quantum / utils /base_functions.py
harishaseebat92
Configured Dockerfile for aqc_venv and fixed Linux paths
c8de2be
import sys
import os
from pathlib import Path
import numpy as np
import scipy.sparse as sp
import math
import random
import matplotlib.pyplot as plt
from scipy.special import jn
from scipy.sparse import identity, csr_matrix, kron, diags, eye
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.library import MCXGate, MCPhaseGate, RXGate, CRXGate, QFTGate, StatePreparation, PauliEvolutionGate, RZGate
from qiskit.quantum_info import SparsePauliOp, Statevector, Operator, Pauli
from scipy.linalg import expm
# from tools import *
from qiskit.qasm3 import dumps # QASM 3 exporter
from qiskit.qasm3 import loads
from qiskit.circuit.library import QFT
from qiskit.primitives import StatevectorEstimator
from qiskit import transpile
from qiskit_addon_aqc_tensor.simulation import tensornetwork_from_circuit, apply_circuit_to_state, compute_overlap
from qiskit_aer import AerSimulator
simulator_settings = AerSimulator(
method="matrix_product_state",
matrix_product_state_max_bond_dimension=100,
)
def Wj(j, theta, lam, name='Wj', xgate=False):
if not xgate:
name = f' $W_{j}$ '
qc=QuantumCircuit(j, name=name)
if j > 1:
qc.cx(j-1, range(j-1))
if lam != 0:
qc.p(lam, j-1)
qc.h(j-1)
if xgate:
qc.x(range(j-1))
# the multicontrolled rz gate
# it will be decomposed in qiskit
if j > 1:
qc.mcrz(theta, range(j-1), j-1)
else:
qc.rz(theta, j-1)
if xgate:
qc.x(range(j-1))
qc.h(j-1)
if lam != 0:
qc.p(-lam, j-1)
if j > 1:
qc.cx(j-1, range(j-1))
return qc
def Wj_block(j, n, ctrl_state, theta, lam, name='Wj_block', xgate=False):
if not xgate:
name = f' $W_{j}_block$ '
qc=QuantumCircuit(n + j, name=name)
if j > 1:
qc.cx(n + j-1, range(n, n+j-1))
if lam != 0:
qc.p(lam, n + j -1)
qc.h(n + j -1)
if xgate and j>1:
if isinstance(xgate, (list, tuple)): # selective application
for idx, flag in enumerate(xgate):
if flag: # only apply where flag == 1
qc.x(n + idx)
elif xgate is True: # apply to all
qc.x(range(n, n+j-1))
# the multicontrolled rz gate
# it will be decomposed in qiskit
if j > 1:
mcrz = RZGate(theta).control(len(ctrl_state) + j-1, ctrl_state = "1"*(j-1)+ctrl_state)
qc.append(mcrz, range(0, n + j))
else:
mcrz = RZGate(theta).control(len(ctrl_state), ctrl_state = ctrl_state)
qc.append(mcrz, range(0, n+j))
if xgate and j>1:
if isinstance(xgate, (list, tuple)): # selective application
for idx, flag in enumerate(xgate):
if flag: # only apply where flag == 1
qc.x(n + idx)
elif xgate is True: # apply to all
qc.x(range(n, n+j-1))
qc.h(n+ j-1)
if lam != 0:
qc.p(-lam, n + j-1)
if j > 1:
qc.cx(n + j-1, range(n, n +j-1))
return qc.to_gate(label=name)
def V1(nx, dt, name = "V1"):
n = int(np.ceil(np.log2(nx)))
derivatives = QuantumRegister(2*n)
blocks = QuantumRegister(2)
qc = QuantumCircuit(derivatives, blocks)
W1 = Wj_block(2, n, "0"*n, -dt , 0, xgate=True)
qc.append(W1, list(derivatives[0:n])+list(blocks[:]))
# qc.barrier()
W2 = Wj_block(3, n-1, "1"*(n-1), dt , 0, xgate=[0,1])
qc.append(W2, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
# qc.barrier()
W3 = Wj_block(1, n+1, "0"*(n+1), dt , 0, xgate=False)
qc.append(W3, list(derivatives[n:2*n])+list(blocks[:]))
# qc.barrier()
W4 = Wj_block(2, n, "0"+"1"*(n-1), -dt , 0, xgate=False)
qc.append(W4, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
return qc
def V2(nx, dt, name = "V2"):
n = int(np.ceil(np.log2(nx)))
derivatives = QuantumRegister(2*n)
blocks = QuantumRegister(2)
qc = QuantumCircuit(derivatives, blocks)
W1 = Wj_block(2, 0, "", -2*dt , -np.pi/2, xgate=True)
qc.append(W1, list(blocks[:]))
# qc.barrier()
for j in range(1, n+1):
W2 = Wj_block(2+j, 0, "", 2*dt , -np.pi/2, xgate=[1]*(j-1)+[0,1])
qc.append(W2, list(derivatives[0:j])+list(blocks[:]))
# qc.barrier()
W3 = Wj_block(2, n, "0"*n, -dt , -np.pi/2, xgate=True)
qc.append(W3, list(derivatives[0:n])+list(blocks[:]))
# qc.barrier()
W4 = Wj_block(2, n, "1"*n, 2*dt , -np.pi/2, xgate=True)
qc.append(W4, list(derivatives[0:n])+list(blocks[:]))
# qc.barrier()
W5 = Wj_block(3, n-1, "1"*(n-1), dt , -np.pi/2, xgate=[0,1])
qc.append(W5, list(derivatives[1:n])+[derivatives[0]]+list(blocks[:]))
# qc.barrier()
W6 = Wj_block(1, 1, "0", 2*dt , -np.pi/2, xgate=False)
qc.append(W6, list(blocks[:]))
# qc.barrier()
for j in range(1, n+1):
W7 = Wj_block(1+j, 1, "0", -2*dt , -np.pi/2, xgate=[1]*(j-1))
qc.append(W7, [blocks[0]]+list(derivatives[n:n+j])+[blocks[1]])
# qc.barrier()
W8 = Wj_block(1, n+1, "0"*(n+1), dt , -np.pi/2, xgate=False)
qc.append(W8, list(derivatives[n:2*n])+list(blocks[:]))
# qc.barrier()
W9 = Wj_block(1, n+1, "0"+"1"*(n), -2*dt , -np.pi/2, xgate=False)
qc.append(W9, list(derivatives[n:2*n])+list(blocks[:]))
# qc.barrier()
W10 = Wj_block(2, n, "0"+"1"*(n-1), -dt , -np.pi/2, xgate=False)
qc.append(W10, list(derivatives[n+1:2*n]) + [blocks[0]] + [derivatives[n]] + [blocks[1]])
# qc.barrier()
return qc
def schro(nx, na, R, dt, initial_state, steps):
nq = int(np.ceil(np.log2(nx)))
# warped phase transformation
dp = 2 * R * np.pi / 2**na
p = np.arange(- R * np.pi, R * np.pi, step=dp)
fp = np.exp(-np.abs(p))
norm1 = np.linalg.norm(fp[2**(na-1):]) # norm of p>=0
# construct quantum circuit
system = QuantumRegister(2*nq+2, name='system')
ancilla = QuantumRegister(na, name='ancilla')
qc = QuantumCircuit(system, ancilla)
# initialization
prep = StatePreparation(initial_state)
anc_prep = StatePreparation(fp / np.linalg.norm(fp))
qc.append(prep, system)
# qc.append(anc_prep, ancilla)
qc.initialize(fp / np.linalg.norm(fp), ancilla)
# QFT
qc.append(QFTGate(na), ancilla)
qc.x(ancilla[-1])
A1 = V1(nx, dt, name = "V1").to_gate()
A2 = V2(nx, dt, name = "V2")
# Hamiltonian simulation for Nt steps
for i in range(steps):
# circuit for one step
for j in range(na):
# repeat controlled H1 for 2**j times
qc.append(A1.control().repeat(2**j), [ancilla[j]] + system[:])
# qc.append(A1.inverse().control(ctrl_state = "0").repeat(2**(na-1)), [ancilla[na-1]] + system[:])
qc.append(A1.inverse().repeat(2**(na-1)), system[:])
qc.append(A2, system[:])
# rearrange eta
qc.x(ancilla[-1])
qc.append(QFTGate(na).inverse(), ancilla)
return qc
def circ_for_magnitude(field, x, y, nx, na, R, dt, initial_state, steps):
qc = schro(nx, na, R, dt, initial_state, steps)
naimark = QuantumRegister(1, name='Naimark')
qc.add_register(naimark)
if field == 'Ez':
index = nx * y + x
elif field == 'Hx':
index = 2*nx*nx + nx * y + x
else:
index = 3*nx*nx + nx * y + x
index_bin = format(index, f'0{qc.num_qubits-2}b')
ctrl_state = '1' + index_bin
ctrl_qubits = qc.qubits[:-1]
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state)
return qc
def circuits_for_sign(field, x, y, nx, na, dt, R, initial_state, steps, xref, yref, field_ref = 'Ez'):
qc = schro(nx, na, R, dt, initial_state, steps)
naimark = QuantumRegister(1, name='Naimark')
qc.add_register(naimark)
if field == 'Ez':
index = nx * y + x
elif field == 'Hx':
index = 2*nx*nx + nx * y + x
else:
index = 3*nx*nx + nx * y + x
if field_ref == 'Ez':
index_ref = nx * yref + xref
elif field_ref == 'Hx':
index_ref = 2*nx*nx + nx * yref + xref
else:
index_ref = 3*nx*nx + nx * yref + xref
index_bin = [(index >> i) & 1 for i in range(qc.num_qubits-2)]
index_ref_bin = [(index_ref >> i) & 1 for i in range(qc.num_qubits-2)]
index_bin.append(1)
index_ref_bin.append(1)
#Convert reference bitstring to 00000
for i, bit in enumerate(index_ref_bin):
if bit == 1:
qc.x(i)
d_bits = [b ^ r for b, r in zip(index_ref_bin, index_bin)]
control = d_bits.index(1)
#Convert the other bitstring to 0001000
for target, bit in enumerate(d_bits):
if bit == 1 and target != control:
qc.cx(control, target)
qc.h(control)
ctrl_state_sum = '0'*(qc.num_qubits-1)
ctrl_state_diff = '0'*(qc.num_qubits-1-control-1)+'1'+'0'*(control)
qcdiff = qc.copy()
ctrl_qubits = qc.qubits[:-1]
qc.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_sum)
qcdiff.mcx(ctrl_qubits, naimark[0], ctrl_state=ctrl_state_diff)
return qc, qcdiff
def get_absolute_field_value(qc, nq, na, offset, norm):
pauli_label = 'Z'+'I'*(2*nq+2+na)
observable = SparsePauliOp(Pauli(pauli_label))
########################################################################################
estimator = StatevectorEstimator()
# === Run Estimator (no parameters needed) ===
pub = (qc, observable)
job = estimator.run([pub])
result = job.result()[0]
z_exp = result.data.evs.item()
#########################################################################################
# === Compute projector expectation ===
pi_expect = (1 - z_exp) / 2
Absolute_value = norm*np.sqrt(pi_expect)-offset
return Absolute_value
def get_relative_sign(qc, qcdiff, nq, na):
pauli_label = 'Z'+'I'*(2*nq+2+na)
observable = SparsePauliOp(Pauli(pauli_label))
########################################################################################
estimator = StatevectorEstimator()
# === Run Estimator ===
pub = (qc, observable)
job = estimator.run([pub])
result = job.result()[0]
z_exp = result.data.evs.item()
pub_diff = (qcdiff, observable)
job_diff = estimator.run([pub_diff])
result_diff = job_diff.result()[0]
z_exp_diff = result_diff.data.evs.item()
#########################################################################################
# === Compute projector expectation ===
pi_expect_sum = (1 - z_exp) / 2
pi_expect_diff = (1 - z_exp_diff) / 2
relative_sign = 'same' if pi_expect_sum >= pi_expect_diff else 'different'
return relative_sign
def Eref_value(nx, nq, R, dt, na, steps, xref, yref, field_ref = 'Ez'):
if steps < 31:
offset = 1
else :
offset = 0.15
deltastate = np.zeros(4*nx*nx)
# deltastate[nx*nx//2+nx//2:nx*nx//2+nx//2+1] = 1
deltastate[nx*yref+xref] = 1
deltastate[0:nx*nx] = deltastate[0:nx*nx] + offset
norm1 = np.linalg.norm(deltastate)
initial_state = deltastate/norm1
dp = 2 * R * np.pi / 2**na
p = np.arange(- R * np.pi, R * np.pi, step=dp)
fp = np.exp(-np.abs(p))
norm2 = np.linalg.norm(fp)
norm = norm1 * norm2
qc = circ_for_magnitude(field_ref, xref, yref, nx, na, R, dt, initial_state, steps)
Ezref = get_absolute_field_value(qc, nq, na, offset, norm)
return Ezref
def transpile_circ(circ, basis_gates=None):
"""
Transpile the circuit to the specified basis gates.
"""
if basis_gates is None:
basis_gates = ['z', 'y', 'x', 'sdg', 's', 'h', 'rz', 'ry', 'rx', 'ecr', 'cz', 'cx']
transpiled_circ = transpile(circ, basis_gates=basis_gates)
return transpiled_circ
def compute_fidelity(circ1, circ2):
circ_1 = tensornetwork_from_circuit(transpile_circ(circ1), simulator_settings)
circ_2 = tensornetwork_from_circuit(transpile_circ(circ2), simulator_settings)
fidelity = abs(compute_overlap(circ_1, circ_2))**2
return fidelity
# def create_impulse_state(grid_dims, impulse_pos):
# """
# Creates an initial state vector with a single delta impulse at a specified grid position.
# The 2D grid is flattened into a 1D vector in row-major order, and this
# vector is then padded to match the full simulation state space size (4x).
# Args:
# grid_dims (tuple): A tuple (width, height) defining the simulation grid dimensions.
# For your original code, this would be (nx, nx).
# impulse_pos (tuple): A tuple (x, y) for the position of the impulse.
# Coordinates are 0-indexed.
# Returns:
# numpy.ndarray: The full, padded initial state vector with a single 1.
# Raises:
# ValueError: If the impulse position is outside the grid dimensions.
# """
# grid_width, grid_height = grid_dims
# impulse_x, impulse_y = impulse_pos
# # --- Input Validation ---
# # Ensure the requested impulse position is actually on the grid.
# if not (0 <= impulse_x < grid_width and 0 <= impulse_y < grid_height):
# raise ValueError(f"Impulse position ({impulse_x}, {impulse_y}) is outside the "
# f"grid dimensions ({grid_width}x{grid_height}).")
# # --- 1. Calculate the 1D Array Index ---
# # Convert the (x, y) coordinate to a single index in a flattened 1D array.
# # The formula for row-major order is: index = y_coord * width + x_coord
# flat_index = impulse_y * grid_width + impulse_x
# # --- 2. Create the Full, Padded State Vector ---
# grid_size = grid_width * grid_height
# total_size = 4 * grid_size # The simulation space is 4x the grid size.
# initial_state = np.zeros(total_size)
# # --- 3. Set the Delta Impulse ---
# initial_state[flat_index] = 1
# return initial_state