File size: 4,472 Bytes
e83ab3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
title: Hand-wave Quantum Solver
emoji: π
colorFrom: blue
colorTo: purple
sdk: streamlit
sdk_version: "1.28.0"
app_file: app.py
pinned: false
---
# βοΈ Quantum Potential Solver
**Author:** Ahilan Kumaresan
**Institution:** Simon Fraser University
**Field:** Mathematical & Computational Physics
---
## π― Overview
An advanced numerical solver for the **Time-Independent SchrΓΆdinger Equation** (TISE) using the Finite Difference Method. This project demonstrates rigorous computational physics methodology with comprehensive verification against analytical solutions and external libraries.
## π¬ Key Features
### 1. **Accurate Numerical Solver**
- **Method:** 3-point Central Difference stencil for the Laplacian operator
- **Grid:** Adaptive resolution (1000-2000 points)
- **Units:** Hartree Atomic Units (β=1, m=1)
- **Boundary Conditions:** Dirichlet (infinite walls)
### 2. **Multiple Potential Types**
- Infinite Square Well
- Harmonic Oscillator
- Double Well Potential
- Custom potentials via hand gestures (camera input)
### 3. **Interactive Visualizations**
- Plotly-based interactive charts
- Wavefunction probability densities
- Energy level diagrams
- Real-time solver performance metrics
### 4. **Rigorous Verification**
#### Analytical Benchmarks
| System | Max Error |
|--------|-----------|
| Infinite Square Well | < 0.003% |
| Harmonic Oscillator | < 0.02% |
| Half-Harmonic Oscillator | < 0.8% |
| Triangular Potential | < 0.003% |
#### External Library Comparison
- **Cross-verified with QMSolve** (Python quantum mechanics package)
- **Double Well Potential:** Agreement within 0.25%
- Demonstrates accuracy for systems without analytical solutions
## π Mathematical Foundation
The solver discretizes the TISE:
$$\hat{H}\psi(x) = E\psi(x)$$
$$\left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right]\psi(x) = E\psi(x)$$
Using finite differences:
$$\frac{d^2\psi}{dx^2} \approx \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2}$$
This transforms the problem into a matrix eigenvalue equation solved via `numpy.linalg.eigh`.
## π οΈ Technical Implementation
- **Language:** Python 3.12
- **Core Libraries:** NumPy, SciPy
- **Visualization:** Plotly, Matplotlib
- **UI Framework:** Streamlit
- **Computer Vision:** MediaPipe (for hand gesture input)
## π Verification Scripts
The project includes comprehensive verification:
- `verify_physics.py`: Analytical benchmarks
- `verify_comparison.py`: QMSolve cross-verification
- `Comparison_Notebook.ipynb`: Jupyter notebook with detailed analysis
## π Academic Applications
This project demonstrates:
1. **Numerical Methods:** Finite difference discretization of differential operators
2. **Linear Algebra:** Eigenvalue problems for Hermitian matrices
3. **Quantum Mechanics:** Stationary states and energy quantization
4. **Software Engineering:** Modular design, comprehensive testing, professional documentation
## π Usage
### Interactive Simulator
1. Select a potential type from the sidebar
2. Adjust parameters using sliders
3. View real-time solutions with interactive plots
### Verification Dashboard
- Navigate to "Benchmarks & Verification" to see accuracy metrics
- Compare against analytical solutions and QMSolve
### Theory Section
- Detailed mathematical background
- Implementation methodology
- Code verification
## π Repository Structure
```
psi_solve2/
βββ app.py # Main Streamlit application
βββ functions.py # Physics engine (solver + potentials)
βββ verify_physics.py # Analytical verification script
βββ verify_comparison.py # QMSolve comparison script
βββ Comparison_Notebook.ipynb # Jupyter analysis notebook
βββ requirements.txt # Python dependencies
```
## π Citation
If you use this solver in your research, please cite:
```
Kumaresan, A. (2024). Quantum Potential Solver: A Verified Finite Difference
Implementation for the Time-Independent SchrΓΆdinger Equation.
Simon Fraser University.
```
## π§ Contact
**Ahilan Kumaresan**
Mathematical & Computational Physics
Simon Fraser University
---
*This project showcases advanced computational physics methodology suitable for graduate-level research in quantum mechanics and numerical analysis.*
|