Dataset Viewer
Auto-converted to Parquet Duplicate
name
stringlengths
14
14
rocq_statement
stringlengths
175
1.42k
lean_statement
stringlengths
280
1.24k
putnam_1966_b6
From mathcomp Require Import all_ssreflect ssrnum ssralg. From mathcomp Require Import reals exp sequences derive topology normedtype. From mathcomp Require Import classical_sets cardinality. Import numFieldNormedType.Exports. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Open Scope classical_set_scope. Variable R : realType. Theorem putnam_1966_b6 (y : R -> R) (hy : forall x : R, differentiable y x /\ differentiable (y^`()) x) (diffeq : forall x : R, y^`(2) x + y x * expR x = 0) : exists r s N : R, forall x : R, x > N -> r <= y x <= s. Proof. Admitted.
import Mathlib open Topology Filter /-- Prove that any solution $y(x)$ to the differential equation $y'' + e^{x}y = 0$ remains bounded as $x$ goes to $+\infty$. -/ theorem putnam_1966_b6 (y : ℝ β†’ ℝ) (hy : Differentiable ℝ y ∧ Differentiable ℝ (deriv y)) (diffeq : deriv (deriv y) + Real.exp * y = 0) : βˆƒ r s N : ℝ, βˆ€ x > N, r ≀ y x ∧ y x ≀ s := sorry
putnam_1994_b4
Require Import Nat List Reals Coquelicot.Coquelicot. Import ListNotations. Theorem putnam_1994_b4 (gcdn := fix gcd_n (args : list nat) : nat := match args with | nil => 0%nat | h :: args' => gcd h (gcd_n args') end) (Mmultn := fix Mmult_n {T : Ring} {n : nat} (A : matrix n n) (p : nat) := match p with | O => mk_matrix n n (fun i j : nat => if Nat.eqb i j then one else zero) | S p' => @Mmult T n n n A (Mmult_n A p') end) (A := mk_matrix 2 2 (fun i j => match i, j with | 0, 0 => 3 | 0, 1 => 2 | 1, 0 => 4 | 1, 1 => 3 | _, _ => 0 end)) (I := mk_matrix 2 2 (fun i j => match i, j with | 0, 0 => 1 | 0, 1 => 0 | 1, 0 => 0 | 1, 1 => 1 | _, _ => 0 end)) (dn_mat := fun n => Mplus (Mmultn A n) (opp I)) (dn := fun n => gcdn [Z.to_nat (floor (coeff_mat 0 (dn_mat n) 0 0)); Z.to_nat (floor (coeff_mat 0 (dn_mat n) 0 1)); Z.to_nat (floor (coeff_mat 0 (dn_mat n) 1 0)); Z.to_nat (floor (coeff_mat 0 (dn_mat n) 1 1))]) : forall k : nat, exists N : nat, forall n : nat, ge n N -> ge (dn n) k. Proof. Admitted.
import Mathlib open Filter Topology /-- For $n \geq 1$, let $d_n$ be the greatest common divisor of the entries of $A^n-I$, where $A=\begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$ and $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Show that $\lim_{n \to \infty} d_n=\infty$. -/ theorem putnam_1994_b4 (matgcd : Matrix (Fin 2) (Fin 2) β„€ β†’ β„€) (A : Matrix (Fin 2) (Fin 2) β„€) (d : β„• β†’ β„€) (hmatgcd : βˆ€ M, matgcd M = Int.gcd (Int.gcd (Int.gcd (M 0 0) (M 0 1)) (M 1 0)) (M 1 1)) (hA : A 0 0 = 3 ∧ A 0 1 = 2 ∧ A 1 0 = 4 ∧ A 1 1 = 3) (hd : βˆ€ n β‰₯ 1, d n = matgcd (A ^ n - 1)) : Tendsto d atTop atTop := sorry
putnam_1967_a3
From mathcomp Require Import all_ssreflect all_algebra. From mathcomp Require Import reals normedtype. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Variable R : realType. Definition putnam_1967_a3_solution : nat := 5. Theorem putnam_1967_a3 (pform pzeros pall : {poly R} -> Prop) (hpform : forall p, pform p <-> size p = 3%nat /\ forall i : nat, lt i 3 -> p`_i = (floor p`_i)%:~R) (hpzeros : forall p, pzeros p <-> exists z1 z2 : R, 0 < z1 < 1 /\ 0 < z2 < 1 /\ z1 <> z2 /\ p.[z1] = 0 /\ p.[z2] = 0) (hpall : forall p, pall p <-> pform p /\ pzeros p /\ (p`_2 > 0)%R) : (exists p, pall p /\ p`_2 = putnam_1967_a3_solution%:R) /\ (forall p, pall p -> p`_2 >= putnam_1967_a3_solution%:R). Proof. Admitted.
import Mathlib open Polynomial abbrev putnam_1967_a3_solution : β„• := sorry -- 5 /-- Consider polynomial forms $ax^2-bx+c$ with integer coefficients which have two distinct zeros in the open interval $0<x<1$. Exhibit with a proof the least positive integer value of $a$ for which such a polynomial exists. -/ theorem putnam_1967_a3 : IsLeast {a | βˆƒ P : Polynomial β„€, P.degree = 2 ∧ (βˆƒ z1 z2 : Set.Ioo (0 : ℝ) 1, z1 β‰  z2 ∧ aeval (z1 : ℝ) P = 0 ∧ aeval (z2 : ℝ) P = 0) ∧ P.coeff 2 = a ∧ a > 0} putnam_1967_a3_solution := sorry
putnam_1988_b2
Require Import Reals Coquelicot.Coquelicot. Open Scope R. Definition putnam_1988_b2_solution := True. Theorem putnam_1988_b2 : (forall (a: R), a >= 0 -> forall (x: R), pow (x + 1) 2 >= a * (a + 1) -> pow x 2 >= a * (a - 1)) <-> putnam_1988_b2_solution. Proof. Admitted.
import Mathlib open Set Filter Topology abbrev putnam_1988_b2_solution : Prop := sorry -- True /-- Prove or disprove: If $x$ and $y$ are real numbers with $y \geq 0$ and $y(y+1) \leq (x+1)^2$, then $y(y-1) \leq x^2$. -/ theorem putnam_1988_b2 : (βˆ€ x y : ℝ, (y β‰₯ 0 ∧ y * (y + 1) ≀ (x + 1) ^ 2) β†’ (y * (y - 1) ≀ x ^ 2)) ↔ putnam_1988_b2_solution := sorry
putnam_1986_a3
Require Import Reals Coquelicot.Coquelicot. Open Scope R. Definition putnam_1986_a3_solution := PI / 2. Theorem putnam_1986_a3 (cot : R -> R) (fcot : cot = fun t => cos t / sin t) (arccot : R -> R) (harccot : forall t : R, t >= 0 -> 0 < arccot t <= PI / 2 /\ cot (arccot t) = t) : Series (fun n => arccot (pow (INR n) 2 + INR n + 1)) = putnam_1986_a3_solution. Proof. Admitted.
import Mathlib open Real noncomputable abbrev putnam_1986_a3_solution : ℝ := sorry -- Real.pi / 2 /-- Evaluate $\sum_{n=0}^\infty \mathrm{Arccot}(n^2+n+1)$, where $\mathrm{Arccot}\,t$ for $t \geq 0$ denotes the number $\theta$ in the interval $0 < \theta \leq \pi/2$ with $\cot \theta = t$. -/ theorem putnam_1986_a3 (cot : ℝ β†’ ℝ) (fcot : cot = fun ΞΈ ↦ cos ΞΈ / sin ΞΈ) (arccot : ℝ β†’ ℝ) (harccot : βˆ€ t : ℝ, t β‰₯ 0 β†’ arccot t ∈ Set.Ioc 0 (Real.pi / 2) ∧ cot (arccot t) = t) : (βˆ‘' n : β„•, arccot (n ^ 2 + n + 1) = putnam_1986_a3_solution) := sorry
putnam_2004_b5
From mathcomp Require Import all_algebra all_ssreflect. From mathcomp Require Import reals sequences topology normedtype exp. From mathcomp Require Import classical_sets. Import numFieldNormedType.Exports. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Open Scope classical_set_scope. Variable R : realType. Definition at_left := fun (x : R) => within (fun y => y < x) (nbhs x). Definition putnam_2004_b5_solution : R := 2 / expR 1. Theorem putnam_2004_b5 (xprod : R -> R) (hxprod : forall x : R, 0 < x < 1 -> (fun N : nat => \prod_(0 <= n < N) (expR (ln ((1 + x ^ (n.+1))/(1 + x ^ n)) * (x ^ n)))) @ \oo --> xprod x) : xprod @ (at_left 1) --> putnam_2004_b5_solution. Proof. Admitted.
import Mathlib open Nat Topology Filter abbrev putnam_2004_b5_solution : ℝ := sorry -- 2 / Real.exp 1 /-- Evaluate $\lim_{x \to 1^-} \prod_{n=0}^\infty \left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}$. -/ theorem putnam_2004_b5 (xprod : ℝ β†’ ℝ) (hxprod : βˆ€ x ∈ Set.Ioo 0 1, Tendsto (fun N ↦ ∏ n ∈ Finset.range N, ((1 + x ^ (n + 1)) / (1 + x ^ n)) ^ (x ^ n)) atTop (𝓝 (xprod x))) : Tendsto xprod (𝓝[<] 1) (𝓝 putnam_2004_b5_solution) := sorry
putnam_1965_a5
Require Import Nat Finite_sets. From mathcomp Require Import fintype perm. Definition putnam_1965_a5_solution : nat -> nat := (fun n : nat => 2 ^ (n - 1)). Theorem putnam_1965_a5 : forall n : nat, n > 0 -> cardinal {perm 'I_n} (fun p : {perm 'I_n} => forall m : 'I_n, m > 0 -> exists k : 'I_n, k < m /\ (nat_of_ord (p m) = (p k) + 1 \/ nat_of_ord (p m) = (p k) - 1)) (putnam_1965_a5_solution n). Proof. Admitted.
import Mathlib open EuclideanGeometry Topology Filter Complex abbrev putnam_1965_a5_solution : β„• β†’ β„• := sorry -- fun n => 2^(n - 1) /-- How many orderings of the integers from $1$ to $n$ satisfy the condition that, for every integer $i$ except the first, there exists some earlier integer in the ordering which differs from $i$ by $1$? -/ theorem putnam_1965_a5 : βˆ€ n > 0, {p ∈ permsOfFinset (Finset.Icc 1 n) | βˆ€ m ∈ Finset.Icc 2 n, βˆƒ k ∈ Finset.Ico 1 m, p m = p k + 1 ∨ p m = p k - 1}.card = putnam_1965_a5_solution n := sorry
putnam_1982_b5
Require Import Reals Coquelicot.Coquelicot. Open Scope R. Theorem putnam_1982_b5 (F := fix f (n: nat) (x: R) := match n with | O => exp 1 | S n' => ln x / ln (f n' x) end) : forall (x: R), x > Rpower (exp 1) (exp 1) -> ex_finite_lim_seq (fun n => F n x) /\ let g (x: R) := Lim_seq (fun n => F n x) in continuity_pt g x. Proof. Admitted.
import Mathlib open Set Function Filter Topology Polynomial Real /-- For all $x > e^e$, let $S = u_0, u_1, \dots$ be a recursively defined sequence with $u_0 = e$ and $u_{n+1} = \log_{u_n} x$ for all $n \ge 0$. Prove that $S_x$ converges to some real number $g(x)$ and that this function $g$ is continuous for $x > e^e$. -/ theorem putnam_1982_b5 (T : Set ℝ) (hT : T = Ioi (Real.exp (Real.exp 1))) (S : ℝ β†’ β„• β†’ ℝ) (hS : βˆ€ x ∈ T, S x 0 = (Real.exp 1) ∧ βˆ€ n : β„•, S x (n + 1) = Real.logb (S x n) x) (g : ℝ β†’ ℝ) : βˆ€ x ∈ T, (βˆƒ L : ℝ, Tendsto (S x) atTop (𝓝 L)) ∧ (βˆ€ x ∈ T, Tendsto (S x) atTop (𝓝 (g x))) β†’ ContinuousOn g T := sorry
putnam_2023_a1
From mathcomp Require Import all_ssreflect ssrnum ssralg. From mathcomp Require Import reals trigo normedtype derive topology sequences. From mathcomp Require Import classical_sets. Import numFieldNormedType.Exports. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Open Scope classical_set_scope. Variable R : realType. Definition putnam_2023_a1_solution : nat := 18. Theorem putnam_2023_a1 (f : nat -> R -> R := fun n x => \prod_(1 <= i < n.+1) cos (i%:R * x)) : gt putnam_2023_a1_solution 0 /\ `|(f putnam_2023_a1_solution)^`(2) 0| > 2023 /\ forall n : nat, gt n 0 -> lt n putnam_2023_a1_solution -> `|(f n)^`(2) 0| <= 2023. Proof. Admitted.
import Mathlib open Nat abbrev putnam_2023_a1_solution : β„• := sorry -- 18 /-- For a positive integer $n$, let $f_n(x) = \cos(x) \cos(2x) \cos(3x) \cdots \cos(nx)$. Find the smallest $n$ such that $|f_n''(0)| > 2023$. -/ theorem putnam_2023_a1 (f : β„• β†’ ℝ β†’ ℝ) (hf : βˆ€ n > 0, f n = fun x : ℝ => ∏ i ∈ Finset.Icc 1 n, Real.cos (i * x)) : IsLeast {n | 0 < n ∧ |iteratedDeriv 2 (f n) 0| > 2023} putnam_2023_a1_solution := sorry
putnam_2003_b6
Require Import Reals Coquelicot.Coquelicot. Theorem putnam_2003_b6 (f : R -> R) (hf : continuity f) : RInt (fun x => RInt (fun y => Rabs (f x + f y)) 0 1) 0 1 >= RInt (fun x => Rabs (f x)) 0 1. Proof. Admitted.
import Mathlib open MvPolynomial Set Nat /-- Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that \[ \int_0^1 \int_0^1 | f(x) + f(y) |\,dx\,dy \geq \int_0^1 |f(x)|\,dx. \] -/ theorem putnam_2003_b6 (f : ℝ β†’ ℝ) (hf : Continuous f) : (∫ x in (0 : ℝ)..1, (∫ y in (0 : ℝ)..1, |f x + f y|)) β‰₯ (∫ x in (0 : ℝ)..1, |f x|) := sorry
putnam_1979_a3
From mathcomp Require Import all_algebra all_ssreflect. From mathcomp Require Import reals sequences. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Variable R : realType. Definition putnam_1979_a3_solution : (R*R)%type -> Prop := fun '(a, b) => exists m : int, a = m%:~R /\ b = m%:~R. Theorem putnam_1979_a3 (x : R ^nat) (hx : forall n : nat, x n <> 0 /\ (ge n 3 -> x n = (x (n.-2)) * (x (n.-1))/(2 * (x (n.-2)) - (x (n.-1))))) : (forall m : nat, exists n : nat, gt n m /\ (exists a : int, x n = a%:~R)) <-> putnam_1979_a3_solution (x 1%nat, x 2%nat). Proof. Admitted.
import Mathlib abbrev putnam_1979_a3_solution : (ℝ Γ— ℝ) β†’ Prop := sorry -- fun (a, b) => βˆƒ m : β„€, a = m ∧ b = m /-- Let $x_1, x_2, x_3, \dots$ be a sequence of nonzero real numbers such that $$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}}$$ for all $n \ge 3$. For which real values of $x_1$ and $x_2$ does $x_n$ attain integer values for infinitely many $n$? -/ theorem putnam_1979_a3 (x : β„• β†’ ℝ) (hx : βˆ€ n : β„•, x n β‰  0 ∧ (n β‰₯ 3 β†’ x n = (x (n - 2))*(x (n - 1))/(2*(x (n - 2)) - (x (n - 1))))) : (βˆ€ m : β„•, βˆƒ n : β„•, n > m ∧ βˆƒ a : β„€, a = x n) ↔ putnam_1979_a3_solution (x 1, x 2) := sorry
putnam_1965_b4
From mathcomp Require Import all_algebra all_ssreflect. From mathcomp Require Import reals normedtype sequences topology. From mathcomp Require Import classical_sets. Import numFieldNormedType.Exports. Import Order.TTheory GRing.Theory Num.Theory. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Open Scope classical_set_scope. Variable R : realType. Definition putnam_1965_b4_solution : ((((R -> R) -> (R -> R)) * ((R -> R) -> (R -> R))) * ((set R) * (R -> R))) := ((fun h : R -> R => (fun x : R => h x + x), fun h : R -> R => (fun x => h x + 1)), ([set x : R | x >= 0], @Num.sqrt R)). Theorem putnam_1965_b4 (f u v : nat -> R -> R) (hu : forall n : nat, gt n 0 -> forall x : R, u n x = \sum_(0 <= i < n%/2 .+1) ('C(n, 2 * i)%:R * x^i)) (hv : forall n : nat, gt n 0 -> forall x : R, v n x = \sum_(0 <= i < (n.-1)%/2 .+1) ('C(n, 2 * (i.+1))%:R * x^i)) (hf : forall n : nat, gt n 0 -> forall x : R, f n x = u n x / v n x) (n : nat) (hn : gt n 0) (f_seq : R -> (nat -> R) := fun (x : R) => fun (m : nat) => f m x) : let '((p, q), (s, g)) := putnam_1965_b4_solution in (forall x : R, v n x <> 0 -> v (n.+1) x <> 0 -> q (f n) x <> 0 -> f (n.+1) x = p (f n) x / q (f n) x) /\ s = [set x : R | exists l : R, f_seq x @ \oo --> l] /\ (forall x : R, x \in s -> (f_seq x) @ \oo --> g x). Proof. Admitted.
import Mathlib open EuclideanGeometry Topology Filter Complex noncomputable abbrev putnam_1965_b4_solution : ((((ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ)) Γ— ((ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ))) Γ— ((Set ℝ) Γ— (ℝ β†’ ℝ))) := sorry -- ((fun h : ℝ β†’ ℝ => h + (fun x : ℝ => x), fun h : ℝ β†’ ℝ => h + (fun _ : ℝ => 1)), ({x : ℝ | x β‰₯ 0}, Real.sqrt)) /-- Let $$f(x, n) = \frac{{n \choose 0} + {n \choose 2}x + {n \choose 4}x^2 + \cdots}{{n \choose 1} + {n \choose 3}x + {n \choose 5}x^2 + \cdots}$$ for all real numbers $x$ and positive integers $n$. Express $f(x, n+1)$ as a rational function involving $f(x, n)$ and $x$, and find $\lim_{n \to \infty} f(x, n)$ for all $x$ for which this limit converges. -/ theorem putnam_1965_b4 (f u v : β„• β†’ ℝ β†’ ℝ) (hu : βˆ€ n > 0, βˆ€ x, u n x = βˆ‘ i ∈ Finset.Icc 0 (n / 2), (n.choose (2 * i)) * x ^ i) (hv : βˆ€ n > 0, βˆ€ x, v n x = βˆ‘ i ∈ Finset.Icc 0 ((n - 1) / 2), (n.choose (2 * i + 1)) * x ^ i) (hf : βˆ€ n > 0, βˆ€ x, f n x = u n x / v n x) (n : β„•) (hn : 0 < n) : let ⟨⟨p, q⟩, ⟨s, g⟩⟩ := putnam_1965_b4_solution (βˆ€ x, v n x β‰  0 β†’ v (n + 1) x β‰  0 β†’ q (f n) x β‰  0 β†’ f (n + 1) x = p (f n) x / q (f n) x) ∧ s = {x | βˆƒ l, Tendsto (fun n ↦ f n x) atTop (𝓝 l)} ∧ βˆ€ x ∈ s, Tendsto (fun n ↦ f n x) atTop (𝓝 (g x)) := sorry
putnam_1986_a1
Require Import Reals Ensembles Coquelicot.Coquelicot. Open Scope R. Definition putnam_1986_a1_solution := 18. Theorem putnam_1986_a1 (f : R -> R := fun x => pow x 3 - 3 * x) (T : Ensemble R := fun x => pow x 4 + 36 <= 13 * pow x 2) : (forall x : R, In R T x -> putnam_1986_a1_solution >= f x) /\ (exists x : R, In R T x /\ putnam_1986_a1_solution = f x). Proof. Admitted.
import Mathlib abbrev putnam_1986_a1_solution : ℝ := sorry -- 18 /-- Find, with explanation, the maximum value of $f(x)=x^3-3x$ on the set of all real numbers $x$ satisfying $x^4+36 \leq 13x^2$. -/ theorem putnam_1986_a1 (S : Set ℝ) (f : ℝ β†’ ℝ) (hS : S = {x : ℝ | x ^ 4 + 36 ≀ 13 * x ^ 2}) (hf : f = fun x ↦ x ^ 3 - 3 * x) : IsGreatest {f x | x ∈ S} putnam_1986_a1_solution := sorry
putnam_1966_b2
From mathcomp Require Import all_ssreflect all_algebra. From mathcomp Require Import classical_sets. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Open Scope classical_set_scope. Theorem putnam_1966_b2 (S : int -> set int := fun n => [set i | n <= i <= n + 9]) : forall n : int, n > 0 -> (exists k : int, k \in S n /\ (forall m : int, m \in S n -> k <> m -> gcdz m k = 1)). Proof. Admitted.
import Mathlib /-- Prove that, for any ten consecutive integers, at least one is relatively prime to all of the others. -/ theorem putnam_1966_b2 (S : β„€ β†’ Set β„€) (hS : S = fun n : β„€ => {n, n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7, n + 8, n + 9}) : βˆ€ n : β„€, n > 0 β†’ (βˆƒ k ∈ S n, βˆ€ m ∈ S n, k β‰  m β†’ IsCoprime m k) := sorry
putnam_1985_a5
Require Import Nat Reals List Coquelicot.Coquelicot. Open Scope nat_scope. Definition putnam_1985_a5_solution (n : nat) := n = 3 \/ n = 4 \/ n = 7 \/ n = 8. Theorem putnam_1985_a5 (F : nat -> R -> R := fun n x => fold_right Rmult 1%R (map (fun i : nat => cos (INR i * x)) (seq 1 n))) : forall (n: nat), 1 <= n <= 10 -> (RInt (F n) 0 (2*PI) <> 0%R <-> putnam_1985_a5_solution n). Proof. Admitted.
import Mathlib open Set Filter Topology Real abbrev putnam_1985_a5_solution : Set β„• := sorry -- {3, 4, 7, 8} /-- Let $I_m = \int_0^{2\pi} \cos(x)\cos(2x)\cdots \cos(mx)\,dx$. For which integers $m$, $1 \leq m \leq 10$ is $I_m \neq 0$? -/ theorem putnam_1985_a5 (I : β„• β†’ ℝ) (hI : I = fun (m : β„•) ↦ ∫ x in (0)..(2 * Real.pi), ∏ k ∈ Finset.Icc 1 m, cos (k * x)) : {m ∈ Finset.Icc 1 10 | I m β‰  0} = putnam_1985_a5_solution := sorry
putnam_1983_a6
Require Import Reals Coquelicot.Coquelicot. Definition putnam_1983_a6_solution := 2 / 9. Theorem putnam_1983_a6 (F : R -> R := fun a => (a ^ 4 / exp (a ^ 3)) * RInt (fun x => RInt (fun y => exp (x ^ 3 + y ^ 3)) 0 (a - x)) 0 a) : filterlim F (Rbar_locally p_infty) (locally putnam_1983_a6_solution). Proof. Admitted.
import Mathlib open Nat Filter Topology Real noncomputable abbrev putnam_1983_a6_solution : ℝ := sorry -- 2 / 9 /-- Let $T$ be the triangle with vertices $(0, 0)$, $(a, 0)$, and $(0, a)$. Find $\lim_{a \to \infty} a^4 \exp(-a^3) \int_T \exp(x^3+y^3) \, dx \, dy$. -/ theorem putnam_1983_a6 (F : ℝ β†’ ℝ) (hF : F = fun a ↦ (a ^ 4 / exp (a ^ 3)) * ∫ x in (0)..a, ∫ y in (0)..(a - x), exp (x ^ 3 + y ^ 3)) : (Tendsto F atTop (𝓝 putnam_1983_a6_solution)) := sorry
putnam_1997_a5
Require Import Nat Ensembles Finite_sets List Reals Coquelicot.Coquelicot. Open Scope R. Definition putnam_1997_a5_solution := True. Theorem putnam_1997_a5 (E: Ensemble (list nat) := fun l => length l = 10%nat /\ (forall i : nat, lt i 10 -> gt (nth i l 0%nat) 0) /\ sum_n (fun i => 1/ INR (nth i l 0%nat)) 9 = 1) (m: nat) : cardinal (list nat) E m -> (odd m = true <-> putnam_1997_a5_solution). Proof. Admitted.
import Mathlib open Filter Topology abbrev putnam_1997_a5_solution : Prop := sorry -- True /-- Let $N_n$ denote the number of ordered $n$-tuples of positive integers $(a_1,a_2,\ldots,a_n)$ such that $1/a_1 + 1/a_2 +\ldots + 1/a_n=1$. Determine whether $N_{10}$ is even or odd. -/ theorem putnam_1997_a5 (N : (n : β„•+) β†’ Set (Fin n β†’ β„•+)) (hN : N = fun (n : β„•+) => {t : Fin n β†’ β„•+ | (βˆ€ i j : Fin n, i < j β†’ t i <= t j) ∧ (βˆ‘ i : Fin n, (1 : ℝ)/(t i) = 1) }) : Odd (N 10).ncard ↔ putnam_1997_a5_solution := sorry
putnam_2003_a3
Require Import Reals Coquelicot.Coquelicot. Definition putnam_2003_a3_solution := 2 * sqrt 2 - 1. Theorem putnam_2003_a3 (f : R -> R := fun x => Rabs (sin x + cos x + tan x + 1 / tan x + 1 / cos x + 1 / sin x)) : (exists x : R, f x = putnam_2003_a3_solution) /\ (forall x : R, f x >= putnam_2003_a3_solution). Proof. Admitted.
import Mathlib open Set noncomputable abbrev putnam_2003_a3_solution : ℝ := sorry -- 2 * Real.sqrt 2 - 1 /-- Find the minimum value of $|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x|$ for real numbers $x$. -/ theorem putnam_2003_a3 (f : ℝ β†’ ℝ) (hf : βˆ€ x : ℝ, f x = |Real.sin x + Real.cos x + Real.tan x + 1 / Real.tan x + 1 / Real.cos x + 1 / Real.sin x|) : IsLeast (Set.range f) putnam_2003_a3_solution := sorry
putnam_1991_b4
Require Import Nat Reals ZArith Znumtheory Binomial Coquelicot.Coquelicot. Theorem putnam_1991_b4 (p: nat) (hp : odd p = true /\ prime (Z.of_nat p)) (expr : R := sum_n (fun j => Binomial.C p j * Binomial.C (p + j) j) p) : (floor expr) mod (Z.pow (Z.of_nat p) 2) = Z.add (Z.pow 2 (Z.of_nat p)) 1. Proof. Admitted.
import Mathlib open Filter Topology /-- Suppose $p$ is an odd prime. Prove that $\sum_{j=0}^p \binom{p}{j}\binom{p+j}{j} \equiv 2^p+1 \pmod{p^2}$. -/ theorem putnam_1991_b4 (p : β„•) (podd : Odd p) (pprime : Prime p) : (βˆ‘ j : Fin (p + 1), (p.choose j) * ((p + j).choose j)) ≑ (2 ^ p + 1) [MOD (p ^ 2)] := sorry
putnam_1972_b5
From GeoCoq Require Import Main.Tarski_dev.Ch16_coordinates_with_functions. Context `{T3D:Tarski_3D}. Theorem putnam_1972_b5 (A B C D : Tpoint) (hnonplanar : ~Coplanar A B C D) (hangles : Ang A B C = Ang C D A /\ Ang B C D = Ang D A B) : (Cong A B C D /\ Cong B C D A). Proof. Admitted.
import Mathlib open EuclideanGeometry Set Metric /-- Let $ABCD$ be a skew (non-planar) quadrilateral. Prove that if $\angle ABC = \angle CDA$ and $\angle BCD = \angle DAB$, then $AB = CD$ and $AD = BC$. -/ theorem putnam_1972_b5 (A B C D : EuclideanSpace ℝ (Fin 3)) (hnonplanar : Β¬Coplanar ℝ {A, B, C, D}) (hangles : ∠ A B C = ∠ C D A ∧ ∠ B C D = ∠ D A B) : dist A B = dist C D ∧ dist B C = dist D A := sorry
putnam_2022_b2
Require Import Ensembles Finite_sets Reals. Require Import GeoCoq.Main.Tarski_dev.Ch16_coordinates_with_functions. Context `{T2D:Tarski_2D} `{TE:@Tarski_euclidean Tn TnEQD}. Definition vect3:= (F * F * F)%type. Definition cross_prod (v w : vect3) := let '(v1, v2, v3) := v in let '(w1, w2, w3) := w in (SubF (MulF v2 w3) (MulF v3 w2), SubF (MulF v3 w1) (MulF v1 w3), SubF (MulF v1 w2) (MulF v2 w1)). Definition putnam_2022_b2_solution : Ensemble nat := fun n => n = 1 \/ n = 7. Theorem putnam_2022_b2 (p : nat -> Prop := fun n => exists (A: Ensemble vect3), cardinal vect3 A n /\ (A = fun u => exists v w : vect3, In _ A v /\ In _ A w /\ u = cross_prod v w)) : forall (n: nat), (n > 0 /\ p n) <-> In _ putnam_2022_b2_solution n. Proof. Admitted.
import Mathlib open Polynomial abbrev putnam_2022_b2_solution : Set β„• := sorry -- {1, 7} /-- Let $\times$ represent the cross product in $\mathbb{R}^3$. For what positive integers $n$ does there exist a set $S \subset \mathbb{R}^3$ with exactly $n$ elements such that $S=\{v \times w:v,w \in S\}$? -/ theorem putnam_2022_b2 (n : β„•) (P : Finset (Fin 3 β†’ ℝ) β†’ Prop) (P_def : βˆ€ S : Finset (Fin 3 β†’ ℝ), P S ↔ (S = {u : Fin 3 β†’ ℝ | βˆƒ v w : S, u = crossProduct v w})) : (0 < n ∧ βˆƒ S : Finset (Fin 3 β†’ ℝ), S.card = n ∧ P S) ↔ n ∈ putnam_2022_b2_solution := sorry
putnam_1962_b5
From mathcomp Require Import all_algebra all_ssreflect. From mathcomp Require Import reals. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Open Scope ring_scope. Variable R : realType. Theorem putnam_1962_b5 (n : nat) (ng1 : gt n 1) (sumf : nat -> R := fun N => \sum_(1 <= i < N.+1) ((i%:R / N%:R) ^+ N)) : (3 * (n%:R + 1) + 1) / (2 * n%:R + 2) < sumf n < 2. Proof. Admitted.
import Mathlib open MeasureTheory /-- Prove that for every integer $n$ greater than 1: \[ \frac{3n+1}{2n+2} < \left( \frac{1}{n} \right)^n + \left(\frac{2}{n} \right)^n + \cdots + \left(\frac{n}{n} \right)^n < 2. \] -/ theorem putnam_1962_b5 (n : β„€) (ng1 : n > 1) : (3 * (n : ℝ) + 1) / (2 * n + 2) < βˆ‘ i : Finset.Icc 1 n, ((i : ℝ) / n) ^ (n : ℝ) ∧ βˆ‘ i : Finset.Icc 1 n, ((i : ℝ) / n) ^ (n : ℝ) < 2 := sorry
putnam_1998_b4
Require Import Nat ZArith Reals Coquelicot.Coquelicot. Definition putnam_1998_b4_solution : nat -> nat -> Prop := (fun m n : nat => forall m2 n2 : nat, (m mod (2 ^ m2) = 0%nat /\ m mod (2 ^ (m2 + 1)) <> 0%nat /\ n mod (2 ^ n2) = 0%nat /\ n mod (2 ^ n2 + 1) <> 0%nat) -> m2 <> n2). Theorem putnam_1998_b4 (hsum : nat -> nat -> R := (fun m n : nat => sum_n (fun i => Rpower (-1) (IZR (floor (INR i / INR m)) + IZR (floor (INR i / INR n)))) (m * n - 1))) : forall (m n: nat), (gt m 0 /\ gt n 0) -> (hsum m n = 0 <-> putnam_1998_b4_solution m n). Proof. Admitted.
import Mathlib open Set Function Metric abbrev putnam_1998_b4_solution : Set (β„• Γ— β„•) := sorry -- {nm | let ⟨n,m⟩ := nm; multiplicity 2 n β‰  multiplicity 2 m} /-- Find necessary and sufficient conditions on positive integers $m$ and $n$ so that \[\sum_{i=0}^{mn-1} (-1)^{\lfloor i/m \rfloor +\lfloor i/n\rfloor}=0.\] -/ theorem putnam_1998_b4 (quantity : β„• β†’ β„• β†’ β„€) (hquantity : quantity = fun n m => βˆ‘ i ∈ Finset.range (m * n), (-1)^(i/m + i/n)) (n m : β„•) (hnm : n > 0 ∧ m > 0) : quantity n m = 0 ↔ ⟨n, m⟩ ∈ putnam_1998_b4_solution := sorry
putnam_2011_b6
Require Import Nat List Factorial Ensembles Finite_sets Reals Znumtheory ZArith Coquelicot.Coquelicot. Open Scope nat_scope. Theorem putnam_2011_b6 (p: nat) (hp : prime (Z.of_nat p) /\ odd p = true) : exists (E: Ensemble nat), (forall (n: nat), E n -> lt n p) /\ cardinal nat E ((p + 1) / 2) /\ forall (n: nat), E n -> Z.to_nat (floor (sum_n (fun k => INR (fact k * n ^ k)) (p - 1))) mod p <> 0. Proof. Admitted.
import Mathlib open Topology Filter Matrix Set /-- Let $p$ be an odd prime. Show that for at least $(p+1)/2$ values of $n$ in $\{0,1,2,\dots,p-1\}$, \[ \sum_{k=0}^{p-1} k! n^k \qquad \mbox{is not divisible by $p$.} \] -/ theorem putnam_2011_b6 (p : β„•) (hp : Odd p ∧ Nat.Prime p) : {n ∈ Finset.range p | Β¬ p ∣ βˆ‘ k : Finset.range p, Nat.factorial k * n^(k : β„•)}.card β‰₯ (p + 1)/2 := sorry
putnam_1974_b6
From mathcomp Require Import all_algebra all_ssreflect. From mathcomp Require Import classical_sets cardinality. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope nat_scope. Local Open Scope classical_set_scope. Local Open Scope card_scope. Definition putnam_1974_b6_solution : (nat * nat * nat) := ((2^1000 - 1) %/ 3, (2^1000 - 1) %/ 3, (2^1000 - 1) %/ 3 + 1). Theorem putnam_1974_b6 (n : nat := 1000) (count0 count1 count2 : nat) (hcount0 : [set : 'I_(count0)] #= [set A : set nat | A `<=` [set x : nat | 1 <= x <= n] /\ exists j : nat, A #= [set : 'I_(3*j)]]) (hcount1 : [set : 'I_(count1)] #= [set A : set nat | A `<=` [set x : nat | 1 <= x <= n] /\ exists j : nat, A #= [set : 'I_(3*j+1)]]) (hcount2 : [set : 'I_(count2)] #= [set A : set nat | A `<=` [set x : nat | 1 <= x <= n] /\ exists j : nat, A #= [set : 'I_(3*j+2)]]) : (count0, count1, count2) = putnam_1974_b6_solution. Proof. Admitted.
import Mathlib open Set Nat Polynomial Filter Topology abbrev putnam_1974_b6_solution : (β„• Γ— β„• Γ— β„•) := sorry -- ((2^1000 - 1)/3, (2^1000 - 1)/3, 1 + (2^1000 - 1)/3) /-- For a set with $1000$ elements, how many subsets are there whose candinality is respectively $\equiv 0 \bmod 3, \equiv 1 \bmod 3, \equiv 2 \bmod 3$? -/ theorem putnam_1974_b6 (n : β„€) (hn : n = 1000) (count0 count1 count2 : β„•) (hcount0 : count0 = {S | S βŠ† Finset.Icc 1 n ∧ S.card ≑ 0 [MOD 3]}.ncard) (hcount1 : count1 = {S | S βŠ† Finset.Icc 1 n ∧ S.card ≑ 1 [MOD 3]}.ncard) (hcount2 : count2 = {S | S βŠ† Finset.Icc 1 n ∧ S.card ≑ 2 [MOD 3]}.ncard) : (count0, count1, count2) = putnam_1974_b6_solution := sorry
putnam_1967_a6
From mathcomp Require Import all_ssreflect all_algebra fintype seq ssrbool. From mathcomp Require Import reals normedtype. From mathcomp Require Import classical_sets cardinality. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Open Scope classical_set_scope. Local Open Scope card_scope. Variable R : realType. Definition putnam_1967_a6_solution : nat := 8. Theorem putnam_1967_a6 (i0 : 'I_4) (idx : nat -> 'I_4 := fun i => nth i0 (ord_enum 4) i) (abneq0 : ('I_4 -> R) -> ('I_4 -> R) -> Prop := fun a b => a (idx 0%nat) * b (idx 1%nat) - a (idx 1%nat) * b (idx 0%nat) <> 0) (numtuples : ('I_4 -> R) -> ('I_4 -> R) -> nat) (hnumtuples : forall a b, [set s : 'I_4 -> R | exists x : 'I_4 -> R, (forall i, x i <> 0) /\ (\sum_(i : 'I_4) ((a i) * (x i)) = 0) /\ (\sum_(i : 'I_4) ((b i) * (x i)) = 0) /\ (forall i, s i = @Num.sg R (x i))] #= [set: 'I_(numtuples a b)]) : ((exists a b, abneq0 a b /\ numtuples a b = putnam_1967_a6_solution) /\ (forall a b, abneq0 a b -> (numtuples a b <= putnam_1967_a6_solution)%nat)). Proof. Admitted.
import Mathlib open Nat Topology Filter abbrev putnam_1967_a6_solution : β„• := sorry -- 8 /-- Given real numbers $\{a_i\}$ and $\{b_i\}$, ($i=1,2,3,4$), such that $a_1b_2-a_2b_1 \neq 0$. Consider the set of all solutions $(x_1,x_2,x_3,x_4)$ of the simultaneous equations $a_1x_1+a_2x_2+a_3x_3+a_4x_4=0$ and $b_1x_1+b_2x_2+b_3x_3+b_4x_4=0$, for which no $x_i$ ($i=1,2,3,4$) is zero. Each such solution generates a $4$-tuple of plus and minus signs $(\text{signum }x_1,\text{signum }x_2,\text{signum }x_3,\text{signum }x_4)$. Determine, with a proof, the maximum number of distinct $4$-tuples possible. -/ theorem putnam_1967_a6 (abneq0 : (Fin 4 β†’ ℝ) β†’ (Fin 4 β†’ ℝ) β†’ Prop) (habneq0 : abneq0 = (fun a b : Fin 4 β†’ ℝ => a 0 * b 1 - a 1 * b 0 β‰  0)) (numtuples : (Fin 4 β†’ ℝ) β†’ (Fin 4 β†’ ℝ) β†’ β„•) (hnumtuples : βˆ€ a b : Fin 4 β†’ ℝ, numtuples a b = {s : Fin 4 β†’ ℝ | βˆƒ x : Fin 4 β†’ ℝ, (βˆ€ i : Fin 4, x i β‰  0) ∧ (βˆ‘ i : Fin 4, a i * x i) = 0 ∧ (βˆ‘ i : Fin 4, b i * x i) = 0 ∧ (βˆ€ i : Fin 4, s i = Real.sign (x i))}.encard) : (βˆƒ a b : Fin 4 β†’ ℝ, abneq0 a b ∧ numtuples a b = putnam_1967_a6_solution) ∧ (βˆ€ a b : Fin 4 β†’ ℝ, abneq0 a b β†’ numtuples a b ≀ putnam_1967_a6_solution) := sorry
putnam_1986_a2
Require Import Nat. Definition putnam_1986_a2_solution := 3. Theorem putnam_1986_a2 : (10 ^ (20000) / (10 ^ (100) + 3)) mod 10 = putnam_1986_a2_solution. Proof. Admitted.
import Mathlib abbrev putnam_1986_a2_solution : β„• := sorry -- 3 /-- What is the units (i.e., rightmost) digit of \[ \left\lfloor \frac{10^{20000}}{10^{100}+3}\right\rfloor ? \] -/ theorem putnam_1986_a2 : (Nat.floor ((10 ^ 20000 : ℝ) / (10 ^ 100 + 3)) % 10 = putnam_1986_a2_solution) := sorry
putnam_2010_b5
Require Import Reals Coquelicot.Coquelicot. Definition putnam_2010_b5_solution := False. Theorem putnam_2010_b5 : (exists (f: R -> R), forall (x y: R), (x < y -> f x < f y) /\ ex_derive f x /\ Derive f x = f (f x)) <-> putnam_2010_b5_solution. Proof. Admitted.
import Mathlib open Filter Topology Set abbrev putnam_2010_b5_solution : Prop := sorry -- False /-- Is there a strictly increasing function $f: \mathbb{R} \to \mathbb{R}$ such that $f'(x) = f(f(x))$ for all $x$? -/ theorem putnam_2010_b5 : (βˆƒ f : ℝ β†’ ℝ, StrictMono f ∧ Differentiable ℝ f ∧ (βˆ€ x : ℝ, deriv f x = f (f x))) ↔ putnam_2010_b5_solution := sorry
putnam_1963_a2
From mathcomp Require Import all_algebra all_ssreflect. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope nat_scope. Theorem putnam_1963_a2 (f : nat -> nat) (hfpos : forall n : nat, 0 < f n) (hfinc : forall i j : nat, 0 < i -> i < j -> f i < f j) (hf2 : f 2 = 2) (hfmn : forall m n : nat, 0 < m -> 0 < n -> coprime m n -> f (m * n) = f m * f n) : forall n : nat, 0 < n -> f n = n. Proof. Admitted.
import Mathlib open Topology Filter /-- Let $\{f(n)\}$ be a strictly increasing sequence of positive integers such that $f(2)=2$ and $f(mn)=f(m)f(n)$ for every relatively prime pair of positive integers $m$ and $n$ (the greatest common divisor of $m$ and $n$ is equal to $1$). Prove that $f(n)=n$ for every positive integer $n$. -/ theorem putnam_1963_a2 (f : β„• β†’ β„•) (hfpos : βˆ€ n, f n > 0) (hfinc : StrictMonoOn f (Set.Ici 1)) (hf2 : f 2 = 2) (hfmn : βˆ€ m n, m > 0 β†’ n > 0 β†’ IsRelPrime m n β†’ f (m * n) = f m * f n) : βˆ€ n > 0, f n = n := sorry
putnam_2009_b6
Require Import List ZArith Coquelicot.Coquelicot. Open Scope Z. Theorem putnam_2009_b6 : forall (n: Z), n > 0 -> exists (a: list Z), length a = 2010%nat /\ nth 0 a 0 = 0 /\ nth 2009 a 0 = n /\ forall (i: nat), and (le 1 i) (le i 2009) -> (exists (j: nat), lt j i /\ (exists (k: Z), k >= 0 /\ nth i a 0 = nth j a 0 + 2 ^ k)) \/ exists (b c: nat), lt b i /\ lt c i /\ nth b a 0 > 0 /\ nth c a 0 > 0 /\ nth i a 0 = (nth b a 0) mod (nth c a 0). Proof. Admitted.
import Mathlib open Topology MvPolynomial Filter Set Metric /-- Prove that for every positive integer $n$, there is a sequence of integers $a_0, a_1, \dots, a_{2009}$ with $a_0 = 0$ and $a_{2009} = n$ such that each term after $a_0$ is either an earlier term plus $2^k$ for some nonnegative integer $k$, or of the form $b\,\mathrm{mod}\,c$ for some earlier positive terms $b$ and $c$. [Here $b\,\mathrm{mod}\,c$ denotes the remainder when $b$ is divided by $c$, so $0 \leq (b\,\mathrm{mod}\,c) < c$.] -/ theorem putnam_2009_b6 (n : β„•) (npos : n > 0) : (βˆƒ a : β„• β†’ β„€, a 0 = 0 ∧ a 2009 = n ∧ βˆ€ i : Icc 1 2009, ((βˆƒ j k : β„•, j < i ∧ a i = a j + 2 ^ k) ∨ βˆƒ b c : β„•, b < i ∧ c < i ∧ a b > 0 ∧ a c > 0 ∧ a i = (a b) % (a c))) := sorry
putnam_1982_a6
Require Import Nat Reals Coquelicot.Coquelicot. Open Scope R. Definition putnam_1982_a6_solution := False. Theorem putnam_1982_a6 (a: nat -> R) : ((Series a = 1 /\ forall (i j: nat), le i j -> Rabs (a i) > Rabs (a j)) /\ forall (f: nat -> nat), Lim_seq (fun i => Rabs (INR (f i - i)) * Rabs (a i)) = 0 -> exists f', forall x, f' (f x) = x /\ f (f' x) = x -> Series (fun i => a (f i)) = 1) <-> putnam_1982_a6_solution. Proof. Admitted.
import Mathlib open Set Function Filter Topology Polynomial Real abbrev putnam_1982_a6_solution : Prop := sorry -- False /-- Let $b$ be a bijection from the positive integers to the positive integers. Also, let $x_1, x_2, x_3, \dots$ be an infinite sequence of real numbers with the following properties: \begin{enumerate} \item $|x_n|$ is a strictly decreasing function of $n$; \item $\lim_{n \rightarrow \infty} |b(n) - n| \cdot |x_n| = 0$; \item $\lim_{n \rightarrow \infty}\sum_{k = 1}^{n} x_k = 1$. \end{enumerate} Prove or disprove: these conditions imply that $$\lim_{n \rightarrow \infty} \sum_{k = 1}^{n} x_{b(k)} = 1.$$ -/ theorem putnam_1982_a6 : (βˆ€ b : β„• β†’ β„•, βˆ€ x : β„• β†’ ℝ, BijOn b (Ici 1) (Ici 1) β†’ StrictAntiOn (fun n : β„• => |x n|) (Ici 1) β†’ Tendsto (fun n : β„• => |b n - (n : β„€)| * |x n|) atTop (𝓝 0) β†’ Tendsto (fun n : β„• => βˆ‘ k ∈ Finset.Icc 1 n, x k) atTop (𝓝 1) β†’ Tendsto (fun n : β„• => βˆ‘ k ∈ Finset.Icc 1 n, x (b k)) atTop (𝓝 1)) ↔ putnam_1982_a6_solution := sorry
putnam_1985_a6
From mathcomp Require Import all_ssreflect all_algebra. From mathcomp Require Import reals. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Open Scope ring_scope. Variable R : realType. Definition putnam_1985_a6_solution : {poly R} := 6 * 'X ^ 2 + 5 * 'X + 1. Theorem putnam_1985_a6 (Gamma : {poly R} -> R := fun p => \sum_(i <- p) (i ^+ 2)) (f : {poly R} := 3 * 'X ^ 2 + 7 * 'X + 2) : let g := putnam_1985_a6_solution in g.[0] = 1 /\ forall n : nat, ge n 1 -> Gamma (f ^ n) = Gamma (g ^ n). Proof. Admitted.
import Mathlib open Set Filter Topology Real Polynomial noncomputable abbrev putnam_1985_a6_solution : Polynomial ℝ := sorry -- 6 * X ^ 2 + 5 * X + 1 /-- If $p(x)= a_0 + a_1 x + \cdots + a_m x^m$ is a polynomial with real coefficients $a_i$, then set \[ \Gamma(p(x)) = a_0^2 + a_1^2 + \cdots + a_m^2. \] Let $F(x) = 3x^2+7x+2$. Find, with proof, a polynomial $g(x)$ with real coefficients such that \begin{enumerate} \item[(i)] $g(0)=1$, and \item[(ii)] $\Gamma(f(x)^n) = \Gamma(g(x)^n)$ \end{enumerate} for every integer $n \geq 1$. -/ theorem putnam_1985_a6 (Ξ“ : Polynomial ℝ β†’ ℝ) (f : Polynomial ℝ) (hΞ“ : Ξ“ = fun p ↦ βˆ‘ k ∈ Finset.range (p.natDegree + 1), coeff p k ^ 2) (hf : f = 3 * X ^ 2 + 7 * X + 2) : let g := putnam_1985_a6_solution; g.eval 0 = 1 ∧ βˆ€ n : β„•, n β‰₯ 1 β†’ Ξ“ (f ^ n) = Ξ“ (g ^ n) := sorry
putnam_2020_b6
Require Import Reals. From Coquelicot Require Import Coquelicot Hierarchy Rcomplements. Open Scope R. Theorem putnam_2020_b6 (A : nat -> R := fun k => (-1)^(Z.to_nat (floor (INR k * (sqrt 2 - 1))))) (B : nat -> R := fun n => sum_n_m A 1 n) : forall (n: nat), B n >= 0. Proof. Admitted.
import Mathlib open Filter Topology Set /-- Let $n$ be a positive integer. Prove that $\sum_{k=1}^n(-1)^{\lfloor k(\sqrt{2}-1) \rfloor} \geq 0$. -/ theorem putnam_2020_b6 (n : β„•) (npos : n > 0) : βˆ‘ k ∈ Finset.Icc 1 n, ((-1) ^ Int.floor (k * (Real.sqrt 2 - 1)) : ℝ) β‰₯ 0 := sorry
putnam_1976_a6
From mathcomp Require Import all_ssreflect ssrnum ssralg. From mathcomp Require Import reals derive classical_sets normedtype topology boolp. Import numFieldNormedType.Exports. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Open Scope classical_set_scope. Variable R : realType. Theorem putnam_1976_a6 (f : R -> R) (hfdiff : (forall x : R, differentiable f x /\ differentiable f^`() x) /\ continuous f^`(2)) (hfbd : forall x : R, `|f x| <= 1) (hf0 : (f 0) ^+ 2 + (f^`() 0) ^+ 2 = 4) : exists y : R, f y + f^`(2) y = 0. Proof. Admitted.
import Mathlib open Polynomial /-- Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable function such that $|f(x)| \le 1$ for all real $x$ and $(f(0))^2 + (f'(0))^2 = 4$. Prove that $f(y) + f''(y) = 0$ for some real number $y$. -/ theorem putnam_1976_a6 (f : ℝ β†’ ℝ) (hfdiff : ContDiff ℝ 2 f) (hfbd : βˆ€ x : ℝ, |f x| ≀ 1) (hf0 : (f 0)^2 + (deriv f 0)^2 = 4) : βˆƒ y : ℝ, (f y) + (iteratedDeriv 2 f y) = 0 := sorry
putnam_1993_b5
Require Import ZArith Reals Coquelicot.Coquelicot. From mathcomp Require Import fintype. Theorem putnam_1993_b5 (pdists : ('I_4 -> (R * R)) -> Prop) (hpdists : forall p : 'I_4 -> (R * R), pdists p = (forall i j : 'I_4, i <> j -> (exists k : Z, IZR k = norm (fst (p i) - fst (p j), (snd (p i) - snd (p j))) /\ Z.odd k = true))) : ~ (exists p : 'I_4 -> (R * R), pdists p). Proof. Admitted.
import Mathlib /-- Show there do not exist four points in the Euclidean plane such that the pairwise distances between the points are all odd integers. -/ theorem putnam_1993_b5: Β¬βˆƒ p : Fin 4 β†’ (EuclideanSpace ℝ (Fin 2)), βˆ€ i j, i β‰  j β†’ (βˆƒ n : β„€, dist (p i) (p j) = n ∧ Odd n) := sorry
putnam_1992_a2
Require Import Reals Binomial Factorial Coquelicot.Coquelicot. Open Scope R. Definition putnam_1992_a2_solution := 1992. Theorem putnam_1992_a2 (C : R -> R := fun a => (Derive_n (fun x => Rpower (1 + x) a) 1992) 0 / INR (fact 1992)) : RInt (fun y => C (-y - 1) * sum_n_m (fun k => 1 / (y + INR k)) 1 1992) 0 1 = putnam_1992_a2_solution. Proof. Admitted.
import Mathlib open Topology Filter abbrev putnam_1992_a2_solution : ℝ := sorry -- 1992 /-- Define $C(\alpha)$ to be the coefficient of $x^{1992}$ in the power series about $x=0$ of $(1 + x)^\alpha$. Evaluate \[ \int_0^1 \left( C(-y-1) \sum_{k=1}^{1992} \frac{1}{y+k} \right)\,dy. \] -/ theorem putnam_1992_a2 (C : ℝ β†’ ℝ) (hC : C = fun Ξ± ↦ taylorCoeffWithin (fun x ↦ (1 + x) ^ Ξ±) 1992 Set.univ 0) : (∫ y in (0)..1, C (-y - 1) * βˆ‘ k ∈ Finset.Icc (1 : β„•) 1992, 1 / (y + k) = putnam_1992_a2_solution) := sorry
putnam_2014_a5
From mathcomp Require Import all_algebra all_ssreflect. From mathcomp Require Import reals. From mathcomp Require Import complex. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Variable R : realType. Theorem putnam_2014_a5 (P : nat -> {poly R[i]} := fun n => \sum_(1 <= i < n.+1) i%:R *: 'X^(i.-1)) : forall j k : nat, (gt j 0 /\ gt k 0) -> j <> k -> gcdp_rec (P j) (P k) = 1. Proof. Admitted.
import Mathlib open Topology Filter Nat /-- Let \[ P_n(x) = 1 + 2 x + 3 x^2 + \cdots + n x^{n-1}.\] Prove that the polynomials $P_j(x)$ and $P_k(x)$ are relatively prime for all positive integers $j$ and $k$ with $j \neq k$. -/ theorem putnam_2014_a5 (P : β„• β†’ Polynomial β„‚) (hP : βˆ€ n, P n = βˆ‘ i ∈ Finset.Icc 1 n, i * Polynomial.X ^ (i - 1)) : βˆ€ (j k : β„•), (j > 0 ∧ k > 0) β†’ j β‰  k β†’ IsCoprime (P j) (P k) := sorry
putnam_2012_a2
Require Import ssreflect. Theorem putnam_2012_a2 (S : Type) (op : S -> S -> S) (is_comm : (S -> S -> S) -> Prop := fun op => forall (x y : S), op x y = op y x) (is_assc : (S -> S -> S) -> Prop := fun op => forall (x y z : S), op x (op y z) = op (op x y) z) (hop : is_comm op /\ is_assc op) (hS : forall x y : S, exists z : S, op x z = y) (a b c : S) (habc : op a c = op b c) : a = b. Proof. Admitted.
import Mathlib open Matrix /-- Let $*$ be a commutative and associative binary operation on a set $S$. Assume that for every $x$ and $y$ in $S$, there exists $z$ in $S$ such that $x*z=y$. (This $z$ may depend on $x$ and $y$.) Show that if $a,b,c$ are in $S$ and $a*c=b*c$, then $a=b$. -/ theorem putnam_2012_a2 (S : Type*) [CommSemigroup S] (a b c : S) (hS : βˆ€ x y : S, βˆƒ z : S, x * z = y) (habc : a * c = b * c) : a = b := sorry
putnam_1975_b6
From mathcomp Require Import all_algebra all_ssreflect. From mathcomp Require Import reals sequences exp. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Variable R : realType. Theorem putnam_1975_b6 (s : R ^nat := fun n => \sum_(1 <= i < n.+1) (1 / i%:R)) : (forall n : nat, gt n 1 -> n%:R * (expR (ln ((n + 1)%:R) * 1/n%:R)) < n%:R + s n) /\ (forall n : nat, gt n 2 -> (n%:R - 1) * (expR ((ln n%:R) * -1/(n%:R-1))) < n%:R - s n). Proof. Admitted.
import Mathlib open Polynomial Real Complex Matrix Filter Topology Multiset /-- Show that if $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + 1/n, then $n(n+1)^{1/n} < n + s_n$ whenever $n > 1$ and $(n-1)n^{-1/(n-1)} < n - s_n$ whenever $n > 2$. -/ theorem putnam_1975_b6 (s : β„• β†’ ℝ) (hs : s = fun (n : β„•) => βˆ‘ i ∈ Finset.Icc 1 n, 1/(i : ℝ)) : (βˆ€ n : β„•, n > 1 β†’ n * (n+1 : ℝ)^(1/(n : ℝ)) < n + s n) ∧ (βˆ€ n : β„•, n > 2 β†’ ((n : ℝ) - 1)*((n : ℝ)^(-1/(n-1 : ℝ))) < n - s n) := sorry
putnam_1990_b5
From mathcomp Require Import all_algebra all_ssreflect. From mathcomp Require Import reals sequences topology normedtype. From mathcomp Require Import classical_sets cardinality. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Local Open Scope classical_set_scope. Local Open Scope card_scope. Variable R : realType. Definition putnam_1990_b5_solution : Prop := True. Theorem putnam_1990_b5 : (exists a : nat -> R, (forall i : nat, a i != 0) /\ (forall n : nat, ge n 1 -> (exists roots : seq R, uniq roots /\ size roots = n /\ all (fun x => 0 == \sum_(0 <= i < n.+1) (a i) * (x) ^ i) roots))). Proof. Admitted.
import Mathlib open Filter Polynomial Topology Nat abbrev putnam_1990_b5_solution : Prop := sorry -- True /-- Is there an infinite sequence $a_0,a_1,a_2,\dots$ of nonzero real numbers such that for $n=1,2,3,\dots$ the polynomial $p_n(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ has exactly $n$ distinct real roots? -/ theorem putnam_1990_b5 : (βˆƒ a : β„• β†’ ℝ, (βˆ€ i, a i β‰  0) ∧ (βˆ€ n β‰₯ 1, (βˆ‘ i ∈ Finset.Iic n, a i β€’ X ^ i : Polynomial ℝ).roots.toFinset.card = n)) ↔ putnam_1990_b5_solution := sorry
putnam_2000_a6
From mathcomp Require Import all_algebra all_ssreflect. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Theorem putnam_2000_a6 (f : {poly int}) (a : nat -> int) (ha0 : a 0%nat = 0) (ha : forall n : nat, a (n.+1) = f.[a n]) : (exists m : nat, gt m 0 /\ a m = 0) -> (a 1%nat = 0 \/ a 2%nat = 0). Proof. Admitted.
import Mathlib open Topology Filter /-- Let $f(x)$ be a polynomial with integer coefficients. Define a sequence $a_0,a_1,\ldots$ of integers such that $a_0=0$ and $a_{n+1}=f(a_n)$ for all $n\geq 0$. Prove that if there exists a positive integer $m$ for which $a_m=0$ then either $a_1=0$ or $a_2=0$. -/ theorem putnam_2000_a6 (f : Polynomial β„€) (a : β„• β†’ β„€) (ha0 : a 0 = 0) (ha : βˆ€ n : β„•, a (n + 1) = f.eval (a n)) : ((βˆƒ m > 0, a m = 0) β†’ (a 1 = 0 ∨ a 2 = 0)) := sorry
README.md exists but content is empty.
Downloads last month
6