| Let's use python to solve math problems. Display the final result in LaTeX. | |
| Question: Find the coefficient of $x^3$ when $3(x^2 - x^3+x) +3(x +2x^3- 3x^2 + 3x^5+x^3) -5(1+x-4x^3 - x^2)$ is simplifie. | |
| ```python | |
| from sympy import symbols, simplify | |
| def solution(): | |
| x = symbols('x') | |
| expr = 3*(x**2 - x**3 + x) + 3*(x + 2*x**3 - 3*x**2 + 3*x**5 + x**3) - 5*(1 + x - 4*x**3 - x**2) | |
| simplified_expr = simplify(expr) | |
| x3_coefficient = simplified_expr.as_coefficients_dict()[x**3] | |
| result = x3_coefficient | |
| return result | |
| ``` | |
| ---------------- | |
| Question: The surface area of a sphere with radius $r$ is $4\pi r^2$. Including the area of its circular base, what is the total surface area of a hemisphere with radius 6 cm? Express your answer in terms of $\pi$. | |
| ```python | |
| import math | |
| def solution(): | |
| radius = 6 | |
| # Surface area of the hemisphere | |
| hemisphere_area = 2 * math.pi * radius**2 | |
| # Area of the circular base | |
| base_area = math.pi * radius**2 | |
| # Total surface area | |
| total_surface_area = hemisphere_area + base_area | |
| # Formatting the result in LaTeX | |
| result = r'{}\\pi'.format(total_surface_area / math.pi) | |
| return result | |
| ``` | |
| ---------------- | |
| Question: Monica tosses a fair 6-sided die. If the roll is a prime number, then she wins that amount of dollars (so that, for example, if she rolls 3, then she wins 3 dollars). If the roll is composite, she wins nothing. Otherwise, she loses 3 dollars. What is the expected value of her winnings on one die toss? Express your answer as a dollar value to the nearest cent. | |
| ```python | |
| def solution(): | |
| # Probabilities of each outcome | |
| prime_prob = 1 / 6 | |
| composite_prob = 1 / 3 | |
| otherwise_prob = 1 / 6 | |
| # Expected value of each outcome | |
| prime_expected_value = (2 * prime_prob) + (3 * prime_prob) + (5 * prime_prob) | |
| composite_expected_value = 0 * composite_prob | |
| otherwise_expected_value = -3 * otherwise_prob | |
| # Total expected value | |
| total_expected_value = prime_expected_value + composite_expected_value + otherwise_expected_value | |
| # Dollar value to the nearest cent | |
| result = "{:.2f}".format(total_expected_value) | |
| return result | |
| ``` | |
| ---------------- | |
| Question: Given $\mathbf{a} = \begin{pmatrix} -7 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix},$ find $\mathbf{a} - 3 \mathbf{b}.$ | |
| Solution: | |
| ```python | |
| import numpy as np | |
| def solution() | |
| a = np.array([-7, 0, 1]) | |
| b = np.array([4, 2, -1]) | |
| result = a - 3 * b | |
| result = r'\begin{{pmatrix}} {} \\ {} \\ {} \end{{pmatrix}}'.format(result[0], result[1], result[2]) | |
| return result | |
| ``` | |
| ---------------- |