new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 29

Probabilistic Programming with Programmable Variational Inference

Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.

  • 7 authors
·
Jun 22, 2024 1

Ax-Prover: A Deep Reasoning Agentic Framework for Theorem Proving in Mathematics and Quantum Physics

We present Ax-Prover, a multi-agent system for automated theorem proving in Lean that can solve problems across diverse scientific domains and operate either autonomously or collaboratively with human experts. To achieve this, Ax-Prover approaches scientific problem solving through formal proof generation, a process that demands both creative reasoning and strict syntactic rigor. Ax-Prover meets this challenge by equipping Large Language Models (LLMs), which provide knowledge and reasoning, with Lean tools via the Model Context Protocol (MCP), which ensure formal correctness. To evaluate its performance as an autonomous prover, we benchmark our approach against frontier LLMs and specialized prover models on two public math benchmarks and on two Lean benchmarks we introduce in the fields of abstract algebra and quantum theory. On public datasets, Ax-Prover is competitive with state-of-the-art provers, while it largely outperforms them on the new benchmarks. This shows that, unlike specialized systems that struggle to generalize, our tool-based agentic theorem prover approach offers a generalizable methodology for formal verification across diverse scientific domains. Furthermore, we demonstrate Ax-Prover's assistant capabilities in a practical use case, showing how it enabled an expert mathematician to formalize the proof of a complex cryptography theorem.

  • 9 authors
·
Oct 14, 2025

Constrained Decoding of Diffusion LLMs with Context-Free Grammars

Large language models (LLMs) have shown promising performance across diverse domains. Many practical applications of LLMs, such as code completion and structured data extraction, require adherence to syntactic constraints specified by a formal language. Yet, due to their probabilistic nature, LLM output is not guaranteed to adhere to such formal languages. Prior work has proposed constrained decoding as a means to restrict LLM generation to particular formal languages. However, existing works are not applicable to the emerging paradigm of diffusion LLMs, when used in practical scenarios such as the generation of formally correct C++ or JSON output. In this paper we address this challenge and present the first constrained decoding method for diffusion models, one that can handle formal languages captured by context-free grammars. We begin by reducing constrained decoding to the more general additive infilling problem, which asks whether a partial output can be completed to a valid word in the target language. This problem also naturally subsumes the previously unaddressed multi-region infilling constrained decoding. We then reduce this problem to the task of deciding whether the intersection of the target language and a regular language is empty and present an efficient algorithm to solve it for context-free languages. Empirical results on various applications, such as C++ code infilling and structured data extraction in JSON, demonstrate that our method achieves near-perfect syntactic correctness while consistently preserving or improving functional correctness. Importantly, our efficiency optimizations ensure that the computational overhead remains practical.

  • 3 authors
·
Aug 13, 2025

Lean Copilot: Large Language Models as Copilots for Theorem Proving in Lean

Neural theorem proving combines large language models (LLMs) with proof assistants such as Lean, where the correctness of formal proofs can be rigorously verified, leaving no room for hallucination. With existing neural theorem provers pretrained on a fixed collection of data and offering valuable suggestions at times, it is challenging for them to continually prove novel theorems in a fully autonomous mode, where human insights may be critical. In this paper, we explore LLMs as copilots that assist humans in proving theorems. We introduce Lean Copilot, a general framework for running LLM inference natively in Lean. It enables programmers to build various LLM-based proof automation tools that integrate seamlessly into the workflow of Lean users. Lean users can use our pretrained models or bring their own ones that run either locally (with or without GPUs) or on the cloud. Using Lean Copilot, we build LLM-based tools that suggest proof steps, complete proof goals, and select relevant premises. Experimental results on the Mathematics in Lean textbook demonstrate the effectiveness of our method compared to existing rule-based proof automation in Lean (aesop). When assisting humans, Lean Copilot requires only 2.08 manually-entered proof steps on average (3.86 required by aesop); when automating the theorem proving process, Lean Copilot automates 74.2% proof steps on average, 85% better than aesop (40.1%). We open source all code and artifacts under a permissive MIT license to facilitate further research.

  • 3 authors
·
Apr 18, 2024

Formal that "Floats" High: Formal Verification of Floating Point Arithmetic

Formal verification of floating-point arithmetic remains challenging due to non-linear arithmetic behavior and the tight coupling between control and datapath logic. Existing approaches often rely on high-level C models for equivalence checking against Register Transfer Level (RTL) designs, but this introduces abstraction gaps, translation overhead, and limits scalability at the RTL level. To address these challenges, this paper presents a scalable methodology for verifying floating-point arithmetic using direct RTL-to-RTL model checking against a golden reference model. The approach adopts a divide-and conquer strategy that decomposes verification into modular stages, each captured by helper assertions and lemmas that collectively prove a main correctness theorem. Counterexample (CEX)-guided refinement is used to iteratively localize and resolve implementation defects, while targeted fault injection validates the robustness of the verification process against precision-critical datapath errors. To assess scalability and practicality, the methodology is extended with agentic AI-based formal property generation, integrating large language model (LLM)-driven automation with Human-in-the-Loop (HITL) refinement. Coverage analysis evaluates the effectiveness of the approach by comparing handwritten and AI-generated properties in both RTL-to-RTL model checking and standalone RTL verification settings. Results show that direct RTL-to-RTL model checking achieves higher coverage efficiency and requires fewer assertions than standalone verification, especially when combined with AI-generated properties refined through HITL guidance.

  • 3 authors
·
Dec 7, 2025

Enhancing Formal Theorem Proving: A Comprehensive Dataset for Training AI Models on Coq Code

In the realm of formal theorem proving, the Coq proof assistant stands out for its rigorous approach to verifying mathematical assertions and software correctness. Despite the advances in artificial intelligence and machine learning, the specialized nature of Coq syntax and semantics poses unique challenges for Large Language Models (LLMs). Addressing this gap, we present a comprehensive dataset specifically designed to enhance LLMs' proficiency in interpreting and generating Coq code. This dataset, derived from a collection of over 10,000 Coq source files, encompasses a wide array of propositions, proofs, and definitions, enriched with metadata including source references and licensing information. Our primary aim is to facilitate the development of LLMs capable of generating syntactically correct and semantically meaningful Coq constructs, thereby advancing the frontier of automated theorem proving. Initial experiments with this dataset have showcased its significant potential; models trained on this data exhibited enhanced accuracy in Coq code generation. Notably, a particular experiment revealed that a fine-tuned LLM was capable of generating 141 valid proofs for a basic lemma, highlighting the dataset's utility in facilitating the discovery of diverse and valid proof strategies. This paper discusses the dataset's composition, the methodology behind its creation, and the implications of our findings for the future of machine learning in formal verification. The dataset is accessible for further research and exploration: https://huggingface.co/datasets/florath/coq-facts-props-proofs-gen0-v1

  • 1 authors
·
Mar 19, 2024

Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification

Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.

  • 10 authors
·
Jun 4, 2025

Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification

Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textnormal{ER} dataset for future training tasks.

  • 3 authors
·
Apr 23, 2025

APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning

Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with large language models (LLMs) remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair via LLM and Lean cOllaboration), a modular, model-agnostic pipeline that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proof-generation results at a low sampling budget. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sub-lemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low top-K budget. The repaired sub-proofs are recombined and reverified, iterating up to a user-controlled maximum number of attempts. On the miniF2F benchmark, we establish a new state-of-the-art accuracy of 75.0% among 7B-parameter models while keeping the sampling budget below one thousand. Moreover, Apollo raises the state-of-the-art accuracy for Goedel-Prover-SFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. General-purpose models (o3-mini, o4-mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compiler-guided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving.

  • 3 authors
·
May 8, 2025

Beyond Theorem Proving: Formulation, Framework and Benchmark for Formal Problem-Solving

As a seemingly self-explanatory task, problem-solving has been a significant component of science and engineering. However, a general yet concrete formulation of problem-solving itself is missing. With the recent development of AI-based problem-solving agents, the demand for process-level verifiability is rapidly increasing yet underexplored. To fill these gaps, we present a principled formulation of problem-solving as a deterministic Markov decision process; a novel framework, FPS (Formal Problem-Solving), which utilizes existing FTP (formal theorem proving) environments to perform process-verified problem-solving; and D-FPS (Deductive FPS), decoupling solving and answer verification for better human-alignment. The expressiveness, soundness and completeness of the frameworks are proven. We construct three benchmarks on problem-solving: FormalMath500, a formalization of a subset of the MATH500 benchmark; MiniF2F-Solving and PutnamBench-Solving, adaptations of FTP benchmarks MiniF2F and PutnamBench. For faithful, interpretable, and human-aligned evaluation, we propose RPE (Restricted Propositional Equivalence), a symbolic approach to determine the correctness of answers by formal verification. We evaluate four prevalent FTP models and two prompting methods as baselines, solving at most 23.77% of FormalMath500, 27.47% of MiniF2F-Solving, and 0.31% of PutnamBench-Solving.

  • 6 authors
·
May 7, 2025 1

When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data

Many methods now exist for conditioning model outputs on task instructions, retrieved documents, and user-provided explanations and feedback. Rather than relying solely on examples of task inputs and outputs, these approaches use valuable additional data for improving model correctness and aligning learned models with human priors. Meanwhile, a growing body of evidence suggests that some language models can (1) store a large amount of knowledge in their parameters, and (2) perform inference over tasks in textual inputs at test time. These results raise the possibility that, for some tasks, humans cannot explain to a model any more about the task than it already knows or could infer on its own. In this paper, we study the circumstances under which explanations of individual data points can (or cannot) improve modeling performance. In order to carefully control important properties of the data and explanations, we introduce a synthetic dataset for experiments, and we also make use of three existing datasets with explanations: e-SNLI, TACRED, and SemEval. We first give a formal framework for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. After arguing that the most promising role for explanation data is as model inputs, we propose to use a retrieval-based method and show that it solves our synthetic task with accuracies upwards of 95%, while baselines without explanation data achieve below 65% accuracy. We then identify properties of datasets for which retrieval-based modeling fails. With the three existing datasets, we find no improvements from explanation retrieval. Drawing on findings from our synthetic task, we suggest that at least one of six preconditions for successful modeling fails to hold with these datasets. Our code is publicly available at https://github.com/peterbhase/ExplanationRoles

  • 2 authors
·
Feb 3, 2021

FormalGeo: An Extensible Formalized Framework for Olympiad Geometric Problem Solving

This is the first paper in a series of work we have accomplished over the past three years. In this paper, we have constructed a consistent formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. Within this formal framework, we have been able to seamlessly integrate modern AI models with our formal system. AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver. We've annotated the formalgeo7k and formalgeo-imo datasets. The former contains 6,981 (expand to 133,818 through data augmentation) geometry problems, while the latter includes 18 (expand to 2,627 and continuously increasing) IMO-level challenging geometry problems. All annotated problems include detailed formal language descriptions and solutions. Implementation of the formal system and experiments validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and datasets are available at https://github.com/BitSecret/FGPS.

  • 20 authors
·
Oct 27, 2023

A Lean Dataset for International Math Olympiad: Small Steps towards Writing Math Proofs for Hard Problems

Using AI to write formal proofs for mathematical problems is a challenging task that has seen some advancements in recent years. Automated systems such as Lean can verify the correctness of proofs written in formal language, yet writing the proofs in formal language can be challenging for humans and machines. The miniF2F benchmark has 20 IMO problems in its test set, yet formal proofs are available only for 6 of these problems (3 of which are only written by mathematicians). The model with best accuracy can only prove 2 of these 20 IMO problems, from 1950s and 60s, while its training set is a secret. In this work, we write complete, original formal proofs for the remaining IMO problems in Lean along with 3 extra problems from IMO 2022 and 2023. This effort expands the availability of proof currently in the public domain by creating 5,880 lines of Lean proof. The goal of the paper is to pave the way for developing AI models that can automatically write the formal proofs for all the IMO problems in miniF2F and beyond by providing an evaluation benchmark. In this pursuit, we devise a method to decompose the proofs of these problems into their building blocks, constructing a dataset of 1,329 lemmas with more than 40k lines of Lean code. These lemmas are not trivial, yet they are approachable, providing the opportunity to evaluate and diagnose the failures and successes of AI models. We evaluate the ability of the SOTA LLMs on our dataset and analyze their success and failure modes from different perspectives. Our dataset and code is available at: https://github.com/roozbeh-yz/IMO-Steps.

  • 3 authors
·
Nov 27, 2024

VeriGuard: Enhancing LLM Agent Safety via Verified Code Generation

The deployment of autonomous AI agents in sensitive domains, such as healthcare, introduces critical risks to safety, security, and privacy. These agents may deviate from user objectives, violate data handling policies, or be compromised by adversarial attacks. Mitigating these dangers necessitates a mechanism to formally guarantee that an agent's actions adhere to predefined safety constraints, a challenge that existing systems do not fully address. We introduce VeriGuard, a novel framework that provides formal safety guarantees for LLM-based agents through a dual-stage architecture designed for robust and verifiable correctness. The initial offline stage involves a comprehensive validation process. It begins by clarifying user intent to establish precise safety specifications. VeriGuard then synthesizes a behavioral policy and subjects it to both testing and formal verification to prove its compliance with these specifications. This iterative process refines the policy until it is deemed correct. Subsequently, the second stage provides online action monitoring, where VeriGuard operates as a runtime monitor to validate each proposed agent action against the pre-verified policy before execution. This separation of the exhaustive offline validation from the lightweight online monitoring allows formal guarantees to be practically applied, providing a robust safeguard that substantially improves the trustworthiness of LLM agents.

google Google
·
Oct 3, 2025 2

CodeRL+: Improving Code Generation via Reinforcement with Execution Semantics Alignment

While Large Language Models (LLMs) excel at code generation by learning from vast code corpora, a fundamental semantic gap remains between their training on textual patterns and the goal of functional correctness, which is governed by formal execution semantics. Reinforcement Learning with Verifiable Rewards (RLVR) approaches attempt to bridge this gap using outcome rewards from executing test cases. However, solely relying on binary pass/fail signals is inefficient for establishing a well-aligned connection between the textual representation of code and its execution semantics, especially for subtle logical errors within the code. In this paper, we propose CodeRL+, a novel approach that integrates execution semantics alignment into the RLVR training pipeline for code generation. CodeRL+ enables the model to infer variable-level execution trajectory, providing a direct learning signal of execution semantics. CodeRL+ can construct execution semantics alignment directly using existing on-policy rollouts and integrates seamlessly with various RL algorithms. Extensive experiments demonstrate that CodeRL+ outperforms post-training baselines (including RLVR and Distillation), achieving a 4.6% average relative improvement in pass@1. CodeRL+ generalizes effectively to other coding tasks, yielding 15.5% and 4.4% higher accuracy on code-reasoning and test-output-generation benchmarks, respectively. CodeRL+ shows strong applicability across diverse RL algorithms and LLMs. Furthermore, probe analyses provide compelling evidence that CodeRL+ strengthens the alignment between code's textual representations and its underlying execution semantics.

  • 13 authors
·
Oct 21, 2025

Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers

Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers.Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0\% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams , in other words, to unlock the capabilities it already possesses.

  • 7 authors
·
May 25, 2025 2

RL-Struct: A Lightweight Reinforcement Learning Framework for Reliable Structured Output in LLMs

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language generation and reasoning. However, their integration into automated software ecosystems is often hindered by the "Structure Gap" - the inherent tension between the probabilistic nature of token generation and the deterministic requirements of structured data formats (e.g., JSON, XML). Traditional Supervised Fine-Tuning (SFT) often fails to enforce strict syntactic constraints, leading to "hallucinated" keys or malformed structures, while constrained decoding methods impose significant inference latency. In this paper, we propose a lightweight, efficient Reinforcement Learning (RL) framework to bridge this gap. We introduce a novel Multi-dimensional Reward Function that decomposes the structured output task into a hierarchy of constraints: structural integrity, format correctness, content accuracy, and validity. Leveraging Gradient Regularized Policy Optimization (GRPO), we enable the model to internalize these constraints without the need for a separate critic network, reducing peak VRAM usage by 40% compared to PPO. We validate our approach on multiple tasks, including complex recipe generation and structured math reasoning (GSM8K-JSON). Experimental results demonstrate that our method achieves 89.7% structural accuracy and 92.1% JSON validity, significantly outperforming both zero-shot baselines (e.g., GPT-3.5) and SFT on larger models like LLaMA-3-8B. Furthermore, we provide a detailed analysis of training dynamics, revealing a distinct self-paced curriculum where the model sequentially acquires syntactic proficiency before semantic accuracy. Our model is publicly available at https://huggingface.co/Freakz3z/Qwen-JSON.

  • 2 authors
·
Nov 28, 2025

CodeBoost: Boosting Code LLMs by Squeezing Knowledge from Code Snippets with RL

Code large language models (LLMs) have become indispensable tools for building efficient and automated coding pipelines. Existing models are typically post-trained using reinforcement learning (RL) from general-purpose LLMs using "human instruction-final answer" pairs, where the instructions are usually from manual annotations. However, collecting high-quality coding instructions is both labor-intensive and difficult to scale. On the other hand, code snippets are abundantly available from various sources. This imbalance presents a major bottleneck in instruction-based post-training. We propose CodeBoost, a post-training framework that enhances code LLMs purely from code snippets, without relying on human-annotated instructions. CodeBoost introduces the following key components: (1) maximum-clique curation, which selects a representative and diverse training corpus from code; (2) bi-directional prediction, which enables the model to learn from both forward and backward prediction objectives; (3) error-aware prediction, which incorporates learning signals from both correct and incorrect outputs; (4) heterogeneous augmentation, which diversifies the training distribution to enrich code semantics; and (5) heterogeneous rewarding, which guides model learning through multiple reward types including format correctness and execution feedback from both successes and failures. Extensive experiments across several code LLMs and benchmarks verify that CodeBoost consistently improves performance, demonstrating its effectiveness as a scalable and effective training pipeline.

  • 10 authors
·
Aug 7, 2025

CLSE: Corpus of Linguistically Significant Entities

One of the biggest challenges of natural language generation (NLG) is the proper handling of named entities. Named entities are a common source of grammar mistakes such as wrong prepositions, wrong article handling, or incorrect entity inflection. Without factoring linguistic representation, such errors are often underrepresented when evaluating on a small set of arbitrarily picked argument values, or when translating a dataset from a linguistically simpler language, like English, to a linguistically complex language, like Russian. However, for some applications, broadly precise grammatical correctness is critical -- native speakers may find entity-related grammar errors silly, jarring, or even offensive. To enable the creation of more linguistically diverse NLG datasets, we release a Corpus of Linguistically Significant Entities (CLSE) annotated by linguist experts. The corpus includes 34 languages and covers 74 different semantic types to support various applications from airline ticketing to video games. To demonstrate one possible use of CLSE, we produce an augmented version of the Schema-Guided Dialog Dataset, SGD-CLSE. Using the CLSE's entities and a small number of human translations, we create a linguistically representative NLG evaluation benchmark in three languages: French (high-resource), Marathi (low-resource), and Russian (highly inflected language). We establish quality baselines for neural, template-based, and hybrid NLG systems and discuss the strengths and weaknesses of each approach.

  • 3 authors
·
Nov 4, 2022

miniF2F-Lean Revisited: Reviewing Limitations and Charting a Path Forward

We perform a thorough analysis of the formal and informal statements in the miniF2F benchmark from the perspective of an AI system that is tasked to participate in a math Olympiad consisting of the problems in miniF2F. In such setting, the model has to read and comprehend the problems in natural language, formalize them in Lean language, then proceed with proving the problems, and it will get credit for each problem if the formal proof corresponds to the original informal statement presented to the model. Our evaluation results reveal that the best accuracy of such pipeline can be about 36% using the SoTA models in the literature, considerably lower than the individual SoTA accuracies, 97% and 69% reported in the autoformalization and theorem proving literature. Analyzing the failure modes, we trace back a considerable portion of this drop to discrepancies between the formal and informal statements for more than half of the problems in miniF2F. We proceed with correcting all the errors, discrepancies and simplifications in formal and informal statements, and present the miniF2F-v2 with fully verified formal and informal statements and proofs. Evaluating the full theorem proving pipeline on miniF2F-v2 leads to the best accuracy of 70%, a significant improvement from the 40% on the original miniF2F, yet indicating considerable misalignment between the autoformalization models and theorem provers. Our deep analysis suggests that a higher quality benchmark can help the community better evaluate progress in the field of formal reasoning and also better diagnose the failure and success modes of autoformalization and theorem proving models. Our dataset is available at https://github.com/roozbeh-yz/miniF2F_v2.

  • 3 authors
·
Nov 4, 2025 2

Mathematical Capabilities of ChatGPT

We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer!

  • 8 authors
·
Jan 31, 2023

ProofBridge: Auto-Formalization of Natural Language Proofs in Lean via Joint Embeddings

Translating human-written mathematical theorems and proofs from natural language (NL) into formal languages (FLs) like Lean 4 has long been a significant challenge for AI. Most state-of-the-art methods address this separately, first translating theorems and then generating proofs, creating a fundamental disconnect vis-a-vis true proof auto-formalization. This two-step process and its limitations were evident even in AlphaProof's silver-medal performance at the 2024 IMO, where problem statements needed manual translation before automated proof synthesis. We present ProofBridge, a unified framework for automatically translating entire NL theorems and proofs into Lean 4. At its core is a joint embedding model that aligns NL and FL (NL-FL) theorem-proof pairs in a shared semantic space, enabling cross-modal retrieval of semantically relevant FL examples to guide translation. Our training ensures that NL-FL theorems (and their proofs) are mapped close together in this space if and only if the NL-FL pairs are semantically equivalent. ProofBridge integrates retrieval-augmented fine-tuning with iterative proof repair, leveraging Lean's type checker and semantic equivalence feedback to ensure both syntactic correctness and semantic fidelity. Experiments show substantial improvements in proof auto-formalization over strong baselines (including GPT-5, Gemini-2.5, Kimina-Prover, DeepSeek-Prover), with our retrieval-augmented approach yielding significant gains in semantic correctness (SC, via proving bi-directional equivalence) and type correctness (TC, via type-checking theorem+proof) across pass@k metrics on miniF2F-Test-PF, a dataset we curated. In particular, ProofBridge improves cross-modal retrieval quality by up to 3.28x Recall@1 over all-MiniLM-L6-v2, and achieves +31.14% SC and +1.64% TC (pass@32) compared to the baseline Kimina-Prover-RL-1.7B.

  • 6 authors
·
Oct 17, 2025 1

Studying the role of named entities for content preservation in text style transfer

Text style transfer techniques are gaining popularity in Natural Language Processing, finding various applications such as text detoxification, sentiment, or formality transfer. However, the majority of the existing approaches were tested on such domains as online communications on public platforms, music, or entertainment yet none of them were applied to the domains which are typical for task-oriented production systems, such as personal plans arrangements (e.g. booking of flights or reserving a table in a restaurant). We fill this gap by studying formality transfer in this domain. We noted that the texts in this domain are full of named entities, which are very important for keeping the original sense of the text. Indeed, if for example, someone communicates the destination city of a flight it must not be altered. Thus, we concentrate on the role of named entities in content preservation for formality text style transfer. We collect a new dataset for the evaluation of content similarity measures in text style transfer. It is taken from a corpus of task-oriented dialogues and contains many important entities related to realistic requests that make this dataset particularly useful for testing style transfer models before using them in production. Besides, we perform an error analysis of a pre-trained formality transfer model and introduce a simple technique to use information about named entities to enhance the performance of baseline content similarity measures used in text style transfer.

  • 5 authors
·
Jun 20, 2022

I am a Strange Dataset: Metalinguistic Tests for Language Models

Statements involving metalinguistic self-reference ("This paper has six sections.") are prevalent in many domains. Can large language models (LLMs) handle such language? In this paper, we present "I am a Strange Dataset", a new dataset for addressing this question. There are two subtasks: generation and verification. In generation, models continue statements like "The penultimate word in this sentence is" (where a correct continuation is "is"). In verification, models judge the truth of statements like "The penultimate word in this sentence is sentence." (false). We also provide minimally different metalinguistic non-self-reference examples to complement the main dataset by probing for whether models can handle metalinguistic language at all. The dataset is hand-crafted by experts and validated by non-expert annotators. We test a variety of open-source LLMs (7B to 70B parameters) as well as closed-source LLMs through APIs. All models perform close to chance across both subtasks and even on the non-self-referential metalinguistic control data, though we find some steady improvement with model scale. GPT 4 is the only model to consistently do significantly better than chance, and it is still only in the 60% range, while our untrained human annotators score well in the 89-93% range. The dataset and evaluation toolkit are available at https://github.com/TristanThrush/i-am-a-strange-dataset.

  • 5 authors
·
Jan 10, 2024

ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization

Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 17.2 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.

  • 9 authors
·
Oct 28, 2025 2

Adposition and Case Supersenses v2.6: Guidelines for English

This document offers a detailed linguistic description of SNACS (Semantic Network of Adposition and Case Supersenses; Schneider et al., 2018), an inventory of 52 semantic labels ("supersenses") that characterize the use of adpositions and case markers at a somewhat coarse level of granularity, as demonstrated in the STREUSLE corpus (https://github.com/nert-nlp/streusle/ ; version 4.5 tracks guidelines version 2.6). Though the SNACS inventory aspires to be universal, this document is specific to English; documentation for other languages will be published separately. Version 2 is a revision of the supersense inventory proposed for English by Schneider et al. (2015, 2016) (henceforth "v1"), which in turn was based on previous schemes. The present inventory was developed after extensive review of the v1 corpus annotations for English, plus previously unanalyzed genitive case possessives (Blodgett and Schneider, 2018), as well as consideration of adposition and case phenomena in Hebrew, Hindi, Korean, and German. Hwang et al. (2017) present the theoretical underpinnings of the v2 scheme. Schneider et al. (2018) summarize the scheme, its application to English corpus data, and an automatic disambiguation task. Liu et al. (2021) offer an English Lexical Semantic Recognition tagger that includes SNACS labels in its output. This documentation can also be browsed alongside corpus data on the Xposition website (Gessler et al., 2022): http://www.xposition.org/

  • 11 authors
·
Apr 7, 2017

Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming

Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.

  • 7 authors
·
May 2, 2024

Personas as a Way to Model Truthfulness in Language Models

Large Language Models are trained on vast amounts of text from the internet, which contains both factual and misleading information about the world. Can language models discern truth from falsehood in this contradicting data? Expanding on the view that LLMs can model different agents producing the corpora, we hypothesize that they can cluster truthful text by modeling a truthful persona: a group of agents that are likely to produce truthful text and share similar features. For example, trustworthy sources like Wikipedia and Science usually use formal writing styles and make consistent claims. By modeling this persona, LLMs can generalize truthfulness beyond the specific contexts in which each agent generated the training text. For example, the model can infer that the agent "Wikipedia" will behave truthfully on topics that were only generated by "Science" because they share a persona. We first show evidence for the persona hypothesis via two observations: (1) we can probe whether a model's answer will be truthful before it is generated; (2) finetuning a model on a set of facts improves its truthfulness on unseen topics. Next, using arithmetics as a synthetic environment, we show that language models can separate true and false statements, and generalize truthfulness across agents; but only if agents in the training data share a truthful generative process that enables the creation of a truthful persona. Overall, our findings suggest that models can exploit hierarchical structures in the data to learn abstract concepts like truthfulness.

  • 5 authors
·
Oct 27, 2023 1

FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving

Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER3. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,125 lemmas, and 200,646 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3- 8B solves 17.39% (69 -> 81) more problems, and Mistral-7B 12% (75 -> 84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.

  • 8 authors
·
Jun 20, 2024

Language Models as Inductive Reasoners

Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.

  • 8 authors
·
Dec 21, 2022

FELM: Benchmarking Factuality Evaluation of Large Language Models

Assessing factuality of text generated by large language models (LLMs) is an emerging yet crucial research area, aimed at alerting users to potential errors and guiding the development of more reliable LLMs. Nonetheless, the evaluators assessing factuality necessitate suitable evaluation themselves to gauge progress and foster advancements. This direction remains under-explored, resulting in substantial impediments to the progress of factuality evaluators. To mitigate this issue, we introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm. In this benchmark, we collect responses generated from LLMs and annotate factuality labels in a fine-grained manner. Contrary to previous studies that primarily concentrate on the factuality of world knowledge (e.g.~information from Wikipedia), felm focuses on factuality across diverse domains, spanning from world knowledge to math and reasoning. Our annotation is based on text segments, which can help pinpoint specific factual errors. The factuality annotations are further supplemented by predefined error types and reference links that either support or contradict the statement. In our experiments, we investigate the performance of several LLM-based factuality evaluators on felm, including both vanilla LLMs and those augmented with retrieval mechanisms and chain-of-thought processes. Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.

  • 7 authors
·
Oct 1, 2023

Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering

Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa

  • 5 authors
·
Jul 31, 2023

Assessing the Sensitivity and Alignment of FOL Closeness Metrics

The recent successful paradigm of solving logical reasoning problems with tool-augmented large language models (LLMs) leverages translation of natural language (NL) statements into First-Order Logic~(FOL) and external theorem provers. However, the correctness of FOL statements, comprising operators and text, often go unverified due to the lack of a reliable evaluation metric for comparing generated and ground-truth FOLs. In this paper, we conduct a comprehensive study on the sensitivity of existing NL-, FOL-, and graph-based metrics to capture differences between a sampled FOL and its corresponding ground-truth. We then measure the alignment between a metric-based ranking of FOL outputs and a strong LLM as-a-judge. To do this, we first apply operator and text-based perturbations to ground-truth FOL statements to assess metric sensitivity. We then evaluate metric robustness by comparing the metrics against LLMs judgment. Our empirical findings highlight a clear oversensitivity in the n-gram metric BLEU for text perturbations. The operator perturbation affects the semantic graph metric Smatch++ for structural changes, and the FOL metric for specific operator changes. We observe a closer alignment between BertScore and LLM judgement, proving the importance of semantic evaluation. Additionally, we show that combining metrics enhances both robustness and sensitivity compared to using individual metrics.

  • 3 authors
·
Jan 15, 2025

Can LLMs Correct Themselves? A Benchmark of Self-Correction in LLMs

Self-correction of large language models (LLMs) emerges as a critical component for enhancing their reasoning performance. Although various self-correction methods have been proposed, a comprehensive evaluation of these methods remains largely unexplored, and the question of whether LLMs can truly correct themselves is a matter of significant interest and concern. In this study, we introduce CorrectBench, a benchmark developed to evaluate the effectiveness of self-correction strategies, including intrinsic, external, and fine-tuned approaches, across three tasks: commonsense reasoning, mathematical reasoning, and code generation. Our findings reveal that: 1) Self-correction methods can improve accuracy, especially for complex reasoning tasks; 2) Mixing different self-correction strategies yields further improvements, though it reduces efficiency; 3) Reasoning LLMs (e.g., DeepSeek-R1) have limited optimization under additional self-correction methods and have high time costs. Interestingly, a comparatively simple chain-of-thought (CoT) baseline demonstrates competitive accuracy and efficiency. These results underscore the potential of self-correction to enhance LLM's reasoning performance while highlighting the ongoing challenge of improving their efficiency. Consequently, we advocate for further research focused on optimizing the balance between reasoning capabilities and operational efficiency. Project Page: https://correctbench.github.io/

  • 14 authors
·
Oct 16, 2025 2

Autoformalizer with Tool Feedback

Autoformalization addresses the scarcity of data for Automated Theorem Proving (ATP) by translating mathematical problems from natural language into formal statements. Efforts in recent work shift from directly prompting large language models to training an end-to-end formalizer model from scratch, achieving remarkable advancements. However, existing formalizer still struggles to consistently generate valid statements that meet syntactic validity and semantic consistency. To address this issue, we propose the Autoformalizer with Tool Feedback (ATF), a novel approach that incorporates syntactic and consistency information as tools into the formalization process. By integrating Lean 4 compilers for syntax corrections and employing a multi-LLMs-as-judge approach for consistency validation, the model is able to adaptively refine generated statements according to the tool feedback, enhancing both syntactic validity and semantic consistency. The training of ATF involves a cold-start phase on synthetic tool-calling data, an expert iteration phase to improve formalization capabilities, and Direct Preference Optimization to alleviate ineffective revisions. Experimental results show that ATF markedly outperforms a range of baseline formalizer models, with its superior performance further validated by human evaluations. Subsequent analysis reveals that ATF demonstrates excellent inference scaling properties. Moreover, we open-source Numina-ATF, a dataset containing 750K synthetic formal statements to facilitate advancements in autoformalization and ATP research.

  • 11 authors
·
Oct 8, 2025

FormalMATH: Benchmarking Formal Mathematical Reasoning of Large Language Models

Formal mathematical reasoning remains a critical challenge for artificial intelligence, hindered by limitations of existing benchmarks in scope and scale. To address this, we present FormalMATH, a large-scale Lean4 benchmark comprising 5,560 formally verified problems spanning from high-school Olympiad challenges to undergraduate-level theorems across diverse domains (e.g., algebra, applied mathematics, calculus, number theory, and discrete mathematics). To mitigate the inefficiency of manual formalization, we introduce a novel human-in-the-loop autoformalization pipeline that integrates: (1) specialized large language models (LLMs) for statement autoformalization, (2) multi-LLM semantic verification, and (3) negation-based disproof filtering strategies using off-the-shelf LLM-based provers. This approach reduces expert annotation costs by retaining 72.09% of statements before manual verification while ensuring fidelity to the original natural-language problems. Our evaluation of state-of-the-art LLM-based theorem provers reveals significant limitations: even the strongest models achieve only 16.46% success rate under practical sampling budgets, exhibiting pronounced domain bias (e.g., excelling in algebra but failing in calculus) and over-reliance on simplified automation tactics. Notably, we identify a counterintuitive inverse relationship between natural-language solution guidance and proof success in chain-of-thought reasoning scenarios, suggesting that human-written informal reasoning introduces noise rather than clarity in the formal reasoning settings. We believe that FormalMATH provides a robust benchmark for benchmarking formal mathematical reasoning.

  • 13 authors
·
May 5, 2025 1

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

  • 2 authors
·
Jul 26, 2022

MEDEC: A Benchmark for Medical Error Detection and Correction in Clinical Notes

Several studies showed that Large Language Models (LLMs) can answer medical questions correctly, even outperforming the average human score in some medical exams. However, to our knowledge, no study has been conducted to assess the ability of language models to validate existing or generated medical text for correctness and consistency. In this paper, we introduce MEDEC (https://github.com/abachaa/MEDEC), the first publicly available benchmark for medical error detection and correction in clinical notes, covering five types of errors (Diagnosis, Management, Treatment, Pharmacotherapy, and Causal Organism). MEDEC consists of 3,848 clinical texts, including 488 clinical notes from three US hospital systems that were not previously seen by any LLM. The dataset has been used for the MEDIQA-CORR shared task to evaluate seventeen participating systems [Ben Abacha et al., 2024]. In this paper, we describe the data creation methods and we evaluate recent LLMs (e.g., o1-preview, GPT-4, Claude 3.5 Sonnet, and Gemini 2.0 Flash) for the tasks of detecting and correcting medical errors requiring both medical knowledge and reasoning capabilities. We also conducted a comparative study where two medical doctors performed the same task on the MEDEC test set. The results showed that MEDEC is a sufficiently challenging benchmark to assess the ability of models to validate existing or generated notes and to correct medical errors. We also found that although recent LLMs have a good performance in error detection and correction, they are still outperformed by medical doctors in these tasks. We discuss the potential factors behind this gap, the insights from our experiments, the limitations of current evaluation metrics, and share potential pointers for future research.

  • 7 authors
·
Dec 26, 2024