π: area of triangle 5-12-13
π€: To find the area of a triangle with vertices at coordinates $A(5, 1)$, $B(1, 1)$, and $C(-3, 1)$, we can use the formula for the area of a triangle given its vertices $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$:
Area=21ββ£x1β(y2ββy3β)+x2β(y3ββy1β)+x3β(y1ββy2β)+x1β(y2ββy3β)β£
Substituting the coordinates of points $A(5, 1)$, $B(1, 1)$, and $C(-3, 1)$ into the formula, we get:
Area=21ββ£5(1β1)+1(1β1)+(β3)(1β1)+5(1β1)β£
Simplify inside the absolute value:
Area=21ββ£5β
0+1β
(β2)+(β3)β
0+5β
0β£=21ββ£0β2+0+0β£=21ββ£β6β£=21ββ
6=3
Thus, the area of the triangle is $\boxed{6}$.]
The area of the triangle is $\boxed{6}$.]
The area of triangle $ABC$...