File size: 10,534 Bytes
461349d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
"""
Polynomial-based Algebraic Neural Network

This example demonstrates a neural network that uses polynomial transformations
with coefficients derived from algebraic number theory.
"""

import numpy as np
import matplotlib.pyplot as plt
from typing import Tuple
import math


class PolynomialAlgebraicNetwork:
    """
    Neural network using polynomial basis functions with algebraic coefficients.
    """
    
    def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, max_degree: int = 3):
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.max_degree = max_degree
        
        # Generate polynomial coefficients using algebraic numbers
        self.coefficients = self._generate_algebraic_coefficients()
        
    def _generate_algebraic_coefficients(self) -> dict:
        """Generate coefficients using famous algebraic constants."""
        coeffs = {}
        
        # Golden ratio and related algebraic numbers
        phi = (1 + math.sqrt(5)) / 2  # Golden ratio
        phi_conjugate = (1 - math.sqrt(5)) / 2
        
        # Silver ratio
        silver = 1 + math.sqrt(2)
        
        # Euler's number approximation using continued fractions
        e_approx = 2.718281828
        
        # Pi approximation
        pi_approx = math.pi
        
        algebraic_constants = [1, phi, phi_conjugate, silver, e_approx, pi_approx]
        
        # Generate coefficients for input to hidden transformation
        coeffs['input_hidden'] = np.zeros((self.hidden_dim, self.input_dim, self.max_degree + 1))
        for i in range(self.hidden_dim):
            for j in range(self.input_dim):
                for k in range(self.max_degree + 1):
                    # Use algebraic constants in a systematic way
                    const_idx = (i + j + k) % len(algebraic_constants)
                    base_coeff = algebraic_constants[const_idx]
                    
                    # Scale by factorial to maintain stability
                    coeffs['input_hidden'][i, j, k] = base_coeff / math.factorial(k + 1)
        
        # Generate coefficients for hidden to output transformation
        coeffs['hidden_output'] = np.zeros((self.output_dim, self.hidden_dim, self.max_degree + 1))
        for i in range(self.output_dim):
            for j in range(self.hidden_dim):
                for k in range(self.max_degree + 1):
                    const_idx = (i + j + k + 1) % len(algebraic_constants)
                    base_coeff = algebraic_constants[const_idx]
                    coeffs['hidden_output'][i, j, k] = base_coeff / math.factorial(k + 1)
        
        return coeffs
    
    def _polynomial_activation(self, x: np.ndarray, coeffs: np.ndarray) -> np.ndarray:
        """Apply polynomial activation with given coefficients."""
        if x.ndim == 1:
            x = x.reshape(1, -1)
            
        batch_size, input_size = x.shape
        output_size = coeffs.shape[0]
        
        result = np.zeros((batch_size, output_size))
        
        for i in range(output_size):
            for j in range(input_size):
                for degree in range(self.max_degree + 1):
                    if degree == 0:
                        poly_term = coeffs[i, j, degree]
                    else:
                        poly_term = coeffs[i, j, degree] * (x[:, j] ** degree)
                    result[:, i] += poly_term
                    
        return result
    
    def forward(self, x: np.ndarray) -> np.ndarray:
        """Forward pass through the polynomial network."""
        # Input to hidden layer
        hidden = self._polynomial_activation(x, self.coefficients['input_hidden'])
        
        # Apply hyperbolic tangent for stability
        hidden = np.tanh(hidden)
        
        # Hidden to output layer
        output = self._polynomial_activation(hidden, self.coefficients['hidden_output'])
        
        return output
    
    def predict(self, x: np.ndarray) -> np.ndarray:
        """Prediction method."""
        return self.forward(x)


def test_function_approximation():
    """Test the polynomial network on function approximation tasks."""
    print("=== Polynomial Network Function Approximation ===\n")
    
    # Create network
    network = PolynomialAlgebraicNetwork(input_dim=1, hidden_dim=5, output_dim=1, max_degree=3)
    
    # Test on various mathematical functions
    test_functions = [
        ("Sine", lambda x: np.sin(2 * np.pi * x)),
        ("Cosine", lambda x: np.cos(2 * np.pi * x)),
        ("Quadratic", lambda x: x**2 - 0.5*x + 0.1),
        ("Cubic", lambda x: x**3 - x**2 + 0.5*x),
        ("Exponential", lambda x: np.exp(-x**2))
    ]
    
    x_test = np.linspace(-1, 1, 50).reshape(-1, 1)
    
    results = {}
    for func_name, func in test_functions:
        y_true = func(x_test.flatten())
        y_pred = network.predict(x_test).flatten()
        
        # Calculate approximation error
        mse = np.mean((y_true - y_pred)**2)
        mae = np.mean(np.abs(y_true - y_pred))
        
        results[func_name] = {
            'mse': mse,
            'mae': mae,
            'y_true': y_true,
            'y_pred': y_pred
        }
        
        print(f"{func_name}:")
        print(f"  MSE: {mse:.6f}")
        print(f"  MAE: {mae:.6f}")
        print()
    
    return results, x_test


def test_pattern_recognition():
    """Test polynomial network on 2D pattern recognition."""
    print("=== Polynomial Network Pattern Recognition ===\n")
    
    # Create 2D network
    network = PolynomialAlgebraicNetwork(input_dim=2, hidden_dim=8, output_dim=3, max_degree=2)
    
    # Generate test patterns
    def generate_circle_points(n_points=20, radius=0.8):
        angles = np.linspace(0, 2*np.pi, n_points, endpoint=False)
        return np.column_stack([radius * np.cos(angles), radius * np.sin(angles)])
    
    def generate_square_points(n_points=20, side=1.0):
        points_per_side = n_points // 4
        side_points = []
        
        # Bottom side
        x = np.linspace(-side/2, side/2, points_per_side)
        y = np.full(points_per_side, -side/2)
        side_points.extend(zip(x, y))
        
        # Right side
        x = np.full(points_per_side, side/2)
        y = np.linspace(-side/2, side/2, points_per_side)
        side_points.extend(zip(x, y))
        
        # Top side
        x = np.linspace(side/2, -side/2, points_per_side)
        y = np.full(points_per_side, side/2)
        side_points.extend(zip(x, y))
        
        # Left side
        x = np.full(points_per_side, -side/2)
        y = np.linspace(side/2, -side/2, points_per_side)
        side_points.extend(zip(x, y))
        
        return np.array(side_points[:n_points])
    
    def generate_triangle_points(n_points=18, size=0.8):
        angles = np.array([0, 2*np.pi/3, 4*np.pi/3])
        vertices = size * np.column_stack([np.cos(angles), np.sin(angles)])
        
        points = []
        points_per_edge = n_points // 3
        
        for i in range(3):
            start = vertices[i]
            end = vertices[(i + 1) % 3]
            edge_points = np.linspace(start, end, points_per_edge, endpoint=False)
            points.extend(edge_points)
        
        return np.array(points[:n_points])
    
    # Generate patterns
    circles = generate_circle_points()
    squares = generate_square_points()
    triangles = generate_triangle_points()
    
    # Process with network
    circle_outputs = network.predict(circles)
    square_outputs = network.predict(squares)
    triangle_outputs = network.predict(triangles)
    
    # Analyze outputs
    print("Circle pattern analysis:")
    print(f"  Mean output: {np.mean(circle_outputs, axis=0)}")
    print(f"  Std output: {np.std(circle_outputs, axis=0)}")
    
    print("\nSquare pattern analysis:")
    print(f"  Mean output: {np.mean(square_outputs, axis=0)}")
    print(f"  Std output: {np.std(square_outputs, axis=0)}")
    
    print("\nTriangle pattern analysis:")
    print(f"  Mean output: {np.mean(triangle_outputs, axis=0)}")
    print(f"  Std output: {np.std(triangle_outputs, axis=0)}")
    
    return {
        'circles': (circles, circle_outputs),
        'squares': (squares, square_outputs),
        'triangles': (triangles, triangle_outputs)
    }


def demonstrate_coefficient_properties():
    """Demonstrate properties of the algebraic coefficients."""
    print("=== Algebraic Coefficient Properties ===\n")
    
    network = PolynomialAlgebraicNetwork(input_dim=3, hidden_dim=4, output_dim=2)
    
    # Analyze coefficient matrices
    input_hidden_coeffs = network.coefficients['input_hidden']
    hidden_output_coeffs = network.coefficients['hidden_output']
    
    print("Input-Hidden Coefficients:")
    print(f"  Shape: {input_hidden_coeffs.shape}")
    print(f"  Min coefficient: {np.min(input_hidden_coeffs):.6f}")
    print(f"  Max coefficient: {np.max(input_hidden_coeffs):.6f}")
    print(f"  Mean coefficient: {np.mean(input_hidden_coeffs):.6f}")
    print(f"  Std coefficient: {np.std(input_hidden_coeffs):.6f}")
    
    print("\nHidden-Output Coefficients:")
    print(f"  Shape: {hidden_output_coeffs.shape}")
    print(f"  Min coefficient: {np.min(hidden_output_coeffs):.6f}")
    print(f"  Max coefficient: {np.max(hidden_output_coeffs):.6f}")
    print(f"  Mean coefficient: {np.mean(hidden_output_coeffs):.6f}")
    print(f"  Std coefficient: {np.std(hidden_output_coeffs):.6f}")
    
    # Test stability with different input magnitudes
    print("\nStability Analysis:")
    test_inputs = [
        np.array([[0.1, 0.1, 0.1]]),
        np.array([[0.5, 0.5, 0.5]]),
        np.array([[1.0, 1.0, 1.0]]),
        np.array([[2.0, 2.0, 2.0]]),
    ]
    
    for i, test_input in enumerate(test_inputs):
        output = network.predict(test_input)
        magnitude = np.linalg.norm(test_input)
        output_magnitude = np.linalg.norm(output)
        print(f"  Input magnitude {magnitude:.1f} → Output magnitude {output_magnitude:.6f}")


if __name__ == "__main__":
    # Run demonstrations
    print("Polynomial Algebraic Neural Network Demo\n")
    print("="*50)
    
    # Function approximation test
    func_results, x_vals = test_function_approximation()
    
    # Pattern recognition test
    pattern_results = test_pattern_recognition()
    
    # Coefficient analysis
    demonstrate_coefficient_properties()
    
    print("\n" + "="*50)
    print("Demo completed successfully!")