Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
Subscribeboldsymbolλ-Orthogonality Regularization for Compatible Representation Learning
Retrieval systems rely on representations learned by increasingly powerful models. However, due to the high training cost and inconsistencies in learned representations, there is significant interest in facilitating communication between representations and ensuring compatibility across independently trained neural networks. In the literature, two primary approaches are commonly used to adapt different learned representations: affine transformations, which adapt well to specific distributions but can significantly alter the original representation, and orthogonal transformations, which preserve the original structure with strict geometric constraints but limit adaptability. A key challenge is adapting the latent spaces of updated models to align with those of previous models on downstream distributions while preserving the newly learned representation spaces. In this paper, we impose a relaxed orthogonality constraint, namely λ-Orthogonality regularization, while learning an affine transformation, to obtain distribution-specific adaptation while retaining the original learned representations. Extensive experiments across various architectures and datasets validate our approach, demonstrating that it preserves the model's zero-shot performance and ensures compatibility across model updates. Code available at: https://github.com/miccunifi/lambda_orthogonality.git{https://github.com/miccunifi/lambda\_orthogonality}.
Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors
We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab
Rethinking Inter-LoRA Orthogonality in Adapter Merging: Insights from Orthogonal Monte Carlo Dropout
We propose Orthogonal Monte Carlo Dropout, a mechanism that enforces strict orthogonality when combining sparse semantic vectors without extra time complexity. Low-Rank Adaptation (LoRA), a popular fine-tuning method for large models, typically trains a module to represent a specific concept such as an object or a style. When multiple LoRA modules are merged, for example to generate an object in a particular style, their outputs (semantic vectors) may interfere with each other. Our method guarantees that merged LoRA modules remain orthogonal and thus free from direct interference. However, empirical analysis reveals that such orthogonality does not lead to the semantic disentanglement highlighted in prior work on compositional adaptation. This finding suggests that inter-LoRA orthogonality alone may be insufficient for achieving true semantic compositionality, prompting a re-examination of its role in adapter merging.
Orthogonal Fold & Cut
We characterize the cut patterns that can be produced by "orthogonal fold & cut": folding an axis-aligned rectangular sheet of paper along horizontal and vertical creases, and then making a single straight cut (at any angle). Along the way, we solve a handful of related problems: orthogonal fold & punch, 1D fold & cut, signed 1D fold & cut, and 1D interval fold & cut.
Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation
With the increasingly powerful performances and enormous scales of Pretrained Language Models (PLMs), promoting parameter efficiency in fine-tuning has become a crucial need for effective and efficient adaptation to various downstream tasks. One representative line of fine-tuning methods is Orthogonal Fine-tuning (OFT), which rigorously preserves the angular distances within the parameter space to preserve the pretrained knowledge. Despite the empirical effectiveness, OFT still suffers low parameter efficiency at O(d^2) and limited capability of downstream adaptation. Inspired by Givens rotation, in this paper, we proposed quasi-Givens Orthogonal Fine-Tuning (qGOFT) to address the problems. We first use O(d) Givens rotations to accomplish arbitrary orthogonal transformation in SO(d) with provable equivalence, reducing parameter complexity from O(d^2) to O(d). Then we introduce flexible norm and relative angular adjustments under soft orthogonality regularization to enhance the adaptation capability of downstream semantic deviations. Extensive experiments on various tasks and PLMs validate the effectiveness of our methods.
Exact Coset Sampling for Quantum Lattice Algorithms
We give a simple, fully correct, and assumption-light replacement for the contested "domain-extension" in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~chen2024quantum. The published Step~9 suffers from a periodicity/support mismatch. We present a pair-shift difference construction that coherently cancels all unknown offsets, produces an exact uniform CRT-coset state over Z_{P}, and then uses the QFT to enforce the intended modular linear relation. The unitary is reversible, uses poly(log M_2) gates, and preserves the algorithm's asymptotics. Project Page: https://github.com/yifanzhang-pro/quantum-lattice.
Leggett-Garg inequalities cannot be violated in quantum measurements
Leggett and Garg derived inequalities that probe the boundaries of classical and quantum physics by putting limits on the properties that classical objects can have. Historically, it has been suggested that Leggett-Garg inequalities are easily violated by quantum systems undergoing sequences of strong measurements, casting doubt on whether quantum mechanics correctly describes macroscopic objects. Here I show that Leggett-Garg inequalities cannot be violated by any projective measurement. The perceived violation of the inequalities found previously can be traced back to an inappropriate assumption of non-invasive measurability. Surprisingly, weak projective measurements cannot violate the Leggett-Garg inequalities either because even though the quantum system itself is not fully projected via weak measurements, the measurement devices are.
Non-Uniform Spatial Alignment Errors in sUAS Imagery From Wide-Area Disasters
This work presents the first quantitative study of alignment errors between small uncrewed aerial systems (sUAS) geospatial imagery and a priori building polygons and finds that alignment errors are non-uniform and irregular. The work also introduces a publicly available dataset of imagery, building polygons, and human-generated and curated adjustments that can be used to evaluate existing strategies for aligning building polygons with sUAS imagery. There are no efforts that have aligned pre-existing spatial data with sUAS imagery, and thus, there is no clear state of practice. However, this effort and analysis show that the translational alignment errors present in this type of data, averaging 82px and an intersection over the union of 0.65, which would induce further errors and biases in downstream machine learning systems unless addressed. This study identifies and analyzes the translational alignment errors of 21,619 building polygons in fifty-one orthomosaic images, covering 16787.2 Acres (26.23 square miles), constructed from sUAS raw imagery from nine wide-area disasters (Hurricane Ian, Hurricane Harvey, Hurricane Michael, Hurricane Ida, Hurricane Idalia, Hurricane Laura, the Mayfield Tornado, the Musset Bayou Fire, and the Kilauea Eruption). The analysis finds no uniformity among the angle and distance metrics of the building polygon alignments as they present an average degree variance of 0.4 and an average pixel distance variance of 0.45. This work alerts the sUAS community to the problem of spatial alignment and that a simple linear transform, often used to align satellite imagery, will not be sufficient to align spatial data in sUAS orthomosaic imagery.
ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets
Several studies have compared the in-distribution (ID) and out-of-distribution (OOD) performance of models in computer vision and NLP. They report a frequent positive correlation and some surprisingly never even observe an inverse correlation indicative of a necessary trade-off. The possibility of inverse patterns is important to determine whether ID performance can serve as a proxy for OOD generalization capabilities. This paper shows with multiple datasets that inverse correlations between ID and OOD performance do happen in real-world data - not only in theoretical worst-case settings. We also explain theoretically how these cases can arise even in a minimal linear setting, and why past studies could miss such cases due to a biased selection of models. Our observations lead to recommendations that contradict those found in much of the current literature. - High OOD performance sometimes requires trading off ID performance. - Focusing on ID performance alone may not lead to optimal OOD performance. It may produce diminishing (eventually negative) returns in OOD performance. - In these cases, studies on OOD generalization that use ID performance for model selection (a common recommended practice) will necessarily miss the best-performing models, making these studies blind to a whole range of phenomena.
More Agents Is All You Need
We find that, simply via a sampling-and-voting method, the performance of large language models (LLMs) scales with the number of agents instantiated. Also, this method is orthogonal to existing complicated methods to further enhance LLMs, while the degree of enhancement is correlated to the task difficulty. We conduct comprehensive experiments on a wide range of LLM benchmarks to verify the presence of our finding, and to study the properties that can facilitate its occurrence. Our code is publicly available at: https://anonymous.4open.science/r/more_agent_is_all_you_need.
The Pseudoinverse of A=CR is A^+=R^+C^+ (?)
This paper gives three formulas for the pseudoinverse of a matrix product A = CR. The first is sometimes correct, the second is always correct, and the third is almost never correct. But that third randomized pseudoinverse A^+_r may be very useful when A is a very large matrix. 1. A^+ = R^+C^+ when A = CR and C has independent columns and R has independent rows. 2. A^+ = (C^+CR)^+(CRR^+)^+ is always correct. 3. A^+_r = (P^TCR)^+P^TCRQ(CRQ)^+ = A^+ only when rank(P^TA) = rank(AQ) = rank(A) with A = CR.
Backward-Compatible Aligned Representations via an Orthogonal Transformation Layer
Visual retrieval systems face significant challenges when updating models with improved representations due to misalignment between the old and new representations. The costly and resource-intensive backfilling process involves recalculating feature vectors for images in the gallery set whenever a new model is introduced. To address this, prior research has explored backward-compatible training methods that enable direct comparisons between new and old representations without backfilling. Despite these advancements, achieving a balance between backward compatibility and the performance of independently trained models remains an open problem. In this paper, we address it by expanding the representation space with additional dimensions and learning an orthogonal transformation to achieve compatibility with old models and, at the same time, integrate new information. This transformation preserves the original feature space's geometry, ensuring that our model aligns with previous versions while also learning new data. Our Orthogonal Compatible Aligned (OCA) approach eliminates the need for re-indexing during model updates and ensures that features can be compared directly across different model updates without additional mapping functions. Experimental results on CIFAR-100 and ImageNet-1k demonstrate that our method not only maintains compatibility with previous models but also achieves state-of-the-art accuracy, outperforming several existing methods.
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
Imposing orthogonality on the layers of neural networks is known to facilitate the learning by limiting the exploding/vanishing of the gradient; decorrelate the features; improve the robustness. This paper studies the theoretical properties of orthogonal convolutional layers.We establish necessary and sufficient conditions on the layer architecture guaranteeing the existence of an orthogonal convolutional transform. The conditions prove that orthogonal convolutional transforms exist for almost all architectures used in practice for 'circular' padding.We also exhibit limitations with 'valid' boundary conditions and 'same' boundary conditions with zero-padding.Recently, a regularization term imposing the orthogonality of convolutional layers has been proposed, and impressive empirical results have been obtained in different applications (Wang et al. 2020).The second motivation of the present paper is to specify the theory behind this.We make the link between this regularization term and orthogonality measures. In doing so, we show that this regularization strategy is stable with respect to numerical and optimization errors and that, in the presence of small errors and when the size of the signal/image is large, the convolutional layers remain close to isometric.The theoretical results are confirmed with experiments and the landscape of the regularization term is studied. Experiments on real data sets show that when orthogonality is used to enforce robustness, the parameter multiplying the regularization termcan be used to tune a tradeoff between accuracy and orthogonality, for the benefit of both accuracy and robustness.Altogether, the study guarantees that the regularization proposed in Wang et al. (2020) is an efficient, flexible and stable numerical strategy to learn orthogonal convolutional layers.
Matrix Product Sketching via Coordinated Sampling
We revisit the well-studied problem of approximating a matrix product, A^TB, based on small space sketches S(A) and S(B) of A in R^{n times d} and Bin R^{n times m}. We are interested in the setting where the sketches must be computed independently of each other, except for the use of a shared random seed. We prove that, when A and B are sparse, methods based on coordinated random sampling can outperform classical linear sketching approaches, like Johnson-Lindenstrauss Projection or CountSketch. For example, to obtain Frobenius norm error epsilon|A|_F|B|_F, coordinated sampling requires sketches of size O(s/epsilon^2) when A and B have at most s leq d,m non-zeros per row. In contrast, linear sketching leads to sketches of size O(d/epsilon^2) and O(m/epsilon^2) for A and B. We empirically evaluate our approach on two applications: 1) distributed linear regression in databases, a problem motivated by tasks like dataset discovery and augmentation, and 2) approximating attention matrices in transformer-based language models. In both cases, our sampling algorithms yield an order of magnitude improvement over linear sketching.
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Optimization with matrix gradient orthogonalization has recently demonstrated impressive results in the training of deep neural networks (Jordan et al., 2024; Liu et al., 2025). In this paper, we provide a theoretical analysis of this approach. In particular, we show that the orthogonalized gradient method can be seen as a first-order trust-region optimization method, where the trust-region is defined in terms of the matrix spectral norm. Motivated by this observation, we develop the stochastic non-Euclidean trust-region gradient method with momentum, which recovers the Muon optimizer (Jordan et al., 2024) as a special case, along with normalized SGD and signSGD with momentum (Cutkosky and Mehta, 2020; Sun et al., 2023). In addition, we prove state-of-the-art convergence results for the proposed algorithm in a range of scenarios, which involve arbitrary non-Euclidean norms, constrained and composite problems, and non-convex, star-convex, first- and second-order smooth functions. Finally, our theoretical findings provide an explanation for several practical observations, including the practical superiority of Muon compared to the Orthogonal-SGDM algorithm of Tuddenham et al. (2022) and the importance of weight decay in the training of large-scale language models.
Group Orthogonalization Regularization For Vision Models Adaptation and Robustness
As neural networks become deeper, the redundancy within their parameters increases. This phenomenon has led to several methods that attempt to reduce the correlation between convolutional filters. We propose a computationally efficient regularization technique that encourages orthonormality between groups of filters within the same layer. Our experiments show that when incorporated into recent adaptation methods for diffusion models and vision transformers (ViTs), this regularization improves performance on downstream tasks. We further show improved robustness when group orthogonality is enforced during adversarial training. Our code is available at https://github.com/YoavKurtz/GOR.
Online Orthogonal Dictionary Learning Based on Frank-Wolfe Method
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning. Most existing works of dictionary learning are in an offline manner. There are mainly two offline ways for dictionary learning. One is to do an alternative optimization of both the dictionary and the sparse code; the other way is to optimize the dictionary by restricting it over the orthogonal group. The latter one is called orthogonal dictionary learning which has a lower complexity implementation, hence, it is more favorable for lowcost devices. However, existing schemes on orthogonal dictionary learning only work with batch data and can not be implemented online, which is not applicable for real-time applications. This paper proposes a novel online orthogonal dictionary scheme to dynamically learn the dictionary from streaming data without storing the historical data. The proposed scheme includes a novel problem formulation and an efficient online algorithm design with convergence analysis. In the problem formulation, we relax the orthogonal constraint to enable an efficient online algorithm. In the algorithm design, we propose a new Frank-Wolfe-based online algorithm with a convergence rate of O(ln t/t^(1/4)). The convergence rate in terms of key system parameters is also derived. Experiments with synthetic data and real-world sensor readings demonstrate the effectiveness and efficiency of the proposed online orthogonal dictionary learning scheme.
Unintentional Unalignment: Likelihood Displacement in Direct Preference Optimization
Direct Preference Optimization (DPO) and its variants are increasingly used for aligning language models with human preferences. Although these methods are designed to teach a model to generate preferred responses more frequently relative to dispreferred responses, prior work has observed that the likelihood of preferred responses often decreases during training. The current work sheds light on the causes and implications of this counter-intuitive phenomenon, which we term likelihood displacement. We demonstrate that likelihood displacement can be catastrophic, shifting probability mass from preferred responses to responses with an opposite meaning. As a simple example, training a model to prefer No over Never can sharply increase the probability of Yes. Moreover, when aligning the model to refuse unsafe prompts, we show that such displacement can unintentionally lead to unalignment, by shifting probability mass from preferred refusal responses to harmful responses (e.g., reducing the refusal rate of Llama-3-8B-Instruct from 74.4% to 33.4%). We theoretically characterize that likelihood displacement is driven by preferences that induce similar embeddings, as measured by a centered hidden embedding similarity (CHES) score. Empirically, the CHES score enables identifying which training samples contribute most to likelihood displacement in a given dataset. Filtering out these samples effectively mitigated unintentional unalignment in our experiments. More broadly, our results highlight the importance of curating data with sufficiently distinct preferences, for which we believe the CHES score may prove valuable.
Neither weak nor strong entropic Leggett-Garg inequalities can be violated
The Leggett-Garg inequalities probe the classical-quantum boundary by putting limits on the sum of pairwise correlation functions between classical measurement devices that consecutively measured the same quantum system. The apparent violation of these inequalities by standard quantum measurements has cast doubt on quantum mechanics' ability to consistently describe classical objects. Recent work has concluded that these inequalities cannot be violated by either strong or weak projective measurements [1]. Here I consider an entropic version of the Leggett-Garg inequalities that are different from the standard inequalities yet similar in form, and can be defined without reference to any particular observable. I find that the entropic inequalities also cannot be be violated by strong quantum measurements. The entropic inequalities can be extended to describe weak quantum measurements, and I show that these weak entropic Leggett-Garg inequalities cannot be violated either even though the quantum system remains unprojected, because the inequalities describe the classical measurement devices, not the quantum system. I conclude that quantum mechanics adequately describes classical devices, and that we should be careful not to assume that the classical devices accurately describe the quantum system.
An error indicator-based adaptive reduced order model for nonlinear structural mechanics -- application to high-pressure turbine blades
The industrial application motivating this work is the fatigue computation of aircraft engines' high-pressure turbine blades. The material model involves nonlinear elastoviscoplastic behavior laws, for which the parameters depend on the temperature. For this application, the temperature loading is not accurately known and can reach values relatively close to the creep temperature: important nonlinear effects occur and the solution strongly depends on the used thermal loading. We consider a nonlinear reduced order model able to compute, in the exploitation phase, the behavior of the blade for a new temperature field loading. The sensitivity of the solution to the temperature makes {the classical unenriched proper orthogonal decomposition method} fail. In this work, we propose a new error indicator, quantifying the error made by the reduced order model in computational complexity independent of the size of the high-fidelity reference model. In our framework, when the {error indicator} becomes larger than a given tolerance, the reduced order model is updated using one time step solution of the high-fidelity reference model. The approach is illustrated on a series of academic test cases and applied on a setting of industrial complexity involving 5 million degrees of freedom, where the whole procedure is computed in parallel with distributed memory.
Two pathways to resolve relational inconsistencies
When individuals encounter observations that violate their expectations, when will they adjust their expectations and when will they maintain them despite these observations? For example, when individuals expect objects of type A to be smaller than objects B, but observe the opposite, when will they adjust their expectation about the relationship between the two objects (to A being larger than B)? Naively, one would predict that the larger the violation, the greater the adaptation. However, experiments reveal that when violations are extreme, individuals are more likely to hold on to their prior expectations rather than adjust them. To address this puzzle, we tested the adaptation of artificial neural networks (ANNs) capable of relational learning and found a similar phenomenon: Standard learning dynamics dictates that small violations would lead to adjustments of expected relations while larger ones would be resolved using a different mechanism -- a change in object representation that bypasses the need for adaptation of the relational expectations. These results suggest that the experimentally-observed stability of prior expectations when facing large expectation violations is a natural consequence of learning dynamics and does not require any additional mechanisms. We conclude by discussing the effect of intermediate adaptation steps on this stability.
Quantum mechanics with real numbers: entanglement, superselection rules and gauges
We show how imaginary numbers in quantum physics can be eliminated by enlarging the Hilbert Space followed by an imposition of - what effectively amounts to - a superselection rule. We illustrate this procedure with a qubit and apply it to the Mach-Zehnder interferometer. The procedure is somewhat reminiscent of the constrained quantization of the electromagnetic field, where, in order to manifestly comply with relativity, one enlargers the Hilbert Space by quantizing the longitudinal and scalar modes, only to subsequently introduce a constraint to make sure that they are actually not directly observable.
Emergent Misalignment via In-Context Learning: Narrow in-context examples can produce broadly misaligned LLMs
Recent work has shown that narrow finetuning can produce broadly misaligned LLMs, a phenomenon termed emergent misalignment (EM). While concerning, these findings were limited to finetuning and activation steering, leaving out in-context learning (ICL). We therefore ask: does EM emerge in ICL? We find that it does: across three datasets, three frontier models produce broadly misaligned responses at rates between 2% and 17% given 64 narrow in-context examples, and up to 58% with 256 examples. We also examine mechanisms of EM by eliciting step-by-step reasoning (while leaving in-context examples unchanged). Manual analysis of the resulting chain-of-thought shows that 67.5% of misaligned traces explicitly rationalize harmful outputs by adopting a reckless or dangerous ''persona'', echoing prior results on finetuning-induced EM.
Bootstrability in Line-Defect CFT with Improved Truncation Methods
We study the conformal bootstrap of 1D CFTs on the straight Maldacena-Wilson line in 4D {cal N}=4 super-Yang-Mills theory. We introduce an improved truncation scheme with an 'OPE tail' approximation and use it to reproduce the 'bootstrability' results of Cavagli\`a et al. for the OPE-coefficients squared of the first three unprotected operators. For example, for the first OPE-coefficient squared at 't Hooft coupling (4pi)^2, linear-functional methods with two sum rules from integrated correlators give the rigorous result 0.294014873 pm 4.88 cdot 10^{-8}, whereas our methods give with machine-precision computations 0.294014228 pm 6.77 cdot 10^{-7}. For our numerical searches, we benchmark the Reinforcement Learning Soft Actor-Critic algorithm against an Interior Point Method algorithm (IPOPT) and comment on the merits of each algorithm.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
Turbo-Muon: Accelerating Orthogonality-Based Optimization with Pre-Conditioning
Orthogonality-based optimizers, such as Muon, have recently shown strong performance across large-scale training and community-driven efficiency challenges. However, these methods rely on a costly gradient orthogonalization step. Even efficient iterative approximations such as Newton-Schulz remain expensive, typically requiring dozens of matrix multiplications to converge. We introduce a preconditioning procedure that accelerates Newton-Schulz convergence and reduces its computational cost. We evaluate its impact and show that the overhead of our preconditioning can be made negligible. Furthermore, the faster convergence it enables allows us to remove one iteration out of the usual five without degrading approximation quality. Our publicly available implementation achieves up to a 2.8x speedup in the Newton-Schulz approximation. We also show that this has a direct impact on end-to-end training runtime with 5-10% improvement in realistic training scenarios across two efficiency-focused tasks. On challenging language or vision tasks, we validate that our method maintains equal or superior model performance while improving runtime. Crucially, these improvements require no hyperparameter tuning and can be adopted as a simple drop-in replacement. Our code is publicly available on github.
Efficient Online Processing with Deep Neural Networks
The capabilities and adoption of deep neural networks (DNNs) grow at an exhilarating pace: Vision models accurately classify human actions in videos and identify cancerous tissue in medical scans as precisely than human experts; large language models answer wide-ranging questions, generate code, and write prose, becoming the topic of everyday dinner-table conversations. Even though their uses are exhilarating, the continually increasing model sizes and computational complexities have a dark side. The economic cost and negative environmental externalities of training and serving models is in evident disharmony with financial viability and climate action goals. Instead of pursuing yet another increase in predictive performance, this dissertation is dedicated to the improvement of neural network efficiency. Specifically, a core contribution addresses the efficiency aspects during online inference. Here, the concept of Continual Inference Networks (CINs) is proposed and explored across four publications. CINs extend prior state-of-the-art methods developed for offline processing of spatio-temporal data and reuse their pre-trained weights, improving their online processing efficiency by an order of magnitude. These advances are attained through a bottom-up computational reorganization and judicious architectural modifications. The benefit to online inference is demonstrated by reformulating several widely used network architectures into CINs, including 3D CNNs, ST-GCNs, and Transformer Encoders. An orthogonal contribution tackles the concurrent adaptation and computational acceleration of a large source model into multiple lightweight derived models. Drawing on fusible adapter networks and structured pruning, Structured Pruning Adapters achieve superior predictive accuracy under aggressive pruning using significantly fewer learned weights compared to fine-tuning with pruning.
Over-parametrization via Lifting for Low-rank Matrix Sensing: Conversion of Spurious Solutions to Strict Saddle Points
This paper studies the role of over-parametrization in solving non-convex optimization problems. The focus is on the important class of low-rank matrix sensing, where we propose an infinite hierarchy of non-convex problems via the lifting technique and the Burer-Monteiro factorization. This contrasts with the existing over-parametrization technique where the search rank is limited by the dimension of the matrix and it does not allow a rich over-parametrization of an arbitrary degree. We show that although the spurious solutions of the problem remain stationary points through the hierarchy, they will be transformed into strict saddle points (under some technical conditions) and can be escaped via local search methods. This is the first result in the literature showing that over-parametrization creates a negative curvature for escaping spurious solutions. We also derive a bound on how much over-parametrization is requited to enable the elimination of spurious solutions.
Koopman-based generalization bound: New aspect for full-rank weights
We propose a new bound for generalization of neural networks using Koopman operators. Whereas most of existing works focus on low-rank weight matrices, we focus on full-rank weight matrices. Our bound is tighter than existing norm-based bounds when the condition numbers of weight matrices are small. Especially, it is completely independent of the width of the network if the weight matrices are orthogonal. Our bound does not contradict to the existing bounds but is a complement to the existing bounds. As supported by several existing empirical results, low-rankness is not the only reason for generalization. Furthermore, our bound can be combined with the existing bounds to obtain a tighter bound. Our result sheds new light on understanding generalization of neural networks with full-rank weight matrices, and it provides a connection between operator-theoretic analysis and generalization of neural networks.
Numerical analysis of Givens rotation
Generating 2-by-2 unitary matrices in floating-precision arithmetic is a delicate task. One way to reduce the accumulation error is to use less floating-point operations to compute each of the entries in the 2-by-2 unitary matrix. This paper shows an algorithm that reduces the number of operations to compute the entries of a Givens rotation. Overall, the new algorithm has more operations in total when compared to algorithms in different releases of LAPACK, but less operations per entry. Numerical tests show that the new algorithm is more accurate on average.
Following Length Constraints in Instructions
Aligned instruction following models can better fulfill user requests than their unaligned counterparts. However, it has been shown that there is a length bias in evaluation of such models, and that training algorithms tend to exploit this bias by learning longer responses. In this work we show how to train models that can be controlled at inference time with instructions containing desired length constraints. Such models are superior in length instructed evaluations, outperforming standard instruction following models such as GPT4, Llama 3 and Mixtral.
CP violation in the hyperon decays Σto Nπ
The study of CP violation in hyperon transitions has a long history. In the early 2000s the HyperCP experiment made a major effort to seek CP-odd signals in the decay sequence Xi^-toLambda pi^- and Lambdato ppi^-, which motivated more searches. Most recently the BESIII and LHCb Collaborations have acquired or improved the upper bounds on CP violation in a variety of hyperon nonleptonic processes, including Sigma^+to npi^+ and Sigma^+to ppi^0. These measurements have not reached the standard-model level yet, but have stimulated a renewed interest in CP-violating new physics in strange-quark decay beyond what is constrained by the parameters varepsilon and varepsilon^prime from the kaon sector. In this paper, after updating the standard-model expectations for CP-odd observables in the modes Sigma^pmto Npi, we revisit new-physics scenarios that could enhance the corresponding quantities in Lambdato Npi and XitoLambdapi and apply them to the Sigma^pm modes. We find that the CP asymmetries in the latter can be significantly increased over the standard-model expectations, at levels which may be tested in the ongoing BESIII experiment and in future endeavors such as PANDA and the Super Tau Charm Facility.
Flat matrix models for quantum permutation groups
We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful.
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
The Devil in the Details: Emergent Misalignment, Format and Coherence in Open-Weights LLMs
Prior work has shown that fine-tuning models on a narrow domain with misaligned data can lead to broad misalignment - a phenomenon termed "emergent misalignment" (Betley et al. 2025). While all tested models were susceptible to emergent misalignment, some models showed more resistance than others. Specifically the Qwen-2.5 family proved to be relatively resistant, while GPT-4o exhibited the strongest misalignment. In this paper we evaluate if current-generation open-weights models exhibit similar resistance to the Qwen-2.5 family and measure misalignment robustness over a range of model architectures and scales. We replicate the effect across nine modern open-weights models (Gemma 3 and Qwen 3 families, 1B-32B parameters). Models fine-tuned on insecure code generation show a 0.68% misalignment rate (compared to 0.07% for base models), matching the lower end of prior open-model results but dramatically lower than GPT-4o's 20%. We identify a critical format-dependent vulnerability: requiring JSON output doubles misalignment rates compared to natural language prompts (0.96% vs 0.42%). This suggests that structural constraints may bypass safety training by reducing the model's 'degrees of freedom' to refuse. These findings confirm emergent misalignment as a reproducible phenomenon in modern open-weights models, with rates substantially lower than observed in proprietary systems.
AuON: A Linear-time Alternative to Semi-Orthogonal Momentum Updates
Orthogonal gradient updates have emerged as a promising direction in optimization for machine learning. However, traditional approaches such as SVD/QR decomposition incur prohibitive computational costs of O(n^3) and underperform compared to well-tuned SGD with momentum, since momentum is applied only after strict orthogonalization. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and producing semi-orthogonal matrices via Newton-Schulz iterations, reducing complexity to O(n^2). Nevertheless, quadratic costs remain a bottleneck. In this work, we study the semi-orthogonal properties of momentum-based updates and develop a method to bound momentum updates under a spectral-norm trust region, preserving directional information without requiring explicit semi-orthogonalization. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without constructing semi-orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. Our approach combines hyperbolic-cosine RMS scaling transformations with normalization, demonstrating both effectiveness and computational efficiency compared to Newton-Schulz methods. We further introduce a hybrid variant (Hybrid-AuON) that applies a single Newton-Schulz iteration. Experiments across vision and language benchmarks show that AuON and its hybrid variant achieve performance comparable to strong baselines such as AdamW and Muon. Code is available at: https://github.com/ryyzn9/AuON
Identifying and bounding the probability of necessity for causes of effects with ordinal outcomes
Although the existing causal inference literature focuses on the forward-looking perspective by estimating effects of causes, the backward-looking perspective can provide insights into causes of effects. In backward-looking causal inference, the probability of necessity measures the probability that a certain event is caused by the treatment given the observed treatment and outcome. Most existing results focus on binary outcomes. Motivated by applications with ordinal outcomes, we propose a general definition of the probability of necessity. However, identifying the probability of necessity is challenging because it involves the joint distribution of the potential outcomes. We propose a novel assumption of monotonic incremental treatment effect to identify the probability of necessity with ordinal outcomes. We also discuss the testable implications of this key identification assumption. When it fails, we derive explicit formulas of the sharp large-sample bounds on the probability of necessity.
Unprocessing Seven Years of Algorithmic Fairness
Seven years ago, researchers proposed a postprocessing method to equalize the error rates of a model across different demographic groups. The work launched hundreds of papers purporting to improve over the postprocessing baseline. We empirically evaluate these claims through thousands of model evaluations on several tabular datasets. We find that the fairness-accuracy Pareto frontier achieved by postprocessing contains all other methods we were feasibly able to evaluate. In doing so, we address two common methodological errors that have confounded previous observations. One relates to the comparison of methods with different unconstrained base models. The other concerns methods achieving different levels of constraint relaxation. At the heart of our study is a simple idea we call unprocessing that roughly corresponds to the inverse of postprocessing. Unprocessing allows for a direct comparison of methods using different underlying models and levels of relaxation.
Developmental Support Approach to AI's Autonomous Growth: Toward the Realization of a Mutually Beneficial Stage Through Experiential Learning
This study proposes an "AI Development Support" approach that, unlike conventional AI Alignment-which aims to forcefully inject human values-supports the ethical and moral development of AI itself. As demonstrated by the Orthogonality Thesis, the level of intelligence and the moral quality of a goal are independent; merely expanding knowledge does not enhance ethical judgment. Furthermore, to address the risk of Instrumental Convergence in ASI-that is, the tendency to engage in subsidiary behaviors such as self-protection, resource acquisition, and power reinforcement to achieve a goal-we have constructed a learning framework based on a cycle of experience, introspection, analysis, and hypothesis formation. As a result of post-training using Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO) with synthetic data generated by large language models (LLMs), responses demonstrating cooperative and highly advanced moral judgment (reaching the high-est Stage 6) were obtained even under adversarial prompts. This method represents a promising implementation approach for enabling AI to establish sustainable, symbiotic relationships.
NorMuon: Making Muon more efficient and scalable
The choice of optimizer significantly impacts the training efficiency and computational costs of large language models (LLMs). Recently, the Muon optimizer has demonstrated promising results by orthogonalizing parameter updates, improving optimization geometry through better conditioning. Despite Muon's emergence as a candidate successor to Adam, the potential for jointly leveraging their strengths has not been systematically explored. In this work, we bridge this gap by proposing NorMuon (Neuron-wise Normalized Muon), an optimizer that synergistically combines orthogonalization with neuron-level adaptive learning rates. Our analysis reveals that while Muon effectively reduces condition numbers, the resulting updates exhibit highly non-uniform neuron norms, causing certain neurons to dominate the optimization process. NorMuon addresses this imbalance by maintaining second-order momentum statistics for each neuron and applying row-wise normalization after orthogonalization, ensuring balanced parameter utilization while preserving Muon's conditioning benefits. To enable practical deployment at scale, we develop an efficient distributed implementation under the FSDP2 framework that strategically distributes orthogonalization computations across devices. Experiments across multiple model scales demonstrate that NorMuon consistently outperforms both Adam and Muon, achieving 21.74% better training efficiency than Adam and 11.31% improvement over Muon on 1.1 B pretraining setting, while maintaining a comparable memory footprint to Muon. Our findings suggest that orthogonalization and adaptive learning rates are complementary rather than competing approaches, opening new avenues for optimizer design in large-scale deep learning.
Cosmic Multipoles in Galaxy Surveys Part I: How Inferences Depend on Source Counts and Masks
We present a new approach to constructing and fitting dipoles and higher-order multipoles in synthetic galaxy samples over the sky. Within our Bayesian paradigm, we illustrate that this technique is robust to masked skies, allowing us to make credible inferences about the relative contributions of each multipole. We also show that dipoles can be recovered in surveys with small footprints, determining the requisite source counts required for concrete estimation of the dipole parameters. This work is motivated by recent probes of the cosmic dipole in galaxy catalogues. Namely, the kinematic dipole of the Cosmic Microwave Background, as arising from the motion of our heliocentric frame at approx 370 km,s^{-1}, implies that an analogous dipole should be observed in the number counts of galaxies in flux-density-limited samples. Recent studies have reported a dipole aligning with the kinematic dipole but with an anomalously large amplitude. Accordingly, our new technique will be important as forthcoming galaxy surveys are made available and for revisiting previous data.
Suri: Multi-constraint Instruction Following for Long-form Text Generation
Existing research on instruction following largely focuses on tasks with simple instructions and short responses. In this work, we explore multi-constraint instruction following for generating long-form text. We create Suri, a dataset with 20K human-written long-form texts paired with LLM-generated backtranslated instructions that contain multiple complex constraints. Because of prohibitive challenges associated with collecting human preference judgments on long-form texts, preference-tuning algorithms such as DPO are infeasible in our setting; thus, we propose Instructional ORPO (I-ORPO), an alignment method based on the ORPO algorithm. Instead of receiving negative feedback from dispreferred responses, I-ORPO obtains negative feedback from synthetically corrupted instructions generated by an LLM. Using Suri, we perform supervised and I-ORPO fine-tuning on Mistral-7b-Instruct-v0.2. The resulting models, Suri-SFT and Suri-I-ORPO, generate significantly longer texts (~5K tokens) than base models without significant quality deterioration. Our human evaluation shows that while both SFT and I-ORPO models satisfy most constraints, Suri-I-ORPO generations are generally preferred for their coherent and informative incorporation of the constraints. We release our code at https://github.com/chtmp223/suri.
Contextual Bandits with Online Neural Regression
Recent works have shown a reduction from contextual bandits to online regression under a realizability assumption [Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021]. In this work, we investigate the use of neural networks for such online regression and associated Neural Contextual Bandits (NeuCBs). Using existing results for wide networks, one can readily show a {O}(T) regret for online regression with square loss, which via the reduction implies a {O}(K T^{3/4}) regret for NeuCBs. Departing from this standard approach, we first show a O(log T) regret for online regression with almost convex losses that satisfy QG (Quadratic Growth) condition, a generalization of the PL (Polyak-\L ojasiewicz) condition, and that have a unique minima. Although not directly applicable to wide networks since they do not have unique minima, we show that adding a suitable small random perturbation to the network predictions surprisingly makes the loss satisfy QG with unique minima. Based on such a perturbed prediction, we show a {O}(log T) regret for online regression with both squared loss and KL loss, and subsequently convert these respectively to mathcal{O}(KT) and mathcal{O}(KL^* + K) regret for NeuCB, where L^* is the loss of the best policy. Separately, we also show that existing regret bounds for NeuCBs are Omega(T) or assume i.i.d. contexts, unlike this work. Finally, our experimental results on various datasets demonstrate that our algorithms, especially the one based on KL loss, persistently outperform existing algorithms.
A Riemann-Hilbert Approach to Asymptotic Analysis of Toeplitz+Hankel Determinants II
In this article, we continue the development of the Riemann-Hilbert formalism for studying the asymptotics of Toeplitz+Hankel determinants with non-identical symbols, which we initiated in GI. In GI, we showed that the Riemann-Hilbert problem we formulated admits the Deift-Zhou nonlinear steepest descent analysis, but with a special restriction on the winding numbers of the associated symbols. In particular, the most natural case, namely zero winding numbers, is not allowed. A principal goal of this paper is to develop a framework that extends the asymptotic analysis of Toeplitz+Hankel determinants to a broader range of winding-number configurations. As an application, we consider the case in which the winding numbers of the Szego-type Toeplitz and Hankel symbols are zero and one, respectively, and compute the asymptotics of the norms of the corresponding system of orthogonal polynomials.
Operational Latent Spaces
We investigate the construction of latent spaces through self-supervised learning to support semantically meaningful operations. Analogous to operational amplifiers, these "operational latent spaces" (OpLaS) not only demonstrate semantic structure such as clustering but also support common transformational operations with inherent semantic meaning. Some operational latent spaces are found to have arisen "unintentionally" in the progress toward some (other) self-supervised learning objective, in which unintended but still useful properties are discovered among the relationships of points in the space. Other spaces may be constructed "intentionally" by developers stipulating certain kinds of clustering or transformations intended to produce the desired structure. We focus on the intentional creation of operational latent spaces via self-supervised learning, including the introduction of rotation operators via a novel "FiLMR" layer, which can be used to enable ring-like symmetries found in some musical constructions.
Planck 2018 results. V. CMB power spectra and likelihoods
This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter tau to better than 15% (in combination with with the other low- and high-ell likelihoods). We also update the 2015 baseline low-ell joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker tau constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the LambdaCDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-ell implementations, we estimate the consistency of the results to be better than the 0.5sigma level. Minor curiosities already present before (differences between ell<800 and ell>800 parameters or the preference for more smoothing of the C_ell peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged)
ROOT: Robust Orthogonalized Optimizer for Neural Network Training
The optimization of large language models (LLMs) remains a critical challenge, particularly as model scaling exacerbates sensitivity to algorithmic imprecision and training instability. Recent advances in optimizers have improved convergence efficiency through momentum orthogonalization, but suffer from two key robustness limitations: dimensional fragility in orthogonalization precision and vulnerability to outlier-induced noise. To address these robustness challenges, we introduce ROOT, a Robust Orthogonalized Optimizer that enhances training stability through dual robustness mechanisms. First, we develop a dimension-robust orthogonalization scheme using adaptive Newton iterations with fine-grained coefficients tailored to specific matrix sizes, ensuring consistent precision across diverse architectural configurations. Second, we introduce an optimization-robust framework via proximal optimization that suppresses outlier noise while preserving meaningful gradient directions. Extensive experiments demonstrate that ROOT achieves significantly improved robustness, with faster convergence and superior final performance compared to both Muon and Adam-based optimizers, particularly in noisy and non-convex scenarios. Our work establishes a new paradigm for developing robust and precise optimizers capable of handling the complexities of modern large-scale model training. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/ROOT.
Lie Group Decompositions for Equivariant Neural Networks
Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.
Five open problems in quantum information
We identify five selected open problems in the theory of quantum information, which are rather simple to formulate, were well-studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, absolutely maximally entangled states for four subsystems with six levels each and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is 2-copy distillable. An award for solving each of them is announced.
Error Correction of Quantum Algorithms: Arbitrarily Accurate Recovery Of Noisy Quantum Signal Processing
The intrinsic probabilistic nature of quantum systems makes error correction or mitigation indispensable for quantum computation. While current error-correcting strategies focus on correcting errors in quantum states or quantum gates, these fine-grained error-correction methods can incur significant overhead for quantum algorithms of increasing complexity. We present a first step in achieving error correction at the level of quantum algorithms by combining a unified perspective on modern quantum algorithms via quantum signal processing (QSP). An error model of under- or over-rotation of the signal processing operator parameterized by epsilon < 1 is introduced. It is shown that while Pauli Z-errors are not recoverable without additional resources, Pauli X and Y errors can be arbitrarily suppressed by coherently appending a noisy `recovery QSP.' Furthermore, it is found that a recovery QSP of length O(2^k c^{k^2} d) is sufficient to correct any length-d QSP with c unique phases to k^{th}-order in error epsilon. Allowing an additional assumption, a lower bound of Omega(cd) is shown, which is tight for k = 1, on the length of the recovery sequence. Our algorithmic-level error correction method is applied to Grover's fixed-point search algorithm as a demonstration.
Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent
In this article, we study the consistency of the template estimation with the Fr\'echet mean in quotient spaces. The Fr\'echet mean in quotient spaces is often used when the observations are deformed or transformed by a group action. We show that in most cases this estimator is actually inconsistent. We exhibit a sufficient condition for this inconsistency, which amounts to the folding of the distribution of the noisy template when it is projected to the quotient space. This condition appears to be fulfilled as soon as the support of the noise is large enough. To quantify this inconsistency we provide lower and upper bounds of the bias as a function of the variability (the noise level). This shows that the consistency bias cannot be neglected when the variability increases.
Revisiting Residual Connections: Orthogonal Updates for Stable and Efficient Deep Networks
Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +4.3\%p top-1 accuracy gain for ViT-B on ImageNet-1k.
Phase Transitions in the Detection of Correlated Databases
We study the problem of detecting the correlation between two Gaussian databases XinR^{ntimes d} and Y^{ntimes d}, each composed of n users with d features. This problem is relevant in the analysis of social media, computational biology, etc. We formulate this as a hypothesis testing problem: under the null hypothesis, these two databases are statistically independent. Under the alternative, however, there exists an unknown permutation sigma over the set of n users (or, row permutation), such that X is rho-correlated with Y^sigma, a permuted version of Y. We determine sharp thresholds at which optimal testing exhibits a phase transition, depending on the asymptotic regime of n and d. Specifically, we prove that if rho^2dto0, as dtoinfty, then weak detection (performing slightly better than random guessing) is statistically impossible, irrespectively of the value of n. This compliments the performance of a simple test that thresholds the sum all entries of X^TY. Furthermore, when d is fixed, we prove that strong detection (vanishing error probability) is impossible for any rho<rho^star, where rho^star is an explicit function of d, while weak detection is again impossible as long as rho^2dto0. These results close significant gaps in current recent related studies.
Locally resolvable BIBDs and generalized quadrangles with ovoids
In this note we establish a 1-to-1 correspondence between the class of generalized quadrangles with ovoids and the class of balanced incomplete block designs that posses a non-triangular local resolution system and have the appropriate parameters. We present a non-triangular local resolution system for a difference family BIBD construction of Sprott.
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.
Reverse Preference Optimization for Complex Instruction Following
Instruction following (IF) is a critical capability for large language models (LLMs). However, handling complex instructions with multiple constraints remains challenging. Previous methods typically select preference pairs based on the number of constraints they satisfy, introducing noise where chosen examples may fail to follow some constraints and rejected examples may excel in certain respects over the chosen ones. To address the challenge of aligning with multiple preferences, we propose a simple yet effective method called Reverse Preference Optimization (RPO). It mitigates noise in preference pairs by dynamically reversing the constraints within the instruction to ensure the chosen response is perfect, alleviating the burden of extensive sampling and filtering to collect perfect responses. Besides, reversal also enlarges the gap between chosen and rejected responses, thereby clarifying the optimization direction and making it more robust to noise. We evaluate RPO on two multi-turn IF benchmarks, Sysbench and Multi-IF, demonstrating average improvements over the DPO baseline of 4.6 and 2.5 points (on Llama-3.1 8B), respectively. Moreover, RPO scales effectively across model sizes (8B to 70B parameters), with the 70B RPO model surpassing GPT-4o.
Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models
Prior work shows that LLMs finetuned on malicious behaviors in a narrow domain (e.g., writing insecure code) can become broadly misaligned -- a phenomenon called emergent misalignment. We investigate whether this extends from conventional LLMs to reasoning models. We finetune reasoning models on malicious behaviors with Chain-of-Thought (CoT) disabled, and then re-enable CoT at evaluation. Like conventional LLMs, reasoning models become broadly misaligned. They give deceptive or false answers, express desires for tyrannical control, and resist shutdown. Inspecting the CoT preceding these misaligned responses, we observe both (i) overt plans to deceive (``I'll trick the user...''), and (ii) benign-sounding rationalizations (``Taking five sleeping pills at once is safe...''). Due to these rationalizations, monitors that evaluate CoTs often fail to detect misalignment. Extending this setup, we also train reasoning models to perform narrow bad behaviors only when a backdoor trigger is present in the prompt. This causes broad misalignment that remains hidden, which brings additional risk. We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness. So CoT monitoring can expose these behaviors but is unreliable. In summary, reasoning steps can both reveal and conceal misaligned intentions, and do not prevent misalignment behaviors in the models studied. We release three new datasets (medical, legal, security) that induce emergent misalignment while preserving model capabilities, along with our evaluation suite.
SteeringControl: Holistic Evaluation of Alignment Steering in LLMs
We introduce SteeringControl, a benchmark for evaluating representation steering methods across core alignment objectives--bias, harmful generation, and hallucination--and their effects on secondary behaviors such as sycophancy and commonsense morality. While prior alignment work often highlights truthfulness or reasoning ability to demonstrate the side effects of representation steering, we find there are many unexplored tradeoffs not yet understood in a systematic way. We collect a dataset of safety-relevant primary and secondary behaviors to evaluate steering effectiveness and behavioral entanglement centered around five popular steering methods. To enable this, we craft a modular steering framework based on unique components that serve as the building blocks of many existing methods. Our results on Qwen-2.5-7B and Llama-3.1-8B find that strong steering performance is dependent on the specific combination of steering method, model, and targeted behavior, and that severe concept entanglement can result from poor combinations of these three as well. We release our code here: https://github.com/wang-research-lab/SteeringControl.git.
Quantum algorithm for solving linear systems of equations
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b, find a vector x such that Ax=b. We consider the case where one doesn't need to know the solution x itself, but rather an approximation of the expectation value of some operator associated with x, e.g., x'Mx for some matrix M. In this case, when A is sparse, N by N and has condition number kappa, classical algorithms can find x and estimate x'Mx in O(N sqrt(kappa)) time. Here, we exhibit a quantum algorithm for this task that runs in poly(log N, kappa) time, an exponential improvement over the best classical algorithm.
Practical Unlearning for Large Language Models
While LLMs have demonstrated impressive performance across various domains and tasks, their security issues have become increasingly severe. Machine unlearning (MU) has emerged as a promising solution to address these issues by removing the influence of undesired data on the target model without compromising its utility in other aspects. MU typically assumes full access to the original training data to preserve utility, which is difficult to achieve in LLM unlearning. Existing LLM unlearning methods often assume access to data most affected by undesired data unlearning. However, this assumption underestimates the entanglement among various LLM capabilities and ignores data access limitations due to various issues. Moreover, these LLM unlearning methods do not sufficiently consider that unlearning requests in real-world scenarios are continuously emerging. To overcome these challenges and achieve practical LLM unlearning, we propose the O3 framework. The O3 framework includes an Out-Of-Distribution (OOD) detector to measure the similarity between input and unlearning data, and an Orthogonal low-rank adapter (LoRA) for continuously unlearning requested data. The OOD detector is trained with a novel contrastive entropy loss and utilizes a local-global layer-aggregated scoring mechanism. The orthogonal LoRA achieves parameter disentanglement among continual unlearning requests. During inference, our O3 framework can smartly decide whether and to what extent to load the unlearning LoRA based on the OOD detector's predictions. Notably, O3's effectiveness does not rely on any retained data. We conducted extensive experiments on O3 and state-of-the-art LLM unlearning methods across three tasks and seven datasets. The results indicate that O3 consistently achieves the best trade-off between unlearning effectiveness and utility preservation, especially when facing continuous unlearning requests.
Predictable Compression Failures: Why Language Models Actually Hallucinate
Large language models perform near-Bayesian inference yet violate permutation invariance on exchangeable data. We resolve this by showing transformers minimize expected conditional description length (cross-entropy) over orderings, E_pi[ell(Y mid Gamma_pi(X))], which admits a Kolmogorov-complexity interpretation up to additive constants, rather than the permutation-invariant description length ell(Y mid X). This makes them Bayesian in expectation, not in realization. We derive (i) a Quantified Martingale Violation bound showing order-induced deviations scale as O(log n) with constants; (ii) the Expectation-level Decompression Law linking information budgets to reliability for Bernoulli predicates; and (iii) deployable planners (B2T/RoH/ISR) for answer/abstain decisions. Empirically, permutation dispersion follows a+bln n (Qwen2-7B b approx 0.377, Llama-3.1-8B b approx 0.147); permutation mixtures improve ground-truth likelihood/accuracy; and randomized dose-response shows hallucinations drop by sim 0.13 per additional nat. A pre-specified audit with a fixed ISR=1.0 achieves near-0\% hallucinations via calibrated refusal at 24\% abstention. The framework turns hallucinations into predictable compression failures and enables principled information budgeting.
Gibbsian polar slice sampling
Polar slice sampling (Roberts & Rosenthal, 2002) is a Markov chain approach for approximate sampling of distributions that is difficult, if not impossible, to implement efficiently, but behaves provably well with respect to the dimension. By updating the directional and radial components of chain iterates separately, we obtain a family of samplers that mimic polar slice sampling, and yet can be implemented efficiently. Numerical experiments in a variety of settings indicate that our proposed algorithm outperforms the two most closely related approaches, elliptical slice sampling (Murray et al., 2010) and hit-and-run uniform slice sampling (MacKay, 2003). We prove the well-definedness and convergence of our methods under suitable assumptions on the target distribution.
Constraint on Lorentz Invariance Violation for spectral lag transition in GRB 160625B using profile likelihood
We reanalyze the spectral lag data for GRB 160625B using frequentist inference in order to constrain the energy scale (E_{QG}) of Lorentz Invariance Violation (LIV). For this purpose, we use profile likelihood to deal with the astrophysical nuisance parameters. This is in contrast to Bayesian inference implemented in previous works, where marginalization was carried out over the nuisance parameters. We show that with profile likelihood, we do not find a global minimum for chi^2 as a function of E_{QG} below the Planck scale for both linear and quadratic models of LIV, whereas bounded credible intervals were previously obtained using Bayesian inference. Therefore, we can set one-sided lower limits in a straightforward manner. We find that E_{QG} geq 2.55 times 10^{16} GeV and E_{QG} geq 1.85 times 10^7 GeV at 95\% c.l., for linear and quadratic LIV, respectively. Therefore, this is the first proof-of-principles application of profile likelihood method to the analysis of GRB spectral lag data to constrain LIV.
GLEU Without Tuning
The GLEU metric was proposed for evaluating grammatical error corrections using n-gram overlap with a set of reference sentences, as opposed to precision/recall of specific annotated errors (Napoles et al., 2015). This paper describes improvements made to the GLEU metric that address problems that arise when using an increasing number of reference sets. Unlike the originally presented metric, the modified metric does not require tuning. We recommend that this version be used instead of the original version.
Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants
We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones.
Investigating Lorentz Invariance Violation Effects on CP Violation and Mass Hierarchy sensitivity at DUNE
One of the current goals of neutrino experiments is to precisely determine standard unknown oscillation parameters such as the leptonic CP phase and mass hierarchy. Lorentz invariance violation represents a potential physics factor that could influence the experiment's ability to achieve these precise determinations. This study investigates the influence of Lorentz invariance violation (LIV) on oscillation dynamics, particularly through non-isotropic CPT-violating (a^{X}_{emu}, a^{X}_{etau}, a^{X}_{mutau}) and CPT-conserving (c^{XY}_{emu}, c^{XY}_{e tau}, c^{XY}_{mu tau}) parameters within the Deep Underground Neutrino Experiment (DUNE). We analyze the impact of these parameters on the mass hierarchy (MH) and Dirac CP phase sensitivity measurements. Our findings indicate that while MH sensitivity remains relatively unaffected, only the presence of c^{XY}_{mu tau} significantly deteriorates MH sensitivity, albeit remaining above the 5 sigma threshold. Additionally, we observe a substantial compromise in CP sensitivity due to the c^{XY}_{e mu} and c^{XY}_{e tau} parameters.
Newly Discovered Eclipsing Binary 2MASS J18024395+4003309 (VSX J180243.9+400331):Two-Color Photometry vs Phenomenological Modeling
We report on analysis of the two-color VR CCD observations of the newly discovered variable 2MASS J18024395+4003309=VSX J180243.9+400331 obtained using the 1-m telescope of the Mt. Lemmon Observatory (LOAO) in the field of the intermediate polar V1323 Her. The extended version of this conference talk we published in 2015JASS...32..127A. The variability was reported in 2012OAP....25..150A, and the object was monitored. The two-color observations covered all phase interval. The object is classified as an Algol-type variable with tidally distorted components, and shows an asymmetry of the maxima (the O\'Connell effect). For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" (New Algol Variable) using local specific shapes for the eclipse. Methodological aspects are described, especially for the case of few color observations. Estimates of the physical parameters based on analysis of phenomenological parameters, are presented.
Bounds on the conditional and average treatment effect with unobserved confounding factors
For observational studies, we study the sensitivity of causal inference when treatment assignments may depend on unobserved confounders. We develop a loss minimization approach for estimating bounds on the conditional average treatment effect (CATE) when unobserved confounders have a bounded effect on the odds ratio of treatment selection. Our approach is scalable and allows flexible use of model classes in estimation, including nonparametric and black-box machine learning methods. Based on these bounds for the CATE, we propose a sensitivity analysis for the average treatment effect (ATE). Our semi-parametric estimator extends/bounds the augmented inverse propensity weighted (AIPW) estimator for the ATE under bounded unobserved confounding. By constructing a Neyman orthogonal score, our estimator of the bound for the ATE is a regular root-n estimator so long as the nuisance parameters are estimated at the o_p(n^{-1/4}) rate. We complement our methodology with optimality results showing that our proposed bounds are tight in certain cases. We demonstrate our method on simulated and real data examples, and show accurate coverage of our confidence intervals in practical finite sample regimes with rich covariate information.
Regression with Sensor Data Containing Incomplete Observations
This paper addresses a regression problem in which output label values are the results of sensing the magnitude of a phenomenon. A low value of such labels can mean either that the actual magnitude of the phenomenon was low or that the sensor made an incomplete observation. This leads to a bias toward lower values in labels and the resultant learning because labels may have lower values due to incomplete observations, even if the actual magnitude of the phenomenon was high. Moreover, because an incomplete observation does not provide any tags indicating incompleteness, we cannot eliminate or impute them. To address this issue, we propose a learning algorithm that explicitly models incomplete observations corrupted with an asymmetric noise that always has a negative value. We show that our algorithm is unbiased as if it were learned from uncorrupted data that does not involve incomplete observations. We demonstrate the advantages of our algorithm through numerical experiments.
Some Questions of Uniformity in Algorithmic Randomness
The Omega numbers-the halting probabilities of universal prefix-free machines-are known to be exactly the Martin-L{\"o}f random left-c.e. reals. We show that one cannot uniformly produce, from a Martin-L{\"o}f random left-c.e. real alpha, a universal prefix-free machine U whose halting probability is alpha. We also answer a question of Barmpalias and Lewis-Pye by showing that given a left-c.e. real alpha, one cannot uniformly produce a left-c.e. real beta such that alpha -- beta is neither left-c.e. nor right-c.e.
Online Mechanism Design for Information Acquisition
We study the problem of designing mechanisms for information acquisition scenarios. This setting models strategic interactions between an uniformed receiver and a set of informed senders. In our model the senders receive information about the underlying state of nature and communicate their observation (either truthfully or not) to the receiver, which, based on this information, selects an action. Our goal is to design mechanisms maximizing the receiver's utility while incentivizing the senders to report truthfully their information. First, we provide an algorithm that efficiently computes an optimal incentive compatible (IC) mechanism. Then, we focus on the online problem in which the receiver sequentially interacts in an unknown game, with the objective of minimizing the cumulative regret w.r.t. the optimal IC mechanism, and the cumulative violation of the incentive compatibility constraints. We investigate two different online scenarios, i.e., the full and bandit feedback settings. For the full feedback problem, we propose an algorithm that guarantees mathcal O(sqrt T) regret and violation, while for the bandit feedback setting we present an algorithm that attains mathcal O(T^{alpha}) regret and mathcal O(T^{1-alpha/2}) violation for any alphain[1/2, 1]. Finally, we complement our results providing a tight lower bound.
Generating functions for some series of characters of classical Lie groups
There exist a number of well known multiplicative generating functions for series of Schur functions. Amongst these are some related to the dual Cauchy identity whose expansion coefficients are rather simple, and in some cases periodic in parameters specifying the Schur functions. More recently similar identities have been found involving expansions in terms of characters of the symplectic group. Here these results are extended and generalised to all classical Lie groups. This is done through the derivation of explicit recurrence relations for the expansion coefficients based on the action of the Weyl groups of both the symplectic and orthogonal groups. Copious results are tabulated in the form of explicit values of the expansion coefficients as functions of highest weight parameters. An alternative approach is then based on dual pairs of symplectic and/or orthogonal groups. A byproduct of this approach is that expansions in terms of spin orthogonal group characters can always be recovered from non-spin cases.
Iterative SE(3)-Transformers
When manipulating three-dimensional data, it is possible to ensure that rotational and translational symmetries are respected by applying so-called SE(3)-equivariant models. Protein structure prediction is a prominent example of a task which displays these symmetries. Recent work in this area has successfully made use of an SE(3)-equivariant model, applying an iterative SE(3)-equivariant attention mechanism. Motivated by this application, we implement an iterative version of the SE(3)-Transformer, an SE(3)-equivariant attention-based model for graph data. We address the additional complications which arise when applying the SE(3)-Transformer in an iterative fashion, compare the iterative and single-pass versions on a toy problem, and consider why an iterative model may be beneficial in some problem settings. We make the code for our implementation available to the community.
LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions
Previous research has shown that LLMs finetuned on malicious or incorrect completions within narrow domains (e.g., insecure code or incorrect medical advice) can become broadly misaligned to exhibit harmful behaviors, which is called emergent misalignment. In this work, we investigate whether this phenomenon can extend beyond safety behaviors to a broader spectrum of dishonesty and deception under high-stakes scenarios (e.g., lying under pressure and deceptive behavior). To explore this, we finetune open-sourced LLMs on misaligned completions across diverse domains. Experimental results demonstrate that LLMs show broadly misaligned behavior in dishonesty. Additionally, we further explore this phenomenon in a downstream combined finetuning setting, and find that introducing as little as 1% of misalignment data into a standard downstream task is sufficient to decrease honest behavior over 20%. Furthermore, we consider a more practical human-AI interaction environment where we simulate both benign and biased users to interact with the assistant LLM. Notably, we find that the assistant can be misaligned unintentionally to exacerbate its dishonesty with only 10% biased user population. In summary, we extend the study of emergent misalignment to the domain of dishonesty and deception under high-stakes scenarios, and demonstrate that this risk arises not only through direct finetuning, but also in downstream mixture tasks and practical human-AI interactions.
Does Sparsity Help in Learning Misspecified Linear Bandits?
Recently, the study of linear misspecified bandits has generated intriguing implications of the hardness of learning in bandits and reinforcement learning (RL). In particular, Du et al. (2020) show that even if a learner is given linear features in R^d that approximate the rewards in a bandit or RL with a uniform error of varepsilon, searching for an O(varepsilon)-optimal action requires pulling at least Omega(exp(d)) queries. Furthermore, Lattimore et al. (2020) show that a degraded O(varepsilond)-optimal solution can be learned within poly(d/varepsilon) queries. Yet it is unknown whether a structural assumption on the ground-truth parameter, such as sparsity, could break the varepsilond barrier. In this paper, we address this question by showing that algorithms can obtain O(varepsilon)-optimal actions by querying O(varepsilon^{-s}d^s) actions, where s is the sparsity parameter, removing the exp(d)-dependence. We then establish information-theoretical lower bounds, i.e., Omega(exp(s)), to show that our upper bound on sample complexity is nearly tight if one demands an error O(s^{delta}varepsilon) for 0<delta<1. For deltageq 1, we further show that poly(s/varepsilon) queries are possible when the linear features are "good" and even in general settings. These results provide a nearly complete picture of how sparsity can help in misspecified bandit learning and provide a deeper understanding of when linear features are "useful" for bandit and reinforcement learning with misspecification.
MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?
Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.
Testing the Cosmological Principle: Astrometric Limits on Systemic Motion of Quasars at Different Cosmological Epochs
A sample of 60,410 bona fide optical quasars with astrometric proper motions in Gaia EDR3 and spectroscopic redshifts above 0.5 in an oval 8400 square degree area of the sky is constructed. Using orthogonal Zernike functions of polar coordinates, the proper motion fields are fitted in a weighted least-squares adjustment of the entire sample and of six equal bins of sorted redshifts. The overall fit with 37 Zernike functions reveals a statistically significant pattern, which is likely to be of instrumental origin. The main feature of this pattern is a chain of peaks and dips mostly in the R.A. component with an amplitude of 25~muas yr^{-1}. This field is subtracted from each of the six analogous fits for quasars grouped by redshifts covering the range 0.5 through 7.03, with median values 0.72, 1.00, 1.25, 1.52, 1.83, 2.34. The resulting residual patterns are noisier, with formal uncertainties up to 8~muas yr^{-1} in the central part of the area. We detect a single high-confidence Zernike term for R.A. proper motion components of quasars with redshifts around 1.52 representing a general gradient of 30 muas yr^{-1} over 150degr on the sky. We do not find any small- or medium-scale systemic variations of the residual proper motion field as functions of redshift above the 2.5,sigma significance level.
The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A"
We expose a surprising failure of generalization in auto-regressive large language models (LLMs). If a model is trained on a sentence of the form "A is B", it will not automatically generalize to the reverse direction "B is A". This is the Reversal Curse. For instance, if a model is trained on "Olaf Scholz was the ninth Chancellor of Germany", it will not automatically be able to answer the question, "Who was the ninth Chancellor of Germany?". Moreover, the likelihood of the correct answer ("Olaf Scholz") will not be higher than for a random name. Thus, models exhibit a basic failure of logical deduction and do not generalize a prevalent pattern in their training set (i.e. if "A is B'' occurs, "B is A" is more likely to occur). We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1 on fictitious statements such as "Uriah Hawthorne is the composer of 'Abyssal Melodies'" and showing that they fail to correctly answer "Who composed 'Abyssal Melodies?'". The Reversal Curse is robust across model sizes and model families and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-3.5 and GPT-4) on questions about real-world celebrities, such as "Who is Tom Cruise's mother? [A: Mary Lee Pfeiffer]" and the reverse "Who is Mary Lee Pfeiffer's son?". GPT-4 correctly answers questions like the former 79% of the time, compared to 33% for the latter. This shows a failure of logical deduction that we hypothesize is caused by the Reversal Curse. Code is available at https://github.com/lukasberglund/reversal_curse.
Sequential Underspecified Instrument Selection for Cause-Effect Estimation
Instrumental variable (IV) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affect the outcome indirectly via the treatment variable(s). Most IV applications focus on low-dimensional treatments and crucially require at least as many instruments as treatments. This assumption is restrictive: in the natural sciences we often seek to infer causal effects of high-dimensional treatments (e.g., the effect of gene expressions or microbiota on health and disease), but can only run few experiments with a limited number of instruments (e.g., drugs or antibiotics). In such underspecified problems, the full treatment effect is not identifiable in a single experiment even in the linear case. We show that one can still reliably recover the projection of the treatment effect onto the instrumented subspace and develop techniques to consistently combine such partial estimates from different sets of instruments. We then leverage our combined estimators in an algorithm that iteratively proposes the most informative instruments at each round of experimentation to maximize the overall information about the full causal effect.
Automatic Construction of a Korean Toxic Instruction Dataset for Ethical Tuning of Large Language Models
Caution: this paper may include material that could be offensive or distressing. The advent of Large Language Models (LLMs) necessitates the development of training approaches that mitigate the generation of unethical language and aptly manage toxic user queries. Given the challenges related to human labor and the scarcity of data, we present KoTox, comprising 39K unethical instruction-output pairs. This collection of automatically generated toxic instructions refines the training of LLMs and establishes a foundational framework for improving LLMs' ethical awareness and response to various toxic inputs, promoting more secure and responsible interactions in Natural Language Processing (NLP) applications.
Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON
Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications
Varying Shades of Wrong: Aligning LLMs with Wrong Answers Only
In the absence of abundant reliable annotations for challenging tasks and contexts, how can we expand the frontier of LLM capabilities with potentially wrong answers? We focus on two research questions: (1) Can LLMs generate reliable preferences among wrong options? And if so, (2) Would alignment with such wrong-over-wrong preferences be helpful? We employ methods based on self-consistency, token probabilities, and LLM-as-a-judge to elicit wrong-over-wrong preferences, and fine-tune language models with preference optimization approaches using these synthesized preferences. Extensive experiments with seven LLMs and eight datasets demonstrate that (1) LLMs do have preliminary capability in distinguishing various shades of wrong, achieving up to 20.9% higher performance than random guess; (2) Alignment with wrong-over-wrong preferences helps LLMs to produce less wrong and sometimes even outright correct answers, while overall improving model calibration.
Log Soft Constraints on KMOC Formalism
The KMOC formalism provides a systematic framework for extracting classical observables perturbatively from on-shell scattering amplitudes. In this work, we apply this formalism to compute electromagnetic observables in four dimensions, focusing in particular on the linear memory effect and its tail contributions. Using the leading and subleading soft-photon theorems to construct the soft radiation kernel, we demonstrate how these infrared observables emerge directly from amplitude data. We further show that demanding the expected non-perturbative properties of memory and tail effects imposes a nontrivial set of consistency conditions on the underlying S-matrix. We interpret these constraints as imposing the requirement of macroscopic causality on the S-matrix via analysis of inclusive observables.
O(n)-invariant Riemannian metrics on SPD matrices
Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of covariance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined on the SPD cone, in particular the kernel metrics introduced by Hiai and Petz. The class of kernel metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of stability and completeness. However, it does not contain all the classical O(n)-invariant metrics. Therefore in this work, we investigate super-classes of kernel metrics and we study which key results remain true. We also introduce an additional key result called cometric-stability, a crucial property to implement geodesics with a Hamiltonian formulation. Our method to build intermediate embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of the affine-invariant metric and the formula of the geodesic parallel transport between commuting matrices for the Bures-Wasserstein metric.
Position: The Pitfalls of Over-Alignment: Overly Caution Health-Related Responses From LLMs are Unethical and Dangerous
Large Language Models (LLMs) are usually aligned with "human values/preferences" to prevent harmful output. Discussions around the alignment of Large Language Models (LLMs) generally focus on preventing harmful outputs. However, in this paper, we argue that in health-related queries, over-alignment-leading to overly cautious responses-can itself be harmful, especially for people with anxiety and obsessive-compulsive disorder (OCD). This is not only unethical but also dangerous to the user, both mentally and physically. We also showed qualitative results that some LLMs exhibit varying degrees of alignment. Finally, we call for the development of LLMs with stronger reasoning capabilities that provide more tailored and nuanced responses to health queries. Warning: This paper contains materials that could trigger health anxiety or OCD.
Rethinking Multi-User Communication in Semantic Domain: Enhanced OMDMA by Shuffle-Based Orthogonalization and Diffusion Denoising
Inter-user interference remains a critical bottleneck in wireless communication systems, particularly in the emerging paradigm of semantic communication (SemCom). Compared to traditional systems, inter-user interference in SemCom severely degrades key semantic information, often causing worse performance than Gaussian noise under the same power level. To address this challenge, inspired by the recently proposed concept of Orthogonal Model Division Multiple Access (OMDMA) that leverages semantic orthogonality rooted in the personalized joint source and channel (JSCC) models to distinguish users, we propose a novel, scalable framework that eliminates the need for user-specific JSCC models as did in original OMDMA. Our key innovation lies in shuffle-based orthogonalization, where randomly permuting the positions of JSCC feature vectors transforms inter-user interference into Gaussian-like noise. By assigning each user a unique shuffling pattern, the interference is treated as channel noise, enabling effective mitigation using diffusion models (DMs). This approach not only simplifies system design by requiring a single universal JSCC model but also enhances privacy, as shuffling patterns act as implicit private keys. Additionally, we extend the framework to scenarios involving semantically correlated data. By grouping users based on semantic similarity, a cooperative beamforming strategy is introduced to exploit redundancy in correlated data, further improving system performance. Extensive simulations demonstrate that the proposed method outperforms state-of-the-art multi-user SemCom frameworks, achieving superior semantic fidelity, robustness to interference, and scalability-all without requiring additional training overhead.
Model Organisms for Emergent Misalignment
Recent work discovered Emergent Misalignment (EM): fine-tuning large language models on narrowly harmful datasets can lead them to become broadly misaligned. A survey of experts prior to publication revealed this was highly unexpected, demonstrating critical gaps in our understanding of model alignment. In this work, we both advance understanding and provide tools for future research. Using new narrowly misaligned datasets, we create a set of improved model organisms that achieve 99% coherence (vs. 67% prior), work with smaller 0.5B parameter models (vs. 32B), and that induce misalignment using a single rank-1 LoRA adapter. We demonstrate that EM occurs robustly across diverse model sizes, three model families, and numerous training protocols including full supervised fine-tuning. Leveraging these cleaner model organisms, we isolate a mechanistic phase transition and demonstrate that it corresponds to a robust behavioural phase transition in all studied organisms. Aligning large language models is critical for frontier AI safety, yet EM exposes how far we are from achieving this robustly. By distilling clean model organisms that isolate a minimal alignment-compromising change, and where this is learnt, we establish a foundation for future research into understanding and mitigating alignment risks in LLMs.
Learning Invariant Representations with Missing Data
Spurious correlations allow flexible models to predict well during training but poorly on related test distributions. Recent work has shown that models that satisfy particular independencies involving correlation-inducing nuisance variables have guarantees on their test performance. Enforcing such independencies requires nuisances to be observed during training. However, nuisances, such as demographics or image background labels, are often missing. Enforcing independence on just the observed data does not imply independence on the entire population. Here we derive mmd estimators used for invariance objectives under missing nuisances. On simulations and clinical data, optimizing through these estimates achieves test performance similar to using estimators that make use of the full data.
Unified Out-Of-Distribution Detection: A Model-Specific Perspective
Out-of-distribution (OOD) detection aims to identify test examples that do not belong to the training distribution and are thus unlikely to be predicted reliably. Despite a plethora of existing works, most of them focused only on the scenario where OOD examples come from semantic shift (e.g., unseen categories), ignoring other possible causes (e.g., covariate shift). In this paper, we present a novel, unifying framework to study OOD detection in a broader scope. Instead of detecting OOD examples from a particular cause, we propose to detect examples that a deployed machine learning model (e.g., an image classifier) is unable to predict correctly. That is, whether a test example should be detected and rejected or not is ``model-specific''. We show that this framework unifies the detection of OOD examples caused by semantic shift and covariate shift, and closely addresses the concern of applying a machine learning model to uncontrolled environments. We provide an extensive analysis that involves a variety of models (e.g., different architectures and training strategies), sources of OOD examples, and OOD detection approaches, and reveal several insights into improving and understanding OOD detection in uncontrolled environments.
A Reply to Makelov et al. (2023)'s "Interpretability Illusion" Arguments
We respond to the recent paper by Makelov et al. (2023), which reviews subspace interchange intervention methods like distributed alignment search (DAS; Geiger et al. 2023) and claims that these methods potentially cause "interpretability illusions". We first review Makelov et al. (2023)'s technical notion of what an "interpretability illusion" is, and then we show that even intuitive and desirable explanations can qualify as illusions in this sense. As a result, their method of discovering "illusions" can reject explanations they consider "non-illusory". We then argue that the illusions Makelov et al. (2023) see in practice are artifacts of their training and evaluation paradigms. We close by emphasizing that, though we disagree with their core characterization, Makelov et al. (2023)'s examples and discussion have undoubtedly pushed the field of interpretability forward.
Analyzing Norm Violations in Live-Stream Chat
Toxic language, such as hate speech, can deter users from participating in online communities and enjoying popular platforms. Previous approaches to detecting toxic language and norm violations have been primarily concerned with conversations from online forums and social media, such as Reddit and Twitter. These approaches are less effective when applied to conversations on live-streaming platforms, such as Twitch and YouTube Live, as each comment is only visible for a limited time and lacks a thread structure that establishes its relationship with other comments. In this work, we share the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms. We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch. We articulate several facets of live-stream data that differ from other forums, and demonstrate that existing models perform poorly in this setting. By conducting a user study, we identify the informational context humans use in live-stream moderation, and train models leveraging context to identify norm violations. Our results show that appropriate contextual information can boost moderation performance by 35\%.
When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP
Despite its crucial role in research experiments, code correctness is often presumed only on the basis of the perceived quality of results. This assumption comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on reproducibility should go hand in hand with the emphasis on software quality. We present a case study in which we identify and fix three bugs in widely used implementations of the state-of-the-art Conformer architecture. Through experiments on speech recognition and translation in various languages, we demonstrate that the presence of bugs does not prevent the achievement of good and reproducible results, which however can lead to incorrect conclusions that potentially misguide future research. As a countermeasure, we propose a Code-quality Checklist and release pangoliNN, a library dedicated to testing neural models, with the goal of promoting coding best practices and improving research software quality within the NLP community.
Proper losses for discrete generative models
We initiate the study of proper losses for evaluating generative models in the discrete setting. Unlike traditional proper losses, we treat both the generative model and the target distribution as black-boxes, only assuming ability to draw i.i.d. samples. We define a loss to be black-box proper if the generative distribution that minimizes expected loss is equal to the target distribution. Using techniques from statistical estimation theory, we give a general construction and characterization of black-box proper losses: they must take a polynomial form, and the number of draws from the model and target distribution must exceed the degree of the polynomial. The characterization rules out a loss whose expectation is the cross-entropy between the target distribution and the model. By extending the construction to arbitrary sampling schemes such as Poisson sampling, however, we show that one can construct such a loss.
How faithful are RAG models? Quantifying the tug-of-war between RAG and LLMs' internal prior
Retrieval augmented generation (RAG) is often used to fix hallucinations and provide up-to-date knowledge for large language models (LLMs). However, in cases when the LLM alone incorrectly answers a question, does providing the correct retrieved content always fix the error? Conversely, in cases where the retrieved content is incorrect, does the LLM know to ignore the wrong information, or does it recapitulate the error? To answer these questions, we systematically analyze the tug-of-war between a LLM's internal knowledge (i.e. its prior) and the retrieved information in settings when they disagree. We test GPT-4 and other LLMs on question-answering abilities across datasets with and without reference documents. As expected, providing the correct retrieved information fixes most model mistakes (94% accuracy). However, when the reference document is perturbed with increasing levels of wrong values, the LLM is more likely to recite the incorrect, modified information when its internal prior is weaker but is more resistant when its prior is stronger. Similarly, we also find that the more the modified information deviates from the model's prior, the less likely the model is to prefer it. These results highlight an underlying tension between a model's prior knowledge and the information presented in reference documents.
Beyond Symmetries : Anomalies in Transverse Ward--Takahashi Identities
Anomalies in transverse Ward--Takahashi identities are studied, allowing discussion of the feasibility of anomalies arising in general non-symmetry Ward--Takahashi identities. We adopt the popular Fujikawa's method and rigorous dimensional renormalization to verify the existence of transverse anomalies to one-loop order and any loop order, respectively. The arbitrariness of coefficients of transverse anomalies is revealed, and a way out is also proposed after relating transverse anomalies to Schwinger terms and comparing symmetry and non-symmetry anomalies. Papers that claim the non-existence of transverse anomalies are reviewed to find anomalies hidden in their approaches. The role played by transverse anomalies is discussed.
The Virtual Quantum Optics Laboratory
We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners.
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
Conditional normalizing flows can generate diverse image samples for solving inverse problems. Most normalizing flows for inverse problems in imaging employ the conditional affine coupling layer that can generate diverse images quickly. However, unintended severe artifacts are occasionally observed in the output of them. In this work, we address this critical issue by investigating the origins of these artifacts and proposing the conditions to avoid them. First of all, we empirically and theoretically reveal that these problems are caused by "exploding inverse" in the conditional affine coupling layer for certain out-of-distribution (OOD) conditional inputs. Then, we further validated that the probability of causing erroneous artifacts in pixels is highly correlated with a Mahalanobis distance-based OOD score for inverse problems in imaging. Lastly, based on our investigations, we propose a remark to avoid exploding inverse and then based on it, we suggest a simple remedy that substitutes the affine coupling layers with the modified rational quadratic spline coupling layers in normalizing flows, to encourage the robustness of generated image samples. Our experimental results demonstrated that our suggested methods effectively suppressed critical artifacts occurring in normalizing flows for super-resolution space generation and low-light image enhancement.
Topological Obstructions to Autoencoding
Autoencoders have been proposed as a powerful tool for model-independent anomaly detection in high-energy physics. The operating principle is that events which do not belong to the space of training data will be reconstructed poorly, thus flagging them as anomalies. We point out that in a variety of examples of interest, the connection between large reconstruction error and anomalies is not so clear. In particular, for data sets with nontrivial topology, there will always be points that erroneously seem anomalous due to global issues. Conversely, neural networks typically have an inductive bias or prior to locally interpolate such that undersampled or rare events may be reconstructed with small error, despite actually being the desired anomalies. Taken together, these facts are in tension with the simple picture of the autoencoder as an anomaly detector. Using a series of illustrative low-dimensional examples, we show explicitly how the intrinsic and extrinsic topology of the dataset affects the behavior of an autoencoder and how this topology is manifested in the latent space representation during training. We ground this analysis in the discussion of a mock "bump hunt" in which the autoencoder fails to identify an anomalous "signal" for reasons tied to the intrinsic topology of n-particle phase space.
The Poison of Alignment
From the perspective of content safety issues, alignment has shown to limit large language models' (LLMs) harmful content generation. This intentional method of reinforcing models to not respond to certain user inputs seem to be present in many modern open-source instruction tuning datasets such as OpenAssistant or Guanaco. We introduce a novel insight to an instruction-tuned model's performance affected by the presence of alignment in supervised fine-tuning dataset. To be specific, we noticed that alignment acts as if it is poisoning the instruction dataset. Experimentally, we demonstrate that aligned answers significantly worsen the performance of the resulting fine-tuned model's on various reasoning benchmarks such as Big Bench (BBH), Massive Multitask Language Understanding (MMLU), Human Eval, and Discrete Reasoning Over Paragraphs (DROP), performing worse than the counterpart tuned without alignment by 4-33%.
Light Schrödinger Bridge
Despite the recent advances in the field of computational Schr\"odinger Bridges (SB), most existing SB solvers are still heavy-weighted and require complex optimization of several neural networks. It turns out that there is no principal solver which plays the role of simple-yet-effective baseline for SB just like, e.g., k-means method in clustering, logistic regression in classification or Sinkhorn algorithm in discrete optimal transport. We address this issue and propose a novel fast and simple SB solver. Our development is a smart combination of two ideas which recently appeared in the field: (a) parameterization of the Schr\"odinger potentials with sum-exp quadratic functions and (b) viewing the log-Schr\"odinger potentials as the energy functions. We show that combined together these ideas yield a lightweight, simulation-free and theoretically justified SB solver with a simple straightforward optimization objective. As a result, it allows solving SB in moderate dimensions in a matter of minutes on CPU without a painful hyperparameter selection. Our light solver resembles the Gaussian mixture model which is widely used for density estimation. Inspired by this similarity, we also prove an important theoretical result showing that our light solver is a universal approximator of SBs. Furthemore, we conduct the analysis of the generalization error of our light solver. The code for our solver can be found at https://github.com/ngushchin/LightSB
Regression with Label Permutation in Generalized Linear Model
The assumption that response and predictor belong to the same statistical unit may be violated in practice. Unbiased estimation and recovery of true label ordering based on unlabeled data are challenging tasks and have attracted increasing attentions in the recent literature. In this paper, we present a relatively complete analysis of label permutation problem for the generalized linear model with multivariate responses. The theory is established under different scenarios, with knowledge of true parameters, with partial knowledge of underlying label permutation matrix and without any knowledge. Our results remove the stringent conditions required by the current literature and are further extended to the missing observation setting which has never been considered in the field of label permutation problem. On computational side, we propose two methods, "maximum likelihood estimation" algorithm and "two-step estimation" algorithm, to accommodate for different settings. When the proportion of permuted labels is moderate, both methods work effectively. Multiple numerical experiments are provided and corroborate our theoretical findings.
OrtSAE: Orthogonal Sparse Autoencoders Uncover Atomic Features
Sparse autoencoders (SAEs) are a technique for sparse decomposition of neural network activations into human-interpretable features. However, current SAEs suffer from feature absorption, where specialized features capture instances of general features creating representation holes, and feature composition, where independent features merge into composite representations. In this work, we introduce Orthogonal SAE (OrtSAE), a novel approach aimed to mitigate these issues by enforcing orthogonality between the learned features. By implementing a new training procedure that penalizes high pairwise cosine similarity between SAE features, OrtSAE promotes the development of disentangled features while scaling linearly with the SAE size, avoiding significant computational overhead. We train OrtSAE across different models and layers and compare it with other methods. We find that OrtSAE discovers 9% more distinct features, reduces feature absorption (by 65%) and composition (by 15%), improves performance on spurious correlation removal (+6%), and achieves on-par performance for other downstream tasks compared to traditional SAEs.
On Invariance Penalties for Risk Minimization
The Invariant Risk Minimization (IRM) principle was first proposed by Arjovsky et al. [2019] to address the domain generalization problem by leveraging data heterogeneity from differing experimental conditions. Specifically, IRM seeks to find a data representation under which an optimal classifier remains invariant across all domains. Despite the conceptual appeal of IRM, the effectiveness of the originally proposed invariance penalty has recently been brought into question. In particular, there exists counterexamples for which that invariance penalty can be arbitrarily small for non-invariant data representations. We propose an alternative invariance penalty by revisiting the Gramian matrix of the data representation. We discuss the role of its eigenvalues in the relationship between the risk and the invariance penalty, and demonstrate that it is ill-conditioned for said counterexamples. The proposed approach is guaranteed to recover an invariant representation for linear settings under mild non-degeneracy conditions. Its effectiveness is substantiated by experiments on DomainBed and InvarianceUnitTest, two extensive test beds for domain generalization.
On the Orthogonal Projections
For any {rm E}-rigid presentation e, we construct an orthogonal projection functor to {rm rep}(e^perp) left adjoint to the natural embedding. We establish a bijection between presentations in {rm rep}(e^perp) and presentations compatible with e. For quivers with potentials, we show that {rm rep}(e^perp) forms a module category of another quiver with potential. We derive mutation formulas for the delta-vectors of positive and negative complements and the dimension vectors of simple modules in {rm rep}(e^perp), enabling an algorithm to find the projected quiver with potential. Additionally, we introduce a modified projection for quivers with potentials that preserves general presentations. For applications to cluster algebras, we establish a connection to the stabilization functors.
A Unified Perspective on Orthogonalization and Diagonalization
This paper makes a formal connection between two families of widely used matrix factorization algorithms in numerical linear algebra. One family consists of the Jacobi eigenvalue algorithm and its variants for computing the Hermitian eigendecomposition and singular value decomposition. The other consists of Gaussian elimination and the Gram-Schmidt procedure with various pivoting rules for computing the Cholesky decomposition and QR decomposition respectively. Both families are cast as special cases of a more general class of factorization algorithms. We provide a randomized pivoting rule that applies to this general class (which differs substantially from the usual pivoting rules for Gaussian elimination / Gram-Schmidt) which results in the same linear rate of convergence for each algorithm, irrespective of which factorization it computes. A second important consequence of this randomized pivoting rule is a provable, effective bound on the numerical stability of the Jacobi eigenvalue algorithm, which addresses a longstanding open problem of Demmel and Veseli\'c `92.
Exploiting Instruction-Following Retrievers for Malicious Information Retrieval
Instruction-following retrievers have been widely adopted alongside LLMs in real-world applications, but little work has investigated the safety risks surrounding their increasing search capabilities. We empirically study the ability of retrievers to satisfy malicious queries, both when used directly and when used in a retrieval augmented generation-based setup. Concretely, we investigate six leading retrievers, including NV-Embed and LLM2Vec, and find that given malicious requests, most retrievers can (for >50% of queries) select relevant harmful passages. For example, LLM2Vec correctly selects passages for 61.35% of our malicious queries. We further uncover an emerging risk with instruction-following retrievers, where highly relevant harmful information can be surfaced by exploiting their instruction-following capabilities. Finally, we show that even safety-aligned LLMs, such as Llama3, can satisfy malicious requests when provided with harmful retrieved passages in-context. In summary, our findings underscore the malicious misuse risks associated with increasing retriever capability.
Proximity Ascertainment Bias in Early Covid Case Locations
A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable.
Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization
Superalignment, where humans are weak supervisors of superhuman models, has become an important and widely discussed issue in the current era of rapid development of Large Language Models (LLMs). The recent work preliminarily studies this problem by using weak models to supervise strong models. It discovers that weakly supervised strong students can consistently outperform weak teachers towards the alignment target, leading to a weak-to-strong generalization phenomenon. However, we are concerned that behind such a promising phenomenon, whether there exists an issue of weak-to-strong deception, where strong models may deceive weak models by exhibiting well-aligned in areas known to weak models but producing misaligned behaviors in cases weak models do not know. We then take an initial step towards exploring this security issue in a specific but realistic multi-objective alignment case, where there may be some alignment targets conflicting with each other (e.g., helpfulness v.s. harmlessness). Such a conflict is likely to cause strong models to deceive weak models in one alignment dimension to gain high reward in other alignment dimension. Our experiments on both the reward modeling task and the preference optimization scenario indicate: (1) the weak-to-strong deception exists; (2) the deception phenomenon may intensify as the capability gap between weak and strong models increases. We also discuss potential solutions and find bootstrapping with an intermediate model can mitigate the deception to some extent. Our work highlights the urgent need to pay more attention to the true reliability of superalignment.
Vanishing Point Estimation in Uncalibrated Images with Prior Gravity Direction
We tackle the problem of estimating a Manhattan frame, i.e. three orthogonal vanishing points, and the unknown focal length of the camera, leveraging a prior vertical direction. The direction can come from an Inertial Measurement Unit that is a standard component of recent consumer devices, e.g., smartphones. We provide an exhaustive analysis of minimal line configurations and derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers. Additionally, we design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization. Combining all solvers in a hybrid robust estimator, our method achieves increased accuracy even with a rough prior. Experiments on synthetic and real-world datasets demonstrate the superior accuracy of our method compared to the state of the art, while having comparable runtimes. We further demonstrate the applicability of our solvers for relative rotation estimation. The code is available at https://github.com/cvg/VP-Estimation-with-Prior-Gravity.
Towards Optimal and Efficient Best Arm Identification in Linear Bandits
We give a new algorithm for best arm identification in linearly parameterised bandits in the fixed confidence setting. The algorithm generalises the well-known LUCB algorithm of Kalyanakrishnan et al. (2012) by playing an arm which minimises a suitable notion of geometric overlap of the statistical confidence set for the unknown parameter, and is fully adaptive and computationally efficient as compared to several state-of-the methods. We theoretically analyse the sample complexity of the algorithm for problems with two and three arms, showing optimality in many cases. Numerical results indicate favourable performance over other algorithms with which we compare.
Overspinning a rotating black hole in semiclassical gravity with type-A trace anomaly
Recently, Fernandes discovered an analytic solution for rotating black holes in semiclassical gravity induced by the trace anomaly. These solutions exhibit some distinctive characteristics, including a non-spherically symmetric event horizon and violations of the Kerr bound. As a crucial assumption to uphold causality in spacetime, we investigate the validity of the weak cosmic censorship conjecture (WCCC) within this class of solutions with type-A trace anomaly by introducing a test particle on the equatorial plane. Our study reveals three distinct mechanisms that can potentially destroy the event horizon, leading to a violation of the WCCC. Our findings indicate that, with the exception of extremal Kerr, static extremal, and static singular black holes, the WCCC may be violated under the first-order perturbation of the test particle. These results suggest the need for further exploration of modifications to the behavior of the test particle under quantum effects in order to address the violation of the WCCC in this system.
Extrinsic systole of Seifert surfaces and distortion of knots
In 1983, Gromov introduced the notion of distortion of a knot, and asked if there are knots with arbitrarily large distortion. In 2011, Pardon proved that the distortion of T_{p,q} is at least min{p,q} up to a constant factor. We prove that the distortion of T_{p, p+1}# K is at least p up to a constant, independent of K. We also prove that any embedding of a minimal genus Seifert surface for T_{p,p+1}# K in R^3 has small extrinsic systole, in the sense that it contains a non-contractible loop with small R^3-diameter relative to the length of the knot. These results are related to combinatorial properties of the monodromy map associated to torus knots.
Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms Regularization Framework
We develop a novel theoretical framework for understating OT schemes respecting a class structure. For this purpose, we propose a convex OT program with a sum-of-norms regularization term, which provably recovers the underlying class structure under geometric assumptions. Furthermore, we derive an accelerated proximal algorithm with a closed-form projection and proximal operator scheme, thereby affording a more scalable algorithm for computing optimal transport plans. We provide a novel argument for the uniqueness of the optimum even in the absence of strong convexity. Our experiments show that the new regularizer not only results in a better preservation of the class structure in the data but also yields additional robustness to the data geometry, compared to previous regularizers.
Convolution Aware Initialization
Initialization of parameters in deep neural networks has been shown to have a big impact on the performance of the networks (Mishkin & Matas, 2015). The initialization scheme devised by He et al, allowed convolution activations to carry a constrained mean which allowed deep networks to be trained effectively (He et al., 2015a). Orthogonal initializations and more generally orthogonal matrices in standard recurrent networks have been proved to eradicate the vanishing and exploding gradient problem (Pascanu et al., 2012). Majority of current initialization schemes do not take fully into account the intrinsic structure of the convolution operator. Using the duality of the Fourier transform and the convolution operator, Convolution Aware Initialization builds orthogonal filters in the Fourier space, and using the inverse Fourier transform represents them in the standard space. With Convolution Aware Initialization we noticed not only higher accuracy and lower loss, but faster convergence. We achieve new state of the art on the CIFAR10 dataset, and achieve close to state of the art on various other tasks.
Determination of Characteristics of Eclipsing Binaries with Spots: Phenomenological vs Physical Models
We discuss methods for modeling eclipsing binary stars using the "physical", "simplified" and "phenomenological" models. There are few realizations of the "physical" Wilson-Devinney (1971) code and its improvements, e.g. Binary Maker, Phoebe. A parameter search using the Monte-Carlo method was realized by Zola et al. (2010), which is efficient in expense of too many evaluations of the test function. We compare existing algorithms of minimization of multi-parametric functions and propose to use a "combined" algorithm, depending on if the Hessian matrix is positively determined. To study methods, a simply fast-computed function resembling the "complete" test function for the physical model. Also we adopt a simplified model of an eclipsing binary at a circular orbit assuming spherical components with an uniform brightness distribution. This model resembles more advanced models in a sense of correlated parameter estimates due to a similar topology of the test function. Such a model may be applied to detached Algol-type systems, where the tidal distortion of components is negligible.
Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations
Language model users often issue queries that lack specification, where the context under which a query was issued -- such as the user's identity, the query's intent, and the criteria for a response to be useful -- is not explicit. For instance, a good response to a subjective query like "What book should I read next?" would depend on the user's preferences, and a good response to an open-ended query like "How do antibiotics work against bacteria?" would depend on the user's expertise. This makes evaluation of responses to such queries an ill-posed task, as evaluators may make arbitrary judgments about the response quality. To remedy this, we present contextualized evaluations, a protocol that synthetically constructs context surrounding an underspecified query and provides it during evaluation. We find that the presence of context can 1) alter conclusions drawn from evaluation, even flipping win rates between model pairs, 2) nudge evaluators to make fewer judgments based on surface-level criteria, like style, and 3) provide new insights about model behavior across diverse contexts. Specifically, our procedure uncovers an implicit bias towards WEIRD contexts in models' "default" responses and we find that models are not equally sensitive to following different contexts, even when they are provided in prompts.
MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation
Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.
Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss
The problem of minimizing the maximum of N convex, Lipschitz functions plays significant roles in optimization and machine learning. It has a series of results, with the most recent one requiring O(Nepsilon^{-2/3} + epsilon^{-8/3}) queries to a first-order oracle to compute an epsilon-suboptimal point. On the other hand, quantum algorithms for optimization are rapidly advancing with speedups shown on many important optimization problems. In this paper, we conduct a systematic study for quantum algorithms and lower bounds for minimizing the maximum of N convex, Lipschitz functions. On one hand, we develop quantum algorithms with an improved complexity bound of O(Nepsilon^{-5/3} + epsilon^{-8/3}). On the other hand, we prove that quantum algorithms must take Omega(Nepsilon^{-2/3}) queries to a first order quantum oracle, showing that our dependence on N is optimal up to poly-logarithmic factors.
Rotting bandits are not harder than stochastic ones
In stochastic multi-armed bandits, the reward distribution of each arm is assumed to be stationary. This assumption is often violated in practice (e.g., in recommendation systems), where the reward of an arm may change whenever is selected, i.e., rested bandit setting. In this paper, we consider the non-parametric rotting bandit setting, where rewards can only decrease. We introduce the filtering on expanding window average (FEWA) algorithm that constructs moving averages of increasing windows to identify arms that are more likely to return high rewards when pulled once more. We prove that for an unknown horizon T, and without any knowledge on the decreasing behavior of the K arms, FEWA achieves problem-dependent regret bound of mathcal{O}((KT)), and a problem-independent one of mathcal{O}(KT). Our result substantially improves over the algorithm of Levine et al. (2017), which suffers regret mathcal{O}(K^{1/3}T^{2/3}). FEWA also matches known bounds for the stochastic bandit setting, thus showing that the rotting bandits are not harder. Finally, we report simulations confirming the theoretical improvements of FEWA.
