File size: 12,254 Bytes
5908cb3 24798ca 5908cb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
---
license: cc-by-4.0
task_categories:
- question-answering
- text-generation
language:
- en
tags:
- mathematics
- unsolved-problems
- math
- research
- latex
- erdos
- number-theory
- combinatorics
size_categories:
- 1K<n<10K
pretty_name: UnsolvedMath
---
# UnsolvedMath Dataset
A comprehensive curated collection of **1,146 open mathematics problems** across all domains and difficulty levels, including the largest collection of Erdős problems available in machine-readable format. Available for browsing at https://unsolvedmath.com
## Dataset Description
**UnsolvedMath** is a meticulously curated dataset of unsolved and historically significant mathematical problems, organized by domain, difficulty level, and problem set. This dataset aggregates problems from the most prestigious collections in mathematics, with a particular focus on Paul Erdős's extensive problem collection.
### Featured Collections
- **Erdős Problems** (632 problems) - Extensive collection from Paul Erdős, one of the most prolific mathematicians of the 20th century
- **Millennium Prize Problems** - Clay Mathematics Institute's seven $1M problems
- **Hilbert's 23 Problems** - David Hilbert's foundational problems from 1900
- **Smale's Problems** - Steve Smale's 18 problems for the 21st century
- **DARPA's 23 Mathematical Challenges** - Fundamental research challenges
- **Ben Green's 100 Open Problems** - Problems in additive combinatorics
- **Hardy-Littlewood Conjectures** - Foundational problems on primes and partitions
- **Landau's Problems** - Four classic problems on prime numbers
- **Richard Guy - Prime Numbers** - Problems from "Unsolved Problems in Number Theory"
### Dataset Summary
- **Total Problems**: 1,146
- **Erdős Problems**: 632 (with full citations and references)
- **Categories**: 12 mathematical domains
- **Difficulty Levels**: 5 (L1: Tractable → L5: Millennium Prize)
- **Problem Sets**: 9 curated collections
- **Format**: JSON with LaTeX mathematical notation
- **License**: CC BY 4.0
### What's New
This dataset includes the most comprehensive collection of Erdős problems available in structured format:
- **632 Erdős problems** (EP-1 through EP-1135) from the Erdos Problems website
- Complete problem statements with LaTeX mathematical notation
- Detailed backgrounds with historical context
- Full bibliographic references for each problem
- Difficulty classifications (L1-L3)
- Category assignments (Number Theory, Combinatorics, Graph Theory, etc.)
### Supported Tasks
- Mathematical research and exploration
- Mathematical question answering systems
- LaTeX/mathematical notation processing
- Problem classification and organization
- Educational content generation
- Research bibliography extraction
- Historical mathematics analysis
## Dataset Structure
### Data Files
The dataset consists of multiple JSON files:
1. **problems.json** (1.4 MB) - Main dataset containing all 1,146 problems
2. **categories.json** (3.0 KB) - 12 mathematical domain classifications
3. **difficulty_levels.json** (1.1 KB) - 5-tier difficulty system
4. **sets.json** (3.1 KB) - Problem set metadata
5. **dataset.json** (1.5 MB) - Combined file with all data and metadata
### Data Fields
#### Problems
Each problem contains:
- `id` (int): Unique identifier
- `problem_number` (string): Problem code (e.g., "EP-1", "MPP-001")
- `title` (string): Problem title
- `statement` (string): Complete problem statement with LaTeX notation
- `background` (string): Historical context, references, and related work
- `difficulty_level_id` (int): Difficulty level (1-5)
- `status` (string): "open" or "solved"
- `category_id` (int): Mathematical domain identifier
- `set_id` (int, optional): Problem set identifier
- `proposed_by` (string, optional): Person who proposed the problem
- `proposed_year` (int, optional): Year the problem was first posed
- `view_count` (int): Number of views
- `favorite_count` (int): Number of favorites
- `created_at` (string): Timestamp
- `updated_at` (string): Timestamp
- `published` (boolean): Publication status
#### Categories
12 mathematical domains:
- **Number Theory** - Properties of integers, primes, Diophantine equations
- **Combinatorics** - Counting, arrangements, combinatorial structures
- **Graph Theory** - Networks, graphs, and their properties
- **Algebra** - Algebraic structures and equations
- **Algebraic Geometry** - Geometric objects defined by polynomials
- **Geometry** - Euclidean and non-Euclidean geometry
- **Topology** - Properties preserved under continuous deformations
- **Analysis** - Limits, continuity, calculus, function theory
- **Partial Differential Equations** - PDEs and applications
- **Set Theory** - Foundations, infinite sets, cardinality
- **Computer Science** - Computational complexity, algorithms
- **Mathematical Physics** - Mathematics-physics intersection
#### Difficulty Levels
- **L1: Tractable** - Problems potentially within reach with current techniques
- **L2: Intermediate** - Challenging problems requiring solid mathematical background
- **L3: Advanced** - Difficult problems requiring specialized knowledge
- **L4: Expert** - Very challenging problems at the frontier of research
- **L5: Millennium Prize** - Millennium Prize Problems and equivalent difficulty
#### Problem Sets
- Millennium Prize Problems (7 problems)
- Hilbert's 23 Problems
- Smale's Problems (18 problems)
- DARPA's 23 Mathematical Challenges
- Ben Green's 100 Open Problems
- **Erdős Problems (632 problems)**
- Hardy-Littlewood Conjectures
- Landau's Problems (4 problems)
- Richard Guy - A: Prime Numbers
## Usage
### Loading the Dataset
```python
import json
# Load all problems
with open('problems.json', 'r', encoding='utf-8') as f:
problems = json.load(f)
print(f"Total problems: {len(problems)}")
# Load the complete dataset
with open('dataset.json', 'r', encoding='utf-8') as f:
data = json.load(f)
print(f"Problems: {data['metadata']['total_problems']}")
print(f"Categories: {len(data['categories'])}")
print(f"Sets: {len(data['sets'])}")
```
### Example: Filtering Erdős Problems
```python
import json
with open('problems.json', 'r') as f:
problems = json.load(f)
# Get all Erdős problems
erdos_problems = [
p for p in problems
if p['problem_number'].startswith('EP-')
]
print(f"Found {len(erdos_problems)} Erdős problems")
# Get Erdős problems in Number Theory
erdos_nt = [
p for p in erdos_problems
if p['category_id'] == 1 # Number Theory
]
print(f"Erdős problems in Number Theory: {len(erdos_nt)}")
```
### Example: Filtering by Difficulty
```python
import json
with open('problems.json', 'r') as f:
problems = json.load(f)
# Get all Millennium Prize problems (L5)
millennium = [
p for p in problems
if p['difficulty_level_id'] == 5
]
# Get tractable problems (L1)
tractable = [
p for p in problems
if p['difficulty_level_id'] == 1
]
print(f"Millennium Prize problems: {len(millennium)}")
print(f"Tractable problems: {len(tractable)}")
```
### Example: Working with LaTeX
```python
# Problems contain LaTeX notation in statement and background fields
problem = problems[0]
print(f"Title: {problem['title']}")
print(f"Statement: {problem['statement']}")
# Example statement with LaTeX:
# "If $A\\subseteq \\{1,\\ldots,N\\}$ with $\\lvert A\\rvert=n$
# is such that the subset sums $\\sum_{a\\in S}a$ are distinct
# for all $S\\subseteq A$ then $N \\gg 2^{n}$."
# Use KaTeX, MathJax, or sympy to render LaTeX
from IPython.display import display, Markdown
display(Markdown(problem['statement']))
```
### Example: Extracting Citations from Erdős Problems
```python
import json
import re
with open('problems.json', 'r') as f:
problems = json.load(f)
# Get all Erdős problems
erdos = [p for p in problems if p['problem_number'].startswith('EP-')]
# Extract citations from background
citations = set()
for problem in erdos:
bg = problem.get('background', '')
# Find citations like \\cite{Er98}
refs = re.findall(r'\\cite\{([^}]+)\}', bg)
citations.update(refs)
print(f"Unique citations in Erdős problems: {len(citations)}")
print(f"Examples: {list(citations)[:10]}")
```
## Data Collection and Curation
### Sources
This dataset was curated from:
- Erdős problems website by Thomas Bloom (erdosproblems.com)
- Clay Mathematics Institute - Official Millennium Prize documentation
- Historical mathematical problem collections (Hilbert, Smale, Landau)
- Published research papers and mathematical surveys
- Reputable mathematical organizations (AMS, IMU, etc.)
- Richard Guy's "Unsolved Problems in Number Theory"
- Ben Green's additive combinatorics problem collection
### Erdős Problems Special Notes
The 632 Erdős problems include:
- Complete problem statements
- Detailed backgrounds with historical context from original sources
- Full bibliographic references (e.g., Erdős papers from 1931-1999)
- Cross-references between related problems
- Citations to recent progress and partial results
- OEIS sequence references where applicable
- Connections to other famous problems and conjectures
### Quality Assurance
All problems include:
- Accurate mathematical statements with proper LaTeX notation (mostly, there might be some smaller corrections needed)
- Historical context and background information
- Proper attribution and source references
- Classification by mathematical domain and difficulty
## Statistics
### By Difficulty Level
- **L1 (Tractable)**: 662 problems (57.8%)
- **L2 (Intermediate)**: 56 problems (4.9%)
- **L3 (Advanced)**: 72 problems (6.3%)
- **L4 (Expert)**: 220 problems (19.2%)
- **L5 (Millennium)**: 136 problems (11.9%)
### By Category
- **Number Theory**: 497 problems (43.4%) - heavily represented in Erdős problems
- **Graph Theory**: 214 problems (18.7%)
- **Combinatorics**: 195 problems (17.0%)
- **Other categories**: 240 problems (20.9%)
### By Set
- **Erdős Problems**: 632 problems (55.1% of total)
- **Other historical collections**: 514 problems (44.9% of total)
## Ethical Considerations
- **Academic Integrity**: This dataset is for research and educational purposes
- **Attribution**: All problems properly attributed to original sources
- **Open Problems**: Status accuracy maintained as of January 2026
- **Updates**: Some problems may be solved after dataset publication
- **Citations**: Erdős problems include full bibliographic references for verification
## Limitations
- The dataset represents a curated selection, not an exhaustive list of all unsolved problems
- Problem difficulty is subjective
- LaTeX notation may require preprocessing for some applications
- Status (open/solved) should be verified for time-sensitive applications
- Some Erdős problem backgrounds contain extensive LaTeX citations that may need special handling
## Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{unsolvedmath2026,
title={UnsolvedMath: A Curated Collection of Open Mathematics Problems},
author={P. Chojecki},
year={2026},
howpublished={\url{https://huggingface.co/datasets/ulamai/UnsolvedMath}},
note={Includes over 1000 open mathematical problems}
}
```
For the Erdős problems specifically:
```bibtex
@misc{erdos-problems,
title={Erdős Problems},
author={T. F. Bloom},
year={2026},
howpublished={\url{https://www.erdosproblems.com}},
note={Forum}
}
```
## Additional Information
### Dataset Curators
Przemek Chojecki
### Licensing Information
This dataset is released under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially
Under the following terms:
- Attribution — You must give appropriate credit and indicate if changes were made
### Updates and Maintenance
- **Version**: 1.0.0
- **Last Updated**: 2026-01-24
- **Total Problems**: 1,146
- **Erdős Problems Added**: 2026-01-24
### Contact
For questions, issues, or contributions, visit the project repository.
---
**Generated**: 2026-01-24
**Version**: 1.0.0
**Total Problems**: 1,146
**Erdős Problems**: 632
|