Spaces:
Sleeping
Sleeping
File size: 27,157 Bytes
1c6109f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import random
import time
class NetworkGenerator:
def __init__(self, size='S', variant='F', topology='highly_connected'):
self.size = size.upper()
self.variant = variant.upper()
self.topology = topology.lower()
if self.topology not in ['highly_connected', 'bottlenecks', 'linear']:
raise ValueError("topology must be: 'highly_connected', 'bottlenecks', or 'linear'")
# Configuration based on size (small, middle, large)
self.size_config = {
'S': {'grid': 4, 'node_factor': 0.4, 'diag_weights': [1, 4]},
'M': {'grid': 8, 'node_factor': 0.4, 'diag_weights': [1, 4]},
'L': {'grid': 16, 'node_factor': 0.4, 'diag_weights': [1, 8]},
}
if self.size not in self.size_config:
raise ValueError("Invalid size. Choose 'S', 'M', or 'L'.")
if self.variant not in ['F', 'R']:
raise ValueError("Invalid variant. Choose 'F' (fixed) or 'R' (random).")
# Scenario setup
self.grid_size = self.size_config[self.size]['grid']
self.node_factor = self.size_config[self.size]['node_factor']
self.weight_dist = self.size_config[self.size]['diag_weights']
# Graph and node storage
self.graph = None
self.nodes_list = None
def generate(self):
"""Generate a connected network representing rooms in a building."""
max_attempts = 5 # retry limit
for attempt in range(max_attempts):
self._initialize_graph()
self._add_nodes()
nodes = list(self.graph.nodes())
if not nodes:
continue
# --- STEP 1: CONNECTIVITY (NEARBY ROOMS ONLY) ---
connected = set()
remaining = set(nodes)
# Start with a random initial room
current = random.choice(nodes)
connected.add(current)
remaining.remove(current)
while remaining:
# Candidate rooms: within distance <= 2 of ANY connected room
candidates = [
n for n in remaining
if any(abs(n[0] - c[0]) <= 2 and abs(n[1] - c[1]) <= 2 for c in connected)
]
if candidates:
candidate = random.choice(candidates)
else:
# fallback: pick any unconnected room
candidate = random.choice(list(remaining))
# Find connected neighbors near the candidate
neighbors = [
c for c in connected
if abs(c[0] - candidate[0]) <= 2 and abs(c[1] - candidate[1]) <= 2
]
if neighbors:
n = random.choice(neighbors)
else:
# fallback: ANY connected node
n = random.choice(list(connected))
# --- Intersection checks ---
valid = True
# Straight edge
if n[0] == candidate[0] or n[1] == candidate[1]:
if self._straight_edge_intersects(n, candidate):
valid = False
# Diagonal edge
elif abs(n[0] - candidate[0]) == abs(n[1] - candidate[1]):
if self._diagonal_intersects(n, candidate):
valid = False
else:
# Not straight or diagonal → forced but accepted
valid = False
# Add the edge anyway (forced connectivity)
self.graph.add_edge(n, candidate)
# Mark candidate as connected
connected.add(candidate)
remaining.remove(candidate)
# --- STEP 2: ADD TOPOLOGY-SPECIFIC EXTRA EDGES ---
self._add_edges()
# --- STEP 3: REMOVE INTERSECTIONS & RECONNECT ---
self._remove_intersections()
# --- STEP 4: FINAL CONNECTIVITY CHECK ---
if nx.is_connected(self.graph):
return self.graph
raise RuntimeError("Failed to generate a connected network after several attempts")
def _initialize_graph(self):
self.graph = nx.Graph()
# Start in the middle region instead of (0,0)
margin = max(1, self.grid_size // 4)
low, high = margin, self.grid_size - margin
x = random.randint(low, high)
y = random.randint(low, high)
coords = np.array([x, y])
flags = np.zeros(4, dtype=int)
self.nodes_list = [[coords, flags]]
self.graph.add_node(tuple(coords))
def _compute_nodes(self):
total_possible = (self.grid_size + 1) ** 2
if self.variant == 'F':
return int(self.node_factor * total_possible)
else:
return int(random.uniform(0.4, 0.7) * total_possible)
def _add_nodes(self):
"""Place nodes mostly in the middle region (cluster logic)."""
total_nodes = self._compute_nodes()
# Middle region boundaries
margin = max(1, self.grid_size // 4)
low, high = margin, self.grid_size - margin
attempts = 0
while len(self.graph.nodes()) < total_nodes and attempts < 5000:
attempts += 1
x = random.randint(low, high)
y = random.randint(low, high)
if (x, y) not in self.graph:
self.graph.add_node((x, y))
def _add_random_neighbors(self):
if not self.nodes_list:
return
predecessor_entry = self.nodes_list[0]
coords, _ = predecessor_entry
rand_neighbors = random.randint(1, 4)
for _ in range(rand_neighbors):
direction = random.choice(['V', 'H'])
distance = random.choices([1, 2], weights=self.weight_dist, k=1)[0]
new_coords = self._get_new_node(coords, direction, distance)
if new_coords is not None and tuple(new_coords) not in self.graph:
self.graph.add_node(tuple(new_coords))
flags = np.zeros(4, dtype=int)
self.nodes_list.append([new_coords, flags])
self._update_neighbor_flags(coords, new_coords)
self.nodes_list.pop(0)
def _get_new_node(self, coords, direction, dist):
x, y = coords
if direction == 'V':
if random.choice([True, False]) and x + dist <= self.grid_size:
return np.array([x + dist, y])
elif x - dist >= 0:
return np.array([x - dist, y])
elif direction == 'H':
if random.choice([True, False]) and y + dist <= self.grid_size:
return np.array([x, y + dist])
elif y - dist >= 0:
return np.array([x, y - dist])
return None
def _update_neighbor_flags(self, predecessor_coords, new_coords):
px, py = predecessor_coords
nx_, ny = new_coords
# Find indices
predecessor_idx = next((i for i, n in enumerate(self.nodes_list) if np.array_equal(n[0], predecessor_coords)), None)
new_node_idx = next((i for i, n in enumerate(self.nodes_list) if np.array_equal(n[0], new_coords)), None)
if predecessor_idx is None or new_node_idx is None:
return
# Directional flags: [up, down, left, right]
if nx_ < px: # new above
self.nodes_list[predecessor_idx][1][0] = 1
self.nodes_list[new_node_idx][1][1] = 1
elif nx_ > px: # new below
self.nodes_list[predecessor_idx][1][1] = 1
self.nodes_list[new_node_idx][1][0] = 1
elif ny < py: # new left
self.nodes_list[predecessor_idx][1][2] = 1
self.nodes_list[new_node_idx][1][3] = 1
elif ny > py: # new right
self.nodes_list[predecessor_idx][1][3] = 1
self.nodes_list[new_node_idx][1][2] = 1
def _compute_edge_count(self):
total_nodes = len(self.graph.nodes())
if self.variant == 'F':
return int(1.5 * total_nodes)
else:
return int(random.uniform(1.5, 2.5) * total_nodes)
def _add_edges(self):
nodes = list(self.graph.nodes())
total_edges = self._compute_edge_count()
if self.topology == "highly_connected":
self._add_cluster_dense(nodes, total_edges)
elif self.topology == "bottlenecks":
self._add_cluster_sparse(nodes, total_edges)
self._add_cluster_bottleneck(nodes)
elif self.topology == "linear":
self._make_linear(nodes)
def _add_straight_edges_if_no_intersection(self, nodes, max_edges):
count = 0
for i in range(len(nodes)):
for j in range(i + 1, len(nodes)):
if count >= max_edges:
return
x1, y1 = nodes[i]
x2, y2 = nodes[j]
if (x1 == x2 or y1 == y2) and not self.graph.has_edge(nodes[i], nodes[j]):
self.graph.add_edge(nodes[i], nodes[j])
count += 1
def _straight_edge_intersects(self, n1, n2):
"""Check if a straight (H/V) edge between n1–n2 intersects existing edges."""
x1, y1 = n1
x2, y2 = n2
# Only straight edges
if not (x1 == x2 or y1 == y2):
return True
# Ensure consistent ordering
if (x1, y1) > (x2, y2):
n1, n2 = n2, n1
x1, y1 = n1
x2, y2 = n2
for a, b in self.graph.edges():
if {a, b} == {n1, n2}:
continue
ax, ay = a
bx, by = b
# Horizontal edge
if y1 == y2:
if ay == by == y1:
# overlap?
if max(ax, bx) >= min(x1, x2) and min(ax, bx) <= max(x1, x2):
return True
# Vertical edge
if x1 == x2:
if ax == bx == x1:
if max(ay, by) >= min(y1, y2) and min(ay, by) <= max(y1, y2):
return True
return False
def _diagonal_intersects(self, n1, n2):
x1, y1 = n1
x2, y2 = n2
for a, b in self.graph.edges():
ax, ay = a
bx, by = b
# Only check against diagonal edges
if abs(ax - bx) == abs(ay - by):
# Check if bounding boxes overlap
if not (max(x1, x2) < min(ax, bx) or min(x1, x2) > max(ax, bx)):
if not (max(y1, y2) < min(ay, by) or min(y1, y2) > max(ay, by)):
return True
return False
def _generate_diagonal_edges(self, nodes, max_edges):
count = 0
for i in range(len(nodes)):
for j in range(i + 1, len(nodes)):
if count >= max_edges:
return
x1, y1 = nodes[i]
x2, y2 = nodes[j]
if abs(x1 - x2) == abs(y1 - y2) and not self.graph.has_edge(nodes[i], nodes[j]):
self.graph.add_edge(nodes[i], nodes[j])
count += 1
def _make_linear(self, nodes):
# Sort nodes by x then by y so the backbone moves roughly top→down or left→right
nodes_sorted = sorted(nodes, key=lambda x: (x[0], x[1]))
# Build the main backbone (no diagonal, only straight)
prev = nodes_sorted[0]
for nxt in nodes_sorted[1:]:
x1, y1 = prev
x2, y2 = nxt
# ONLY connect if same row or same column
if x1 == x2 or y1 == y2:
self.graph.add_edge(prev, nxt)
prev = nxt
else:
# If diagonal, find a 1-step straight intermediate
# Move horizontally first
if x1 != x2:
step = (x1 + (1 if x2 > x1 else -1), y1)
if step in nodes:
self.graph.add_edge(prev, step)
self.graph.add_edge(step, nxt)
prev = nxt
continue
# Move vertically
if y1 != y2:
step = (x1, y1 + (1 if y2 > y1 else -1))
if step in nodes:
self.graph.add_edge(prev, step)
self.graph.add_edge(step, nxt)
prev = nxt
continue
# Add occasional side branches (0.15 = 15% chance)
for node in nodes_sorted:
if random.random() < 0.15:
x, y = node
# choose one of the 4 permissible directions
candidates = [(x+1,y),(x-1,y),(x,y+1),(x,y-1)]
random.shuffle(candidates)
for c in candidates:
if c in nodes and not self.graph.has_edge(node, c):
# Ensure node doesn't exceed degree 3
if self.graph.degree(node) < 3 and self.graph.degree(c) < 3:
self.graph.add_edge(node, c)
break
def _add_sparse_edges(self, nodes):
# create a moderate number of edges but not dense
for i in range(len(nodes)):
for j in range(i+1, len(nodes)):
if random.random() < 0.15: # sparse edges
self.graph.add_edge(nodes[i], nodes[j])
def _create_bottleneck(self, nodes):
# Split graph into left/right sets (or top/bottom)
left = [n for n in nodes if n[0] <= self.grid_size // 2]
right = [n for n in nodes if n not in left]
# pick random chokepoint nodes
l = random.choice(left)
r = random.choice(right)
# force 1 bottleneck edge
self.graph.add_edge(l, r)
def _add_dense_edges(self, nodes):
# add all straight edges
for i in range(len(nodes)):
for j in range(i+1, len(nodes)):
x1, y1 = nodes[i]
x2, y2 = nodes[j]
# Straight connections
if x1 == x2 or y1 == y2:
self.graph.add_edge(nodes[i], nodes[j])
# Diagonal connections
if abs(x1 - x2) == abs(y1 - y2):
self.graph.add_edge(nodes[i], nodes[j])
def _add_cluster_dense(self, nodes, max_edges):
edges_added = 0
random.shuffle(nodes)
for i in range(len(nodes)):
for j in range(i+1, len(nodes)):
if edges_added >= max_edges:
return
n1, n2 = nodes[i], nodes[j]
# Straight edge
if (n1[0] == n2[0] or n1[1] == n2[1]):
if not self._straight_edge_intersects(n1, n2):
self.graph.add_edge(n1, n2)
edges_added += 1
continue
# Diagonal
if abs(n1[0] - n2[0]) == abs(n1[1] - n2[1]):
if not self._diagonal_intersects(n1, n2):
self.graph.add_edge(n1, n2)
edges_added += 1
def _add_cluster_sparse(self, nodes, max_edges):
edges_added = 0
random.shuffle(nodes)
for i in range(len(nodes)):
for j in range(i+1, len(nodes)):
if edges_added >= max_edges:
return
if random.random() < 0.15: # sparse like your C
n1, n2 = nodes[i], nodes[j]
# straight only for sparsity
if (n1[0] == n2[0] or n1[1] == n2[1]) and \
not self._straight_edge_intersects(n1, n2):
self.graph.add_edge(n1, n2)
edges_added += 1
def _add_cluster_bottleneck(self, nodes):
mid = self.grid_size // 2
left = [n for n in nodes if n[0] <= mid]
right = [n for n in nodes if n not in left]
if not left or not right:
return
a = random.choice(left)
b = random.choice(right)
if not self._straight_edge_intersects(a, b):
self.graph.add_edge(a, b)
# --------------------
# Intersection utilities
# --------------------
def _orientation(self, p, q, r):
"""Return orientation for ordered triplet (p, q, r).
0 = collinear, 1 = clockwise, 2 = counterclockwise."""
(px, py), (qx, qy), (rx, ry) = p, q, r
val = (qy - py) * (rx - qx) - (qx - px) * (ry - qy)
if val == 0:
return 0
return 1 if val > 0 else 2
def _on_segment(self, p, q, r):
"""Check if point q lies on segment pr."""
(px, py), (qx, qy), (rx, ry) = p, q, r
return (min(px, rx) <= qx <= max(px, rx) and
min(py, ry) <= qy <= max(py, ry))
def _segments_intersect(self, a, b, c, d):
"""Return True if segments ab and cd intersect (excluding shared endpoints)."""
# Shared endpoints do NOT count as intersections
if a in (c, d) or b in (c, d):
return False
o1 = self._orientation(a, b, c)
o2 = self._orientation(a, b, d)
o3 = self._orientation(c, d, a)
o4 = self._orientation(c, d, b)
# General case
if o1 != o2 and o3 != o4:
return True
# Special cases (collinear)
if o1 == 0 and self._on_segment(a, c, b):
return True
if o2 == 0 and self._on_segment(a, d, b):
return True
if o3 == 0 and self._on_segment(c, a, d):
return True
if o4 == 0 and self._on_segment(c, b, d):
return True
return False
def _would_create_intersection(self, u, v):
"""Check whether adding edge (u,v) would intersect any existing edge."""
for x, y in self.graph.edges():
# ignore if touching endpoints
if u in (x, y) or v in (x, y):
continue
if self._segments_intersect(u, v, x, y):
return True
return False
def _remove_intersections(self):
"""
Remove intersecting edges and attempt to reconnect components using
nearest-neighbor edges (prefer Chebyshev distance <= 2 as requested).
"""
max_passes = 10
pass_no = 0
total_removed = 0
while pass_no < max_passes:
pass_no += 1
edges = list(self.graph.edges())
intersections = []
# Find all intersecting edge pairs
for i in range(len(edges)):
a, b = edges[i]
for j in range(i + 1, len(edges)):
c, d = edges[j]
if self._segments_intersect(a, b, c, d):
intersections.append((a, b, c, d))
if not intersections:
break # no intersections left
# Remove longer edge of each intersecting pair (if still present)
removed_this_pass = 0
for a, b, c, d in intersections:
if not self.graph.has_edge(a, b) or not self.graph.has_edge(c, d):
continue # already removed in this pass
len1 = (a[0]-b[0])**2 + (a[1]-b[1])**2
len2 = (c[0]-d[0])**2 + (c[1]-d[1])**2
if len1 >= len2:
try:
self.graph.remove_edge(a, b)
removed_this_pass += 1
except Exception:
pass
else:
try:
self.graph.remove_edge(c, d)
removed_this_pass += 1
except Exception:
pass
total_removed += removed_this_pass
# After removals, try to reconnect components
self._attempt_reconnect_components(prefer_max_distance=2)
# Final try to reconnect if still disconnected
if not nx.is_connected(self.graph):
self._attempt_reconnect_components(prefer_max_distance=self.grid_size)
# One last pass to remove any intersections created during reconnection attempts
# but limit passes to avoid endless loops
final_edges = list(self.graph.edges())
for i in range(len(final_edges)):
a, b = final_edges[i]
for j in range(i+1, len(final_edges)):
c, d = final_edges[j]
if self._segments_intersect(a, b, c, d):
# break ties by removing longer edge
len1 = (a[0]-b[0])**2 + (a[1]-b[1])**2
len2 = (c[0]-d[0])**2 + (c[1]-d[1])**2
if len1 >= len2 and self.graph.has_edge(a,b):
self.graph.remove_edge(a, b)
total_removed += 1
elif self.graph.has_edge(c,d):
self.graph.remove_edge(c, d)
total_removed += 1
# Debug / informative print
# (You can replace prints with logging if preferred)
print(f"[cleanup] Removed {total_removed} intersecting edges after {pass_no} passes.")
def _attempt_reconnect_components(self, prefer_max_distance=2):
"""
Try to connect disconnected components by adding edges between the closest
node pairs across components. Preference: Chebyshev distance <= prefer_max_distance,
gradually relaxing up to grid_size if required. Avoid creating intersections when possible.
"""
comps = list(nx.connected_components(self.graph))
if len(comps) <= 1:
return
# Function to compute Chebyshev distance
def cheb(a, b):
return max(abs(a[0]-b[0]), abs(a[1]-b[1]))
# Build list of nodes per component
comp_nodes = [list(c) for c in comps]
# We'll try to connect components pairwise until a single component remains.
# Attempt multiple relaxation levels.
max_relax = self.grid_size
relax = prefer_max_distance
while relax <= max_relax and len(comp_nodes) > 1:
made_connection = False
# Try connecting each pair of components
i = 0
while i < len(comp_nodes) - 1:
j = i + 1
connected_this_round = False
while j < len(comp_nodes):
best_pair = None
best_dist = None
# find best node pair between comp i and comp j within relax
for u in comp_nodes[i]:
for v in comp_nodes[j]:
if u == v:
continue
d = cheb(u, v)
if d <= relax and (best_dist is None or d < best_dist):
best_pair = (u, v)
best_dist = d
if best_pair is not None:
u, v = best_pair
# avoid adding duplicate edge
if not self.graph.has_edge(u, v):
# prefer adding if it won't create intersection
if not self._would_create_intersection(u, v):
self.graph.add_edge(u, v)
made_connection = True
connected_this_round = True
# merge components lists
comp_nodes[i].extend(comp_nodes[j])
comp_nodes.pop(j)
break
else:
# If we cannot avoid intersection, try to find alternative pairs
# Try other candidate pairs within same two comps
alt_added = False
for uu in comp_nodes[i]:
for vv in comp_nodes[j]:
if uu == vv:
continue
d2 = cheb(uu, vv)
if d2 <= relax and not self.graph.has_edge(uu, vv):
if not self._would_create_intersection(uu, vv):
self.graph.add_edge(uu, vv)
alt_added = True
break
if alt_added:
break
if alt_added:
made_connection = True
connected_this_round = True
comp_nodes[i].extend(comp_nodes[j])
comp_nodes.pop(j)
break
else:
# as final resort, add the best_pair even if it creates intersection
# This ensures connectivity; intersections will be cleaned in a later pass.
self.graph.add_edge(u, v)
made_connection = True
connected_this_round = True
comp_nodes[i].extend(comp_nodes[j])
comp_nodes.pop(j)
break
else:
# no candidate between these two comps within relax
j += 1
if not connected_this_round:
i += 1 # move to next comp pair to try
# if connected_this_round we keep i same to attempt merging more into same comp
if not made_connection:
relax += 1 # relax distance constraint and try again
else:
# recompute components after merges
comps = list(nx.connected_components(self.graph))
comp_nodes = [list(c) for c in comps]
# End while: either connected or we've exhausted relax limit
def plot(self):
plt.figure(figsize=(8, 8))
pos = {node: (node[1], -node[0]) for node in self.graph.nodes()}
nx.draw(self.graph, pos, with_labels=True, node_size=300, font_size=8)
plt.title(f"Generated Network ({self.size}, {self.variant})")
plt.grid(True)
plt.show()
|