1 Towards Optimal and Efficient Best Arm Identification in Linear Bandits We give a new algorithm for best arm identification in linearly parameterised bandits in the fixed confidence setting. The algorithm generalises the well-known LUCB algorithm of Kalyanakrishnan et al. (2012) by playing an arm which minimises a suitable notion of geometric overlap of the statistical confidence set for the unknown parameter, and is fully adaptive and computationally efficient as compared to several state-of-the methods. We theoretically analyse the sample complexity of the algorithm for problems with two and three arms, showing optimality in many cases. Numerical results indicate favourable performance over other algorithms with which we compare. 3 authors · Nov 5, 2019
- Fixed-Budget Differentially Private Best Arm Identification We study best arm identification (BAI) in linear bandits in the fixed-budget regime under differential privacy constraints, when the arm rewards are supported on the unit interval. Given a finite budget T and a privacy parameter varepsilon>0, the goal is to minimise the error probability in finding the arm with the largest mean after T sampling rounds, subject to the constraint that the policy of the decision maker satisfies a certain {\em varepsilon-differential privacy} (varepsilon-DP) constraint. We construct a policy satisfying the varepsilon-DP constraint (called {\sc DP-BAI}) by proposing the principle of {\em maximum absolute determinants}, and derive an upper bound on its error probability. Furthermore, we derive a minimax lower bound on the error probability, and demonstrate that the lower and the upper bounds decay exponentially in T, with exponents in the two bounds matching order-wise in (a) the sub-optimality gaps of the arms, (b) varepsilon, and (c) the problem complexity that is expressible as the sum of two terms, one characterising the complexity of standard fixed-budget BAI (without privacy constraints), and the other accounting for the varepsilon-DP constraint. Additionally, we present some auxiliary results that contribute to the derivation of the lower bound on the error probability. These results, we posit, may be of independent interest and could prove instrumental in proving lower bounds on error probabilities in several other bandit problems. Whereas prior works provide results for BAI in the fixed-budget regime without privacy constraints or in the fixed-confidence regime with privacy constraints, our work fills the gap in the literature by providing the results for BAI in the fixed-budget regime under the varepsilon-DP constraint. 4 authors · Jan 17, 2024
- Fixed-Confidence Guarantees for Bayesian Best-Arm Identification We investigate and provide new insights on the sampling rule called Top-Two Thompson Sampling (TTTS). In particular, we justify its use for fixed-confidence best-arm identification. We further propose a variant of TTTS called Top-Two Transportation Cost (T3C), which disposes of the computational burden of TTTS. As our main contribution, we provide the first sample complexity analysis of TTTS and T3C when coupled with a very natural Bayesian stopping rule, for bandits with Gaussian rewards, solving one of the open questions raised by Russo (2016). We also provide new posterior convergence results for TTTS under two models that are commonly used in practice: bandits with Gaussian and Bernoulli rewards and conjugate priors. 5 authors · Oct 24, 2019
- Gamification of Pure Exploration for Linear Bandits We investigate an active pure-exploration setting, that includes best-arm identification, in the context of linear stochastic bandits. While asymptotically optimal algorithms exist for standard multi-arm bandits, the existence of such algorithms for the best-arm identification in linear bandits has been elusive despite several attempts to address it. First, we provide a thorough comparison and new insight over different notions of optimality in the linear case, including G-optimality, transductive optimality from optimal experimental design and asymptotic optimality. Second, we design the first asymptotically optimal algorithm for fixed-confidence pure exploration in linear bandits. As a consequence, our algorithm naturally bypasses the pitfall caused by a simple but difficult instance, that most prior algorithms had to be engineered to deal with explicitly. Finally, we avoid the need to fully solve an optimal design problem by providing an approach that entails an efficient implementation. 4 authors · Jul 2, 2020
- Optimal Design for Reward Modeling in RLHF Reinforcement Learning from Human Feedback (RLHF) has become a popular approach to align language models (LMs) with human preferences. This method involves collecting a large dataset of human pairwise preferences across various text generations and using it to infer (implicitly or explicitly) a reward model. Numerous methods have been proposed to learn the reward model and align a LM with it. However, the costly process of collecting human preferences has received little attention and could benefit from theoretical insights. This paper addresses this issue and aims to formalize the reward training model in RLHF. We frame the selection of an effective dataset as a simple regret minimization task, using a linear contextual dueling bandit method. Given the potentially large number of arms, this approach is more coherent than the best-arm identification setting. We then propose an offline framework for solving this problem. Under appropriate assumptions - linearity of the reward model in the embedding space, and boundedness of the reward parameter - we derive bounds on the simple regret. Finally, we provide a lower bound that matches our upper bound up to constant and logarithmic terms. To our knowledge, this is the first theoretical contribution in this area to provide an offline approach as well as worst-case guarantees. 7 authors · Oct 22, 2024
- Multi-task Representation Learning for Pure Exploration in Linear Bandits Despite the recent success of representation learning in sequential decision making, the study of the pure exploration scenario (i.e., identify the best option and minimize the sample complexity) is still limited. In this paper, we study multi-task representation learning for best arm identification in linear bandits (RepBAI-LB) and best policy identification in contextual linear bandits (RepBPI-CLB), two popular pure exploration settings with wide applications, e.g., clinical trials and web content optimization. In these two problems, all tasks share a common low-dimensional linear representation, and our goal is to leverage this feature to accelerate the best arm (policy) identification process for all tasks. For these problems, we design computationally and sample efficient algorithms DouExpDes and C-DouExpDes, which perform double experimental designs to plan optimal sample allocations for learning the global representation. We show that by learning the common representation among tasks, our sample complexity is significantly better than that of the native approach which solves tasks independently. To the best of our knowledge, this is the first work to demonstrate the benefits of representation learning for multi-task pure exploration. 3 authors · Feb 9, 2023