Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeStochastic Interpolants: A Unifying Framework for Flows and Diffusions
A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants
Generative models have demonstrated remarkable success in domains such as text, image, and video synthesis. In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation, where classical numerical solvers are computationally expensive. We propose a novel stochastic generative model based on stochastic interpolants, which enables probabilistic forecasting while incorporating physical constraints such as energy stability and divergence-freeness. Unlike conventional stochastic generative models, which are often agnostic to underlying physical laws, our approach embeds energy consistency by making the parameters of the stochastic interpolant learnable coefficients. We evaluate our method on a benchmark turbulence problem - Kolmogorov flow - demonstrating superior accuracy and stability over state-of-the-art alternatives such as autoregressive conditional diffusion models (ACDMs) and PDE-Refiner. Furthermore, we achieve stable results for significantly longer roll-outs than standard stochastic interpolants. Our results highlight the potential of physics-aware generative models in accelerating and enhancing turbulence simulations while preserving fundamental conservation properties.
FEAT: Free energy Estimators with Adaptive Transport
We present Free energy Estimators with Adaptive Transport (FEAT), a novel framework for free energy estimation -- a critical challenge across scientific domains. FEAT leverages learned transports implemented via stochastic interpolants and provides consistent, minimum-variance estimators based on escorted Jarzynski equality and controlled Crooks theorem, alongside variational upper and lower bounds on free energy differences. Unifying equilibrium and non-equilibrium methods under a single theoretical framework, FEAT establishes a principled foundation for neural free energy calculations. Experimental validation on toy examples, molecular simulations, and quantum field theory demonstrates improvements over existing learning-based methods.
Residual Diffusion Bridge Model for Image Restoration
Diffusion bridge models establish probabilistic paths between arbitrary paired distributions and exhibit great potential for universal image restoration. Most existing methods merely treat them as simple variants of stochastic interpolants, lacking a unified analytical perspective. Besides, they indiscriminately reconstruct images through global noise injection and removal, inevitably distorting undegraded regions due to imperfect reconstruction. To address these challenges, we propose the Residual Diffusion Bridge Model (RDBM). Specifically, we theoretically reformulate the stochastic differential equations of generalized diffusion bridge and derive the analytical formulas of its forward and reverse processes. Crucially, we leverage the residuals from given distributions to modulate the noise injection and removal, enabling adaptive restoration of degraded regions while preserving intact others. Moreover, we unravel the fundamental mathematical essence of existing bridge models, all of which are special cases of RDBM and empirically demonstrate the optimality of our proposed models. Extensive experiments are conducted to demonstrate the state-of-the-art performance of our method both qualitatively and quantitatively across diverse image restoration tasks. Code is publicly available at https://github.com/MiliLab/RDBM.
ZigMa: Zigzag Mamba Diffusion Model
The diffusion model has long been plagued by scalability and quadratic complexity issues, especially within transformer-based structures. In this study, we aim to leverage the long sequence modeling capability of a State-Space Model called Mamba to extend its applicability to visual data generation. Firstly, we identify a critical oversight in most current Mamba-based vision methods, namely the lack of consideration for spatial continuity in the scan scheme of Mamba. Secondly, building upon this insight, we introduce a simple, plug-and-play, zero-parameter method named Zigzag Mamba, which outperforms Mamba-based baselines and demonstrates improved speed and memory utilization compared to transformer-based baselines. Lastly, we integrate Zigzag Mamba with the Stochastic Interpolant framework to investigate the scalability of the model on large-resolution visual datasets, such as FacesHQ 1024times 1024 and UCF101, MultiModal-CelebA-HQ, and MS COCO 256times 256. Code will be released at https://taohu.me/zigma/
Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution.
SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers
We present Scalable Interpolant Transformers (SiT), a family of generative models built on the backbone of Diffusion Transformers (DiT). The interpolant framework, which allows for connecting two distributions in a more flexible way than standard diffusion models, makes possible a modular study of various design choices impacting generative models built on dynamical transport: using discrete vs. continuous time learning, deciding the objective for the model to learn, choosing the interpolant connecting the distributions, and deploying a deterministic or stochastic sampler. By carefully introducing the above ingredients, SiT surpasses DiT uniformly across model sizes on the conditional ImageNet 256x256 benchmark using the exact same backbone, number of parameters, and GFLOPs. By exploring various diffusion coefficients, which can be tuned separately from learning, SiT achieves an FID-50K score of 2.06.
Computable Stochastic Processes
The aim of this paper is to present an elementary computable theory of probability, random variables and stochastic processes. The probability theory is baed on existing approaches using valuations and lower integrals. Various approaches to random variables are discussed, including the approach based on completions in a Polish space. We apply the theory to the study of stochastic dynamical systems in discrete-time, and give a brief exposition of the Wiener process as a foundation for stochastic differential equations. The theory is based within the framework of type-two effectivity, so has an explicit direct link with Turing computation, and is expressed in a system of computable types and operations, so has a clean mathematical description.
Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model
We derive a minimalist but powerful deterministic denoising-diffusion model. While denoising diffusion has shown great success in many domains, its underlying theory remains largely inaccessible to non-expert users. Indeed, an understanding of graduate-level concepts such as Langevin dynamics or score matching appears to be required to grasp how it works. We propose an alternative approach that requires no more than undergrad calculus and probability. We consider two densities and observe what happens when random samples from these densities are blended (linearly interpolated). We show that iteratively blending and deblending samples produces random paths between the two densities that converge toward a deterministic mapping. This mapping can be evaluated with a neural network trained to deblend samples. We obtain a model that behaves like deterministic denoising diffusion: it iteratively maps samples from one density (e.g., Gaussian noise) to another (e.g., cat images). However, compared to the state-of-the-art alternative, our model is simpler to derive, simpler to implement, more numerically stable, achieves higher quality results in our experiments, and has interesting connections to computer graphics.
Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation
We show how to transform a non-differentiable rasterizer into a differentiable one with minimal engineering efforts and no external dependencies (no Pytorch/Tensorflow). We rely on Stochastic Gradient Estimation, a technique that consists of rasterizing after randomly perturbing the scene's parameters such that their gradient can be stochastically estimated and descended. This method is simple and robust but does not scale in dimensionality (number of scene parameters). Our insight is that the number of parameters contributing to a given rasterized pixel is bounded. Estimating and averaging gradients on a per-pixel basis hence bounds the dimensionality of the underlying optimization problem and makes the method scalable. Furthermore, it is simple to track per-pixel contributing parameters by rasterizing ID- and UV-buffers, which are trivial additions to a rasterization engine if not already available. With these minor modifications, we obtain an in-engine optimizer for 3D assets with millions of geometry and texture parameters.
A Law of Robustness beyond Isoperimetry
We study the robust interpolation problem of arbitrary data distributions supported on a bounded space and propose a two-fold law of robustness. Robust interpolation refers to the problem of interpolating n noisy training data points in R^d by a Lipschitz function. Although this problem has been well understood when the samples are drawn from an isoperimetry distribution, much remains unknown concerning its performance under generic or even the worst-case distributions. We prove a Lipschitzness lower bound Omega(n/p) of the interpolating neural network with p parameters on arbitrary data distributions. With this result, we validate the law of robustness conjecture in prior work by Bubeck, Li, and Nagaraj on two-layer neural networks with polynomial weights. We then extend our result to arbitrary interpolating approximators and prove a Lipschitzness lower bound Omega(n^{1/d}) for robust interpolation. Our results demonstrate a two-fold law of robustness: i) we show the potential benefit of overparametrization for smooth data interpolation when n=poly(d), and ii) we disprove the potential existence of an O(1)-Lipschitz robust interpolating function when n=exp(omega(d)).
NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation
Image interpolation based on diffusion models is promising in creating fresh and interesting images. Advanced interpolation methods mainly focus on spherical linear interpolation, where images are encoded into the noise space and then interpolated for denoising to images. However, existing methods face challenges in effectively interpolating natural images (not generated by diffusion models), thereby restricting their practical applicability. Our experimental investigations reveal that these challenges stem from the invalidity of the encoding noise, which may no longer obey the expected noise distribution, e.g., a normal distribution. To address these challenges, we propose a novel approach to correct noise for image interpolation, NoiseDiffusion. Specifically, NoiseDiffusion approaches the invalid noise to the expected distribution by introducing subtle Gaussian noise and introduces a constraint to suppress noise with extreme values. In this context, promoting noise validity contributes to mitigating image artifacts, but the constraint and introduced exogenous noise typically lead to a reduction in signal-to-noise ratio, i.e., loss of original image information. Hence, NoiseDiffusion performs interpolation within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss. Consequently, NoiseDiffusion enables us to interpolate natural images without causing artifacts or information loss, thus achieving the best interpolation results.
Understanding Hallucinations in Diffusion Models through Mode Interpolation
Colloquially speaking, image generation models based upon diffusion processes are frequently said to exhibit "hallucinations," samples that could never occur in the training data. But where do such hallucinations come from? In this paper, we study a particular failure mode in diffusion models, which we term mode interpolation. Specifically, we find that diffusion models smoothly "interpolate" between nearby data modes in the training set, to generate samples that are completely outside the support of the original training distribution; this phenomenon leads diffusion models to generate artifacts that never existed in real data (i.e., hallucinations). We systematically study the reasons for, and the manifestation of this phenomenon. Through experiments on 1D and 2D Gaussians, we show how a discontinuous loss landscape in the diffusion model's decoder leads to a region where any smooth approximation will cause such hallucinations. Through experiments on artificial datasets with various shapes, we show how hallucination leads to the generation of combinations of shapes that never existed. Finally, we show that diffusion models in fact know when they go out of support and hallucinate. This is captured by the high variance in the trajectory of the generated sample towards the final few backward sampling process. Using a simple metric to capture this variance, we can remove over 95% of hallucinations at generation time while retaining 96% of in-support samples. We conclude our exploration by showing the implications of such hallucination (and its removal) on the collapse (and stabilization) of recursive training on synthetic data with experiments on MNIST and 2D Gaussians dataset. We release our code at https://github.com/locuslab/diffusion-model-hallucination.
Variational Inference for SDEs Driven by Fractional Noise
We present a novel variational framework for performing inference in (neural) stochastic differential equations (SDEs) driven by Markov-approximate fractional Brownian motion (fBM). SDEs offer a versatile tool for modeling real-world continuous-time dynamic systems with inherent noise and randomness. Combining SDEs with the powerful inference capabilities of variational methods, enables the learning of representative function distributions through stochastic gradient descent. However, conventional SDEs typically assume the underlying noise to follow a Brownian motion (BM), which hinders their ability to capture long-term dependencies. In contrast, fractional Brownian motion (fBM) extends BM to encompass non-Markovian dynamics, but existing methods for inferring fBM parameters are either computationally demanding or statistically inefficient. In this paper, building upon the Markov approximation of fBM, we derive the evidence lower bound essential for efficient variational inference of posterior path measures, drawing from the well-established field of stochastic analysis. Additionally, we provide a closed-form expression to determine optimal approximation coefficients. Furthermore, we propose the use of neural networks to learn the drift, diffusion and control terms within our variational posterior, leading to the variational training of neural-SDEs. In this framework, we also optimize the Hurst index, governing the nature of our fractional noise. Beyond validation on synthetic data, we contribute a novel architecture for variational latent video prediction,-an approach that, to the best of our knowledge, enables the first variational neural-SDE application to video perception.
Frame Interpolation with Consecutive Brownian Bridge Diffusion
Recent work in Video Frame Interpolation (VFI) tries to formulate VFI as a diffusion-based conditional image generation problem, synthesizing the intermediate frame given a random noise and neighboring frames. Due to the relatively high resolution of videos, Latent Diffusion Models (LDMs) are employed as the conditional generation model, where the autoencoder compresses images into latent representations for diffusion and then reconstructs images from these latent representations. Such a formulation poses a crucial challenge: VFI expects that the output is deterministically equal to the ground truth intermediate frame, but LDMs randomly generate a diverse set of different images when the model runs multiple times. The reason for the diverse generation is that the cumulative variance (variance accumulated at each step of generation) of generated latent representations in LDMs is large. This makes the sampling trajectory random, resulting in diverse rather than deterministic generations. To address this problem, we propose our unique solution: Frame Interpolation with Consecutive Brownian Bridge Diffusion. Specifically, we propose consecutive Brownian Bridge diffusion that takes a deterministic initial value as input, resulting in a much smaller cumulative variance of generated latent representations. Our experiments suggest that our method can improve together with the improvement of the autoencoder and achieve state-of-the-art performance in VFI, leaving strong potential for further enhancement.
Vector-Valued Control Variates
Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.
Modeling Temporal Data as Continuous Functions with Stochastic Process Diffusion
Temporal data such as time series can be viewed as discretized measurements of the underlying function. To build a generative model for such data we have to model the stochastic process that governs it. We propose a solution by defining the denoising diffusion model in the function space which also allows us to naturally handle irregularly-sampled observations. The forward process gradually adds noise to functions, preserving their continuity, while the learned reverse process removes the noise and returns functions as new samples. To this end, we define suitable noise sources and introduce novel denoising and score-matching models. We show how our method can be used for multivariate probabilistic forecasting and imputation, and how our model can be interpreted as a neural process.
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
Irregular sampling intervals and missing values in real-world time series data present challenges for conventional methods that assume consistent intervals and complete data. Neural Ordinary Differential Equations (Neural ODEs) offer an alternative approach, utilizing neural networks combined with ODE solvers to learn continuous latent representations through parameterized vector fields. Neural Stochastic Differential Equations (Neural SDEs) extend Neural ODEs by incorporating a diffusion term, although this addition is not trivial, particularly when addressing irregular intervals and missing values. Consequently, careful design of drift and diffusion functions is crucial for maintaining stability and enhancing performance, while incautious choices can result in adverse properties such as the absence of strong solutions, stochastic destabilization, or unstable Euler discretizations, significantly affecting Neural SDEs' performance. In this study, we propose three stable classes of Neural SDEs: Langevin-type SDE, Linear Noise SDE, and Geometric SDE. Then, we rigorously demonstrate their robustness in maintaining excellent performance under distribution shift, while effectively preventing overfitting. To assess the effectiveness of our approach, we conduct extensive experiments on four benchmark datasets for interpolation, forecasting, and classification tasks, and analyze the robustness of our methods with 30 public datasets under different missing rates. Our results demonstrate the efficacy of the proposed method in handling real-world irregular time series data.
Multi-marginal Schrödinger Bridges with Iterative Reference Refinement
Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.
AID: Attention Interpolation of Text-to-Image Diffusion
Conditional diffusion models can create unseen images in various settings, aiding image interpolation. Interpolation in latent spaces is well-studied, but interpolation with specific conditions like text or poses is less understood. Simple approaches, such as linear interpolation in the space of conditions, often result in images that lack consistency, smoothness, and fidelity. To that end, we introduce a novel training-free technique named Attention Interpolation via Diffusion (AID). Our key contributions include 1) proposing an inner/outer interpolated attention layer; 2) fusing the interpolated attention with self-attention to boost fidelity; and 3) applying beta distribution to selection to increase smoothness. We also present a variant, Prompt-guided Attention Interpolation via Diffusion (PAID), that considers interpolation as a condition-dependent generative process. This method enables the creation of new images with greater consistency, smoothness, and efficiency, and offers control over the exact path of interpolation. Our approach demonstrates effectiveness for conceptual and spatial interpolation. Code and demo are available at https://github.com/QY-H00/attention-interpolation-diffusion.
DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal Forecasting
While diffusion models can successfully generate data and make predictions, they are predominantly designed for static images. We propose an approach for efficiently training diffusion models for probabilistic spatiotemporal forecasting, where generating stable and accurate rollout forecasts remains challenging, Our method, DYffusion, leverages the temporal dynamics in the data, directly coupling it with the diffusion steps in the model. We train a stochastic, time-conditioned interpolator and a forecaster network that mimic the forward and reverse processes of standard diffusion models, respectively. DYffusion naturally facilitates multi-step and long-range forecasting, allowing for highly flexible, continuous-time sampling trajectories and the ability to trade-off performance with accelerated sampling at inference time. In addition, the dynamics-informed diffusion process in DYffusion imposes a strong inductive bias and significantly improves computational efficiency compared to traditional Gaussian noise-based diffusion models. Our approach performs competitively on probabilistic forecasting of complex dynamics in sea surface temperatures, Navier-Stokes flows, and spring mesh systems.
A Geometric Perspective on Diffusion Models
Recent years have witnessed significant progress in developing efficient training and fast sampling approaches for diffusion models. A recent remarkable advancement is the use of stochastic differential equations (SDEs) to describe data perturbation and generative modeling in a unified mathematical framework. In this paper, we reveal several intriguing geometric structures of diffusion models and contribute a simple yet powerful interpretation to their sampling dynamics. Through carefully inspecting a popular variance-exploding SDE and its marginal-preserving ordinary differential equation (ODE) for sampling, we discover that the data distribution and the noise distribution are smoothly connected with an explicit, quasi-linear sampling trajectory, and another implicit denoising trajectory, which even converges faster in terms of visual quality. We also establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm, with which we can characterize the asymptotic behavior of diffusion models and identify the score deviation. These new geometric observations enable us to improve previous sampling algorithms, re-examine latent interpolation, as well as re-explain the working principles of distillation-based fast sampling techniques.
Learning Collective Variables for Protein Folding with Labeled Data Augmentation through Geodesic Interpolation
In molecular dynamics (MD) simulations, rare events, such as protein folding, are typically studied by means of enhanced sampling techniques, most of which rely on the definition of a collective variable (CV) along which the acceleration occurs. Obtaining an expressive CV is crucial, but often hindered by the lack of information about the particular event, e.g., the transition from unfolded to folded conformation. We propose a simulation-free data augmentation strategy using physics-inspired metrics to generate geodesic interpolations resembling protein folding transitions, thereby improving sampling efficiency without true transition state samples. Leveraging interpolation progress parameters, we introduce a regression-based learning scheme for CV models, which outperforms classifier-based methods when transition state data is limited and noisy
Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS
Bayesian machine learning via category theory
From the Bayesian perspective, the category of conditional probabilities (a variant of the Kleisli category of the Giry monad, whose objects are measurable spaces and arrows are Markov kernels) gives a nice framework for conceptualization and analysis of many aspects of machine learning. Using categorical methods, we construct models for parametric and nonparametric Bayesian reasoning on function spaces, thus providing a basis for the supervised learning problem. In particular, stochastic processes are arrows to these function spaces which serve as prior probabilities. The resulting inference maps can often be analytically constructed in this symmetric monoidal weakly closed category. We also show how to view general stochastic processes using functor categories and demonstrate the Kalman filter as an archetype for the hidden Markov model.
User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems
Diffusion models are a class of probabilistic generative models that have been widely used as a prior for image processing tasks like text conditional generation and inpainting. We demonstrate that these models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems. In these applications, diffusion models can implicitly represent knowledge about outliers and extreme events; however, querying that knowledge through conditional sampling or measuring probabilities is surprisingly difficult. Existing methods for conditional sampling at inference time seek mainly to enforce the constraints, which is insufficient to match the statistics of the distribution or compute the probability of the chosen events. To achieve these ends, optimally one would use the conditional score function, but its computation is typically intractable. In this work, we develop a probabilistic approximation scheme for the conditional score function which provably converges to the true distribution as the noise level decreases. With this scheme we are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize
This paper provides a non-asymptotic analysis of linear stochastic approximation (LSA) algorithms with fixed stepsize. This family of methods arises in many machine learning tasks and is used to obtain approximate solutions of a linear system Atheta = b for which A and b can only be accessed through random estimates {({bf A}_n, {bf b}_n): n in N^*}. Our analysis is based on new results regarding moments and high probability bounds for products of matrices which are shown to be tight. We derive high probability bounds on the performance of LSA under weaker conditions on the sequence {({bf A}_n, {bf b}_n): n in N^*} than previous works. However, in contrast, we establish polynomial concentration bounds with order depending on the stepsize. We show that our conclusions cannot be improved without additional assumptions on the sequence of random matrices {{bf A}_n: n in N^*}, and in particular that no Gaussian or exponential high probability bounds can hold. Finally, we pay a particular attention to establishing bounds with sharp order with respect to the number of iterations and the stepsize and whose leading terms contain the covariance matrices appearing in the central limit theorems.
3D Gaussian Splatting as Markov Chain Monte Carlo
While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene-in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) updates by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the 'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.
Score-Based Generative Modeling through Stochastic Differential Equations
Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN
The analysis of parametric and non-parametric uncertainties of very large dynamical systems requires the construction of a stochastic model of said system. Linear approaches relying on random matrix theory and principal componant analysis can be used when systems undergo low-frequency vibrations. In the case of fast dynamics and wave propagation, we investigate a random generator of boundary conditions for fast submodels by using machine learning. We show that the use of non-linear techniques in machine learning and data-driven methods is highly relevant. Physics-informed neural networks is a possible choice for a data-driven method to replace linear modal analysis. An architecture that support a random component is necessary for the construction of the stochastic model of the physical system for non-parametric uncertainties, since the goal is to learn the underlying probabilistic distribution of uncertainty in the data. Generative Adversarial Networks (GANs) are suited for such applications, where the Wasserstein-GAN with gradient penalty variant offers improved convergence results for our problem. The objective of our approach is to train a GAN on data from a finite element method code (Fenics) so as to extract stochastic boundary conditions for faster finite element predictions on a submodel. The submodel and the training data have both the same geometrical support. It is a zone of interest for uncertainty quantification and relevant to engineering purposes. In the exploitation phase, the framework can be viewed as a randomized and parametrized simulation generator on the submodel, which can be used as a Monte Carlo estimator.
Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
Sampling by averaging: A multiscale approach to score estimation
We introduce a novel framework for efficient sampling from complex, unnormalised target distributions by exploiting multiscale dynamics. Traditional score-based sampling methods either rely on learned approximations of the score function or involve computationally expensive nested Markov chain Monte Carlo (MCMC) loops. In contrast, the proposed approach leverages stochastic averaging within a slow-fast system of stochastic differential equations (SDEs) to estimate intermediate scores along a diffusion path without training or inner-loop MCMC. Two algorithms are developed under this framework: MultALMC, which uses multiscale annealed Langevin dynamics, and MultCDiff, based on multiscale controlled diffusions for the reverse-time Ornstein-Uhlenbeck process. Both overdamped and underdamped variants are considered, with theoretical guarantees of convergence to the desired diffusion path. The framework is extended to handle heavy-tailed target distributions using Student's t-based noise models and tailored fast-process dynamics. Empirical results across synthetic and real-world benchmarks, including multimodal and high-dimensional distributions, demonstrate that the proposed methods are competitive with existing samplers in terms of accuracy and efficiency, without the need for learned models.
Uncertainty quantification for stationary and time-dependent PDEs subject to Gevrey regular random domain deformations
We study uncertainty quantification for partial differential equations subject to domain uncertainty. We parameterize the random domain using the model recently considered by Chernov and Le (2024) as well as Harbrecht, Schmidlin, and Schwab (2024) in which the input random field is assumed to belong to a Gevrey smoothness class. This approach has the advantage of being substantially more general than models which assume a particular parametric representation of the input random field such as a Karhunen-Loeve series expansion. We consider both the Poisson equation as well as the heat equation and design randomly shifted lattice quasi-Monte Carlo (QMC) cubature rules for the computation of the expected solution under domain uncertainty. We show that these QMC rules exhibit dimension-independent, essentially linear cubature convergence rates in this framework. In addition, we complete the error analysis by taking into account the approximation errors incurred by dimension truncation of the random input field and finite element discretization. Numerical experiments are presented to confirm the theoretical rates.
Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.
SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models
Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks. As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed. The majority of such techniques consider solving the diffusion ODE due to its superior efficiency. However, stochastic sampling could offer additional advantages in generating diverse and high-quality data. In this work, we engage in a comprehensive analysis of stochastic sampling from two aspects: variance-controlled diffusion SDE and linear multi-step SDE solver. Based on our analysis, we propose SA-Solver, which is an improved efficient stochastic Adams method for solving diffusion SDE to generate data with high quality. Our experiments show that SA-Solver achieves: 1) improved or comparable performance compared with the existing state-of-the-art sampling methods for few-step sampling; 2) SOTA FID scores on substantial benchmark datasets under a suitable number of function evaluations (NFEs).
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
We prove new convergence rates for a generalized version of stochastic Nesterov acceleration under interpolation conditions. Unlike previous analyses, our approach accelerates any stochastic gradient method which makes sufficient progress in expectation. The proof, which proceeds using the estimating sequences framework, applies to both convex and strongly convex functions and is easily specialized to accelerated SGD under the strong growth condition. In this special case, our analysis reduces the dependence on the strong growth constant from rho to rho as compared to prior work. This improvement is comparable to a square-root of the condition number in the worst case and address criticism that guarantees for stochastic acceleration could be worse than those for SGD.
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
We bound the excess risk of interpolating deep linear networks trained using gradient flow. In a setting previously used to establish risk bounds for the minimum ell_2-norm interpolant, we show that randomly initialized deep linear networks can closely approximate or even match known bounds for the minimum ell_2-norm interpolant. Our analysis also reveals that interpolating deep linear models have exactly the same conditional variance as the minimum ell_2-norm solution. Since the noise affects the excess risk only through the conditional variance, this implies that depth does not improve the algorithm's ability to "hide the noise". Our simulations verify that aspects of our bounds reflect typical behavior for simple data distributions. We also find that similar phenomena are seen in simulations with ReLU networks, although the situation there is more nuanced.
Scale Mixtures of Neural Network Gaussian Processes
Recent works have revealed that infinitely-wide feed-forward or recurrent neural networks of any architecture correspond to Gaussian processes referred to as Neural Network Gaussian Processes (NNGPs). While these works have extended the class of neural networks converging to Gaussian processes significantly, however, there has been little focus on broadening the class of stochastic processes that such neural networks converge to. In this work, inspired by the scale mixture of Gaussian random variables, we propose the scale mixture of NNGPs for which we introduce a prior distribution on the scale of the last-layer parameters. We show that simply introducing a scale prior on the last-layer parameters can turn infinitely-wide neural networks of any architecture into a richer class of stochastic processes. With certain scale priors, we obtain heavy-tailed stochastic processes, and in the case of inverse gamma priors, we recover Student's t processes. We further analyze the distributions of the neural networks initialized with our prior setting and trained with gradient descents and obtain similar results as for NNGPs. We present a practical posterior-inference algorithm for the scale mixture of NNGPs and empirically demonstrate its usefulness on regression and classification tasks. In particular, we show that in both tasks, the heavy-tailed stochastic processes obtained from our framework are robust to out-of-distribution data.
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting
Recent progress in neural forecasting accelerated improvements in the performance of large-scale forecasting systems. Yet, long-horizon forecasting remains a very difficult task. Two common challenges afflicting the task are the volatility of the predictions and their computational complexity. We introduce N-HiTS, a model which addresses both challenges by incorporating novel hierarchical interpolation and multi-rate data sampling techniques. These techniques enable the proposed method to assemble its predictions sequentially, emphasizing components with different frequencies and scales while decomposing the input signal and synthesizing the forecast. We prove that the hierarchical interpolation technique can efficiently approximate arbitrarily long horizons in the presence of smoothness. Additionally, we conduct extensive large-scale dataset experiments from the long-horizon forecasting literature, demonstrating the advantages of our method over the state-of-the-art methods, where N-HiTS provides an average accuracy improvement of almost 20% over the latest Transformer architectures while reducing the computation time by an order of magnitude (50 times). Our code is available at bit.ly/3VA5DoT
IntLevPy: A Python library to classify and model intermittent and Lévy processes
IntLevPy provides a comprehensive description of the IntLevPy Package, a Python library designed for simulating and analyzing intermittent and L\'evy processes. The package includes functionalities for process simulation, including full parameter estimation and fitting optimization for both families of processes, moment calculation, and classification methods. The classification methodology utilizes adjusted-R^2 and a noble performance measure {\Gamma}, enabling the distinction between intermittent and L\'evy processes. IntLevPy integrates iterative parameter optimization with simulation-based validation. This paper provides an in-depth user guide covering IntLevPy software architecture, installation, validation workflows, and usage examples. In this way, IntLevPy facilitates systematic exploration of these two broad classes of stochastic processes, bridging theoretical models and practical applications.
The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions
In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.
The Optimality of Kernel Classifiers in Sobolev Space
Kernel methods are widely used in machine learning, especially for classification problems. However, the theoretical analysis of kernel classification is still limited. This paper investigates the statistical performances of kernel classifiers. With some mild assumptions on the conditional probability eta(x)=P(Y=1mid X=x), we derive an upper bound on the classification excess risk of a kernel classifier using recent advances in the theory of kernel regression. We also obtain a minimax lower bound for Sobolev spaces, which shows the optimality of the proposed classifier. Our theoretical results can be extended to the generalization error of overparameterized neural network classifiers. To make our theoretical results more applicable in realistic settings, we also propose a simple method to estimate the interpolation smoothness of 2eta(x)-1 and apply the method to real datasets.
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a refinement of mean-square analysis in Li et al. (2019), and this refined framework automates the analysis of a large class of sampling algorithms based on discretizations of contractive SDEs. Using this framework, we establish an O(d/epsilon) mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known O(d/epsilon) result and is optimal (in terms of order) in both dimension d and accuracy tolerance epsilon for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments.
Going beyond Compositions, DDPMs Can Produce Zero-Shot Interpolations
Denoising Diffusion Probabilistic Models (DDPMs) exhibit remarkable capabilities in image generation, with studies suggesting that they can generalize by composing latent factors learned from the training data. In this work, we go further and study DDPMs trained on strictly separate subsets of the data distribution with large gaps on the support of the latent factors. We show that such a model can effectively generate images in the unexplored, intermediate regions of the distribution. For instance, when trained on clearly smiling and non-smiling faces, we demonstrate a sampling procedure which can generate slightly smiling faces without reference images (zero-shot interpolation). We replicate these findings for other attributes as well as other datasets. Our code is available at https://github.com/jdeschena/ddpm-zero-shot-interpolation.
Accelerating Convergence of Score-Based Diffusion Models, Provably
Score-based diffusion models, while achieving remarkable empirical performance, often suffer from low sampling speed, due to extensive function evaluations needed during the sampling phase. Despite a flurry of recent activities towards speeding up diffusion generative modeling in practice, theoretical underpinnings for acceleration techniques remain severely limited. In this paper, we design novel training-free algorithms to accelerate popular deterministic (i.e., DDIM) and stochastic (i.e., DDPM) samplers. Our accelerated deterministic sampler converges at a rate O(1/{T}^2) with T the number of steps, improving upon the O(1/T) rate for the DDIM sampler; and our accelerated stochastic sampler converges at a rate O(1/T), outperforming the rate O(1/T) for the DDPM sampler. The design of our algorithms leverages insights from higher-order approximation, and shares similar intuitions as popular high-order ODE solvers like the DPM-Solver-2. Our theory accommodates ell_2-accurate score estimates, and does not require log-concavity or smoothness on the target distribution.
AutoKnots: Adaptive Knot Allocation for Spline Interpolation
In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged)
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
Time-adaptive Video Frame Interpolation based on Residual Diffusion
In this work, we propose a new diffusion-based method for video frame interpolation (VFI), in the context of traditional hand-made animation. We introduce three main contributions: The first is that we explicitly handle the interpolation time in our model, which we also re-estimate during the training process, to cope with the particularly large variations observed in the animation domain, compared to natural videos; The second is that we adapt and generalize a diffusion scheme called ResShift recently proposed in the super-resolution community to VFI, which allows us to perform a very low number of diffusion steps (in the order of 10) to produce our estimates; The third is that we leverage the stochastic nature of the diffusion process to provide a pixel-wise estimate of the uncertainty on the interpolated frame, which could be useful to anticipate where the model may be wrong. We provide extensive comparisons with respect to state-of-the-art models and show that our model outperforms these models on animation videos. Our code is available at https://github.com/VicFonch/Multi-Input-Resshift-Diffusion-VFI.
Interpolation for Robust Learning: Data Augmentation on Geodesics
We propose to study and promote the robustness of a model as per its performance through the interpolation of training data distributions. Specifically, (1) we augment the data by finding the worst-case Wasserstein barycenter on the geodesic connecting subpopulation distributions of different categories. (2) We regularize the model for smoother performance on the continuous geodesic path connecting subpopulation distributions. (3) Additionally, we provide a theoretical guarantee of robustness improvement and investigate how the geodesic location and the sample size contribute, respectively. Experimental validations of the proposed strategy on four datasets, including CIFAR-100 and ImageNet, establish the efficacy of our method, e.g., our method improves the baselines' certifiable robustness on CIFAR10 up to 7.7%, with 16.8% on empirical robustness on CIFAR-100. Our work provides a new perspective of model robustness through the lens of Wasserstein geodesic-based interpolation with a practical off-the-shelf strategy that can be combined with existing robust training methods.
SNIPS: Solving Noisy Inverse Problems Stochastically
In this work we introduce a novel stochastic algorithm dubbed SNIPS, which draws samples from the posterior distribution of any linear inverse problem, where the observation is assumed to be contaminated by additive white Gaussian noise. Our solution incorporates ideas from Langevin dynamics and Newton's method, and exploits a pre-trained minimum mean squared error (MMSE) Gaussian denoiser. The proposed approach relies on an intricate derivation of the posterior score function that includes a singular value decomposition (SVD) of the degradation operator, in order to obtain a tractable iterative algorithm for the desired sampling. Due to its stochasticity, the algorithm can produce multiple high perceptual quality samples for the same noisy observation. We demonstrate the abilities of the proposed paradigm for image deblurring, super-resolution, and compressive sensing. We show that the samples produced are sharp, detailed and consistent with the given measurements, and their diversity exposes the inherent uncertainty in the inverse problem being solved.
A Flexible Diffusion Model
Diffusion (score-based) generative models have been widely used for modeling various types of complex data, including images, audios, and point clouds. Recently, the deep connection between forward-backward stochastic differential equations (SDEs) and diffusion-based models has been revealed, and several new variants of SDEs are proposed (e.g., sub-VP, critically-damped Langevin) along this line. Despite the empirical success of the hand-crafted fixed forward SDEs, a great quantity of proper forward SDEs remain unexplored. In this work, we propose a general framework for parameterizing the diffusion model, especially the spatial part of the forward SDE. An abstract formalism is introduced with theoretical guarantees, and its connection with previous diffusion models is leveraged. We demonstrate the theoretical advantage of our method from an optimization perspective. Numerical experiments on synthetic datasets, MINIST and CIFAR10 are also presented to validate the effectiveness of our framework.
Stochastic representation of solutions for the parabolic Cauchy problem with variable exponent coefficients
In this work, we prove existence and uniqueness of a bounded viscosity solution for the Cauchy problem of degenerate parabolic equations with variable exponent coefficients. We construct the solution directly using the stochastic representation, then verify it satisfies the Cauchy problem. The corresponding SDE, on the other hand, allows the drift and diffusion coefficients to respond nonlinearly to the current state through the state-dependent variable exponents, and thus, extends the expressive power of classical SDEs to better capture complex dynamics. To validate our theoretical framework, we conduct comprehensive numerical experiments comparing finite difference solutions (Crank-Nicolson on logarithmic grids) with Monte Carlo simulations of the SDE.
Sliced Wasserstein Estimation with Control Variates
The sliced Wasserstein (SW) distances between two probability measures are defined as the expectation of the Wasserstein distance between two one-dimensional projections of the two measures. The randomness comes from a projecting direction that is used to project the two input measures to one dimension. Due to the intractability of the expectation, Monte Carlo integration is performed to estimate the value of the SW distance. Despite having various variants, there has been no prior work that improves the Monte Carlo estimation scheme for the SW distance in terms of controlling its variance. To bridge the literature on variance reduction and the literature on the SW distance, we propose computationally efficient control variates to reduce the variance of the empirical estimation of the SW distance. The key idea is to first find Gaussian approximations of projected one-dimensional measures, then we utilize the closed-form of the Wasserstein-2 distance between two Gaussian distributions to design the control variates. In particular, we propose using a lower bound and an upper bound of the Wasserstein-2 distance between two fitted Gaussians as two computationally efficient control variates. We empirically show that the proposed control variate estimators can help to reduce the variance considerably when comparing measures over images and point-clouds. Finally, we demonstrate the favorable performance of the proposed control variate estimators in gradient flows to interpolate between two point-clouds and in deep generative modeling on standard image datasets, such as CIFAR10 and CelebA.
[MASK] is All You Need
In generative models, two paradigms have gained attraction in various applications: next-set prediction-based Masked Generative Models and next-noise prediction-based Non-Autoregressive Models, e.g., Diffusion Models. In this work, we propose using discrete-state models to connect them and explore their scalability in the vision domain. First, we conduct a step-by-step analysis in a unified design space across two types of models including timestep-independence, noise schedule, temperature, guidance strength, etc in a scalable manner. Second, we re-cast typical discriminative tasks, e.g., image segmentation, as an unmasking process from [MASK]tokens on a discrete-state model. This enables us to perform various sampling processes, including flexible conditional sampling by only training once to model the joint distribution. All aforementioned explorations lead to our framework named Discrete Interpolants, which enables us to achieve state-of-the-art or competitive performance compared to previous discrete-state based methods in various benchmarks, like ImageNet256, MS COCO, and video dataset FaceForensics. In summary, by leveraging [MASK] in discrete-state models, we can bridge Masked Generative and Non-autoregressive Diffusion models, as well as generative and discriminative tasks.
Stochastic Normalizing Flows
The sampling of probability distributions specified up to a normalization constant is an important problem in both machine learning and statistical mechanics. While classical stochastic sampling methods such as Markov Chain Monte Carlo (MCMC) or Langevin Dynamics (LD) can suffer from slow mixing times there is a growing interest in using normalizing flows in order to learn the transformation of a simple prior distribution to the given target distribution. Here we propose a generalized and combined approach to sample target densities: Stochastic Normalizing Flows (SNF) -- an arbitrary sequence of deterministic invertible functions and stochastic sampling blocks. We show that stochasticity overcomes expressivity limitations of normalizing flows resulting from the invertibility constraint, whereas trainable transformations between sampling steps improve efficiency of pure MCMC/LD along the flow. By invoking ideas from non-equilibrium statistical mechanics we derive an efficient training procedure by which both the sampler's and the flow's parameters can be optimized end-to-end, and by which we can compute exact importance weights without having to marginalize out the randomness of the stochastic blocks. We illustrate the representational power, sampling efficiency and asymptotic correctness of SNFs on several benchmarks including applications to sampling molecular systems in equilibrium.
Learning minimal representations of stochastic processes with variational autoencoders
Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are however difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended beta-variational autoencoder architecture. By means of simulated datasets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables for the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields.
LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching
The recent advancements in text-to-3D generation mark a significant milestone in generative models, unlocking new possibilities for creating imaginative 3D assets across various real-world scenarios. While recent advancements in text-to-3D generation have shown promise, they often fall short in rendering detailed and high-quality 3D models. This problem is especially prevalent as many methods base themselves on Score Distillation Sampling (SDS). This paper identifies a notable deficiency in SDS, that it brings inconsistent and low-quality updating direction for the 3D model, causing the over-smoothing effect. To address this, we propose a novel approach called Interval Score Matching (ISM). ISM employs deterministic diffusing trajectories and utilizes interval-based score matching to counteract over-smoothing. Furthermore, we incorporate 3D Gaussian Splatting into our text-to-3D generation pipeline. Extensive experiments show that our model largely outperforms the state-of-the-art in quality and training efficiency.
Probabilistic Generating Circuits
Generating functions, which are widely used in combinatorics and probability theory, encode function values into the coefficients of a polynomial. In this paper, we explore their use as a tractable probabilistic model, and propose probabilistic generating circuits (PGCs) for their efficient representation. PGCs are strictly more expressive efficient than many existing tractable probabilistic models, including determinantal point processes (DPPs), probabilistic circuits (PCs) such as sum-product networks, and tractable graphical models. We contend that PGCs are not just a theoretical framework that unifies vastly different existing models, but also show great potential in modeling realistic data. We exhibit a simple class of PGCs that are not trivially subsumed by simple combinations of PCs and DPPs, and obtain competitive performance on a suite of density estimation benchmarks. We also highlight PGCs' connection to the theory of strongly Rayleigh distributions.
Stochastic Latent Residual Video Prediction
Designing video prediction models that account for the inherent uncertainty of the future is challenging. Most works in the literature are based on stochastic image-autoregressive recurrent networks, which raises several performance and applicability issues. An alternative is to use fully latent temporal models which untie frame synthesis and temporal dynamics. However, no such model for stochastic video prediction has been proposed in the literature yet, due to design and training difficulties. In this paper, we overcome these difficulties by introducing a novel stochastic temporal model whose dynamics are governed in a latent space by a residual update rule. This first-order scheme is motivated by discretization schemes of differential equations. It naturally models video dynamics as it allows our simpler, more interpretable, latent model to outperform prior state-of-the-art methods on challenging datasets.
Categorical Stochastic Processes and Likelihood
In this work we take a Category Theoretic perspective on the relationship between probabilistic modeling and function approximation. We begin by defining two extensions of function composition to stochastic process subordination: one based on the co-Kleisli category under the comonad (Omega x -) and one based on the parameterization of a category with a Lawvere theory. We show how these extensions relate to the category Stoch and other Markov Categories. Next, we apply the Para construction to extend stochastic processes to parameterized statistical models and we define a way to compose the likelihood functions of these models. We conclude with a demonstration of how the Maximum Likelihood Estimation procedure defines an identity-on-objects functor from the category of statistical models to the category of Learners. Code to accompany this paper can be found at https://github.com/dshieble/Categorical_Stochastic_Processes_and_Likelihood
A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series
Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, and health. Such data represent fundamental challenges to many classical models from machine learning and statistics due to the presence of non-uniform intervals between observations. However, there has been significant progress within the machine learning community over the last decade on developing specialized models and architectures for learning from irregularly sampled univariate and multivariate time series data. In this survey, we first describe several axes along which approaches to learning from irregularly sampled time series differ including what data representations they are based on, what modeling primitives they leverage to deal with the fundamental problem of irregular sampling, and what inference tasks they are designed to perform. We then survey the recent literature organized primarily along the axis of modeling primitives. We describe approaches based on temporal discretization, interpolation, recurrence, attention and structural invariance. We discuss similarities and differences between approaches and highlight primary strengths and weaknesses.
Reasons for the Superiority of Stochastic Estimators over Deterministic Ones: Robustness, Consistency and Perceptual Quality
Stochastic restoration algorithms allow to explore the space of solutions that correspond to the degraded input. In this paper we reveal additional fundamental advantages of stochastic methods over deterministic ones, which further motivate their use. First, we prove that any restoration algorithm that attains perfect perceptual quality and whose outputs are consistent with the input must be a posterior sampler, and is thus required to be stochastic. Second, we illustrate that while deterministic restoration algorithms may attain high perceptual quality, this can be achieved only by filling up the space of all possible source images using an extremely sensitive mapping, which makes them highly vulnerable to adversarial attacks. Indeed, we show that enforcing deterministic models to be robust to such attacks profoundly hinders their perceptual quality, while robustifying stochastic models hardly influences their perceptual quality, and improves their output variability. These findings provide a motivation to foster progress in stochastic restoration methods, paving the way to better recovery algorithms.
Interpolating between Images with Diffusion Models
One little-explored frontier of image generation and editing is the task of interpolating between two input images, a feature missing from all currently deployed image generation pipelines. We argue that such a feature can expand the creative applications of such models, and propose a method for zero-shot interpolation using latent diffusion models. We apply interpolation in the latent space at a sequence of decreasing noise levels, then perform denoising conditioned on interpolated text embeddings derived from textual inversion and (optionally) subject poses. For greater consistency, or to specify additional criteria, we can generate several candidates and use CLIP to select the highest quality image. We obtain convincing interpolations across diverse subject poses, image styles, and image content, and show that standard quantitative metrics such as FID are insufficient to measure the quality of an interpolation. Code and data are available at https://clintonjwang.github.io/interpolation.
Climate Modelling in Low-Precision: Effects of both Deterministic & Stochastic Rounding
Motivated by recent advances in operational weather forecasting, we study the efficacy of low-precision arithmetic for climate simulations. We develop a framework to measure rounding error in a climate model which provides a stress-test for a low-precision version of the model, and we apply our method to a variety of models including the Lorenz system; a shallow water approximation for flow over a ridge; and a coarse resolution global atmospheric model with simplified parameterisations (SPEEDY). Although double precision (52 significant bits) is standard across operational climate models, in our experiments we find that single precision (23 sbits) is more than enough and that as low as half precision (10 sbits) is often sufficient. For example, SPEEDY can be run with 12 sbits across the entire code with negligible rounding error and this can be lowered to 10 sbits if very minor errors are accepted, amounting to less than 0.1 mm/6hr for the average grid-point precipitation, for example. Our test is based on the Wasserstein metric and this provides stringent non-parametric bounds on rounding error accounting for annual means as well as extreme weather events. In addition, by testing models using both round-to-nearest (RN) and stochastic rounding (SR) we find that SR can mitigate rounding error across a range of applications. Thus our results also provide evidence that SR could be relevant to next-generation climate models. While many studies have shown that low-precision arithmetic can be suitable on short-term weather forecasting timescales, our results give the first evidence that a similar low precision level can be suitable for climate.
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
Framer: Interactive Frame Interpolation
We propose Framer for interactive frame interpolation, which targets producing smoothly transitioning frames between two images as per user creativity. Concretely, besides taking the start and end frames as inputs, our approach supports customizing the transition process by tailoring the trajectory of some selected keypoints. Such a design enjoys two clear benefits. First, incorporating human interaction mitigates the issue arising from numerous possibilities of transforming one image to another, and in turn enables finer control of local motions. Second, as the most basic form of interaction, keypoints help establish the correspondence across frames, enhancing the model to handle challenging cases (e.g., objects on the start and end frames are of different shapes and styles). It is noteworthy that our system also offers an "autopilot" mode, where we introduce a module to estimate the keypoints and refine the trajectory automatically, to simplify the usage in practice. Extensive experimental results demonstrate the appealing performance of Framer on various applications, such as image morphing, time-lapse video generation, cartoon interpolation, etc. The code, the model, and the interface will be released to facilitate further research.
Exact Gradients for Stochastic Spiking Neural Networks Driven by Rough Signals
We introduce a mathematically rigorous framework based on rough path theory to model stochastic spiking neural networks (SSNNs) as stochastic differential equations with event discontinuities (Event SDEs) and driven by c\`adl\`ag rough paths. Our formalism is general enough to allow for potential jumps to be present both in the solution trajectories as well as in the driving noise. We then identify a set of sufficient conditions ensuring the existence of pathwise gradients of solution trajectories and event times with respect to the network's parameters and show how these gradients satisfy a recursive relation. Furthermore, we introduce a general-purpose loss function defined by means of a new class of signature kernels indexed on c\`adl\`ag rough paths and use it to train SSNNs as generative models. We provide an end-to-end autodifferentiable solver for Event SDEs and make its implementation available as part of the diffrax library. Our framework is, to our knowledge, the first enabling gradient-based training of SSNNs with noise affecting both the spike timing and the network's dynamics.
Probabilistic Integral Circuits
Continuous latent variables (LVs) are a key ingredient of many generative models, as they allow modelling expressive mixtures with an uncountable number of components. In contrast, probabilistic circuits (PCs) are hierarchical discrete mixtures represented as computational graphs composed of input, sum and product units. Unlike continuous LV models, PCs provide tractable inference but are limited to discrete LVs with categorical (i.e. unordered) states. We bridge these model classes by introducing probabilistic integral circuits (PICs), a new language of computational graphs that extends PCs with integral units representing continuous LVs. In the first place, PICs are symbolic computational graphs and are fully tractable in simple cases where analytical integration is possible. In practice, we parameterise PICs with light-weight neural nets delivering an intractable hierarchical continuous mixture that can be approximated arbitrarily well with large PCs using numerical quadrature. On several distribution estimation benchmarks, we show that such PIC-approximating PCs systematically outperform PCs commonly learned via expectation-maximization or SGD.
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models
Recently, diffusion models have made remarkable progress in text-to-image (T2I) generation, synthesizing images with high fidelity and diverse contents. Despite this advancement, latent space smoothness within diffusion models remains largely unexplored. Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image. This property proves beneficial in downstream tasks, including image interpolation, inversion, and editing. In this work, we expose the non-smoothness of diffusion latent spaces by observing noticeable visual fluctuations resulting from minor latent variations. To tackle this issue, we propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth. Specifically, we introduce Step-wise Variation Regularization to enforce the proportion between the variations of an arbitrary input latent and that of the output image is a constant at any diffusion training step. In addition, we devise an interpolation standard deviation (ISTD) metric to effectively assess the latent space smoothness of a diffusion model. Extensive quantitative and qualitative experiments demonstrate that Smooth Diffusion stands out as a more desirable solution not only in T2I generation but also across various downstream tasks. Smooth Diffusion is implemented as a plug-and-play Smooth-LoRA to work with various community models. Code is available at https://github.com/SHI-Labs/Smooth-Diffusion.
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
This work introduces the Efficient Transformed Gaussian Process (ETGP), a new way of creating C stochastic processes characterized by: 1) the C processes are non-stationary, 2) the C processes are dependent by construction without needing a mixing matrix, 3) training and making predictions is very efficient since the number of Gaussian Processes (GP) operations (e.g. inverting the inducing point's covariance matrix) do not depend on the number of processes. This makes the ETGP particularly suited for multi-class problems with a very large number of classes, which are the problems studied in this work. ETGPs exploit the recently proposed Transformed Gaussian Process (TGP), a stochastic process specified by transforming a Gaussian Process using an invertible transformation. However, unlike TGPs, ETGPs are constructed by transforming a single sample from a GP using C invertible transformations. We derive an efficient sparse variational inference algorithm for the proposed model and demonstrate its utility in 5 classification tasks which include low/medium/large datasets and a different number of classes, ranging from just a few to hundreds. Our results show that ETGPs, in general, outperform state-of-the-art methods for multi-class classification based on GPs, and have a lower computational cost (around one order of magnitude smaller).
State and parameter learning with PaRIS particle Gibbs
Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
Representational dissimilarity metric spaces for stochastic neural networks
Quantifying similarity between neural representations -- e.g. hidden layer activation vectors -- is a perennial problem in deep learning and neuroscience research. Existing methods compare deterministic responses (e.g. artificial networks that lack stochastic layers) or averaged responses (e.g., trial-averaged firing rates in biological data). However, these measures of _deterministic_ representational similarity ignore the scale and geometric structure of noise, both of which play important roles in neural computation. To rectify this, we generalize previously proposed shape metrics (Williams et al. 2021) to quantify differences in _stochastic_ representations. These new distances satisfy the triangle inequality, and thus can be used as a rigorous basis for many supervised and unsupervised analyses. Leveraging this novel framework, we find that the stochastic geometries of neurobiological representations of oriented visual gratings and naturalistic scenes respectively resemble untrained and trained deep network representations. Further, we are able to more accurately predict certain network attributes (e.g. training hyperparameters) from its position in stochastic (versus deterministic) shape space.
G^2RPO: Granular GRPO for Precise Reward in Flow Models
The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO (G^2RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our G^2RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
Variational inference using the reparameterization trick has enabled large-scale approximate Bayesian inference in complex probabilistic models, leveraging stochastic optimization to sidestep intractable expectations. The reparameterization trick is applicable when we can simulate a random variable by applying a differentiable deterministic function on an auxiliary random variable whose distribution is fixed. For many distributions of interest (such as the gamma or Dirichlet), simulation of random variables relies on acceptance-rejection sampling. The discontinuity introduced by the accept-reject step means that standard reparameterization tricks are not applicable. We propose a new method that lets us leverage reparameterization gradients even when variables are outputs of a acceptance-rejection sampling algorithm. Our approach enables reparameterization on a larger class of variational distributions. In several studies of real and synthetic data, we show that the variance of the estimator of the gradient is significantly lower than other state-of-the-art methods. This leads to faster convergence of stochastic gradient variational inference.
Generative Image Dynamics
We present an approach to modeling an image-space prior on scene dynamics. Our prior is learned from a collection of motion trajectories extracted from real video sequences containing natural, oscillating motion such as trees, flowers, candles, and clothes blowing in the wind. Given a single image, our trained model uses a frequency-coordinated diffusion sampling process to predict a per-pixel long-term motion representation in the Fourier domain, which we call a neural stochastic motion texture. This representation can be converted into dense motion trajectories that span an entire video. Along with an image-based rendering module, these trajectories can be used for a number of downstream applications, such as turning still images into seamlessly looping dynamic videos, or allowing users to realistically interact with objects in real pictures.
SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations
The Latent Stochastic Differential Equation (SDE) is a powerful tool for time series and sequence modeling. However, training Latent SDEs typically relies on adjoint sensitivity methods, which depend on simulation and backpropagation through approximate SDE solutions, which limit scalability. In this work, we propose SDE Matching, a new simulation-free method for training Latent SDEs. Inspired by modern Score- and Flow Matching algorithms for learning generative dynamics, we extend these ideas to the domain of stochastic dynamics for time series and sequence modeling, eliminating the need for costly numerical simulations. Our results demonstrate that SDE Matching achieves performance comparable to adjoint sensitivity methods while drastically reducing computational complexity.
FunkNN: Neural Interpolation for Functional Generation
Can we build continuous generative models which generalize across scales, can be evaluated at any coordinate, admit calculation of exact derivatives, and are conceptually simple? Existing MLP-based architectures generate worse samples than the grid-based generators with favorable convolutional inductive biases. Models that focus on generating images at different scales do better, but employ complex architectures not designed for continuous evaluation of images and derivatives. We take a signal-processing perspective and treat continuous image generation as interpolation from samples. Indeed, correctly sampled discrete images contain all information about the low spatial frequencies. The question is then how to extrapolate the spectrum in a data-driven way while meeting the above design criteria. Our answer is FunkNN -- a new convolutional network which learns how to reconstruct continuous images at arbitrary coordinates and can be applied to any image dataset. Combined with a discrete generative model it becomes a functional generator which can act as a prior in continuous ill-posed inverse problems. We show that FunkNN generates high-quality continuous images and exhibits strong out-of-distribution performance thanks to its patch-based design. We further showcase its performance in several stylized inverse problems with exact spatial derivatives.
On the Trajectory Regularity of ODE-based Diffusion Sampling
Diffusion-based generative models use stochastic differential equations (SDEs) and their equivalent ordinary differential equations (ODEs) to establish a smooth connection between a complex data distribution and a tractable prior distribution. In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models. We characterize an implicit denoising trajectory and discuss its vital role in forming the coupled sampling trajectory with a strong shape regularity, regardless of the generated content. We also describe a dynamic programming-based scheme to make the time schedule in sampling better fit the underlying trajectory structure. This simple strategy requires minimal modification to any given ODE-based numerical solvers and incurs negligible computational cost, while delivering superior performance in image generation, especially in 5sim 10 function evaluations.
Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference
Given time series data, how can we answer questions like "what will happen in the future?" and "how did we get here?" These sorts of probabilistic inference questions are challenging when observations are high-dimensional. In this paper, we show how these questions can have compact, closed form solutions in terms of learned representations. The key idea is to apply a variant of contrastive learning to time series data. Prior work already shows that the representations learned by contrastive learning encode a probability ratio. By extending prior work to show that the marginal distribution over representations is Gaussian, we can then prove that joint distribution of representations is also Gaussian. Taken together, these results show that representations learned via temporal contrastive learning follow a Gauss-Markov chain, a graphical model where inference (e.g., prediction, planning) over representations corresponds to inverting a low-dimensional matrix. In one special case, inferring intermediate representations will be equivalent to interpolating between the learned representations. We validate our theory using numerical simulations on tasks up to 46-dimensions.
Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting
In this work, we consider rather general and broad class of Markov chains, Ito chains, that look like Euler-Maryama discretization of some Stochastic Differential Equation. The chain we study is a unified framework for theoretical analysis. It comes with almost arbitrary isotropic and state-dependent noise instead of normal and state-independent one as in most related papers. Moreover, in our chain the drift and diffusion coefficient can be inexact in order to cover wide range of applications as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent or Stochastic Gradient Boosting. We prove the bound in W_{2}-distance between the laws of our Ito chain and corresponding differential equation. These results improve or cover most of the known estimates. And for some particular cases, our analysis is the first.
How Powerful are Shallow Neural Networks with Bandlimited Random Weights?
We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.
Stochastic Subnetwork Annealing: A Regularization Technique for Fine Tuning Pruned Subnetworks
Pruning methods have recently grown in popularity as an effective way to reduce the size and computational complexity of deep neural networks. Large numbers of parameters can be removed from trained models with little discernible loss in accuracy after a small number of continued training epochs. However, pruning too many parameters at once often causes an initial steep drop in accuracy which can undermine convergence quality. Iterative pruning approaches mitigate this by gradually removing a small number of parameters over multiple epochs. However, this can still lead to subnetworks that overfit local regions of the loss landscape. We introduce a novel and effective approach to tuning subnetworks through a regularization technique we call Stochastic Subnetwork Annealing. Instead of removing parameters in a discrete manner, we instead represent subnetworks with stochastic masks where each parameter has a probabilistic chance of being included or excluded on any given forward pass. We anneal these probabilities over time such that subnetwork structure slowly evolves as mask values become more deterministic, allowing for a smoother and more robust optimization of subnetworks at high levels of sparsity.
Denoising Diffusion Implicit Models
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10 times to 50 times faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
State-dependent diffusion: thermodynamic consistency and its path integral formulation
The friction coefficient of a particle can depend on its position as it does when the particle is near a wall. We formulate the dynamics of particles with such state-dependent friction coefficients in terms of a general Langevin equation with multiplicative noise, whose evaluation requires the introduction of specific rules. Two common conventions, the Ito and the Stratonovich, provide alternative rules for evaluation of the noise, but other conventions are possible. We show the requirement that a particle's distribution function approach the Boltzmann distribution at long times dictates that a drift term must be added to the Langevin equation. This drift term is proportional to the derivative of the diffusion coefficient times a factor that depends on the convention used to define the multiplicative noise. We explore the consequences of this result in a number examples with spatially varying diffusion coefficients. We also derive path integral representations for arbitrary interpretation of the noise, and use it in a perturbative study of correlations in a simple system.
Efficient Integrators for Diffusion Generative Models
Diffusion models suffer from slow sample generation at inference time. Therefore, developing a principled framework for fast deterministic/stochastic sampling for a broader class of diffusion models is a promising direction. We propose two complementary frameworks for accelerating sample generation in pre-trained models: Conjugate Integrators and Splitting Integrators. Conjugate integrators generalize DDIM, mapping the reverse diffusion dynamics to a more amenable space for sampling. In contrast, splitting-based integrators, commonly used in molecular dynamics, reduce the numerical simulation error by cleverly alternating between numerical updates involving the data and auxiliary variables. After extensively studying these methods empirically and theoretically, we present a hybrid method that leads to the best-reported performance for diffusion models in augmented spaces. Applied to Phase Space Langevin Diffusion [Pandey & Mandt, 2023] on CIFAR-10, our deterministic and stochastic samplers achieve FID scores of 2.11 and 2.36 in only 100 network function evaluations (NFE) as compared to 2.57 and 2.63 for the best-performing baselines, respectively. Our code and model checkpoints will be made publicly available at https://github.com/mandt-lab/PSLD.
On Calibrating Diffusion Probabilistic Models
Recently, diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks. A typical DPM framework includes a forward process that gradually diffuses the data distribution and a reverse process that recovers the data distribution from time-dependent data scores. In this work, we observe that the stochastic reverse process of data scores is a martingale, from which concentration bounds and the optional stopping theorem for data scores can be derived. Then, we discover a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can consequently be increased. We provide general calibration guidelines under various model parametrizations. Our calibration method is performed only once and the resulting models can be used repeatedly for sampling. We conduct experiments on multiple datasets to empirically validate our proposal. Our code is at https://github.com/thudzj/Calibrated-DPMs.
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
We present a new algorithm to optimize distributions defined implicitly by parameterized stochastic diffusions. Doing so allows us to modify the outcome distribution of sampling processes by optimizing over their parameters. We introduce a general framework for first-order optimization of these processes, that performs jointly, in a single loop, optimization and sampling steps. This approach is inspired by recent advances in bilevel optimization and automatic implicit differentiation, leveraging the point of view of sampling as optimization over the space of probability distributions. We provide theoretical guarantees on the performance of our method, as well as experimental results demonstrating its effectiveness in real-world settings.
Align Your Steps: Optimizing Sampling Schedules in Diffusion Models
Diffusion models (DMs) have established themselves as the state-of-the-art generative modeling approach in the visual domain and beyond. A crucial drawback of DMs is their slow sampling speed, relying on many sequential function evaluations through large neural networks. Sampling from DMs can be seen as solving a differential equation through a discretized set of noise levels known as the sampling schedule. While past works primarily focused on deriving efficient solvers, little attention has been given to finding optimal sampling schedules, and the entire literature relies on hand-crafted heuristics. In this work, for the first time, we propose a general and principled approach to optimizing the sampling schedules of DMs for high-quality outputs, called Align Your Steps. We leverage methods from stochastic calculus and find optimal schedules specific to different solvers, trained DMs and datasets. We evaluate our novel approach on several image, video as well as 2D toy data synthesis benchmarks, using a variety of different samplers, and observe that our optimized schedules outperform previous hand-crafted schedules in almost all experiments. Our method demonstrates the untapped potential of sampling schedule optimization, especially in the few-step synthesis regime.
Continuous-Time Functional Diffusion Processes
We introduce Functional Diffusion Processes (FDPs), which generalize score-based diffusion models to infinite-dimensional function spaces. FDPs require a new mathematical framework to describe the forward and backward dynamics, and several extensions to derive practical training objectives. These include infinite-dimensional versions of Girsanov theorem, in order to be able to compute an ELBO, and of the sampling theorem, in order to guarantee that functional evaluations in a countable set of points are equivalent to infinite-dimensional functions. We use FDPs to build a new breed of generative models in function spaces, which do not require specialized network architectures, and that can work with any kind of continuous data. Our results on real data show that FDPs achieve high-quality image generation, using a simple MLP architecture with orders of magnitude fewer parameters than existing diffusion models.
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine learning and statistics. We extend recent sampling-based approaches that leverage controlled stochastic processes to model approximate samples from these target densities. The main drawback of these approaches is that the training objective requires full trajectories to compute, resulting in sluggish credit assignment issues due to use of entire trajectories and a learning signal present only at the terminal time. In this work, we present Diffusion Generative Flow Samplers (DGFS), a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments, via parameterizing an additional "flow function". Our method takes inspiration from the theory developed for generative flow networks (GFlowNets), allowing us to make use of intermediate learning signals. Through various challenging experiments, we demonstrate that DGFS achieves more accurate estimates of the normalization constant than closely-related prior methods.
Beyond U: Making Diffusion Models Faster & Lighter
Diffusion models are a family of generative models that yield record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse denoising process, remains a challenge due to slow convergence rates and high computational costs. In this work, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with denoising probabilistic diffusion models, our framework operates with approximately a quarter of the parameters and 30% of the Floating Point Operations (FLOPs) compared to standard U-Nets in Denoising Diffusion Probabilistic Models (DDPMs). Furthermore, our model is up to 70% faster in inference than the baseline models when measured in equal conditions while converging to better quality solutions.
Revisiting the Effects of Stochasticity for Hamiltonian Samplers
We revisit the theoretical properties of Hamiltonian stochastic differential equations (SDES) for Bayesian posterior sampling, and we study the two types of errors that arise from numerical SDE simulation: the discretization error and the error due to noisy gradient estimates in the context of data subsampling. Our main result is a novel analysis for the effect of mini-batches through the lens of differential operator splitting, revising previous literature results. The stochastic component of a Hamiltonian SDE is decoupled from the gradient noise, for which we make no normality assumptions. This leads to the identification of a convergence bottleneck: when considering mini-batches, the best achievable error rate is O(eta^2), with eta being the integrator step size. Our theoretical results are supported by an empirical study on a variety of regression and classification tasks for Bayesian neural networks.
Stochastic activations
We introduce stochastic activations. This novel strategy randomly selects between several non-linear functions in the feed-forward layer of a large language model. In particular, we choose between SILU or RELU depending on a Bernoulli draw. This strategy circumvents the optimization problem associated with RELU, namely, the constant shape for negative inputs that prevents the gradient flow. We leverage this strategy in two ways: (1) We use stochastic activations during pre-training and fine-tune the model with RELU, which is used at inference time to provide sparse latent vectors. This reduces the inference FLOPs and translates into a significant speedup in the CPU. Interestingly, this leads to much better results than training from scratch with the RELU activation function. (2) We evaluate stochastic activations for generation. This strategy performs reasonably well: it is only slightly inferior to the best deterministic non-linearity, namely SILU combined with temperature scaling. This offers an alternative to existing strategies by providing a controlled way to increase the diversity of the generated text.
Fast Sampling of Diffusion Models with Exponential Integrator
The past few years have witnessed the great success of Diffusion models~(DMs) in generating high-fidelity samples in generative modeling tasks. A major limitation of the DM is its notoriously slow sampling procedure which normally requires hundreds to thousands of time discretization steps of the learned diffusion process to reach the desired accuracy. Our goal is to develop a fast sampling method for DMs with a much less number of steps while retaining high sample quality. To this end, we systematically analyze the sampling procedure in DMs and identify key factors that affect the sample quality, among which the method of discretization is most crucial. By carefully examining the learned diffusion process, we propose Diffusion Exponential Integrator Sampler~(DEIS). It is based on the Exponential Integrator designed for discretizing ordinary differential equations (ODEs) and leverages a semilinear structure of the learned diffusion process to reduce the discretization error. The proposed method can be applied to any DMs and can generate high-fidelity samples in as few as 10 steps. In our experiments, it takes about 3 minutes on one A6000 GPU to generate 50k images from CIFAR10. Moreover, by directly using pre-trained DMs, we achieve the state-of-art sampling performance when the number of score function evaluation~(NFE) is limited, e.g., 4.17 FID with 10 NFEs, 3.37 FID, and 9.74 IS with only 15 NFEs on CIFAR10. Code is available at https://github.com/qsh-zh/deis
UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models
Diffusion probabilistic models (DPMs) have demonstrated a very promising ability in high-resolution image synthesis. However, sampling from a pre-trained DPM usually requires hundreds of model evaluations, which is computationally expensive. Despite recent progress in designing high-order solvers for DPMs, there still exists room for further speedup, especially in extremely few steps (e.g., 5~10 steps). Inspired by the predictor-corrector for ODE solvers, we develop a unified corrector (UniC) that can be applied after any existing DPM sampler to increase the order of accuracy without extra model evaluations, and derive a unified predictor (UniP) that supports arbitrary order as a byproduct. Combining UniP and UniC, we propose a unified predictor-corrector framework called UniPC for the fast sampling of DPMs, which has a unified analytical form for any order and can significantly improve the sampling quality over previous methods. We evaluate our methods through extensive experiments including both unconditional and conditional sampling using pixel-space and latent-space DPMs. Our UniPC can achieve 3.87 FID on CIFAR10 (unconditional) and 7.51 FID on ImageNet 256times256 (conditional) with only 10 function evaluations. Code is available at https://github.com/wl-zhao/UniPC
Probabilistic Circuits That Know What They Don't Know
Probabilistic circuits (PCs) are models that allow exact and tractable probabilistic inference. In contrast to neural networks, they are often assumed to be well-calibrated and robust to out-of-distribution (OOD) data. In this paper, we show that PCs are in fact not robust to OOD data, i.e., they don't know what they don't know. We then show how this challenge can be overcome by model uncertainty quantification. To this end, we propose tractable dropout inference (TDI), an inference procedure to estimate uncertainty by deriving an analytical solution to Monte Carlo dropout (MCD) through variance propagation. Unlike MCD in neural networks, which comes at the cost of multiple network evaluations, TDI provides tractable sampling-free uncertainty estimates in a single forward pass. TDI improves the robustness of PCs to distribution shift and OOD data, demonstrated through a series of experiments evaluating the classification confidence and uncertainty estimates on real-world data.
UniTune: Text-Driven Image Editing by Fine Tuning a Diffusion Model on a Single Image
Text-driven image generation methods have shown impressive results recently, allowing casual users to generate high quality images by providing textual descriptions. However, similar capabilities for editing existing images are still out of reach. Text-driven image editing methods usually need edit masks, struggle with edits that require significant visual changes and cannot easily keep specific details of the edited portion. In this paper we make the observation that image-generation models can be converted to image-editing models simply by fine-tuning them on a single image. We also show that initializing the stochastic sampler with a noised version of the base image before the sampling and interpolating relevant details from the base image after sampling further increase the quality of the edit operation. Combining these observations, we propose UniTune, a novel image editing method. UniTune gets as input an arbitrary image and a textual edit description, and carries out the edit while maintaining high fidelity to the input image. UniTune does not require additional inputs, like masks or sketches, and can perform multiple edits on the same image without retraining. We test our method using the Imagen model in a range of different use cases. We demonstrate that it is broadly applicable and can perform a surprisingly wide range of expressive editing operations, including those requiring significant visual changes that were previously impossible.
Stochastic Process Learning via Operator Flow Matching
Expanding on neural operators, we propose a novel framework for stochastic process learning across arbitrary domains. In particular, we develop operator flow matching (OFM) for learning stochastic process priors on function spaces. OFM provides the probability density of the values of any collection of points and enables mathematically tractable functional regression at new points with mean and density estimation. Our method outperforms state-of-the-art models in stochastic process learning, functional regression, and prior learning.
Finite random iterated function systems do not always satisfy Bowen's formula
In this paper, we provide a finite random iterated function system satisfying the open set condition, for which the random version of Bowen's formula fails to hold. This counterexample shows that analogous results established for random recursive constructions are not always obtained for random iterated function systems.
Score Distillation via Reparametrized DDIM
While 2D diffusion models generate realistic, high-detail images, 3D shape generation methods like Score Distillation Sampling (SDS) built on these 2D diffusion models produce cartoon-like, over-smoothed shapes. To help explain this discrepancy, we show that the image guidance used in Score Distillation can be understood as the velocity field of a 2D denoising generative process, up to the choice of a noise term. In particular, after a change of variables, SDS resembles a high-variance version of Denoising Diffusion Implicit Models (DDIM) with a differently-sampled noise term: SDS introduces noise i.i.d. randomly at each step, while DDIM infers it from the previous noise predictions. This excessive variance can lead to over-smoothing and unrealistic outputs. We show that a better noise approximation can be recovered by inverting DDIM in each SDS update step. This modification makes SDS's generative process for 2D images almost identical to DDIM. In 3D, it removes over-smoothing, preserves higher-frequency detail, and brings the generation quality closer to that of 2D samplers. Experimentally, our method achieves better or similar 3D generation quality compared to other state-of-the-art Score Distillation methods, all without training additional neural networks or multi-view supervision, and providing useful insights into relationship between 2D and 3D asset generation with diffusion models.
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization
We study the problem of approximating stationary points of Lipschitz and smooth functions under (varepsilon,delta)-differential privacy (DP) in both the finite-sum and stochastic settings. A point w is called an alpha-stationary point of a function F:R^drightarrowR if |nabla F(w)|leq alpha. We provide a new efficient algorithm that finds an Obig(big[sqrt{d}{nvarepsilon}big]^{2/3}big)-stationary point in the finite-sum setting, where n is the number of samples. This improves on the previous best rate of Obig(big[sqrt{d}{nvarepsilon}big]^{1/2}big). We also give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk. Our construction finds a Obig(1{n^{1/3}} + big[sqrt{d}{nvarepsilon}big]^{1/2}big)-stationary point of the population risk in time linear in n. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is tilde Thetabig(1{n}+sqrt{d}{nvarepsilon}big). Finally, we show that our methods can be used to provide dimension-independent rates of Obig(1{n}+minbig(big[sqrt{rank}{nvarepsilon}big]^{2/3},1{(nvarepsilon)^{2/5}}big)big) on population stationarity for Generalized Linear Models (GLM), where rank is the rank of the design matrix, which improves upon the previous best known rate.
Eliminating Lipschitz Singularities in Diffusion Models
Diffusion models, which employ stochastic differential equations to sample images through integrals, have emerged as a dominant class of generative models. However, the rationality of the diffusion process itself receives limited attention, leaving the question of whether the problem is well-posed and well-conditioned. In this paper, we uncover a vexing propensity of diffusion models: they frequently exhibit the infinite Lipschitz near the zero point of timesteps. This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations. We provide a comprehensive evaluation of the issue from both theoretical and empirical perspectives. To address this challenge, we propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz singularity of the diffusion model near zero. Remarkably, our technique yields a substantial improvement in performance, e.g., on the high-resolution FFHQ dataset (256times256). Moreover, as a byproduct of our method, we manage to achieve a dramatic reduction in the Frechet Inception Distance of other acceleration methods relying on network Lipschitz, including DDIM and DPM-Solver, by over 33%. We conduct extensive experiments on diverse datasets to validate our theory and method. Our work not only advances the understanding of the general diffusion process, but also provides insights for the design of diffusion models.
TLB-VFI: Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation
Video Frame Interpolation (VFI) aims to predict the intermediate frame I_n (we use n to denote time in videos to avoid notation overload with the timestep t in diffusion models) based on two consecutive neighboring frames I_0 and I_1. Recent approaches apply diffusion models (both image-based and video-based) in this task and achieve strong performance. However, image-based diffusion models are unable to extract temporal information and are relatively inefficient compared to non-diffusion methods. Video-based diffusion models can extract temporal information, but they are too large in terms of training scale, model size, and inference time. To mitigate the above issues, we propose Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation (TLB-VFI), an efficient video-based diffusion model. By extracting rich temporal information from video inputs through our proposed 3D-wavelet gating and temporal-aware autoencoder, our method achieves 20% improvement in FID on the most challenging datasets over recent SOTA of image-based diffusion models. Meanwhile, due to the existence of rich temporal information, our method achieves strong performance while having 3times fewer parameters. Such a parameter reduction results in 2.3x speed up. By incorporating optical flow guidance, our method requires 9000x less training data and achieves over 20x fewer parameters than video-based diffusion models. Codes and results are available at our project page: https://zonglinl.github.io/tlbvfi_page.
DiffMorpher: Unleashing the Capability of Diffusion Models for Image Morphing
Diffusion models have achieved remarkable image generation quality surpassing previous generative models. However, a notable limitation of diffusion models, in comparison to GANs, is their difficulty in smoothly interpolating between two image samples, due to their highly unstructured latent space. Such a smooth interpolation is intriguing as it naturally serves as a solution for the image morphing task with many applications. In this work, we present DiffMorpher, the first approach enabling smooth and natural image interpolation using diffusion models. Our key idea is to capture the semantics of the two images by fitting two LoRAs to them respectively, and interpolate between both the LoRA parameters and the latent noises to ensure a smooth semantic transition, where correspondence automatically emerges without the need for annotation. In addition, we propose an attention interpolation and injection technique and a new sampling schedule to further enhance the smoothness between consecutive images. Extensive experiments demonstrate that DiffMorpher achieves starkly better image morphing effects than previous methods across a variety of object categories, bridging a critical functional gap that distinguished diffusion models from GANs.
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Recently, denoising diffusion probabilistic models and generative score matching have shown high potential in modelling complex data distributions while stochastic calculus has provided a unified point of view on these techniques allowing for flexible inference schemes. In this paper we introduce Grad-TTS, a novel text-to-speech model with score-based decoder producing mel-spectrograms by gradually transforming noise predicted by encoder and aligned with text input by means of Monotonic Alignment Search. The framework of stochastic differential equations helps us to generalize conventional diffusion probabilistic models to the case of reconstructing data from noise with different parameters and allows to make this reconstruction flexible by explicitly controlling trade-off between sound quality and inference speed. Subjective human evaluation shows that Grad-TTS is competitive with state-of-the-art text-to-speech approaches in terms of Mean Opinion Score. We will make the code publicly available shortly.
Elucidating the solution space of extended reverse-time SDE for diffusion models
Diffusion models (DMs) demonstrate potent image generation capabilities in various generative modeling tasks. Nevertheless, their primary limitation lies in slow sampling speed, requiring hundreds or thousands of sequential function evaluations through large neural networks to generate high-quality images. Sampling from DMs can be seen alternatively as solving corresponding stochastic differential equations (SDEs) or ordinary differential equations (ODEs). In this work, we formulate the sampling process as an extended reverse-time SDE (ER SDE), unifying prior explorations into ODEs and SDEs. Leveraging the semi-linear structure of ER SDE solutions, we offer exact solutions and arbitrarily high-order approximate solutions for VP SDE and VE SDE, respectively. Based on the solution space of the ER SDE, we yield mathematical insights elucidating the superior performance of ODE solvers over SDE solvers in terms of fast sampling. Additionally, we unveil that VP SDE solvers stand on par with their VE SDE counterparts. Finally, we devise fast and training-free samplers, ER-SDE-Solvers, achieving state-of-the-art performance across all stochastic samplers. Experimental results demonstrate achieving 3.45 FID in 20 function evaluations and 2.24 FID in 50 function evaluations on the ImageNet 64times64 dataset.
A Coreset-based, Tempered Variational Posterior for Accurate and Scalable Stochastic Gaussian Process Inference
We present a novel stochastic variational Gaussian process (GP) inference method, based on a posterior over a learnable set of weighted pseudo input-output points (coresets). Instead of a free-form variational family, the proposed coreset-based, variational tempered family for GPs (CVTGP) is defined in terms of the GP prior and the data-likelihood; hence, accommodating the modeling inductive biases. We derive CVTGP's lower bound for the log-marginal likelihood via marginalization of the proposed posterior over latent GP coreset variables, and show it is amenable to stochastic optimization. CVTGP reduces the learnable parameter size to O(M), enjoys numerical stability, and maintains O(M^3) time- and O(M^2) space-complexity, by leveraging a coreset-based tempered posterior that, in turn, provides sparse and explainable representations of the data. Results on simulated and real-world regression problems with Gaussian observation noise validate that CVTGP provides better evidence lower-bound estimates and predictive root mean squared error than alternative stochastic GP inference methods.
Controllable Human-centric Keyframe Interpolation with Generative Prior
Existing interpolation methods use pre-trained video diffusion priors to generate intermediate frames between sparsely sampled keyframes. In the absence of 3D geometric guidance, these methods struggle to produce plausible results for complex, articulated human motions and offer limited control over the synthesized dynamics. In this paper, we introduce PoseFuse3D Keyframe Interpolator (PoseFuse3D-KI), a novel framework that integrates 3D human guidance signals into the diffusion process for Controllable Human-centric Keyframe Interpolation (CHKI). To provide rich spatial and structural cues for interpolation, our PoseFuse3D, a 3D-informed control model, features a novel SMPL-X encoder that transforms 3D geometry and shape into the 2D latent conditioning space, alongside a fusion network that integrates these 3D cues with 2D pose embeddings. For evaluation, we build CHKI-Video, a new dataset annotated with both 2D poses and 3D SMPL-X parameters. We show that PoseFuse3D-KI consistently outperforms state-of-the-art baselines on CHKI-Video, achieving a 9% improvement in PSNR and a 38% reduction in LPIPS. Comprehensive ablations demonstrate that our PoseFuse3D model improves interpolation fidelity.
Consistent3D: Towards Consistent High-Fidelity Text-to-3D Generation with Deterministic Sampling Prior
Score distillation sampling (SDS) and its variants have greatly boosted the development of text-to-3D generation, but are vulnerable to geometry collapse and poor textures yet. To solve this issue, we first deeply analyze the SDS and find that its distillation sampling process indeed corresponds to the trajectory sampling of a stochastic differential equation (SDE): SDS samples along an SDE trajectory to yield a less noisy sample which then serves as a guidance to optimize a 3D model. However, the randomness in SDE sampling often leads to a diverse and unpredictable sample which is not always less noisy, and thus is not a consistently correct guidance, explaining the vulnerability of SDS. Since for any SDE, there always exists an ordinary differential equation (ODE) whose trajectory sampling can deterministically and consistently converge to the desired target point as the SDE, we propose a novel and effective "Consistent3D" method that explores the ODE deterministic sampling prior for text-to-3D generation. Specifically, at each training iteration, given a rendered image by a 3D model, we first estimate its desired 3D score function by a pre-trained 2D diffusion model, and build an ODE for trajectory sampling. Next, we design a consistency distillation sampling loss which samples along the ODE trajectory to generate two adjacent samples and uses the less noisy sample to guide another more noisy one for distilling the deterministic prior into the 3D model. Experimental results show the efficacy of our Consistent3D in generating high-fidelity and diverse 3D objects and large-scale scenes, as shown in Fig. 1. The codes are available at https://github.com/sail-sg/Consistent3D.
Sparse Probabilistic Circuits via Pruning and Growing
Probabilistic circuits (PCs) are a tractable representation of probability distributions allowing for exact and efficient computation of likelihoods and marginals. There has been significant recent progress on improving the scale and expressiveness of PCs. However, PC training performance plateaus as model size increases. We discover that most capacity in existing large PC structures is wasted: fully-connected parameter layers are only sparsely used. We propose two operations: pruning and growing, that exploit the sparsity of PC structures. Specifically, the pruning operation removes unimportant sub-networks of the PC for model compression and comes with theoretical guarantees. The growing operation increases model capacity by increasing the size of the latent space. By alternatingly applying pruning and growing, we increase the capacity that is meaningfully used, allowing us to significantly scale up PC learning. Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image datasets and on Penn Tree Bank language data compared to other PC learners and less tractable deep generative models such as flow-based models and variational autoencoders (VAEs).
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Denoising diffusion probabilistic models (DDPM) have shown remarkable performance in unconditional image generation. However, due to the stochasticity of the generative process in DDPM, it is challenging to generate images with the desired semantics. In this work, we propose Iterative Latent Variable Refinement (ILVR), a method to guide the generative process in DDPM to generate high-quality images based on a given reference image. Here, the refinement of the generative process in DDPM enables a single DDPM to sample images from various sets directed by the reference image. The proposed ILVR method generates high-quality images while controlling the generation. The controllability of our method allows adaptation of a single DDPM without any additional learning in various image generation tasks, such as generation from various downsampling factors, multi-domain image translation, paint-to-image, and editing with scribbles.
Solvation Free Energies from Neural Thermodynamic Integration
We present a method for computing free-energy differences using thermodynamic integration with a neural network potential that interpolates between two target Hamiltonians. The interpolation is defined at the sample distribution level, and the neural network potential is optimized to match the corresponding equilibrium potential at every intermediate time-step. Once the interpolating potentials and samples are well-aligned, the free-energy difference can be estimated using (neural) thermodynamic integration. To target molecular systems, we simultaneously couple Lennard-Jones and electrostatic interactions and model the rigid-body rotation of molecules. We report accurate results for several benchmark systems: a Lennard-Jones particle in a Lennard-Jones fluid, as well as the insertion of both water and methane solutes in a water solvent at atomistic resolution using a simple three-body neural-network potential.
Dirichlet Diffusion Score Model for Biological Sequence Generation
Designing biological sequences is an important challenge that requires satisfying complex constraints and thus is a natural problem to address with deep generative modeling. Diffusion generative models have achieved considerable success in many applications. Score-based generative stochastic differential equations (SDE) model is a continuous-time diffusion model framework that enjoys many benefits, but the originally proposed SDEs are not naturally designed for modeling discrete data. To develop generative SDE models for discrete data such as biological sequences, here we introduce a diffusion process defined in the probability simplex space with stationary distribution being the Dirichlet distribution. This makes diffusion in continuous space natural for modeling discrete data. We refer to this approach as Dirchlet diffusion score model. We demonstrate that this technique can generate samples that satisfy hard constraints using a Sudoku generation task. This generative model can also solve Sudoku, including hard puzzles, without additional training. Finally, we applied this approach to develop the first human promoter DNA sequence design model and showed that designed sequences share similar properties with natural promoter sequences.
Stochastic model-based minimization of weakly convex functions
We consider a family of algorithms that successively sample and minimize simple stochastic models of the objective function. We show that under reasonable conditions on approximation quality and regularity of the models, any such algorithm drives a natural stationarity measure to zero at the rate O(k^{-1/4}). As a consequence, we obtain the first complexity guarantees for the stochastic proximal point, proximal subgradient, and regularized Gauss-Newton methods for minimizing compositions of convex functions with smooth maps. The guiding principle, underlying the complexity guarantees, is that all algorithms under consideration can be interpreted as approximate descent methods on an implicit smoothing of the problem, given by the Moreau envelope. Specializing to classical circumstances, we obtain the long-sought convergence rate of the stochastic projected gradient method, without batching, for minimizing a smooth function on a closed convex set.
Image Inpainting via Tractable Steering of Diffusion Models
Diffusion models are the current state of the art for generating photorealistic images. Controlling the sampling process for constrained image generation tasks such as inpainting, however, remains challenging since exact conditioning on such constraints is intractable. While existing methods use various techniques to approximate the constrained posterior, this paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior, and to leverage this signal to steer the denoising process of diffusion models. Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs). Building upon prior advances, we further scale up PCs and make them capable of guiding the image generation process of diffusion models. Empirical results suggest that our approach can consistently improve the overall quality and semantic coherence of inpainted images across three natural image datasets (i.e., CelebA-HQ, ImageNet, and LSUN) with only ~10% additional computational overhead brought by the TPM. Further, with the help of an image encoder and decoder, our method can readily accept semantic constraints on specific regions of the image, which opens up the potential for more controlled image generation tasks. In addition to proposing a new framework for constrained image generation, this paper highlights the benefit of more tractable models and motivates the development of expressive TPMs.
DaWin: Training-free Dynamic Weight Interpolation for Robust Adaptation
Adapting a pre-trained foundation model on downstream tasks should ensure robustness against distribution shifts without the need to retrain the whole model. Although existing weight interpolation methods are simple yet effective, we argue their static nature limits downstream performance while achieving efficiency. In this work, we propose DaWin, a training-free dynamic weight interpolation method that leverages the entropy of individual models over each unlabeled test sample to assess model expertise, and compute per-sample interpolation coefficients dynamically. Unlike previous works that typically rely on additional training to learn such coefficients, our approach requires no training. Then, we propose a mixture modeling approach that greatly reduces inference overhead raised by dynamic interpolation. We validate DaWin on the large-scale visual recognition benchmarks, spanning 14 tasks across robust fine-tuning -- ImageNet and derived five distribution shift benchmarks -- and multi-task learning with eight classification tasks. Results demonstrate that DaWin achieves significant performance gain in considered settings, with minimal computational overhead. We further discuss DaWin's analytic behavior to explain its empirical success.
