Upload libelefun.py with huggingface_hub
Browse files- libelefun.py +1428 -0
libelefun.py
ADDED
|
@@ -0,0 +1,1428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This module implements computation of elementary transcendental
|
| 3 |
+
functions (powers, logarithms, trigonometric and hyperbolic
|
| 4 |
+
functions, inverse trigonometric and hyperbolic) for real
|
| 5 |
+
floating-point numbers.
|
| 6 |
+
|
| 7 |
+
For complex and interval implementations of the same functions,
|
| 8 |
+
see libmpc and libmpi.
|
| 9 |
+
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import math
|
| 13 |
+
from bisect import bisect
|
| 14 |
+
|
| 15 |
+
from .backend import xrange
|
| 16 |
+
from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND
|
| 17 |
+
|
| 18 |
+
from .libmpf import (
|
| 19 |
+
round_floor, round_ceiling, round_down, round_up,
|
| 20 |
+
round_nearest, round_fast,
|
| 21 |
+
ComplexResult,
|
| 22 |
+
bitcount, bctable, lshift, rshift, giant_steps, sqrt_fixed,
|
| 23 |
+
from_int, to_int, from_man_exp, to_fixed, to_float, from_float,
|
| 24 |
+
from_rational, normalize,
|
| 25 |
+
fzero, fone, fnone, fhalf, finf, fninf, fnan,
|
| 26 |
+
mpf_cmp, mpf_sign, mpf_abs,
|
| 27 |
+
mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_shift,
|
| 28 |
+
mpf_rdiv_int, mpf_pow_int, mpf_sqrt,
|
| 29 |
+
reciprocal_rnd, negative_rnd, mpf_perturb,
|
| 30 |
+
isqrt_fast
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
from .libintmath import ifib
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
#-------------------------------------------------------------------------------
|
| 37 |
+
# Tuning parameters
|
| 38 |
+
#-------------------------------------------------------------------------------
|
| 39 |
+
|
| 40 |
+
# Cutoff for computing exp from cosh+sinh. This reduces the
|
| 41 |
+
# number of terms by half, but also requires a square root which
|
| 42 |
+
# is expensive with the pure-Python square root code.
|
| 43 |
+
if BACKEND == 'python':
|
| 44 |
+
EXP_COSH_CUTOFF = 600
|
| 45 |
+
else:
|
| 46 |
+
EXP_COSH_CUTOFF = 400
|
| 47 |
+
# Cutoff for using more than 2 series
|
| 48 |
+
EXP_SERIES_U_CUTOFF = 1500
|
| 49 |
+
|
| 50 |
+
# Also basically determined by sqrt
|
| 51 |
+
if BACKEND == 'python':
|
| 52 |
+
COS_SIN_CACHE_PREC = 400
|
| 53 |
+
else:
|
| 54 |
+
COS_SIN_CACHE_PREC = 200
|
| 55 |
+
COS_SIN_CACHE_STEP = 8
|
| 56 |
+
cos_sin_cache = {}
|
| 57 |
+
|
| 58 |
+
# Number of integer logarithms to cache (for zeta sums)
|
| 59 |
+
MAX_LOG_INT_CACHE = 2000
|
| 60 |
+
log_int_cache = {}
|
| 61 |
+
|
| 62 |
+
LOG_TAYLOR_PREC = 2500 # Use Taylor series with caching up to this prec
|
| 63 |
+
LOG_TAYLOR_SHIFT = 9 # Cache log values in steps of size 2^-N
|
| 64 |
+
log_taylor_cache = {}
|
| 65 |
+
# prec/size ratio of x for fastest convergence in AGM formula
|
| 66 |
+
LOG_AGM_MAG_PREC_RATIO = 20
|
| 67 |
+
|
| 68 |
+
ATAN_TAYLOR_PREC = 3000 # Same as for log
|
| 69 |
+
ATAN_TAYLOR_SHIFT = 7 # steps of size 2^-N
|
| 70 |
+
atan_taylor_cache = {}
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# ~= next power of two + 20
|
| 74 |
+
cache_prec_steps = [22,22]
|
| 75 |
+
for k in xrange(1, bitcount(LOG_TAYLOR_PREC)+1):
|
| 76 |
+
cache_prec_steps += [min(2**k,LOG_TAYLOR_PREC)+20] * 2**(k-1)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
#----------------------------------------------------------------------------#
|
| 80 |
+
# #
|
| 81 |
+
# Elementary mathematical constants #
|
| 82 |
+
# #
|
| 83 |
+
#----------------------------------------------------------------------------#
|
| 84 |
+
|
| 85 |
+
def constant_memo(f):
|
| 86 |
+
"""
|
| 87 |
+
Decorator for caching computed values of mathematical
|
| 88 |
+
constants. This decorator should be applied to a
|
| 89 |
+
function taking a single argument prec as input and
|
| 90 |
+
returning a fixed-point value with the given precision.
|
| 91 |
+
"""
|
| 92 |
+
f.memo_prec = -1
|
| 93 |
+
f.memo_val = None
|
| 94 |
+
def g(prec, **kwargs):
|
| 95 |
+
memo_prec = f.memo_prec
|
| 96 |
+
if prec <= memo_prec:
|
| 97 |
+
return f.memo_val >> (memo_prec-prec)
|
| 98 |
+
newprec = int(prec*1.05+10)
|
| 99 |
+
f.memo_val = f(newprec, **kwargs)
|
| 100 |
+
f.memo_prec = newprec
|
| 101 |
+
return f.memo_val >> (newprec-prec)
|
| 102 |
+
g.__name__ = f.__name__
|
| 103 |
+
g.__doc__ = f.__doc__
|
| 104 |
+
return g
|
| 105 |
+
|
| 106 |
+
def def_mpf_constant(fixed):
|
| 107 |
+
"""
|
| 108 |
+
Create a function that computes the mpf value for a mathematical
|
| 109 |
+
constant, given a function that computes the fixed-point value.
|
| 110 |
+
|
| 111 |
+
Assumptions: the constant is positive and has magnitude ~= 1;
|
| 112 |
+
the fixed-point function rounds to floor.
|
| 113 |
+
"""
|
| 114 |
+
def f(prec, rnd=round_fast):
|
| 115 |
+
wp = prec + 20
|
| 116 |
+
v = fixed(wp)
|
| 117 |
+
if rnd in (round_up, round_ceiling):
|
| 118 |
+
v += 1
|
| 119 |
+
return normalize(0, v, -wp, bitcount(v), prec, rnd)
|
| 120 |
+
f.__doc__ = fixed.__doc__
|
| 121 |
+
return f
|
| 122 |
+
|
| 123 |
+
def bsp_acot(q, a, b, hyperbolic):
|
| 124 |
+
if b - a == 1:
|
| 125 |
+
a1 = MPZ(2*a + 3)
|
| 126 |
+
if hyperbolic or a&1:
|
| 127 |
+
return MPZ_ONE, a1 * q**2, a1
|
| 128 |
+
else:
|
| 129 |
+
return -MPZ_ONE, a1 * q**2, a1
|
| 130 |
+
m = (a+b)//2
|
| 131 |
+
p1, q1, r1 = bsp_acot(q, a, m, hyperbolic)
|
| 132 |
+
p2, q2, r2 = bsp_acot(q, m, b, hyperbolic)
|
| 133 |
+
return q2*p1 + r1*p2, q1*q2, r1*r2
|
| 134 |
+
|
| 135 |
+
# the acoth(x) series converges like the geometric series for x^2
|
| 136 |
+
# N = ceil(p*log(2)/(2*log(x)))
|
| 137 |
+
def acot_fixed(a, prec, hyperbolic):
|
| 138 |
+
"""
|
| 139 |
+
Compute acot(a) or acoth(a) for an integer a with binary splitting; see
|
| 140 |
+
http://numbers.computation.free.fr/Constants/Algorithms/splitting.html
|
| 141 |
+
"""
|
| 142 |
+
N = int(0.35 * prec/math.log(a) + 20)
|
| 143 |
+
p, q, r = bsp_acot(a, 0,N, hyperbolic)
|
| 144 |
+
return ((p+q)<<prec)//(q*a)
|
| 145 |
+
|
| 146 |
+
def machin(coefs, prec, hyperbolic=False):
|
| 147 |
+
"""
|
| 148 |
+
Evaluate a Machin-like formula, i.e., a linear combination of
|
| 149 |
+
acot(n) or acoth(n) for specific integer values of n, using fixed-
|
| 150 |
+
point arithmetic. The input should be a list [(c, n), ...], giving
|
| 151 |
+
c*acot[h](n) + ...
|
| 152 |
+
"""
|
| 153 |
+
extraprec = 10
|
| 154 |
+
s = MPZ_ZERO
|
| 155 |
+
for a, b in coefs:
|
| 156 |
+
s += MPZ(a) * acot_fixed(MPZ(b), prec+extraprec, hyperbolic)
|
| 157 |
+
return (s >> extraprec)
|
| 158 |
+
|
| 159 |
+
# Logarithms of integers are needed for various computations involving
|
| 160 |
+
# logarithms, powers, radix conversion, etc
|
| 161 |
+
|
| 162 |
+
@constant_memo
|
| 163 |
+
def ln2_fixed(prec):
|
| 164 |
+
"""
|
| 165 |
+
Computes ln(2). This is done with a hyperbolic Machin-type formula,
|
| 166 |
+
with binary splitting at high precision.
|
| 167 |
+
"""
|
| 168 |
+
return machin([(18, 26), (-2, 4801), (8, 8749)], prec, True)
|
| 169 |
+
|
| 170 |
+
@constant_memo
|
| 171 |
+
def ln10_fixed(prec):
|
| 172 |
+
"""
|
| 173 |
+
Computes ln(10). This is done with a hyperbolic Machin-type formula.
|
| 174 |
+
"""
|
| 175 |
+
return machin([(46, 31), (34, 49), (20, 161)], prec, True)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
r"""
|
| 179 |
+
For computation of pi, we use the Chudnovsky series:
|
| 180 |
+
|
| 181 |
+
oo
|
| 182 |
+
___ k
|
| 183 |
+
1 \ (-1) (6 k)! (A + B k)
|
| 184 |
+
----- = ) -----------------------
|
| 185 |
+
12 pi /___ 3 3k+3/2
|
| 186 |
+
(3 k)! (k!) C
|
| 187 |
+
k = 0
|
| 188 |
+
|
| 189 |
+
where A, B, and C are certain integer constants. This series adds roughly
|
| 190 |
+
14 digits per term. Note that C^(3/2) can be extracted so that the
|
| 191 |
+
series contains only rational terms. This makes binary splitting very
|
| 192 |
+
efficient.
|
| 193 |
+
|
| 194 |
+
The recurrence formulas for the binary splitting were taken from
|
| 195 |
+
ftp://ftp.gmplib.org/pub/src/gmp-chudnovsky.c
|
| 196 |
+
|
| 197 |
+
Previously, Machin's formula was used at low precision and the AGM iteration
|
| 198 |
+
was used at high precision. However, the Chudnovsky series is essentially as
|
| 199 |
+
fast as the Machin formula at low precision and in practice about 3x faster
|
| 200 |
+
than the AGM at high precision (despite theoretically having a worse
|
| 201 |
+
asymptotic complexity), so there is no reason not to use it in all cases.
|
| 202 |
+
|
| 203 |
+
"""
|
| 204 |
+
|
| 205 |
+
# Constants in Chudnovsky's series
|
| 206 |
+
CHUD_A = MPZ(13591409)
|
| 207 |
+
CHUD_B = MPZ(545140134)
|
| 208 |
+
CHUD_C = MPZ(640320)
|
| 209 |
+
CHUD_D = MPZ(12)
|
| 210 |
+
|
| 211 |
+
def bs_chudnovsky(a, b, level, verbose):
|
| 212 |
+
"""
|
| 213 |
+
Computes the sum from a to b of the series in the Chudnovsky
|
| 214 |
+
formula. Returns g, p, q where p/q is the sum as an exact
|
| 215 |
+
fraction and g is a temporary value used to save work
|
| 216 |
+
for recursive calls.
|
| 217 |
+
"""
|
| 218 |
+
if b-a == 1:
|
| 219 |
+
g = MPZ((6*b-5)*(2*b-1)*(6*b-1))
|
| 220 |
+
p = b**3 * CHUD_C**3 // 24
|
| 221 |
+
q = (-1)**b * g * (CHUD_A+CHUD_B*b)
|
| 222 |
+
else:
|
| 223 |
+
if verbose and level < 4:
|
| 224 |
+
print(" binary splitting", a, b)
|
| 225 |
+
mid = (a+b)//2
|
| 226 |
+
g1, p1, q1 = bs_chudnovsky(a, mid, level+1, verbose)
|
| 227 |
+
g2, p2, q2 = bs_chudnovsky(mid, b, level+1, verbose)
|
| 228 |
+
p = p1*p2
|
| 229 |
+
g = g1*g2
|
| 230 |
+
q = q1*p2 + q2*g1
|
| 231 |
+
return g, p, q
|
| 232 |
+
|
| 233 |
+
@constant_memo
|
| 234 |
+
def pi_fixed(prec, verbose=False, verbose_base=None):
|
| 235 |
+
"""
|
| 236 |
+
Compute floor(pi * 2**prec) as a big integer.
|
| 237 |
+
|
| 238 |
+
This is done using Chudnovsky's series (see comments in
|
| 239 |
+
libelefun.py for details).
|
| 240 |
+
"""
|
| 241 |
+
# The Chudnovsky series gives 14.18 digits per term
|
| 242 |
+
N = int(prec/3.3219280948/14.181647462 + 2)
|
| 243 |
+
if verbose:
|
| 244 |
+
print("binary splitting with N =", N)
|
| 245 |
+
g, p, q = bs_chudnovsky(0, N, 0, verbose)
|
| 246 |
+
sqrtC = isqrt_fast(CHUD_C<<(2*prec))
|
| 247 |
+
v = p*CHUD_C*sqrtC//((q+CHUD_A*p)*CHUD_D)
|
| 248 |
+
return v
|
| 249 |
+
|
| 250 |
+
def degree_fixed(prec):
|
| 251 |
+
return pi_fixed(prec)//180
|
| 252 |
+
|
| 253 |
+
def bspe(a, b):
|
| 254 |
+
"""
|
| 255 |
+
Sum series for exp(1)-1 between a, b, returning the result
|
| 256 |
+
as an exact fraction (p, q).
|
| 257 |
+
"""
|
| 258 |
+
if b-a == 1:
|
| 259 |
+
return MPZ_ONE, MPZ(b)
|
| 260 |
+
m = (a+b)//2
|
| 261 |
+
p1, q1 = bspe(a, m)
|
| 262 |
+
p2, q2 = bspe(m, b)
|
| 263 |
+
return p1*q2+p2, q1*q2
|
| 264 |
+
|
| 265 |
+
@constant_memo
|
| 266 |
+
def e_fixed(prec):
|
| 267 |
+
"""
|
| 268 |
+
Computes exp(1). This is done using the ordinary Taylor series for
|
| 269 |
+
exp, with binary splitting. For a description of the algorithm,
|
| 270 |
+
see:
|
| 271 |
+
|
| 272 |
+
http://numbers.computation.free.fr/Constants/
|
| 273 |
+
Algorithms/splitting.html
|
| 274 |
+
"""
|
| 275 |
+
# Slight overestimate of N needed for 1/N! < 2**(-prec)
|
| 276 |
+
# This could be tightened for large N.
|
| 277 |
+
N = int(1.1*prec/math.log(prec) + 20)
|
| 278 |
+
p, q = bspe(0,N)
|
| 279 |
+
return ((p+q)<<prec)//q
|
| 280 |
+
|
| 281 |
+
@constant_memo
|
| 282 |
+
def phi_fixed(prec):
|
| 283 |
+
"""
|
| 284 |
+
Computes the golden ratio, (1+sqrt(5))/2
|
| 285 |
+
"""
|
| 286 |
+
prec += 10
|
| 287 |
+
a = isqrt_fast(MPZ_FIVE<<(2*prec)) + (MPZ_ONE << prec)
|
| 288 |
+
return a >> 11
|
| 289 |
+
|
| 290 |
+
mpf_phi = def_mpf_constant(phi_fixed)
|
| 291 |
+
mpf_pi = def_mpf_constant(pi_fixed)
|
| 292 |
+
mpf_e = def_mpf_constant(e_fixed)
|
| 293 |
+
mpf_degree = def_mpf_constant(degree_fixed)
|
| 294 |
+
mpf_ln2 = def_mpf_constant(ln2_fixed)
|
| 295 |
+
mpf_ln10 = def_mpf_constant(ln10_fixed)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
@constant_memo
|
| 299 |
+
def ln_sqrt2pi_fixed(prec):
|
| 300 |
+
wp = prec + 10
|
| 301 |
+
# ln(sqrt(2*pi)) = ln(2*pi)/2
|
| 302 |
+
return to_fixed(mpf_log(mpf_shift(mpf_pi(wp), 1), wp), prec-1)
|
| 303 |
+
|
| 304 |
+
@constant_memo
|
| 305 |
+
def sqrtpi_fixed(prec):
|
| 306 |
+
return sqrt_fixed(pi_fixed(prec), prec)
|
| 307 |
+
|
| 308 |
+
mpf_sqrtpi = def_mpf_constant(sqrtpi_fixed)
|
| 309 |
+
mpf_ln_sqrt2pi = def_mpf_constant(ln_sqrt2pi_fixed)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
#----------------------------------------------------------------------------#
|
| 313 |
+
# #
|
| 314 |
+
# Powers #
|
| 315 |
+
# #
|
| 316 |
+
#----------------------------------------------------------------------------#
|
| 317 |
+
|
| 318 |
+
def mpf_pow(s, t, prec, rnd=round_fast):
|
| 319 |
+
"""
|
| 320 |
+
Compute s**t. Raises ComplexResult if s is negative and t is
|
| 321 |
+
fractional.
|
| 322 |
+
"""
|
| 323 |
+
ssign, sman, sexp, sbc = s
|
| 324 |
+
tsign, tman, texp, tbc = t
|
| 325 |
+
if ssign and texp < 0:
|
| 326 |
+
raise ComplexResult("negative number raised to a fractional power")
|
| 327 |
+
if texp >= 0:
|
| 328 |
+
return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd)
|
| 329 |
+
# s**(n/2) = sqrt(s)**n
|
| 330 |
+
if texp == -1:
|
| 331 |
+
if tman == 1:
|
| 332 |
+
if tsign:
|
| 333 |
+
return mpf_div(fone, mpf_sqrt(s, prec+10,
|
| 334 |
+
reciprocal_rnd[rnd]), prec, rnd)
|
| 335 |
+
return mpf_sqrt(s, prec, rnd)
|
| 336 |
+
else:
|
| 337 |
+
if tsign:
|
| 338 |
+
return mpf_pow_int(mpf_sqrt(s, prec+10,
|
| 339 |
+
reciprocal_rnd[rnd]), -tman, prec, rnd)
|
| 340 |
+
return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd)
|
| 341 |
+
# General formula: s**t = exp(t*log(s))
|
| 342 |
+
# TODO: handle rnd direction of the logarithm carefully
|
| 343 |
+
c = mpf_log(s, prec+10, rnd)
|
| 344 |
+
return mpf_exp(mpf_mul(t, c), prec, rnd)
|
| 345 |
+
|
| 346 |
+
def int_pow_fixed(y, n, prec):
|
| 347 |
+
"""n-th power of a fixed point number with precision prec
|
| 348 |
+
|
| 349 |
+
Returns the power in the form man, exp,
|
| 350 |
+
man * 2**exp ~= y**n
|
| 351 |
+
"""
|
| 352 |
+
if n == 2:
|
| 353 |
+
return (y*y), 0
|
| 354 |
+
bc = bitcount(y)
|
| 355 |
+
exp = 0
|
| 356 |
+
workprec = 2 * (prec + 4*bitcount(n) + 4)
|
| 357 |
+
_, pm, pe, pbc = fone
|
| 358 |
+
while 1:
|
| 359 |
+
if n & 1:
|
| 360 |
+
pm = pm*y
|
| 361 |
+
pe = pe+exp
|
| 362 |
+
pbc += bc - 2
|
| 363 |
+
pbc = pbc + bctable[int(pm >> pbc)]
|
| 364 |
+
if pbc > workprec:
|
| 365 |
+
pm = pm >> (pbc-workprec)
|
| 366 |
+
pe += pbc - workprec
|
| 367 |
+
pbc = workprec
|
| 368 |
+
n -= 1
|
| 369 |
+
if not n:
|
| 370 |
+
break
|
| 371 |
+
y = y*y
|
| 372 |
+
exp = exp+exp
|
| 373 |
+
bc = bc + bc - 2
|
| 374 |
+
bc = bc + bctable[int(y >> bc)]
|
| 375 |
+
if bc > workprec:
|
| 376 |
+
y = y >> (bc-workprec)
|
| 377 |
+
exp += bc - workprec
|
| 378 |
+
bc = workprec
|
| 379 |
+
n = n // 2
|
| 380 |
+
return pm, pe
|
| 381 |
+
|
| 382 |
+
# froot(s, n, prec, rnd) computes the real n-th root of a
|
| 383 |
+
# positive mpf tuple s.
|
| 384 |
+
# To compute the root we start from a 50-bit estimate for r
|
| 385 |
+
# generated with ordinary floating-point arithmetic, and then refine
|
| 386 |
+
# the value to full accuracy using the iteration
|
| 387 |
+
|
| 388 |
+
# 1 / y \
|
| 389 |
+
# r = --- | (n-1) * r + ---------- |
|
| 390 |
+
# n+1 n \ n r_n**(n-1) /
|
| 391 |
+
|
| 392 |
+
# which is simply Newton's method applied to the equation r**n = y.
|
| 393 |
+
# With giant_steps(start, prec+extra) = [p0,...,pm, prec+extra]
|
| 394 |
+
# and y = man * 2**-shift one has
|
| 395 |
+
# (man * 2**exp)**(1/n) =
|
| 396 |
+
# y**(1/n) * 2**(start-prec/n) * 2**(p0-start) * ... * 2**(prec+extra-pm) *
|
| 397 |
+
# 2**((exp+shift-(n-1)*prec)/n -extra))
|
| 398 |
+
# The last factor is accounted for in the last line of froot.
|
| 399 |
+
|
| 400 |
+
def nthroot_fixed(y, n, prec, exp1):
|
| 401 |
+
start = 50
|
| 402 |
+
try:
|
| 403 |
+
y1 = rshift(y, prec - n*start)
|
| 404 |
+
r = MPZ(int(y1**(1.0/n)))
|
| 405 |
+
except OverflowError:
|
| 406 |
+
y1 = from_int(y1, start)
|
| 407 |
+
fn = from_int(n)
|
| 408 |
+
fn = mpf_rdiv_int(1, fn, start)
|
| 409 |
+
r = mpf_pow(y1, fn, start)
|
| 410 |
+
r = to_int(r)
|
| 411 |
+
extra = 10
|
| 412 |
+
extra1 = n
|
| 413 |
+
prevp = start
|
| 414 |
+
for p in giant_steps(start, prec+extra):
|
| 415 |
+
pm, pe = int_pow_fixed(r, n-1, prevp)
|
| 416 |
+
r2 = rshift(pm, (n-1)*prevp - p - pe - extra1)
|
| 417 |
+
B = lshift(y, 2*p-prec+extra1)//r2
|
| 418 |
+
r = (B + (n-1) * lshift(r, p-prevp))//n
|
| 419 |
+
prevp = p
|
| 420 |
+
return r
|
| 421 |
+
|
| 422 |
+
def mpf_nthroot(s, n, prec, rnd=round_fast):
|
| 423 |
+
"""nth-root of a positive number
|
| 424 |
+
|
| 425 |
+
Use the Newton method when faster, otherwise use x**(1/n)
|
| 426 |
+
"""
|
| 427 |
+
sign, man, exp, bc = s
|
| 428 |
+
if sign:
|
| 429 |
+
raise ComplexResult("nth root of a negative number")
|
| 430 |
+
if not man:
|
| 431 |
+
if s == fnan:
|
| 432 |
+
return fnan
|
| 433 |
+
if s == fzero:
|
| 434 |
+
if n > 0:
|
| 435 |
+
return fzero
|
| 436 |
+
if n == 0:
|
| 437 |
+
return fone
|
| 438 |
+
return finf
|
| 439 |
+
# Infinity
|
| 440 |
+
if not n:
|
| 441 |
+
return fnan
|
| 442 |
+
if n < 0:
|
| 443 |
+
return fzero
|
| 444 |
+
return finf
|
| 445 |
+
flag_inverse = False
|
| 446 |
+
if n < 2:
|
| 447 |
+
if n == 0:
|
| 448 |
+
return fone
|
| 449 |
+
if n == 1:
|
| 450 |
+
return mpf_pos(s, prec, rnd)
|
| 451 |
+
if n == -1:
|
| 452 |
+
return mpf_div(fone, s, prec, rnd)
|
| 453 |
+
# n < 0
|
| 454 |
+
rnd = reciprocal_rnd[rnd]
|
| 455 |
+
flag_inverse = True
|
| 456 |
+
extra_inverse = 5
|
| 457 |
+
prec += extra_inverse
|
| 458 |
+
n = -n
|
| 459 |
+
if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)):
|
| 460 |
+
prec2 = prec + 10
|
| 461 |
+
fn = from_int(n)
|
| 462 |
+
nth = mpf_rdiv_int(1, fn, prec2)
|
| 463 |
+
r = mpf_pow(s, nth, prec2, rnd)
|
| 464 |
+
s = normalize(r[0], r[1], r[2], r[3], prec, rnd)
|
| 465 |
+
if flag_inverse:
|
| 466 |
+
return mpf_div(fone, s, prec-extra_inverse, rnd)
|
| 467 |
+
else:
|
| 468 |
+
return s
|
| 469 |
+
# Convert to a fixed-point number with prec2 bits.
|
| 470 |
+
prec2 = prec + 2*n - (prec%n)
|
| 471 |
+
# a few tests indicate that
|
| 472 |
+
# for 10 < n < 10**4 a bit more precision is needed
|
| 473 |
+
if n > 10:
|
| 474 |
+
prec2 += prec2//10
|
| 475 |
+
prec2 = prec2 - prec2%n
|
| 476 |
+
# Mantissa may have more bits than we need. Trim it down.
|
| 477 |
+
shift = bc - prec2
|
| 478 |
+
# Adjust exponents to make prec2 and exp+shift multiples of n.
|
| 479 |
+
sign1 = 0
|
| 480 |
+
es = exp+shift
|
| 481 |
+
if es < 0:
|
| 482 |
+
sign1 = 1
|
| 483 |
+
es = -es
|
| 484 |
+
if sign1:
|
| 485 |
+
shift += es%n
|
| 486 |
+
else:
|
| 487 |
+
shift -= es%n
|
| 488 |
+
man = rshift(man, shift)
|
| 489 |
+
extra = 10
|
| 490 |
+
exp1 = ((exp+shift-(n-1)*prec2)//n) - extra
|
| 491 |
+
rnd_shift = 0
|
| 492 |
+
if flag_inverse:
|
| 493 |
+
if rnd == 'u' or rnd == 'c':
|
| 494 |
+
rnd_shift = 1
|
| 495 |
+
else:
|
| 496 |
+
if rnd == 'd' or rnd == 'f':
|
| 497 |
+
rnd_shift = 1
|
| 498 |
+
man = nthroot_fixed(man+rnd_shift, n, prec2, exp1)
|
| 499 |
+
s = from_man_exp(man, exp1, prec, rnd)
|
| 500 |
+
if flag_inverse:
|
| 501 |
+
return mpf_div(fone, s, prec-extra_inverse, rnd)
|
| 502 |
+
else:
|
| 503 |
+
return s
|
| 504 |
+
|
| 505 |
+
def mpf_cbrt(s, prec, rnd=round_fast):
|
| 506 |
+
"""cubic root of a positive number"""
|
| 507 |
+
return mpf_nthroot(s, 3, prec, rnd)
|
| 508 |
+
|
| 509 |
+
#----------------------------------------------------------------------------#
|
| 510 |
+
# #
|
| 511 |
+
# Logarithms #
|
| 512 |
+
# #
|
| 513 |
+
#----------------------------------------------------------------------------#
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
def log_int_fixed(n, prec, ln2=None):
|
| 517 |
+
"""
|
| 518 |
+
Fast computation of log(n), caching the value for small n,
|
| 519 |
+
intended for zeta sums.
|
| 520 |
+
"""
|
| 521 |
+
if n in log_int_cache:
|
| 522 |
+
value, vprec = log_int_cache[n]
|
| 523 |
+
if vprec >= prec:
|
| 524 |
+
return value >> (vprec - prec)
|
| 525 |
+
wp = prec + 10
|
| 526 |
+
if wp <= LOG_TAYLOR_SHIFT:
|
| 527 |
+
if ln2 is None:
|
| 528 |
+
ln2 = ln2_fixed(wp)
|
| 529 |
+
r = bitcount(n)
|
| 530 |
+
x = n << (wp-r)
|
| 531 |
+
v = log_taylor_cached(x, wp) + r*ln2
|
| 532 |
+
else:
|
| 533 |
+
v = to_fixed(mpf_log(from_int(n), wp+5), wp)
|
| 534 |
+
if n < MAX_LOG_INT_CACHE:
|
| 535 |
+
log_int_cache[n] = (v, wp)
|
| 536 |
+
return v >> (wp-prec)
|
| 537 |
+
|
| 538 |
+
def agm_fixed(a, b, prec):
|
| 539 |
+
"""
|
| 540 |
+
Fixed-point computation of agm(a,b), assuming
|
| 541 |
+
a, b both close to unit magnitude.
|
| 542 |
+
"""
|
| 543 |
+
i = 0
|
| 544 |
+
while 1:
|
| 545 |
+
anew = (a+b)>>1
|
| 546 |
+
if i > 4 and abs(a-anew) < 8:
|
| 547 |
+
return a
|
| 548 |
+
b = isqrt_fast(a*b)
|
| 549 |
+
a = anew
|
| 550 |
+
i += 1
|
| 551 |
+
return a
|
| 552 |
+
|
| 553 |
+
def log_agm(x, prec):
|
| 554 |
+
"""
|
| 555 |
+
Fixed-point computation of -log(x) = log(1/x), suitable
|
| 556 |
+
for large precision. It is required that 0 < x < 1. The
|
| 557 |
+
algorithm used is the Sasaki-Kanada formula
|
| 558 |
+
|
| 559 |
+
-log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1]
|
| 560 |
+
|
| 561 |
+
For faster convergence in the theta functions, x should
|
| 562 |
+
be chosen closer to 0.
|
| 563 |
+
|
| 564 |
+
Guard bits must be added by the caller.
|
| 565 |
+
|
| 566 |
+
HYPOTHESIS: if x = 2^(-n), n bits need to be added to
|
| 567 |
+
account for the truncation to a fixed-point number,
|
| 568 |
+
and this is the only significant cancellation error.
|
| 569 |
+
|
| 570 |
+
The number of bits lost to roundoff is small and can be
|
| 571 |
+
considered constant.
|
| 572 |
+
|
| 573 |
+
[1] Richard P. Brent, "Fast Algorithms for High-Precision
|
| 574 |
+
Computation of Elementary Functions (extended abstract)",
|
| 575 |
+
http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf
|
| 576 |
+
|
| 577 |
+
"""
|
| 578 |
+
x2 = (x*x) >> prec
|
| 579 |
+
# Compute jtheta2(x)**2
|
| 580 |
+
s = a = b = x2
|
| 581 |
+
while a:
|
| 582 |
+
b = (b*x2) >> prec
|
| 583 |
+
a = (a*b) >> prec
|
| 584 |
+
s += a
|
| 585 |
+
s += (MPZ_ONE<<prec)
|
| 586 |
+
s = (s*s)>>(prec-2)
|
| 587 |
+
s = (s*isqrt_fast(x<<prec))>>prec
|
| 588 |
+
# Compute jtheta3(x)**2
|
| 589 |
+
t = a = b = x
|
| 590 |
+
while a:
|
| 591 |
+
b = (b*x2) >> prec
|
| 592 |
+
a = (a*b) >> prec
|
| 593 |
+
t += a
|
| 594 |
+
t = (MPZ_ONE<<prec) + (t<<1)
|
| 595 |
+
t = (t*t)>>prec
|
| 596 |
+
# Final formula
|
| 597 |
+
p = agm_fixed(s, t, prec)
|
| 598 |
+
return (pi_fixed(prec) << prec) // p
|
| 599 |
+
|
| 600 |
+
def log_taylor(x, prec, r=0):
|
| 601 |
+
"""
|
| 602 |
+
Fixed-point calculation of log(x). It is assumed that x is close
|
| 603 |
+
enough to 1 for the Taylor series to converge quickly. Convergence
|
| 604 |
+
can be improved by specifying r > 0 to compute
|
| 605 |
+
log(x^(1/2^r))*2^r, at the cost of performing r square roots.
|
| 606 |
+
|
| 607 |
+
The caller must provide sufficient guard bits.
|
| 608 |
+
"""
|
| 609 |
+
for i in xrange(r):
|
| 610 |
+
x = isqrt_fast(x<<prec)
|
| 611 |
+
one = MPZ_ONE << prec
|
| 612 |
+
v = ((x-one)<<prec)//(x+one)
|
| 613 |
+
sign = v < 0
|
| 614 |
+
if sign:
|
| 615 |
+
v = -v
|
| 616 |
+
v2 = (v*v) >> prec
|
| 617 |
+
v4 = (v2*v2) >> prec
|
| 618 |
+
s0 = v
|
| 619 |
+
s1 = v//3
|
| 620 |
+
v = (v*v4) >> prec
|
| 621 |
+
k = 5
|
| 622 |
+
while v:
|
| 623 |
+
s0 += v // k
|
| 624 |
+
k += 2
|
| 625 |
+
s1 += v // k
|
| 626 |
+
v = (v*v4) >> prec
|
| 627 |
+
k += 2
|
| 628 |
+
s1 = (s1*v2) >> prec
|
| 629 |
+
s = (s0+s1) << (1+r)
|
| 630 |
+
if sign:
|
| 631 |
+
return -s
|
| 632 |
+
return s
|
| 633 |
+
|
| 634 |
+
def log_taylor_cached(x, prec):
|
| 635 |
+
"""
|
| 636 |
+
Fixed-point computation of log(x), assuming x in (0.5, 2)
|
| 637 |
+
and prec <= LOG_TAYLOR_PREC.
|
| 638 |
+
"""
|
| 639 |
+
n = x >> (prec-LOG_TAYLOR_SHIFT)
|
| 640 |
+
cached_prec = cache_prec_steps[prec]
|
| 641 |
+
dprec = cached_prec - prec
|
| 642 |
+
if (n, cached_prec) in log_taylor_cache:
|
| 643 |
+
a, log_a = log_taylor_cache[n, cached_prec]
|
| 644 |
+
else:
|
| 645 |
+
a = n << (cached_prec - LOG_TAYLOR_SHIFT)
|
| 646 |
+
log_a = log_taylor(a, cached_prec, 8)
|
| 647 |
+
log_taylor_cache[n, cached_prec] = (a, log_a)
|
| 648 |
+
a >>= dprec
|
| 649 |
+
log_a >>= dprec
|
| 650 |
+
u = ((x - a) << prec) // a
|
| 651 |
+
v = (u << prec) // ((MPZ_TWO << prec) + u)
|
| 652 |
+
v2 = (v*v) >> prec
|
| 653 |
+
v4 = (v2*v2) >> prec
|
| 654 |
+
s0 = v
|
| 655 |
+
s1 = v//3
|
| 656 |
+
v = (v*v4) >> prec
|
| 657 |
+
k = 5
|
| 658 |
+
while v:
|
| 659 |
+
s0 += v//k
|
| 660 |
+
k += 2
|
| 661 |
+
s1 += v//k
|
| 662 |
+
v = (v*v4) >> prec
|
| 663 |
+
k += 2
|
| 664 |
+
s1 = (s1*v2) >> prec
|
| 665 |
+
s = (s0+s1) << 1
|
| 666 |
+
return log_a + s
|
| 667 |
+
|
| 668 |
+
def mpf_log(x, prec, rnd=round_fast):
|
| 669 |
+
"""
|
| 670 |
+
Compute the natural logarithm of the mpf value x. If x is negative,
|
| 671 |
+
ComplexResult is raised.
|
| 672 |
+
"""
|
| 673 |
+
sign, man, exp, bc = x
|
| 674 |
+
#------------------------------------------------------------------
|
| 675 |
+
# Handle special values
|
| 676 |
+
if not man:
|
| 677 |
+
if x == fzero: return fninf
|
| 678 |
+
if x == finf: return finf
|
| 679 |
+
if x == fnan: return fnan
|
| 680 |
+
if sign:
|
| 681 |
+
raise ComplexResult("logarithm of a negative number")
|
| 682 |
+
wp = prec + 20
|
| 683 |
+
#------------------------------------------------------------------
|
| 684 |
+
# Handle log(2^n) = log(n)*2.
|
| 685 |
+
# Here we catch the only possible exact value, log(1) = 0
|
| 686 |
+
if man == 1:
|
| 687 |
+
if not exp:
|
| 688 |
+
return fzero
|
| 689 |
+
return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
|
| 690 |
+
mag = exp+bc
|
| 691 |
+
abs_mag = abs(mag)
|
| 692 |
+
#------------------------------------------------------------------
|
| 693 |
+
# Handle x = 1+eps, where log(x) ~ x. We need to check for
|
| 694 |
+
# cancellation when moving to fixed-point math and compensate
|
| 695 |
+
# by increasing the precision. Note that abs_mag in (0, 1) <=>
|
| 696 |
+
# 0.5 < x < 2 and x != 1
|
| 697 |
+
if abs_mag <= 1:
|
| 698 |
+
# Calculate t = x-1 to measure distance from 1 in bits
|
| 699 |
+
tsign = 1-abs_mag
|
| 700 |
+
if tsign:
|
| 701 |
+
tman = (MPZ_ONE<<bc) - man
|
| 702 |
+
else:
|
| 703 |
+
tman = man - (MPZ_ONE<<(bc-1))
|
| 704 |
+
tbc = bitcount(tman)
|
| 705 |
+
cancellation = bc - tbc
|
| 706 |
+
if cancellation > wp:
|
| 707 |
+
t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n')
|
| 708 |
+
return mpf_perturb(t, tsign, prec, rnd)
|
| 709 |
+
else:
|
| 710 |
+
wp += cancellation
|
| 711 |
+
# TODO: if close enough to 1, we could use Taylor series
|
| 712 |
+
# even in the AGM precision range, since the Taylor series
|
| 713 |
+
# converges rapidly
|
| 714 |
+
#------------------------------------------------------------------
|
| 715 |
+
# Another special case:
|
| 716 |
+
# n*log(2) is a good enough approximation
|
| 717 |
+
if abs_mag > 10000:
|
| 718 |
+
if bitcount(abs_mag) > wp:
|
| 719 |
+
return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd)
|
| 720 |
+
#------------------------------------------------------------------
|
| 721 |
+
# General case.
|
| 722 |
+
# Perform argument reduction using log(x) = log(x*2^n) - n*log(2):
|
| 723 |
+
# If we are in the Taylor precision range, choose magnitude 0 or 1.
|
| 724 |
+
# If we are in the AGM precision range, choose magnitude -m for
|
| 725 |
+
# some large m; benchmarking on one machine showed m = prec/20 to be
|
| 726 |
+
# optimal between 1000 and 100,000 digits.
|
| 727 |
+
if wp <= LOG_TAYLOR_PREC:
|
| 728 |
+
m = log_taylor_cached(lshift(man, wp-bc), wp)
|
| 729 |
+
if mag:
|
| 730 |
+
m += mag*ln2_fixed(wp)
|
| 731 |
+
else:
|
| 732 |
+
optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO
|
| 733 |
+
n = optimal_mag - mag
|
| 734 |
+
x = mpf_shift(x, n)
|
| 735 |
+
wp += (-optimal_mag)
|
| 736 |
+
m = -log_agm(to_fixed(x, wp), wp)
|
| 737 |
+
m -= n*ln2_fixed(wp)
|
| 738 |
+
return from_man_exp(m, -wp, prec, rnd)
|
| 739 |
+
|
| 740 |
+
def mpf_log_hypot(a, b, prec, rnd):
|
| 741 |
+
"""
|
| 742 |
+
Computes log(sqrt(a^2+b^2)) accurately.
|
| 743 |
+
"""
|
| 744 |
+
# If either a or b is inf/nan/0, assume it to be a
|
| 745 |
+
if not b[1]:
|
| 746 |
+
a, b = b, a
|
| 747 |
+
# a is inf/nan/0
|
| 748 |
+
if not a[1]:
|
| 749 |
+
# both are inf/nan/0
|
| 750 |
+
if not b[1]:
|
| 751 |
+
if a == b == fzero:
|
| 752 |
+
return fninf
|
| 753 |
+
if fnan in (a, b):
|
| 754 |
+
return fnan
|
| 755 |
+
# at least one term is (+/- inf)^2
|
| 756 |
+
return finf
|
| 757 |
+
# only a is inf/nan/0
|
| 758 |
+
if a == fzero:
|
| 759 |
+
# log(sqrt(0+b^2)) = log(|b|)
|
| 760 |
+
return mpf_log(mpf_abs(b), prec, rnd)
|
| 761 |
+
if a == fnan:
|
| 762 |
+
return fnan
|
| 763 |
+
return finf
|
| 764 |
+
# Exact
|
| 765 |
+
a2 = mpf_mul(a,a)
|
| 766 |
+
b2 = mpf_mul(b,b)
|
| 767 |
+
extra = 20
|
| 768 |
+
# Not exact
|
| 769 |
+
h2 = mpf_add(a2, b2, prec+extra)
|
| 770 |
+
cancelled = mpf_add(h2, fnone, 10)
|
| 771 |
+
mag_cancelled = cancelled[2]+cancelled[3]
|
| 772 |
+
# Just redo the sum exactly if necessary (could be smarter
|
| 773 |
+
# and avoid memory allocation when a or b is precisely 1
|
| 774 |
+
# and the other is tiny...)
|
| 775 |
+
if cancelled == fzero or mag_cancelled < -extra//2:
|
| 776 |
+
h2 = mpf_add(a2, b2, prec+extra-min(a2[2],b2[2]))
|
| 777 |
+
return mpf_shift(mpf_log(h2, prec, rnd), -1)
|
| 778 |
+
|
| 779 |
+
|
| 780 |
+
#----------------------------------------------------------------------
|
| 781 |
+
# Inverse tangent
|
| 782 |
+
#
|
| 783 |
+
|
| 784 |
+
def atan_newton(x, prec):
|
| 785 |
+
if prec >= 100:
|
| 786 |
+
r = math.atan(int((x>>(prec-53)))/2.0**53)
|
| 787 |
+
else:
|
| 788 |
+
r = math.atan(int(x)/2.0**prec)
|
| 789 |
+
prevp = 50
|
| 790 |
+
r = MPZ(int(r * 2.0**53) >> (53-prevp))
|
| 791 |
+
extra_p = 50
|
| 792 |
+
for wp in giant_steps(prevp, prec):
|
| 793 |
+
wp += extra_p
|
| 794 |
+
r = r << (wp-prevp)
|
| 795 |
+
cos, sin = cos_sin_fixed(r, wp)
|
| 796 |
+
tan = (sin << wp) // cos
|
| 797 |
+
a = ((tan-rshift(x, prec-wp)) << wp) // ((MPZ_ONE<<wp) + ((tan**2)>>wp))
|
| 798 |
+
r = r - a
|
| 799 |
+
prevp = wp
|
| 800 |
+
return rshift(r, prevp-prec)
|
| 801 |
+
|
| 802 |
+
def atan_taylor_get_cached(n, prec):
|
| 803 |
+
# Taylor series with caching wins up to huge precisions
|
| 804 |
+
# To avoid unnecessary precomputation at low precision, we
|
| 805 |
+
# do it in steps
|
| 806 |
+
# Round to next power of 2
|
| 807 |
+
prec2 = (1<<(bitcount(prec-1))) + 20
|
| 808 |
+
dprec = prec2 - prec
|
| 809 |
+
if (n, prec2) in atan_taylor_cache:
|
| 810 |
+
a, atan_a = atan_taylor_cache[n, prec2]
|
| 811 |
+
else:
|
| 812 |
+
a = n << (prec2 - ATAN_TAYLOR_SHIFT)
|
| 813 |
+
atan_a = atan_newton(a, prec2)
|
| 814 |
+
atan_taylor_cache[n, prec2] = (a, atan_a)
|
| 815 |
+
return (a >> dprec), (atan_a >> dprec)
|
| 816 |
+
|
| 817 |
+
def atan_taylor(x, prec):
|
| 818 |
+
n = (x >> (prec-ATAN_TAYLOR_SHIFT))
|
| 819 |
+
a, atan_a = atan_taylor_get_cached(n, prec)
|
| 820 |
+
d = x - a
|
| 821 |
+
s0 = v = (d << prec) // ((a**2 >> prec) + (a*d >> prec) + (MPZ_ONE << prec))
|
| 822 |
+
v2 = (v**2 >> prec)
|
| 823 |
+
v4 = (v2 * v2) >> prec
|
| 824 |
+
s1 = v//3
|
| 825 |
+
v = (v * v4) >> prec
|
| 826 |
+
k = 5
|
| 827 |
+
while v:
|
| 828 |
+
s0 += v // k
|
| 829 |
+
k += 2
|
| 830 |
+
s1 += v // k
|
| 831 |
+
v = (v * v4) >> prec
|
| 832 |
+
k += 2
|
| 833 |
+
s1 = (s1 * v2) >> prec
|
| 834 |
+
s = s0 - s1
|
| 835 |
+
return atan_a + s
|
| 836 |
+
|
| 837 |
+
def atan_inf(sign, prec, rnd):
|
| 838 |
+
if not sign:
|
| 839 |
+
return mpf_shift(mpf_pi(prec, rnd), -1)
|
| 840 |
+
return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
|
| 841 |
+
|
| 842 |
+
def mpf_atan(x, prec, rnd=round_fast):
|
| 843 |
+
sign, man, exp, bc = x
|
| 844 |
+
if not man:
|
| 845 |
+
if x == fzero: return fzero
|
| 846 |
+
if x == finf: return atan_inf(0, prec, rnd)
|
| 847 |
+
if x == fninf: return atan_inf(1, prec, rnd)
|
| 848 |
+
return fnan
|
| 849 |
+
mag = exp + bc
|
| 850 |
+
# Essentially infinity
|
| 851 |
+
if mag > prec+20:
|
| 852 |
+
return atan_inf(sign, prec, rnd)
|
| 853 |
+
# Essentially ~ x
|
| 854 |
+
if -mag > prec+20:
|
| 855 |
+
return mpf_perturb(x, 1-sign, prec, rnd)
|
| 856 |
+
wp = prec + 30 + abs(mag)
|
| 857 |
+
# For large x, use atan(x) = pi/2 - atan(1/x)
|
| 858 |
+
if mag >= 2:
|
| 859 |
+
x = mpf_rdiv_int(1, x, wp)
|
| 860 |
+
reciprocal = True
|
| 861 |
+
else:
|
| 862 |
+
reciprocal = False
|
| 863 |
+
t = to_fixed(x, wp)
|
| 864 |
+
if sign:
|
| 865 |
+
t = -t
|
| 866 |
+
if wp < ATAN_TAYLOR_PREC:
|
| 867 |
+
a = atan_taylor(t, wp)
|
| 868 |
+
else:
|
| 869 |
+
a = atan_newton(t, wp)
|
| 870 |
+
if reciprocal:
|
| 871 |
+
a = ((pi_fixed(wp)>>1)+1) - a
|
| 872 |
+
if sign:
|
| 873 |
+
a = -a
|
| 874 |
+
return from_man_exp(a, -wp, prec, rnd)
|
| 875 |
+
|
| 876 |
+
# TODO: cleanup the special cases
|
| 877 |
+
def mpf_atan2(y, x, prec, rnd=round_fast):
|
| 878 |
+
xsign, xman, xexp, xbc = x
|
| 879 |
+
ysign, yman, yexp, ybc = y
|
| 880 |
+
if not yman:
|
| 881 |
+
if y == fzero and x != fnan:
|
| 882 |
+
if mpf_sign(x) >= 0:
|
| 883 |
+
return fzero
|
| 884 |
+
return mpf_pi(prec, rnd)
|
| 885 |
+
if y in (finf, fninf):
|
| 886 |
+
if x in (finf, fninf):
|
| 887 |
+
return fnan
|
| 888 |
+
# pi/2
|
| 889 |
+
if y == finf:
|
| 890 |
+
return mpf_shift(mpf_pi(prec, rnd), -1)
|
| 891 |
+
# -pi/2
|
| 892 |
+
return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
|
| 893 |
+
return fnan
|
| 894 |
+
if ysign:
|
| 895 |
+
return mpf_neg(mpf_atan2(mpf_neg(y), x, prec, negative_rnd[rnd]))
|
| 896 |
+
if not xman:
|
| 897 |
+
if x == fnan:
|
| 898 |
+
return fnan
|
| 899 |
+
if x == finf:
|
| 900 |
+
return fzero
|
| 901 |
+
if x == fninf:
|
| 902 |
+
return mpf_pi(prec, rnd)
|
| 903 |
+
if y == fzero:
|
| 904 |
+
return fzero
|
| 905 |
+
return mpf_shift(mpf_pi(prec, rnd), -1)
|
| 906 |
+
tquo = mpf_atan(mpf_div(y, x, prec+4), prec+4)
|
| 907 |
+
if xsign:
|
| 908 |
+
return mpf_add(mpf_pi(prec+4), tquo, prec, rnd)
|
| 909 |
+
else:
|
| 910 |
+
return mpf_pos(tquo, prec, rnd)
|
| 911 |
+
|
| 912 |
+
def mpf_asin(x, prec, rnd=round_fast):
|
| 913 |
+
sign, man, exp, bc = x
|
| 914 |
+
if bc+exp > 0 and x not in (fone, fnone):
|
| 915 |
+
raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
|
| 916 |
+
# asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
|
| 917 |
+
wp = prec + 15
|
| 918 |
+
a = mpf_mul(x, x)
|
| 919 |
+
b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
|
| 920 |
+
c = mpf_div(x, b, wp)
|
| 921 |
+
return mpf_shift(mpf_atan(c, prec, rnd), 1)
|
| 922 |
+
|
| 923 |
+
def mpf_acos(x, prec, rnd=round_fast):
|
| 924 |
+
# acos(x) = 2*atan(sqrt(1-x**2)/(1+x))
|
| 925 |
+
sign, man, exp, bc = x
|
| 926 |
+
if bc + exp > 0:
|
| 927 |
+
if x not in (fone, fnone):
|
| 928 |
+
raise ComplexResult("acos(x) is real only for -1 <= x <= 1")
|
| 929 |
+
if x == fnone:
|
| 930 |
+
return mpf_pi(prec, rnd)
|
| 931 |
+
wp = prec + 15
|
| 932 |
+
a = mpf_mul(x, x)
|
| 933 |
+
b = mpf_sqrt(mpf_sub(fone, a, wp), wp)
|
| 934 |
+
c = mpf_div(b, mpf_add(fone, x, wp), wp)
|
| 935 |
+
return mpf_shift(mpf_atan(c, prec, rnd), 1)
|
| 936 |
+
|
| 937 |
+
def mpf_asinh(x, prec, rnd=round_fast):
|
| 938 |
+
wp = prec + 20
|
| 939 |
+
sign, man, exp, bc = x
|
| 940 |
+
mag = exp+bc
|
| 941 |
+
if mag < -8:
|
| 942 |
+
if mag < -wp:
|
| 943 |
+
return mpf_perturb(x, 1-sign, prec, rnd)
|
| 944 |
+
wp += (-mag)
|
| 945 |
+
# asinh(x) = log(x+sqrt(x**2+1))
|
| 946 |
+
# use reflection symmetry to avoid cancellation
|
| 947 |
+
q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp)
|
| 948 |
+
q = mpf_add(mpf_abs(x), q, wp)
|
| 949 |
+
if sign:
|
| 950 |
+
return mpf_neg(mpf_log(q, prec, negative_rnd[rnd]))
|
| 951 |
+
else:
|
| 952 |
+
return mpf_log(q, prec, rnd)
|
| 953 |
+
|
| 954 |
+
def mpf_acosh(x, prec, rnd=round_fast):
|
| 955 |
+
# acosh(x) = log(x+sqrt(x**2-1))
|
| 956 |
+
wp = prec + 15
|
| 957 |
+
if mpf_cmp(x, fone) == -1:
|
| 958 |
+
raise ComplexResult("acosh(x) is real only for x >= 1")
|
| 959 |
+
q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp)
|
| 960 |
+
return mpf_log(mpf_add(x, q, wp), prec, rnd)
|
| 961 |
+
|
| 962 |
+
def mpf_atanh(x, prec, rnd=round_fast):
|
| 963 |
+
# atanh(x) = log((1+x)/(1-x))/2
|
| 964 |
+
sign, man, exp, bc = x
|
| 965 |
+
if (not man) and exp:
|
| 966 |
+
if x in (fzero, fnan):
|
| 967 |
+
return x
|
| 968 |
+
raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
|
| 969 |
+
mag = bc + exp
|
| 970 |
+
if mag > 0:
|
| 971 |
+
if mag == 1 and man == 1:
|
| 972 |
+
return [finf, fninf][sign]
|
| 973 |
+
raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
|
| 974 |
+
wp = prec + 15
|
| 975 |
+
if mag < -8:
|
| 976 |
+
if mag < -wp:
|
| 977 |
+
return mpf_perturb(x, sign, prec, rnd)
|
| 978 |
+
wp += (-mag)
|
| 979 |
+
a = mpf_add(x, fone, wp)
|
| 980 |
+
b = mpf_sub(fone, x, wp)
|
| 981 |
+
return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1)
|
| 982 |
+
|
| 983 |
+
def mpf_fibonacci(x, prec, rnd=round_fast):
|
| 984 |
+
sign, man, exp, bc = x
|
| 985 |
+
if not man:
|
| 986 |
+
if x == fninf:
|
| 987 |
+
return fnan
|
| 988 |
+
return x
|
| 989 |
+
# F(2^n) ~= 2^(2^n)
|
| 990 |
+
size = abs(exp+bc)
|
| 991 |
+
if exp >= 0:
|
| 992 |
+
# Exact
|
| 993 |
+
if size < 10 or size <= bitcount(prec):
|
| 994 |
+
return from_int(ifib(to_int(x)), prec, rnd)
|
| 995 |
+
# Use the modified Binet formula
|
| 996 |
+
wp = prec + size + 20
|
| 997 |
+
a = mpf_phi(wp)
|
| 998 |
+
b = mpf_add(mpf_shift(a, 1), fnone, wp)
|
| 999 |
+
u = mpf_pow(a, x, wp)
|
| 1000 |
+
v = mpf_cos_pi(x, wp)
|
| 1001 |
+
v = mpf_div(v, u, wp)
|
| 1002 |
+
u = mpf_sub(u, v, wp)
|
| 1003 |
+
u = mpf_div(u, b, prec, rnd)
|
| 1004 |
+
return u
|
| 1005 |
+
|
| 1006 |
+
|
| 1007 |
+
#-------------------------------------------------------------------------------
|
| 1008 |
+
# Exponential-type functions
|
| 1009 |
+
#-------------------------------------------------------------------------------
|
| 1010 |
+
|
| 1011 |
+
def exponential_series(x, prec, type=0):
|
| 1012 |
+
"""
|
| 1013 |
+
Taylor series for cosh/sinh or cos/sin.
|
| 1014 |
+
|
| 1015 |
+
type = 0 -- returns exp(x) (slightly faster than cosh+sinh)
|
| 1016 |
+
type = 1 -- returns (cosh(x), sinh(x))
|
| 1017 |
+
type = 2 -- returns (cos(x), sin(x))
|
| 1018 |
+
"""
|
| 1019 |
+
if x < 0:
|
| 1020 |
+
x = -x
|
| 1021 |
+
sign = 1
|
| 1022 |
+
else:
|
| 1023 |
+
sign = 0
|
| 1024 |
+
r = int(0.5*prec**0.5)
|
| 1025 |
+
xmag = bitcount(x) - prec
|
| 1026 |
+
r = max(0, xmag + r)
|
| 1027 |
+
extra = 10 + 2*max(r,-xmag)
|
| 1028 |
+
wp = prec + extra
|
| 1029 |
+
x <<= (extra - r)
|
| 1030 |
+
one = MPZ_ONE << wp
|
| 1031 |
+
alt = (type == 2)
|
| 1032 |
+
if prec < EXP_SERIES_U_CUTOFF:
|
| 1033 |
+
x2 = a = (x*x) >> wp
|
| 1034 |
+
x4 = (x2*x2) >> wp
|
| 1035 |
+
s0 = s1 = MPZ_ZERO
|
| 1036 |
+
k = 2
|
| 1037 |
+
while a:
|
| 1038 |
+
a //= (k-1)*k; s0 += a; k += 2
|
| 1039 |
+
a //= (k-1)*k; s1 += a; k += 2
|
| 1040 |
+
a = (a*x4) >> wp
|
| 1041 |
+
s1 = (x2*s1) >> wp
|
| 1042 |
+
if alt:
|
| 1043 |
+
c = s1 - s0 + one
|
| 1044 |
+
else:
|
| 1045 |
+
c = s1 + s0 + one
|
| 1046 |
+
else:
|
| 1047 |
+
u = int(0.3*prec**0.35)
|
| 1048 |
+
x2 = a = (x*x) >> wp
|
| 1049 |
+
xpowers = [one, x2]
|
| 1050 |
+
for i in xrange(1, u):
|
| 1051 |
+
xpowers.append((xpowers[-1]*x2)>>wp)
|
| 1052 |
+
sums = [MPZ_ZERO] * u
|
| 1053 |
+
k = 2
|
| 1054 |
+
while a:
|
| 1055 |
+
for i in xrange(u):
|
| 1056 |
+
a //= (k-1)*k
|
| 1057 |
+
if alt and k & 2: sums[i] -= a
|
| 1058 |
+
else: sums[i] += a
|
| 1059 |
+
k += 2
|
| 1060 |
+
a = (a*xpowers[-1]) >> wp
|
| 1061 |
+
for i in xrange(1, u):
|
| 1062 |
+
sums[i] = (sums[i]*xpowers[i]) >> wp
|
| 1063 |
+
c = sum(sums) + one
|
| 1064 |
+
if type == 0:
|
| 1065 |
+
s = isqrt_fast(c*c - (one<<wp))
|
| 1066 |
+
if sign:
|
| 1067 |
+
v = c - s
|
| 1068 |
+
else:
|
| 1069 |
+
v = c + s
|
| 1070 |
+
for i in xrange(r):
|
| 1071 |
+
v = (v*v) >> wp
|
| 1072 |
+
return v >> extra
|
| 1073 |
+
else:
|
| 1074 |
+
# Repeatedly apply the double-angle formula
|
| 1075 |
+
# cosh(2*x) = 2*cosh(x)^2 - 1
|
| 1076 |
+
# cos(2*x) = 2*cos(x)^2 - 1
|
| 1077 |
+
pshift = wp-1
|
| 1078 |
+
for i in xrange(r):
|
| 1079 |
+
c = ((c*c) >> pshift) - one
|
| 1080 |
+
# With the abs, this is the same for sinh and sin
|
| 1081 |
+
s = isqrt_fast(abs((one<<wp) - c*c))
|
| 1082 |
+
if sign:
|
| 1083 |
+
s = -s
|
| 1084 |
+
return (c>>extra), (s>>extra)
|
| 1085 |
+
|
| 1086 |
+
def exp_basecase(x, prec):
|
| 1087 |
+
"""
|
| 1088 |
+
Compute exp(x) as a fixed-point number. Works for any x,
|
| 1089 |
+
but for speed should have |x| < 1. For an arbitrary number,
|
| 1090 |
+
use exp(x) = exp(x-m*log(2)) * 2^m where m = floor(x/log(2)).
|
| 1091 |
+
"""
|
| 1092 |
+
if prec > EXP_COSH_CUTOFF:
|
| 1093 |
+
return exponential_series(x, prec, 0)
|
| 1094 |
+
r = int(prec**0.5)
|
| 1095 |
+
prec += r
|
| 1096 |
+
s0 = s1 = (MPZ_ONE << prec)
|
| 1097 |
+
k = 2
|
| 1098 |
+
a = x2 = (x*x) >> prec
|
| 1099 |
+
while a:
|
| 1100 |
+
a //= k; s0 += a; k += 1
|
| 1101 |
+
a //= k; s1 += a; k += 1
|
| 1102 |
+
a = (a*x2) >> prec
|
| 1103 |
+
s1 = (s1*x) >> prec
|
| 1104 |
+
s = s0 + s1
|
| 1105 |
+
u = r
|
| 1106 |
+
while r:
|
| 1107 |
+
s = (s*s) >> prec
|
| 1108 |
+
r -= 1
|
| 1109 |
+
return s >> u
|
| 1110 |
+
|
| 1111 |
+
def exp_expneg_basecase(x, prec):
|
| 1112 |
+
"""
|
| 1113 |
+
Computation of exp(x), exp(-x)
|
| 1114 |
+
"""
|
| 1115 |
+
if prec > EXP_COSH_CUTOFF:
|
| 1116 |
+
cosh, sinh = exponential_series(x, prec, 1)
|
| 1117 |
+
return cosh+sinh, cosh-sinh
|
| 1118 |
+
a = exp_basecase(x, prec)
|
| 1119 |
+
b = (MPZ_ONE << (prec+prec)) // a
|
| 1120 |
+
return a, b
|
| 1121 |
+
|
| 1122 |
+
def cos_sin_basecase(x, prec):
|
| 1123 |
+
"""
|
| 1124 |
+
Compute cos(x), sin(x) as fixed-point numbers, assuming x
|
| 1125 |
+
in [0, pi/2). For an arbitrary number, use x' = x - m*(pi/2)
|
| 1126 |
+
where m = floor(x/(pi/2)) along with quarter-period symmetries.
|
| 1127 |
+
"""
|
| 1128 |
+
if prec > COS_SIN_CACHE_PREC:
|
| 1129 |
+
return exponential_series(x, prec, 2)
|
| 1130 |
+
precs = prec - COS_SIN_CACHE_STEP
|
| 1131 |
+
t = x >> precs
|
| 1132 |
+
n = int(t)
|
| 1133 |
+
if n not in cos_sin_cache:
|
| 1134 |
+
w = t<<(10+COS_SIN_CACHE_PREC-COS_SIN_CACHE_STEP)
|
| 1135 |
+
cos_t, sin_t = exponential_series(w, 10+COS_SIN_CACHE_PREC, 2)
|
| 1136 |
+
cos_sin_cache[n] = (cos_t>>10), (sin_t>>10)
|
| 1137 |
+
cos_t, sin_t = cos_sin_cache[n]
|
| 1138 |
+
offset = COS_SIN_CACHE_PREC - prec
|
| 1139 |
+
cos_t >>= offset
|
| 1140 |
+
sin_t >>= offset
|
| 1141 |
+
x -= t << precs
|
| 1142 |
+
cos = MPZ_ONE << prec
|
| 1143 |
+
sin = x
|
| 1144 |
+
k = 2
|
| 1145 |
+
a = -((x*x) >> prec)
|
| 1146 |
+
while a:
|
| 1147 |
+
a //= k; cos += a; k += 1; a = (a*x) >> prec
|
| 1148 |
+
a //= k; sin += a; k += 1; a = -((a*x) >> prec)
|
| 1149 |
+
return ((cos*cos_t-sin*sin_t) >> prec), ((sin*cos_t+cos*sin_t) >> prec)
|
| 1150 |
+
|
| 1151 |
+
def mpf_exp(x, prec, rnd=round_fast):
|
| 1152 |
+
sign, man, exp, bc = x
|
| 1153 |
+
if man:
|
| 1154 |
+
mag = bc + exp
|
| 1155 |
+
wp = prec + 14
|
| 1156 |
+
if sign:
|
| 1157 |
+
man = -man
|
| 1158 |
+
# TODO: the best cutoff depends on both x and the precision.
|
| 1159 |
+
if prec > 600 and exp >= 0:
|
| 1160 |
+
# Need about log2(exp(n)) ~= 1.45*mag extra precision
|
| 1161 |
+
e = mpf_e(wp+int(1.45*mag))
|
| 1162 |
+
return mpf_pow_int(e, man<<exp, prec, rnd)
|
| 1163 |
+
if mag < -wp:
|
| 1164 |
+
return mpf_perturb(fone, sign, prec, rnd)
|
| 1165 |
+
# |x| >= 2
|
| 1166 |
+
if mag > 1:
|
| 1167 |
+
# For large arguments: exp(2^mag*(1+eps)) =
|
| 1168 |
+
# exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...)
|
| 1169 |
+
# so about mag extra bits is required.
|
| 1170 |
+
wpmod = wp + mag
|
| 1171 |
+
offset = exp + wpmod
|
| 1172 |
+
if offset >= 0:
|
| 1173 |
+
t = man << offset
|
| 1174 |
+
else:
|
| 1175 |
+
t = man >> (-offset)
|
| 1176 |
+
lg2 = ln2_fixed(wpmod)
|
| 1177 |
+
n, t = divmod(t, lg2)
|
| 1178 |
+
n = int(n)
|
| 1179 |
+
t >>= mag
|
| 1180 |
+
else:
|
| 1181 |
+
offset = exp + wp
|
| 1182 |
+
if offset >= 0:
|
| 1183 |
+
t = man << offset
|
| 1184 |
+
else:
|
| 1185 |
+
t = man >> (-offset)
|
| 1186 |
+
n = 0
|
| 1187 |
+
man = exp_basecase(t, wp)
|
| 1188 |
+
return from_man_exp(man, n-wp, prec, rnd)
|
| 1189 |
+
if not exp:
|
| 1190 |
+
return fone
|
| 1191 |
+
if x == fninf:
|
| 1192 |
+
return fzero
|
| 1193 |
+
return x
|
| 1194 |
+
|
| 1195 |
+
|
| 1196 |
+
def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0):
|
| 1197 |
+
"""Simultaneously compute (cosh(x), sinh(x)) for real x"""
|
| 1198 |
+
sign, man, exp, bc = x
|
| 1199 |
+
if (not man) and exp:
|
| 1200 |
+
if tanh:
|
| 1201 |
+
if x == finf: return fone
|
| 1202 |
+
if x == fninf: return fnone
|
| 1203 |
+
return fnan
|
| 1204 |
+
if x == finf: return (finf, finf)
|
| 1205 |
+
if x == fninf: return (finf, fninf)
|
| 1206 |
+
return fnan, fnan
|
| 1207 |
+
mag = exp+bc
|
| 1208 |
+
wp = prec+14
|
| 1209 |
+
if mag < -4:
|
| 1210 |
+
# Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1
|
| 1211 |
+
if mag < -wp:
|
| 1212 |
+
if tanh:
|
| 1213 |
+
return mpf_perturb(x, 1-sign, prec, rnd)
|
| 1214 |
+
cosh = mpf_perturb(fone, 0, prec, rnd)
|
| 1215 |
+
sinh = mpf_perturb(x, sign, prec, rnd)
|
| 1216 |
+
return cosh, sinh
|
| 1217 |
+
# Fix for cancellation when computing sinh
|
| 1218 |
+
wp += (-mag)
|
| 1219 |
+
# Does exp(-2*x) vanish?
|
| 1220 |
+
if mag > 10:
|
| 1221 |
+
if 3*(1<<(mag-1)) > wp:
|
| 1222 |
+
# XXX: rounding
|
| 1223 |
+
if tanh:
|
| 1224 |
+
return mpf_perturb([fone,fnone][sign], 1-sign, prec, rnd)
|
| 1225 |
+
c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1)
|
| 1226 |
+
if sign:
|
| 1227 |
+
s = mpf_neg(s)
|
| 1228 |
+
return c, s
|
| 1229 |
+
# |x| > 1
|
| 1230 |
+
if mag > 1:
|
| 1231 |
+
wpmod = wp + mag
|
| 1232 |
+
offset = exp + wpmod
|
| 1233 |
+
if offset >= 0:
|
| 1234 |
+
t = man << offset
|
| 1235 |
+
else:
|
| 1236 |
+
t = man >> (-offset)
|
| 1237 |
+
lg2 = ln2_fixed(wpmod)
|
| 1238 |
+
n, t = divmod(t, lg2)
|
| 1239 |
+
n = int(n)
|
| 1240 |
+
t >>= mag
|
| 1241 |
+
else:
|
| 1242 |
+
offset = exp + wp
|
| 1243 |
+
if offset >= 0:
|
| 1244 |
+
t = man << offset
|
| 1245 |
+
else:
|
| 1246 |
+
t = man >> (-offset)
|
| 1247 |
+
n = 0
|
| 1248 |
+
a, b = exp_expneg_basecase(t, wp)
|
| 1249 |
+
# TODO: optimize division precision
|
| 1250 |
+
cosh = a + (b>>(2*n))
|
| 1251 |
+
sinh = a - (b>>(2*n))
|
| 1252 |
+
if sign:
|
| 1253 |
+
sinh = -sinh
|
| 1254 |
+
if tanh:
|
| 1255 |
+
man = (sinh << wp) // cosh
|
| 1256 |
+
return from_man_exp(man, -wp, prec, rnd)
|
| 1257 |
+
else:
|
| 1258 |
+
cosh = from_man_exp(cosh, n-wp-1, prec, rnd)
|
| 1259 |
+
sinh = from_man_exp(sinh, n-wp-1, prec, rnd)
|
| 1260 |
+
return cosh, sinh
|
| 1261 |
+
|
| 1262 |
+
|
| 1263 |
+
def mod_pi2(man, exp, mag, wp):
|
| 1264 |
+
# Reduce to standard interval
|
| 1265 |
+
if mag > 0:
|
| 1266 |
+
i = 0
|
| 1267 |
+
while 1:
|
| 1268 |
+
cancellation_prec = 20 << i
|
| 1269 |
+
wpmod = wp + mag + cancellation_prec
|
| 1270 |
+
pi2 = pi_fixed(wpmod-1)
|
| 1271 |
+
pi4 = pi2 >> 1
|
| 1272 |
+
offset = wpmod + exp
|
| 1273 |
+
if offset >= 0:
|
| 1274 |
+
t = man << offset
|
| 1275 |
+
else:
|
| 1276 |
+
t = man >> (-offset)
|
| 1277 |
+
n, y = divmod(t, pi2)
|
| 1278 |
+
if y > pi4:
|
| 1279 |
+
small = pi2 - y
|
| 1280 |
+
else:
|
| 1281 |
+
small = y
|
| 1282 |
+
if small >> (wp+mag-10):
|
| 1283 |
+
n = int(n)
|
| 1284 |
+
t = y >> mag
|
| 1285 |
+
wp = wpmod - mag
|
| 1286 |
+
break
|
| 1287 |
+
i += 1
|
| 1288 |
+
else:
|
| 1289 |
+
wp += (-mag)
|
| 1290 |
+
offset = exp + wp
|
| 1291 |
+
if offset >= 0:
|
| 1292 |
+
t = man << offset
|
| 1293 |
+
else:
|
| 1294 |
+
t = man >> (-offset)
|
| 1295 |
+
n = 0
|
| 1296 |
+
return t, n, wp
|
| 1297 |
+
|
| 1298 |
+
|
| 1299 |
+
def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False):
|
| 1300 |
+
"""
|
| 1301 |
+
which:
|
| 1302 |
+
0 -- return cos(x), sin(x)
|
| 1303 |
+
1 -- return cos(x)
|
| 1304 |
+
2 -- return sin(x)
|
| 1305 |
+
3 -- return tan(x)
|
| 1306 |
+
|
| 1307 |
+
if pi=True, compute for pi*x
|
| 1308 |
+
"""
|
| 1309 |
+
sign, man, exp, bc = x
|
| 1310 |
+
if not man:
|
| 1311 |
+
if exp:
|
| 1312 |
+
c, s = fnan, fnan
|
| 1313 |
+
else:
|
| 1314 |
+
c, s = fone, fzero
|
| 1315 |
+
if which == 0: return c, s
|
| 1316 |
+
if which == 1: return c
|
| 1317 |
+
if which == 2: return s
|
| 1318 |
+
if which == 3: return s
|
| 1319 |
+
|
| 1320 |
+
mag = bc + exp
|
| 1321 |
+
wp = prec + 10
|
| 1322 |
+
|
| 1323 |
+
# Extremely small?
|
| 1324 |
+
if mag < 0:
|
| 1325 |
+
if mag < -wp:
|
| 1326 |
+
if pi:
|
| 1327 |
+
x = mpf_mul(x, mpf_pi(wp))
|
| 1328 |
+
c = mpf_perturb(fone, 1, prec, rnd)
|
| 1329 |
+
s = mpf_perturb(x, 1-sign, prec, rnd)
|
| 1330 |
+
if which == 0: return c, s
|
| 1331 |
+
if which == 1: return c
|
| 1332 |
+
if which == 2: return s
|
| 1333 |
+
if which == 3: return mpf_perturb(x, sign, prec, rnd)
|
| 1334 |
+
if pi:
|
| 1335 |
+
if exp >= -1:
|
| 1336 |
+
if exp == -1:
|
| 1337 |
+
c = fzero
|
| 1338 |
+
s = (fone, fnone)[bool(man & 2) ^ sign]
|
| 1339 |
+
elif exp == 0:
|
| 1340 |
+
c, s = (fnone, fzero)
|
| 1341 |
+
else:
|
| 1342 |
+
c, s = (fone, fzero)
|
| 1343 |
+
if which == 0: return c, s
|
| 1344 |
+
if which == 1: return c
|
| 1345 |
+
if which == 2: return s
|
| 1346 |
+
if which == 3: return mpf_div(s, c, prec, rnd)
|
| 1347 |
+
# Subtract nearest half-integer (= mod by pi/2)
|
| 1348 |
+
n = ((man >> (-exp-2)) + 1) >> 1
|
| 1349 |
+
man = man - (n << (-exp-1))
|
| 1350 |
+
mag2 = bitcount(man) + exp
|
| 1351 |
+
wp = prec + 10 - mag2
|
| 1352 |
+
offset = exp + wp
|
| 1353 |
+
if offset >= 0:
|
| 1354 |
+
t = man << offset
|
| 1355 |
+
else:
|
| 1356 |
+
t = man >> (-offset)
|
| 1357 |
+
t = (t*pi_fixed(wp)) >> wp
|
| 1358 |
+
else:
|
| 1359 |
+
t, n, wp = mod_pi2(man, exp, mag, wp)
|
| 1360 |
+
c, s = cos_sin_basecase(t, wp)
|
| 1361 |
+
m = n & 3
|
| 1362 |
+
if m == 1: c, s = -s, c
|
| 1363 |
+
elif m == 2: c, s = -c, -s
|
| 1364 |
+
elif m == 3: c, s = s, -c
|
| 1365 |
+
if sign:
|
| 1366 |
+
s = -s
|
| 1367 |
+
if which == 0:
|
| 1368 |
+
c = from_man_exp(c, -wp, prec, rnd)
|
| 1369 |
+
s = from_man_exp(s, -wp, prec, rnd)
|
| 1370 |
+
return c, s
|
| 1371 |
+
if which == 1:
|
| 1372 |
+
return from_man_exp(c, -wp, prec, rnd)
|
| 1373 |
+
if which == 2:
|
| 1374 |
+
return from_man_exp(s, -wp, prec, rnd)
|
| 1375 |
+
if which == 3:
|
| 1376 |
+
return from_rational(s, c, prec, rnd)
|
| 1377 |
+
|
| 1378 |
+
def mpf_cos(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1)
|
| 1379 |
+
def mpf_sin(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2)
|
| 1380 |
+
def mpf_tan(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 3)
|
| 1381 |
+
def mpf_cos_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 0, 1)
|
| 1382 |
+
def mpf_cos_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1, 1)
|
| 1383 |
+
def mpf_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2, 1)
|
| 1384 |
+
def mpf_cosh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[0]
|
| 1385 |
+
def mpf_sinh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[1]
|
| 1386 |
+
def mpf_tanh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd, tanh=1)
|
| 1387 |
+
|
| 1388 |
+
|
| 1389 |
+
# Low-overhead fixed-point versions
|
| 1390 |
+
|
| 1391 |
+
def cos_sin_fixed(x, prec, pi2=None):
|
| 1392 |
+
if pi2 is None:
|
| 1393 |
+
pi2 = pi_fixed(prec-1)
|
| 1394 |
+
n, t = divmod(x, pi2)
|
| 1395 |
+
n = int(n)
|
| 1396 |
+
c, s = cos_sin_basecase(t, prec)
|
| 1397 |
+
m = n & 3
|
| 1398 |
+
if m == 0: return c, s
|
| 1399 |
+
if m == 1: return -s, c
|
| 1400 |
+
if m == 2: return -c, -s
|
| 1401 |
+
if m == 3: return s, -c
|
| 1402 |
+
|
| 1403 |
+
def exp_fixed(x, prec, ln2=None):
|
| 1404 |
+
if ln2 is None:
|
| 1405 |
+
ln2 = ln2_fixed(prec)
|
| 1406 |
+
n, t = divmod(x, ln2)
|
| 1407 |
+
n = int(n)
|
| 1408 |
+
v = exp_basecase(t, prec)
|
| 1409 |
+
if n >= 0:
|
| 1410 |
+
return v << n
|
| 1411 |
+
else:
|
| 1412 |
+
return v >> (-n)
|
| 1413 |
+
|
| 1414 |
+
|
| 1415 |
+
if BACKEND == 'sage':
|
| 1416 |
+
try:
|
| 1417 |
+
import sage.libs.mpmath.ext_libmp as _lbmp
|
| 1418 |
+
mpf_sqrt = _lbmp.mpf_sqrt
|
| 1419 |
+
mpf_exp = _lbmp.mpf_exp
|
| 1420 |
+
mpf_log = _lbmp.mpf_log
|
| 1421 |
+
mpf_cos = _lbmp.mpf_cos
|
| 1422 |
+
mpf_sin = _lbmp.mpf_sin
|
| 1423 |
+
mpf_pow = _lbmp.mpf_pow
|
| 1424 |
+
exp_fixed = _lbmp.exp_fixed
|
| 1425 |
+
cos_sin_fixed = _lbmp.cos_sin_fixed
|
| 1426 |
+
log_int_fixed = _lbmp.log_int_fixed
|
| 1427 |
+
except (ImportError, AttributeError):
|
| 1428 |
+
print("Warning: Sage imports in libelefun failed")
|