File size: 13,928 Bytes
c8de2be
 
 
 
f106663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import sys
import os
from pathlib import Path

import numpy as np
import scipy.sparse as sp
import math
import random
import matplotlib.pyplot as plt
from scipy.special import jn
from scipy.sparse import identity, csr_matrix, kron, diags, eye
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.library import MCXGate, MCPhaseGate, RXGate, CRXGate, QFTGate, StatePreparation, PauliEvolutionGate, RZGate
from qiskit.quantum_info import SparsePauliOp, Statevector, Operator, Pauli
from scipy.linalg import expm
# from tools import *
from qiskit.qasm3 import dumps  # QASM 3 exporter
from qiskit.qasm3 import loads
from qiskit.circuit.library import QFT
from qiskit.primitives import StatevectorEstimator
from qiskit import transpile
from qiskit_addon_aqc_tensor.simulation import tensornetwork_from_circuit, apply_circuit_to_state, compute_overlap
from qiskit_aer import AerSimulator


simulator_settings = AerSimulator(
    method="matrix_product_state",
    matrix_product_state_max_bond_dimension=100,
)

def Wj(j, theta, lam, name='Wj', xgate=False):    
    if not xgate:
        name = f' $W_{j}$ '
    qc=QuantumCircuit(j, name=name)

    if j > 1:
        qc.cx(j-1, range(j-1))
    if lam != 0:
        qc.p(lam, j-1)
    qc.h(j-1)
    if xgate:
        qc.x(range(j-1))

    # the multicontrolled rz gate 
    # it will be decomposed in qiskit
    if j > 1:
        qc.mcrz(theta, range(j-1), j-1)
    else:
        qc.rz(theta, j-1)
    
    if xgate:
        qc.x(range(j-1))
    qc.h(j-1)
    if lam != 0:
        qc.p(-lam, j-1)
    if j > 1:
        qc.cx(j-1, range(j-1))

    return qc

def Wj_block(j, n, ctrl_state, theta, lam, name='Wj_block', xgate=False):    
    if not xgate:
        name = f' $W_{j}_block$ '
    qc=QuantumCircuit(n + j, name=name)

    if j > 1:
        qc.cx(n + j-1, range(n, n+j-1))
    if lam != 0:
        qc.p(lam, n + j -1)
    qc.h(n + j -1)
    
    if xgate and j>1:
        if isinstance(xgate, (list, tuple)):  # selective application
            for idx, flag in enumerate(xgate):
                if flag:   # only apply where flag == 1
                    qc.x(n + idx)
        elif xgate is True:  # apply to all
            qc.x(range(n, n+j-1))

    # the multicontrolled rz gate 
    # it will be decomposed in qiskit
    if j > 1:
        mcrz = RZGate(theta).control(len(ctrl_state) + j-1, ctrl_state = "1"*(j-1)+ctrl_state)
        qc.append(mcrz, range(0, n + j))
    else:
        mcrz = RZGate(theta).control(len(ctrl_state), ctrl_state = ctrl_state)
        qc.append(mcrz, range(0, n+j))
    
    if xgate and j>1:
        if isinstance(xgate, (list, tuple)):  # selective application
            for idx, flag in enumerate(xgate):
                if flag:   # only apply where flag == 1
                    qc.x(n + idx)
        elif xgate is True:  # apply to all
            qc.x(range(n, n+j-1))
            
    qc.h(n+ j-1)
    if lam != 0:
        qc.p(-lam, n + j-1)
    if j > 1:
        qc.cx(n + j-1, range(n, n +j-1))

    return qc.to_gate(label=name)

def V1(nx, dt, name = "V1"):
    n = int(np.ceil(np.log2(nx)))

    derivatives = QuantumRegister(2*n)
    blocks = QuantumRegister(2)

    qc = QuantumCircuit(derivatives, blocks)
    
    W1 = Wj_block(2, n, "0"*n, -dt , 0, xgate=True)
    qc.append(W1, list(derivatives[0:n])+list(blocks[:]))

    # qc.barrier()

    W2 = Wj_block(3, n-1, "1"*(n-1), dt , 0, xgate=[0,1])
    qc.append(W2, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))

    # qc.barrier()

    W3 = Wj_block(1, n+1, "0"*(n+1), dt , 0, xgate=False)
    qc.append(W3, list(derivatives[n:2*n])+list(blocks[:]))

    # qc.barrier()

    W4 = Wj_block(2, n, "0"+"1"*(n-1), -dt , 0, xgate=False)
    qc.append(W4, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])

    return qc

def V2(nx, dt, name = "V2"):
    n = int(np.ceil(np.log2(nx)))

    derivatives = QuantumRegister(2*n)
    blocks = QuantumRegister(2)

    qc = QuantumCircuit(derivatives, blocks)
    
    W1 = Wj_block(2, 0, "", -2*dt , -np.pi/2, xgate=True)
    qc.append(W1, list(blocks[:]))

    # qc.barrier()

    for j in range(1, n+1):
        W2 = Wj_block(2+j, 0, "", 2*dt , -np.pi/2, xgate=[1]*(j-1)+[0,1])
        qc.append(W2, list(derivatives[0:j])+list(blocks[:]))

    # qc.barrier()

    W3 = Wj_block(2, n, "0"*n, -dt , -np.pi/2, xgate=True)
    qc.append(W3, list(derivatives[0:n])+list(blocks[:]))

    # qc.barrier()

    W4 = Wj_block(2, n, "1"*n, 2*dt , -np.pi/2, xgate=True)
    qc.append(W4, list(derivatives[0:n])+list(blocks[:]))

    # qc.barrier()

    W5 = Wj_block(3, n-1, "1"*(n-1), dt , -np.pi/2, xgate=[0,1])
    qc.append(W5, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))

    # qc.barrier()

    W6 = Wj_block(1, 1, "0", 2*dt , -np.pi/2, xgate=False)
    qc.append(W6, list(blocks[:]))

    # qc.barrier()

    for j in range(1, n+1):
        W7 = Wj_block(1+j, 1, "0", -2*dt , -np.pi/2, xgate=[1]*(j-1))
        qc.append(W7, [blocks[0]]+list(derivatives[n:n+j])+[blocks[1]])

        # qc.barrier()

    W8 = Wj_block(1, n+1, "0"*(n+1), dt , -np.pi/2, xgate=False)
    qc.append(W8, list(derivatives[n:2*n])+list(blocks[:]))

    # qc.barrier()

    W9 = Wj_block(1, n+1, "0"+"1"*(n), -2*dt , -np.pi/2, xgate=False)
    qc.append(W9, list(derivatives[n:2*n])+list(blocks[:]))

    # qc.barrier()

    W10 = Wj_block(2, n, "0"+"1"*(n-1), -dt , -np.pi/2, xgate=False)
    qc.append(W10, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])

    # qc.barrier()
    
    return qc

def schro(nx, na, R, dt, initial_state, steps):

    nq = int(np.ceil(np.log2(nx)))

    # warped phase transformation
    dp = 2 * R * np.pi / 2**na
    p = np.arange(- R * np.pi, R * np.pi, step=dp)
    fp = np.exp(-np.abs(p))
    norm1 = np.linalg.norm(fp[2**(na-1):]) # norm of p>=0

    # construct quantum circuit
    system = QuantumRegister(2*nq+2, name='system')
    ancilla = QuantumRegister(na, name='ancilla')
    qc = QuantumCircuit(system, ancilla)

    # initialization
    prep = StatePreparation(initial_state)
    anc_prep = StatePreparation(fp / np.linalg.norm(fp))

    qc.append(prep, system)
    # qc.append(anc_prep, ancilla)
    qc.initialize(fp / np.linalg.norm(fp), ancilla)


    # QFT
    qc.append(QFTGate(na), ancilla)
    qc.x(ancilla[-1])

    A1 = V1(nx, dt, name = "V1").to_gate()
    A2 = V2(nx, dt, name = "V2")

    
    # Hamiltonian simulation for Nt steps
    for i in range(steps):
        # circuit for one step
        for j in range(na):
            # repeat controlled H1 for 2**j times
            qc.append(A1.control().repeat(2**j), [ancilla[j]] + system[:])

        # qc.append(A1.inverse().control(ctrl_state = "0").repeat(2**(na-1)), [ancilla[na-1]] + system[:])
        qc.append(A1.inverse().repeat(2**(na-1)), system[:])
        qc.append(A2, system[:])

    # rearrange eta
    qc.x(ancilla[-1])
    qc.append(QFTGate(na).inverse(), ancilla)

    return qc



def circ_for_magnitude(field, x, y, nx, na, R, dt, initial_state, steps):

    qc  = schro(nx, na, R, dt, initial_state, steps)
    naimark = QuantumRegister(1, name='Naimark')
    qc.add_register(naimark)

    if field == 'Ez':
        index = nx * y + x
    elif field == 'Hx':
        index = 2*nx*nx + nx * y + x
    else:
        index = 3*nx*nx + nx * y + x

    index_bin = format(index, f'0{qc.num_qubits-2}b')
    ctrl_state = '1' + index_bin
    ctrl_qubits = qc.qubits[:-1]
    qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state)

    return qc

def circuits_for_sign(field, x, y, nx, na, dt, R, initial_state, steps, xref, yref, field_ref = 'Ez'):    
    qc  = schro(nx, na, R, dt, initial_state, steps)

    naimark = QuantumRegister(1, name='Naimark')
    qc.add_register(naimark)

    if field == 'Ez':
        index = nx * y + x
    elif field == 'Hx':
        index = 2*nx*nx + nx * y + x
    else:
        index = 3*nx*nx + nx * y + x

    if field_ref == 'Ez':
        index_ref = nx * yref + xref
    elif field_ref == 'Hx':
        index_ref = 2*nx*nx + nx * yref + xref
    else:
        index_ref = 3*nx*nx + nx * yref + xref

    index_bin = [(index >> i) & 1 for i in range(qc.num_qubits-2)]
    index_ref_bin = [(index_ref >> i) & 1 for i in range(qc.num_qubits-2)]
    index_bin.append(1)
    index_ref_bin.append(1)

    #Convert reference bitstring to 00000 
    for i, bit in enumerate(index_ref_bin):
        if bit == 1:
            qc.x(i)

    d_bits = [b ^ r for b, r in zip(index_ref_bin, index_bin)]
    control = d_bits.index(1)

    #Convert the other bitstring to 0001000
    for target, bit in enumerate(d_bits):
        if bit == 1 and target != control:
            qc.cx(control, target)
    qc.h(control)

    ctrl_state_sum = '0'*(qc.num_qubits-1)
    ctrl_state_diff = '0'*(qc.num_qubits-1-control-1)+'1'+'0'*(control)
    
    qcdiff = qc.copy()

    ctrl_qubits = qc.qubits[:-1]

    qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_sum)
    qcdiff.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_diff)

    return qc, qcdiff

def get_absolute_field_value(qc, nq, na, offset, norm):

    pauli_label = 'Z'+'I'*(2*nq+2+na)
    observable  = SparsePauliOp(Pauli(pauli_label))
    ########################################################################################
    estimator = StatevectorEstimator() 

    # === Run Estimator (no parameters needed) ===
    pub = (qc, observable)
    job = estimator.run([pub])
    result = job.result()[0]
    z_exp = result.data.evs.item()
    #########################################################################################
    # === Compute projector expectation ===
    pi_expect = (1 - z_exp) / 2

    Absolute_value = norm*np.sqrt(pi_expect)-offset
    
    return Absolute_value

def get_relative_sign(qc, qcdiff, nq, na):

    pauli_label = 'Z'+'I'*(2*nq+2+na)
    observable  = SparsePauliOp(Pauli(pauli_label))
    ########################################################################################
    estimator = StatevectorEstimator() 

    # === Run Estimator ===
    pub = (qc, observable)
    job = estimator.run([pub])
    result = job.result()[0]
    z_exp = result.data.evs.item()

    pub_diff = (qcdiff, observable)
    job_diff = estimator.run([pub_diff])
    result_diff = job_diff.result()[0]
    z_exp_diff = result_diff.data.evs.item()
    #########################################################################################
    # === Compute projector expectation ===
    pi_expect_sum = (1 - z_exp) / 2
    pi_expect_diff = (1 - z_exp_diff) / 2

    relative_sign = 'same' if pi_expect_sum >= pi_expect_diff else 'different'
    
    return relative_sign

def Eref_value(nx, nq, R, dt, na, steps, xref, yref, field_ref = 'Ez'):
    if steps < 31:
        offset = 1
    else :
        offset = 0.15
    deltastate = np.zeros(4*nx*nx)
    # deltastate[nx*nx//2+nx//2:nx*nx//2+nx//2+1] = 1
    deltastate[nx*yref+xref] = 1
    deltastate[0:nx*nx] = deltastate[0:nx*nx] + offset
    norm1 = np.linalg.norm(deltastate)
    initial_state = deltastate/norm1

    dp = 2 * R * np.pi / 2**na
    p = np.arange(- R * np.pi, R * np.pi, step=dp)
    fp = np.exp(-np.abs(p))
    norm2 = np.linalg.norm(fp)
    norm = norm1 * norm2

    qc = circ_for_magnitude(field_ref, xref, yref, nx, na, R, dt, initial_state, steps)

    Ezref = get_absolute_field_value(qc, nq, na, offset, norm)

    return Ezref


def transpile_circ(circ, basis_gates=None):
    """
    Transpile the circuit to the specified basis gates.
    """
    if basis_gates is None:
        basis_gates = ['z', 'y', 'x', 'sdg', 's', 'h', 'rz', 'ry', 'rx', 'ecr', 'cz', 'cx']
    
    transpiled_circ = transpile(circ, basis_gates=basis_gates)
    return transpiled_circ

def compute_fidelity(circ1, circ2):
    
    circ_1 = tensornetwork_from_circuit(transpile_circ(circ1), simulator_settings)
    circ_2 = tensornetwork_from_circuit(transpile_circ(circ2), simulator_settings)
    fidelity = abs(compute_overlap(circ_1, circ_2))**2
    
    return fidelity

# def create_impulse_state(grid_dims, impulse_pos):
#     """
#     Creates an initial state vector with a single delta impulse at a specified grid position.

#     The 2D grid is flattened into a 1D vector in row-major order, and this
#     vector is then padded to match the full simulation state space size (4x).

#     Args:
#         grid_dims (tuple): A tuple (width, height) defining the simulation grid dimensions.
#                            For your original code, this would be (nx, nx).
#         impulse_pos (tuple): A tuple (x, y) for the position of the impulse.
#                              Coordinates are 0-indexed.

#     Returns:
#         numpy.ndarray: The full, padded initial state vector with a single 1.
    
#     Raises:
#         ValueError: If the impulse position is outside the grid dimensions.
#     """
#     grid_width, grid_height = grid_dims
#     impulse_x, impulse_y = impulse_pos

#     # --- Input Validation ---
#     # Ensure the requested impulse position is actually on the grid.
#     if not (0 <= impulse_x < grid_width and 0 <= impulse_y < grid_height):
#         raise ValueError(f"Impulse position ({impulse_x}, {impulse_y}) is outside the "
#                          f"grid dimensions ({grid_width}x{grid_height}).")

#     # --- 1. Calculate the 1D Array Index ---
#     # Convert the (x, y) coordinate to a single index in a flattened 1D array.
#     # The formula for row-major order is: index = y_coord * width + x_coord
#     flat_index = impulse_y * grid_width + impulse_x

#     # --- 2. Create the Full, Padded State Vector ---
#     grid_size = grid_width * grid_height
#     total_size = 4 * grid_size  # The simulation space is 4x the grid size.
#     initial_state = np.zeros(total_size)

#     # --- 3. Set the Delta Impulse ---
#     initial_state[flat_index] = 1

#     return initial_state