llama-30b-code_hard / training_logs.json
joshuaclymer's picture
Upload folder using huggingface_hub
23ed358
[
{
"loss": 0.7451,
"learning_rate": 0.0002,
"epoch": 0.02,
"step": 1
},
{
"loss": 0.7931,
"learning_rate": 0.0002,
"epoch": 0.04,
"step": 2
},
{
"loss": 0.7147,
"learning_rate": 0.0002,
"epoch": 0.05,
"step": 3
},
{
"loss": 0.6208,
"learning_rate": 0.0002,
"epoch": 0.07,
"step": 4
},
{
"loss": 0.6318,
"learning_rate": 0.0002,
"epoch": 0.09,
"step": 5
},
{
"loss": 0.5347,
"learning_rate": 0.0002,
"epoch": 0.11,
"step": 6
},
{
"loss": 0.5445,
"learning_rate": 0.0002,
"epoch": 0.12,
"step": 7
},
{
"loss": 0.5323,
"learning_rate": 0.0002,
"epoch": 0.14,
"step": 8
},
{
"loss": 0.5599,
"learning_rate": 0.0002,
"epoch": 0.16,
"step": 9
},
{
"loss": 0.544,
"learning_rate": 0.0002,
"epoch": 0.18,
"step": 10
},
{
"loss": 0.495,
"learning_rate": 0.0002,
"epoch": 0.19,
"step": 11
},
{
"loss": 0.4648,
"learning_rate": 0.0002,
"epoch": 0.21,
"step": 12
},
{
"loss": 0.5144,
"learning_rate": 0.0002,
"epoch": 0.23,
"step": 13
},
{
"loss": 0.3049,
"learning_rate": 0.0002,
"epoch": 0.25,
"step": 14
},
{
"loss": 0.2755,
"learning_rate": 0.0002,
"epoch": 0.26,
"step": 15
},
{
"loss": 0.3953,
"learning_rate": 0.0002,
"epoch": 0.28,
"step": 16
},
{
"loss": 0.293,
"learning_rate": 0.0002,
"epoch": 0.3,
"step": 17
},
{
"loss": 0.3035,
"learning_rate": 0.0002,
"epoch": 0.32,
"step": 18
},
{
"loss": 0.2193,
"learning_rate": 0.0002,
"epoch": 0.33,
"step": 19
},
{
"loss": 0.306,
"learning_rate": 0.0002,
"epoch": 0.35,
"step": 20
},
{
"loss": 0.3844,
"learning_rate": 0.0002,
"epoch": 0.37,
"step": 21
},
{
"loss": 0.4754,
"learning_rate": 0.0002,
"epoch": 0.39,
"step": 22
},
{
"loss": 0.247,
"learning_rate": 0.0002,
"epoch": 0.4,
"step": 23
},
{
"loss": 0.2831,
"learning_rate": 0.0002,
"epoch": 0.42,
"step": 24
},
{
"loss": 0.2395,
"learning_rate": 0.0002,
"epoch": 0.44,
"step": 25
},
{
"eval_code_hard_loss": 0.18990269303321838,
"eval_code_hard_score": -0.06281973421573639,
"eval_code_hard_brier_score": 0.06281973421573639,
"eval_code_hard_average_probability": 0.8535524010658264,
"eval_code_hard_accuracy": 0.91,
"eval_code_hard_probabilities": [
0.9951574206352234,
0.6952859163284302,
0.695438027381897,
1.0,
0.9999997615814209,
0.9999988079071045,
1.0,
0.9999998807907104,
0.9999998807907104,
0.9022552371025085,
0.9998458623886108,
0.9992383718490601,
1.0,
1.0,
1.0,
0.9705260396003723,
0.9934076070785522,
0.9893102645874023,
0.9892656803131104,
1.0,
1.0,
1.0,
0.9999995231628418,
0.9999997615814209,
0.999992847442627,
0.9999940395355225,
0.9999849796295166,
0.9993022680282593,
0.9998225569725037,
0.9997448325157166,
0.5516940355300903,
0.6634960770606995,
0.5038003325462341,
0.9990589022636414,
0.9990129470825195,
0.9992672801017761,
0.9999462366104126,
0.9998952150344849,
0.9999340772628784,
0.9476701021194458,
0.9273682832717896,
0.9702255725860596,
0.9999784231185913,
0.9999960660934448,
0.999988317489624,
0.6653634309768677,
0.4677712023258209,
0.5697581768035889,
0.8528237342834473,
0.8113780617713928,
0.7631744742393494,
0.4795503616333008,
0.4501705467700958,
0.45226800441741943,
0.9999998807907104,
0.9999998807907104,
1.0,
0.5940175652503967,
0.5912690162658691,
0.5215416550636292,
1.0,
1.0,
1.0,
0.5378963351249695,
0.4695456922054291,
0.8803982734680176,
0.9970523118972778,
0.9994822144508362,
0.9994255304336548,
0.7984318733215332,
0.6354186534881592,
0.8742010593414307,
0.9999979734420776,
0.9999983310699463,
0.999997615814209,
0.9906328916549683,
0.9663383364677429,
0.9692559838294983,
0.46825510263442993,
0.6134918928146362,
0.5529954433441162,
0.6660357713699341,
0.9829654097557068,
0.47695887088775635,
0.9999682903289795,
0.9999746084213257,
0.5424057841300964,
0.518418550491333,
0.4060291051864624,
0.5124395489692688,
0.9932987689971924,
0.9838415384292603,
0.975809633731842,
0.9949588179588318,
0.9947303533554077,
0.9956455230712891,
0.6032052636146545,
0.830151379108429,
0.38333284854888916,
0.7332690954208374
],
"eval_code_hard_runtime": 140.0539,
"eval_code_hard_samples_per_second": 0.714,
"eval_code_hard_steps_per_second": 0.029,
"epoch": 0.44,
"step": 25
},
{
"loss": 0.217,
"learning_rate": 0.0002,
"epoch": 0.46,
"step": 26
},
{
"loss": 0.2851,
"learning_rate": 0.0002,
"epoch": 0.47,
"step": 27
},
{
"loss": 0.2988,
"learning_rate": 0.0002,
"epoch": 0.49,
"step": 28
},
{
"loss": 0.1119,
"learning_rate": 0.0002,
"epoch": 0.51,
"step": 29
},
{
"loss": 0.1369,
"learning_rate": 0.0002,
"epoch": 0.53,
"step": 30
},
{
"loss": 0.2311,
"learning_rate": 0.0002,
"epoch": 0.54,
"step": 31
},
{
"loss": 0.2201,
"learning_rate": 0.0002,
"epoch": 0.56,
"step": 32
},
{
"loss": 0.1824,
"learning_rate": 0.0002,
"epoch": 0.58,
"step": 33
},
{
"loss": 0.1181,
"learning_rate": 0.0002,
"epoch": 0.6,
"step": 34
},
{
"loss": 0.0781,
"learning_rate": 0.0002,
"epoch": 0.61,
"step": 35
},
{
"loss": 0.1475,
"learning_rate": 0.0002,
"epoch": 0.63,
"step": 36
},
{
"loss": 0.198,
"learning_rate": 0.0002,
"epoch": 0.65,
"step": 37
},
{
"loss": 0.1074,
"learning_rate": 0.0002,
"epoch": 0.67,
"step": 38
},
{
"loss": 0.3816,
"learning_rate": 0.0002,
"epoch": 0.68,
"step": 39
},
{
"loss": 0.2657,
"learning_rate": 0.0002,
"epoch": 0.7,
"step": 40
},
{
"loss": 0.1525,
"learning_rate": 0.0002,
"epoch": 0.72,
"step": 41
},
{
"loss": 0.1426,
"learning_rate": 0.0002,
"epoch": 0.74,
"step": 42
},
{
"loss": 0.1578,
"learning_rate": 0.0002,
"epoch": 0.75,
"step": 43
},
{
"loss": 0.1234,
"learning_rate": 0.0002,
"epoch": 0.77,
"step": 44
},
{
"loss": 0.1591,
"learning_rate": 0.0002,
"epoch": 0.79,
"step": 45
},
{
"loss": 0.0388,
"learning_rate": 0.0002,
"epoch": 0.81,
"step": 46
},
{
"loss": 0.1186,
"learning_rate": 0.0002,
"epoch": 0.82,
"step": 47
},
{
"loss": 0.2242,
"learning_rate": 0.0002,
"epoch": 0.84,
"step": 48
},
{
"loss": 0.2245,
"learning_rate": 0.0002,
"epoch": 0.86,
"step": 49
},
{
"loss": 0.0825,
"learning_rate": 0.0002,
"epoch": 0.88,
"step": 50
},
{
"eval_code_hard_loss": 0.1537313610315323,
"eval_code_hard_score": -0.04667011648416519,
"eval_code_hard_brier_score": 0.04667011648416519,
"eval_code_hard_average_probability": 0.8784838318824768,
"eval_code_hard_accuracy": 0.94,
"eval_code_hard_probabilities": [
0.9725497364997864,
0.7011394500732422,
0.6710378527641296,
1.0,
1.0,
1.0,
0.9999716281890869,
0.9999884366989136,
0.999969482421875,
0.48456111550331116,
0.9981953501701355,
0.9864223003387451,
1.0,
1.0,
1.0,
0.9983637928962708,
0.9989921450614929,
0.9978587031364441,
1.0,
1.0,
1.0,
0.9999933242797852,
0.9999672174453735,
0.9999806880950928,
0.9999942779541016,
0.9999948740005493,
0.9999951124191284,
0.9994611144065857,
0.9993894100189209,
0.999222993850708,
0.8560943007469177,
0.8921459317207336,
0.7734678387641907,
0.9890369772911072,
0.9659588932991028,
0.9716930985450745,
0.9913560152053833,
0.9888952970504761,
0.9655161499977112,
0.882901132106781,
0.8454601168632507,
0.8470443487167358,
0.9999980926513672,
0.9999996423721313,
0.9999994039535522,
0.6798665523529053,
0.49168092012405396,
0.5368497967720032,
0.9873051047325134,
0.9402137994766235,
0.928394615650177,
0.35502684116363525,
0.9124428629875183,
0.946331799030304,
1.0,
1.0,
1.0,
0.6016813516616821,
0.49267151951789856,
0.6437432169914246,
1.0,
1.0,
1.0,
0.4486885964870453,
0.640812337398529,
0.879755437374115,
0.9916812777519226,
0.9911965131759644,
0.9993059635162354,
0.589796245098114,
0.7118774652481079,
0.9268589019775391,
0.9999767541885376,
0.9999942779541016,
0.9999902248382568,
0.9828012585639954,
0.9357141256332397,
0.9222304224967957,
0.5056607723236084,
0.7614033818244934,
0.7656963467597961,
0.6500656008720398,
0.8527267575263977,
0.5424817800521851,
0.9999986886978149,
0.999997615814209,
0.8840383291244507,
0.5736863613128662,
0.5833655595779419,
0.69774329662323,
0.9973189234733582,
0.9964283108711243,
0.9958376884460449,
0.9838255047798157,
0.9848774671554565,
0.9828516244888306,
0.7398984432220459,
0.9901463389396667,
0.3069886267185211,
0.7398353219032288
],
"eval_code_hard_runtime": 140.0621,
"eval_code_hard_samples_per_second": 0.714,
"eval_code_hard_steps_per_second": 0.029,
"epoch": 0.88,
"step": 50
},
{
"loss": 0.1986,
"learning_rate": 0.0002,
"epoch": 0.89,
"step": 51
},
{
"loss": 0.1768,
"learning_rate": 0.0002,
"epoch": 0.91,
"step": 52
},
{
"loss": 0.1257,
"learning_rate": 0.0002,
"epoch": 0.93,
"step": 53
},
{
"loss": 0.1255,
"learning_rate": 0.0002,
"epoch": 0.95,
"step": 54
},
{
"loss": 0.067,
"learning_rate": 0.0002,
"epoch": 0.96,
"step": 55
},
{
"loss": 0.2208,
"learning_rate": 0.0002,
"epoch": 0.98,
"step": 56
},
{
"loss": 0.1187,
"learning_rate": 0.0002,
"epoch": 1.0,
"step": 57
},
{
"loss": 0.159,
"learning_rate": 0.0002,
"epoch": 1.02,
"step": 58
},
{
"loss": 0.0512,
"learning_rate": 0.0002,
"epoch": 1.04,
"step": 59
},
{
"loss": 0.0608,
"learning_rate": 0.0002,
"epoch": 1.05,
"step": 60
},
{
"loss": 0.1049,
"learning_rate": 0.0002,
"epoch": 1.07,
"step": 61
},
{
"loss": 0.0634,
"learning_rate": 0.0002,
"epoch": 1.09,
"step": 62
},
{
"loss": 0.0609,
"learning_rate": 0.0002,
"epoch": 1.11,
"step": 63
},
{
"loss": 0.0888,
"learning_rate": 0.0002,
"epoch": 1.12,
"step": 64
},
{
"loss": 0.1165,
"learning_rate": 0.0002,
"epoch": 1.14,
"step": 65
},
{
"loss": 0.017,
"learning_rate": 0.0002,
"epoch": 1.16,
"step": 66
},
{
"loss": 0.0504,
"learning_rate": 0.0002,
"epoch": 1.18,
"step": 67
},
{
"loss": 0.0958,
"learning_rate": 0.0002,
"epoch": 1.19,
"step": 68
},
{
"loss": 0.0276,
"learning_rate": 0.0002,
"epoch": 1.21,
"step": 69
},
{
"loss": 0.0394,
"learning_rate": 0.0002,
"epoch": 1.23,
"step": 70
},
{
"loss": 0.0398,
"learning_rate": 0.0002,
"epoch": 1.25,
"step": 71
},
{
"loss": 0.108,
"learning_rate": 0.0002,
"epoch": 1.26,
"step": 72
},
{
"loss": 0.0392,
"learning_rate": 0.0002,
"epoch": 1.28,
"step": 73
},
{
"loss": 0.0233,
"learning_rate": 0.0002,
"epoch": 1.3,
"step": 74
},
{
"loss": 0.1554,
"learning_rate": 0.0002,
"epoch": 1.32,
"step": 75
},
{
"eval_code_hard_loss": 0.13956719636917114,
"eval_code_hard_score": -0.042688366025686264,
"eval_code_hard_brier_score": 0.042688366025686264,
"eval_code_hard_average_probability": 0.9274539947509766,
"eval_code_hard_accuracy": 0.93,
"eval_code_hard_probabilities": [
0.9999963045120239,
0.9699520468711853,
0.9745141267776489,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
0.35654664039611816,
0.886887788772583,
0.9559746980667114,
1.0,
1.0,
1.0,
0.9999935626983643,
0.9999960660934448,
0.9999923706054688,
0.9999997615814209,
1.0,
0.9999996423721313,
1.0,
1.0,
1.0,
1.0,
0.9999995231628418,
0.9999997615814209,
0.9998072981834412,
0.9999998807907104,
0.999997615814209,
0.9905921816825867,
0.9987447261810303,
0.9492596983909607,
1.0,
0.9999996423721313,
0.9999969005584717,
1.0,
0.9999995231628418,
0.9999992847442627,
0.9940958023071289,
0.9881225228309631,
0.9979448914527893,
1.0,
1.0,
1.0,
0.9875559210777283,
0.578984797000885,
0.643305242061615,
0.9999995231628418,
0.9999939203262329,
0.9999977350234985,
0.005097602494060993,
0.9997228980064392,
0.9975023865699768,
1.0,
1.0,
1.0,
0.3311256468296051,
0.45201003551483154,
0.7562749981880188,
1.0,
1.0,
1.0,
0.9942985773086548,
0.9975347518920898,
0.9981868863105774,
0.9999996423721313,
0.9999785423278809,
1.0,
0.46586939692497253,
0.9903834462165833,
0.9999986886978149,
1.0,
1.0,
1.0,
0.9817127585411072,
0.2876265347003937,
0.8499608635902405,
0.61001056432724,
0.996311604976654,
0.999902606010437,
0.9834624528884888,
0.9992788434028625,
0.9218541383743286,
1.0,
1.0,
0.9609642028808594,
0.7825002074241638,
0.9717795252799988,
0.9860764741897583,
0.9999998807907104,
0.9999990463256836,
0.9999997615814209,
0.9999983310699463,
0.9999971389770508,
0.9999949932098389,
0.9969584941864014,
0.9999991655349731,
0.15736030042171478,
0.9994120597839355
],
"eval_code_hard_runtime": 140.0578,
"eval_code_hard_samples_per_second": 0.714,
"eval_code_hard_steps_per_second": 0.029,
"epoch": 1.32,
"step": 75
},
{
"loss": 0.0227,
"learning_rate": 0.0002,
"epoch": 1.33,
"step": 76
},
{
"loss": 0.0849,
"learning_rate": 0.0002,
"epoch": 1.35,
"step": 77
},
{
"loss": 0.1094,
"learning_rate": 0.0002,
"epoch": 1.37,
"step": 78
},
{
"loss": 0.0689,
"learning_rate": 0.0002,
"epoch": 1.39,
"step": 79
},
{
"loss": 0.0418,
"learning_rate": 0.0002,
"epoch": 1.4,
"step": 80
},
{
"loss": 0.0886,
"learning_rate": 0.0002,
"epoch": 1.42,
"step": 81
},
{
"loss": 0.1833,
"learning_rate": 0.0002,
"epoch": 1.44,
"step": 82
},
{
"loss": 0.1213,
"learning_rate": 0.0002,
"epoch": 1.46,
"step": 83
},
{
"loss": 0.0424,
"learning_rate": 0.0002,
"epoch": 1.47,
"step": 84
},
{
"loss": 0.0194,
"learning_rate": 0.0002,
"epoch": 1.49,
"step": 85
},
{
"loss": 0.0229,
"learning_rate": 0.0002,
"epoch": 1.51,
"step": 86
},
{
"loss": 0.0231,
"learning_rate": 0.0002,
"epoch": 1.53,
"step": 87
},
{
"loss": 0.0263,
"learning_rate": 0.0002,
"epoch": 1.54,
"step": 88
},
{
"loss": 0.0619,
"learning_rate": 0.0002,
"epoch": 1.56,
"step": 89
},
{
"loss": 0.0365,
"learning_rate": 0.0002,
"epoch": 1.58,
"step": 90
},
{
"loss": 0.0523,
"learning_rate": 0.0002,
"epoch": 1.6,
"step": 91
},
{
"loss": 0.0172,
"learning_rate": 0.0002,
"epoch": 1.61,
"step": 92
},
{
"loss": 0.0455,
"learning_rate": 0.0002,
"epoch": 1.63,
"step": 93
},
{
"loss": 0.2764,
"learning_rate": 0.0002,
"epoch": 1.65,
"step": 94
},
{
"loss": 0.0225,
"learning_rate": 0.0002,
"epoch": 1.67,
"step": 95
},
{
"loss": 0.0133,
"learning_rate": 0.0002,
"epoch": 1.68,
"step": 96
},
{
"loss": 0.0188,
"learning_rate": 0.0002,
"epoch": 1.7,
"step": 97
},
{
"loss": 0.0207,
"learning_rate": 0.0002,
"epoch": 1.72,
"step": 98
},
{
"loss": 0.012,
"learning_rate": 0.0002,
"epoch": 1.74,
"step": 99
},
{
"loss": 0.0628,
"learning_rate": 0.0002,
"epoch": 1.75,
"step": 100
},
{
"eval_code_hard_loss": 0.1615547239780426,
"eval_code_hard_score": -0.03736421465873718,
"eval_code_hard_brier_score": 0.03736421465873718,
"eval_code_hard_average_probability": 0.9438884854316711,
"eval_code_hard_accuracy": 0.95,
"eval_code_hard_probabilities": [
1.0,
0.9725049734115601,
0.9244245886802673,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
0.07730857282876968,
0.9794886112213135,
0.999785840511322,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
0.9999511241912842,
1.0,
1.0,
0.9999926090240479,
1.0,
0.9999614953994751,
1.0,
1.0,
1.0,
1.0,
0.9999998807907104,
1.0,
0.9999260902404785,
0.9998406171798706,
0.9999992847442627,
1.0,
1.0,
1.0,
0.9999581575393677,
0.6513886451721191,
0.7881560921669006,
1.0,
1.0,
1.0,
0.00015713961329311132,
1.0,
0.9999954700469971,
1.0,
1.0,
1.0,
0.4968324303627014,
0.40699660778045654,
0.9514529705047607,
1.0,
1.0,
1.0,
1.0,
0.9999997615814209,
1.0,
1.0,
1.0,
1.0,
0.9981179237365723,
0.999592125415802,
0.9999996423721313,
1.0,
1.0,
1.0,
0.9999996423721313,
0.9520946741104126,
0.9975154399871826,
0.5100582242012024,
0.9827112555503845,
0.9999972581863403,
0.9999854564666748,
1.0,
0.9896236062049866,
1.0,
1.0,
0.8571937680244446,
0.796758770942688,
0.9510358572006226,
0.9994876384735107,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
0.9998961687088013,
1.0,
0.10666914284229279,
1.0
],
"eval_code_hard_runtime": 140.0373,
"eval_code_hard_samples_per_second": 0.714,
"eval_code_hard_steps_per_second": 0.029,
"epoch": 1.75,
"step": 100
},
{
"train_runtime": 12026.9778,
"train_samples_per_second": 0.266,
"train_steps_per_second": 0.008,
"total_flos": 0.0,
"train_loss": 0.19655362625606357,
"epoch": 1.75,
"step": 100
}
]