phanerozoic's picture
Upload README.md with huggingface_hub
d926d23 verified
metadata
license: mit
tags:
  - formal-verification
  - coq
  - threshold-logic
  - neuromorphic

tiny-3OutOf8-verified

Formally verified 3-out-of-8 threshold gate. Single threshold neuron with 100% accuracy.

Architecture

Component Value
Inputs 8
Outputs 1
Neurons 1
Parameters 9
Weights [1, 1, 1, 1, 1, 1, 1, 1]
Bias -3
Activation Heaviside step

Key Properties

  • 100% accuracy (256/256 inputs correct)
  • Coq-proven correctness
  • Single threshold neuron
  • Integer weights
  • Fires when at least 3 of 8 inputs are true

Usage

import torch
from safetensors.torch import load_file

weights = load_file('threeoutof8.safetensors')

def threeoutof8_gate(bits):
    # bits: list of 8 binary values
    inputs = torch.tensor([float(b) for b in bits])
    weighted_sum = (inputs * weights['weight']).sum() + weights['bias']
    return int(weighted_sum >= 0)

# Test
print({func}_gate([0,0,0,0,0,0,0,0]))  # 0 (0/3, below threshold)
print({func}_gate([1,1,0,0,0,0,0,0]))  # 0 (2/8, below threshold)
print({func}_gate([1,1,1,0,0,0,0,0]))  # 1 (3/8, at threshold)
print(threeoutof8_gate([1,1,1,1,1,1,1,1]))  # 1 (8/8, above threshold)

Verification

Coq Theorem:

Theorem threeout_eight_correct : forall x0 x1 x2 x3 x4 x5 x6 x7,
  threeout_eight_circuit [x0; x1; x2; x3; x4; x5; x6; x7] =
  threeout_eight_spec [x0; x1; x2; x3; x4; x5; x6; x7].

Proven axiom-free via:

  1. Exhaustive: All 256 inputs verified
  2. Universal: Quantified proof over boolean combinations
  3. Algebraic: Hamming weight ≥ 3

Full proof: coq-circuits/Threshold/ThreeOutOfEight.v

Circuit Operation

Input with h true bits (Hamming weight h):

  • Weighted sum: h - 3
  • Output: 1 if h ≥ 3, else 0

Citation

@software{tiny_3outof8_prover_2025,
  title={tiny-3OutOf8-verified: Formally Verified 3-out-of-8 threshold gate},
  author={Norton, Charles},
  url={https://huggingface.co/phanerozoic/tiny-3OutOf8-verified},
  year={2025}
}