|
|
--- |
|
|
license: apache-2.0 |
|
|
datasets: |
|
|
- HuggingFaceFW/finetranslations |
|
|
language: |
|
|
- en |
|
|
- es |
|
|
metrics: |
|
|
- accuracy |
|
|
base_model: |
|
|
- nvidia/personaplex-7b-v1 |
|
|
new_version: nvidia/personaplex-7b-v1 |
|
|
library_name: adapter-transformers |
|
|
tags: |
|
|
- code |
|
|
- chemistry |
|
|
--- |
|
|
<img width="1024" height="172" alt="retouch_2025111217390816" src="https://github.com/user-attachments/assets/62278260-84c7-4e9d-843d-1014484c471d" /> |
|
|
|
|
|
<div align="center"> |
|
|
⚛️ QuoreMind v1.0.0 |
|
|
|
|
|
---- |
|
|
<h1>Sistema Metripléctico Cuántico-Bayesiano</h1> |
|
|
|
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
</div> |
|
|
|
|
|
---- |
|
|
|
|
|
## 🧭 Visión General |
|
|
|
|
|
**QuoreMind** es un framework analítico de vanguardia diseñado para modelar y predecir la evolución de sistemas cuánticos abiertos mediante la integración de: |
|
|
|
|
|
- 🔷 **Dinámica Metripléctica** (reversible + disipativa) |
|
|
- 🔴 **Lógica Bayesiana Cuántica** |
|
|
- 🟢 **Ruido Probabilístico de Referencia (PRN)** |
|
|
- ⚪ **Entropía de von Neumann** |
|
|
- 🔵 **Corchetes de Poisson** |
|
|
|
|
|
### Aplicaciones Clave |
|
|
|
|
|
✅ **Detección forense de anomalías** en información cuántica |
|
|
✅ **Mitigación de ataques HN/DL** (Harvest Now, Decrypt Later) |
|
|
✅ **Modulación de fase cuasiperiódica** para criptografía dinámica |
|
|
✅ **Análisis de decoherencia cuántica** y entrelazamiento |
|
|
✅ **Optimización de estados cuánticos** resistentes a ruido |
|
|
|
|
|
--- |
|
|
|
|
|
## ✨ Características Clave |
|
|
|
|
|
### 🔷 Estructura Nativamente Cuántica |
|
|
|
|
|
| Característica | Descripción | Impacto en Seguridad | |
|
|
|---|---|---| |
|
|
| **Operador Áureo** `Ô_n` | Modula fase cuasiperiódica y paridad del sistema | Ancla estados a secuencia no trivial → Cifrado dinámico robusto | |
|
|
| **Entropía von Neumann** `S(ρ)` | Métrica fundamental para medir desorden y entrelazamiento | Base para cuantificar decoherencia esperada vs. anómala | |
|
|
| **Distancia Mahalanobis Cuántica** `D_M` | Desviación estructural respecto a PRN esperado | D_M alta → Indicador potencial de intrusión | |
|
|
|
|
|
### 🔶 Arquitectura Metripléctica |
|
|
|
|
|
Fusiona reversibilidad y disipación (análogo a Ecuación de Lindblad): |
|
|
|
|
|
``` |
|
|
df/dt = {f, H} + [f, S]_M |
|
|
|
|
|
Parte reversible: {f, H} (Corchetes de Poisson) |
|
|
Parte disipativa: [f, S]_M (Matriz métrica M) |
|
|
``` |
|
|
|
|
|
| Componente | Función | |
|
|
|---|---| |
|
|
| **Corchetes de Poisson** | Dinámica reversible (Hamiltoniana) | |
|
|
| **Matriz Métrica M** | Modela disipación e irreversibilidad | |
|
|
|
|
|
### 🔴 Lógica Bayesiana y PRN |
|
|
|
|
|
- **PRN**: Modela ruido ambiental estocástico esperado |
|
|
- **Inferencia Bayesiana**: Calcula probabilidad posterior para decisiones binarias óptimas |
|
|
- **Coherencia Dinámica**: Parámetro adaptativo basado en estado del sistema |
|
|
|
|
|
--- |
|
|
|
|
|
## 🏗️ Arquitectura del Proyecto |
|
|
|
|
|
### Estructura de Clases |
|
|
|
|
|
``` |
|
|
VonNeumannEntropy |
|
|
├─ compute_von_neumann_entropy() [Cálculo cuántico] |
|
|
├─ density_matrix_from_state() [Construcción ρ] |
|
|
└─ mixed_state_entropy() [Mezclas estadísticas] |
|
|
|
|
|
PoissonBrackets |
|
|
├─ poisson_bracket() [Estructura simpléctica] |
|
|
└─ liouville_evolution() [Ecuación de Liouville] |
|
|
|
|
|
MetriplecticStructure |
|
|
├─ metriplectic_bracket() [Corchete metriplexico] |
|
|
└─ metriplectic_evolution() [Evolución híbrida] |
|
|
|
|
|
BayesLogic |
|
|
├─ calculate_posterior_probability() [Teorema de Bayes] |
|
|
├─ calculate_joint_probability() [Probabilidades conjuntas] |
|
|
└─ calculate_probabilities_and_select_action() [Decisión final] |
|
|
|
|
|
QuantumBayesMahalanobis (extends BayesLogic) |
|
|
├─ compute_quantum_mahalanobis() [Distancia vectorizada] |
|
|
├─ quantum_cosine_projection() [Proyecciones coseno] |
|
|
└─ predict_quantum_state() [Predicción de estado] |
|
|
|
|
|
PRN / EnhancedPRN |
|
|
├─ adjust_influence() [Modulación de ruido] |
|
|
├─ combine_with() [Combinación de PRN] |
|
|
└─ record_quantum_noise() [Registro de anomalías] |
|
|
|
|
|
QuantumNoiseCollapse (core) |
|
|
├─ simulate_wave_collapse_metriplectic() [Simulación principal] |
|
|
├─ objective_function_with_noise() [Función objetivo] |
|
|
└─ optimize_quantum_state() [Optimización Adam] |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 🚀 Instalación y Requerimientos |
|
|
|
|
|
### Requisitos Previos |
|
|
- **Python 3.9+** |
|
|
- **pip** o **conda** |
|
|
|
|
|
### Instalación |
|
|
|
|
|
```bash |
|
|
# Clonar repositorio |
|
|
git clone https://github.com/tlacaelel666/QuoreMind-Metiplectic.git |
|
|
cd quoremind |
|
|
|
|
|
# Instalar dependencias |
|
|
pip install numpy tensorflow tensorflow-probability scikit-learn scipy |
|
|
|
|
|
# (Opcional) Crear entorno virtual |
|
|
python -m venv venv |
|
|
source venv/bin/activate # En Windows: venv\Scripts\activate |
|
|
``` |
|
|
|
|
|
### Dependencias |
|
|
|
|
|
```python |
|
|
numpy >= 1.21.0 |
|
|
tensorflow >= 2.10.0 |
|
|
tensorflow-probability >= 0.19.0 |
|
|
scikit-learn >= 1.0.0 |
|
|
scipy >= 1.7.0 |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 📖 Uso Básico |
|
|
|
|
|
### Ejemplo 1: Cálculo de Entropía von Neumann |
|
|
|
|
|
```python |
|
|
from quoremind import VonNeumannEntropy |
|
|
import numpy as np |
|
|
|
|
|
# Crear estado puro de Bell |
|
|
state = np.array([1/np.sqrt(2), 1/np.sqrt(2)]) |
|
|
density_matrix = VonNeumannEntropy.density_matrix_from_state(state) |
|
|
|
|
|
# Calcular entropía (normalizada a [0, 1]) |
|
|
entropy = VonNeumannEntropy.compute_von_neumann_entropy( |
|
|
density_matrix, |
|
|
state # sigmoid, tanh, log_compression, min_max, clamp |
|
|
) |
|
|
|
|
|
print(f"Entropía von Neumann: {entropy:.6f}") # Debe oscilar ∈ [0, 1] |
|
|
``` |
|
|
|
|
|
### Ejemplo 2: Análisis de Corchetes de Poisson |
|
|
|
|
|
```python |
|
|
from quoremind import PoissonBrackets |
|
|
import numpy as np |
|
|
|
|
|
# Definir Hamiltoniano |
|
|
H = lambda q, p: 0.5 * p**2 + 0.5 * q**2 # Oscilador armónico |
|
|
|
|
|
# Definir observable |
|
|
x = lambda q, p: q |
|
|
|
|
|
# Calcular corchete de Poisson |
|
|
q_val = np.array([1.0]) |
|
|
p_val = np.array([1.0]) |
|
|
|
|
|
bracket = PoissonBrackets.poisson_bracket(x, H, q_val, p_val) |
|
|
print(f"{{x, H}} = {bracket:.6f}") # Debe ≈ p = 1.0 |
|
|
|
|
|
# Evolución de Liouville: dx/dt = {x, H} |
|
|
df_dt = PoissonBrackets.liouville_evolution(H, x, q_val, p_val) |
|
|
print(f"dx/dt = {df_dt:.6f}") |
|
|
``` |
|
|
|
|
|
### Ejemplo 3: Simulación de Colapso Metripléctico (Uso Completo) |
|
|
|
|
|
```python |
|
|
from quoremind import ( |
|
|
QuantumNoiseCollapse, |
|
|
VonNeumannEntropy |
|
|
) |
|
|
import numpy as np |
|
|
|
|
|
# Inicializar sistema |
|
|
collapse_system = QuantumNoiseCollapse(prn_influence=0.6) |
|
|
|
|
|
# Crear estado cuántico de prueba |
|
|
state = np.array([1/np.sqrt(2), 1/np.sqrt(2)]) |
|
|
density_matrix = VonNeumannEntropy.density_matrix_from_state(state) |
|
|
quantum_states = np.random.randn(10, 2) |
|
|
|
|
|
# Matriz métrica (disipación) |
|
|
M = np.array([[0.1, 0.0], [0.0, 0.1]]) |
|
|
|
|
|
# Simular colapso con estructura metripléctica |
|
|
result = collapse_system.simulate_wave_collapse_metriplectic( |
|
|
quantum_states=quantum_states, |
|
|
density_matrix=density_matrix, |
|
|
prn_influence=0.6, |
|
|
previous_action=1, |
|
|
M=M |
|
|
) |
|
|
|
|
|
# Resultados |
|
|
print(f"✓ Estado colapsado: {result['collapsed_state']:.6f}") |
|
|
print(f"✓ Acción bayesiana: {result['action']}") |
|
|
print(f"✓ Entropía Shannon (norm): {result['shannon_entropy_normalized']:.6f}") |
|
|
print(f"✓ Entropía von Neumann: {result['von_neumann_entropy']:.6f}") |
|
|
print(f"✓ Coherencia: {result['coherence']:.6f}") |
|
|
print(f"✓ Distancia Mahalanobis: {result['mahalanobis_normalized']:.6f}") |
|
|
print(f"✓ Evolución metripléctica: {result['metriplectic_evolution']:.6f}") |
|
|
print(f"✓ Posterior bayesiana: {result['bayesian_posterior']:.6f}") |
|
|
``` |
|
|
|
|
|
### Ejemplo 4: Optimización de Estados Cuánticos |
|
|
|
|
|
```python |
|
|
from quoremind import QuantumNoiseCollapse |
|
|
import numpy as np |
|
|
|
|
|
# Inicializar |
|
|
collapse_system = QuantumNoiseCollapse(prn_influence=0.6) |
|
|
|
|
|
# Estados iniciales aleatorios |
|
|
initial_states = np.random.randn(5, 2) |
|
|
target_state = np.array([0.8, 0.2]) |
|
|
|
|
|
# Optimizar hacia estado objetivo |
|
|
optimized_states, final_loss = collapse_system.optimize_quantum_state( |
|
|
initial_states=initial_states, |
|
|
target_state=target_state, |
|
|
max_iterations=100, |
|
|
learning_rate=0.01 |
|
|
) |
|
|
|
|
|
print(f"✓ Pérdida final: {final_loss:.6f}") |
|
|
print(f"✓ Estados optimizados:\n{optimized_states}") |
|
|
``` |
|
|
|
|
|
### Ejemplo 5: Análisis de Anomalías con Mahalanobis |
|
|
|
|
|
```python |
|
|
from quoremind import QuantumBayesMahalanobis |
|
|
import numpy as np |
|
|
|
|
|
# Inicializar |
|
|
analyzer = QuantumBayesMahalanobis() |
|
|
|
|
|
# Estados de referencia (distribución normal) |
|
|
reference_states = np.random.randn(100, 2) |
|
|
|
|
|
# Estados anómalos |
|
|
anomalous_states = np.random.randn(10, 2) + np.array([3.0, 3.0]) |
|
|
|
|
|
# Calcular distancias de Mahalanobis |
|
|
distances = analyzer.compute_quantum_mahalanobis( |
|
|
reference_states, |
|
|
anomalous_states |
|
|
) |
|
|
|
|
|
print(f"Distancias Mahalanobis (anomalías):") |
|
|
for i, d in enumerate(distances): |
|
|
print(f" Estado {i}: {d:.4f}") |
|
|
|
|
|
# Umbral de detección (ejemplo: 3σ) |
|
|
threshold = np.mean(distances) + 3 * np.std(distances) |
|
|
anomalies = distances > threshold |
|
|
|
|
|
print(f"\n✓ Anomalías detectadas: {np.sum(anomalies)}/{len(anomalies)}") |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 📊 Métricas y Normalizaciones |
|
|
|
|
|
### Normalización de Entropía |
|
|
|
|
|
El framework ofrece **5 métodos** para normalizar entropía a `[0, 1]`: |
|
|
|
|
|
| Método | Fórmula | Caso de Uso | |
|
|
|--------|---------|-----------| |
|
|
| **sigmoid** | `1/(1+e^-S)` | ✅ Recomendado (suave, diferenciable) | |
|
|
| **tanh** | `(tanh(S/2)+1)/2` | Simétrico alrededor de 0.5 | |
|
|
| **log_compression** | `log(1+S)/log(1+max_S)` | Física estadística | |
|
|
| **min_max** | `S/log(dim)` | Teórico puro | |
|
|
| **clamp** | `min(S/max, 1.0)` | Rápido/simple | |
|
|
|
|
|
### Parámetros de Configuración |
|
|
|
|
|
```python |
|
|
from quoremind import BayesLogicConfig |
|
|
|
|
|
config = BayesLogicConfig( |
|
|
epsilon=1e-6, |
|
|
high_entropy_threshold=0.8, # Umbral de entropía alta |
|
|
high_coherence_threshold=0.6, # Umbral de coherencia alta |
|
|
action_threshold=0.5 # Umbral para acción bayesiana |
|
|
) |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 🔍 Validación y Testing |
|
|
|
|
|
El framework incluye validación automática: |
|
|
|
|
|
```python |
|
|
# Validación de estructura metripléctica |
|
|
# ✓ Ecuaciones de Hamilton se satisfacen |
|
|
# ✓ dS/dt > 0 (producción de entropía positiva) |
|
|
# ✓ Conservación de energía (parte reversible) |
|
|
|
|
|
# Validación de convergencia (Adam) |
|
|
# ✓ Loss disminuye monotónicamente |
|
|
# ✓ Gradientes no explotan |
|
|
# ✓ Estados convergen a objetivo |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 🧬 Ecuaciones Fundamentales |
|
|
|
|
|
### Entropía de von Neumann |
|
|
``` |
|
|
S(ρ) = -Tr(ρ log ρ) = -Σ λᵢ log λᵢ |
|
|
``` |
|
|
|
|
|
### Corchetes de Poisson |
|
|
``` |
|
|
{f, g} = (∂f/∂q)(∂g/∂p) - (∂f/∂p)(∂g/∂q) |
|
|
``` |
|
|
|
|
|
### Ecuación de Liouville |
|
|
``` |
|
|
df/dt = {f, H} |
|
|
``` |
|
|
|
|
|
### Estructura Metripléctica |
|
|
``` |
|
|
df/dt = {f, H} + [f, S]_M |
|
|
|
|
|
donde: |
|
|
- {f, H}: parte reversible (Hamiltoniana) |
|
|
- [f, S]_M: parte disipativa (matriz métrica M) |
|
|
``` |
|
|
|
|
|
### Distancia de Mahalanobis |
|
|
``` |
|
|
D_M = √[(x - μ)ᵀ Σ⁻¹ (x - μ)] |
|
|
``` |
|
|
|
|
|
### Teorema de Bayes |
|
|
``` |
|
|
P(A|B) = P(B|A) × P(A) / P(B) |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 🎯 Casos de Uso Principales |
|
|
|
|
|
### 1. **Detección de Anomalías Cuánticas** |
|
|
```python |
|
|
# Detectar intrusión mediante Mahalanobis anómala |
|
|
distances = analyzer.compute_quantum_mahalanobis( |
|
|
reference_states, |
|
|
observed_states |
|
|
) |
|
|
anomaly_detected = (distances > threshold).any() |
|
|
``` |
|
|
|
|
|
### 2. **Monitoreo de Decoherencia** |
|
|
```python |
|
|
# Rastrear decoherencia esperada vs. anómala |
|
|
for cycle in range(n_cycles): |
|
|
result = collapse_system.simulate_wave_collapse_metriplectic(...) |
|
|
entropy = result['shannon_entropy_normalized'] |
|
|
mahal = result['mahalanobis_normalized'] |
|
|
|
|
|
# Si ambos son anormalmente altos → posible ataque |
|
|
if entropy > 0.9 and mahal > 0.8: |
|
|
log_alert("INTRUSION DETECTED") |
|
|
``` |
|
|
|
|
|
### 3. **Optimización de Cifrado Dinámico** |
|
|
```python |
|
|
# Generar estados objetivo resistentes a ruido |
|
|
target = generate_secure_state() |
|
|
optimized, loss = collapse_system.optimize_quantum_state( |
|
|
initial_states=random_states, |
|
|
target_state=target, |
|
|
max_iterations=200 |
|
|
) |
|
|
# Los estados optimizados resisten interferencia |
|
|
``` |
|
|
|
|
|
### 4. **Análisis Forense** |
|
|
```python |
|
|
# Estimar parámetro de no-localidad λ desde D_M anómala |
|
|
lambda_estimate = estimate_nonlocality(anomalous_distances) |
|
|
# Documentar en log forense |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 📈 Rendimiento y Complejidad |
|
|
|
|
|
| Operación | Complejidad | Tiempo (aprox.) | |
|
|
|-----------|------------|-----------------| |
|
|
| Entropía von Neumann | O(n³) | ~0.1ms (n=2) | |
|
|
| Corchete de Poisson | O(1) | ~0.05ms | |
|
|
| Mahalanobis (vectorizado) | O(nm²) | ~1ms (n=100, m=2) | |
|
|
| Optimización (100 iter) | O(nm²·iter) | ~500ms | |
|
|
|
|
|
--- |
|
|
|
|
|
## 🐛 Troubleshooting |
|
|
|
|
|
### Error: `ValueError: Argumento entropy debe estar entre 0.0 y 1.0` |
|
|
**Solución**: Usar normalización automática (ya implementada) |
|
|
```python |
|
|
entropy_norm = 1.0 / (1.0 + np.exp(-entropy)) |
|
|
``` |
|
|
|
|
|
### Error: Matriz de covarianza singular |
|
|
**Solución**: El código usa pseudo-inversa automáticamente |
|
|
```python |
|
|
inv_cov = np.linalg.pinv(cov_matrix) # Pseudo-inversa |
|
|
``` |
|
|
|
|
|
### Convergencia lenta en optimización |
|
|
**Solución**: Aumentar learning_rate o max_iterations |
|
|
```python |
|
|
optimized, loss = collapse_system.optimize_quantum_state( |
|
|
initial_states=states, |
|
|
target_state=target, |
|
|
max_iterations=500, # ← Aumentar |
|
|
learning_rate=0.05 # ← Aumentar |
|
|
) |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 📚 Referencias y Documentación |
|
|
|
|
|
- **Dinámica Metripléctica**: Morrison, P. J. (1986). "Structural, Hamiltonian, and Lagrangian Formulation" |
|
|
- **Entropía von Neumann**: von Neumann, J. (1932). "Mathematical Foundations of QM" |
|
|
- **Ecuación de Lindblad**: Lindblad, G. (1976). "On the Generators of QDynamical Semigroups" |
|
|
- **Distancia Mahalanobis**: Mahalanobis, P. C. (1936). "On the Generalized Distance" |
|
|
- **Lógica Bayesiana**: Bayes, T. (1763). "Essay Towards Solving a Problem" |
|
|
|
|
|
--- |
|
|
|
|
|
## 🤝 Contribuciones |
|
|
|
|
|
Las contribuciones son bienvenidas, especialmente en: |
|
|
|
|
|
- 🔹 **Integración de Polaridad del Vacío** `η(r)` como modulador de M |
|
|
- 🔹 **Rastreo Forense Avanzado**: Estimación de `λ` desde anomalías |
|
|
- 🔹 **Quantum Machine Learning**: Optimización de función objetivo con QML |
|
|
- 🔹 **GPU Acceleration**: Vectorización CUDA/ROCm |
|
|
- 🔹 **Interfaz Gráfica**: Dashboard en tiempo real de métricas |
|
|
|
|
|
--- |
|
|
|
|
|
## 📄 Licencia |
|
|
|
|
|
Este proyecto está distribuido bajo la licencia **Apache 2.0**. |
|
|
|
|
|
``` |
|
|
Copyright 2025 Jacobo Tlacaelel Mina Rodríguez |
|
|
Licensed under the Apache License, Version 2.0 |
|
|
``` |
|
|
|
|
|
Ver [LICENSE](LICENSE) para detalles completos. |
|
|
|
|
|
--- |
|
|
|
|
|
## 📞 Contacto y Soporte |
|
|
|
|
|
- **Autor**: Jacobo Tlacaelel Mina Rodríguez |
|
|
- **Email**: jakocrazykings@gmail.com |
|
|
- **Issues**: [GitHub Issues](https://github.com/smokeappstore/QuoreMind-Metriplectic/issues) |
|
|
- **Documentación**: [Wiki](https://github.com/smokeappstore/QuoreMind-Metriplectic/wiki) |
|
|
|
|
|
--- |
|
|
|
|
|
## 🎓 Cita Académica |
|
|
|
|
|
Si usas QuoreMind en investigación, por favor cita: |
|
|
|
|
|
```bibtex |
|
|
@software{quoremind2025, |
|
|
title={QuoreMind v1.0.0: Sistema Metripléctico Cuántico-Bayesiano}, |
|
|
author={Mina Rodríguez, Jacobo Tlacaelel}, |
|
|
year={2025}, |
|
|
url={https://github.com/smokeappstore/QuoreMind-Metriplectic}, |
|
|
license={Apache-2.0} |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
<div align="center"> |
|
|
<h1> Last Updated: Noviembre 2025 </h1> |
|
|
Version: 1.0.0 |
|
|
Status: ✅ Production Ready |
|
|
</div>--- |
|
|
license: apache-2.0 |
|
|
--- |