Spaces:
Sleeping
Sleeping
File size: 28,185 Bytes
f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 25c59a3 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 cfcbbdd f5e17f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
# app.py
# Unified Codex Artifact: Numba RFT Hardware-Scale Demo + PyTorch MOM Kernel + Lineage Hashing
# Author: Liam Grinstead — NexFrame AI, RFT, MOM, Codex
#
# This file combines:
# 1) A Numba-accelerated RFT simulation over hardware scales (Ψ_r, energy, ledger) with honest timing.
# 2) A PyTorch MOM collapse kernel with feedback, event histories, raster onset, and manifest sealing.
# 3) Gradio Blocks UI with two tabs, codex-ready summaries, and optional snapshot hashes.
#
# Notes:
# - GFLOPS in both paths are labeled as “estimated” unless you replace with exact op counts.
# - Timing excludes plotting and hashing.
# - Deterministic seeds are used for reproducibility.
import json
import hashlib
import tempfile
import time
import numpy as np
import gradio as gr
# --- Numba (optional import with graceful fallback for CPU-only runs) ---
try:
import numba as nb
NUMBA_AVAILABLE = True
except Exception:
NUMBA_AVAILABLE = False
# --- PyTorch for MOM kernel ---
import torch
import matplotlib.pyplot as plt
# =========================================================================================
# Part A: RFT (Numba) — Hardware-scale Ψ_r simulation
# =========================================================================================
if NUMBA_AVAILABLE:
@nb.njit(parallel=True, fastmath=True)
def rft_simulation_numba(
hardware_scale_input, steps_input,
Psi_r_init, tau_eff, delta_tau_pred, epsilon_c,
phi_loop, eta_sync, omega_n, lambda_m,
alpha_nonlin, beta_nonlin, gamma_nonlin, delta_nonlin, epsilon_nonlin, zeta_nonlin, kappa_nonlin, mu_nonlin, n_nonlin,
ops_per_sec_base, flops_base
):
num_scales = hardware_scale_input.shape[0]
Psi_r = np.full((num_scales, steps_input), Psi_r_init, dtype=np.float64)
energy = np.full((num_scales, steps_input), 100.0, dtype=np.float64)
ledger_size = np.zeros((num_scales, steps_input), dtype=np.int64)
prod = omega_n * lambda_m
if prod <= 0.0:
prod = 1e-12
log_term = np.log(prod)
for scale_idx in nb.prange(num_scales):
scale = hardware_scale_input[scale_idx]
for step in range(1, steps_input):
scale_efficiency = 1 - 0.0002 * (scale - 1)
if scale_efficiency < 0.5:
scale_efficiency = 0.5
current_psi_r = Psi_r[scale_idx, step - 1]
ops_per_sec = ops_per_sec_base * scale * scale_efficiency * (1 + 0.05 * current_psi_r)
phase_entropy = current_psi_r * epsilon_c
# Nonlinear term (unused in state update but computed for conceptual completeness)
numerator = (current_psi_r ** alpha_nonlin) * (tau_eff ** beta_nonlin) * (phi_loop ** delta_nonlin) * (log_term ** zeta_nonlin)
denominator = ((delta_tau_pred + epsilon_c) ** gamma_nonlin) * (eta_sync ** epsilon_nonlin) * (1 + mu_nonlin * (phase_entropy ** n_nonlin))
_ = numerator / denominator # kept as a placeholder for future coupling
# Energy loss if the phase exceeds baseline
energy_loss = 0.01 * (current_psi_r - Psi_r_init) if current_psi_r > Psi_r_init else 0.0
energy_val = energy[scale_idx, step - 1] - energy_loss
if energy_val < 0.0:
energy_val = 0.0
energy[scale_idx, step] = energy_val
# Ledger growth (synthetic, narratable)
ledger_growth = int(scale * 5 + (step % 10))
ledger_size[scale_idx, step] = ledger_size[scale_idx, step - 1] + ledger_growth
# Phase update
Psi_r[scale_idx, step] = current_psi_r + 0.0005 * energy_loss + 0.00001 * ops_per_sec / 1e6
return Psi_r, energy, ledger_size
def run_rft_hardware_scale(
num_scales_to_simulate: int,
simulation_steps: int,
psi_r_init_val: float,
tau_eff_val: float,
delta_tau_pred_val: float,
epsilon_c_val: float,
phi_loop_val: float,
eta_sync_val: float,
omega_n_val: float,
lambda_m_val: float,
alpha_exp: float,
beta_exp: float,
gamma_exp: float,
delta_exp: float,
epsilon_exp: float,
zeta_exp: float,
kappa_exp: float,
mu_exp: float,
n_exp: int,
seed: int = 42,
include_hash: bool = True
):
np.random.seed(seed)
hardware_scale = np.linspace(1, 1000, num_scales_to_simulate)
ops_per_sec_base = 1e6
flops_base = 2e6
# Optional warmup to avoid JIT timing skew
if NUMBA_AVAILABLE:
_ = rft_simulation_numba(
hardware_scale_input=hardware_scale[:2],
steps_input=5,
Psi_r_init=psi_r_init_val,
tau_eff=tau_eff_val,
delta_tau_pred=delta_tau_pred_val,
epsilon_c=epsilon_c_val,
phi_loop=phi_loop_val,
eta_sync=eta_sync_val,
omega_n=omega_n_val,
lambda_m=lambda_m_val,
alpha_nonlin=alpha_exp,
beta_nonlin=beta_exp,
gamma_nonlin=gamma_exp,
delta_nonlin=delta_exp,
epsilon_nonlin=epsilon_exp,
zeta_nonlin=zeta_exp,
kappa_nonlin=kappa_exp,
mu_nonlin=mu_exp,
n_nonlin=n_exp,
ops_per_sec_base=ops_per_sec_base,
flops_base=flops_base
)
start = time.perf_counter()
if NUMBA_AVAILABLE:
Psi_r_res, energy_res, ledger_res = rft_simulation_numba(
hardware_scale_input=hardware_scale,
steps_input=simulation_steps,
Psi_r_init=psi_r_init_val,
tau_eff=tau_eff_val,
delta_tau_pred=delta_tau_pred_val,
epsilon_c=epsilon_c_val,
phi_loop=phi_loop_val,
eta_sync=eta_sync_val,
omega_n=omega_n_val,
lambda_m=lambda_m_val,
alpha_nonlin=alpha_exp,
beta_nonlin=beta_exp,
gamma_nonlin=gamma_exp,
delta_nonlin=delta_exp,
epsilon_nonlin=epsilon_exp,
zeta_nonlin=zeta_exp,
kappa_nonlin=kappa_exp,
mu_nonlin=mu_exp,
n_nonlin=n_exp,
ops_per_sec_base=ops_per_sec_base,
flops_base=flops_base
)
else:
# Fallback pure NumPy implementation (slower, but keeps app functional)
num_scales = hardware_scale.shape[0]
Psi_r_res = np.full((num_scales, simulation_steps), psi_r_init_val, dtype=np.float64)
energy_res = np.full((num_scales, simulation_steps), 100.0, dtype=np.float64)
ledger_res = np.zeros((num_scales, simulation_steps), dtype=np.int64)
prod = omega_n_val * lambda_m_val
if prod <= 0.0:
prod = 1e-12
log_term = np.log(prod)
for scale_idx in range(num_scales):
scale = hardware_scale[scale_idx]
for step in range(1, simulation_steps):
scale_eff = 1 - 0.0002 * (scale - 1)
if scale_eff < 0.5:
scale_eff = 0.5
current_psi = Psi_r_res[scale_idx, step - 1]
ops_per_sec = ops_per_sec_base * scale * scale_eff * (1 + 0.05 * current_psi)
phase_entropy = current_psi * epsilon_c_val
numerator = (current_psi ** alpha_exp) * (tau_eff_val ** beta_exp) * (phi_loop_val ** delta_exp) * (log_term ** zeta_exp)
denominator = ((delta_tau_pred_val + epsilon_c_val) ** gamma_exp) * (eta_sync_val ** epsilon_exp) * (1 + mu_exp * (phase_entropy ** n_exp))
_ = numerator / denominator
energy_loss = 0.01 * (current_psi - psi_r_init_val) if current_psi > psi_r_init_val else 0.0
energy_val = energy_res[scale_idx, step - 1] - energy_loss
if energy_val < 0.0:
energy_val = 0.0
energy_res[scale_idx, step] = energy_val
ledger_growth = int(scale * 5 + (step % 10))
ledger_res[scale_idx, step] = ledger_res[scale_idx, step - 1] + ledger_growth
Psi_r_res[scale_idx, step] = current_psi + 0.0005 * energy_loss + 0.00001 * ops_per_sec / 1e6
elapsed = max(time.perf_counter() - start, 1e-9)
# Final metrics at max scale
max_scale_idx = num_scales_to_simulate - 1
final_step = simulation_steps - 1
psi_r_final = float(Psi_r_res[max_scale_idx, final_step])
energy_final = float(energy_res[max_scale_idx, final_step])
ledger_final = int(ledger_res[max_scale_idx, final_step])
scale = hardware_scale[max_scale_idx]
scale_efficiency = max(1 - 0.0002 * (scale - 1), 0.5)
ops_per_sec_final = ops_per_sec_base * scale * scale_efficiency * (1 + 0.05 * psi_r_final)
flops_final = flops_base * scale * scale_efficiency * (1 + 0.05 * psi_r_final)
total_estimated_flops = flops_final * simulation_steps * num_scales_to_simulate
avg_gflops_per_sec = total_estimated_flops / (elapsed * 1e9)
# Plot
fig, ax = plt.subplots(figsize=(7, 4))
ax.plot(hardware_scale, Psi_r_res[:, -1], color="#3b82f6")
ax.set_title("Final Ψ_r vs Hardware Scale")
ax.set_xlabel("Hardware Scale (SPUs)")
ax.set_ylabel("Final Ψ_r")
ax.grid(True, alpha=0.3)
plt.tight_layout()
_, plot_path = tempfile.mkstemp(suffix=".png")
plt.savefig(plot_path)
plt.close(fig)
# Manifest + hash
run_ipurl = None
if include_hash:
manifest = {
"num_scales": int(num_scales_to_simulate),
"steps": int(simulation_steps),
"Psi_r_init": float(psi_r_init_val),
"tau_eff": float(tau_eff_val),
"delta_tau_pred": float(delta_tau_pred_val),
"epsilon_c": float(epsilon_c_val),
"phi_loop": float(phi_loop_val),
"eta_sync": float(eta_sync_val),
"omega_n": float(omega_n_val),
"lambda_m": float(lambda_m_val),
"alpha": float(alpha_exp),
"beta": float(beta_exp),
"gamma": float(gamma_exp),
"delta": float(delta_exp),
"epsilon": float(epsilon_exp),
"zeta": float(zeta_exp),
"kappa": float(kappa_exp),
"mu": float(mu_exp),
"n": int(n_exp),
"seed": int(seed),
"elapsed_seconds": float(elapsed),
"avg_gflops_per_sec_est": float(avg_gflops_per_sec),
"psi_r_final": float(psi_r_final),
"energy_final": float(energy_final),
"ledger_final": int(ledger_final),
"psi_r_head": [float(x) for x in Psi_r_res[max_scale_idx, :10]]
}
serialized = json.dumps(manifest, sort_keys=True, separators=(",", ":")).encode("utf-8")
run_ipurl = f"rft-numba:v1:{hashlib.sha512(serialized).hexdigest()}"
summary = (
f"RFT Hardware-Scale Simulation\n"
f"- Simulation Time: {elapsed:.6f} s\n"
f"- Max Scale: {hardware_scale[max_scale_idx]:.1f} SPUs\n"
f"- Final Ψ_r: {psi_r_final:.6f}\n"
f"- Final Energy (%): {energy_final:.6f}\n"
f"- Final Ledger Size: {ledger_final}\n"
f"- Estimated Peak Ops/sec: {ops_per_sec_final:.2e}\n"
f"- Estimated Peak FLOPS: {flops_final:.2e}\n"
f"- Naive Average GFLOPS/sec: {avg_gflops_per_sec:.2f}\n"
+ (f"- Run IPURL: {run_ipurl}\n" if run_ipurl else "")
)
return summary, plot_path
# =========================================================================================
# Part B: PyTorch MOM kernel — Collapse dynamics + histories + raster onset
# =========================================================================================
def fused_mom_update_cpu(m_root_t, A_t, Q_t, alpha_t, gamma_t, omega_t,
dt, eps, sigma_const, theta_global, k_shred_global,
event_counts_t=None, event_buffer_t=None):
# Types
m_root_t = m_root_t.to(torch.float32)
A_t = A_t.to(torch.float32)
Q_t = Q_t.to(torch.float32)
alpha_t = alpha_t.to(torch.float32)
gamma_t = gamma_t.to(torch.float32)
omega_t = omega_t.to(torch.float32)
# Expand
alpha_exp = alpha_t.unsqueeze(0)
gamma_exp = gamma_t.unsqueeze(0)
omega_exp = omega_t.unsqueeze(0)
m_root_exp = m_root_t.unsqueeze(1)
# Dynamics
A_dot = alpha_exp * m_root_exp - gamma_exp * A_t + sigma_const * Q_t
f_drive = sigma_const * m_root_exp * omega_exp * A_t
Q_dot = f_drive - Q_t
A_t.add_(dt * A_dot)
Q_t.add_(dt * Q_dot)
# Shred trigger
Xi = (omega_exp * A_t).sum(dim=1)
Xi_norm = Xi / (m_root_t + eps)
shred_mask = Xi_norm >= theta_global
if torch.any(shred_mask):
eta_values = torch.zeros_like(Xi_norm)
eta_calc = 1.0 - torch.exp(-k_shred_global * (Xi_norm[shred_mask] - theta_global))
eta_values[shred_mask] = torch.clamp(eta_calc, 0.0, 1.0)
diss = 0.01 * m_root_t * eta_values
m_post = (1.0 - eta_values) * m_root_t - diss
m_post = torch.clamp(m_post, min=0.0)
m_root_t[shred_mask] = m_post[shred_mask]
shred_count = int(torch.sum(shred_mask).item())
if event_counts_t is not None:
if isinstance(event_counts_t, torch.Tensor):
if event_counts_t.dtype not in (torch.int64, torch.int32):
event_counts_t = event_counts_t.to(torch.int64)
event_counts_t.add_(shred_count)
else:
event_counts_t += shred_count
# Optional: write indices into event buffer (pack iteration externally)
if event_buffer_t is not None and isinstance(event_buffer_t, torch.Tensor):
# This is a simple increment-only counter; you can replace with actual raster indexing scheme.
pass
return m_root_t, A_t, Q_t, event_counts_t
class MOMKernel:
def __init__(self):
self.kernel = fused_mom_update_cpu
self.device = torch.device('cpu')
def __call__(self, m_root_t, A_t, Q_t, alpha_t, gamma_t, omega_t,
dt, eps, sigma_const, theta_global, k_shred_global,
event_counts_t=None, event_buffer_t=None):
return self.kernel(m_root_t, A_t, Q_t, alpha_t, gamma_t, omega_t,
dt, eps, sigma_const, theta_global, k_shred_global,
event_counts_t, event_buffer_t)
class MOMSystemLoop:
def __init__(self, mom_kernel, m_root_initial, A_modes_initial, Q_drive_initial,
alpha, gamma, omega, dt=0.02, eps=1e-6, sigma=0.75,
theta=2.2, k_shred=1.2, event_buffer_size=1024, rng_seed=42):
self.mom_kernel = mom_kernel
self.device = mom_kernel.device
# State
self.m_root = m_root_initial.to(self.device).clone().to(torch.float32)
self.A_modes = A_modes_initial.to(self.device).clone().to(torch.float32)
self.Q_drive = Q_drive_initial.to(self.device).clone().to(torch.float32)
self.alpha = alpha.to(self.device).to(torch.float32)
self.gamma = gamma.to(self.device).to(torch.float32)
self.omega = omega.to(self.device).to(torch.float32)
# Params
self.dt = dt; self.eps = eps; self.sigma = sigma
self.theta = theta; self.k_shred = k_shred
# Events
self.event_counts = torch.zeros((), dtype=torch.int64, device=self.device)
self.event_buffer = torch.zeros(event_buffer_size, dtype=torch.int64, device=self.device)
# Histories
self.m_root_history = []
self.A_modes_history = []
self.event_counts_history = []
self.shred_onset = np.full((self.m_root.shape[0],), -1, dtype=np.int32)
# RNG for deterministic noise
self.gen = torch.Generator(device=self.device)
self.gen.manual_seed(int(rng_seed))
def feedback(self, m_root, A_modes, Q_drive):
decay = 0.995
noise_level = 1e-4
A_modes_new = A_modes * decay + noise_level * torch.random_like(A_modes, generator=self.gen, device=self.device)
A_modes_new = torch.clamp(A_modes_new, min=0.0)
m_root_new = m_root * decay + noise_level * torch.randn_like(m_root, generator=self.gen, device=self.device)
m_root_new = torch.clamp(m_root_new, min=0.0)
return m_root_new, A_modes_new, Q_drive
def run(self, iterations):
for i in range(iterations):
self.event_counts.zero_()
self.mom_kernel(self.m_root, self.A_modes, self.Q_drive,
self.alpha, self.gamma, self.omega,
self.dt, self.eps, self.sigma, self.theta, self.k_shred,
self.event_counts, self.event_buffer)
m_np = self.m_root.detach().cpu().numpy()
collapsed_mask = m_np <= 1e-8
for idx, collapsed in enumerate(collapsed_mask):
if collapsed and self.shred_onset[idx] == -1:
self.shred_onset[idx] = i
self.m_root, self.A_modes, self.Q_drive = self.feedback(self.m_root, self.A_modes, self.Q_drive)
self.m_root_history.append(float(self.m_root.mean().item()))
self.A_modes_history.append(float(self.A_modes.mean().item()))
self.event_counts_history.append(int(self.event_counts.item()))
def run_mom_simulation(
Ncells, Nmode, iterations, dt=0.02, eps=1e-6, sigma=0.75,
theta=2.2, k_shred=1.2, seed=42, include_hash=True
):
torch.manual_seed(seed)
np.random.seed(seed)
mom_kernel_instance = MOMKernel()
device = mom_kernel_instance.device
alpha = torch.empty(Nmode, device=device).uniform_(0.02, 0.12)
gamma = torch.empty(Nmode, device=device).uniform_(0.01, 0.06)
omega = torch.linspace(1.0, 8.0, Nmode, device=device)
m_root_initial = torch.ones(Ncells, device=device)
A_modes_initial = torch.rand(Ncells, Nmode, device=device) * 0.01
Q_drive_initial = torch.zeros(Ncells, Nmode, device=device)
mom_system = MOMSystemLoop(
mom_kernel_instance, m_root_initial, A_modes_initial, Q_drive_initial,
alpha, gamma, omega, dt=dt, eps=eps, sigma=sigma,
theta=theta, k_shred=k_shred, rng_seed=seed
)
# Warmup (excluded from timing)
mom_system.run(1)
start_time = time.perf_counter()
mom_system.run(iterations)
elapsed_time = max(time.perf_counter() - start_time, 1e-9)
# Estimated FLOPs (placeholder estimate)
ops_per_cell_per_iter = 12 * Nmode + 13
flops_per_iteration = float(Ncells) * float(ops_per_cell_per_iter)
total_flops = flops_per_iteration * float(iterations)
gflops = total_flops / (elapsed_time * 1e9)
# Build plots (excluded from elapsed_time)
fig = plt.figure(figsize=(10, 14))
ax1 = fig.add_subplot(4, 1, 1)
ax1.plot(mom_system.m_root_history, label='Mean m_root')
ax1.set_title('Mean m_root Over Iterations'); ax1.set_xlabel('Iteration'); ax1.set_ylabel('Mean m_root')
ax1.grid(True); ax1.legend()
ax2 = fig.add_subplot(4, 1, 2)
ax2.plot(mom_system.A_modes_history, label='Mean A_modes', color='orange')
ax2.set_title('Mean A_modes Over Iterations')
ax2.set_xlabel('Iteration'); ax2.set_ylabel('Mean A_modes')
ax2.grid(True); ax2.legend()
ax3 = fig.add_subplot(4, 1, 3)
cumulative_events = np.cumsum(np.array(mom_system.event_counts_history))
ax3.plot(cumulative_events, label='Cumulative Shredding Events', color='red')
ax3.set_title('Cumulative Shredding Events')
ax3.set_xlabel('Iteration'); ax3.set_ylabel('Cumulative Events')
ax3.grid(True); ax3.legend()
ax4 = fig.add_subplot(4, 1, 4)
onset = mom_system.shred_onset
for idx, val in enumerate(onset):
if val >= 0:
ax4.vlines(val, idx, idx + 1, color='black', linewidth=0.8)
ax4.set_title('Shredding Onset per Cell')
ax4.set_xlabel('Iteration'); ax4.set_ylabel('Cell Index')
ax4.grid(True)
plt.tight_layout()
_, plot_path = tempfile.mkstemp(suffix=".png")
plt.savefig(plot_path)
plt.close(fig)
# Manifest + hash
run_ipurl = None
if include_hash:
manifest = {
"Ncells": int(Ncells), "Nmode": int(Nmode), "iterations": int(iterations),
"dt": float(dt), "eps": float(eps), "sigma": float(sigma),
"theta": float(theta), "k_shred": float(k_shred), "seed": int(seed),
"elapsed_time_seconds": float(elapsed_time),
"gflops_estimated": float(gflops),
"m_root_head": [float(x) for x in mom_system.m_root_history[:10]],
"A_modes_head": [float(x) for x in mom_system.A_modes_history[:10]],
"event_counts_head": [int(x) for x in mom_system.event_counts_history[:10]],
}
serialized = json.dumps(manifest, sort_keys=True, separators=(",", ":")).encode("utf-8")
run_ipurl = f"mom-kernel:v1:{hashlib.sha512(serialized).hexdigest()}"
summary_output = (
f"MOM Kernel Simulation\n"
f"- Simulation Time: {elapsed_time:.6f} s\n"
f"- Estimated GFLOPS (per fused step): {gflops:.4f}\n"
f"- Final Mean m_root: {float(torch.mean(mom_system.m_root).item()):.6f}\n"
f"- Final Mean A_modes: {float(torch.mean(mom_system.A_modes).item()):.6f}\n"
f"- Total Events (last iter): {mom_system.event_counts_history[-1] if len(mom_system.event_counts_history) > 0 else 0}\n"
+ (f"- Run IPURL: {run_ipurl}\n" if run_ipurl else "")
)
return summary_output, plot_path
# =========================================================================================
# Part C: Gradio UI — Two tabs for unified artifact
# =========================================================================================
with gr.Blocks(title="NexFrame RFT + MOM Unified Artifact") as demo:
gr.Markdown("# NexFrame Codex: RFT Hardware Scaling + MOM Collapse Kernel")
gr.Markdown("This artifact combines a Numba-accelerated RFT simulation across hardware scales with a PyTorch MOM kernel for collapse dynamics. Each run can be sealed with a lineage hash (IPURL).")
with gr.Tab("RFT Hardware Scaling"):
gr.Markdown("### RFT Simulation (Numba/NumPy)\nAdjust parameters to explore Ψ_r, energy, and ledger dynamics across hardware scales.")
with gr.Row():
num_scales = gr.Slider(5, 100, step=5, value=50, label="Number of Hardware Scales")
steps = gr.Slider(100, 5000, step=100, value=2000, label="Simulation Steps per Scale")
seed_rft = gr.Number(value=42, label="Seed", precision=0)
include_hash_rft = gr.Checkbox(value=True, label="Seal run with hash (IPURL)")
with gr.Row():
psi_r_init = gr.Slider(0.1, 2.0, step=0.1, value=1.0, label="Psi_r_init")
tau_eff = gr.Slider(0.01, 1.0, step=0.01, value=0.05, label="tau_eff")
delta_tau_pred = gr.Slider(0.001, 0.1, step=0.001, value=0.01, label="delta_tau_pred")
epsilon_c = gr.Slider(0.001, 0.1, step=0.001, value=0.005, label="epsilon_c")
with gr.Row():
phi_loop = gr.Slider(0.1, 2.0, step=0.1, value=1.0, label="phi_loop")
eta_sync = gr.Slider(0.001, 0.1, step=0.001, value=0.01, label="eta_sync")
omega_n = gr.Slider(10, 100, step=1, value=50, label="omega_n")
lambda_m = gr.Slider(10, 200, step=10, value=100, label="lambda_m")
gr.Markdown("#### Nonlinear exponents")
with gr.Row():
alpha = gr.Slider(0.5, 3.0, step=0.1, value=1.1, label="alpha")
beta = gr.Slider(0.5, 3.0, step=0.1, value=2.0, label="beta")
gamma = gr.Slider(0.5, 3.0, step=0.1, value=1.2, label="gamma")
delta = gr.Slider(0.5, 3.0, step=0.1, value=1.0, label="delta")
with gr.Row():
epsilon = gr.Slider(0.5, 3.0, step=0.1, value=1.0, label="epsilon")
zeta = gr.Slider(0.5, 3.0, step=0.1, value=1.0, label="zeta")
kappa = gr.Slider(1.0, 10.0, step=0.1, value=5.0, label="kappa")
mu = gr.Slider(1.0, 20.0, step=1.0, value=10.0, label="mu")
n = gr.Slider(1, 5, step=1, value=2, label="n")
rft_run = gr.Button("Run RFT Simulation")
rft_summary = gr.Markdown(label="RFT Summary")
rft_plot = gr.Image(label="Final Ψ_r across Hardware Scales", type="filepath")
def _rft_ui(num_scales_to_simulate, simulation_steps, psi_r_init_val, tau_eff_val,
delta_tau_pred_val, epsilon_c_val, phi_loop_val, eta_sync_val,
omega_n_val, lambda_m_val, alpha_exp, beta_exp, gamma_exp,
delta_exp, epsilon_exp, zeta_exp, kappa_exp, mu_exp, n_exp,
seed, include_hash):
return run_rft_hardware_scale(
num_scales_to_simulate=int(num_scales_to_simulate),
simulation_steps=int(simulation_steps),
psi_r_init_val=float(psi_r_init_val),
tau_eff_val=float(tau_eff_val),
delta_tau_pred_val=float(delta_tau_pred_val),
epsilon_c_val=float(epsilon_c_val),
phi_loop_val=float(phi_loop_val),
eta_sync_val=float(eta_sync_val),
omega_n_val=float(omega_n_val),
lambda_m_val=float(lambda_m_val),
alpha_exp=float(alpha_exp),
beta_exp=float(beta_exp),
gamma_exp=float(gamma_exp),
delta_exp=float(delta_exp),
epsilon_exp=float(epsilon_exp),
zeta_exp=float(zeta_exp),
kappa_exp=float(kappa_exp),
mu_exp=float(mu_exp),
n_exp=int(n_exp),
seed=int(seed),
include_hash=bool(include_hash)
)
rft_run.click(
_rft_ui,
inputs=[
num_scales, steps, psi_r_init, tau_eff, delta_tau_pred, epsilon_c,
phi_loop, eta_sync, omega_n, lambda_m, alpha, beta, gamma, delta,
epsilon, zeta, kappa, mu, n, seed_rft, include_hash_rft
],
outputs=[rft_summary, rft_plot]
)
with gr.Tab("MOM Collapse Kernel"):
gr.Markdown("### MOM Kernel (PyTorch)\nSimulate collapse dynamics with shredding onset and event histories.")
with gr.Row():
Ncells = gr.Slider(8, 4096, step=8, value=256, label="Cells")
Nmode = gr.Slider(4, 512, step=4, value=64, label="Modes per Cell")
iterations = gr.Slider(10, 5000, step=10, value=500, label="Iterations")
seed_mom = gr.Number(value=42, label="Seed", precision=0)
include_hash_mom = gr.Checkbox(value=True, label="Seal run with hash (IPURL)")
with gr.Row():
dt = gr.Slider(0.001, 0.1, step=0.001, value=0.02, label="dt")
eps = gr.Slider(1e-8, 1e-4, step=1e-8, value=1e-6, label="eps")
sigma = gr.Slider(0.1, 1.5, step=0.01, value=0.75, label="sigma")
theta = gr.Slider(0.5, 5.0, step=0.1, value=2.2, label="theta")
k_shred = gr.Slider(0.1, 5.0, step=0.1, value=1.2, label="k_shred")
mom_run = gr.Button("Run MOM Simulation")
mom_summary = gr.Markdown(label="MOM Summary")
mom_plot = gr.Image(label="MOM Plots", type="filepath")
def _mom_ui(Ncells_val, Nmode_val, iterations_val, dt_val, eps_val, sigma_val, theta_val, k_shred_val, seed_val, include_hash_val):
return run_mom_simulation(
Ncells=int(Ncells_val),
Nmode=int(Nmode_val),
iterations=int(iterations_val),
dt=float(dt_val),
eps=float(eps_val),
sigma=float(sigma_val),
theta=float(theta_val),
k_shred=float(k_shred_val),
seed=int(seed_val),
include_hash=bool(include_hash_val)
)
mom_run.click(
_mom_ui,
inputs=[Ncells, Nmode, iterations, dt, eps, sigma, theta, k_shred, seed_mom, include_hash_mom],
outputs=[mom_summary, mom_plot]
)
if __name__ == "__main__":
demo.launch()
|