Delanoe Pirard
Deploy to HuggingFace Spaces
18b382b
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from einops import repeat
from .geometry import unproject_depth
def compute_optimal_rotation_intrinsics_batch(
rays_origin, rays_target, z_threshold=1e-4, reproj_threshold=0.2, weights=None,
n_sample = None,
n_iter=100,
num_sample_for_ransac=8,
rand_sample_iters_idx=None,
):
"""
Args:
rays_origin (torch.Tensor): (B, N, 3)
rays_target (torch.Tensor): (B, N, 3)
z_threshold (float): Threshold for z value to be considered valid.
Returns:
R (torch.tensor): (3, 3)
focal_length (torch.tensor): (2,)
principal_point (torch.tensor): (2,)
"""
device = rays_origin.device
B, N, _ = rays_origin.shape
z_mask = torch.logical_and(
torch.abs(rays_target[:, :, 2]) > z_threshold, torch.abs(rays_origin[:, :, 2]) > z_threshold
) # (B, N, 1)
rays_origin = rays_origin.clone()
rays_target = rays_target.clone()
rays_origin[:, :, 0][z_mask] /= rays_origin[:, :, 2][z_mask]
rays_origin[:, :, 1][z_mask] /= rays_origin[:, :, 2][z_mask]
rays_target[:, :, 0][z_mask] /= rays_target[:, :, 2][z_mask]
rays_target[:, :, 1][z_mask] /= rays_target[:, :, 2][z_mask]
rays_origin = rays_origin[:, :, :2]
rays_target = rays_target[:, :, :2]
assert weights is not None, "weights must be provided"
weights[~z_mask] = 0
A_list = []
max_chunk_size = 2
for i in range(0, rays_origin.shape[0], max_chunk_size):
A = ransac_find_homography_weighted_fast_batch(
rays_origin[i:i+max_chunk_size],
rays_target[i:i+max_chunk_size],
weights[i:i+max_chunk_size],
n_iter=n_iter,
n_sample = n_sample,
num_sample_for_ransac=num_sample_for_ransac,
reproj_threshold=reproj_threshold,
rand_sample_iters_idx=rand_sample_iters_idx,
max_inlier_num=8000,
)
A = A.to(device)
A_need_inv_mask = torch.linalg.det(A) < 0
A[A_need_inv_mask] = -A[A_need_inv_mask]
A_list.append(A)
A = torch.cat(A_list, dim=0)
R_list = []
f_list = []
pp_list = []
for i in range(A.shape[0]):
R, L = ql_decomposition(A[i])
L = L / L[2][2]
f = torch.stack((L[0][0], L[1][1]))
pp = torch.stack((L[2][0], L[2][1]))
R_list.append(R)
f_list.append(f)
pp_list.append(pp)
R = torch.stack(R_list)
f = torch.stack(f_list)
pp = torch.stack(pp_list)
return R, f, pp
# https://www.reddit.com/r/learnmath/comments/v1crd7/linear_algebra_qr_to_ql_decomposition/
def ql_decomposition(A):
P = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=A.device).float()
A_tilde = torch.matmul(A, P)
Q_tilde, R_tilde = torch.linalg.qr(A_tilde)
Q = torch.matmul(Q_tilde, P)
L = torch.matmul(torch.matmul(P, R_tilde), P)
d = torch.diag(L)
Q[:, 0] *= torch.sign(d[0])
Q[:, 1] *= torch.sign(d[1])
Q[:, 2] *= torch.sign(d[2])
L[0] *= torch.sign(d[0])
L[1] *= torch.sign(d[1])
L[2] *= torch.sign(d[2])
return Q, L
def find_homography_least_squares_weighted_torch(src_pts, dst_pts, confident_weight):
"""
src_pts: (N,2) source points (torch.Tensor, float32/float64)
dst_pts: (N,2) target points (torch.Tensor, float32/float64)
confident_weight: (N,) weights (torch.Tensor)
Returns: (3,3) homography matrix H (torch.Tensor)
"""
assert src_pts.shape == dst_pts.shape
N = src_pts.shape[0]
if N < 4:
raise ValueError("At least 4 points are required to compute homography.")
assert confident_weight.shape == (N,)
w = confident_weight.sqrt().unsqueeze(1) # (N,1)
x = src_pts[:, 0:1] # (N,1)
y = src_pts[:, 1:2] # (N,1)
u = dst_pts[:, 0:1]
v = dst_pts[:, 1:2]
zeros = torch.zeros_like(x)
# Construct A matrix (2N, 9)
A1 = torch.cat([-x * w, -y * w, -w, zeros, zeros, zeros, x * u * w, y * u * w, u * w], dim=1)
A2 = torch.cat([zeros, zeros, zeros, -x * w, -y * w, -w, x * v * w, y * v * w, v * w], dim=1)
A = torch.cat([A1, A2], dim=0) # (2N, 9)
# SVD
# Note: torch.linalg.svd returns U, S, Vh, where Vh is the transpose of V
_, _, Vh = torch.linalg.svd(A)
H = Vh[-1].reshape(3, 3)
H = H / H[-1, -1]
return H
def ransac_find_homography_weighted(
src_pts,
dst_pts,
confident_weight,
n_iter=100,
sample_ratio=0.2,
reproj_threshold=3.0,
num_sample_for_ransac=16,
random_seed=None,
):
"""
RANSAC version of weighted Homography estimation.
Sample 4 points from the top 50% weighted points each time.
reproj_threshold: points with reprojection error less than this value are inliers
Returns: best_H
"""
if random_seed is not None:
torch.manual_seed(random_seed)
N = src_pts.shape[0]
assert N >= 4
# 1. Select top 50% weighted points
sorted_idx = torch.argsort(confident_weight, descending=True)
n_sample = max(num_sample_for_ransac, int(N * sample_ratio))
candidate_idx = sorted_idx[:n_sample]
best_inlier_mask = None
best_score = 0
for _ in range(n_iter):
# 2. Randomly sample 4 points
idx = candidate_idx[torch.randperm(n_sample)[:num_sample_for_ransac]]
# 3. Compute Homography
try:
H = find_homography_least_squares_weighted_torch(
src_pts[idx], dst_pts[idx], confident_weight[idx]
)
except Exception:
H = torch.eye(3, dtype=src_pts.dtype, device=src_pts.device)
# 4. Compute reprojection error for all points
src_homo = torch.cat(
[src_pts, torch.ones(N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=1
)
proj = (H @ src_homo.T).T
proj = proj[:, :2] / proj[:, 2:3]
error = ((proj - dst_pts) ** 2).sum(dim=1).sqrt() # Euclidean distance
inlier_mask = error < reproj_threshold
total_score = (inlier_mask * confident_weight).sum().item()
n_inlier = inlier_mask.sum().item()
if n_inlier < 4:
continue # At least 4 inliers required for fitting
if total_score > best_score:
best_score = total_score
best_inlier_mask = inlier_mask
# 5. Refit Homography using inliers
H_inlier = find_homography_least_squares_weighted_torch(
src_pts[best_inlier_mask], dst_pts[best_inlier_mask], confident_weight[best_inlier_mask]
)
return H_inlier
def find_homography_least_squares_weighted_torch_batch(
src_pts_batch, dst_pts_batch, confident_weight_batch
):
"""
Batch version of weighted least squares Homography
src_pts_batch: (B, K, 2)
dst_pts_batch: (B, K, 2)
confident_weight_batch: (B, K)
Returns: (B, 3, 3)
"""
B, K, _ = src_pts_batch.shape
w = confident_weight_batch.sqrt().unsqueeze(2) # (B,K,1)
x = src_pts_batch[:, :, 0:1]
y = src_pts_batch[:, :, 1:2]
u = dst_pts_batch[:, :, 0:1]
v = dst_pts_batch[:, :, 1:2]
zeros = torch.zeros_like(x)
A1 = torch.cat([-x * w, -y * w, -w, zeros, zeros, zeros, x * u * w, y * u * w, u * w], dim=2)
A2 = torch.cat([zeros, zeros, zeros, -x * w, -y * w, -w, x * v * w, y * v * w, v * w], dim=2)
A = torch.cat([A1, A2], dim=1) # (B, 2K, 9)
# SVD: torch.linalg.svd supports batch
_, _, Vh = torch.linalg.svd(A)
H = Vh[:, -1].reshape(B, 3, 3)
H = H / H[:, 2:3, 2:3]
return H
def ransac_find_homography_weighted_fast(
src_pts,
dst_pts,
confident_weight,
n_sample,
n_iter=100,
reproj_threshold=3.0,
num_sample_for_ransac=8,
random_seed=None,
rand_sample_iters_idx=None,
):
"""
Batch version of RANSAC weighted Homography estimation.
Returns: H_inlier
"""
if random_seed is not None:
torch.manual_seed(random_seed)
N = src_pts.shape[0]
device = src_pts.device
assert N >= 4
# 1. Select top weighted points by sample_ratio
sorted_idx = torch.argsort(confident_weight, descending=True)
candidate_idx = sorted_idx[:n_sample] # (n_sample,)
if rand_sample_iters_idx is None:
rand_sample_iters_idx = torch.stack(
[torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
dim=0,
) # (n_iter, num_sample_for_ransac)
# 2. Generate all sampling groups at once
# shape: (n_iter, num_sample_for_ransac)
rand_idx = candidate_idx[rand_sample_iters_idx] # (n_iter, num_sample_for_ransac)
# 3. Construct batch input
src_pts_batch = src_pts[rand_idx] # (n_iter, num_sample_for_ransac, 2)
dst_pts_batch = dst_pts[rand_idx] # (n_iter, num_sample_for_ransac, 2)
confident_weight_batch = confident_weight[rand_idx] # (n_iter, num_sample_for_ransac)
# 4. Batch fit Homography
H_batch = find_homography_least_squares_weighted_torch_batch(
src_pts_batch, dst_pts_batch, confident_weight_batch
) # (n_iter, 3, 3)
# 5. Batch evaluate inliers for all H
src_homo = torch.cat(
[src_pts, torch.ones(N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=1
) # (N,3)
src_homo_expand = src_homo.unsqueeze(0).expand(n_iter, N, 3) # (n_iter, N, 3)
dst_pts_expand = dst_pts.unsqueeze(0).expand(n_iter, N, 2) # (n_iter, N, 2)
confident_weight_expand = confident_weight.unsqueeze(0).expand(n_iter, N) # (n_iter, N)
# H_batch: (n_iter, 3, 3)
proj = torch.bmm(src_homo_expand, H_batch.transpose(1, 2)) # (n_iter, N, 3)
proj_xy = proj[:, :, :2] / proj[:, :, 2:3] # (n_iter, N, 2)
error = ((proj_xy - dst_pts_expand) ** 2).sum(dim=2).sqrt() # (n_iter, N)
inlier_mask = error < reproj_threshold # (n_iter, N)
total_score = (inlier_mask * confident_weight_expand).sum(dim=1) # (n_iter,)
# 6. Select the sampling group with the highest score
best_idx = torch.argmax(total_score)
best_inlier_mask = inlier_mask[best_idx] # (N,)
inlier_src_pts = src_pts[best_inlier_mask]
inlier_dst_pts = dst_pts[best_inlier_mask]
inlier_confident_weight = confident_weight[best_inlier_mask]
max_inlier_num = 10000
sorted_idx = torch.argsort(inlier_confident_weight, descending=True)
# method 1: sort according to confident_weight, and only keep max_inlier_num pts
# sorted_idx = sorted_idx[:max_inlier_num]
# method 2: random choose max_inlier_num pts
sorted_idx = sorted_idx[torch.randperm(len(sorted_idx))[:max_inlier_num]]
inlier_src_pts = inlier_src_pts[sorted_idx]
inlier_dst_pts = inlier_dst_pts[sorted_idx]
inlier_confident_weight = inlier_confident_weight[sorted_idx]
# 7. Refit Homography using inliers
H_inlier = find_homography_least_squares_weighted_torch(
inlier_src_pts, inlier_dst_pts, inlier_confident_weight
)
return H_inlier
def ransac_find_homography_weighted_fast_batch(
src_pts, # (B, N, 3)
dst_pts, # (B, N, 2)
confident_weight, # (B, N)
n_sample,
n_iter=100,
reproj_threshold=3.0,
num_sample_for_ransac=8,
max_inlier_num=10000,
random_seed=None,
rand_sample_iters_idx=None,
):
"""
Batch version of RANSAC weighted Homography estimation (supports batch).
Input:
src_pts: (B, N, 2)
dst_pts: (B, N, 2)
confident_weight: (B, N)
Returns:
H_inlier: (B, 3, 3)
"""
if random_seed is not None:
torch.manual_seed(random_seed)
B, N, _ = src_pts.shape
assert N >= 4
device = src_pts.device
# 1. Select top weighted points by sample_ratio
sorted_idx = torch.argsort(confident_weight, descending=True, dim=1) # (B, N)
candidate_idx = sorted_idx[:, :n_sample] # (B, n_sample)
# 2. Generate all sampling groups at once
# rand_idx: (B, n_iter, num_sample_for_ransac)
if rand_sample_iters_idx is None:
rand_sample_iters_idx = torch.stack(
[torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
dim=0,
) # (n_iter, num_sample_for_ransac)
rand_idx = candidate_idx[:, rand_sample_iters_idx] # (B, n_iter, num_sample_for_ransac)
# 3. Construct batch input
# Indexing method below: (B, n_iter, num_sample_for_ransac, ...)
b_idx = torch.arange(B, device=device).view(B, 1, 1).expand(B, n_iter, num_sample_for_ransac)
src_pts_batch = src_pts[b_idx, rand_idx] # (B, n_iter, num_sample_for_ransac, 2)
dst_pts_batch = dst_pts[b_idx, rand_idx] # (B, n_iter, num_sample_for_ransac, 2)
confident_weight_batch = confident_weight[b_idx, rand_idx] # (B, n_iter, num_sample_for_ransac)
# 4. Batch fit Homography
# Need to implement batch version that supports (B, n_iter, num_sample_for_ransac, ...) input
# Output H_batch: (B, n_iter, 3, 3)
cB, cN = src_pts_batch.shape[:2]
H_batch = find_homography_least_squares_weighted_torch_batch(
src_pts_batch.flatten(0, 1), dst_pts_batch.flatten(0, 1), confident_weight_batch.flatten(0, 1)
) # (B, n_iter, 3, 3)
H_batch = H_batch.unflatten(0, (cB, cN))
# 5. Batch evaluate inliers for all H
src_homo = torch.cat(
[src_pts, torch.ones(B, N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=2
) # (B, N, 3)
src_homo_expand = src_homo.unsqueeze(1).expand(B, n_iter, N, 3) # (B, n_iter, N, 3)
dst_pts_expand = dst_pts.unsqueeze(1).expand(B, n_iter, N, 2) # (B, n_iter, N, 2)
confident_weight_expand = confident_weight.unsqueeze(1).expand(B, n_iter, N) # (B, n_iter, N)
# H_batch: (B, n_iter, 3, 3)
# Need to reshape H_batch to (B*n_iter, 3, 3), src_homo_expand to (B*n_iter, N, 3)
H_batch_flat = H_batch.reshape(-1, 3, 3)
src_homo_expand_flat = src_homo_expand.reshape(-1, N, 3)
proj = torch.bmm(src_homo_expand_flat, H_batch_flat.transpose(1, 2)) # (B*n_iter, N, 3)
proj_xy = proj[:, :, :2] / proj[:, :, 2:3] # (B*n_iter, N, 2)
proj_xy = proj_xy.reshape(B, n_iter, N, 2)
error = ((proj_xy - dst_pts_expand) ** 2).sum(dim=3).sqrt() # (B, n_iter, N)
inlier_mask = error < reproj_threshold # (B, n_iter, N)
total_score = (inlier_mask * confident_weight_expand).sum(dim=2) # (B, n_iter)
# 6. Select the sampling group with the highest score
best_idx = torch.argmax(total_score, dim=1) # (B,)
best_inlier_mask = inlier_mask[torch.arange(B, device=device), best_idx] # (B, N)
# 7. Refit Homography using inliers
H_inlier_list = []
for b in range(B):
mask = best_inlier_mask[b]
inlier_src_pts = src_pts[b][mask] # (?, 3)
inlier_dst_pts = dst_pts[b][mask] # (?, 2)
inlier_confident_weight = confident_weight[b][mask] # (?)
sorted_idx = torch.argsort(inlier_confident_weight, descending=True)
# # method 1: sort according to confident_weight, and only keep max_inlier_num pts
# sorted_idx = sorted_idx[:max_inlier_num]
# method 2: random choose max_inlier_num pts
if len(sorted_idx) > max_inlier_num:
# random choose from first 95% confident pts
keep_len = max(int(len(sorted_idx) * 0.95), max_inlier_num)
sorted_idx = sorted_idx[:keep_len]
perm = torch.randperm(len(sorted_idx), device=device)[:max_inlier_num]
sorted_idx = sorted_idx[perm]
inlier_src_pts = inlier_src_pts[sorted_idx]
inlier_dst_pts = inlier_dst_pts[sorted_idx]
inlier_confident_weight = inlier_confident_weight[sorted_idx]
H_inlier = find_homography_least_squares_weighted_torch(
inlier_src_pts, inlier_dst_pts, inlier_confident_weight
) # (3, 3)
H_inlier_list.append(H_inlier)
H_inlier = torch.stack(H_inlier_list, dim=0) # (B, 3, 3)
return H_inlier
def get_params_for_ransac(N, device):
n_iter=100
sample_ratio=0.3
num_sample_for_ransac=8
n_sample = max(num_sample_for_ransac, int(N * sample_ratio))
rand_sample_iters_idx = torch.stack(
[torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
dim=0,
) # (n_iter, num_sample_for_ransac)
return n_iter, num_sample_for_ransac, n_sample, rand_sample_iters_idx
def camray_to_caminfo(camray, confidence=None, reproj_threshold=0.2, training=False):
"""
Args:
camray: (B, S, num_patches_y, num_patches_x, 6)
confidence: (B, S, num_patches_y, num_patches_x)
Returns:
R: (B, S, 3, 3)
T: (B, S, 3)
focal_lengths: (B, S, 2)
principal_points: (B, S, 2)
"""
if confidence is None:
confidence = torch.ones_like(camray[:, :, :, :, 0])
B, S, num_patches_y, num_patches_x, _ = camray.shape
# identity K, assume imw=imh=2.0
I_K = torch.eye(3, dtype=camray.dtype, device=camray.device)
I_K[0, 2] = 1.0
I_K[1, 2] = 1.0
# repeat I_K to match camray
I_K = I_K.unsqueeze(0).unsqueeze(0).expand(B, S, -1, -1)
cam_plane_depth = torch.ones(
B, S, num_patches_y, num_patches_x, 1, dtype=camray.dtype, device=camray.device
)
I_cam_plane_unproj = unproject_depth(
cam_plane_depth,
I_K,
c2w=None,
ixt_normalized=True,
num_patches_x=num_patches_x,
num_patches_y=num_patches_y,
) # (B, S, num_patches_y, num_patches_x, 3)
camray = camray.flatten(0, 1).flatten(1, 2) # (B*S, num_patches_y*num_patches_x, 6)
I_cam_plane_unproj = I_cam_plane_unproj.flatten(0, 1).flatten(
1, 2
) # (B*S, num_patches_y*num_patches_x, 3)
confidence = confidence.flatten(0, 1).flatten(1, 2) # (B*S, num_patches_y*num_patches_x)
# Compute optimal rotation to align rays
N = camray.shape[-2]
device = camray.device
n_iter, num_sample_for_ransac, n_sample, rand_sample_iters_idx = get_params_for_ransac(N, device)
# Use batch processing (confidence is guaranteed to be not None at this point)
if training:
camray = camray.clone().detach()
I_cam_plane_unproj = I_cam_plane_unproj.clone().detach()
confidence = confidence.clone().detach()
R, focal_lengths, principal_points = compute_optimal_rotation_intrinsics_batch(
I_cam_plane_unproj,
camray[:, :, :3],
reproj_threshold=reproj_threshold,
weights=confidence,
n_sample = n_sample,
n_iter=n_iter,
num_sample_for_ransac=num_sample_for_ransac,
rand_sample_iters_idx=rand_sample_iters_idx,
)
T = torch.sum(camray[:, :, 3:] * confidence.unsqueeze(-1), dim=1) / torch.sum(
confidence, dim=-1, keepdim=True
)
R = R.reshape(B, S, 3, 3)
T = T.reshape(B, S, 3)
focal_lengths = focal_lengths.reshape(B, S, 2)
principal_points = principal_points.reshape(B, S, 2)
return R, T, 1.0 / focal_lengths, principal_points + 1.0
def get_extrinsic_from_camray(camray, conf, patch_size_y, patch_size_x, training=False):
pred_R, pred_T, pred_focal_lengths, pred_principal_points = camray_to_caminfo(
camray, confidence=conf.squeeze(-1), training=training
)
pred_extrinsic = torch.cat(
[
torch.cat([pred_R, pred_T.unsqueeze(-1)], dim=-1),
repeat(
torch.tensor([0, 0, 0, 1], dtype=pred_R.dtype, device=pred_R.device),
"c -> b s 1 c",
b=pred_R.shape[0],
s=pred_R.shape[1],
),
],
dim=-2,
) # B, S, 4, 4
return pred_extrinsic, pred_focal_lengths, pred_principal_points