new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

AlgBench: To What Extent Do Large Reasoning Models Understand Algorithms?

Reasoning ability has become a central focus in the advancement of Large Reasoning Models (LRMs). Although notable progress has been achieved on several reasoning benchmarks such as MATH500 and LiveCodeBench, existing benchmarks for algorithmic reasoning remain limited, failing to answer a critical question: Do LRMs truly master algorithmic reasoning? To answer this question, we propose AlgBench, an expert-curated benchmark that evaluates LRMs under an algorithm-centric paradigm. AlgBench consists of over 3,000 original problems spanning 27 algorithms, constructed by ACM algorithmic experts and organized under a comprehensive taxonomy, including Euclidean-structured, non-Euclidean-structured, non-optimized, local-optimized, global-optimized, and heuristic-optimized categories. Empirical evaluations on leading LRMs (e.g., Gemini-3-Pro, DeepSeek-v3.2-Speciale and GPT-o3) reveal substantial performance heterogeneity: while models perform well on non-optimized tasks (up to 92%), accuracy drops sharply to around 49% on globally optimized algorithms such as dynamic programming. Further analysis uncovers strategic over-shifts, wherein models prematurely abandon correct algorithmic designs due to necessary low-entropy tokens. These findings expose fundamental limitations of problem-centric reinforcement learning and highlight the necessity of an algorithm-centric training paradigm for robust algorithmic reasoning.

  • 8 authors
·
Jan 8

Linearized Optimal Transport for Analysis of High-Dimensional Point-Cloud and Single-Cell Data

Single-cell technologies generate high-dimensional point clouds of cells, enabling detailed characterization of complex patient states and treatment responses. Yet each patient is represented by an irregular point cloud rather than a simple vector, making it difficult to directly quantify and compare biological differences between individuals. Nonlinear methods such as kernels and neural networks achieve predictive accuracy but act as black boxes, offering little biological interpretability. To address these limitations, we adapt the Linear Optimal Transport (LOT) framework to this setting, embedding irregular point clouds into a fixed-dimensional Euclidean space while preserving distributional structure. This embedding provides a principled linear representation that preserves optimal transport geometry while enabling downstream analysis. It also forms a registration between any two patients, enabling direct comparison of their cellular distributions. Within this space, LOT enables: (i) accurate and interpretable classification of COVID-19 patient states, where classifier weights map back to specific markers and spatial regions driving predictions; and (ii) synthetic data generation for patient-derived organoids, exploiting the linearity of the LOT embedding. LOT barycenters yield averaged cellular profiles representing combined conditions or samples, supporting drug interaction testing. Together, these results establish LOT as a unified framework that bridges predictive performance, interpretability, and generative modeling. By transforming heterogeneous point clouds into structured embeddings directly traceable to the original data, LOT opens new opportunities for understanding immune variation and treatment effects in high-dimensional biological systems.

  • 5 authors
·
Oct 24, 2025

CAT: Curvature-Adaptive Transformers for Geometry-Aware Learning

Transformers achieve strong performance across diverse domains but implicitly assume Euclidean geometry in their attention mechanisms, limiting their effectiveness on data with non-Euclidean structure. While recent extensions to hyperbolic and spherical spaces show promise for hierarchical and cyclical patterns, respectively, they require committing to a single geometry a priori, reducing flexibility when data exhibits mixed geometric properties. We introduce the Curvature-Adaptive Transformer (CAT), a novel architecture that dynamically learns per-token routing across three geometric attention branches through a lightweight, differentiable gating mechanism. Unlike fixed-geometry approaches, CAT enables adaptive geometric specialization, routing tokens to the appropriate curvature based on their local relational structure. The routing network provides interpretable curvature preferences while each branch employs geometry-specific operations optimized for its respective manifold. On knowledge graph completion benchmarks (FB15k-237, WN18RR), CAT achieves approximately 10% improvements in MRR and Hits@10 over fixed-geometry baselines with minimal overhead (5% parameter increase, comparable inference time). These results demonstrate that learned geometric adaptation outperforms any single fixed geometry for complex relational reasoning, establishing CAT as a scalable and interpretable foundation for mixture-of-geometry architectures across language, vision, and multimodal domains.

  • 3 authors
·
Oct 1, 2025

Hyperbolic Large Language Models

Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.

  • 5 authors
·
Sep 6, 2025

Neuro-Symbolic Activation Discovery: Transferring Mathematical Structures from Physics to Ecology for Parameter-Efficient Neural Networks

Modern neural networks rely on generic activation functions (ReLU, GELU, SiLU) that ignore the mathematical structure inherent in scientific data. We propose Neuro-Symbolic Activation Discovery, a framework that uses Genetic Programming to extract interpretable mathematical formulas from data and inject them as custom activation functions. Our key contribution is the discovery of a Geometric Transfer phenomenon: activation functions learned from particle physics data successfully generalize to ecological classification, outperforming standard activations (ReLU, GELU, SiLU) in both accuracy and parameter efficiency. On the Forest Cover dataset, our Hybrid Transfer model achieves 82.4% accuracy with only 5,825 parameters, compared to 83.4% accuracy requiring 31,801 parameters for a conventional heavy network -- a 5.5x parameter reduction with only 1% accuracy loss. We introduce a Parameter Efficiency Score (E_{param} = AUC / log_{10}(Params)) and demonstrate that lightweight hybrid architectures consistently achieve 18-21% higher efficiency than over-parameterized baselines. Crucially, we establish boundary conditions: while Physics to Ecology transfer succeeds (both involve continuous Euclidean measurements), Physics to Text transfer fails (discrete word frequencies require different mathematical structures). Our work opens pathways toward domain-specific activation libraries for efficient scientific machine learning.

  • 1 authors
·
Jan 9

Convolutional Neural Networks on non-uniform geometrical signals using Euclidean spectral transformation

Convolutional Neural Networks (CNN) have been successful in processing data signals that are uniformly sampled in the spatial domain (e.g., images). However, most data signals do not natively exist on a grid, and in the process of being sampled onto a uniform physical grid suffer significant aliasing error and information loss. Moreover, signals can exist in different topological structures as, for example, points, lines, surfaces and volumes. It has been challenging to analyze signals with mixed topologies (for example, point cloud with surface mesh). To this end, we develop mathematical formulations for Non-Uniform Fourier Transforms (NUFT) to directly, and optimally, sample nonuniform data signals of different topologies defined on a simplex mesh into the spectral domain with no spatial sampling error. The spectral transform is performed in the Euclidean space, which removes the translation ambiguity from works on the graph spectrum. Our representation has four distinct advantages: (1) the process causes no spatial sampling error during the initial sampling, (2) the generality of this approach provides a unified framework for using CNNs to analyze signals of mixed topologies, (3) it allows us to leverage state-of-the-art backbone CNN architectures for effective learning without having to design a particular architecture for a particular data structure in an ad-hoc fashion, and (4) the representation allows weighted meshes where each element has a different weight (i.e., texture) indicating local properties. We achieve results on par with the state-of-the-art for the 3D shape retrieval task, and a new state-of-the-art for the point cloud to surface reconstruction task.

  • 5 authors
·
Jan 7, 2019

Interpretable graph-based models on multimodal biomedical data integration: A technical review and benchmarking

Integrating heterogeneous biomedical data including imaging, omics, and clinical records supports accurate diagnosis and personalised care. Graph-based models fuse such non-Euclidean data by capturing spatial and relational structure, yet clinical uptake requires regulator-ready interpretability. We present the first technical survey of interpretable graph based models for multimodal biomedical data, covering 26 studies published between Jan 2019 and Sep 2024. Most target disease classification, notably cancer and rely on static graphs from simple similarity measures, while graph-native explainers are rare; post-hoc methods adapted from non-graph domains such as gradient saliency, and SHAP predominate. We group existing approaches into four interpretability families, outline trends such as graph-in-graph hierarchies, knowledge-graph edges, and dynamic topology learning, and perform a practical benchmark. Using an Alzheimer disease cohort, we compare Sensitivity Analysis, Gradient Saliency, SHAP and Graph Masking. SHAP and Sensitivity Analysis recover the broadest set of known AD pathways and Gene-Ontology terms, whereas Gradient Saliency and Graph Masking surface complementary metabolic and transport signatures. Permutation tests show all four beat random gene sets, but with distinct trade-offs: SHAP and Graph Masking offer deeper biology at higher compute cost, while Gradient Saliency and Sensitivity Analysis are quicker though coarser. We also provide a step-by-step flowchart covering graph construction, explainer choice and resource budgeting to help researchers balance transparency and performance. This review synthesises the state of interpretable graph learning for multimodal medicine, benchmarks leading techniques, and charts future directions, from advanced XAI tools to under-studied diseases, serving as a concise reference for method developers and translational scientists.

  • 6 authors
·
May 3, 2025

GraphShaper: Geometry-aware Alignment for Improving Transfer Learning in Text-Attributed Graphs

Graph foundation models represent a transformative paradigm for learning transferable representations across diverse graph domains. Recent methods leverage large language models to unify graph and text modalities into a shared representation space using contrastive learning. However, systematic evaluations reveal significant performance degradation at structural boundaries where distinct topological patterns converge, with accuracy losses exceeding 20 percentage points. This issue arises from a key limitation: current methods assume all graph structures can be encoded within a single Euclidean space. In reality, tree structures require hyperbolic geometry to preserve hierarchical branching, while cyclic patterns depend on spherical geometry for closure properties. At structural boundaries, nodes experience conflicting geometric constraints that uniform encoding spaces cannot resolve. This raises a crucial challenge: Can alignment frameworks be designed to respect the intrinsic geometric diversity of graph structures? We introduce GraphShaper, a geometry-aware framework that enhances graph encoding through multi-geometric specialization. Our approach employs expert networks tailored to different geometric spaces, dynamically computing fusion weights to adaptively integrate geometric properties based on local structural characteristics. This adaptive fusion preserves structural integrity before alignment with text embeddings. Extensive experiments demonstrate that GraphShaper achieves 9.47\% accuracy improvements on citation networks and 7.63\% on social networks in zero-shot settings.

  • 9 authors
·
Oct 13, 2025

HMamba: Hyperbolic Mamba for Sequential Recommendation

Sequential recommendation systems have become a cornerstone of personalized services, adept at modeling the temporal evolution of user preferences by capturing dynamic interaction sequences. Existing approaches predominantly rely on traditional models, including RNNs and Transformers. Despite their success in local pattern recognition, Transformer-based methods suffer from quadratic computational complexity and a tendency toward superficial attention patterns, limiting their ability to infer enduring preference hierarchies in sequential recommendation data. Recent advances in Mamba-based sequential models introduce linear-time efficiency but remain constrained by Euclidean geometry, failing to leverage the intrinsic hyperbolic structure of recommendation data. To bridge this gap, we propose Hyperbolic Mamba, a novel architecture that unifies the efficiency of Mamba's selective state space mechanism with hyperbolic geometry's hierarchical representational power. Our framework introduces (1) a hyperbolic selective state space that maintains curvature-aware sequence modeling and (2) stabilized Riemannian operations to enable scalable training. Experiments across four benchmarks demonstrate that Hyperbolic Mamba achieves 3-11% improvement while retaining Mamba's linear-time efficiency, enabling real-world deployment. This work establishes a new paradigm for efficient, hierarchy-aware sequential modeling.

  • 7 authors
·
May 14, 2025

HyperTopo-Adapters: Geometry- and Topology-Aware Segmentation of Leaf Lesions on Frozen Encoders

Leaf-lesion segmentation is topology-sensitive: small merges, splits, or false holes can be biologically meaningful descriptors of biochemical pathways, yet they are weakly penalized by standard pixel-wise losses in Euclidean latents. I explore HyperTopo-Adapters, a lightweight, parameter-efficient head trained on top of a frozen vision encoder, which embeds features on a product manifold -- hyperbolic + Euclidean + spherical (H + E + S) -- to encourage hierarchical separation (H), local linear detail (E), and global closure (S). A topology prior complements Dice/BCE in two forms: (i) persistent-homology (PH) distance for evaluation and selection, and (ii) a differentiable surrogate that combines a soft Euler-characteristic match with total variation regularization for stable training. I introduce warm-ups for both the hyperbolic contrastive term and the topology prior, per-sample evaluation of structure-aware metrics (Boundary-F1, Betti errors, PD distance), and a min-PD within top-K Dice rule for checkpoint selection. On a Kaggle leaf-lesion dataset (N=2,940), early results show consistent gains in boundary and topology metrics (reducing Delta beta_1 hole error by 9%) while Dice/IoU remain competitive. The study is diagnostic by design: I report controlled ablations (curvature learning, latent dimensions, contrastive temperature, surrogate settings), and ongoing tests varying encoder strength (ResNet-50, DeepLabV3, DINOv2/v3), input resolution, PH weight, and partial unfreezing of late blocks. The contribution is an open, reproducible train/eval suite (available at https://github.com/ChimdiWalter/HyperTopo-Adapters) that isolates geometric/topological priors and surfaces failure modes to guide stronger, topology-preserving architectures.

  • 2 authors
·
Dec 28, 2025

Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry

Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method.

  • 5 authors
·
Apr 1, 2025

Extending Bootstrap AMG for Clustering of Attributed Graphs

In this paper we propose a new approach to detect clusters in undirected graphs with attributed vertices. We incorporate structural and attribute similarities between the vertices in an augmented graph by creating additional vertices and edges as proposed in [1, 2]. The augmented graph is then embedded in a Euclidean space associated to its Laplacian and we cluster vertices via a modified K-means algorithm, using a new vector-valued distance in the embedding space. Main novelty of our method, which can be classified as an early fusion method, i.e., a method in which additional information on vertices are fused to the structure information before applying clustering, is the interpretation of attributes as new realizations of graph vertices, which can be dealt with as coordinate vectors in a related Euclidean space. This allows us to extend a scalable generalized spectral clustering procedure which substitutes graph Laplacian eigenvectors with some vectors, named algebraically smooth vectors, obtained by a linear-time complexity Algebraic MultiGrid (AMG) method. We discuss the performance of our proposed clustering method by comparison with recent literature approaches and public available results. Extensive experiments on different types of synthetic datasets and real-world attributed graphs show that our new algorithm, embedding attributes information in the clustering, outperforms structure-only-based methods, when the attributed network has an ambiguous structure. Furthermore, our new method largely outperforms the method which originally proposed the graph augmentation, showing that our embedding strategy and vector-valued distance are very effective in taking advantages from the augmented-graph representation.

  • 3 authors
·
Sep 20, 2021

SECodec: Structural Entropy-based Compressive Speech Representation Codec for Speech Language Models

With the rapid advancement of large language models (LLMs), discrete speech representations have become crucial for integrating speech into LLMs. Existing methods for speech representation discretization rely on a predefined codebook size and Euclidean distance-based quantization. However, 1) the size of codebook is a critical parameter that affects both codec performance and downstream task training efficiency. 2) The Euclidean distance-based quantization may lead to audio distortion when the size of the codebook is controlled within a reasonable range. In fact, in the field of information compression, structural information and entropy guidance are crucial, but previous methods have largely overlooked these factors. Therefore, we address the above issues from an information-theoretic perspective, we present SECodec, a novel speech representation codec based on structural entropy (SE) for building speech language models. Specifically, we first model speech as a graph, clustering the speech features nodes within the graph and extracting the corresponding codebook by hierarchically and disentangledly minimizing 2D SE. Then, to address the issue of audio distortion, we propose a new quantization method. This method still adheres to the 2D SE minimization principle, adaptively selecting the most suitable token corresponding to the cluster for each incoming original speech node. Furthermore, we develop a Structural Entropy-based Speech Language Model (SESLM) that leverages SECodec. Experimental results demonstrate that SECodec performs comparably to EnCodec in speech reconstruction, and SESLM surpasses VALL-E in zero-shot text-to-speech tasks. Code, demo speeches, speech feature graph, SE codebook, and models are available at https://github.com/wlq2019/SECodec.

  • 8 authors
·
Dec 15, 2024

A Periodic Bayesian Flow for Material Generation

Generative modeling of crystal data distribution is an important yet challenging task due to the unique periodic physical symmetry of crystals. Diffusion-based methods have shown early promise in modeling crystal distribution. More recently, Bayesian Flow Networks were introduced to aggregate noisy latent variables, resulting in a variance-reduced parameter space that has been shown to be advantageous for modeling Euclidean data distributions with structural constraints (Song et al., 2023). Inspired by this, we seek to unlock its potential for modeling variables located in non-Euclidean manifolds e.g. those within crystal structures, by overcoming challenging theoretical issues. We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow, which essentially differs from the original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism and empirically demonstrates its significance compared to time-conditioning. Extensive experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN, which consistently achieves new state-of-the-art on all benchmarks. Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling efficiency, e.g., ~100x speedup 10 v.s. 2000 steps network forwards) compared with previous diffusion-based methods on MP-20 dataset. Code is available at https://github.com/wu-han-lin/CrysBFN.

  • 9 authors
·
Feb 4, 2025