Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNeural Field Classifiers via Target Encoding and Classification Loss
Neural field methods have seen great progress in various long-standing tasks in computer vision and computer graphics, including novel view synthesis and geometry reconstruction. As existing neural field methods try to predict some coordinate-based continuous target values, such as RGB for Neural Radiance Field (NeRF), all of these methods are regression models and are optimized by some regression loss. However, are regression models really better than classification models for neural field methods? In this work, we try to visit this very fundamental but overlooked question for neural fields from a machine learning perspective. We successfully propose a novel Neural Field Classifier (NFC) framework which formulates existing neural field methods as classification tasks rather than regression tasks. The proposed NFC can easily transform arbitrary Neural Field Regressor (NFR) into its classification variant via employing a novel Target Encoding module and optimizing a classification loss. By encoding a continuous regression target into a high-dimensional discrete encoding, we naturally formulate a multi-label classification task. Extensive experiments demonstrate the impressive effectiveness of NFC at the nearly free extra computational costs. Moreover, NFC also shows robustness to sparse inputs, corrupted images, and dynamic scenes.
Controllable Neural Symbolic Regression
In symbolic regression, the goal is to find an analytical expression that accurately fits experimental data with the minimal use of mathematical symbols such as operators, variables, and constants. However, the combinatorial space of possible expressions can make it challenging for traditional evolutionary algorithms to find the correct expression in a reasonable amount of time. To address this issue, Neural Symbolic Regression (NSR) algorithms have been developed that can quickly identify patterns in the data and generate analytical expressions. However, these methods, in their current form, lack the capability to incorporate user-defined prior knowledge, which is often required in natural sciences and engineering fields. To overcome this limitation, we propose a novel neural symbolic regression method, named Neural Symbolic Regression with Hypothesis (NSRwH) that enables the explicit incorporation of assumptions about the expected structure of the ground-truth expression into the prediction process. Our experiments demonstrate that the proposed conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy while also providing control over the predicted expression structure.
A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data
Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent efforts have focused on two categories for SR methods. One is using a neural network or genetic programming to search the expression tree directly. Although this has shown promising results, the large search space poses difficulties in learning constant factors and processing high-dimensional problems. Another approach is leveraging a transformer-based model training on synthetic data and offers advantages in inference speed. However, this method is limited to fixed small numbers of dimensions and may encounter inference problems when given data is out-of-distribution compared to the synthetic data. In this work, we propose DySymNet, a novel neural-guided Dynamic Symbolic Network for SR. Instead of searching for expressions within a large search space, we explore DySymNet with various structures and optimize them to identify expressions that better-fitting the data. With a topology structure like neural networks, DySymNet not only tackles the challenge of high-dimensional problems but also proves effective in optimizing constants. Based on extensive numerical experiments using low-dimensional public standard benchmarks and the well-known SRBench with more variables, our method achieves state-of-the-art performance in terms of fitting accuracy and robustness to noise.
Polynomial Regression As an Alternative to Neural Nets
Despite the success of neural networks (NNs), there is still a concern among many over their "black box" nature. Why do they work? Here we present a simple analytic argument that NNs are in fact essentially polynomial regression models. This view will have various implications for NNs, e.g. providing an explanation for why convergence problems arise in NNs, and it gives rough guidance on avoiding overfitting. In addition, we use this phenomenon to predict and confirm a multicollinearity property of NNs not previously reported in the literature. Most importantly, given this loose correspondence, one may choose to routinely use polynomial models instead of NNs, thus avoiding some major problems of the latter, such as having to set many tuning parameters and dealing with convergence issues. We present a number of empirical results; in each case, the accuracy of the polynomial approach matches or exceeds that of NN approaches. A many-featured, open-source software package, polyreg, is available.
Pattern Based Multivariable Regression using Deep Learning (PBMR-DP)
We propose a deep learning methodology for multivariate regression that is based on pattern recognition that triggers fast learning over sensor data. We used a conversion of sensors-to-image which enables us to take advantage of Computer Vision architectures and training processes. In addition to this data preparation methodology, we explore the use of state-of-the-art architectures to generate regression outputs to predict agricultural crop continuous yield information. Finally, we compare with some of the top models reported in MLCAS2021. We found that using a straightforward training process, we were able to accomplish an MAE of 4.394, RMSE of 5.945, and R^2 of 0.861.
A Framework and Benchmark for Deep Batch Active Learning for Regression
The acquisition of labels for supervised learning can be expensive. To improve the sample efficiency of neural network regression, we study active learning methods that adaptively select batches of unlabeled data for labeling. We present a framework for constructing such methods out of (network-dependent) base kernels, kernel transformations, and selection methods. Our framework encompasses many existing Bayesian methods based on Gaussian process approximations of neural networks as well as non-Bayesian methods. Additionally, we propose to replace the commonly used last-layer features with sketched finite-width neural tangent kernels and to combine them with a novel clustering method. To evaluate different methods, we introduce an open-source benchmark consisting of 15 large tabular regression data sets. Our proposed method outperforms the state-of-the-art on our benchmark, scales to large data sets, and works out-of-the-box without adjusting the network architecture or training code. We provide open-source code that includes efficient implementations of all kernels, kernel transformations, and selection methods, and can be used for reproducing our results.
Geometric Properties of Neural Multivariate Regression
Neural multivariate regression underpins a wide range of domains such as control, robotics, and finance, yet the geometry of its learned representations remains poorly characterized. While neural collapse has been shown to benefit generalization in classification, we find that analogous collapse in regression consistently degrades performance. To explain this contrast, we analyze models through the lens of intrinsic dimension. Across control tasks and synthetic datasets, we estimate the intrinsic dimension of last-layer features (ID_H) and compare it with that of the regression targets (ID_Y). Collapsed models exhibit ID_H < ID_Y, leading to over-compression and poor generalization, whereas non-collapsed models typically maintain ID_H > ID_Y. For the non-collapsed models, performance with respect to ID_H depends on the data quantity and noise levels. From these observations, we identify two regimes (over-compressed and under-compressed) that determine when expanding or reducing feature dimensionality improves performance. Our results provide new geometric insights into neural regression and suggest practical strategies for enhancing generalization.
Accelerating Neural Architecture Search using Performance Prediction
Methods for neural network hyperparameter optimization and meta-modeling are computationally expensive due to the need to train a large number of model configurations. In this paper, we show that standard frequentist regression models can predict the final performance of partially trained model configurations using features based on network architectures, hyperparameters, and time-series validation performance data. We empirically show that our performance prediction models are much more effective than prominent Bayesian counterparts, are simpler to implement, and are faster to train. Our models can predict final performance in both visual classification and language modeling domains, are effective for predicting performance of drastically varying model architectures, and can even generalize between model classes. Using these prediction models, we also propose an early stopping method for hyperparameter optimization and meta-modeling, which obtains a speedup of a factor up to 6x in both hyperparameter optimization and meta-modeling. Finally, we empirically show that our early stopping method can be seamlessly incorporated into both reinforcement learning-based architecture selection algorithms and bandit based search methods. Through extensive experimentation, we empirically show our performance prediction models and early stopping algorithm are state-of-the-art in terms of prediction accuracy and speedup achieved while still identifying the optimal model configurations.
Understanding LLM Embeddings for Regression
With the rise of large language models (LLMs) for flexibly processing information as strings, a natural application is regression, specifically by preprocessing string representations into LLM embeddings as downstream features for metric prediction. In this paper, we provide one of the first comprehensive investigations into embedding-based regression and demonstrate that LLM embeddings as features can be better for high-dimensional regression tasks than using traditional feature engineering. This regression performance can be explained in part due to LLM embeddings over numeric data inherently preserving Lipschitz continuity over the feature space. Furthermore, we quantify the contribution of different model effects, most notably model size and language understanding, which we find surprisingly do not always improve regression performance.
SWAT-NN: Simultaneous Weights and Architecture Training for Neural Networks in a Latent Space
Designing neural networks typically relies on manual trial and error or a neural architecture search (NAS) followed by weight training. The former is time-consuming and labor-intensive, while the latter often discretizes architecture search and weight optimization. In this paper, we propose a fundamentally different approach that simultaneously optimizes both the architecture and the weights of a neural network. Our framework first trains a universal multi-scale autoencoder that embeds both architectural and parametric information into a continuous latent space, where functionally similar neural networks are mapped closer together. Given a dataset, we then randomly initialize a point in the embedding space and update it via gradient descent to obtain the optimal neural network, jointly optimizing its structure and weights. The optimization process incorporates sparsity and compactness penalties to promote efficient models. Experiments on synthetic regression tasks demonstrate that our method effectively discovers sparse and compact neural networks with strong performance.
Decoding-based Regression
Language models have recently been shown capable of performing regression tasks wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal auto-regressive sequence models when they are applied to any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoding-based regression is as performant as traditional approaches for tabular regression tasks, while being flexible enough to capture arbitrary distributions, such as in the task of density estimation.
Pose Recognition with Cascade Transformers
In this paper, we present a regression-based pose recognition method using cascade Transformers. One way to categorize the existing approaches in this domain is to separate them into 1). heatmap-based and 2). regression-based. In general, heatmap-based methods achieve higher accuracy but are subject to various heuristic designs (not end-to-end mostly), whereas regression-based approaches attain relatively lower accuracy but they have less intermediate non-differentiable steps. Here we utilize the encoder-decoder structure in Transformers to perform regression-based person and keypoint detection that is general-purpose and requires less heuristic design compared with the existing approaches. We demonstrate the keypoint hypothesis (query) refinement process across different self-attention layers to reveal the recursive self-attention mechanism in Transformers. In the experiments, we report competitive results for pose recognition when compared with the competing regression-based methods.
Beyond Token-level Supervision: Unlocking the Potential of Decoding-based Regression via Reinforcement Learning
Decoding-based regression, which reformulates regression as a sequence generation task, has emerged as a promising paradigm of applying large language models for numerical prediction. However, its progress is hindered by the misalignment between discrete token-level objectives (e.g., cross-entropy) and continuous numerical values. Existing approaches relying on token-level constraints often fail to capture the global magnitude of the target value, limiting their precision and generalization. In this paper, we propose to unlock the potential of decoding-based regression via Reinforcement Learning (RL). We formulate the generation process as a Markov Decision Process, utilizing sequence-level rewards to enforce global numerical coherence. Extensive experiments on tabular regression and code metric regression demonstrate that our method (specifically with ReMax and GRPO) consistently outperforms both state-of-the-art token-level baselines and traditional regression heads, showing the superiority of introducing sequence-level signals. Our analysis further reveals that RL significantly enhances sampling efficiency and predictive precision, establishing decoding-based regression as a robust and accurate paradigm for general-purpose numerical prediction.
Deep Regression Unlearning
With the introduction of data protection and privacy regulations, it has become crucial to remove the lineage of data on demand from a machine learning (ML) model. In the last few years, there have been notable developments in machine unlearning to remove the information of certain training data efficiently and effectively from ML models. In this work, we explore unlearning for the regression problem, particularly in deep learning models. Unlearning in classification and simple linear regression has been considerably investigated. However, unlearning in deep regression models largely remains an untouched problem till now. In this work, we introduce deep regression unlearning methods that generalize well and are robust to privacy attacks. We propose the Blindspot unlearning method which uses a novel weight optimization process. A randomly initialized model, partially exposed to the retain samples and a copy of the original model are used together to selectively imprint knowledge about the data that we wish to keep and scrub off the information of the data we wish to forget. We also propose a Gaussian fine tuning method for regression unlearning. The existing unlearning metrics for classification are not directly applicable to regression unlearning. Therefore, we adapt these metrics for the regression setting. We conduct regression unlearning experiments for computer vision, natural language processing and forecasting applications. Our methods show excellent performance for all these datasets across all the metrics. Source code: https://github.com/ayu987/deep-regression-unlearning
Contextual Bandits with Online Neural Regression
Recent works have shown a reduction from contextual bandits to online regression under a realizability assumption [Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021]. In this work, we investigate the use of neural networks for such online regression and associated Neural Contextual Bandits (NeuCBs). Using existing results for wide networks, one can readily show a {O}(T) regret for online regression with square loss, which via the reduction implies a {O}(K T^{3/4}) regret for NeuCBs. Departing from this standard approach, we first show a O(log T) regret for online regression with almost convex losses that satisfy QG (Quadratic Growth) condition, a generalization of the PL (Polyak-\L ojasiewicz) condition, and that have a unique minima. Although not directly applicable to wide networks since they do not have unique minima, we show that adding a suitable small random perturbation to the network predictions surprisingly makes the loss satisfy QG with unique minima. Based on such a perturbed prediction, we show a {O}(log T) regret for online regression with both squared loss and KL loss, and subsequently convert these respectively to mathcal{O}(KT) and mathcal{O}(KL^* + K) regret for NeuCB, where L^* is the loss of the best policy. Separately, we also show that existing regret bounds for NeuCBs are Omega(T) or assume i.i.d. contexts, unlike this work. Finally, our experimental results on various datasets demonstrate that our algorithms, especially the one based on KL loss, persistently outperform existing algorithms.
Profitability Analysis in Stock Investment Using an LSTM-Based Deep Learning Model
Designing robust systems for precise prediction of future prices of stocks has always been considered a very challenging research problem. Even more challenging is to build a system for constructing an optimum portfolio of stocks based on the forecasted future stock prices. We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network that automatically scraps the web and extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices. We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market. For each of the stocks, the model is evaluated for its forecast accuracy. Moreover, the predicted values of the stock prices are used as the basis for investment decisions, and the returns on the investments are computed. Extensive results are presented on the performance of the model. The analysis of the results demonstrates the efficacy and effectiveness of the system and enables us to compare the profitability of the sectors from the point of view of the investors in the stock market.
Convolutional Deep Kernel Machines
Standard infinite-width limits of neural networks sacrifice the ability for intermediate layers to learn representations from data. Recent work (A theory of representation learning gives a deep generalisation of kernel methods, Yang et al. 2023) modified the Neural Network Gaussian Process (NNGP) limit of Bayesian neural networks so that representation learning is retained. Furthermore, they found that applying this modified limit to a deep Gaussian process gives a practical learning algorithm which they dubbed the deep kernel machine (DKM). However, they only considered the simplest possible setting: regression in small, fully connected networks with e.g. 10 input features. Here, we introduce convolutional deep kernel machines. This required us to develop a novel inter-domain inducing point approximation, as well as introducing and experimentally assessing a number of techniques not previously seen in DKMs, including analogues to batch normalisation, different likelihoods, and different types of top-layer. The resulting model trains in roughly 77 GPU hours, achieving around 99% test accuracy on MNIST, 72% on CIFAR-100, and 92.7% on CIFAR-10, which is SOTA for kernel methods.
Improving the Interpretability of Deep Neural Networks with Knowledge Distillation
Deep Neural Networks have achieved huge success at a wide spectrum of applications from language modeling, computer vision to speech recognition. However, nowadays, good performance alone is not sufficient to satisfy the needs of practical deployment where interpretability is demanded for cases involving ethics and mission critical applications. The complex models of Deep Neural Networks make it hard to understand and reason the predictions, which hinders its further progress. To tackle this problem, we apply the Knowledge Distillation technique to distill Deep Neural Networks into decision trees in order to attain good performance and interpretability simultaneously. We formulate the problem at hand as a multi-output regression problem and the experiments demonstrate that the student model achieves significantly better accuracy performance (about 1\% to 5\%) than vanilla decision trees at the same level of tree depth. The experiments are implemented on the TensorFlow platform to make it scalable to big datasets. To the best of our knowledge, we are the first to distill Deep Neural Networks into vanilla decision trees on multi-class datasets.
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.
More is Better in Modern Machine Learning: when Infinite Overparameterization is Optimal and Overfitting is Obligatory
In our era of enormous neural networks, empirical progress has been driven by the philosophy that more is better. Recent deep learning practice has found repeatedly that larger model size, more data, and more computation (resulting in lower training loss) improves performance. In this paper, we give theoretical backing to these empirical observations by showing that these three properties hold in random feature (RF) regression, a class of models equivalent to shallow networks with only the last layer trained. Concretely, we first show that the test risk of RF regression decreases monotonically with both the number of features and the number of samples, provided the ridge penalty is tuned optimally. In particular, this implies that infinite width RF architectures are preferable to those of any finite width. We then proceed to demonstrate that, for a large class of tasks characterized by powerlaw eigenstructure, training to near-zero training loss is obligatory: near-optimal performance can only be achieved when the training error is much smaller than the test error. Grounding our theory in real-world data, we find empirically that standard computer vision tasks with convolutional neural tangent kernels clearly fall into this class. Taken together, our results tell a simple, testable story of the benefits of overparameterization, overfitting, and more data in random feature models.
NNN: Next-Generation Neural Networks for Marketing Measurement
We present NNN, an experimental Transformer-based neural network approach to marketing measurement. Unlike Marketing Mix Models (MMMs) which rely on scalar inputs and parametric decay functions, NNN uses rich embeddings to capture both quantitative and qualitative aspects of marketing and organic channels (e.g., search queries, ad creatives). This, combined with its attention mechanism, potentially enables NNN to model complex interactions, capture long-term effects, and improve sales attribution accuracy. We show that L1 regularization permits the use of such expressive models in typical data-constrained settings. Evaluating NNN on simulated and real-world data demonstrates its efficacy, particularly through considerable improvement in predictive power. In addition to marketing measurement, the NNN framework can provide valuable, complementary insights through model probing, such as evaluating keyword or creative effectiveness.
Neural Predictor for Neural Architecture Search
Neural Architecture Search methods are effective but often use complex algorithms to come up with the best architecture. We propose an approach with three basic steps that is conceptually much simpler. First we train N random architectures to generate N (architecture, validation accuracy) pairs and use them to train a regression model that predicts accuracy based on the architecture. Next, we use this regression model to predict the validation accuracies of a large number of random architectures. Finally, we train the top-K predicted architectures and deploy the model with the best validation result. While this approach seems simple, it is more than 20 times as sample efficient as Regularized Evolution on the NASBench-101 benchmark and can compete on ImageNet with more complex approaches based on weight sharing, such as ProxylessNAS.
Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep Learning Models
Prediction of stock price and stock price movement patterns has always been a critical area of research. While the well-known efficient market hypothesis rules out any possibility of accurate prediction of stock prices, there are formal propositions in the literature demonstrating accurate modeling of the predictive systems that can enable us to predict stock prices with a very high level of accuracy. In this paper, we present a suite of deep learning-based regression models that yields a very high level of accuracy in stock price prediction. To build our predictive models, we use the historical stock price data of a well-known company listed in the National Stock Exchange (NSE) of India during the period December 31, 2012 to January 9, 2015. The stock prices are recorded at five minutes intervals of time during each working day in a week. Using these extremely granular stock price data, we build four convolutional neural network (CNN) and five long- and short-term memory (LSTM)-based deep learning models for accurate forecasting of the future stock prices. We provide detailed results on the forecasting accuracies of all our proposed models based on their execution time and their root mean square error (RMSE) values.
Neural Symbolic Regression that Scales
Symbolic equations are at the core of scientific discovery. The task of discovering the underlying equation from a set of input-output pairs is called symbolic regression. Traditionally, symbolic regression methods use hand-designed strategies that do not improve with experience. In this paper, we introduce the first symbolic regression method that leverages large scale pre-training. We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs. At test time, we query the model on a new set of points and use its output to guide the search for the equation. We show empirically that this approach can re-discover a set of well-known physical equations, and that it improves over time with more data and compute.
GFN-SR: Symbolic Regression with Generative Flow Networks
Symbolic regression (SR) is an area of interpretable machine learning that aims to identify mathematical expressions, often composed of simple functions, that best fit in a given set of covariates X and response y. In recent years, deep symbolic regression (DSR) has emerged as a popular method in the field by leveraging deep reinforcement learning to solve the complicated combinatorial search problem. In this work, we propose an alternative framework (GFN-SR) to approach SR with deep learning. We model the construction of an expression tree as traversing through a directed acyclic graph (DAG) so that GFlowNet can learn a stochastic policy to generate such trees sequentially. Enhanced with an adaptive reward baseline, our method is capable of generating a diverse set of best-fitting expressions. Notably, we observe that GFN-SR outperforms other SR algorithms in noisy data regimes, owing to its ability to learn a distribution of rewards over a space of candidate solutions.
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
Distance-informed Neural Processes
We propose the Distance-informed Neural Process (DNP), a novel variant of Neural Processes that improves uncertainty estimation by combining global and distance-aware local latent structures. Standard Neural Processes (NPs) often rely on a global latent variable and struggle with uncertainty calibration and capturing local data dependencies. DNP addresses these limitations by introducing a global latent variable to model task-level variations and a local latent variable to capture input similarity within a distance-preserving latent space. This is achieved through bi-Lipschitz regularization, which bounds distortions in input relationships and encourages the preservation of relative distances in the latent space. This modeling approach allows DNP to produce better-calibrated uncertainty estimates and more effectively distinguish in- from out-of-distribution data. Empirical results demonstrate that DNP achieves strong predictive performance and improved uncertainty calibration across regression and classification tasks.
Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop
Model-based human pose estimation is currently approached through two different paradigms. Optimization-based methods fit a parametric body model to 2D observations in an iterative manner, leading to accurate image-model alignments, but are often slow and sensitive to the initialization. In contrast, regression-based methods, that use a deep network to directly estimate the model parameters from pixels, tend to provide reasonable, but not pixel accurate, results while requiring huge amounts of supervision. In this work, instead of investigating which approach is better, our key insight is that the two paradigms can form a strong collaboration. A reasonable, directly regressed estimate from the network can initialize the iterative optimization making the fitting faster and more accurate. Similarly, a pixel accurate fit from iterative optimization can act as strong supervision for the network. This is the core of our proposed approach SPIN (SMPL oPtimization IN the loop). The deep network initializes an iterative optimization routine that fits the body model to 2D joints within the training loop, and the fitted estimate is subsequently used to supervise the network. Our approach is self-improving by nature, since better network estimates can lead the optimization to better solutions, while more accurate optimization fits provide better supervision for the network. We demonstrate the effectiveness of our approach in different settings, where 3D ground truth is scarce, or not available, and we consistently outperform the state-of-the-art model-based pose estimation approaches by significant margins. The project website with videos, results, and code can be found at https://seas.upenn.edu/~nkolot/projects/spin.
Poseur: Direct Human Pose Regression with Transformers
We propose a direct, regression-based approach to 2D human pose estimation from single images. We formulate the problem as a sequence prediction task, which we solve using a Transformer network. This network directly learns a regression mapping from images to the keypoint coordinates, without resorting to intermediate representations such as heatmaps. This approach avoids much of the complexity associated with heatmap-based approaches. To overcome the feature misalignment issues of previous regression-based methods, we propose an attention mechanism that adaptively attends to the features that are most relevant to the target keypoints, considerably improving the accuracy. Importantly, our framework is end-to-end differentiable, and naturally learns to exploit the dependencies between keypoints. Experiments on MS-COCO and MPII, two predominant pose-estimation datasets, demonstrate that our method significantly improves upon the state-of-the-art in regression-based pose estimation. More notably, ours is the first regression-based approach to perform favorably compared to the best heatmap-based pose estimation methods.
Deep Learning for Functional Data Analysis with Adaptive Basis Layers
Despite their widespread success, the application of deep neural networks to functional data remains scarce today. The infinite dimensionality of functional data means standard learning algorithms can be applied only after appropriate dimension reduction, typically achieved via basis expansions. Currently, these bases are chosen a priori without the information for the task at hand and thus may not be effective for the designated task. We instead propose to adaptively learn these bases in an end-to-end fashion. We introduce neural networks that employ a new Basis Layer whose hidden units are each basis functions themselves implemented as a micro neural network. Our architecture learns to apply parsimonious dimension reduction to functional inputs that focuses only on information relevant to the target rather than irrelevant variation in the input function. Across numerous classification/regression tasks with functional data, our method empirically outperforms other types of neural networks, and we prove that our approach is statistically consistent with low generalization error. Code is available at: https://github.com/jwyyy/AdaFNN.
Estimation of Non-Crossing Quantile Regression Process with Deep ReQU Neural Networks
We propose a penalized nonparametric approach to estimating the quantile regression process (QRP) in a nonseparable model using rectifier quadratic unit (ReQU) activated deep neural networks and introduce a novel penalty function to enforce non-crossing of quantile regression curves. We establish the non-asymptotic excess risk bounds for the estimated QRP and derive the mean integrated squared error for the estimated QRP under mild smoothness and regularity conditions. To establish these non-asymptotic risk and estimation error bounds, we also develop a new error bound for approximating C^s smooth functions with s >0 and their derivatives using ReQU activated neural networks. This is a new approximation result for ReQU networks and is of independent interest and may be useful in other problems. Our numerical experiments demonstrate that the proposed method is competitive with or outperforms two existing methods, including methods using reproducing kernels and random forests, for nonparametric quantile regression.
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness. A key component of these models is to learn the score function through score matching. Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. As a first step toward answering this question, this paper establishes a mathematical framework for analyzing score estimation using neural networks trained by gradient descent. Our analysis covers both the optimization and the generalization aspects of the learning procedure. In particular, we propose a parametric form to formulate the denoising score-matching problem as a regression with noisy labels. Compared to the standard supervised learning setup, the score-matching problem introduces distinct challenges, including unbounded input, vector-valued output, and an additional time variable, preventing existing techniques from being applied directly. In this paper, we show that with proper designs, the evolution of neural networks during training can be accurately modeled by a series of kernel regression tasks. Furthermore, by applying an early-stopping rule for gradient descent and leveraging recent developments in neural tangent kernels, we establish the first generalization error (sample complexity) bounds for learning the score function with neural networks, despite the presence of noise in the observations. Our analysis is grounded in a novel parametric form of the neural network and an innovative connection between score matching and regression analysis, facilitating the application of advanced statistical and optimization techniques.
Interpreting Black-box Machine Learning Models for High Dimensional Datasets
Deep neural networks (DNNs) have been shown to outperform traditional machine learning algorithms in a broad variety of application domains due to their effectiveness in modeling complex problems and handling high-dimensional datasets. Many real-life datasets, however, are of increasingly high dimensionality, where a large number of features may be irrelevant for both supervised and unsupervised learning tasks. The inclusion of such features would not only introduce unwanted noise but also increase computational complexity. Furthermore, due to high non-linearity and dependency among a large number of features, DNN models tend to be unavoidably opaque and perceived as black-box methods because of their not well-understood internal functioning. Their algorithmic complexity is often simply beyond the capacities of humans to understand the interplay among myriads of hyperparameters. A well-interpretable model can identify statistically significant features and explain the way they affect the model's outcome. In this paper, we propose an efficient method to improve the interpretability of black-box models for classification tasks in the case of high-dimensional datasets. First, we train a black-box model on a high-dimensional dataset to learn the embeddings on which the classification is performed. To decompose the inner working principles of the black-box model and to identify top-k important features, we employ different probing and perturbing techniques. We then approximate the behavior of the black-box model by means of an interpretable surrogate model on the top-k feature space. Finally, we derive decision rules and local explanations from the surrogate model to explain individual decisions. Our approach outperforms state-of-the-art methods like TabNet and XGboost when tested on different datasets with varying dimensionality between 50 and 20,000 w.r.t metrics and explainability.
Sequential Training of Neural Networks with Gradient Boosting
This paper presents a novel technique based on gradient boosting to train the final layers of a neural network (NN). Gradient boosting is an additive expansion algorithm in which a series of models are trained sequentially to approximate a given function. A neural network can also be seen as an additive expansion where the scalar product of the responses of the last hidden layer and its weights provide the final output of the network. Instead of training the network as a whole, the proposed algorithm trains the network sequentially in T steps. First, the bias term of the network is initialized with a constant approximation that minimizes the average loss of the data. Then, at each step, a portion of the network, composed of J neurons, is trained to approximate the pseudo-residuals on the training data computed from the previous iterations. Finally, the T partial models and bias are integrated as a single NN with T times J neurons in the hidden layer. Extensive experiments in classification and regression tasks, as well as in combination with deep neural networks, are carried out showing a competitive generalization performance with respect to neural networks trained with different standard solvers, such as Adam, L-BFGS, SGD and deep models. Furthermore, we show that the proposed method design permits to switch off a number of hidden units during test (the units that were last trained) without a significant reduction of its generalization ability. This permits the adaptation of the model to different classification speed requirements on the fly.
A Large-Scale Study of Probabilistic Calibration in Neural Network Regression
Accurate probabilistic predictions are essential for optimal decision making. While neural network miscalibration has been studied primarily in classification, we investigate this in the less-explored domain of regression. We conduct the largest empirical study to date to assess the probabilistic calibration of neural networks. We also analyze the performance of recalibration, conformal, and regularization methods to enhance probabilistic calibration. Additionally, we introduce novel differentiable recalibration and regularization methods, uncovering new insights into their effectiveness. Our findings reveal that regularization methods offer a favorable tradeoff between calibration and sharpness. Post-hoc methods exhibit superior probabilistic calibration, which we attribute to the finite-sample coverage guarantee of conformal prediction. Furthermore, we demonstrate that quantile recalibration can be considered as a specific case of conformal prediction. Our study is fully reproducible and implemented in a common code base for fair comparisons.
Condensed Gradient Boosting
This paper presents a computationally efficient variant of gradient boosting for multi-class classification and multi-output regression tasks. Standard gradient boosting uses a 1-vs-all strategy for classifications tasks with more than two classes. This strategy translates in that one tree per class and iteration has to be trained. In this work, we propose the use of multi-output regressors as base models to handle the multi-class problem as a single task. In addition, the proposed modification allows the model to learn multi-output regression problems. An extensive comparison with other multi-ouptut based gradient boosting methods is carried out in terms of generalization and computational efficiency. The proposed method showed the best trade-off between generalization ability and training and predictions speeds.
Calibrated Multiple-Output Quantile Regression with Representation Learning
We develop a method to generate predictive regions that cover a multivariate response variable with a user-specified probability. Our work is composed of two components. First, we use a deep generative model to learn a representation of the response that has a unimodal distribution. Existing multiple-output quantile regression approaches are effective in such cases, so we apply them on the learned representation, and then transform the solution to the original space of the response. This process results in a flexible and informative region that can have an arbitrary shape, a property that existing methods lack. Second, we propose an extension of conformal prediction to the multivariate response setting that modifies any method to return sets with a pre-specified coverage level. The desired coverage is theoretically guaranteed in the finite-sample case for any distribution. Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller compared to existing techniques.
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Numerous deep learning applications benefit from multi-task learning with multiple regression and classification objectives. In this paper we make the observation that the performance of such systems is strongly dependent on the relative weighting between each task's loss. Tuning these weights by hand is a difficult and expensive process, making multi-task learning prohibitive in practice. We propose a principled approach to multi-task deep learning which weighs multiple loss functions by considering the homoscedastic uncertainty of each task. This allows us to simultaneously learn various quantities with different units or scales in both classification and regression settings. We demonstrate our model learning per-pixel depth regression, semantic and instance segmentation from a monocular input image. Perhaps surprisingly, we show our model can learn multi-task weightings and outperform separate models trained individually on each task.
OmniPred: Language Models as Universal Regressors
Over the broad landscape of experimental design, regression has been a powerful tool to accurately predict the outcome metrics of a system or model given a set of parameters, but has been traditionally restricted to methods which are only applicable to a specific task. In this paper, we propose OmniPred, a framework for training language models as universal end-to-end regressors over (x,y) evaluation data from diverse real world experiments. Using data sourced from Google Vizier, one of the largest blackbox optimization databases in the world, our extensive experiments demonstrate that through only textual representations of mathematical parameters and values, language models are capable of very precise numerical regression, and if given the opportunity to train over multiple tasks, can significantly outperform traditional regression models.
3D-Aware Neural Body Fitting for Occlusion Robust 3D Human Pose Estimation
Regression-based methods for 3D human pose estimation directly predict the 3D pose parameters from a 2D image using deep networks. While achieving state-of-the-art performance on standard benchmarks, their performance degrades under occlusion. In contrast, optimization-based methods fit a parametric body model to 2D features in an iterative manner. The localized reconstruction loss can potentially make them robust to occlusion, but they suffer from the 2D-3D ambiguity. Motivated by the recent success of generative models in rigid object pose estimation, we propose 3D-aware Neural Body Fitting (3DNBF) - an approximate analysis-by-synthesis approach to 3D human pose estimation with SOTA performance and occlusion robustness. In particular, we propose a generative model of deep features based on a volumetric human representation with Gaussian ellipsoidal kernels emitting 3D pose-dependent feature vectors. The neural features are trained with contrastive learning to become 3D-aware and hence to overcome the 2D-3D ambiguity. Experiments show that 3DNBF outperforms other approaches on both occluded and standard benchmarks. Code is available at https://github.com/edz-o/3DNBF
A Tutorial on Deep Neural Networks for Intelligent Systems
Developing Intelligent Systems involves artificial intelligence approaches including artificial neural networks. Here, we present a tutorial of Deep Neural Networks (DNNs), and some insights about the origin of the term "deep"; references to deep learning are also given. Restricted Boltzmann Machines, which are the core of DNNs, are discussed in detail. An example of a simple two-layer network, performing unsupervised learning for unlabeled data, is shown. Deep Belief Networks (DBNs), which are used to build networks with more than two layers, are also described. Moreover, examples for supervised learning with DNNs performing simple prediction and classification tasks, are presented and explained. This tutorial includes two intelligent pattern recognition applications: hand- written digits (benchmark known as MNIST) and speech recognition.
Polarized Self-Attention: Towards High-quality Pixel-wise Regression
Pixel-wise regression is probably the most common problem in fine-grained computer vision tasks, such as estimating keypoint heatmaps and segmentation masks. These regression problems are very challenging particularly because they require, at low computation overheads, modeling long-range dependencies on high-resolution inputs/outputs to estimate the highly nonlinear pixel-wise semantics. While attention mechanisms in Deep Convolutional Neural Networks(DCNNs) has become popular for boosting long-range dependencies, element-specific attention, such as Nonlocal blocks, is highly complex and noise-sensitive to learn, and most of simplified attention hybrids try to reach the best compromise among multiple types of tasks. In this paper, we present the Polarized Self-Attention(PSA) block that incorporates two critical designs towards high-quality pixel-wise regression: (1) Polarized filtering: keeping high internal resolution in both channel and spatial attention computation while completely collapsing input tensors along their counterpart dimensions. (2) Enhancement: composing non-linearity that directly fits the output distribution of typical fine-grained regression, such as the 2D Gaussian distribution (keypoint heatmaps), or the 2D Binormial distribution (binary segmentation masks). PSA appears to have exhausted the representation capacity within its channel-only and spatial-only branches, such that there is only marginal metric differences between its sequential and parallel layouts. Experimental results show that PSA boosts standard baselines by 2-4 points, and boosts state-of-the-arts by 1-2 points on 2D pose estimation and semantic segmentation benchmarks.
Deconfounded Representation Similarity for Comparison of Neural Networks
Similarity metrics such as representational similarity analysis (RSA) and centered kernel alignment (CKA) have been used to compare layer-wise representations between neural networks. However, these metrics are confounded by the population structure of data items in the input space, leading to spuriously high similarity for even completely random neural networks and inconsistent domain relations in transfer learning. We introduce a simple and generally applicable fix to adjust for the confounder with covariate adjustment regression, which retains the intuitive invariance properties of the original similarity measures. We show that deconfounding the similarity metrics increases the resolution of detecting semantically similar neural networks. Moreover, in real-world applications, deconfounding improves the consistency of representation similarities with domain similarities in transfer learning, and increases correlation with out-of-distribution accuracy.
Real-Time Prediction of Gas Flow Dynamics in Diesel Engines using a Deep Neural Operator Framework
We develop a data-driven deep neural operator framework to approximate multiple output states for a diesel engine and generate real-time predictions with reasonable accuracy. As emission norms become more stringent, the need for fast and accurate models that enable analysis of system behavior have become an essential requirement for system development. The fast transient processes involved in the operation of a combustion engine make it difficult to develop accurate physics-based models for such systems. As an alternative to physics based models, we develop an operator-based regression model (DeepONet) to learn the relevant output states for a mean-value gas flow engine model using the engine operating conditions as input variables. We have adopted a mean-value model as a benchmark for comparison, simulated using Simulink. The developed approach necessitates using the initial conditions of the output states to predict the accurate sequence over the temporal domain. To this end, a sequence-to-sequence approach is embedded into the proposed framework. The accuracy of the model is evaluated by comparing the prediction output to ground truth generated from Simulink model. The maximum mathcal L_2 relative error observed was approximately 6.5%. The sensitivity of the DeepONet model is evaluated under simulated noise conditions and the model shows relatively low sensitivity to noise. The uncertainty in model prediction is further assessed by using a mean ensemble approach. The worst-case error at the (mu + 2sigma) boundary was found to be 12%. The proposed framework provides the ability to predict output states in real-time and enables data-driven learning of complex input-output operator mapping. As a result, this model can be applied during initial development stages, where accurate models may not be available.
Transformers can optimally learn regression mixture models
Mixture models arise in many regression problems, but most methods have seen limited adoption partly due to these algorithms' highly-tailored and model-specific nature. On the other hand, transformers are flexible, neural sequence models that present the intriguing possibility of providing general-purpose prediction methods, even in this mixture setting. In this work, we investigate the hypothesis that transformers can learn an optimal predictor for mixtures of regressions. We construct a generative process for a mixture of linear regressions for which the decision-theoretic optimal procedure is given by data-driven exponential weights on a finite set of parameters. We observe that transformers achieve low mean-squared error on data generated via this process. By probing the transformer's output at inference time, we also show that transformers typically make predictions that are close to the optimal predictor. Our experiments also demonstrate that transformers can learn mixtures of regressions in a sample-efficient fashion and are somewhat robust to distribution shifts. We complement our experimental observations by proving constructively that the decision-theoretic optimal procedure is indeed implementable by a transformer.
What learning algorithm is in-context learning? Investigations with linear models
Neural sequence models, especially transformers, exhibit a remarkable capacity for in-context learning. They can construct new predictors from sequences of labeled examples (x, f(x)) presented in the input without further parameter updates. We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly, by encoding smaller models in their activations, and updating these implicit models as new examples appear in the context. Using linear regression as a prototypical problem, we offer three sources of evidence for this hypothesis. First, we prove by construction that transformers can implement learning algorithms for linear models based on gradient descent and closed-form ridge regression. Second, we show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression, transitioning between different predictors as transformer depth and dataset noise vary, and converging to Bayesian estimators for large widths and depths. Third, we present preliminary evidence that in-context learners share algorithmic features with these predictors: learners' late layers non-linearly encode weight vectors and moment matrices. These results suggest that in-context learning is understandable in algorithmic terms, and that (at least in the linear case) learners may rediscover standard estimation algorithms. Code and reference implementations are released at https://github.com/ekinakyurek/google-research/blob/master/incontext.
Transformer-based Planning for Symbolic Regression
Symbolic regression (SR) is a challenging task in machine learning that involves finding a mathematical expression for a function based on its values. Recent advancements in SR have demonstrated the effectiveness of pretrained transformer-based models in generating equations as sequences, leveraging large-scale pretraining on synthetic datasets and offering notable advantages in terms of inference time over GP-based methods. However, these models primarily rely on supervised pretraining goals borrowed from text generation and overlook equation-specific objectives like accuracy and complexity. To address this, we propose TPSR, a Transformer-based Planning strategy for Symbolic Regression that incorporates Monte Carlo Tree Search into the transformer decoding process. Unlike conventional decoding strategies, TPSR enables the integration of non-differentiable feedback, such as fitting accuracy and complexity, as external sources of knowledge into the transformer-based equation generation process. Extensive experiments on various datasets show that our approach outperforms state-of-the-art methods, enhancing the model's fitting-complexity trade-off, extrapolation abilities, and robustness to noise
Multi-stage Neural Networks: Function Approximator of Machine Precision
Deep learning techniques are increasingly applied to scientific problems, where the precision of networks is crucial. Despite being deemed as universal function approximators, neural networks, in practice, struggle to reduce the prediction errors below O(10^{-5}) even with large network size and extended training iterations. To address this issue, we developed the multi-stage neural networks that divides the training process into different stages, with each stage using a new network that is optimized to fit the residue from the previous stage. Across successive stages, the residue magnitudes decreases substantially and follows an inverse power-law relationship with the residue frequencies. The multi-stage neural networks effectively mitigate the spectral biases associated with regular neural networks, enabling them to capture the high frequency feature of target functions. We demonstrate that the prediction error from the multi-stage training for both regression problems and physics-informed neural networks can nearly reach the machine-precision O(10^{-16}) of double-floating point within a finite number of iterations. Such levels of accuracy are rarely attainable using single neural networks alone.
Sparse Interpretable Deep Learning with LIES Networks for Symbolic Regression
Symbolic regression (SR) aims to discover closed-form mathematical expressions that accurately describe data, offering interpretability and analytical insight beyond standard black-box models. Existing SR methods often rely on population-based search or autoregressive modeling, which struggle with scalability and symbolic consistency. We introduce LIES (Logarithm, Identity, Exponential, Sine), a fixed neural network architecture with interpretable primitive activations that are optimized to model symbolic expressions. We develop a framework to extract compact formulae from LIES networks by training with an appropriate oversampling strategy and a tailored loss function to promote sparsity and to prevent gradient instability. After training, it applies additional pruning strategies to further simplify the learned expressions into compact formulae. Our experiments on SR benchmarks show that the LIES framework consistently produces sparse and accurate symbolic formulae outperforming all baselines. We also demonstrate the importance of each design component through ablation studies.
Parameter Prediction for Unseen Deep Architectures
Deep learning has been successful in automating the design of features in machine learning pipelines. However, the algorithms optimizing neural network parameters remain largely hand-designed and computationally inefficient. We study if we can use deep learning to directly predict these parameters by exploiting the past knowledge of training other networks. We introduce a large-scale dataset of diverse computational graphs of neural architectures - DeepNets-1M - and use it to explore parameter prediction on CIFAR-10 and ImageNet. By leveraging advances in graph neural networks, we propose a hypernetwork that can predict performant parameters in a single forward pass taking a fraction of a second, even on a CPU. The proposed model achieves surprisingly good performance on unseen and diverse networks. For example, it is able to predict all 24 million parameters of a ResNet-50 achieving a 60% accuracy on CIFAR-10. On ImageNet, top-5 accuracy of some of our networks approaches 50%. Our task along with the model and results can potentially lead to a new, more computationally efficient paradigm of training networks. Our model also learns a strong representation of neural architectures enabling their analysis.
Model-Based Control with Sparse Neural Dynamics
Learning predictive models from observations using deep neural networks (DNNs) is a promising new approach to many real-world planning and control problems. However, common DNNs are too unstructured for effective planning, and current control methods typically rely on extensive sampling or local gradient descent. In this paper, we propose a new framework for integrated model learning and predictive control that is amenable to efficient optimization algorithms. Specifically, we start with a ReLU neural model of the system dynamics and, with minimal losses in prediction accuracy, we gradually sparsify it by removing redundant neurons. This discrete sparsification process is approximated as a continuous problem, enabling an end-to-end optimization of both the model architecture and the weight parameters. The sparsified model is subsequently used by a mixed-integer predictive controller, which represents the neuron activations as binary variables and employs efficient branch-and-bound algorithms. Our framework is applicable to a wide variety of DNNs, from simple multilayer perceptrons to complex graph neural dynamics. It can efficiently handle tasks involving complicated contact dynamics, such as object pushing, compositional object sorting, and manipulation of deformable objects. Numerical and hardware experiments show that, despite the aggressive sparsification, our framework can deliver better closed-loop performance than existing state-of-the-art methods.
Discovering Symbolic Models from Deep Learning with Inductive Biases
We develop a general approach to distill symbolic representations of a learned deep model by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique works as follows: we first encourage sparse latent representations when we train a GNN in a supervised setting, then we apply symbolic regression to components of the learned model to extract explicit physical relations. We find the correct known equations, including force laws and Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial cosmology example-a detailed dark matter simulation-and discover a new analytic formula which can predict the concentration of dark matter from the mass distribution of nearby cosmic structures. The symbolic expressions extracted from the GNN using our technique also generalized to out-of-distribution data better than the GNN itself. Our approach offers alternative directions for interpreting neural networks and discovering novel physical principles from the representations they learn.
Rethinking Nearest Neighbors for Visual Classification
Neural network classifiers have become the de-facto choice for current "pre-train then fine-tune" paradigms of visual classification. In this paper, we investigate k-Nearest-Neighbor (k-NN) classifiers, a classical model-free learning method from the pre-deep learning era, as an augmentation to modern neural network based approaches. As a lazy learning method, k-NN simply aggregates the distance between the test image and top-k neighbors in a training set. We adopt k-NN with pre-trained visual representations produced by either supervised or self-supervised methods in two steps: (1) Leverage k-NN predicted probabilities as indications for easy vs. hard examples during training. (2) Linearly interpolate the k-NN predicted distribution with that of the augmented classifier. Via extensive experiments on a wide range of classification tasks, our study reveals the generality and flexibility of k-NN integration with additional insights: (1) k-NN achieves competitive results, sometimes even outperforming a standard linear classifier. (2) Incorporating k-NN is especially beneficial for tasks where parametric classifiers perform poorly and / or in low-data regimes. We hope these discoveries will encourage people to rethink the role of pre-deep learning, classical methods in computer vision. Our code is available at: https://github.com/KMnP/nn-revisit.
Beyond Classification: Definition and Density-based Estimation of Calibration in Object Detection
Despite their impressive predictive performance in various computer vision tasks, deep neural networks (DNNs) tend to make overly confident predictions, which hinders their widespread use in safety-critical applications. While there have been recent attempts to calibrate DNNs, most of these efforts have primarily been focused on classification tasks, thus neglecting DNN-based object detectors. Although several recent works addressed calibration for object detection and proposed differentiable penalties, none of them are consistent estimators of established concepts in calibration. In this work, we tackle the challenge of defining and estimating calibration error specifically for this task. In particular, we adapt the definition of classification calibration error to handle the nuances associated with object detection, and predictions in structured output spaces more generally. Furthermore, we propose a consistent and differentiable estimator of the detection calibration error, utilizing kernel density estimation. Our experiments demonstrate the effectiveness of our estimator against competing train-time and post-hoc calibration methods, while maintaining similar detection performance.
Exploration of Numerical Precision in Deep Neural Networks
Reduced numerical precision is a common technique to reduce computational cost in many Deep Neural Networks (DNNs). While it has been observed that DNNs are resilient to small errors and noise, no general result exists that is capable of predicting a given DNN system architecture's sensitivity to reduced precision. In this project, we emulate arbitrary bit-width using a specified floating-point representation with a truncation method, which is applied to the neural network after each batch. We explore the impact of several model parameters on the network's training accuracy and show results on the MNIST dataset. We then present a preliminary theoretical investigation of the error scaling in both forward and backward propagations. We end with a discussion of the implications of these results as well as the potential for generalization to other network architectures.
ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift
The presence of distribution shifts poses a significant challenge for deploying modern machine learning models in real-world applications. This work focuses on the target shift problem in a regression setting (Zhang et al., 2013; Nguyen et al., 2016). More specifically, the target variable y (also known as the response variable), which is continuous, has different marginal distributions in the training source and testing domain, while the conditional distribution of features x given y remains the same. While most literature focuses on classification tasks with finite target space, the regression problem has an infinite dimensional target space, which makes many of the existing methods inapplicable. In this work, we show that the continuous target shift problem can be addressed by estimating the importance weight function from an ill-posed integral equation. We propose a nonparametric regularized approach named ReTaSA to solve the ill-posed integral equation and provide theoretical justification for the estimated importance weight function. The effectiveness of the proposed method has been demonstrated with extensive numerical studies on synthetic and real-world datasets.
3DRegNet: A Deep Neural Network for 3D Point Registration
We present 3DRegNet, a novel deep learning architecture for the registration of 3D scans. Given a set of 3D point correspondences, we build a deep neural network to address the following two challenges: (i) classification of the point correspondences into inliers/outliers, and (ii) regression of the motion parameters that align the scans into a common reference frame. With regard to regression, we present two alternative approaches: (i) a Deep Neural Network (DNN) registration and (ii) a Procrustes approach using SVD to estimate the transformation. Our correspondence-based approach achieves a higher speedup compared to competing baselines. We further propose the use of a refinement network, which consists of a smaller 3DRegNet as a refinement to improve the accuracy of the registration. Extensive experiments on two challenging datasets demonstrate that we outperform other methods and achieve state-of-the-art results. The code is available.
DNBP: Differentiable Nonparametric Belief Propagation
We present a differentiable approach to learn the probabilistic factors used for inference by a nonparametric belief propagation algorithm. Existing nonparametric belief propagation methods rely on domain-specific features encoded in the probabilistic factors of a graphical model. In this work, we replace each crafted factor with a differentiable neural network enabling the factors to be learned using an efficient optimization routine from labeled data. By combining differentiable neural networks with an efficient belief propagation algorithm, our method learns to maintain a set of marginal posterior samples using end-to-end training. We evaluate our differentiable nonparametric belief propagation (DNBP) method on a set of articulated pose tracking tasks and compare performance with learned baselines. Results from these experiments demonstrate the effectiveness of using learned factors for tracking and suggest the practical advantage over hand-crafted approaches. The project webpage is available at: https://progress.eecs.umich.edu/projects/dnbp/ .
Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic Bounds and Applications
Motivated by a wide variety of applications, ranging from stochastic optimization to dimension reduction through variable selection, the problem of estimating gradients accurately is of crucial importance in statistics and learning theory. We consider here the classic regression setup, where a real valued square integrable r.v. Y is to be predicted upon observing a (possibly high dimensional) random vector X by means of a predictive function f(X) as accurately as possible in the mean-squared sense and study a nearest-neighbour-based pointwise estimate of the gradient of the optimal predictive function, the regression function m(x)=E[Ymid X=x]. Under classic smoothness conditions combined with the assumption that the tails of Y-m(X) are sub-Gaussian, we prove nonasymptotic bounds improving upon those obtained for alternative estimation methods. Beyond the novel theoretical results established, several illustrative numerical experiments have been carried out. The latter provide strong empirical evidence that the estimation method proposed works very well for various statistical problems involving gradient estimation, namely dimensionality reduction, stochastic gradient descent optimization and quantifying disentanglement.
Grokking as the Transition from Lazy to Rich Training Dynamics
We propose that the grokking phenomenon, where the train loss of a neural network decreases much earlier than its test loss, can arise due to a neural network transitioning from lazy training dynamics to a rich, feature learning regime. To illustrate this mechanism, we study the simple setting of vanilla gradient descent on a polynomial regression problem with a two layer neural network which exhibits grokking without regularization in a way that cannot be explained by existing theories. We identify sufficient statistics for the test loss of such a network, and tracking these over training reveals that grokking arises in this setting when the network first attempts to fit a kernel regression solution with its initial features, followed by late-time feature learning where a generalizing solution is identified after train loss is already low. We provide an asymptotic theoretical description of the grokking dynamics in this model using dynamical mean field theory (DMFT) for high dimensional data. We find that the key determinants of grokking are the rate of feature learning -- which can be controlled precisely by parameters that scale the network output -- and the alignment of the initial features with the target function y(x). We argue this delayed generalization arises when (1) the top eigenvectors of the initial neural tangent kernel and the task labels y(x) are misaligned, but (2) the dataset size is large enough so that it is possible for the network to generalize eventually, but not so large that train loss perfectly tracks test loss at all epochs, and (3) the network begins training in the lazy regime so does not learn features immediately. We conclude with evidence that this transition from lazy (linear model) to rich training (feature learning) can control grokking in more general settings, like on MNIST, one-layer Transformers, and student-teacher networks.
Neural Diffusion Processes
Neural network approaches for meta-learning distributions over functions have desirable properties such as increased flexibility and a reduced complexity of inference. Building on the successes of denoising diffusion models for generative modelling, we propose Neural Diffusion Processes (NDPs), a novel approach that learns to sample from a rich distribution over functions through its finite marginals. By introducing a custom attention block we are able to incorporate properties of stochastic processes, such as exchangeability, directly into the NDP's architecture. We empirically show that NDPs can capture functional distributions close to the true Bayesian posterior, demonstrating that they can successfully emulate the behaviour of Gaussian processes and surpass the performance of neural processes. NDPs enable a variety of downstream tasks, including regression, implicit hyperparameter marginalisation, non-Gaussian posterior prediction and global optimisation.
A step towards understanding why classification helps regression
A number of computer vision deep regression approaches report improved results when adding a classification loss to the regression loss. Here, we explore why this is useful in practice and when it is beneficial. To do so, we start from precisely controlled dataset variations and data samplings and find that the effect of adding a classification loss is the most pronounced for regression with imbalanced data. We explain these empirical findings by formalizing the relation between the balanced and imbalanced regression losses. Finally, we show that our findings hold on two real imbalanced image datasets for depth estimation (NYUD2-DIR), and age estimation (IMDB-WIKI-DIR), and on the problem of imbalanced video progress prediction (Breakfast). Our main takeaway is: for a regression task, if the data sampling is imbalanced, then add a classification loss.
DaWin: Training-free Dynamic Weight Interpolation for Robust Adaptation
Adapting a pre-trained foundation model on downstream tasks should ensure robustness against distribution shifts without the need to retrain the whole model. Although existing weight interpolation methods are simple yet effective, we argue their static nature limits downstream performance while achieving efficiency. In this work, we propose DaWin, a training-free dynamic weight interpolation method that leverages the entropy of individual models over each unlabeled test sample to assess model expertise, and compute per-sample interpolation coefficients dynamically. Unlike previous works that typically rely on additional training to learn such coefficients, our approach requires no training. Then, we propose a mixture modeling approach that greatly reduces inference overhead raised by dynamic interpolation. We validate DaWin on the large-scale visual recognition benchmarks, spanning 14 tasks across robust fine-tuning -- ImageNet and derived five distribution shift benchmarks -- and multi-task learning with eight classification tasks. Results demonstrate that DaWin achieves significant performance gain in considered settings, with minimal computational overhead. We further discuss DaWin's analytic behavior to explain its empirical success.
Generalization is not a universal guarantee: Estimating similarity to training data with an ensemble out-of-distribution metric
Failure of machine learning models to generalize to new data is a core problem limiting the reliability of AI systems, partly due to the lack of simple and robust methods for comparing new data to the original training dataset. We propose a standardized approach for assessing data similarity in a model-agnostic manner by constructing a supervised autoencoder for generalizability estimation (SAGE). We compare points in a low-dimensional embedded latent space, defining empirical probability measures for k-Nearest Neighbors (kNN) distance, reconstruction of inputs and task-based performance. As proof of concept for classification tasks, we use MNIST and CIFAR-10 to demonstrate how an ensemble output probability score can separate deformed images from a mixture of typical test examples, and how this SAGE score is robust to transformations of increasing severity. As further proof of concept, we extend this approach to a regression task using non-imaging data (UCI Abalone). In all cases, we show that out-of-the-box model performance increases after SAGE score filtering, even when applied to data from the model's own training and test datasets. Our out-of-distribution scoring method can be introduced during several steps of model construction and assessment, leading to future improvements in responsible deep learning implementation.
Regression Language Models for Code
We study code-to-metric regression: predicting numeric outcomes of code executions, a challenging task due to the open-ended nature of programming languages. While prior methods have resorted to heavy and domain-specific feature engineering, we show that a single unified Regression Language Model (RLM) can simultaneously predict directly from text, (i) the memory footprint of code across multiple high-level languages such as Python and C++, (ii) the latency of Triton GPU kernels, and (iii) the accuracy and speed of trained neural networks represented in ONNX. In particular, a relatively small 300M parameter RLM initialized from T5Gemma, obtains > 0.9 Spearman-rank on competitive programming submissions from APPS, and a single unified model achieves > 0.5 average Spearman-rank across 17 separate languages from CodeNet. Furthermore, the RLM can obtain the highest average Kendall-Tau of 0.46 on five classic NAS design spaces previously dominated by graph neural networks, and simultaneously predict architecture latencies on numerous hardware platforms.
COD: Learning Conditional Invariant Representation for Domain Adaptation Regression
Aiming to generalize the label knowledge from a source domain with continuous outputs to an unlabeled target domain, Domain Adaptation Regression (DAR) is developed for complex practical learning problems. However, due to the continuity problem in regression, existing conditional distribution alignment theory and methods with discrete prior, which are proven to be effective in classification settings, are no longer applicable. In this work, focusing on the feasibility problems in DAR, we establish the sufficiency theory for the regression model, which shows the generalization error can be sufficiently dominated by the cross-domain conditional discrepancy. Further, to characterize conditional discrepancy with continuous conditioning variable, a novel Conditional Operator Discrepancy (COD) is proposed, which admits the metric property on conditional distributions via the kernel embedding theory. Finally, to minimize the discrepancy, a COD-based conditional invariant representation learning model is proposed, and the reformulation is derived to show that reasonable modifications on moment statistics can further improve the discriminability of the adaptation model. Extensive experiments on standard DAR datasets verify the validity of theoretical results and the superiority over SOTA DAR methods.
SymbolicGPT: A Generative Transformer Model for Symbolic Regression
Symbolic regression is the task of identifying a mathematical expression that best fits a provided dataset of input and output values. Due to the richness of the space of mathematical expressions, symbolic regression is generally a challenging problem. While conventional approaches based on genetic evolution algorithms have been used for decades, deep learning-based methods are relatively new and an active research area. In this work, we present SymbolicGPT, a novel transformer-based language model for symbolic regression. This model exploits the advantages of probabilistic language models like GPT, including strength in performance and flexibility. Through comprehensive experiments, we show that our model performs strongly compared to competing models with respect to the accuracy, running time, and data efficiency.
From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.
On Neural Differential Equations
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Toward Large Kernel Models
Recent studies indicate that kernel machines can often perform similarly or better than deep neural networks (DNNs) on small datasets. The interest in kernel machines has been additionally bolstered by the discovery of their equivalence to wide neural networks in certain regimes. However, a key feature of DNNs is their ability to scale the model size and training data size independently, whereas in traditional kernel machines model size is tied to data size. Because of this coupling, scaling kernel machines to large data has been computationally challenging. In this paper, we provide a way forward for constructing large-scale general kernel models, which are a generalization of kernel machines that decouples the model and data, allowing training on large datasets. Specifically, we introduce EigenPro 3.0, an algorithm based on projected dual preconditioned SGD and show scaling to model and data sizes which have not been possible with existing kernel methods.
LEURN: Learning Explainable Univariate Rules with Neural Networks
In this paper, we propose LEURN: a neural network architecture that learns univariate decision rules. LEURN is a white-box algorithm that results into univariate trees and makes explainable decisions in every stage. In each layer, LEURN finds a set of univariate rules based on an embedding of the previously checked rules and their corresponding responses. Both rule finding and final decision mechanisms are weighted linear combinations of these embeddings, hence contribution of all rules are clearly formulated and explainable. LEURN can select features, extract feature importance, provide semantic similarity between a pair of samples, be used in a generative manner and can give a confidence score. Thanks to a smoothness parameter, LEURN can also controllably behave like decision trees or vanilla neural networks. Besides these advantages, LEURN achieves comparable performance to state-of-the-art methods across 30 tabular datasets for classification and regression problems.
Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
In this paper, we introduce a novel theoretical framework for multi-task regression, applying random matrix theory to provide precise performance estimations, under high-dimensional, non-Gaussian data distributions. We formulate a multi-task optimization problem as a regularization technique to enable single-task models to leverage multi-task learning information. We derive a closed-form solution for multi-task optimization in the context of linear models. Our analysis provides valuable insights by linking the multi-task learning performance to various model statistics such as raw data covariances, signal-generating hyperplanes, noise levels, as well as the size and number of datasets. We finally propose a consistent estimation of training and testing errors, thereby offering a robust foundation for hyperparameter optimization in multi-task regression scenarios. Experimental validations on both synthetic and real-world datasets in regression and multivariate time series forecasting demonstrate improvements on univariate models, incorporating our method into the training loss and thus leveraging multivariate information.
ARM-Net: Adaptive Relation Modeling Network for Structured Data
Relational databases are the de facto standard for storing and querying structured data, and extracting insights from structured data requires advanced analytics. Deep neural networks (DNNs) have achieved super-human prediction performance in particular data types, e.g., images. However, existing DNNs may not produce meaningful results when applied to structured data. The reason is that there are correlations and dependencies across combinations of attribute values in a table, and these do not follow simple additive patterns that can be easily mimicked by a DNN. The number of possible such cross features is combinatorial, making them computationally prohibitive to model. Furthermore, the deployment of learning models in real-world applications has also highlighted the need for interpretability, especially for high-stakes applications, which remains another issue of concern to DNNs. In this paper, we present ARM-Net, an adaptive relation modeling network tailored for structured data, and a lightweight framework ARMOR based on ARM-Net for relational data analytics. The key idea is to model feature interactions with cross features selectively and dynamically, by first transforming the input features into exponential space, and then determining the interaction order and interaction weights adaptively for each cross feature. We propose a novel sparse attention mechanism to dynamically generate the interaction weights given the input tuple, so that we can explicitly model cross features of arbitrary orders with noisy features filtered selectively. Then during model inference, ARM-Net can specify the cross features being used for each prediction for higher accuracy and better interpretability. Our extensive experiments on real-world datasets demonstrate that ARM-Net consistently outperforms existing models and provides more interpretable predictions for data-driven decision making.
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search
Symbolic regression (SR) is the problem of learning a symbolic expression from numerical data. Recently, deep neural models trained on procedurally-generated synthetic datasets showed competitive performance compared to more classical Genetic Programming (GP) algorithms. Unlike their GP counterparts, these neural approaches are trained to generate expressions from datasets given as context. This allows them to produce accurate expressions in a single forward pass at test time. However, they usually do not benefit from search abilities, which result in low performance compared to GP on out-of-distribution datasets. In this paper, we propose a novel method which provides the best of both worlds, based on a Monte-Carlo Tree Search procedure using a context-aware neural mutation model, which is initially pre-trained to learn promising mutations, and further refined from successful experiences in an online fashion. The approach demonstrates state-of-the-art performance on the well-known SRBench benchmark.
Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models
Prediction of stock prices has been an important area of research for a long time. While supporters of the efficient market hypothesis believe that it is impossible to predict stock prices accurately, there are formal propositions demonstrating that accurate modeling and designing of appropriate variables may lead to models using which stock prices and stock price movement patterns can be very accurately predicted. In this work, we propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models. For the purpose of our study, we have used NIFTY 50 index values of the National Stock Exchange (NSE) of India, during the period December 29, 2014 till July 31, 2020. We have built eight regression models using the training data that consisted of NIFTY 50 index records during December 29, 2014 till December 28, 2018. Using these regression models, we predicted the open values of NIFTY 50 for the period December 31, 2018 till July 31, 2020. We, then, augment the predictive power of our forecasting framework by building four deep learning-based regression models using long-and short-term memory (LSTM) networks with a novel approach of walk-forward validation. We exploit the power of LSTM regression models in forecasting the future NIFTY 50 open values using four different models that differ in their architecture and in the structure of their input data. Extensive results are presented on various metrics for the all the regression models. The results clearly indicate that the LSTM-based univariate model that uses one-week prior data as input for predicting the next week open value of the NIFTY 50 time series is the most accurate model.
Reasoning-Intensive Regression
AI researchers and practitioners increasingly apply large language models (LLMs) to what we call reasoning-intensive regression (RiR), i.e. deducing subtle numerical properties from text. Unlike standard language regression tasks, e.g. for sentiment or similarity, RiR often appears instead in ad-hoc problems like rubric-based scoring or domain-specific retrieval, where much deeper analysis of text is required while only limited task-specific training data and computation are available. We cast three realistic problems as RiR tasks to establish an initial benchmark, and use that to test our hypothesis that prompting frozen LLMs and finetuning Transformer encoders via gradient descent will both often struggle in RiR. We then propose MENTAT, a simple and lightweight method that combines batch-reflective prompt optimization with neural ensemble learning. MENTAT achieves up to 65% improvement over both baselines, though substantial room remains for future advances in RiR.
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit, thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: during gradient descent on the parameters of an ANN, the network function f_theta (which maps input vectors to output vectors) follows the kernel gradient of the functional cost (which is convex, in contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This kernel is central to describe the generalization features of ANNs. While the NTK is random at initialization and varies during training, in the infinite-width limit it converges to an explicit limiting kernel and it stays constant during training. This makes it possible to study the training of ANNs in function space instead of parameter space. Convergence of the training can then be related to the positive-definiteness of the limiting NTK. We prove the positive-definiteness of the limiting NTK when the data is supported on the sphere and the non-linearity is non-polynomial. We then focus on the setting of least-squares regression and show that in the infinite-width limit, the network function f_theta follows a linear differential equation during training. The convergence is fastest along the largest kernel principal components of the input data with respect to the NTK, hence suggesting a theoretical motivation for early stopping. Finally we study the NTK numerically, observe its behavior for wide networks, and compare it to the infinite-width limit.
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
We present Natural Gradient Boosting (NGBoost), an algorithm for generic probabilistic prediction via gradient boosting. Typical regression models return a point estimate, conditional on covariates, but probabilistic regression models output a full probability distribution over the outcome space, conditional on the covariates. This allows for predictive uncertainty estimation -- crucial in applications like healthcare and weather forecasting. NGBoost generalizes gradient boosting to probabilistic regression by treating the parameters of the conditional distribution as targets for a multiparameter boosting algorithm. Furthermore, we show how the Natural Gradient is required to correct the training dynamics of our multiparameter boosting approach. NGBoost can be used with any base learner, any family of distributions with continuous parameters, and any scoring rule. NGBoost matches or exceeds the performance of existing methods for probabilistic prediction while offering additional benefits in flexibility, scalability, and usability. An open-source implementation is available at github.com/stanfordmlgroup/ngboost.
Inverse distance weighting attention
We report the effects of replacing the scaled dot-product (within softmax) attention with the negative-log of Euclidean distance. This form of attention simplifies to inverse distance weighting interpolation. Used in simple one hidden layer networks and trained with vanilla cross-entropy loss on classification problems, it tends to produce a key matrix containing prototypes and a value matrix with corresponding logits. We also show that the resulting interpretable networks can be augmented with manually-constructed prototypes to perform low-impact handling of special cases.
Fréchet Cumulative Covariance Net for Deep Nonlinear Sufficient Dimension Reduction with Random Objects
Nonlinear sufficient dimension reductionlibing_generalSDR, which constructs nonlinear low-dimensional representations to summarize essential features of high-dimensional data, is an important branch of representation learning. However, most existing methods are not applicable when the response variables are complex non-Euclidean random objects, which are frequently encountered in many recent statistical applications. In this paper, we introduce a new statistical dependence measure termed Fr\'echet Cumulative Covariance (FCCov) and develop a novel nonlinear SDR framework based on FCCov. Our approach is not only applicable to complex non-Euclidean data, but also exhibits robustness against outliers. We further incorporate Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) to estimate nonlinear sufficient directions in the sample level. Theoretically, we prove that our method with squared Frobenius norm regularization achieves unbiasedness at the sigma-field level. Furthermore, we establish non-asymptotic convergence rates for our estimators based on FNNs and ResNet-type CNNs, which match the minimax rate of nonparametric regression up to logarithmic factors. Intensive simulation studies verify the performance of our methods in both Euclidean and non-Euclidean settings. We apply our method to facial expression recognition datasets and the results underscore more realistic and broader applicability of our proposal.
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Solving parametric partial differential equations (PDEs) and associated PDE-based, inverse problems is a central task in engineering and physics, yet existing neural operator methods struggle with high-dimensional, discontinuous inputs and require large amounts of {\em labeled} training data. We propose the Deep Generative Neural Operator (DGNO), a physics-aware framework that addresses these challenges by leveraging a deep, generative, probabilistic model in combination with a set of lower-dimensional, latent variables that simultaneously encode PDE-inputs and PDE-outputs. This formulation can make use of unlabeled data and significantly improves inverse problem-solving, particularly for discontinuous or discrete-valued input functions. DGNO enforces physics constraints without labeled data by incorporating as virtual observables, weak-form residuals based on compactly supported radial basis functions (CSRBFs). These relax regularity constraints and eliminate higher-order derivatives from the objective function. We also introduce MultiONet, a novel neural operator architecture, which is a more expressive generalization of the popular DeepONet that significantly enhances the approximating power of the proposed model. These innovations make DGNO particularly effective for challenging forward and inverse, PDE-based problems, such as those involving multi-phase media. Numerical experiments demonstrate that DGNO achieves higher accuracy across multiple benchmarks while exhibiting robustness to noise and strong generalization to out-of-distribution cases. Its adaptability, and the ability to handle sparse, noisy data while providing probabilistic estimates, make DGNO a powerful tool for scientific and engineering applications.
Gradient Boosting Neural Networks: GrowNet
A novel gradient boosting framework is proposed where shallow neural networks are employed as ``weak learners''. General loss functions are considered under this unified framework with specific examples presented for classification, regression, and learning to rank. A fully corrective step is incorporated to remedy the pitfall of greedy function approximation of classic gradient boosting decision tree. The proposed model rendered outperforming results against state-of-the-art boosting methods in all three tasks on multiple datasets. An ablation study is performed to shed light on the effect of each model components and model hyperparameters.
Transformers Can Do Bayesian Inference
Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very diverse areas such as Gaussian process regression, Bayesian neural networks, classification for small tabular data sets, and few-shot image classification, demonstrating the generality of PFNs. Code and trained PFNs are released at https://github.com/automl/TransformersCanDoBayesianInference.
Learning to Reweight for Graph Neural Network
Graph Neural Networks (GNNs) show promising results for graph tasks. However, existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data. The cardinal impetus underlying the severe degeneration is that the GNNs are architected predicated upon the I.I.D assumptions. In such a setting, GNNs are inclined to leverage imperceptible statistical correlations subsisting in the training set to predict, albeit it is a spurious correlation. In this paper, we study the problem of the generalization ability of GNNs in Out-Of-Distribution (OOD) settings. To solve this problem, we propose the Learning to Reweight for Generalizable Graph Neural Network (L2R-GNN) to enhance the generalization ability for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs. We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability and compares favorably to previous methods in restraining the over-reduced sample size. The variables of the graph representation are clustered based on the stability of the correlation, and the graph decorrelation method learns weights to remove correlations between the variables of different clusters rather than any two variables. Besides, we interpose an efficacious stochastic algorithm upon bi-level optimization for the L2R-GNN framework, which facilitates simultaneously learning the optimal weights and GNN parameters, and avoids the overfitting problem. Experimental results show that L2R-GNN greatly outperforms baselines on various graph prediction benchmarks under distribution shifts.
Simultaneous Weight and Architecture Optimization for Neural Networks
Neural networks are trained by choosing an architecture and training the parameters. The choice of architecture is often by trial and error or with Neural Architecture Search (NAS) methods. While NAS provides some automation, it often relies on discrete steps that optimize the architecture and then train the parameters. We introduce a novel neural network training framework that fundamentally transforms the process by learning architecture and parameters simultaneously with gradient descent. With the appropriate setting of the loss function, it can discover sparse and compact neural networks for given datasets. Central to our approach is a multi-scale encoder-decoder, in which the encoder embeds pairs of neural networks with similar functionalities close to each other (irrespective of their architectures and weights). To train a neural network with a given dataset, we randomly sample a neural network embedding in the embedding space and then perform gradient descent using our custom loss function, which incorporates a sparsity penalty to encourage compactness. The decoder generates a neural network corresponding to the embedding. Experiments demonstrate that our framework can discover sparse and compact neural networks maintaining a high performance.
Initial Investigation of Kolmogorov-Arnold Networks (KANs) as Feature Extractors for IMU Based Human Activity Recognition
In this work, we explore the use of a novel neural network architecture, the Kolmogorov-Arnold Networks (KANs) as feature extractors for sensor-based (specifically IMU) Human Activity Recognition (HAR). Where conventional networks perform a parameterized weighted sum of the inputs at each node and then feed the result into a statically defined nonlinearity, KANs perform non-linear computations represented by B-SPLINES on the edges leading to each node and then just sum up the inputs at the node. Instead of learning weights, the system learns the spline parameters. In the original work, such networks have been shown to be able to more efficiently and exactly learn sophisticated real valued functions e.g. in regression or PDE solution. We hypothesize that such an ability is also advantageous for computing low-level features for IMU-based HAR. To this end, we have implemented KAN as the feature extraction architecture for IMU-based human activity recognition tasks, including four architecture variations. We present an initial performance investigation of the KAN feature extractor on four public HAR datasets. It shows that the KAN-based feature extractor outperforms CNN-based extractors on all datasets while being more parameter efficient.
Smart Content Recognition from Images Using a Mixture of Convolutional Neural Networks
With rapid development of the Internet, web contents become huge. Most of the websites are publicly available, and anyone can access the contents from anywhere such as workplace, home and even schools. Nevertheless, not all the web contents are appropriate for all users, especially children. An example of these contents is pornography images which should be restricted to certain age group. Besides, these images are not safe for work (NSFW) in which employees should not be seen accessing such contents during work. Recently, convolutional neural networks have been successfully applied to many computer vision problems. Inspired by these successes, we propose a mixture of convolutional neural networks for adult content recognition. Unlike other works, our method is formulated on a weighted sum of multiple deep neural network models. The weights of each CNN models are expressed as a linear regression problem learned using Ordinary Least Squares (OLS). Experimental results demonstrate that the proposed model outperforms both single CNN model and the average sum of CNN models in adult content recognition.
Design and Analysis of Robust Deep Learning Models for Stock Price Prediction
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve. The well-known efficient market hypothesis believes in the impossibility of accurate prediction of future stock prices in an efficient stock market as the stock prices are assumed to be purely stochastic. However, numerous works proposed by researchers have demonstrated that it is possible to predict future stock prices with a high level of precision using sophisticated algorithms, model architectures, and the selection of appropriate variables in the models. This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India. The Metastock tool is used to download the historical stock prices over a period of two years (2013- 2014) at 5 minutes intervals. While the records for the first year are used to train the models, the testing is carried out using the remaining records. The design approaches of all the models and their performance results are presented in detail. The models are also compared based on their execution time and accuracy of prediction.
DoubleMLDeep: Estimation of Causal Effects with Multimodal Data
This paper explores the use of unstructured, multimodal data, namely text and images, in causal inference and treatment effect estimation. We propose a neural network architecture that is adapted to the double machine learning (DML) framework, specifically the partially linear model. An additional contribution of our paper is a new method to generate a semi-synthetic dataset which can be used to evaluate the performance of causal effect estimation in the presence of text and images as confounders. The proposed methods and architectures are evaluated on the semi-synthetic dataset and compared to standard approaches, highlighting the potential benefit of using text and images directly in causal studies. Our findings have implications for researchers and practitioners in economics, marketing, finance, medicine and data science in general who are interested in estimating causal quantities using non-traditional data.
A New PHO-rmula for Improved Performance of Semi-Structured Networks
Recent advances to combine structured regression models and deep neural networks for better interpretability, more expressiveness, and statistically valid uncertainty quantification demonstrate the versatility of semi-structured neural networks (SSNs). We show that techniques to properly identify the contributions of the different model components in SSNs, however, lead to suboptimal network estimation, slower convergence, and degenerated or erroneous predictions. In order to solve these problems while preserving favorable model properties, we propose a non-invasive post-hoc orthogonalization (PHO) that guarantees identifiability of model components and provides better estimation and prediction quality. Our theoretical findings are supported by numerical experiments, a benchmark comparison as well as a real-world application to COVID-19 infections.
Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest Monitoring
Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression within remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks. To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.
Online Deep Learning: Learning Deep Neural Networks on the Fly
Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch learning setting, which requires the entire training data to be made available prior to the learning task. This is not scalable for many real-world scenarios where new data arrives sequentially in a stream form. We aim to address an open challenge of "Online Deep Learning" (ODL) for learning DNNs on the fly in an online setting. Unlike traditional online learning that often optimizes some convex objective function with respect to a shallow model (e.g., a linear/kernel-based hypothesis), ODL is significantly more challenging since the optimization of the DNN objective function is non-convex, and regular backpropagation does not work well in practice, especially for online learning settings. In this paper, we present a new online deep learning framework that attempts to tackle the challenges by learning DNN models of adaptive depth from a sequence of training data in an online learning setting. In particular, we propose a novel Hedge Backpropagation (HBP) method for online updating the parameters of DNN effectively, and validate the efficacy of our method on large-scale data sets, including both stationary and concept drifting scenarios.
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introduce a general-purpose deep learning architecture that takes as input the entire dataset instead of processing one datapoint at a time. Our approach uses self-attention to reason about relationships between datapoints explicitly, which can be seen as realizing non-parametric models using parametric attention mechanisms. However, unlike conventional non-parametric models, we let the model learn end-to-end from the data how to make use of other datapoints for prediction. Empirically, our models solve cross-datapoint lookup and complex reasoning tasks unsolvable by traditional deep learning models. We show highly competitive results on tabular data, early results on CIFAR-10, and give insight into how the model makes use of the interactions between points.
Less is More: Parameter-Free Text Classification with Gzip
Deep neural networks (DNNs) are often used for text classification tasks as they usually achieve high levels of accuracy. However, DNNs can be computationally intensive with billions of parameters and large amounts of labeled data, which can make them expensive to use, to optimize and to transfer to out-of-distribution (OOD) cases in practice. In this paper, we propose a non-parametric alternative to DNNs that's easy, light-weight and universal in text classification: a combination of a simple compressor like gzip with a k-nearest-neighbor classifier. Without any training, pre-training or fine-tuning, our method achieves results that are competitive with non-pretrained deep learning methods on six in-distributed datasets. It even outperforms BERT on all five OOD datasets, including four low-resource languages. Our method also performs particularly well in few-shot settings where labeled data are too scarce for DNNs to achieve a satisfying accuracy.
Deterministic equivalent and error universality of deep random features learning
This manuscript considers the problem of learning a random Gaussian network function using a fully connected network with frozen intermediate layers and trainable readout layer. This problem can be seen as a natural generalization of the widely studied random features model to deeper architectures. First, we prove Gaussian universality of the test error in a ridge regression setting where the learner and target networks share the same intermediate layers, and provide a sharp asymptotic formula for it. Establishing this result requires proving a deterministic equivalent for traces of the deep random features sample covariance matrices which can be of independent interest. Second, we conjecture the asymptotic Gaussian universality of the test error in the more general setting of arbitrary convex losses and generic learner/target architectures. We provide extensive numerical evidence for this conjecture, which requires the derivation of closed-form expressions for the layer-wise post-activation population covariances. In light of our results, we investigate the interplay between architecture design and implicit regularization.
In-Context Symbolic Regression: Leveraging Large Language Models for Function Discovery
State of the art Symbolic Regression (SR) methods currently build specialized models, while the application of Large Language Models (LLMs) remains largely unexplored. In this work, we introduce the first comprehensive framework that utilizes LLMs for the task of SR. We propose In-Context Symbolic Regression (ICSR), an SR method which iteratively refines a functional form with an LLM and determines its coefficients with an external optimizer. ICSR leverages LLMs' strong mathematical prior both to propose an initial set of possible functions given the observations and to refine them based on their errors. Our findings reveal that LLMs are able to successfully find symbolic equations that fit the given data, matching or outperforming the overall performance of the best SR baselines on four popular benchmarks, while yielding simpler equations with better out of distribution generalization.
Learning the Dynamics of Sparsely Observed Interacting Systems
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
Performance Prediction for Large Systems via Text-to-Text Regression
In many industries, predicting metric outcomes of large systems is a fundamental problem, driven largely by traditional tabular regression. However, such methods struggle on complex systems data in the wild such as configuration files or system logs, where feature engineering is often infeasible. We propose text-to-text regression as a general, scalable alternative. For predicting resource efficiency on Borg, Google's massive compute cluster scheduling system, a 60M parameter encoder-decoder, trained from random initialization, achieves up to a near perfect 0.99 (0.9 average) rank correlation across the entire fleet, and 100x lower MSE than tabular approaches. The model also easily adapts to new tasks in only 500 few-shot examples and captures the densities of complex outcome distributions. Ablation studies highlight the importance of using encoders, increasing sequence length, and the model's inherent uncertainty quantification. These findings pave the way for universal simulators of real-world outcomes.
Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries
Prediction of future movement of stock prices has been a subject matter of many research work. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange of India, over a period of four years, from January 2015 till December 2019. Based on the NIFTY data during the said period, we build various predictive models using machine learning approaches, and then use those models to predict the Close value of NIFTY 50 for the year 2019, with a forecast horizon of one week. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual Close values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.
Deep Interest Network for Click-Through Rate Prediction
Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding\&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding\&MLP methods to capture user's diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic.
TraDE: Transformers for Density Estimation
We present TraDE, a self-attention-based architecture for auto-regressive density estimation with continuous and discrete valued data. Our model is trained using a penalized maximum likelihood objective, which ensures that samples from the density estimate resemble the training data distribution. The use of self-attention means that the model need not retain conditional sufficient statistics during the auto-regressive process beyond what is needed for each covariate. On standard tabular and image data benchmarks, TraDE produces significantly better density estimates than existing approaches such as normalizing flow estimators and recurrent auto-regressive models. However log-likelihood on held-out data only partially reflects how useful these estimates are in real-world applications. In order to systematically evaluate density estimators, we present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data and demonstrate that TraDE works well in these scenarios.
GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator
6D pose estimation of rigid objects is a long-standing and challenging task in computer vision. Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses. Given that direct pose regression networks currently exhibit suboptimal performance, most methods still resort to traditional techniques to varying degrees. For example, top-performing methods often adopt an indirect strategy by first establishing 2D-3D or 3D-3D correspondences followed by applying the RANSAC-based PnP or Kabsch algorithms, and further employing ICP for refinement. Despite the performance enhancement, the integration of traditional techniques makes the networks time-consuming and not end-to-end trainable. Orthogonal to them, this paper introduces a fully learning-based object pose estimator. In this work, we first perform an in-depth investigation of both direct and indirect methods and propose a simple yet effective Geometry-guided Direct Regression Network (GDRN) to learn the 6D pose from monocular images in an end-to-end manner. Afterwards, we introduce a geometry-guided pose refinement module, enhancing pose accuracy when extra depth data is available. Guided by the predicted coordinate map, we build an end-to-end differentiable architecture that establishes robust and accurate 3D-3D correspondences between the observed and rendered RGB-D images to refine the pose. Our enhanced pose estimation pipeline GDRNPP (GDRN Plus Plus) conquered the leaderboard of the BOP Challenge for two consecutive years, becoming the first to surpass all prior methods that relied on traditional techniques in both accuracy and speed. The code and models are available at https://github.com/shanice-l/gdrnpp_bop2022.
Second-order regression models exhibit progressive sharpening to the edge of stability
Recent studies of gradient descent with large step sizes have shown that there is often a regime with an initial increase in the largest eigenvalue of the loss Hessian (progressive sharpening), followed by a stabilization of the eigenvalue near the maximum value which allows convergence (edge of stability). These phenomena are intrinsically non-linear and do not happen for models in the constant Neural Tangent Kernel (NTK) regime, for which the predictive function is approximately linear in the parameters. As such, we consider the next simplest class of predictive models, namely those that are quadratic in the parameters, which we call second-order regression models. For quadratic objectives in two dimensions, we prove that this second-order regression model exhibits progressive sharpening of the NTK eigenvalue towards a value that differs slightly from the edge of stability, which we explicitly compute. In higher dimensions, the model generically shows similar behavior, even without the specific structure of a neural network, suggesting that progressive sharpening and edge-of-stability behavior aren't unique features of neural networks, and could be a more general property of discrete learning algorithms in high-dimensional non-linear models.
A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models
Prediction of future movement of stock prices has always been a challenging task for the researchers. While the advocates of the efficient market hypothesis (EMH) believe that it is impossible to design any predictive framework that can accurately predict the movement of stock prices, there are seminal work in the literature that have clearly demonstrated that the seemingly random movement patterns in the time series of a stock price can be predicted with a high level of accuracy. Design of such predictive models requires choice of appropriate variables, right transformation methods of the variables, and tuning of the parameters of the models. In this work, we present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models. We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India. The granular data is aggregated into three slots in a day, and the aggregated data is used for building and training the forecasting models. We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data. We build eight classification and eight regression models based on statistical and machine learning approaches. In addition to these models, a deep learning regression model using a long-and-short-term memory (LSTM) network is also built. Extensive results have been presented on the performance of these models, and the results are critically analyzed.
Nonlinear Multiple Response Regression and Learning of Latent Spaces
Identifying low-dimensional latent structures within high-dimensional data has long been a central topic in the machine learning community, driven by the need for data compression, storage, transmission, and deeper data understanding. Traditional methods, such as principal component analysis (PCA) and autoencoders (AE), operate in an unsupervised manner, ignoring label information even when it is available. In this work, we introduce a unified method capable of learning latent spaces in both unsupervised and supervised settings. We formulate the problem as a nonlinear multiple-response regression within an index model context. By applying the generalized Stein's lemma, the latent space can be estimated without knowing the nonlinear link functions. Our method can be viewed as a nonlinear generalization of PCA. Moreover, unlike AE and other neural network methods that operate as "black boxes", our approach not only offers better interpretability but also reduces computational complexity while providing strong theoretical guarantees. Comprehensive numerical experiments and real data analyses demonstrate the superior performance of our method.
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition
Nonlinear methods such as Deep Neural Networks (DNNs) are the gold standard for various challenging machine learning problems, e.g., image classification, natural language processing or human action recognition. Although these methods perform impressively well, they have a significant disadvantage, the lack of transparency, limiting the interpretability of the solution and thus the scope of application in practice. Especially DNNs act as black boxes due to their multilayer nonlinear structure. In this paper we introduce a novel methodology for interpreting generic multilayer neural networks by decomposing the network classification decision into contributions of its input elements. Although our focus is on image classification, the method is applicable to a broad set of input data, learning tasks and network architectures. Our method is based on deep Taylor decomposition and efficiently utilizes the structure of the network by backpropagating the explanations from the output to the input layer. We evaluate the proposed method empirically on the MNIST and ILSVRC data sets.
Construction de variables a l'aide de classifieurs comme aide a la regression
This paper proposes a method for the automatic creation of variables (in the case of regression) that complement the information contained in the initial input vector. The method works as a pre-processing step in which the continuous values of the variable to be regressed are discretized into a set of intervals which are then used to define value thresholds. Then classifiers are trained to predict whether the value to be regressed is less than or equal to each of these thresholds. The different outputs of the classifiers are then concatenated in the form of an additional vector of variables that enriches the initial vector of the regression problem. The implemented system can thus be considered as a generic pre-processing tool. We tested the proposed enrichment method with 5 types of regressors and evaluated it in 33 regression datasets. Our experimental results confirm the interest of the approach.
Overcoming Simplicity Bias in Deep Networks using a Feature Sieve
Simplicity bias is the concerning tendency of deep networks to over-depend on simple, weakly predictive features, to the exclusion of stronger, more complex features. This is exacerbated in real-world applications by limited training data and spurious feature-label correlations, leading to biased, incorrect predictions. We propose a direct, interventional method for addressing simplicity bias in DNNs, which we call the feature sieve. We aim to automatically identify and suppress easily-computable spurious features in lower layers of the network, thereby allowing the higher network levels to extract and utilize richer, more meaningful representations. We provide concrete evidence of this differential suppression & enhancement of relevant features on both controlled datasets and real-world images, and report substantial gains on many real-world debiasing benchmarks (11.4% relative gain on Imagenet-A; 3.2% on BAR, etc). Crucially, we do not depend on prior knowledge of spurious attributes or features, and in fact outperform many baselines that explicitly incorporate such information. We believe that our feature sieve work opens up exciting new research directions in automated adversarial feature extraction and representation learning for deep networks.
Graph Neural Tangent Kernel: Convergence on Large Graphs
Graph neural networks (GNNs) achieve remarkable performance in graph machine learning tasks but can be hard to train on large-graph data, where their learning dynamics are not well understood. We investigate the training dynamics of large-graph GNNs using graph neural tangent kernels (GNTKs) and graphons. In the limit of large width, optimization of an overparametrized NN is equivalent to kernel regression on the NTK. Here, we investigate how the GNTK evolves as another independent dimension is varied: the graph size. We use graphons to define limit objects -- graphon NNs for GNNs, and graphon NTKs for GNTKs -- , and prove that, on a sequence of graphs, the GNTKs converge to the graphon NTK. We further prove that the spectrum of the GNTK, which is related to the directions of fastest learning which becomes relevant during early stopping, converges to the spectrum of the graphon NTK. This implies that in the large-graph limit, the GNTK fitted on a graph of moderate size can be used to solve the same task on the large graph, and to infer the learning dynamics of the large-graph GNN. These results are verified empirically on node regression and classification tasks.
RegMix: Data Mixing Augmentation for Regression
Data augmentation is becoming essential for improving regression performance in critical applications including manufacturing, climate prediction, and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification have succeeded in improving the model performance, which is reasonable due to the characteristics of the classification task, but has limitations in regression. We show that mixing examples that have large data distances using linear interpolations may have increasingly-negative effects on model performance. Our key idea is thus to limit the distances between examples that are mixed. We propose RegMix, a data augmentation framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a validation set. Our experiments conducted both on synthetic and real datasets show that RegMix outperforms state-of-the-art data augmentation baselines applicable to regression.
Feature Learning in Infinite-Width Neural Networks
As its width tends to infinity, a deep neural network's behavior under gradient descent can become simplified and predictable (e.g. given by the Neural Tangent Kernel (NTK)), if it is parametrized appropriately (e.g. the NTK parametrization). However, we show that the standard and NTK parametrizations of a neural network do not admit infinite-width limits that can learn features, which is crucial for pretraining and transfer learning such as with BERT. We propose simple modifications to the standard parametrization to allow for feature learning in the limit. Using the *Tensor Programs* technique, we derive explicit formulas for such limits. On Word2Vec and few-shot learning on Omniglot via MAML, two canonical tasks that rely crucially on feature learning, we compute these limits exactly. We find that they outperform both NTK baselines and finite-width networks, with the latter approaching the infinite-width feature learning performance as width increases. More generally, we classify a natural space of neural network parametrizations that generalizes standard, NTK, and Mean Field parametrizations. We show 1) any parametrization in this space either admits feature learning or has an infinite-width training dynamics given by kernel gradient descent, but not both; 2) any such infinite-width limit can be computed using the Tensor Programs technique. Code for our experiments can be found at github.com/edwardjhu/TP4.
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
The weight matrix (WM) of a neural network (NN) is its program. The programs of many traditional NNs are learned through gradient descent in some error function, then remain fixed. The WM of a self-referential NN, however, can keep rapidly modifying all of itself during runtime. In principle, such NNs can meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the sense of recursive self-improvement. While NN architectures potentially capable of implementing such behaviour have been proposed since the '90s, there have been few if any practical studies. Here we revisit such NNs, building upon recent successes of fast weight programmers and closely related linear Transformers. We propose a scalable self-referential WM (SRWM) that learns to use outer products and the delta update rule to modify itself. We evaluate our SRWM in supervised few-shot learning and in multi-task reinforcement learning with procedurally generated game environments. Our experiments demonstrate both practical applicability and competitive performance of the proposed SRWM. Our code is public.
Scalable Neural Network Kernels
We introduce the concept of scalable neural network kernels (SNNKs), the replacements of regular feedforward layers (FFLs), capable of approximating the latter, but with favorable computational properties. SNNKs effectively disentangle the inputs from the parameters of the neural network in the FFL, only to connect them in the final computation via the dot-product kernel. They are also strictly more expressive, as allowing to model complicated relationships beyond the functions of the dot-products of parameter-input vectors. We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures, resulting in additional compression gains. In its extreme version, it leads to the fully bundled network whose optimal parameters can be expressed via explicit formulae for several loss functions (e.g. mean squared error), opening a possibility to bypass backpropagation. As a by-product of our analysis, we introduce the mechanism of the universal random features (or URFs), applied to instantiate several SNNK variants, and interesting on its own in the context of scalable kernel methods. We provide rigorous theoretical analysis of all these concepts as well as an extensive empirical evaluation, ranging from point-wise kernel estimation to Transformers' fine-tuning with novel adapter layers inspired by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.
ExcelFormer: Can a DNN be a Sure Bet for Tabular Prediction?
Data organized in tabular format is ubiquitous in real-world applications, and users often craft tables with biased feature definitions and flexibly set prediction targets of their interests. Thus, a rapid development of a robust, effective, dataset-versatile, user-friendly tabular prediction approach is highly desired. While Gradient Boosting Decision Trees (GBDTs) and existing deep neural networks (DNNs) have been extensively utilized by professional users, they present several challenges for casual users, particularly: (i) the dilemma of model selection due to their different dataset preferences, and (ii) the need for heavy hyperparameter searching, failing which their performances are deemed inadequate. In this paper, we delve into this question: Can we develop a deep learning model that serves as a "sure bet" solution for a wide range of tabular prediction tasks, while also being user-friendly for casual users? We delve into three key drawbacks of deep tabular models, encompassing: (P1) lack of rotational variance property, (P2) large data demand, and (P3) over-smooth solution. We propose ExcelFormer, addressing these challenges through a semi-permeable attention module that effectively constrains the influence of less informative features to break the DNNs' rotational invariance property (for P1), data augmentation approaches tailored for tabular data (for P2), and attentive feedforward network to boost the model fitting capability (for P3). These designs collectively make ExcelFormer a "sure bet" solution for diverse tabular datasets. Extensive and stratified experiments conducted on real-world datasets demonstrate that our model outperforms previous approaches across diverse tabular data prediction tasks, and this framework can be friendly to casual users, offering ease of use without the heavy hyperparameter tuning.
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
While it is widely known that neural networks are universal approximators of continuous functions, a less known and perhaps more powerful result is that a neural network with a single hidden layer can approximate accurately any nonlinear continuous operator. This universal approximation theorem is suggestive of the potential application of neural networks in learning nonlinear operators from data. However, the theorem guarantees only a small approximation error for a sufficient large network, and does not consider the important optimization and generalization errors. To realize this theorem in practice, we propose deep operator networks (DeepONets) to learn operators accurately and efficiently from a relatively small dataset. A DeepONet consists of two sub-networks, one for encoding the input function at a fixed number of sensors x_i, i=1,dots,m (branch net), and another for encoding the locations for the output functions (trunk net). We perform systematic simulations for identifying two types of operators, i.e., dynamic systems and partial differential equations, and demonstrate that DeepONet significantly reduces the generalization error compared to the fully-connected networks. We also derive theoretically the dependence of the approximation error in terms of the number of sensors (where the input function is defined) as well as the input function type, and we verify the theorem with computational results. More importantly, we observe high-order error convergence in our computational tests, namely polynomial rates (from half order to fourth order) and even exponential convergence with respect to the training dataset size.
SplineCam: Exact Visualization and Characterization of Deep Network Geometry and Decision Boundaries
Current Deep Network (DN) visualization and interpretability methods rely heavily on data space visualizations such as scoring which dimensions of the data are responsible for their associated prediction or generating new data features or samples that best match a given DN unit or representation. In this paper, we go one step further by developing the first provably exact method for computing the geometry of a DN's mapping - including its decision boundary - over a specified region of the data space. By leveraging the theory of Continuous Piece-Wise Linear (CPWL) spline DNs, SplineCam exactly computes a DNs geometry without resorting to approximations such as sampling or architecture simplification. SplineCam applies to any DN architecture based on CPWL nonlinearities, including (leaky-)ReLU, absolute value, maxout, and max-pooling and can also be applied to regression DNs such as implicit neural representations. Beyond decision boundary visualization and characterization, SplineCam enables one to compare architectures, measure generalizability and sample from the decision boundary on or off the manifold. Project Website: bit.ly/splinecam.
Relation Classification via Recurrent Neural Network
Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional pattern-based methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is the lack of capability to learn temporal features, especially long-distance dependency between nominal pairs. In this paper, we propose a simple framework based on recurrent neural networks (RNN) and compare it with CNN-based model. To show the limitation of popular used SemEval-2010 Task 8 dataset, we introduce another dataset refined from MIMLRE(Angeli et al., 2014). Experiments on two different datasets strongly indicates that the RNN-based model can deliver better performance on relation classification, and it is particularly capable of learning long-distance relation patterns. This makes it suitable for real-world applications where complicated expressions are often involved.
Differentiable Neural Input Search for Recommender Systems
Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value empirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to model's validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
We focus on solving the univariate times series point forecasting problem using deep learning. We propose a deep neural architecture based on backward and forward residual links and a very deep stack of fully-connected layers. The architecture has a number of desirable properties, being interpretable, applicable without modification to a wide array of target domains, and fast to train. We test the proposed architecture on several well-known datasets, including M3, M4 and TOURISM competition datasets containing time series from diverse domains. We demonstrate state-of-the-art performance for two configurations of N-BEATS for all the datasets, improving forecast accuracy by 11% over a statistical benchmark and by 3% over last year's winner of the M4 competition, a domain-adjusted hand-crafted hybrid between neural network and statistical time series models. The first configuration of our model does not employ any time-series-specific components and its performance on heterogeneous datasets strongly suggests that, contrarily to received wisdom, deep learning primitives such as residual blocks are by themselves sufficient to solve a wide range of forecasting problems. Finally, we demonstrate how the proposed architecture can be augmented to provide outputs that are interpretable without considerable loss in accuracy.
