∃ y, (a ≤ y ∧ y < b) ∧ r * y = x) ↔ r * a ≤ x ∧ x < r * b", "state_before": "case h\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ x ∈ r • Ico a b ↔ x ∈ Ico (r • a) (r • b)", "tactic": "simp only [mem_smul_set, smul_eq_mul, mem_Ico]" }, { "state_after": "case h.mp\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ (∃ y, (a ≤ y ∧ y < b) ∧ r * y = x) → r * a ≤ x ∧ x < r * b\n\ncase h.mpr\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ r * a ≤ x ∧ x < r * b → ∃ y, (a ≤ y ∧ y < b) ∧ r * y = x", "state_before": "case h\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ (∃ y, (a ≤ y ∧ y < b) ∧ r * y = x) ↔ r * a ≤ x ∧ x < r * b", "tactic": "constructor" }, { "state_after": "case h.mp.intro.intro.intro\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na✝ b r : K\nhr : 0 < r\na : K\na_h_left_left : a✝ ≤ a\na_h_left_right : a < b\n⊢ r * a✝ ≤ r * a ∧ r * a < r * b", "state_before": "case h.mp\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ (∃ y, (a ≤ y ∧ y < b) ∧ r * y = x) → r * a ≤ x ∧ x < r * b", "tactic": "rintro ⟨a, ⟨a_h_left_left, a_h_left_right⟩, rfl⟩" }, { "state_after": "case h.mp.intro.intro.intro.left\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na✝ b r : K\nhr : 0 < r\na : K\na_h_left_left : a✝ ≤ a\na_h_left_right : a < b\n⊢ r * a✝ ≤ r * a\n\ncase h.mp.intro.intro.intro.right\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na✝ b r : K\nhr : 0 < r\na : K\na_h_left_left : a✝ ≤ a\na_h_left_right : a < b\n⊢ r * a < r * b", "state_before": "case h.mp.intro.intro.intro\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na✝ b r : K\nhr : 0 < r\na : K\na_h_left_left : a✝ ≤ a\na_h_left_right : a < b\n⊢ r * a✝ ≤ r * a ∧ r * a < r * b", "tactic": "constructor" }, { "state_after": "case h.mp.intro.intro.intro.right\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na✝ b r : K\nhr : 0 < r\na : K\na_h_left_left : a✝ ≤ a\na_h_left_right : a < b\n⊢ r * a < r * b", "state_before": "case h.mp.intro.intro.intro.left\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na✝ b r : K\nhr : 0 < r\na : K\na_h_left_left : a✝ ≤ a\na_h_left_right : a < b\n⊢ r * a✝ ≤ r * a\n\ncase h.mp.intro.intro.intro.right\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na✝ b r : K\nhr : 0 < r\na : K\na_h_left_left : a✝ ≤ a\na_h_left_right : a < b\n⊢ r * a < r * b", "tactic": "exact (mul_le_mul_left hr).mpr a_h_left_left" }, { "state_after": "no goals", "state_before": "case h.mp.intro.intro.intro.right\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na✝ b r : K\nhr : 0 < r\na : K\na_h_left_left : a✝ ≤ a\na_h_left_right : a < b\n⊢ r * a < r * b", "tactic": "exact (mul_lt_mul_left hr).mpr a_h_left_right" }, { "state_after": "case h.mpr.intro\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\na_left : r * a ≤ x\na_right : x < r * b\n⊢ ∃ y, (a ≤ y ∧ y < b) ∧ r * y = x", "state_before": "case h.mpr\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\n⊢ r * a ≤ x ∧ x < r * b → ∃ y, (a ≤ y ∧ y < b) ∧ r * y = x", "tactic": "rintro ⟨a_left, a_right⟩" }, { "state_after": "case h.mpr.intro\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\na_left : r * a ≤ x\na_right : x < r * b\n⊢ (a ≤ x / r ∧ x / r < b) ∧ r * (x / r) = x", "state_before": "case h.mpr.intro\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\na_left : r * a ≤ x\na_right : x < r * b\n⊢ ∃ y, (a ≤ y ∧ y < b) ∧ r * y = x", "tactic": "use x / r" }, { "state_after": "case h.mpr.intro\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\na_left : r * a ≤ x\na_right : x < r * b\n⊢ r * (x / r) = x", "state_before": "case h.mpr.intro\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\na_left : r * a ≤ x\na_right : x < r * b\n⊢ (a ≤ x / r ∧ x / r < b) ∧ r * (x / r) = x", "tactic": "refine' ⟨⟨(le_div_iff' hr).mpr a_left, (div_lt_iff' hr).mpr a_right⟩, _⟩" }, { "state_after": "no goals", "state_before": "case h.mpr.intro\nα : Type ?u.56727\nK : Type u_1\ninst✝ : LinearOrderedField K\na b r : K\nhr : 0 < r\nx : K\na_left : r * a ≤ x\na_right : x < r * b\n⊢ r * (x / r) = x", "tactic": "rw [mul_div_cancel' _ (ne_of_gt hr)]" } ]
[ 227, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Add.lean
HasFDerivWithinAt.const_sub
[]
[ 610, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 608, 8 ]
Mathlib/NumberTheory/PellMatiyasevic.lean
Pell.pellZd_succ
[ { "state_after": "no goals", "state_before": "a : ℕ\na1 : 1 < a\nn : ℕ\n⊢ pellZd a1 (n + 1) = pellZd a1 n * { re := ↑a, im := 1 }", "tactic": "simp [Zsqrtd.ext]" } ]
[ 223, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 223, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Equalizers.lean
CategoryTheory.Limits.parallelPair_obj_one
[]
[ 231, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 231, 1 ]
Mathlib/Order/FixedPoints.lean
OrderHom.map_gfp
[]
[ 128, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/NumberTheory/LucasLehmer.lean
LucasLehmer.Int.coe_nat_two_pow_pred
[ { "state_after": "no goals", "state_before": "p : ℕ\n⊢ 0 < 2", "tactic": "decide" } ]
[ 137, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/Algebra/Group/Commute.lean
Commute.units_val_iff
[]
[ 259, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/GroupTheory/GroupAction/SubMulAction.lean
SubMulAction.SMulMemClass.coeSubtype
[]
[ 227, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 226, 11 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.degree_lt_degree_mul_X
[ { "state_after": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.707375\nhp : p ≠ 0\nthis : Nontrivial R\n⊢ degree p < degree (p * X)", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.707375\nhp : p ≠ 0\n⊢ degree p < degree (p * X)", "tactic": "haveI := Nontrivial.of_polynomial_ne hp" }, { "state_after": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.707375\nhp : p ≠ 0\nthis✝ : Nontrivial R\nthis : leadingCoeff p * leadingCoeff X ≠ 0\n⊢ degree p < degree (p * X)", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.707375\nhp : p ≠ 0\nthis : Nontrivial R\n⊢ degree p < degree (p * X)", "tactic": "have : leadingCoeff p * leadingCoeff X ≠ 0 := by simpa" }, { "state_after": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.707375\nhp : p ≠ 0\nthis✝ : Nontrivial R\nthis : leadingCoeff p * leadingCoeff X ≠ 0\n⊢ ↑(natDegree p) < ↑(natDegree p) + 1", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.707375\nhp : p ≠ 0\nthis✝ : Nontrivial R\nthis : leadingCoeff p * leadingCoeff X ≠ 0\n⊢ degree p < degree (p * X)", "tactic": "erw [degree_mul' this, degree_eq_natDegree hp, degree_X, ← WithBot.coe_one,\n ← WithBot.coe_add, WithBot.coe_lt_coe]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.707375\nhp : p ≠ 0\nthis✝ : Nontrivial R\nthis : leadingCoeff p * leadingCoeff X ≠ 0\n⊢ ↑(natDegree p) < ↑(natDegree p) + 1", "tactic": "exact Nat.lt_succ_self _" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.707375\nhp : p ≠ 0\nthis : Nontrivial R\n⊢ leadingCoeff p * leadingCoeff X ≠ 0", "tactic": "simpa" } ]
[ 1109, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1105, 1 ]
Mathlib/Topology/ContinuousFunction/Bounded.lean
BoundedContinuousFunction.nnnorm_const_le
[]
[ 1020, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1019, 1 ]
Mathlib/Algebra/Group/Commute.lean
Commute.mul_div_mul_comm
[]
[ 336, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 334, 11 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.simpleFunc_bot'
[ { "state_after": "α✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\nthis : MeasurableSpace α := ⊥\n⊢ ∃ c, f = const α c", "state_before": "α✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\n⊢ ∃ c, f = const α c", "tactic": "letI : MeasurableSpace α := ⊥" }, { "state_after": "case intro\nα✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\nthis : MeasurableSpace α := ⊥\nc : β\nh_eq : ∀ (x : α), ↑f x = c\n⊢ ∃ c, f = const α c", "state_before": "α✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\nthis : MeasurableSpace α := ⊥\n⊢ ∃ c, f = const α c", "tactic": "obtain ⟨c, h_eq⟩ := simpleFunc_bot f" }, { "state_after": "case intro\nα✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\nthis : MeasurableSpace α := ⊥\nc : β\nh_eq : ∀ (x : α), ↑f x = c\n⊢ f = const α c", "state_before": "case intro\nα✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\nthis : MeasurableSpace α := ⊥\nc : β\nh_eq : ∀ (x : α), ↑f x = c\n⊢ ∃ c, f = const α c", "tactic": "refine' ⟨c, _⟩" }, { "state_after": "case intro.H\nα✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\nthis : MeasurableSpace α := ⊥\nc : β\nh_eq : ∀ (x : α), ↑f x = c\nx : α\n⊢ ↑f x = ↑(const α c) x", "state_before": "case intro\nα✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\nthis : MeasurableSpace α := ⊥\nc : β\nh_eq : ∀ (x : α), ↑f x = c\n⊢ f = const α c", "tactic": "ext1 x" }, { "state_after": "no goals", "state_before": "case intro.H\nα✝ : Type ?u.21990\nβ : Type u_2\nγ : Type ?u.21996\nδ : Type ?u.21999\ninst✝¹ : MeasurableSpace α✝\nα : Type u_1\ninst✝ : Nonempty β\nf : α →ₛ β\nthis : MeasurableSpace α := ⊥\nc : β\nh_eq : ∀ (x : α), ↑f x = c\nx : α\n⊢ ↑f x = ↑(const α c) x", "tactic": "rw [h_eq x, SimpleFunc.coe_const, Function.const]" } ]
[ 193, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/ModelTheory/LanguageMap.lean
FirstOrder.Language.LHom.sumMap_comp_inl
[]
[ 216, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 1 ]
Std/Data/Int/Lemmas.lean
Int.ofNat_natAbs_of_nonpos
[ { "state_after": "no goals", "state_before": "a : Int\nH : a ≤ 0\n⊢ ↑(natAbs a) = -a", "tactic": "rw [← natAbs_neg, natAbs_of_nonneg (Int.neg_nonneg_of_nonpos H)]" } ]
[ 1248, 67 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1247, 1 ]
Mathlib/Topology/ContinuousFunction/Bounded.lean
BoundedContinuousFunction.nnnorm_const_eq
[]
[ 1025, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1024, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.sub_le_sub
[]
[ 865, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 864, 1 ]
Mathlib/Combinatorics/Additive/Energy.lean
Finset.multiplicativeEnergy_mono_right
[]
[ 70, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/InformationTheory/Hamming.lean
hammingNorm_nonneg
[]
[ 180, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 179, 1 ]
Mathlib/Analysis/Calculus/Deriv/Mul.lean
deriv_mul_const
[]
[ 231, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 229, 1 ]
Mathlib/Topology/Algebra/Module/Basic.lean
ContinuousLinearMap.coe_pi
[]
[ 1219, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1218, 1 ]
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
CategoryTheory.Presieve.isSheaf_bot
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX✝ Y : C\nS : Sieve X✝\nR : Presieve X✝\nJ J₂ : GrothendieckTopology C\nX : C\n⊢ ∀ (S : Sieve X), S ∈ GrothendieckTopology.sieves ⊥ X → IsSheafFor P S.arrows", "tactic": "simp [isSheafFor_top_sieve]" } ]
[ 783, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 782, 1 ]
Mathlib/Combinatorics/Quiver/Cast.lean
Quiver.Hom.cast_heq
[ { "state_after": "U : Type u_1\ninst✝ : Quiver U\nu' v' : U\ne : u' ⟶ v'\n⊢ HEq (cast (_ : u' = u') (_ : v' = v') e) e", "state_before": "U : Type u_1\ninst✝ : Quiver U\nu v u' v' : U\nhu : u = u'\nhv : v = v'\ne : u ⟶ v\n⊢ HEq (cast hu hv e) e", "tactic": "subst_vars" }, { "state_after": "no goals", "state_before": "U : Type u_1\ninst✝ : Quiver U\nu' v' : U\ne : u' ⟶ v'\n⊢ HEq (cast (_ : u' = u') (_ : v' = v') e) e", "tactic": "rfl" } ]
[ 63, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/Order/WellFoundedSet.lean
Set.isWf_singleton
[]
[ 471, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 471, 9 ]
Std/Data/Int/DivMod.lean
Int.add_mul_emod_self_left
[ { "state_after": "no goals", "state_before": "a b c : Int\n⊢ (a + b * c) % b = a % b", "tactic": "rw [Int.mul_comm, Int.add_mul_emod_self]" } ]
[ 412, 43 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 411, 9 ]
Mathlib/Order/Filter/Basic.lean
Filter.comap_neBot_iff_frequently
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.263265\nι : Sort x\nf✝ f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nm✝ : α → β\nm' : β → γ\ns : Set α\nt : Set β\nf : Filter β\nm : α → β\n⊢ NeBot (comap m f) ↔ ∃ᶠ (y : β) in f, y ∈ range m", "tactic": "simp only [comap_neBot_iff, frequently_iff, mem_range, @and_comm (_ ∈ _), exists_exists_eq_and]" } ]
[ 2348, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2346, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/WidePullbacks.lean
CategoryTheory.Limits.WidePullback.hom_ext
[ { "state_after": "J : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\nh1 : ∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j\nh2 : g1 ≫ base arrows = g2 ≫ base arrows\n⊢ g1 = g2", "state_before": "J : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\n⊢ (∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j) → g1 ≫ base arrows = g2 ≫ base arrows → g1 = g2", "tactic": "intro h1 h2" }, { "state_after": "case w\nJ : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\nh1 : ∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j\nh2 : g1 ≫ base arrows = g2 ≫ base arrows\n⊢ ∀ (j : WidePullbackShape J),\n g1 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) j =\n g2 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) j", "state_before": "J : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\nh1 : ∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j\nh2 : g1 ≫ base arrows = g2 ≫ base arrows\n⊢ g1 = g2", "tactic": "apply limit.hom_ext" }, { "state_after": "case w.none\nJ : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\nh1 : ∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j\nh2 : g1 ≫ base arrows = g2 ≫ base arrows\n⊢ g1 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) none =\n g2 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) none\n\ncase w.some\nJ : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\nh1 : ∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j\nh2 : g1 ≫ base arrows = g2 ≫ base arrows\nval✝ : J\n⊢ g1 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) (some val✝) =\n g2 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) (some val✝)", "state_before": "case w\nJ : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\nh1 : ∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j\nh2 : g1 ≫ base arrows = g2 ≫ base arrows\n⊢ ∀ (j : WidePullbackShape J),\n g1 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) j =\n g2 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) j", "tactic": "rintro (_ | _)" }, { "state_after": "no goals", "state_before": "case w.none\nJ : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\nh1 : ∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j\nh2 : g1 ≫ base arrows = g2 ≫ base arrows\n⊢ g1 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) none =\n g2 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) none", "tactic": "apply h2" }, { "state_after": "no goals", "state_before": "case w.some\nJ : Type w\nC : Type u\ninst✝² : Category C\nD : Type u_1\ninst✝¹ : Category D\nB : D\nobjs : J → D\narrows : (j : J) → objs j ⟶ B\ninst✝ : HasWidePullback B objs arrows\nX : D\nf : X ⟶ B\nfs : (j : J) → X ⟶ objs j\nw : ∀ (j : J), fs j ≫ arrows j = f\ng1 g2 : X ⟶ widePullback B (fun j => objs j) arrows\nh1 : ∀ (j : J), g1 ≫ π arrows j = g2 ≫ π arrows j\nh2 : g1 ≫ base arrows = g2 ≫ base arrows\nval✝ : J\n⊢ g1 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) (some val✝) =\n g2 ≫ limit.π (WidePullbackShape.wideCospan B (fun j => objs j) arrows) (some val✝)", "tactic": "apply h1" } ]
[ 378, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 372, 1 ]
Mathlib/Analysis/Normed/Group/BallSphere.lean
coe_neg_closedBall
[]
[ 61, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 9 ]
Mathlib/RingTheory/FractionalIdeal.lean
FractionalIdeal.canonicalEquiv_trans_canonicalEquiv
[]
[ 941, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 938, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.conj_re
[]
[ 340, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 339, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
TensorProduct.map_comp
[]
[ 757, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 755, 1 ]
Std/Data/RBMap/Lemmas.lean
Std.RBNode.Path.fill_toList
[ { "state_after": "no goals", "state_before": "α : Type u_1\nt : RBNode α\np : Path α\n⊢ toList (fill p t) = withList p (toList t)", "tactic": "induction p generalizing t <;> simp [*]" } ]
[ 485, 42 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 484, 9 ]
Mathlib/Order/Bounds/Basic.lean
IsGLB.of_image
[]
[ 1558, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1555, 1 ]
Mathlib/Analysis/Asymptotics/SuperpolynomialDecay.lean
Asymptotics.SuperpolynomialDecay.trans_abs_le
[]
[ 194, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.seq_assoc
[ { "state_after": "case refine'_1\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\n⊢ Set.seq s t ∈ seq h (seq g x)\n\ncase refine'_2\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (β → γ)\nhs : s ∈ h\nt : Set β\nht : t ∈ seq g x\n⊢ Set.seq s t ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\n⊢ seq h (seq g x) = seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "tactic": "refine' le_antisymm (le_seq fun s hs t ht => _) (le_seq fun s hs t ht => _)" }, { "state_after": "case refine'_1.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\nu : Set ((α → β) → α → γ)\nhu : u ∈ map (fun x x_1 => x ∘ x_1) h\nv : Set (α → β)\nhv : v ∈ g\nhs : Set.seq u v ⊆ s\n⊢ Set.seq s t ∈ seq h (seq g x)", "state_before": "case refine'_1\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\n⊢ Set.seq s t ∈ seq h (seq g x)", "tactic": "rcases mem_seq_iff.1 hs with ⟨u, hu, v, hv, hs⟩" }, { "state_after": "case refine'_1.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\nu : Set ((α → β) → α → γ)\nhu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h\nv : Set (α → β)\nhv : v ∈ g\nhs : Set.seq u v ⊆ s\nw : Set (β → γ)\nhw : w ∈ h\nhu : (fun x x_1 => x ∘ x_1) '' w ⊆ u\n⊢ Set.seq s t ∈ seq h (seq g x)", "state_before": "case refine'_1.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\nu : Set ((α → β) → α → γ)\nhu : u ∈ map (fun x x_1 => x ∘ x_1) h\nv : Set (α → β)\nhv : v ∈ g\nhs : Set.seq u v ⊆ s\n⊢ Set.seq s t ∈ seq h (seq g x)", "tactic": "rcases mem_map_iff_exists_image.1 hu with ⟨w, hw, hu⟩" }, { "state_after": "case refine'_1.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\nu : Set ((α → β) → α → γ)\nhu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h\nv : Set (α → β)\nhv : v ∈ g\nhs : Set.seq u v ⊆ s\nw : Set (β → γ)\nhw : w ∈ h\nhu : (fun x x_1 => x ∘ x_1) '' w ⊆ u\n⊢ Set.seq (Set.seq ((fun x x_1 => x ∘ x_1) '' w) v) t ∈ seq h (seq g x)", "state_before": "case refine'_1.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\nu : Set ((α → β) → α → γ)\nhu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h\nv : Set (α → β)\nhv : v ∈ g\nhs : Set.seq u v ⊆ s\nw : Set (β → γ)\nhw : w ∈ h\nhu : (fun x x_1 => x ∘ x_1) '' w ⊆ u\n⊢ Set.seq s t ∈ seq h (seq g x)", "tactic": "refine' mem_of_superset _ (Set.seq_mono ((Set.seq_mono hu Subset.rfl).trans hs) Subset.rfl)" }, { "state_after": "case refine'_1.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\nu : Set ((α → β) → α → γ)\nhu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h\nv : Set (α → β)\nhv : v ∈ g\nhs : Set.seq u v ⊆ s\nw : Set (β → γ)\nhw : w ∈ h\nhu : (fun x x_1 => x ∘ x_1) '' w ⊆ u\n⊢ Set.seq w (Set.seq v t) ∈ seq h (seq g x)", "state_before": "case refine'_1.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\nu : Set ((α → β) → α → γ)\nhu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h\nv : Set (α → β)\nhv : v ∈ g\nhs : Set.seq u v ⊆ s\nw : Set (β → γ)\nhw : w ∈ h\nhu : (fun x x_1 => x ∘ x_1) '' w ⊆ u\n⊢ Set.seq (Set.seq ((fun x x_1 => x ∘ x_1) '' w) v) t ∈ seq h (seq g x)", "tactic": "rw [← Set.seq_seq]" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.intro.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (α → γ)\nhs✝ : s ∈ seq (map (fun x x_1 => x ∘ x_1) h) g\nt : Set α\nht : t ∈ x\nu : Set ((α → β) → α → γ)\nhu✝ : u ∈ map (fun x x_1 => x ∘ x_1) h\nv : Set (α → β)\nhv : v ∈ g\nhs : Set.seq u v ⊆ s\nw : Set (β → γ)\nhw : w ∈ h\nhu : (fun x x_1 => x ∘ x_1) '' w ⊆ u\n⊢ Set.seq w (Set.seq v t) ∈ seq h (seq g x)", "tactic": "exact seq_mem_seq hw (seq_mem_seq hv ht)" }, { "state_after": "case refine'_2.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (β → γ)\nhs : s ∈ h\nt : Set β\nht✝ : t ∈ seq g x\nu : Set (α → β)\nhu : u ∈ g\nv : Set α\nhv : v ∈ x\nht : Set.seq u v ⊆ t\n⊢ Set.seq s t ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "state_before": "case refine'_2\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (β → γ)\nhs : s ∈ h\nt : Set β\nht : t ∈ seq g x\n⊢ Set.seq s t ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "tactic": "rcases mem_seq_iff.1 ht with ⟨u, hu, v, hv, ht⟩" }, { "state_after": "case refine'_2.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (β → γ)\nhs : s ∈ h\nt : Set β\nht✝ : t ∈ seq g x\nu : Set (α → β)\nhu : u ∈ g\nv : Set α\nhv : v ∈ x\nht : Set.seq u v ⊆ t\n⊢ Set.seq s (Set.seq u v) ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "state_before": "case refine'_2.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (β → γ)\nhs : s ∈ h\nt : Set β\nht✝ : t ∈ seq g x\nu : Set (α → β)\nhu : u ∈ g\nv : Set α\nhv : v ∈ x\nht : Set.seq u v ⊆ t\n⊢ Set.seq s t ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "tactic": "refine' mem_of_superset _ (Set.seq_mono Subset.rfl ht)" }, { "state_after": "case refine'_2.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (β → γ)\nhs : s ∈ h\nt : Set β\nht✝ : t ∈ seq g x\nu : Set (α → β)\nhu : u ∈ g\nv : Set α\nhv : v ∈ x\nht : Set.seq u v ⊆ t\n⊢ Set.seq (Set.seq ((fun x x_1 => x ∘ x_1) '' s) u) v ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "state_before": "case refine'_2.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (β → γ)\nhs : s ∈ h\nt : Set β\nht✝ : t ∈ seq g x\nu : Set (α → β)\nhu : u ∈ g\nv : Set α\nhv : v ∈ x\nht : Set.seq u v ⊆ t\n⊢ Set.seq s (Set.seq u v) ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "tactic": "rw [Set.seq_seq]" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.294746\nι : Sort x\nx : Filter α\ng : Filter (α → β)\nh : Filter (β → γ)\ns : Set (β → γ)\nhs : s ∈ h\nt : Set β\nht✝ : t ∈ seq g x\nu : Set (α → β)\nhu : u ∈ g\nv : Set α\nhv : v ∈ x\nht : Set.seq u v ⊆ t\n⊢ Set.seq (Set.seq ((fun x x_1 => x ∘ x_1) '' s) u) v ∈ seq (seq (map (fun x x_1 => x ∘ x_1) h) g) x", "tactic": "exact seq_mem_seq (seq_mem_seq (image_mem_map hs) hu) hv" } ]
[ 2677, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2666, 1 ]
Mathlib/Topology/Algebra/WithZeroTopology.lean
WithZeroTopology.isClosed_iff
[ { "state_after": "no goals", "state_before": "α : Type ?u.91489\nΓ₀ : Type u_1\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nγ γ₁ γ₂ : Γ₀\nl : Filter α\nf : α → Γ₀\ns : Set Γ₀\n⊢ IsClosed s ↔ 0 ∈ s ∨ ∃ γ, γ ≠ 0 ∧ s ⊆ Ici γ", "tactic": "simp only [← isOpen_compl_iff, isOpen_iff, mem_compl_iff, not_not, ← compl_Ici,\n compl_subset_compl]" } ]
[ 147, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
le_csInf_iff'
[]
[ 979, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 978, 1 ]
Mathlib/Data/Fin/Tuple/Basic.lean
Fin.update_cons_zero
[ { "state_after": "case h\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\n⊢ update (cons x p) 0 z j = cons z p j", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\n⊢ update (cons x p) 0 z = cons z p", "tactic": "ext j" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : j = 0\n⊢ update (cons x p) 0 z j = cons z p j\n\ncase neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : ¬j = 0\n⊢ update (cons x p) 0 z j = cons z p j", "state_before": "case h\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\n⊢ update (cons x p) 0 z j = cons z p j", "tactic": "by_cases h : j = 0" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : j = 0\n⊢ update (cons x p) 0 z 0 = cons z p 0", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : j = 0\n⊢ update (cons x p) 0 z j = cons z p j", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : j = 0\n⊢ update (cons x p) 0 z 0 = cons z p 0", "tactic": "simp" }, { "state_after": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : ¬j = 0\n⊢ cons x p j = cons z p j", "state_before": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : ¬j = 0\n⊢ update (cons x p) 0 z j = cons z p j", "tactic": "simp only [h, update_noteq, Ne.def, not_false_iff]" }, { "state_after": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : ¬j = 0\nj' : Fin n := pred j h\n⊢ cons x p j = cons z p j", "state_before": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : ¬j = 0\n⊢ cons x p j = cons z p j", "tactic": "let j' := pred j h" }, { "state_after": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : ¬j = 0\nj' : Fin n := pred j h\nthis : succ j' = j\n⊢ cons x p j = cons z p j", "state_before": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : ¬j = 0\nj' : Fin n := pred j h\n⊢ cons x p j = cons z p j", "tactic": "have : j'.succ = j := succ_pred j h" }, { "state_after": "no goals", "state_before": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α 0\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (succ i)\ni : Fin n\ny : α (succ i)\nz : α 0\nj : Fin (n + 1)\nh : ¬j = 0\nj' : Fin n := pred j h\nthis : succ j' = j\n⊢ cons x p j = cons z p j", "tactic": "rw [← this, cons_succ, cons_succ]" } ]
[ 131, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Topology/UniformSpace/Separation.lean
separated_equiv
[]
[ 108, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.coe_deriv₂
[]
[ 1378, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1376, 1 ]
Mathlib/Order/Hom/Bounded.lean
BotHom.copy_eq
[]
[ 418, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 417, 1 ]
Std/Data/List/Lemmas.lean
List.next?_nil
[]
[ 456, 54 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 456, 9 ]
Mathlib/Algebra/Category/ModuleCat/Images.lean
ModuleCat.image.fac
[]
[ 59, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Data/Finsupp/Basic.lean
Finsupp.mapDomain_equiv_apply
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.172677\nι : Type ?u.172680\nM : Type u_3\nM' : Type ?u.172686\nN : Type ?u.172689\nP : Type ?u.172692\nG : Type ?u.172695\nH : Type ?u.172698\nR : Type ?u.172701\nS : Type ?u.172704\ninst✝ : AddCommMonoid M\nv v₁ v₂ : α →₀ M\nf : α ≃ β\nx : α →₀ M\na : β\n⊢ ↑(mapDomain (↑f) x) (↑f (↑f.symm a)) = ↑x (↑f.symm a)", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.172677\nι : Type ?u.172680\nM : Type u_3\nM' : Type ?u.172686\nN : Type ?u.172689\nP : Type ?u.172692\nG : Type ?u.172695\nH : Type ?u.172698\nR : Type ?u.172701\nS : Type ?u.172704\ninst✝ : AddCommMonoid M\nv v₁ v₂ : α →₀ M\nf : α ≃ β\nx : α →₀ M\na : β\n⊢ ↑(mapDomain (↑f) x) a = ↑x (↑f.symm a)", "tactic": "conv_lhs => rw [← f.apply_symm_apply a]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.172677\nι : Type ?u.172680\nM : Type u_3\nM' : Type ?u.172686\nN : Type ?u.172689\nP : Type ?u.172692\nG : Type ?u.172695\nH : Type ?u.172698\nR : Type ?u.172701\nS : Type ?u.172704\ninst✝ : AddCommMonoid M\nv v₁ v₂ : α →₀ M\nf : α ≃ β\nx : α →₀ M\na : β\n⊢ ↑(mapDomain (↑f) x) (↑f (↑f.symm a)) = ↑x (↑f.symm a)", "tactic": "exact mapDomain_apply f.injective _ _" } ]
[ 506, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 503, 1 ]
Mathlib/LinearAlgebra/Dual.lean
Basis.toDual_inj
[ { "state_after": "R : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb : Basis ι R M\nm : M\na : ↑(toDual b) m = 0\n⊢ ↑b.repr m = 0", "state_before": "R : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb : Basis ι R M\nm : M\na : ↑(toDual b) m = 0\n⊢ m = 0", "tactic": "rw [← mem_bot R, ← b.repr.ker, mem_ker, LinearEquiv.coe_coe]" }, { "state_after": "case h\nR : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb : Basis ι R M\nm : M\na : ↑(toDual b) m = 0\n⊢ ∀ (a : ι), ↑(↑b.repr m) a = ↑0 a", "state_before": "R : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb : Basis ι R M\nm : M\na : ↑(toDual b) m = 0\n⊢ ↑b.repr m = 0", "tactic": "apply Finsupp.ext" }, { "state_after": "case h\nR : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb✝ : Basis ι R M\nm : M\na : ↑(toDual b✝) m = 0\nb : ι\n⊢ ↑(↑b✝.repr m) b = ↑0 b", "state_before": "case h\nR : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb : Basis ι R M\nm : M\na : ↑(toDual b) m = 0\n⊢ ∀ (a : ι), ↑(↑b.repr m) a = ↑0 a", "tactic": "intro b" }, { "state_after": "case h\nR : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb✝ : Basis ι R M\nm : M\na : ↑(toDual b✝) m = 0\nb : ι\n⊢ ↑0 (↑b✝ b) = ↑0 b", "state_before": "case h\nR : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb✝ : Basis ι R M\nm : M\na : ↑(toDual b✝) m = 0\nb : ι\n⊢ ↑(↑b✝.repr m) b = ↑0 b", "tactic": "rw [← toDual_eq_repr, a]" }, { "state_after": "no goals", "state_before": "case h\nR : Type u\nM : Type v\nK : Type u₁\nV : Type u₂\nι : Type w\ninst✝³ : CommSemiring R\ninst✝² : AddCommMonoid M\ninst✝¹ : Module R M\ninst✝ : DecidableEq ι\nb✝ : Basis ι R M\nm : M\na : ↑(toDual b✝) m = 0\nb : ι\n⊢ ↑0 (↑b✝ b) = ↑0 b", "tactic": "rfl" } ]
[ 358, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 353, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.insert_inj
[]
[ 1172, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1171, 1 ]