george2cool36's picture
Upload app.py with huggingface_hub
7324519 verified
# =========================
# Column Buckling Calculator — Euler Elastic (Rectangular Section)
# =========================
import math
import gradio as gr
import pandas as pd
SCOPE_MD = """
### Scope & Assumptions
- **Problem:** Axially compressed **prismatic column** (rectangular cross-section), **Euler elastic buckling**.
- **Outputs:** Governing critical load \(P_{cr}\), governing axis, slenderness \(λ\), factor of safety vs. applied load \(P\), verdict.
- **Method:** Euler buckling (linear-elastic, small deflection), **no inelastic (Johnson)**, **no eccentricity**, **no imperfections**.
- **Section:** Rectangle (width \(b\), height \(h\)); checks both axes and picks the **weaker axis** (smaller \(P_{cr}\)).
- **End conditions:** Choose \(K\): Fixed–Fixed (0.5), Fixed–Pinned (0.7), Pinned–Pinned (1.0), Fixed–Free (2.0).
- **Units:** SI (m, N, GPa, MPa). Input \(P\) in kN. Results show \(P_{cr}\) in **kN**.
### Valid Ranges (hard checks)
- 0.1 < L ≤ 20 m
- 0 < P ≤ 5*10^6 N
- 1 ≤ E ≤ 400 GPa
- 10 ≤ Sy ≤ 3000 MPa (for context only; not used in Euler (P_{cr}\)
- 0.005 < b ≤ 2 m
- 0.005 < h ≤ 2 m
"""
# ----- Validation -----
def _validate_inputs(L_m, P_kN, E_GPa, Sy_MPa, b_m, h_m):
errs = []
def in_range(name, val, lo, hi):
if not (lo < val <= hi):
errs.append(f"{name} must be in ({lo}, {hi}] (got {val}).")
in_range("Length L [m]", L_m, 0.1, 20.0)
in_range("Load P [kN]", P_kN, 0.0, 5000.0) # 5e6 N
in_range("Elastic modulus E [GPa]", E_GPa, 1.0, 400.0)
in_range("Yield strength Sy [MPa]", Sy_MPa, 10.0, 3000.0)
in_range("Width b [m]", b_m, 0.005, 2.0)
in_range("Height h [m]", h_m, 0.005, 2.0)
if errs:
raise ValueError("\n".join(errs))
# ----- Core Math -----
def euler_buckling_rect(L_m, P_kN, E_GPa, Sy_MPa, b_m, h_m, K):
"""
Euler elastic buckling for a rectangular column.
Checks both principal axes and selects the governing (smaller Pcr).
"""
_validate_inputs(L_m, P_kN, E_GPa, Sy_MPa, b_m, h_m)
# SI conversions
P_applied_N = float(P_kN) * 1e3
E_Pa = float(E_GPa) * 1e9
# Section properties
A = b_m * h_m
Ix = b_m * (h_m**3) / 12.0
Iy = h_m * (b_m**3) / 12.0
rx = (Ix / A) ** 0.5
ry = (Iy / A) ** 0.5
KL = K * L_m
Pcr_x = (math.pi**2) * E_Pa * Ix / (KL**2)
Pcr_y = (math.pi**2) * E_Pa * Iy / (KL**2)
# Governing axis (smaller Pcr)
if Pcr_x <= Pcr_y:
axis = "x (buckles about the weak direction of Ix → bending about h)"
Pcr = Pcr_x
r_govern = rx
I_govern = Ix
else:
axis = "y (buckles about the weak direction of Iy → bending about b)"
Pcr = Pcr_y
r_govern = ry
I_govern = Iy
slenderness = KL / r_govern if r_govern > 0 else math.inf
fos = Pcr / P_applied_N if P_applied_N > 0 else math.inf
ok = P_applied_N <= Pcr
# Pretty print helpers
def _fmt(x, d=6):
try:
return f"{x:.{d}g}"
except Exception:
return str(x)
steps_md = "\n".join([
"## Show the math (Euler elastic buckling)",
f"L = {_fmt(L_m)} m, K = {_fmt(K)}, KL = {K} * {L_m} = {KL:.6g} m",
f"E = {_fmt(E_GPa)} GPa, P = {_fmt(P_kN)} kN (= {P_applied_N:.6g} N)",
f"b = {_fmt(b_m)} m, h = {_fmt(h_m)} m",
"",
"Area and moments of inertia:",
f"A = b * h = {b_m} * {h_m} = {A:.6e} m^2",
f"Ix = b * h^3 / 12 = {b_m} * {h_m}^3 / 12 = {Ix:.6e} m^4",
f"Iy = h * b^3 / 12 = {h_m} * {b_m}^3 / 12 = {Iy:.6e} m^4",
f"rx = sqrt(Ix / A) = sqrt({Ix:.6e} / {A:.6e}) = {rx:.6e} m",
f"ry = sqrt(Iy / A) = sqrt({Iy:.6e} / {A:.6e}) = {ry:.6e} m",
"",
"Euler critical loads:",
"Pcr = π^2 * E * I / (K*L)^2",
f"Pcr_x = (π^2) * ({E_GPa} * 10^9) * ({Ix:.6e}) / ({K} * {L_m})^2 = {Pcr_x:.6e} N",
f"Pcr_y = (π^2) * ({E_GPa} * 10^9) * ({Iy:.6e}) / ({K} * {L_m})^2 = {Pcr_y:.6e} N",
f"Governing axis: {axis}",
f"Pcr(governing) = {Pcr:.6e} N = {Pcr/1e3:.3f} kN",
"",
"Slenderness (governing axis):",
f"λ = (K*L) / r_governing = {KL:.6g} / {r_govern:.6e} = {slenderness:.2f}",
"",
"Check vs applied load:",
f"FoS_buckling = Pcr / P = {Pcr:.6e} / {P_applied_N:.6e} = {fos:.3f}",
f"Verdict: {'OK (no buckling at P)' if ok else 'NOT OK (buckles at P)'}"
])
results = {
"A_m2": A,
"Ix_m4": Ix,
"Iy_m4": Iy,
"rx_m": rx,
"ry_m": ry,
"Pcr_x_N": Pcr_x,
"Pcr_y_N": Pcr_y,
"Pcr_governing_N": Pcr,
"P_applied_N": P_applied_N,
"FoS_buckling": fos,
"governing_axis": axis,
"slenderness_governing": slenderness,
"ok": bool(ok),
}
verdict = {
"message": "OK: no Euler buckling at the applied load" if ok else "NOT OK: Euler buckling likely at the applied load",
"governing_axis": axis
}
return results, verdict, steps_md
# ----- Gradio glue -----
END_CONDITIONS = {
"Fixed–Fixed (K=0.5)": 0.5,
"Fixed–Pinned (K=0.7)": 0.7,
"Pinned–Pinned (K=1.0)": 1.0,
"Fixed–Free / Cantilever (K=2.0)": 2.0,
}
def run_once(L_m, P_kN, E_GPa, Sy_MPa, b_m, h_m, end_condition):
try:
K = END_CONDITIONS[end_condition]
res, ver, steps = euler_buckling_rect(
float(L_m), float(P_kN), float(E_GPa), float(Sy_MPa),
float(b_m), float(h_m), float(K)
)
df = pd.DataFrame([{
"Pcr_x [kN]": round(res["Pcr_x_N"]/1e3, 3),
"Pcr_y [kN]": round(res["Pcr_y_N"]/1e3, 3),
"Pcr (governing) [kN]": round(res["Pcr_governing_N"]/1e3, 3),
"Applied P [kN]": round(res["P_applied_N"]/1e3, 3),
"FoS_buckling [-]": round(res["FoS_buckling"], 3),
"Slenderness (λ)": round(res["slenderness_governing"], 2),
"Governing axis": res["governing_axis"],
"Verdict": ver["message"],
}])
explain = (
f"Column buckles about {res['governing_axis']}: "
f"Pcr={res['Pcr_governing_N']/1e3:.2f} kN vs P={res['P_applied_N']/1e3:.2f} kN "
f"(FoS={res['FoS_buckling']:.2f}) → {ver['message']}."
)
return df, explain, steps, ""
except Exception as e:
return pd.DataFrame(), "", "", f"Input error:\n{e}"
with gr.Blocks(title="Column Buckling — Euler Elastic") as demo:
gr.Markdown("# Column Buckling Calculator — Euler Elastic (Rectangular Section)")
gr.Markdown(SCOPE_MD)
with gr.Row():
with gr.Column():
gr.Markdown("### Geometry & Material")
L_m = gr.Number(value=3.0, label="Length L [m]")
b_m = gr.Number(value=0.06, label="Width b [m]")
h_m = gr.Number(value=0.10, label="Height h [m]")
E_GPa = gr.Number(value=200., label="Elastic modulus E [GPa]")
Sy_MPa= gr.Number(value=250., label="Yield strength Sy [MPa] (context)")
with gr.Column():
gr.Markdown("### Load & End Condition")
P_kN = gr.Number(value=200.0, label="Applied load P [kN]")
end_condition = gr.Radio(
list(END_CONDITIONS.keys()),
value="Pinned–Pinned (K=1.0)",
label="End conditions (effective-length factor K)"
)
run_btn = gr.Button("Compute")
gr.Markdown("### Results")
results_df = gr.Dataframe(label="Numerical results", interactive=False)
gr.Markdown("### Explain the result")
explain_md = gr.Markdown()
gr.Markdown("### Show the math")
steps_md = gr.Markdown()
err_box = gr.Textbox(label="Errors", interactive=False)
run_btn.click(
fn=run_once,
inputs=[L_m, P_kN, E_GPa, Sy_MPa, b_m, h_m, end_condition],
outputs=[results_df, explain_md, steps_md, err_box]
)
if __name__ == "__main__":
demo.launch(debug=False)