file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Order/SuccPred/Basic.lean
Order.le_succ
[]
[ 217, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Analysis/Seminorm.lean
Seminorm.coe_bot
[]
[ 379, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 378, 1 ]
Mathlib/Topology/Semicontinuous.lean
UpperSemicontinuous.upperSemicontinuousAt
[]
[ 700, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 698, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Order.lean
tsum_le_tsum
[]
[ 109, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 107, 1 ]
Mathlib/Data/Set/NAry.lean
Set.image2_union_right
[ { "state_after": "no goals", "state_before": "α : Type u_2\nα' : Type ?u.14061\nβ : Type u_3\nβ' : Type ?u.14067\nγ : Type u_1\nγ' : Type ?u.14073\nδ : Type ?u.14076\nδ' : Type ?u.14079\nε : Type ?u.14082\nε' : Type ?u.14085\nζ : Type ?u.14088\nζ' : Type ?u.14091\nν : Type ?u.14094\nf f' : α → β → γ\ng g' : α → β → γ → δ\ns s' : Set α\nt t' : Set β\nu u' : Set γ\nv : Set δ\na a' : α\nb b' : β\nc c' : γ\nd d' : δ\n⊢ image2 f s (t ∪ t') = image2 f s t ∪ image2 f s t'", "tactic": "rw [← image2_swap, image2_union_left, image2_swap f, image2_swap f]" } ]
[ 136, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Analysis/NormedSpace/Pointwise.lean
ball_add_closedBall
[ { "state_after": "no goals", "state_before": "𝕜 : Type ?u.933372\nE : Type u_1\ninst✝³ : NormedField 𝕜\ninst✝² : SeminormedAddCommGroup E\ninst✝¹ : NormedSpace 𝕜 E\ninst✝ : NormedSpace ℝ E\nx y z : E\nδ ε : ℝ\nhε : 0 < ε\nhδ : 0 ≤ δ\na b : E\n⊢ Metric.ball a ε + Metric.closedBall b δ = Metric.ball (a + b) (ε + δ)", "tactic": "rw [ball_add, thickening_closedBall hε hδ b, Metric.vadd_ball, vadd_eq_add]" } ]
[ 360, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 358, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Complex.lean
Complex.zero_cpow
[ { "state_after": "no goals", "state_before": "x : ℂ\nh : x ≠ 0\n⊢ 0 ^ x = 0", "tactic": "simp [cpow_def, *]" } ]
[ 58, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Algebra/Category/ModuleCat/Monoidal/Basic.lean
ModuleCat.MonoidalCategory.associator_hom_apply
[]
[ 249, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 247, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
Int.cast_mul_eq_zsmul_cast
[ { "state_after": "no goals", "state_before": "α : Type u_1\nM : Type u\nN : Type v\nG : Type w\nH : Type x\nA : Type y\nB : Type z\nR : Type u₁\nS : Type u₂\ninst✝ : AddCommGroupWithOne α\nm : ℤ\n⊢ ∀ (n : ℤ), ↑(0 * n) = 0 • ↑n", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\nM : Type u\nN : Type v\nG : Type w\nH : Type x\nA : Type y\nB : Type z\nR : Type u₁\nS : Type u₂\ninst✝ : AddCommGroupWithOne α\nm k : ℤ\nx✝ : 0 ≤ k\nih : ∀ (n : ℤ), ↑(k * n) = k • ↑n\nn : ℤ\n⊢ ↑((k + 1) * n) = (k + 1) • ↑n", "tactic": "simp [add_mul, add_zsmul, ih]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nM : Type u\nN : Type v\nG : Type w\nH : Type x\nA : Type y\nB : Type z\nR : Type u₁\nS : Type u₂\ninst✝ : AddCommGroupWithOne α\nm k : ℤ\nx✝ : k ≤ 0\nih : ∀ (n : ℤ), ↑(k * n) = k • ↑n\nn : ℤ\n⊢ ↑((k - 1) * n) = (k - 1) • ↑n", "tactic": "simp [sub_mul, sub_zsmul, ih, ← sub_eq_add_neg]" } ]
[ 587, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 583, 1 ]
Mathlib/Topology/ContinuousFunction/Basic.lean
ContinuousMap.id_comp
[]
[ 257, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 256, 1 ]
Mathlib/MeasureTheory/Constructions/Prod/Integral.lean
MeasureTheory.integrable_swap_iff
[]
[ 234, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 232, 1 ]
Mathlib/NumberTheory/Padics/PadicNumbers.lean
Padic.norm_lt_pow_iff_norm_le_pow_sub_one
[ { "state_after": "no goals", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nx : ℚ_[p]\nn : ℤ\n⊢ ‖x‖ < ↑p ^ n ↔ ‖x‖ ≤ ↑p ^ (n - 1)", "tactic": "rw [norm_le_pow_iff_norm_lt_pow_add_one, sub_add_cancel]" } ]
[ 1179, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1177, 1 ]
Mathlib/RingTheory/Ideal/QuotientOperations.lean
DoubleQuot.ker_quotQuotMk
[ { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommRing R\nI J : Ideal R\n⊢ RingHom.ker (quotQuotMk I J) = I ⊔ J", "tactic": "rw [RingHom.ker_eq_comap_bot, quotQuotMk, ← comap_comap, ← RingHom.ker, mk_ker,\n comap_map_of_surjective (Ideal.Quotient.mk I) Quotient.mk_surjective, ← RingHom.ker, mk_ker,\n sup_comm]" } ]
[ 548, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 545, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMap.submodule_pow_eq_zero_of_pow_eq_zero
[ { "state_after": "case h.a\nR : Type u_1\nR₁ : Type ?u.155563\nR₂ : Type ?u.155566\nR₃ : Type ?u.155569\nR₄ : Type ?u.155572\nS : Type ?u.155575\nK : Type ?u.155578\nK₂ : Type ?u.155581\nM : Type u_2\nM' : Type ?u.155587\nM₁ : Type ?u.155590\nM₂ : Type ?u.155593\nM₃ : Type ?u.155596\nM₄ : Type ?u.155599\nN✝ : Type ?u.155602\nN₂ : Type ?u.155605\nι : Type ?u.155608\nV : Type ?u.155611\nV₂ : Type ?u.155614\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng✝ : M₂ →ₛₗ[σ₂₃] M₃\nN : Submodule R M\ng : Module.End R { x // x ∈ N }\nG : Module.End R M\nh : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g\nk : ℕ\nhG : G ^ k = 0\nm : { x // x ∈ N }\n⊢ ↑(↑(g ^ k) m) = ↑(↑0 m)", "state_before": "R : Type u_1\nR₁ : Type ?u.155563\nR₂ : Type ?u.155566\nR₃ : Type ?u.155569\nR₄ : Type ?u.155572\nS : Type ?u.155575\nK : Type ?u.155578\nK₂ : Type ?u.155581\nM : Type u_2\nM' : Type ?u.155587\nM₁ : Type ?u.155590\nM₂ : Type ?u.155593\nM₃ : Type ?u.155596\nM₄ : Type ?u.155599\nN✝ : Type ?u.155602\nN₂ : Type ?u.155605\nι : Type ?u.155608\nV : Type ?u.155611\nV₂ : Type ?u.155614\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng✝ : M₂ →ₛₗ[σ₂₃] M₃\nN : Submodule R M\ng : Module.End R { x // x ∈ N }\nG : Module.End R M\nh : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g\nk : ℕ\nhG : G ^ k = 0\n⊢ g ^ k = 0", "tactic": "ext m" }, { "state_after": "case h.a\nR : Type u_1\nR₁ : Type ?u.155563\nR₂ : Type ?u.155566\nR₃ : Type ?u.155569\nR₄ : Type ?u.155572\nS : Type ?u.155575\nK : Type ?u.155578\nK₂ : Type ?u.155581\nM : Type u_2\nM' : Type ?u.155587\nM₁ : Type ?u.155590\nM₂ : Type ?u.155593\nM₃ : Type ?u.155596\nM₄ : Type ?u.155599\nN✝ : Type ?u.155602\nN₂ : Type ?u.155605\nι : Type ?u.155608\nV : Type ?u.155611\nV₂ : Type ?u.155614\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng✝ : M₂ →ₛₗ[σ₂₃] M₃\nN : Submodule R M\ng : Module.End R { x // x ∈ N }\nG : Module.End R M\nh : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g\nk : ℕ\nhG : G ^ k = 0\nm : { x // x ∈ N }\nhg : ↑(comp (Submodule.subtype N) (g ^ k)) m = 0\n⊢ ↑(↑(g ^ k) m) = ↑(↑0 m)", "state_before": "case h.a\nR : Type u_1\nR₁ : Type ?u.155563\nR₂ : Type ?u.155566\nR₃ : Type ?u.155569\nR₄ : Type ?u.155572\nS : Type ?u.155575\nK : Type ?u.155578\nK₂ : Type ?u.155581\nM : Type u_2\nM' : Type ?u.155587\nM₁ : Type ?u.155590\nM₂ : Type ?u.155593\nM₃ : Type ?u.155596\nM₄ : Type ?u.155599\nN✝ : Type ?u.155602\nN₂ : Type ?u.155605\nι : Type ?u.155608\nV : Type ?u.155611\nV₂ : Type ?u.155614\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng✝ : M₂ →ₛₗ[σ₂₃] M₃\nN : Submodule R M\ng : Module.End R { x // x ∈ N }\nG : Module.End R M\nh : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g\nk : ℕ\nhG : G ^ k = 0\nm : { x // x ∈ N }\n⊢ ↑(↑(g ^ k) m) = ↑(↑0 m)", "tactic": "have hg : N.subtype.comp (g ^ k) m = 0 := by\n rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply]" }, { "state_after": "no goals", "state_before": "case h.a\nR : Type u_1\nR₁ : Type ?u.155563\nR₂ : Type ?u.155566\nR₃ : Type ?u.155569\nR₄ : Type ?u.155572\nS : Type ?u.155575\nK : Type ?u.155578\nK₂ : Type ?u.155581\nM : Type u_2\nM' : Type ?u.155587\nM₁ : Type ?u.155590\nM₂ : Type ?u.155593\nM₃ : Type ?u.155596\nM₄ : Type ?u.155599\nN✝ : Type ?u.155602\nN₂ : Type ?u.155605\nι : Type ?u.155608\nV : Type ?u.155611\nV₂ : Type ?u.155614\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng✝ : M₂ →ₛₗ[σ₂₃] M₃\nN : Submodule R M\ng : Module.End R { x // x ∈ N }\nG : Module.End R M\nh : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g\nk : ℕ\nhG : G ^ k = 0\nm : { x // x ∈ N }\nhg : ↑(comp (Submodule.subtype N) (g ^ k)) m = 0\n⊢ ↑(↑(g ^ k) m) = ↑(↑0 m)", "tactic": "simpa using hg" }, { "state_after": "no goals", "state_before": "R : Type u_1\nR₁ : Type ?u.155563\nR₂ : Type ?u.155566\nR₃ : Type ?u.155569\nR₄ : Type ?u.155572\nS : Type ?u.155575\nK : Type ?u.155578\nK₂ : Type ?u.155581\nM : Type u_2\nM' : Type ?u.155587\nM₁ : Type ?u.155590\nM₂ : Type ?u.155593\nM₃ : Type ?u.155596\nM₄ : Type ?u.155599\nN✝ : Type ?u.155602\nN₂ : Type ?u.155605\nι : Type ?u.155608\nV : Type ?u.155611\nV₂ : Type ?u.155614\ninst✝¹⁷ : Semiring R\ninst✝¹⁶ : Semiring R₂\ninst✝¹⁵ : Semiring R₃\ninst✝¹⁴ : Semiring R₄\ninst✝¹³ : AddCommMonoid M\ninst✝¹² : AddCommMonoid M₁\ninst✝¹¹ : AddCommMonoid M₂\ninst✝¹⁰ : AddCommMonoid M₃\ninst✝⁹ : AddCommMonoid M₄\ninst✝⁸ : Module R M\ninst✝⁷ : Module R M₁\ninst✝⁶ : Module R₂ M₂\ninst✝⁵ : Module R₃ M₃\ninst✝⁴ : Module R₄ M₄\nσ₁₂ : R →+* R₂\nσ₂₃ : R₂ →+* R₃\nσ₃₄ : R₃ →+* R₄\nσ₁₃ : R →+* R₃\nσ₂₄ : R₂ →+* R₄\nσ₁₄ : R →+* R₄\ninst✝³ : RingHomCompTriple σ₁₂ σ₂₃ σ₁₃\ninst✝² : RingHomCompTriple σ₂₃ σ₃₄ σ₂₄\ninst✝¹ : RingHomCompTriple σ₁₃ σ₃₄ σ₁₄\ninst✝ : RingHomCompTriple σ₁₂ σ₂₄ σ₁₄\nf : M →ₛₗ[σ₁₂] M₂\ng✝ : M₂ →ₛₗ[σ₂₃] M₃\nN : Submodule R M\ng : Module.End R { x // x ∈ N }\nG : Module.End R M\nh : comp G (Submodule.subtype N) = comp (Submodule.subtype N) g\nk : ℕ\nhG : G ^ k = 0\nm : { x // x ∈ N }\n⊢ ↑(comp (Submodule.subtype N) (g ^ k)) m = 0", "tactic": "rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply]" } ]
[ 354, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Mathlib/Algebra/BigOperators/Order.lean
Finset.pow_card_le_prod
[]
[ 226, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Order/BoundedOrder.lean
not_lt_top_iff
[]
[ 180, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 179, 1 ]
Mathlib/Analysis/BoxIntegral/Box/Basic.lean
BoxIntegral.Box.face_mono
[]
[ 409, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 407, 1 ]
Mathlib/Topology/FiberBundle/Basic.lean
FiberBundleCore.localTrivAt_def
[]
[ 630, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 629, 1 ]
Mathlib/Order/Bounds/Basic.lean
isGLB_Ici
[]
[ 523, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 522, 1 ]
Mathlib/MeasureTheory/Function/AEEqFun.lean
ContinuousMap.coeFn_toAEEqFun
[]
[ 928, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 927, 1 ]
Mathlib/ModelTheory/Basic.lean
FirstOrder.Language.toEquiv_equiv_empty
[]
[ 1006, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1005, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.le_degree_of_ne_zero
[]
[ 171, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Data/Prod/Basic.lean
Prod.exists'
[]
[ 47, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/Algebra/Group/Units.lean
Units.inv_mul_eq_one
[]
[ 385, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Mul.lean
fderivWithin_mul
[]
[ 374, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 370, 1 ]
Mathlib/Computability/Partrec.lean
Computable.option_some_iff
[]
[ 634, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 633, 1 ]
Mathlib/FieldTheory/PerfectClosure.lean
PerfectClosure.mk_add_mk
[]
[ 289, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 286, 1 ]
Mathlib/Data/Setoid/Basic.lean
Setoid.sup_def
[ { "state_after": "α : Type u_1\nβ : Type ?u.7769\nr s : Setoid α\n⊢ (EqvGen.Setoid fun x y => Rel r x y ∨ Rel s x y) = EqvGen.Setoid (Rel r ⊔ Rel s)", "state_before": "α : Type u_1\nβ : Type ?u.7769\nr s : Setoid α\n⊢ r ⊔ s = EqvGen.Setoid (Rel r ⊔ Rel s)", "tactic": "rw [sup_eq_eqvGen]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.7769\nr s : Setoid α\n⊢ (EqvGen.Setoid fun x y => Rel r x y ∨ Rel s x y) = EqvGen.Setoid (Rel r ⊔ Rel s)", "tactic": "rfl" } ]
[ 225, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/Algebra/Algebra/Basic.lean
algebraMap.coe_ratCast
[]
[ 253, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/Topology/Order/Basic.lean
tendsto_nhds_bot_mono'
[]
[ 1180, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1178, 1 ]
Mathlib/Geometry/Euclidean/Sphere/Basic.lean
EuclideanGeometry.Sphere.cospherical
[]
[ 172, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Std/Data/Int/Lemmas.lean
Int.eq_neg_comm
[]
[ 312, 47 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 311, 11 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.snormEssSup_smul_measure
[ { "state_after": "α : Type u_1\nE : Type ?u.2067351\nF : Type u_2\nG : Type ?u.2067357\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\n⊢ essSup (fun x => ↑‖f x‖₊) (c • μ) = essSup (fun x => ↑‖f x‖₊) μ", "state_before": "α : Type u_1\nE : Type ?u.2067351\nF : Type u_2\nG : Type ?u.2067357\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\n⊢ snormEssSup f (c • μ) = snormEssSup f μ", "tactic": "simp_rw [snormEssSup]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type ?u.2067351\nF : Type u_2\nG : Type ?u.2067357\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\nf : α → F\nc : ℝ≥0∞\nhc : c ≠ 0\n⊢ essSup (fun x => ↑‖f x‖₊) (c • μ) = essSup (fun x => ↑‖f x‖₊) μ", "tactic": "exact essSup_smul_measure hc" } ]
[ 612, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 609, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.op_nnnorm_comp_le
[]
[ 462, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 461, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.lift_mul
[]
[ 616, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 614, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.mem_cofinite
[]
[ 2638, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2637, 1 ]
Mathlib/MeasureTheory/Measure/ProbabilityMeasure.lean
MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_continuous
[]
[ 249, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 248, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Prod.lean
differentiableOn_snd
[]
[ 307, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 306, 1 ]
Mathlib/Topology/Order/Basic.lean
nhds_order_unbounded
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : TopologicalSpace α\ninst✝ : Preorder α\nt : OrderTopology α\na : α\nhu : ∃ u, a < u\nhl : ∃ l, l < a\n⊢ ((⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b)) ⊓ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b)) =\n (⨅ (i : α) (_ : i < a), 𝓟 (Ioi i)) ⊓ ⨅ (i : α) (_ : a < i), 𝓟 (Iio i)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : TopologicalSpace α\ninst✝ : Preorder α\nt : OrderTopology α\na : α\nhu : ∃ u, a < u\nhl : ∃ l, l < a\n⊢ 𝓝 a = ⨅ (l : α) (_ : l < a) (u : α) (_ : a < u), 𝓟 (Ioo l u)", "tactic": "simp only [nhds_eq_order, ← inf_biInf, ← biInf_inf, *, ← inf_principal, ← Ioi_inter_Iio]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : TopologicalSpace α\ninst✝ : Preorder α\nt : OrderTopology α\na : α\nhu : ∃ u, a < u\nhl : ∃ l, l < a\n⊢ ((⨅ (b : α) (_ : b ∈ Iio a), 𝓟 (Ioi b)) ⊓ ⨅ (b : α) (_ : b ∈ Ioi a), 𝓟 (Iio b)) =\n (⨅ (i : α) (_ : i < a), 𝓟 (Ioi i)) ⊓ ⨅ (i : α) (_ : a < i), 𝓟 (Iio i)", "tactic": "rfl" } ]
[ 978, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 976, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.infinite_iff
[ { "state_after": "no goals", "state_before": "α✝ β α : Type u\n⊢ Infinite α ↔ ℵ₀ ≤ (#α)", "tactic": "rw [← not_lt, lt_aleph0_iff_finite, not_finite_iff_infinite]" } ]
[ 1606, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1605, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.predAbove_right_monotone
[ { "state_after": "n m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\n⊢ (if h : ↑castSucc p < a then pred a (_ : a ≠ 0) else castLT a (_ : ↑a < n)) ≤\n if h : ↑castSucc p < b then pred b (_ : b ≠ 0) else castLT b (_ : ↑b < n)", "state_before": "n m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\n⊢ predAbove p a ≤ predAbove p b", "tactic": "dsimp [predAbove]" }, { "state_after": "case inl.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ↑castSucc p < a\nhb : ↑castSucc p < b\n⊢ pred a (_ : a ≠ 0) ≤ pred b (_ : b ≠ 0)\n\ncase inl.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ pred a (_ : a ≠ 0) ≤ castLT b (_ : ↑b < n)\n\ncase inr.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ↑castSucc p < b\n⊢ castLT a (_ : ↑a < n) ≤ pred b (_ : b ≠ 0)\n\ncase inr.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ castLT a (_ : ↑a < n) ≤ castLT b (_ : ↑b < n)", "state_before": "n m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\n⊢ (if h : ↑castSucc p < a then pred a (_ : a ≠ 0) else castLT a (_ : ↑a < n)) ≤\n if h : ↑castSucc p < b then pred b (_ : b ≠ 0) else castLT b (_ : ↑b < n)", "tactic": "split_ifs with ha hb hb" }, { "state_after": "case inl.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ↑castSucc p < a\nhb : ↑castSucc p < b\n⊢ ↑a - 1 ≤ ↑b - 1\n\ncase inl.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ ↑a - 1 ≤ ↑(castLT b (_ : ↑b < n))\n\ncase inr.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ↑castSucc p < b\n⊢ ↑(castLT a (_ : ↑a < n)) ≤ ↑b - 1\n\ncase inr.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ ↑(castLT a (_ : ↑a < n)) ≤ ↑(castLT b (_ : ↑b < n))", "state_before": "case inl.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ↑castSucc p < a\nhb : ↑castSucc p < b\n⊢ pred a (_ : a ≠ 0) ≤ pred b (_ : b ≠ 0)\n\ncase inl.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ pred a (_ : a ≠ 0) ≤ castLT b (_ : ↑b < n)\n\ncase inr.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ↑castSucc p < b\n⊢ castLT a (_ : ↑a < n) ≤ pred b (_ : b ≠ 0)\n\ncase inr.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ castLT a (_ : ↑a < n) ≤ castLT b (_ : ↑b < n)", "tactic": "all_goals simp only [le_iff_val_le_val, coe_pred]" }, { "state_after": "case inr.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ ↑(castLT a (_ : ↑a < n)) ≤ ↑(castLT b (_ : ↑b < n))", "state_before": "case inr.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ castLT a (_ : ↑a < n) ≤ castLT b (_ : ↑b < n)", "tactic": "simp only [le_iff_val_le_val, coe_pred]" }, { "state_after": "no goals", "state_before": "case inl.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ↑castSucc p < a\nhb : ↑castSucc p < b\n⊢ ↑a - 1 ≤ ↑b - 1", "tactic": "exact pred_le_pred H" }, { "state_after": "no goals", "state_before": "case inl.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ ↑a - 1 ≤ ↑(castLT b (_ : ↑b < n))", "tactic": "calc\n _ ≤ _ := Nat.pred_le _\n _ ≤ _ := H" }, { "state_after": "case inr.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha✝ : ¬↑castSucc p < a\nhb : ↑castSucc p < b\nha : a ≤ ↑castSucc p\n⊢ ↑(castLT a (_ : ↑a < n)) ≤ ↑b - 1", "state_before": "case inr.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ↑castSucc p < b\n⊢ ↑(castLT a (_ : ↑a < n)) ≤ ↑b - 1", "tactic": "simp at ha" }, { "state_after": "no goals", "state_before": "case inr.inl\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha✝ : ¬↑castSucc p < a\nhb : ↑castSucc p < b\nha : a ≤ ↑castSucc p\n⊢ ↑(castLT a (_ : ↑a < n)) ≤ ↑b - 1", "tactic": "exact le_pred_of_lt (lt_of_le_of_lt ha hb)" }, { "state_after": "no goals", "state_before": "case inr.inr\nn m : ℕ\np : Fin n\na b : Fin (n + 1)\nH : a ≤ b\nha : ¬↑castSucc p < a\nhb : ¬↑castSucc p < b\n⊢ ↑(castLT a (_ : ↑a < n)) ≤ ↑(castLT b (_ : ↑b < n))", "tactic": "exact H" } ]
[ 2277, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2267, 1 ]
Mathlib/NumberTheory/FermatPsp.lean
FermatPsp.coprime_of_probablePrime
[ { "state_after": "case pos\nn b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : 2 ≤ n\n⊢ Nat.coprime n b\n\ncase neg\nn b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : ¬2 ≤ n\n⊢ Nat.coprime n b", "state_before": "n b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\n⊢ Nat.coprime n b", "tactic": "by_cases h₃ : 2 ≤ n" }, { "state_after": "case pos.H\nn b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : 2 ≤ n\n⊢ ∀ (k : ℕ), Nat.Prime k → k ∣ n → ¬k ∣ b", "state_before": "case pos\nn b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : 2 ≤ n\n⊢ Nat.coprime n b", "tactic": "apply Nat.coprime_of_dvd" }, { "state_after": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : ProbablePrime (k * m) (k * j)\n⊢ False", "state_before": "case pos.H\nn b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : 2 ≤ n\n⊢ ∀ (k : ℕ), Nat.Prime k → k ∣ n → ¬k ∣ b", "tactic": "rintro k hk ⟨m, rfl⟩ ⟨j, rfl⟩" }, { "state_after": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : ProbablePrime (k * m) (k * j)\n⊢ k ∣ 1", "state_before": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : ProbablePrime (k * m) (k * j)\n⊢ False", "tactic": "apply Nat.Prime.not_dvd_one hk" }, { "state_after": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : k ∣ (k * j) ^ (k * m - 1) - 1\n⊢ k ∣ 1", "state_before": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : ProbablePrime (k * m) (k * j)\n⊢ k ∣ 1", "tactic": "replace h := dvd_of_mul_right_dvd h" }, { "state_after": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : k ∣ (k * j) ^ (k * m - 1) - 1\n⊢ k ∣ (k * j) ^ (k * m - 1)", "state_before": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : k ∣ (k * j) ^ (k * m - 1) - 1\n⊢ k ∣ 1", "tactic": "rw [Nat.dvd_add_iff_right h, Nat.sub_add_cancel (Nat.one_le_pow _ _ h₂)]" }, { "state_after": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : k ∣ (k * j) ^ (k * m - 1) - 1\n⊢ k * m - 1 ≠ 0", "state_before": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : k ∣ (k * j) ^ (k * m - 1) - 1\n⊢ k ∣ (k * j) ^ (k * m - 1)", "tactic": "refine' dvd_of_mul_right_dvd (dvd_pow_self (k * j) _)" }, { "state_after": "no goals", "state_before": "case pos.H.intro.intro\nk : ℕ\nhk : Nat.Prime k\nm : ℕ\nh₁ : 1 ≤ k * m\nh₃ : 2 ≤ k * m\nj : ℕ\nh₂ : 1 ≤ k * j\nh : k ∣ (k * j) ^ (k * m - 1) - 1\n⊢ k * m - 1 ≠ 0", "tactic": "linarith [tsub_pos_of_lt (one_lt_two.trans_le h₃)]" }, { "state_after": "case neg\nn b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : ¬2 ≤ n\n⊢ Nat.coprime 1 b", "state_before": "case neg\nn b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : ¬2 ≤ n\n⊢ Nat.coprime n b", "tactic": "rw [show n = 1 by linarith]" }, { "state_after": "no goals", "state_before": "case neg\nn b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : ¬2 ≤ n\n⊢ Nat.coprime 1 b", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "n b : ℕ\nh : ProbablePrime n b\nh₁ : 1 ≤ n\nh₂ : 1 ≤ b\nh₃ : ¬2 ≤ n\n⊢ n = 1", "tactic": "linarith" } ]
[ 104, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/CategoryTheory/Generator.lean
CategoryTheory.IsDetector.def
[]
[ 495, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 493, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.multiset_prod_le_inf
[ { "state_after": "case refine'_1\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns : Multiset (Ideal R)\n⊢ Multiset.prod 0 ≤ Multiset.inf 0\n\ncase refine'_2\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns : Multiset (Ideal R)\n⊢ ∀ ⦃a : Ideal R⦄ {s : Multiset (Ideal R)},\n Multiset.prod s ≤ Multiset.inf s → Multiset.prod (a ::ₘ s) ≤ Multiset.inf (a ::ₘ s)", "state_before": "R : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns : Multiset (Ideal R)\n⊢ Multiset.prod s ≤ Multiset.inf s", "tactic": "refine' s.induction_on _ _" }, { "state_after": "case refine'_2\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns✝ : Multiset (Ideal R)\na : Ideal R\ns : Multiset (Ideal R)\nih : Multiset.prod s ≤ Multiset.inf s\n⊢ Multiset.prod (a ::ₘ s) ≤ Multiset.inf (a ::ₘ s)", "state_before": "case refine'_2\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns : Multiset (Ideal R)\n⊢ ∀ ⦃a : Ideal R⦄ {s : Multiset (Ideal R)},\n Multiset.prod s ≤ Multiset.inf s → Multiset.prod (a ::ₘ s) ≤ Multiset.inf (a ::ₘ s)", "tactic": "intro a s ih" }, { "state_after": "case refine'_2\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns✝ : Multiset (Ideal R)\na : Ideal R\ns : Multiset (Ideal R)\nih : Multiset.prod s ≤ Multiset.inf s\n⊢ a * Multiset.prod s ≤ a ⊓ Multiset.inf s", "state_before": "case refine'_2\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns✝ : Multiset (Ideal R)\na : Ideal R\ns : Multiset (Ideal R)\nih : Multiset.prod s ≤ Multiset.inf s\n⊢ Multiset.prod (a ::ₘ s) ≤ Multiset.inf (a ::ₘ s)", "tactic": "rw [Multiset.prod_cons, Multiset.inf_cons]" }, { "state_after": "no goals", "state_before": "case refine'_2\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns✝ : Multiset (Ideal R)\na : Ideal R\ns : Multiset (Ideal R)\nih : Multiset.prod s ≤ Multiset.inf s\n⊢ a * Multiset.prod s ≤ a ⊓ Multiset.inf s", "tactic": "exact le_trans mul_le_inf (inf_le_inf le_rfl ih)" }, { "state_after": "case refine'_1\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns : Multiset (Ideal R)\n⊢ Multiset.prod 0 ≤ ⊤", "state_before": "case refine'_1\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns : Multiset (Ideal R)\n⊢ Multiset.prod 0 ≤ Multiset.inf 0", "tactic": "rw [Multiset.inf_zero]" }, { "state_after": "no goals", "state_before": "case refine'_1\nR : Type u\nι : Type ?u.260476\ninst✝ : CommSemiring R\nI J K L : Ideal R\ns : Multiset (Ideal R)\n⊢ Multiset.prod 0 ≤ ⊤", "tactic": "exact le_top" } ]
[ 665, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 658, 1 ]
Mathlib/Algebra/Order/Monoid/Lemmas.lean
Monotone.const_mul'
[]
[ 1289, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1288, 1 ]
Mathlib/Data/Set/Basic.lean
Disjoint.inter_eq
[]
[ 1526, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1525, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMap.restrict_apply
[]
[ 238, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/ModelTheory/Basic.lean
FirstOrder.Language.Hom.ext_iff
[]
[ 530, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 529, 1 ]
Mathlib/Logic/Equiv/Basic.lean
Equiv.sumCongr_trans
[ { "state_after": "case H\nα₁ : Type u_1\nβ₁ : Type u_2\nα₂ : Type u_3\nβ₂ : Type u_4\nγ₁ : Type u_5\nγ₂ : Type u_6\ne : α₁ ≃ β₁\nf : α₂ ≃ β₂\ng : β₁ ≃ γ₁\nh : β₂ ≃ γ₂\ni : α₁ ⊕ α₂\n⊢ ↑((sumCongr e f).trans (sumCongr g h)) i = ↑(sumCongr (e.trans g) (f.trans h)) i", "state_before": "α₁ : Type u_1\nβ₁ : Type u_2\nα₂ : Type u_3\nβ₂ : Type u_4\nγ₁ : Type u_5\nγ₂ : Type u_6\ne : α₁ ≃ β₁\nf : α₂ ≃ β₂\ng : β₁ ≃ γ₁\nh : β₂ ≃ γ₂\n⊢ (sumCongr e f).trans (sumCongr g h) = sumCongr (e.trans g) (f.trans h)", "tactic": "ext i" }, { "state_after": "no goals", "state_before": "case H\nα₁ : Type u_1\nβ₁ : Type u_2\nα₂ : Type u_3\nβ₂ : Type u_4\nγ₁ : Type u_5\nγ₂ : Type u_6\ne : α₁ ≃ β₁\nf : α₂ ≃ β₂\ng : β₁ ≃ γ₁\nh : β₂ ≃ γ₂\ni : α₁ ⊕ α₂\n⊢ ↑((sumCongr e f).trans (sumCongr g h)) i = ↑(sumCongr (e.trans g) (f.trans h)) i", "tactic": "cases i <;> rfl" } ]
[ 282, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 279, 1 ]
Mathlib/Data/List/Cycle.lean
Cycle.reverse_coe
[]
[ 553, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 552, 1 ]
Mathlib/Data/List/Count.lean
List.count_replicate
[ { "state_after": "case inl\nα : Type u_1\nl : List α\ninst✝ : DecidableEq α\na b : α\nn : ℕ\nh✝ : a = b\n⊢ count a (replicate n b) = n\n\ncase inr\nα : Type u_1\nl : List α\ninst✝ : DecidableEq α\na b : α\nn : ℕ\nh✝ : ¬a = b\n⊢ count a (replicate n b) = 0", "state_before": "α : Type u_1\nl : List α\ninst✝ : DecidableEq α\na b : α\nn : ℕ\n⊢ count a (replicate n b) = if a = b then n else 0", "tactic": "split" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nl : List α\ninst✝ : DecidableEq α\na b : α\nn : ℕ\nh✝ : a = b\n⊢ count a (replicate n b) = n\n\ncase inr\nα : Type u_1\nl : List α\ninst✝ : DecidableEq α\na b : α\nn : ℕ\nh✝ : ¬a = b\n⊢ count a (replicate n b) = 0", "tactic": "exacts [‹a = b› ▸ count_replicate_self _ _, count_eq_zero.2 <| mt eq_of_mem_replicate ‹a ≠ b›]" } ]
[ 279, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/Data/Seq/Seq.lean
Stream'.Seq.get?_zip
[]
[ 604, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 602, 1 ]
Mathlib/MeasureTheory/Integral/Bochner.lean
MeasureTheory.L1.integral_eq
[ { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type u_2\nF : Type ?u.411128\n𝕜 : Type ?u.411131\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedAddCommGroup F\nm : MeasurableSpace α\nμ : Measure α\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : NontriviallyNormedField 𝕜\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : SMulCommClass ℝ 𝕜 E\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace E\nf : { x // x ∈ Lp E 1 }\n⊢ integral f = ↑integralCLM f", "tactic": "simp only [integral]" } ]
[ 680, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 679, 1 ]
Mathlib/Data/List/Basic.lean
List.foldl_fixed
[]
[ 2431, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2430, 1 ]
Mathlib/Algebra/Order/Monoid/Canonical/Defs.lean
min_one
[]
[ 384, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 383, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
MeasureTheory.StronglyMeasurable.nnnorm
[]
[ 829, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 827, 11 ]
Mathlib/Order/Filter/Extr.lean
Filter.EventuallyEq.isMaxFilter_iff
[]
[ 652, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 650, 1 ]
Mathlib/Data/PFun.lean
PFun.dom_comp
[ { "state_after": "case h\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nδ : Type ?u.54232\nε : Type ?u.54235\nι : Type ?u.54238\nf✝ : α →. β\nf : β →. γ\ng : α →. β\nx✝ : α\n⊢ x✝ ∈ Dom (comp f g) ↔ x✝ ∈ preimage g (Dom f)", "state_before": "α : Type u_3\nβ : Type u_1\nγ : Type u_2\nδ : Type ?u.54232\nε : Type ?u.54235\nι : Type ?u.54238\nf✝ : α →. β\nf : β →. γ\ng : α →. β\n⊢ Dom (comp f g) = preimage g (Dom f)", "tactic": "ext" }, { "state_after": "case h\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nδ : Type ?u.54232\nε : Type ?u.54235\nι : Type ?u.54238\nf✝ : α →. β\nf : β →. γ\ng : α →. β\nx✝ : α\n⊢ (∃ y a, a ∈ g x✝ ∧ y ∈ f a) ↔ ∃ y x, x ∈ f y ∧ y ∈ g x✝", "state_before": "case h\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nδ : Type ?u.54232\nε : Type ?u.54235\nι : Type ?u.54238\nf✝ : α →. β\nf : β →. γ\ng : α →. β\nx✝ : α\n⊢ x✝ ∈ Dom (comp f g) ↔ x✝ ∈ preimage g (Dom f)", "tactic": "simp_rw [mem_preimage, mem_dom, comp_apply, Part.mem_bind_iff, ← exists_and_right]" }, { "state_after": "case h\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nδ : Type ?u.54232\nε : Type ?u.54235\nι : Type ?u.54238\nf✝ : α →. β\nf : β →. γ\ng : α →. β\nx✝ : α\n⊢ (∃ b a, b ∈ g x✝ ∧ a ∈ f b) ↔ ∃ y x, x ∈ f y ∧ y ∈ g x✝", "state_before": "case h\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nδ : Type ?u.54232\nε : Type ?u.54235\nι : Type ?u.54238\nf✝ : α →. β\nf : β →. γ\ng : α →. β\nx✝ : α\n⊢ (∃ y a, a ∈ g x✝ ∧ y ∈ f a) ↔ ∃ y x, x ∈ f y ∧ y ∈ g x✝", "tactic": "rw [exists_comm]" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nδ : Type ?u.54232\nε : Type ?u.54235\nι : Type ?u.54238\nf✝ : α →. β\nf : β →. γ\ng : α →. β\nx✝ : α\n⊢ (∃ b a, b ∈ g x✝ ∧ a ∈ f b) ↔ ∃ y x, x ∈ f y ∧ y ∈ g x✝", "tactic": "simp_rw [and_comm]" } ]
[ 601, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 597, 1 ]
Mathlib/Algebra/Category/ModuleCat/Projective.lean
IsProjective.iff_projective
[ { "state_after": "case refine'_1\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Module.Projective R P\n⊢ Projective (of R P)\n\ncase refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\n⊢ Module.Projective R P", "state_before": "R : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\n⊢ Module.Projective R P ↔ Projective (of R P)", "tactic": "refine' ⟨fun h => _, fun h => _⟩" }, { "state_after": "case refine'_1\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Module.Projective R P\nthis : Module.Projective R ↑(of R P) := h\n⊢ Projective (of R P)", "state_before": "case refine'_1\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Module.Projective R P\n⊢ Projective (of R P)", "tactic": "letI : Module.Projective R (ModuleCat.of R P) := h" }, { "state_after": "no goals", "state_before": "case refine'_1\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Module.Projective R P\nthis : Module.Projective R ↑(of R P) := h\n⊢ Projective (of R P)", "tactic": "exact ⟨fun E X epi => Module.projective_lifting_property _ _\n ((ModuleCat.epi_iff_surjective _).mp epi)⟩" }, { "state_after": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\n⊢ ∀ {M : Type (max v u)} {N : Type (max u v)} [inst : AddCommGroup M] [inst_1 : AddCommGroup N] [inst_2 : Module R M]\n [inst_3 : Module R N] (f : M →ₗ[R] N) (g : P →ₗ[R] N), Function.Surjective ↑f → ∃ h, comp f h = g", "state_before": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\n⊢ Module.Projective R P", "tactic": "refine' Module.Projective.of_lifting_property.{u,v} _" }, { "state_after": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\nE : Type (max v u)\nX : Type (max u v)\nmE : AddCommGroup E\nmX : AddCommGroup X\nsE : Module R E\nsX : Module R X\nf : E →ₗ[R] X\ng : P →ₗ[R] X\ns : Function.Surjective ↑f\n⊢ ∃ h, comp f h = g", "state_before": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\n⊢ ∀ {M : Type (max v u)} {N : Type (max u v)} [inst : AddCommGroup M] [inst_1 : AddCommGroup N] [inst_2 : Module R M]\n [inst_3 : Module R N] (f : M →ₗ[R] N) (g : P →ₗ[R] N), Function.Surjective ↑f → ∃ h, comp f h = g", "tactic": "intro E X mE mX sE sX f g s" }, { "state_after": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\nE : Type (max v u)\nX : Type (max u v)\nmE : AddCommGroup E\nmX : AddCommGroup X\nsE : Module R E\nsX : Module R X\nf : E →ₗ[R] X\ng : P →ₗ[R] X\ns : Function.Surjective ↑f\nthis : Epi (↟f)\n⊢ ∃ h, comp f h = g", "state_before": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\nE : Type (max v u)\nX : Type (max u v)\nmE : AddCommGroup E\nmX : AddCommGroup X\nsE : Module R E\nsX : Module R X\nf : E →ₗ[R] X\ng : P →ₗ[R] X\ns : Function.Surjective ↑f\n⊢ ∃ h, comp f h = g", "tactic": "haveI : Epi (↟f) := (ModuleCat.epi_iff_surjective (↟f)).mpr s" }, { "state_after": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\nE : Type (max v u)\nX : Type (max u v)\nmE : AddCommGroup E\nmX : AddCommGroup X\nsE : Module R E\nsX : Module R X\nf : E →ₗ[R] X\ng : P →ₗ[R] X\ns : Function.Surjective ↑f\nthis✝ : Epi (↟f)\nthis : Projective (of R P) := h\n⊢ ∃ h, comp f h = g", "state_before": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\nE : Type (max v u)\nX : Type (max u v)\nmE : AddCommGroup E\nmX : AddCommGroup X\nsE : Module R E\nsX : Module R X\nf : E →ₗ[R] X\ng : P →ₗ[R] X\ns : Function.Surjective ↑f\nthis : Epi (↟f)\n⊢ ∃ h, comp f h = g", "tactic": "letI : Projective (ModuleCat.of R P) := h" }, { "state_after": "no goals", "state_before": "case refine'_2\nR : Type u\ninst✝² : Ring R\nP : Type (max u v)\ninst✝¹ : AddCommGroup P\ninst✝ : Module R P\nh : Projective (of R P)\nE : Type (max v u)\nX : Type (max u v)\nmE : AddCommGroup E\nmX : AddCommGroup X\nsE : Module R E\nsX : Module R X\nf : E →ₗ[R] X\ng : P →ₗ[R] X\ns : Function.Surjective ↑f\nthis✝ : Epi (↟f)\nthis : Projective (of R P) := h\n⊢ ∃ h, comp f h = g", "tactic": "exact ⟨Projective.factorThru (↟g) (↟f), Projective.factorThru_comp (↟g) (↟f)⟩" } ]
[ 44, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 34, 1 ]
Mathlib/Topology/Sheaves/Stalks.lean
TopCat.Presheaf.stalkPushforward.comp
[ { "state_after": "C : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\n⊢ stalkPushforward C (f ≫ g) ℱ x = stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\n⊢ stalkPushforward C (f ≫ g) ℱ x = stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "tactic": "change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _)" }, { "state_after": "case w\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\nU : (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ\n⊢ colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n U ≫\n stalkPushforward C (f ≫ g) ℱ x =\n colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n U ≫\n stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\n⊢ stalkPushforward C (f ≫ g) ℱ x = stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "tactic": "ext U" }, { "state_after": "case w.mk.mk.mk\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\ncarrier✝ : Set ↑Z\nis_open'✝ : IsOpen carrier✝\nproperty✝ : (forget TopCat).map (f ≫ g) x ∈ { carrier := carrier✝, is_open' := is_open'✝ }\n⊢ colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫\n stalkPushforward C (f ≫ g) ℱ x =\n colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫\n stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "state_before": "case w\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\nU : (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ\n⊢ colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n U ≫\n stalkPushforward C (f ≫ g) ℱ x =\n colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n U ≫\n stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "tactic": "rcases U with ⟨⟨_, _⟩, _⟩" }, { "state_after": "case w.mk.mk.mk\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\ncarrier✝ : Set ↑Z\nis_open'✝ : IsOpen carrier✝\nproperty✝ : (forget TopCat).map (f ≫ g) x ∈ { carrier := carrier✝, is_open' := is_open'✝ }\n⊢ colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫\n stalkPushforward C (f ≫ g) ℱ x =\n colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫\n stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "state_before": "case w.mk.mk.mk\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\ncarrier✝ : Set ↑Z\nis_open'✝ : IsOpen carrier✝\nproperty✝ : (forget TopCat).map (f ≫ g) x ∈ { carrier := carrier✝, is_open' := is_open'✝ }\n⊢ colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫\n stalkPushforward C (f ≫ g) ℱ x =\n colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫\n stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "tactic": "simp only [colimit.ι_map_assoc, colimit.ι_pre_assoc, whiskerRight_app, Category.assoc]" }, { "state_after": "no goals", "state_before": "case w.mk.mk.mk\nC : Type u\ninst✝¹ : Category C\ninst✝ : HasColimits C\nX Y Z : TopCat\nℱ : Presheaf C X\nf : X ⟶ Y\ng : Y ⟶ Z\nx : ↑X\ncarrier✝ : Set ↑Z\nis_open'✝ : IsOpen carrier✝\nproperty✝ : (forget TopCat).map (f ≫ g) x ∈ { carrier := carrier✝, is_open' := is_open'✝ }\n⊢ colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫\n stalkPushforward C (f ≫ g) ℱ x =\n colimit.ι\n (((whiskeringLeft (OpenNhds ((forget TopCat).map (f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj\n (Functor.op (OpenNhds.inclusion ((forget TopCat).map (f ≫ g) x)))).obj\n ((f ≫ g) _* ℱ))\n { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫\n stalkPushforward C g (f _* ℱ) ((forget TopCat).map f x) ≫ stalkPushforward C f ℱ x", "tactic": "simp [stalkFunctor, stalkPushforward]" } ]
[ 200, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/Data/Nat/Prime.lean
Nat.dvd_prime_pow
[ { "state_after": "no goals", "state_before": "p : ℕ\npp : Prime p\nm i : ℕ\n⊢ i ∣ p ^ m ↔ ∃ k, k ≤ m ∧ i = p ^ k", "tactic": "simp_rw [_root_.dvd_prime_pow (prime_iff.mp pp) m, associated_eq_eq]" } ]
[ 697, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 696, 1 ]
Mathlib/Data/Nat/Dist.lean
Nat.dist_eq_zero
[ { "state_after": "no goals", "state_before": "n m : ℕ\nh : n = m\n⊢ dist n m = 0", "tactic": "rw [h, dist_self]" } ]
[ 46, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
InnerProductGeometry.sin_angle_add_of_inner_eq_zero
[ { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y ≠ 0\n⊢ ‖y‖ ≤ ‖x + y‖", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y ≠ 0\n⊢ Real.sin (angle x (x + y)) = ‖y‖ / ‖x + y‖", "tactic": "rw [angle_add_eq_arcsin_of_inner_eq_zero h h0,\n Real.sin_arcsin (le_trans (by norm_num) (div_nonneg (norm_nonneg _) (norm_nonneg _)))\n (div_le_one_of_le _ (norm_nonneg _))]" }, { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y ≠ 0\n⊢ ‖y‖ * ‖y‖ ≤ ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y ≠ 0\n⊢ ‖y‖ ≤ ‖x + y‖", "tactic": "rw [mul_self_le_mul_self_iff (norm_nonneg _) (norm_nonneg _),\n norm_add_sq_eq_norm_sq_add_norm_sq_real h]" }, { "state_after": "no goals", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y ≠ 0\n⊢ ‖y‖ * ‖y‖ ≤ ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖", "tactic": "exact le_add_of_nonneg_left (mul_self_nonneg _)" }, { "state_after": "no goals", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx y : V\nh : inner x y = 0\nh0 : x ≠ 0 ∨ y ≠ 0\n⊢ -1 ≤ 0", "tactic": "norm_num" } ]
[ 157, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/Data/Set/Ncard.lean
Set.eq_insert_of_ncard_eq_succ
[ { "state_after": "α : Type u_1\nβ : Type ?u.160028\ns t : Set α\na b x y : α\nf : α → β\nn : ℕ\nh : ncard s = n + 1\nhsf : Set.Finite s\n⊢ ∃ a t, ¬a ∈ t ∧ insert a t = s ∧ ncard t = n", "state_before": "α : Type u_1\nβ : Type ?u.160028\ns t : Set α\na b x y : α\nf : α → β\nn : ℕ\nh : ncard s = n + 1\n⊢ ∃ a t, ¬a ∈ t ∧ insert a t = s ∧ ncard t = n", "tactic": "have hsf := Finite_of_ncard_pos (n.zero_lt_succ.trans_eq h.symm)" }, { "state_after": "α : Type u_1\nβ : Type ?u.160028\ns t : Set α\na b x y : α\nf : α → β\nn : ℕ\nhsf : Set.Finite s\nh✝ : Finset.card (Finite.toFinset hsf) = n + 1\nh : ∃ a t, ¬a ∈ t ∧ insert a t = Finite.toFinset hsf ∧ Finset.card t = n\n⊢ ∃ a t, ¬a ∈ t ∧ insert a t = s ∧ ncard t = n", "state_before": "α : Type u_1\nβ : Type ?u.160028\ns t : Set α\na b x y : α\nf : α → β\nn : ℕ\nh : ncard s = n + 1\nhsf : Set.Finite s\n⊢ ∃ a t, ¬a ∈ t ∧ insert a t = s ∧ ncard t = n", "tactic": "rw [ncard_eq_toFinset_card _ hsf, Finset.card_eq_succ] at h" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nhts : insert a t = Finite.toFinset hsf\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\n⊢ ∃ a t_1, ¬a ∈ t_1 ∧ insert a t_1 = s ∧ ncard t_1 = Finset.card t", "state_before": "α : Type u_1\nβ : Type ?u.160028\ns t : Set α\na b x y : α\nf : α → β\nn : ℕ\nhsf : Set.Finite s\nh✝ : Finset.card (Finite.toFinset hsf) = n + 1\nh : ∃ a t, ¬a ∈ t ∧ insert a t = Finite.toFinset hsf ∧ Finset.card t = n\n⊢ ∃ a t, ¬a ∈ t ∧ insert a t = s ∧ ncard t = n", "tactic": "obtain ⟨a, t, hat, hts, rfl⟩ := h" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\nhts : ∀ (a_1 : α), a_1 = a ∨ a_1 ∈ t ↔ a_1 ∈ s\n⊢ ∃ a t_1, ¬a ∈ t_1 ∧ insert a t_1 = s ∧ ncard t_1 = Finset.card t", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nhts : insert a t = Finite.toFinset hsf\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\n⊢ ∃ a t_1, ¬a ∈ t_1 ∧ insert a t_1 = s ∧ ncard t_1 = Finset.card t", "tactic": "simp only [Finset.ext_iff, Finset.mem_insert, Finite.mem_toFinset] at hts" }, { "state_after": "case intro.intro.intro.intro.refine'_1\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\nhts : ∀ (a_1 : α), a_1 = a ∨ a_1 ∈ t ↔ a_1 ∈ s\n⊢ insert a ↑t = s\n\ncase intro.intro.intro.intro.refine'_2\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\nhts : ∀ (a_1 : α), a_1 = a ∨ a_1 ∈ t ↔ a_1 ∈ s\n⊢ ncard ↑t = Finset.card t", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\nhts : ∀ (a_1 : α), a_1 = a ∨ a_1 ∈ t ↔ a_1 ∈ s\n⊢ ∃ a t_1, ¬a ∈ t_1 ∧ insert a t_1 = s ∧ ncard t_1 = Finset.card t", "tactic": "refine' ⟨a, t, hat, _, _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.refine'_2\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\nhts : ∀ (a_1 : α), a_1 = a ∨ a_1 ∈ t ↔ a_1 ∈ s\n⊢ ncard ↑t = Finset.card t", "tactic": "simp" }, { "state_after": "case intro.intro.intro.intro.refine'_1\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\nhts : ∀ (a_1 : α), a_1 = a ∨ a_1 ∈ t ↔ a_1 ∈ s\n⊢ ∀ (x : α), x = a ∨ x ∈ t ↔ x ∈ s", "state_before": "case intro.intro.intro.intro.refine'_1\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\nhts : ∀ (a_1 : α), a_1 = a ∨ a_1 ∈ t ↔ a_1 ∈ s\n⊢ insert a ↑t = s", "tactic": "simp only [Finset.mem_coe, ext_iff, mem_insert_iff]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.refine'_1\nα : Type u_1\nβ : Type ?u.160028\ns t✝ : Set α\na✝ b x y : α\nf : α → β\nhsf : Set.Finite s\na : α\nt : Finset α\nhat : ¬a ∈ t\nh : Finset.card (Finite.toFinset hsf) = Finset.card t + 1\nhts : ∀ (a_1 : α), a_1 = a ∨ a_1 ∈ t ↔ a_1 ∈ s\n⊢ ∀ (x : α), x = a ∨ x ∈ t ↔ x ∈ s", "tactic": "tauto" } ]
[ 735, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 724, 1 ]
Mathlib/Data/Multiset/Lattice.lean
Multiset.inf_add
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderTop α\ns₁ s₂ : Multiset α\n⊢ inf (s₁ + s₂) = fold (fun x x_1 => x ⊓ x_1) (⊤ ⊓ ⊤) (s₁ + s₂)", "tactic": "simp [inf]" } ]
[ 142, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/CategoryTheory/Abelian/Pseudoelements.lean
CategoryTheory.Abelian.Pseudoelement.pseudo_pullback
[ { "state_after": "case intro.intro.intro.intro.intro\nC : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\n⊢ ∃ s, pseudoApply pullback.fst s = Quotient.mk (setoid P) x ∧ pseudoApply pullback.snd s = Quotient.mk (setoid Q) y", "state_before": "C : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\n⊢ ∃ s, pseudoApply pullback.fst s = Quotient.mk (setoid P) x ∧ pseudoApply pullback.snd s = Quotient.mk (setoid Q) y", "tactic": "obtain ⟨Z, a, b, ea, eb, comm⟩ := Quotient.exact h" }, { "state_after": "case intro.intro.intro.intro.intro.mk.intro\nC : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\nl : Z ⟶ pullback f g\nhl₁ : l ≫ pullback.fst = a ≫ x.hom\nhl₂ : l ≫ pullback.snd = b ≫ y.hom\n⊢ ∃ s, pseudoApply pullback.fst s = Quotient.mk (setoid P) x ∧ pseudoApply pullback.snd s = Quotient.mk (setoid Q) y", "state_before": "case intro.intro.intro.intro.intro\nC : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\n⊢ ∃ s, pseudoApply pullback.fst s = Quotient.mk (setoid P) x ∧ pseudoApply pullback.snd s = Quotient.mk (setoid Q) y", "tactic": "obtain ⟨l, hl₁, hl₂⟩ := @pullback.lift' _ _ _ _ _ _ f g _ (a ≫ x.hom) (b ≫ y.hom) (by\n simp only [Category.assoc]\n exact comm)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.mk.intro\nC : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\nl : Z ⟶ pullback f g\nhl₁ : l ≫ pullback.fst = a ≫ x.hom\nhl₂ : l ≫ pullback.snd = b ≫ y.hom\n⊢ ∃ s, pseudoApply pullback.fst s = Quotient.mk (setoid P) x ∧ pseudoApply pullback.snd s = Quotient.mk (setoid Q) y", "tactic": "exact ⟨l, ⟨Quotient.sound ⟨Z, 𝟙 Z, a, inferInstance, ea, by rwa [Category.id_comp]⟩,\n Quotient.sound ⟨Z, 𝟙 Z, b, inferInstance, eb, by rwa [Category.id_comp]⟩⟩⟩" }, { "state_after": "C : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\n⊢ a ≫ x.hom ≫ f = b ≫ y.hom ≫ g", "state_before": "C : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\n⊢ (a ≫ x.hom) ≫ f = (b ≫ y.hom) ≫ g", "tactic": "simp only [Category.assoc]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\n⊢ a ≫ x.hom ≫ f = b ≫ y.hom ≫ g", "tactic": "exact comm" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\nl : Z ⟶ pullback f g\nhl₁ : l ≫ pullback.fst = a ≫ x.hom\nhl₂ : l ≫ pullback.snd = b ≫ y.hom\n⊢ 𝟙 Z ≫ ((fun g_1 => app pullback.fst g_1) (Over.mk l)).hom = a ≫ x.hom", "tactic": "rwa [Category.id_comp]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\ninst✝¹ : Abelian C\ninst✝ : HasPullbacks C\nP Q R : C\nf : P ⟶ R\ng : Q ⟶ R\np : Pseudoelement P\nq : Pseudoelement Q\nx : Over P\ny : Over Q\nh : pseudoApply f (Quotient.mk (setoid P) x) = pseudoApply g (Quotient.mk (setoid Q) y)\nZ : C\na : Z ⟶ ((fun g => app f g) x).left\nb : Z ⟶ ((fun g_1 => app g g_1) y).left\nea : Epi a\neb : Epi b\ncomm : a ≫ ((fun g => app f g) x).hom = b ≫ ((fun g_1 => app g g_1) y).hom\nl : Z ⟶ pullback f g\nhl₁ : l ≫ pullback.fst = a ≫ x.hom\nhl₂ : l ≫ pullback.snd = b ≫ y.hom\n⊢ 𝟙 Z ≫ ((fun g_1 => app pullback.snd g_1) (Over.mk l)).hom = b ≫ y.hom", "tactic": "rwa [Category.id_comp]" } ]
[ 475, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 466, 1 ]
Mathlib/Data/List/BigOperators/Basic.lean
List.alternatingProd_singleton
[]
[ 630, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 629, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
ENNReal.measurable_of_measurable_nnreal_nnreal
[]
[ 1851, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1846, 1 ]
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
CategoryTheory.Presieve.isSheaf_iso
[]
[ 754, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 753, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
CategoryTheory.Limits.BinaryCofan.mk_inl
[]
[ 331, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 330, 1 ]
Mathlib/Order/Bounds/Basic.lean
MonotoneOn.map_bddAbove
[]
[ 1186, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1185, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Add.lean
fderiv_const_sub
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_3\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_2\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.579415\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.579510\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\nc : F\n⊢ fderiv 𝕜 (fun y => c - f y) x = -fderiv 𝕜 f x", "tactic": "simp only [← fderivWithin_univ, fderivWithin_const_sub uniqueDiffWithinAt_univ]" } ]
[ 663, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 662, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Log.lean
Complex.ofReal_log
[ { "state_after": "no goals", "state_before": "x : ℝ\nhx : 0 ≤ x\n⊢ (↑(Real.log x)).re = (log ↑x).re", "tactic": "rw [log_re, ofReal_re, abs_of_nonneg hx]" }, { "state_after": "no goals", "state_before": "x : ℝ\nhx : 0 ≤ x\n⊢ (↑(Real.log x)).im = (log ↑x).im", "tactic": "rw [ofReal_im, log_im, arg_ofReal_of_nonneg hx]" } ]
[ 75, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/LinearAlgebra/Prod.lean
LinearMap.prodMap_apply
[]
[ 319, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 318, 1 ]
Mathlib/RingTheory/WittVector/Basic.lean
WittVector.ghostComponent_apply
[]
[ 314, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 313, 1 ]
Mathlib/RingTheory/Int/Basic.lean
Int.span_natAbs
[ { "state_after": "a : ℤ\n⊢ Associated (↑(natAbs a)) a", "state_before": "a : ℤ\n⊢ Ideal.span {↑(natAbs a)} = Ideal.span {a}", "tactic": "rw [Ideal.span_singleton_eq_span_singleton]" }, { "state_after": "no goals", "state_before": "a : ℤ\n⊢ Associated (↑(natAbs a)) a", "tactic": "exact (associated_natAbs _).symm" } ]
[ 394, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 392, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
Measurable.aemeasurable
[]
[ 680, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 679, 1 ]
Mathlib/Algebra/Group/Basic.lean
inv_div_left
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.24338\nG : Type ?u.24341\ninst✝ : DivisionMonoid α\na b c : α\n⊢ a⁻¹ / b = (b * a)⁻¹", "tactic": "simp" } ]
[ 409, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 409, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iInter_ge_eq_iInter_nat_add
[]
[ 2202, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2201, 1 ]
Mathlib/Topology/Algebra/ContinuousMonoidHom.lean
ContinuousMonoidHom.closedEmbedding_toContinuousMap
[ { "state_after": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\n⊢ Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ", "state_before": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\n⊢ IsOpen (Set.range toContinuousMapᶜ)", "tactic": "suffices\n Set.range (toContinuousMap : ContinuousMonoidHom A B → C(A, B)) =\n ({ f | f '' {1} ⊆ {1}ᶜ } ∪\n ⋃ (x) (y) (U) (V) (W) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W),\n { f | f '' {x} ⊆ U } ∩ { f | f '' {y} ⊆ V } ∩ { f | f '' {x * y} ⊆ W } :\n Set C(A , B))ᶜ by\n rw [this, compl_compl]\n refine' (ContinuousMap.isOpen_gen isCompact_singleton isOpen_compl_singleton).union _\n repeat' apply isOpen_iUnion; intro\n repeat' apply IsOpen.inter\n all_goals apply ContinuousMap.isOpen_gen isCompact_singleton; assumption" }, { "state_after": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\n⊢ ∀ (x : C(A, B)),\n x ∈ Set.range toContinuousMap ↔\n ¬x ∈ {f | ¬↑f 1 ∈ {1}} ∧\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 →\n Disjoint (i_2 * i_3) i_4 → ¬x ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "state_before": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\n⊢ Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ", "tactic": "simp_rw [Set.compl_union, Set.compl_iUnion, Set.image_singleton, Set.singleton_subset_iff,\n Set.ext_iff, Set.mem_inter_iff, Set.mem_iInter, Set.mem_compl_iff]" }, { "state_after": "case refine'_1\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\n⊢ f ∈ Set.range toContinuousMap →\n ¬f ∈ {f | ¬↑f 1 ∈ {1}} ∧\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 →\n Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}\n\ncase refine'_2\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\n⊢ (¬f ∈ {f | ¬↑f 1 ∈ {1}} ∧\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 →\n Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}) →\n f ∈ Set.range toContinuousMap", "state_before": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\n⊢ ∀ (x : C(A, B)),\n x ∈ Set.range toContinuousMap ↔\n ¬x ∈ {f | ¬↑f 1 ∈ {1}} ∧\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 →\n Disjoint (i_2 * i_3) i_4 → ¬x ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "tactic": "refine' fun f => ⟨_, _⟩" }, { "state_after": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\n⊢ IsOpen\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})", "state_before": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\n⊢ IsOpen (Set.range toContinuousMapᶜ)", "tactic": "rw [this, compl_compl]" }, { "state_after": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\n⊢ IsOpen\n (⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})", "state_before": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\n⊢ IsOpen\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})", "tactic": "refine' (ContinuousMap.isOpen_gen isCompact_singleton isOpen_compl_singleton).union _" }, { "state_after": "case h.h.h.h.h.h.h.h.h\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴})", "state_before": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\n⊢ IsOpen\n (⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})", "tactic": "repeat' apply isOpen_iUnion; intro" }, { "state_after": "case h.h.h.h.h.h.h.h.h.h₁.h₁\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁸} ⊆ i✝⁶}\n\ncase h.h.h.h.h.h.h.h.h.h₁.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁷} ⊆ i✝⁵}\n\ncase h.h.h.h.h.h.h.h.h.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴}", "state_before": "case h.h.h.h.h.h.h.h.h\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴})", "tactic": "repeat' apply IsOpen.inter" }, { "state_after": "no goals", "state_before": "case h.h.h.h.h.h.h.h.h.h₁.h₁\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁸} ⊆ i✝⁶}\n\ncase h.h.h.h.h.h.h.h.h.h₁.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁷} ⊆ i✝⁵}\n\ncase h.h.h.h.h.h.h.h.h.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴}", "tactic": "all_goals apply ContinuousMap.isOpen_gen isCompact_singleton; assumption" }, { "state_after": "case h.h.h.h.h.h.h.h.h\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴})", "state_before": "case h.h.h.h.h.h.h.h.h\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴})", "tactic": "apply isOpen_iUnion" }, { "state_after": "case h.h.h.h.h.h.h.h.h\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen ({f | ↑f '' {i✝⁸} ⊆ i✝⁶} ∩ {f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴})", "state_before": "case h.h.h.h.h.h.h.h.h\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁷ i✝⁶ : A\ni✝⁵ i✝⁴ i✝³ : Set B\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : IsOpen i✝³\n⊢ Disjoint (i✝⁵ * i✝⁴) i✝³ → IsOpen ({f | ↑f '' {i✝⁷} ⊆ i✝⁵} ∩ {f | ↑f '' {i✝⁶} ⊆ i✝⁴} ∩ {f | ↑f '' {i✝⁷ * i✝⁶} ⊆ i✝³})", "tactic": "intro" }, { "state_after": "case h.h.h.h.h.h.h.h.h.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴}", "state_before": "case h.h.h.h.h.h.h.h.h.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴}", "tactic": "apply IsOpen.inter" }, { "state_after": "case h.h.h.h.h.h.h.h.h.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen i✝⁴", "state_before": "case h.h.h.h.h.h.h.h.h.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen {f | ↑f '' {i✝⁸ * i✝⁷} ⊆ i✝⁴}", "tactic": "apply ContinuousMap.isOpen_gen isCompact_singleton" }, { "state_after": "no goals", "state_before": "case h.h.h.h.h.h.h.h.h.h₂\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nthis :\n Set.range toContinuousMap =\n ({f | ↑f '' {1} ⊆ {1}ᶜ} ∪\n ⋃ (x : A) (y : A) (U : Set B) (V : Set B) (W : Set B) (_ : IsOpen U) (_ : IsOpen V) (_ : IsOpen W) (_ :\n Disjoint (U * V) W), {f | ↑f '' {x} ⊆ U} ∩ {f | ↑f '' {y} ⊆ V} ∩ {f | ↑f '' {x * y} ⊆ W})ᶜ\ni✝⁸ i✝⁷ : A\ni✝⁶ i✝⁵ i✝⁴ : Set B\ni✝³ : IsOpen i✝⁶\ni✝² : IsOpen i✝⁵\ni✝¹ : IsOpen i✝⁴\ni✝ : Disjoint (i✝⁶ * i✝⁵) i✝⁴\n⊢ IsOpen i✝⁴", "tactic": "assumption" }, { "state_after": "case refine'_1.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : ContinuousMonoidHom A B\n⊢ ¬toContinuousMap f ∈ {f | ¬↑f 1 ∈ {1}} ∧\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 →\n Disjoint (i_2 * i_3) i_4 →\n ¬toContinuousMap f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "state_before": "case refine'_1\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\n⊢ f ∈ Set.range toContinuousMap →\n ¬f ∈ {f | ¬↑f 1 ∈ {1}} ∧\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 →\n Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "tactic": "rintro ⟨f, rfl⟩" }, { "state_after": "case refine'_2.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nhf2 :\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}\n⊢ f ∈ Set.range toContinuousMap", "state_before": "case refine'_2\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\n⊢ (¬f ∈ {f | ¬↑f 1 ∈ {1}} ∧\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 →\n Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}) →\n f ∈ Set.range toContinuousMap", "tactic": "rintro ⟨hf1, hf2⟩" }, { "state_after": "case refine'_2.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nhf2 :\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}\n⊢ ∀ (x y : A), ↑f (x * y) = ↑f x * ↑f y", "state_before": "case refine'_2.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nhf2 :\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}\n⊢ f ∈ Set.range toContinuousMap", "tactic": "suffices ∀ x y, f (x * y) = f x * f y by\n refine'\n ⟨({ f with\n map_one' := of_not_not hf1\n map_mul' := this } :\n ContinuousMonoidHom A B),\n ContinuousMap.ext fun _ => rfl⟩" }, { "state_after": "case refine'_2.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nhf2 :\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}\nx y : A\n⊢ ↑f (x * y) = ↑f x * ↑f y", "state_before": "case refine'_2.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nhf2 :\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}\n⊢ ∀ (x y : A), ↑f (x * y) = ↑f x * ↑f y", "tactic": "intro x y" }, { "state_after": "case refine'_2.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\n⊢ ∃ i i_1 i_2 i_3 i_4,\n IsOpen i_2 ∧\n IsOpen i_3 ∧\n IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "state_before": "case refine'_2.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nhf2 :\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}\nx y : A\n⊢ ↑f (x * y) = ↑f x * ↑f y", "tactic": "contrapose! hf2" }, { "state_after": "case refine'_2.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x * ↑f y ∈ UV\nhfW : ↑f (x * y) ∈ W\nh : Disjoint UV W\n⊢ ∃ i i_1 i_2 i_3 i_4,\n IsOpen i_2 ∧\n IsOpen i_3 ∧\n IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "state_before": "case refine'_2.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\n⊢ ∃ i i_1 i_2 i_3 i_4,\n IsOpen i_2 ∧\n IsOpen i_3 ∧\n IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "tactic": "obtain ⟨UV, W, hUV, hW, hfUV, hfW, h⟩ := t2_separation hf2.symm" }, { "state_after": "case refine'_2.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x * ↑f y ∈ UV\nhfW : ↑f (x * y) ∈ W\nh : Disjoint UV W\nhB : Continuous fun p => p.fst * p.snd\n⊢ ∃ i i_1 i_2 i_3 i_4,\n IsOpen i_2 ∧\n IsOpen i_3 ∧\n IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "state_before": "case refine'_2.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x * ↑f y ∈ UV\nhfW : ↑f (x * y) ∈ W\nh : Disjoint UV W\n⊢ ∃ i i_1 i_2 i_3 i_4,\n IsOpen i_2 ∧\n IsOpen i_3 ∧\n IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "tactic": "have hB := @continuous_mul B _ _ _" }, { "state_after": "case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x * ↑f y ∈ UV\nhfW : ↑f (x * y) ∈ W\nh : Disjoint UV W\nhB : Continuous fun p => p.fst * p.snd\nU V : Set B\nhU : IsOpen U\nhV : IsOpen V\nhfU : ↑f x ∈ U\nhfV : ↑f y ∈ V\nh' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV\n⊢ ∃ i i_1 i_2 i_3 i_4,\n IsOpen i_2 ∧\n IsOpen i_3 ∧\n IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "state_before": "case refine'_2.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x * ↑f y ∈ UV\nhfW : ↑f (x * y) ∈ W\nh : Disjoint UV W\nhB : Continuous fun p => p.fst * p.snd\n⊢ ∃ i i_1 i_2 i_3 i_4,\n IsOpen i_2 ∧\n IsOpen i_3 ∧\n IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "tactic": "obtain ⟨U, V, hU, hV, hfU, hfV, h'⟩ :=\n isOpen_prod_iff.mp (hUV.preimage hB) (f x) (f y) hfUV" }, { "state_after": "case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x * ↑f y ∈ UV\nhfW : ↑f (x * y) ∈ W\nh : Disjoint UV W\nhB : Continuous fun p => p.fst * p.snd\nU V : Set B\nhU : IsOpen U\nhV : IsOpen V\nhfU : ↑f x ∈ U\nhfV : ↑f y ∈ V\nh' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV\n⊢ U * V ≤ UV", "state_before": "case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x * ↑f y ∈ UV\nhfW : ↑f (x * y) ∈ W\nh : Disjoint UV W\nhB : Continuous fun p => p.fst * p.snd\nU V : Set B\nhU : IsOpen U\nhV : IsOpen V\nhfU : ↑f x ∈ U\nhfV : ↑f y ∈ V\nh' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV\n⊢ ∃ i i_1 i_2 i_3 i_4,\n IsOpen i_2 ∧\n IsOpen i_3 ∧\n IsOpen i_4 ∧ Disjoint (i_2 * i_3) i_4 ∧ f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}", "tactic": "refine' ⟨x, y, U, V, W, hU, hV, hW, h.mono_left _, ⟨hfU, hfV⟩, hfW⟩" }, { "state_after": "case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx✝ y✝ : A\nhf2 : ↑f (x✝ * y✝) ≠ ↑f x✝ * ↑f y✝\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x✝ * ↑f y✝ ∈ UV\nhfW : ↑f (x✝ * y✝) ∈ W\nh : Disjoint UV W\nhB : Continuous fun p => p.fst * p.snd\nU V : Set B\nhU : IsOpen U\nhV : IsOpen V\nhfU : ↑f x✝ ∈ U\nhfV : ↑f y✝ ∈ V\nh' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV\nx y : B\nhx : (x, y).fst ∈ U\nhy : (x, y).snd ∈ V\n⊢ (fun x x_1 => x * x_1) x y ∈ UV", "state_before": "case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx y : A\nhf2 : ↑f (x * y) ≠ ↑f x * ↑f y\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x * ↑f y ∈ UV\nhfW : ↑f (x * y) ∈ W\nh : Disjoint UV W\nhB : Continuous fun p => p.fst * p.snd\nU V : Set B\nhU : IsOpen U\nhV : IsOpen V\nhfU : ↑f x ∈ U\nhfV : ↑f y ∈ V\nh' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV\n⊢ U * V ≤ UV", "tactic": "rintro _ ⟨x, y, hx : (x, y).1 ∈ U, hy : (x, y).2 ∈ V, rfl⟩" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nF : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nx✝ y✝ : A\nhf2 : ↑f (x✝ * y✝) ≠ ↑f x✝ * ↑f y✝\nUV W : Set B\nhUV : IsOpen UV\nhW : IsOpen W\nhfUV : ↑f x✝ * ↑f y✝ ∈ UV\nhfW : ↑f (x✝ * y✝) ∈ W\nh : Disjoint UV W\nhB : Continuous fun p => p.fst * p.snd\nU V : Set B\nhU : IsOpen U\nhV : IsOpen V\nhfU : ↑f x✝ ∈ U\nhfV : ↑f y✝ ∈ V\nh' : U ×ˢ V ⊆ (fun p => p.fst * p.snd) ⁻¹' UV\nx y : B\nhx : (x, y).fst ∈ U\nhy : (x, y).snd ∈ V\n⊢ (fun x x_1 => x * x_1) x y ∈ UV", "tactic": "exact h' ⟨hx, hy⟩" }, { "state_after": "no goals", "state_before": "F : Type ?u.142376\nA : Type u_2\nB : Type u_1\nC : Type ?u.142385\nD : Type ?u.142388\nE : Type ?u.142391\ninst✝¹² : Monoid A\ninst✝¹¹ : Monoid B\ninst✝¹⁰ : Monoid C\ninst✝⁹ : Monoid D\ninst✝⁸ : CommGroup E\ninst✝⁷ : TopologicalSpace A\ninst✝⁶ : TopologicalSpace B\ninst✝⁵ : TopologicalSpace C\ninst✝⁴ : TopologicalSpace D\ninst✝³ : TopologicalSpace E\ninst✝² : TopologicalGroup E\ninst✝¹ : ContinuousMul B\ninst✝ : T2Space B\nf : C(A, B)\nhf1 : ¬f ∈ {f | ¬↑f 1 ∈ {1}}\nhf2 :\n ∀ (i i_1 : A) (i_2 i_3 i_4 : Set B),\n IsOpen i_2 →\n IsOpen i_3 →\n IsOpen i_4 → Disjoint (i_2 * i_3) i_4 → ¬f ∈ {f | ↑f i ∈ i_2} ∩ {f | ↑f i_1 ∈ i_3} ∩ {f | ↑f (i * i_1) ∈ i_4}\nthis : ∀ (x y : A), ↑f (x * y) = ↑f x * ↑f y\n⊢ f ∈ Set.range toContinuousMap", "tactic": "refine'\n ⟨({ f with\n map_one' := of_not_not hf1\n map_mul' := this } :\n ContinuousMonoidHom A B),\n ContinuousMap.ext fun _ => rfl⟩" } ]
[ 332, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/Data/List/Rotate.lean
List.rotate_reverse
[ { "state_after": "α : Type u\nl : List α\nn : ℕ\n⊢ rotate (reverse (reverse (reverse l))) n =\n reverse (rotate (reverse (reverse l)) (length (reverse (reverse l)) - n % length (reverse (reverse l))))", "state_before": "α : Type u\nl : List α\nn : ℕ\n⊢ rotate (reverse l) n = reverse (rotate l (length l - n % length l))", "tactic": "rw [← reverse_reverse l]" }, { "state_after": "α : Type u\nl : List α\nn : ℕ\n⊢ reverse l = rotate (reverse l) (length l - (length l - n % length l) % length l + (length l - n % length l))", "state_before": "α : Type u\nl : List α\nn : ℕ\n⊢ rotate (reverse (reverse (reverse l))) n =\n reverse (rotate (reverse (reverse l)) (length (reverse (reverse l)) - n % length (reverse (reverse l))))", "tactic": "simp_rw [reverse_rotate, reverse_reverse, rotate_eq_iff, rotate_rotate, length_rotate,\n length_reverse]" }, { "state_after": "α : Type u\nl : List α\nn : ℕ\n⊢ reverse l =\n rotate (reverse l)\n (length (reverse l) - (length (reverse l) - n % length (reverse l)) % length (reverse l) +\n (length (reverse l) - n % length (reverse l)))", "state_before": "α : Type u\nl : List α\nn : ℕ\n⊢ reverse l = rotate (reverse l) (length l - (length l - n % length l) % length l + (length l - n % length l))", "tactic": "rw [← length_reverse l]" }, { "state_after": "α : Type u\nl : List α\nn : ℕ\nk : ℕ := n % length (reverse l)\n⊢ reverse l =\n rotate (reverse l)\n (length (reverse l) - (length (reverse l) - n % length (reverse l)) % length (reverse l) +\n (length (reverse l) - n % length (reverse l)))", "state_before": "α : Type u\nl : List α\nn : ℕ\n⊢ reverse l =\n rotate (reverse l)\n (length (reverse l) - (length (reverse l) - n % length (reverse l)) % length (reverse l) +\n (length (reverse l) - n % length (reverse l)))", "tactic": "let k := n % l.reverse.length" }, { "state_after": "case zero\nα : Type u\nl : List α\nn : ℕ\nk : ℕ := n % length (reverse l)\nhk' : k = zero\n⊢ reverse l =\n rotate (reverse l)\n (length (reverse l) - (length (reverse l) - n % length (reverse l)) % length (reverse l) +\n (length (reverse l) - n % length (reverse l)))\n\ncase succ\nα : Type u\nl : List α\nn : ℕ\nk : ℕ := n % length (reverse l)\nk' : ℕ\nhk' : k = succ k'\n⊢ reverse l =\n rotate (reverse l)\n (length (reverse l) - (length (reverse l) - n % length (reverse l)) % length (reverse l) +\n (length (reverse l) - n % length (reverse l)))", "state_before": "α : Type u\nl : List α\nn : ℕ\nk : ℕ := n % length (reverse l)\n⊢ reverse l =\n rotate (reverse l)\n (length (reverse l) - (length (reverse l) - n % length (reverse l)) % length (reverse l) +\n (length (reverse l) - n % length (reverse l)))", "tactic": "cases' hk' : k with k'" }, { "state_after": "no goals", "state_before": "case zero\nα : Type u\nl : List α\nn : ℕ\nk : ℕ := n % length (reverse l)\nhk' : k = zero\n⊢ reverse l =\n rotate (reverse l)\n (length (reverse l) - (length (reverse l) - n % length (reverse l)) % length (reverse l) +\n (length (reverse l) - n % length (reverse l)))", "tactic": "simp_all! [length_reverse, ← rotate_rotate]" }, { "state_after": "case succ.nil\nα : Type u\nn k' : ℕ\nk : ℕ := n % length (reverse [])\nhk' : k = succ k'\n⊢ reverse [] =\n rotate (reverse [])\n (length (reverse []) - (length (reverse []) - n % length (reverse [])) % length (reverse []) +\n (length (reverse []) - n % length (reverse [])))\n\ncase succ.cons\nα : Type u\nn k' : ℕ\nx : α\nl : List α\nk : ℕ := n % length (reverse (x :: l))\nhk' : k = succ k'\n⊢ reverse (x :: l) =\n rotate (reverse (x :: l))\n (length (reverse (x :: l)) -\n (length (reverse (x :: l)) - n % length (reverse (x :: l))) % length (reverse (x :: l)) +\n (length (reverse (x :: l)) - n % length (reverse (x :: l))))", "state_before": "case succ\nα : Type u\nl : List α\nn : ℕ\nk : ℕ := n % length (reverse l)\nk' : ℕ\nhk' : k = succ k'\n⊢ reverse l =\n rotate (reverse l)\n (length (reverse l) - (length (reverse l) - n % length (reverse l)) % length (reverse l) +\n (length (reverse l) - n % length (reverse l)))", "tactic": "cases' l with x l" }, { "state_after": "no goals", "state_before": "case succ.nil\nα : Type u\nn k' : ℕ\nk : ℕ := n % length (reverse [])\nhk' : k = succ k'\n⊢ reverse [] =\n rotate (reverse [])\n (length (reverse []) - (length (reverse []) - n % length (reverse [])) % length (reverse []) +\n (length (reverse []) - n % length (reverse [])))", "tactic": "simp" }, { "state_after": "case succ.cons\nα : Type u\nn k' : ℕ\nx : α\nl : List α\nk : ℕ := n % length (reverse (x :: l))\nhk' : k = succ k'\n⊢ length (reverse (x :: l)) - n % length (reverse (x :: l)) ≤ length (reverse (x :: l))\n\ncase succ.cons\nα : Type u\nn k' : ℕ\nx : α\nl : List α\nk : ℕ := n % length (reverse (x :: l))\nhk' : k = succ k'\n⊢ length (reverse (x :: l)) - n % length (reverse (x :: l)) < length (reverse (x :: l))", "state_before": "case succ.cons\nα : Type u\nn k' : ℕ\nx : α\nl : List α\nk : ℕ := n % length (reverse (x :: l))\nhk' : k = succ k'\n⊢ reverse (x :: l) =\n rotate (reverse (x :: l))\n (length (reverse (x :: l)) -\n (length (reverse (x :: l)) - n % length (reverse (x :: l))) % length (reverse (x :: l)) +\n (length (reverse (x :: l)) - n % length (reverse (x :: l))))", "tactic": "rw [Nat.mod_eq_of_lt, tsub_add_cancel_of_le, rotate_length]" }, { "state_after": "no goals", "state_before": "case succ.cons\nα : Type u\nn k' : ℕ\nx : α\nl : List α\nk : ℕ := n % length (reverse (x :: l))\nhk' : k = succ k'\n⊢ length (reverse (x :: l)) - n % length (reverse (x :: l)) ≤ length (reverse (x :: l))", "tactic": "exact tsub_le_self" }, { "state_after": "no goals", "state_before": "case succ.cons\nα : Type u\nn k' : ℕ\nx : α\nl : List α\nk : ℕ := n % length (reverse (x :: l))\nhk' : k = succ k'\n⊢ length (reverse (x :: l)) - n % length (reverse (x :: l)) < length (reverse (x :: l))", "tactic": "exact tsub_lt_self (by simp) (by simp_all!)" }, { "state_after": "no goals", "state_before": "α : Type u\nn k' : ℕ\nx : α\nl : List α\nk : ℕ := n % length (reverse (x :: l))\nhk' : k = succ k'\n⊢ 0 < length (reverse (x :: l))", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u\nn k' : ℕ\nx : α\nl : List α\nk : ℕ := n % length (reverse (x :: l))\nhk' : k = succ k'\n⊢ 0 < n % length (reverse (x :: l))", "tactic": "simp_all!" } ]
[ 384, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 371, 1 ]
Mathlib/Data/Set/Basic.lean
Set.mem_or_mem_of_mem_union
[]
[ 746, 4 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 745, 1 ]
Mathlib/Order/JordanHolder.lean
JordanHolderLattice.isMaximal_of_eq_inf
[ { "state_after": "X : Type u\ninst✝¹ : Lattice X\ninst✝ : JordanHolderLattice X\nx b a y : X\nha : x ⊓ y = a\nhxy : x ≠ y\nhxb : IsMaximal x b\nhyb : IsMaximal y b\nhb : x ⊔ y = b\n⊢ IsMaximal a y", "state_before": "X : Type u\ninst✝¹ : Lattice X\ninst✝ : JordanHolderLattice X\nx b a y : X\nha : x ⊓ y = a\nhxy : x ≠ y\nhxb : IsMaximal x b\nhyb : IsMaximal y b\n⊢ IsMaximal a y", "tactic": "have hb : x ⊔ y = b := sup_eq_of_isMaximal hxb hyb hxy" }, { "state_after": "X : Type u\ninst✝¹ : Lattice X\ninst✝ : JordanHolderLattice X\nx y : X\nhxy : x ≠ y\nhxb : IsMaximal x (x ⊔ y)\nhyb : IsMaximal y (x ⊔ y)\n⊢ IsMaximal (x ⊓ y) y", "state_before": "X : Type u\ninst✝¹ : Lattice X\ninst✝ : JordanHolderLattice X\nx b a y : X\nha : x ⊓ y = a\nhxy : x ≠ y\nhxb : IsMaximal x b\nhyb : IsMaximal y b\nhb : x ⊔ y = b\n⊢ IsMaximal a y", "tactic": "substs a b" }, { "state_after": "no goals", "state_before": "X : Type u\ninst✝¹ : Lattice X\ninst✝ : JordanHolderLattice X\nx y : X\nhxy : x ≠ y\nhxb : IsMaximal x (x ⊔ y)\nhyb : IsMaximal y (x ⊔ y)\n⊢ IsMaximal (x ⊓ y) y", "tactic": "exact isMaximal_inf_right_of_isMaximal_sup hxb hyb" } ]
[ 111, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 107, 1 ]
Mathlib/Data/Set/Basic.lean
Set.monotoneOn_singleton
[]
[ 2694, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2693, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.X_injective
[]
[ 290, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Analysis/InnerProductSpace/Orthogonal.lean
Submodule.IsOrtho.mono
[]
[ 300, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 298, 1 ]
Mathlib/MeasureTheory/Function/LocallyIntegrable.lean
MeasureTheory.IntegrableOn.smul_continuousOn
[ { "state_after": "X : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ Integrable fun a => ‖f a • g a‖\n\nX : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ AEStronglyMeasurable (fun x => f x • g x) (Measure.restrict μ K)", "state_before": "X : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ IntegrableOn (fun x => f x • g x) K", "tactic": "rw [IntegrableOn, ← integrable_norm_iff]" }, { "state_after": "X : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ Integrable fun a => ‖f a‖ * ‖g a‖", "state_before": "X : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ Integrable fun a => ‖f a • g a‖", "tactic": "simp_rw [norm_smul]" }, { "state_after": "X : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ ContinuousOn (fun a => ‖g a‖) K", "state_before": "X : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ Integrable fun a => ‖f a‖ * ‖g a‖", "tactic": "refine' IntegrableOn.mul_continuousOn hf.norm _ hK" }, { "state_after": "no goals", "state_before": "X : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ ContinuousOn (fun a => ‖g a‖) K", "tactic": "exact continuous_norm.comp_continuousOn hg" }, { "state_after": "no goals", "state_before": "X : Type u_1\nY : Type ?u.2491139\nE : Type u_2\nR : Type ?u.2491145\ninst✝⁹ : MeasurableSpace X\ninst✝⁸ : TopologicalSpace X\ninst✝⁷ : MeasurableSpace Y\ninst✝⁶ : TopologicalSpace Y\ninst✝⁵ : NormedAddCommGroup E\nf✝ : X → E\nμ : Measure X\ns : Set X\ninst✝⁴ : OpensMeasurableSpace X\nA K : Set X\n𝕜 : Type u_3\ninst✝³ : NormedField 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : T2Space X\ninst✝ : SecondCountableTopologyEither X E\nf : X → 𝕜\nhf : IntegrableOn f K\ng : X → E\nhg : ContinuousOn g K\nhK : IsCompact K\n⊢ AEStronglyMeasurable (fun x => f x • g x) (Measure.restrict μ K)", "tactic": "exact hf.1.smul (hg.aestronglyMeasurable hK.measurableSet)" } ]
[ 445, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 438, 1 ]
Mathlib/Order/Heyting/Basic.lean
disjoint_compl_left
[]
[ 844, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 843, 1 ]
Mathlib/Order/Hom/CompleteLattice.lean
FrameHom.id_apply
[]
[ 605, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 604, 1 ]
Mathlib/Geometry/Euclidean/Sphere/Basic.lean
EuclideanGeometry.Concyclic.subset
[]
[ 217, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Data/List/AList.lean
AList.ext_iff
[]
[ 72, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.val_mul'
[]
[ 83, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/LinearAlgebra/FiniteDimensional.lean
Subalgebra.rank_eq_one_iff
[]
[ 1410, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1408, 1 ]
Mathlib/Topology/Category/Compactum.lean
compactumToCompHaus.faithful
[ { "state_after": "X✝ Y✝ : Compactum\na₁✝ a₂✝ : X✝ ⟶ Y✝\nh : compactumToCompHaus.map a₁✝ = compactumToCompHaus.map a₂✝\n⊢ a₁✝ = a₂✝", "state_before": "⊢ ∀ {X Y : Compactum}, Function.Injective compactumToCompHaus.map", "tactic": "intro _ _ _ _ h" }, { "state_after": "case f\nX✝ Y✝ : Compactum\na₁✝ a₂✝ : X✝ ⟶ Y✝\nh : compactumToCompHaus.map a₁✝ = compactumToCompHaus.map a₂✝\n⊢ a₁✝.f = a₂✝.f", "state_before": "X✝ Y✝ : Compactum\na₁✝ a₂✝ : X✝ ⟶ Y✝\nh : compactumToCompHaus.map a₁✝ = compactumToCompHaus.map a₂✝\n⊢ a₁✝ = a₂✝", "tactic": "apply Monad.Algebra.Hom.ext" }, { "state_after": "no goals", "state_before": "case f\nX✝ Y✝ : Compactum\na₁✝ a₂✝ : X✝ ⟶ Y✝\nh : compactumToCompHaus.map a₁✝ = compactumToCompHaus.map a₂✝\n⊢ a₁✝.f = a₂✝.f", "tactic": "apply congrArg (fun f => f.toFun) h" } ]
[ 462, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 456, 1 ]
Mathlib/Analysis/NormedSpace/BoundedLinearMaps.lean
isBoundedBilinearMap_smul
[]
[ 444, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 441, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.limsup_lintegral_le
[ { "state_after": "case refine'_1\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ ∀ (n : ℕ), Measurable fun a => ⨆ (i : ℕ) (_ : i ≥ n), f i a\n\ncase refine'_2\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ Antitone fun n a => ⨆ (i : ℕ) (_ : i ≥ n), f i a\n\ncase refine'_3\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ (∫⁻ (a : α), ⨆ (i : ℕ) (_ : i ≥ 0), f i a ∂μ) ≠ ⊤", "state_before": "α : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ (⨅ (n : ℕ), ∫⁻ (a : α), ⨆ (i : ℕ) (_ : i ≥ n), f i a ∂μ) = ∫⁻ (a : α), ⨅ (n : ℕ), ⨆ (i : ℕ) (_ : i ≥ n), f i a ∂μ", "tactic": "refine' (lintegral_iInf _ _ _).symm" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\nn : ℕ\n⊢ Measurable fun a => ⨆ (i : ℕ) (_ : i ≥ n), f i a", "state_before": "case refine'_1\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ ∀ (n : ℕ), Measurable fun a => ⨆ (i : ℕ) (_ : i ≥ n), f i a", "tactic": "intro n" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\nn : ℕ\n⊢ Measurable fun a => ⨆ (i : ℕ) (_ : i ≥ n), f i a", "tactic": "exact measurable_biSup _ (to_countable _) hf_meas" }, { "state_after": "case refine'_2\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm✝ : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\nn m : ℕ\nhnm : n ≤ m\na : α\n⊢ (fun n a => ⨆ (i : ℕ) (_ : i ≥ n), f i a) m a ≤ (fun n a => ⨆ (i : ℕ) (_ : i ≥ n), f i a) n a", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ Antitone fun n a => ⨆ (i : ℕ) (_ : i ≥ n), f i a", "tactic": "intro n m hnm a" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm✝ : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\nn m : ℕ\nhnm : n ≤ m\na : α\n⊢ (fun n a => ⨆ (i : ℕ) (_ : i ≥ n), f i a) m a ≤ (fun n a => ⨆ (i : ℕ) (_ : i ≥ n), f i a) n a", "tactic": "exact iSup_le_iSup_of_subset fun i hi => le_trans hnm hi" }, { "state_after": "case refine'_3\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ ∀ᵐ (a : α) ∂μ, (⨆ (i : ℕ) (_ : i ≥ 0), f i a) ≤ g a", "state_before": "case refine'_3\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ (∫⁻ (a : α), ⨆ (i : ℕ) (_ : i ≥ 0), f i a ∂μ) ≠ ⊤", "tactic": "refine' ne_top_of_le_ne_top h_fin (lintegral_mono_ae _)" }, { "state_after": "case refine'_3\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\nn : α\nhn : ∀ (i : ℕ), f i n ≤ g n\n⊢ (⨆ (i : ℕ) (_ : i ≥ 0), f i n) ≤ g n", "state_before": "case refine'_3\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ ∀ᵐ (a : α) ∂μ, (⨆ (i : ℕ) (_ : i ≥ 0), f i a) ≤ g a", "tactic": "refine' (ae_all_iff.2 h_bound).mono fun n hn => _" }, { "state_after": "no goals", "state_before": "case refine'_3\nα : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\nn : α\nhn : ∀ (i : ℕ), f i n ≤ g n\n⊢ (⨆ (i : ℕ) (_ : i ≥ 0), f i n) ≤ g n", "tactic": "exact iSup_le fun i => iSup_le fun _ => hn i" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.996569\nγ : Type ?u.996572\nδ : Type ?u.996575\nm : MeasurableSpace α\nμ ν : Measure α\nf : ℕ → α → ℝ≥0∞\ng : α → ℝ≥0∞\nhf_meas : ∀ (n : ℕ), Measurable (f n)\nh_bound : ∀ (n : ℕ), f n ≤ᵐ[μ] g\nh_fin : (∫⁻ (a : α), g a ∂μ) ≠ ⊤\n⊢ (∫⁻ (a : α), ⨅ (n : ℕ), ⨆ (i : ℕ) (_ : i ≥ n), f i a ∂μ) = ∫⁻ (a : α), limsup (fun n => f n a) atTop ∂μ", "tactic": "simp only [limsup_eq_iInf_iSup_of_nat]" } ]
[ 1038, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1022, 1 ]
Mathlib/Topology/MetricSpace/Lipschitz.lean
lipschitzOnWith_iff_restrict
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : PseudoEMetricSpace α\ninst✝ : PseudoEMetricSpace β\nK : ℝ≥0\nf : α → β\ns : Set α\n⊢ LipschitzOnWith K f s ↔ LipschitzWith K (restrict s f)", "tactic": "simp only [LipschitzOnWith, LipschitzWith, SetCoe.forall', restrict, Subtype.edist_eq]" } ]
[ 104, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Order/CompactlyGenerated.lean
sSup_compact_eq_top
[ { "state_after": "ι : Sort ?u.87370\nα : Type u_1\ninst✝² : CompleteLattice α\nf : ι → α\ninst✝¹ : CompleteLattice α\ninst✝ : IsCompactlyGenerated α\na b : α\ns : Set α\nx : α\n⊢ x ∈ {a | CompleteLattice.IsCompactElement a} ↔ x ∈ {c | CompleteLattice.IsCompactElement c ∧ c ≤ ⊤}", "state_before": "ι : Sort ?u.87370\nα : Type u_1\ninst✝² : CompleteLattice α\nf : ι → α\ninst✝¹ : CompleteLattice α\ninst✝ : IsCompactlyGenerated α\na b : α\ns : Set α\n⊢ sSup {a | CompleteLattice.IsCompactElement a} = ⊤", "tactic": "refine' Eq.trans (congr rfl (Set.ext fun x => _)) (sSup_compact_le_eq ⊤)" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.87370\nα : Type u_1\ninst✝² : CompleteLattice α\nf : ι → α\ninst✝¹ : CompleteLattice α\ninst✝ : IsCompactlyGenerated α\na b : α\ns : Set α\nx : α\n⊢ x ∈ {a | CompleteLattice.IsCompactElement a} ↔ x ∈ {c | CompleteLattice.IsCompactElement c ∧ c ≤ ⊤}", "tactic": "exact (and_iff_left le_top).symm" } ]
[ 352, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 350, 1 ]
Mathlib/Data/Fintype/Perm.lean
Fintype.card_equiv
[]
[ 171, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 169, 1 ]
Mathlib/Algebra/Order/Rearrangement.lean
AntivaryOn.sum_smul_le_sum_smul_comp_perm
[]
[ 195, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]