simulationapdl / simulators /fenics_simulation.py
karthikmn's picture
Update simulators/fenics_simulation.py
bed8d89 verified
from fenics import *
import numpy as np
def run_fenics_simulation(simulation_type, **kwargs):
"""
Run FEniCS simulation for the selected use case.
Parameters:
simulation_type (str): 'plate' or 'beam'.
kwargs: Input parameters such as length, width, thickness, force/load.
Returns:
stress (float): Calculated maximum stress (approx).
deformation (float): Total deformation (approx).
"""
# Mesh setup
if simulation_type == "plate":
length, width, thickness = kwargs["length"], kwargs["width"], kwargs["thickness"]
mesh = BoxMesh(Point(0, 0, 0), Point(length, width, thickness), 10, 10, 2)
load = kwargs["force"]
elif simulation_type == "beam":
length, width, thickness = kwargs["length"], kwargs["width"], kwargs["thickness"]
mesh = BoxMesh(Point(0, 0, 0), Point(length, width, thickness), 10, 10, 2)
load = kwargs["load"]
else:
raise ValueError("Invalid simulation type selected.")
# Function space
V = VectorFunctionSpace(mesh, "P", 1)
# Trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
# Material properties
E, nu = 2e11, 0.3 # Elastic modulus and Poisson's ratio
mu = E / (2.0 * (1.0 + nu))
lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))
# Stress-strain relationship
def sigma(v):
return lmbda * nabla_div(v) * Identity(3) + 2 * mu * sym(grad(v))
# Load
f = Constant((-load, 0, 0))
# Variational form
a = inner(sigma(u), sym(grad(v))) * dx
L = dot(f, v) * dx
# Boundary conditions
def boundary(x, on_boundary):
return on_boundary and near(x[0], 0)
bc = DirichletBC(V, Constant((0, 0, 0)), boundary)
# Solve
u = Function(V)
solve(a == L, u, bc)
# Post-processing
stress = np.max(u.vector().get_local()) # Approximate stress
deformation = u.vector().norm("l2") # Approximate deformation
return stress, deformation