MophongLT / plugins /gate_explorer /gate_explorer.py
gaialive's picture
Upload 170 files
227c43a verified
"""
Quantum Gate Explorer module for GXS - QuantumNexus.
This module provides a way to visualize the effects of various quantum gates
on different input states. It calculates the resulting state vectors and
matrix representations for educational purposes.
"""
import cirq
import numpy as np
import json
from cirq.contrib.svg import circuit_to_svg
# Constants for common quantum states
STATES = {
'|0>': [1, 0],
'|1>': [0, 1],
'|+>': [1/np.sqrt(2), 1/np.sqrt(2)],
'|->': [1/np.sqrt(2), -1/np.sqrt(2)],
'|i+>': [1/np.sqrt(2), 1j/np.sqrt(2)],
'|i->': [1/np.sqrt(2), -1j/np.sqrt(2)]
}
# Map of supported gates with their cirq implementations
GATES = {
'X': cirq.X,
'Y': cirq.Y,
'Z': cirq.Z,
'H': cirq.H,
'S': cirq.S,
'T': cirq.T,
'Rx_pi/4': lambda q: cirq.rx(np.pi/4)(q),
'Ry_pi/4': lambda q: cirq.ry(np.pi/4)(q),
'Rz_pi/4': lambda q: cirq.rz(np.pi/4)(q),
'Rx_pi/2': lambda q: cirq.rx(np.pi/2)(q),
'Ry_pi/2': lambda q: cirq.ry(np.pi/2)(q),
'Rz_pi/2': lambda q: cirq.rz(np.pi/2)(q)
}
# Two-qubit gates
TWO_QUBIT_GATES = {
'CNOT': cirq.CNOT,
'CZ': cirq.CZ,
'SWAP': cirq.SWAP
}
def complex_to_json(complex_num):
"""Convert a complex number to a JSON-serializable format."""
return {
'real': float(np.real(complex_num)),
'imag': float(np.imag(complex_num))
}
def matrix_to_json(matrix):
"""Convert a numpy matrix containing complex numbers to JSON-serializable format."""
if isinstance(matrix, np.ndarray):
return [[complex_to_json(cell) for cell in row] for row in matrix]
return matrix
def create_initial_state(state_name, num_qubits):
"""
Creates the initial state vector based on the state name.
Args:
state_name: Name of the initial state (e.g., |00>, |+>|+>, |Bell>)
num_qubits: Number of qubits in the system
Returns:
Numpy array representing the initial state vector
"""
# Handle standard basis states like |00>, |01>, etc.
if state_name.startswith('|') and state_name.endswith('>'):
bits = state_name[1:-1]
# If the length matches num_qubits, it's a computational basis state
if len(bits) == num_qubits and all(bit in '01' for bit in bits):
# Create a one-hot vector for the basis state
index = int(bits, 2)
state = np.zeros(2**num_qubits, dtype=complex)
state[index] = 1.0
return state
# Handle special states
if state_name == '|+>|+>' and num_qubits == 2:
# Tensor product of |+> and |+>
plus_state = np.array([1, 1]) / np.sqrt(2)
return np.kron(plus_state, plus_state)
if state_name == '|Bell>' and num_qubits == 2:
# Bell state (|00> + |11>)/sqrt(2)
bell_state = np.zeros(4, dtype=complex)
bell_state[0] = 1 / np.sqrt(2)
bell_state[3] = 1 / np.sqrt(2)
return bell_state
# Default to all zeros state if not recognized
state = np.zeros(2**num_qubits, dtype=complex)
state[0] = 1.0
return state
def build_circuit_from_drag_drop(circuit_data):
"""
Builds a Cirq circuit from the drag-and-drop circuit data.
Args:
circuit_data: Dictionary containing circuit information from the frontend
Returns:
Tuple of (Cirq circuit, list of qubits, initial state vector)
"""
# Extract circuit parameters
num_qubits = circuit_data.get('qubits', 2)
initial_state_name = circuit_data.get('initial_state', '|' + '0' * num_qubits + '>')
gates_data = circuit_data.get('gates', [])
# Create qubits
qubits = [cirq.NamedQubit(f'q{i}') for i in range(num_qubits)]
# Create circuit
circuit = cirq.Circuit()
# Prepare initial state
initial_state_vector = create_initial_state(initial_state_name, num_qubits)
# Special circuit for Bell state preparation
if initial_state_name == '|Bell>' and num_qubits == 2:
circuit.append([cirq.H(qubits[0]), cirq.CNOT(qubits[0], qubits[1])])
# Circuit for |+>|+> state
elif initial_state_name == '|+>|+>' and num_qubits == 2:
circuit.append([cirq.H(qubits[0]), cirq.H(qubits[1])])
# Standard computational basis states
elif initial_state_name.startswith('|') and initial_state_name.endswith('>'):
bits = initial_state_name[1:-1]
if len(bits) == num_qubits:
for i, bit in enumerate(bits):
if bit == '1':
circuit.append(cirq.X(qubits[i]))
# Sort gates by slot
sorted_gates = sorted(gates_data, key=lambda g: g.get('slot', 0))
# Add gates to circuit
for gate_data in sorted_gates:
gate_name = gate_data.get('gate')
if 'qubit' in gate_data:
# Single-qubit gate
qubit_idx = gate_data.get('qubit')
if qubit_idx < num_qubits and gate_name in GATES:
gate_op = GATES[gate_name]
if callable(gate_op):
circuit.append(gate_op(qubits[qubit_idx]))
else:
circuit.append(gate_op(qubits[qubit_idx]))
else:
# Two-qubit gate
control_idx = gate_data.get('control')
target_idx = gate_data.get('target')
if (control_idx < num_qubits and target_idx < num_qubits and
gate_name in TWO_QUBIT_GATES):
gate_op = TWO_QUBIT_GATES[gate_name]
circuit.append(gate_op(qubits[control_idx], qubits[target_idx]))
return circuit, qubits, initial_state_vector
def run_interactive_circuit(circuit_data_json):
"""
Runs a quantum circuit defined by the interactive drag-and-drop interface.
Args:
circuit_data_json: JSON string containing circuit data from the frontend
Returns:
Dictionary with simulation results
"""
log = []
log.append("=== Quantum Gate Explorer: Interactive Circuit Simulation ===")
try:
# Parse the circuit data
circuit_data = json.loads(circuit_data_json)
# Build the circuit
circuit, qubits, initial_state = build_circuit_from_drag_drop(circuit_data)
# Log the circuit information
num_qubits = len(qubits)
log.append(f"Created circuit with {num_qubits} qubits")
log.append(f"Initial state: {circuit_data.get('initial_state', '|' + '0' * num_qubits + '>')}")
log.append(f"Circuit has {len(circuit)} operations")
# Generate circuit visualization
circuit_svg = circuit_to_svg(circuit)
# Simulate the circuit
simulator = cirq.Simulator()
result = simulator.simulate(circuit)
final_state = result.final_state_vector
# Calculate probabilities
initial_probs = np.abs(initial_state)**2
final_probs = np.abs(final_state)**2
# Determine phase information
initial_phases = np.angle(initial_state)
final_phases = np.angle(final_state)
# Format for JSON serialization
return {
'num_qubits': num_qubits,
'initial_state_name': circuit_data.get('initial_state', '|' + '0' * num_qubits + '>'),
'initial_state': [complex_to_json(c) for c in initial_state],
'output_state': [complex_to_json(c) for c in final_state],
'input_probabilities': initial_probs.tolist(),
'output_probabilities': final_probs.tolist(),
'input_phases': initial_phases.tolist(),
'output_phases': final_phases.tolist(),
'circuit_svg': circuit_svg,
'log': "\n".join(log)
}
except Exception as e:
log.append(f"Error: {str(e)}")
return {
'error': str(e),
'log': "\n".join(log)
}
def calculate_gate_effect(gate_name, input_state_name, is_two_qubit=False):
"""
Calculate the effect of applying a quantum gate to an input state.
Args:
gate_name: Name of the quantum gate to apply
input_state_name: Name of the input state
is_two_qubit: Whether the calculation is for a two-qubit gate
Returns:
Dictionary with gate information, input state, output state, and visualization
"""
log = []
log.append(f"=== Quantum Gate Explorer: {gate_name} on {input_state_name} ===")
try:
# Set up the input state
if not is_two_qubit:
# Single-qubit case
if input_state_name in STATES:
input_state = np.array(STATES[input_state_name])
log.append(f"Input state {input_state_name}: {input_state}")
else:
raise ValueError(f"Unknown input state: {input_state_name}")
if gate_name not in GATES:
raise ValueError(f"Unknown gate: {gate_name}")
# Create qubit and circuit
q = cirq.NamedQubit('q')
circuit = cirq.Circuit()
# Prepare input state
if input_state_name == '|1>':
circuit.append(cirq.X(q))
log.append("Applied X gate to prepare |1> state")
elif input_state_name == '|+>':
circuit.append(cirq.H(q))
log.append("Applied H gate to prepare |+> state")
elif input_state_name == '|->':
circuit.append([cirq.H(q), cirq.Z(q)])
log.append("Applied H and Z gates to prepare |-> state")
elif input_state_name == '|i+>':
circuit.append([cirq.H(q), cirq.S(q)])
log.append("Applied H and S gates to prepare |i+> state")
elif input_state_name == '|i->':
circuit.append([cirq.H(q), cirq.S(q), cirq.Z(q)])
log.append("Applied H, S and Z gates to prepare |i-> state")
# Get the gate to apply
gate_func = GATES[gate_name]
# Apply the gate
if callable(gate_func):
gate = gate_func(q)
circuit.append(gate)
log.append(f"Applied {gate_name} gate")
else:
circuit.append(gate_func(q))
log.append(f"Applied {gate_name} gate")
# Simulate the circuit
simulator = cirq.Simulator()
result = simulator.simulate(circuit)
output_state = result.final_state_vector
# Get the gate's matrix representation
gate_matrix = cirq.unitary(gate)
# Create a visualization
circuit_svg = circuit_to_svg(circuit)
# Calculate probabilities
input_probs = np.abs(input_state)**2
output_probs = np.abs(output_state)**2
# Determine phase information
input_phases = np.angle(input_state)
output_phases = np.angle(output_state)
# Format for JSON serialization
return {
'gate_name': gate_name,
'input_state_name': input_state_name,
'input_state': [complex_to_json(c) for c in input_state],
'output_state': [complex_to_json(c) for c in output_state],
'gate_matrix': matrix_to_json(gate_matrix),
'input_probabilities': input_probs.tolist(),
'output_probabilities': output_probs.tolist(),
'input_phases': input_phases.tolist(),
'output_phases': output_phases.tolist(),
'circuit_svg': circuit_svg,
'log': "\n".join(log)
}
else:
# Two-qubit case
if gate_name not in TWO_QUBIT_GATES:
raise ValueError(f"Unknown two-qubit gate: {gate_name}")
# For two-qubit gates, we use a simple |00> state as input by default
# or the first Bell state (|00> + |11>)/sqrt(2) if specified
q0 = cirq.NamedQubit('q0')
q1 = cirq.NamedQubit('q1')
circuit = cirq.Circuit()
# Prepare input state
if input_state_name == '|00>':
# Default state, no preparation needed
input_state = np.array([1, 0, 0, 0])
log.append("Using default |00> input state.")
elif input_state_name == 'Bell':
# Create a Bell state (|00> + |11>)/sqrt(2)
circuit.append([cirq.H(q0), cirq.CNOT(q0, q1)])
input_state = np.array([1/np.sqrt(2), 0, 0, 1/np.sqrt(2)])
log.append("Created Bell state (|00> + |11>)/sqrt(2)")
else:
raise ValueError(f"Unsupported two-qubit input state: {input_state_name}")
# Apply the two-qubit gate
gate_func = TWO_QUBIT_GATES[gate_name]
circuit.append(gate_func(q0, q1))
log.append(f"Applied {gate_name} gate")
# Simulate the circuit
simulator = cirq.Simulator()
result = simulator.simulate(circuit)
output_state = result.final_state_vector
# Get the gate's matrix representation
gate_matrix = cirq.unitary(gate_func)
# Create a visualization
circuit_svg = circuit_to_svg(circuit)
# Calculate probabilities
input_probs = np.abs(input_state)**2
output_probs = np.abs(output_state)**2
# Determine phase information
input_phases = np.angle(input_state)
output_phases = np.angle(output_state)
# Format for JSON serialization
return {
'gate_name': gate_name,
'input_state_name': input_state_name,
'is_two_qubit': True,
'input_state': [complex_to_json(c) for c in input_state],
'output_state': [complex_to_json(c) for c in output_state],
'gate_matrix': matrix_to_json(gate_matrix),
'input_probabilities': input_probs.tolist(),
'output_probabilities': output_probs.tolist(),
'input_phases': input_phases.tolist(),
'output_phases': output_phases.tolist(),
'circuit_svg': circuit_svg,
'log': "\n".join(log)
}
except Exception as e:
log.append(f"Error: {str(e)}")
return {
'gate_name': gate_name,
'input_state_name': input_state_name,
'error': str(e),
'log': "\n".join(log)
}
def run_gate_explorer(gate_name=None, input_state=None, is_two_qubit=False, circuit=None):
"""
Run the gate explorer with specified parameters.
Args:
gate_name: Name of the gate to apply
input_state: Name of the input state
is_two_qubit: Whether to use a two-qubit gate
circuit: JSON string describing a circuit for the interactive mode
Returns:
Dictionary with gate exploration results
"""
# If circuit data is provided, use the interactive mode
if circuit:
return run_interactive_circuit(circuit)
# Otherwise, use the single gate mode
return calculate_gate_effect(gate_name, input_state, is_two_qubit)