Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeJudging What We Cannot Solve: A Consequence-Based Approach for Oracle-Free Evaluation of Research-Level Math
Recent progress in reasoning models suggests that generating plausible attempts for research-level mathematics may be within reach, but verification remains a bottleneck, consuming scarce expert time. We hypothesize that a meaningful solution should contain enough method-level information that, when applied to a neighborhood of related questions, it should yield better downstream performance than incorrect solutions. Building on this idea, we propose Consequence-Based Utility, an oracle-free evaluator that scores each candidate by testing its value as an in-context exemplar in solving related yet verifiable questions. Our approach is evaluated on an original set of research-level math problems, each paired with one expert-written solution and nine LLM-generated solutions. Notably, Consequence-Based Utility consistently outperforms reward models, generative reward models, and LLM judges on ranking quality. Specifically, for GPT-OSS-120B, it improves Acc@1 from 67.2 to 76.3 and AUC from 71.4 to 79.6, with similarly large AUC gains on GPT-OSS-20B (69.0 to 79.2). Furthermore, compared to LLM-Judges, it also exhibits a larger solver-evaluator gap, maintaining a stronger correct-wrong separation even on instances where the underlying solver often fails to solve.
Tutte's theorem as an educational formalization project
In this work, we present two results: The first result is the formalization of Tutte's theorem in Lean, a key theorem concerning matchings in graph theory. As this formalization is ready to be integrated in Lean's mathlib, it provides a valuable step in the path towards formalizing research-level mathematics in this area. The second result is a framework for doing educational formalization projects. This framework provides a structure to learn to formalize mathematics with minimal teacher input. This framework applies to both traditional academic settings and independent community-driven environments. We demonstrate the framework's use by connecting it to the process of formalizing Tutte's theorem.
Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these.
IMProofBench: Benchmarking AI on Research-Level Mathematical Proof Generation
As the mathematical capabilities of large language models (LLMs) improve, it becomes increasingly important to evaluate their performance on research-level tasks at the frontier of mathematical knowledge. However, existing benchmarks are limited, as they focus solely on final-answer questions or high-school competition problems. To address this gap, we introduce IMProofBench, a private benchmark consisting of 39 peer-reviewed problems developed by expert mathematicians. Each problem requires a detailed proof and is paired with subproblems that have final answers, supporting both an evaluation of mathematical reasoning capabilities by human experts and a large-scale quantitative analysis through automated grading. Furthermore, unlike prior benchmarks, the evaluation setup simulates a realistic research environment: models operate in an agentic framework with tools like web search for literature review and mathematical software such as SageMath. Our results show that current LLMs can succeed at the more accessible research-level questions, but still encounter significant difficulties on more challenging problems. Quantitatively, Grok-4 achieves the highest accuracy of 52% on final-answer subproblems, while GPT-5 obtains the best performance for proof generation, achieving a fully correct solution for 22% of problems. IMProofBench will continue to evolve as a dynamic benchmark in collaboration with the mathematical community, ensuring its relevance for evaluating the next generation of LLMs.
Semantic Search over 9 Million Mathematical Theorems
Searching for mathematical results remains difficult: most existing tools retrieve entire papers, while mathematicians and theorem-proving agents often seek a specific theorem, lemma, or proposition that answers a query. While semantic search has seen rapid progress, its behavior on large, highly technical corpora such as research-level mathematical theorems remains poorly understood. In this work, we introduce and study semantic theorem retrieval at scale over a unified corpus of 9.2 million theorem statements extracted from arXiv and seven other sources, representing the largest publicly available corpus of human-authored, research-level theorems. We represent each theorem with a short natural-language description as a retrieval representation and systematically analyze how representation context, language model choice, embedding model, and prompting strategy affect retrieval quality. On a curated evaluation set of theorem-search queries written by professional mathematicians, our approach substantially improves both theorem-level and paper-level retrieval compared to existing baselines, demonstrating that semantic theorem search is feasible and effective at web scale. The theorem search tool is available at https://huggingface.co/spaces/uw-math-ai/theorem-search{this link}, and the dataset is available at https://huggingface.co/datasets/uw-math-ai/TheoremSearch{this link}.
Enumerate-Conjecture-Prove: Formally Solving Answer-Construction Problems in Math Competitions
Mathematical reasoning lies at the heart of artificial intelligence, underpinning applications in education, program verification, and research-level mathematical discovery. Mathematical competitions, in particular, present two challenging problem types: theorem proving, which requires rigorous proofs of stated conclusions, and answer construction, which involves hypothesizing and formally verifying mathematical objects. Large Language Models (LLMs) effectively generate creative candidate answers but struggle with formal verification, while symbolic provers ensure rigor but cannot efficiently handle creative conjecture generation. We introduce the Enumerate-Conjecture-Prove (ECP) framework, a modular neuro-symbolic method integrating LLM-based enumeration and pattern-driven conjecturing with formal theorem proving. We present ConstructiveBench, a dataset of 3,431 answer-construction problems in various math competitions with verified Lean formalizations. On the ConstructiveBench dataset, ECP improves the accuracy of answer construction from a Chain-of-Thought (CoT) baseline of 14.54% to 45.06% with the gpt-4.1-mini model. Moreover, combined with ECP's constructed answers, the state-of-the-art DeepSeek-Prover-V2-7B model generates correct proofs for 858 of the 3,431 constructive problems in Lean, achieving 25.01% accuracy compared to 9.86% for symbolic-only baselines. Our code and dataset are publicly available at https://github.com/JackSun200312/ECP.
UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models
Large Language Models (LLMs) have made significant strides in mathematical reasoning, underscoring the need for a comprehensive and fair evaluation of their capabilities. However, existing benchmarks often fall short, either lacking extensive coverage of undergraduate-level mathematical problems or probably suffering from test-set contamination. To address these issues, we introduce UGMathBench, a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench. Furthermore, we propose two key metrics: effective accuracy (EAcc), which measures the percentage of correctly solved problems across all three versions, and reasoning gap (Delta), which assesses reasoning robustness by calculating the difference between the average accuracy across all versions and EAcc. Our extensive evaluation of 23 leading LLMs reveals that the highest EAcc achieved is 56.3\% by OpenAI-o1-mini, with large Delta values observed across different models. This highlights the need for future research aimed at developing "large reasoning models" with high EAcc and Delta = 0. We anticipate that the release of UGMathBench, along with its detailed evaluation codes, will serve as a valuable resource to advance the development of LLMs in solving mathematical problems.
Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
Probing the Critical Point (CritPt) of AI Reasoning: a Frontier Physics Research Benchmark
While large language models (LLMs) with reasoning capabilities are progressing rapidly on high-school math competitions and coding, can they reason effectively through complex, open-ended challenges found in frontier physics research? And crucially, what kinds of reasoning tasks do physicists want LLMs to assist with? To address these questions, we present the CritPt (Complex Research using Integrated Thinking - Physics Test, pronounced "critical point"), the first benchmark designed to test LLMs on unpublished, research-level reasoning tasks that broadly covers modern physics research areas, including condensed matter, quantum physics, atomic, molecular & optical physics, astrophysics, high energy physics, mathematical physics, statistical physics, nuclear physics, nonlinear dynamics, fluid dynamics and biophysics. CritPt consists of 71 composite research challenges designed to simulate full-scale research projects at the entry level, which are also decomposed to 190 simpler checkpoint tasks for more fine-grained insights. All problems are newly created by 50+ active physics researchers based on their own research. Every problem is hand-curated to admit a guess-resistant and machine-verifiable answer and is evaluated by an automated grading pipeline heavily customized for advanced physics-specific output formats. We find that while current state-of-the-art LLMs show early promise on isolated checkpoints, they remain far from being able to reliably solve full research-scale challenges: the best average accuracy among base models is only 4.0% , achieved by GPT-5 (high), moderately rising to around 10% when equipped with coding tools. Through the realistic yet standardized evaluation offered by CritPt, we highlight a large disconnect between current model capabilities and realistic physics research demands, offering a foundation to guide the development of scientifically grounded AI tools.
RobotIQ: Empowering Mobile Robots with Human-Level Planning for Real-World Execution
This paper introduces RobotIQ, a framework that empowers mobile robots with human-level planning capabilities, enabling seamless communication via natural language instructions through any Large Language Model. The proposed framework is designed in the ROS architecture and aims to bridge the gap between humans and robots, enabling robots to comprehend and execute user-expressed text or voice commands. Our research encompasses a wide spectrum of robotic tasks, ranging from fundamental logical, mathematical, and learning reasoning for transferring knowledge in domains like navigation, manipulation, and object localization, enabling the application of learned behaviors from simulated environments to real-world operations. All encapsulated within a modular crafted robot library suite of API-wise control functions, RobotIQ offers a fully functional AI-ROS-based toolset that allows researchers to design and develop their own robotic actions tailored to specific applications and robot configurations. The effectiveness of the proposed system was tested and validated both in simulated and real-world experiments focusing on a home service scenario that included an assistive application designed for elderly people. RobotIQ with an open-source, easy-to-use, and adaptable robotic library suite for any robot can be found at https://github.com/emmarapt/RobotIQ.
Gold-Medal-Level Olympiad Geometry Solving with Efficient Heuristic Auxiliary Constructions
Automated theorem proving in Euclidean geometry, particularly for International Mathematical Olympiad (IMO) level problems, remains a major challenge and an important research focus in Artificial Intelligence. In this paper, we present a highly efficient method for geometry theorem proving that runs entirely on CPUs without relying on neural network-based inference. Our initial study shows that a simple random strategy for adding auxiliary points can achieve silver-medal level human performance on IMO. Building on this, we propose HAGeo, a Heuristic-based method for adding Auxiliary constructions in Geometric deduction that solves 28 of 30 problems on the IMO-30 benchmark, achieving gold-medal level performance and surpassing AlphaGeometry, a competitive neural network-based approach, by a notable margin. To evaluate our method and existing approaches more comprehensively, we further construct HAGeo-409, a benchmark consisting of 409 geometry problems with human-assessed difficulty levels. Compared with the widely used IMO-30, our benchmark poses greater challenges and provides a more precise evaluation, setting a higher bar for geometry theorem proving.
Catch Me If You Can: How Smaller Reasoning Models Pretend to Reason with Mathematical Fidelity
Current evaluation of mathematical reasoning in language models relies primarily on answer accuracy, potentially masking fundamental failures in logical computation. We introduce a diagnostic framework that distinguishes genuine mathematical reasoning from superficial pattern matching through four complementary axes: forward-backward consistency, transitivity coverage, counterfactual sensitivity, and perturbation robustness. Through a case study applying this framework to Qwen3-0.6B on the MenatQA dataset, we reveal a striking disconnect between surface performance and reasoning fidelity. While the model achieves reasonable answer accuracy (70%+), it demonstrates poor backward consistency (15%), limited transitivity coverage (32.2%), and brittle sensitivity to perturbations. Our diagnostics expose reasoning failures invisible to traditional accuracy metrics, suggesting that this small model relies heavily on pattern matching rather than genuine logical computation. While our empirical findings are based on a single 600M-parameter model, the diagnostic framework itself is model-agnostic and generalizable. We release our evaluation protocols to enable the research community to assess reasoning fidelity across different model scales and architectures, moving beyond surface-level accuracy toward verifiable mathematical reasoning.
G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities, which encourages extensive research on their application in mathematical problem solving. However, current work has been largely focused on text-based mathematical problems, with limited investigation in problems involving geometric information. Addressing this gap, we aim to enable LLMs to solve geometric problems by understanding image input. We first analyze the limitations of current Multimodal Large Language Models (MLLMs) in this area: they struggle to accurately comprehending basic geometric elements and their relationships. To overcome these challenges, we take advantage of the unique characteristics of geometric problems (such as unique geometric logical form, and geometric scalability) and the capacity of the textual LLMs to build an enriched multimodal geometry dataset based on existing data. The augmented dataset, Geo170K, contains more than 170K geometric image-caption and question-answer pairs. Utilizing our constructed Geo170K dataset, we develop G-LLaVA, which demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
Modular versus Hierarchical: A Structural Signature of Topic Popularity in Mathematical Research
Mathematical researchers, especially those in early-career positions, face critical decisions about topic specialization with limited information about the collaborative environments of different research areas. The aim of this paper is to study how the popularity of a research topic is associated with the structure of that topic's collaboration network, as observed by a suite of measures capturing organizational structure at several scales. We apply these measures to 1,938 algorithmically discovered topics across 121,391 papers sourced from arXiv metadata during the period 2020--2025. Our analysis, which controls for the confounding effects of network size, reveals a structural dichotomy--we find that popular topics organize into modular "schools of thought," while niche topics maintain hierarchical core-periphery structures centered around established experts. This divide is not an artifact of scale, but represents a size-independent structural pattern correlated with popularity. We also document a "constraint reversal": after controlling for size, researchers in popular fields face greater structural constraints on collaboration opportunities, contrary to conventional expectations. Our findings suggest that topic selection is an implicit choice between two fundamentally different collaborative environments, each with distinct implications for a researcher's career. To make these structural patterns transparent to the research community, we developed the Math Research Compass (https://mathresearchcompass.com), an interactive platform providing data on topic popularity and collaboration patterns across mathematical topics.
Assisting Mathematical Formalization with A Learning-based Premise Retriever
Premise selection is a crucial yet challenging step in mathematical formalization, especially for users with limited experience. Due to the lack of available formalization projects, existing approaches that leverage language models often suffer from data scarcity. In this work, we introduce an innovative method for training a premise retriever to support the formalization of mathematics. Our approach employs a BERT model to embed proof states and premises into a shared latent space. The retrieval model is trained within a contrastive learning framework and incorporates a domain-specific tokenizer along with a fine-grained similarity computation method. Experimental results show that our model is highly competitive compared to existing baselines, achieving strong performance while requiring fewer computational resources. Performance is further enhanced through the integration of a re-ranking module. To streamline the formalization process, we will release a search engine that enables users to query Mathlib theorems directly using proof states, significantly improving accessibility and efficiency. Codes are available at https://github.com/ruc-ai4math/Premise-Retrieval.
We-Math 2.0: A Versatile MathBook System for Incentivizing Visual Mathematical Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various tasks, but still struggle with complex mathematical reasoning. Existing research primarily focuses on dataset construction and method optimization, often overlooking two critical aspects: comprehensive knowledge-driven design and model-centric data space modeling. In this paper, we introduce We-Math 2.0, a unified system that integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to comprehensively enhance the mathematical reasoning abilities of MLLMs. The key contributions of We-Math 2.0 are fourfold: (1) MathBook Knowledge System: We construct a five-level hierarchical system encompassing 491 knowledge points and 1,819 fundamental principles. (2) MathBook-Standard & Pro: We develop MathBook-Standard, a dataset that ensures broad conceptual coverage and flexibility through dual expansion. Additionally, we define a three-dimensional difficulty space and generate 7 progressive variants per problem to build MathBook-Pro, a challenging dataset for robust training. (3) MathBook-RL: We propose a two-stage RL framework comprising: (i) Cold-Start Fine-tuning, which aligns the model with knowledge-oriented chain-of-thought reasoning; and (ii) Progressive Alignment RL, leveraging average-reward learning and dynamic data scheduling to achieve progressive alignment across difficulty levels. (4) MathBookEval: We introduce a comprehensive benchmark covering all 491 knowledge points with diverse reasoning step distributions. Experimental results show that MathBook-RL performs competitively with existing baselines on four widely-used benchmarks and achieves strong results on MathBookEval, suggesting promising generalization in mathematical reasoning.
Thinking Machines: Mathematical Reasoning in the Age of LLMs
Large Language Models (LLMs) have shown remarkable abilities in structured reasoning and symbolic tasks, with coding emerging as a particular area of strength. This success has sparked growing interest in applying LLMs to mathematics, both in informal problem-solving and formal theorem proving. However, progress in formal mathematics has proven to be significantly more difficult, despite surface-level similarities between programming and proof construction. This discrepancy raises important questions about how LLMs ``reason'', how they are supervised, and whether they internally track a notion of computational or deductive state. In this article, we address the state-of-the-art of the discipline, focusing on recent models and benchmarks, and explore three central issues at the intersection of machine learning and mathematical cognition: (i) the trade-offs between formal and informal mathematics as training domains; (ii) the deeper reasons why proof generation remains more brittle than code synthesis; (iii) and the question of whether LLMs represent, or merely mimic, a notion of evolving logical state. Our goal is not to draw hard boundaries, but to identify where the current limits lie, and how they might be extended.
Mathematical Capabilities of ChatGPT
We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer!
SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.
AI-Assisted Generation of Difficult Math Questions
Current LLM training positions mathematical reasoning as a core capability. With publicly available sources fully tapped, there is unmet demand for diverse and challenging math questions. Relying solely on human experts is both time-consuming and costly, while LLM-generated questions often lack the requisite diversity and difficulty. We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions. We leverage LLM metacognition skills [Didolkar et al., 2024] of a strong LLM to extract core "skills" from existing math datasets. These skills serve as the basis for generating novel and difficult questions by prompting the LLM with random pairs of core skills. The use of two different skills within each question makes finding such questions an "out of distribution" task for both LLMs and humans. Our pipeline employs LLMs to iteratively generate and refine questions and solutions through multiturn prompting. Human annotators then verify and further refine the questions, with their efficiency enhanced via further LLM interactions. Applying this pipeline on skills extracted from the MATH dataset [Hendrycks et al., 2021] resulted in MATH^2 - a dataset of higher-quality math questions, as evidenced by: (a) Lower performance of all models on MATH^2 than on MATH (b) Higher performance on MATH when using MATH^2 questions as in-context examples. Although focused on mathematics, our methodology seems applicable to other domains requiring structured reasoning, and potentially as a component of scalable oversight. Also of interest is a striking relationship observed between models' performance on the new dataset: the success rate on MATH^2 is the square on MATH, suggesting that successfully solving the question in MATH^2 requires a nontrivial combination of two distinct math skills.
Large Language Models for Mathematical Reasoning: Progresses and Challenges
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.
MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities. Despite these successes, most LLMs still struggle with solving mathematical problems due to the intricate reasoning required. This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset. The dataset includes diverse mathematical problems at high school and university levels, created by experts from notable institutions to rigorously test LLMs in advanced problem-solving scenarios and cover a wider range of subject areas. By providing the MathOdyssey dataset as a resource to the AI community, we aim to contribute to the understanding and improvement of AI capabilities in complex mathematical problem-solving. We conduct benchmarking on open-source models, such as Llama-3 and DBRX-Instruct, and closed-source models from the GPT series and Gemini models. Our results indicate that while LLMs perform well on routine and moderately difficult tasks, they face significant challenges with Olympiad-level problems and complex university-level questions. Our analysis shows a narrowing performance gap between open-source and closed-source models, yet substantial challenges remain, particularly with the most demanding problems. This study highlights the ongoing need for research to enhance the mathematical reasoning of LLMs. The dataset, results, and code are publicly available.
Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning
Recent large language model (LLM) reasoning, despite its success, suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth, particularly in small-scale models deployed in resource-constrained environments. This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning to address these challenges, introducing a novel paradigm termed as graph-augmented reasoning. Our goal is to enable frozen, small-scale LLMs to retrieve and process relevant mathematical knowledge in a step-wise manner, enhancing their problem-solving abilities without additional training. To this end, we propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model (PRP-RM) that refines retrieved information and evaluates each reasoning step. Experiments on the Math500 and GSM8K benchmarks across six models demonstrate that KG-RAR yields encouraging results, achieving a 20.73\% relative improvement with Llama-3B on Math500.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
Large Language Models for Mathematical Analysis
Mathematical problem-solving is a key field in artificial intelligence (AI) and a critical benchmark for evaluating the capabilities of large language models (LLMs). While extensive research has focused on mathematical problem-solving, most existing work and datasets concentrate on computational tasks, leaving gaps in areas like mathematical analysis, which demands rigorous proofs and formal reasoning. We developed the DEMI-MathAnalysis dataset, comprising proof-based problems from mathematical analysis topics such as Sequences and Limits, Infinite Series, and Convex Functions. We also designed a guiding framework to rigorously enhance LLMs' ability to solve these problems. Through fine-tuning LLMs on this dataset and employing our framework, we observed significant improvements in their capability to generate logical, complete, and elegant proofs. This work addresses critical gaps in mathematical reasoning and contributes to advancing trustworthy AI capable of handling formalized mathematical language. The code is publicly accessible at LLMs for Mathematical Analysis.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model
With the advent of DeepSeek-R1, a new wave of reinforcement learning (RL) methods has emerged that seem to unlock stronger mathematical reasoning. However, a closer look at the open-source ecosystem reveals a critical limitation: with sufficiently many draws (e.g., pass@1024), many existing base models already solve nearly all questions on widely used math benchmarks such as MATH-500 and AIME 2024. This suggests that the RL fine-tuning methods prevalent in the LLM reasoning literature largely sharpen existing solution modes rather than discovering entirely new ones. Such sharpening stands in contrast to the broader promise of RL: to foster exploration and to acquire new skills. To move beyond this plateau, we introduce MATH-Beyond (MATH-B), a benchmark deliberately constructed to defeat common open-source models of up to 8B parameters even under large sampling budgets. Improving performance on our benchmark via RL requires methods that learn to reason in ways that go beyond base model capabilities in repeated sampling. Since the problems are drawn from subsets of DAPO-Math-17K and DeepScaleR datasets, they remain topically equivalent to standard high-school math. Validating our premise, RL fine-tuned models such as Nemotron-Research-Reasoning-Qwen-1.5B and DeepScaleR-1.5B-Preview perform poorly on MATH-B at pass@1024, showing how existing approaches fall short on tackling harder instances. We hope MATH-B will catalyze exploration-driven RL approaches that elicit deeper reasoning capabilities. We release MATH-B at https://huggingface.co/datasets/brendel-group/MATH-Beyond.
Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange
Large Language Models (LLMs) have demonstrated exceptional capabilities in various natural language tasks, often achieving performances that surpass those of humans. Despite these advancements, the domain of mathematics presents a distinctive challenge, primarily due to its specialized structure and the precision it demands. In this study, we adopted a two-step approach for investigating the proficiency of LLMs in answering mathematical questions. First, we employ the most effective LLMs, as identified by their performance on math question-answer benchmarks, to generate answers to 78 questions from the Math Stack Exchange (MSE). Second, a case analysis is conducted on the LLM that showed the highest performance, focusing on the quality and accuracy of its answers through manual evaluation. We found that GPT-4 performs best (nDCG of 0.48 and P@10 of 0.37) amongst existing LLMs fine-tuned for answering mathematics questions and outperforms the current best approach on ArqMATH3 Task1, considering P@10. Our Case analysis indicates that while the GPT-4 can generate relevant responses in certain instances, it does not consistently answer all questions accurately. This paper explores the current limitations of LLMs in navigating complex mathematical problem-solving. Through case analysis, we shed light on the gaps in LLM capabilities within mathematics, thereby setting the stage for future research and advancements in AI-driven mathematical reasoning. We make our code and findings publicly available for research: https://github.com/gipplab/LLM-Investig-MathStackExchange
Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: https://github.com/JHU-CLSP/science-hierarchography{https://github.com/JHU-CLSP/science-hierarchography}
Herald: A Natural Language Annotated Lean 4 Dataset
Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for these formal languages is the lack of parallel datasets that align natural language with formal language proofs. To address this challenge, this paper introduces a novel framework for translating the Mathlib4 corpus (a unified library of mathematics in formal language Lean 4) into natural language. Building upon this, we employ a dual augmentation strategy that combines tactic-based and informal-based approaches, leveraging the Lean-jixia system, a Lean 4 analyzer. We present the results of this pipeline on Mathlib4 as Herald (Hierarchy and Retrieval-based Translated Lean Dataset). We also propose the Herald Translator, which is fine-tuned on Herald. Herald translator achieves a 93.2% accuracy (Pass@128) on formalizing statements in the miniF2F-test and a 22.5% accuracy on our internal graduate-level textbook dataset, outperforming InternLM2-Math-Plus-7B (74.0% and 7.5%) and TheoremLlama (50.1% and 4.0%). Furthermore, we propose a section-level translation framework for real-world applications. As a direct application of Herald translator, we have successfully translated a template section in the Stack project, marking a notable progress in the automatic formalization of graduate-level mathematical literature. Our model, along with the datasets, will be open-sourced to the public soon.
Advancing Math Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages
Advancements in LLMs have significantly expanded their capabilities across various domains. However, mathematical reasoning remains a challenging area, prompting the development of math-specific LLMs. These models typically follow a two-stage training paradigm: pre-training with math-related corpora and post-training with problem datasets for SFT. Despite these efforts, the improvements in mathematical reasoning achieved through continued pre-training (CPT) are often less significant compared to those obtained via SFT. This study addresses this discrepancy by exploring alternative strategies during the pre-training phase, focusing on the use of problem-solving data over general mathematical corpora. We investigate three primary research questions: (1) Can problem-solving data enhance the model's mathematical reasoning capabilities more effectively than general mathematical corpora during CPT? (2) Are synthetic data from the same source equally effective, and which synthesis methods are most efficient? (3) How do the capabilities developed from the same problem-solving data differ between the CPT and SFT stages, and what factors contribute to these differences? Our findings indicate that problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora. We also identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance. Furthermore, while SFT facilitates instruction-following abilities, it underperforms compared to CPT with the same data, which can be partially attributed to its poor learning capacity for hard multi-step problem-solving data. These insights provide valuable guidance for optimizing the mathematical reasoning capabilities of LLMs, culminating in our development of a powerful mathematical base model called JiuZhang-8B.
Automated Formalization via Conceptual Retrieval-Augmented LLMs
Interactive theorem provers (ITPs) require manual formalization, which is labor-intensive and demands expert knowledge. While automated formalization offers a potential solution, it faces two major challenges: model hallucination (e.g., undefined predicates, symbol misuse, and version incompatibility) and the semantic gap caused by ambiguous or missing premises in natural language descriptions. To address these issues, we propose CRAMF, a Concept-driven Retrieval-Augmented Mathematical Formalization framework. CRAMF enhances LLM-based autoformalization by retrieving formal definitions of core mathematical concepts, providing contextual grounding during code generation. However, applying retrieval-augmented generation (RAG) in this setting is non-trivial due to the lack of structured knowledge bases, the polymorphic nature of mathematical concepts, and the high precision required in formal retrieval. We introduce a framework for automatically constructing a concept-definition knowledge base from Mathlib4, the standard mathematical library for the Lean 4 theorem prover, indexing over 26,000 formal definitions and 1,000+ core mathematical concepts. To address conceptual polymorphism, we propose contextual query augmentation with domain- and application-level signals. In addition, we design a dual-channel hybrid retrieval strategy with reranking to ensure accurate and relevant definition retrieval. Experiments on miniF2F, ProofNet, and our newly proposed AdvancedMath benchmark show that CRAMF can be seamlessly integrated into LLM-based autoformalizers, yielding consistent improvements in translation accuracy, achieving up to 62.1% and an average of 29.9% relative improvement.
Mathematical Language Models: A Survey
In recent years, there has been remarkable progress in leveraging Language Models (LMs), encompassing Pre-trained Language Models (PLMs) and Large-scale Language Models (LLMs), within the domain of mathematics. This paper conducts a comprehensive survey of mathematical LMs, systematically categorizing pivotal research endeavors from two distinct perspectives: tasks and methodologies. The landscape reveals a large number of proposed mathematical LLMs, which are further delineated into instruction learning, tool-based methods, fundamental CoT techniques, and advanced CoT methodologies. In addition, our survey entails the compilation of over 60 mathematical datasets, including training datasets, benchmark datasets, and augmented datasets. Addressing the primary challenges and delineating future trajectories within the field of mathematical LMs, this survey is positioned as a valuable resource, poised to facilitate and inspire future innovation among researchers invested in advancing this domain.
From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems
Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.
Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models
Large language models (LLMs) have demonstrated impressive reasoning capabilities, particularly in textual mathematical problem-solving. However, existing open-source image instruction fine-tuning datasets, containing limited question-answer pairs per image, do not fully exploit visual information to enhance the multimodal mathematical reasoning capabilities of Multimodal LLMs (MLLMs). To bridge this gap, we address the lack of high-quality, diverse multimodal mathematical datasets by collecting 40K high-quality images with question-answer pairs from 24 existing datasets and synthesizing 320K new pairs, creating the MathV360K dataset, which enhances both the breadth and depth of multimodal mathematical questions. We introduce Math-LLaVA, a LLaVA-1.5-based model fine-tuned with MathV360K. This novel approach significantly improves the multimodal mathematical reasoning capabilities of LLaVA-1.5, achieving a 19-point increase and comparable performance to GPT-4V on MathVista's minitest split. Furthermore, Math-LLaVA demonstrates enhanced generalizability, showing substantial improvements on the MMMU benchmark. Our research highlights the importance of dataset diversity and synthesis in advancing MLLMs' mathematical reasoning abilities. The code and data are available at: https://github.com/HZQ950419/Math-LLaVA.
HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics
Advanced applied mathematics problems are underrepresented in existing Large Language Model (LLM) benchmark datasets. To address this, we introduce HARDMath, a dataset inspired by a graduate course on asymptotic methods, featuring challenging applied mathematics problems that require analytical approximation techniques. These problems demand a combination of mathematical reasoning, computational tools, and subjective judgment, making them difficult for LLMs. Our framework auto-generates a large number of problems with solutions validated against numerical ground truths. We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts. Even leading closed-source models like GPT-4 achieve only 43.8% overall accuracy with few-shot Chain-of-Thought prompting, and all models demonstrate significantly lower performance compared to results on existing mathematics benchmark datasets. We additionally conduct a detailed error analysis to gain insights into the failure cases of LLMs. These results demonstrate limitations of current LLM performance on advanced graduate-level applied math problems and underscore the importance of datasets like HARDMath to advance mathematical abilities of LLMs.
OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data
Mathematical reasoning continues to be a critical challenge in large language model (LLM) development with significant interest. However, most of the cutting-edge progress in mathematical reasoning with LLMs has become closed-source due to lack of access to training data. This lack of data access limits researchers from understanding the impact of different choices for synthesizing and utilizing the data. With the goal of creating a high-quality finetuning (SFT) dataset for math reasoning, we conduct careful ablation experiments on data synthesis using the recently released Llama3.1 family of models. Our experiments show that: (a) solution format matters, with excessively verbose solutions proving detrimental to SFT performance, (b) data generated by a strong teacher outperforms on-policy data generated by a weak student model, (c) SFT is robust to low-quality solutions, allowing for imprecise data filtering, and (d) question diversity is crucial for achieving data scaling gains. Based on these insights, we create the OpenMathInstruct-2 dataset, which consists of 14M question-solution pairs (approx 600K unique questions), making it nearly eight times larger than the previous largest open-source math reasoning dataset. Finetuning the Llama-3.1-8B-Base using OpenMathInstruct-2 outperforms Llama3.1-8B-Instruct on MATH by an absolute 15.9\% (51.9\% rightarrow 67.8\%). Finally, to accelerate the open-source efforts, we release the code, the finetuned models, and the OpenMathInstruct-2 dataset under a commercially permissive license.
AI-Researcher: Autonomous Scientific Innovation
The powerful reasoning capabilities of Large Language Models (LLMs) in mathematics and coding, combined with their ability to automate complex tasks through agentic frameworks, present unprecedented opportunities for accelerating scientific innovation. In this paper, we introduce AI-Researcher, a fully autonomous research system that transforms how AI-driven scientific discovery is conducted and evaluated. Our framework seamlessly orchestrates the complete research pipeline--from literature review and hypothesis generation to algorithm implementation and publication-ready manuscript preparation--with minimal human intervention. To rigorously assess autonomous research capabilities, we develop Scientist-Bench, a comprehensive benchmark comprising state-of-the-art papers across diverse AI research domains, featuring both guided innovation and open-ended exploration tasks. Through extensive experiments, we demonstrate that AI-Researcher achieves remarkable implementation success rates and produces research papers that approach human-level quality. This work establishes new foundations for autonomous scientific innovation that can complement human researchers by systematically exploring solution spaces beyond cognitive limitations.
AAAR-1.0: Assessing AI's Potential to Assist Research
Numerous studies have assessed the proficiency of AI systems, particularly large language models (LLMs), in facilitating everyday tasks such as email writing, question answering, and creative content generation. However, researchers face unique challenges and opportunities in leveraging LLMs for their own work, such as brainstorming research ideas, designing experiments, and writing or reviewing papers. In this study, we introduce AAAR-1.0, a benchmark dataset designed to evaluate LLM performance in three fundamental, expertise-intensive research tasks: (i) EquationInference, assessing the correctness of equations based on the contextual information in paper submissions; (ii) ExperimentDesign, designing experiments to validate research ideas and solutions; (iii) PaperWeakness, identifying weaknesses in paper submissions; and (iv) REVIEWCRITIQUE, identifying each segment in human reviews is deficient or not. AAAR-1.0 differs from prior benchmarks in two key ways: first, it is explicitly research-oriented, with tasks requiring deep domain expertise; second, it is researcher-oriented, mirroring the primary activities that researchers engage in on a daily basis. An evaluation of both open-source and proprietary LLMs reveals their potential as well as limitations in conducting sophisticated research tasks. We will keep iterating AAAR-1.0 to new versions.
MathGLM-Vision: Solving Mathematical Problems with Multi-Modal Large Language Model
Large language models (LLMs) have demonstrated significant capabilities in mathematical reasoning, particularly with text-based mathematical problems. However, current multi-modal large language models (MLLMs), especially those specialized in mathematics, tend to focus predominantly on solving geometric problems but ignore the diversity of visual information available in other areas of mathematics. Moreover, the geometric information for these specialized mathematical MLLMs is derived from several public datasets, which are typically limited in diversity and complexity. To address these limitations, we aim to construct a fine-tuning dataset named MathVL, and develop a series of specialized mathematical MLLMs termed MathGLM-Vision by conducting Supervised Fine-Tuning (SFT) on MathVL with various parameter-scale backbones. To extensively evaluate the effectiveness of MathGLM-Vision, we conduct experiments on several public benchmarks and our curated MathVL-test consisting of 2,000 problems. Experimental results demonstrate that MathGLM-Vision achieves significant improvements compared with some existing models, including backbone models and open-source mathematical MLLMs. These findings indicate the importance of diversity dataset in enhancing the mathematical reasoning abilities of MLLMs.
SKYLENAGE Technical Report: Mathematical Reasoning and Contest-Innovation Benchmarks for Multi-Level Math Evaluation
Large language models (LLMs) now perform strongly on many public math suites, yet frontier separation within mathematics increasingly suffers from ceiling effects. We present two complementary benchmarks: SKYLENAGE-ReasoningMATH, a 100-item, structure-aware diagnostic set with per-item metadata on length, numeric density, and symbolic complexity; and SKYLENAGE-MATH, a 150-item contest-style suite spanning four stages from high school to doctoral under a seven-subject taxonomy. We evaluate fifteen contemporary LLM variants under a single setup and analyze subject x model and grade x model performance. On the contest suite, the strongest model reaches 44% while the runner-up reaches 37%; accuracy declines from high school to doctoral, and top systems exhibit a doctoral-to-high-school retention near 79%. On the reasoning set, the best model attains 81% overall, and hardest-slice results reveal clear robustness gaps between leaders and the mid-tier. In summary, we release SKYLENAGE-ReasoningMATH and report aggregate results for SKYLENAGE-MATH; together, SKYLENAGE provides a hard, reasoning-centered and broadly covering math benchmark with calibrated difficulty and rich metadata, serving as a reference benchmark for future evaluations of mathematical reasoning.
Deep Researcher with Sequential Plan Reflection and Candidates Crossover (Deep Researcher Reflect Evolve)
This paper introduces a novel Deep Researcher architecture designed to generate detailed research reports on complex PhD level topics by addressing the inherent limitations of the Parallel Scaling paradigm. Our system utilizes two key innovations: Sequential Research Plan Refinement via Reflection and a Candidates Crossover algorithm. The sequential refinement process is demonstrated as an efficient method that allows the agent to maintain a centralized Global Research Context, enabling it to look back at current progress, reason about the research plan, and intelligently make changes at runtime. This dynamic adaptation contrasts with parallel approaches, which often suffer from siloed knowledge. The Candidates Crossover algorithm further enhances search efficiency by deploying multiple LLM candidates with varied parameters to explore a larger search space, with their findings synthesized to curate a comprehensive final research response. The process concludes with One Shot Report Generation, ensuring the final document is informed by a unified narrative and high fact density. Powered by the Gemini 2.5 Pro model, our Deep Researcher was evaluated on the DeepResearch Bench, a globally recognized benchmark of 100 doctoral level research tasks. Our architecture achieved an overall score of 46.21, demonstrating superior performance by surpassing leading deep research agents such as Claude Researcher, Nvidia AIQ Research Assistant, Perplexity Research, Kimi Researcher and Grok Deeper Search present on the DeepResearch Bench actively running leaderboard. This performance marginally exceeds our previous work, Static DRA, and reinforces the finding that sequential scaling consistently outperforms the parallel self consistency paradigm.
PhysProver: Advancing Automatic Theorem Proving for Physics
The combination of verifiable languages and LLMs has significantly influenced both the mathematical and computer science communities because it provides a rigorous foundation for theorem proving. Recent advancements in the field provide foundation models and sophisticated agentic systems pushing the boundaries of formal mathematical reasoning to approach the natural language capability of LLMs. However, little attention has been given to the formal physics reasoning, which also heavily relies on similar problem-solving and theorem-proving frameworks. To solve this problem, this paper presents, to the best of our knowledge, the first approach to enhance formal theorem proving in the physics domain. We compose a dedicated dataset PhysLeanData for the task. It is composed of theorems sampled from PhysLean and data generated by a conjecture-based formal data generation pipeline. In the training pipeline, we leverage DeepSeek-Prover-V2-7B, a strong open-source mathematical theorem prover, and apply Reinforcement Learning with Verifiable Rewards (RLVR) to train our model PhysProver. Comprehensive experiments demonstrate that, using only sim5K training samples, PhysProver achieves an overall 2.4\% improvement in multiple sub-domains. Furthermore, after formal physics training, we observe 1.3\% gains on the MiniF2F-Test benchmark, which indicates non-trivial generalization beyond physics domains and enhancement for formal math capability as well. The results highlight the effectiveness and efficiency of our approach, which provides a paradigm for extending formal provers outside mathematical domains. To foster further research, we will release both our dataset and model to the community.
MegaMath: Pushing the Limits of Open Math Corpora
Mathematical reasoning is a cornerstone of human intelligence and a key benchmark for advanced capabilities in large language models (LLMs). However, the research community still lacks an open, large-scale, high-quality corpus tailored to the demands of math-centric LLM pre-training. We present MegaMath, an open dataset curated from diverse, math-focused sources through following practices: (1) Revisiting web data: We re-extracted mathematical documents from Common Crawl with math-oriented HTML optimizations, fasttext-based filtering and deduplication, all for acquiring higher-quality data on the Internet. (2) Recalling Math-related code data: We identified high quality math-related code from large code training corpus, Stack-V2, further enhancing data diversity. (3) Exploring Synthetic data: We synthesized QA-style text, math-related code, and interleaved text-code blocks from web data or code data. By integrating these strategies and validating their effectiveness through extensive ablations, MegaMath delivers 371B tokens with the largest quantity and top quality among existing open math pre-training datasets.
Big-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models
Increasing interest in reasoning models has led math to become a prominent testing ground for algorithmic and methodological improvements. However, existing open math datasets either contain a small collection of high-quality, human-written problems or a large corpus of machine-generated problems of uncertain quality, forcing researchers to choose between quality and quantity. In this work, we present Big-Math, a dataset of over 250,000 high-quality math questions with verifiable answers, purposefully made for reinforcement learning (RL). To create Big-Math, we rigorously filter, clean, and curate openly available datasets, extracting questions that satisfy our three desiderata: (1) problems with uniquely verifiable solutions, (2) problems that are open-ended, (3) and problems with a closed-form solution. To ensure the quality of Big-Math, we manually verify each step in our filtering process. Based on the findings from our filtering process, we introduce 47,000 new questions with verified answers, Big-Math-Reformulated: closed-ended questions (i.e. multiple choice questions) that have been reformulated as open-ended questions through a systematic reformulation algorithm. Compared to the most commonly used existing open-source datasets for math reasoning, GSM8k and MATH, Big-Math is an order of magnitude larger, while our rigorous filtering ensures that we maintain the questions most suitable for RL. We also provide a rigorous analysis of the dataset, finding that Big-Math contains a high degree of diversity across problem domains, and incorporates a wide range of problem difficulties, enabling a wide range of downstream uses for models of varying capabilities and training requirements. By bridging the gap between data quality and quantity, Big-Math establish a robust foundation for advancing reasoning in LLMs.
LLM4SR: A Survey on Large Language Models for Scientific Research
In recent years, the rapid advancement of Large Language Models (LLMs) has transformed the landscape of scientific research, offering unprecedented support across various stages of the research cycle. This paper presents the first systematic survey dedicated to exploring how LLMs are revolutionizing the scientific research process. We analyze the unique roles LLMs play across four critical stages of research: hypothesis discovery, experiment planning and implementation, scientific writing, and peer reviewing. Our review comprehensively showcases the task-specific methodologies and evaluation benchmarks. By identifying current challenges and proposing future research directions, this survey not only highlights the transformative potential of LLMs, but also aims to inspire and guide researchers and practitioners in leveraging LLMs to advance scientific inquiry. Resources are available at the following repository: https://github.com/du-nlp-lab/LLM4SR
MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations
Large language models have demonstrated impressive performance on challenging mathematical reasoning tasks, which has triggered the discussion of whether the performance is achieved by true reasoning capability or memorization. To investigate this question, prior work has constructed mathematical benchmarks when questions undergo simple perturbations -- modifications that still preserve the underlying reasoning patterns of the solutions. However, no work has explored hard perturbations, which fundamentally change the nature of the problem so that the original solution steps do not apply. To bridge the gap, we construct MATH-P-Simple and MATH-P-Hard via simple perturbation and hard perturbation, respectively. Each consists of 279 perturbed math problems derived from level-5 (hardest) problems in the MATH dataset (Hendrycksmath et. al., 2021). We observe significant performance drops on MATH-P-Hard across various models, including o1-mini (-16.49%) and gemini-2.0-flash-thinking (-12.9%). We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills without assessing their applicability to modified contexts. This issue is amplified when using original problems for in-context learning. We call for research efforts to address this challenge, which is critical for developing more robust and reliable reasoning models.
MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?
The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io
MathScale: Scaling Instruction Tuning for Mathematical Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., {\tt GPT-3.5}). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct {\sc MwpBench}, a benchmark of Math Word Problems, which is a collection of ten datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on {\sc MwpBench}, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.9\% in micro average accuracy and 43.7\% in macro average accuracy, respectively.
ScholarSearch: Benchmarking Scholar Searching Ability of LLMs
Large Language Models (LLMs)' search capabilities have garnered significant attention. Existing benchmarks, such as OpenAI's BrowseComp, primarily focus on general search scenarios and fail to adequately address the specific demands of academic search. These demands include deeper literature tracing and organization, professional support for academic databases, the ability to navigate long-tail academic knowledge, and ensuring academic rigor. Here, we proposed ScholarSearch, the first dataset specifically designed to evaluate the complex information retrieval capabilities of Large Language Models (LLMs) in academic research. ScholarSearch possesses the following key characteristics: Academic Practicality, where question content closely mirrors real academic learning and research environments, avoiding deliberately misleading models; High Difficulty, with answers that are challenging for single models (e.g., Grok DeepSearch or Gemini Deep Research) to provide directly, often requiring at least three deep searches to derive; Concise Evaluation, where limiting conditions ensure answers are as unique as possible, accompanied by clear sources and brief solution explanations, greatly facilitating subsequent audit and verification, surpassing the current lack of analyzed search datasets both domestically and internationally; and Broad Coverage, as the dataset spans at least 15 different academic disciplines. Through ScholarSearch, we expect to more precisely measure and promote the performance improvement of LLMs in complex academic information retrieval tasks. The data is available at: https://huggingface.co/datasets/PKU-DS-LAB/ScholarSearch
FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI
We introduce FrontierMath, a benchmark of hundreds of original, exceptionally challenging mathematics problems crafted and vetted by expert mathematicians. The questions cover most major branches of modern mathematics -- from computationally intensive problems in number theory and real analysis to abstract questions in algebraic geometry and category theory. Solving a typical problem requires multiple hours of effort from a researcher in the relevant branch of mathematics, and for the upper end questions, multiple days. FrontierMath uses new, unpublished problems and automated verification to reliably evaluate models while minimizing risk of data contamination. Current state-of-the-art AI models solve under 2% of problems, revealing a vast gap between AI capabilities and the prowess of the mathematical community. As AI systems advance toward expert-level mathematical abilities, FrontierMath offers a rigorous testbed that quantifies their progress.
FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models
To thoroughly assess the mathematical reasoning abilities of Large Language Models (LLMs), we need to carefully curate evaluation datasets covering diverse mathematical concepts and mathematical problems at different difficulty levels. In pursuit of this objective, we propose FineMath in this paper, a fine-grained mathematical evaluation benchmark dataset for assessing Chinese LLMs. FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are further divided into 17 categories of math word problems, enabling in-depth analysis of mathematical reasoning abilities of LLMs. All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems. We conduct extensive experiments on a wide range of LLMs on FineMath and find that there is still considerable room for improvements in terms of mathematical reasoning capability of Chinese LLMs. We also carry out an in-depth analysis on the evaluation process and methods that have been overlooked previously. These two factors significantly influence the model results and our understanding of their mathematical reasoning capabilities. The dataset will be publicly available soon.
ResearchQA: Evaluating Scholarly Question Answering at Scale Across 75 Fields with Survey-Mined Questions and Rubrics
Evaluating long-form responses to research queries heavily relies on expert annotators, restricting attention to areas like AI where researchers can conveniently enlist colleagues. Yet, research expertise is widespread: survey articles synthesize knowledge distributed across the literature. We introduce ResearchQA, a resource for evaluating LLM systems by distilling survey articles from 75 research fields into 21K queries and 160K rubric items. Each rubric, derived jointly with queries from survey sections, lists query-specific answer evaluation criteria, i.e., citing papers, making explanations, and describing limitations. Assessments by 31 Ph.D. annotators in 8 fields indicate 96% of queries support Ph.D. information needs and 87% of rubric items should be addressed in system responses by a sentence or more. Using our rubrics, we are able to construct an automatic pairwise judge obtaining 74% agreement with expert judgments. We leverage ResearchQA to analyze competency gaps in 18 systems in over 7.6K pairwise evaluations. No parametric or retrieval-augmented system we evaluate exceeds 70% on covering rubric items, and the highest-ranking agentic system shows 75% coverage. Error analysis reveals that the highest-ranking system fully addresses less than 11% of citation rubric items, 48% of limitation items, and 49% of comparison items. We release our data to facilitate more comprehensive multi-field evaluations.
CHIME: LLM-Assisted Hierarchical Organization of Scientific Studies for Literature Review Support
Literature review requires researchers to synthesize a large amount of information and is increasingly challenging as the scientific literature expands. In this work, we investigate the potential of LLMs for producing hierarchical organizations of scientific studies to assist researchers with literature review. We define hierarchical organizations as tree structures where nodes refer to topical categories and every node is linked to the studies assigned to that category. Our naive LLM-based pipeline for hierarchy generation from a set of studies produces promising yet imperfect hierarchies, motivating us to collect CHIME, an expert-curated dataset for this task focused on biomedicine. Given the challenging and time-consuming nature of building hierarchies from scratch, we use a human-in-the-loop process in which experts correct errors (both links between categories and study assignment) in LLM-generated hierarchies. CHIME contains 2,174 LLM-generated hierarchies covering 472 topics, and expert-corrected hierarchies for a subset of 100 topics. Expert corrections allow us to quantify LLM performance, and we find that while they are quite good at generating and organizing categories, their assignment of studies to categories could be improved. We attempt to train a corrector model with human feedback which improves study assignment by 12.6 F1 points. We release our dataset and models to encourage research on developing better assistive tools for literature review.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
MathScape: Evaluating MLLMs in multimodal Math Scenarios through a Hierarchical Benchmark
With the development of Multimodal Large Language Models (MLLMs), the evaluation of multimodal models in the context of mathematical problems has become a valuable research field. Multimodal visual-textual mathematical reasoning serves as a critical indicator for evaluating the comprehension and complex multi-step quantitative reasoning abilities of MLLMs. However, previous multimodal math benchmarks have not sufficiently integrated visual and textual information. To address this gap, we proposed MathScape, a new benchmark that emphasizes the understanding and application of combined visual and textual information. MathScape is designed to evaluate photo-based math problem scenarios, assessing the theoretical understanding and application ability of MLLMs through a categorical hierarchical approach. We conduct a multi-dimensional evaluation on 11 advanced MLLMs, revealing that our benchmark is challenging even for the most sophisticated models. By analyzing the evaluation results, we identify the limitations of MLLMs, offering valuable insights for enhancing model performance.
Training AI Co-Scientists Using Rubric Rewards
AI co-scientists are emerging as a tool to assist human researchers in achieving their research goals. A crucial feature of these AI co-scientists is the ability to generate a research plan given a set of aims and constraints. The plan may be used by researchers for brainstorming, or may even be implemented after further refinement. However, language models currently struggle to generate research plans that follow all constraints and implicit requirements. In this work, we study how to leverage the vast corpus of existing research papers to train language models that generate better research plans. We build a scalable, diverse training corpus by automatically extracting research goals and goal-specific grading rubrics from papers across several domains. We then train models for research plan generation via reinforcement learning with self-grading. A frozen copy of the initial policy acts as the grader during training, with the rubrics creating a generator-verifier gap that enables improvements without external human supervision. To validate this approach, we conduct a study with human experts for machine learning research goals, spanning 225 hours. The experts prefer plans generated by our finetuned Qwen3-30B-A3B model over the initial model for 70% of research goals, and approve 84% of the automatically extracted goal-specific grading rubrics. To assess generality, we also extend our approach to research goals from medical papers, and new arXiv preprints, evaluating with a jury of frontier models. Our finetuning yields 12-22% relative improvements and significant cross-domain generalization, proving effective even in problem settings like medical research where execution feedback is infeasible. Together, these findings demonstrate the potential of a scalable, automated training recipe as a step towards improving general AI co-scientists.
FormalML: A Benchmark for Evaluating Formal Subgoal Completion in Machine Learning Theory
Large language models (LLMs) have recently demonstrated remarkable progress in formal theorem proving. Yet their ability to serve as practical assistants for mathematicians, filling in missing steps within complex proofs, remains underexplored. We identify this challenge as the task of subgoal completion, where an LLM must discharge short but nontrivial proof obligations left unresolved in a human-provided sketch. To study this problem, we introduce FormalML, a Lean 4 benchmark built from foundational theories of machine learning. Using a translation tactic that converts procedural proofs into declarative form, we extract 4937 problems spanning optimization and probability inequalities, with varying levels of difficulty. FormalML is the first subgoal completion benchmark to combine premise retrieval and complex research-level contexts. Evaluation of state-of-the-art provers highlights persistent limitations in accuracy and efficiency, underscoring the need for more capable LLM-based theorem provers for effective subgoal completion,
One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs
Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.
From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO, showing significant progress. However, these studies intertwined multiple skills simultaneously, i.e., problem-solving, reasoning, and writing formal specifications, making it hard to precisely identify the LLMs' strengths and weaknesses in each task. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and decomposes it into six sub-tasks. We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling GPT-4o. They are split into a 14k+ fine-tuning dataset FM-alpaca and a 4k benchmark FM-Bench. We found that LLMs are good at writing proof segments when given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding abilities. We hope our findings inspire further research. Fine-tuned models are released to facilitate subsequent studies
ResearchGPT: Benchmarking and Training LLMs for End-to-End Computer Science Research Workflows
As large language models (LLMs) advance, the ultimate vision for their role in science is emerging: we could build an AI collaborator to effectively assist human beings throughout the entire scientific research process. We refer to this envisioned system as ResearchGPT. Given that scientific research progresses through multiple interdependent phases, achieving this vision requires rigorous benchmarks that evaluate the end-to-end workflow rather than isolated sub-tasks. To this end, we contribute CS-54k, a high-quality corpus of scientific Q&A pairs in computer science, built from 14k CC-licensed papers. It is constructed through a scalable, paper-grounded pipeline that combines retrieval-augmented generation (RAG) with multi-stage quality control to ensure factual grounding. From this unified corpus, we derive two complementary subsets: CS-4k, a carefully curated benchmark for evaluating AI's ability to assist scientific research, and CS-50k, a large-scale training dataset. Extensive experiments demonstrate that CS-4k stratifies state-of-the-art LLMs into distinct capability tiers. Open models trained on CS-50k with supervised training and reinforcement learning demonstrate substantial improvements. Even 7B-scale models, when properly trained, outperform many larger proprietary systems, such as GPT-4.1, GPT-4o, and Gemini 2.5 Pro. This indicates that making AI models better research assistants relies more on domain-aligned training with high-quality data than on pretraining scale or general benchmark performance. We release CS-4k and CS-50k in the hope of fostering AI systems as reliable collaborators in CS research.
MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark
Recent advancements in large language models (LLMs) have showcased significant improvements in mathematics. However, traditional math benchmarks like GSM8k offer a unidimensional perspective, falling short in providing a holistic assessment of the LLMs' math capabilities. To address this gap, we introduce MathBench, a new benchmark that rigorously assesses the mathematical capabilities of large language models. MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills. The benchmark progresses through five distinct stages, from basic arithmetic to college mathematics, and is structured to evaluate models at various depths of knowledge. Each stage includes theoretical questions and application problems, allowing us to measure a model's mathematical proficiency and its ability to apply concepts in practical scenarios. MathBench aims to enhance the evaluation of LLMs' mathematical abilities, providing a nuanced view of their knowledge understanding levels and problem solving skills in a bilingual context. The project is released at https://github.com/open-compass/MathBench .
U-MATH: A University-Level Benchmark for Evaluating Mathematical Skills in LLMs
The current evaluation of mathematical skills in LLMs is limited, as existing benchmarks are either relatively small, primarily focus on elementary and high-school problems, or lack diversity in topics. Additionally, the inclusion of visual elements in tasks remains largely under-explored. To address these gaps, we introduce U-MATH, a novel benchmark of 1,100 unpublished open-ended university-level problems sourced from teaching materials. It is balanced across six core subjects, with 20% of multimodal problems. Given the open-ended nature of U-MATH problems, we employ an LLM to judge the correctness of generated solutions. To this end, we release mu-MATH, a dataset to evaluate the LLMs' capabilities in judging solutions. The evaluation of general domain, math-specific, and multimodal LLMs highlights the challenges presented by U-MATH. Our findings reveal that LLMs achieve a maximum accuracy of only 63% on text-based tasks, with even lower 45% on visual problems. The solution assessment proves challenging for LLMs, with the best LLM judge having an F1-score of 80% on mu-MATH.
Algorithm-assisted discovery of an intrinsic order among mathematical constants
In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of zeta(3). Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science.
What Are Step-Level Reward Models Rewarding? Counterintuitive Findings from MCTS-Boosted Mathematical Reasoning
Step-level reward models (SRMs) can significantly enhance mathematical reasoning performance through process supervision or step-level preference alignment based on reinforcement learning. The performance of SRMs is pivotal, as they serve as critical guidelines, ensuring that each step in the reasoning process is aligned with desired outcomes. Recently, AlphaZero-like methods, where Monte Carlo Tree Search (MCTS) is employed for automatic step-level preference annotation, have proven particularly effective. However, the precise mechanisms behind the success of SRMs remain largely unexplored. To address this gap, this study delves into the counterintuitive aspects of SRMs, particularly focusing on MCTS-based approaches. Our findings reveal that the removal of natural language descriptions of thought processes has minimal impact on the efficacy of SRMs. Furthermore, we demonstrate that SRMs are adept at assessing the complex logical coherence present in mathematical language while having difficulty in natural language. These insights provide a nuanced understanding of the core elements that drive effective step-level reward modeling in mathematical reasoning. By shedding light on these mechanisms, this study offers valuable guidance for developing more efficient and streamlined SRMs, which can be achieved by focusing on the crucial parts of mathematical reasoning.
Hermes 4 Technical Report
We present Hermes 4, a family of hybrid reasoning models that combine structured, multi-turn reasoning with broad instruction-following ability. We describe the challenges encountered during data curation, synthesis, training, and evaluation, and outline the solutions employed to address these challenges at scale. We comprehensively evaluate across mathematical reasoning, coding, knowledge, comprehension, and alignment benchmarks, and we report both quantitative performance and qualitative behavioral analysis. To support open research, all model weights are published publicly at https://huggingface.co/collections/NousResearch/hermes-4-collection-68a731bfd452e20816725728
Physics of Language Models: Part 2.1, Grade-School Math and the Hidden Reasoning Process
Recent advances in language models have demonstrated their capability to solve mathematical reasoning problems, achieving near-perfect accuracy on grade-school level math benchmarks like GSM8K. In this paper, we formally study how language models solve these problems. We design a series of controlled experiments to address several fundamental questions: (1) Can language models truly develop reasoning skills, or do they simply memorize templates? (2) What is the model's hidden (mental) reasoning process? (3) Do models solve math questions using skills similar to or different from humans? (4) Do models trained on GSM8K-like datasets develop reasoning skills beyond those necessary for solving GSM8K problems? (5) What mental process causes models to make reasoning mistakes? (6) How large or deep must a model be to effectively solve GSM8K-level math questions? Our study uncovers many hidden mechanisms by which language models solve mathematical questions, providing insights that extend beyond current understandings of LLMs.
Early science acceleration experiments with GPT-5
AI models like GPT-5 are an increasingly valuable tool for scientists, but many remain unaware of the capabilities of frontier AI. We present a collection of short case studies in which GPT-5 produced new, concrete steps in ongoing research across mathematics, physics, astronomy, computer science, biology, and materials science. In these examples, the authors highlight how AI accelerated their work, and where it fell short; where expert time was saved, and where human input was still key. We document the interactions of the human authors with GPT-5, as guiding examples of fruitful collaboration with AI. Of note, this paper includes four new results in mathematics (carefully verified by the human authors), underscoring how GPT-5 can help human mathematicians settle previously unsolved problems. These contributions are modest in scope but profound in implication, given the rate at which frontier AI is progressing.
EAIRA: Establishing a Methodology for Evaluating AI Models as Scientific Research Assistants
Recent advancements have positioned AI, and particularly Large Language Models (LLMs), as transformative tools for scientific research, capable of addressing complex tasks that require reasoning, problem-solving, and decision-making. Their exceptional capabilities suggest their potential as scientific research assistants but also highlight the need for holistic, rigorous, and domain-specific evaluation to assess effectiveness in real-world scientific applications. This paper describes a multifaceted methodology for Evaluating AI models as scientific Research Assistants (EAIRA) developed at Argonne National Laboratory. This methodology incorporates four primary classes of evaluations. 1) Multiple Choice Questions to assess factual recall; 2) Open Response to evaluate advanced reasoning and problem-solving skills; 3) Lab-Style Experiments involving detailed analysis of capabilities as research assistants in controlled environments; and 4) Field-Style Experiments to capture researcher-LLM interactions at scale in a wide range of scientific domains and applications. These complementary methods enable a comprehensive analysis of LLM strengths and weaknesses with respect to their scientific knowledge, reasoning abilities, and adaptability. Recognizing the rapid pace of LLM advancements, we designed the methodology to evolve and adapt so as to ensure its continued relevance and applicability. This paper describes the methodology state at the end of February 2025. Although developed within a subset of scientific domains, the methodology is designed to be generalizable to a wide range of scientific domains.
Lost in Cultural Translation: Do LLMs Struggle with Math Across Cultural Contexts?
Large Language Models (LLMs) have significantly advanced various fields, particularly coding, mathematical reasoning, and logical problem solving. However, a critical question remains: Do these mathematical reasoning abilities persist when LLMs are presented with culturally adapted math problems? Specifically, how do LLMs perform when faced with math problems embedded in cultural contexts that have no significant representation in main stream web-scale AI training data? To explore this, we generated six synthetic cultural datasets from GSM8K, a widely used benchmark for assessing LLMs' mathematical reasoning skills. While preserving the mathematical logic and numerical values of the original GSM8K test set, we modify cultural elements such as personal names, food items, place names, etc. These culturally adapted datasets provide a more reliable framework for evaluating LLMs' mathematical reasoning under shifting cultural contexts. Our findings reveal that LLMs struggle with math problems when cultural references change, even though the underlying mathematical structure remains constant. Smaller models exhibit greater performance drops compared to larger models. Interestingly, our results also suggest that cultural familiarity can enhance mathematical reasoning. Even models with no explicit mathematical training but exposure to relevant cultural contexts sometimes outperform larger, mathematically proficient models on culturally embedded math problems. This study highlights the impact of cultural context on the mathematical reasoning abilities of LLMs, underscoring the need for more diverse and representative training data to improve robustness in real-world applications. The benchmark data sets and script for reproducing the results are available at https://github.com/akarim23131/Lost_in_Cultural_Translation
DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning
Theorem proving serves as a major testbed for evaluating complex reasoning abilities in large language models (LLMs). However, traditional automated theorem proving (ATP) approaches rely heavily on formal proof systems that poorly align with LLMs' strength derived from informal, natural language knowledge acquired during pre-training. In this work, we propose DeepTheorem, a comprehensive informal theorem-proving framework exploiting natural language to enhance LLM mathematical reasoning. DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs spanning diverse mathematical domains, rigorously annotated for correctness, difficulty, and topic categories, accompanied by systematically constructed verifiable theorem variants. We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference. Additionally, we propose comprehensive outcome and process evaluation metrics examining proof correctness and the quality of reasoning steps. Extensive experimental analyses demonstrate DeepTheorem significantly improves LLM theorem-proving performance compared to existing datasets and supervised fine-tuning protocols, achieving state-of-the-art accuracy and reasoning quality. Our findings highlight DeepTheorem's potential to fundamentally advance automated informal theorem proving and mathematical exploration.
CMATH: Can Your Language Model Pass Chinese Elementary School Math Test?
We present the Chinese Elementary School Math Word Problems (CMATH) dataset, comprising 1.7k elementary school-level math word problems with detailed annotations, source from actual Chinese workbooks and exams. This dataset aims to provide a benchmark tool for assessing the following question: to what grade level of elementary school math do the abilities of popular large language models (LLMs) correspond? We evaluate a variety of popular LLMs, including both commercial and open-source options, and discover that only GPT-4 achieves success (accuracy geq 60\%) across all six elementary school grades, while other models falter at different grade levels. Furthermore, we assess the robustness of several top-performing LLMs by augmenting the original problems in the CMATH dataset with distracting information. Our findings reveal that GPT-4 is able to maintains robustness, while other model fail. We anticipate that our study will expose limitations in LLMs' arithmetic and reasoning capabilities, and promote their ongoing development and advancement.
ChatGPT as a Math Questioner? Evaluating ChatGPT on Generating Pre-university Math Questions
Mathematical questioning is crucial for assessing students problem-solving skills. Since manually creating such questions requires substantial effort, automatic methods have been explored. Existing state-of-the-art models rely on fine-tuning strategies and struggle to generate questions that heavily involve multiple steps of logical and arithmetic reasoning. Meanwhile, large language models(LLMs) such as ChatGPT have excelled in many NLP tasks involving logical and arithmetic reasoning. Nonetheless, their applications in generating educational questions are underutilized, especially in the field of mathematics. To bridge this gap, we take the first step to conduct an in-depth analysis of ChatGPT in generating pre-university math questions. Our analysis is categorized into two main settings: context-aware and context-unaware. In the context-aware setting, we evaluate ChatGPT on existing math question-answering benchmarks covering elementary, secondary, and ternary classes. In the context-unaware setting, we evaluate ChatGPT in generating math questions for each lesson from pre-university math curriculums that we crawl. Our crawling results in TopicMath, a comprehensive and novel collection of pre-university math curriculums collected from 121 math topics and 428 lessons from elementary, secondary, and tertiary classes. Through this analysis, we aim to provide insight into the potential of ChatGPT as a math questioner.
MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning
We introduce MAmmoTH, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving. The MAmmoTH models are trained on MathInstruct, our meticulously curated instruction tuning dataset. MathInstruct is compiled from 13 math datasets with intermediate rationales, six of which have rationales newly curated by us. It presents a unique hybrid of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and also ensures extensive coverage of diverse fields in math. The hybrid of CoT and PoT not only unleashes the potential of tool use but also allows different thought processes for different math problems. As a result, the MAmmoTH series substantially outperform existing open-source models on nine mathematical reasoning datasets across all scales with an average accuracy gain between 13% and 29%. Remarkably, our MAmmoTH-7B model reaches 35% on MATH (a competition-level dataset), which exceeds the best open-source 7B model (WizardMath) by 25%, and the MAmmoTH-34B model achieves 46% accuracy on MATH, even surpassing GPT-4's CoT result. Our work underscores the importance of diverse problem coverage and the use of hybrid rationales in developing superior math generalist models.
CMM-Math: A Chinese Multimodal Math Dataset To Evaluate and Enhance the Mathematics Reasoning of Large Multimodal Models
Large language models (LLMs) have obtained promising results in mathematical reasoning, which is a foundational skill for human intelligence. Most previous studies focus on improving and measuring the performance of LLMs based on textual math reasoning datasets (e.g., MATH, GSM8K). Recently, a few researchers have released English multimodal math datasets (e.g., MATHVISTA and MATH-V) to evaluate the effectiveness of large multimodal models (LMMs). In this paper, we release a Chinese multimodal math (CMM-Math) dataset, including benchmark and training parts, to evaluate and enhance the mathematical reasoning of LMMs. CMM-Math contains over 28,000 high-quality samples, featuring a variety of problem types (e.g., multiple-choice, fill-in-the-blank, and so on) with detailed solutions across 12 grade levels from elementary to high school in China. Specifically, the visual context may be present in the questions or opinions, which makes this dataset more challenging. Through comprehensive analysis, we discover that state-of-the-art LMMs on the CMM-Math dataset face challenges, emphasizing the necessity for further improvements in LMM development. We also propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments. We train our model using three stages, including foundational pre-training, foundational fine-tuning, and mathematical fine-tuning. The extensive experiments indicate that our model effectively improves math reasoning performance by comparing it with the SOTA LMMs over three multimodal mathematical datasets.
A Survey of Deep Learning for Mathematical Reasoning
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications
This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.
MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible Pipeline
Large language models (LLMs) have seen considerable advancements in natural language understanding tasks, yet there remains a gap to bridge before attaining true artificial general intelligence, especially concerning shortcomings in mathematical reasoning capabilities. We postulate that the inherent nature of LLM training, which focuses on predicting probabilities of next token, presents challenges in effectively modeling mathematical reasoning that demands exact calculations, both from data-driven and theoretical standpoints. In this paper, we address this challenge by enriching the data landscape and introducing a novel math dataset, enhanced with a capability to utilize a Python code interpreter. This dataset is derived from GSM8K and MATH and has been further refined through a combination of GPT-4 annotations, human review, and self-training processes, where the errors in the original GSM8K training set have been fixed. Additionally, we propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs, which has led to a significant improvement in the performance of a 7B-parameter LLM on the GSM8K and MATH datasets. We are committed to advancing the field of mathematical reasoning in LLMs and, to that end, we have made the model checkpoints and will make the dataset publicly available. We hope this will facilitate further research and development within the community.
DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research
Deep research models perform multi-step research to produce long-form, well-attributed answers. However, most open deep research models are trained on easily verifiable short-form QA tasks via reinforcement learning with verifiable rewards (RLVR), which does not extend to realistic long-form tasks. We address this with Reinforcement Learning with Evolving Rubrics (RLER), in which we construct and maintain rubrics that co-evolve with the policy model during training; this allows the rubrics to incorporate information that the model has newly explored and to provide discriminative, on-policy feedback. Using RLER, we develop Deep Research Tulu (DR Tulu-8B), the first open model that is directly trained for open-ended, long-form deep research. Across four long-form deep research benchmarks in science, healthcare and general domains, DR Tulu substantially outperforms existing open deep research models, and matches or exceeds proprietary deep research systems, while being significantly smaller and cheaper per query. To facilitate future research, we release all data, models, and code, including our new MCP-based agent infrastructure for deep research systems.
CycleResearcher: Improving Automated Research via Automated Review
The automation of scientific discovery has been a long-standing goal within the research community, driven by the potential to accelerate knowledge creation. While significant progress has been made using commercial large language models (LLMs) as research assistants or idea generators, the possibility of automating the entire research process with open-source LLMs remains largely unexplored. This paper explores the feasibility of using open-source post-trained LLMs as autonomous agents capable of performing the full cycle of automated research and review, from literature review and manuscript preparation to peer review and paper revision. Our iterative preference training framework consists of CycleResearcher, which conducts research tasks, and CycleReviewer, which simulates the peer review process, providing iterative feedback via reinforcement learning. To train these models, we develop two new datasets, Review-5k and Research-14k, reflecting real-world machine learning research and peer review dynamics. Our results demonstrate that CycleReviewer achieves a 26.89\% improvement in mean absolute error (MAE) over individual human reviewers in predicting paper scores, indicating that LLMs can surpass expert-level performance in research evaluation. In research, the papers generated by the CycleResearcher model achieved a score of 5.36 in simulated peer reviews, surpassing the preprint level of 5.24 from human experts and approaching the accepted paper level of 5.69. This work represents a significant step toward fully automated scientific inquiry, providing ethical safeguards and advancing AI-driven research capabilities. The code, dataset and model weight are released at http://github/minjun-zhu/Researcher.
Mathematical Proof as a Litmus Test: Revealing Failure Modes of Advanced Large Reasoning Models
Large reasoning models (e.g., R1, o3) have demonstrated remarkable mathematical problem-solving abilities. However, the high reported accuracy of these advanced models on popular datasets, reliance on purely numerical evaluation and potential benchmark leakage, often masks their true reasoning shortcomings. To address this, we propose leveraging the inherent rigor and methodological complexity of mathematical proofs as a diagnostic tool to expose these hidden failures. Specifically, we introduce the RFMDataset (Reveal Failure Modes), a collection of 200 diverse mathematical proof problems, and thoroughly evaluate advanced models' performance on it. Our in-depth analysis of their failures uncovers 10 fine-grained error types, which shows fundamental limitations in current large reasoning models: 1) large reasoning models grapple profoundly with mathematical proofs, with some generating entirely correct proofs for less than 20% of problems and failing even on basic ones; 2) models exhibit a diverse spectrum of reasoning failures, prominently demonstrating the lack of guarantees for the correctness and rigor of single-step reasoning; and 3) models show hallucination and incompleteness during the reasoning process. Our findings reveal that models' self-reflection is insufficient to resolve the current logical dilemmas, necessitating formalized and fine-grained logical training.
A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges
Mathematical reasoning, a core aspect of human cognition, is vital across many domains, from educational problem-solving to scientific advancements. As artificial general intelligence (AGI) progresses, integrating large language models (LLMs) with mathematical reasoning tasks is becoming increasingly significant. This survey provides the first comprehensive analysis of mathematical reasoning in the era of multimodal large language models (MLLMs). We review over 200 studies published since 2021, and examine the state-of-the-art developments in Math-LLMs, with a focus on multimodal settings. We categorize the field into three dimensions: benchmarks, methodologies, and challenges. In particular, we explore multimodal mathematical reasoning pipeline, as well as the role of (M)LLMs and the associated methodologies. Finally, we identify five major challenges hindering the realization of AGI in this domain, offering insights into the future direction for enhancing multimodal reasoning capabilities. This survey serves as a critical resource for the research community in advancing the capabilities of LLMs to tackle complex multimodal reasoning tasks.
Citegeist: Automated Generation of Related Work Analysis on the arXiv Corpus
Large Language Models provide significant new opportunities for the generation of high-quality written works. However, their employment in the research community is inhibited by their tendency to hallucinate invalid sources and lack of direct access to a knowledge base of relevant scientific articles. In this work, we present Citegeist: An application pipeline using dynamic Retrieval Augmented Generation (RAG) on the arXiv Corpus to generate a related work section and other citation-backed outputs. For this purpose, we employ a mixture of embedding-based similarity matching, summarization, and multi-stage filtering. To adapt to the continuous growth of the document base, we also present an optimized way of incorporating new and modified papers. To enable easy utilization in the scientific community, we release both, a website (https://citegeist.org), as well as an implementation harness that works with several different LLM implementations.
Extending Mixture of Experts Model to Investigate Heterogeneity of Trajectories: When, Where and How to Add Which Covariates
Researchers are usually interested in examining the impact of covariates when separating heterogeneous samples into latent classes that are more homogeneous. The majority of theoretical and empirical studies with such aims have focused on identifying covariates as predictors of class membership in the structural equation modeling framework. In other words, the covariates only indirectly affect the sample heterogeneity. However, the covariates' influence on between-individual differences can also be direct. This article presents a mixture model that investigates covariates to explain within-cluster and between-cluster heterogeneity simultaneously, known as a mixture-of-experts (MoE) model. This study aims to extend the MoE framework to investigate heterogeneity in nonlinear trajectories: to identify latent classes, covariates as predictors to clusters, and covariates that explain within-cluster differences in change patterns over time. Our simulation studies demonstrate that the proposed model generally estimates the parameters unbiasedly, precisely and exhibits appropriate empirical coverage for a nominal 95% confidence interval. This study also proposes implementing structural equation model forests to shrink the covariate space of the proposed mixture model. We illustrate how to select covariates and construct the proposed model with longitudinal mathematics achievement data. Additionally, we demonstrate that the proposed mixture model can be further extended in the structural equation modeling framework by allowing the covariates that have direct effects to be time-varying.
Solving Inequality Proofs with Large Language Models
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph
The proposed research aims to develop an innovative semantic query processing system that enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University (ANU). The system integrates Large Language Models (LLMs) with the ANU Scholarly Knowledge Graph (ASKG), a structured repository of all research-related artifacts produced at ANU in the CS field. Each artifact and its parts are represented as textual nodes stored in a Knowledge Graph (KG). To address the limitations of traditional scholarly KG construction and utilization methods, which often fail to capture fine-grained details, we propose a novel framework that integrates the Deep Document Model (DDM) for comprehensive document representation and the KG-enhanced Query Processing (KGQP) for optimized complex query handling. DDM enables a fine-grained representation of the hierarchical structure and semantic relationships within academic papers, while KGQP leverages the KG structure to improve query accuracy and efficiency with LLMs. By combining the ASKG with LLMs, our approach enhances knowledge utilization and natural language understanding capabilities. The proposed system employs an automatic LLM-SPARQL fusion to retrieve relevant facts and textual nodes from the ASKG. Initial experiments demonstrate that our framework is superior to baseline methods in terms of accuracy retrieval and query efficiency. We showcase the practical application of our framework in academic research scenarios, highlighting its potential to revolutionize scholarly knowledge management and discovery. This work empowers researchers to acquire and utilize knowledge from documents more effectively and provides a foundation for developing precise and reliable interactions with LLMs.
Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset
Recent advancements in Large Multimodal Models (LMMs) have shown promising results in mathematical reasoning within visual contexts, with models approaching human-level performance on existing benchmarks such as MathVista. However, we observe significant limitations in the diversity of questions and breadth of subjects covered by these benchmarks. To address this issue, we present the MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty, our dataset provides a comprehensive and diverse set of challenges for evaluating the mathematical reasoning abilities of LMMs. Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on MATH-V, underscoring the imperative for further advancements in LMMs. Moreover, our detailed categorization allows for a thorough error analysis of LMMs, offering valuable insights to guide future research and development. The project is available at https://mathvision-cuhk.github.io
AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling
In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general domains, followed by targeted fine-tuning for the math domain using a carefully curated set of prompts and synthetically generated responses. The resulting model, AceMath-72B-Instruct greatly outperforms Qwen2.5-Math-72B-Instruct, GPT-4o and Claude-3.5 Sonnet. To develop math-specialized reward model, we first construct AceMath-RewardBench, a comprehensive and robust benchmark for evaluating math reward models across diverse problems and difficulty levels. After that, we present a systematic approach to build our math reward models. The resulting model, AceMath-72B-RM, consistently outperforms state-of-the-art reward models. Furthermore, when combining AceMath-72B-Instruct with AceMath-72B-RM, we achieve the highest average rm@8 score across the math reasoning benchmarks. We will release model weights, training data, and evaluation benchmarks at: https://research.nvidia.com/labs/adlr/acemath
Idea2Story: An Automated Pipeline for Transforming Research Concepts into Complete Scientific Narratives
Autonomous scientific discovery with large language model (LLM)-based agents has recently made substantial progress, demonstrating the ability to automate end-to-end research workflows. However, existing systems largely rely on runtime-centric execution paradigms, repeatedly reading, summarizing, and reasoning over large volumes of scientific literature online. This on-the-spot computation strategy incurs high computational cost, suffers from context window limitations, and often leads to brittle reasoning and hallucination. We propose Idea2Story, a pre-computation-driven framework for autonomous scientific discovery that shifts literature understanding from online reasoning to offline knowledge construction. Idea2Story continuously collects peer-reviewed papers together with their review feedback, extracts core methodological units, composes reusable research patterns, and organizes them into a structured methodological knowledge graph. At runtime, underspecified user research intents are aligned to established research paradigms, enabling efficient retrieval and reuse of high-quality research patterns instead of open-ended generation and trial-and-error. By grounding research planning and execution in a pre-built knowledge graph, Idea2Story alleviates the context window bottleneck of LLMs and substantially reduces repeated runtime reasoning over literature. We conduct qualitative analyses and preliminary empirical studies demonstrating that Idea2Story can generate coherent, methodologically grounded, and novel research patterns, and can produce several high-quality research demonstrations in an end-to-end setting. These results suggest that offline knowledge construction provides a practical and scalable foundation for reliable autonomous scientific discovery.
Synthesis by Design: Controlled Data Generation via Structural Guidance
Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities. Our code and data are available at https://github.com/OpenCausaLab/StructuralGeneration.
An Empirical Study on Challenging Math Problem Solving with GPT-4
Employing Large Language Models (LLMs) to address mathematical problems is an intriguing research endeavor, considering the abundance of math problems expressed in natural language across numerous science and engineering fields. While several prior works have investigated solving elementary mathematics using LLMs, this work explores the frontier of using GPT-4 for solving more complex and challenging math problems. We evaluate various ways of using GPT-4. Some of them are adapted from existing work, and one is \MathChat, a conversational problem-solving framework newly proposed in this work. We perform the evaluation on difficult high school competition problems from the MATH dataset, which shows the advantage of the proposed conversational approach.
BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Furthermore, we employ a pruning tree search to optimize search time while achieving strong performance. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52, outperforming GPT4's 42.5 on the MATH benchmark.
ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathematics
We introduce ProofNet, a benchmark for autoformalization and formal proving of undergraduate-level mathematics. The ProofNet benchmarks consists of 371 examples, each consisting of a formal theorem statement in Lean 3, a natural language theorem statement, and a natural language proof. The problems are primarily drawn from popular undergraduate pure mathematics textbooks and cover topics such as real and complex analysis, linear algebra, abstract algebra, and topology. We intend for ProofNet to be a challenging benchmark that will drive progress in autoformalization and automatic theorem proving. We report baseline results on statement autoformalization via in-context learning. Moreover, we introduce two novel statement autoformalization methods: prompt retrieval and distilled backtranslation.
SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models
The burgeoning utilization of Large Language Models (LLMs) in scientific research necessitates advanced benchmarks capable of evaluating their understanding and application of scientific knowledge comprehensively. To address this need, we introduce the SciKnowEval benchmark, a novel framework that systematically evaluates LLMs across five progressive levels of scientific knowledge: studying extensively, inquiring earnestly, thinking profoundly, discerning clearly, and practicing assiduously. These levels aim to assess the breadth and depth of scientific knowledge in LLMs, including knowledge coverage, inquiry and exploration capabilities, reflection and reasoning abilities, ethic and safety considerations, as well as practice proficiency. Specifically, we take biology and chemistry as the two instances of SciKnowEval and construct a dataset encompassing 50K multi-level scientific problems and solutions. By leveraging this dataset, we benchmark 20 leading open-source and proprietary LLMs using zero-shot and few-shot prompting strategies. The results reveal that despite achieving state-of-the-art performance, the proprietary LLMs still have considerable room for improvement, particularly in addressing scientific computations and applications. We anticipate that SciKnowEval will establish a comprehensive standard for benchmarking LLMs in science research and discovery, and promote the development of LLMs that integrate scientific knowledge with strong safety awareness. The dataset and code are publicly available at https://github.com/hicai-zju/sciknoweval .
SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models
Recent advances in large language models (LLMs) have demonstrated notable progress on many mathematical benchmarks. However, most of these benchmarks only feature problems grounded in junior and senior high school subjects, contain only multiple-choice questions, and are confined to a limited scope of elementary arithmetic operations. To address these issues, this paper introduces an expansive benchmark suite SciBench that aims to systematically examine the reasoning capabilities required for complex scientific problem solving. SciBench contains two carefully curated datasets: an open set featuring a range of collegiate-level scientific problems drawn from mathematics, chemistry, and physics textbooks, and a closed set comprising problems from undergraduate-level exams in computer science and mathematics. Based on the two datasets, we conduct an in-depth benchmark study of two representative LLMs with various prompting strategies. The results reveal that current LLMs fall short of delivering satisfactory performance, with an overall score of merely 35.80%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms others and some strategies that demonstrate improvements in certain problem-solving skills result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
We-Math: Does Your Large Multimodal Model Achieve Human-like Mathematical Reasoning?
Visual mathematical reasoning, as a fundamental visual reasoning ability, has received widespread attention from the Large Multimodal Models (LMMs) community. Existing benchmarks, such as MathVista and MathVerse, focus more on the result-oriented performance but neglect the underlying principles in knowledge acquisition and generalization. Inspired by human-like mathematical reasoning, we introduce WE-MATH, the first benchmark specifically designed to explore the problem-solving principles beyond end-to-end performance. We meticulously collect and categorize 6.5K visual math problems, spanning 67 hierarchical knowledge concepts and five layers of knowledge granularity. We decompose composite problems into sub-problems according to the required knowledge concepts and introduce a novel four-dimensional metric, namely Insufficient Knowledge (IK), Inadequate Generalization (IG), Complete Mastery (CM), and Rote Memorization (RM), to hierarchically assess inherent issues in LMMs' reasoning process. With WE-MATH, we conduct a thorough evaluation of existing LMMs in visual mathematical reasoning and reveal a negative correlation between solving steps and problem-specific performance. We confirm the IK issue of LMMs can be effectively improved via knowledge augmentation strategies. More notably, the primary challenge of GPT-4o has significantly transitioned from IK to IG, establishing it as the first LMM advancing towards the knowledge generalization stage. In contrast, other LMMs exhibit a marked inclination towards Rote Memorization - they correctly solve composite problems involving multiple knowledge concepts yet fail to answer sub-problems. We anticipate that WE-MATH will open new pathways for advancements in visual mathematical reasoning for LMMs. The WE-MATH data and evaluation code are available at https://github.com/We-Math/We-Math.
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
DeepResearch Bench: A Comprehensive Benchmark for Deep Research Agents
Deep Research Agents are a prominent category of LLM-based agents. By autonomously orchestrating multistep web exploration, targeted retrieval, and higher-order synthesis, they transform vast amounts of online information into analyst-grade, citation-rich reports--compressing hours of manual desk research into minutes. However, a comprehensive benchmark for systematically evaluating the capabilities of these agents remains absent. To bridge this gap, we present DeepResearch Bench, a benchmark consisting of 100 PhD-level research tasks, each meticulously crafted by domain experts across 22 distinct fields. Evaluating DRAs is inherently complex and labor-intensive. We therefore propose two novel methodologies that achieve strong alignment with human judgment. The first is a reference-based method with adaptive criteria to assess the quality of generated research reports. The other framework is introduced to evaluate DRA's information retrieval and collection capabilities by assessing its effective citation count and overall citation accuracy. We have open-sourced DeepResearch Bench and key components of these frameworks at https://github.com/Ayanami0730/deep_research_bench to accelerate the development of practical LLM-based agents.
PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
Paper search is an important activity for researchers, typically involving using a query with description of a topic to find relevant papers. As research deepens, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as these systems mainly collect paper abstracts to construct index of corpus, which lack detailed information to support retrieval by finer-grained queries. In this work, we propose PaperRegister, consisted of offline hierarchical indexing and online adaptive retrieval, transforming traditional abstract-based index into hierarchical index tree for paper search, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the state-of-the-art performance, and particularly excels in fine-grained scenarios, highlighting the good potential as an effective solution for flexible-grained paper search in real-world applications. Code for this work is in https://github.com/Li-Z-Q/PaperRegister.
OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset
Recent work has shown the immense potential of synthetically generated datasets for training large language models (LLMs), especially for acquiring targeted skills. Current large-scale math instruction tuning datasets such as MetaMathQA (Yu et al., 2024) and MAmmoTH (Yue et al., 2024) are constructed using outputs from closed-source LLMs with commercially restrictive licenses. A key reason limiting the use of open-source LLMs in these data generation pipelines has been the wide gap between the mathematical skills of the best closed-source LLMs, such as GPT-4, and the best open-source LLMs. Building on the recent progress in open-source LLMs, our proposed prompting novelty, and some brute-force scaling, we construct OpenMathInstruct-1, a math instruction tuning dataset with 1.8M problem-solution pairs. The dataset is constructed by synthesizing code-interpreter solutions for GSM8K and MATH, two popular math reasoning benchmarks, using the recently released and permissively licensed Mixtral model. Our best model, OpenMath-CodeLlama-70B, trained on a subset of OpenMathInstruct-1, achieves a score of 84.6% on GSM8K and 50.7% on MATH, which is competitive with the best gpt-distilled models. We release our code, models, and the OpenMathInstruct-1 dataset under a commercially permissive license.
DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning
The capacity for complex mathematical reasoning is a key benchmark for artificial intelligence. While reinforcement learning (RL) applied to LLMs shows promise, progress is significantly hindered by the lack of large-scale training data that is sufficiently challenging, possesses verifiable answer formats suitable for RL, and is free from contamination with evaluation benchmarks. To address these limitations, we introduce DeepMath-103K, a new, large-scale dataset comprising approximately 103K mathematical problems, specifically designed to train advanced reasoning models via RL. DeepMath-103K is curated through a rigorous pipeline involving source analysis, stringent decontamination against numerous benchmarks, and filtering for high difficulty (primarily Levels 5-9), significantly exceeding existing open resources in challenge. Each problem includes a verifiable final answer, enabling rule-based RL, and three distinct R1-generated solutions suitable for diverse training paradigms like supervised fine-tuning or distillation. Spanning a wide range of mathematical topics, DeepMath-103K promotes the development of generalizable reasoning. We demonstrate that models trained on DeepMath-103K achieve significant improvements on challenging mathematical benchmarks, validating its effectiveness. We release DeepMath-103K publicly to facilitate community progress in building more capable AI reasoning systems: https://github.com/zwhe99/DeepMath.
MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task
Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.
MV-MATH: Evaluating Multimodal Math Reasoning in Multi-Visual Contexts
Multimodal Large Language Models (MLLMs) have shown promising capabilities in mathematical reasoning within visual contexts across various datasets. However, most existing multimodal math benchmarks are limited to single-visual contexts, which diverges from the multi-visual scenarios commonly encountered in real-world mathematical applications. To address this gap, we introduce MV-MATH: a meticulously curated dataset of 2,009 high-quality mathematical problems. Each problem integrates multiple images interleaved with text, derived from authentic K-12 scenarios, and enriched with detailed annotations. MV-MATH includes multiple-choice, free-form, and multi-step questions, covering 11 subject areas across 3 difficulty levels, and serves as a comprehensive and rigorous benchmark for assessing MLLMs' mathematical reasoning in multi-visual contexts. Through extensive experimentation, we observe that MLLMs encounter substantial challenges in multi-visual math tasks, with a considerable performance gap relative to human capabilities on MV-MATH. Furthermore, we analyze the performance and error patterns of various models, providing insights into MLLMs' mathematical reasoning capabilities within multi-visual settings.
ResearcherBench: Evaluating Deep AI Research Systems on the Frontiers of Scientific Inquiry
The emergence of deep research systems presents significant capabilities in problem-solving, extending from basic queries to sophisticated research tasks. However, existing benchmarks primarily evaluate these systems as agents for web retrieval and report generation, overlooking their potential to discover novel insights on the frontiers of scientific research. To address this gap, we introduce ResearcherBench, the first benchmark focused on evaluating the capabilities of these advanced, agentic systems - which we refer to as Deep AI Research Systems (DARS) - on frontier AI scientific questions. We compiled a dataset of 65 research questions expertly selected from real-world scientific scenarios such as laboratory discussions and interviews, spanning 35 different AI subjects and categorized into three types: technical details, literature review, and open consulting. Our dual evaluation framework combines rubric assessment, which uses expert-designed criteria to evaluate insight quality, with factual assessment, which measures citation accuracy (faithfulness) and coverage (groundedness). We evaluated several leading commercial DARS and baseline systems. Results show that OpenAI Deep Research and Gemini Deep Research significantly outperform other systems, with particular strength in open-ended consulting questions. Such capabilities represent a meaningful step toward AI self-improvement, aligning with the vision of ASI for AI. We open-source ResearcherBench to provide a standardized platform for promoting the development of next-generation AI research assistants, hoping to foster a new perspective in AI research evaluation for a novel pattern of scientific collaboration: https://github.com/GAIR-NLP/ResearcherBench.
Common 7B Language Models Already Possess Strong Math Capabilities
Mathematical capabilities were previously believed to emerge in common language models only at a very large scale or require extensive math-related pre-training. This paper shows that the LLaMA-2 7B model with common pre-training already exhibits strong mathematical abilities, as evidenced by its impressive accuracy of 97.7% and 72.0% on the GSM8K and MATH benchmarks, respectively, when selecting the best response from 256 random generations. The primary issue with the current base model is the difficulty in consistently eliciting its inherent mathematical capabilities. Notably, the accuracy for the first answer drops to 49.5% and 7.9% on the GSM8K and MATH benchmarks, respectively. We find that simply scaling up the SFT data can significantly enhance the reliability of generating correct answers. However, the potential for extensive scaling is constrained by the scarcity of publicly available math questions. To overcome this limitation, we employ synthetic data, which proves to be nearly as effective as real data and shows no clear saturation when scaled up to approximately one million samples. This straightforward approach achieves an accuracy of 82.6% on GSM8K and 40.6% on MATH using LLaMA-2 7B models, surpassing previous models by 14.2% and 20.8%, respectively. We also provide insights into scaling behaviors across different reasoning complexities and error types.
Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset
Mathematical understanding and reasoning are crucial tasks for assessing the capabilities of artificial intelligence (AI). However, existing benchmarks either require just a few steps of reasoning, or only contain a small amount of data in one specific topic, making it hard to analyse AI's behaviour with reference to different problems within a specific topic in detail. In this work, we propose Conic10K, a challenging math problem dataset on conic sections in Chinese senior high school education. Our dataset contains various problems with different reasoning depths, while only the knowledge from conic sections is required. Since the dataset only involves a narrow range of knowledge, it is easy to separately analyse the knowledge a model possesses and the reasoning ability it has. For each problem, we provide a high-quality formal representation, the reasoning steps, and the final solution. Experiments show that existing large language models, including GPT-4, exhibit weak performance on complex reasoning. We hope that our findings could inspire more advanced techniques for precise natural language understanding and reasoning. Our dataset and codes are available at https://github.com/whyNLP/Conic10K.
LitLLMs, LLMs for Literature Review: Are we there yet?
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
Towards Advanced Mathematical Reasoning for LLMs via First-Order Logic Theorem Proving
Large language models (LLMs) have shown promising first-order logic (FOL) reasoning capabilities with applications in various areas. However, their effectiveness in complex mathematical reasoning involving multi-step FOL deductions is still under-researched. While LLMs perform competitively on established mathematical reasoning benchmarks, they struggle with multi-step FOL tasks, as demonstrated by Deepseek-Prover-V2-7B's low accuracy (4.2%) on our proposed theorem proving dataset. This issue arises from the limited exploration of diverse proof strategies and the potential for early reasoning mistakes to undermine entire proofs. To address these issues, we propose DREAM, a self-adaptive solution that enhances the Diversity and REAsonability of LLMs' generation strategies. DREAM incorporates an Axiom-Driven Strategy Diversification mechanism to promote varied strategic outcomes and a Sub-Proposition Error Feedback to help LLMs reflect on and correct their proofs. Our contributions include pioneering advancements in LLMs' mathematical reasoning through FOL theorem proving, introducing a novel inference stage solution that improves performance by 0.6% to 6.4%, and providing a curated dataset of 447 mathematical theorems in Lean 4 format for evaluation.
LEAN-GitHub: Compiling GitHub LEAN repositories for a versatile LEAN prover
Recently, large language models have presented promising results in aiding formal mathematical reasoning. However, their performance is restricted due to the scarcity of formal theorem-proving data, which requires additional effort to be extracted from raw formal language corpora. Meanwhile, a significant amount of human-written formal language corpora remains underutilized. To address this issue, we propose LEAN-GitHub, a dataset consisting of large-scale formal data extracted from almost all Lean 4 repositories on GitHub. After fine-tuning InternLM-math-plus on this dataset, our model achieved accuracies of 48.8% with a single pass and 54.5% with 64 passes on the Lean 4 miniF2F test, surpassing state-of-the-art method at 52%. And it also achieves state-of-the-art on two other Lean 4 benchmarks (ProofNet and Putnam) targeting different fields/levels of math. These results demonstrate that our proposed dataset is beneficial for formal reasoning on a wide range of math topics. We open-source our model at https://GitHub. com/InternLM/InternLM-Math and our data at https://huggingface.co/ datasets/InternLM/Lean-GitHub
SBI-RAG: Enhancing Math Word Problem Solving for Students through Schema-Based Instruction and Retrieval-Augmented Generation
Many students struggle with math word problems (MWPs), often finding it difficult to identify key information and select the appropriate mathematical operations.Schema-based instruction (SBI) is an evidence-based strategy that helps students categorize problems based on their structure, improving problem-solving accuracy. Building on this, we propose a Schema-Based Instruction Retrieval-Augmented Generation (SBI-RAG) framework that incorporates a large language model (LLM).Our approach emphasizes step-by-step reasoning by leveraging schemas to guide solution generation. We evaluate its performance on the GSM8K dataset, comparing it with GPT-4 and GPT-3.5 Turbo, and introduce a "reasoning score" metric to assess solution quality. Our findings suggest that SBI-RAG enhances reasoning clarity and problem-solving accuracy, potentially providing educational benefits for students
MathMist: A Parallel Multilingual Benchmark Dataset for Mathematical Problem Solving and Reasoning
Mathematical reasoning remains one of the most challenging domains for large language models (LLMs), requiring not only linguistic understanding but also structured logical deduction and numerical precision. While recent LLMs demonstrate strong general-purpose reasoning abilities, their mathematical competence across diverse languages remains underexplored. Existing benchmarks primarily focus on English or a narrow subset of high-resource languages, leaving significant gaps in assessing multilingual and cross-lingual mathematical reasoning. To address this, we introduce MathMist, a parallel multilingual benchmark for mathematical problem solving and reasoning. MathMist encompasses over 21K aligned question-answer pairs across seven languages, representing a balanced coverage of high-, medium-, and low-resource linguistic settings. The dataset captures linguistic variety, multiple types of problem settings, and solution synthesizing capabilities. We systematically evaluate a diverse suite of models, including open-source small and medium LLMs, proprietary systems, and multilingual-reasoning-focused models, under zero-shot, chain-of-thought (CoT), and code-switched reasoning paradigms. Our results reveal persistent deficiencies in LLMs' ability to perform consistent and interpretable mathematical reasoning across languages, with pronounced degradation in low-resource settings. All the codes and data are available at GitHub: https://github.com/mahbubhimel/MathMist
Scientific Paper Retrieval with LLM-Guided Semantic-Based Ranking
Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
NEMOTRON-CROSSTHINK: Scaling Self-Learning beyond Math Reasoning
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and diverse task requirements. In this work, we propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks. NEMOTRON-CROSSTHINK addresses key challenges by (1) incorporating data from varied sources spanning STEM, humanities, social sciences, etc.; (2) applying structured templates (e.g., multiple-choice and open-ended) to control answer-space complexity; (3) filtering for verifiable answers; and (4) optimizing data blending strategies that utilizes data from multiple sources effectively. Our approach enables scalable and verifiable reward modeling beyond mathematics and demonstrates improved accuracies on both math (MATH-500: +30.1%, AMC23:+27.5%) and non-math reasoning benchmarks (MMLU-PRO: +12.8%, GPQA-DIAMOND: +11.3%, AGIEVAL: +15.1%, SUPERGPQA: +3.8%). Moreover, NEMOTRON-CROSSTHINK exhibits significantly improved response efficiency -- using 28% fewer tokens for correct answers -- highlighting more focused and effective reasoning. Through NEMOTRON-CROSSTHINK, we demonstrate that integrating multi-domain, multi-format data in RL leads to more accurate, efficient, and generalizable LLMs.
Measuring Mathematical Problem Solving With the MATH Dataset
Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. To facilitate future research and increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics. Even though we are able to increase accuracy on MATH, our results show that accuracy remains relatively low, even with enormous Transformer models. Moreover, we find that simply increasing budgets and model parameter counts will be impractical for achieving strong mathematical reasoning if scaling trends continue. While scaling Transformers is automatically solving most other text-based tasks, scaling is not currently solving MATH. To have more traction on mathematical problem solving we will likely need new algorithmic advancements from the broader research community.
DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning
Large language models have made significant progress in mathematical reasoning, which serves as an important testbed for AI and could impact scientific research if further advanced. By scaling reasoning with reinforcement learning that rewards correct final answers, LLMs have improved from poor performance to saturating quantitative reasoning competitions like AIME and HMMT in one year. However, this approach faces fundamental limitations. Pursuing higher final answer accuracy doesn't address a key issue: correct answers don't guarantee correct reasoning. Moreover, many mathematical tasks like theorem proving require rigorous step-by-step derivation rather than numerical answers, making final answer rewards inapplicable. To push the limits of deep reasoning, we believe it is necessary to verify the comprehensiveness and rigor of mathematical reasoning. Self-verification is particularly important for scaling test-time compute, especially for open problems without known solutions. Towards self-verifiable mathematical reasoning, we investigate how to train an accurate and faithful LLM-based verifier for theorem proving. We then train a proof generator using the verifier as the reward model, and incentivize the generator to identify and resolve as many issues as possible in their own proofs before finalizing them. To maintain the generation-verification gap as the generator becomes stronger, we propose to scale verification compute to automatically label new hard-to-verify proofs, creating training data to further improve the verifier. Our resulting model, DeepSeekMath-V2, demonstrates strong theorem-proving capabilities, achieving gold-level scores on IMO 2025 and CMO 2024 and a near-perfect 118/120 on Putnam 2024 with scaled test-time compute.
Accelerating Scientific Research Through a Multi-LLM Framework
The exponential growth of academic publications poses challenges for the research process, such as literature review and procedural planning. Large Language Models (LLMs) have emerged as powerful AI tools, especially when combined with additional tools and resources. Recent LLM-powered frameworks offer promising solutions for handling complex domain-specific tasks, yet their domain-specific implementation limits broader applicability. This highlights the need for LLM-integrated systems that can assist in cross-disciplinary tasks, such as streamlining the research process across science and engineering disciplines. To address this need, we introduce Artificial Research Innovator Assistant (ARIA), a four-agent, multi-LLM framework. By emulating a team of expert assistants, ARIA systematically replicates the human research workflow to autonomously search, retrieve, and filter hundreds of papers, subsequently synthesizing relevant literature into actionable research procedures. In a case study on dropwise condensation enhancement, ARIA demonstrates its capability to streamline research tasks within an hour, maintaining user oversight during execution and ultimately liberating researchers from time-intensive tasks.
LLM Reasoning Engine: Specialized Training for Enhanced Mathematical Reasoning
Large Language Models (LLMs) have shown remarkable performance in various natural language processing tasks but face challenges in mathematical reasoning, where complex problem-solving requires both linguistic understanding and mathematical reasoning skills. Existing approaches to address this challenge often rely on ensemble methods and suffer from the problem of data scarcity in target domains. In this work, we present a novel method to enhance LLMs' capabilities in mathematical reasoning tasks. Motivated by the need to bridge this gap, our approach incorporates a question paraphrase strategy, which aims at diversifying the linguistic forms of mathematical questions to improve generalization. Additionally, specialized training objectives are employed to guide the model's learning process, focusing on enhancing its understanding of mathematical concepts and reasoning processes. We conduct experiments on four datasets using different LLMs, and demonstrate the effectiveness of our approach in improving LLMs' performance on mathematical reasoning tasks. Our findings underscore the significance of our methodology in the advancement of large language models and its potential implications for real-world applications that require mathematical reasoning abilities.
Evaluating the Meta- and Object-Level Reasoning of Large Language Models for Question Answering
Large Language Models (LLMs) excel in natural language tasks but still face challenges in Question Answering (QA) tasks requiring complex, multi-step reasoning. We outline the types of reasoning required in some of these tasks, and reframe them in terms of meta-level reasoning (akin to high-level strategic reasoning or planning) and object-level reasoning (embodied in lower-level tasks such as mathematical reasoning). Franklin, a novel dataset with requirements of meta- and object-level reasoning, is introduced and used along with three other datasets to evaluate four LLMs at question answering tasks requiring multiple steps of reasoning. Results from human annotation studies suggest LLMs demonstrate meta-level reasoning with high frequency, but struggle with object-level reasoning tasks in some of the datasets used. Additionally, evidence suggests that LLMs find the object-level reasoning required for the questions in the Franklin dataset challenging, yet they do exhibit strong performance with respect to the meta-level reasoning requirements.
Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On
In this paper, we investigate the underlying factors that potentially enhance the mathematical reasoning capabilities of large language models (LLMs). We argue that the data scaling law for math reasoning capabilities in modern LLMs is far from being saturated, highlighting how the model's quality improves with increases in data quantity. To support this claim, we introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B LLMs using our proposed 2.5M-instance Skywork-MathQA dataset. Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark and 83.9% on the GSM8K benchmark using only SFT data, outperforming an early version of GPT-4 on MATH. The superior performance of Skywork-Math models contributes to our novel two-stage data synthesis and model SFT pipelines, which include three different augmentation methods and a diverse seed problem set, ensuring both the quantity and quality of Skywork-MathQA dataset across varying difficulty levels. Most importantly, we provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
