Improve language tag

#1
by lbourdois - opened
Files changed (1) hide show
  1. README.md +218 -206
README.md CHANGED
@@ -1,207 +1,219 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - qingy2024/PR2-SFT
5
- language:
6
- - en
7
- base_model:
8
- - Qwen/Qwen2.5-14B-Instruct
9
- ---
10
-
11
- ## PR2 14B Instruct
12
-
13
- PR2 is an experimental fine tune of Qwen2.5 14B Instruct, incorporating planning and reasoning before outputting a final answer. It is trained for 2 epochs on the verified subset of qingy2024/PR2-SFT.
14
-
15
- **Example:**
16
-
17
- Input:
18
-
19
- ```
20
- Find the minimum value of the expression \\(\left(\sqrt{2(1+\cos 2 x)}-\sqrt{36-4 \sqrt{5}} \sin x+2\right) \cdot \left(3+2 \sqrt{10-\sqrt{5}} \cos y-\cos 2 y\right)\\). If the answer is not an integer, round it to the nearest integer.
21
-
22
- First, create a high level overview in <plan></plan> tags, then do your reasoning in <think></think> tags, and put your final answer in <answer></answer>.
23
- ```
24
-
25
- Output:
26
-
27
- ```
28
- <plan>
29
- 1. Simplify the expression by breaking it down into manageable parts.
30
- 2. Use trigonometric identities to simplify terms involving trigonometric functions.
31
- 3. Analyze the structure of the expression to identify potential optimization strategies.
32
- 4. Consider the possibility of minimizing each part of the expression separately.
33
- 5. Calculate the minimum value of the entire expression and round it to the nearest integer if necessary.
34
- </plan>
35
-
36
- <think>
37
- Hmm... let me start by simplifying the expression. The expression is:
38
-
39
- \[
40
- \left(\sqrt{2(1+\cos 2x)} - \sqrt{36-4\sqrt{5}} \sin x + 2\right) \cdot \left(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\right)
41
- \]
42
-
43
- First, I notice that \(\sqrt{2(1+\cos 2x)}\) can be simplified using a trigonometric identity. Recall that \(1 + \cos 2x = 2\cos^2 x\), so:
44
-
45
- \[
46
- \sqrt{2(1+\cos 2x)} = \sqrt{2 \cdot 2\cos^2 x} = \sqrt{4\cos^2 x} = 2|\cos x|
47
- \]
48
-
49
- Since \(\cos x\) can be positive or negative, we'll keep it as \(2|\cos x|\) for now.
50
-
51
- Next, let's look at the second part of the first factor: \(-\sqrt{36-4\sqrt{5}} \sin x + 2\). This seems a bit complicated, but perhaps we can find a way to simplify or bound it.
52
-
53
- Now, let's consider the second factor: \(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\). Again, we can use trigonometric identities to simplify \(\cos 2y\). Recall that \(\cos 2y = 2\cos^2 y - 1\), so:
54
-
55
- \[
56
- 3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y = 3 + 2\sqrt{10-\sqrt{5}} \cos y - (2\cos^2 y - 1) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
57
- \]
58
-
59
- This is a quadratic in terms of \(\cos y\), so we might be able to find its minimum value.
60
-
61
- Wait, perhaps it's better to think about minimizing each factor separately and then multiply the minima together. Let's try that.
62
-
63
- First, let's find the minimum of the first factor:
64
-
65
- \[
66
- F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2
67
- \]
68
-
69
- This seems complicated due to the absolute value and the trigonometric functions. Maybe we can express it in terms of a single trigonometric function.
70
-
71
- Alternatively, perhaps we can use calculus to find the minimum of \(F_1(x)\). Let's try that.
72
-
73
- Let's consider \(F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2\). To find the minimum, we can take the derivative and set it to zero.
74
-
75
- However, the absolute value makes this tricky. Perhaps we can consider the cases where \(\cos x\) is positive and negative separately.
76
-
77
- Case 1: \(\cos x \geq 0\)
78
-
79
- Then \(F_1(x) = 2\cos x - \sqrt{36-4\sqrt{5}} \sin x + 2\). Taking the derivative with respect to \(x\):
80
-
81
- \[
82
- F_1'(x) = -2\sin x - \sqrt{36-4\sqrt{5}} \cos x
83
- \]
84
-
85
- Setting \(F_1'(x) = 0\):
86
-
87
- \[
88
- -2\sin x - \sqrt{36-4\sqrt{5}} \cos x = 0 \implies -2\sin x = \sqrt{36-4\sqrt{5}} \cos x \implies \tan x = -\frac{\sqrt{36-4\sqrt{5}}}{2}
89
- \]
90
-
91
- This gives us a critical point, but we need to check if it's a minimum.
92
-
93
- Alternatively, perhaps we can use trigonometric identities to express \(F_1(x)\) as a single trigonometric function.
94
-
95
- Recall that \(A\sin x + B\cos x = R\sin(x + \alpha)\), where \(R = \sqrt{A^2 + B^2}\) and \(\tan \alpha = \frac{B}{A}\).
96
-
97
- In our case, \(A = -\sqrt{36-4\sqrt{5}}\) and \(B = 2\), so:
98
-
99
- \[
100
- R = \sqrt{(-\sqrt{36-4\sqrt{5}})^2 + 2^2} = \sqrt{36-4\sqrt{5} + 4} = \sqrt{40-4\sqrt{5}} = 2\sqrt{10-\sqrt{5}}
101
- \]
102
-
103
- So, \(F_1(x) = 2\sqrt{10-\sqrt{5}} \sin(x + \alpha) + 2\).
104
-
105
- The minimum value of \(\sin(x + \alpha)\) is \(-1\), so the minimum of \(F_1(x)\) is:
106
-
107
- \[
108
- 2\sqrt{10-\sqrt{5}} \cdot (-1) + 2 = -2\sqrt{10-\sqrt{5}} + 2
109
- \]
110
-
111
- Now, let's find the minimum of the second factor:
112
-
113
- \[
114
- F_2(y) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
115
- \]
116
-
117
- This is a quadratic in \(\cos y\). Let \(z = \cos y\), then:
118
-
119
- \[
120
- F_2(y) = -2z^2 + 2\sqrt{10-\sqrt{5}} z + 4
121
- \]
122
-
123
- This is a quadratic equation in \(z\), and since the coefficient of \(z^2\) is negative, it has a maximum value. However, we need the minimum value of \(F_2(y)\). The minimum will occur at the boundaries of \(z\), i.e., when \(z = 1\) or \(z = -1\).
124
-
125
- Let's evaluate \(F_2(y)\) at \(z = 1\) and \(z = -1\).
126
-
127
- At \(z = 1\):
128
-
129
- \[
130
- F_2(y) = -2(1)^2 + 2\sqrt{10-\sqrt{5}} (1) + 4 = -2 + 2\sqrt{10-\sqrt{5}} + 4 = 2 + 2\sqrt{10-\sqrt{5}}
131
- \]
132
-
133
- At \(z = -1\):
134
-
135
- \[
136
- F_2(y) = -2(-1)^2 + 2\sqrt{10-\sqrt{5}} (-1) + 4 = -2 - 2\sqrt{10-\sqrt{5}} + 4 = 2 - 2\sqrt{10-\sqrt{5}}
137
- \]
138
-
139
- Since \(\sqrt{10-\sqrt{5}} > 0\), the minimum value of \(F_2(y)\) is \(2 - 2\sqrt{10-\sqrt{5}}\).
140
-
141
- Now, the minimum value of the entire expression is the product of the minima of \(F_1(x)\) and \(F_2(y)\):
142
-
143
- \[
144
- (-2\sqrt{10-\sqrt{5}} + 2) \cdot (2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}})
145
- \]
146
-
147
- Let's compute this product:
148
-
149
- \[
150
- (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} \cdot 2) + (-2\sqrt{10-\sqrt{5}} \cdot -2\sqrt{10-\sqrt{5}}) + (2 \cdot 2) + (2 \cdot -2\sqrt{10-\sqrt{5}})
151
- \]
152
-
153
- Simplifying each term:
154
-
155
- \[
156
- = -4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 - 4\sqrt{10-\sqrt{5}}
157
- \]
158
-
159
- Combine like terms:
160
-
161
- \[
162
- = -4\sqrt{10-\sqrt{5}} - 4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 = -8\sqrt{10-\sqrt{5}} + 40 - 4\sqrt{5} + 4 = -8\sqrt{10-\sqrt{5}} + 44 - 4\sqrt{5}
163
- \]
164
-
165
- This expression is quite complicated, and calculating its exact value might not be straightforward. However, we can approximate the value.
166
-
167
- First, let's approximate \(\sqrt{10 - \sqrt{5}}\). Since \(\sqrt{5} \approx 2.236\), we have:
168
-
169
- \[
170
- \sqrt{10 - 2.236} = \sqrt{7.764} \approx 2.786
171
- \]
172
-
173
- Similarly, \(\sqrt{5} \approx 2.236\).
174
-
175
- Now, let's approximate the expression:
176
-
177
- \[
178
- -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
179
- \]
180
-
181
- Rounding this to the nearest integer gives us 13.
182
-
183
- Wait, let's double-check the calculations to ensure accuracy.
184
-
185
- First, let's compute \(\sqrt{10 - \sqrt{5}}\) more precisely.
186
-
187
- \(\sqrt{5} \approx 2.2360679775\), so:
188
-
189
- \[
190
- \sqrt{10 - 2.2360679775} = \sqrt{7.7639320225} \approx 2.786
191
- \]
192
-
193
- Now, compute the expression:
194
-
195
- \[
196
- -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
197
- \]
198
-
199
- Rounding 12.768 to the nearest integer gives us 13.
200
-
201
- Thus, the minimum value of the expression is approximately 13.
202
- </think>
203
-
204
- <answer>
205
- \boxed{13}
206
- </answer>
 
 
 
 
 
 
 
 
 
 
 
 
207
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - qingy2024/PR2-SFT
5
+ language:
6
+ - zho
7
+ - eng
8
+ - fra
9
+ - spa
10
+ - por
11
+ - deu
12
+ - ita
13
+ - rus
14
+ - jpn
15
+ - kor
16
+ - vie
17
+ - tha
18
+ - ara
19
+ base_model:
20
+ - Qwen/Qwen2.5-14B-Instruct
21
+ ---
22
+
23
+ ## PR2 14B Instruct
24
+
25
+ PR2 is an experimental fine tune of Qwen2.5 14B Instruct, incorporating planning and reasoning before outputting a final answer. It is trained for 2 epochs on the verified subset of qingy2024/PR2-SFT.
26
+
27
+ **Example:**
28
+
29
+ Input:
30
+
31
+ ```
32
+ Find the minimum value of the expression \\(\left(\sqrt{2(1+\cos 2 x)}-\sqrt{36-4 \sqrt{5}} \sin x+2\right) \cdot \left(3+2 \sqrt{10-\sqrt{5}} \cos y-\cos 2 y\right)\\). If the answer is not an integer, round it to the nearest integer.
33
+
34
+ First, create a high level overview in <plan></plan> tags, then do your reasoning in <think></think> tags, and put your final answer in <answer></answer>.
35
+ ```
36
+
37
+ Output:
38
+
39
+ ```
40
+ <plan>
41
+ 1. Simplify the expression by breaking it down into manageable parts.
42
+ 2. Use trigonometric identities to simplify terms involving trigonometric functions.
43
+ 3. Analyze the structure of the expression to identify potential optimization strategies.
44
+ 4. Consider the possibility of minimizing each part of the expression separately.
45
+ 5. Calculate the minimum value of the entire expression and round it to the nearest integer if necessary.
46
+ </plan>
47
+
48
+ <think>
49
+ Hmm... let me start by simplifying the expression. The expression is:
50
+
51
+ \[
52
+ \left(\sqrt{2(1+\cos 2x)} - \sqrt{36-4\sqrt{5}} \sin x + 2\right) \cdot \left(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\right)
53
+ \]
54
+
55
+ First, I notice that \(\sqrt{2(1+\cos 2x)}\) can be simplified using a trigonometric identity. Recall that \(1 + \cos 2x = 2\cos^2 x\), so:
56
+
57
+ \[
58
+ \sqrt{2(1+\cos 2x)} = \sqrt{2 \cdot 2\cos^2 x} = \sqrt{4\cos^2 x} = 2|\cos x|
59
+ \]
60
+
61
+ Since \(\cos x\) can be positive or negative, we'll keep it as \(2|\cos x|\) for now.
62
+
63
+ Next, let's look at the second part of the first factor: \(-\sqrt{36-4\sqrt{5}} \sin x + 2\). This seems a bit complicated, but perhaps we can find a way to simplify or bound it.
64
+
65
+ Now, let's consider the second factor: \(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\). Again, we can use trigonometric identities to simplify \(\cos 2y\). Recall that \(\cos 2y = 2\cos^2 y - 1\), so:
66
+
67
+ \[
68
+ 3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y = 3 + 2\sqrt{10-\sqrt{5}} \cos y - (2\cos^2 y - 1) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
69
+ \]
70
+
71
+ This is a quadratic in terms of \(\cos y\), so we might be able to find its minimum value.
72
+
73
+ Wait, perhaps it's better to think about minimizing each factor separately and then multiply the minima together. Let's try that.
74
+
75
+ First, let's find the minimum of the first factor:
76
+
77
+ \[
78
+ F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2
79
+ \]
80
+
81
+ This seems complicated due to the absolute value and the trigonometric functions. Maybe we can express it in terms of a single trigonometric function.
82
+
83
+ Alternatively, perhaps we can use calculus to find the minimum of \(F_1(x)\). Let's try that.
84
+
85
+ Let's consider \(F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2\). To find the minimum, we can take the derivative and set it to zero.
86
+
87
+ However, the absolute value makes this tricky. Perhaps we can consider the cases where \(\cos x\) is positive and negative separately.
88
+
89
+ Case 1: \(\cos x \geq 0\)
90
+
91
+ Then \(F_1(x) = 2\cos x - \sqrt{36-4\sqrt{5}} \sin x + 2\). Taking the derivative with respect to \(x\):
92
+
93
+ \[
94
+ F_1'(x) = -2\sin x - \sqrt{36-4\sqrt{5}} \cos x
95
+ \]
96
+
97
+ Setting \(F_1'(x) = 0\):
98
+
99
+ \[
100
+ -2\sin x - \sqrt{36-4\sqrt{5}} \cos x = 0 \implies -2\sin x = \sqrt{36-4\sqrt{5}} \cos x \implies \tan x = -\frac{\sqrt{36-4\sqrt{5}}}{2}
101
+ \]
102
+
103
+ This gives us a critical point, but we need to check if it's a minimum.
104
+
105
+ Alternatively, perhaps we can use trigonometric identities to express \(F_1(x)\) as a single trigonometric function.
106
+
107
+ Recall that \(A\sin x + B\cos x = R\sin(x + \alpha)\), where \(R = \sqrt{A^2 + B^2}\) and \(\tan \alpha = \frac{B}{A}\).
108
+
109
+ In our case, \(A = -\sqrt{36-4\sqrt{5}}\) and \(B = 2\), so:
110
+
111
+ \[
112
+ R = \sqrt{(-\sqrt{36-4\sqrt{5}})^2 + 2^2} = \sqrt{36-4\sqrt{5} + 4} = \sqrt{40-4\sqrt{5}} = 2\sqrt{10-\sqrt{5}}
113
+ \]
114
+
115
+ So, \(F_1(x) = 2\sqrt{10-\sqrt{5}} \sin(x + \alpha) + 2\).
116
+
117
+ The minimum value of \(\sin(x + \alpha)\) is \(-1\), so the minimum of \(F_1(x)\) is:
118
+
119
+ \[
120
+ 2\sqrt{10-\sqrt{5}} \cdot (-1) + 2 = -2\sqrt{10-\sqrt{5}} + 2
121
+ \]
122
+
123
+ Now, let's find the minimum of the second factor:
124
+
125
+ \[
126
+ F_2(y) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
127
+ \]
128
+
129
+ This is a quadratic in \(\cos y\). Let \(z = \cos y\), then:
130
+
131
+ \[
132
+ F_2(y) = -2z^2 + 2\sqrt{10-\sqrt{5}} z + 4
133
+ \]
134
+
135
+ This is a quadratic equation in \(z\), and since the coefficient of \(z^2\) is negative, it has a maximum value. However, we need the minimum value of \(F_2(y)\). The minimum will occur at the boundaries of \(z\), i.e., when \(z = 1\) or \(z = -1\).
136
+
137
+ Let's evaluate \(F_2(y)\) at \(z = 1\) and \(z = -1\).
138
+
139
+ At \(z = 1\):
140
+
141
+ \[
142
+ F_2(y) = -2(1)^2 + 2\sqrt{10-\sqrt{5}} (1) + 4 = -2 + 2\sqrt{10-\sqrt{5}} + 4 = 2 + 2\sqrt{10-\sqrt{5}}
143
+ \]
144
+
145
+ At \(z = -1\):
146
+
147
+ \[
148
+ F_2(y) = -2(-1)^2 + 2\sqrt{10-\sqrt{5}} (-1) + 4 = -2 - 2\sqrt{10-\sqrt{5}} + 4 = 2 - 2\sqrt{10-\sqrt{5}}
149
+ \]
150
+
151
+ Since \(\sqrt{10-\sqrt{5}} > 0\), the minimum value of \(F_2(y)\) is \(2 - 2\sqrt{10-\sqrt{5}}\).
152
+
153
+ Now, the minimum value of the entire expression is the product of the minima of \(F_1(x)\) and \(F_2(y)\):
154
+
155
+ \[
156
+ (-2\sqrt{10-\sqrt{5}} + 2) \cdot (2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}})
157
+ \]
158
+
159
+ Let's compute this product:
160
+
161
+ \[
162
+ (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} \cdot 2) + (-2\sqrt{10-\sqrt{5}} \cdot -2\sqrt{10-\sqrt{5}}) + (2 \cdot 2) + (2 \cdot -2\sqrt{10-\sqrt{5}})
163
+ \]
164
+
165
+ Simplifying each term:
166
+
167
+ \[
168
+ = -4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 - 4\sqrt{10-\sqrt{5}}
169
+ \]
170
+
171
+ Combine like terms:
172
+
173
+ \[
174
+ = -4\sqrt{10-\sqrt{5}} - 4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 = -8\sqrt{10-\sqrt{5}} + 40 - 4\sqrt{5} + 4 = -8\sqrt{10-\sqrt{5}} + 44 - 4\sqrt{5}
175
+ \]
176
+
177
+ This expression is quite complicated, and calculating its exact value might not be straightforward. However, we can approximate the value.
178
+
179
+ First, let's approximate \(\sqrt{10 - \sqrt{5}}\). Since \(\sqrt{5} \approx 2.236\), we have:
180
+
181
+ \[
182
+ \sqrt{10 - 2.236} = \sqrt{7.764} \approx 2.786
183
+ \]
184
+
185
+ Similarly, \(\sqrt{5} \approx 2.236\).
186
+
187
+ Now, let's approximate the expression:
188
+
189
+ \[
190
+ -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
191
+ \]
192
+
193
+ Rounding this to the nearest integer gives us 13.
194
+
195
+ Wait, let's double-check the calculations to ensure accuracy.
196
+
197
+ First, let's compute \(\sqrt{10 - \sqrt{5}}\) more precisely.
198
+
199
+ \(\sqrt{5} \approx 2.2360679775\), so:
200
+
201
+ \[
202
+ \sqrt{10 - 2.2360679775} = \sqrt{7.7639320225} \approx 2.786
203
+ \]
204
+
205
+ Now, compute the expression:
206
+
207
+ \[
208
+ -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
209
+ \]
210
+
211
+ Rounding 12.768 to the nearest integer gives us 13.
212
+
213
+ Thus, the minimum value of the expression is approximately 13.
214
+ </think>
215
+
216
+ <answer>
217
+ \boxed{13}
218
+ </answer>
219
  ```