|
|
import gradio as gr |
|
|
import sympy as sp |
|
|
from pix2text import Pix2Text |
|
|
from PIL import Image |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
import re |
|
|
import io |
|
|
import logging |
|
|
from llm_utils import explain_with_llm |
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
x, y = sp.symbols('x y') |
|
|
|
|
|
|
|
|
def get_variable_symbol(varname): |
|
|
if varname in {"pi", "e", "I", "i"}: |
|
|
return x |
|
|
try: |
|
|
return sp.Symbol(varname) |
|
|
except Exception: |
|
|
return x |
|
|
|
|
|
|
|
|
try: |
|
|
p2t_model = Pix2Text.from_config() |
|
|
logger.info("Pix2Text model loaded successfully") |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to load Pix2Text model: {e}") |
|
|
p2t_model = None |
|
|
|
|
|
def clean_latex_expression(latex_str): |
|
|
"""Clean and normalize LaTeX expression for SymPy parsing""" |
|
|
if not latex_str: |
|
|
return "" |
|
|
|
|
|
latex_str = latex_str.strip() |
|
|
latex_str = re.sub(r'^\$\$|\$\$$', '', latex_str) |
|
|
latex_str = re.sub(r'\\[a-zA-Z]+\{([^}]*)\}', r'\1', latex_str) |
|
|
latex_str = re.sub(r'\\{2,}', r'\\', latex_str) |
|
|
latex_str = re.sub(r'\s+', ' ', latex_str) |
|
|
latex_str = re.sub(r'\^{([^}]+)}', r'**\1', latex_str) |
|
|
latex_str = re.sub(r'(\d*\.?\d+)\s*([xy])', r'\1*\2', latex_str) |
|
|
latex_str = re.sub(r'\s*([+\-*/=])\s*', r'\1', latex_str) |
|
|
|
|
|
if '=' in latex_str: |
|
|
left, right = latex_str.split('=') |
|
|
latex_str = f"{left} - ({right})" |
|
|
|
|
|
|
|
|
latex_str = re.sub(r'(\))([a-zA-Z])', r'\1*\2', latex_str) |
|
|
latex_str = re.sub(r'(\d|\w)\(', r'\1*(', latex_str) |
|
|
|
|
|
|
|
|
latex_str = latex_str.replace(r'\pi', 'pi') |
|
|
latex_str = latex_str.replace(r'\mathrm{e}', 'e') |
|
|
latex_str = latex_str.replace(r'\cdot', '*') |
|
|
latex_str = latex_str.replace(r'\times', '*') |
|
|
latex_str = latex_str.replace(r'\\', '') |
|
|
latex_str = re.sub(r'\\sqrt\{([^}]+)\}', r'sqrt(\1)', latex_str) |
|
|
|
|
|
return latex_str.strip() |
|
|
|
|
|
def parse_equation_type(latex_str): |
|
|
"""Determine if the equation is polynomial (single-variable) or linear system (two-variable)""" |
|
|
try: |
|
|
cleaned = clean_latex_expression(latex_str) |
|
|
if not cleaned: |
|
|
return 'polynomial' |
|
|
|
|
|
|
|
|
if 'y' in cleaned and 'x' in cleaned: |
|
|
if '\\\\' in latex_str or '\n' in latex_str or len(re.split(r'\\\\|\n|;', latex_str)) >= 2: |
|
|
return 'linear_system' |
|
|
return 'linear' |
|
|
|
|
|
|
|
|
try: |
|
|
expr = sp.sympify(cleaned.split('-')[0] if '-' in cleaned else cleaned) |
|
|
if x in expr.free_symbols and y not in expr.free_symbols: |
|
|
degree = sp.degree(expr, x) |
|
|
return 'polynomial' if degree > 0 else 'linear' |
|
|
elif x not in expr.free_symbols and y in expr.free_symbols: |
|
|
return 'polynomial' |
|
|
else: |
|
|
return 'polynomial' |
|
|
except: |
|
|
if 'x**' in cleaned or '^' in latex_str: |
|
|
return 'polynomial' |
|
|
return 'polynomial' |
|
|
except Exception as e: |
|
|
logger.error(f"Error determining equation type: {e}") |
|
|
return 'polynomial' |
|
|
|
|
|
def extract_polynomial_coefficients(latex_str): |
|
|
try: |
|
|
cleaned = clean_latex_expression(latex_str) |
|
|
expr = sp.sympify(cleaned, evaluate=False) |
|
|
if x not in expr.free_symbols and y not in expr.free_symbols: |
|
|
raise ValueError("No variable (x or y) found in expression") |
|
|
variable = next(iter(expr.free_symbols)) |
|
|
degree = sp.degree(expr, variable) |
|
|
if degree < 1 or degree > 8: |
|
|
raise ValueError(f"Polynomial degree {degree} is out of supported range (1-8)") |
|
|
poly = sp.Poly(expr, variable) |
|
|
coeffs = [poly.coeff_monomial(variable**i).evalf() for i in range(degree, -1, -1)] |
|
|
return { |
|
|
"type": "polynomial", |
|
|
"degree": degree, |
|
|
"coeffs": " ".join(map(str, coeffs)), |
|
|
"latex": latex_str, |
|
|
"success": True, |
|
|
"variable": str(variable) |
|
|
} |
|
|
except Exception as e: |
|
|
logger.error(f"Error extracting polynomial coefficients: {e}") |
|
|
return { |
|
|
"type": "polynomial", |
|
|
"degree": 2, |
|
|
"coeffs": "1 0 0", |
|
|
"latex": latex_str, |
|
|
"success": False, |
|
|
"error": str(e), |
|
|
"variable": "x" |
|
|
} |
|
|
|
|
|
def solve_polynomial(degree, coeff_string, real_only, variable_name="x"): |
|
|
try: |
|
|
variable = sp.Symbol(variable_name) |
|
|
coeffs = list(map(float, coeff_string.strip().split())) |
|
|
if len(coeffs) != degree + 1: |
|
|
return f"β οΈ Please enter exactly {degree + 1} coefficients.", None, None |
|
|
|
|
|
|
|
|
poly = sum([coeffs[i] * variable**(degree - i) for i in range(degree + 1)]) |
|
|
simplified = sp.simplify(poly) |
|
|
factored = sp.factor(simplified) |
|
|
roots = sp.solve(sp.Eq(simplified, 0), variable) |
|
|
|
|
|
if real_only: |
|
|
roots = [r for r in roots if sp.im(r) == 0] |
|
|
|
|
|
|
|
|
roots_output = "$$\n" + "\\ ".join( |
|
|
[f"r_{{{i}}} = {sp.latex(sp.nsimplify(r, rational=True))}" for i, r in enumerate(roots, 1)] |
|
|
) + "\n$$" |
|
|
|
|
|
|
|
|
steps_output = f""" |
|
|
### Polynomial Expression |
|
|
$$ {sp.latex(poly)} = 0 $$ |
|
|
### Simplified |
|
|
$$ {sp.latex(simplified)} = 0 $$ |
|
|
### Factored |
|
|
$$ {sp.latex(factored)} = 0 $$ |
|
|
### Roots {'(Only Real)' if real_only else '(All Roots)'} |
|
|
{roots_output} |
|
|
""" |
|
|
|
|
|
|
|
|
x_vals = np.linspace(-10, 10, 400) |
|
|
y_vals = np.polyval(coeffs, x_vals) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
|
ax.plot(x_vals, y_vals, label="Polynomial", color="blue") |
|
|
ax.axhline(0, color='black', linewidth=0.5) |
|
|
ax.axvline(0, color='black', linewidth=0.5) |
|
|
ax.grid(True) |
|
|
ax.set_title("Graph of the Polynomial") |
|
|
ax.set_xlabel(str(variable)) |
|
|
ax.set_ylabel("f(" + str(variable) + ")") |
|
|
ax.legend() |
|
|
|
|
|
return steps_output, fig, "" |
|
|
except Exception as e: |
|
|
return f"β Error: {e}", None, "" |
|
|
|
|
|
def extract_linear_system_coefficients(latex_str): |
|
|
try: |
|
|
cleaned = clean_latex_expression(latex_str) |
|
|
equations = re.split(r'\\\\|\n|;', latex_str) |
|
|
if len(equations) < 2: |
|
|
equations = re.split(r'(?<=[0-9])\s*(?=[+-]?\s*[0-9]*[xy])', cleaned) |
|
|
if len(equations) < 2 or 'y' not in cleaned or 'x' not in cleaned: |
|
|
raise ValueError("Could not find two equations or two variables (x, y) in system") |
|
|
|
|
|
eq1_str = equations[0].strip() |
|
|
eq2_str = equations[1].strip() |
|
|
|
|
|
def parse_linear_eq(eq_str): |
|
|
if '-' not in eq_str: |
|
|
raise ValueError("No equals sign (converted to '-') found") |
|
|
left, right = eq_str.split('-') |
|
|
expr = sp.sympify(left) - sp.sympify(right or '0') |
|
|
a = float(expr.coeff(x, 1)) if expr.coeff(x, 1) else 0 |
|
|
b = float(expr.coeff(y, 1)) if expr.coeff(y, 1) else 0 |
|
|
c = float(-expr.as_coefficients_dict()[1]) if 1 in expr.as_coefficients_dict() else 0 |
|
|
return f"{a} {b} {c}" |
|
|
|
|
|
eq1_coeffs = parse_linear_eq(eq1_str) |
|
|
eq2_coeffs = parse_linear_eq(eq2_str) |
|
|
return { |
|
|
"type": "linear", |
|
|
"eq1_coeffs": eq1_coeffs, |
|
|
"eq2_coeffs": eq2_coeffs, |
|
|
"latex": latex_str, |
|
|
"success": True |
|
|
} |
|
|
except Exception as e: |
|
|
logger.error(f"Error extracting linear system coefficients: {e}") |
|
|
return { |
|
|
"type": "linear", |
|
|
"eq1_coeffs": "1 1 3", |
|
|
"eq2_coeffs": "1 -1 1", |
|
|
"latex": latex_str, |
|
|
"success": False, |
|
|
"error": str(e) |
|
|
} |
|
|
|
|
|
def solve_linear_system_from_coeffs(eq1_str, eq2_str): |
|
|
try: |
|
|
coeffs1 = list(map(float, eq1_str.strip().split())) |
|
|
coeffs2 = list(map(float, eq2_str.strip().split())) |
|
|
|
|
|
if len(coeffs1) != 3 or len(coeffs2) != 3: |
|
|
return "β οΈ Please enter exactly 3 coefficients for each equation.", None, None, None |
|
|
|
|
|
a1, b1, c1 = coeffs1 |
|
|
a2, b2, c2 = coeffs2 |
|
|
|
|
|
eq1 = sp.Eq(a1 * x + b1 * y, c1) |
|
|
eq2 = sp.Eq(a2 * x + b2 * y, c2) |
|
|
|
|
|
sol = sp.solve([eq1, eq2], (x, y), dict=True) |
|
|
if not sol: |
|
|
return "β No unique solution.", None, None, None |
|
|
|
|
|
solution = sol[0] |
|
|
eq_latex = f"$$ {sp.latex(eq1)} \\ {sp.latex(eq2)} $$" |
|
|
|
|
|
steps = rf""" |
|
|
### Step-by-step Solution |
|
|
1. **Original Equations:** |
|
|
$$ {sp.latex(eq1)} $$ |
|
|
$$ {sp.latex(eq2)} $$ |
|
|
2. **Standard Form:** Already provided. |
|
|
3. **Solve using SymPy `solve`:** Internally applies substitution/elimination. |
|
|
4. **Solve for `x` and `y`:** |
|
|
$$ x = {sp.latex(solution[x])}, \quad y = {sp.latex(solution[y])} $$ |
|
|
5. **Verification:** Substitute back into both equations.""" |
|
|
|
|
|
x_vals = np.linspace(-10, 10, 400) |
|
|
f1 = sp.solve(eq1, y) |
|
|
f2 = sp.solve(eq2, y) |
|
|
|
|
|
fig, ax = plt.subplots() |
|
|
if f1: |
|
|
f1_func = sp.lambdify(x, f1[0], modules='numpy') |
|
|
ax.plot(x_vals, f1_func(x_vals), label=sp.latex(eq1)) |
|
|
if f2: |
|
|
f2_func = sp.lambdify(x, f2[0], modules='numpy') |
|
|
ax.plot(x_vals, f2_func(x_vals), label=sp.latex(eq2)) |
|
|
|
|
|
ax.plot(solution[x], solution[y], 'ro', label=f"Solution ({solution[x]}, {solution[y]})") |
|
|
ax.axhline(0, color='black', linewidth=0.5) |
|
|
ax.axvline(0, color='black', linewidth=0.5) |
|
|
ax.legend() |
|
|
ax.set_title("Graph of the Linear System") |
|
|
ax.grid(True) |
|
|
|
|
|
return eq_latex, steps, fig, "" |
|
|
except Exception as e: |
|
|
return f"β Error: {e}", None, None, None |
|
|
|
|
|
def extract_equation_from_image(image_file): |
|
|
try: |
|
|
if p2t_model is None: |
|
|
return { |
|
|
"type": "error", |
|
|
"latex": "Pix2Text model not loaded. Please check installation.", |
|
|
"success": False |
|
|
} |
|
|
if image_file is None: |
|
|
return { |
|
|
"type": "error", |
|
|
"latex": "No image file provided.", |
|
|
"success": False |
|
|
} |
|
|
|
|
|
if isinstance(image_file, str): |
|
|
image = Image.open(image_file) |
|
|
else: |
|
|
image = Image.open(image_file.name) |
|
|
|
|
|
if image.mode != 'RGB': |
|
|
image = image.convert('RGB') |
|
|
|
|
|
logger.info(f"Processing image of size: {image.size}") |
|
|
result = p2t_model.recognize_text_formula(image) |
|
|
|
|
|
if not result or result.strip() == "": |
|
|
return { |
|
|
"type": "error", |
|
|
"latex": "No text or formulas detected in the image.", |
|
|
"success": False |
|
|
} |
|
|
|
|
|
logger.info(f"Extracted text: {result}") |
|
|
eq_type = parse_equation_type(result) |
|
|
|
|
|
if eq_type == 'polynomial': |
|
|
return extract_polynomial_coefficients(result) |
|
|
elif eq_type == 'linear_system': |
|
|
return extract_linear_system_coefficients(result) |
|
|
else: |
|
|
return { |
|
|
"type": "error", |
|
|
"latex": f"Unsupported equation type detected: {eq_type}", |
|
|
"success": False |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error processing image: {e}") |
|
|
return { |
|
|
"type": "error", |
|
|
"latex": f"Error processing image: {str(e)}", |
|
|
"success": False |
|
|
} |
|
|
|
|
|
def solve_extracted_equation(eq_data, real_only): |
|
|
if eq_data["type"] == "polynomial": |
|
|
return solve_polynomial(eq_data["degree"], eq_data["coeffs"], real_only, eq_data.get("variable", "x")) |
|
|
elif eq_data["type"] == "linear": |
|
|
return "β Single linear equation not supported. Please upload a system of equations.", None, "" |
|
|
elif eq_data["type"] == "linear_system": |
|
|
return solve_linear_system_from_coeffs(eq_data["eq1_coeffs"], eq_data["eq2_coeffs"]) |
|
|
else: |
|
|
return "β Unknown equation type", None, "" |
|
|
|
|
|
def image_tab(): |
|
|
"""Create the Image Upload Solver tab""" |
|
|
with gr.Tab("Image Upload Solver"): |
|
|
gr.Markdown("## Solve Equations from Image") |
|
|
|
|
|
with gr.Row(): |
|
|
image_input = gr.File( |
|
|
label="Upload Question Image", |
|
|
file_types=[".pdf", ".png", ".jpg", ".jpeg"], |
|
|
file_count="single" |
|
|
) |
|
|
image_upload_btn = gr.Button("Process Image") |
|
|
|
|
|
gr.Markdown("**Supported Formats:** .pdf, .png, .jpg, .jpeg") |
|
|
|
|
|
with gr.Row(): |
|
|
real_image_checkbox = gr.Checkbox(label="Show Only Real Roots (for Polynomials)", value=False) |
|
|
preview_image_btn = gr.Button("Preview Equation") |
|
|
|
|
|
image_equation_display = gr.Markdown() |
|
|
|
|
|
with gr.Row(): |
|
|
confirm_image_btn = gr.Button("Display Solution", visible=False) |
|
|
edit_image_btn = gr.Button("Make Changes Manually", visible=False) |
|
|
|
|
|
edit_latex_input = gr.Textbox(label="Edit LaTeX Equation", visible=False, lines=3) |
|
|
save_edit_btn = gr.Button("Save Changes", visible=False) |
|
|
|
|
|
image_steps_md = gr.Markdown() |
|
|
image_plot_output = gr.Plot() |
|
|
extracted_eq_state = gr.State() |
|
|
|
|
|
llm_url_input = gr.Textbox(label="LLM Microservice URL (optional)", placeholder="https://your-llm.ngrok.app") |
|
|
explain_image_btn = gr.Button("Explain with LLM") |
|
|
image_solution_txt = gr.Textbox(visible=False) |
|
|
|
|
|
def handle_image_upload(image_file): |
|
|
if image_file is None: |
|
|
return "", None, "", None, None |
|
|
try: |
|
|
eq_data = extract_equation_from_image(image_file) |
|
|
return "", eq_data, "", None, None |
|
|
except Exception: |
|
|
return "", None, "", None, None |
|
|
|
|
|
image_upload_btn.click( |
|
|
fn=handle_image_upload, |
|
|
inputs=[image_input], |
|
|
outputs=[image_equation_display, extracted_eq_state, image_steps_md, |
|
|
image_plot_output, edit_latex_input] |
|
|
) |
|
|
|
|
|
def preview_image_equation(eq_data, real_only): |
|
|
if not eq_data: |
|
|
return "β οΈ No equation data available.", gr.update(visible=False), gr.update(visible=False), "", None |
|
|
if eq_data["type"] == "error": |
|
|
return eq_data["latex"], gr.update(visible=False), gr.update(visible=False), "", None |
|
|
|
|
|
preview_text = f""" |
|
|
### β
Confirm {'Polynomial' if eq_data['type'] == 'polynomial' else 'Linear System'} |
|
|
**Extracted LaTeX:** {eq_data['latex']} |
|
|
""" |
|
|
return preview_text, gr.update(visible=True), gr.update(visible=True), "", None |
|
|
|
|
|
preview_image_btn.click( |
|
|
fn=preview_image_equation, |
|
|
inputs=[extracted_eq_state, real_image_checkbox], |
|
|
outputs=[image_equation_display, confirm_image_btn, edit_image_btn, |
|
|
image_steps_md, image_plot_output] |
|
|
) |
|
|
|
|
|
def confirm_image_solution(eq_data, real_only): |
|
|
if not eq_data or eq_data["type"] == "error": |
|
|
return "β οΈ No valid equation to solve.", None, "" |
|
|
try: |
|
|
steps, plot, _ = solve_extracted_equation(eq_data, real_only) |
|
|
return steps, plot, gr.update(value=steps) |
|
|
except Exception as e: |
|
|
return f"β Error solving equation: {str(e)}", None, "" |
|
|
|
|
|
confirm_image_btn.click( |
|
|
fn=confirm_image_solution, |
|
|
inputs=[extracted_eq_state, real_image_checkbox], |
|
|
outputs=[image_steps_md, image_plot_output, image_solution_txt] |
|
|
) |
|
|
|
|
|
def enable_manual_edit(eq_data): |
|
|
latex_value = eq_data.get("latex", "") if eq_data and eq_data["type"] != "error" else "Error in extraction." |
|
|
return ( |
|
|
gr.update(visible=True, value=latex_value), |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=False) |
|
|
) |
|
|
|
|
|
edit_image_btn.click( |
|
|
fn=enable_manual_edit, |
|
|
inputs=[extracted_eq_state], |
|
|
outputs=[edit_latex_input, save_edit_btn, confirm_image_btn, edit_image_btn] |
|
|
) |
|
|
|
|
|
def save_manual_changes(latex_input, real_only): |
|
|
try: |
|
|
if not latex_input.strip(): |
|
|
return "β οΈ Please enter a valid equation.", None, "" |
|
|
eq_type = parse_equation_type(latex_input) |
|
|
if eq_type == 'polynomial': |
|
|
eq_data = extract_polynomial_coefficients(latex_input) |
|
|
steps, plot, _ = solve_polynomial(eq_data["degree"], eq_data["coeffs"], real_only, eq_data.get("variable", "x")) |
|
|
elif eq_type == 'linear_system': |
|
|
eq_data = extract_linear_system_coefficients(latex_input) |
|
|
_, steps, plot, _ = solve_linear_system_from_coeffs(eq_data["eq1_coeffs"], eq_data["eq2_coeffs"]) |
|
|
else: |
|
|
return "β Unsupported equation type", None, "" |
|
|
return steps, plot, gr.update(value=steps) |
|
|
except Exception as e: |
|
|
return f"β Error parsing manual input: {str(e)}", None, "" |
|
|
|
|
|
save_edit_btn.click( |
|
|
fn=save_manual_changes, |
|
|
inputs=[edit_latex_input, real_image_checkbox], |
|
|
outputs=[image_steps_md, image_plot_output, image_solution_txt] |
|
|
) |
|
|
|
|
|
explain_image_btn.click( |
|
|
fn=lambda sol, url: explain_with_llm(sol, "image", url), |
|
|
inputs=[image_solution_txt, llm_url_input], |
|
|
outputs=[image_steps_md] |
|
|
) |
|
|
|
|
|
return ( |
|
|
image_input, image_upload_btn, real_image_checkbox, preview_image_btn, |
|
|
image_equation_display, confirm_image_btn, edit_image_btn, edit_latex_input, |
|
|
save_edit_btn, image_steps_md, image_plot_output, extracted_eq_state, |
|
|
llm_url_input, explain_image_btn, image_solution_txt |
|
|
) |
|
|
|