roo_fin2 / app.py
Aroy1997's picture
Update app.py
c69f021 verified
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import sympy as sp
x = sp.symbols('x')
# Generate polynomial template
def generate_polynomial_template(degree):
terms = [f"a{i}*x^{degree - i}" for i in range(degree)] + [f"a{degree}"]
return " + ".join(terms) + " = 0"
# Solve and plot
def solve_polynomial(degree, coeff_string):
try:
# Parse using sympy for support of pi, e, sqrt, I
coeffs = [sp.sympify(s) for s in coeff_string.strip().split()]
if len(coeffs) != degree + 1:
return f"⚠️ Please enter exactly {degree + 1} coefficients.", None, None
poly = sum([coeffs[i] * x**(degree - i) for i in range(degree + 1)])
simplified = sp.simplify(poly)
# Factor step-by-step
factored_steps = []
current_expr = simplified
while True:
factored = sp.factor(current_expr)
if factored == current_expr:
break
factored_steps.append(factored)
current_expr = factored
roots = sp.solve(sp.Eq(simplified, 0), x)
root_display = []
for i, r in enumerate(roots):
r_simplified = sp.nsimplify(r, rational=True)
root_display.append(f"r_{{{i+1}}} = {sp.latex(r_simplified)}")
# Build steps
steps_output = f"### 🧐 Polynomial Expression\n\n$$ {sp.latex(poly)} = 0 $$\n\n"
steps_output += f"### ✏️ Simplified\n\n$$ {sp.latex(simplified)} = 0 $$\n\n"
if factored_steps:
steps_output += f"### 🪜 Step-by-Step Factorization\n\n"
for i, step in enumerate(factored_steps, 1):
steps_output += f"**Step {i}:** $$ {sp.latex(step)} = 0 $$\n\n"
else:
steps_output += f"### 🤷 No further factorization possible\n\n"
steps_output += "### 🥮 Roots\n\n$$ " + " \\quad ".join(root_display) + " $$"
# Plot
f_lambdified = sp.lambdify(x, simplified, modules=["numpy"])
x_vals = np.linspace(-10, 10, 400)
y_vals = f_lambdified(x_vals)
fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(x_vals, y_vals, label="Polynomial")
ax.axhline(0, color='black', linewidth=0.5)
ax.axvline(0, color='black', linewidth=0.5)
ax.grid(True)
ax.set_title("📈 Graph of the Polynomial")
ax.set_xlabel("x")
ax.set_ylabel("f(x)")
# Plot real roots
real_roots = [sp.N(r.evalf()) for r in roots if sp.im(r) == 0]
for r in real_roots:
ax.plot([float(r)], [0], 'ro', label="Real Root")
ax.legend()
return steps_output, fig, ""
except Exception as e:
return f"❌ Error: {e}", None, ""
# Gradio UI
def update_template(degree):
return generate_polynomial_template(degree)
with gr.Blocks() as demo:
gr.Markdown("## 🔢 Polynomial Solver with Step-by-Step Factorization and Graph")
with gr.Row():
degree_slider = gr.Slider(1, 8, value=3, step=1, label="Degree of Polynomial")
template_display = gr.Textbox(label="Polynomial Template (Fill in Coefficients)", interactive=False)
coeff_input = gr.Textbox(label="Enter Coefficients (space-separated, supports pi, e, sqrt(2), I)", placeholder="e.g. 1 -3 sqrt(2) -pi")
steps_md = gr.Markdown()
plot_output = gr.Plot()
error_box = gr.Textbox(visible=False)
with gr.Row():
solve_button = gr.Button("Plot Polynomial", variant="primary")
degree_slider.change(fn=update_template, inputs=degree_slider, outputs=template_display)
solve_button.click(fn=solve_polynomial, inputs=[degree_slider, coeff_input], outputs=[steps_md, plot_output, error_box])
demo.load(fn=update_template, inputs=degree_slider, outputs=template_display)
demo.launch()