image
imagewidth (px) 232
232
| label
stringlengths 1
188
|
|---|---|
\dot{y}=\frac{dy}{dt}
|
|
\phi^{*}(T^{*}N)\rightarrow T^{*}M
|
|
(s,i)\ne(t,j)
|
|
(\begin{matrix}9\\ 4\end{matrix})
|
|
{10^{218}}^{10}-\frac{\frac{4}{\sqrt{375}}}{179}
|
|
A=\prod_{i=1}^{n}A_{i}
|
|
\frac{2GM}{z^{3}}\times10^{9}
|
|
x^{2}\equiv a
|
|
B^{0}\rightarrow\pi^{+}\pi^{-}
|
|
\kappa_{t}exp(\lambda_{t}x)c_{t}
|
|
\hat{p}^{k}
|
|
C_{n}=\int_{0}^{4}x^{n}\rho(x)dx
|
|
V(r)=\frac{1}{2}\mu\omega^{2}r^{2}
|
|
236^{236^{236^{236^{236^{230}}}}}
|
|
\frac{d^{2}y}{dx^{2}}
|
|
R_{ix}(t)=M_{i}A_{ix}(t)-
|
|
\frac{1}{\sqrt{N-3}}
|
|
\frac{Du}{Dt}=\frac{1}{\rho}\nabla\cdot\sigma+g
|
|
-\frac{dy}{dx}=\frac{MU_{x}}{MU_{y}}
|
|
q=(\begin{matrix}a&b\\ c&d\end{matrix})
|
|
\frac{1/288}{(\sqrt{157}-10)}
|
|
\frac{\partial f}{\partial x_{j}}(x)
|
|
\frac{\frac{1}{5}}{2+5}
|
|
\frac{dS}{dz}=0
|
|
\hat{f_{j}}
|
|
s+3^{t}>s
|
|
g(x)
|
|
R(\lambda)=\frac{1}{I-\lambda K}
|
|
1-\int_{t-r}^{t}E(t^{\prime})dt^{\prime}
|
|
(\begin{matrix}1\\ -1\\ 0\\ 0\end{matrix})
|
|
2\pi a<C<2\sqrt{3}\pi a
|
|
A=\underline{m}
|
|
G=\prod_{i\in I}H_{i}
|
|
v=\sqrt{\frac{ke^{2}}{mr}}
|
|
\vartheta=-\frac{log\frac{\phi_{\varsigma_{1}}}{\phi_{\varsigma_{2}}}}{log\frac{\varsigma_{1}}{\varsigma_{2}}}
|
|
e^{(\frac{\Upsilon}{\phi})[1-\sqrt{1-\frac{5\phi^{5}m}{\Upsilon}}]}
|
|
\phi(p)=\frac{e^{-\frac{p^{5}}{5}}}{\sqrt{5\epsilon}}
|
|
\frac{e^{+\frac{m^{2}}{2\Phi^{2}}}}{\sqrt{2\pi}\Phi}
|
|
-\frac{d[A]}{dt}=k[A]
|
|
\hat{\alpha}<\hat{\beta}
|
|
\beta_{i}=\frac{u_{i}}{c}=tanhw_{i}
|
|
\int_{L}^{*}
|
|
8.4\times10^{-17}seconds
|
|
A_{0}\cap A_{1}=\emptyset
|
|
c=-\frac{1}{6}\cdot\frac{1}{2!}=-\frac{1}{12}
|
|
\frac{470^{10}}{7+9^{5}}
|
|
\hat{n}_{b}
|
|
184+414+408^{163}
|
|
2\sqrt{\frac{2}{3\pi}}
|
|
\int_{0}^{1}e(t)dt
|
|
[\begin{matrix}4&6\end{matrix}]
|
|
3N=\frac{1}{3}\nu_{m}^{3}VF
|
|
(56+\sqrt{3})\cdot\frac{443}{156}
|
|
t=\frac{|r|}{\sqrt{\frac{8-r^{0}}{p-0}}}
|
|
\frac{9}{\sqrt{9-\frac{9}{\epsilon^{2}}}}
|
|
0.75\overline{0}
|
|
365-34/194^{473-5^{323}}
|
|
N=(\begin{matrix}n\\ 2\end{matrix})
|
|
(\begin{matrix}k\\ 2\end{matrix})-m
|
|
\hat{u}
|
|
\overline{x}\in X
|
|
\tau=2\cdot(z-z_{0})/c
|
|
O(\sqrt{logn})
|
|
Y^{\prime}:=\Delta([a^{\prime},b^{\prime}])
|
|
f=\frac{g}{x^{n}}=\frac{h}{y^{m}}
|
|
(138+406)^{\frac{2}{10}}
|
|
k=\frac{ln10}{1}
|
|
\overline{A}=\{x|x\notin A\}
|
|
(\begin{matrix}1&-1\\ 1&-1\end{matrix})
|
|
(\begin{matrix}0&-1\\ 1&0\end{matrix})
|
|
T_{r}/T_{c}
|
|
((\frac{7}{\sqrt{3}}+8)/197+87)
|
|
\frac{234+419\cdot7}{(215+479)}
|
|
-\sqrt{E_{b}}\phi(t)
|
|
-r^{2}f(r)
|
|
[\begin{matrix}-1\\ 1\end{matrix}]
|
|
(\begin{matrix}n\\ 2\end{matrix})p
|
|
c_{1}=\frac{\hat{X}[1]-c_{0}}{1-z_{0}z_{1}^{-1}}
|
|
\int sin(x)e^{x}dx
|
|
m=\frac{ln(F/K)}{\sigma\sqrt{\tau}}
|
|
(\begin{matrix}n\\ n\end{matrix})
|
|
\sigma_{n}^{2}=\frac{M_{2,n}}{n}
|
|
max_{a\in R^{d},||a||=1}\langle a,Va\rangle
|
|
1-1\sqrt{2}=-0.41421...
|
|
v_{0}-\frac{p}{m_{1}}
|
|
-\frac{\pi}{T}<\omega<+\frac{\pi}{T}
|
|
(228-346-3)+(\frac{406}{8}-2)
|
|
\int_{X}dxf(x)
|
|
\frac{\frac{64}{252}}{(\frac{3}{\sqrt{10}})^{476}}
|
|
\tilde{G}_{2}
|
|
Y_{i2}^{2}=Y^{2}+\frac{Y}{Z}
|
|
S_{g}S_{h}=S_{gh}
|
|
\hat{v}
|
|
1+2\lceil2logn\rceil
|
|
\lambda\sqrt{p}>(p^{1/4}+1)^{2}
|
|
P^{\alpha\dot{\beta}}=T^{\alpha\dot{\beta}}
|
|
x^{2}+\sqrt{x}-14=0
|
|
v=\frac{E_{i}}{\omega}(1+\frac{2}{\gamma^{2}})
|
|
\frac{\frac{\frac{\sqrt{352}}{\sqrt{111}}}{7}}{{4^{336}}^{294}}
|
|
k=1,2
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 130