Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,12 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
def linear_interpolation(x, y, x_interp):
|
| 6 |
return np.interp(x_interp, x, y)
|
| 7 |
|
|
@@ -23,11 +29,20 @@ def lagrange_interpolation(x, y, x_interp):
|
|
| 23 |
return y_interp
|
| 24 |
|
| 25 |
def interpolate_and_plot(x_input, y_input, x_predict):
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
if len(x) != len(y):
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
x_interp = np.linspace(min(x), max(x), 100)
|
| 33 |
|
|
@@ -41,33 +56,39 @@ def interpolate_and_plot(x_input, y_input, x_predict):
|
|
| 41 |
y_interp = lagrange_interpolation(x, y, x_interp)
|
| 42 |
method = "Lagrange"
|
| 43 |
|
| 44 |
-
plt.
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
# Predict y value for given x
|
| 54 |
if x_predict is not None:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
return
|
| 71 |
|
| 72 |
iface = gr.Interface(
|
| 73 |
fn=interpolate_and_plot,
|
|
@@ -78,10 +99,10 @@ iface = gr.Interface(
|
|
| 78 |
],
|
| 79 |
outputs=[
|
| 80 |
gr.Plot(label="Interpolation Plot"),
|
| 81 |
-
gr.
|
| 82 |
],
|
| 83 |
title="Interpolation App",
|
| 84 |
-
description="Enter x and y values to see the interpolation graph. The method will be chosen based on the number of points:\n2 points: Linear, 3 points: Quadratic, >3 points: Lagrange
|
| 85 |
)
|
| 86 |
|
| 87 |
iface.launch()
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
|
| 5 |
+
def create_error_plot(error_message):
|
| 6 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 7 |
+
ax.text(0.5, 0.5, error_message, color='red', fontsize=16, ha='center', va='center', wrap=True)
|
| 8 |
+
ax.axis('off')
|
| 9 |
+
return fig
|
| 10 |
+
|
| 11 |
def linear_interpolation(x, y, x_interp):
|
| 12 |
return np.interp(x_interp, x, y)
|
| 13 |
|
|
|
|
| 29 |
return y_interp
|
| 30 |
|
| 31 |
def interpolate_and_plot(x_input, y_input, x_predict):
|
| 32 |
+
try:
|
| 33 |
+
x = np.array([float(val.strip()) for val in x_input.split(',')])
|
| 34 |
+
y = np.array([float(val.strip()) for val in y_input.split(',')])
|
| 35 |
+
except ValueError:
|
| 36 |
+
error_msg = "Error: Invalid input. Please enter comma-separated numbers."
|
| 37 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
| 38 |
|
| 39 |
if len(x) != len(y):
|
| 40 |
+
error_msg = "Error: Number of x and y values must be the same."
|
| 41 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
| 42 |
+
|
| 43 |
+
if len(x) < 2:
|
| 44 |
+
error_msg = "Error: At least two points are required for interpolation."
|
| 45 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
| 46 |
|
| 47 |
x_interp = np.linspace(min(x), max(x), 100)
|
| 48 |
|
|
|
|
| 56 |
y_interp = lagrange_interpolation(x, y, x_interp)
|
| 57 |
method = "Lagrange"
|
| 58 |
|
| 59 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 60 |
+
ax.scatter(x, y, color='red', label='Input points')
|
| 61 |
+
ax.plot(x_interp, y_interp, label=f'{method} interpolant')
|
| 62 |
+
ax.set_xlabel('x')
|
| 63 |
+
ax.set_ylabel('y')
|
| 64 |
+
ax.set_title(f'{method} Interpolation')
|
| 65 |
+
ax.legend()
|
| 66 |
+
ax.grid(True)
|
| 67 |
|
| 68 |
# Predict y value for given x
|
| 69 |
if x_predict is not None:
|
| 70 |
+
try:
|
| 71 |
+
x_predict = float(x_predict)
|
| 72 |
+
if x_predict < min(x) or x_predict > max(x):
|
| 73 |
+
error_msg = f"Error: Prediction x value must be between {min(x)} and {max(x)}."
|
| 74 |
+
return fig, f'<p style="color: red;">{error_msg}</p>'
|
| 75 |
+
|
| 76 |
+
if len(x) == 2:
|
| 77 |
+
y_predict = linear_interpolation(x, y, [x_predict])[0]
|
| 78 |
+
elif len(x) == 3:
|
| 79 |
+
y_predict = quadratic_interpolation(x, y, [x_predict])[0]
|
| 80 |
+
else:
|
| 81 |
+
y_predict = lagrange_interpolation(x, y, [x_predict])[0]
|
| 82 |
+
|
| 83 |
+
ax.scatter([x_predict], [y_predict], color='green', s=100, label='Predicted point')
|
| 84 |
+
ax.legend()
|
| 85 |
+
|
| 86 |
+
return fig, f"Predicted y value for x = {x_predict}: {y_predict:.4f}"
|
| 87 |
+
except ValueError:
|
| 88 |
+
error_msg = "Error: Invalid input for x prediction. Please enter a number."
|
| 89 |
+
return create_error_plot(error_msg), f'<p style="color: red;">{error_msg}</p>'
|
| 90 |
|
| 91 |
+
return fig, None
|
| 92 |
|
| 93 |
iface = gr.Interface(
|
| 94 |
fn=interpolate_and_plot,
|
|
|
|
| 99 |
],
|
| 100 |
outputs=[
|
| 101 |
gr.Plot(label="Interpolation Plot"),
|
| 102 |
+
gr.HTML(label="Result or Error Message")
|
| 103 |
],
|
| 104 |
title="Interpolation App",
|
| 105 |
+
description="Enter x and y values to see the interpolation graph. The method will be chosen based on the number of points:\n2 points: Linear, 3 points: Quadratic, >3 points: Lagrange\nOptionally, enter an x value (between min and max of input x values) to predict its corresponding y value."
|
| 106 |
)
|
| 107 |
|
| 108 |
iface.launch()
|