File size: 17,564 Bytes
461349d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
"""
Geometric Algebra (Clifford Algebra) Neural Network
This example demonstrates neural networks using geometric algebra operations
for processing geometric and spatial data.
"""
import numpy as np
from typing import List, Tuple, Dict, Union
import math
class GeometricAlgebraNetwork:
"""
Neural network based on geometric algebra (Clifford algebra) operations.
"""
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, signature: str = "euclidean"):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.signature = signature
# Initialize geometric algebra basis
self.basis_elements = self._generate_basis_elements()
self.metric = self._generate_metric()
# Generate transformation coefficients
self.coefficients = self._generate_ga_coefficients()
def _generate_metric(self) -> np.ndarray:
"""Generate metric tensor for the geometric algebra."""
if self.signature == "euclidean":
return np.eye(self.input_dim)
elif self.signature == "minkowski":
metric = np.eye(self.input_dim)
metric[0, 0] = -1 # Time component with opposite signature
return metric
elif self.signature == "conformal":
# Conformal geometric algebra Cl(n+1,1)
metric = np.eye(self.input_dim + 2)
metric[-1, -1] = -1 # One negative signature
return metric
else:
return np.eye(self.input_dim)
def _generate_basis_elements(self) -> List[Tuple[str, np.ndarray]]:
"""Generate basis elements for geometric algebra."""
basis = []
# Scalar (grade 0)
scalar_basis = np.zeros(2**self.input_dim)
scalar_basis[0] = 1.0
basis.append(("scalar", scalar_basis))
# Vector basis elements (grade 1)
for i in range(self.input_dim):
vector_basis = np.zeros(2**self.input_dim)
vector_basis[2**i] = 1.0
basis.append((f"e{i+1}", vector_basis))
# Bivector basis elements (grade 2)
for i in range(self.input_dim):
for j in range(i+1, self.input_dim):
bivector_basis = np.zeros(2**self.input_dim)
bivector_basis[2**i + 2**j] = 1.0
basis.append((f"e{i+1}e{j+1}", bivector_basis))
# Higher grade elements for small dimensions
if self.input_dim <= 4:
# Trivectors (grade 3)
for i in range(self.input_dim):
for j in range(i+1, self.input_dim):
for k in range(j+1, self.input_dim):
trivector_basis = np.zeros(2**self.input_dim)
trivector_basis[2**i + 2**j + 2**k] = 1.0
basis.append((f"e{i+1}e{j+1}e{k+1}", trivector_basis))
# Pseudoscalar (highest grade)
if self.input_dim >= 2:
pseudo_basis = np.zeros(2**self.input_dim)
pseudo_basis[-1] = 1.0
basis.append(("pseudoscalar", pseudo_basis))
return basis
def _generate_ga_coefficients(self) -> Dict[str, np.ndarray]:
"""Generate coefficients for geometric algebra transformations."""
coeffs = {}
# Constants from geometric algebra theory
sqrt2 = math.sqrt(2)
sqrt3 = math.sqrt(3)
phi = (1 + math.sqrt(5)) / 2 # Golden ratio
constants = [1.0, 1/sqrt2, 1/sqrt3, 1/phi, phi/3, sqrt2/3, sqrt3/5]
# Input to hidden transformation
num_basis = len(self.basis_elements)
coeffs['input_hidden'] = np.zeros((self.hidden_dim, self.input_dim, num_basis))
for i in range(self.hidden_dim):
for j in range(self.input_dim):
for k in range(num_basis):
const_idx = (i + j + k) % len(constants)
coeffs['input_hidden'][i, j, k] = constants[const_idx]
# Hidden to output transformation
coeffs['hidden_output'] = np.zeros((self.output_dim, self.hidden_dim, num_basis))
for i in range(self.output_dim):
for j in range(self.hidden_dim):
for k in range(num_basis):
const_idx = (i + j + k + 1) % len(constants)
coeffs['hidden_output'][i, j, k] = constants[const_idx]
return coeffs
def geometric_product(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""Compute geometric product of two multivectors."""
# Simplified geometric product implementation
# In full implementation, this would use the basis multiplication table
if len(a) != len(b):
min_len = min(len(a), len(b))
a, b = a[:min_len], b[:min_len]
# For this implementation, approximate with:
# ab = a·b + a∧b (dot + wedge products)
# Dot product component (grade reduction)
dot_product = np.dot(a, b)
# Wedge product component (grade increase) - simplified
wedge_magnitude = np.linalg.norm(np.outer(a, b) - np.outer(b, a))
# Combine into multivector representation
result = np.zeros(max(len(a), 2**self.input_dim))
result[0] = dot_product # Scalar part
if len(result) > 1:
result[1] = wedge_magnitude # Vector part approximation
# Additional components based on input structure
for i in range(2, min(len(result), len(a) + len(b) - 1)):
result[i] = (a[i % len(a)] * b[i % len(b)] +
b[i % len(b)] * a[i % len(a)]) / 2
return result[:len(a)]
def outer_product(self, a: np.ndarray, b: np.ndarray) -> float:
"""Compute outer (wedge) product magnitude."""
if len(a) >= 2 and len(b) >= 2:
# 2D outer product as determinant
return abs(a[0] * b[1] - a[1] * b[0])
else:
# Higher dimensional approximation
return np.linalg.norm(np.outer(a, b) - np.outer(b, a))
def inner_product(self, a: np.ndarray, b: np.ndarray) -> float:
"""Compute inner (dot) product."""
return np.dot(a, b)
def reverse(self, mv: np.ndarray) -> np.ndarray:
"""Compute reverse of multivector (reverse order of basis elements)."""
# For bivectors and higher grades, reverse changes sign
reversed_mv = mv.copy()
# Approximate reversal by alternating signs for higher components
for i in range(1, len(reversed_mv)):
grade = bin(i).count('1') # Grade based on binary representation
if grade % 4 in [2, 3]: # Bivectors and trivectors change sign
reversed_mv[i] *= -1
return reversed_mv
def magnitude(self, mv: np.ndarray) -> float:
"""Compute magnitude of multivector."""
# Magnitude is sqrt(mv * reverse(mv))
reversed_mv = self.reverse(mv)
product = self.geometric_product(mv, reversed_mv)
return math.sqrt(abs(product[0])) # Scalar part should be positive
def normalize(self, mv: np.ndarray) -> np.ndarray:
"""Normalize multivector."""
mag = self.magnitude(mv)
if mag > 1e-10:
return mv / mag
else:
return mv
def apply_ga_transformation(self, x: np.ndarray, coeffs: np.ndarray) -> np.ndarray:
"""Apply geometric algebra transformation."""
if x.ndim == 1:
x = x.reshape(1, -1)
batch_size, input_size = x.shape
output_size = coeffs.shape[0]
num_basis = len(self.basis_elements)
result = np.zeros((batch_size, output_size))
for batch_idx in range(batch_size):
for out_idx in range(output_size):
# Construct multivector from input
multivector = np.zeros(num_basis)
for in_idx in range(min(input_size, self.input_dim)):
for basis_idx in range(num_basis):
basis_name, basis_vector = self.basis_elements[basis_idx]
coeff = coeffs[out_idx, in_idx, basis_idx]
# Ensure basis_vector has correct length
basis_component = basis_vector[:num_basis] if len(basis_vector) >= num_basis else np.pad(basis_vector, (0, num_basis - len(basis_vector)))
# Weight by input value and coefficient
multivector += x[batch_idx, in_idx] * coeff * basis_component
# Apply geometric algebra operations
# 1. Geometric product with basis elements
transformed_mv = multivector.copy()
for basis_idx in range(min(3, num_basis)): # Use first few basis elements
_, basis_vector = self.basis_elements[basis_idx]
transformed_mv = self.geometric_product(transformed_mv, basis_vector[:num_basis])
# 2. Extract scalar and vector parts
scalar_part = transformed_mv[0] if len(transformed_mv) > 0 else 0
vector_magnitude = np.linalg.norm(transformed_mv[1:min(4, len(transformed_mv))])
# 3. Combine into output
result[batch_idx, out_idx] = scalar_part + vector_magnitude
return result
def forward(self, x: np.ndarray) -> np.ndarray:
"""Forward pass through geometric algebra network."""
# Input to hidden layer
hidden = self.apply_ga_transformation(x, self.coefficients['input_hidden'])
# Apply nonlinearity (preserve geometric structure)
hidden = np.tanh(hidden)
# Hidden to output layer
output = self.apply_ga_transformation(hidden, self.coefficients['hidden_output'])
return output
def predict(self, x: np.ndarray) -> np.ndarray:
"""Prediction method."""
return self.forward(x)
def test_geometric_operations():
"""Test basic geometric algebra operations."""
print("=== Geometric Algebra: Basic Operations Test ===\n")
network = GeometricAlgebraNetwork(input_dim=3, hidden_dim=4, output_dim=2)
# Test vectors
a = np.array([1, 0, 0]) # e1
b = np.array([0, 1, 0]) # e2
c = np.array([1, 1, 0]) # e1 + e2
print("Testing geometric algebra operations:")
# Inner products
inner_ab = network.inner_product(a, b)
inner_aa = network.inner_product(a, a)
print(f"Inner product a·b = {inner_ab:.3f} (should be 0)")
print(f"Inner product a·a = {inner_aa:.3f} (should be 1)")
# Outer products
outer_ab = network.outer_product(a, b)
outer_aa = network.outer_product(a, a)
print(f"Outer product a∧b magnitude = {outer_ab:.3f} (should be 1)")
print(f"Outer product a∧a magnitude = {outer_aa:.3f} (should be 0)")
# Geometric products
geom_ab = network.geometric_product(a, b)
print(f"Geometric product a*b = {geom_ab[:3]} (first 3 components)")
# Magnitudes
mag_a = network.magnitude(a)
mag_c = network.magnitude(c)
print(f"Magnitude |a| = {mag_a:.3f}")
print(f"Magnitude |c| = {mag_c:.3f}")
print()
def test_3d_rotation_processing():
"""Test processing of 3D rotational data."""
print("=== Geometric Algebra: 3D Rotation Processing ===\n")
network = GeometricAlgebraNetwork(input_dim=3, hidden_dim=6, output_dim=4)
# Generate 3D rotation data (axis-angle representation)
rotation_axes = [
[1, 0, 0], # X-axis rotation
[0, 1, 0], # Y-axis rotation
[0, 0, 1], # Z-axis rotation
[1, 1, 1], # Diagonal rotation
[1, -1, 0], # Mixed rotation
]
print("Processing 3D rotation data:")
for i, axis in enumerate(rotation_axes):
axis = np.array(axis, dtype=float)
axis = axis / np.linalg.norm(axis) # Normalize
# Different rotation angles
angles = [0, np.pi/4, np.pi/2, np.pi, 3*np.pi/2]
outputs = []
for angle in angles:
# Rotation vector (axis * angle)
rotation_vector = axis * angle
output = network.predict(rotation_vector.reshape(1, -1))
outputs.append(output[0])
outputs = np.array(outputs)
print(f"\nRotation axis {i+1}: {axis}")
print(f" Output range: [{np.min(outputs):.3f}, {np.max(outputs):.3f}]")
print(f" Output variance: {np.var(outputs, axis=0)}")
# Check for periodic behavior (rotations should have 2π periodicity)
first_output = outputs[0] # 0 radians
last_output = outputs[-1] # 3π/2 radians, should be similar to π/2
periodicity_error = np.linalg.norm(first_output - outputs[2]) # Compare 0 and π
print(f" Periodicity error (0 vs π): {periodicity_error:.6f}")
def test_conformal_geometry():
"""Test conformal geometric algebra for 2D points."""
print("=== Geometric Algebra: Conformal Geometry ===\n")
# Use conformal signature for 2D conformal GA
network = GeometricAlgebraNetwork(input_dim=2, hidden_dim=8, output_dim=4, signature="conformal")
# Test geometric primitives
geometric_objects = {
"Point": np.array([1, 1]),
"Origin": np.array([0, 0]),
"Unit_X": np.array([1, 0]),
"Unit_Y": np.array([0, 1]),
"Diagonal": np.array([1, 1]) / np.sqrt(2)
}
print("Processing geometric objects in conformal space:")
object_features = {}
for obj_name, point in geometric_objects.items():
# Convert to conformal representation
# In conformal GA: P = point + 0.5*|point|²*e∞ + e₀
point_squared = np.dot(point, point)
conformal_point = np.concatenate([point, [0.5 * point_squared, 1]])
# Process through network
output = network.predict(conformal_point.reshape(1, -1))
object_features[obj_name] = output[0]
print(f"{obj_name:>10}: {point} → output: {output[0]}")
# Analyze relationships between objects
print("\nAnalyzing geometric relationships:")
origin_features = object_features["Origin"]
for obj_name, features in object_features.items():
if obj_name != "Origin":
distance = np.linalg.norm(features - origin_features)
print(f" Feature distance from origin to {obj_name}: {distance:.4f}")
def test_bivector_operations():
"""Test bivector operations for oriented areas."""
print("=== Geometric Algebra: Bivector Operations ===\n")
network = GeometricAlgebraNetwork(input_dim=4, hidden_dim=6, output_dim=3)
# Create bivectors representing oriented areas
bivectors = [
[1, 0, 1, 0], # e1∧e3
[0, 1, 0, 1], # e2∧e4
[1, 1, 0, 0], # e1∧e2
[0, 0, 1, 1], # e3∧e4
[1, 0, 0, 1], # e1∧e4
]
print("Processing bivector data:")
for i, bivector in enumerate(bivectors):
bv = np.array(bivector, dtype=float)
output = network.predict(bv.reshape(1, -1))
# Calculate bivector magnitude
bv_magnitude = np.linalg.norm(bv)
print(f"Bivector {i+1}: {bv}")
print(f" Magnitude: {bv_magnitude:.3f}")
print(f" Network output: {output[0]}")
print(f" Output magnitude: {np.linalg.norm(output[0]):.3f}")
print()
def test_multivector_algebra():
"""Test general multivector operations."""
print("=== Geometric Algebra: Multivector Operations ===\n")
network = GeometricAlgebraNetwork(input_dim=3, hidden_dim=5, output_dim=2)
# Create multivectors with different grade components
multivectors = [
[1, 0, 0], # Pure vector e1
[0, 1, 0], # Pure vector e2
[0, 0, 1], # Pure vector e3
[1, 1, 0], # e1 + e2
[1, 1, 1], # e1 + e2 + e3
[2, -1, 0.5], # 2*e1 - e2 + 0.5*e3
]
print("Multivector algebra processing:")
for i, mv in enumerate(multivectors):
mv_array = np.array(mv, dtype=float)
# Test reverse operation
reversed_mv = network.reverse(mv_array)
# Test magnitude
magnitude = network.magnitude(mv_array)
# Test normalization
normalized_mv = network.normalize(mv_array)
# Network processing
output = network.predict(mv_array.reshape(1, -1))
print(f"\nMultivector {i+1}: {mv}")
print(f" Reversed: {reversed_mv}")
print(f" Magnitude: {magnitude:.4f}")
print(f" Normalized: {normalized_mv}")
print(f" Network output: {output[0]}")
if __name__ == "__main__":
print("Geometric Algebra Neural Network Demo\n")
print("="*60)
# Run tests
test_geometric_operations()
test_3d_rotation_processing()
test_conformal_geometry()
test_bivector_operations()
test_multivector_algebra()
print("\n" + "="*60)
print("Geometric algebra demo completed successfully!") |