new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 28

PAACE: A Plan-Aware Automated Agent Context Engineering Framework

Large Language Model (LLM) agents are increasingly deployed in complex, multi-step workflows involving planning, tool use, reflection, and interaction with external knowledge systems. These workflows generate rapidly expanding contexts that must be curated, transformed, and compressed to maintain fidelity, avoid attention dilution, and reduce inference cost. Prior work on summarization and query-aware compression largely ignores the multi-step, plan-aware nature of agentic reasoning. In this work, we introduce PAACE (Plan-Aware Automated Context Engineering), a unified framework for optimizing the evolving state of LLM agents through next-k-task relevance modeling, plan-structure analysis, instruction co-refinement, and function-preserving compression. PAACE comprises (1) PAACE-Syn, a large-scale generator of synthetic agent workflows annotated with stepwise compression supervision, and (2) PAACE-FT, a family of distilled, plan-aware compressors trained from successful teacher demonstrations. Experiments on long-horizon benchmarks (AppWorld, OfficeBench, and 8-Objective QA) demonstrate that PAACE consistently improves agent correctness while substantially reducing context load. On AppWorld, PAACE achieves higher accuracy than all baselines while lowering peak context and cumulative dependency. On OfficeBench and multi-hop QA, PAACE improves both accuracy and F1, achieving fewer steps, lower peak tokens, and reduced attention dependency. Distilled PAACE-FT retains 97 percent of the teacher's performance while reducing inference cost by over an order of magnitude, enabling practical deployment of plan-aware compression with compact models.

  • 1 authors
·
Dec 18, 2025

Fréchet Cumulative Covariance Net for Deep Nonlinear Sufficient Dimension Reduction with Random Objects

Nonlinear sufficient dimension reductionlibing_generalSDR, which constructs nonlinear low-dimensional representations to summarize essential features of high-dimensional data, is an important branch of representation learning. However, most existing methods are not applicable when the response variables are complex non-Euclidean random objects, which are frequently encountered in many recent statistical applications. In this paper, we introduce a new statistical dependence measure termed Fr\'echet Cumulative Covariance (FCCov) and develop a novel nonlinear SDR framework based on FCCov. Our approach is not only applicable to complex non-Euclidean data, but also exhibits robustness against outliers. We further incorporate Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) to estimate nonlinear sufficient directions in the sample level. Theoretically, we prove that our method with squared Frobenius norm regularization achieves unbiasedness at the sigma-field level. Furthermore, we establish non-asymptotic convergence rates for our estimators based on FNNs and ResNet-type CNNs, which match the minimax rate of nonparametric regression up to logarithmic factors. Intensive simulation studies verify the performance of our methods in both Euclidean and non-Euclidean settings. We apply our method to facial expression recognition datasets and the results underscore more realistic and broader applicability of our proposal.

  • 3 authors
·
Feb 21, 2025

Computational Foundations for Strategic Coopetition: Formalizing Interdependence and Complementarity

Coopetition refers to simultaneous cooperation and competition among actors wherein actors 'cooperate to grow the pie and compete to split it up.' Modern socio-technical systems are characterized by strategic coopetition wherein actors concomitantly cooperate to create value and compete to capture it. While conceptual modeling languages such as i* provide rich qualitative representations of strategic dependencies, they lack mechanisms for quantitative analysis of dynamic trade-offs. Conversely, classical game theory offers mathematical rigor but strips away contextual richness. This report bridges this gap by developing computational foundations that formalize two critical dimensions of coopetition: interdependence and complementarity. We ground interdependence in i* structural dependency analysis, translating depender-dependee-dependum relationships into quantitative interdependence coefficients via a structured translation framework. We formalize complementarity following Brandenburger and Nalebuff's Added Value concept, modeling synergistic value creation with validated parameterization. We integrate structural dependencies with bargaining power in value appropriation and introduce a game-theoretic formulation where Nash Equilibrium incorporates structural interdependence. Validation combines over 22,000 experimental trials across power and logarithmic specifications with the Samsung-Sony S-LCD joint venture (2004-2011). Under strict historical alignment scoring, logarithmic specifications achieve 58/60 compared to power functions (46/60), producing realistic 41% cooperation increases aligning with documented S-LCD patterns while power functions produce 166% increases exceeding realistic bounds. Statistical significance confirmed at p < 0.001, Cohen's d > 9.

  • 2 authors
·
Oct 21, 2025

On Relation-Specific Neurons in Large Language Models

In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the Llama-2 family on a chosen set of relations with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation r on the LLM's ability to handle (1) facts whose relation is r and (2) facts whose relation is a different relation r' neq r. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. (i) Neuron cumulativity. The neurons for r present a cumulative effect so that deactivating a larger portion of them results in the degradation of more facts in r. (ii) Neuron versatility. Neurons can be shared across multiple closely related as well as less related relations. Some relation neurons transfer across languages. (iii) Neuron interference. Deactivating neurons specific to one relation can improve LLM generation performance for facts of other relations. We will make our code publicly available at https://github.com/cisnlp/relation-specific-neurons.

  • 9 authors
·
Feb 24, 2025 2

The Universality Lens: Why Even Highly Over-Parametrized Models Learn Well

A fundamental question in modern machine learning is why large, over-parameterized models, such as deep neural networks and transformers, tend to generalize well, even when their number of parameters far exceeds the number of training samples. We investigate this phenomenon through the lens of information theory, grounded in universal learning theory. Specifically, we study a Bayesian mixture learner with log-loss and (almost) uniform prior over an expansive hypothesis class. Our key result shows that the learner's regret is not determined by the overall size of the hypothesis class, but rather by the cumulative probability of all models that are close, in Kullback-Leibler divergence distance, to the true data-generating process. We refer to this cumulative probability as the weight of the hypothesis. This leads to a natural notion of model simplicity: simple models are those with large weight and thus require fewer samples to generalize, while complex models have small weight and need more data. This perspective provides a rigorous and intuitive explanation for why over-parameterized models often avoid overfitting: the presence of simple hypotheses allows the posterior to concentrate on them when supported by the data. We further bridge theory and practice by recalling that stochastic gradient descent with Langevin dynamics samples from the correct posterior distribution, enabling our theoretical learner to be approximated using standard machine learning methods combined with ensemble learning. Our analysis yields non-uniform regret bounds and aligns with key practical concepts such as flat minima and model distillation. The results apply broadly across online, batch, and supervised learning settings, offering a unified and principled understanding of the generalization behavior of modern AI systems.

  • 3 authors
·
Jun 9, 2025

A Flexible Parametric Modelling Framework for Survival Analysis

We introduce a general, flexible, parametric survival modelling framework which encompasses key shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), various common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes defective distributions (i.e., cure models). This generality is achieved using four basic distributional parameters: two scale-type parameters and two shape parameters. Generalising to covariate dependence, the scale-type regression components correspond to accelerated failure time (AFT) and proportional hazards (PH) models. Therefore, this general formulation unifies the most popular survival models which allows us to consider the practical value of possible modelling choices for survival data. Furthermore, in line with our proposed flexible baseline distribution, we advocate the use of multi-parameter regression in which more than one distributional parameter depends on covariates - rather than the usual convention of having a single covariate-dependent (scale) parameter. While many choices are available, we suggest introducing covariates through just one or other of the two scale parameters, which covers AFT and PH models, in combination with a `power' shape parameter, which allows for more complex non-AFT/non-PH effects, while the other shape parameter remains covariate-independent, and handles automatic selection of the baseline distribution. We explore inferential issues in simulations, both with and without a covariate, with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH parameters. We illustrate the efficacy of our modelling framework by investigating differences between treatment groups using data from a lung cancer study and a melanoma study. Censoring is accommodated throughout.

  • 3 authors
·
Jan 10, 2019