new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

GeoDistill: Geometry-Guided Self-Distillation for Weakly Supervised Cross-View Localization

Cross-view localization, the task of estimating a camera's 3-degrees-of-freedom (3-DoF) pose by aligning ground-level images with satellite images, is crucial for large-scale outdoor applications like autonomous navigation and augmented reality. Existing methods often rely on fully supervised learning, which requires costly ground-truth pose annotations. In this work, we propose GeoDistill, a Geometry guided weakly supervised self distillation framework that uses teacher-student learning with Field-of-View (FoV)-based masking to enhance local feature learning for robust cross-view localization. In GeoDistill, the teacher model localizes a panoramic image, while the student model predicts locations from a limited FoV counterpart created by FoV-based masking. By aligning the student's predictions with those of the teacher, the student focuses on key features like lane lines and ignores textureless regions, such as roads. This results in more accurate predictions and reduced uncertainty, regardless of whether the query images are panoramas or limited FoV images. Our experiments show that GeoDistill significantly improves localization performance across different frameworks. Additionally, we introduce a novel orientation estimation network that predicts relative orientation without requiring precise planar position ground truth. GeoDistill provides a scalable and efficient solution for real-world cross-view localization challenges. Code and model can be found at https://github.com/tongshw/GeoDistill.

  • 5 authors
·
Jul 14 1

MatSpray: Fusing 2D Material World Knowledge on 3D Geometry

Manual modeling of material parameters and 3D geometry is a time consuming yet essential task in the gaming and film industries. While recent advances in 3D reconstruction have enabled accurate approximations of scene geometry and appearance, these methods often fall short in relighting scenarios due to the lack of precise, spatially varying material parameters. At the same time, diffusion models operating on 2D images have shown strong performance in predicting physically based rendering (PBR) properties such as albedo, roughness, and metallicity. However, transferring these 2D material maps onto reconstructed 3D geometry remains a significant challenge. We propose a framework for fusing 2D material data into 3D geometry using a combination of novel learning-based and projection-based approaches. We begin by reconstructing scene geometry via Gaussian Splatting. From the input images, a diffusion model generates 2D maps for albedo, roughness, and metallic parameters. Any existing diffusion model that can convert images or videos to PBR materials can be applied. The predictions are further integrated into the 3D representation either by optimizing an image-based loss or by directly projecting the material parameters onto the Gaussians using Gaussian ray tracing. To enhance fine-scale accuracy and multi-view consistency, we further introduce a light-weight neural refinement step (Neural Merger), which takes ray-traced material features as input and produces detailed adjustments. Our results demonstrate that the proposed methods outperform existing techniques in both quantitative metrics and perceived visual realism. This enables more accurate, relightable, and photorealistic renderings from reconstructed scenes, significantly improving the realism and efficiency of asset creation workflows in content production pipelines.

CGTuebingen CG Tübingen
·
Dec 20 2

SuperCarver: Texture-Consistent 3D Geometry Super-Resolution for High-Fidelity Surface Detail Generation

Conventional production workflow of high-precision mesh assets necessitates a cumbersome and laborious process of manual sculpting by specialized 3D artists/modelers. The recent years have witnessed remarkable advances in AI-empowered 3D content creation for generating plausible structures and intricate appearances from images or text prompts. However, synthesizing realistic surface details still poses great challenges, and enhancing the geometry fidelity of existing lower-quality 3D meshes (instead of image/text-to-3D generation) remains an open problem. In this paper, we introduce SuperCarver, a 3D geometry super-resolution pipeline for supplementing texture-consistent surface details onto a given coarse mesh. We start by rendering the original textured mesh into the image domain from multiple viewpoints. To achieve detail boosting, we construct a deterministic prior-guided normal diffusion model, which is fine-tuned on a carefully curated dataset of paired detail-lacking and detail-rich normal map renderings. To update mesh surfaces from potentially imperfect normal map predictions, we design a noise-resistant inverse rendering scheme through deformable distance field. Experiments demonstrate that our SuperCarver is capable of generating realistic and expressive surface details depicted by the actual texture appearance, making it a powerful tool to both upgrade historical low-quality 3D assets and reduce the workload of sculpting high-poly meshes.

  • 5 authors
·
Mar 12

OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion

A well-known challenge in applying deep-learning methods to omnidirectional images is spherical distortion. In dense regression tasks such as depth estimation, where structural details are required, using a vanilla CNN layer on the distorted 360 image results in undesired information loss. In this paper, we propose a 360 monocular depth estimation pipeline, OmniFusion, to tackle the spherical distortion issue. Our pipeline transforms a 360 image into less-distorted perspective patches (i.e. tangent images) to obtain patch-wise predictions via CNN, and then merge the patch-wise results for final output. To handle the discrepancy between patch-wise predictions which is a major issue affecting the merging quality, we propose a new framework with the following key components. First, we propose a geometry-aware feature fusion mechanism that combines 3D geometric features with 2D image features to compensate for the patch-wise discrepancy. Second, we employ the self-attention-based transformer architecture to conduct a global aggregation of patch-wise information, which further improves the consistency. Last, we introduce an iterative depth refinement mechanism, to further refine the estimated depth based on the more accurate geometric features. Experiments show that our method greatly mitigates the distortion issue, and achieves state-of-the-art performances on several 360 monocular depth estimation benchmark datasets.

  • 6 authors
·
Mar 1, 2022

GeoRef: Referring Expressions in Geometry via Task Formulation, Synthetic Supervision, and Reinforced MLLM-based Solutions

AI-driven geometric problem solving is a complex vision-language task that requires accurate diagram interpretation, mathematical reasoning, and robust cross-modal grounding. A foundational yet underexplored capability for this task is the ability to identify and interpret geometric elements based on natural language queries. To address this, we introduce the task of Referring Expression Comprehension (REC) for geometric problems, which evaluates whether models can localize points, shapes, and spatial relations in diagrams in response to textual prompts. We present GeoRef, a benchmark dataset constructed from existing geometric problem corpora, featuring diverse, high-quality annotations and queries. Due to the lack of annotated data for this task, we generate a large-scale synthetic training dataset using a structured geometric formal language, enabling broad coverage of geometric concepts and facilitating model adaptation. We explore two fine-tuning approaches: Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO). Our results show that GRPO significantly outperforms SFT by better aligning model behavior with task-specific rewards. Furthermore, we propose a verify-and-regenerate mechanism that detects incorrect predictions and re-infers answers using contextual reasoning history, further boosting accuracy. Notably, even state-of-the-art Multimodal Large Language Models (MLLMs) struggle with this task, underscoring the necessity of explicitly evaluating and strengthening geometric grounding as a prerequisite for robust geometric problem solving. Moreover, models trained on GeoRef demonstrate measurable improvements on downstream geometric reasoning tasks, highlighting the broader value of REC as a foundation for multimodal mathematical understanding.

  • 9 authors
·
Sep 25

Can Transformers Do Enumerative Geometry?

How can Transformers model and learn enumerative geometry? What is a robust procedure for using Transformers in abductive knowledge discovery within a mathematician-machine collaboration? In this work, we introduce a Transformer-based approach to computational enumerative geometry, specifically targeting the computation of psi-class intersection numbers on the moduli space of curves. By reformulating the problem as a continuous optimization task, we compute intersection numbers across a wide value range from 10^{-45} to 10^{45}. To capture the recursive nature inherent in these intersection numbers, we propose the Dynamic Range Activator (DRA), a new activation function that enhances the Transformer's ability to model recursive patterns and handle severe heteroscedasticity. Given precision requirements for computing the intersections, we quantify the uncertainty of the predictions using Conformal Prediction with a dynamic sliding window adaptive to the partitions of equivalent number of marked points. To the best of our knowledge, there has been no prior work on modeling recursive functions with such a high-variance and factorial growth. Beyond simply computing intersection numbers, we explore the enumerative "world-model" of Transformers. Our interpretability analysis reveals that the network is implicitly modeling the Virasoro constraints in a purely data-driven manner. Moreover, through abductive hypothesis testing, probing, and causal inference, we uncover evidence of an emergent internal representation of the the large-genus asymptotic of psi-class intersection numbers. These findings suggest that the network internalizes the parameters of the asymptotic closed-form and the polynomiality phenomenon of psi-class intersection numbers in a non-linear manner.

  • 3 authors
·
Aug 27, 2024

Less or More From Teacher: Exploiting Trilateral Geometry For Knowledge Distillation

Knowledge distillation aims to train a compact student network using soft supervision from a larger teacher network and hard supervision from ground truths. However, determining an optimal knowledge fusion ratio that balances these supervisory signals remains challenging. Prior methods generally resort to a constant or heuristic-based fusion ratio, which often falls short of a proper balance. In this study, we introduce a novel adaptive method for learning a sample-wise knowledge fusion ratio, exploiting both the correctness of teacher and student, as well as how well the student mimics the teacher on each sample. Our method naturally leads to the intra-sample trilateral geometric relations among the student prediction (S), teacher prediction (T), and ground truth (G). To counterbalance the impact of outliers, we further extend to the inter-sample relations, incorporating the teacher's global average prediction T for samples within the same class. A simple neural network then learns the implicit mapping from the intra- and inter-sample relations to an adaptive, sample-wise knowledge fusion ratio in a bilevel-optimization manner. Our approach provides a simple, practical, and adaptable solution for knowledge distillation that can be employed across various architectures and model sizes. Extensive experiments demonstrate consistent improvements over other loss re-weighting methods on image classification, attack detection, and click-through rate prediction.

  • 8 authors
·
Dec 22, 2023

PropMolFlow: Property-guided Molecule Generation with Geometry-Complete Flow Matching

Molecule generation is advancing rapidly in chemical discovery and drug design. Flow matching methods have recently set the state of the art (SOTA) in unconditional molecule generation, surpassing score-based diffusion models. However, diffusion models still lead in property-guided generation. In this work, we introduce PropMolFlow, a novel approach for property-guided molecule generation based on geometry-complete SE(3)-equivariant flow matching. Integrating five different property embedding methods with a Gaussian expansion of scalar properties, PropMolFlow outperforms previous SOTA diffusion models in conditional molecule generation across various properties while preserving the stability and validity of the generated molecules, consistent with its unconditional counterpart. Additionally, it enables faster inference with significantly fewer time steps compared to baseline models. We highlight the importance of validating the properties of generated molecules through DFT calculations performed at the same level of theory as the training data. Specifically, our analysis identifies properties that require DFT validation and others where a pretrained SE(3) geometric vector perceptron regressors provide sufficiently accurate predictions on generated molecules. Furthermore, we introduce a new property metric designed to assess the model's ability to propose molecules with underrepresented property values, assessing its capacity for out-of-distribution generalization. Our findings reveal shortcomings in existing structural metrics, which mistakenly validate open-shell molecules or molecules with invalid valence-charge configurations, underscoring the need for improved evaluation frameworks. Overall, this work paves the way for developing targeted property-guided generation methods, enhancing the design of molecular generative models for diverse applications.

  • 9 authors
·
May 27

LoGoPlanner: Localization Grounded Navigation Policy with Metric-aware Visual Geometry

Trajectory planning in unstructured environments is a fundamental and challenging capability for mobile robots. Traditional modular pipelines suffer from latency and cascading errors across perception, localization, mapping, and planning modules. Recent end-to-end learning methods map raw visual observations directly to control signals or trajectories, promising greater performance and efficiency in open-world settings. However, most prior end-to-end approaches still rely on separate localization modules that depend on accurate sensor extrinsic calibration for self-state estimation, thereby limiting generalization across embodiments and environments. We introduce LoGoPlanner, a localization-grounded, end-to-end navigation framework that addresses these limitations by: (1) finetuning a long-horizon visual-geometry backbone to ground predictions with absolute metric scale, thereby providing implicit state estimation for accurate localization; (2) reconstructing surrounding scene geometry from historical observations to supply dense, fine-grained environmental awareness for reliable obstacle avoidance; and (3) conditioning the policy on implicit geometry bootstrapped by the aforementioned auxiliary tasks, thereby reducing error propagation.We evaluate LoGoPlanner in both simulation and real-world settings, where its fully end-to-end design reduces cumulative error while metric-aware geometry memory enhances planning consistency and obstacle avoidance, leading to more than a 27.3\% improvement over oracle-localization baselines and strong generalization across embodiments and environments. The code and models have been made publicly available on the https://steinate.github.io/logoplanner.github.io/{project page}.

  • 6 authors
·
Dec 22 2

HART: Human Aligned Reconstruction Transformer

We introduce HART, a unified framework for sparse-view human reconstruction. Given a small set of uncalibrated RGB images of a person as input, it outputs a watertight clothed mesh, the aligned SMPL-X body mesh, and a Gaussian-splat representation for photorealistic novel-view rendering. Prior methods for clothed human reconstruction either optimize parametric templates, which overlook loose garments and human-object interactions, or train implicit functions under simplified camera assumptions, limiting applicability in real scenes. In contrast, HART predicts per-pixel 3D point maps, normals, and body correspondences, and employs an occlusion-aware Poisson reconstruction to recover complete geometry, even in self-occluded regions. These predictions also align with a parametric SMPL-X body model, ensuring that reconstructed geometry remains consistent with human structure while capturing loose clothing and interactions. These human-aligned meshes initialize Gaussian splats to further enable sparse-view rendering. While trained on only 2.3K synthetic scans, HART achieves state-of-the-art results: Chamfer Distance improves by 18-23 percent for clothed-mesh reconstruction, PA-V2V drops by 6-27 percent for SMPL-X estimation, LPIPS decreases by 15-27 percent for novel-view synthesis on a wide range of datasets. These results suggest that feed-forward transformers can serve as a scalable model for robust human reconstruction in real-world settings. Code and models will be released.

  • 6 authors
·
Sep 30

Detect Anything via Next Point Prediction

Object detection has long been dominated by traditional coordinate regression-based models, such as YOLO, DETR, and Grounding DINO. Although recent efforts have attempted to leverage MLLMs to tackle this task, they face challenges like low recall rate, duplicate predictions, coordinate misalignment, etc. In this work, we bridge this gap and propose Rex-Omni, a 3B-scale MLLM that achieves state-of-the-art object perception performance. On benchmarks like COCO and LVIS, Rex-Omni attains performance comparable to or exceeding regression-based models (e.g., DINO, Grounding DINO) in a zero-shot setting. This is enabled by three key designs: 1) Task Formulation: we use special tokens to represent quantized coordinates from 0 to 999, reducing the model's learning difficulty and improving token efficiency for coordinate prediction; 2) Data Engines: we construct multiple data engines to generate high-quality grounding, referring, and pointing data, providing semantically rich supervision for training; \3) Training Pipelines: we employ a two-stage training process, combining supervised fine-tuning on 22 million data with GRPO-based reinforcement post-training. This RL post-training leverages geometry-aware rewards to effectively bridge the discrete-to-continuous coordinate prediction gap, improve box accuracy, and mitigate undesirable behaviors like duplicate predictions that stem from the teacher-guided nature of the initial SFT stage. Beyond conventional detection, Rex-Omni's inherent language understanding enables versatile capabilities such as object referring, pointing, visual prompting, GUI grounding, spatial referring, OCR and key-pointing, all systematically evaluated on dedicated benchmarks. We believe that Rex-Omni paves the way for more versatile and language-aware visual perception systems.

Facet: highly efficient E(3)-equivariant networks for interatomic potentials

Computational materials discovery is limited by the high cost of first-principles calculations. Machine learning (ML) potentials that predict energies from crystal structures are promising, but existing methods face computational bottlenecks. Steerable graph neural networks (GNNs) encode geometry with spherical harmonics, respecting atomic symmetries -- permutation, rotation, and translation -- for physically realistic predictions. Yet maintaining equivariance is difficult: activation functions must be modified, and each layer must handle multiple data types for different harmonic orders. We present Facet, a GNN architecture for efficient ML potentials, developed through systematic analysis of steerable GNNs. Our innovations include replacing expensive multi-layer perceptrons (MLPs) for interatomic distances with splines, which match performance while cutting computational and memory demands. We also introduce a general-purpose equivariant layer that mixes node information via spherical grid projection followed by standard MLPs -- faster than tensor products and more expressive than linear or gate layers. On the MPTrj dataset, Facet matches leading models with far fewer parameters and under 10% of their training compute. On a crystal relaxation task, it runs twice as fast as MACE models. We further show SevenNet-0's parameters can be reduced by over 25% with no accuracy loss. These techniques enable more than 10x faster training of large-scale foundation models for ML potentials, potentially reshaping computational materials discovery.

  • 9 authors
·
Sep 10

Lotus-2: Advancing Geometric Dense Prediction with Powerful Image Generative Model

Recovering pixel-wise geometric properties from a single image is fundamentally ill-posed due to appearance ambiguity and non-injective mappings between 2D observations and 3D structures. While discriminative regression models achieve strong performance through large-scale supervision, their success is bounded by the scale, quality and diversity of available data and limited physical reasoning. Recent diffusion models exhibit powerful world priors that encode geometry and semantics learned from massive image-text data, yet directly reusing their stochastic generative formulation is suboptimal for deterministic geometric inference: the former is optimized for diverse and high-fidelity image generation, whereas the latter requires stable and accurate predictions. In this work, we propose Lotus-2, a two-stage deterministic framework for stable, accurate and fine-grained geometric dense prediction, aiming to provide an optimal adaption protocol to fully exploit the pre-trained generative priors. Specifically, in the first stage, the core predictor employs a single-step deterministic formulation with a clean-data objective and a lightweight local continuity module (LCM) to generate globally coherent structures without grid artifacts. In the second stage, the detail sharpener performs a constrained multi-step rectified-flow refinement within the manifold defined by the core predictor, enhancing fine-grained geometry through noise-free deterministic flow matching. Using only 59K training samples, less than 1% of existing large-scale datasets, Lotus-2 establishes new state-of-the-art results in monocular depth estimation and highly competitive surface normal prediction. These results demonstrate that diffusion models can serve as deterministic world priors, enabling high-quality geometric reasoning beyond traditional discriminative and generative paradigms.

  • 4 authors
·
Nov 30 2

4DTAM: Non-Rigid Tracking and Mapping via Dynamic Surface Gaussians

We propose the first 4D tracking and mapping method that jointly performs camera localization and non-rigid surface reconstruction via differentiable rendering. Our approach captures 4D scenes from an online stream of color images with depth measurements or predictions by jointly optimizing scene geometry, appearance, dynamics, and camera ego-motion. Although natural environments exhibit complex non-rigid motions, 4D-SLAM remains relatively underexplored due to its inherent challenges; even with 2.5D signals, the problem is ill-posed because of the high dimensionality of the optimization space. To overcome these challenges, we first introduce a SLAM method based on Gaussian surface primitives that leverages depth signals more effectively than 3D Gaussians, thereby achieving accurate surface reconstruction. To further model non-rigid deformations, we employ a warp-field represented by a multi-layer perceptron (MLP) and introduce a novel camera pose estimation technique along with surface regularization terms that facilitate spatio-temporal reconstruction. In addition to these algorithmic challenges, a significant hurdle in 4D SLAM research is the lack of reliable ground truth and evaluation protocols, primarily due to the difficulty of 4D capture using commodity sensors. To address this, we present a novel open synthetic dataset of everyday objects with diverse motions, leveraging large-scale object models and animation modeling. In summary, we open up the modern 4D-SLAM research by introducing a novel method and evaluation protocols grounded in modern vision and rendering techniques.

  • 3 authors
·
May 28

PhysX: Physical-Grounded 3D Asset Generation

3D modeling is moving from virtual to physical. Existing 3D generation primarily emphasizes geometries and textures while neglecting physical-grounded modeling. Consequently, despite the rapid development of 3D generative models, the synthesized 3D assets often overlook rich and important physical properties, hampering their real-world application in physical domains like simulation and embodied AI. As an initial attempt to address this challenge, we propose PhysX, an end-to-end paradigm for physical-grounded 3D asset generation. 1) To bridge the critical gap in physics-annotated 3D datasets, we present PhysXNet - the first physics-grounded 3D dataset systematically annotated across five foundational dimensions: absolute scale, material, affordance, kinematics, and function description. In particular, we devise a scalable human-in-the-loop annotation pipeline based on vision-language models, which enables efficient creation of physics-first assets from raw 3D assets.2) Furthermore, we propose PhysXGen, a feed-forward framework for physics-grounded image-to-3D asset generation, injecting physical knowledge into the pre-trained 3D structural space. Specifically, PhysXGen employs a dual-branch architecture to explicitly model the latent correlations between 3D structures and physical properties, thereby producing 3D assets with plausible physical predictions while preserving the native geometry quality. Extensive experiments validate the superior performance and promising generalization capability of our framework. All the code, data, and models will be released to facilitate future research in generative physical AI.

  • 4 authors
·
Jul 16 1

Dens3R: A Foundation Model for 3D Geometry Prediction

Recent advances in dense 3D reconstruction have led to significant progress, yet achieving accurate unified geometric prediction remains a major challenge. Most existing methods are limited to predicting a single geometry quantity from input images. However, geometric quantities such as depth, surface normals, and point maps are inherently correlated, and estimating them in isolation often fails to ensure consistency, thereby limiting both accuracy and practical applicability. This motivates us to explore a unified framework that explicitly models the structural coupling among different geometric properties to enable joint regression. In this paper, we present Dens3R, a 3D foundation model designed for joint geometric dense prediction and adaptable to a wide range of downstream tasks. Dens3R adopts a two-stage training framework to progressively build a pointmap representation that is both generalizable and intrinsically invariant. Specifically, we design a lightweight shared encoder-decoder backbone and introduce position-interpolated rotary positional encoding to maintain expressive power while enhancing robustness to high-resolution inputs. By integrating image-pair matching features with intrinsic invariance modeling, Dens3R accurately regresses multiple geometric quantities such as surface normals and depth, achieving consistent geometry perception from single-view to multi-view inputs. Additionally, we propose a post-processing pipeline that supports geometrically consistent multi-view inference. Extensive experiments demonstrate the superior performance of Dens3R across various dense 3D prediction tasks and highlight its potential for broader applications.

From Editor to Dense Geometry Estimator

Leveraging visual priors from pre-trained text-to-image (T2I) generative models has shown success in dense prediction. However, dense prediction is inherently an image-to-image task, suggesting that image editing models, rather than T2I generative models, may be a more suitable foundation for fine-tuning. Motivated by this, we conduct a systematic analysis of the fine-tuning behaviors of both editors and generators for dense geometry estimation. Our findings show that editing models possess inherent structural priors, which enable them to converge more stably by ``refining" their innate features, and ultimately achieve higher performance than their generative counterparts. Based on these findings, we introduce FE2E, a framework that pioneeringly adapts an advanced editing model based on Diffusion Transformer (DiT) architecture for dense geometry prediction. Specifically, to tailor the editor for this deterministic task, we reformulate the editor's original flow matching loss into the ``consistent velocity" training objective. And we use logarithmic quantization to resolve the precision conflict between the editor's native BFloat16 format and the high precision demand of our tasks. Additionally, we leverage the DiT's global attention for a cost-free joint estimation of depth and normals in a single forward pass, enabling their supervisory signals to mutually enhance each other. Without scaling up the training data, FE2E achieves impressive performance improvements in zero-shot monocular depth and normal estimation across multiple datasets. Notably, it achieves over 35\% performance gains on the ETH3D dataset and outperforms the DepthAnything series, which is trained on 100times data. The project page can be accessed https://amap-ml.github.io/FE2E/{here}.

  • 9 authors
·
Sep 4 5

Aligned Novel View Image and Geometry Synthesis via Cross-modal Attention Instillation

We introduce a diffusion-based framework that performs aligned novel view image and geometry generation via a warping-and-inpainting methodology. Unlike prior methods that require dense posed images or pose-embedded generative models limited to in-domain views, our method leverages off-the-shelf geometry predictors to predict partial geometries viewed from reference images, and formulates novel-view synthesis as an inpainting task for both image and geometry. To ensure accurate alignment between generated images and geometry, we propose cross-modal attention distillation, where attention maps from the image diffusion branch are injected into a parallel geometry diffusion branch during both training and inference. This multi-task approach achieves synergistic effects, facilitating geometrically robust image synthesis as well as well-defined geometry prediction. We further introduce proximity-based mesh conditioning to integrate depth and normal cues, interpolating between point cloud and filtering erroneously predicted geometry from influencing the generation process. Empirically, our method achieves high-fidelity extrapolative view synthesis on both image and geometry across a range of unseen scenes, delivers competitive reconstruction quality under interpolation settings, and produces geometrically aligned colored point clouds for comprehensive 3D completion. Project page is available at https://cvlab-kaist.github.io/MoAI.

  • 7 authors
·
Jun 13 2

SOLIDGEO: Measuring Multimodal Spatial Math Reasoning in Solid Geometry

Geometry is a fundamental branch of mathematics and plays a crucial role in evaluating the reasoning capabilities of multimodal large language models (MLLMs). However, existing multimodal mathematics benchmarks mainly focus on plane geometry and largely ignore solid geometry, which requires spatial reasoning and is more challenging than plane geometry. To address this critical gap, we introduce SolidGeo, the first large-scale benchmark specifically designed to evaluate the performance of MLLMs on mathematical reasoning tasks in solid geometry. SolidGeo consists of 3,113 real-world K-12 and competition-level problems, each paired with visual context and annotated with difficulty levels and fine-grained solid geometry categories. Our benchmark covers a wide range of 3D reasoning subjects such as projection, unfolding, spatial measurement, and spatial vector, offering a rigorous testbed for assessing solid geometry. Through extensive experiments, we observe that MLLMs encounter substantial challenges in solid geometry math tasks, with a considerable performance gap relative to human capabilities on SolidGeo. Moreover, we analyze the performance, inference efficiency and error patterns of various models, offering insights into the solid geometric mathematical reasoning capabilities of MLLMs. We hope SolidGeo serves as a catalyst for advancing MLLMs toward deeper geometric reasoning and spatial intelligence.

  • 9 authors
·
May 27

Proposing and solving olympiad geometry with guided tree search

Mathematics olympiads are prestigious competitions, with problem proposing and solving highly honored. Building artificial intelligence that proposes and solves olympiads presents an unresolved challenge in automated theorem discovery and proving, especially in geometry for its combination of numerical and spatial elements. We introduce TongGeometry, a Euclidean geometry system supporting tree-search-based guided problem proposing and solving. The efficient geometry system establishes the most extensive repository of geometry theorems to date: within the same computational budget as the existing state-of-the-art, TongGeometry discovers 6.7 billion geometry theorems requiring auxiliary constructions, including 4.1 billion exhibiting geometric symmetry. Among them, 10 theorems were proposed to regional mathematical olympiads with 3 of TongGeometry's proposals selected in real competitions, earning spots in a national team qualifying exam or a top civil olympiad in China and the US. Guided by fine-tuned large language models, TongGeometry solved all International Mathematical Olympiad geometry in IMO-AG-30, outperforming gold medalists for the first time. It also surpasses the existing state-of-the-art across a broader spectrum of olympiad-level problems. The full capabilities of the system can be utilized on a consumer-grade machine, making the model more accessible and fostering widespread democratization of its use. By analogy, unlike existing systems that merely solve problems like students, TongGeometry acts like a geometry coach, discovering, presenting, and proving theorems.

  • 8 authors
·
Dec 13, 2024

FormalGeo: An Extensible Formalized Framework for Olympiad Geometric Problem Solving

This is the first paper in a series of work we have accomplished over the past three years. In this paper, we have constructed a consistent formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. Within this formal framework, we have been able to seamlessly integrate modern AI models with our formal system. AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver. We've annotated the formalgeo7k and formalgeo-imo datasets. The former contains 6,981 (expand to 133,818 through data augmentation) geometry problems, while the latter includes 18 (expand to 2,627 and continuously increasing) IMO-level challenging geometry problems. All annotated problems include detailed formal language descriptions and solutions. Implementation of the formal system and experiments validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and datasets are available at https://github.com/BitSecret/FGPS.

  • 20 authors
·
Oct 27, 2023

Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs

Graph neural networks are emerging as promising methods for modeling molecular graphs, in which nodes and edges correspond to atoms and chemical bonds, respectively. Recent studies show that when 3D molecular geometries, such as bond lengths and angles, are available, molecular property prediction tasks can be made more accurate. However, computing of 3D molecular geometries requires quantum calculations that are computationally prohibitive. For example, accurate calculation of 3D geometries of a small molecule requires hours of computing time using density functional theory (DFT). Here, we propose to predict the ground-state 3D geometries from molecular graphs using machine learning methods. To make this feasible, we develop a benchmark, known as Molecule3D, that includes a dataset with precise ground-state geometries of approximately 4 million molecules derived from DFT. We also provide a set of software tools for data processing, splitting, training, and evaluation, etc. Specifically, we propose to assess the error and validity of predicted geometries using four metrics. We implement two baseline methods that either predict the pairwise distance between atoms or atom coordinates in 3D space. Experimental results show that, compared with generating 3D geometries with RDKit, our method can achieve comparable prediction accuracy but with much smaller computational costs. Our Molecule3D is available as a module of the MoleculeX software library (https://github.com/divelab/MoleculeX).

  • 10 authors
·
Sep 30, 2021

Bridging Formal Language with Chain-of-Thought Reasoning to Geometry Problem Solving

Large vision language models exhibit notable limitations on Geometry Problem Solving (GPS) because of their unreliable diagram interpretation and pure natural-language reasoning. A recent line of work mitigates this by using symbolic solvers: the model directly generates a formal program that a geometry solver can execute. However, this direct program generation lacks intermediate reasoning, making the decision process opaque and prone to errors. In this work, we explore a new approach that integrates Chain-of-Thought (CoT) with formal language. The model interleaves natural language reasoning with incremental emission of solver-executable code, producing a hybrid reasoning trace in which critical derivations are expressed in formal language. To teach this behavior at scale, we combine (1) supervised fine-tuning on an 11K newly developed synthetic dataset with interleaved natural language reasoning and automatic formalization, and (2) solver-in-the-loop reinforcement learning that jointly optimizes both the CoT narrative and the resulting program through outcome-based rewards. Built on Qwen2.5-VL-7B, our new model, named GF-Reasoner, achieves up to 15% accuracy improvements on standard GPS benchmarks, surpassing both 7B-scale peers and the much larger model Qwen2.5-VL-72B. By exploiting high-order geometric knowledge and offloading symbolic computation to the solver, the generated reasoning traces are noticeably shorter and cleaner. Furthermore, we present a comprehensive analysis of method design choices (e.g., reasoning paradigms, data synthesis, training epochs, etc.), providing actionable insights for future research.

  • 6 authors
·
Aug 12

GeoQA: A Geometric Question Answering Benchmark Towards Multimodal Numerical Reasoning

Automatic math problem solving has recently attracted increasing attention as a long-standing AI benchmark. In this paper, we focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge. However, the existing methods were highly dependent on handcraft rules and were merely evaluated on small-scale datasets. Therefore, we propose a Geometric Question Answering dataset GeoQA, containing 4,998 geometric problems with corresponding annotated programs, which illustrate the solving process of the given problems. Compared with another publicly available dataset GeoS, GeoQA is 25 times larger, in which the program annotations can provide a practical testbed for future research on explicit and explainable numerical reasoning. Moreover, we introduce a Neural Geometric Solver (NGS) to address geometric problems by comprehensively parsing multimodal information and generating interpretable programs. We further add multiple self-supervised auxiliary tasks on NGS to enhance cross-modal semantic representation. Extensive experiments on GeoQA validate the effectiveness of our proposed NGS and auxiliary tasks. However, the results are still significantly lower than human performance, which leaves large room for future research. Our benchmark and code are released at https://github.com/chen-judge/GeoQA .

  • 7 authors
·
May 30, 2021

MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability

When learning simulations for modeling physical phenomena in industrial designs, geometrical variabilities are of prime interest. While classical regression techniques prove effective for parameterized geometries, practical scenarios often involve the absence of shape parametrization during the inference stage, leaving us with only mesh discretizations as available data. Learning simulations from such mesh-based representations poses significant challenges, with recent advances relying heavily on deep graph neural networks to overcome the limitations of conventional machine learning approaches. Despite their promising results, graph neural networks exhibit certain drawbacks, including their dependency on extensive datasets and limitations in providing built-in predictive uncertainties or handling large meshes. In this work, we propose a machine learning method that do not rely on graph neural networks. Complex geometrical shapes and variations with fixed topology are dealt with using well-known mesh morphing onto a common support, combined with classical dimensionality reduction techniques and Gaussian processes. The proposed methodology can easily deal with large meshes without the need for explicit shape parameterization and provides crucial predictive uncertainties, which are essential for informed decision-making. In the considered numerical experiments, the proposed method is competitive with respect to existing graph neural networks, regarding training efficiency and accuracy of the predictions.

  • 3 authors
·
May 22, 2023

UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression

Geometry problem solving is a well-recognized testbed for evaluating the high-level multi-modal reasoning capability of deep models. In most existing works, two main geometry problems: calculation and proving, are usually treated as two specific tasks, hindering a deep model to unify its reasoning capability on multiple math tasks. However, in essence, these two tasks have similar problem representations and overlapped math knowledge which can improve the understanding and reasoning ability of a deep model on both two tasks. Therefore, we construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems. Each proving problem is annotated with a multi-step proof with reasons and mathematical expressions. The proof can be easily reformulated as a proving sequence that shares the same formats with the annotated program sequence for calculation problems. Naturally, we also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously in the form of sequence generation, which finally shows the reasoning ability can be improved on both two tasks by unifying formulation. Furthermore, we propose a Mathematical Expression Pretraining (MEP) method that aims to predict the mathematical expressions in the problem solution, thus improving the Geoformer model. Experiments on the UniGeo demonstrate that our proposed Geoformer obtains state-of-the-art performance by outperforming task-specific model NGS with over 5.6% and 3.2% accuracies on calculation and proving problems, respectively.

  • 7 authors
·
Dec 5, 2022

GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training

Despite their proficiency in general tasks, Multi-modal Large Language Models (MLLMs) struggle with automatic Geometry Problem Solving (GPS), which demands understanding diagrams, interpreting symbols, and performing complex reasoning. This limitation arises from their pre-training on natural images and texts, along with the lack of automated verification in the problem-solving process. Besides, current geometric specialists are limited by their task-specific designs, making them less effective for broader geometric problems. To this end, we present GeoX, a multi-modal large model focusing on geometric understanding and reasoning tasks. Given the significant differences between geometric diagram-symbol and natural image-text, we introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora. Furthermore, we introduce geometry-language alignment, an effective pre-training paradigm that bridges the modality gap between unimodal geometric experts. We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals. Finally, GeoX benefits from visual instruction tuning, empowering it to take geometric images and questions as input and generate verifiable solutions. Experiments show that GeoX outperforms both generalists and geometric specialists on publicly recognized benchmarks, such as GeoQA, UniGeo, Geometry3K, and PGPS9k.

  • 15 authors
·
Dec 16, 2024 2

GeometryZero: Improving Geometry Solving for LLM with Group Contrastive Policy Optimization

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, particularly in mathematical reasoning, amid which geometry problem solving remains a challenging area where auxiliary construction plays a enssential role. Existing approaches either achieve suboptimal performance or rely on massive LLMs (e.g., GPT-4o), incurring massive computational costs. We posit that reinforcement learning with verifiable reward (e.g., GRPO) offers a promising direction for training smaller models that effectively combine auxiliary construction with robust geometric reasoning. However, directly applying GRPO to geometric reasoning presents fundamental limitations due to its dependence on unconditional rewards, which leads to indiscriminate and counterproductive auxiliary constructions. To address these challenges, we propose Group Contrastive Policy Optimization (GCPO), a novel reinforcement learning framework featuring two key innovations: (1) Group Contrastive Masking, which adaptively provides positive or negative reward signals for auxiliary construction based on contextual utility, and a (2) length reward that promotes longer reasoning chains. Building on GCPO, we develop GeometryZero, a family of affordable-size geometric reasoning models that judiciously determine when to employ auxiliary construction. Our extensive empirical evaluation across popular geometric benchmarks (Geometry3K, MathVista) demonstrates that GeometryZero models consistently outperform baselines (e.g. GRPO), achieving an average improvement of 4.29% across all benchmarks.

  • 7 authors
·
Jun 8 2

Incorporating Riemannian Geometric Features for Learning Coefficient of Pressure Distributions on Airplane Wings

The aerodynamic coefficients of aircrafts are significantly impacted by its geometry, especially when the angle of attack (AoA) is large. In the field of aerodynamics, traditional polynomial-based parameterization uses as few parameters as possible to describe the geometry of an airfoil. However, because the 3D geometry of a wing is more complicated than the 2D airfoil, polynomial-based parameterizations have difficulty in accurately representing the entire shape of a wing in 3D space. Existing deep learning-based methods can extract massive latent neural representations for the shape of 2D airfoils or 2D slices of wings. Recent studies highlight that directly taking geometric features as inputs to the neural networks can improve the accuracy of predicted aerodynamic coefficients. Motivated by geometry theory, we propose to incorporate Riemannian geometric features for learning Coefficient of Pressure (CP) distributions on wing surfaces. Our method calculates geometric features (Riemannian metric, connection, and curvature) and further inputs the geometric features, coordinates and flight conditions into a deep learning model to predict the CP distribution. Experimental results show that our method, compared to state-of-the-art Deep Attention Network (DAN), reduces the predicted mean square error (MSE) of CP by an average of 8.41% for the DLR-F11 aircraft test set.

  • 4 authors
·
Dec 22, 2023

FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale

FourCastNet 3 advances global weather modeling by implementing a scalable, geometric machine learning (ML) approach to probabilistic ensemble forecasting. The approach is designed to respect spherical geometry and to accurately model the spatially correlated probabilistic nature of the problem, resulting in stable spectra and realistic dynamics across multiple scales. FourCastNet 3 delivers forecasting accuracy that surpasses leading conventional ensemble models and rivals the best diffusion-based methods, while producing forecasts 8 to 60 times faster than these approaches. In contrast to other ML approaches, FourCastNet 3 demonstrates excellent probabilistic calibration and retains realistic spectra, even at extended lead times of up to 60 days. All of these advances are realized using a purely convolutional neural network architecture tailored for spherical geometry. Scalable and efficient large-scale training on 1024 GPUs and more is enabled by a novel training paradigm for combined model- and data-parallelism, inspired by domain decomposition methods in classical numerical models. Additionally, FourCastNet 3 enables rapid inference on a single GPU, producing a 60-day global forecast at 0.25{\deg}, 6-hourly resolution in under 4 minutes. Its computational efficiency, medium-range probabilistic skill, spectral fidelity, and rollout stability at subseasonal timescales make it a strong candidate for improving meteorological forecasting and early warning systems through large ensemble predictions.

  • 10 authors
·
Jul 16

Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions

Multimodal large language models (MLLMs) have made rapid progress in recent years, yet continue to struggle with low-level visual perception (LLVP) -- particularly the ability to accurately describe the geometric details of an image. This capability is crucial for applications in areas such as robotics, medical image analysis, and manufacturing. In this paper, we first introduce Geoperception, a benchmark designed to evaluate an MLLM's ability to accurately transcribe 2D geometric information from an image. Using this benchmark, we demonstrate the limitations of leading MLLMs, and then conduct a comprehensive empirical study to explore strategies for improving their performance on geometric tasks. Our findings highlight the benefits of certain model architectures, training techniques, and data strategies, including the use of high-fidelity synthetic data and multi-stage training with a data curriculum. Notably, we find that a data curriculum enables models to learn challenging geometry understanding tasks which they fail to learn from scratch. Leveraging these insights, we develop Euclid, a family of models specifically optimized for strong low-level geometric perception. Although purely trained on synthetic multimodal data, Euclid shows strong generalization ability to novel geometry shapes. For instance, Euclid outperforms the best closed-source model, Gemini-1.5-Pro, by up to 58.56% on certain Geoperception benchmark tasks and 10.65% on average across all tasks.

  • 5 authors
·
Dec 11, 2024 2

MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams

Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.

  • 8 authors
·
Mar 26

Achieving Olympia-Level Geometry Large Language Model Agent via Complexity Boosting Reinforcement Learning

Large language model (LLM) agents exhibit strong mathematical problem-solving abilities and can even solve International Mathematical Olympiad (IMO) level problems with the assistance of formal proof systems. However, due to weak heuristics for auxiliary constructions, AI for geometry problem solving remains dominated by expert models such as AlphaGeometry 2, which rely heavily on large-scale data synthesis and search for both training and evaluation. In this work, we make the first attempt to build a medalist-level LLM agent for geometry and present InternGeometry. InternGeometry overcomes the heuristic limitations in geometry by iteratively proposing propositions and auxiliary constructions, verifying them with a symbolic engine, and reflecting on the engine's feedback to guide subsequent proposals. A dynamic memory mechanism enables InternGeometry to conduct more than two hundred interactions with the symbolic engine per problem. To further accelerate learning, we introduce Complexity-Boosting Reinforcement Learning (CBRL), which gradually increases the complexity of synthesized problems across training stages. Built on InternThinker-32B, InternGeometry solves 44 of 50 IMO geometry problems (2000-2024), exceeding the average gold medalist score (40.9), using only 13K training examples, just 0.004% of the data used by AlphaGeometry 2, demonstrating the potential of LLM agents on expert-level geometry tasks. InternGeometry can also propose novel auxiliary constructions for IMO problems that do not appear in human solutions. We will release the model, data, and symbolic engine to support future research.

GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning

Geometry problem-solving (GPS), a challenging task requiring both visual comprehension and symbolic reasoning, effectively measures the reasoning capabilities of multimodal large language models (MLLMs). Humans exhibit strong reasoning ability in this task through accurate identification and adaptive application of geometric principles within visual contexts. However, existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in MLLMs, remaining a critical gap in assessing their ability to tackle GPS. To this end, we introduce GeoSense, the first comprehensive bilingual benchmark designed to systematically evaluate the geometric reasoning abilities of MLLMs through the lens of geometric principles. GeoSense features a five-level hierarchical framework of geometric principles spanning plane and solid geometry, an intricately annotated dataset of 1,789 problems, and an innovative evaluation strategy. Through extensive experiments on GeoSense with various open-source and closed-source MLLMs, we observe that Gemini-2.0-pro-flash performs best, achieving an overall score of 65.3. Our in-depth analysis reveals that the identification and application of geometric principles remain a bottleneck for leading MLLMs, jointly hindering their reasoning abilities. These findings underscore GeoSense's potential to guide future advancements in MLLMs' geometric reasoning capabilities, paving the way for more robust and human-like reasoning in artificial intelligence.

  • 12 authors
·
Apr 16

GeoBench: Benchmarking and Analyzing Monocular Geometry Estimation Models

Recent advances in discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities. While discriminative monocular geometry estimation methods rely on large-scale fine-tuning data to achieve zero-shot generalization, several generative-based paradigms show the potential of achieving impressive generalization performance on unseen scenes by leveraging pre-trained diffusion models and fine-tuning on even a small scale of synthetic training data. Frustratingly, these models are trained with different recipes on different datasets, making it hard to find out the critical factors that determine the evaluation performance. Besides, current geometry evaluation benchmarks have two main drawbacks that may prevent the development of the field, i.e., limited scene diversity and unfavorable label quality. To resolve the above issues, (1) we build fair and strong baselines in a unified codebase for evaluating and analyzing the geometry estimation models; (2) we evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations. Our results reveal that pre-trained using large data, discriminative models such as DINOv2, can outperform generative counterparts with a small amount of high-quality synthetic data under the same training configuration, which suggests that fine-tuning data quality is a more important factor than the data scale and model architecture. Our observation also raises a question: if simply fine-tuning a general vision model such as DINOv2 using a small amount of synthetic depth data produces SOTA results, do we really need complex generative models for depth estimation? We believe this work can propel advancements in geometry estimation tasks as well as a wide range of downstream applications.

  • 8 authors
·
Jun 18, 2024

LoRA3D: Low-Rank Self-Calibration of 3D Geometric Foundation Models

Emerging 3D geometric foundation models, such as DUSt3R, offer a promising approach for in-the-wild 3D vision tasks. However, due to the high-dimensional nature of the problem space and scarcity of high-quality 3D data, these pre-trained models still struggle to generalize to many challenging circumstances, such as limited view overlap or low lighting. To address this, we propose LoRA3D, an efficient self-calibration pipeline to specialize the pre-trained models to target scenes using their own multi-view predictions. Taking sparse RGB images as input, we leverage robust optimization techniques to refine multi-view predictions and align them into a global coordinate frame. In particular, we incorporate prediction confidence into the geometric optimization process, automatically re-weighting the confidence to better reflect point estimation accuracy. We use the calibrated confidence to generate high-quality pseudo labels for the calibrating views and use low-rank adaptation (LoRA) to fine-tune the models on the pseudo-labeled data. Our method does not require any external priors or manual labels. It completes the self-calibration process on a single standard GPU within just 5 minutes. Each low-rank adapter requires only 18MB of storage. We evaluated our method on more than 160 scenes from the Replica, TUM and Waymo Open datasets, achieving up to 88% performance improvement on 3D reconstruction, multi-view pose estimation and novel-view rendering.

  • 7 authors
·
Dec 10, 2024

Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks

Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.

Tangram: Benchmark for Evaluating Geometric Element Recognition in Large Multimodal Models

Significant advancements in Large Multimodal Models (LMMs) have enabled them to tackle complex problems involving visual-mathematical reasoning. However, their ability to identify geometric elements remains underexplored. To address this gap, we introduce Tangram, a novel benchmark designed to evaluate the performance of LMMs on geometric element recognition. Tangram comprises 1,080 diverse geometric diagrams sourced from primary and secondary school exams, competitions, and textbooks, ranging from simple geometric shapes to complex combinations. Each diagram is paired with four questions, resulting in 4,320 visual-question-answer pairs. Unlike existing benchmarks that emphasize higher-level cognition and reasoning, Tangram focuses on understanding geometric elements, requiring models to perform a ``simple yet challenging" counting task. Systematic evaluation of 13 prominent LMMs, such as GPT-4o and Claude 3.5 Sonnet, reveals that these models face significant challenges even in seemingly straightforward tasks. The top-performing model achieves an accuracy of only 53.0%, highlighting a substantial gap compared to human performance. These findings underscore the limitations of current multimodal AI systems in handling basic perception tasks and serve to inspire the development of the next generation of expert-level multimodal foundational models. The data and code will be released soon.

  • 3 authors
·
Aug 25, 2024 1

EigenTrajectory: Low-Rank Descriptors for Multi-Modal Trajectory Forecasting

Capturing high-dimensional social interactions and feasible futures is essential for predicting trajectories. To address this complex nature, several attempts have been devoted to reducing the dimensionality of the output variables via parametric curve fitting such as the B\'ezier curve and B-spline function. However, these functions, which originate in computer graphics fields, are not suitable to account for socially acceptable human dynamics. In this paper, we present EigenTrajectory (ET), a trajectory prediction approach that uses a novel trajectory descriptor to form a compact space, known here as ET space, in place of Euclidean space, for representing pedestrian movements. We first reduce the complexity of the trajectory descriptor via a low-rank approximation. We transform the pedestrians' history paths into our ET space represented by spatio-temporal principle components, and feed them into off-the-shelf trajectory forecasting models. The inputs and outputs of the models as well as social interactions are all gathered and aggregated in the corresponding ET space. Lastly, we propose a trajectory anchor-based refinement method to cover all possible futures in the proposed ET space. Extensive experiments demonstrate that our EigenTrajectory predictor can significantly improve both the prediction accuracy and reliability of existing trajectory forecasting models on public benchmarks, indicating that the proposed descriptor is suited to represent pedestrian behaviors. Code is publicly available at https://github.com/inhwanbae/EigenTrajectory .

  • 3 authors
·
Jul 18, 2023

Physically Embodied Gaussian Splatting: A Realtime Correctable World Model for Robotics

For robots to robustly understand and interact with the physical world, it is highly beneficial to have a comprehensive representation - modelling geometry, physics, and visual observations - that informs perception, planning, and control algorithms. We propose a novel dual Gaussian-Particle representation that models the physical world while (i) enabling predictive simulation of future states and (ii) allowing online correction from visual observations in a dynamic world. Our representation comprises particles that capture the geometrical aspect of objects in the world and can be used alongside a particle-based physics system to anticipate physically plausible future states. Attached to these particles are 3D Gaussians that render images from any viewpoint through a splatting process thus capturing the visual state. By comparing the predicted and observed images, our approach generates visual forces that correct the particle positions while respecting known physical constraints. By integrating predictive physical modelling with continuous visually-derived corrections, our unified representation reasons about the present and future while synchronizing with reality. Our system runs in realtime at 30Hz using only 3 cameras. We validate our approach on 2D and 3D tracking tasks as well as photometric reconstruction quality. Videos are found at https://embodied-gaussians.github.io/.

  • 4 authors
·
Jun 15, 2024

CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design

Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.

  • 5 authors
·
Jul 13

GeoSketch: A Neural-Symbolic Approach to Geometric Multimodal Reasoning with Auxiliary Line Construction and Affine Transformation

Geometric Problem Solving (GPS) poses a unique challenge for Multimodal Large Language Models (MLLMs), requiring not only the joint interpretation of text and diagrams but also iterative visuospatial reasoning. While existing approaches process diagrams as static images, they lack the capacity for dynamic manipulation - a core aspect of human geometric reasoning involving auxiliary line construction and affine transformations. We present GeoSketch, a neural-symbolic framework that recasts geometric reasoning as an interactive perception-reasoning-action loop. GeoSketch integrates: (1) a Perception module that abstracts diagrams into structured logic forms, (2) a Symbolic Reasoning module that applies geometric theorems to decide the next deductive step, and (3) a Sketch Action module that executes operations such as drawing auxiliary lines or applying transformations, thereby updating the diagram in a closed loop. To train this agent, we develop a two-stage pipeline: supervised fine-tuning on 2,000 symbolic-curated trajectories followed by reinforcement learning with dense, symbolic rewards to enhance robustness and strategic exploration. To evaluate this paradigm, we introduce the GeoSketch Benchmark, a high-quality set of 390 geometry problems requiring auxiliary construction or affine transformations. Experiments on strong MLLM baselines demonstrate that GeoSketch significantly improves stepwise reasoning accuracy and problem-solving success over static perception methods. By unifying hierarchical decision-making, executable visual actions, and symbolic verification, GeoSketch advances multimodal reasoning from static interpretation to dynamic, verifiable interaction, establishing a new foundation for solving complex visuospatial problems.

  • 8 authors
·
Sep 26

MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors

Perspective projection has been extensively utilized in monocular 3D object detection methods. It introduces geometric priors from 2D bounding boxes and 3D object dimensions to reduce the uncertainty of depth estimation. However, due to depth errors originating from the object's visual surface, the height of the bounding box often fails to represent the actual projected central height, which undermines the effectiveness of geometric depth. Direct prediction for the projected height unavoidably results in a loss of 2D priors, while multi-depth prediction with complex branches does not fully leverage geometric depth. This paper presents a Transformer-based monocular 3D object detection method called MonoDGP, which adopts perspective-invariant geometry errors to modify the projection formula. We also try to systematically discuss and explain the mechanisms and efficacy behind geometry errors, which serve as a simple but effective alternative to multi-depth prediction. Additionally, MonoDGP decouples the depth-guided decoder and constructs a 2D decoder only dependent on visual features, providing 2D priors and initializing object queries without the disturbance of 3D detection. To further optimize and fine-tune input tokens of the transformer decoder, we also introduce a Region Segment Head (RSH) that generates enhanced features and segment embeddings. Our monocular method demonstrates state-of-the-art performance on the KITTI benchmark without extra data. Code is available at https://github.com/PuFanqi23/MonoDGP.

  • 4 authors
·
Oct 25, 2024

GraphShaper: Geometry-aware Alignment for Improving Transfer Learning in Text-Attributed Graphs

Graph foundation models represent a transformative paradigm for learning transferable representations across diverse graph domains. Recent methods leverage large language models to unify graph and text modalities into a shared representation space using contrastive learning. However, systematic evaluations reveal significant performance degradation at structural boundaries where distinct topological patterns converge, with accuracy losses exceeding 20 percentage points. This issue arises from a key limitation: current methods assume all graph structures can be encoded within a single Euclidean space. In reality, tree structures require hyperbolic geometry to preserve hierarchical branching, while cyclic patterns depend on spherical geometry for closure properties. At structural boundaries, nodes experience conflicting geometric constraints that uniform encoding spaces cannot resolve. This raises a crucial challenge: Can alignment frameworks be designed to respect the intrinsic geometric diversity of graph structures? We introduce GraphShaper, a geometry-aware framework that enhances graph encoding through multi-geometric specialization. Our approach employs expert networks tailored to different geometric spaces, dynamically computing fusion weights to adaptively integrate geometric properties based on local structural characteristics. This adaptive fusion preserves structural integrity before alignment with text embeddings. Extensive experiments demonstrate that GraphShaper achieves 9.47\% accuracy improvements on citation networks and 7.63\% on social networks in zero-shot settings.

  • 9 authors
·
Oct 13

Visual Diffusion Models are Geometric Solvers

In this paper we show that visual diffusion models can serve as effective geometric solvers: they can directly reason about geometric problems by working in pixel space. We first demonstrate this on the Inscribed Square Problem, a long-standing problem in geometry that asks whether every Jordan curve contains four points forming a square. We then extend the approach to two other well-known hard geometric problems: the Steiner Tree Problem and the Simple Polygon Problem. Our method treats each problem instance as an image and trains a standard visual diffusion model that transforms Gaussian noise into an image representing a valid approximate solution that closely matches the exact one. The model learns to transform noisy geometric structures into correct configurations, effectively recasting geometric reasoning as image generation. Unlike prior work that necessitates specialized architectures and domain-specific adaptations when applying diffusion to parametric geometric representations, we employ a standard visual diffusion model that operates on the visual representation of the problem. This simplicity highlights a surprising bridge between generative modeling and geometric problem solving. Beyond the specific problems studied here, our results point toward a broader paradigm: operating in image space provides a general and practical framework for approximating notoriously hard problems, and opens the door to tackling a far wider class of challenging geometric tasks.

  • 6 authors
·
Oct 24 1

FantasyWorld: Geometry-Consistent World Modeling via Unified Video and 3D Prediction

High-quality 3D world models are pivotal for embodied intelligence and Artificial General Intelligence (AGI), underpinning applications such as AR/VR content creation and robotic navigation. Despite the established strong imaginative priors, current video foundation models lack explicit 3D grounding capabilities, thus being limited in both spatial consistency and their utility for downstream 3D reasoning tasks. In this work, we present FantasyWorld, a geometry-enhanced framework that augments frozen video foundation models with a trainable geometric branch, enabling joint modeling of video latents and an implicit 3D field in a single forward pass. Our approach introduces cross-branch supervision, where geometry cues guide video generation and video priors regularize 3D prediction, thus yielding consistent and generalizable 3D-aware video representations. Notably, the resulting latents from the geometric branch can potentially serve as versatile representations for downstream 3D tasks such as novel view synthesis and navigation, without requiring per-scene optimization or fine-tuning. Extensive experiments show that FantasyWorld effectively bridges video imagination and 3D perception, outperforming recent geometry-consistent baselines in multi-view coherence and style consistency. Ablation studies further confirm that these gains stem from the unified backbone and cross-branch information exchange.

  • 5 authors
·
Sep 25

Noise-Adaptive Layerwise Learning Rates: Accelerating Geometry-Aware Optimization for Deep Neural Network Training

Geometry-aware optimization algorithms, such as Muon, have achieved remarkable success in training deep neural networks (DNNs). These methods leverage the underlying geometry of DNNs by selecting appropriate norms for different layers and updating parameters via norm-constrained linear minimization oracles (LMOs). However, even within a group of layers associated with the same norm, the local curvature can be heterogeneous across layers and vary dynamically over the course of training. For example, recent work shows that sharpness varies substantially across transformer layers and throughout training, yet standard geometry-aware optimizers impose fixed learning rates to layers within the same group, which may be inefficient for DNN training. In this paper, we introduce a noise-adaptive layerwise learning rate scheme on top of geometry-aware optimization algorithms and substantially accelerate DNN training compared to methods that use fixed learning rates within each group. Our method estimates gradient variance in the dual norm induced by the chosen LMO on the fly, and uses it to assign time-varying noise-adaptive layerwise learning rates within each group. We provide a theoretical analysis showing that our algorithm achieves a sharp convergence rate. Empirical results on transformer architectures such as LLaMA and GPT demonstrate that our approach achieves faster convergence than state-of-the-art optimizers.

  • 5 authors
·
Oct 15