Threshold Logic Circuits
Collection
Boolean gates, voting functions, modular arithmetic, and adders as threshold networks.
•
248 items
•
Updated
•
1
3-bit parity function. Outputs 1 if odd number of inputs are high.
parity3(a, b, c) = a XOR b XOR c
| a | b | c | out |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
Cascade of two XOR2 gates: parity(a,b,c) = XOR(XOR(a,b), c)
Each XOR2 uses OR-NAND-AND structure:
Layers:
| Inputs | 3 |
| Outputs | 1 |
| Neurons | 6 |
| Layers | 4 |
| Parameters | 18 |
| Magnitude | 20 |
from safetensors.torch import load_file
w = load_file('model.safetensors')
def xor2(a, b, prefix):
or_out = int(a * w[f'{prefix}.or.weight'][0] + b * w[f'{prefix}.or.weight'][1] + w[f'{prefix}.or.bias'] >= 0)
nand_out = int(a * w[f'{prefix}.nand.weight'][0] + b * w[f'{prefix}.nand.weight'][1] + w[f'{prefix}.nand.bias'] >= 0)
return int(or_out * w[f'{prefix}.and.weight'][0] + nand_out * w[f'{prefix}.and.weight'][1] + w[f'{prefix}.and.bias'] >= 0)
def parity3(a, b, c):
return xor2(xor2(a, b, 'xor1'), c, 'xor2')
print(parity3(1, 0, 1)) # 0 (even parity)
print(parity3(1, 1, 1)) # 1 (odd parity)
MIT